- AutorIn
- Franz Baader Theoretical Computer Science, TU Dresden
- Deepak KapurDept. of Computer Science, University of New Mexico
- Titel
- Deciding the Word Problem for Ground Identities with Commutative and Extensional Symbols
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-796234
- Schriftenreihe
- LTCS-Report
- Bandnummer
- 20-02
- Erstveröffentlichung
- 2020
- DOI
- https://doi.org/10.25368/2022.260
- Abstract (EN)
- The word problem for a finite set of ground identities is known to be decidable in polynomial time using congruence closure, and this is also the case if some of the function symbols are assumed to be commutative. We show that decidability in P is preserved if we add the assumption that certain function symbols f are extensional in the sense that f(s1,…,sn) ≈ f(t1,…,tn) implies s1 ≈ t1,…,sn ≈ tn. In addition, we investigate a variant of extensionality that is more appropriate for commutative function symbols, but which raises the complexity of the word problem to coNP.
- Freie Schlagwörter (DE)
- Beschreibungslogik, Kongruenzschluss, Entscheidbarkeit, coNP
- Freie Schlagwörter (EN)
- description logic, congruence closure, decidability, coNP
- Klassifikation (DDC)
- 004
- Klassifikation (RVK)
- ST 136
- Publizierende Institution
- Technische Universität Dresden, Dresden
- Version / Begutachtungsstatus
- angenommene Version / Postprint / Autorenversion
- URN Qucosa
- urn:nbn:de:bsz:14-qucosa2-796234
- Veröffentlichungsdatum Qucosa
- 20.06.2022
- Dokumenttyp
- Bericht
- Sprache des Dokumentes
- Englisch
- Lizenz / Rechtehinweis
CC BY 4.0