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ABSTRACT

In decentralised multi-agent reinforcement learning communication can be used as a measure to
increase coordination among the agents. At the same time, the essence of message exchange and
its contribution to successful goal achievement can only be established with the domain knowl-
edge of a given environment. This thesis focuses on understanding the impact of communication
on a decentralised multi-agent system. To achieve this, communication is employed and studied
in the context of Urban Air Mobility, in particular - to the vertiport terminal area control problem.
A proposed in this work experimental framework, that promotes different information exchange
protocols, allows to investigate if and how the agents leverage their communication capabilities.
Acquired simulation results show that in the terminal area of a vertiport the aircrafts, controlled
in a decentralised way, are capable of proper self-organisation, similar to the structured technique
formulated in [Bertram and Wei(2020)]. A study of their communication mechanisms indicates
that through different protocols the agents learn to signal their intent to enter a vertiport regard-
less of environment settings.
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1 INTRODUCTION

In many real world situations multiple parties interact with each other to achieve their common
and individual goals. Multi-agent reinforcement learning (MARL) is an area of machine learning
that concerns such types of interactions between learning systems. The application domain for
it is diverse: from controlling groups of artificial agents in video games [Vinyals et al.(2019)], to
solving competitive predator-prey scenarios [Singh et al.(2018)], to navigating unmanned aerial
vehicles for agricultural field imaging coverage [Marwah et al.(2023)]. In many occasions, the
nature of interactions is cooperative, where participants act jointly with the purpose of attaining
increased mutual benefits. In this regard, communication can play an important role in enabling
better coordination among collaborators, as information exchange can provide a context, critical
for optimal decision making.

Given the successful use of MARL in the domain of unmanned aerial vehicles [Xia et al.(2022)],
potential adaptations to similar scenarios can be considered. Urban air mobility (UAM) is a con-
cept of a future transportation system for passengers and cargo, facilitated by vertical take-off and
landing electric aircrafts [Cohen et al.(2021)]. Taking into account the novelty of this idea, research

is conducted around the aircraft [Silva et al.(2018)] and airspace design [Bauranov and Rakas(2021)],
which includes the take-off and landing spots called vertiports. Provided a low space availability
within an urban environment for the purposes of eVTOL infrastructure, it is critical to optimally
manage the limited capacity of a vertiport. Therefore a need for some scheduling mechanism
arises, that manages conflicts between the aircrafts.

Some current approaches to this problem revolve around heuristic methods. A First-In-First-Out
algorithm is analysed in terms of capacity and throughput by [Guerreiro et al.(2020)]. Their work
revealed that under this procedure some inefficiencies can occur depending on the vertiport con-
figurations. Another method called Insertion and local search is outlined in [Pradeep and Wei(2018)].
It works in conjunction with mixed-integer linear programming and time-advance algorithm to
optimise the expected time of arrival in the context of a vertiport with a single landing pad. These
methods concern the scheduling problem from the vertiport’s point of view and do not involve
direct vehicle control. Alternative solutions based on single-agent reinforcement learning are also
proposed: in [Bertram and Wei(2020)] aircrafts learn to navigate the terminal area of a vertiport
by following a pre-determined path and gradually progressing towards the centre. This system



Figure 1.1: Design of a vertiport, where take-off and landing can be performed
in both directions, proposed by [EASA(2022)]

relies on commands to proceed sent by a vertiport capacity manager.

A common thread that unites previously discussed approaches is the existence of some cen-
tralised entity that regulates the order of operations in the proximity of the landing pad. At the
same time, the eVTOL systems are also expected to possess some level of autonomy and ability
to navigate high-density traffic, especially in the areas close to the vertiports. Hence, research on
the capabilities of self-organising systems, that do not rely on external commands, is motivated.
Provided that independent aircrafts should cooperate to maximise the total utility of all parties
involved, MARL-based methods can be suggested as a solution to this problem.

Directly utilising a decentralised MARL formulation is a possible and straightforward way to
implement such a system. Still, it is reasonable to assume that some form of inter-agent commu-
nication can assist in conflict resolution. The benefits of communicative approach might include
increased cohesion in collective decision making and better utilisation of the vertiport resources.
However, it can also require a substantially increased learning complexity and it might not be
clear if a successful goal achievement can be attributed to the information sharing. Therefore, the
effect of communication on a decentralised multi-agent system needs to be analysed.

In this light, the research is carried out to study the nature of emergent communication in MARL,
in particular in application to the vertiport terminal area control. The key contribution consists of
three factors. First, the applicability of decentralised and communication-based MARL methods
to the vertiport arrival scheduling is examined. Second, distinct approaches to priority man-
agement, that promote unique types of shared information and allow to establish the impact of
communication, are proposed. Finally, self-organisation of the agents in the terminal area of a ver-
tiport is studied, and, with the help of suggested approaches, the essence behind the developed
communication protocols is investigated.

The content is structured as follows. In chapter 2 a necessary background in multi-agent rein-
forcement learning is introduced, approaches to implementing communicative systems within it
are reviewed, and applications of reinforcement learning to the vertiport’s terminal area man-
agement are summarised. In chapter 3 the details of a vertiport environment implementation
are outlined and priority management schemes, that facilitate inter-agent information exchange,
are described. In chapter 4 simulation results are presented, self-organising capabilities of the
MARL-based system are evaluated, and the impact and nature of communication in a said sys-
tem is analysed. In chapter 5 conclusions are drawn and future research directions are suggested.

Chapter 1 Introduction 10



2 BACKGROUND

2.1 REINFORCEMENT LEARNING BASICS

Reinforcement Learning is the paradigm of machine learning that can be described as learning-
by-doing. The learner, commonly called an agent, is placed in different situations (environment)
and is supposed to take actions in these situations. As the environment is often dynamic, it can be
described as a sequence of its snapshots, called states. Usually there are multiple possible options
for the action in any given state, and each of them is associated with a different quantifiable utility
(reward), either immediate or delayed. The learning part comes when an agent has to figure out
which actions bring the most reward over the sequence of decisions. In reinforcement learning
the agent does not get any explicit instructions about it, so it learns by trial-and-error.

A formalisation of such process is called Markov Decision Process (MDP). According
to [Sutton and Barto(2018)], here an environment can be described by its state transition function
P:SxSx A~ 0,1}

P(S/|S/ ﬂ) = PI'{St = S/|st—1 =s5,at-1 = a}/ (21)

where s’,s € S,a € A are states and action. This function expresses the probability of the next
state given the current state and the action taken in it. Furthermore, a function R(s,a) : S x A —
R indicates the reward the agent receives for the action a taken in the state s. From the agent’s
side, a policy 7t(als) : S x A — [0,1] dictates the probability of taking an action a in the state s:

nt(als) = Pr{a; = a|s; = s}. (2.2)

In this regard, the goal of the agent is to learn an optimal policy 7t* such that it maximises the total
expected discounted return of an episode G, = Z:L’:to Y'R(s¢, ar) with respect to actions. Here v
is a discount factor, that controls the importance of future rewards.

Due to the connection between the expected return and the state-action pairs traversed over the
course of the episode, it is convenient to define a state-value function V(s) : S — R. It represents

11



the expected future return given the current state if the agent follows the policy

Vr(s)

]E;-[[Gt|st = S}
IEn[T’t + 7Giy1lst = s (2.3)

Y a( Z/P (s'|s,a) [R(s,a) + yVr(s")] .

An action-value function Q(s,a) : S x A — R can be defined in the same way, with the excep-
tion of additional conditioning on the action:

Qxr(s,a) = Ex[Gtlst = s,a; = a]

:ZP(sl|s,a) R(sa +’)’27T |S Qn(S ‘1)

s/

(2.4)

State-value and action-value functions are directly connected through the policy:

Va(s) =} 7t(als)Qn(s, a).

a

A useful property of value functions is that they define a partial order over the set of policies.
This implies the existence of some policy 7* that is not weakly dominated by any other policy 7,
i.e. in any given state s the expected future return V- (s) can not be increased. Such a policy is
called optimal.

