- AutorIn
- Juliana Hildebrandt Technische Universität Dresden, Fakultät Informatik, Institut für Systemarchitektur, Professur Datenbanken
- Dirk HabichTechnische Universität Dresden, Fakultät Informatik, Institut für Systemarchitektur, Professur Datenbanken, Germany
- Patrick DammeTechnische Universität Dresden, Fakultät Informatik, Institut für Systemarchitektur, Professur Datenbanken, Germany
- Wolfgang Lehner
- Titel
- Compression-Aware In-Memory Query Processing
- Untertitel
- Vision, System Design and Beyond
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-836554
- Konferenz
- Data Management on New Hardware: 7th International Workshop on Accelerating Data Analysis and Data Management Systems Using Modern Processor and Storage Architectures. New Delhi, 01.09.2016
- Quellenangabe
- Data Management on New Hardware : th International Workshop on Accelerating Data Analysis and Data Management Systems Using Modern Processor and Storage Architectures ; ADMS 2016 and 4th International Workshop on In-Memory Data Management and Analytics, IMDM 2016
Erscheinungsort: Cham
Verlag: Springer
Erscheinungsjahr: 2017
Titel Schriftenreihe: Lecture Notes in Computer Science
Bandnummer Schriftenreihe: 10195
Seiten: 40-56
ISBN: 978-3-319-56110-3 - Erstveröffentlichung
- 2017
- Abstract (EN)
- In-memory database systems have to keep base data as well as intermediate results generated during query processing in main memory. In addition, the effort to access intermediate results is equivalent to the effort to access the base data. Therefore, the optimization of intermediate results is interesting and has a high impact on the performance of the query execution. For this domain, we propose the continuous use of lightweight compression methods for intermediate results and have the aim of developing a balanced query processing approach based on compressed intermediate results. To minimize the overall query execution time, it is important to find a balance between the reduced transfer times and the increased computational effort. This paper provides an overview and presents a system design for our vision. Our system design addresses the challenge of integrating a large and evolving corpus of lightweight data compression algorithms in an in-memory column store. In detail, we present our model-driven approach and describe ongoing research topics to realize our compression-aware query processing vision.
- Andere Ausgabe
- Link zum Artikel, der zuerst bei Springer Link erschienen ist
DOI: 10.1007/978-3-319-56111-0_3 - Freie Schlagwörter (DE)
- Abfrageverarbeitung, Zwischenergebnis, Komprimierungsalgorithmus, Abfrage-Optimierung, Parameter-Definition
- Freie Schlagwörter (EN)
- Query Processing, Intermediate Result, Compression Algorithm, Query Optimization, Parameter Definition
- Klassifikation (DDC)
- 004
- Verlag
- Springer, Berlin [u. a.]
- Version / Begutachtungsstatus
- angenommene Version / Postprint / Autorenversion
- URN Qucosa
- urn:nbn:de:bsz:14-qucosa2-836554
- Veröffentlichungsdatum Qucosa
- 22.02.2023
- Dokumenttyp
- Konferenzbeitrag
- Sprache des Dokumentes
- Englisch
- Lizenz / Rechtehinweis