

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794681

Bernhard Jaecksch, Franz Faerber, Wolfgang Lehner

Cherry Picking in Database Languages

Erstveröffentlichung in / First published in:

IDEAS '10: Fourteenth International Database Engineering & Applications, Montreal 16.-
18.08.2010. ACM Digital Library, S. 117–122. ISBN 978-1-60558-900-8.

DOI: https://doi.org/10.1145/1866480.1866498

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794681
https://doi.org/10.1145/1866480.1866498

Cherry Picking in Database Languages

Bernhard Jaecksch
SAP AG

Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
b.jaecksch@sap.com

Franz Faerber
SAP AG

Dietmar-Hopp-Allee 16
69190 Walldorf, Germany

franz.faerber@sap.com

Wolfgang Lehner
Technische Universität

Dresden
Database Technology Group

01062 Dresden
wolfgang.lehner@tu-

dresden.de

ABSTRACT
To avoid expensive round-trips between the application layer
and the database layer it is crucial that data-intensive pro-
cessing and calculations happen close to where the data re-
sides – ideally within the database engine. However, each
application has its own domain and provides domain-specific
languages (DSL) as a user interface to keep interactions con-
fined within the well-known metaphors of the respective do-
main. Revealing the innards of the underlying data layer
by forcing users to formulate problems in terms of a gen-
eral database language is often not an option. To bridge
that gap, we propose an approach to transform and directly
compile a DSL into a general database execution plan using
graph transformations. We identify the commonalities and
mismatches between different models and show which parts
can be cherry-picked for direct translation. Finally, we ar-
gue that graph transformations can be used in general to
translate a DSL into an executable plan for a database.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Database (per-
sistent) programming languages

1. INTRODUCTION
Today it is often not enough to transform and process pre-

calculated or aggregated data sets that are copied in and out
of the application layer. Typically, a user wants to formulate
the analysis and queries on the most granular level of data.
Each application area provides a specific view to the under-
lying data and has its own domain-specific metaphors that
agree with the user’s perspective of the problem space. In
the same manner, domain-specific languages (DSL) are often
part of such applications allowing a user to express custom
logic with an easy-to-learn and very confined language that
is tailored to the specific problem domain. The application
side provides the DSL interface to the user and translates
between domain-specific metaphors and a general language

©2010 Copyright held by the owner/author(s). Publication rights licensed to
ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in IDEAS ’10 Montreal, QC [Canada]
DOI: https://doi.org/10.1145/1866480.1866498

SAP BWA

Logical
layer

DSLX DSLY DSLZ DSL

translate

planning

Physical
layer

PlanOperation

PlanData

ViewNode

DataSet

Figure 1: Translating different DSLs into a semantic
plan

that is used on the database side. As a result, the following
steps are necessary: fetching data from the database into
the application, processing it and pushing changes back into
the database. Obviously, this round-trip becomes more and
more expensive if the amount of transferred data increases.

Ideally, most of the data-intensive parts of the user calcu-
lations are executed within the database engine and only the
results are shipped to the application layer. Then, however,
the database engine has to be capable to interpret custom
code written in a specific DSL. Obviously, it is not feasible
that a database ”understands” all these dialects and subsets
of languages natively. However, general models or languages
that can be natively executed by the database are a means
to address this problem. Therefore, a translation between
the DSL and the general model glues both together – see
Figure 1. This can be either done within the application
– as it is most often today – or in the database, which
is what we propose. Unfortunately, the general database
model is often declarative and data-flow-driven, while many
DSLs are procedural and control-flow-driven. Our goal is to
use graph transformations to translate as much as possible
from the DSL directly to the declarative database model and
keep the set of constructs that are expressed using procedu-
ral fragments as small as possible. We want to cherry-pick
as many statements of a procedural script as possible and
translate them into an equivalent declarative plan. This is
schematically represented in Figure 2, where the goal is to
push the bar between declarative and procedural translation
as high as possible. Throughout the rest of the paper, we
explain our graph transformation approach with the help

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 117–122, ISBN 978-1-60558-900-8
https://doi.org/10.1145/1866480.1866498