2.2 ALGORITHMS

As [Sutton and Barto(2018)] suggest, the main goal in reinforcement learning is to find an optimal
policy 7r* that maximises the expected return Gy, = Zf": fo Y'R(st,at), where a; ~ 7t*(at|st). There
are different ways to solve this problem, which can be roughly grouped into two approaches:
action-value methods and policy-based methods. An example of an action-value method is Q-
Learning [Watkins and Dayan(1992)]. In these methods the policy is not learnt explicitly. It is
instead derived from the action-value function, i.e. 7(a|s) = max, Ex[Gi|sy = s,a4 = a] =
max,; Q(s,a) in the case of Q-Learning. In this case an optimal policy will be achieved once the
estimates for expected returns are close enough to their true values.

On the contrary, methods that directly map a state (or observation) to the action without neces-
sarily relying on the estimates of expected returns are called policy-based. Here policy 7(als, 6)
is some function parameterised by the set of values 6§ € RP. For the environments with high-
dimensional state-spaces these functions are generally artificial neural networks, which are uni-
versal function approximation mechanisms. In order to obtain an optimal policy it is necessary to
optimise the parameters 6 based on some performance measure J(0), which is typically done by
the gradient descent scheme:
i1 = 0; —aV](6;).

Generally J(0) is chosen to be some fitness function that reflects the performance in terms of
acquired rewards and thus needs to be maximised.

Chapter 2 Background 12



2.2.1 Policy gradient

Policy gradient methods are based on an important fact called policy gradient theorem. It states
that for J(#) defined to be the expected return of the whole episode E,[Gy], i.e. a state-value
function of the initial state Vi, (so), the gradient w.r.t. # can be calculated as follows:

VJ(0) = VEr,[Go] o< Y _1(s) Y Qn,(s,a)V(als,6), (2.5)

where « means "proportional to", ji(s) is the probability of the state s under policy 71y and Q(s,a)
is the action-value function. This formulation is quite convenient since it allows to compute the
gradient without explicitly knowing the state transition function of the environment.

It is possible to substitute the true expectation of states s and actions a under policy 77 with their
Monte-Carlo estimate from the unrolled episode {S;, At, R¢|t =0, ..., t. } and derive a basic policy
gradient method called REINFORCE [Williams(1992)]:

VJ(G) = ]Eﬂe [Gch’l n(At|St,9)] (26)

9,’+1 +— 0;+aGVin 7'[(At|st, 91) 2.7)

A generalisation of REINFORCE involves the introduction of the "baseline function". It aims at
decreasing variance in the gradient updates but keeps the expectation of the updates unchanged.
Furthermore, a state-value function can be used as a baseline, in which case it becomes possi-
ble to learn it alongside the policy. Following [Sutton and Barto(2018)], if the value function is
parameterised by some set of weights w, then the update rule for REINFORCE with baseline is:

6 =Gt — V(S wi) (2.8)
Wit < W; + Oéw(SVV(St, Wl') (29)
01 < 0; + a9V In (A4St 6;) (2.10)

It is worth noting that such update for w is natural and follows from the definition of the state-
value function, as it corresponds to minimising the L, distance between the return G; and state-
value V(S;, w;). Itis true since alV (G — V(St, w))? = al¥ (G — V(St, w)) - VV (St w).

2.2.2 Actor-critic

A common trick used in many reinforcement learning algorithms involves using some boot-
strapped estimates for the expected return instead of the actual value. This technique revolves
around the recurrence property of the value functions and is called temporal difference. As out-
lined by [Foerster(2018)], in policy gradient methods, when it is applied to the REINFORCE with
baseline, the algorithm is known as actor-critic method:

0iv1 <0+« (Gt — V(St,wi)) Vin n(At|St, 91‘)

(2.11)
:61' + (Rt + ’)’V(St+1,wi) — V(St,Wi)) Vin n(At|St, 61>

Chapter 2 Background 13



Here actor and critic refer to the learn policy and value functions respectively. The weights for
the critic network can be updated in a similar way as in 2.9. In this case it would be equivalent
to minimising the L, distance between Ry and (yV(Ss11, wi) — V(St, wi)). However, it is also
possible to use a separate target network for the bootstrapped estimates, with its parameters
being periodically updated to equal critic’s w.

2.2.3 Proximal Policy Optimization

While policy gradient methods have the benefit of simplicity, they have some practical downsides.
In particular, they can have poor data efficiency and robustness. Performing multiple update
steps on the same episode data with the vanilla policy gradient update can cause the policy to
suddenly significantly diverge. This necessitates either smaller parameter updates, or sampling
larger batches of data in order to produce more accurate estimates for the gradient. To address
these issues, Proximal Policy Optimization (PPO) [Schulman et al.(2017)] was introduced.

The main idea behind this algorithm is to limit the magnitude of policy updates and make several
sequential gradient descent steps on the same batch of data. This is achieved by first introducing
a "surrogate" objective L(6):

7T(At|5t,9)

L(O) = 7t(A¢|St, 0o14)

Di| =E [T’t(G)Dt} ’ (212)
where Dy is the advantage at time stamp f (described further), and r¢(9) is the probability ratio
between the current policy 79 and the policy in the beginning of the update step 7y .. Second,
this objective is clipped in some e-interval [1 — €,1 + €] of the probability ratio 7(0), where €
typically assumes the values in the range [0.1,0.3]. Depending on the sign of the advantage D; it

then becomes:
LM () = E[min{r(0)D;, clip(r1(0),1—€,1+€)Dy}]. (2.13)
D;<0
JCLIP D> 0 !
‘ 1—€1l ,
— r :
0 11 +€ LCLIP

Figure 2.1: LCLIP as the function of probability ratio r, depending on the sign
of advantage Dy, [Schulman et al.(2017)]

Compared to the unclipped version, the objective L°LP does not provide any additional benefit
for the large changes in the policy that move it towards larger values. At the same time, it leaves

the changes that decrease the objective LCLIP

in their full scale. Intuitively, since it is a lower
(pessimistic) bound of the unclipped objective, it puts more emphasis on eliminating samples

with low objective value, making the algorithm more conservative in its policy updates.

Chapter 2 Background 14



In the surrogate objective 2.12 the advantage D; is the measure of the utility of action A; compared
to the expected return from this state, i.e. its state-value function V(S;). It can be calculated over
some time horizon T — t:

Dy = —V(S) + Ry + YRppq + -+ 9T R + 94T 1V(S7). (2.14)
PPO uses a generalised version of such advantage, which is calculated as:

Dy =38+ (YA)bpq1 + -+ -+ (yA) T ory, (2.15)
where & = Ry + YV (St41) — V(Si). (2.16)

For training, an environment is unrolled for some number of timesteps T to create a batch of data.
A surrogate loss is then constructed and optimized for some number of epochs K. It is possible to
run multiple updates on the same data because a clipped surrogate loss function 2.13 limits the
large policy updates, but keeps the small ones intact. This allows the algorithm to traverse faster
through the regions of insignificant policy changes, thus improving sample efficiency.

2.3 MULTI-AGENT REINFORCEMENT LEARNING

Theoretical framework described previously addresses the setup with one agent in the envi-
ronment. It can also be generalised to account for multiple decision makers in the system. In
stochastic games [Shapley(1953)] N agents sequentially take actions, that influence the state of
the environment. According to [Foerster(2018)], it can be viewed as agents forming a joint ac-

tion a; = <a},...,ai\]

) in a given state s;, with the next state dictated by the state transition
function P(s’|s,a). In this case the joint action space A = A;j x --- X Ay becomes a cartesian
product of the action spaces of all decision makers in the environment. The reward function
1 Ny

R(s,a) : S x A +— RN now maps state s and joint action a to a vector r = (r!,...,rN) containing

rewards for each agent.

