- AutorIn
- Francesco Kriegel Institute of Theoretical Computer Science Technische Universität Dresden
- Titel
- Learning General Concept Inclusions in Probabilistic Description Logics
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-795679
- Schriftenreihe
- LTCS-Report
- Bandnummer
- 15-14
- Erstveröffentlichung
- 2015
- DOI
- https://doi.org/10.25368/2022.220
- Abstract (EN)
- Probabilistic interpretations consist of a set of interpretations with a shared domain and a measure assigning a probability to each interpretation. Such structures can be obtained as results of repeated experiments, e.g., in biology, psychology, medicine, etc. A translation between probabilistic and crisp description logics is introduced and then utilised to reduce the construction of a base of general concept inclusions of a probabilistic interpretation to the crisp case for which a method for the axiomatisation of a base of GCIs is well-known.
- Freie Schlagwörter (DE)
- wahrscheinlichkeitstheoretische Beschreibungslogik, terminologisches Axiom, maschinelles Lernen, allgemeine Konzepteinschlüsse, Wahrscheinlichkeitsauffassung
- Freie Schlagwörter (EN)
- probabilistic description logic, terminological axioms, automatic learning, general concept inclusions, probabilistic interpretation
- Klassifikation (DDC)
- 004
- Klassifikation (RVK)
- ST 136
- Publizierende Institution
- Technische Universität Dresden, Dresden
- Version / Begutachtungsstatus
- angenommene Version / Postprint / Autorenversion
- URN Qucosa
- urn:nbn:de:bsz:14-qucosa2-795679
- Veröffentlichungsdatum Qucosa
- 20.06.2022
- Dokumenttyp
- Bericht
- Sprache des Dokumentes
- Englisch
- Lizenz / Rechtehinweis
CC BY 4.0