

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-766710

Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, Wolfgang Lehner

SIMD-MIMD cocktail in a hybrid memory glass: shaken, not stirred

Erstveröffentlichung in / First published in:

SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and
Storage, Haifa 14. – 16.06.2021. ACM Digital Library. ISBN 978-1-4503-8398-1

DOI: https://doi.org/10.1145/3456727.3463782

SIMD-MIMD Cocktail in a Hybrid Memory Glass:
Shaken, not Stirred

Mikhail Zarubin, Patrick Damme∗, Alexander Krause, Dirk Habich,
Wolfgang Lehner

TU Dresden, Database Systems Group, Dresden, Germany
firstname.lastname@tu-dresden.de

ABSTRACT

Hybrid memory systems consisting of DRAM and NVRAM
offer a great opportunity for column-oriented data systems
to persistently store and to efficiently process columnar data
completely in main memory. While vectorization (SIMD) of
query operators is state-of-the-art to increase the single-
thread performance, it has to be combined with thread-level

parallelism (MIMD) to satisfy growing needs for higher per-
formance and scalability. However, it is not well investigated
how such a SIMD-MIMD interplay could be leveraged ef-

ficiently in hybrid memory systems. On the one hand, we
deliver an extensive experimental evaluation of typical work-
loads on columnar data in this paper. We reveal that the
choice of the most performant SIMD version differs greatly
for both memory types. Moreover, we show that the through-
put of concurrent queries can be boosted (up to 2x) when
combining various SIMD flavors in a multi-threaded exe-
cution. On the other hand, to enable that optimization, we
propose an adaptive SIMD-MIMD cocktail approach incurring
only a negligible runtime overhead.

CCS CONCEPTS

• Information systems → Database query processing;
Main memory engines; Phase change memory; • Com-

puter systems organization→ Single instruction, mul-

tiple data.

KEYWORDS

hybrid memory; column store; SIMD; MIMD; optimization

∗Now at Graz University of Technology and Know-Center GmbH, Austria.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00

https://doi.org/10.1145/3456727.3463782

ACM Reference Format:

Mikhail Zarubin, Patrick Damme∗, Alexander Krause, Dirk Habich,
Wolfgang Lehner. 2021. SIMD-MIMD Cocktail in a Hybrid Memory
Glass: Shaken, not Stirred. In The 14th ACM International Systems

and Storage Conference (SYSTOR ’21), June 14–16, 2021, Haifa, Israel.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3456727.
3463782

1 INTRODUCTION

Data analytical tools, e.g., interactive dashboards, are usually
deployed on top of data systems. The tasks of those data sys-
tems are to persistently manage the data and to execute sim-
ple analytical queries over the data. As recently shown [62,
63], simple queries like SELECT MIN(a), MAX(b) FROM r

are issued millions of times, e.g., to populate drop
down fields in the dashboard. Similarly, queries like
SELECT SUM(a) FROM r WHERE b = const are used to
calculate tailored aggregates. These analytical queries typ-
ically access a small number of columns or attributes, but
a high number of rows and are, thus, most efficiently pro-
cessed using a columnar data organization [11, 12, 19, 58].
Nevertheless, the multitude of these queries demand two
major performance requirements of columnar data systems:
(i) a high query throughput, since analyses are performed
by many users concurrently, and (ii) a low query latency,
since analyses are expected to be interactive. Requirement
(i) is commonly addressed by leveraging the well-known
Multiple Instruction Multiple Data (MIMD) parallel paradigm,
also known as thread-level parallelism. Here, each query is
processed by an individual thread. Addressing requirement
(ii) typically involves the Single Instruction Multiple Data

(SIMD) parallel paradigm. Here, a single SIMD instruction
processes multiple data elements at once, thereby increasing
the single-thread performance. Both techniques have been
available in x86-processors for many years, and their combi-
nation is a logical necessity to address the need of an overall
high throughput with low query latencies across the board.
To satisfy this demand, symmetric or scale-up multipro-

cessor systems (SMPs) are a promising hardware founda-
tion. SMPs are composed by multiple processors (also called
nodes or sockets), each consisting of the same architecture,

