- Authors
- Dr.-Ing. Mikhail Zarubin Technische Universität Dresden, Fakultät Informatik, Institut für Systemarchitektur, Professur Datenbanken
- Dr.-Ing. Thomas KissingerTechnische Universität Dresden, Fakultät Informatik, Institut für Systemarchitektur, Professur Datenbanken
- Prof. Dr.-Ing. habil. Dirk HabichTechnische Universität Dresden, Fakultät Informatik, Institut für Systemarchitektur, Professur Datenbanken
- Prof. Dr.-Ing. Wolfgang Lehner
- title
- Efficient Compute Node-Local Replication Mechanisms for NVRAM-Centric Data Structures
- Please use the following URL when quoting:
- https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-798684
- conference
- SIGMOD/PODS '18: International Conference on Management of Data. Houston, TX, 11. Juni 2018
- original_in_proceeding0
- DAMON '18: Proceedings of the 14th International Workshop on Data Management on New Hardware
Herausgeber: Wolfgang Lehner, Ken Salem
Erscheinungsort: New York
Verlag: ACM
Erscheinungsjahr: 2018
Seiten: 1-9
ISBN: 978-1-4503-5853-8
Artikelnummer: 7 - publication_date
- 2018
- Abstract (EN)
- Non-volatile random-access memory (NVRAM) is about to hit the market and will require significant changes to the architecture of in-memory database systems. Since such hybrid DRAM-NVRAM database systems will keep the primary data solely persistent in the NVRAM, efficient replication mechanisms need to be considered to prevent data losses and to guarantee high availability in case of NVDIMM failures. In this paper, we argue for a software-based replication approach and present compute node-local mechanisms to provide the building blocks for an efficient NVRAM replication with a low latency and throughput penalty. Within our evaluation, we measured up to 10x less overhead for our optimized replication mechanisms compared to the basic replication mechanism of the Intel persistent memory development kit (PMDK).
- otherVersion0000000000
- Link zum Artikel, der zuerst in der ACM Digital Library erschienen ist
DOI: 10.1145/3211922.3211931 - Keywords (DE)
- nvram, Replikation, In-Memory, Datenbank, Datenstrukturen
- Keywords (EN)
- nvram, replication, in-memory, database, data strcutures
- Classification (DDC)
- 004
- Publishing house
- ACM, New York
- Project sponsoring
- Deutsche Forschungsgemeinschaft (DFG)
Sonderforschungsbereiche HAEC - Highly Adaptive Energy-Efficient Computing
(SFB 912)
ID: 164481002 - Deutsche Forschungsgemeinschaft (DFG)
Exzellenzcluster
Zentrum für Perspektiven in der Elektronik Dresden
(EXC 1056)
ID: 194636624 - version
- angenommene Version / Postprint / Autorenversion
- URN Qucosa
- urn:nbn:de:bsz:14-qucosa2-798684
- Qucosa date of publication
- 11.07.2022
- Document type
- in_proceeding
- Document language
- English
- licence