
Data Replication in Hybrid Memory
Database Systems

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Mikhail Zarubin, M.Sc.

geboren am 2. November 1988 in Rostow am Don, UdSSR (Russland)

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner

Technische Universität Dresden

Fakultät Informatik

Institut für Systemarchitektur

Lehrstuhl für Datenbanken

01062 Dresden

Fachreferent: Prof. Dr.-Ing. Dirk Habich

Technische Universität Dresden

Fakultät Informatik

Institut für Systemarchitektur

Lehrstuhl für Datenbanken

01062 Dresden

Tag der Verteidigung: 7. März 2022

Dresden, im Januar 2022

ABSTRACT

The recent advances in hardware technologies – i.e. highly scalable multi-core NUMA
architectures and non-volatile random-access memory (NVRAM) – lead to significant
changes in the architecture of in-memory database systems. The novel memory type
allows persistent writes while featuring DRAM-like characteristics – byte addressabil-
ity, high bandwidth, and low access latencies. It is likely to complement or replace
the block-based secondary storage (e.g., HDDs or SSDs) for storing the primary data
of the DBMS. Therefore, the next generation of highly-performant scalable database sys-
tems will rely on single-level hybrid memory (e.g., compound exclusively of DRAM and
NVRAM) NUMA architectures and is expected to keep the primary data solely persis-
tent in NVRAM, while query processing could be executed on both mediums. Unfortu-
nately, NVRAM faces certain drawbacks such as a lower write endurance, lower band-
width, higher latencies, and - most importantly - an increased error-proneness compared
to DRAM. Thus, efficient minimal-overhead data protection mechanisms have to be de-
ployed in the underlined architectures to avoid primary data losses.

This thesis provides an analytical overview of such envisioned hybrid memory database
systems, gives a survey of reliability techniques that are generally deployed in comput-
ing systems, identifies their strengths and weaknesses when used in hybrid memory
databases. As a result, this work proposes effective adoption and optimization primitives
for the software-managed data replication as the most applicable resilience approach. In
particular, research focus is given to runtime and space (and, therefore, NVRAM wear-
out) reduction of the replication overheads, while preserving strong resilience guaranties
and instant recovery opportunities. Subsequently, this thesis proposes a rich set of tech-
niques that leverage data replication for query processing needs to achieve high perfor-
mance, allocation flexibility and effective hardware utilization in modern scale-up sys-
tems. The usefulness of the suggested improvements is thoroughly evaluated and anal-
ysed using a variety of low-level and end-to-end benchmarks and proofs-of-concepts.

3

4

CONTENTS

1 INTRODUCTION 9

1.1 Motivation . 10

1.2 Summary of Contributions . 11

1.3 Outline . 12

2 BACKGROUND AND CHALLENGES 15

2.1 Hybrid Memory Systems . 16

2.1.1 Non-volatile random access memory 16

2.1.2 Scale-up hybrid memory architecture on hardware level 17

2.1.3 Scale-up hybrid memory architecture on software level 19

2.1.4 Hybrid memory database system 22

2.2 Low level performance evaluation of NVRAM 23

2.2.1 Socket-local parameters . 24

2.2.2 Socket-remote parameters . 27

2.2.3 NVRAM access methods . 28

2.3 Vectorized memory accesses in hybrid memory systems 29

2.3.1 Overview of common instructions sets 30

2.3.2 Deployment in database scenarios 30

2.4 Reliability in hybrid memory systems . 31

2.4.1 Impact on general database failure processing 31

2.4.2 NVRAM failure scenarios and consequences for the primary data 32

2.5 Survey on existing techniques . 33

2.5.1 Hardware coding . 35

2.5.2 Software coding . 36

2.5.3 OS coding and replication . 37

2.5.4 Hardware replication . 37

2.5.5 Software logical replication . 38

2.5.6 Software physical replication . 39

2.5.7 Summary . 41

2.6 Observations and challenges . 42

3 REPLICATION - MINIMIZATION OF OVERHEADS 45

3.1 State-of-the-art: evaluation and analysis of Intel PMDK replication . . 46

5

3.1.1 NVRAM-centric data structures . 46

3.1.2 Pool replication . 48

3.2 Runtime overhead reduction through adaptive efficient replication
mechanisms . 51

3.2.1 Optimization of the basic pool replication algorithm. 52

3.2.2 Adaptive lightweight switching algorithm 57

3.3 Space overhead and wear-out reduction through data compression 60

3.3.1 Integer compression algorithms in hybrid memory databases . 61

3.3.2 Compressed replication concept 67

3.4 NUMA-aware replica placement as a way to increase resilience . . . 69

3.5 Summary . 70

4 REPLICATION - QUERY PROCESSING PERSPECTIVE 71

4.1 Underlying system model . 72

4.2 Polymorphic compressed replication mechanism 74

4.2.1 Optimization concepts . 74

4.2.2 Implementation . 77

4.2.3 Evaluation . 80

4.2.4 Conclusions . 85

4.3 SIMD-MIMD cocktail to speed up query processing 85

4.3.1 Motivation for SIMD-MIMD interplay 86

4.3.2 Experimental analysis . 87

4.3.3 Optimizing SIMD-MIMD interplay 93

4.3.4 Conclusions . 97

4.4 Summary . 97

5 CONCLUSION 99

5.1 Summary . 100

5.2 Future research directions . 101

BIBLIOGRAPHY 103

LIST OF FIGURES 113

LIST OF TABLES 117

6 CONTENTS

AKNOWLEDGMENTS

I would like to thank all my supervisors and colleagues for all their help and advice
with this PhD. I would also like to thank all members of my family for all the support I
received during the period of doctoral studies.

Mikhail Zarubin
January 3, 2022

7

8 CONTENTS

1
INTRODUCTION

1.1 Motivation

1.2 Summary of Contributions

1.3 Outline

1.1 MOTIVATION

In modern digitalized world, data is generated in large amounts and is said to be the new
oil of the 21st century. Thus, in numerous application areas ranging from science to indus-
try, the importance of efficient and scalable data processing increases constantly, whereby
traditional ACID (atomicity, consistency, isolation, durability) properties of database sys-
tems must be taken into account [CDN11]. To speed up the processing of increasing data
amounts, the general trend of the last decade is shift towards scalable in-memory database
architectures [KZZL17, ALR+17, Kim15]. Such in-memory databases achieve higher per-
formance compared to those based on traditional disk storage (HDD or SSD). This is due
to the fact that they rely on algorithms optimized for main memory, which are normally
simpler and faster [KZZL17, KWJP16]. Moreover, processing information that has been
stored in byte-addressable memory eliminates the seek time costs when searching and
accessing data, compared to block-addressable disk storage.

While being fairly advantageous in many fields that require high-performance or real-
time data processing, the in-memory database systems used to suffer two major draw-
backs. The first one is the high costs of main memory volumes (e.g., DRAM or SRAM)
which are much more expensive than those of disks. The second drawback is a lack of
durability compliance. This refers to the loss of information in case of power-off. How-
ever, over the last years, the cost of DRAM has begun to decline, making the in-memory
approaches more affordable and, thus, largely neglecting the first drawback. Further-
more, the recent advance in memory technologies – non-volatile random-access memory
(NVRAM) – allows to mitigate the second drawback and provide the full durability com-
pliance within in-memory paradigm.

This novel memory type combines storage-like persistent writes with features of tradi-
tional main memory – byte addressability, low latencies and high bandwidth. Due to
such advantageous properties, it is likely to complement or replace the block-based sec-
ondary storage for storing the primary data of the DBMS. Thus, it is expected that the
next generation of highly-performant in-memory database systems will rely on single-
level hybrid memory (e.g., consisting exclusively of DRAM and NVRAM) scale-up ar-
chitectures. Besides hybrid memory, scale-up hardware consists of several processing
units or sockets interconnected within a single-box compute node [PALG19]. Therefore,
targeted applications are potentially able to keep the primary data solely persistent in
NVRAM, while query processing could be executed on both mediums. A number of re-
spective changes and adoptions in the architecture of in-memory database systems are
already proposed by science and industry [ALR+17, Kim15]. Such changes result in a
modified in-memory approach, which is further referred by this thesis as a hybrid memory
database architecture.

On the one hand, NVRAM allows to greatly extend available byte-addressable capaci-
ties on affordable prices while still facing certain drawbacks. Those are higher latencies,
lower bandwidth, lower write endurance and - most importantly - an increased error-
proneness, compared to DRAM or SRAM. On the other hand, the data durability and
consistency require to deploy efficient minimal-overhead data protection mechanisms in
the underlined architectures.

Thus, the goal of this thesis is to adopt or propose reasonable data protection mechanisms
for hybrid memory databases. As at this point in time, respective safety measures (with
regard to NVRAM) are not yet well researched. So, the thesis starts with a survey of re-
silience techniques that are generally used in information processing systems, explores
their potential strengths and weaknesses when applied to hybrid memory database sys-
tems. And as an outcome, this work proposes effective deployment and optimization

10 Chapter 1 Introduction

primitives for the software-coordinated physical data replication as the most applicable
reliability approach. With regard to the data storage model the investigations rely on
a columnar data organization [BMK99, BZN05, HDU+19, SAB+05] as the most efficient
state-of-the-art format in analytical in-memory processing systems.

The emphasis is given to the compute node-local (e.g., addressed within single-box scale-
up machine) minimization of runtime and space overheads of the data replication pro-
cess, while preserving strong resilience guaranties and instant recovery opportunities.
Subsequently, this thesis suggests a rich set of techniques that leverage data replica-
tion (particularly in compressed data formats [AMF06, GRS98]) for query processing
needs to achieve high performance, allocation flexibility and effective hardware utiliza-
tion in modern scale-up systems (e.g., via deployment of multiple sockets). Additional
attention is paid to the single instruction multiple data vectorization as performance
optimization opportunity for physical replication and other in-memory database oper-
ations [PRR15, ZR02, DUP+20]. The applicability of the proposed improvements is thor-
oughly evaluated using a variety of benchmarks and proofs-of-concepts.

1.2 SUMMARY OF CONTRIBUTIONS

This thesis targets concepts and low-overhead mechanisms for provision of data relia-
bility guaranties in hybrid memory databases, being run on scale-up hardware architec-
tures. Furthermore, the deployment opportunities of redundant data copies for query
processing needs are precisely researched. In addition, several benchmarks and proof-
of-concept prototypes are used to evaluate proposed solutions. The contributions can be
summarized as follows:

1. First, the thesis details on the foundations of both envisioned hybrid memory
database systems and targeted scale-up hardware architectures. Because of the
novelty of NVRAM memory within modern hardware landscape – particular atten-
tion is given to the low-level evaluation of its performance characteristics to make a
foundation for the efficient scale-up system level integration.

2. Based on the initial explorations, the principles of how the data reliability could
be ensured for such novel data processing applications are revised, compared to
traditional architectures. This is done via the discussion and qualitative analysis
of resilience approaches that are generally deployed in computing systems. As a
result, that survey concludes that the software-managed data replication is the most
applicable reliability technique. Further, a number of important research challenges
are drawn when attempting to integrate respective protection mechanism in hybrid
memory database systems.

3. The ultimate goal is to minimize the runtime overhead of the data replication process
– as thorough evaluation of the state-of-the-art implementation demonstrates pro-
hibitively low performance for the targeted domain of high-speed hybrid memory
databases. Thus, the detailed insights on sources of the runtime replication over-
head are provided. Furthermore, this thesis suggests a rich set of optimization prim-
itives to reduce the performance penalty of replication for typical database work-
loads. These optimizations are subsequently automated using a template-based ap-
proach to adapt for current workload conditions.

1.2 Summary of Contributions 11

4. To reduce the space overhead of the replication (which normally implies at least
100% of additional storage per replica), this thesis investigates the opportunities
of data compression in NVRAM-centric data stores focusing on lightweight integer
compression techniques. Such algorithms are widely used in DRAM-backed colum-
nar processing systems. Subsequently, a polymorphic compressed replication concept is
suggested to store replicas using a variety of compressed data formats and, there-
fore, to average possible space reductions.

5. The scale-up hybrid memory database systems are able to persistently store and to
efficiently process data exclusively in main memory. These specific properties en-
able the immediate on-demand usage of replicas for other than reliability purposes.
Thus, this thesis derives a conceptual vision on how compute node-local physical
replication, while efficiently facilitating the primary data protection, could be lever-
aged for query processing needs as well. In particular, it suggests to allow data
processing operations on (possibly compressed) replicas flexibly allocated over the
sockets of scale-up server. As evaluated, that allows to significantly speed up con-
current workloads and improve hardware utilization.

6. As all the data (including replicas) processed by the database operators in targeted
systems is stored on byte-addressable mediums – it is directly exposed to the avail-
able CPU instructions. Thus, the data level parallelism or single instruction multiple
data (SIMD) vectorization could be deployed for optimization of NVRAM-centric
operations similarly to DRAM-backed in-memory databases. The usefulness of
SIMD instructions is researched by this thesis not only for physical data replica-
tion, but also for query processing on persistent replicas. Furthermore, a novel
concurrent SIMD-heterogeneous query execution model (SIMD-MIMD cocktail) is
proposed to outpace the traditional SIMD-homogeneous performance.

7. The usefulness of the suggested improvements is thoroughly evaluated and an-
alyzed using a variety of low-level and end-to-end benchmarks and proofs-of-
concepts. In particular, the suggested polymorphic compressed replication and SIMD-
MIMD cocktail approaches are evaluated within the MorphStore1 – a prototype of
an in-memory query processing system for columnar data developed at the Chair
of Databases of the TU Dresden.

1.3 OUTLINE

Figure 1.1 visualizes an abstract outline of this thesis. The corresponding structure
matches in part with the previously presented summary of contributions. Introduction
aside, the remaining part of the thesis is compound of the following blocks. Chapter 2
provides the necessary background on the key technologies and architectures addressed
in the thesis. In particular, it presents the non-volatile random access memory technology
and its influence on modern hardware architectures. Further, it discusses the deployment
challenges from the user software point of view and expected integration advantages in
the database domain. As a conclusion, this chapter stresses the need for effective pro-
tection of NVRAM-resident data and draws the respective research challenges tackled
further in the thesis.

Chapter 3 focuses on a compute node-local synchronous physical replication as the most
reasonable for hybrid memory systems resilience approach. Namely, it evaluates the

1https://github.com/MorphStore

12 Chapter 1 Introduction

Chapter 1: Introduction

Chapter 4: Replication - Query Processing Perspective

Chapter 5: Summary and Future Work

Polymorphic Compressed Replication:
Compression and NUMA-awareness

SIMD-MIMD Cocktail: Vectorization of
Concurrent Workloads

Chapter 2: Hybrid Memory Databases - Background

Hardware &
Software

Foundations

NVRAM
Performance

Characteristics

Chapter 3: Replication - Minimization of Overheads

Data Reliability

Intel PMDK Evaluation

Survey Challenges

Runtime Overhead
Reduction: Adaptive

Template

Space Overhead
Reduction: Integer

Compression

Figure 1.1: Thesis structure and outline.

state-of-the-art implementation and presents the compute node-local mechanisms to pro-
vide the foundation for an efficient NVRAM replication with a low latency and through-
put penalty. Further, the evaluation and adoption of the lightweight integer compression
techniques are provided to ensure the space footprint-minimized replication. Finally,
this chapter proposes flexible NUMA-aware allocation for stronger protection of persis-
tent base data against all possible NVRAM failures. The evaluation of the proposed in
this chapter ideas is embedded in respective sections for better integrity and consistency.

Chapter 4 describes a conceptual vision on how the compute node-local physical replica-
tion, while efficiently providing the base data protection, could be deployed for query
processing purposes as well. The research starts with the discussion of the underly-
ing system model, and then proposes and evaluates two options for the replication-
related query processing optimizations. First option (polymorphic compressed replica-
tion) leverages the storage component (via diversity in data layouts), while second (SIMD-
MIMD cocktail) proposes to rely on compute counterpart (via diversity in available vec-
torized instruction set extensions). The evaluation of the suggested in this chapter ideas
is integrated in respective sections as well.

Chapter 5 concludes the thesis with a summary of this manuscript. Finally, an outlook
for the most promising future research directions, that could complement or expand the
contents of this thesis is provided.

1.3 Outline 13

14 Chapter 1 Introduction

2
BACKGROUND AND CHALLENGES

2.1 Hybrid Memory Systems

2.2 Low level performance evaluation of
NVRAM

2.3 Vectorized memory accesses in hybrid
memory systems

2.4 Reliability in hybrid memory systems

2.5 Survey on existing techniques

2.6 Observations and challenges

This chapter1 gives the necessary introduction to the key technologies and system ar-
chitectures addressed in the thesis. Particularly, it presents the novel persistent memory
technology, its impact on modern hardware architectures, deployment challenges from
user software point of view, and expected integration advantages in the database domain.
As a conclusion, this chapter stresses the motivation and research challenges tackled fur-
ther in the thesis.

2.1 HYBRID MEMORY SYSTEMS

This part provides the necessary background regarding the non-volatile random access
memory as a key enabler for the hybrid memory systems, which are presented subse-
quently from both hardware and software perspectives.

2.1.1 Non-volatile random access memory

This section is devoted to the description of the recent 2 storage/memory hardware ad-
vance – non-volatile random access memory (also known as persistent memory, storage
class memory or non-volatile main memory). Further in the thesis, the term non-volatile
random access memory is used to address a set of underlined hardware technologies that
provide byte-addressable access to the persistent devices attached directly to CPU mem-
ory bus.

A general trend, currently observable in many memory-based data intensive applica-
tions like in-memory databases, key-value stores, data warehousing, and analytical pro-
cessing tools is the growing demand for hardware platforms with increasingly larger
memory volumes [MMNLM20]. This need reflects the general processing style of such
systems, as they tend to constantly have most of the data in main memory, in contrast
to disk-centric architectures. On the other hand, the technological process used to scale
the frequency or capacity of modern volatile main memory devices is facing its physical
limitations [Loh08, QSR09]. To tackle this challenge, industry is intensively researching
and integrating new memory technologies. One of the most notable recent developments
is non-volatile random access memory (NVRAM).

In essence, NVRAM is a random-access memory that retains data without applied power.
Such durability is a novel feature compared to dynamic random-access memory (DRAM)
and static random-access memory (SRAM), which have been dominating volatile ran-
dom access memory technologies over the last decades, as both maintain data only for
as long as power is applied. The term random access means that the access latency is
equal for all internally stored bytes. To complement such volatile memories and provide
persistency property the computing systems conventionally used block-addressable (ac-
cessed over the slow I/O bus) storage devices such as solid state drives (SSDs), hard
disk drives (HDDs) or magnetic tapes. Therefore, nowadays, NVRAM is able to close the
gap between persistent and volatile memory classes and transforms the traditional mem-
ory hierarchy pyramid of Von Neumann architecture [GH93] as illustrated in Figure 2.1.
Namely, NVRAM combines features of both – byte-addressability, low access latencies,

1Parts of the material in this chapter have been developed jointly with Thomas Kissinger, Dirk Habich,
Thomas Willhalm, and Wolfgang Lehner. Namely, Section 2.2 is based on [ZKH+19]. The copyright
of [ZKH+19] is held by Springer-Verlag GmbH Germany, part of Springer Nature; the electronic version
of the article is available at https://link.springer.com/article/10.1007%2Fs00778-019-00549-w.

2as of year 2021

16 Chapter 2 Background and Challenges

Byte-
addressable

Persistent

Figure 2.1: Memory hierarchy pyramid indicating the place of persistent memory
(adopted from [Sca20]).

durability, and high capacities. Such combination is particularly interesting and promis-
ing in several domains of science and industry (e.g., data processing applications, high
performance computing). The goal of this thesis is to examine it from database systems
point of view taking into account not only its advantageous features, but also drawbacks
such as limited endurance and increased, compared to DRAM, error-proneness.

There is a variety of actively developed hardware technologies which goal is to provide
NVRAM-required properties. Those include Ferroelectric RAM [BAKS16], Magnetoresis-
tive RAM [Hei14], FeFET [PLH21], Spin-transfer Torque [FKV+16] and others. However,
the most stable and already applied in real hardware technology is Phase Change Mem-
ory (PCM) [WRK+10]. PCM is an NVRAM, mainly based on chalcogenide glass, and
is sometimes referred to as CRAM. Such chemical substances fills up the memory cells
and are able to change the phase state. This state switching in PCM is based on the pres-
ence of two different solid-state phases, i.e., crystalline and amorphous with different
electrical resistivity. The information-storing ability in phase change cells is provided by
the transition between the low resistive crystalline phases to high resistive amorphous
phase [GS20]. The transition is induced by the high temperature, and can hold several
intermediate states representing up to four bits per memory cell.

2.1.2 Scale-up hybrid memory architecture on hardware level

In the next sections this work relies on the Phase Change RAM devices from Intel named
Optane DC Persistent Memory as a physical ready-to-use implementation of NVRAM
hardware. These devices are currently shipped using the non-volatile dual in-line mem-
ory module (NVDIMM) packaging also known as persistent memory module (PMM). The
NVDIMMs mostly follow the traditional DRAM DIMMs hardware interface [Dim21].
Therefore, they are directly attached to the memory buses similarly to DRAM as illus-
trated by Figure 2.2. Precisely, this example denotes the current state-of-the-art (though,
not the only possible) attachment scheme of persistent memory modules to the inte-
grated memory controllers (IMCs) while using the shared connection to memory chan-
nels. Thus, each channel serves a pair of DRAM and NVRAM units. In such a machine

2.1 Hybrid Memory Systems 17

PMM

IMC 1

DIMM

PMM

DIMM

PMM

DIMM

IMC 2

Channel 1 Channel 2 Channel 3

CPU

… … …

Cores

Figure 2.2: Typical attachment scheme of NVDIMMs in a single socket machine.

the CPU is equipped with 2 identical IMCs enabling 6 memory channels in total. The co-
existence of the two byte-addressable memory types within a single architecture makes
it actually a hybrid memory system. And in the considered example NVRAM is placed
next to DRAM (or at a same level of memory hierarchy) that reflects a single-level hybrid
memory approach.

One of the fundamental requirements for the modern high performance server systems
is scalability. The scalability is the property of a system to handle a growing amount of
work by adding resources to the system [Bon00]. The state-of-the-art method applied
in practice for scaling up hardware in terms of compute cores and memory resources
is known as as non-uniform memory access architecture (NUMA). This approach (also
referred as scale-up multiprocessor system) physically partitions compute cores and as-
signs local hardware memory resources to each partition or socket [PALG19]. Thus, the
NUMA architectures implicitly assume that higher performance is enabled in combina-
tion with a certain parallelism paradigm that make use of such partitions [PRR15]. There
are three sources of parallelism provided by modern scale-up hardware: thread paral-
lelism [Pac11], instruction-level parallelism [PM13], and data parallelism (discussed fur-
ther in Section 2.3).

The NUMA processors or sockets are connected using an interconnect network (e.g.,
Unified Pair Interface [Int09]) that typically increases the response time when access-
ing memory of a remote socket. Such increases are referred to as a non-uniform mem-
ory access behavior. Several previous works prove that considering the NUMA effect
is crucial for competitive data processing performance [KZZL17, PJHA, KKS+14b]. In
principle, NUMA-oriented scale-up systems behave like distributed systems, but fea-
ture a faster communication due to cache coherency facilities and the close proximity
of processors. Thus, the near-memory processing paradigm (NMP) is state-of-the-art
on such platforms [KZZL17, PJHA, KKS+14b]. That means, NMP restricts data access to
memory-local compute resources and only the unavoidable communication is performed
via interconnects.

In such scale-up systems, which are now becoming a standard in the field of high perfor-
mance server architectures, each local memory domain consists of DRAM and NVRAM
at the same hierarchy level [DKK+14] making them actually hybrid memory systems. As
a conclusion, both mediums are directly exposed to the multi-core CPUs, whereby every

18 Chapter 2 Background and Challenges

NUMA Socket 1

Cores

Memory access

NUMA Socket 2

NVRAMCores

UPI link

DRAMNVRAMDRAM

Store

Load

Store

Load

Instruction
Set

Instruction
Set

Figure 2.3: Schematic view of 2-socket hybrid memory system.

core may feature a full set of available instructions (e.g., load, store, vectorized exten-
sions, etc..). Such placement enables a unified memory access style on both mediums as
shown in Figure 2.3.

For completeness it is important to notice that, in principle, NVRAM could be mounted
as a slow extension of DRAM capacity [Nvr20] (violating its persistency property), in-
termediate cache level between DRAM and I/O storage [CB18], or just as a fast block-
addressable device similarly to flash memory devices (sacrificing its byte-addressability).
However, these are not mainstream options and obviously may hurt the advantages of
using NVRAM in the field of highly-performant database management systems. There-
fore, in the following this thesis relies on the single-level hybrid memory approach.

2.1.3 Scale-up hybrid memory architecture on software level

To enable the effective exploitation of the described above hardware architectures in a
variety of application domains, the software counterpart needs certain support or modi-
fications compared to traditional (DRAM for processing, disk for persistency) approach.
That applies to both operating system and user program levels. The basic requirements
for such conversion, as well as main adoption principles are provided by Storage and
Network Interfaces Association (SNIA) NVRAM programming model [Sni17]. The most
important and relevant concepts are discussed below, while the actual focus is given to
NVRAM-related issues within hybrid memory systems, as DRAM counterpart basically
mimics the in-memory processing paradigm.

Access Methods. As already mentioned above, there is a number of alternatives in a
way how NVRAM can be architectured in the system. The most important software-
defined options are shown in Figure 2.4. Under Linux, the NVRAM resources are pro-
vided in the system through specialized NVDIMM driver, while OS-level administration
is done via the ndctl command line utility [ndc21]. Further, the deployment of persistent
memory as a storage would require an application to use either standard raw device ac-
cess [ndc21] or standard file-based API via conventional or persistent memory-aware file
system [XZM+17]. However, to efficiently access physical NVRAM as a main memory in
byte-addressable way (using load/store semantics), current Linux kernels (as well as Win-
dows and MacOS) implement the Direct Access (DAX) functionality. This feature maps
physical NVRAM regions into the virtual address space of an application while bypass-
ing kernel page and block-level caches. The following three specific ways of accessing
NVRAM in byte-addressable mode are available in Linux-like OS:

2.1 Hybrid Memory Systems 19

DAX – Direct Access

Figure 2.4: SNIA-recommended NVRAM deployment methods (adopted from [Sca20]).

DAXDEV. A DAX device is similar to a raw disk access. In this case, the complete re-
gion of the device is designated to one persistent pool. The pages of the NVRAM
region are contiguously mapped into the address space of the application without
any intervening file system.

DAXFS. The DAXFS access method requires the region of NVRAM to be formatted with
a DAX-enabled file system (e.g., EXT4 or XFS) and individual files are mapped into
the virtual address space of the application without intervening kernel page caches.
Similar to the DAX device, this access method requires the NVRAM to be configured
in AppDirect mode [Nvr20] whereby it is made explicitly visible as main memory to
the operating system.

SHM. While the previous access methods require a specific physical memory region to
be defined as NVRAM at boot time, the shared memory (SHM) access method uses
arbitrary DRAM memory pages (via tmpfs file system) and is thus solely meant for
DRAM-based NVRAM emulation.

Persistency Mechanisms. Because of the DAX feature, virtual memory pages are di-
rectly mapped to physical NVRAM pages and thus, no system calls are required to per-
sist modified data to the NVRAM. However, the presence of volatile CPU caches requires
explicit cache line write backs to ensure the persistency of a modification. Moreover, to
implement such persistent flush mechanism in a consistent way, the cache line eviction
has to be strongly ordered via fence commands to prevent possible out-of-order execu-
tion of store instructions. There are several alternatives to ensure consistent persistent
flushing on current x86 processors:

CLFLUSH. This instruction writes back a specific cache line and evicts it from the cache
hierarchy in the coherency domain.

CLFLUSHOPT. This instruction was introduced to support weakly-ordered higher per-
formance flushes as optimized version of CLFLUSH, which is synchronized by previ-
ously issued CLFLUSH commands. The advantage is that multiple cache lines can be
flushed concurrently, thus, exploiting instruction-level parallelism. Nevertheless,

20 Chapter 2 Background and Challenges

this command requires an additional SFENCE or MFENCE instruction to ensure the
completion of all previously issued CLFLUSHOPT instructions, and, therefore, pre-
vent write reorderings. However, this requirement plays a protective role and does
not specify an exact number of CLFLUSHOPT operations served by a single fence.

CLWB. This instruction asynchronously writes back a specific cache line without explicit
eviction. CLWB also requires an SFENCE or MFENCE to ensure its completion.

WBNOINVD. The instructions of this family are only executable in kernel mode (or
privileged OS mode) and write back all modified cache lines either with or without
eviction. The WBNOINVD instruction is currently available on the Icelake server CPU
generation.

MOVNT. The non-temporal MOV instruction bypasses the caches and stores data directly
to the memory. MOVNT is a single instruction multiple data extension (SSE2, AVX,
AVX2 or AVX-512) that is also executed out-of-order and thus requires an SFENCE or
MFENCE to ensure its completion.

PAT. Page Attribute Tables (PAT) are used to control the caching behavior of memory
pages and have been originally implemented for writing to device memory (e.g.,
frame buffers). PATs can be leveraged to automatically write back certain mem-
ory locations without the need of explicit cache line flush instructions. However,
this mechanism exhibits a poor performance according to the measurements using
a patched Linux kernel supporting PAT configuration for NVRAM mappings.

Persistent Memory Allocation. The volatile memory allocation is a well-understood
and thoroughly-studied research topic. The variety of general purpose industrial and
tuned-up scientific allocators are available. However, there are several reasons making
DRAM allocators invalid for straight use in combination with NVRAM. Those are the
following:

Recoverability. Unlike to the data stored in the volatile memory, where the virtual point-
ers addresses are preserved only while the program is running, NVRAM-resident
objects are supposed to survive the application termination or crashes. That calls for
a recoverable addressing space when providing persistent memory volumes. Such
a recoverability could be provided via specialized allocation schemes that extends
traditional pointers (e.g., returned by malloc() call) with durable fixed anchors (e.g.,
pool starting address) via memory mapped files (attached using mmap() call).

Leakage. As mentioned above, NVRAM-allocated chunks has to survive all termination
scenarios. That implies to the fact that if memory leaks (independently of the ac-
tual reason) – it will retain durably inaccessible, as there is no OS garbage collection
mechanism for persistent volume. Therefore, additional measures have to be im-
plemented on both allocator and application sides to monitor actual state of the
allocated chunks and release leaked pointers.

Atomic Updates. The persistent memory leakage could result from the incorrect pro-
gramming but also from the power loss or OS-induced crashes. These reasons
could also leave the user content of persistent memory in an inconsistent state if
an update operation was terminated. On Intel hardware, the atomic persistent store
is 8 bytes. That means if the program or system crashes while an aligned 8-byte
store to persistent memory is in operation, on recovery those 8 bytes will either
contain the old contents or the new contents. Thus, another important issue within
NVRAM-related programming is to ensure the atomicity of persistent updates. That
is normally solved applying transactional style in modifications (e.g., complete or
nothing). Such transactions could be supported on allocator level deploying 8-byte
atomic instructions.

2.1 Hybrid Memory Systems 21

DRAM

NUMA Hybrid Memory

Multi-core Processors

NVRAM

DB (Main Data) Backup

Figure 2.5: Schematic view of a hybrid memory database management system on scale-
up architectures.

The discussed above challenges of persistent memory allocation, access and management
are addressed in specialized allocators [MAK+13, SBF+15, YXD+17, YXD+15, BCB16,
AvR18, DBY+19], tool-kits [Rud15], as well as on the data structure level [OLN+16,
OL17a, VTRC11, Vig14, CGN11, CJ15, YWW+16, KSKN18].