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Socket 1

SIMD Cores

Data Column MIMD Thread Data access

Socket 2

NVRAMSIMD Cores

Column 1

Link

DRAMNVRAMDRAM

Column 2

AVX512

AVX2

Parallel

Queries
Parallel

Queries

Scalar

AVX512

Figure 1: SIMD-MIMD cocktail approach for the con-

current and vectorized execution of analytical queries

in hybrid memory systems.

e.g., a multi-core processor where each core features differ-
ent SIMD instruction set extensions such as SSE, AVX2, or
AVX-512 on Intel processors and all multiprocessors share
a common and huge main memory space. An observable
hardware trend of recent years is the increase of both, the
number of cores per socket and the size of vector registers,
thereby facilitating both MIMD and SIMD parallelism. More-
over, these SMPs are more and more shifting towards hybrid
memory systems, that consist of both volatile DRAM and
persistent NVRAM, as illustrated in Figure 1. This offers
a great additional opportunity for columnar data systems
(column-stores) to persistently store and to efficiently pro-
cess huge amounts of columnar data exclusively in main
memory without touching any slow block-accessible non-
volatile medium. However, combining MIMD and SIMD is
impaired by physical limitations of the hardware. Especially
thermal constraints and on-chip power supply can decrease
the actually available resources, e.g., through a reduction
of the clock frequency, depending on the employed SIMD
extension and the number of used threads [24, 27].

Our contributions and outline. To reach the best query
performance in column-stores on scale-up hybrid memory
systems, we propose a SIMD-MIMD cocktail approach for the
concurrent and vectorized execution of a set of simple, yet
important analytical queries in this paper. In detail, our con-
tributions and paper outline can be summarized as follows:
(1) In Section 2, we provide an in-depth description of our

underlying system model.
(2) Then, we develop our vision on how to combine the

potential performance gains of SIMD and MIMD. For
this, we provide an experimental analysis of typical
analytical query workloads and inspect the effect of
the simultaneous usage of different SIMD instruction
set extensions in a multi-threaded environment.

(3) In Section 4, we show how to effectively select a suit-
able SIMD-MIMD cocktail for a particular query work-
load. Our evaluation subsequently confirms the appli-
cability of our model for queries on both DRAM and
NVRAM memory types.

Finally, we present related work in Section 5 and we conclude
the paper with a short summary in Section 6.

2 SYSTEM MODEL

In this section, we cover all relevant aspects of our system
model by (i) presenting the data and processing model, (ii)
describing data placement options for our target hardware,
and (iii) introducing the parallel processing opportunities.

2.1 Data and Processing Model

As commonly used by state-of-the-art analytical data sys-
tems, we employ a columnar data representation for base
data [1, 2, 21, 31, 36, 55, 73]. Here, relational data is main-
tained using the decomposition storage model (DSM) [17],
where each column of a table is stored separately as a fixed-
width dense array [1]. To allow easy reconstruction of the
tuples of a relational table, each column record is stored in
the same (array) position across all columns of a table [1].
Column-stores typically support a fixed set of basic data
types, including integers, fixed-, or floating-point numbers,
and strings. For fixed-width data types (e.g., integer, fixed-,
and floating-point), column stores utilize basic arrays of the
respective type for the values of a column. However, floating-
point numbers are usually mapped to integers [1] as well.
Variable-width data types like strings are generally dictio-
nary encoded and represented as integers, which enables
their storage into fixed-width columns, too [1, 8]. In the sim-
plest case, a dictionary consists of the distinct values of a
column, sorted by frequency, and each value is represented
as its integer position on the dictionary [1]. Consequently, all
base columns consist of a sequence of fixed-width integers.

For an efficient processing of these sequences, the column-
at-a-time model is heavily applied in these systems [1, 10].
Here, an SQL query is translated into a query execution plan
(QEP) consisting of multiple operators. Typical query opera-
tors include select, project, aggregate, join, group-by,
and set-operations featuring a mixture of sequential and
random memory accesses for reads and writes. Each oper-
ator consumes one or two input columns and produces an
output column called intermediate. The column-at-a-time
processing model explicitly materializes these intermedi-
ates, because each operator within a QEP is evaluated to
completion over its entire input, before subsequent data-
dependent operators are invoked. Such intermediates are
volatile columns and thrown away during or right after the
query execution. Thus, we distinguish between persistent
base data and ephemeral intermediates in our system model.