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fo
rm

u
la

 L
an

gu
ag

e

Lo
gi

ca
l L

ay
er

Sc
ri

p
t

B
lo

ck

Direct Graph Trans-
formation

(see section 3.1)

Procedural
Control-flow

Declarative
Data-flow

Goal

Ex
ec

u
ti

o
n

 L
ay

er
LL

V
M

Instantiation

Data-flow

Not directly translatable
(see section 3.2)

Scope of paper

Figure 2: Translate as many parts of a DSL as pos-
sible into a semantic plan

of an example. The example is based on a formula script-
ing language for business planning, and the target model is
the so-called semantic layer of the SAP Business Warehouse
Accelerator (BWA) [2]. In section 2, we describe the chal-
lenges that are inherent to the translation approach. Then
we introduce a set of graph transformation rules to map a
procedural script to a declarative graph. In section 4, an
example for the DSL is introduced that is the source of the
transformation. In section 5, the target model is explained.
Section 6 gives a short evaluation of the advantages of such
a translation, and section 7 provides a conclusion.

2. CHALLENGES
After we have outlined the goal of the translation pro-

cess, we want to enumerate the challenges that are posed to
the translation process. One major difference between the
declarative model and the procedural model is that the tar-
get model supports only row-wise expressions. Declarative
operators do not carry any external state when operating on
each row within their input sets. Thus, when calculating an
expression, it is necessary to have every value used within
the expression in one single tuple. Obviously, this is not
always possible when the operators process sets of tuples.
An example for such a constellation is, if the result of an
expression at iteration i + 1 depends on the result of previ-
ous iterations. In that case, no translation into a declarative
equivalent is possible, since there is no explicit loop operator
in the declarative model that can carry the state between the
processing of two tuples in its input set. To incorporate such
parts of the procedural script into the declarative model any-
way, we propose the use of a custom plan operator that can
execute procedural code fragments. The fragments contain
parts of the procedural model written, for example, in an
interpretable language. However, if the loop is free of such
side-effects, the declarative model provides implicit loop un-
rolling mechanisms as every operation performs a loop over
its input data set(s) during operator execution and there
are many cases where a direct translation into a declarative
plan is possible. Throughout the rest of the paper, we will
show how far we can get and provide graphical transforma-
tion rules that describe these mappings from a procedural
DSL to a declarative execution graph.

As an example, used and refined throughout the paper,
serves a rolling plan from the context of business planning.
Such a rolling plan is created multiple times a year. Essen-
tially, sales values for a company have been planned at the
beginning of the year for the next 12 months. As the year
proceeds and actual sales results arrive, the planned values
have to be refined for the remaining months, based on the

new knowledge. If the results so far are below the plan,
the target for the remaining months is raised to keep track
with the overall goal of the year. If the results are better
than planned, the target is lowered. Figure 3 shows a value
example.

3. LANGUAGE TRANSLATION VIA GRAPH
TRANSFORMATION

A recent work by Göres et al. [3] introduced a very flexible
Graph Transformation Language (GTL) for schema integra-
tion, which is based on feature-rich graph transformation
rules. We exploit the same basic mechanism here. Ulti-
mately, the source graph should be translated into the target
graph, preserving the semantics of the source but capturing
procedural logic in a declarative form. Graph transforma-
tion rules are a powerful means to express such a translation.
To illustrate our overall idea, we want to introduce a set of
transformation rules that translate statements of a proce-
dural data-driven DSL into a declarative data flow graph
(described in section 5). We then refine the general idea by
applying these rules to a script that captures the business
logic of the rolling plan example.

But what qualifies a graph transformation approach to
tackle the problem of compiling a procedural DSL into a
declarative plan? Graph transformations are very flexible
and within a single transformation rule, multiple aspects of
a transformation step can be captured. Furthermore, they
are very generic, capture complex transformations in a vi-
sual and understandable way and are suitable to describe
very different structures in a common framework. Another
strong point is that it allows for easy extension with different
variants and, assigned with costs, can be used in a cost-based
selection strategy. For these reasons, graph transformations
seem very suitable for our problem, and indeed, they are
widely accepted as the means of choice in compiler design
[1], model transformations and the like. We use the fol-
lowing basic graphical notation: nodes are labeled with a
name and a type in the form name:type, and edges express
the data-flow, control-flow or membership with some other
node. Edges can also be labeled and nodes can have arbi-
trary properties that are prefixed by an @. Nodes might
occur inside another node such that the parent node con-
tains a subgraph of the complete graph, for example, to
encapsulate statement blocks.