2.3.1 Centralised and decentralised control

In a multi-agent setting policy can be similarly defined on the joint action space
n(als) : A xS —[0,1]:

n(als) = Pr{a} = a',...,a) = aN|s; = s}. (2.17)

Such definition implies a centralised unit that controls all agents in the environment at the same
time. This might be suboptimal depending on the setup, e.g. in a competitive environment,
where one agent achieves larger rewards at the expense of the other agents’ losses in performance.
Furthermore, regardless of the setting, joint action space grows exponentially with the amount
of agents and can become intractable. In order to address this challenge it is possible to consider
decentralised control, in which agents act independently. Here each agentd € D = {1,..., N} has
their own policy 71 (a?|s), which is the same as in the single-agent formulation. [Foerster(2018)]

Chapter 2 Background 15



suggests that, provided the agents are independent, the probability of a joint action a{ can be
factorised as

Pr(ag|st) H T |st (2.18)

2.3.2 Partial observability

Another important aspect in MARL is partial observability. It encapsulates the idea of agents not
having access to the true state of the environment s;. In decentralised partially observable Markov
decision processes (Dec-POMDP) [Oliehoek et al.(2008)] they instead rely on some local represen-
tation of the environment 07 € ©9, called an observation, which is governed by the observation
function O(ols,a) : O xS x A +— [0,1]. Here O = Oy x --- x Oy is a joint observation space.
Similarly to the state transition function 2.1, observation function O represents a probability of
receiving a joint observation o given a joint action a taken in a state s. In a partially observable
environment the policy becomes a mapping from the observation space into the action space of
an individual agent 71 (a?|0?) : O x A% [0,1].

2.3.3 Multi-agent learning algorithms

In order to learn an optimal policy in MARL, some additional details have to be considered, as
compared to the single-agent setting. In the most straightforward case of centralised control in
a cooperative scenario with a common goal, an optimal policy can be achieved with the same
methods as in the single-agent environment, since the only thing that changes is action space
dimensionality. On the other hand, in decentralised control with partial observability each agent
is independent and can receive separate rewards. It is possible for them to optimise their own
policies independently as well, in which case they maximise their rewards by considering other
agents as external parts of the environment. The adaptations of algorithms like Q-Learning and
Actor-Critic for this setup are called Independent Q-Learning and Independent Actor-Critic.

One training technique that can be used in cooperative settings is parameter sharing. Instead of
having individual network parameters 6 for each agent, a universal set of parameters 6 = 69Vd €
D can be learned. The benefit is twofold: first, the inference time can be reduced by performing
calculations for all agents simultaneously in one batch. Second, since the sampled trajectories
all belong to the same set of parameters, gradients can be estimated with less variance, thus
improving sample efficiency of the learning process.

In general, the essence behind Dec-POMDP is that the policy of each agent has to be condi-
tioned only on local observations. This means that global information like environment state
st or joint observation o; can be used during training, as long as the policy does not depend on it.
This approach is called centralised training with decentralised execution (CTDE). Different CTDE
approaches, like Multi-agent deep deterministic policy gradients (MADDPG) [Lowe et al.(2020)]
and Counterfactual multi-agent policy gradient (COMA) [Foerster et al.(2017)] use an actor-critic
architecture and with a centralised critic, that is conditioned on joint observation and action vec-
tors o; and a;. These methods were empirically shown to provide better performance and faster
convergence over Independent Actor-Critic on different benchmarks.
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The algorithms described above use a replay buffer that stores past episode data, in order to re-use
it during the training phase. This makes these algorithms off-policy since they are learning on the
transitions, that were not sampled by the current policy. Due to MARL environments involving
a large degree of non-stationarity incurred by the agents, it might be beneficial to also consider
on-policy algorithms, e.g. PPO.

Similarly to the vanilla Actor-Critic, PPO can also be adapted to the multi-agent scenario. In-
dependent PPO (IPPO) and Multi-agent PPO (MAPPO) represent two different approaches - the
first is fully decentralised, and the second operates in CTDE paradigm and has a centralised critic.
Despite theoretical concerns of being less sample efficient, both IPPO and MAPPO have been
shown to outperform off-policy methods on multi-agent benchmarks [Papoudakis et al.(2021)],
[Yu et al.(2022)], [de Witt et al.(2020)].

2.4 COMMUNICATION IN MULTI-AGENT
REINFORCEMENT LEARNING

In MARL with decentralised control and partial observability agents often get access to different
parts of information about the environment. Since the agents are decentralised, they would nor-
mally be unable to share the information, which in some cases can be crucial for correct decision
making. Allowing for information exchange between decentralised agents, i.e. communication,
can be an efficient way to set up better coordination in a multi-agent system. It is possible to share
information in a pre-determined way: in robot football the agents communicate their position and
proximity to the ball at every time step to every member of the team [Stone and Veloso(1998)].
However, such a structured approach does not need to be the case. While agents are learning
control in their environment, they are also able to independently learn different communication
schemes that might impact their overall performance.

In order to set up communication in a multi-agent system, a number of conceptual questions
need to be answered. How the agents are communicating, who they are sending the messages to,
what information they are transmitting, etc. A convenient way to structure such design decisions
was proposed in [Zhu et al.(2022)], which considers various technical aspects that characterise
communication approaches.

2.4.1 Communicator type

A straightforward way of enabling information sharing between the agents in the system would
be direct communication. In RIAL and DIAL [Foerster et al.(2016)] at time step t — 1 each agent
in addition to taking some action a‘f_l also emits some message m? _,, which all other agents have
access to. Then, at the next time step t each agent can condition their policy 77/ and communi-
cation network M? on the joint message m; | = (m! ,,...,mN ). Anew action and message
are then af ~ nd(aﬂof, mt_l,xffl) and m‘f = Md(o’f, mt_l,xffl) respectively, where xffl is all
additional input, like hidden state of the recurrent network, agent index and previous action. In
this approach an agent can convey some information to all other agents in the system directly.
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Figure 2.2: Different communication structures in one system, [Zhu et al.(2022)]

An alternative approach consists in sending a message via some proxy. In such setups proxy
is an auxiliary agent who conducts communication among other agents, but does not have any
immediate impact on the environment itself. A proxy can transform the messages and adapt
them to a particular purpose. HAMMER [Gupta et al.(2022)] uses a central proxy that collects
observations from all agents and then sends personalised messages to them. It can be viewed
as a proxy agent forming a joint message m; = M(o;) based on a joint observation o;, and each

individual agent taking an action a¢ according to 7t (a?|of, m{).

2.4.2 Communication structure

A different angle to consider is the structure of the communication graph. Generally it can be
divided into two categories: predefined and learnable. Full direct communication, like the one
described in DIAL, has an immutable structure and can be viewed as a complete communication
graph. The approach used in TarMAC [Das et al.(2020)] revolves around the same concept of full
connectivity. There the agents produce messages, which consist of two parts: signature k% and
value v?. At the receiving end, each agent predicts their private query g%, in order to compute
attention weights a? based on the signatures of all other agents k’. Then the integrated message c*
for the agent d is a weighted combination of all message values v' : ¢/ = Y ;. a¥'v’. Although each
agent independently decides how to deal with the incoming messages, they are communicating
with everyone at each time step.

A predefined structure does not necessarily imply full connectivity among the agents. Some mod-
els rely on predetermined rules on how to control the flow of information. In DGN [Jiang et al.(2020)]
communication is only allowed between the neighbouring agents, which is defined by their prox-
imity. Over time the agents can enter or exit the neighbourhood of the other agents, changing the
structure of the communication graph.

Another approach to the communication policy is to learn it. In the simple case, an agent can indi-
vidually decide if it communicates at a given time step. This idea is used in IC3Net [Singh et al.(2018)],
where a gating mechanism controls the information flow from the agent. Providing even more
flexibility to build a communication graph, ATOC [Jiang and Lu(2018)] allows the agents to form
arbitrary communication groups. Every T time steps an agent can decide to initiate communi-
cation with any number of collaborators, which it can select itself. This communication group G
lasts for T time steps, and within it an integrated message /i for each agent is generated based
on the hidden states of participating agents h; = {h]t\ j € G}, ie. hy = g(h;). Furthermore, an
agent can be a member of multiple groups, thus bridging the information gap between different
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groups. With learnt communication policy the agents can dynamically adjust their information

flow according to the situation in the environment, which can be beneficial in certain scenarios.