Scale-Up Deployment. Previous paragraph described the NVRAM-relevant issues in
software adaptation and development. To fully exploit NUMA resources of scale-up hy-
brid memory systems it is also required to support usage of multiple sockets in terms of
both memories and multi-core CPUs. These challenges are already addressed in DRAM-
baked NUMA-aware applications [KKS+14a]. Thus, due to the byte-addressability prop-
erty of persistent memory, it is natural to extend the existing concepts and solutions (e.g.,
NMP and libnuma-like NUMA-aware memory management [lib20]) for NVRAM domain.

2.1.4 Hybrid memory database system

After presentation of the necessary background on hybrid memory systems, it is finally
possible to introduce the respective DBMS applications that are expected to be accom-
modated by such systems. The high-level vision is given by Figure 2.5. Here, the main
conceptual difference from classical DB architecture is that there is assumed no block-
addressable persistent storage device. So, all the primary data including back-ups is
placed in byte-addressable NVRAM, that replaces the traditional storage elements. Fur-
ther, similarly to DRAM-backed in-memory DBMS applications [KKS+14a], the data pro-
cessing and query execution can be done in fast volatile memory (that would require
moving or copying of certain amount of persistent primary content to DRAM pool) or,
novelly, directly in persistent domain as it is now byte-addressable [Kim15, ALR+17].
The latter approach, however, calls for more careful data processing procedures as there
could be no further safe copy of base data. Therefore, not only medium failures but also
errors during query execution (independently of their origins) may lead to the corruption
of primary data. Nevertheless, such innovative "completely in-memory" architectures
offer a great potential for highly-performant data accesses and instant recovery opportu-
nities (especially if the DBMS state variables are also accommodated by NVRAM) and,
thus, are the subject for further investigations in this thesis.

22 Chapter 2 Background and Challenges

Data and Processing Model. With regard to the data organization model it is en-
visioned that such hybrid memory database systems, similarly to most of the mod-
ern in-memory applications, would favor columnar format [ABH+13, AMF06, DKB+19,
LMF+16, RAB+13, ZHNB06, KD18]. Here, the relational data is maintained using the
decomposition storage model (DSM) [CK85], where each column of a table is stored sep-
arately as a fixed-width dense array [ABH+13]. To allow easy reconstruction of the tuples
of a relational table, each column record is stored in the same (array) position across all
columns of a table [ABH+13]. Column-stores typically support a fixed set of basic data
types, including integers, fixed-, or floating-point numbers, and strings. For fixed-width
data types (e.g., integer, fixed-, and floating-point), column stores utilize basic arrays of
the respective type for the values of a column. However, floating-point numbers are usu-
ally mapped to integers [ABH+13] as well. Variable-width data types like strings are gen-
erally dictionary encoded and represented as integers, which enables their storage into
fixed-width columns, too [ABH+13, BHF09]. In the simplest case, a dictionary consists of
the distinct values of a column, sorted by frequency, and each value is represented as its
integer position on the dictionary [ABH+13]. Consequently, all base columns consist of a
sequence of fixed-width integers.

For an efficient processing of these integer sequences, the column-at-a-time model is
heavily applied in such systems [ABH+13, BKM08]. Here, an SQL query is translated
into a query execution plan (QEP) consisting of multiple operators. Typical query opera-
tors include select, project, aggregate, join, group-by, and set-operations featuring
a mixture of sequential and random memory accesses for reads and writes. Each operator
consumes one or two input columns and produces an output column called intermedi-
ate. The column-at-a-time processing model explicitly materializes these intermediates,
because each operator within a QEP is evaluated to completion over its entire input, be-
fore subsequent data-dependent operators are invoked. Such intermediates are volatile
columns and thrown away during or right after the query execution. Thus, the applica-
tion distinguishes between persistent base data and ephemeral intermediates in this system
model. However, the DBMS still has the flexibility to place any column either to DRAM
or NVRAM arbitrary, thanks to hybrid memory concept. Nevertheless, on scale-up plat-
forms such placement is expected to follow the NMP paradigm (cf. Section 2.1.2).

2.2 LOW LEVEL PERFORMANCE EVALUATION OF NVRAM

Because of the novelty of NVRAM devices within modern hardware landscape – it is
important to acquire a good understanding of its performance characteristics to make
a foundation for the efficient scale-up system level integration. This section, therefore,
thoroughly examines basic socket-local and -remote behavior of persistent memory and
compares it with the volatile counterpart for clarity.

Hardware Setup. All experiments in this section are executed on a dual-socket sys-
tem featuring Intel Xeon Scalable (codenamed Cascade Lake) processors clocked at
2600 MHz, 384 GiB DDR4 DRAM memory and 1.5 TiB Intel Optane DC Persistent Mem-
ory. Each processor has 24 physical cores (48 w/ HyperThreading). The PMMs are
plugged into the system in accordance to the ”2-2-2” scheme meaning that each of the
three channels of an integrated memory controller (IMC) is attached to a DRAM and
NVRAM memory module as shown in Figure 2.2. Each processor features two IMCs
and thus all 6 channels can be operated in an interleaved mode to achieve the maximum
NVRAM and DRAM bandwidth. As operating system this experimental setup runs a
Fedora 27 with kernel version 4.15. While the binaries are compiled using g++ 7.1.3 with
enabled "-O3" optimization flag.

2.2 Low level performance evaluation of NVRAM 23

107.0

38.0

2.5 0.7
0

20

40

60

80

100

120

DRAM NVRAM DRAM NVRAM

Sequential Random

B
a

n
d

w
id

th
 [

G
iB

/s
]

Figure 2.6: DRAM and NVRAM read bandwidth for a sequential and random (8 Bytes)
access pattern. The results show the maximum bandwidth measured by multiple threads
in parallel.

2.2.1 Socket-local parameters

Local Read Bandwidth. Figure 2.6 shows the maximum read bandwidth achieved by
multiple threads (count of 48) on the local socket using a sequential and a random (8 Bytes
accesses) memory access pattern each for DRAM and NVRAM. It is observed that the se-
quential as well as random access DRAM bandwidth is about 3x higher compared to the
NVRAM bandwidth. Moreover, workloads using a random access pattern with an 8 Byte
access granularity (amount of data accessed in a single read) are only able to achieve 2 %
of the sequential access bandwidth in the NVRAM as well as DRAM case. The cause of
this huge difference is that (i) hardware threads face the full memory latency between
the accesses, because the next cache line can not be prefetched, (ii) the internal block-size
for data transfers between CPU and memory is an entire cache line (64 Bytes) for DRAM
as well as NVRAM, and (iii) the adjacent cache line prefetch feature automatically loads
the subsequent cache line resulting in a 128 Bytes (two cache lines) data transfer for an
8 Bytes access.

Those effects are further demonstrated in the measurements shown in Figure 2.7. This
experiment varies the access granularity for cache line-aligned random accesses (48
threads) on DRAM and NVRAM. The measurements reveal that the effective bandwidth
scales up with an increasing access granularity until the cache line size of 64 Bytes is
reached. Afterwards, a certain scalability is still given due to the adjacent cache line
prefetching until the bandwidth of both DRAM and NVRAM start to converge to their
maximal values. Figure 2.8 shows the same experiment for larger access granularities
and reveals that hardware prefetchers recognize a sequential access pattern at a 2 KiB
access granularity allowing the bandwidth to scale up to its maximum for both memory
technologies.

24 Chapter 2 Background and Challenges

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

B
a

n
d

w
id

th
 [

G
iB

/s
]

Access Granularity [Bytes]

DRAM (Ideal Prefetch)

DRAM

NVRAM (Ideal Prefetch)

NVRAM

Figure 2.7: DRAM and NVRAM bandwidth for cache line-aligned random memory
accesses using access granularities from 8 Bytes to 512 Bytes.

0

20

40

60

80

100

120

8 32 128 512 2048 8192 32768

B
a

n
d

w
id

th
 [

G
iB

/s
]

Access Granularity [Bytes]

DRAM NVRAM

Figure 2.8: DRAM and NVRAM bandwidth for cache line-aligned random memory
accesses using access granularities from 8 Bytes to 32 KiB.

Local Write Bandwidth. Figure 2.9 shows the write bandwidth for a sequential and
random (8 Bytes) access pattern for DRAM and NVRAM measurements. Similar to the
read workload, the peak bandwidth for both memory types is reached using a multi-
threaded sequential access pattern (with counts of 48 and 24 threads for DRAM and
NVRAM workloads, respectively). While the DRAM write throughput is about 75 %
of the peak read throughput, this asymmetry mounts up to a 5x lower write bandwidth
on NVRAM compared to the read measurements. Interestingly, this asymmetry stays
the same for random access patterns on DRAM, but improves from 20 % to 42 % on
NVRAM. Nevertheless, the writing random access workload only reaches 2.5 % (DRAM)
and 5 % (NVRAM) of the sequential writing bandwidth, respectively. With regard to
single-threaded performance, only a few percent difference is measured between DRAM
and NVRAM.

2.2 Low level performance evaluation of NVRAM 25

80.0

7.5
2.1 0.3

4.6 4.3
0.048 0.045

0

10

20

30

40

50

60

70

80

90

DRAM NVRAM DRAM NVRAM

Sequential Random

B
a

n
d

w
id

th
 [

G
iB

/s
]

Multi-threaded

Single-threaded

Figure 2.9: DRAM and NVRAM write bandwidth for a sequential and random (8 Bytes)
access pattern. The measurements are given for single-threaded and multi-threaded (best
number of threads) executions on the local socket.

0

20

40

60

80

100

120

4
8

/0

4
3

/5

3
8

/1
0

3
3

/1
5

2
8

/2
0

2
4

/2
4

1
9

/2
9

1
3

/3
5

8
/4

0

4
/4

4

0
/4

8

B
a

n
d

w
id

th
 [

G
iB

/s
]

DRAM/NVRAM Threads

Read Write

Figure 2.10: Shared DRAM and NVRAM read and write bandwidth for a sequential ac-
cess pattern.

Concurrent DRAM-NVRAM Access. To figure out whether the two memory types
can be used simultaneously with the same maximum performance, the measurements
reflected for the 48-threaded case by Figure 2.10 are performed. This experiment
revealed that concurrent accesses to both memories are not able to exceed the maximum
reachable bandwidth (independently of the NVRAM thread count) of stand-alone
DRAM workloads and actually hurt the performance of both involved components
compared to separate results. However, this is expected since both medium types in
hybrid platform share the same memory controllers and channels (cf. Figure 2.2).

26 Chapter 2 Background and Challenges

107.0

35.0

2.5 0.7

34 33.5

1.8 0.6
0

20

40

60

80

100

120

DRAM NVRAM DRAM NVRAM

Sequential Random

B
a

n
d

w
id

th
 [

G
iB

/s
]

Local Remote

Figure 2.11: Local and remote read bandwidth for sequential and random (8 Bytes)
DRAM and NVRAM accesses. The results show the maximum bandwidth measured
by executing multiple threads in parallel.

Conclusions. From the read and write bandwidth experiments it could be concluded
that NVRAM is 3x (read) to 10x (write) slower compared to DRAM and exhibits a high
read-write asymmetry of up to 5x. Moreover, NVRAM is accessed at the granularity of
a cache line – or two cache lines with activated adjacent cache line prefetching – similar
to DRAM and prefers a sequential access pattern. Interestingly, single-threaded mea-
surements show only a small difference in case of writes. From the concurrent DRAM-
NVRAM access experiments it could be inferred that intensive simultaneous usage of
both memories is not favored by the shared IMCs.

2.2.2 Socket-remote parameters

As already discussed in Section 2.1.2 – non-uniform memory access is the common case
in current scale-up server systems usually consisting of 2, 4, 8, or (in certain cases) even
more sockets. The NUMA sockets within such hardware architectures are usually con-
nect via an interconnect network (e.g., Intel Ultra Path Interconnect (UPI) [Int09]) that
allows access to remote DRAM and NVRAM and ensures cache coherency. However,
accessing remote memory induces certain costs in terms of bandwidth limitation and
increased latency, which has already been heavily researched within the context of in-
memory database systems [KKS+14a, Kim15]. Hence, this section extends the DRAM-
NVRAM comparison to NUMA aspects, since UPI performance impacts the data access
behavior in case of socket-remote memory allocation.

Remote Bandwidth and Latency. Figure 2.11 shows the read bandwidth for local and
remote memory accesses on the evaluation platform. The measurements are conducted
for sequential and random access patterns as well as for DRAM and NVRAM memo-
ries. The sequential bandwidth is mainly bound by the UPI interconnect bandwidth of
the system. While the sequential remote DRAM accesses face a high throughput penalty,
the NVRAM and UPI bandwidth is balanced and almost no throughput loss is experi-
enced here. Moreover, the UPI link is full-duplex such that the full NVRAM bandwidth

2.2 Low level performance evaluation of NVRAM 27

82
135

346

408

0
50

100
150
200
250
300
350
400
450

Local Remote

La
te

n
cy

 [
n

s]

DRAM NVRAM

Figure 2.12: Local and remote random read latencies for DRAM and NVRAM. Results
are obtained using the Intel Memory Latency Checker.

can be achieved for both sockets accessing remote memory simultaneously. Those re-
sults suggest that it makes no difference on which socket data is placed, which is not
the case because (i) local memory controllers need to be evenly utilized to achieve the
full bandwidth of the system and (ii) occupying the UPI link significantly increases the
latency of reading or writing random remote accesses. While sequential remote accesses
are bandwidth-bound, random accesses are bound by the latency of the UPI link. The
latency overhead is visualized in Figure 2.12 showing the local and remote latencies for
accessing DRAM and NVRAM, respectively. The measurements reveal that the relative
latency penalty is higher for DRAM (about 60 %) than for NVRAM (about 20 %) as it is
reflected in the random memory access bandwidth results.

2.2.3 NVRAM access methods

Since there is a number of alternatives in a way how NVRAM can be accessed by the
software (cf. Figure 2.4), this part gives an overview of their respective performance.
For completeness the DRAM-backed emulation (additionally considering SHM or shared
memory access method) of persistent memory is also included. Furthermore, the three
major options of persistent flushes are considered (cf. Section 2.1.3). As shown by Fig-
ure 2.13, the performance numbers (in terms of throughput) of the access methods do
not vary significantly in case of a challenging random column store update workload
on DRAM-emulated persistent memory. Here, the column store is represented by a con-
tiguous 1 GiB-sized NVRAM chunk filled with 4 B integers. The real NVRAM hardware
features slightly larger throughput gap between DAXFS and DAXDEV. Nevertheless,
further in the thesis the DAXFS provider is used as the most flexible and convenient
method from the maintenance point of view. The relatively small performance difference
between DRAM emulation and real NVRAM of about 24 % is explained by the single-
threaded execution of this particular experiment. For that reason the workload is not
able to reach the full bandwidth of the NVRAM. Moreover, the executed updates do not
depend on each other and thus the DRAM and NVRAM latency respectively, is not the
limiting factor here.

28 Chapter 2 Background and Challenges

0

2

4

6

8

10

12

DAXDEV DAXFS SHM DAXDEV DAXFS

DRAM Emulation NVRAM

T
h

ro
u

g
h

p
u

t
[M

o
p

/s
]

CLFLUSH CLFLUSHOPT MOVNT

Figure 2.13: Column store update throughput w/o replication for different write back
options and access methods each for DRAM-emulated NVRAM and Intel Optane DC
NVRAM.

Persistent Flushing. As shown further in Section 3.1, the cache flushing component can
heavily affect the data modification behavior. Therefore, this paragraph also compares
performance of write back instructions that are available to user mode applications on
the test system (Figure 2.13). As mentioned, the random column store update workload
is employed for the experiments on both emulated and real persistent memory. Note
that CLWB is not considered since it behaves the same as CLFLUSHOPT on the test platform.
As it is observed, CLFLUSH and CLFLUSHOPT performance numbers are close to each other
with a slight advantage for CLFLUSH, because it does not require an additional SFENCE.
The performance of the MOVNT is significantly lower, with considerably larger gap in
the case of NVRAM accesses.

2.3 VECTORIZED MEMORY ACCESSES IN HYBRID MEMORY SYS-

TEMS

The optimized CPU instructions designed to directly operate on byte-addressable mem-
ory regions are of a particular interest in the field of hybrid memory systems. This is due
to the fact that they determine the respective data processing performance and applica-
tion capabilities. In particular, the advanced vectorization extensions are addressed by
this section.

Since decade, computing performance that can be achieved by increasing the clock fre-
quency of a microprocessor is reaching its physical limits thus making the architectural
solutions more promising [PRR15]. In accordance to this trend important data parallelism
features of Flynn’s taxonomy [Fly72] have been added to commodity CPUs – single in-
struction multiple data (SIMD) extensions. Essentially, these are sets of instructions that
can increase an application performance by allowing the basic processing operation to
be executed over multiple data elements (i.e., vector) in parallel. Typical SIMD instruc-
tion set provides two extensions to the basic instruction set: (i) vector registers which are
larger than traditional scalar registers being currently 32 or 64 bits wide, and (ii) tuned
vector instructions working on such registers. The vector here is an instruction operand
constituted of a set of data elements grouped into a one-dimensional array, while the
elements can be normally integer or floating-point values originally stored on medium
(e.g., DRAM or NVRAM). Thus, such data-level parallelism is able to transform a vector
of elements within single instruction of the processing unit.

2.3 Vectorized memory accesses in hybrid memory systems 29

2.3.1 Overview of common instructions sets

As already mentioned, in the past years, hardware vendors of common CPU architec-
tures (e.g, x86, ARM) have regularly introduced new SIMD instruction set extensions
operating on increasingly wider registers. For instance, Intel’s Advanced Vector Exten-
sions (AVX2) operates on 256-bit vector registers and Intel’s AVX-512 uses even 512-bit
vector registers. Wider vector registers allow processing of more data elements at the
same time. For example, an Intel SSE 128-bit vector register can store two 64-bit data
elements, an AVX 256-bit vector can store four (2x) and AVX-512 512-bit vector can store
eight (4x) of such data elements. Besides wider vector registers, hardware vendors are
regularly introducing more complex vector instructions (tuned for specific operations or
even application areas) as well.

Recently, Ungethüm et al. [UPD+20] introduced a specific SIMD abstraction layer called
Template Vector Library (TVL) for column-stores to tackle the SIMD diversity in a unified
way. On the one hand, the TVL offers hardware-oblivious vector primitives. On the
other hand, the TVL also provides an extensible set of hardware-conscious implementa-
tions for the hardware-oblivious primitives. Thus, this approach could be used to realize
hardware-oblivious vectorized algorithms (e.g., database query operators) based on the
provided vector primitives which can be easily mapped to specific hardware-conscious
implementations.

2.3.2 Deployment in database scenarios

SIMD (also called vectorization) is a state-of-the-art optimization technique in in-
memory databases that is most heavily deployed for columnar data organization
and typically applied to isolated query operators [AMF06, PRR15, ZR02, DUP+20,
RAB+13, MPM17, LMF+16]. Many vectorized implementations for joins [BTAÖ15,
BLP11] and sorting [PR14] have been proposed. Moreover, linear access operators
such as scans [WPB+09] and integer compression techniques [AMF06, LB15] are well-
investigated. Thus, some query engines are being even fully vectorized [PR20]. Nor-
mally, these systems focus on a single SIMD extension (usually AVX-512), i.e., and do
not compare efectiveness of alternatives and do not decide at runtime which extension to
use.

Since thread-concurrent execution is a natural feature of the hybrid memory system
equipped with multi-core computational units – it is important to understand how SIMD
vectorized behavoir of database queries is affected by such multiple instruction multiple
data (MIMD) parallel setting. There is a known issue called downclocking [GBB20] that
appears in case when large SIMD registers are used by concurrent threads and may lead
to the overall performance degradation. To mitigate this problem some works propose
separating threads employing AVX-512 and from those executing only scalar instruc-
tions by scheduling them on different physical cores to limit the slow-down incurred by
AVX-512 on concurrent scalar code. Kumar et al. [KMG14] propose to de-vectorize short
vectorized code sections using JIT compilation techniques to avoid the negative impact
on scalar code.

From hybrid memory databases point of view SIMD vectorization offers a great opportu-
nity to optimize not only query processing on DRAM-resident data, but also operations
involving persistent memory (e.g., replication of primary data) as both mediums are di-
rectly exposed to the variety of available CPU instructions as shown in Figure 2.3. Thus,
further in the thesis particular attention is given to the opportunities of beneficial SIMD
deployment for such purposes.

30 Chapter 2 Background and Challenges

2.4 RELIABILITY IN HYBRID MEMORY SYSTEMS

As already mentioned in the previous sections, the goal of this chapter is to examine
NVRAM and respective hybrid memory architectures from database systems point of
view. Since the data reliability is one of the key requirements for most data process-
ing applications, this section starts with an overview of failure processing in envisioned
hybrid memory database systems (where NVRAM replaces the storage medium). Subse-
quently, next section gives a survey of reliability techniques that are generally deployed
in computing systems, identifies their strengths and weaknesses when used in hybrid
memory databases.

2.4.1 Impact on general database failure processing

Traditionally, database management systems classify failures into three main categories
depending on where the problem has occurred [GM09]:

1. Transaction Failure. The transaction failure appears when it fails to execute or when
it reaches a position from where it can not proceed any further. This class covers
also failures of multiple transactions. Generally, the reasons for a transaction failure
could be logical (occur if a transaction is not able to complete due to some code
error or an internal error condition) or system (occur if the DBMS itself terminates
an active transaction because the database system is not able to execute it – e.g.,
because of the transaction abort, deadlock or resource unavailability) errors.

2. System Crash. The system failure may happen due to the power loss or other hard-
ware or software failure (e.g., operating system error) which lead to the loss of
volatile content or DBMS state. In such crash scenarios the non-volatile storage
and, therefore, accommodated base data are assumed not to be corrupted.

3. Medium Failure. The medium failure occurs when storage devices are not able to
provide requested data or return it in inconsistent state. For instance, if the HDD
is used as persistent medium – this failure may occur due to the formation of bad
sectors, disk head crash or any other failure, which destroy all or part of disk storage
volume.

The failures belonging to these three classes could be tolerated using a set of well-known
error prevention and correction techniques when running the "early days" DBMS archi-
tecture, illustrated by Figure 2.14-(a). Here, logging and recovery manager[GM09] of
DBMS are used to handle the transaction failures, OS means and recovery manager ad-
dress system crashes, while medium failures are mostly handled using hardware level
reliability approaches. However, with the advent of previously discussed hybrid mem-
ory database architectures (depicted by Figure 2.14-(b)) the failure processing approaches
need a refinement due to specific innovative properties of such systems. Namely, such
architectures offer a great opportunity to persistently store and to efficiently process
huge amounts of data exclusively in byte-addressable memory without touching any
slow block-accessible non-volatile medium. Thus, the recovery log and important DBMS
state information could be now placed entirely in persistent memory [ZLL+15]. Then, the
problem of system crashes (e.g., due to the power loss) could be largely mitigated on such
systems using consistency-aware persistent programming techniques (cf. Section 2.1.3)
and logging data structures [ZLL+15]. Since the transactional failures are not affected by
the storage medium – traditional solutions still could be employed for hybrid memory
architectures to tolerate them as well. Hence, the only failure class that requires further
refinement and detailed investigations is the medium failures. As NVRAM devices are
byte-addressable and could be physically distributed over several NUMA sockets on tar-
geted platforms – the possible failure scenarios may have unique features (compared to
conventional HDD/SSD devices) described in the next section.

2.4 Reliability in hybrid memory systems 31

(a) Early days

Buffer pool

Log DB

HDD

DRAM

Server Memory

Processor

Optional
Backup

SSD

DRAM

NUMA Hybrid Memory

Multi-core Processors

NVRAM

DB (Main Data) Backup

(b) Nowadays

Figure 2.14: Evolution of database architectures.

2.4.2 NVRAM failure scenarios and consequences for the primary data

Actively developed hybrid memory database systems are likely to keep the primary data
solely persistent in the NVRAM [ALR+17]. Therefore, efficient data protection mecha-
nisms need to be considered to prevent data losses and to guarantee high availability
in case of PMM failures. Such PMM failures may range from single data cell failures to
region, chip, or entire PMM failures and can logically be divided in two classes.

Partial PMM Failure. A partial PMM failure occurs if a soft (temporal) or hard (static)
error at cell, region, or chip level happens. In such a case, the remaining PMM is still
functional and data in this healthy part of the PMM is able to survive the failure.

Full PMM or Socket Failure. A full PMM failure causes the whole NVRAM of the local
socket to become inoperative if channel interleaving is configured as it is common
to reach the full bandwidth of the NVRAM. In case of multiple PMMs per channel,
portions of the local NVRAM are still usable and the error is covered by the previous
failure class. If the entire local NVRAM or even the full CPU/IMC fails, this failure
still allows to use data placed on a remote socket on the same machine. That may
require migration of the execution threads to the cores of remote socket as well.
Then system can still work resiliently, while one of the sockets fails.

Although, at this point in time the statistical data on PMM failures is not yet publicly
available, the corresponding studies on DRAM DIMMs reliability [SDB+15] and princi-
ples of underlying NVRAM technologies [ZLL+15] justify the assumption that NVRAM
suffers both from analogous to DRAM issues and non-volatile memory specific problems
(e.g., due to high temperatures applied to phase-change memory cells).

32 Chapter 2 Background and Challenges

Socket 1

DIMMs PMMs

Socket 2

DIMMs PMMs

Link

Hybrid

Memory
Server

Chip

Data Pool

InterleavedInterleaved InterleavedInterleaved

Figure 2.15: Schematic view of a 2-socket hybrid DRAM-NVRAM system. Exemplary
visualization of a chip (Socket 1) and full PMM failure (Socket 2) showing the respective
consequences for the DBMS.

Figure 2.15 schematically visualizes a hybrid DRAM-NVRAM platform consisting of two
sockets, each running the DRAM DIMMs and PMMs, while channel interleaving mode is
used for best performance. Hence, the logical non-volatile memory regions are physically
stored in an interleaved way across the local PMMs of a single socket. As discussed
above, in case of a partial PMM failure, e.g., a chip (shown for socket 1), the data of all
horizontally adjacent chips becomes unavailable too and in case of a full PMM failure
(shown for socket 2), the entire NVRAM of the affected socket becomes unavailable.

2.5 SURVEY ON EXISTING TECHNIQUES

The problems of reliability and high availability in computing systems are well-
understood and thoroughly studied for a variety of software and hardware architectures.
However, the specific properties of hybrid memory systems and discussed above pos-
sible NVRAM-induced failure scenarios necessitate a complete rethink of data protec-
tion approaches being applied in traditional database architectures. For instance, disk-
backed DBMS use block-optimized data replication techniques [Fuj18] that would sacri-
fice the performance advantage of NVRAM-backed systems. Thus, this section surveys
the reliability techniques that are generally used in computing systems and identifies
their strengths and weaknesses when used in hybrid memory databases. The related re-
search [ALRL04] suggests the following classification of the reliability means (schemati-
cally reflected in Figure 2.16):

Fault Prevention. This approach aims to prevent the occurrence or introduction of fail-
ures. The fault prevention is a part of general engineering and is mostly used during
the development process of both software (e.g., information hiding, modularization,
use of strongly-typed programming languages) and hardware (e.g., design rules).
The prevention of development faults is a goal for design methodologies and could
be designated to hardware manufacturing side when applied in the area of hybrid
memory systems. However, the data reliability issues have to be addressed also
during the system functioning and data processing. Thus, means of this approach
could not be selected to fully provide the data reliability within challenging field of
hybrid memory databases.

2.5 Survey on existing techniques 33

Means of
Reliability

Fault Prevention

Prevent
occurrence or
introduction of

failures

Fault Removal

Replace faulty
components

after occurrence
of failures

Fault
Forecasting

Estimate the
present number,
future incidence,

consequences

Fault Tolerance

Ability to deliver
service in the
presence of

failures

Error Detection
and Correction

et al., “Basic Concepts and Taxonomy of Dependable and Secure Computing”,
Figure 2.16: Means of reliability deployed in computing systems.

Fault Removal. This mean not only targets the problems that can appear during the de-
velopment, but also during the use of a system – via corrective or preventive main-
tenance. The first type of maintenance aims to remove the faulty components that
have been detected, while the goal of the preventive maintenance is to remove faults
before they might cause errors during the normal operation. Since the interruption
of the service delivery even for short time may be unacceptable for many types of
databases – both techniques are not applicable when addressing NVRAM failures.
Precisely, any type of NVRAM failure (introduced in the previous section) would
require a complete replacement of the affected memory module that can lead to the
significant downtime of the service (e.g., several hours). Moreover, such replace-
ment of the PMM will not recover the corrupted data making the whole approach
oblivious to the primary data losses.

Fault Forecasting. The goal of this technique is to estimate the present number, future
incidence and likely consequences of failures. The estimation methods could be
subdivided into qualitative (e.g., failure mode and effect analysis), quantitative (e.g.,
Markov chains and stochastic Petri nets [Zar14]) and mixed (e.g., reliability block
diagrams and fault-trees). The stochastic nature of NVRAM failures (e.g., due to the
device wear-out or cosmic rays influence) makes the precise fault forecasting almost
impossible for hybrid memory systems. And, therefore, such forecasting could only
be used to recommend the data placement or reshuffling within NVRAM volume
but not actually to fully protect the stored data.

Fault Tolerance. Fault tolerance is an ability of a system to deliver service in the pres-
ence of failures. Precisely, this technique is aimed at the failure avoidance and nor-
mally is carried out via the error detection and system recovery. The error detection
component performs internal checks and maintenance during the system operation.
Whilst the recovery counterpart is triggered reactively to the revealed failures with
the goal to compensate or remove their impact. Thus, the fault tolerance approach
is a most promising candidate to ensure the data reliability in highly-performant
hybrid memory database systems, as it is expected to deliver strong data protection
guaranties in presence of NVRAM failures without significant system downtimes.

34 Chapter 2 Background and Challenges

Further, this section gives its focus to the fault tolerance reliability approach that is based
on online error correction and detection. Essentially, its functioning relies on the re-
dundant system components either compute or storage to ensure protection against re-
spective failures. Since NVRAM replaces the storage in hybrid memory systems - the
overview in the following is limited to two traditional storage redundancy techniques:
coding and replication. Both are distinguished based on the underlined principles – for-
mer normally transforms, reshuffles or extends the protected data, while the latter is
supposed to maintain a certain number of full copies of the same data set. The state-
of-the-art implementations of these two flavors applicable for hybrid memory database
systems are discussed below.

2.5.1 Hardware coding

The hardware coding is a reliability mean applied in error correction code memory (ECC
memory). This is a kind of volatile digital data storage that deploys an error cor-
rection codes (ECC) to detect and correct n-bit data corruption which may occur in
the memory [YMC+11]. Most of the modern DRAM DIMMs belong to ECC mem-
ory class that is capable to detect double error and correct single error (abbreviated as
SECDEC) [CLX+13]. Thus, such devices are mounted in most machines where the data
corruption cannot be tolerated under any circumstances, including critical in-memory
databases. However, it is important to concern the respective correction limits regard-
ing the amount of damaged memory cells. As mentioned above, the basic ECC-enabled
DRAM DIMMs guarantee the single-bit error tolerance. This means that the data re-
trieved from each memory word is always the same as data that had been stored, even in
case of a single cell corruption (e.g., stuck at 0 or 1 values) or a bit-flip [HKHL18]. There
also exists non-ECC memory that uses bit parity checks to support the error detection but
not correction, making it necessary to deploy additional reliability mechanisms to actu-
ally protect the stored information. Both, the ECC and parity approaches rely on extra
memory bits and memory controllers that maintain those bits. Therefore, the redundant
bits are used to store the error-correcting code or parity. The parity enables guaranteed
detection of all single-cell errors and potentially can discover up to any odd number of
bit-flips. While the most frequently used error correcting scheme, the SECDEC Hamming
code [CLX+13], allows a single-bit error to be corrected and double-bit errors to be de-
tected. To protect the memory modules against more severe failures (e.g., region or chip)
some vendors provide uncommon Chipkill ECC – typically more reliable approach that is
capable of correcting multiple bit errors, including the crash of an entire chip. However,
that approach sacrifices one of the chips of the module for redundancy purposes.

