- AutorIn
- Nikolaj Grønkær Aalborg University, Department of Energy Technology, Denmark
- Lasse Nørby NielsenAalborg University, Department of Energy Technology, Denmark
- Frederik Ødum NielsenAalborg University, Department of Energy Technology, Denmark
- Søren Ketelsen
- Lasse Schmidt
- Titel
- Multi-objective control of a self-locking compact electro-hydraulic cylinder drive
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-710940
- Konferenz
- 12th International Fluid Power Conference (12. IFK). Dresden, October 12 – 14, 2020
- Quellenangabe
- Volume 1 – Symposium - 1
Erscheinungsort: Dresden
Verlag: Technische Universität Dresden
Erscheinungsjahr: 2020
Bandnummer Schriftenreihe: 1
Seiten: 241-252
DOI: 10.25368/2020.6 - DOI
- https://doi.org/10.25368/2020.32
- Abstract (EN)
- The field of self-contained linear hydraulic drives based on variable-speed electrical motors and fixed displacement pumps is gaining interest from both industry and academia. Some of the main reasons for this is the possibility to improve the energy efficiency of such drives compared to conventional valve controlled drives, and the possibility for electrical regeneration allowing power sharing between multiple drives [1]. The main drawback for such types of drive concepts is a low pressure in the nonload carrying cylinder chamber. This induces a low drive stiffness limiting the achievable drive bandwidth and hence the application range. However, a so-called self-locking compact drive architecture recently proposed allows maintaining a proper drive stiffness by virtue of separate forward and return flow paths, combining the advantages of efficient flow control into the cylinder and a throttle driven flow out of the cylinder. The multiple inputs available in this architecture allow the control to target several objectives concurrently, for example piston motion, drive stiffness and fluid temperature. The purpose of the study presented is to analyse the dynamic couplings between the control objectives via relative gain array (RGA) methods, and the realization of input- and output transformations effectively decoupling relevant dynamic interactions. These transformations allow the usage of simple SISO-controllers for each control objective, and a method for controlling motion and fluid temperature concurrently, is proposed and experimentally verified.
- Freie Schlagwörter (DE)
- 12. IFK, Eingangs- und Ausgangstransformationen, in sich geschlossene Hydraulikantriebe, drehzahlvariable Antriebe, Mehrzielsteuerung, Temperaturregelung
- Freie Schlagwörter (EN)
- 12th International Fluid Power Conference, Input- and output transformations, self-contained hydraulic drives, speed-variable drives, multi-objective control, temperature control
- Klassifikation (DDC)
- 620
- Klassifikation (RVK)
- ZQ 5460
- Publizierende Institution
- Technische Universität Dresden, Dresden
- Sonstige beteiligte Institution
- Dresdner Verein zur Förderung der Fluidtechnik e. V. Dresden, Dresden
- Version / Begutachtungsstatus
- publizierte Version / Verlagsversion
- URN Qucosa
- urn:nbn:de:bsz:14-qucosa2-710940
- Veröffentlichungsdatum Qucosa
- 25.06.2020
- Dokumenttyp
- Konferenzbeitrag
- Sprache des Dokumentes
- Englisch
- Lizenz / Rechtehinweis