2.4.3 Other characteristics

Approaches to communication in MARL have some further noteworthy characteristics. To begin
with, the way that the messages are integrated into the agents’ network can determine the capa-
bilities of a system. The incoming messages can be concatenated, as is done in the DIAL model.
This approach provides the agents with full control over the information, since it is not lost in
the process, and the agents can flexibly learn which messages are important. However, it comes
at the cost of expanding the input space and fixing the number of agents that communicate. An
alternative solution would be forming some sort of an aggregated incoming message. Here the
messages can be equally valued, as it is done in IC3Net, or unequally valued, like in TarMAC. The
former case does not introduce any particular preference towards the senders and treats them as
identical. The latter assigns weights to the incoming messages, which can be done by attention
mechanisms. This has the benefit of focusing on the relevant information but can be challenging
to learn.

Questions of real world applicability also influence design decisions of Comm-MARL systems.
For this reason some approaches impose limitations on the communication bandwidth. GAXNet
[Yun et al.(2021)] is designed to be a system for air-to-ground ultra-reliable and low-latency com-
munication for UAVs. It uses an attention mechanism to optimise the communication, so that
it satisfies the latency and error rate constraints. In [Inala et al.(2021)] authors also address the
problem of messaging optimisation with a similar method. They train a transformer network and
use its attention weights to cut off redundant branches in the communication graph. This new
communication policy can significantly reduce the amount of necessary message passing during

inference, which makes it more viable for realistic scenarios.

Finally, several other details determine the structure of communication in MARL. This includes
the type of messages that are transmitted: existing knowledge, imagined future actions, environ-
ment dynamics, etc. Learning scheme, whether it is fully decentralised learning or CTDE, can
have an impact on the effectiveness of information exchange. All in all, Comm-Marl systems
have a lot of flexibility in their implementations, and each has to be adjusted according to the
application scenario.

2.4.4 IC3Net

IC3Net [Singh et al.(2018)] is one of the approaches in MARL that implements communication
among the agents in the system. This model uses direct communication with a learnable structure,
where the agents can individually decide to not share any information. Furthermore, it treats
incoming messages as equally valued, thus being suitable for systems that have uniform agent
types. It was introduced as an upgrade to the CommNet [Sukhbaatar et al.(2016)] to be applicable
to semi-cooperative and competitive scenarios, and to address the credit assignment problem. To
enable this, IC3Net trains its model based on the individual rewards for each agent. This naturally
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makes it fitting also for cooperative settings, where agents have explicit individual components
in the reward function.

The central idea of this approach is a gating mechanism, that provides the agents with control
over sending out their messages. At any time step ¢, the agent j takes a binary action g]t-Jrl €{0,1}
that determines whether it is going to communicate on the next time step or not (equation 2.19).
It then updates its hidden state h;“ and receives a message C;+1 from all other communicating
agents in the environment. Although the incoming message is calculated as an average of hidden
states times some weight matrix C, it can also be viewed as the average of the sent messages.

From this angle, a message sent by an agent j’ would be equal to C - (h;f’ 1o g;f“ b,

g]{+l _ fg(h;) (2.19)

P, T = LSTM(e(0f) + cf, bt s1) (2.20)

1
B _ HHL o it
I'#i
t tpt
al ~ m(al|nt), (2.22)

f8 is an arbitrary map from hidden state h]t» into binary action g;+1, and e(-) is some observation

encoder.
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Figure 2.3: Architecture of IC3Net model, [Singh et al.(2018)].
Left: single communication step. Right: overview of the training procedure.

IC3Net was tested in different scenarios - cooperative (traffic junction), mixed and competitive
(predator-prey). The results show that the agents prefer to communicate only when it is prof-
itable. For example, the prey naturally learns to never communicate with the predators. In the
competitive version of predator-prey, where the reward is distributed among those predators who
have reached the prey, communication only happens in the initial stages for better exploration,
and then it stops from the predators who reached the prey. Furthermore, in cooperative scenarios
agents always learnt to communicate. The authors suggest fixing the gating outputs to 1 to speed
up the training process in cooperative settings.
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2.5 URBAN AIR MOBILITY

Urban Air Mobility (UAM) is an emerging branch of transportation in which automated air vehi-
cles realise passenger transit, goods delivery and emergency systems in dense metropolitan areas
[Cohen et al.(2021)]. Efficient space use in the urban context is crucial, and Vertical Take Off and
Landing (VTOL) aircrafts are considered to be a viable solution to this. They require a special in-
frastructure that can facilitate their take-off, landing, maintenance and charging, which is called
a vertiport. In reality, VTOL aircrafts are restricted to the network of vertiports, as they can not
take off and land anywhere on demand. Coupled with the fact that vertiports have a limited
capacity, some scheduling and spacing system in close proximity of the vertiport is necessary
[Yang and Wei(2020)].

Some works addressing the arrival sequencing methods for UAM involve a linear optimisation
based on particular hand-crafted constraints [Kleinbekman et al.(2018)]. To solve a sequencing
problem the authors calculate an optimal required time of arrival for an aircraft. Approaches
based on reinforcement learning are also suggested as possible solutions: [KrisshnaKumar et al.(2023)]
make use of graph reinforcement learning to perform take-off and landing scheduling. There RL

is used for the high-level control of an aircraft, representing all possible states and actions of an
agent with a graph.
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Figure 2.4: A model of a vertiport terminal area described in [Bertram and Wei(2020)]. An airspace consists
of multiple concentric rings, along which the aircrafts should travel while waiting for the signal
to proceed to the next level.

Moving on to RL-based aircraft control systems, in [Bertram and Wei(2020)] a vertiport terminal
area controller (VTAC) is proposed, where the aircrafts learn to follow pre-determined trajectories
to ensure safety. In particular, a vertiport is modelled as a sequence of concentric rings, each
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with capacity determined by the radius of the respective ring. A schematic representation of this
model is depicted in the figure 2.4. The agents progress towards the vertiport centre starting from
the outermost ring in FIFO order, thus maintaining a strict priority. Depending on the status of
an agent, VTAC places rewards in the environment at the future bearing or at the centre of the
vertiport, thus giving direct instructions to follow some path. Given that the agents are controlled
independently and do not contribute towards a common goal, this approach can be viewed as a
single-agent MDP.

Multi-agent reinforcement learning methods are employed in various contexts within UAM.
[Huang et al.(2023)] implement a strategic conflict management scheme, in which they learn to
resolve the issues with overlapping trajectories of flights between different vertiports. In

[Apaza et al.(2023)] authors use MARL to achieve optimal radio spectrum management and nav-
igation at the same time. They impose requirements on the quality of signal and allow agents to
change frequencies of the channels, via which they communicate with the broadcast stations.

Several approaches also make use of communication between agents. A cooperative sequential
decision making process based on the Monte Carlo Tree Search is suggested in [ Yang and Wei(2020)]
for collision risk minimisation. There at each time step ¢ agents sequentially sample their actions
by conditioning their policy on all actions sampled by previous agents. That is, af ~ 7t(a|o?,4),
where 4¢ = (a},...,a%"1,29%1, .. 4?) is a vector of already sampled actions a; and assumed
baseline actions ;. Such a way of propagating the information can be viewed as intent communi-
cation. A CommNet model is used in [Park et al.(2023)] to efficiently manage a group of aircrafts
travelling between multiple locations. The authors used an actual vertiport map to evaluate the
applicability of their approach to the real world scenario and claimed that CommNet outperforms

other methods that do not rely on communication.
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3 EXPERIMENTAL FRAMEWORK

Scheduling and spacing system for the vertiport (VTAC), outlined in [Bertram and Wei(2020)],
involves a centralised controller regulating the order in which the aircrafts are entering the ter-
minal area. It operates under the first-in-first-out principle, where the agents sequentially move
through the different levels of proximity to the vertiport. More than that, during training VTAC
provides direct guidance on the desired trajectory by rewarding the agents for following it. It
naturally requires some path calculations from the centralised controller and makes use of rein-
forcement learning only in the context of single-agent control. This leaves undiscovered the idea
of a true multi-agent setting, where the agents collaborate and self-organise with the aim of op-
timising the vertiport capacity utilisation. The setup proposed further explores exactly this topic
and addresses some limitations mentioned previously.