Graph transformation rules consist of a left-hand-side pat-
tern, which matches a set of nodes in the host graph, and
a right-hand-side pattern, which determines how the graph
is transformed when the pattern has matched. Transfor-
mations include node deletion and node creation as well as
creation, deletion or changes of node properties. Also, edges
will be deleted automatically if both the start and end node
of the edge are deleted. Edges are preserved if one or both
of the start and end nodes change their type or are replaced
by another node. Additionally, the following semantics are
part of our rule definitions: nodes with double-line borders
match at least one node of the specified type. Dashed bor-
ders symbolize that this node is optional in the pattern and
will be matched in the host graph if existing. Both multi-
plicity notations can be combined, that is, a node can be
matched zero or multiple times. The same notations are al-
lowed on the right hand side and correspond to zero, one or
multiple nodes, depending on the specific pattern instance

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 117–122, ISBN 978-1-60558-900-8
https://doi.org/10.1145/1866480.1866498

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Version 0 1486 1326 1745 1732 - - - - - - - -

Version 1 (before) 1486 1326 1745 1790 1900 2000 1950 2050 1600 1700 1900 2100

Version 1 (after) 1486 1326 1745 1732 1907.25 2007.63 1957.44 2057.82 1606.11 1706.49 1907.25 2108.01

Figure 3: Example table of rolling plan for actual period May

that has been matched in the host graph.

3.1 Direct transformations
Direct transformation yields a declarative plan that is se-

mantically equivalent to the source and uses no executable
code blocks, that is, only native operators of the declara-
tive plan layer. As will be shown in our evaluation, a direct
translation is desirable since a declarative plan can be ex-
ecuted much more efficiently on large data sets than their
procedural counterparts. A number of patterns can be iden-
tified that allow for direct translation, some of which we will
describe in the following section.

The starting point of each translation process is to set up
the base data set that contains all the tuples that are going
to be used throughout the formula. This base set is the first
node in the resulting graph, and all subsequent nodes are
based on it. For all rules, we assume the availability of the
base set node within the declarative graph. Furthermore,
rules can modify the base set, as is the case when new val-
ues are assigned or variables are added. The assignment is
a basic non-control-flow element of a procedural DSL. The
left-hand-side of an assignment can either be a variable or an
element of a tuple. Within our rolling plan example, from
the time of assignment, the variable actper is available in
all subsequent statements of the script so it is added as an
attribute to the base set. The rule to assign a value to a vari-
able and to add it to the context is given in figure 4(a). Note
that the translation of the expression is done by another rule
shown later. In our example, we need to calculate the sum
of revenue for all periods after the actual period. This would
involve three types of statements: a data-driven FOREACH
loop, an IF condition inside and the assignment of an ex-
pression to a variable value. In declarative terms, this is an
aggregation of the revenue over all fiscal periods larger than
the actual period. This special combination of statements
reflects a pattern that is recognized with the rules in figure
4(b). Using an arithmetic operation in the expression other
than an addition would still lead to an aggregation but with
a different aggregation function. In general, this situation re-
sults in an aggregation with a custom aggregation function.
Any other FOREACH loop that does not exhibit the aggre-
gation pattern is mapped to a node that selects all possible
value combinations of the looping variables from the current
base set; we call the translated node the loop driver. The
IF statement takes the Boolean expression and adds it as
an attribute to a new base set that evaluates either to true
or false, depending on the condition. For each branch of
the IF statement, a node is added to filter on the very same
attribute. All statements within the branches then refer to
these filtered views as their base set. For the aggregation in
our example, this means that the referenced base set is the
base view created by the TRUE branch of the IF statement,
and only tuples where the expression evaluates to true are
aggregated. The rule to translate an IF statement within
the context of a FOREACH statement is shown in Figure