Discussed in this section coding mechanisms are the valid protection techniques for both
volatile and persistent memory devices. In fact, the current Intel Optane DC PMMs
already deploy ECC approach, dedicating about 25% of the internal memory for er-
ror detection and correction purposes only, which is twice as much as for ECC DRAM
DIMMs [Nvr20]. Nonetheless, while ECC memory approach has an advantage of low (or
moderate in case of periodic error detection scrubbing) performance overhead due to the
hardware-integrated coding operations, it is still not applicable as stand-alone technique
in the area of hybrid-memory databases. Regardless of the ECC algorithm deployed by
the hardware, the field investigations of DRAM and SSDs [ZS19] have revealed that de-
tectable but uncorrectable media errors appear frequently enough to justify additional
protection. Furthermore, due to its nature such coding can only protect the data against
the small partial corruptions (in most schemes not more then several bits) making the
whole method weak against the large region and full PMM/IMC failure scenarios. More-
over, it lacks the desired for databases flexibility to decide which data or memory region
actually needs such a protection. Thus, hardware ECC should not be chosen as an exclu-
sive data reliability mean on the targeted architectures.

2.5 Survey on existing techniques 35

2.5.2 Software coding

In contrast to the previously discussed ECC memory this section presents the software-

managed coding means. Thus, within this approach the respective data transformations
are to be maintained by the software side and in most cases do not involve any hard-
ware implemented mechanisms. The software-based ECC approach has the flexibility
as its main advantage as on the need any type of error correcting codes could be incor-
porated. While an ability to freely specify the data regions that have to be protected is
preserved [HKHL18, YMC+11]. In the following, this section focuses on the most rele-
vant for hybrid memory systems library called Pangolin [ZS19].

The Pangolin is a recently developed fault-tolerant persistent memory programming sup-
plement. It has the following objectives: crash consistency, protection against medium
errors, low storage and performance overhead, fast online detection and recovery from
medium errors (of size up to 4KiB). The Pangolin library uses a combination of check-
sums, micro-buffering, and parity to strengthen the user objects against both NVRAM
errors and software-induced corruptions. It applies these reliability primitives to persis-
tent objects of any size and supports automatic online detection of data corruption and
recovery while keeping the required storage overhead as small as 1% for gigabyte-sized
memory pools of NVRAM. The library is closely integrated with the persistent memory
allocator of Intel PMDK [Rud15]. This allocator is pool-based (where the pool corre-
sponds to the memory mapped file into NVRAM region). For each pool it reserves a
metadata region with important information (e.g., pool identifier and the offset to a root

object from which all other objects are reachable) and an area for the update logs. The rest
of the pool is a persistent heap which is divided into several zones. A zone contains its
metadata and a sequence of actual memory chunks to store user objects.

Pangolin uses replication for pool and zone metadata records as well as RAID-style par-
ity [YJC+16] for user objects to provide redundancy for corruption recovery. To add such
parity codes Pangolin arranges zone chunks in a two-dimensional matrix where each
chunk row contains multiple, contiguous chunks. The last chunk row is reserved for par-
ity. While the error detection in user objects is based on a 32-bit checksum codes [KDH15]
inserted into the object header. Since calculating object checksums and chunk parities
make the consistent update procedure more complex (as all records – object data, check-
sum, and parity – have to be written at once), library deploys a micro-buffering that cre-
ates a shadow copy of a persistent object in DRAM. Only when micro-buffer is updated
– the changes are transactionally propagated to persistent store.

As weak sides of this approach the following could be mentioned: (i) Pangolin only guar-
antees protection of up to 4KiB; (ii) the micro-buffers are not protected during updates;
(iii) no control of metadata replica allocation is supported (e.g., it is not possible to place it
arbitrary far from each other for protection against large region failures). Therefore, based
on the example of Pangolin library, it can be concluded that the state-of-the-art software-
managed coding have certain advantages (e.g., protection against multi-kilobyte corrup-
tions), compared to the hardware counterpart. However, it is still weak against several
failure scenarios (e.g., large region, chipkill, PMM/IMC faults) that have to be tolerated
in the developing field of hybrid memory database systems.

36 Chapter 2 Background and Challenges

2.5.3 OS coding and replication

This section is devoted to the data protection mechanisms provided on the operating
system level. Traditionally, the persistent copy of the base data in DBMS was stored as a
file or a group of files placed on slow block-addressable device. Since files are typically
maintained through certain file system (FS) provided by the operating system – there is an
opportunity to incorporate some reliability techniques on that level (e.g., file encoding or
redundancy) [XZM+17, XL11]. The novel NVRAM-centric databases, though changing
many aspects of the data processing, as discussed in the previous sections, still favor the
file-based organization of persistently stored data. The key difference is that NVRAM-
resident files are normally memory-mapped and could be written in byte-addressable
way via direct access feature (DAX) provided by the OS kernel [MZHS17]. Moreover,
according to SNIA persistent memory programming model (cf. Section 2.1.3) such DAX-
enabled file system is indispensable for the efficient deployment of NVRAM. Thus, fur-
ther this section overviews the NOVA-Fortis [XZM+17] as a most remarkable represen-
tative of fault-tolerant non-volatile main memory file system based on DAX feature.

From a reliability perspective, there are four key differences between conventional block-
based file systems and NVRAM-centric file system. First, the memory controller sig-
nals medium errors as non-maskable interrupts rather than error codes from a block
driver. Second, aforementioned DAX-style memory mapping allows the file contents
to change without informing the file system. Third, increased vulnerability to scribbles -
errant stores from misbehaving kernel code as the entire file system resides in the ker-
nel’s address space. Fourth, the persistent memory is significantly faster compared to
block-based devices – making it necessary to re-evaluate the traditional tread-offs be-
tween reliability and performance. The design of NOVA-Fortis takes into account these
differences and relies on the following features to ensure reliability: snapshots [SN10],
replication, checksums [KDH15], and RAID-4 parity protection [YJC+16]. The snapshots
represent consistent images of the file system at a moment in time. They are used to fa-
cilitate consistent backups without unmounting the file system, that enables protection
against severe system failures and the unexpected modification or deletion of files. To
protect its metadata NOVA-Fortis keeps two distantly allocated copies of each internal
data structure (primary and replica) and adds 32-bit cyclic redundancy checksum code
to both. The checksums in combination with RAID-4 parity are also adopted to protect
file data. These primitives allow for successful toleration of cell, region and in some
cases chip level media failures, however neither PMM nor IMC crashes. Another general
weakness of the FS-based solutions, is that the DAX-style memory-mapped content is not
protected in-between of snapshots as FS code is not allowed to snoop on such direct ac-
cess operations. That contradicts with the strong data consistency requirements of hybrid
memory database systems and makes such FS-provided resiliency not fully applicable as
a stand-alone mean.

2.5.4 Hardware replication

The hardware approach to modular redundancy is known as memory mirroring. Par-
ticularly, some modern servers support it in the form of channel mirroring, assuming
configuration of available channels of DRAM DIMMs in the mirrored mode [LGS+14].
Such configuration (that could be compared to RAID 1 for block-based storage [Byu10])
handles a redundant image of the memory. Thanks to that it can continue to operate re-
gardless to the presence of sporadic uncorrectable failures of cell, region, chip and single
DIMM levels. If a failure occurs within the DIMM of one channel, the memory controller
shifts to the paired module without disruption, and the devices can re-synchronize when
the reparation is finished. However, such feature requires half of the memory modules to

2.5 Survey on existing techniques 37

NUMA Socket

DIMMs PMMs

Memory Channels

Single-Box Server

Replicated Pairs

Figure 2.17: Schematic view of a single NUMA socket with mirrored PMMs. Exemplary
visualization of a chip failure.

be sacrificed for reliability needs in form of replicated pairs as illustrated in Figure 2.17,
as well as the integration of specifically designed memory controller. At the moment,
the hardware replication techniques are available for volatile memory only and further
limited to two-way modular redundancy within only single socket of a NUMA machine.
Thus, while the provided protection may look reasonable in the targeted filed of hybrid
memory databases, the costs of hardware implementation could be prohibitively expen-
sive for commodity systems. Moreover, such hardware solutions are still weak against
the IMC or Socket failure scenarios and lack desired for in-memory database applications
flexibility.

2.5.5 Software logical replication

The software-managed approach to the data replication has two main flavors: logi-
cal [Car15] and physical [DS09], though they could be mixed together in certain sce-
narios. In both cases participating instances are subdivided into masters (or primaries)
holding the original data and slaves (backups) accommodated with copies. The key fea-
ture of the logical approach (also known as log shipping) is that after updating the pri-
mary it ships the log of changes that has to be applied to the replicated slave data sets
(this could be done asynchronously to reduce latency [Don15]). Subsequently, such log
is replayed by each involved replica to actually produce a duplicated consistent copy of
the data. There exists a number of log shipping protocols that vary based on the fresh-
ness and safety guarantees [WJP17]. This section considers the state-of-the-art logical
replication approach for persistent memory databases exemplified with Query Fresh li-
brary [WJP17].

The library is based on ERMIA [KWJP16], an open-source main-memory database en-
gine designed for modern hardware. The targeted application area of Query Fresh is
hot standby systems. The hot standby is a common approach to high availability and
is deployed by many modern database systems [LLRP14]. A typical hot standby sys-
tem consists of a single primary server that executes read/write transactions, and one or
more backup systems as illustrated in Figure 2.18. The primary periodically ships the log

38 Chapter 2 Background and Challenges

Read/write transactions Read-only transactions

Primary server Secondary server

Log records Log records

Data Data

Network

Figure 2.18: Schematic view of a hot standby system.

records to slaves, which continuously replay the respective entries. As mentioned, a log
shipping protocol can be synchronous to guarantee strong safety – transactions are not
committed until their log records are persisted in all nodes. Thus, the synchronous log
shipping approach guaranties that if the primary fails (e.g., due to the server crash), a
backup can continue as the new primary preserving committed updates. In addition to
replaying log records, backups can serve read-only transactions, improving the resource
utilization and performance. The asynchronous mode is typically faster as it trades con-
sistency to performance.

Query Fresh provides both safety and freshness guaranties while maintaining high per-
formance on the primary server. Its design relies on an append-only storage architecture
used in combination with fast networks interconnects (e.g., RDMA [ZYSK19]) and byte-
addressable persistent memory. This library avoids the dual-copy scheme and treats the
log as the database (e.g., data could be extracted from the slave logs without reconstruc-
tion phase), that provides an opportunity for lightweight log replay that does not block
the primary. The performance advantage is enabled by the NVRAM-resident append-
only storage in conjunction with an additional indirection layer. Further, the log replay
is accelerated via thread-level parallelism.

Generally, from the perspective of hybrid memory databases such software-coordinated
logical replication seems to be more attractive compared to all previously considered
techniques, as it is able to tolerate all indicated in Section 2.4.2 NVRAM failures, as well
as the complete server crash. However, this protection comes at a price of holding second
machine (or even several ones) next to the master. Further, the general drawback of log
shipping - is the performance overhead, as the data modifications have to be logged, sent
over the network and then reconstructed. Moreover, the logical replication typically does
not address the correction of medium failures within the single server without potentially
slow network-based transfers (as no local replicas are available). Therefore, these reasons
limit the applicability of this approach for highly-performant hybrid memory databases
on commodity servers – configuration setup primarily addressed in this work.

2.5.6 Software physical replication

The very last technique considered in this section is software-managed physical repli-
cation. In contrast to the previous (logical) approach physical counterpart operates on
the memory regions. Those regions are being treated as binary objects that allows to
directly mirror respective content. Thus, no tedious log recording, transferring and re-
construction are required. Once the data copying is finished – the addressed replica is
straight ready to serve for recovery and potentially other purposes. The state-of-the-art

2.5 Survey on existing techniques 39

Pool

DRAM NVRAM

libpmem

libpmemobj

Allocator

Replication

Transactions

Data Structures

Column StoreKey-value Store…
volatile non-volatile

Query Processing

Primitives

Intel
PMDK

OS / Virtual
Addresses

Physical
Level

DBMS

DAX

Pool

CPU

Primary /
Secondary

Secondary

Figure 2.19: Schematic view of a PMDK-integrated hybrid memory database (full-stack).

Slave NSlave 2Master Slave 1

Persistent Modifications

…
…

Virtual
Address
Space

0 1 2 N

Figure 2.20: Synchronous master-slave replication model deployed by PMDK.

NVRAM-centric implementation of this replication flavor is provided by the Intel Persis-
tent Memory Development Kit (PDMK) [Kap15].

The PMDK [Rud15] is a set of open source libraries that support the development of
NVRAM applications. The architectural illustration of the PMDK-integrated database
system is provided by Figure 2.19. In particular, the tool-kit provides libpmem that is an
abstraction layer for platform-specific details such as NVRAM access methods and re-
quired instructions for NVRAM programming. Libpmem maps physical NVRAM regions
into the virtual address space of the database system that are called pools. Essentially,
such regions are being accessed as memory-mapped files. The next level of abstraction is
provided by libpmemobj, which primarily adds an allocator to a pool that is able to per-
sistently allocate dynamically sized objects with position-independent virtual addresses.
Moreover, libpmemobj supports pool sets that handle the physical level replication and
additionally supports persistent transactions to atomically update multiple memory lo-
cations within a pool or pool set. Thus, a DBMS can leverage the PMDK to implement
its internal NVRAM-centric data structures that are used for the actual query processing.
Whereby the resulting end-to-end workflow could be ordered as following: on physical

40 Chapter 2 Background and Challenges

level NVRAM and DRAM mediums are directly accessed by the CPU instructions, then
on OS level both memory types are distinguished by the virtual addresses (while per-
sistent addresses are specified within NVRAM-resident memory mapped files – pools).
Further, if NVRAM pointers are to be processed by the queries – the PMDK library han-
dles the necessary operations (e.g., allocation, transactions). At this level the physical
replication is ensured by the libpmemobj component. Thus, while performing queries
on its NVRAM-centric or hybrid data structures (which place their data in both volatile
and persistent memory regions simultaneously [OLN+16]) the DBMS is completely ab-
stracted from the replication operations by the PMDK tool-kit.

The actual replication algorithm of the PMDK library follows the synchronous master-
slave model. Within this approach the replication scheme allocates a single master pool
to be primarily accessed for all data processing operations and an arbitrary number of
slaves (or followers) to store binary copies of the master. The replication mechanism
ensures that all modifying operations are safely done first within master pool, afterwards
they are sequentially propagated to all involved slaves. Therefore, the algorithm deploys
the strongly serialized synchronization and successfully commits only once all replicas
are updated as depicted in Figure 2.20. The PMDK scheme supports both individual and
grouped or transactional (involving several memory locations within a single update)
replication. Additionally, the replica pools could be allocated arbitrary over the NUMA
sockets of the server during the pool set configuration step.

From the hybrid memory database system point of view considered above software-
managed physical replication has the following advantages: (i) high performance as only
coping of binary data is required; (ii) strong consistency guaranties between replicas as
propagation follows synchronized algorithm; (iii) ability to tolerate all indicated in Sec-
tion 2.4.2 NVRAM failure scenarios in case when replica allocation on distinct NUMA
sockets is adopted.

2.5.7 Summary

To conclude the survey on the generally applicable reliability techniques to be deployed
in hybrid memory database systems, this section presents an illustrative summary table.
This table lists strengths and weaknesses of the discussed above six approaches aiming
the storage-level fault tolerance (depicted in Figure 2.21). In this table the green tick
marks indicate the full applicability of the technique (rows) to tackle the respective failure
scenario (columns), yellow O sign assumes either limited usefulness or prohibitively high
costs, while the red X means the weakness against the failure.

As seen from the table – all the flavors of coding are weak against the large-scale (e.g.,
region, chip or PMM/IMC) failures and, thus, are not able to protect the primary data
as stand-alone techniques, while the data replication potentially delivers desired level of
protection. The most applicable approach here is the software-managed physical repli-
cation as it features high performance and full flexibility and does not induce additional
economical costs. Thus, this thesis selects the physical option of data replication for the
detailed evaluation and investigation in the next chapters.

2.5 Survey on existing techniques 41

Tolerated Failures

Technique Cell Region Chip PMM

Hardware Coding ✓ x x x
Software Coding ✓ ✓ x x
OS Coding and
Replication ✓ ✓ O x
Hardware
Replication ✓ ✓ ✓ O
Software Logical

Replication ✓ O O O
Software Physical
Replication ✓ ✓ ✓ ✓

Figure 2.21: Strengths and weaknesses of storage reliability techniques when deployed
in hybrid memory database systems domain.

2.6 OBSERVATIONS AND CHALLENGES

This section is devoted to the initial evaluation and indication of the drawbacks of
the state-of-the-art NVRAM-tuned physical replication mechanism. That helps, subse-
quently, to draw and motivate a number of important research challenges (further ab-
breviated as RC following respective number) tackled in the thesis. As discussed in the
previous section – the basic replication functionality for NVRAM data is provided by the
Intel PMDK library. To understand whether the existing approach exhibits an accept-
able performance straight out-of-the box – the write intensive experiment on persistent
column store with enabled PMDK replication was performed. The column store was se-
lected here as this data structure is frequently deployed to store large amounts of primary
data in in-memory designs (cf. Section 2.1.4). The experiment is discussed below.

The uniformly distributed updates were propagated to NVRAM-resident column store
(CS) constituted of 4 Byte integers. Each 4 Byte update was explicitly persisted applying
CLFLUSHOPT instruction for the affected cache line (64 Byte) to ensure strong immediate
durability of the modification. While the PMDK replication algorithm was configured
to allocate from 1 to 3 replicas on the local NUMA socket. The same hardware platform
as in Section 2.2 was used. The respective relative runtime overheads of replication are
shown by Figure 2.22. One can see that the cost of replication is unexpectedly high –
starting from 334% for one replica and rising up to 1260% of relative runtime overhead
for 3 replicas. Such numbers are prohibitively expensive and can vanish the advantage
of using NVRAM as high performance storage in the field of hybrid memory databases.
Thus, there is a clear motivation for the improvement of the state-of-the-art data repli-
cation approach, that is not only concerned with the performance but with several other
dimensions as listed bellow.

42 Chapter 2 Background and Challenges

334

798

1,260

16

0

200

400

600

800

1000

1200

1400

1 2 3 1

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

#Replicas

Figure 2.22: Relative runtime overhead of basic PMDK replication algorithm. The case of
uniformly distributed updates to column store.

RC1: Runtime Overhead Reduction. The first challenge to be addressed in the thesis is
the analysis of the reasons of such poor performance (the detailed experiments are
discussed in Chapter 3) and the reduction of the respective replication runtime over-
head on mainstream servers.

RC2: Space Overhead Reduction. Since the general drawback of the most data replica-
tion approaches is the space overhead (every replica normally requires at least 100%
of extra storage volume) – the second challenge is the minimization of the additional
memory footprint via deployment of data compression techniques. That is particu-
larly reasonable as current NVRAM devices are much less capacitive compared to
SSDs as well as writing compressed data implicitly could help to reduce the wear-
out of persistent memory.

RC3: NUMA-aware Replication. As already mentioned, to mitigate all possible
NVRAM failure scenarios (e.g., PMM or IMC crash) it is important to support the
socket-remote replica allocation. Such feature is present in the PMDK tool-kit, how-
ever, the replication policy could only be specified offline and at per pool level. Such
approach lacks the desired level of flexibility for the DBMS to decide at runtime
on the appropriate strategy which data to protect (that could be unnecessary for
secondary data) and specify individual replication scheme at data structure level.
These issues are identified as third challenge.

RC4: Unified DRAM/NVRAM Replication. The hybrid memory systems achieve their
great advantages (cf. Section 2.1.4) via the deployment of both DRAM and NVRAM
memory types. However, the current PMDK approach is only capable of NVRAM
data protection. In some cases it may be necessary to protect also DRAM-resident
information or place some replicas to volatile memory (e.g., to leverage them for
query processing needs). Thus, finally, it is desired to derive a concept for more
flexible unified replication scheme applicable for both DRAM and NVRAM.

RC5: Leverage Replication for Query Processing. Typically, the data replication is used
solely for the recovery purposes, unless deployed in the field of distributed database
systems [EKA19], where each node holding a replica is also able to process queries.
The scale-up systems behave in principle as distributed systems (however, with
faster and cache coherent interconnects between sockets) that enables a challeng-
ing opportunity to deploy compute node-local replicas also for query processing
and efficiently utilize available hardware of distinct NUMA sockets.

2.6 Observations and challenges 43

44 Chapter 2 Background and Challenges

3
REPLICATION - MINIMIZATION OF

OVERHEADS

3.1 State-of-the-art: evaluation and analysis
of Intel PMDK replication

3.2 Runtime overhead reduction through
adaptive efficient replication mecha-
nisms

3.3 Space overhead and wear-out reduc-
tion through data compression

3.4 NUMA-aware replica placement as a
way to increase resilience

3.5 Summary

As discussed in the previous chapter – the hybrid memory database systems are likely
to keep the primary data solely persistent in the NVRAM, as it can be seen in the example
of NVRAM adoption in the industrial SAP HANA in-memory DBMS [ALR+17]. There-
fore, efficient replication mechanisms (as justified in Section 2.5) need to be considered
to prevent data losses and to guarantee high availability in case of NVRAM failures (cf.
Section 2.4.2).

Thus, this chapter1 focuses on a compute node-local synchronous physical NVRAM-
backed approach, since other alternatives can not replace it for the underlined persistent
memory failure model without identified in Section 2.5 drawbacks. The term “compute
node-local“ here means replication within a single machine on the local socket and/or
across multiple sockets, which also improves data locality on scale-up or non-uniform
memory access systems as they are common today (cf. Section 2.1.2). NVRAM replica-
tion on a single compute node is vital to avoid data losses in case of PMM failures and
is possibly augmented by synchronous or asynchronous disk-based or network-based
replication mechanisms [DPVJ14, GZC+16, ZYMS15] to further improve high availabil-
ity in case of a complete machine failure. Nevertheless, the compute node-local replica-
tion is the primary focus in the thesis, because of its relatively low overhead compared
to the other replication mechanisms that wipe out the performance advantage of using
NVRAM. Moreover, the flexible software-based replication approach (cf. Section 2.5) is
preferred for further investigations of this chapter which presents compute node-local
mechanisms to provide (i) the foundation for an efficient NVRAM replication with a low
latency and throughput penalty, (ii) adoption of the lightweight integer compression to
ensure the space footprint-minimized replication, and (iii) flexible NUMA-aware alloca-
tion to fully protect persistent primary data against all possible NVRAM failures. The
evaluation of the proposed in this chapter concepts is embedded in respective sections
for better integrity and consistency.

3.1 STATE-OF-THE-ART: EVALUATION AND ANALYSIS OF INTEL

PMDK REPLICATION

The considerations of this section are based on the Intel persistent memory development
kit (PMDK)2 [Rud15] that already provides NVRAM-centric (essentially optimized for
persistent memory) data structures and a basic replication mechanism.

3.1.1 NVRAM-centric data structures

For the detailed experiments of this section, the two NVRAM-centric data structures that
are fundamental for in-memory database systems are deployed:

1Parts of the material in this chapter have been developed jointly with Thomas Kissinger, Patrick Damme,
Dirk Habich, Thomas Willhalm, and Wolfgang Lehner. The chapter is based on [ZKHL18, ZKH+19,
ZDK+19], whereby [ZKHL18, ZKH+19] mainly contributed to Section 3.1 and Section 3.2, and [ZDK+19]
mainly contributed to Section 3.3. The copyright of [ZKH+19] is held by Springer-Verlag GmbH Germany,
part of Springer Nature; the electronic version of the article is available at https://link.springer.com/

article/10.1007%2Fs00778-019-00549-w. The copyrights of [ZKHL18] and [ZDK+19] are held by the As-
sociation for Computing Machinery (ACM); the original publications are available at https://doi.org/10.

1145/3211922.3211931 and https://doi.org/10.1145/3329785.3329923, respectively.
2https://github.com/pmem/pmdk

46 Chapter 3 Replication - Minimization of Overheads

DRAM 2 5 7

6 73 4 51 2

L1

NVRAM

L3 L7L5 L6L4L2

Figure 3.1: Hybrid DRAM-NVRAM key-value store (pmemkv). Leaf nodes are persis-
tently stored as a linked list in the NVRAM and recoverable inner nodes are organized as
a B+-Tree in the volatile DRAM.

Column Store (CS) The column store is an array of 4 Byte integers that is allocated via
the libpmemobj API. Both non-transactional (CS) and transactional workloads (CS
TX) are considered for the experiments. The transactional workload also updates
a single integer, but uses the transaction feature of the libpmemobj, which causes
additional writes for the undo log. Both modes are synchronized after each integer
update to stress strong durability and consistency requirements.

Key-Value Store (KV) Key-value stores are usually employed as indexes within a DBMS.
The experiments use a pmemkv implementation3, which is a hybrid DRAM-
NVRAM data structure similar to the FPTree [OLN+16]. As shown in the Fig-
ure 3.1, the leaf nodes of the tree are stored in NVRAM in the form of linked list
(holding key-value pairs), while the recoverable inner nodes (holding keys only)
are stored in DRAM in the form of B+Tree. Pmemkv uses the transactional facili-
ties of libpmemobj to ensure atomic updates to the persistent leaf nodes of the tree
structure. Therefore, all KV workloads are implicitly transactional.

Evaluation. All experiments in this section are based on the same platform as in Sec-
tion 2.2 and executed single-threaded on the same socket as the NVRAM regions are
physically allocated on. Figure 3.2 shows the throughput for updates on the data struc-
tures (w/o replication) for a uniform (Uni), binomial (Bin), and sequential (Seq) key dis-
tribution using the CLFLUSHOPT instruction. The non-transactional CS workload gives the
best performance, because only a single cache line needs to be flushed. In contrast, the CS
TX workload uses transactions, which cause additional cache line flushes as it is reflected
by the throughput numbers. The worst performance is observed for the KV workload
that faces the transactional overhead as well as additional costs for updating to the inner
tree nodes in DRAM and may issue modifications to multiple NVRAM cache lines, when
modifying the leaf nodes. One can also observe that transactional workloads (CS TX and
KV) are relatively insensitive to the key distribution, which is a result of the amortiza-
tion of cache line eviction and fetching by the other transactional operations. In case of

3https://github.com/pmem/pmemkv

3.1 State-of-the-art: evaluation and analysis of Intel PMDK replication 47

0 2 4 6 8 10
Throughput [Mops/s]

C
LF

LU
S

H
O

P
T

KV Seq KV Bin KV Uni

CS Seq TX CS Bin TX CS Uni TX

CS Seq CS Bin CS Uni

K
V

C
S

-T
X

C
S

(a) DRAM Emulation.

0 2 4 6 8 10
Throughput [Mops/s]

C
LF

LU
S

H
O

P
T K

V
C

S
-T

X
C

S

(b) NVRAM.

Figure 3.2: Update throughput w/o replication for different data structures and key
distributions using CLFLUSHOPT. Measurements are given for DRAM-emulated NVRAM
and Intel Optane DC Persistent Memory.

non-transactional workload, the write backs issued by the CLFLUSHOPT instruction hurt
the performance of the sequential CS workload due to the constant eviction of the cache
line required for the next update. The eviction affects as well the binomial CS work-
load, but in much smaller degree. Because of the adjacent cache line prefetch feature, the
binomial and uniform key distributions have a chance that the cache line to be updated
was already fetched during a previous operation. Nevertheless, this behavior is likely to
change with the full implementation of the CLWB instruction. The comparison of DRAM
(Figure 3.2(a)) and NVRAM (Figure 3.2(b)) shows that the absolute throughput numbers
for NVRAM are generally lower than for DRAM and that differences for the key distribu-
tions are amplified when working on NVRAM. The reasons for the latter observation are
(as could be assumed) the differences in how the memory controller accesses the volatile
and persistent memory devices [IYZ+19].

3.1.2 Pool replication

This section is devoted to the basic replication mechanism of the PMDK incorporating
a common master-slave replication model. It presents the overhead measurements for

48 Chapter 3 Replication - Minimization of Overheads

Algorithm 3.1: Basic PMDK pool replication algorithm

Input: Master Pool, Replica Pools, Size, MasterAddress, ReplicaAddress
1: Flush(MasterAddress, Size);
2: SFence(); // not for CLFLUSH

3: for each Replica do // actual replication

4: Compute(ReplicaAddress);
5: MemCpy(ReplicaAddress, MasterAddress, Size);
6: Flush(ReplicaAddress, Size); // not for MOVNT

7: SFence(); // not for CLFLUSH

8: return

the three workloads introduced in Section 3.1.1. The runtime overhead numbers are
calculated here as relative values. Thus, they illustrate additional execution time induced
by the replication compared to the non-replicated case as a baseline.

As discussed in Section 2.5, the libpmemobj already provides a replication feature that
replicates writes to a pool across a set of pools (cf. Figure 2.20). The pool replication
also works in combination with the transactional feature where transaction tables and
the undo log are additionally replicated across the pool set.

Algorithm 3.1 lists the pseudocode for the compute node-local parts of the replica-
tion mechanism. The basic PMDK approach is sequentially-ordered strongly-consistent
meaning that all steps need to be processed synchronously one by one for successful ex-
ecution. The algorithm starts with flushing the modified cache lines of the master replica
(line 1) followed by an SFENCE to ensure the completion of the flush operations (line 2).
Subsequently, the actual replication is performed by looping over the individual replicas
(lines 3–7). For each replica, the algorithm computes the memory address of the modifi-
cation within the replicated pool (line 4); copies the data from the master replica to the
calculated replica address either using a memcpy or a MOVNT (line 5); flushes the modified
cache lines of the replica in case of a memcpy (line 6) and finally issues an SFENCE to ensure
the completion of the flushes respectively the MOVNT (line 7).

Evaluation. Figure 3.3 shows the overhead measurements relative to the non-replicated
throughput for the three workloads (cf. Section 3.1.1) using a uniform key distribution.
The overheads are given for the temporal copy (memcpy) where replica modifications are
flushed using the CLFLUSHOPT and the non-temporal copy (MOVNT) that requires no addi-
tional cache line flush. In both cases, master replica modifications are flushed using the
CLFLUSHOPT. Each pool of the set has a size of 1 GiB. The replicas are located on the same
socket as the master pool. The first general observation is that MOVNT copy operations
induce a higher overhead compared to the combination of memcpy and CLFLUSHOPT for
both memory types. Furthermore, the measurements reveal that the non-transactional
random column store workload (CS) faces about 190 % additional overhead per replica
for DRAM-based emulation and about 330 % for Intel Optane DC NVRAM. Note that
the updates are executed non-dependent on each other by the benchmark, which is a
more realistic setting for writes. Hence, the large pipelines, out-of-order execution, and
speculation efforts of modern processors hide the latency for fetching the cache line of
the master replica, which speeds up the baseline and thus amplifies the replication over-
head. The transactional column store workload (CS TX) faces a replication penalty of
about 240 % (DRAM-based emulation) and 180 % (NVRAM) for three replicas, indicating
a contrary behavior compared to the non-transactional version. In contrast, the key-value
store workload (KV) shows a slowdown of about 150 % (DRAM-based emulation) and

3.1 State-of-the-art: evaluation and analysis of Intel PMDK replication 49

187

313

502

94
152

240

51
88

152

226

447

669

110

192

267

68

132
194

0

200

400

600

800

1 2 3 1 2 3 1 2 3

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

#Replicas

CS Uni CS Uni TX

KV Uni CS Uni MOVNT

CS Uni TX MOVNT KV Uni MOVNT

(a) DRAM Emulation

334

798

1,260

16
116

177

38
133

196

427

932

1,409

27
118

180
55

142
254

0

200

400

600

800

1000

1200

1400

1600

1 2 3 1 2 3 1 2 3

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

#Replicas

(b) NVRAM

Figure 3.3: Relative update overhead w/ replication compared to the non-replicated
workload for the three workloads and 1–3 replicas. All keys are uniformly distributed.
Additional comparison of memcpy + CLFLUSHOPT with MOVNT only.