2.2 Data Placement

Column-store systems completely keep data in DRAM for
efficiency, but a consistent copy of the base data has to

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

.

be stored on a non-volatile medium for persistency and
fault-tolerance [1, 2, 10, 21, 36, 55, 73]. Traditional persis-
tent storage mediums like HDDs or SSDs are employed for
durability, but suffer from a slow and block-addressable ac-
cess. To overcome that, NVRAM—also known as persistent
memory—enables a pure in-memory behavior with a byte-
addressable fashion, while preserving the durability prop-
erty of traditional storage solutions. Its performance is ap-
proaching that of DRAM, especially for a sequential access
pattern [28, 66, 71]. However, as a drawback compared to
volatile DRAM, NVRAM has lower endurance and maxi-
mum bandwidth limits. Thus, only base columns are stored
in NVRAM, while volatile intermediates are usually materi-
alized in DRAM. Consequently, NVRAM is a good candidate
for the extension of fast and byte-addressable capacity while
simultaneously serving as a replacement for traditional sec-
ondary storage elements, that store the primary copy of the
base data [4, 5, 33, 41, 44, 70].
Hybrid memory systems featuring DRAM and NVRAM

are becoming a standard in the field of high performance
server architectures [49]. In such systems, each local memory
domain consists of DRAM and NVRAM at the same hier-
archy level [22], which is also illustrated in Figure 1. Thus,
applications require only insignificant changes compared to
DRAM-backed processing. The respective functionality, like
memory access, allocation, and persistent flushes, is provided
by specialized convenience tool-kits, whereas the Persistent
Memory Development Kit (PMDK) [56] by Intel is the most
well-known. Furthermore, hybrid memory systems can also
be scaled up by deploying them in a Non-uniform Mem-
ory Access (NUMA) environment. NUMA systems consist of
multiple physically separated processors, which each feature
their own local memory hardware resources [47]. In fact,
Figure 1 depicts a two-socket NUMA system. Since NUMA-
oriented scale-up systems essentially behave like distributed
systems, but feature a faster communication due to cache co-
herency facilities and the close proximity of processors, the
near-memory processing paradigm (NMP) is state-of-the-art
on such platforms [30, 34, 46]. The performance implications
of NUMA-effects are well known [30, 34, 46] and thus, we
focus on memory-local (either DRAM or NVRAM) execution.

2.3 Parallel Processing Opportunities

Scale-up hybrid memory systems consist of numerous cores
offering two parallel processing paradigms: Single Instruction
Multiple Data (SIMD) and Multiple Instruction Multiple Data

(MIMD). While SIMD applies a single instruction to a vector
of multiple data elements, MIMD applies multiple threads
over different or the same data at the same time.
SIMD—also called vectorization—is a state-of-the-art opti-

mization technique in columnar data systems and is typically

applied to isolated query operators [2, 50, 72]. Many vector-
ized implementations for joins [6, 9] and sorting [51] have
been proposed. Moreover, linear access operators such as
scans [64] and integer compression techniques [2, 18, 37] are
well-investigated. In the past years, hardware vendors have
regularly introduced new SIMD instruction set extensions
operating on increasingly wider registers. For instance, In-
tel’s Advanced Vector Extension (AVX2) operates on 256-bit
vector registers and Intel’s AVX-512 uses even 512-bit vectors.
Wider vector registers allow processing more data elements
at once. For example, an Intel SSE 128-bit vector register can
store two 64-bit data elements, while AVX2 and AVX-512 can
store twice or four times the amount, respectively. Recently,
Ungethüm et al. [59] introduced a specific SIMD abstraction
layer called Template Vector Library (TVL) for column-stores
to tackle the SIMD diversity in a unified way. On the one
hand, the TVL offers hardware-oblivious vector primitives.
On the other hand, the TVL also provides an extensible set
of hardware-conscious implementations for the hardware-
oblivious primitives. We are using that approach to realize
hardware-oblivious vectorized query operators based on the
provided vector primitives which can be easily mapped to
specific hardware-conscious implementations.
MIMD is a heavily used optimization technique in column-

stores as well, whereby two approaches can be distinguished.
On the one hand, MIMD is used to realize a data-partitioned
intra-operator parallelism. Here, every column is partitioned
into data chunks that are exclusively processed by one oper-
ator. More precisely, every operator is parallelized through a
set of spawned sub-operators [52]. These sub-operators are
mapped to designated threads and every thread is assigned
to a specific column partition. This OpenMP-like processing
style is typically used for operators with a sequential mem-
ory access pattern and does not require any sophisticated
controlling mechanism, since there are mostly no data or con-
trol flow dependencies between processed partitions. On the
other hand, MIMD is utilized for amulti-threaded inter-query

parallelism. This approach maps one query to one thread at
any point in time and may also employ snapshot isolation