4(c).
Two of the previous rules – variable assignment and the

IF-statement – contain expressions. An expression consists
of tuples and variables. Variables are attributes of the base
set, and tuples map to a selection of tuples from the base
set. For all constant values in a tuple, a filter predicate is
added. To evaluate an expression, all contained tuples need
to be joined together. The actual expression is calculated
and the result of the join and can then be used during the
translation of other rules. The translation of an expression
is shown in Figure 4(d). Rule 4(e) shows how the assignment
of an expression result to a tuple is translated. In this case
the assignment is part of a FOREACH loop. The operand
is joined with the result of the expression, and the attribute
holding the expression result is mapped to the name of the
left-hand-side operand key-figure. One step that has not
been shown in the previous assignment rule is to merge the
result of the assignment with the base set. The merge is nec-
essary for the following reason: the assignment view contains
a set of all tuples that have been assigned a new value for
the respective key-figure; however, there can be tuples in the
current base set that have not been assigned a new value.
Then, the tuples must be merged, overwriting all values that
have changed during the assignment. Using rules similar to
the rules shown in this section large portions of a procedural
script can be translated into a declarative plan. However,
as mentioned earlier, a complete translation is not always
possible. The next section will briefly describe how we will
deal with these cases to fit into the declarative graph model.

3.2 Transformation into executables
To translate parts of a script that cannot be transformed

directly into a declarative plan, the idea is to keep them
in procedural form and embed them into a node that can
execute a code block. Within the semantic plan, these op-
erators are black boxes acting like any other data-set opera-
tor within the plan. Procedural elements like variables and
control-flow statements are translated in straight-forward
fashion into the procedural language of the code operator.
However, the data-driven FOREACH loop deserves a spe-
cial notion: there are different possibilities to translate it,
e.g. to have the set of looping values as another input to
the view node and loop over this input set within the script
block. The other possibility would be to construct the set
of distinct value combinations within the executable block
itself.

4. A DSL FOR BUSINESS PLANNING
As an example of a domain-specific language that can be

translated with our transformation rules, we introduce a for-
mula language (FL) that is used in the domain of business
planning. In business planning, either historical data in a
warehouse is transformed and modified or new data is en-
tered into the warehouse to create plan data for future peri-
ods. The plan data is used as a means of measuring actual

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 117–122, ISBN 978-1-60558-900-8
https://doi.org/10.1145/1866480.1866498

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Variable = <<expression>>

a:Assignment ex:ExpressionRHS

LHS
RightLeft

Assignment

cv:CalcView
@name == „CtxView“

vva:ViewAttribute

fva:ViewAttribute

varDim

fixedDim

v:Variable

ex:Expression

+cv1:CalcView
@name := AssignView
@op := Join(type=LEFT_OUTER)
@joinAtts := [fva@name]

+vva2:ViewAttribute
Copy(left->vva)

+fva2:ViewAttribute
Copy(left->fva)

+kf2:KeyFigure
@name := v@name
Copy(right@ckf)

+kf:KeyFigure
Copy(left->kf)

ctx:CalcView

-a:Assignment-v:Variable

::=

(a) Rule 1: transform a variable assignment

::=

Aggregation

+cv1:CalcView
@name := „AggVarView“
@op := Aggregation

+kf:KeyFigure
@name := o@KF
@aggType := SUM

+fva1:ViewAttribute
@name := fc@name

SumVar = 0
FOREACH LVar1,…,LVarN

SumVar = SumVar + {KF1,LVar1,…,LVarN0,Const01,...,Const0M0}

a:Assignment ex:ExpressionRHS

LHS
v:Variable

fe:ForEach

loopbody

v:Variable

o:Operand

c:Constant lv:LoopVar

lv:LoopVar

o:Operand

-a:Assignment -ex:Expression

-v:Variable -v:Variable

+cv2:CalcView
@name := „CtxView“
@op := Join(type=INNER)
@joinAtts := [fva@name]

+vva2:ViewAttribute
Copy(vva)

+fva2:ViewAttribute
Copy(fva)

+kf2:KeyFigure
Copy(kf)