200 % (NVRAM) for the same configurations. Such an increase in relative overhead for
KV on real hardware is explained by higher latencies of NVRAM (cf. Section 2.2) since
they likely dominate over the volatile operations delays, imposed by the transient part of
such data structure.

In case of sequential updates as shown in Figure 3.4, the overhead is within 100 % per
replica range for DRAM-emulated NVRAM as it would be expected. However, for the
real NVRAM hardware the situation changes considerably. Since there are some differ-
ences between DRAM and NVRAM (e.g., bus protocol, buffering, direct access, wear-
leveling, prefetching mechanism etc.), it is observed that the costs of a single replica for
persistent memory is much lower (just few percent) than for volatile DRAM. Neverthe-
less, this advantage tends to disappear with an increased replica count and almost van-
ishes for the KV workload. It is also important to notice that the performance of MOVNT
instructions for the sequential workloads does not differ much from that of the memcpy
and CLFLUSHOPT combination.

Conclusions. The overhead measurements revealed that the NVRAM replication costs
(first drawn in Section 2.6) of the basic pool replication mechanism are prohibitively high,

50 Chapter 3 Replication - Minimization of Overheads

76

132

251

91

149

234

77

120

211

88

208

330

109

191

269

96

182

269

0

200

400

1 2 3 1 2 3 1 2 3

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

#Replicas

CS Uni CS Uni TX

KV Uni CS Uni MOVNT

CS Uni TX MOVNT KV Uni MOVNT

(a) DRAM Emulation

7

51

92

13

112

163

58

183

258

4

55

99

18

107

144

63

183

248

0

200

400

1 2 3 1 2 3 1 2 3

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

#Replicas

(b) NVRAM.

Figure 3.4: Relative update overhead w/ replication compared to the non-replicated
workload for the three workloads and 1–3 replicas. All keys are sequentially distributed.
Additional comparison of memcpy + CLFLUSHOPT with MOVNT only.

especially in case of the CS workload, and will annihilate the advantage of using NVRAM
as a storage for primary data. Hence, next section will reason about the origin of this
replication penalty and propose optimizations for the basic replication mechanism.

3.2 RUNTIME OVERHEAD REDUCTION THROUGH ADAPTIVE EF-

FICIENT REPLICATION MECHANISMS

This part addresses the issues of the basic PMDK pool replication mechanism that cause
the high overheads during the NVRAM replica maintenance. Afterwards, it presents a
set of advanced pool replication mechanisms that are generated using a template-based
approach. That approach automatically composes the individual building blocks to a
full replication mechanism. Thus, this section is designated to the overall challenge RC1
of the thesis targeting the reduction of the replication-induced runtime overhead (cf.
Section 2.6).

3.2 Runtime overhead reduction through adaptive efficient replication mechanisms 51

3.2.1 Optimization of the basic pool replication algorithm.

The basic pool replication mechanism (cf. Algorithm 3.1) faces the following issues:

1. The algorithm is over-synchronized, because cache line flushes are synchronized
via an SFENCE instruction after each master and replica update. Such a protection
is normally needed to prevent write reorderings. However, in the replication sce-
nario, master and replica updates can be written in parallel and require only a single
synchronization point.

2. The master replica is updated first, which evicts the modified data from the cache
when using the CLFLUSH, CLFLUSHOPT or MOVNT instruction. Hence, the subsequent
copy operation that updates the first replica needs to refetch the data from the mem-
ory first. When writing back through CLWB instruction the modified data stays in
cache and, therefore, no refetch is needed for that case.

3. The memcpy operation that copies the modified data from the primary replica to the
other replicas effectively performs a read-modify-write operation. Thus, the cache
lines of the replicas to be updated need to be present in cache, which is not con-
sidered by the algorithm. MOVNT copies do not require the data to be in the cache,
but are executed faster if the virtual-to-physical address mapping of the destination
is already cached by the memory management unit of the CPU. In particular, the
translation lookaside buffer (TLB) is responsible for storing such address transla-
tions [Kli19].

4. Independent copy operations from the modified primary replica to the other repli-
cas are not parallelized and execute sequentially.

To overcome those issues, the template-based approach for generating advanced repli-
cation methods is presented in Figure 3.5. The template describes how the individual
building blocks are arrangeable to guarantee persistent updates to all replicas of the pool.
These individual blocks are generally available on most hardware systems including hy-
brid memory architectures. The advanced replication method generation starts from the
top of the scheme and proceeds downwards by configuring the desired option for a par-
ticular building block (depicted in gray color). The respective dependencies between
options and building blocks are expressed by arrows. For instance, asynchronous flushes
(Flush Async) require a final SFENCE instruction and the master replica is either flushed
before or after updating the replicas (indicated by the double-headed black arrow on the
left hand side). The Prefetch building block is optional.

In accordance to this approach, the basic replication algorithm can be generated following
a path indicated as “1-2-3” in Figure 3.6. In contrast, a thread-level parallel replication
mechanism would be generated by taking the right most path of the template. In the
following, this section describes the building blocks in detail and highlight how they
cope with the aforementioned issues of the basic replication mechanism.

52 Chapter 3 Replication - Minimization of Overheads

Foreach Replica

Prefetch

Master Replica Flush Sync Flush Async

Foreach Replica

Copy

Foreach Replica

Replicas Scatter

Foreach Replica

Enqueue to
Worker

Global SFence

Master Replica Flush Sync Flush Async

Flush Sync Flush Async
Master
Replica

Flush Sync

Foreach Replica

Await

G
e

n
e

ra
tio

n

Figure 3.5: Building blocks and composition options for the template-based advanced
pool replication. Replication mechanisms are generated by taking a compatible path from
the top to the bottom.

Instruction-level Parallelism. To resolve issue (1), the template adds the Flush Async (SF)
building block based on instruction-level parallelism principle. That type of paral-
lelism attempts to improve processor performance by having multiple processor
components or functional units simultaneously executing instructions [Pac11]. This
block omits the SFENCE as an alternative to Flush Sync (Flush followed by an SFENCE).
Nevertheless, to ensure completion of the NVRAM writes, a single SFENCE (SF) is
required at the end as indicated by the green arrow in Figure 3.5. Doing so, Flush
Async is able to execute CLFLUSHOPT, CLWB and MOVNT instructions among replicas in
parallel.

Cache Optimization. To overcome issue (2) by preserving the necessary data in the L1–
L3 caches, the template for advanced pool replication mechanisms allows to execute
the master replica flush before (PRE) or after (POST) the other replicas are written
and flushed. This is indicated by the leftmost double-sided arrow in Figure 3.5.

Software Pipelining. To further improve cache utilization and cope with issue (3), it is
reasonable to add the Prefetch (PF) building block that preloads the first cache line
of the memory location for a replica. Consecutive cache lines that may need to be
updated are usually automatically loaded by the hardware-based prefetchers, i.e.,
the adjacent cache line prefetch or sequential access prefetchers. The standard single
cache line prefetch call is applied here for the preloading mechanism. The alterna-
tive AVX512PF Scatter-Prefetch instruction4 has not shown any possible performance
advantage for the purpose of the replication-centric experiments.

Data-level Parallelism. To address issue (4) in case of small updates, we exploit the well-
known SIMD approach (allowing simultaneous computations, but only a single
processor command at a given moment, cf. Section 2.3). In particular, the algo-
rithm uses AVX512 Scatter-Store instruction5 (denoted in the template as SCA) that

4_mm512_mask_prefetch_i64scatter_pd intrinsic
5_mm512_mask_i64scatter_epi32 or _mm512_mask_i64scatter_epi64 intrinsic

3.2 Runtime overhead reduction through adaptive efficient replication mechanisms 53

Advanced Replication

Foreach Replica

Prefetch

Master Replica Flush Sync Flush Async

Foreach Replica

memcpy

Foreach Replica

Replicas Scatter

Foreach Replica

Enqueue to
Worker

Global SFence

Master Replica Flush Sync Flush Async

Flush Sync Flush Async
Master
Replica

Flush Sync

Foreach Replica

Await

Basic Replication Path

1

2

3

1 2 3

Figure 3.6: Composition of the building blocks of the advanced replication mechanisms
template for the basic replication mechanism of the PMDK (cf. Section 3.1.2).

leverages data-level parallelism to update multiple replicas with a single instruc-
tion. This instruction is limited to write 8 Bytes updates to eight replicas at a time.
In case of larger updates, the instruction needs to be executed multiple times.

Thread-level Parallelism. To address issue (4) in case of large updates, the algorithm
employs thread-level parallelism (Threads) also known as multiple instruction mul-
tiple data (MIMD) paradigm to additionally leverage the load-store units (LSU) of
other cores. Hence, for each slave replica a worker thread is instantiated during
the opening procedure of a pool set that executes the Copy and Flush Sync build-
ing blocks for its replica, if instructed so by the master replica thread. The master
replica thread needs to wait for the successful execution of the workers that update
the replicas to ensure the completion of the operation.

Note that the Copy and Flush Sync/Async building blocks can additionally be switched to
a different implementation, i.e., CLFLUSH, CLFLUSHOPT or CLWB instructions for flushing
and various platform-tuned MOVNT instructions for copying.

With regard to crash-safety property, it could be argued that since the PMDK undertakes
strongly-consistent approach (to commit the modifications all replicas have to be success-
fully updated) suggested advanced algorithms do not reduce the consistency guarantees,
compared to the basic scheme, as all of them are synchronized upon completion. With
the help of the template-based approach, it is possible to evaluate all combinations of
allowed and meaningful optimizations for several workloads and workload parameters.
Moreover, the template can be leveraged to automatically switch to the optimal repli-
cation mechanism depending on the current conditions as will be discussed next in the
chapter.

54 Chapter 3 Replication - Minimization of Overheads

(a) Non-transactional column store workload (DRAM).

(b) Non-transactional column store workload (NVRAM).

Figure 3.7: Relative overheads for different optimizations and replica counts. The CS
workload with uniform key distribution. Measurements are given for DRAM-based em-
ulation and NVRAM (Intel Optane DC Persistent Memory). Minimal relative overheads
are indicated by the blue arrows.

Evaluation. The following paragraphs provide an evaluation for previously consid-
ered workloads of the proposed advanced replication mechanisms. The experiments
are executed on both Intel Optane DC and DRAM-emulated persistent memory along
with the comparison to the basic replication schemes of the PMDK. The results of non-

3.2 Runtime overhead reduction through adaptive efficient replication mechanisms 55

transactional column store workload with uniformly distributed keys are primarily an-
alyzed. Moreover, the investigation also addresses the influence of the chunk size (or
number of consecutively updated column store elements).

Impact of Optimizations. Figure 3.7 shows the overhead numbers of a selected set
of activated optimizations including the PMDK baseline (CLFLUSHOPT) for the targeted
workload using uniform key distribution for up to three replicas. Each pool is 1 GiB in
size.

The measurements show that enabling a single optimization already reduces the over-
head by at least one third on both real and emulated NVRAM except for the POST opti-
mization that postpones the master replica flush. Activating combinations of optimiza-
tions further decreases the replication overhead. For a single replica, the SF+PF combina-
tion gives the best results. While for more replicas, the SF+SCA+PF combination tend to
dominate.

The Thread optimization has a high initial overhead, because of the thread maintenance
and synchronization costs that start to amortize with an increasing number of replicas.
Generally the behavior of this mechanism is similar between both memory types. The
performance of the Threads and Threads+PF replication mechanisms for the replica count
of two is comparable to that of the non-optimized mechanism and start outperform it
with a further increase of replicas. The prefetch (PF) component contributes to 5 %–15 %
to the relative overhead reduction. Overall, the Threads block is able to save up to 78 %
of the relative overhead for the non-transactional CS workload on NVRAM, while on the
DRAM-based emulation may benefit up to 85 %, respectively.

The initial comparison of replication overhead measurements shows that suggested op-
timized replication mechanisms give savings of up to an order of magnitude for both
memory types with a tendency for NVRAM, which is actually targeted memory type.
Moreover, the optimizations reduce the extra overhead costs for adding an additional
replica to the pool set.

Updated Chunk Size. This series of experiments vary the size of the memory chunk
that is updated by writing a varying number of consecutively located column store ele-
ments per update operation. The Figure 3.8 visualizes the measured relative overheads
for the CS using different optimization combinations depending on the updated chunk
size. In general, the results show that the best replication mechanism depends on the
updated chunk size as well as on the workload, replica count, and memory technology.
For instance Figures 3.8(e), 3.8(f) show (i) that the SCA building block generates more
overhead for larger chunk sizes, (ii) that the MOVNT implementation of the Copy building
block starts to become feasible at a chunk size of 32 Bytes for both DRAM-based emu-
lation and NVRAM, and (iii) that the Threads building block gives the lowest overhead
in case of DRAM-based emulation starting at a chunk size of 2 KiB and becomes feasible
with a replica count starting from 3, however being outperformed in the same interval by
MOVNT-based mechanisms on real NVRAM. Since the Threads building block is designed
for large chunks, it is reasonable to add a Threshold building block (Threads+Trs) that
falls back on the alternative SF+SCA+PF path for small chunk sizes (≤ 32 Bytes as visible
in Figure 3.8(a)) as they may occur in the transactional part of the respective workloads
for logging. Such a combined approach suits for workloads with varied updated chunk
size and is a first step towards an automatic replication mechanism switching that will
be introduced in the next section.

56 Chapter 3 Replication - Minimization of Overheads

(a) 1 replica (DRAM Emulation). (b) 1 replica (NVRAM).

(c) 2 replicas (DRAM Emulation). (d) 2 replicas (NVRAM).

0

100

200

300

400

500

600

4 32 256 2048 16384

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

Chunk Size [Bytes]

(e) 3 replicas (DRAM Emulation).

0

200

400

600

800

1000

1200

1400

4 32 256 2048 16384

R
e

la
ti

v
e

 O
v
e

rh
e

a
d

 [
%

]

Chunk Size [Bytes]

(f) 3 replicas (NVRAM).

Figure 3.8: Relative overheads for the column store (CS) workload using a uniform key
distribution. Measurements are given for different optimized replication mechanisms,
replica counts, and memory types as well as the updated chunk sizes. Switching points
are highlighted by the dashed lines.

3.2.2 Adaptive lightweight switching algorithm

This section presents an automated lightweight algorithm for the online switching be-
tween the advanced replication mechanisms discussed in Section 3.2.1. This algorithm
activates the selection of the best replication mechanism for the current workload condi-
tions.

Motivation and Requirements. As it is shown in the previous evaluation, the overhead
of the different replication mechanisms depends on various factors such as the updated
chunk size, replica count, workload type, and memory type. In particular, Figures 3.8 (a)-
(f) show that there are certain regions where specific replication mechanisms exhibit a

3.2 Runtime overhead reduction through adaptive efficient replication mechanisms 57

PoolPool

DRAM NVRAM

libpmem

libpmemobj

Allocator

Replication

Transactions

Data Structures

Query Processing

Adaptivity Online Switching

Profiles

Model

Figure 3.9: Replication mechanism adaptivity using a lightweight online switching al-
gorithm that relies on a switching model. Adaptivity is implemented at the level of
libpmemobj.

significantly lower overhead compared to the others. The goal of this section is to lever-
age these observations to design a lightweight switching algorithm that selects the best
fitting replication mechanism for the current conditions at runtime. Since all the basic and
optimized replication functionality is implemented at the level of libpmemobj library of
PMDK (cf. Figure 2.20), the selection algorithm has to be integrated using the facilities
available at that level. In the following, the details of the three key components of sug-
gested adaptive replication mechanism selection approach (visualized in Figure 3.9) are
provided.

Profiles. The profiles characterize the replication mechanisms that are automatically gen-
erated based on suggested template approach (cf. Section 3.2.1). Such platform-
dependent profiles are generated at deployment time and provide information
about the overheads of the individual replication mechanisms in the context of var-
ious workload states and pool set configurations. The profiles are the foundation
for the switching model. For further considerations, this section stays with the mea-
surements presented in paragraphs above, which provide the algorithm with profile
information for the specific test system (whereby the tabular format is adopted to
store actual workload characteristics as illustrated in Table 3.1).

Model. Since replication operations are executed within a very tight time scale (sub-
millisecond), the switching algorithm needs to be very lightweight to keep its over-
head as low as possible. Hence, the full profile information can not be taken into ac-
count and a more coarse-grained model is required to allow for fast decisions on the
best replication mechanism for the current conditions. Due to this essential require-
ment, it is justified to to go for a small decision tree as the model for the switching
algorithm. The advantages of this choice are the simplicity (as only binary branch-
ing is expected for non-terminal nodes) and determinism at any level. The top level
of such a tree for the test platform is schematically shown by Figure 3.10.

58 Chapter 3 Replication - Minimization of Overheads

Sequential?

TX?

SubTreeSelect

YESNO

MOVNT+SCA+PF SubTreeSelect

YESNO

Sequential?

TX?

SubTreeSelect

YESNO

SubTreeSelect SubTreeSelect

YESNO

NVRAM?

YESNO

Figure 3.10: Decision tree as a model for the switching algorithm (top level). Particular
instance for the testing hardware platform. Terminal nodes further query the model if
necessary using the SubTreeSelect block.

Replica Count Minimum Chunk Size Maximum Chunk Size Algorithm

...
3 0 B 32 B SF+SCA+PF
3 32 B 1024 B MOVNT+SF+POST
3 1024 B ∞ Threads
...

Table 3.1: An example of a profile table (only relevant cells) used by the decision tree to
perform the SubTreeSelect request to choose an appropriate replication mechanism for the
current conditions (corresponds to Figure 3.11(a)).

Online Switching. The actual online switching component leverages the information
about the current workload and the pool set configuration to query the lightweight
model and finally select a low-overhead replication mechanism. At the level of
libpmemobj where the replication facilities are implemented, the available workload
information is limited to the memory access pattern (sequential or non-sequential),
transactional properties, and the updated chunk size. Additionally, the pool set
configuration provides information about the pool size, replica count, and memory
type. For the specific test system, the key discriminators are (in the order of im-
portance) the memory type, access pattern, transactional properties, and the replica
count as it is reflected by the decision tree (cf. Figure 3.10) that serves as lightweight
switching model. Actual switching is executed once per replication request.

Implementation. The online switching module is integrated into the replication block
of the libpmemobj library as depicted in Figure 3.9. All explicitly available characteris-
tics of the workload at that level (transactional properties, updated chunk size, and the
sequentiality of the access pattern) are given as parameters or can be extracted without
any significant overhead, e.g., by tracking the addresses of the persistent updates for the
access pattern. As the lightweight model a decision tree was generated based on the pro-
file information that was partially presented in evaluation paragraphs above. This model
is platform-dependent and needs to be calibrated for different hardware platforms. All
replication mechanisms that can possibly be chosen by the algorithm are pre-generated
as isolated functions that can be called by the switching algorithm instead of basic repli-
cation algorithm. Such an approach potentially allows switching also in multi-threaded
workloads, however, separate detection of sequentiality is needed.

3.2 Runtime overhead reduction through adaptive efficient replication mechanisms 59

(a) DRAM Emulation. (b) NVRAM.

Figure 3.11: Relative overheads for the non-transactional column store workload (CS)
using a uniform key distribution. The pool set comprises 3 replicas that need to be main-
tained. The measurements include the static replication mechanisms as well as proposed
lightweight switching algorithm (Switched). Updated chunk size is varied.

Evaluation and Summary. Figure 3.11 illustrates the behavior of the lightweight online
switching algorithm using the non-transactional column store workload with three repli-
cas and a uniform key distribution as selected example. The experiment shows that on
both NVRAM and DRAM-emulated settings proposed lightweight online switching al-
gorithm is able to give only slightly suboptimal performance at the price of insignificant
additional overhead (few percent). That overhead almost disappears with an increasing
size of the updated chunk.

Thus, having incorporated suggested above adaptive lightweight online switching com-
ponent it is possible to largely (up to an order of magnitude) mitigate the drawback of
replication runtime overhead within the hybrid memory DBMS and, therefore, resolve
the overall challenge RC1 of the thesis (cf. Section 2.6).

3.3 SPACE OVERHEAD AND WEAR-OUT REDUCTION THROUGH

DATA COMPRESSION

In contrast to the previous section that deals with the runtime overhead of the data replica-
tion this part aims to reduce the respective space overhead. As identified by the challenge
RC2 of this thesis (cf. Section 2.6), the general drawback of the most data replication
approaches is the space overhead as every replica normally requires at least 100% of
additional storage volume. In hybrid memory DBMS it is reasonable to minimize this
additional memory footprint. This is due to the fact that amounts of NVRAM while out-
bounding those of DRAM (currently up to 8x) are still much smaller compared to SSDs.
The traditional way to reach the objective of space footprint minimization is to compress
the stored data [AMF06, GRS98]. Moreover, writing compressed data implicitly could
help to reduce the wear-out problem of persistent memory as it has limited endurance.
Thus, in the following, this section investigates the opportunities of data compression
in NVRAM-centric data stores focusing on the lossless (as this property is obviously re-
quired for recovery purposes) lightweight integer compression techniques. Such algo-
rithms are widely used in DRAM-backed columnar processing systems (cf. Section 2.1.4).
As a result, this part suggests to store the replicas using compressed data formats.

60 Chapter 3 Replication - Minimization of Overheads

3.3.1 Integer compression algorithms in hybrid memory databases

Data compression is a well-known optimization technique in database systems [AMF06,
GRS98, HDU+19, HHDL16, RVH93]. On the one hand, data compression has been
extensively used to optimize the disk access bottleneck in disk-centric database sys-
tems [GRS98, RVH93] using classical or so-called heavyweight generic data compression
schemes such as Lempel-Ziv [ZL77], Huffman [Huf52] or arithmetic coding [WNC87].
On the other hand, lightweight integer compression algorithms are heavily used to opti-
mize the in-memory processing in DRAM-located column store systems [AMF06, BZN05,
HDU+19, HHDL16, LMF+16]. The difference between heavy- and lightweight compres-
sion algorithms is their computational complexity.

The goal of this section is to identify the data compression techniques that could be ef-
ficiently implemented for NVRAM-stored data in hybrid memory database systems do-
main. As discussed in Section 2.1.4, due to the mixture of DRAM-like characteristics
(e.g., low latencies, direct load/store access semantics, higher bandwidth compared to
flash memory) and non-volatility in a single device, NVRAM is primarily expected to
complement or replace block-based secondary storage (e.g., HDDs or SSDs) for storing
the primary data set [OBL+14, OL17b, APP16, Kim15, ALR+17]. While that copy can be
at the same time the working data set. Despite the fact that persistent memory can po-
tentially provide higher (up to 8x of DRAM) capacities [Int19a], data compression is still
reasonable due to the following reasons: (i) the amount of data to be stored still can be
large even for NVRAM-offered volumes (especially when using replicated data sets), (ii)
the NVRAM bandwidth is significantly lower (as illustrated in Section 2.2) than that of
DRAM and data compression is a way to increase the effective throughput.

Since in columnar in-memory data processing paradigm (targeted for hybrid memory
DBMS) most of the primary data is stored in a form of integer sequences (columns)
[BHF09] – main focus of this section is given to the integer compression techniques. Fur-
ther, the intra-memory data flows are used (e.g., the same mediums are employed to
store input and output data). As already mentioned, there is a large variety of data com-
pression algorithms available ranging from lightweight to heavyweight schemes. Based
on the different read and write bandwidths of DRAM and NVRAM, it is reasonable to
investigate the whole spectrum of algorithms in the following experimental study. Thus,
the following three different categories of compression schemes are considered: light-,
middle-, and heavyweight.

Lightweight Algorithms. This category of algorithms is usually used to optimize query
processing of in-memory column stores. These algorithms are not only optimized for
compression rate, but also for performance and processing capabilities [DHHL17]. The
recent experimental survey for this category on DRAM showed that the performance
and compression rate of these algorithms vary greatly depending on the underlying data
properties [DHHL17, DUH+19]. Based on that, it is justified to consider two represen-
tatives of the state-of-the-art of Null Suppression algorithms which aim at representing
each integer value using a minimal number of bits.

First algorithm (SIMD-BP128)[LB15] subdivides the data into blocks of 128 32-bit integers
each and encodes all data elements in a block using the number of bits required for the
block’s largest data element. Thus, this algorithm profits from small integers. In fact,
among all algorithms considered here, SIMD-BP128 is the one investing the least effort
into compressing the data. In [DHHL17, DUH+19], it is shown that SIMD-BP128 is a very
good choice regarding both compression rate and performance if the data contains no or
only few outliers. However, if the data contains many outliers, these dominate the block

3.3 Space overhead and wear-out reduction through data compression 61

bit widths and, thus, lead to a degradation of the compression rate [DHHL17, DUH+19].
In contrast, second algorithm (SIMD-FastPFOR) [LB15] is able to adapt to outliers by
choosing a bit width suitable for most data elements in a block and storing the remaining
exceptions separately. While this special treatment improves the compression rate in the
presence of outliers, it can also yield a degradation of the performance due to the extra
effort spent on the outliers [DHHL17, DUH+19].

Middleweight Algorithms. SIMD-BP128 and SIMD-FastPFOR only achieve good com-
pression rates if the data consists of small integers. In practice, this might not always be
the case, which motivates a preprocessing of the data to obtain small integers. Thus, two
well known and frequently used representatives of such preprocessing techniques are
considered: delta coding [RVH93] and frame-of-reference [GRS98], which replace each
data element by the difference to its predecessor or to the minimum data element, re-
spectively. The actual compression of the preprocessed data can be achieved by cascading
the preprocessing with a Null Suppression algorithm [DHHL17, DUH+19]. Such cas-
cades are called middleweight algorithms since the computational effort increases com-
pared to lightweight algorithms, but it may improve the compression rate significantly
on suitable data sets. In particular, test study employs DELTA + SIMD-BP128 and FOR +
SIMD-BP128. These cascades subdivide the data into pages of 4096 32-bit integers each
(which fits into the L1 data cache of test machine) and apply for each page first the pre-
processing and then SIMD-BP128 (compression) or vice versa (decompression).

Heavyweight Algorithms. While the previous two categories were mainly designed
for in-memory (DRAM) systems, the different characteristics of NVRAM motivate the
investigations of general-purpose heavyweight data compression algorithms. Thus, this
survey also employs LZ4 [Com] and Snappy [Goo19] as two state-of-the-art representa-
tives. Both LZ4 and Snappy belong to the LZ77 family of byte-oriented compression
schemes. The LZ4 source code offers a recommended standard version, which is referred
to as LZ4 in this section. Besides that, it also provides a number of variants targeting
different trade-off levels between compression speed and rate. The following evaluation
also employs a variant optimized for highest speed, which is denoted as LZ4s, and a vari-
ant for maximum compression, which is denoted as LZ4c. These algorithms are applied
on integer data as they would be on binary blobs.

Evaluation The following paragraphs provide detailed experimental analysis of the
presented above compression algorithms when deployed on NVRAM and compares
their respective behavior to DRAM. Further, the single-threaded and multi-threaded set-
tings are considered.

Implementation Remarks. The same hardware platform as in Section 2.2 is used for ex-
periments. All algorithms are written in C/C++ and compiled using g++-7.1 with the -O3
optimization flag. The light- and middleweight algorithms are vectorized using Intel’s
SIMD instruction set extension SSE working on 128-bit vector registers (cf. Section 2.3).
For SIMD-BP128 and SIMD-FastPFOR, the implementations from the FastPFor-library
[LBK+19] are used. For the cascades, hand-tuned and vectorized versions of DELTA
and FOR [DHHL17, DUH+19] are implemented. Moreover, the original source for the
heavyweight algorithms is utilized. To enable the correct NVRAM usage, all algorithms
are modified using two aspects: first, an access to persistent memory is provisioned via
memory mapped files on a DAX-enabled file system (XFS), second, a combination of
CLFLUSHOPT plus SFENCE is used to ensure persistency (cf. Section 2.1.3).

62 Chapter 3 Replication - Minimization of Overheads

32-bit ints sorted data distribution

D1 100 M no normal(µ = 2
5, σ = 20)

D2 100 M no normal(µ = 2
25, σ = 20)

D3 100 M yes uniform(min = 0, max = 10
6 − 1)

D4 100 M no 90% normal(µ = 2
5, σ = 20)

10% normal(µ = 2
25, σ = 20)

Table 3.2: The synthetic data sets used in the evaluation.

Previous works have shown that the data characteristics determine which algorithm is
the most suitable one [DHHL17, DUH+19]. Thus, evaluation relies on several synthetic
data sets being summarized in Table 3.2. The DRAM-centric compression benchmark
framework is used as a solid execution environment [DHL15, ea19]. Figure 3.12 reports
the compression rates achieved by each algorithm on each data set (short names such as
BP128 for SIMD-BP128 or DELTA for DELTA+SIMD-BP128 are used in all further figures)
and clearly shows that there are significant differences even within each of the categories
light-, middle-, and heavyweight algorithms. Obviously these compression rates are in-
dependent of the type of memory as well as of the number of threads used, so they serve
as a reference throughout the experimental evaluation.

The performance of an algorithm is measured by running it on a data set for few sec-
onds and counting how many times it could process the entire data set. This procedure
is especially important to guarantee that all threads are executed simultaneously in the
multi-threaded scenarios. Thus, loading/storing data and computations are included in
the measurement. We report (i) performances in million integers per second (mis) refer-
ring to the underlying number of logical data elements, not to the physical data size and
(ii) throughput/bandwidth in GiB/s. The Snappy results are omitted in the evaluation,
since they were mostly similar to those of standard LZ4. However, further discussion ad-
ditionally includes LZ4s and LZ4c, which are preconfigured for higher execution speed
and for better compression rate, respectively, by the developers.

Single-threaded Experiments. Figure 3.13 presents the performance overview of the
single-threaded execution of all algorithms on all data sets. First, the performance on
NVRAM is compared to that on DRAM. Figure 3.13(a-b) shows the speeds achieved
on NVRAM relative to those on DRAM. As a general observation, the performance on
NVRAM is never better than that on DRAM. As a consequence of the lower bandwidth
of NVRAM compared to DRAM, the algorithms reach only between 25 % and 100 % in
case of compression, or 17 % and 39 % of the DRAM runtime performance in case of de-
compression.

In the following, the focus is given to the impact of the memory type on the choice of the
most suitable compression algorithm. This topic has already been investigated in detail
for DRAM [DUH+19]. However, the lower bandwidth of NVRAM suggests to prefer al-
gorithms investing more cycles for computation if this can improve the compression rate
appropriately, since that way, the effective bandwidth may be improved. This hypoth-
esis is checked by comparing the DRAM and NVRAM performances of the low-effort
SIMD-BP128 to those of the other more compute-intensive algorithms. The compression
is under the scope in Figure 3.13(c), since it is generally more compute-intensive than
decompression as shown in Figure 3.13(d).