3.1 ENVIRONMENT

The suggested approach is similar to VTAC, but operates within the MARL paradigm. It focuses
on solving the scheduling problem in the final stage of vertiport entry. The agents are not given
any instructions about navigating the airspace, their only goal is to ensure a collision-free arrival
at the centre of the vertiport. Furthermore, a centralised controller that directly dictates the orders
to the agents is also removed. This change now demands that the aircrafts collectively decide on
the order of entry, which is done by communication mechanisms.

3.1.1 General description

The environment is a 2d model of the vertiport’s terminal area, in which each of N agents repre-
sents an aircraft, whose goal is to enter said vertiport without colliding with the other aircrafts.
The environment consists of a vertiport itself - a special circular zone with some radius R;, and
an area around it with some radius R, >> R;, where the agents can roam freely. Agents should
enter the goal one at a time, and once any agent enters the goal, the port "closes", i.e. a cool-down
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Figure 3.1: Example of the environment with 6 agents in a hidden priority setup. An occupied vertiport
(red ring) is surrounded by its terminal area (purple ring) and outer boundary (black ring). Each
agent (triangle) has their own separation zone around them (circles). The agent in green has
the largest priority number in the group and is supposed to enter the vertiport once it becomes
available. The size of the markers (triangles) indicates the power of the communicated message.

period 7. starts in which the agents are not supposed to enter it. The agent that "closes" the goal
is respawned at the edge of the terminal area, which is equivalent to the new agent entering the
airspace. On top of that, if an agent moves too far away from the vertiport centre and crosses the
outer boundary ring with the radius R, > R,, it is also respawned at the edge of the terminal
area. The agents are supposed to travel at some distance from each other, known as a minimal
separation distance D;.

3.1.2 Reward structure

The reward function has two components: the first one reflects goal achievement, and the second
one - collision risk. It can also be viewed from the angle of team impact: rewards associated with
the goal are shared across all agents in the environment, while collision (or leaving the free roam
area) only impacts the rewards of the agents involved.

The goal achievement reward consists of different elements. First, whenever an agent enters the
open goal, everyone receives a one-time reward of +250. Second, the agents are rewarded based
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on the status of the vertiport. If it is open, they receive -2.5 every time stamp, turning into +10
if it is closed. This incentivises the agents to enter the goal as soon as possible. Additionally,
providing constant small rewards makes the learning process more sample efficient compared to
just a single large reward for entering the goal. On top of that, the agents are punished for staying
within the inner area of the vertiport while it is closed: all agents receive -1 for every agent that
enters a goal while it is on cool-down. Furthermore, the cool-down does not progress while there
is someone within the inner area of the goal. This is done to ensure that the agents learn not to
enter the vertiport while it is occupied.

The collision risk component of the reward function is individual for each agent. It is depen-
dent on the euclidean distance to the closest other agent in the system, and for any agent i it is
calculated as follows:
min D% i
Re; = a-exp S ,

p

where D;  is the distance between the agents i and j; « and p are some positive scaling constants.
In this particular instance, this reward function was scaled to give a reward of -5 at the minimum
separation distance Dl-,]- = D, and a reward of -0.01 at D,'/j = 5- D;s. Whenever any two agents
are closer than D, it is considered a Loss of separation event (LOS), or incident, and they receive
a -10 reward flat.

3.1.3 Observation and action spaces

As the environment represents a simple model of a vertiport, the aircrafts have basic control
capabilities. Agents are moving with a constant true air speed v;, sampled uniformly from the
range v, &= Av at the initialisation individually for each agent. The aircrafts can only influence the
direction they are heading towards. The action space of each agent is discrete and consists of three
available actions: turn left or right (which correspondingly changes the angle of their heading by
A¢), or do not turn.

Observation vector ! O; of an agent i is a concatenation of agent-specific and external observa-
tions, i.e.
0; = (0O}, 0j).

Agent-specific information O] includes the distance to and the bearing of the goal - D and ®
respectively, goal cool-down timer 7, as well as one-hot encoding of the agent id number ¢, which
was empirically found to improve the performance:

Ol* = (Dir®i/ T, l).

External observations O] of an agent i comprise the information about all other agents j € 1..N \
{i} relative to the agent i:

ol = (( 1{,1)""’( ;,N))’
of = (a4, 7).

1Time index is omitted for simplicity of notation
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where d{, 6{ , U{:, 4){ are distance, bearing, speed difference and heading difference. In order to more
efficiently address the collision avoidance, the closest point of approach (CPA) between the agents
i and j is also calculated, and d7l-, ‘Fi] are distance and time to reach it.

3.2 EXPERIMENTS

Besides direct path following instructions, VTAC system relies upon a strict order of aircraft ar-
rival at the vertiport. For the purpose of a cooperative multi-agent approach, this constraint needs
to be lifted. Two potential ways to do so are suggested: one leaves some hidden priority, and the
other removes it completely. Such distinction is motivated by the fact, that in the former case the
agents have an explicit piece of information that is relevant for the whole group and thus needs to
be communicated, whereas in the latter the messages can be arbitrary. By contrasting the commu-
nication protocols, derived from these setups, it would become possible to see if the agents learn
to communicate the innate properties of the environment and if they are able to independently
create some form of hierarchy.

The proposed approaches entail some changes to the observation space and the reward function.
Furthermore, the experiments around these setups are designed to understand the importance of
inter-agent communication in enabling a safe and efficient use of the vertiport capacity.

3.2.1 Hidden priority

The first setup adapts the idea of explicit priority to the communication approach. In this setting,
each agent gets assigned a random number ¢ € {1,..., N} which is called a priority number.
These numbers can be sampled arbitrarily, with or without replacement across the agents, i.e.
multiple agents can have the same priority number. Each agent only gets access to their own
priority number through the observation space, without explicitly knowing the priorities of other
agents. Their goal is to establish the agent(s) with the largest priority and have them enter the
vertiport. Once any agent enters the vertiport, priority numbers are re-rolled for everyone. In fact,
sampling priority numbers ¢? with replacement is a more reasonable approach, since it avoids the
situation where the priority number N is always the largest, thus promoting communication. In
this setup, the reward for having a goal closed depends on the validity of the last agent entrance.
That is, everyone receives a +10 reward for the closed goal only if the agent who entered it most
recently had the largest priority, making it +0 otherwise. Note that a reward of -2.5 is still given if
the goal is open. Furthermore, a one-time positive reward at the moment of entrance is also only
given for the valid entrance. This encourages all agents to close the goal while largely promoting
coordination in having only the highest priority agent enter it.

3.2.2 Equal priority

In the second setup an explicit priority constraint is lifted. It can also be viewed as assigning equal
priority to all agents. This setup operates in the exact same way as the first one, with the exception
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that here any agent can validly enter the goal. Thus every agent receives full rewards for the goal
status and entrance. The motivation and difficulty behind the equal priority setup compared to
the hidden priority, is that the aircrafts must come up with their own communication protocol to
ensure only one of them enters the goal, while maintaining the safety of the whole cohort.

3.3 IMPLEMENTATION DETAILS

Particular values that were set during the training and simulation are presented in the table 3.1.

True air speed vj, + Av, % 13 £ 3 | Terminal area radius R,, m 1000
Angular velocity A¢, % 5 Vertiport inner area radius R;, m 200
Minimum separation distance D;, m 100 Outer boundary R, m 1200
Collision distance D., m 10 Cool-down time 1, s 30

Table 3.1: Parameters of the vertiport environment

A model that is used to control the agents in the environment is IC3Net [Singh et al.(2018)], de-
scribed in the section 2.4.4. Some minor technical changes that are connected with communication
action g are introduced to this model. First, the communication action g]t.+l of an agent j is now
computed based on the updated hidden state h;“, instead of the past hidden state h;. This is
done to ensure that communication action makes use of the observation ojt-, received at the cur-
rent time step t. Additionally, in the original paper the gating action was binary, i.e. sampled from
Bernoulli distribution gﬁ“ ~ Be(f$8 (h]t)) This naturally entails an increased degree of variance.
To mitigate this issue and provide continuity in the gradients, associated with the communication

mechanism, communication action is now calculated as
1 t+1
g =o(fE(h)), (3.1)

where ¢ is a sigmoid function. This allows the agents to flexibly adjust the importance of their
messages in a continuous way.