+kf21:KeyFigure
@name := v@name
Copy(right->kf)

cv:CalcView
@name := „CtxView“

-fe:ForEach

loopbody

-lv:LoopVar

left right

a:Assignment ex:Expression

v:Variable

fe:ForEach

v:Variable

lv:LoopVar

loopbody

(b) Rule 2: special case of sum aggregation

FOREACH LVar1,…,LVarN

IF <<expression>> THEN … ELSE … ENDIF

If statement in ForEach context

if:IfStatement

::=

-if:IfStatement

True-block

ex:Expression
cond

False-block

True False

ex:Expressionfe:ForEach

+cv0:CalcView
@name := „IFCtx“
@op := Join(type=LEFT_OUTER)
@joinAtts := [fva@name] + [v@name]

+vva0:ViewAttribute
Copy(vva)

+fva0:ViewAttribute
Copy(fva)

+kf0:KeyFigure
Copy(kf)

+kf4:KeyFigure
Copy(right->ckf)

+cv1:CalcView
@name := „LoopDriverIf“
@op := Projection
@filter := kf4@name + „= True“

+vva2:ViewAttribute
Copy(vva)

+fva2:ViewAttribute
Copy(fva)

+kf1:KeyFigure
Copy(kf0 + kf4)

True-block

+cv2:CalcView
@name := „LoopDriverElse“
@op := Projection
@filter := kf4@name + „= False“

+vva3:ViewAttribute
Copy(vva)

+fva3:ViewAttribute
Copy(fva)

+kf2:KeyFigure
Copy(kf0 + kf4)

False-block

fe:ForEach

loopbody

v:LoopVar

RightLeft

(c) Rule 3: translate an IF statement within a FOREACH
statement

FOREACH LVar1,…,LVarN

{KF1,LVar1,…,LVarN1,Const11,...,Const1M1} opi {KFK,LVar1,…,LVarN2,ConstK1,...,ConstKM2}
{KF1,LVar1,…,LVarN1,Const11,...,Const1M1} boolopi {KFK,LVar1,…,LVarN2,ConstK1,...,ConstKM2}

e:Expression

::=

-e:Expression

o:Operand

+cv1:CalcView
@name := exprView
@op := Projection

+vva2:ViewAttribute
Copy(vva)

+ckf:CalcKeyFigure
@formula := e@expr

+fva2:ViewAttribute
Copy(fva)

+kf2:KeyFigure
copy(input->kf)

+cv2:CalcView
@name := „joinView“
@op := Join(type=LEFT_OUTER)
@joinAtts := [fva@name] + [Right.>v@name]

+ldva:ViewAttribute
copy(va)

+fva3:ViewAttribute
Copy(fva)

+kfr:KeyFigure
copy(Right->kf)

+kfl:KeyFigure
copy(Left->kf)

o:Operand
Right

Input

ld:CalcView

Left

loopbody

Expression in ForEach context

v:LoopVar

fe:ForEach v:LoopVar

Left

(d) Rule 4: translate an ”‘expression”’ within a FOREACH
statement

FOREACH LVar1,…,LVarN

{KF0,LVar1,…,LVarN0,Const1,...,ConstM} = <<expression>>

a:Assignment

::=

-a:Assignment

+cv1:CalcView
@name := AssignView
@op := Join(type=LEFT_OUTER)
@joinAtts := [fva@name] + [v@name]

+vva2:ViewAttribute
Copy(vva)

+fva2:ViewAttribute
Copy(fva)

+kf2:KeyFigure
@name := LHS->o@kf
Copy(ex@ckf)

ex:ExpressionRHS

LHS

o:Operand ex:Expression
RightLeft

Assignment in ForEach context

o:Operand

v:LoopVar

fe:ForEach

loopbody

v:LoopVar

(e) Rule 5: translate an ”‘operand assignment”’ within a
FOREACH statement

performance against the defined targets. Aside from a set of
frequently used functions, like copying data or distributing
values from aggregated levels to more fine-granular levels,
planning functions contain custom logic that is specifically
tailored to the individual business needs.