On data set D1 (small integers), no algorithm achieves a significantly better compression
rate than SIMD-BP128 and in fact, this algorithm achieves the best compression speed on
both DRAM and NVRAM. However, on data set D2 (large integers in a narrow range), the

3.3 Space overhead and wear-out reduction through data compression 63

D1 D2 D3 D4
0
8

16
24
32

bi
ts

 /
in

te
ge

r

BP128
LZ4

FastPFOR
LZ4s

DELTA
LZ4c

FOR

Figure 3.12: Compression rates.

situation changes. Here, FOR + SIMD-BP128 achieves by far the best compression rate.
While on DRAM this cascade achieves only 87 % of the speed of SIMD-BP128, it is 72 %
faster than SIMD-BP128 on NVRAM. The heavyweight variants of LZ4 also achieve much
better compression rates than SIMD-BP128. Nevertheless, they fail to outperform it with
respect to compression speed on both mediums, since they are too compute-intensive. On
the sorted data set D3, the three variants of the heavyweight algorithm LZ4 achieve the
best compression rates. However, regarding compression speed, only the standard LZ4
and LZ4s perform superb: they are fastest compressors on both DRAM and NVRAM,
while LZ4c is the slowest of all algorithms on both mediums, due to its high computa-
tional effort. Regarding the lightweight algorithms, SIMD-BP128 again is the fastest on
DRAM, but again it is outpaced by up to 83% by the more compute-intensive cascades
on NVRAM. One tenth of data set D4 are large outliers. Here, the best compression
rate is achieved by SIMD-FastPFor, but LZ4c as almost equally good. Regarding SIMD-
FastPFor, the price for its special treatment of outliers is a speed of only 35 % of that of
SIMD-BP128 on DRAM. However, it achieves a small speed-up of 4 % on NVRAM. On
the contrary, LZ4c has a compression speed close to zero on both mediums.

Multi-threaded Experiments. In the following, the observations about the DRAM and
NVRAM experiments in the multi-threaded scenario are presented. The compression
speeds are shown relative to a single thread in Figure 3.14(a-b, e-f) and the respective
absolute memory bandwidth consumed per second in Figure 3.14(c-d, g-h). However,
the latter does not distinguish between write and read components, as it was obtained
through the Intel PQoS monitoring tool [Int19b]. The analysis is based on two selected
algorithms and data sets (SIMD-BP128, standard LZ4 on D1, D3) as the most interesting
cases.

As mentioned above, the compression rate, of course, is not affected by the number of
threads. The performance on NVRAM is never better than that on DRAM for the same
number of threads. A further observation is that both compression algorithms exhibit dif-
ferent scalability behaviors on DRAM and NVRAM. The LZ4 DRAM performance grows
nearly linearly until 16 and 12 threads on D1 and D3, respectively. For SIMD-BP128 this
result is lower, which is explained by the fact that the corresponding consumed band-
width increases faster: 8 threads on both data sets. However, both approaches demon-
strate a stable speed growth up to 20 threads independently of the data characteristics.
At this point the DRAM bandwidth limitations are actually reached (cf. Section 2.2). One
exception here is the LZ4 (de)compression on D1, which demonstrates a constant growth
up to 24 threads (and even further until 48), and is, in contrast to the others, not memory-
bound, but compute-bound. The NVRAM scalability diverges from its ideal linear case
at 8 (D1) and 4 (D3) threads for heavyweight LZ4 compression and already at 2 for the
lightweight SIMD-BP128, while a certain performance increase is still observed until 16
and 8 threads, respectively.

64 Chapter 3 Replication - Minimization of Overheads

D1 D2 D3 D4
0.0

0.5

1.0 (a) compression speed relative to DRAM

D1 D2 D3 D4
0.0

0.5

1.0 (b) decompression speed relative to DRAM

D1 D2 D3 D4
0.0
0.5
1.0
1.5
2.0

(c) compression speed relative to SIMD-BP128

D1 D2 D3 D4
0.0

0.5

1.0

(d) decompression speed relative to SIMD-BP128

BP128
LZ4

FastPFOR
LZ4s

DELTA
LZ4c

FOR

DRAM NVRAM

Figure 3.13: Single-threaded speeds: NVRAM relative to DRAM and algorithms relative
to SIMD-BP128 on the same medium.

3.3 Space overhead and wear-out reduction through data compression 65

– Data set D1 (small integers) –

1 2 4 8 12 16 20 24
number of threads

0

10

20

(a) compr. speed relative to one thread

1 2 4 8 12 16 20 24
number of threads

0

10

(b) decompr. speed relative to one thread

1 2 4 8 12 16 20 24
number of threads

0

50

100

(c) compr. bandwidth [GiB/s]

1 2 4 8 12 16 20 24
number of threads

0

50

100

(d) decompr. bandwidth [GiB/s]

– Data set D3 (sorted) –

1 2 4 8 12 16 20 24
number of threads

0

10

(e) compr. speed relative to one thread

1 2 4 8 12 16 20 24
number of threads

0.0

2.5

5.0

(f) decompr. speed relative to one thread

1 2 4 8 12 16 20 24
number of threads

0

50

100

(g) compr. bandwidth [GiB/s]

1 2 4 8 12 16 20 24
number of threads

0

50

100

(h) decompr. bandwidth [GiB/s]

SIMD­BP128, DRAM LZ4, DRAM SIMD­BP128, NVRAM LZ4, NVRAM

Figure 3.14: Multi-threaded performances on D1 and D3: speed relative to single-
threaded (dotted line is linear scaling), absolute bandwidths (dotted lines are read and
write bounds).

66 Chapter 3 Replication - Minimization of Overheads

Table 3.3: Multi-threaded speedups of (de)compression algorithms.
DRAM NVRAM

Compression Decompression Compression Decompression
Distribution D1 D3 D1 D3 D1 D3 D1 D3
SIMD-BP128 11.5x 7x 5.3x 6x 3.7x 2.1x 1.2x 1.4x

LZ4 18.5x 11.9x 14x 6.7x 11.2x 9.5x 1.8x 1.2x

Regarding the decompression, one can observe a mostly similar situation with a certain
degradation of the thread count: on DRAM, the linear scalability is bounded by 4 threads
(except for LZ4 as mentioned above) and stable growth hits the limit at around 16 threads,
while on NVRAM, even 2 threads cannot achieve a linear scaling anymore after 8 threads.
There is no further performance increase because decompression is more write-intensive
than compression and, therefore, is more dependent on write bandwidth boundaries,
which are lower than that of the read counterpart on both mediums.

An overview of the accelerations achieved via the deployment of multiple threads (best
performance in a range from 1 to 24 threads) for DRAM and NVRAM is provided in
Table 3.3.

Conclusions. The evaluation and analysis of this section have shown the applicabil-
ity and feasibility of DRAM-backed compression mechanisms also for NVRAM domain.
Having the presented above results – it could be concluded that the special characteristics
of persistent memory necessitate a rethinking of the trade-offs involved in the selection
of the fastest compression algorithm. On NVRAM, it is recommendable to invest more
computations for a better compression rate. However, while the size reduction achieved
by general-purpose heavyweight algorithms does not always balance for their compu-
tational cost, the middleweight cascades of lightweight algorithms are a good choice.
Further, the multi-threaded scalability of (de)compression algorithms is much better on
DRAM, due to higher throughput limits, though there is an exception – the compute-
intensive standard LZ4 compression, which scales well also on NVRAM. Moreover, the
scalability property depends not only on the medium but also on the algorithm and input
data.

3.3.2 Compressed replication concept

This section aims to derive a concept that will allow to store the data replicas allocated in
hybrid memory systems in compressed formats. The general drawback of all replication
schemes is the additional memory footprint and write overhead caused by the duplica-
tion of primary data. This footprint grows linearly with the replica count, however, the
increase could be more severe in case of logical replication, as apart of the data itself also
the log needs to be mirrored. For hybrid memory architectures, the space complexity is
of critical importance due to the following factors: (i) the capacities of both DRAM and
NVRAM are much lower than those of disks, and (ii) NVRAM endurance suggests to
minimize the number of persistent writes to reduce the wear-out.

3.3 Space overhead and wear-out reduction through data compression 67

Compressed Replication. To mitigate identified above issues, this section proposes to
use lightweight integer compression algorithms to represent both the master and its repli-
cas. As previously shown, the light- and middleweight integer compression algorithms
are a good choice for both DRAM- and NVRAM-resident columnar data as they exhibit
good compression rate, while preserving high speed of execution.

In case of analytical systems [CDN11] – it is generally sufficient to compress the repli-
cated base columns once at startup time. This procedure would impose the compres-
sion runtime overheads (or in some cases speedups as much less physical data will be
copied compared to pure replication) presented in the evaluation paragraphs above.
From the recovery perspective this approach stays as strong as non-compressing state-of-
the-art [Kap15] as the same amount of full data copies are safely stored. The difference,
however, is that to recover original data – it could be needed to perform a decompres-
sion (or re-compression) of the respective memory region (as shown in Figure 3.13-(a)
the respective overheads are reasonable and on average are only twice as large as those
of DRAM).

However, in many hybrid memory database systems it is important to preserve an op-
portunity to execute not only analytical (OLAP) requests but also online transactional
processing (OLTP) [AAP+17]. Such operations assume certain modifications of primary
data. Here, to simplify the (de)compression procedures while propagating updates to the
replicas of base data, it is justified to focus exclusively on appending new data elements
at the end of a column (since this is the typical scenario in big data and data warehousing
systems [Kim15]). Such systems collect data for complex analyses, while new data is peri-
odically added [Kim15] and, thus, replication mechanism can handle this additions using
compressed formats. Further, such approach is able to preserve the physical master-slave
replication model and provide as strong protection as state-of-the-art technique.

Polymorphic Replication. As discussed above, it can be advantageous to use a certain
compressed data format for storing master and replicas. However, there is no single-best
compression scheme, neither regarding compression rate nor regarding (de)compression
speed, since those metrics heavily depend on the data characteristics [DUH+19]. Fur-
thermore, different query operators on compressed data may favor different formats
[AMF06]. This means that query execution speed directly depends on the actual stor-
age format. Thus, this section proposes novel polymorphic replication concept by using
various distinct compressed formats for different replicas of the same column. In the field of
hybrid memory systems, where most operations are done on byte-addressable columnar
data, there is no principal obstacle of doing so. While propogating changes to the replicas
the usage of different compression algorithms is expected to cause no or only negligible
additional overhead. This is due to the fact that the master data needs to be compressed
(or copied) for each replica anyway.

Summary. As data compression leads to a reduced space consumption it allows a bet-
ter utilization of existing memory capacities and bandwidths during the propagation of
changes to replicas, thereby also decreasing NVRAM wear-out. The expected benefit
of such a polymorphic replication concept is that diversity in formats can amortize the
possible inefficiencies of only a single format and ensure an averaged reduction of the
number of NVRAM writes and, thus, replication delays. Therefore, polymorphic com-
pressed replication is a promising approach to tackle the overall challenge RC2 of this
thesis.

As shown further in Chapter 4, such replication concept can contribute to analytical
query execution as well – when not only masters but also replicas are enabled for read

68 Chapter 3 Replication - Minimization of Overheads

Socket 1

Cores

Pool or data structure Worker Data access

Socket 2

NVRAMCores

Master

Replica

UPI

Write
Replica

DRAMNVRAMDRAM

Figure 3.15: NUMA-aware replication in a scale-up hybrid memory system.

requests. The possible benefits here are the following: (i) speedup of processing due
to direct operations [HDU+19] on compressed data; (ii) further performance increase
when the compressed replica to use for analytical processing is selected depending on
the operator’s access pattern. The detailed proof-of-concept and respective evaluations
are further provided in Section 4.2 of this thesis.

3.4 NUMA-AWARE REPLICA PLACEMENT AS A WAY TO IN-

CREASE RESILIENCE

As already mentioned in Section 2.6, to mitigate all possible NVRAM failure scenarios,
and PMM or socket IMC crashes in particular, it is important to support the socket-remote
replica allocation on scale-up architectures. Having the replicas distributed over the dis-
tinct NUMA sockets will increase the resilience guarantees. That comes, however, on the
price of socket-remote replica accesses [KZZL17]. If the entire local NVRAM or even the
full CPU/IMC fails, such approach will still allow to use data placed on a remote socket
on the same machine (possibly migrating query execution threads to healthy remote CPU
cores as well). Then system can still work resiliently, while one of the sockets fails. Thus,
this section proposes to incorporate such NUMA-aware replica placement as a compulsory
extension of the basic physical replication mechanism to ensure strongest data protection
for hybrid memory database systems on targeted scale-up architectures.

The socket-remote replica placement requirement could be satisfied using the PMDK
tool-kit [Kap15]. For that the replicated pool sets should be configured during the open-
ing procedure to leverage NVRAM volumes of distinct sockets accordingly. An example
of such allocation is shown by Figure 3.15. Here, a single master and two replica pools
are opened in the persistent domain of a two-socket NUMA machine. One of the slaves
is moved to remote socket to provide protection against full PMM/IMC failure scenario
(indicated as red rectangle on socket 2).

While providing desired resiliency guarantees, the state-of-the art implementation is in-
flexible and faces several drawbacks. First, the replication policy (or configuration) could
only be specified offline. Meaning that it is not possible to change the replica allocation
scheme without a system restart and respective pool set reconfiguration. Second, the
replication policy could only be specified at per pool level, enforcing all the resident data
to be replicated. Obviously that may be unnecessary (e.g., for secondary data) and leads
to the wasting of compute and memory resources. Ideally, the DBMS should be able to

3.4 NUMA-aware replica placement as a way to increase resilience 69

decide at runtime on the appropriate strategy which data to protect and specify individ-
ual replication scheme at data structure level. These issues were already identified as
challenge RC3 of this thesis.

To mitigate these issues and resolve indicated challenge, it is justified to extend the repli-
cation component to support individual mirroring policies at per data structure level (es-
sentially per column as targeted for hybrid memory DBMS data format). This is also
expected to allow for online replication policy configuration as could be ensured during
the respective memory allocation procedure. The detailed description, evaluation and
proof-of-concept are further provided in Section 4.2 of this thesis.

3.5 SUMMARY

The investigations performed in this chapter allowed to reach the ultimate goal of the
thesis – minimize the runtime overhead of the data replication process (overall chal-
lenge RC1). That was done via thorough experimental analysis of the state-of-the-art
implementation provided by the Intel PMDK. That implementation follows the compute
node-local synchronous physical replication model – most reasonable resilience approach
according to the discussion of Section 2.5. The experiments discovered unacceptable per-
formance of basic replication mechanism for the targeted domain of highly-performant
hybrid memory databases (cf. Section 3.1). Thus, the detailed examination of the reasons
of such overhead was performed. As a one of the major contributions, this chapter sug-
gested a rich set of optimization techniques to minimize the performance costs of repli-
cation for typical database scenarios. Those primitives were subsequently united using
a template-based approach to enable online adaptivity for current workload conditions
(cf. Section 3.2).

The mitigation of the replication runtime overhead problem is of critical importance in
the field of highly-responsive hybrid memory databases. However, the performance
penalty is not the only drawback of the respective reliability approach. The second
major cost of the data replication is the storage overhead. Thus, the next key contri-
bution of this chapter is the investigation of the space overhead reduction opportunities
targeting the data replication (overall challenge RC2). As normally additional memory
foot-print grows linearly with the number of replicas (stressing the capacity limits of
byte-addressable volumes), this chapter suggested to leverage the data compression in
NVRAM-centric data stores. Whereby particular emphasis was given to lightweight in-
teger compression techniques. Such algorithms are widely used in traditional in-memory
data processing systems. As an outcome of the respective experimental analysis, it was
demonstrated that, on the one hand, the data compression leads to a significantly reduced
space consumption at reasonable or, in some cases, negligible computational costs. While
on the other hand, it allows a better utilization of memory bandwidths during the propa-
gation of changes to replicas. Finally, a polymorphic compressed replication concept was pro-
posed to store the data copies using a variety of compressed data formats and, therefore,
to average possible space reductions and minimize NVRAM wear-out (cf. Section 3.3).

As a last contribution, this chapter suggested to enhance the flexibility of the state-of-
the-art replication process with regard to NUMA-awareness (overall challenge RC3).
Namely, it proposed to incorporate a NUMA-aware replica placement as a compulsory
extension of the basic physical replication mechanism at per data structure level to en-
sure strongest data protection on targeted scale-up architectures (cf. Section 3.4).

70 Chapter 3 Replication - Minimization of Overheads

4
REPLICATION - QUERY PROCESSING

PERSPECTIVE

4.1 Underlying system model

4.2 Polymorphic compressed replication
mechanism

4.3 SIMD-MIMD cocktail to speed up query
processing

4.4 Summary

This chapter 1 derives a conceptual vision on how the compute node-local physical repli-
cation, while efficiently facilitating the primary data protection, could be leveraged for
query processing needs as well. This opportunity is now enabled by the specific proper-
ties of scale-up hybrid memory database systems that are able to persistently store and
to efficiently process data exclusively in main memory (cf. Section 2.1.4). Thus, in the
following the overall challenges RC3, RC4 and RC5 of this thesis are addressed (cf. Sec-
tion 2.6). Furthermore, the suggested in this part ideas and optimizations are illustrated
based on the proof-of-concept columnar data processing system that incorporates the
ideas of compressed replication and NUMA-aware replica placement of Section 3.3.2 and
Section 3.4, respectively, as well. The chapter starts with the description of the underlying
system model, and then proposes and evaluates two directions for the replication-related
query processing optimizations. First direction (Section 4.2) relies on the storage compo-
nent (via diversity in data formats), while second (Section 4.3) suggests to leverage the
compute counterpart (via diversity in available instruction set extensions).

4.1 UNDERLYING SYSTEM MODEL

With increasingly large amounts of data being collected in numerous application areas
ranging from science to industry, the importance of efficient and scalable analytical data
processing increases constantly, whereby traditional properties of database systems, such
as consistency, longevity and resiliency must be taken into account [CDN11]. From a
database perspective, analytical queries usually access a small number of columns, but
a high number of rows and are, thus, most efficiently processed using a columnar data
storage organization [BMK99, BZN05, HDU+19, SAB+05] which was discussed in Sec-
tion 2.1.4. The key storage characteristic is that each column of a table is stored separately
as a contiguous sequence of values, typically mapped to integers. Here, 64-bit integers
are assumed as this is the native word size in most microprocessors today.

To keep the growing amount of data in hybrid main memory (DRAM or NVRAM) for
efficiency, data compression using lightweight integer compression algorithms plays an
important role in these column-oriented database systems [AMF06, DKB+19, LMF+16,
RAB+13, ZHNB06]. As already discussed, such lightweight compression algorithms are
well-investigated and they are able to reduce the memory footprint as well as to speed up
the data processing with marginal computational effort [AMF06, DUH+19, LB15]. Their
applicability for persistent memory and NVRAM-specific considerations were already
presented in Section 3.3.1.

Unfortunately, there is a number of possible NVRAM failure scenarios and, as it was
argued in Chapter 2, it is essential to protect the primary data placed in persistent (and in
some cases volatile) main memory. As shown in Section 2.5 and Section 3.2.1 the software-
based data replication is a most suitable technique for data protection in hybrid memory
systems featuring low latency and low throughput penalty. However, this mechanism
increases the NVRAM writes leading to the escalation of the endurance problem.

In the following this section details on the data processing workloads, concurrency mech-
anisms and efficient replication component of the assumed compressed column-store sys-
tem.

1Parts of the material in this chapter have been developed jointly with Patrick Damme, Alexander Krause,
Dirk Habich, and Wolfgang Lehner. The chapter is based on [ZDHL20, ZDK+21], whereby [ZDHL20] mainly
contributed to Section 4.2 and [ZDK+21] mainly contributed to Section 4.3. The copyrights of [ZDHL20]
and [ZDK+21] are held by the Association for Computing Machinery (ACM); the original publications
are available at https://doi.org/10.1145/3383669.3398283 and https://doi.org/10.1145/3456727.

3463782, respectively.

72 Chapter 4 Replication - Query Processing Perspective

Workloads. With respect to the accesses to primary data, assumed system supports
three different workloads. Read-only workloads represent analytical queries [GS19], which
are implemented as sequences of operators, whereby each operator takes one or more
columns as input and returns one or more columns as output. The output columns are
intermediate data and are fully materialized in DRAM. The operator-at-a-time process-
ing model [BMK99, HDU+19] is assumed here, i.e., only one operator is allowed to be
executed at a time within a single query. As already mentioned in Section 2.1.4, typi-
cal columnar query operators include select, project, aggregate, join, group-by, and
set-operations.

For instance, the select-operator performs a sequential read of its single input column,
compares each data element with a constant, and sequentially writes matching positions
to its single output column. The project-operator reads an input column of positions se-
quentially, extracts the values at the given positions from its second input column using a
random read access, and sequentially writes these values to its output column. As a last
example, the aggregate-operator calculates a cumulative statistical value, e.g., the sum,
of all elements of its single input column. It performs a sequential read, while only a sin-
gle value is written. Write-only workloads allow to change the base data. Here, the empha-
sis is given exclusively to appending new data elements at the end of a column, since this
is the typical scenario in big data and data warehousing systems [CD97]. Such systems
collect data for complex analyses, while new data is periodically added [CD97]. Hence,
when modifying the base data, assumed system produces a sequential write memory ac-
cess pattern. Finally, mixed workloads combine analytical queries and append-operations
in an arbitrary ratio [LMF+16].

Scalability and Concurrency Control. The architecture of a data processing system de-
termines its scalability behavior [AAP+17, KKS+14b, PSM+16]. The hardware resources,
e.g., the number of NUMA sockets and cores per socket (CPU), define the physical limits
of parallelism, while the software defines a trade-off between the speed up achieved via
parallelism on the one hand and consistency and freshness guarantees on the other hand.
This is especially crucial in case of write-only and mixed workloads. Such a software-
level concurrency control [KM17] is used to solve the synchronization problems between
parallel readers and writers. The multi-threaded inter-query parallelism is assumed, mean-
ing that one query is mapped to one thread at each point in time. To allow a high degree
of parallelism without long blocking operations, the concurrency is controlled via snap-
shot isolation [CG16] on the query level. This means that every query atomically takes a
snapshot of all data columns it needs to access as its prologue phase and does not see
any changes made after this point by other threads. Therefore, analytical queries are exe-
cuted concurrently without exemptions, while only one appending thread is allowed per
column at a time.

Replication Mechanism. In agreement with introduced above architectural principles,
replication is applied only for primary data, because intermediate data can be regener-
ated by re-executing after a failure. As already noticed in Section 2.6, the replication
mechanism of Intel PMDK faces a number of issues or inflexibilities when applied in
scale-up hybrid memory environment. Those are the following: (i) only masters are read-
able while replicas serve solely for recovery purposes; (ii) all involved replicas should
follow same (uncompressed) data format; (iii) the replication policy could only be spec-
ified offline and at per pool level; (iv) the replication affects only NVRAM-resident data
within PMDK-integrated hybrid memory database; (v) existing approach has limited
NUMA-awareness. Identified issues argue that the state-of-the-art approach lacks the
desired level of flexibility for the DBMS to decide at runtime on the appropriate strategy

4.1 Underlying system model 73

which data to protect, specify individual replication scheme at data structure level and
use replicas for query processing purposes.

Because of that, assumed in this section columnar processing system proposes to incor-
porate a modified physical replication mechanism with the goal to alleviate the inconve-
niences of the state-of-the-art approach, while presuming its advantages of synchronous

master-slave replication model. That means, the primary data is anyways modified first in
the master, before the changes are sequentially propagated to the replicas using memory
move semantics. An append-operation is only committed to an application or user when
all involved copies have been processed successfully. Hence, the persistence is required
only from that point on. The four core ideas of the advanced modified replication scheme
are presented in the next section.

4.2 POLYMORPHIC COMPRESSED REPLICATION MECHANISM

This section describes the details of novel polymorphic compressed replication (PCR) mech-
anism which was partially introduced in Section 3.3.2. This mechanism consists of four
main concepts that allow not only to reduce the replication space overhead but also to ex-
ploit the replicas for analytical processing: (i) concurrent read access to replicas, (ii) com-
pressed replication, (iii) polymorphic replication, and (iv) hybrid memory placement.

4.2.1 Optimization concepts

Concurrent read access to replicas. In scale-up systems, the multi-threaded execu-
tion (cf. Section 2.1.2) of queries for scaling the performance using inter-query paral-
lelism is state-of-the-art [LBKN14]. However, as already mentioned, current NVRAM
replication approaches allow only the master to be accessed by the application directly
[Kap15, ZYMS15]. Since the master resides on one particular socket, threads on other
sockets are forced to perform remote memory accesses, which suffer from a compara-
bly low bandwidth and high latency (cf. Section 2.2). Thus, the scalability in NUMA
systems is severely limited with current replication approaches. To alleviate aforemen-
tioned issue, this paragraph proposes the employment of replicas on different sockets for
reading purposes. The strict need of socket-remote replication for reliability purposes
(e.g., to tolerate PMM/IMC or complete socket failure scenarios) was already stressed in
Section 3.4. Using replicas to speed up readers is a well-known approach in the field of
distributed data processing systems, where a cluster of compute nodes is able to serve
requests at an arbitrary node as each of them holds a copy of the primary data [EKA19].
Applied to NUMA architectures, which actually behave similar to distributed systems,
this scheme allows to leverage CPUs and memory bandwidths of all sockets holding at
least one replica to the full extent as illustrated by Figure 4.1. It is expected that the
processing throughput of read-intensive queries can be largely increased compared to
a single-socket execution that way. Thus, this suggestion allows to tackle the NUMA-
centric challenge RC3 of the thesis.

74 Chapter 4 Replication - Query Processing Perspective

Socket 1

Cores

Pool Worker Data access

Socket 2

NVRAMCores

Master

Replica

UPI

Write

Read

Replica

DRAMNVRAMDRAM

Read

Master

Replica

Figure 4.1: Concurrent read accesses to replicas in a scale-up hybrid memory system
(illustrated for blue-colored pool).

Compressed replication. As already noted in Section 3.3.2, the general drawback of
all replication schemes is the additional memory footprint and write-overhead caused
by the duplication of primary data. For hybrid memory systems, the space requirement
is of critical importance due to the following factors: (i) the capacities of both DRAM
and NVRAM are much lower than those of disks, and (ii) NVRAM endurance sug-
gests reducing the number of persistent writes to reduce wear-out. To mitigate these
issues, Section 3.3.2 already proposed to use lightweight integer compression algorithms
(schematically shown in Figure 4.2) to represent both the master and its replicas. As
data compression leads to a reduced space consumption, it allows a better utilization of
available memory capacities and bandwidths during the propagation of changes to repli-
cas, thereby also decreasing NVRAM wear-out. This paragraph, in contrast, proposes to
leverage compressed replica formats for query processing. Doing so analytical queries
can benefit from the facts that they (i) can process more logical data within the same
physical bandwidth limitation, and (ii) can speed up processing due to direct operations
on compressed data [HDU+19].

Polymorphic replication. Storing master and replicas in compressed form is generally
advantageous. However, as shown in Section 3.3.1, there is no single-best compression
scheme, neither regarding compression rate nor regarding (de)compression speed, since

Socket 1

Cores

Pool Worker Data access

Socket 2

NVRAMCores

Master

Replica

UPI

Write

Read

Replica

DRAMNVRAMDRAM

Read

Master

Replica

Compression

Figure 4.2: Compressed replica formats to reduce space overhead and speed up query
processing.

4.2 Polymorphic compressed replication mechanism 75

Socket 1

Cores

Pool Worker Data access

Socket 2

NVRAMCores

Master

Replica

UPI

Write

Read

Replica

DRAMNVRAMDRAM

Read

Master

Replica

Compression BCompression A

Figure 4.3: Polymorphic compressed replica formats to average space overhead reduc-
tion and speed up query processing.

those metrics heavily depend on the data characteristics [DUH+19]. Furthermore, dif-
ferent query operators on compressed data may favor different formats [AMF06]. Thus,
this paragraph suggest to take the advantage of employing polymorphic replication (illus-
trated by Figure 4.3) by using various distinct compressed formats for different replicas of
the same column as already proposed in 3.3.2. However, here the goal is not to average
the space overhead reduction of replication but, in contrast, to select the best available
format to speed up query execution.

During the replication, having a variety of formats implies a certain computational over-
head, since the compression algorithms of all employed formats must be executed. How-
ever, as further shown in Section 4.2.3 the corresponding bandwidth consumption is not
increased, since the master is read just once and each replica is written once.

For the illustrative purposes of the proof-of-concept columnar system the two represen-
tatives of binary packing (BP) null suppression algorithm are adopted [LB15, SV10]. The
idea of this algorithm is to represent all integers in a block of 64 64-bit integers with the
number of bits required for the largest of them. This variant is called dynamic BP. Deter-
mining the largest value requires an additional pass over each block. While this allows
the algorithm to adapt to local variations in the data distribution, it also adds a compu-
tational overhead. Therefore, targeted system considers static BP as an alternative which
views the entire column as a single block and represents each value with the bit width of
the column’s possible maximum value, which is assumed to be known from the applica-
tion. An advantage of such simple compression algorithms is that the compressed data
can be processed directly without decompression. In particular, both dynamic BP and
static BP allow sequential access, while static BP also allows efficient random access.

The benefits of polymorphic compression are: (1) It can facilitate efficient processing and
increase the performance, e.g., when the replica to use for analytical processing is selected
depending on the operator’s access pattern. For instance, on the one hand, static BP and
dynamic BP both support sequential access, but dynamic BP can adapt to the local data
distribution and, thus, result in a lower physical replica size, such that a sequential scan
has to read less data. On the other hand, only static BP supports efficient random access.
(2) A diversity in formats can amortize the possible inefficiencies of only a single format
and ensure an averaged reduction of the number of NVRAM writes and, therefore, repli-
cation delays. Thus, the ideas of this and previous paragraphs allow to tackle efficiently
not only the overall challenge RC2 of the thesis, but also challenge RC5 focused on query
execution needs (cf. Section 2.6).

76 Chapter 4 Replication - Query Processing Perspective

Socket 1

Cores

Pool Worker Data access

Socket 2

NVRAMCores

Master

UPI

Write

Read

Replica

DRAMNVRAMDRAM

Read

Master

Replica

Compression BCompression A

Replica

Replica

Figure 4.4: Unified hybrid memory replica placement to speed up query processing and
reduce NVRAM wear-out.

Hybrid memory placement. While the resilience property strictly requires a certain
number of replicas to be resident in persistent memory, it could contradict the perfor-
mance requirements. This is especially true for read-intensive workloads due to the
higher latencies and lower bandwidth limitations of NVRAM compared to DRAM (cf.
Section 2.2). Thus, using both DRAM and NVRAM for data processing is a natural idea
for single-level hybrid memory systems. To overcome persistent memory performance
bottlenecks, some replicas could be placed in DRAM and leveraged for read workloads
(as illustrated by Figure 4.4). Since both memories are distinguished only on the virtual
addressing level, only insignificant changes are required to the application. However,
that requires a certain amount of DRAM to be reserved. Volatile replicas can possibly
contribute to the following aspects of the underlying data processing system: (i) perfor-
mance, as accesses to DRAM are considerably faster than those to NVRAM, especially
in case of multi-threaded execution, (ii) a reduced wear-out of NVRAM devices, since
less writes will be forwarded to persistent memory during the replication, and (iii) per-
sistent capacity increase, as the placement of replicas in DRAM would free the respective
NVRAM memory region. Thus, this paragraph suggests to use a unified replication mech-
anisms independently of the actual byte-addressable medium and compressed format.
Further, the replication policy is proposed to be specified at per data structure (essen-
tially per column) level to allow for more flexibility. These ideas target the challenge RC4
of the thesis.

4.2.2 Implementation

This section presents C++ implementation of the previously suggested PCR mechanism
for a resiliency-aware analytical processing. Since PCR makes replication itself and the usage
of replicas more complex, it is justified to separate replication functionality from the ac-
tual data processing by factoring it out as a separate user-space abstract library2 to achieve
a transparent deployment of PCR in an application-agnostic way.