During the training phase, m copies of the environment are rolled out for 250 timesteps, where
trajectories of N agents are collected. This results in a batch size of 250 - N - m. The model is
trained by Independent PPO algorithm [Yu et al.(2022)], which means that a processed batch is
discarded after each training step. Before a new rollout the environment is first reset. Training is
done for a total of 960000 environment rollouts. On top of having two approaches to deal with
priority, both setups are trained with 6 and 16 agents in the environment. It is motivated by the
fact that models with different agent amounts might develop different strategies due to decreased
space per agent.

The environment was implemented using an interface of Gymnasium library [Towers et al.(2023)]
on top of TU Dresden RL suite [Waltz and Paulig(2022)], which provides a low-level logic of a
vertiport operation. Aircraft dynamics model and physics simulation is based on the Bluesky Air
Traffic simulator [Hoekstra and Ellerbroek(2016)].
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4 SIMULATIONS AND RESULTS

A model of a vertiport, described in chapter 3, requires a high degree of cooperation from a group
of aircrafts. To help achieve adequate collective behaviour, suggested experimental setups create
a framework that encourages an information exchange between the agents. In order to quantify
the effectiveness of the resulting inter-agent communication, the models obtained from both ex-
perimental setups are compared to their non-communicative versions. ! They are evaluated in
terms of safety and efficiency based on the simulation data, which was collected over 50 episodes
with a length of 1000 time steps each.

The analysis is performed across 8 models in total. Two different priority management schemes
are referred to as "Hidden" and "Equal", as described in the section 3.2. Setups can contain either
6 agents or 16 agents, which is indicated by "Large". Finally, NC stands for "Non-communicative"
models. It might not be always meaningful to judge the performance of the models across priority
or size, as they might not evolve identical behaviour patterns during training. Therefore, the most
informative comparison can be made between normal and NC systems, which allows to establish
the importance of communication in a given setup.

4.1 GOAL ACHIEVEMENT AND SAFETY

In this section some general information about models” performance is outlined. A comparative
analysis is performed with the aim of understanding how communication impacts the utilisation
of vertiport capacity and safety in a group of aircrafts.

4.1.1 Trajectories and distance to the goal

First point to consider is the self-organisation of the aircrafts in a group. In all setups the agents
learn to generally navigate around the goal in a circular trajectory, however the degree of how

I"Non-communicative" setups refer to the models that were trained without communication from the very beginning.
Arrangements, in which communication is severed in the models that were trained to rely on it, are not considered.
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Figure 4.1: Examples of mean movement directions in the vertiport environment for Hidden and Equal
Large setups. Hidden setup involved 6 agents, Equal Large involved 16. Arrow direction in-
dicates a mean value of the agents’ speed vectors at a given location, color shows the magnitude
of the mean value. The agents can develop arbitrary preferred movement direction.

strictly they follow it can vary depending on the distance to the centre and the number of agents
in the system. Figure 4.1 shows two examples of average movement directions within an environ-
ment, which represent a typical behaviour across all setups. Blue, purple and black circles reflect
the goal, terminal area and respawn area boundaries. Arrow directions indicate the mean value
of agents’ speed vectors at a given location, and colour shows the magnitude of the mean value.

As the agents do not have any particular guidance on their desired trajectory, they can learn to
move in either clockwise or counter-clockwise directions arbitrarily. More than that, in the Hid-
den setup when the agents are far from the goal they do not have a preferred trajectory at all,
which can be concluded from the small magnitude of the mean direction vector. A tendency to
move at some particular angle becomes more pronounced in the areas closer to the centre. At the
same time, there exists little deviation in the movement trajectories regardless of the distance in
the Equal Large setup. Such strictly organised behaviour can be attributed to safety considera-
tions, since with a bigger number of agents there is less room for manoeuvre. Furthermore, for
the same reasons here the aircrafts approach the vertiport more gradually, than in the case of a
Hidden setup, which can be concluded by comparing the relative bearings towards the centre at
corresponding locations.

Due to the radial symmetry of movement angles, evident from the figure 4.1, a preferred dis-
tance to the vertiport centre does not depend on the azimuth towards it. A distribution of these
distances is presented in figure 4.2, measured as a proportion to the terminal area radius.

A common observation can be pointed out that all models learn to roam close to the edges of the
terminal area, implied by the peaks around the distances of 0.95 units. This behaviour is signifi-
cantly more prominent in the Large setups and the same explanation of safety motives applies. A
larger preference for travelling near the border is also exhibited by the NC setups, compared to the
communicative analogues. In this case it can be associated with worse coordination capabilities

and resulting reliance on some strict movement trajectories.
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Figure 4.2: Distributions of distances to the vertiport centre across different setups. NC stands for non-
communicative model. Peaks around 0.25 and 0.9 hint that the agents travel in circular trajecto-
ries with such radii.

Equal priority allows the agents to develop a different strategy, in which they travel in a tight
circle around the goal while waiting for it to open. It is reflected by an increase in density close
to the vertiport boundary of 0.2. Additionally, Large setups have another local maximum in the
midpoint of 0.6, which is most noticeable in Hidden Large NC. This multimodality of distance
distributions implies that the agents self-organised to navigate around the goal in multiple rings.
This emergent phenomenon validates the original design decision with multiple levels of prox-
imity around the vertiport centre, described in [Bertram and Wei(2020)].

4.1.2 \Vertiport capacity utilisation

Utilisation of the vertiport capacity should also be taken into account. To achieve proper efficiency
the waiting time before an agent enters the goal should be as small as possible, taking into account
the safety of travel. Table 4.1 provides an overview on the entrance rate and average waiting time
of the systems. It captures the percentage of time the vertiport is open, the mean amount of
time steps between the opening of the goal and any agent entering it, and the number of such
entrances per 1000 time steps. In addition, number of closed entrances per 1000 time steps counts
the number of situations, in which an aircraft attempted to enter the goal while it was closed.

It can be seen that the introduction of communication improves the performance in the large
setups, which is reflected by the decrease in waiting times of 35 % and 25 % for the Hidden Large
and Equal Large setups respectively. The same can not be said about the regular ones, where NC
models have only slightly smaller waiting times. Number of goal entrances directly impacts open
time percentage and mean waiting time, and naturally paints the same picture. Such difference
in utilisation can be attributed to the fact that in a communicative approach the agents tend to
travel towards the centre in a direct path, whereas in the NC they gradually approach the goal
while keeping the circular formation. This behaviour is more prominent in the Hidden setups. As
mentioned previously, with Equal priority some aircrafts are always located close to the vertiport
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Figure 4.3: Arrival frequencies by priority rank in Hidden setups. NC models learn some innate bias, but
communicative models can capture it more fully.

Setup Open % Waiting time  # Entrances # Closed entrances
Hidden 36.2 17.5 20.4 1.0
Hidden NC 36.9 18.5 19.7 2.0
Equal 20.3 7.8 25.9 0.4
Equal NC 211 8.4 252 2.6
Hidden Large 41.3 22.7 18.0 21
Hidden Large NC 50.4 34.3 14.1 3.4
Equal Large 21.0 8.2 25.7 0.8
Equal Large NC 25.4 10.9 23.8 4.2

Table 4.1: Entrances and waiting times

and are prepared to enter once possible, which results in significantly smaller waiting times for
these approaches.