4.1 Language Example
FL provides a small set of language constructs to ex-

press business logic on multidimensional data. FL keeps
the metaphor of the multidimensional cube and provides
the user with simple statements to access the values of in-
dividual cube cells. It abstracts away from how the cube

Listing 1: Planning script example: rolling plan
1 DATA actper TYPE f i s c p e r ;
2 DATA f i s c p e r TYPE f i s c p e r ;
3 DATA sum TYPE FLOAT;
4 DATA de l t a TYPE FLOAT;
5 // Read va lue from app l i c a t i o n v a r i a b l e per iod
6 actper = varv (’PERIOD’) ;
7 // Ca l cu l a t e the sum
8 FOREACH f i s c p e r :
9 IF f i s c p e r > actper :

10 sum = sum + { revenue , 1 , f i s c p e r } ;
11 ENDIF;
12 ENDFOR;
13 // Del ta between planned and ac t ua l
14 de l t a = { revenue , 1 , ac tper }
15 − { revenue , 0 , ac tper } ;
16 // Set planned to ac t ua l
17 { revenue , 1 , ac tper } = { revenue , 0 , ac tper } ;
18 // D i s t r i b u t e d e l t a by we igh t
19 FOREACH f i s c p e r :
20 IF f i s c p e r > actper :
21 { revenue , 1 , f i s c p e r } =
22 { revenue , 1 , f i s c p e r } + de l t a ∗
23 { revenue , 1 , f i s c p e r } / sum ;
24 ENDIF;
25 ENDFOR;

is stored and concentrates on the key parts that are neces-
sary to express business logic. Listing 1 describes the rolling
plan logic from our example as an FL script: the variable
actper holds the value for the current month (line 6); by
setting the value for this variable, the script can be reused
each month. In the first block (lines 1 - 4) the variables are
declared. Variables can have simple types like INTEGER,
FLOAT or STRING, or they reference the type of a dimen-
sion in the underlying cube. The sum of revenue in version
1 from the beginning of the year up to the current period is
calculated in lines 8 - 12 in Listing 1. The version dimen-
sion is used to distinguish planned values from actual values.
Version 1 contains the planned and version 0 contains the
actual values. A FOREACH loop is used to iterate over all
distinct values of the fiscper dimension. Furthermore, the
IF statement is used to check whether the fiscper value of
the current iteration is after the current period in actper.
The value sum is then accumulated from the revenue values
of the tuples that satisfy this condition. This shows the use
of a tuple (enclosed in curly brackets) within an expression.
Next, the delta between the current sum of revenue in ver-
sion 0 and the planned sum of revenue in version 1 up to the
actual month is calculated (line 14). In the final FOREACH
loop, the value of delta is distributed to the revenue values
in version 1 for the remaining months, such that the planned
overall amount of revenue remains constant. The result is
assigned to a tuple that again references a specific cell in the
underlying cube for each loop iteration.

4.2 Graphical representation of the FL
It follows a graphical notation for the FL script language.

Each statement is represented by a rectangle node. Figure 4
shows the complete graphical representation of the rolling-

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 117–122, ISBN 978-1-60558-900-8
https://doi.org/10.1145/1866480.1866498

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

plan script from our example. Each node has as type the
statement it represents and a unique name. For example, the

part numbered with 1 in Figure 4 shows a node of type as-
signment named a1. The assignment node a1 has one tuple
node as child representing the left-hand side and an expres-
sion node ex1 in Figure 4 representing the right-hand side of
the assignment. The child nodes are connected to the par-
ent node via containment edges, meaning that they belong

to the parent node. The detail marked with 1 in Figure 4
corresponds to line 6 in Listing 1. Alternatively, if the child
nodes deliver a value to their parent, they are connected
with a data-flow edge, which also captures containment (see

ex2 at annotation 2 in Figure 4), and data flows to the
end with the circle. Edges can be labeled with a role, for
example LHS and RHS for left- and right-hand side, respec-

tively, for the assignment at 1 . Keeping the example of the
assignment node, there is also a data-flow edge between the
expression node and the operand node. This expresses that
the result value of the expression flows into the node and
replaces the key figure value of the operand. Consecutive
statements in the script, represented by different nodes in
the graph, are linked via control-flow edges representing the

order of execution, as in 3 in Figure 4. A list of statements
can be encapsulated in a statement block, e.g, if there are
a number of statements within the True branch of a condi-

tional node or within the body of a loop, as marked with 4

in the FL graph.