While the PMDK library (cf. Section 2.1.3) is considered to be a standard for industrial
NVRAM-centric development, it suffers from a lack of flexibility in certain aspects (cf.
Section 4.1). First, its persistent allocator is pool-based, meaning that a persistent mem-
ory region of arbitrary size is reserved during the opening procedure and is used until
a reallocation is needed. However, this approach is not NUMA-aware, as such a pool

2https://github.com/MorphStore/Engine/tree/pcr

4.2 Polymorphic compressed replication mechanism 77

(a) API functions
replicated_t* allocate(size_t size, hint_t* hint)

void* get_buffer(replicated_t* rbuf, format_t& format, hint_t* hint)

void append(replicated_t* rbuf, uint64_t data)

delete rbuf

(b) Example usage of PCR abstract library
1 void insert_some_data(replicated_t* primary_data) {

2 for(uint64_t i = 0; i < 100; i++)

3 append(primary_data, i);

4 }

5 uint64_t aggregate(replicated_t* replicated_data) {

6 format_t f;

7 void* replica = get_buffer(primary_data, f, SEQ_READ);

8 if(f == A) return aggregate_on_format_A(replica);

9 if(f == B) return aggregate_on_format_B(replica);

10 }

11 void analytical_query(replicated_t* primary_data) {

12 replicated_t* snapshot = take_snapshot(primary_data);

13 printf(aggregate(snapshot));

14 }

15 void main() {

16 replicated_t* primary_data = allocate(100);

17 insert_some_data(primary_data);

18 analytical_query(primary_data);

19 delete primary_data;

20 }

Figure 4.5: API and usage of PCR abstract library.

can deploy memory of only a single socket. To support NUMA-specific allocation with
PMDK, one pool per socket would need to be opened, even if it is not actually going to
be used. Second, the basic replication scheme of PMDK does neither allow read-access to
replicas nor to use an individual format for each replica. Finally, the PMDK covers only
NVRAM-resident data, but cannot place replicas in DRAM. These limitations justify the
implementation of a more flexible replication subsystem supporting PCR approach.

In the following, the abstract library is presented from a system developer’s point of
view, and subsequently the decisive internal implementation details are revealed.

Transparent Integration of PCR. This part introduces the basic functions provided by
the abstract library. These are summarized in Figure 4.5 (a) and reflect the typical life
cycle of dynamically managed memory.

Memory allocation. To reserve a byte-addressable memory region, an application typically
calls a certain memory allocation function that returns a pointer. Similarly, PCR library
provides an allocate-function, which performs the allocation of all buffers for the mas-
ter and replicas. The difference compared to malloc is that allocate does not return
a pointer, but an abstract handler of type replicated_t and optionally considers hints
regarding the preferred usage of the PCR concepts.

78 Chapter 4 Replication - Query Processing Perspective

Read-access. To make use of the replicas for reading purposes, a certain replica can be
addressed as a normal pointer. This pointer is obtained via the get_buffer-function,
which internally selects a suitable replica, optionally based on hints regarding the in-
tended access pattern and also returns the compressed format of the chosen replica so
that operators know how to process the data.

Write-access. Write operations have to take care of replication and data compression.
Therefore, writing to a normal pointer does not suffice. Instead, all the data have to
be appended elementwise through the append-function, which ensures the propagation
to the replicas including an on-the-fly compression of the appended values.

Freeing. Deallocation works in the traditional way by using the delete-operator on a
replicated_t handler.

Example. Figure 4.5 (b) shows a simplified example of how to use the abstract library.
At system startup, a replicated column is allocated (line 16). Then, some data elements
are appended to it (line 17), whereby the append-function is used (line 3). After that,
an analytical query is processed (line 18), which first takes a snapshot (cf. Section 4.1)
(line 12), which is a shallow copy of a replicated column, and passes this snapshot to
an operator (line 13). The operator obtains an ordinary pointer using get_buffer (line
7) and forwards it to a format-specific operator implementation (lines 8–9). In practice,
more complex variants of insert_some_data and analytical_query would be executed
concurrently.

Implementation Details. Following part provides some important details of the inter-
nal implementation of PCR abstract library.

Main data structure. As an abstract handler for replicated data chunks, library implements
a specific container replicated_t that holds all necessary information about a replicated
buffer. In particular, it stores metadata valid for all replicas of a column, such as the
logical number of elements, as well as replica-specific information, such as the socket,
memory type, format, and compressed data size.

Memory allocation. With regard to the volatile memory allocation the library relies on the
libnuma allocator [lib20] to ensure NUMA-awareness, while for NVRAM allocation, it
provides a custom lightweight implementation, as justified above. Similarly to PMDK,
integrated allocator provides an access to persistent memory via memory mapped files
on a DAX-enabled file system(cf. Section 2.1.3). The difference is that PCR-integrated
version reserves a separate file for every data buffer and, thus, is able to designate it to
any of the sockets following a specified NUMA policy.

Read-access. Since there could be several replicas available, the get_buffer-function
needs to decide which one to return to the caller, based on the optional hints. The de-
fault approach is to return a socket-local replica to follow the NMP paradigm (cf. Sec-
tion 2.1.2). Obviously, this is not the most efficient way when a variety of replica formats
is available. To guide the selection process, a small decision tree was designed with the
goal to leverage information about the available replicas as well as user-provided hints,
such as the intended access pattern. Generally, the in-depth development of a strategy
for selecting the optimal replica is beyond the scope of this thesis. However, a promising
direction could be the deployment of performance counters monitors to take into account
the current memory workload on the socket as well.

Write-access. To avoid function call overhead, it was ensured that the append-function is
inlined by the compiler. Internally, it is processed in two main steps: (1) the values to

4.2 Polymorphic compressed replication mechanism 79

0

300

600

900

1200

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

(a) Aggregation

NV/NV, UN/UN

NV/NV, ST/UN

NV/NV, ST/ST

0

300

600

900

1200

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

(b) Aggregation

NV/NV, ST/ST

NV/NV, ST/DYN32

NV/NV, DYN32/DYN32

NV/NV, ST/DYN8

0

300

600

900

1200

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

(c) Aggregation

NV/NV, ST/ST

NV/D, ST/ST

D/D, ST/ST

100

0

20

40

60

80

100

120

140

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

(d) Select

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

0

20

40

60

80

100

120

140

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

threads

(e) Select

0

20

40

60

80

100

120

140

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

(f) Select

100

0

2

4

6

8

10

12

14

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

threads

(g) Project

0

2

4

6

8

10

12

14

0 20 40 60 80 100T
h

ro
u

g
h

p
u

t
[R

u
n

s
/s

]

threads

(h) Project

Figure 4.6: Absolute throughput of selected columnar operators for different 2-replica
allocation scenarios. The gray dashed lines indicate the inter-socket boundary (thread
count of 48).

append are staged in an internal cache-resident (volatile) buffer, and (2) once this buffer
is full or all planned data has been inserted, its contents are sequentially propagated to
all replicas by applying the respective lightweight compression algorithm on-the-fly or
by pure copying. To flush the caches and to ensure persistence for NVRAM memory
chunks, the library uses a combination of CLFLUSHOPT plus SFENCE (cf. Section 2.2). Since
PCR follows the synchronous approach, the changes are only committed (i.e., guaranteed
to be made persistent) if all replicas are updated successfully.

4.2.3 Evaluation

This section evaluates suggested PCR mechanism, first by using microbenchmarks, then
by switching to an established benchmark for complex analytical queries. All experi-
ments use MorphStore [HDU+19] – prototype of an in-memory query processing system
for columnar data, as a solid environment for the execution and integration of PCR.

Hardware Setup. The evaluation platform in this section is a two-socket NUMA system
equipped with Intel Scalable Cascade Lake processors, 384 GiB DDR4 DRAM, and 1.5 TiB
Intel Optane DC Persistent Memory. Each processor has 24 physical cores (48 with Hy-
perThreading). All CPUs are pinned to a frequency of 2.6 GHz. The server runs Fedora
27 with kernel version 4.15 and g++ 8.1.0 was used as the compiler.

80 Chapter 4 Replication - Query Processing Perspective

Read-Access Microbenchmarks. First, the impact of the proposed concepts based on
concurrent analytical workloads is shown. More precisely, the experimental setting is the
following: two replicas (e.g., a master and a slave) are placed in memory on two distinct
sockets (as argued in Section 3.4). The logical number of data elements is 100 M per
copy, corresponding to approximately 763 MiB in the uncompressed case. The synthetic
data is generated following two different distributions. The first one yields random 32-
bit values, thus, it is expected to be represented with 32-bit per data element by both
variants of BP, thereby halving the data size. The second one yields 99.9% 8-bit values,
but 0.1% 32-bit values, thus, static BP still requires 32 bit per element, while dynamic
BP can use 8 bits per element in most blocks and only a few blocks require 32 bits per
element, thereby almost quartering the data size. Since these distributions only have
an impact on dynamic BP, they are only distinguished in the experiments involving this
compression algorithm. To evaluate the idea of concurrent read accesses to replicas, the
thread count is varied from 1 to 96, by first deploying the native cores of socket 1 (1 to
24), then adding its hyper cores (25 to 48), further the same scheme is applied to socket
2. Note that for thread counts between 1 and 48, only the single replica local to socket 1
is leveraged for querying following the NMP paradigm [KZZL17, PJHA, KKS+14b]. The
measurements were taken using a 1 minute runtime interval.

Compressed replication. Figures 4.6 (a, d, g) illustrate the influence of compression, where
the static BP (denoted by ST) is used on the aggregate, select and project operators,
respectively. The experiments are executed in the baseline NVRAM-only setup (denoted
by NV). Using the compressed replica format improves the throughput of the aggregate-
operator in terms of queries executed per second on a single socket, e.g., for a thread
count of 48, by 69% compared to the uncompressed case. If compression is applied to the
second replica as well, this increase stays stable, e.g., 64% for 96 threads, and gives almost
a doubled performance improvement compared to the single-socket throughput, which
is also the case for uncompressed measurements. The mixed case, when the first replica
is compressed and the second one is uncompressed, fills the performance gap between
compressed-only and uncompressed-only configurations, e.g., 40% for 96 threads.

For the select-operator, it was ensured that 10% of the data elements match the con-
dition. Here, similar observations hold on a single socket where an increase of 41%,
gained by the compressed data format, is observed for 48 threads. However, the situa-
tion changes when deploying the second socket. Now, only the uncompressed format
still shows a good scalability. However, it obviously has a worse throughput. The com-
pressed case gains only 20% additional improvement compared to the single-socket per-
formance. It could be assumed that the reason is the contention in the cores-to-memory
mesh and memory controllers. Such contention is specific to test hardware and appears
only for complex mixed workloads executed with high concurrency. For instance, the
select-operator mixes sequential reads of primary data with sequential writes of inter-
mediate data (cf. Section 4.1).

With respect to the project-operator, an unsorted input position column ten times larger
than the input data column was generated to induce a random read access pattern on the
latter. The outcome of the corresponding experiment is similar to that of the aggregate-
operator, except for two differences: First, the absolute throughput is generally much
lower, which can be explained by the random read access pattern limits. Second, the
hyper cores do not contribute to throughput scalability on any of the NUMA sockets.
The reason for this is similar to the previous case, as the respective memory bandwidth
is already saturated by the native cores.

Polymorphic replication. Figures 4.6 (b, e) show the impact of polymorphic compression,
meaning that the distinct compression schemes are used for different replicas. Here, the
static BP (denoted by ST) and dynamic BP (denoted by DYN) are employed. The experi-
ment also analyses both data distributions mentioned above and denote the performance

4.2 Polymorphic compressed replication mechanism 81

0

100

200

300

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

Schemes

(a) compressed replication

NV/NV, UN/UN NV/NV, ST/UN

NV/NV, ST/ST

0

500

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

Schemes

(b) polymorphic replication

NV/NV, ST/ST NV/NV, ST/DYN32

NV/NV, DYN32/DYN32 NV/NV, ST/DYN8

NV/NV, DYN8/DYN8

0

100

200

300

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

Schemes

(c) hybrid memory replication

NV/NV, ST/ST NV/D, ST/ST D/D, ST/ST

Figure 4.7: Absolute throughput of single-threaded append workloads for different 2-
replica allocation scenarios.

of dynamic BP on the first (second) one as DYN32 (DYN8). Again, the experiments are ex-
ecuted in the NVRAM-only setup. The project-operator involves random access. Since
this is only supported for static BP, the project-operator is omitted here.

In the polymorphic setting, the aggregate-operator again demonstrates a strong scalabil-
ity feature, as for all deployed schemes, the absolute throughput is nearly doubled with
the socket count expansion. However, for certain scenarios, e.g., those involving static
BP or heavily compressing dynamic BP (DYN8), the socket-local scalability is already
bounded by native cores (24 threads). Generally, the difference in absolute performance
for the same thread counts among the analyzed schemes is just a few percent, except for
the well compressing dynamic BP cases. These setups can outperform the alternatives
by 35%, e.g., for 96 threads. This result is explained by the fact that aggregation needs
to read approximately four times less data for a dynamic BP replica in the DYN8 case
compared to a static BP replica.

The behavior of the select-operator in the mixed case, i.e., one static and one dy-
namic BP replica, in terms of performance and scalability mimics the pure static BP
scenario, while the pure dynamic BP schemes demonstrate slightly lower performance
after 24 threads (native cores of a single socket). It is assumed that this is a consequence
of hardware-specific limitations mentioned above, where the corresponding contention
point is reached faster while decompressing dynamically packed buffers.

Hybrid memory replication. Figures 4.6 (c, f, h) reflect the influence of the memory class
employed as the storage medium for replicas. The experiments use static BP for both
involved replicas, while either one or both of them are placed in DRAM (denoted by D).

For the aggregate-operator, the choice of the memory class has a crucial impact on the
behavior. Accommodating one replica in volatile memory already increases the perfor-
mance by 80% for 96 threads, while the pure volatile scenario yields a 250% speedup. Fur-
thermore, the volatile placements improve the scalability property, as the higher DRAM
bandwidth limits allow more efficient usage of hyper cores, especially when both sockets
are operating.

82 Chapter 4 Replication - Query Processing Perspective

The situation changes dramatically when shifting to the more compute-intensive select-
operator. Here, the memory choice has virtually no impact, as the maximum throughput
varies at most by 10% between different mediums. While the employment of a second
socket is again susceptible to hardware-specific memory controllers contention issue.

The project-operator experiment results are mostly similar to the outcome of the
aggregate-operator. Volatile replicas can lead to an almost doubled throughput. There
is, however, one difference compared to the aggregate-operator: the scalability does not
improve anymore when hyper cores are used. This reflects the fact that random access
patterns, which are exhibited by the projection, scale generally worse than the sequential
access patterns, which dominate in the aggregation, on both mediums.

Write-Access Microbenchmarks. This part analyzes the behavior of replication in the
context of workloads modifying the primary data (cf. Section 4.1). The same data distri-
butions as above are used. Note that the possible memory reallocations were avoided in
these experiments.

Replication Performance. In the following set of experiments, the impact of PCR on write-
intensive workloads is investigated. Essentially, the behavior of the single-threaded
append-only execution is analyzed, since the concurrency control scheme allows only
one modifier at a time. The experiment appends data chunks of an uncompressed size
of 1 MB each and varies the data distributions to support the DYN8 and DYN32 cases.
The query executor was always pinned to socket 1 (reflected by the left side of / in the
inscriptions).

Compressed replication. As demonstrated in Figure 4.7 (a), in the case of two compressed
replicas the throughput of the append-operator significantly outperforms the uncom-
pressed counterpart by approximately two times. This is explained by the fact that the
amount of data to be written is basically halved as a consequence of the static BP com-
pression. Such an increase, however, is not visible in case of a mixed scenario, where the
uncompressed replica is being updated on the remote socket’s memory. Therefore, the
replica propagation suffers more from the delays of inter-socket communication while
transmitting the uncompressed data.

Polymorphic replication. Figure 4.7 (b) shows the difference between employed com-
pressed formats. The main observation here is that static BP should be favored if the
data distribution is not well suited for dynamic BP (DYN32), while the opposite holds
for highly compressable data (DYN8).

Hybrid memory replication. Finally, Figure 4.7 (c) illustrates the influence of the mem-
ory class deployed for replica placement. Surprisingly, the experiment revealed the ad-
vantage of NVRAM for the targeted workload compared to DRAM-resident schemes.
Similar behavior, however, was already detected by another NVRAM replication
study [ZKHL18] and actually is only observed for the single-threaded non-vectorized
scenario. Hence, it could be assumed this is a consequence of the way how DRAM is ac-
cessed by the memory controller comparing to NVRAM and persistent memory buffering
that internally uses a cache line size of 256 bytes [PIL+19].

4.2 Polymorphic compressed replication mechanism 83

100

0

1

2

3

4

0 20 40 60 80 100

S
p

e
e

d
u

p

% of aggregators

Append Combined with Aggregation

NV/NV, UN/UN NV/NV, ST/UN NV/NV, ST/ST

D/D, UN/UN D/D, ST/ST NV/D, ST/ST

Figure 4.8: Relative speedup of a mixed workload with a specified ratio of appenders
and aggregators for various 2-replica schemes and a thread count of 48.

Mixed Workloads. The next experiment is designed to show the impact of the sug-
gested optimizations on more sophisticated workloads when writers and readers coexist.
In particular, 48 threads are ran on a single socket, while the data is replicated on both.
Each thread can execute either the append or the aggregate-operator, whereby each of
them is chosen with a specified probability. Once a thread is done, it chooses a new task
in the same way. The results are reported in Figure 4.8 and show the speedups relative to
the purely uncompressed persistent memory-only setting at the same ratio of appenders
and aggregators. The first observation is that the corner cases, i.e., 0% (append-only) and
100% (aggregate-only) reflect the results of the non-mixed workloads, i.e., either single-
threaded append or 48-threaded aggregation, discussed above. Secondly, one can see
that in the range 20-90% of aggregators all the alternatives behave similar and give 50%
speedup on average. However, there is one outlier: when both replicas are compressed
with static BP and placed in DRAM, an increase of up to 250% is demonstrated within
the same interval.

Star Schema Benchmark (SSB). This paragraph focuses on the SSB [San16], a synthetic
benchmark of 13 complex analytical queries from the business intelligence domain. For
the end-to-end evaluation of the suggested PCR mechanism, an experiment that executes
all 13 queries repeatedly in a random fashion with equal probabilities was designed,
while all the primary data columns are duplicated using the 2-replica variants. To avoid
any possible hardware-induced contention, only the small thread counts of 1 and 3 (for
only single-socket accesses), and 6 threads (for balanced execution with 3 threads per
socket) are deployed. The corresponding measurements are illustrated by Figure 4.9.
Since a typical SSB query consists of dozens of operators and only few of them access
the actually replicated primary data, it is assumed that the impact of PCR mechanisms
is somewhat amortized by the other intermediate steps. Nevertheless, the experiment
reveals that overall improvements of 20%, 25% and 20% are reachable for thread counts
of 1, 3, and 6, respectively, compared to the uncompressed NVRAM-only setting. It is
also clearly visible that any alternative allocation outperforms the basic one. The best im-
provement is given by the compressed DRAM-only scheme, as SSB queries leverage the
higher performance of volatile memory as well as reduced amount of base data. Finally,
for the considered thread counts, a sublinear scalability is reached.

84 Chapter 4 Replication - Query Processing Perspective

4
.9 5
.5

5
.5 5
.6 5
.9

5
.5

1
3

.1 1
5

.2

1
5

.2

1
5

.9

1
6

.5

1
5

.2

2
3

.6

2
4

.4 2
5

.9 2
7

.6

2
8

.5

2
7

.1

0

5

10

15

20

25

30

NV/NV, UN/UN NV/NV, ST/UN NV/NV, ST/ST D/D,UN/UN D/D, ST/ST NV/D, ST/ST

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

Schemes

1 thread

3 threads

6 threads

D - DRAM, NV - NVRAM,

UN - Uncomressed, ST - StaicBP

Figure 4.9: Absolute throughput for SSB queries executed for various 2-replica schemes
and thread counts of 1, 3 (on one socket), and 6 (3 per socket).

4.2.4 Conclusions

Presented above evaluation verified that PCR mechanism is useful and can be employed
in a resiliency-aware columnar data processing system on scale-up hybrid memory ar-
chitectures. This holds not only for basic cases with simple access patterns, but also for
highly complex analytical workloads. Employing PCR, speedups of up to 2.5x could be
achieved compared to the uncompressed NVRAM-only case. However, the benefits de-
pend on the operators, read/write ratio, and the data characteristics. Moreover, with
proposed PCR mechanism, it is possible to lower the amount of NVRAM writes to ad-
dress the endurance problem. Thus, PCR component is able to reduce both the runtime
overhead and the endurance problem caused by the replication, while at the same time
facilitating efficient analytical query processing. And, as such, is a suitable means to effi-
ciently tackle the majority of challenges addressed in the thesis – namely enumerated as
RC2-RC5 in Section 2.6.

4.3 SIMD-MIMD COCKTAIL TO SPEED UP QUERY PROCESSING

Previous section focused on the replica allocation policies and specific data formats to guar-
antee the resilience and speed up query processing, thus mostly relying on the storage
component (essentially the byte-addressable memories) of hybrid memory database sys-
tem. In contrast, this section investigates a compute-enabled optimization of the query
operators. As underlined in Section 2.1.4, all the data (not only replicas) processed by
the database operators in targeted systems are stored on byte-addressable mediums
which are directly exposed to the available CPU instructions. And, as already dis-
cussed in Section 2.3, single instruction multiple data instruction set extensions (SIMD)
is a state-of-the-art optimization technique in in-memory databases. It is most heavily
deployed for columnar data organization and typically applied to isolated query op-
erators [AMF06, PRR15, ZR02, DUP+20, RAB+13, MPM17, LMF+16]. Moreover, use-
fulness of SIMD instructions for physical data replication was already demonstrated in
Section 3.2.1 as a way to reduce the respective runtime overhead.

4.3 SIMD-MIMD cocktail to speed up query processing 85

It is important to stress that all considerations and optimizations suggested further could
be referred to any type of columnar data (according to the underlying system model of
Section 4.1) placed in DRAM or NVRAM and, thus, are not limited to replicas only. In the
following particular emphasis is given to multiple instruction multiple data (MIMD) ex-
ecution. This is motivated by the highly parallel nature of modern analytical processing
systems, that normally serve hundreds of clients concurrently.

Since it is not well yet investigated how such a SIMD-MIMD interplay could be lever-
aged efficiently in hybrid memory systems – on the one hand, this section delivers an
extensive experimental evaluation of typical workloads on columnar data. Moreover, it
shows that the throughput of concurrent queries can be boosted (up to 2x) when com-
bining various SIMD flavors in a multi-threaded execution. On the other hand, to enable
that optimization, adaptive SIMD-MIMD cocktail approach incurring only a negligible
runtime overhead is suggested and evaluated.

4.3.1 Motivation for SIMD-MIMD interplay

As a particular case of the hybrid memory system described in Section 4.1 this part
relies on data analytical tools. Such tools, e.g., interactive dashboards, are usually de-
ployed on top of data systems. The tasks of those data systems are to persistently man-
age the data and to execute simple analytical queries over the data. As recently shown
[VML+19, VHF+18], simple queries like SELECT MIN(a), MAX(b) FROM r are issued mil-
lions of times, e.g., to populate drop down fields in the dashboard. Similarly, queries
like SELECT SUM(a) FROM r WHERE b = const are used to calculate tailored aggregates.
These analytical queries typically access a small number of columns or attributes, but
a high number of rows and are, thus, most efficiently processed using a columnar data
organization [BMK99, BZN05, DUP+20, SAB+05]. Nevertheless, the multitude of these
queries demand two major performance requirements of columnar data systems: (i) a
high query throughput, since analyses are performed by many users concurrently, and
(ii) a low query latency, since analyses are expected to be interactive. Requirement (i)
is commonly addressed by leveraging the well-known multiple instruction multiple data
(MIMD) parallel paradigm, also known as thread-level parallelism (cf. Section 2.1.2).
Here, each query is processed by an individual thread. Addressing requirement (ii) typ-
ically involves the single instruction multiple data (SIMD) parallel paradigm. Here, a sin-
gle SIMD instruction processes multiple data elements at once, thereby increasing the
single-thread performance. Both techniques have been available in x86-processors for
many years, and their combination is a logical necessity to address the need of an overall
high throughput with low query latencies across the board. To satisfy aforementioned
demands scale-up hybrid memory systems is a natural hardware fit. Precisely, they facil-
itate both MIMD and SIMD parallelism, while supporting highly-performant in-memory
only processing (cf. Section 2.1.2). Since SIMD usage in database domain is already dis-
cussed in Section 2.3, next paragraph motivates the deployment of MIMD paradigm.

MIMD Parallel Processing Opportunities. MIMD is a heavily used optimization tech-
nique in in-memory column-stores, whereby two approaches can be distinguished. On
the one hand, MIMD is used to realize a data-partitioned intra-operator parallelism. Here,
every column is partitioned into data chunks that are exclusively processed by one op-
erator. More precisely, every operator is parallelized through a set of spawned sub-
operators [PR20]. These sub-operators are mapped to designated threads and every
thread is assigned to a specific column partition. This OpenMP-like processing style is
typically used for operators with a sequential memory access pattern and does not re-
quire any sophisticated controlling mechanism, since there are mostly no data or control

86 Chapter 4 Replication - Query Processing Perspective

flow dependencies between processed partitions. On the other hand, MIMD is utilized
for a multi-threaded inter-query parallelism. This approach maps one query to one thread at
any point in time and may also employ snapshot isolation (SI) [CG16] on the software level,
to allow for a high degree of parallelism. As discussed in Section 4.1, in SI, queries atomi-
cally take a snapshot of all data columns they need to access during their prologue phase.
From there on, the queries do not see any changes made to those columns after that point
in time. To leverage potential caching of shared data in this case, it is common to batch
a number of queries that are touching the same columns [MGAK16, GMAK14, PAA13].
Then, the execution of this query batch is triggered at once. Usually, all involved query
operators are vectorized using the newest SIMD instruction set extension such as AVX-
512 [PR20]. However, this SIMD-MIMD interplay is sub-optimal as shown in the next
section which focuses exclusively on such inter-query approach to MIMD.

4.3.2 Experimental analysis

After motivating SIMD-MIMD interplay, this section is devoted to its experimental anal-
ysis for concurrent query execution in a hybrid memory system. Based on this exper-
imental analysis, next section subsequently proposes an approach to select a suitable
SIMD-MIMD cocktail for a particular query workload.

Evaluation Setup. The evaluation platform of this section is a two-socket hybrid mem-
ory NUMA system equipped with Intel Xeon Platinum 8276L (Scalable Cascade Lake
family) processors, 384 GiB DDR4 DRAM, and 1.5 TiB Intel Optane DC Persistent Mem-
ory. Only CPUs of a single socket are used, i.e., 18 physical cores (36 with HyperThread-
ing). Besides scalar processing, each core provides the following Intel SIMD instruction
set extensions: SSE with 128-bit, AVX2 with 256-bit, and AVX-512 with 512-bit vector
registers. The server runs Fedora 27 with kernel version 5.4.45 (CPU governor is set to
"performance"), and g++ 8.3.0 with -O3 flag was used for compilation. The NVRAM
chunks are allocated using memory mapped files (PMDK-style) on XFS file system.

The columns in DRAM as well as NVRAM are filled with 100 M 64-bit integer values
(763MiB) uniformly drawn from the interval [1, 1M]. The evaluation focuses on simple
analytical queries which execution plans are compound of the following operators (in-
troduced in Section 4.1): aggregate-operator, select-operator and project-operator.

As already mentioned, the output of each operator is an intermediate result and,
thus, written to DRAM. The input columns could be from DRAM or NVRAM. Aside
from these read-intensive operators, this section also investigates the write-only append-
operator. As commonly done in big data and data warehouse applications, new values
are added to the end of the columns by such append-operator [CD97].

All operators are implemented using the specific SIMD abstraction library TVL for
column-stores [UPD+20]3. Based on that, it is possible to automatically derive variants
for the different Intel SIMD extensions as well as a scalar variant. In the experiments,
both the SIMD and scalar operator variants are investigated. Finally, the performances
are reported in terms of runs per second, i.e., how many times the particular operator was
executed by all threads within 1 second (averaged through a 1 minute execution period).

3https://github.com/MorphStore/TVLLib

4.3 SIMD-MIMD cocktail to speed up query processing 87

Impact of Vectorization. To analyze the interplay of SIMD and MIMD, this part in-
vestigates how operators behave in a concurrent setting, when they are vectorized with
different SIMD extensions. In detail, the scalar execution, AVX2, and AVX-512 extensions
are considered. The results for SSE are omitted, as they mostly exhibit a similar behavior
as scalar or AVX2 vectorization. In addition to the different SIMD variants, the number
of cores (or the number of operators that are executed simultaneously) are also varied.
In particular, the typical use case where all concurrent operators access a single shared
column is examined.

Aggregate-operator: The throughput of this operator is illustrated in Figures 4.10-(a,b)
for base columns stored in DRAM and NVRAM, respectively. The first observation is
that the execution behavior differs significantly for the two memory types. For NVRAM,
the expected behavior is observed – larger registers imply higher performance, even with
increasing thread count. When all cores are active the difference between SIMD variants
is no longer observed, most likely through memory bandwidth saturation. The DRAM
case, while showing significantly higher throughput (reflecting the higher read band-
width limits), yields surprising results. Primarily, one can see that the NVRAM-like large
register’s domination is only visible until a certain concurrency level (12 threads). Af-
terwards, the efficiency leadership is taken over by smaller counterparts, e.g., by scalar
starting from 18 threads. Apart from this, it is observed that performance gains are also
possible until full CPU occupancy of 36 threads. It is assumed that these effects are in-
duced by the caching of large registers and the resulting contention, which could not be
reached in case of NVRAM due to differences between persistent and volatile memory
controllers [IYZ+19] and slower cache replacement/trashing.

Select-operator: The next operator under test is the selection. Here, the two degrees
of selectivity (1 % and 10 % of qualifying elements) are distinguished as they obviously
impact the resulting memory access pattern. The first case is shown in Figures 4.10-(c,d).
Since a sequential access pattern is dominating here, one can mostly confirm the obser-
vations made for aggregation. The most notable difference is the decreased level of per-
formance variations between SIMD variants on DRAM, while the opposite is observed
for NVRAM. AVX-512 loses its domination on volatile memory later, just starting from 24
threads onwards, while the scalar implementation is not able to significantly outperform
AVX2 at all. The situation changes with the increase of the selectivity percentage.

Figures 4.10-(e,f) demonstrate the case of 10%. Now, more data has to be written, which
changes the pressure on the memory controller. This becomes even more severe in multi-
threaded scenarios. As a result, one can see a general performance drop for both memory
types, compared to their 1% counterparts. Furthermore, the impact of the employed
SIMD version to vectorize the operator becomes less significant, however large registers
are still preferable in most cases. Lastly, it is observed that a slight performance increase
is still reachable until full CPU occupancy for both mediums.

Project-operator: The last read-balanced operator in the analysis is projection. Fig-
ures 4.10-(g,h) demonstrate the case of data/positions size ratio equaling to 10%, while
positions are unsorted and uniformly distributed. In such a scenario, the output column
would contain 10 times more elements than the input column. The key difference from a
memory access pattern point of view, compared to the previous cases, lies in the random-
ness of reads when extracting the targeted elements. As already reported by previous re-
search [PR20], such stochastic data accesses can diminish the performance advantage of
using large registers. Indeed, such behavior is confirmed for both memory types and all
concurrency levels. While insignificant advantages of smaller registers could still be de-
tected on DRAM, there is virtually no difference between the SIMD versions on NVRAM.
However, the general performance of persistent memory execution drops reflecting its
pure random read latency and bandwidth limits. These limits also determine the thread

88 Chapter 4 Replication - Query Processing Perspective

▪

0

100

200

300

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) DRAM

1 4 8 12 18 24 28 36

(b) NVRAM
Scalar
AVX2
AVX512

Aggregation

▪

0

100

200

300

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(c) DRAM

1 4 8 12 18 24 28 36

(d) NVRAM Scalar
AVX2
AVX512

Select (1%)

▪

1 4 8 12 18 24 28 36

(f) NVRAM
Scalar

AVX2

AVX512

0

50

100

150

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(e) DRAM

Select (10%)

▪

0

20

40

60

80

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(g) DRAM

1 4 8 12 18 24 28 36

(h) NVRAM
Scalar

AVX2

AVX512

Project

Figure 4.10: The performance of read-intensive operators for various SIMD options and
two memory types.