At the same time, number of closed entrances is substantially impacted by the absence of com-
munication. In Equal setups, both regular and large, the number of such occurrences increases by
more than 5 times, while in Hidden the increase is twofold. A common trajectory pattern in NC
setups takes place, when multiple aircrafts thrust towards an open vertiport simultaneously, and
only one can arrive first. Since the agents do not exchange the information, they can not estimate
when the goal will close, which leads to them being unable to adjust in time and avoid entering
the goal. This problem is exacerbated by the fact that with Equal priority all agents are encour-
aged to enter the goal. In Hidden setups the agents are generally biased against entering the goal
if they have a lower priority, as shown in figure 4.3, thus reducing the amount of potential clashes.
In general, communicative models are more capable of dealing with such conflicts and exhibit the
described behaviour less frequently.

Figure 4.3 presents the frequencies of entrances in the Hidden setups by the priority rank of
the agent p/. As described in section 3.2, each agent gets assigned some priority number ¢/ €
{1,..., N}, which in the shown example was individually sampled from the binomial distribu-
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tion ¢/ ~ B(N —1,3) + 1 across all episodes. Then priority rank is defined as (p!,...pN) =
Rank({(c!,...cN)). Considering that in the Hidden setup the agent with the largest priority gets a
bonus reward for entering the goal, the NC models are only able to learn some bias towards big-
ger priority numbers ¢/. From the increase in entrance frequencies of the highest-priority agents,
it can be concluded that communicative setups can recognise the correct hierarchy. It is worth not-
ing that non-max priority entrances still happen due to the base reward for keeping the vertiport

occupied.

4.1.3 Safety

Goal arrival is not the only relevant aspect, as the safety of navigation is a crucial topic in the
vertiport environment. From this angle, the aircrafts need to travel at a certain interval from
each other to allow for some manoeuvring. Figure 4.4 provides the information on this matter. It
describes the distribution of distances from an agent to the closest other agent, measured in unit
distance, normalised by the terminal area radius. Furthermore, solid and dashed lines indicate the
incident distance (Loss of separation event, violation of safety measures) and accident distance
(collision), equal to 0.1 and 0.01 respectively. In table 4.2 frequency of such events is outlined. It
is expressed as the percentage of times when the closest agent is located at less than incident or
accident distance.

From the graph it can be seen that Large setups are naturally characterised by smaller intervals
between the agents. In addition, the fact that the peaks of their distributions are more sharp
tells that the aircrafts are spread more evenly across the terminal area, i.e. they keep consistent
distances from each other. In Equal priority setups the absence of communication does not sig-
nificantly impact the distribution, except in the region close to incident distances. As the table 4.2
shows, with Equal NC and Equal Large NC models a Loss of separation event is 1.4 and 1.7 times
more likely to happen. This can be explained by the previously mentioned movement pattern,
where multiple aircrafts fly towards the vertiport centre simultaneously.

At the same time, the picture with hidden priorities is different: here the NC agents tend to put
a bigger emphasis on safety assurance and keep larger distances among themselves, compared
to their communicative counterparts. This effect becomes more apparent with the increase in
the amount of aircrafts, as indicated by the significant drop in the incident and accident rates in
the Hidden Large setup. Such behaviour comes at a cost of increased waiting times and under-
utilisation of vertiport capacity, as described in the section 4.1.2.

Setup Incidents,% Accidents, %
Hidden 0.3397 0.0021
Hidden NC 0.3106 0.0035
Equal 0.3876 0.0014
Equal NC 0.5539 0.0113
Hidden Large 0.5137 0.0045
Hidden Large NC 0.1275 0.0008
Equal Large 0.9670 0.0080
Equal Large NC 1.6469 0.0114

Table 4.2: Incidents and accidents rates
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Figure 4.4: Distributions of distances to the closest agent across different setups. Solid black line indicates
minimum separation distance, dashed line indicates collision distance. Absence of communica-
tion in Equal setups entails more frequent incidents.

4.2 COMMUNICATION

As it was seen in the section 4.1, introducing communication mechanisms into the multi-agent
system opens up new possibilities for different navigation strategies, for example removing the
incentive for each individual agent to approach the goal, when some other is already on it’s way:.
In this regard, it is beneficial to develop an understanding of how exactly the agents use their
communication capabilities, in what context the communication takes place, and what might be
the factors that influence the decision to communicate.

4.2.1 Communication action description

Before investigating the agent’s use of communication, it is necessary to scrutinise the mecha-
nism behind it in the IC3Net model. Section 2.4.4 outlines the technical concepts of the original
approach, and section 3.3 explains the changes, that were made to it for the purpose of this ex-
periment. In IC3Net, an output of a gating function g]t- is referred to as "communication action"
(comm-action) of an agent j at time step ¢. In the current model it is calculated according to the
equation 3.1. The message that is sent out is then C - (h]t ® g]t-), where h]t- is a hidden state of an
agent j and C is some weight matrix.

Since such a comm-action is continuous, it can be intuitively understood as a measure to regulate
the strength of the signal, broadcasted by an agent. An additional advantage of this manifests
itself in the way the information is integrated into the system. Given that all incoming messages
are condensed into a mean (equation 2.21), continuity of the comm-action allows to flexibly adjust
the weight of the message in the resulting sum, making it possible for the agent to emphasise the
importance of a sent signal. From this point of view, it is logical to evaluate comm-actions not only
by their absolute value but also in terms of the cumulative density function of the distribution of
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all comm-actions a given model learnt, i.e. consider in which quantile a comm-action lies. On top
of this, it might not be totally valid to compare the absolute values of different models, since they
might develop differing communication protocols. Therefore it is more sensible to observe the
changes in comm-action depending on the influencing factors.

4.2.2 Communication action and trajectory

The aircraft’s position in the airspace can be important information that might need to be shared
with the other traffic participants. Taking into account the radial symmetry of the mean move-
ment angles, concluded from the figure 4.1, the location itself would not have a direct influence on
communication. Instead it is sufficient to consider how the distance and relative bearing towards
the goal impact comm-action. Figure 4.5 illustrates this relation.

The plots are presented in polar coordinates, where the angle indicates a relative bearing of an
agent towards the vertiport centre, and the radius reflects the distance to it, measured relatively to
the terminal area radius. Here the border of a vertiport is located at the distance equal to 0.2. The
data itself represents a cumulative density function (CDF) of comm-actions distribution, mapped
onto distance and bearing. It was computed as follows. First, all comm-actions within a given
setup were transformed by a rank function (applied an inverse of the CDF of their distribution,
i.e. extracted a quantile of a given comm-action). Second, the space of distance-bearing pairs
is split into discrete bins, and a mean value of all comm-action quantiles taken within a bin is
calculated. This visualisation does not consider the sample size for a distance-bearing pair and
only indicates a mean value. For the purpose of better representation the bins with a sample size
of less than 2 are omitted (i.e. distance-bearing pairs that happened only twice over the whole
dataset). A blank space in the graph indicates that no samples with a given distance and bearing
were recorded during the simulation process.

From this figure it is possible to establish a preferred movement direction within a setup. In all
of them the data is present only for some set of relative bearings. For example, in Equal Large
it is between 315° to 180° clockwise, which tells that the aircrafts mostly travel in a clockwise
direction around the goal. In the case of Hidden setup it is mostly counter-clockwise, since in the
bins corresponding to small distances to the centre (close to 0.2) the data is present only for the
bearing of 225° to 45° clockwise. This reasoning is supported by the figure 4.1.

A distinctive pattern in the open goal across all setups is apparent: comm-action becomes the
strongest at close distances for the values of relative bearing close to 0. This corresponds to the
aircraft directly heading towards the vertiport centre. It can be viewed as them communicating
their intent to enter the goal. More than that, the agents are not only able to inform the others
about their decision to move towards the goal, but they also adapt their own trajectories according
to other agent’s intent. This can be concluded from the decrease in the amount of closed entrances
compared to NC models, presented in the table 4.1. This finding reinforces the argument made in
the section 4.1.2 with regard to conflict resolution capabilities of communicative models.

