- AutorIn
- Dipl.-Verk.wirtsch. Angela Francke
- Dipl.-Ing. Sven Lißner
- Titel
- Big Data im Radverkehr
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-230730
- Erstveröffentlichung
- 2017
- Abstract (DE)
- Für einen attraktiven Radverkehr bedarf es einer qualitativ hochwertigen Infrastruktur. Bisher liegen durch den hohen Aufwand von Vor-Ort-Erfassungen nur punktuelle Radverkehrsstärken vor. Die aktuell wohl zuverlässigsten und tauglichsten Werte liefern bisher fest installierte automatische Radverkehrszählstellen, wie sie bereits viele Kommunen installiert haben. Ein Nachteil ist hierbei, dass für eine flächige Abdeckung mit einer besseren Aussagekraft für die gesamte Stadt oder Kommune die Anzahl der Erhebungspunkte meist deutlich zu gering ist. Die Bedeutung des Nebennetzes für den Radverkehr wird somit nur unvollständig erfasst. Für weitere Parameter, wie Wartezeiten, Routenwahl oder Geschwindigkeiten der Radfahrenden, fehlen dagegen meist die Daten. Perspektivisch kann diese Lücke unter anderem durch GPS-Routendaten gefüllt werden, was durch die mittlerweile sehr hohe Verbreitung von Smartphones und den entsprechenden Tracking-Apps ermöglicht wird. Die Ergebnisse des im Leitfaden vorgestellten Projektes sind durch das BMVI im Rahmen des Nationalen Radverkehrsplans 2020 gefördert wurden. Das Forschungsprojekt untersucht dabei die Nutzbarkeit von mit Smartphones generierten Nutzerdaten einer App für die kommunale Radverkehrsplanung. Zusammenfassend lässt sich sagen, dass unter Beachtung der im folgenden Leitfaden beschriebenen Faktoren GPS-Daten, im vorliegenden Fall die der Firma Strava Inc., mit einigen Einschränkungen für die Radverkehrsplanung nutzbar sind. Bereits heute sind damit Auswertungen möglich, die zeigen, wo, wann und wie sich Radfahrende im gesamten Netz bewegen. Die mittels Smartphone-App generierten Daten können sehr sinnvoll als Ergänzung zu bestehenden Dauerzählstellen von Kommunen genutzt werden. Berücksichtigt werden sollten bei der Auswertung und Interpretation der Daten jedoch einige Aspekte, wie der eher sportlich orientierte Kontext der erfassten Routen in den untersuchten Beispielen. Des Weiteren werden aktuell die Daten zum Teil noch als Datenbank- oder GIS-Dateien zur Verfügung gestellt, bzw. befinden sich online Masken zur einfacheren Nutzung im Aufbau oder einem ersten Nutzungsstadium. Die Auswertung und Interpretation erfordert also weiterhin Fachkompetenz und auch personelle Ressourcen. Der Einsatz dieser sinkt jedoch voraussichtlich zukünftig durch die Weiterentwicklung von Web-Oberflächen und unterstützenden Auswertemasken. Hier gilt es zukünftig, in Zusammenarbeit mit den Kommunen, die benötigten Parameter sowie die geeignetsten Aufbereitungsformen zu erarbeiten. Im Forschungsprojekt erfolgte ein Ansatz der Hochrechnung von Radverkehrsstärken aus Stichproben von GPS-Daten auf das gesamte Netz. Dieser konnte auch erfolgreich in einer weiteren Kommune verifiziert werden. Jedoch ist auch hier in Zukunft noch Forschungsbedarf vorhanden bzw. die Anpassung auf lokale Gegebenheiten notwendig. In naher Zukunft ist es notwendig, den Praxisnachweis für die Nutzbarkeit von GPS-Daten zu erbringen. Vorbilder hierfür können die Städte Bremen, Dresden, Leipzig oder Mainz sein, die jeweils bereits erste Schritte zur Nutzung von GPS-Daten in der Radverkehrsplanung und -förderung unternehmen. Diese Schritte sind vor dem Hintergrund der weiteren Digitalisierung von Mobilität und Verkehrsmitteln und dem damit wachsenden Datenangebot – auch trotz der bisherigen Einschränkungen der Daten – sinnvoll, um in den Verwaltungen frühzeitig entsprechende Kompetenzen aufzubauen. Langfristig bietet die Nutzung von GPS-Daten einen Mehrwert für die Radverkehrsplanung. Der aktive Einbezug von Radfahrenden eröffnet zudem neue Möglichkeiten in der Kommunikation und der Bürgerbeteiligung – auch ohne Fachwissen vorauszusetzen. Der vorliegende Leitfaden liefert dafür einen praxisorientierten Einstieg in das Thema und weist umfassend auf Angebote, Hindernisse und Potenziale von GPS-Daten hin.
- Nachfolger
- Big Data im Radverkehr : Teil II
- Andere Ausgabe
- englischsprachige Ausgabe
Link: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233278 - Verweis
- Big Data im Radverkehr
Ergebnisbericht zum Projekt
Link: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-236003 - Freie Schlagwörter (DE)
- GPS-Daten, Radverkehr, Verhaltensdaten
- Freie Schlagwörter (EN)
- GPS, Cycling
- Klassifikation (DDC)
- 380
- Klassifikation (RVK)
- ZO 4340
- Normschlagwörter (GND)
- Dresden, Radfahrer, Radfahrerverkehr, Verkehrsverhalten, Datensammlung, Smarthphone, Orientierung
- Publizierende Institution
- Technische Universität Dresden, Dresden
- URN Qucosa
- urn:nbn:de:bsz:14-qucosa-230730
- Veröffentlichungsdatum Qucosa
- 19.01.2018
- Dokumenttyp
- Buch
- Sprache des Dokumentes
- Deutsch
- Lizenz / Rechtehinweis