4.3 SIMD-MIMD cocktail to speed up query processing 89

▪ rite (both non-streaming ng (ST), no NVRAM cache

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
a

n
d

w
id

th
 [

G
iB

\s
]

#threads

Scalar AVX2_Stream

AVX2 AVX512_Stream

AVX512

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
a

n
d

w
id

th
 [

G
iB

\s
]

#threads

(a) DRAM

(b) NVRAM

Append

Figure 4.11: The performance of the append-operator for various SIMD options and both
memory types.

counts after which performance gains are not feasible any more (e.g., from 18 threads for
NVRAM).

Append-operator: As already mentioned, with regards to data modifications, this section
focuses exclusively on the append-operator. The respective experiments are illustrated by
Figures 4.11-(a,b). Here, the synthetically generated data from CPU registers is forwarded
to be sequentially stored at the end of the targeted columns, whereby each thread appends
to an individual column. Neither cache leveraging nor memcpy() operations are involved.
The first observation is that there is a huge difference between the two memory types, not
only in terms of performance. While DRAM prefers AVX2 as the fastest write mechanism
for a moderate concurrency level, there is almost no difference between SIMD flavors on
NVRAM. However, what really matters for NVRAM is the streaming style [Int18] of
store operations, as they are able to deliver up to 5x better throughput (e.g., for a thread
count of 3), compared to the non-streaming counterparts. Another crucial result of these
experiments is that there are break-even points where one implementation hands over
its leadership to another. For instance, from 10 threads onward, AVX-512 with streaming
store is the fastest for DRAM. Moreover, there are most-performing points after which
the performance starts to drop. For example, from 4 threads onward, the performance of
streaming stores for NVRAM deteriorates.

SIMD-heterogeneous MIMD Execution. Since the underlying system model assumes
the use of MIMD in form of an inter-query parallelism, it is possible to use distinct SIMD
extensions (or scalar processing) per thread, e.g., simultaneously run scalar and AVX-
512 schemes, possibly on the same data columns. This combination of heterogeneous

90 Chapter 4 Replication - Query Processing Perspective

0

200

400
(b) DRAM, Cocktail

Scalar/AVX512 AVX512/Scalar Scalar/AVX2

AVX2/Scalar AVX2/AVX512 AVX512/AVX2

0

100

200

300

400

T
h

ro
u

g
h

p
u

t[
R

u
n

s/
s]

(a) DRAM, Round Robin

Scalar AVX2

AVX512 Scalar~AVX2

Scalar~AVX512 AVX2~AVX512

0

50

100

150

4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(c) NVRAM, Round Robin

0

50

100

150

24 28 36#threads

(d) NVRAM, Cocktail

Figure 4.12: The performance of aggregate-operators for various homogeneous and
mixed SIMD options.

4 8 12 18 24 28 36

(b) NVRAM

Scalar AVX2

AVX512 Scalar/AVX512

AVX512/Scalar AVX512~Scalar

0

50

100

150

200

250

300

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) DRAM

Figure 4.13: The performance of select-operators (1%) for various homogeneous and
mixed SIMD options.

SIMD-MIMD parallelization is worth investigating, as the usage of AVX-512 registers for
multiple threads leads to a reduction of the CPU’s clock frequency and, thus, diminished
performance gains. Hence, this part is devoted to the respective experimental examina-
tion.

The evaluation design space involves all distinct combinations of available SIMD exten-
sions (or scalar processing) per thread, multiplied by the number of used threads. For il-
lustration purposes, the analysis is limited to a selection of options, combining two SIMD
flavors at a time. The following abbreviations for such shaking mechanisms are used:

SIMD1~SIMD2: means that the employed cores are evenly (e.g., one-by-one) distributed
between two SIMD options in a round robin (RR) or alternating fashion.

SIMD1/SIMD2 is the combination that could be logically called as a sliced cocktail. It
devotes the first half of all employed CPUs, i.e., CPU1 through CPU18 or all physical cores,
to the SIMD1 vectorization flavor (reflecting the "bottom" slice). If more than 18 cores
are used for the query execution, the SIMD2 flavor is filled on top for these additional
resources. This allows to vary the ratio between both flavors.

Aggregate-operator: Figures 4.12-(a-d) show the results for both RR and cocktail style
on both DRAM and NVRAM. The thread counts below 24 are omitted for the latter,

4.3 SIMD-MIMD cocktail to speed up query processing 91

0

20

40

60

80

100

24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) 1 shared

Scalar AVX512

24 28 36

(b) 2 shared

Scalar/AVX512 AVX512/Scalar

24 28 36

(c) 4 shared

Scalar~AVX512

24 28 36

(d) 18 shared

Figure 4.14: DRAM performance of aggregate-operators for various SIMD options and
different # shared columns.

as they perform identically to the previously shown pure SIMD variants. Most impor-
tantly, it is revealed that the homogeneous SIMD alternatives (depicted as pattern filled
bars) can be outperformed by the suggested combinations for all considered experimen-
tal setups. However, the particular throughput improvement varies depending on the
shaking mechanism (i.e., RR or cocktail), concurrency level and memory class. For in-
stance, on DRAM, for an intermediate level of CPU occupancy (18 threads) the round
robin "Scalar~AVX2" shaking yields a 29% increase compared to the best (Scalar) homo-
geneous approach, while NVRAM favors the "Scalar~AVX512" scheme with 5% speedup
(over "AVX512") for the same case. For higher degrees of concurrency, proposed cocktail
shaking mechanism shows a surprising behavior. On DRAM, for 24 concurrent threads,
"Scalar/AVX512" is able to double the performance of the pure AVX-512 implementation.
Interestingly, the opposite approach "AVX512/Scalar" is by far not the best on volatile
memory, while it is the superior scheme for persistent memory - delivering a 10% im-
provement for 36 threads.

Select-operator: Comparable behavior is detected for the select-operator, but only for
small selectivities, i.e., only a few percent. While varying the selectivity on NVRAM, it is
observed that no throughput increase through shaking SIMD flavors was possible for any
selectivity higher than 1%. It is assumed that this is due to lower performance of writes
that are proportional to the selectivity degree. Thus, Figure 4.13 depicts the measure-
ments for 1% selectivity on both memory types. Though the mixed performance gains
are lower than for the aggregation-operator, they still provide significant improvement,
e.g., 25% for "Scalar/AVX512" compared to the best homogeneous option on DRAM for
24 threads.

Impact of number of shared columns: These facts lead to the assumption that such
unexpected performance gains most likely depend on the way how various SIMD ex-
tensions interact with the caching subsystem, which can in turn favor sophisticatedly
downclocked physical or hyper cores. Thus, the actual impact of caching via experi-
ments by using different numbers of very large shared columns is investigated. The
aggregation-operator on volatile memory is depicted by Figures 4.14-(a-d) for a single,
two, four, and eighteen shared columns, respectively. The actual data size was tripled,
i.e., increased to 2.3 GiB per column, to reduce spatial locality influence. The previously
detected behavior of SIMD mixtures (e.g., possible superior performance) combined with
sequential access operators is preserved for up to 18 shared columns per 36 queries, i.e.,
1 column is shared by 2 threads. However, the level of throughput diversity between
mixed schemes is decreasing with the number of shared columns. With 18 columns, only
the round robin scheme considerably outperforms the homogeneous vectorization and,
thus, yields a performance increase. The data access pattern exhibits crucial importance
as well, as for random-read or heavily read-write mixed operators (e.g., project or se-
lect with a high degree of selectivity), the actual mixed performance increase tends to
disappear even for the single shared data scenario.

92 Chapter 4 Replication - Query Processing Perspective

Batch queries

SIMD Ops

Profiling

Calibration

hours, 1000s of profiles
(few KiB)

Optimization

<1μs

Execution

Up to 2x
speedup

SSE

AVX2

AVX-512

Scalar

Data
Placement

DRAM

NVRAM

Traditional Approach

Online switch for
dominating operator

 +

AVX-512

SIMD-MIMD Cocktail

Figure 4.15: Deployment model (yellow box) of the adaptive SIMD-MIMD vectorization
cocktail.

Conclusions. From the experimental analysis of typical data intensive workloads the
following important conclusions are drawn: (1) Given the assumptions of the data pro-
cessing system model, the employment of SIMD parallelism can significantly improve
the performance compared to a scalar execution. (2) However, it is important to carefully
select among the available SIMD options (including scalar processing) to reach the high-
est performance. A naïve strategy of always selecting the largest registers, i.e., AVX-512,
may be even harmful compared to the scalar execution. (3) Furthermore, even within
one instruction set, different ways to store data (e.g., streaming) can have a significant
impact. (4) The best-performing SIMD option depends on the level of concurrency, the
memory type, and the operator (or access pattern). (5) The newly discovered effects of
SIMD-cocktails offer a great opportunity for performance optimization, and the follow-
ing section presents a strategy to leverage them effectively.

4.3.3 Optimizing SIMD-MIMD interplay

As described above, batching of queries in a multi-threading environment is a common
optimization technique to benefit from caching effects. This batch of queries is executed
at once and all operators are typically vectorized using one specific SIMD extension such
as AVX-512 in DRAM as shown in Figure 3.11. However, as clearly shown in the pre-
vious section, the choice of the optimal SIMD version applied for operator vectorization
depends on various factors such as the degree of MIMD parallelism, memory type, ac-
cess pattern and level of shared (and, therefore, potentially cached) data processing. In
particular, Figures 4.11, 4.12, and 4.13 indicate that some vectorization schemes exhibit
a significantly higher performance compared to others for certain fixed thread counts.
Based on those observations, this section now proposes and evaluates an optimization
design for an online decision mechanism as shown in Figure 4.15 to shake the best fitting
cocktail for the current conditions at runtime.

4.3 SIMD-MIMD cocktail to speed up query processing 93

Table 4.1: An example profile for <aggregate> on <NVRAM> @ <24> threads over <1>
shared column.

SIMD Version #Core Begin #Core End Round Robin

Scalar 1 18 No
AVX2 – – –

AVX-512 19 24 No

Optimization Design. Proposed above online decision mechanism extends the existing
query optimizer of a database system. The main task of a query optimizer is to translate
a descriptive SQL query into an efficient query execution plan consisting of several op-
erators. To shake the best fitting cocktail for the operators under the current conditions,
suggested approach consists of the following three components:

Profiles. Similarly to the optimization design of Section 3.2.2 the profiling data is used
to abstract optimizations of specific hardware platform. The profiles characterize the be-
havior of particular operators (or access patterns). Such platform-dependent profiles are
generated once at deployment time and provide information about the performance of
the individual vectorization schemes (either homo- or heterogeneous) in the context of
various concurrency levels and data set configurations. The profiles build the founda-
tion for the adaptive optimization mechanism. Essentially, one profile per combination
<operator> x <medium> x <#threads> x <#shared columns> is retrieved. For illustra-
tive purposes, in the following discussion stays with the measurements of Section 4.3.2,
which provide it with profile information for the test system. The tabular format is used
as shown in Table 4.1, which reflects the case of 24 threads in Figure 4.12-(b). Thus, a sin-
gle profile consists of several rows corresponding to the available SIMD extensions in the
system, while each row specifies the enumeration interval of cores that has to run accord-
ingly vectorized queries/operators to produce an optimal cocktail. The example in Table
4.1 tells database that it should use scalar processing for threads 1–18 and AVX-512 for
threads 19–24. Furthermore, the profile indicates that the cocktail-style is to be favored
(for round robin, the corresponding cell would contain the "Yes" indicator). This format
allows for profiling of multiple SIMD versions (e.g., more than two) used in the cocktail.

Model. As high performance is among the highest priorities of hybrid memory database
systems, the switching algorithm is required to be very lightweight to keep its overhead
as low as possible. Due to this essential requirement, a small lookup formula/function
was adopted as a model for the selection algorithm. This formula is derived based on
the measurements obtained at deployment time. Essentially it returns the profile best fit-
ting to the current conditions, and is defined as: Profile = F(<memory>, <operator>,
<#threads>, <#shared columns>).

Online Switching. The actual online switching component leverages the information
about the current workload (or batch) including queries, memory type and the data set
configuration to calculate the aforementioned formula and navigate to the recommended
profile. This step imposes only a few microseconds of fixed runtime overhead and thanks
to the batching, so there is no need to carry out online monitoring. The batches are
executed one after the other and contain all necessary information. Subsequently, that
profile is used to find out the optimal SIMD-configuration of vectorized operators to be
executed by MIMD-parallel queries. Here, by workload information the optimization ap-
proach understands the dominating operator (in terms of runtime) within the currently
executed query and data set, which provides information about the number and size of
shared data columns and the respective memory type. The complete procedure can be
executed in user-space and is possible with user-space knowledge, yet it imposes only
negligible overhead due to its simplicity and is usually completely amortized by the im-
provements of the query execution runtime.

94 Chapter 4 Replication - Query Processing Perspective

Implementation. A proof-of-concept of the switching approach was implemented us-
ing the columnar query engine MorphStore [DUP+20, HDU+19]. The schematic view of
the implementation is shown in Figure 4.15. The advantage of using MorphStore is that
its operators are implemented in a hardware-oblivious way using the vector abstraction
library TVL [UPD+20]. Thus, each operator implementation can automatically be spe-
cialized to different SIMD extensions, which is required for the overall approach. In the
proof-of-concept, all alternative vectorized operators that can be possibly chosen are pre-
compiled as isolated functions that can be called by the online decision mechanism. As
illustrated in Figure 3.11, the concurrent queries accessing the same base columns are
batched [MGAK16, GMAK14, PAA13].

Such a batch determines the characteristics of the workload (the concurrency level, mem-
ory type, and the dominating access pattern (i.e., operator)) that are given as parameters
or can be extracted during query compilation phase without any significant overhead.
A decision formula as the switching model was generated based on the profile informa-
tion. Obviously, this model is platform-dependent and needs to be calibrated for different
hardware platforms. However, this calibration has to be done only once per platform.

Evaluation. To show the efficiency and applicability of suggested optimization, this
part now presents selective experimental results and discusses the deployment costs.
The evaluation setup is the same as in Section 4.3.2, but targets more complex scenarios,
not just single operators. Thus, the behavior of adaptive SIMD-conscious vectorization
is analyzed exemplified by three selected queries similar to those mentioned in Section
4.3.1:

(1) SELECT SUM(a) FROM r

This query resembles the basic aggregation case involving a single shared column ana-
lyzed in Section 4.3.2.

(2) SELECT SUM(a), SUM(b), SUM(c), SUM(d) FROM r

Here, the aggregated data set is extended to four separate equally sized columns being
scanned in a sequence in accordance with the column-at-a-time processing model.

(3) SELECT SUM(a) FROM r WHERE x < const

This query consists of three operators: selection, projection and aggregation. Both selec-
tion and projection (of different instances of this query) access shared base data, however,
the superior domination of selection was ensured by using a selectivity of 1% on a large
base column.

The resulting performance of the optimization mechanism is reflected by Figure 4.16 for
both mediums. Here, for query (1) the decision mechanism is always able to select the
best SIMD vectorization scheme among the ones considered (Figures 4.16-(a,b)). This is,
however, expected as the query execution can be exactly mapped to the aggregation pro-
file and demonstrates the respective performance. The situation slightly changes with
regard to query (2) which features its specific data set, while preserving the absolute
domination of the aggregation-operator. According to the optimization assumption, the
switching model again deploys the profile of elementary aggregation. The respective de-
cisions result in a strong correlation with the best reachable performance on both DRAM
and NVRAM (Figure 4.16-(c,d)). Although the actual best measured strategy is not al-
ways selected by the model (e.g., for thread count 4, 8 and 36 on DRAM), the respective
performance losses compared to the optimum do not exceed a few percents. Finally, the

4.3 SIMD-MIMD cocktail to speed up query processing 95

▪
▪

4 8 12 18 24 28 36

(b) NVRAM

Scalar
AVX512
Scalar/AVX512
AVX512/Scalar
Scalar~AVX512

0

100

200

300

400

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) DRAM

(1) SELECT SUM(a) FROM r

- chosen

- best

▪
▪

4 8 12 18 24 28 36

(d) NVRAM

0

20

40

60

80

100

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(c) DRAM

(2) SELECT SUM(a), SUM(b), SUM(c), SUM(d) FROM r

▪
▪

4 8 12 18 24 28 36

(f) NVRAM

0

20

40

60

80

100

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(e) DRAM

(3) SELECT SUM(a) FROM r WHERE x < const

Figure 4.16: The performance of test queries indicating best measured and the selected
SIMD combination.

96 Chapter 4 Replication - Query Processing Perspective

behavior of query (3) is presented by Figures 4.16-(e,f) for volatile and persistent mem-
ory, respectively. As mentioned before, the selection part of this data processing task
dominates within its runtime and, therefore, the optimization model deploys the profile
of elementary selection (i.e., extracted from Figures 4.10-(c,d)), the remaining operators
follow their default SIMD policies. The DRAM case demonstrates a high hit rate with the
best measured option (only thread counts 1, 28 and 36 are mispredicted) with a worst-
case loss of 10% compared to the best setting (e.g., for 28 threads). Nevertheless, the
approach chosen in this case still outperforms the best respective basic scheme (Scalar)
by 11%. The NVRAM-backed adaptive selection faces much worse correlation with the
optimal measured scheme. However, this is not an issue for this scenario as all involved
SIMD schemes demonstrate roughly similar throughput here, due to the slower nature
of persistent memory. Thus, the under-gained performance does not exceed 7% (except
for a single outlier at 36 threads).

Deployment Costs. The deployment of the proposed optimization imposes the follow-
ing costs: (i) implementation of alternatively SIMD vectorized operators (though possibly
automated using the TVL); (ii) one-time profile calibration overhead at system deploy-
ment phase – several hours and a few KiB of memory space to store thousands of mea-
sured profiles; (iii) a few microseconds of runtime overhead spent in the model for online
switching.

4.3.4 Conclusions

Based on the presented evaluation, it could be concluded that suggested adaptive SIMD-
conscious vectorization approach is applicable and useful. In nearly all examined cases,
it is able to suggest either the optimal or an only slightly sub-optimal solution. While
the performance delivered that way is able to considerably outpace the static homoge-
neous strategies (e.g., always using AVX-512), the runtime overhead is negligible. It is
important to note that this approach remains useful even if only basic SIMD vectoriza-
tion schemes are explicitly allowed as, in principle, it will just limit respective decision
making algorithms to the corresponding profiles (with the goal to select the best among
the homogeneous options).

Therefore, for both such settings the SIMD-MIMD cocktail optimization is able to speed
up the query processing for targeted scenarios on both DRAM- and NVRAM-resident
data (obviously applicable not only to replicas) and, thus, contribute to the solution of
the overall challenge RC5 addressed in the thesis (cf. Section 2.6).

4.4 SUMMARY

This chapter contributed two innovative approaches which allow to employ the software-
managed physical replication not only for the base data protection, but also for the query
processing operations. According to the provided discussion, this opportunity is now en-
abled by the specific properties of scale-up hybrid memory systems. Essentially, such ap-
plications are able to persistently store and to efficiently process data exclusively in byte-
addressable memory, which is in turn physically distributed over distinct NUMA sock-
ets. Those properties activate the immediate on-demand usage of the replicated informa-
tion within the single-box machine without any significant buffering and I/O overhead.
Based on that consideration, this chapter started with the description of the underlying

4.4 Summary 97

data processing system model (cf. Section 4.1), and then proposed two options for the
replication-related query execution optimizations.

The first contributed approach, that was called polymorphic compressed replication (PCR)
(Section 4.2), leveraged the storage component (via diversity in data layouts). This mech-
anism united four optimization concepts that allowed not only to reduce the replication
space overhead but also to exploit the replicas for analytical processing: (i) concurrent
read access to replicas, (ii) compressed replication, (iii) polymorphic replication, and (iv)
hybrid memory placement. Essentially, PCR represents the replicas using lightweight
compression algorithms to reduce NVRAM writes, while different compressed formats
are supported for the replicas of a single column to facilitate different database operations
during query processing. Thus, the overall challenges RC2-RC5 of this thesis were ad-
dressed here. Furthermore, the suggested ideas and optimizations were illustrated based
on the proof-of-concept columnar data processing system and integrated as a separate
abstract user-space library. Presented evaluation verified that PCR mechanism is useful
and can be beneficially employed in a resiliency-aware columnar data processing system
on targeted architectures. That was demonstrated not only for the basic cases with sim-
ple access patterns, but also for highly complex analytical workloads. In particular, PCR
provides speedups of up to 2.5x compared to the state-of-the-art execution. However, the
benefits depend on the operators, read/write ratio, and the data characteristics. More-
over, PCR component was able to reduce both the runtime overhead and the endurance
problem caused by the replication, while at the same time facilitating efficient analytical
query processing and improving hardware utilization.

The second key contribution of this chapter is the technique called SIMD-MIMD cocktail
(cf. Section 4.3). This approach proposed to shift optimization focus from the storage
side to its compute counterpart (via diversity in available vectorized instruction set ex-
tensions). As all the data (including replicas) processed by the database operators in
targeted systems is stored in byte-addressable memory – it is directly accessible by the
available CPU instructions. This includes the data level parallelism or single instruction
multiple data (SIMD) extensions, which could be now deployed for optimization goals
similarly to DRAM-backed in-memory databases (to tackle the overall research chal-
lenge RC5). Thus, this chapter also investigated the usefulness of SIMD instructions
for query processing on replicas (and not only). It provided the detailed experimental
analysis of the vectorized behavior of typical database operators and inferred several im-
portant design decision rules to be respected when leveraging SIMD in hybrid memory
database systems. Furthermore, those observations inspired a novel concurrent SIMD-
heterogeneous query execution model (SIMD-MIMD cocktail) to overcome the traditional
SIMD-homogeneous performance in MIMD-concurrent environments. This cocktail ap-
proach suggested to mix various SIMD flavors for vectorization of concurrent queries
executed on shared data. As it was subsequently evaluated – speedups of up to 2x are
achievable that way, compared to SIMD-homogeneous execution. Similarly to the first
optimization, respective proof-of-concept component was evaluated within MorphStore
– a prototype of an in-memory query processing system for columnar data developed at
the Chair of Databases of the TU Dresden.

98 Chapter 4 Replication - Query Processing Perspective

5
CONCLUSION

5.1 Summary

5.2 Future research directions

The in-memory database systems adopting a columnar storage model play a crucial role
with respect to both analytical and transactional data processing. While information is
completely kept in-memory by these systems for efficiency, data has to be stored on a non-
volatile medium for persistence and fault tolerance as well. Traditionally, slow block-
level devices like HDDs or SSDs are used which, however, can be replaced by fast byte-
addressable NVRAM nowadays. Thus, hybrid memory systems consisting of DRAM
and NVRAM offer a great opportunity for column-oriented database systems to persis-
tently store and to efficiently process data exclusively in main-memory. However, pos-
sible DRAM and NVRAM failures still necessitate the protection of primary data. While
data replication is a suitable means, it drops the performance and stresses the NVRAM
capacity and endurance issues through increased write activities. Therefore, the research
of how to optimize data replication for modern highly scalable machines is plentiful.
Moreover, it suggests best practices not only for reduction of replication overheads, but
also for leveraging replication for query processing needs.

5.1 SUMMARY

This thesis investigated the problem of data reliability in scope of novel scalable hy-
brid memory database architectures and its implications for the query processing by
respective systems. Therefore, the required hardware and software foundations affect-
ing hybrid memory databases are provided in Chapter 2. This also included low-level
performance evaluation of NVRAM as a key enabler of single-level hybrid memory lay-
out. Further, the ultimate need for the protection of NVRAM-resident data was moti-
vated and a survey on potentially applicable resilience techniques was provided. As
a result, the software-managed data replication was chosen as the most applicable ap-
proach. However, the evaluation of respective state-of-the-art implementation demon-
strated prohibitively high runtime and space overheads motivating further research on
possible optimizations (addressed in Chapter 3).

Chapter 4 elaborates on conceptual ideas that suggest to efficiently use compute node-
local physical replication not only for data protection, but also for query processing
needs. This is inspired by the specific properties of scale-up hybrid memory database
systems that are able to persistently store and to efficiently process data exclusively in
byte-addressable memory, which is in turn distributed over distinct NUMA sockets. Fur-
ther, proposed in this part mechanisms and optimizations are illustrated based on the
proof-of-concept columnar data processing system that incorporates the ideas of com-
pressed replication and NUMA-aware replica placement of Chapter 3, as well. This ap-
proach was called polymorphic compressed replication (PCR) and integrated as an abstract
user-space library into MorphStore – a prototype of an in-memory query processing sys-
tem for columnar data developed at the Chair of Databases of the TU Dresden. PCR rep-
resents the replicas using lightweight compression algorithms to reduce NVRAM writes,
while different compressed formats are supported for the duplicates of a single column
to facilitate different database operations during the query processing. Based on this pro-
totype, the conducted experiments shown the effectiveness (e.g., execution speedups of
up to 2.5x) of the proposed storage-centric techniques.

Up to this point, the investigations focused on the replica allocation policies and spe-
cific data formats to guarantee the resilience and speed up query processing, thus mostly
relying on the storage component of hybrid memory database system. To be complete,
Chapter 4 also researched the compute-enabled optimization of the query processing on
replicated data. Namely, it shifted the research focus to single instruction multiple data
instructions set extensions (SIMD) and studied how they could be leveraged efficiently

100 Chapter 5 Conclusion

in MIMD-concurrent environments (natural for scale-up systems). Subsequent experi-
ments delivered the detailed evaluation of such a SIMD-MIMD interplay. This examina-
tion revealed that the performance of concurrent query execution in certain cases could
be boosted (up to 2x) when mixing various SIMD flavors, compared to the traditional
SIMD-homogeneous strategy. That observation was further used to implement a proof-
of-concept optimization system SIMD-MIMD Cocktail within MorphStore framework.

5.2 FUTURE RESEARCH DIRECTIONS

This section aims to indicate the possible directions for the further research fitting into the
expanded scope of this thesis. The main goal, already achieved by this study, is provision
of the efficient and flexible data replication mechanisms for hybrid memory databases
within the compute node-local scenario (resolved challenges RC1–RC5). Thus, they tackle
the reliability and respective performance issues within the single-socket machines. To
achieve strongest resiliency and support high availability (cf. Section 2.5) in case of com-
plete server crash scenario – it is natural to consider the remote machine expansions of
the proposed techniques and solutions (cf. Chapter 3 and Chapter 4).

The state-of-the-art network interface that is exploited in in-memory database systems
is remote direct memory access (RDMA) [ZYSK19]. Such RDMA-enabled network con-
trollers feature higher performance compared to the traditional Ethernet solutions. This
is achieved via direct memory accesses that bypass CPU and avoid unnecessary buffering
throughout the traditional data transfer stack. Moreover, RDMA technology supports
the byte-addressable remote data transfers that makes it particularly advantageous in
the field of hybrid memory databases (where all data is stored on byte-addressable medi-
ums). Therefore, the RDMA-enabled connection is considered to be the primary interface
for high-speed transmissions in such systems. Particularly, these interconnects could be
leveraged for the remote machine replication scenario [TG19, ZYSK19, WJP17].

When applying ideas of this thesis to the compute node-remote replication case, two
important research challenges could arise:

1. The first prospective challenge is the provision of low-overhead mechanism that en-
sures the immediate persistence of the replicated data on the remote machine and,
thus, guaranties the data durability and strong consistency. As with the current
RDMA API (verbs) it could be non-trivial or prohibitively expensive to ensure at
fine granularity level that the transmitted data reached the remote persistent do-
main [DLL+21, KAK20].

2. The second future research challenge is concerned with the compressed replica for-
mats of PCR concept. The idea here is to push the (de)compression operations down
to the RDMA-enabled network controllers. Such approach potentially could free
CPU for other useful workloads, however it would require advanced networking
hardware capable of doing necessary for (de)compression computational operations
on-the-fly while transmitting the data (e.g., smart network cards or programmable
switches) [TMS20, TSJ+21].

5.2 Future research directions 101

102 Chapter 5 Conclusion

BIBLIOGRAPHY

[AAP+17] Raja Appuswamy, Angelos Anadiotis, Danica Porobic, Mustafa Iman, and
Anastasia Ailamaki. Analyzing the impact of system architecture on
the scalability of OLTP engines for high-contention workloads. PVLDB,
11(2):121–134, 2017.

[ABH+13] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and
Samuel Madden. The design and implementation of modern column-
oriented database systems. Found. Trends Databases, 5(3):197–280, 2013.

[ALR+17] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze,
Carsten Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad
Sharique, Sebastian Seifert, Surendra Vishnoi, Daniel Booss, Thomas Peh,
Ivan Schreter, Werner Thesing, Mehul Wagle, and Thomas Willhalm. Sap
hana adoption of non-volatile memory. Proc. VLDB Endow., 10(12):1754–
1765, 2017.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, 2004.

[AMF06] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating com-
pression and execution in column-oriented database systems. In SIGMOD,
pages 671–682, 2006.

[APP16] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-Behind Logging.
PVLDB, 10(4):337–348, 2016.

[AvR18] Alfons Kemper Thomas Neumann Takushi Hashida Kazuichi Oe
Yoshiyasu Doi Lilian Harada Sato Mitsuru Alexander van Renen, Vik-
tor Leis. Managing Non-Volatile Memory in Database Systems. In SIG-
MOD, pages 691–706, 2018.

[BAKS16] Shahriar Bagheri, Alireza Akhoondi Asadi, Witold Kinsner, and Nariman
Sepehri. Ferroelectric random access memory (fram) fatigue test with ar-
duino and raspberry pi. In 2016 IEEE International Conference on Electro
Information Technology (EIT), pages 0313–0318, 2016.

[BCB16] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm.
Makalu: Fast Recoverable Allocation of Non-volatile Memory. In OOP-
SLA, pages 677–694, 2016.

[BHF09] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-based
order-preserving string compression for main memory column stores. In
SIGMOD, pages 283–296, 2009.

103

[BKM08] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the
memory wall in monetdb. Commun. ACM, 51(12):77–85, 2008.

[BLP11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core cpus. In SIGMOD, pages
37–48, 2011.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database archi-
tecture optimized for the new bottleneck: Memory access. In VLDB, pages
54–65, 1999.

[Bon00] André B. Bondi. Characteristics of scalability and their impact on per-
formance. In Proceedings of the 2nd International Workshop on Software and
Performance, WOSP ’00, page 195âĂŞ203, New York, NY, USA, 2000. Asso-
ciation for Computing Machinery.

[BTAÖ15] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. Main-
memory hash joins on modern processor architectures. IEEE Trans. Knowl.
Data Eng., 27(7):1754–1766, 2015.

[Byu10] S. Byun. A design of raid-1 storage using hard disk drive and flash mem-
ory drive. 2010.

[BZN05] Peter A. Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-
pipelining query execution. In CIDR, 2005.

[Car15] P. A. Carter. Implementing log shipping. 2015.

[CB18] Hyunkyoung Choi and Hyokyung Bahn. Accelerating storage system per-
formances with nvram cache by considering storage access characteristics.
In 2018 5th International Conference on Information Science and Control Engi-
neering (ICISCE), pages 107–111, 2018.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehous-
ing and OLAP technology. SIGMOD Record, 26(1):65–74, 1997.

[CDN11] Surajit Chaudhuri, Umeshwar Dayal, and Vivek R. Narasayya. An
overview of business intelligence technology. Commun. ACM, 54(8):88–98,
2011.

[CG16] Andrea Cerone and Alexey Gotsman. Analysing snapshot isolation. 07
2016.

[CGN11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking Database
Algorithms for Phase Change Memory. In CIDR, pages 21–31, 2011.

[CJ15] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-Volatile Main Mem-
ory. PVLDB, 8(7):786–797, 2015.