5. THE SEMANTIC PLAN
The goal is to translate an FL script into something that

the underlying database engine can execute. In our case,
this will be a logical execution plan for the SAP BWA exe-
cution engine. While the nature of the FL script is proce-
dural, the logical plan is a data-flow graph with declarative
semantics. The SAP BWA execution engine provides a dis-
tributed and parallel execution environment with excellent
scaling behavior. Furthermore, it provides a logical exe-
cution model, which offers most of the basic operations of
relational algebra; it also provides rich expression semantics
and the fast aggregation capabilities of the SAP BWA. The
goal of the logical plan is to allow much more flexible queries
than standard OLAP queries and to formulate complex data
processing logic using a declarative data-flow graph. For ex-
ample, in [4], it has been discussed how the logical plan can
be used to express a set of standard planning functions.

5.1 A data-flow graph execution model
Within the SAP BWA, the logical plan is represented as a

directed acyclic graph (DAG) and consists of so-called view
nodes (see Figure 1). Edges represent data flow between
nodes. Each node describes how many inputs it expects
and how the inputs are transformed to produce the output.
Inputs can be the result of the output of another node or
tables of the underlying database. Each view node has an
operation that transforms the inputs. Available operations
are equal to relational algebra: projection, aggregation/-
grouping, join and union. Sorting and selection are further
operations, but they are part of every view in addition to the
main operation. Selection and sort are always applied after
the main operation has been done. Logical plans are stored
as views and at the time of query, the plan is instantiated

ctx:Context

fiscper:Column

sales:Column

a1:Assignment

actper:Variable
ex1:Expression

@expr = varv(‚PERIOD‘)

RHS

LHS

a1:Assignment

ex2:Expression
@expr = sum + o1

RHS

sum:Variable

fe1:ForEach

loopbody

sum:Variable o1:Operand
@KF = sales

version:Constant
@val = 1

fiscper:LoopVar

fiscper:LoopVar

LHS

version:Column

a2:Assignment

delta:Variable
ex3:Expression

@expr = o2 – o3

RHS

LHS

o3:Operand
@KF = sales

version:Constant
@val = 0

actper:Variable

o2:Operand
@KF = sales

version:Constant
@val = 1

actper:Variable

a3:Assignment
RHS

LHS

o2:Operand
@KF = sales

version:Constant
@val = 1

actper:Variable

o3:Operand
@KF = sales

version:Constant
@val = 0

actper:Variable

fe2:ForEach fiscper:LoopVar

if:IfStatement

True-block

cond

True

ex2:Expression
@expr = fiscper > actper

fiscper:Variable actper:Variable

a4:Assignment

LHS

o4:Operand
@KF = sales

version:Constant
@val = 1

fiscper:LoopVar

ex4:Expression
@expr = o4 + delta * o4 / sum

RHS

delta:Variable

sum:Variable

loopbody

1

2

3

4

Figure 4: Graphical representation of rolling plan
FL script

and translated into a physical execution plan.

5.2 Graphical representation of the semantic
plan

The representation of the logical plan shares many com-
monalities with the representation of the FL. Nodes of the
semantic plan are represented by rectangles with rounded
corners. They have a unique name and are of type view. At-
tributes are also represented by rectangle nodes with rounded
corners and their respective type: view attribute or key-
figure. They also have properties that can be addressed with
@<property-name>. Since the logical plan is a pure data-
flow graph, there are only data-flow edges and edges that
represent containment. Aside from view nodes and their
children being the main entity of a plan graph, there are
data source nodes that reference the actual source data.

6. EVALUATION
The logical plan of the compiled FL script of our running

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 117–122, ISBN 978-1-60558-900-8
https://doi.org/10.1145/1866480.1866498

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

 100

 1000

 10000

 100000

 1e+006

0.0001 0.001 0.01 0.1

E
xe

c.
 ti

m
e

in
 m

s
(lo

g.
 s

ca
le

)

ScaleFactor

SCRIPT
SP

NATIVE

(a) Comparison of declarative plan vs. procedural
plan

 10

 100

 1000

 10000

14 24 34 44 54 64 74 84 94 104 114

T
ra

ns
fo

rm
at

io
n

tim
e

in
 m

ic
ro

se
c

(lo
gs

ca
le

)

Number of statements

Num. Nodes
Num. Rules

Duration

(b) Translation time and number of rules/nodes for
different number of statements