A reverse observation can be made about the regions of weak communication signals. Regardless
of the goal status, they are concentrated around the bearing of 90° (270° for Hidden) at varying
distances depending on the size of the setup. The interpretation is straightforward: with such
relative bearing towards the vertiport centre, the distance to it remains constant, i.e. the aircrafts
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Figure 4.5: Communication across different setups by location and bearing. Figure shows at what distance
and relative bearing the agents preferred to take comm-actions, that are stronger or weaker than
median. Left: Open goal. Right: Closed goal.
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are not performing any manoeuvres and are following the path along the edge of the terminal
area. This corresponds to them not indicating intent to enter the goal. Furthermore, the size of
this region on the plot shrinks with the increase in the amount of aircrafts. It is connected to
the self-organisation of agents in the Large setups, described in the section 4.1.1, where the vast
majority of them travel close to the border. Therefore any movement towards the centre comes
with an above-average comm-action.

Typically communication strength does not change depending on the goal status, with the ex-
ception of strongest communication being associated with an open goal. At the same time, the
strongest comm-actions are also present in the Equal Large setup even for the closed goal. As
the table 4.1 suggests, the utilisation of the vertiport in this setup is one of the highest, with 79%
of the time goal being closed. This implies that the aircrafts advance towards the vertiport in
anticipation of it becoming available, thus preemptively communicating an intent to enter.

Figure 4.5 concerns communication distribution in the context of the whole dataset. It shows
a clear connection between close proximity to the goal and an increase in comm-action. To see
if the agents actually implement into reality their communicated intent, an additional analysis
is needed. To this end, figure 4.6 shows the probability of an agent entering the goal within
the next 30 time steps, given a quantile of their comm-action. The distribution is split into 20
consecutive quantile ranges, i.e. each bin corresponds to 5% of the distribution. From this plot
it becomes evident that a comm-action, that falls into the top 5%, is associated with the largest
chance of this particular agent being next to enter the goal. Also, in Equal setups the agents
complete their intent more frequently, compared to the Hidden setups, with the probabilities of
entrance being equal to 0.8 and 0.7 in the former cases, and 0.6 and 0.45 in the latter. In addition,
the fact that the probability of entrance increases substantially only for the top 10% of all comm-
actions in large setups is an effect of more agents existing in the system. Since a larger amount of
aircrafrs is producing the messages, and only one of them can enter a vertiport, large messages
that communicate intent get pushed further towards the tail of a distribution.
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Figure 4.6: Probability of entrance given communication action quantile. If the agent sends the signal in the
top 10%, its chances to enter increase substantially.
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In general, it has been seen that the models in Hidden and in Equal setups share the same com-
munication patterns. The fact, that in the former they were incentivised to communicate some
"ground truth", and still converged to the same protocol without any external factors in the latter,
suggests that the agents are creating some form of momentary hierarchy. This allows them to
perform a vertiport arrival scheduling in a structured manner even without explicit guidance.

4.2.3 Communication action and priority

As was established in the section 4.2.2, inter-agent communication is strongly connected with
their movement towards the goal. In Hidden priority setups, an aircraft with the largest priority
number is also supposed to arrive at the vertiport, and the models are able to learn this rule,
as shown by figure 4.3. In light of such a connection, it is reasonable to study the influence
a priority has on a communication policy. Figure 4.7 illustrates a comparison between comm-
actions’ distributions of the agents with maximum priority and the rest of the agents. In this
graph maximum priority is understood in the sense of rank, as described in the section 4.1.2. A
clear distinction between two distributions within a setup can be made, as comm-actions of the
maximum priority agents have a much larger spread. This hints that these agents adjust their
communication flexibly, depending on the context. Another remark can be made with regard to
the distributions: the median comm-actions in regular and large setups are not identical, being
close to 0.55 and 0.39 respectively, which potentially implies different communication strategies.
The fact, that a noticeable disparity in the absolute values is present, validates the proposition to
compare different setups in terms of quantiles of corresponding distributions.
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[ Max priority
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Figure 4.7: Communication action by maximum priority. Communication is more spread out in agents with
the largest priority.
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In addition to the priority rank, it is also possible to draw a connection between communication
and the priority number itself. In figure 4.8 such a relation is presented. Each box reflects the dis-
tribution of comm-actions that were taken by an agent with a given priority number, depending
on the status of its future goal entrance. First, it can be recognised that the models indeed de-
velop different communication strategies, since for non-entering agents the comm-action grows
with priority in the regular setup, and falls in the large one. The reasons behind this phenomenon
require further in-depth study. Second, developing an argument, made with regard to the maxi-
mum priority agents, it is easy to see the reason behind an increased spread of their comm-actions.
In the large setup, the agents with high priority numbers are able to recognise their importance in
the environment, and not only communicate their intent to enter the goal, but also explicitly signal
if they are not planning to do so. This plot clearly shows three modes of communication: strong
commb-action if the agent travels towards the goal, weak comm-action if the agent considers itself
relevant but does not travel towards the goal, and medium comm-action otherwise.
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Figure 4.8: Communication action by priority number and future entrance. In Large setup the agents recog-
nise their importance and explicitly signal whether they plan to enter or not.
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5 CONCLUSION

Communication in MARL is a flexible and practical approach to coordinating the behaviour of
multiple agents interacting within one system. The agents can adapt to the surroundings and
send diverse kinds of messages, depending on the situation. Generally, the design of the en-
vironment also determines the structure of inter-agent information exchange that takes place,
and therefore the impact of communication needs to be interpreted using some domain knowl-
edge. In this case, its effect was considered in the context of Urban Air Mobility, in particular
for the vertiport terminal area control. Existing solutions to this problem involve some central
managing system, that coordinates the arrival order of the aircrafts. An approach, that was im-
plemented, makes use of a decentralised multi-agent reinforcement learning model, in which the
agents learnt to exchange information and collaborate to achieve a common goal of optimising
the vertiport utilisation.

Given that the nature of communication is domain-dependent, in order to establish its content and
effect on the environment, two distinct experimental setups were designed. One setup, called
"Hidden priority", maintains some notion of arrival order and assumes it to be some form of
"ground truth" that would be necessary to communicate in order to achieve the goal. The other,
called "Equal priority", abolishes any explicit hierarchy among the agents and allows them to
develop arbitrary communication protocols. Comparing the performances of communicative and
non-communicative models within both of these setups allows to understand the influence of
information sharing on coordination.

Simulation results revealed that the MARL-based system is capable of self-organising in the ter-
minal area of a vertiport in a way, that ensures safety of travel and proper capacity utilisation.
In particular, it was observed that without any specific instructions the agents learnt to navi-
gate the airspace similarly to the arrangement proposed by [Bertram and Wei(2020)], in which
predetermined movement trajectories comprised a set of concentric rings with different radii.
Furthermore, communicating models were shown to have better coordination capabilities over
non-communicative, resulting in a substantially smaller amount of situations, in which two air-
crafts attempted to enter a vertiport at the same time. This finding suggests that some form of
message exchange should be considered for a decentralised aircraft control system, that does not
rely on external arrival management.
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By contrasting the communication protocols developed by the models in two experimental se-
tups, it was possible to conclude that a common structure of communication is learnt. In both set-
tings the aircrafts signaled their intent to approach the vertiport. Furthermore, with the increase
in strength of such signal from one agent, the rest of them became cooperative and more likely to
let that particular agent enter the goal. In addition, the agents with explicit hierarchy were seen
to recognise their importance in the environment, which entailed a strong signal communicating

either an intent to enter or an absence thereof.

An outlined experimental framework was designed with the aim of understanding the essence
behind communication, happening in a decentralised system. It does not consider how such sys-
tems compare to their centralised counterparts in terms of efficiency. Organising communication
pipelines requires additional resources, therefore an adoption of this approach needs to have a
competitive justification.

Potential future research can be directed at quantifying the benefits of decentralised communication-
based MARL methods over structured and strictly regulated vertiport scheduling procedures.
In addition, for the purpose of designing and deploying such systems in realistic conditions,
questions of robustness and scalability of communication need to be investigated. In terms of
methodological aspects, it is possible to consider how other priority management schemes, like
First-In-First-Out, can affect the usefulness of inter-agent communication. Furthermore, it would
be worthwhile to adapt the described approach to accommodate the variable amount of vehicles
in the system.
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