[CK85] George P. Copeland and Setrag Khoshafian. A decomposition storage
model. In SIGMOD, pages 268–279, 1985.

[CLX+13] Yuanyuan Cui, M. Lou, Jianqing Xiao, Xunying Zhang, Senmao Shi, and
Pengwei Lu. Research and implementation of sec-ded hamming code al-
gorithm. 2013 IEEE International Conference of IEEE Region 10 (TENCON
2013), pages 1–5, 2013.

[Com] LZ4 Community. Lz4. https://lz4.github.io/lz4/.

104 BIBLIOGRAPHY

[DBY+19] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. Per-
formance and protection in the zofs user-space nvm file system. In SOSP,
pages 478–493, 2019.

[DHHL17] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
Lightweight data compression algorithms: An experimental survey (ex-
periments and analyses). In EDBT, pages 72–83, 2017.

[DHL15] Patrick Damme, Dirk Habich, and Wolfgang Lehner. A benchmark frame-
work for data compression techniques. In TPCTC, pages 77–93, 2015.

[Dim21] Ultimate memory guide. https://technick.net/guides/hardware/umg/
05_001/, 2021.

[DKB+19] Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. Hyrise re-engineered: An extensible
database system for research in relational in-memory data management.
In EDBT, pages 313–324, 2019.

[DKK+14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for
persistent memory. In EuroSys, pages 15:1–15:15, 2014.

[DLL+21] Zhuohui Duan, Haodi Lu, Haikun Liu, Xiaofei Liao, Hai Jin, Yu Zhang,
and Song Wu. Hardware-supported remote persistence for distributed
persistent memory. New York, NY, USA, 2021. Association for Computing
Machinery.

[Don15] V. L. V. Donselaar. Low latency asynchronous database synchronization
and data transformation using the replication log. 2015.

[DPVJ14] Rohit Dhamane, Marta Patiño-Martínez, Valerio Vianello, and Ricardo
Jiménez-Peris. Performance Evaluation of Database Replication Systems.
In IDEAS, pages 288–293, 2014.

[DS09] R. Davis and K. Simmons. Database mirroring overview. 2009.

[DUH+19] Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, and
Wolfgang Lehner. From a comprehensive experimental survey to a cost-
based selection strategy for lightweight integer compression algorithms.
ACM Trans. Database Syst., 44(3):9:1–9:46, 2019.

[DUP+20] Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause,
Dirk Habich, and Wolfgang Lehner. Morphstore: Analytical query engine
with a holistic compression-enabled processing model. Proc. VLDB Endow.,
13(11):2396–2410, 2020.

[ea19] Patrick Damme et al. Lightweight compression benchmarking and selec-
tion, 2019.

[EKA19] Katembo Ezechiel, Shri Kant, and Dr Agarwal. A systematic review on
distributed databases systems and their techniques. Journal of Theoretical
and Applied Information Technology, 96, 01 2019.

[FKV+16] Xuanyao Fong, Yusung Kim, Rangharajan Venkatesan, Sri Harsha Choday,
Anand Raghunathan, and Kaushik Roy. Spin-transfer torque memories:
Devices, circuits, and systems. Proceedings of the IEEE, 104(7):1449–1488,
2016.

BIBLIOGRAPHY 105

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C-21(9):948–960, 1972.

[Fuj18] Kazuhisa Fujimoto. Replication. In Ling Liu and M. Tamer Özsu, editors,
Encyclopedia of Database Systems, Second Edition. Springer, 2018.

[GBB20] Mathias Gottschlag, Peter Brantsch, and Frank Bellosa. Automatic core
specialization for AVX-512 applications. In SYSTOR, pages 25–35, 2020.

[GH93] M.D. Godfrey and D.F. Hendry. The computer as von neumann planned
it. IEEE Annals of the History of Computing, 15(1):11–21, 1993.

[GM09] Hector Garcia-Molina. Database systems: The complete book, 2009.

[GMAK14] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald
Kossmann. Shared workload optimization. Proc. VLDB Endow., 7(6):429–
440, February 2014.

[Goo19] Google. Snappy - a fast compressor/decompressor, 2019. https://
github.com/google/snappy.

[GRS98] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing
relations and indexes. In ICDE, pages 370–379, 1998.

[GS19] Jana Giceva and Mohammad Sadoghi. Hybrid OLTP and OLAP. In Ency-
clopedia of Big Data Technologies. 2019.

[GS20] Manuel Le Gallo and Abu Sebastian. An overview of phase-change mem-
ory device physics. Journal of Physics D: Applied Physics, 53(21):213002, mar
2020.

[GZC+16] Jinwei Guo, Chendong Zhang, Peng Cai, Minqi Zhou, and Aoying Zhou.
Low Overhead Log Replication for Main Memory Database System. In
WAIM, pages 159–170, 2016.

[HDU+19] Dirk Habich, Patrick Damme, Annett Ungethüm, Johannes Pietrzyk,
Alexander Krause, Juliana Hildebrandt, and Wolfgang Lehner.
Morphstore - in-memory query processing based on morphing com-
pressed intermediates LIVE. In SIGMOD Conference, pages 1917–1920,
2019.

[Hei14] J. Heidecker. Evaluation of magnetoresistive ram for space applications.
2014.

[HHDL16] Juliana Hildebrandt, Dirk Habich, Patrick Damme, and Wolfgang Lehner.
Compression-aware in-memory query processing: Vision, system design
and beyond. In ADMS@VLDB, pages 40–56, 2016.

[HKHL18] Dirk Habich, Till Kolditz, Juliana Hildebrandt, and Wolfgang Lehner. Re-
liable in-memory data management on unreliable hardware. In DATA,
pages 365–372, 2018.

[Huf52] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the Institute of Radio Engineers, 40(9):1098–
1101, September 1952.

[Int09] Intel. An introduction to the intel quickpath interconnect. 2009.

[Int18] Intel. Intel instruction reference manual (vol 2a, 3-147). 2018.

[Int19a] Intel. Intel Optane DC Persistent Memory Module, 2019.

106 BIBLIOGRAPHY

[Int19b] Intel. Intel PQoS Utility, 2019.

[IYZ+19] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,
Jishen Zhao, and Steven Swanson. Basic performance measurements of
the intel optane dc persistent memory module, 2019.

[KAK20] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and so-
lutions for fast remote persistent memory access. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, pages 105–119, New York,
NY, USA, 2020. Association for Computing Machinery.

[Kap15] Tomasz Kapela. An introduction to replication, 2015. http://pmem.io/
2015/11/23/replication-intro.html.

[KD18] Amandeep Khurana and Julien Le Dem. The modern data architecture:
The deconstructed database. login Usenix Mag., 43(4), 2018.

[KDH15] P. Koopman, K. Driscoll, and B. Hall. Selection of cyclic redundancy code
and checksum algorithms to ensure critical data integrity. 2015.

[Kim15] Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM. In SIGMOD, pages 691–706, 2015.

[KKS+14a] Tim Kiefer, Thomas Kissinger, Benjamin Schlegel, Dirk Habich, Daniel
Molka, and Wolfgang Lehner. ERIS live: a numa-aware in-memory storage
engine for tera-scale multiprocessor systems. In SIGMOD, pages 689–692,
2014.

[KKS+14b] Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich, Daniel
Molka, and Wolfgang Lehner. ERIS: A numa-aware in-memory storage
engine for analytical workload. In ADMS@VLDB, pages 74–85, 2014.

[Kli19] Yauhen Klimiankou. Translation lookaside buffer management. pages 20–
24, 12 2019.

[KM17] Sonal Kanungo and Rustom Morena. Issues with concurrency control tech-
niques. 06 2017.

[KMG14] Rakesh Kumar, Alejandro Martínez, and Antonio González. Efficient
power gating of SIMD accelerators through dynamic selective devector-
ization in an HW/SW codesigned environment. ACM Trans. Archit. Code
Optim., 11(3):25:1–25:23, 2014.

[KSKN18] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. clfb-
tree: Cacheline friendly persistent b-tree for nvram. ACM Trans. Storage,
14(1):5:1–5:17, February 2018.

[KWJP16] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis.
Ermia: Fast memory-optimized database system for heterogeneous work-
loads. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, page 1675âĂŞ1687, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[KZZL17] Soroosh Khoram, Yue Zha, Jialiang Zhang, and Jing Li. Challenges and
opportunities: From near-memory computing to in-memory computing.
In ISDP, pages 43–46, 2017.

[LB15] Daniel Lemire and Leonid Boytsov. Decoding billions of integers per sec-
ond through vectorization. Softw., Pract. Exper., 45(1):1–29, 2015.

BIBLIOGRAPHY 107

[LBK+19] Daniel Lemire, Leonid Boytsov, Owen Kaser, Maxime Caron, Louis
Dionne, Michel Lemay, Erik Kruus, Andrea Bedini, Matthias Petri, Rob-
son Braga Araujo, and Patrick Damme. The FastPFOR C++ library: Fast
integer compression, 2019.

[LBKN14] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-
driven parallelism: A numa-aware query evaluation framework for the
many-core age. SIGMOD, 06 2014.

[LGS+14] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin
Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and
Onur Mutlu. Characterizing application memory error vulnerability to
optimize datacenter cost via heterogeneous-reliability memory. In 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 467–478, 2014.

[lib20] Libnuma, 2020.

[LLRP14] J. Lindstrom, Kyosti Laiho, V. Raatikka, and J. Parkkinen. Replication for
hot standby online database. 2014.

[LMF+16] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. Data blocks: Hybrid OLTP and OLAP
on compressed storage using both vectorization and compilation. In SIG-
MOD, pages 311–326, 2016.

[Loh08] Gabriel H. Loh. 3d-stacked memory architectures for multi-core proces-
sors. SIGARCH Comput. Archit. News, 36(3):453–464, June 2008.

[MAK+13] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia,
Parthasarathy Ranganathan, and Nathan Binkert. Consistent, Durable,
and Safe Memory Management for Byte-addressable Non Volatile Main
Memory. In TRIOS@SOSP, pages 1:1–1:17, 2013.

[MGAK16] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald
Kossmann. Mqjoin: Efficient shared execution of main-memory joins. Proc.
VLDB Endow., 9(6):480–s491, January 2016.

[MMNLM20] Diana Martinez-Mosquera, Rosa Navarrete, and Sergio Lujan-Mora. Mod-
eling and management big data in databases - a systematic literature re-
view. Sustainability, 12(2), 2020.

[MPM17] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. Relaxed operator
fusion for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. Proc. VLDB Endow., 11(1):1–13, 2017.

[MZHS17] Zhixiang Mao, Shengan Zheng, Linpeng Huang, and Yanyan Shen. A
dax-enabled mmap mechanism for log-structured in-memory file systems.
2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC), pages 1–8, 2017.

[ndc21] Ndctl utility guide. https://docs.pmem.io/persistent-memory/
getting-started-guide/what-is-ndctl, 2021.

[Nvr20] Intel optane dc persistent memory: Quick start guide.
https://www.intel.com/content/dam/support/us/en/
documents/memory-and-storage/data-center-persistent-mem/
Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf, 2020.

108 BIBLIOGRAPHY

[OBL+14] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. SOFORT: A Hybrid SCM-DRAM Storage Engine for
Fast Data Recovery. In DaMoN, pages 8:1–8:7, 2014.

[OL17a] Ismail Oukid and Wolfgang Lehner. Data structure engineering for byte-
addressable non-volatile memory. In SIGMOD, pages 1759–1764, 2017.

[OL17b] Ismail Oukid and Wolfgang Lehner. Towards a Single-Level Database Ar-
chitecture on Non-Volatile Memory. In NVMW, 2017.

[OLN+16] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. Fptree: A hybrid scm-dram persistent and concurrent
b-tree for storage class memory. In SIGMOD, pages 371–386, 2016.

[PAA13] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki. Shar-
ing data and work across concurrent analytical queries. Proc. VLDB En-
dow., 6(9):637–648, July 2013.

[Pac11] Peter S. Pacheco. Chapter 2 - parallel hardware and parallel software. In
Peter S. Pacheco, editor, An Introduction to Parallel Programming, pages 15 –
81. Morgan Kaufmann, Boston, 2011.

[PALG19] Kyriakos Paraskevas, Andrew Attwood, Mikel Luján, and John Goodacre.
Scaling the capacity of memory systems; evolution and key approaches. In
MEMSYS, pages 235–249, 2019.

[PIL+19] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael
Lang. Performance characterization of a dram-nvm hybrid memory ar-
chitecture for hpc applications using intel optane dc persistent memory
modules. In MEMSYS, pages 288–303, 2019.

[PJHA] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Aila-
maki. Data-oriented transaction execution. Proc. VLDB Endow., 3(1):928–
939.

[PLH21] Hyeon Woo Park, Jae-Gil Lee, and Cheol Seong Hwang. Review of ferro-
electric field-effect transistors for three-dimensional storage applications.
Nano Select, 2(6):1187–1207, 2021.

[PM13] Iro Pantazi-Mytarelli. The history and use of pipelining computer architec-
ture: Mips pipelining implementation. In 2013 IEEE Long Island Systems,
Applications and Technology Conference (LISAT), pages 1–7, 2013.

[PR14] Orestis Polychroniou and Kenneth A. Ross. A comprehensive study of
main-memory partitioning and its application to large-scale comparison-
and radix-sort. In SIGMOD, pages 755–766, 2014.

[PR20] Orestis Polychroniou and Kenneth A. Ross. VIP: A SIMD vectorized ana-
lytical query engine. VLDB J., 29(6):1243–1261, 2020.

[PRR15] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking
SIMD vectorization for in-memory databases. In SIGMOD, pages 1493–
1508, 2015.

[PSM+16] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami,
and Anastasia Ailamaki. Adaptive numa-aware data placement and
task scheduling for analytical workloads in main-memory column-stores.
PVLDB, 10(2):37–48, 2016.

BIBLIOGRAPHY 109

[QSR09] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
Scalable high performance main memory system using phase-change
memory technology. In Proceedings of the 36th Annual International Sym-
posium on Computer Architecture, ISCA ’09, pages 24–33, New York, NY,
USA, 2009. Association for Computing Machinery.

[RAB+13] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani,
David Kalmuk, Vincent Kulandai Samy, Jens Leenstra, Sam Lightstone,
Shaorong Liu, Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis
Pandis, Berni Schiefer, David Sharpe, Richard Sidle, Adam J. Storm, and
Liping Zhang. DB2 with BLU acceleration: So much more than just a col-
umn store. PVLDB, 6(11):1080–1091, 2013.

[Rud15] Andy Rudoff. Persistent Memory Programming. Login: The Usenix Maga-
zine, 42:34–40, 2015.

[RVH93] Mark A. Roth and Scott J. Van Horn. Database compression. SIGMOD
Rec., 22(3):31–39, 1993.

[SAB+05] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden,
Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B.
Zdonik. C-store: A column-oriented DBMS. In VLDB, pages 553–564, 2005.

[San16] Jimi Sanchez. A review of star schema benchmark. CoRR, abs/1606.00295,
2016.

[SBF+15] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso
Plattner. nvm malloc: Memory allocation for nvram. In ADMS@VLDB,
2015.

[Sca20] Steve Scargall. Introduction to Persistent Memory Programming, pages 1–10.
Apress, Berkeley, CA, 2020.

[SDB+15] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira,
Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory errors in
modern systems: The good, the bad, and the ugly. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 297–310, New York,
NY, USA, 2015. ACM.

[SN10] Jinsun Suk and Jaechun No. File system snapshot. Journal of the Institute of
Electronics Engineers of Korea, 47:88–95, 2010.

[Sni17] Nvm programming model. https://www.snia.org/sites/default/
files/technical_work/final/NVMProgrammingModel_v1.2.pdf, 2017.

[SV10] Fabrizio Silvestri and Rossano Venturini. Vsencoding: efficient coding and
fast decoding of integer lists via dynamic programming. In CIKM, 2010.

[TG19] Jan Marian Michalski Tomasz Gromadzki. Persistent memory replication
over traditional rdma, 2019.

[TMS20] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx: A smartnic-
driven accelerator-centric architecture for network servers. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’20, pages 117–131,
New York, NY, USA, 2020. Association for Computing Machinery.

110 BIBLIOGRAPHY

[TSJ+21] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and
Carsten Binnig. Dfi: The data flow interface for high-speed networks. In
SIGMOD/PODS ’21: Proceedings of the 2021 International Conference on Man-
agement of Data, pages 1825–1837. ACM, June 2021.

[UPD+20] Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Alexander Krause,
Dirk Habich, Wolfgang Lehner, and Erich Focht. Hardware-oblivious
SIMD parallelism for in-memory column-stores. In CIDR, 2020.

[VHF+18] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kem-
per, Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel
Then. Get real: How benchmarks fail to represent the real world. In
DBTest@SIGMOD, pages 1:1–1:6, 2018.

[Vig14] Stratis Viglas. Write-limited sorts and joins for persistent memory. PVLDB,
7(5):413–424, 2014.

[VML+19] Adrian Vogelsgesang, Tobias Mühlbauer, Viktor Leis, Thomas Neumann,
and Alfons Kemper. Domain query optimization: Adapting the general-
purpose database system hyper for tableau workloads. In BTW, pages
313–333, 2019.

[VTRC11] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. Consistent and durable data structures for non-volatile
byte-addressable memory. In FAST, pages 5–5, 2011.

[WJP17] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. Query fresh: Log
shipping on steroids. Proc. VLDB Endow., 11(4):406–419, December 2017.

[WNC87] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for
data compression. Commun. ACM, 30(6):520–540, June 1987.

[WPB+09] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner,
Alexander Zeier, and Jan Schaffner. Simd-scan: Ultra fast in-memory table
scan using on-chip vector processing units. PVLDB, 2(1):385–394, 2009.

[WRK+10] H. Wong, S. Raoux, Sangbum Kim, J. Liang, J. Reifenberg, B. Rajendran,
M. Asheghi, and K. Goodson. Phase change memory. Proceedings of the
IEEE, 98:2201–2227, 2010.

[XL11] Lihao Xu and Jianqiang Luo. Hyfs: design and implementation of a reli-
able file system. 2011.

[XZM+17] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff.
Nova-fortis: A fault-tolerant non-volatile main memory file system. In
SOSP, pages 478–496, 2017.

[YJC+16] Jie Yao, H. Jiang, Q. Cao, Lei Tian, and C. Xie. Elastic-raid: A new architec-
ture for improved availability of parity-based raids by elastic mirroring.
IEEE Transactions on Parallel and Distributed Systems, 27:1044–1056, 2016.

[YMC+11] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy
Ranganathan, Norman P. Jouppi, and Mattan Erez. Free-p: Protecting non-
volatile memory against both hard and soft errors. In HPCA, pages 466–
477, 2011.

BIBLIOGRAPHY 111

[YWW+16] Jun Yang, Qingsong Wei, Chundong Wang, Cheng Chen, Khai Leong
Yong, and Bingsheng He. NV-Tree: A Consistent and Workload-
Adaptive Tree Structure for Non-Volatile Memory. IEEE Trans. Computers,
65(7):2169–2183, 2016.

[YXD+15] Songping Yu, Nong Xiao, Mingzhu Deng, Yuxuan Xing, Fang Liu, Zhiping
Cai, and Wei Chen. WAlloc: An efficient wear-aware allocator for non-
volatile main memory. In IPCCC, pages 1–8, 2015.

[YXD+17] Songping Yu, Nong Xiao, Mingzhu Deng, Fang Liu, and Wei Chen. Re-
design the memory allocator for non-volatile main memory. J. Emerg. Tech-
nol. Comput. Syst., 13(3), 2017.

[Zar14] Mikhail Zarubin. Petri nets for modelling and calculations. Master’s the-
sis, Norwegian University of Science and Technology, Trondheim, May
2014. https://emecs.eit.uni-kl.de.

[ZDHL20] Mikhail Zarubin, Patrick Damme, Dirk Habich, and Wolfgang Lehner.
Polymorphic compressed replication of columnar data in scale-up hybrid
memory systems. In SYSTOR, pages 98–110, 2020.

[ZDK+19] Mikhail Zarubin, Patrick Damme, Thomas Kissinger, Dirk Habich, Wolf-
gang Lehner, and Thomas Willhalm. Integer compression in nvram-centric
data stores: Comparative experimental analysis to DRAM. In DaMoN
2019, pages 11:1–11:11, 2019.

[ZDK+21] Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, and
Wolfgang Lehner. SIMD-MIMD cocktail in a hybrid memory glass:
shaken, not stirred, 2021.

[ZHNB06] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. Super-
scalar RAM-CPU cache compression. In ICDE, page 59, 2006.

[ZKH+19] Mikhail Zarubin, Thomas Kissinger, Dirk Habich, Thomas Willhalm, and
Wolfgang Lehner. Efficient compute node-local replication mechanisms
for nvram-centric data structures. The VLDB Journal, 29:775–795, 2019.

[ZKHL18] Mikhail Zarubin, Thomas Kissinger, Dirk Habich, and Wolfgang Lehner.
Efficient compute node-local replication mechanisms for nvram-centric
data structures. In DaMoN@SIGMOD, DAMON ’18, pages 7:1–7:9, New
York, NY, USA, 2018. ACM.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theor., 23(3):337–343, 1977.

[ZLL+15] Wenzhe Zhang, Kai Lu, Mikel LujÃąn, Xiaoping Wang, and Xu Zhou.
Write-combined logging: An optimized logging for consistency in nvram.
Scientific Programming, 2015:1–13, 12 2015.

[ZR02] Jingren Zhou and Kenneth A. Ross. Implementing database operations
using SIMD instructions. In SIGMOD, pages 145–156, 2002.

[ZS19] Lu Zhang and Steven Swanson. Pangolin: A fault-tolerant persistent mem-
ory programming library. In ATC, pages 897–912, 2019.

[ZYMS15] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson.
Mojim: A Reliable and Highly-Available Non-Volatile Memory System.
SIGARCH Comput. Archit. News, 43(1):3–18, March 2015.

[ZYSK19] Erfan Zamanian, Xiangyao Yu, M. Stonebraker, and Tim Kraska. Rethink-
ing database high availability with rdma networks. Proc. VLDB Endow.,
12:1637–1650, 2019.

112 BIBLIOGRAPHY

LIST OF FIGURES

1.1 Thesis structure and outline. 13

2.1 Memory hierarchy pyramid indicating the place of persistent memory
(adopted from [Sca20]). 17

2.2 Typical attachment scheme of NVDIMMs in a single socket machine. . . . 18
2.3 Schematic view of 2-socket hybrid memory system. 19
2.4 SNIA-recommended NVRAM deployment methods (adopted from [Sca20]). 20
2.5 Schematic view of a hybrid memory database management system on

scale-up architectures. 22
2.6 DRAM and NVRAM read bandwidth for a sequential and random (8 Bytes)

access pattern. The results show the maximum bandwidth measured by
multiple threads in parallel. 24

2.7 DRAM and NVRAM bandwidth for cache line-aligned random memory
accesses using access granularities from 8 Bytes to 512 Bytes. 25

2.8 DRAM and NVRAM bandwidth for cache line-aligned random memory
accesses using access granularities from 8 Bytes to 32 KiB. 25

2.9 DRAM and NVRAM write bandwidth for a sequential and random
(8 Bytes) access pattern. The measurements are given for single-threaded
and multi-threaded (best number of threads) executions on the local socket. 26

2.10 Shared DRAM and NVRAM read and write bandwidth for a sequential
access pattern. 26

2.11 Local and remote read bandwidth for sequential and random (8 Bytes)
DRAM and NVRAM accesses. The results show the maximum bandwidth
measured by executing multiple threads in parallel. 27

2.12 Local and remote random read latencies for DRAM and NVRAM. Results
are obtained using the Intel Memory Latency Checker. 28

2.13 Column store update throughput w/o replication for different write back
options and access methods each for DRAM-emulated NVRAM and Intel
Optane DC NVRAM. 29

2.14 Evolution of database architectures. 32
2.15 Schematic view of a 2-socket hybrid DRAM-NVRAM system. Exemplary

visualization of a chip (Socket 1) and full PMM failure (Socket 2) showing
the respective consequences for the DBMS. 33

2.16 Means of reliability deployed in computing systems. 34
2.17 Schematic view of a single NUMA socket with mirrored PMMs. Exemplary

visualization of a chip failure. 38
2.18 Schematic view of a hot standby system. 39
2.19 Schematic view of a PMDK-integrated hybrid memory database (full-stack). 40
2.20 Synchronous master-slave replication model deployed by PMDK. 40
2.21 Strengths and weaknesses of storage reliability techniques when deployed

in hybrid memory database systems domain. 42
2.22 Relative runtime overhead of basic PMDK replication algorithm. The case

of uniformly distributed updates to column store. 43

3.1 Hybrid DRAM-NVRAM key-value store (pmemkv). Leaf nodes are persis-
tently stored as a linked list in the NVRAM and recoverable inner nodes
are organized as a B+-Tree in the volatile DRAM. 47

113

3.2 Update throughput w/o replication for different data structures and
key distributions using CLFLUSHOPT. Measurements are given for DRAM-
emulated NVRAM and Intel Optane DC Persistent Memory. 48
(a) DRAM Emulation. 48
(b) NVRAM. 48

3.3 Relative update overhead w/ replication compared to the non-replicated
workload for the three workloads and 1–3 replicas. All keys are uniformly
distributed. Additional comparison of memcpy + CLFLUSHOPT with MOVNT only. 50
(a) DRAM Emulation . 50
(b) NVRAM . 50

3.4 Relative update overhead w/ replication compared to the non-replicated
workload for the three workloads and 1–3 replicas. All keys are sequentially
distributed. Additional comparison of memcpy + CLFLUSHOPT with MOVNT only. 51
(a) DRAM Emulation . 51
(b) NVRAM. 51

3.5 Building blocks and composition options for the template-based advanced
pool replication. Replication mechanisms are generated by taking a com-
patible path from the top to the bottom. 53

3.6 Composition of the building blocks of the advanced replication mecha-
nisms template for the basic replication mechanism of the PMDK (cf. Sec-
tion 3.1.2). 54

3.7 Relative overheads for different optimizations and replica counts. The
CS workload with uniform key distribution. Measurements are given for
DRAM-based emulation and NVRAM (Intel Optane DC Persistent Mem-
ory). Minimal relative overheads are indicated by the blue arrows. 55
(a) Non-transactional column store workload (DRAM). 55
(b) Non-transactional column store workload (NVRAM). 55

3.8 Relative overheads for the column store (CS) workload using a uniform key
distribution. Measurements are given for different optimized replication
mechanisms, replica counts, and memory types as well as the updated
chunk sizes. Switching points are highlighted by the dashed lines. 57
(a) 1 replica (DRAM Emulation). 57
(b) 1 replica (NVRAM). 57
(c) 2 replicas (DRAM Emulation). 57
(d) 2 replicas (NVRAM). 57
(e) 3 replicas (DRAM Emulation). 57
(f) 3 replicas (NVRAM). 57

3.9 Replication mechanism adaptivity using a lightweight online switching al-
gorithm that relies on a switching model. Adaptivity is implemented at the
level of libpmemobj. 58

3.10 Decision tree as a model for the switching algorithm (top level). Particular
instance for the testing hardware platform. Terminal nodes further query
the model if necessary using the SubTreeSelect block. 59

3.11 Relative overheads for the non-transactional column store workload (CS)
using a uniform key distribution. The pool set comprises 3 replicas that
need to be maintained. The measurements include the static replica-
tion mechanisms as well as proposed lightweight switching algorithm
(Switched). Updated chunk size is varied. 60
(a) DRAM Emulation. 60
(b) NVRAM. 60

3.12 Compression rates. 64
3.13 Single-threaded speeds: NVRAM relative to DRAM and algorithms rela-

tive to SIMD-BP128 on the same medium. 65
3.14 Multi-threaded performances on D1 and D3: speed relative to single-

threaded (dotted line is linear scaling), absolute bandwidths (dotted lines
are read and write bounds). 66

114 LIST OF FIGURES

3.15 NUMA-aware replication in a scale-up hybrid memory system. 69

4.1 Concurrent read accesses to replicas in a scale-up hybrid memory system
(illustrated for blue-colored pool). 75

4.2 Compressed replica formats to reduce space overhead and speed up query
processing. 75

4.3 Polymorphic compressed replica formats to average space overhead reduc-
tion and speed up query processing. 76

4.4 Unified hybrid memory replica placement to speed up query processing
and reduce NVRAM wear-out. 77

4.5 API and usage of PCR abstract library. 78
4.6 Absolute throughput of selected columnar operators for different 2-replica

allocation scenarios. The gray dashed lines indicate the inter-socket bound-
ary (thread count of 48). 80

4.7 Absolute throughput of single-threaded append workloads for different 2-
replica allocation scenarios. 82

4.8 Relative speedup of a mixed workload with a specified ratio of appenders
and aggregators for various 2-replica schemes and a thread count of 48. . . 84

4.9 Absolute throughput for SSB queries executed for various 2-replica
schemes and thread counts of 1, 3 (on one socket), and 6 (3 per socket). . . 85

4.10 The performance of read-intensive operators for various SIMD options and
two memory types. 89

4.11 The performance of the append-operator for various SIMD options and both
memory types. 90

4.12 The performance of aggregate-operators for various homogeneous and
mixed SIMD options. 91

4.13 The performance of select-operators (1%) for various homogeneous and
mixed SIMD options. 91

4.14 DRAM performance of aggregate-operators for various SIMD options and
different # shared columns. 92

4.15 Deployment model (yellow box) of the adaptive SIMD-MIMD vectoriza-
tion cocktail. 93

4.16 The performance of test queries indicating best measured and the selected
SIMD combination. 96

LIST OF FIGURES 115

116 LIST OF FIGURES

LIST OF TABLES

3.1 An example of a profile table (only relevant cells) used by the decision tree
to perform the SubTreeSelect request to choose an appropriate replication
mechanism for the current conditions (corresponds to Figure 3.11(a)). . . . 59

3.2 The synthetic data sets used in the evaluation. 63
3.3 Multi-threaded speedups of (de)compression algorithms. 67

4.1 An example profile for <aggregate> on <NVRAM> @ <24> threads over
<1> shared column. 94

117

118 LIST OF TABLES

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, January 3, 2022

119

	Introduction
	Motivation
	Summary of Contributions
	Outline

	Background and Challenges
	Hybrid Memory Systems
	Non-volatile random access memory
	Scale-up hybrid memory architecture on hardware level
	Scale-up hybrid memory architecture on software level
	Hybrid memory database system

	Low level performance evaluation of NVRAM
	Socket-local parameters
	Socket-remote parameters
	NVRAM access methods

	Vectorized memory accesses in hybrid memory systems
	Overview of common instructions sets
	Deployment in database scenarios

	Reliability in hybrid memory systems
	Impact on general database failure processing
	NVRAM failure scenarios and consequences for the primary data

	Survey on existing techniques
	Hardware coding
	Software coding
	OS coding and replication
	Hardware replication
	Software logical replication
	Software physical replication
	Summary

	Observations and challenges

	Replication - Minimization of Overheads
	State-of-the-art: evaluation and analysis of Intel PMDK replication
	NVRAM-centric data structures
	Pool replication

	Runtime overhead reduction through adaptive efficient replication mechanisms
	Optimization of the basic pool replication algorithm.
	Adaptive lightweight switching algorithm

	Space overhead and wear-out reduction through data compression
	Integer compression algorithms in hybrid memory databases
	Compressed replication concept

	NUMA-aware replica placement as a way to increase resilience
	Summary

	Replication - Query Processing Perspective
	Underlying system model
	Polymorphic compressed replication mechanism
	Optimization concepts
	Implementation
	Evaluation
	Conclusions

	SIMD-MIMD cocktail to speed up query processing
	Motivation for SIMD-MIMD interplay
	Experimental analysis
	Optimizing SIMD-MIMD interplay
	Conclusions

	Summary

	Conclusion
	Summary
	Future research directions

	Bibliography
	List of Figures
	List of Tables