Figure 5: Evaluation results

example is used for our following evaluation. As discussed
in the previous section about transformation rules and also
shown in Figure 2 from the introduction, there exist two
extremes. One is to translate the DSL completely into a
declarative plan. The contrary is a plan with one code block
node that contains the complete procedural script. We ar-
gue that the execution within the SAP BWA engine benefits
from a declarative plan that consists of typical set operations
like selection, union, join and aggregation. The following re-
sults underpin this claim and show the benefits that can be
gained when executing data-intensive tasks written in a user-
friendly DSL directly within the database. We implemented
a prototype that translates an AST representation of an FL
script into a declarative plan using the set of transformation
rules explained throughout the paper. The execution of the
logical plan (SP) of our rolling plan example is compared
to a variant that only contains one code block node, which
wraps a procedural translation of the FL script (SCRIPT).
Furthermore, we compared another version, but this time,
the script is translated into native C++ code. The dataset
is the SSB OLAP benchmark data [5], which is a customized
version of the TPC-H benchmark [6] specifically tailored to
OLAP scenarios. The size of the generated data contains
a fact table with 1,200,000 line items for the largest scale
factor (SF) 0.1 we used. This is twice the size of the original
SSB dataset with scale factor 0.1, because we duplicated the
entries of the fact table with slightly changed measure values
to provide for the plan and the actual version of the data as
required in our example. The rolling plan is calculated for
every combination of customers and parts within the SSB
benchmark cube with the current period set to May. The
experiments have been executed on a 2-CPU Intel R© Core R©

i7 machine with 12GB RAM running Windows R© 7, 64 Bit.
As can be seen in Figure 5(a), for very small datasets –
SF 0.0001 – the execution of the plans with the procedu-
ral nodes is faster than the semantic plan; however, with
growing size of the data set, the fully declarative semantic
plan performs orders of magnitudes better than the proce-
dural versions. The second experiment in Figure 5(b) shows
linear scaling of the number of rule applications and cre-
ated nodes with respect to the number of statements. We
measured the rolling plan example again and multiplied the
FL script code. The result is as expected, since the left-
hand sides of our rule patterns are disjoint and hence, for

every statement, only one rule applies. Furthermore, after
the application of a rule, no other rule matches the resulting
subgraph, thus the translation process is deterministic.

7. CONCLUSION AND OUTLOOK
There are several parts of a procedural DSL that are good

candidates for translation into a declarative, data-driven ex-
ecution model of a database engine. To drive this trans-
lation, we propose graph transformations: models are ex-
pressed using a graphical representation and graph transfor-
mation rules are powerful enough to express an automatic
translation from one representation into the other. Although
there is a mismatch between the procedural DSL and the
declarative execution plan, this gap can be bridged with
code blocks that are embedded into the plan. Furthermore,
we showed in our evaluation that the declarative translation
of a script can leverage the underlying database execution
engine and performs much better on large datasets than the
procedural variant. Further work includes assembling new
rules that capture the translation into the executable code
blocks mentioned before. Also, the graph transformation
technique can be used to express optimizations of the log-
ical plan, which can be applied iteratively until a minimal
number of view nodes is reached or as much as possible is
directly translated.

8. REFERENCES
[1] U. Assmann. Graph rewrite systems for program

optimization. ACM Trans. Program. Lang. Syst.,
22(4):583–637, 2000.

[2] R. Burns and R. Dorin. The SAP NetWeaver BI
Accelerator - Transforming Business Intelligence, White
Paper, Winter Corporation, 2006,
http://www.wintercorp.com/whitepapers/whitepapers.asp.

[3] J. Göres. A Model Management Framework for
Information Integration. Phd, Technische Universität
Kaiserslautern, 2009.

[4] B. Jaecksch, W. Lehner, and F. Faerber. A plan for
OLAP. In EDBT, pages 681–686, 2010.

[5] P. O’Neil, E. O’Neil, and X. Chen. The star schema
benchmark (ssb). Pat, (January):1–10, 2007.

[6] Transaction Processing Performance Council. TPC-H
Benchmark Specification.

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 117–122, ISBN 978-1-60558-900-8
https://doi.org/10.1145/1866480.1866498

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