(SI) [13] on the software level, to allow for a high degree
of parallelism. In SI, queries atomically take a snapshot of
all data columns they need to access during their prologue
phase. From there on, the queries do not see any changes
made to those columns after that point in time. To leverage
potential caching of shared data in this case, it is common
to batch a number of queries that are touching the same
columns [23, 38, 53]. Then, the execution of this query batch
is triggered at once. Usually, all involved query operators are
vectorized using the newest SIMD instruction set extension
such as AVX-512 [52]. However, this SIMD-MIMD interplay
is sub-optimal for the inter-query parallelism approach as
we are going to show in the next section.

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

.

3 ANALYZING SIMD-MIMD INTERPLAY

After presenting our column-store system model, this sec-
tion is devoted to the experimental exploration of the SIMD-
MIMD interplay for concurrent query execution in a hybrid
memory system. Based on this experimental analysis, we
subsequently propose an approach to select a suitable SIMD-
MIMD cocktail for a particular query workload in Section 4.

3.1 Evaluation Setup

Our evaluation platform is a two-socket hybrid memory
NUMA system equipped with Intel Xeon Platinum 8276L
(Scalable Cascade Lake family) processors, 384 GiB DDR4
DRAM, and 1.5 TiB Intel Optane DC Persistent Memory. Only
CPUs of a single socket are used, i.e., 18 physical cores (36
with HyperThreading). Besides scalar processing, each core
provides the following Intel SIMD instruction set extensions:
SSE with 128-bit, AVX2 with 256-bit, and AVX-512 with 512-
bit vector registers. The server runs Fedora 27 with kernel
version 5.4.45 (CPU governor is set to "performance"), and
gcc 8.3.0 with -O3 flag was used f or compilation. The
NVRAM chunks are allocated using memory mapped files
(PMDK-style) on XFS file system.

For columns in DRAM as well as NVRAM, we use 100 M
64-bit integer values (763MiB) uniformly drawn from the in-
terval [1, 1M]. As already mentioned in the introduction, we
focus on simple analytical queries. To execute these queries,
the following columnar query operators are required:

The aggregate-operator is a read-intensive operator per-
forming a certain cumulative operation (e.g., summation)
over the input column following a sequential access pattern,
while only a single element is written to the output column.

The select-operator performs a scan over the single
input column and outputs the positions of the data elements
fulfilling a certain filter predicate. Depending on the amount
of selected elements, the operator is either read-dominated
or read-write balanced.
The project-operator is used to transfer the result of a

selection on one column - to another column . by using the
positions in column - to gather the corresponding values
from column . . Thus, this operator typically mixes random
reads with sequential writes.

As introduced in Section 2, the output of each operator is
an intermediate result and, thus, written to DRAM. The input
columns could be from DRAM or NVRAM. Aside from these
read-intensive operators, we also investigate the write-only

append-operator. As commonly done in big data and data
warehouse applications, new values are added to the end of
the columns by the append-operator [14].
We implemented all operators using the specific SIMD

abstraction library TVL for column-stores [59]1. Based on

1https://github.com/MorphStore/TVLLib

0

100

200

300

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) DRAM

1 4 8 12 18 24 28 36

(b) NVRAM
Scalar
AVX2
AVX512

Aggregation

0

100

200

300

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(c) DRAM

1 4 8 12 18 24 28 36

(d) NVRAM Scalar
AVX2
AVX512

Select (1%)

1 4 8 12 18 24 28 36

(f) NVRAM
Scalar

AVX2

AVX512

0

50

100

150

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(e) DRAM

Select (10%)

0

20

40

60

80

1 4 8 12 18 24 28 36T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(g) DRAM

1 4 8 12 18 24 28 36

(h) NVRAM
Scalar

AVX2

AVX512

Project

Figure 2: The performance of read-intensive operators

for various SIMD options and two memory types.

that, we are able to automatically derive variants for the
different Intel SIMD extensions as well as a scalar variant. In
our experiments, we investigate both the SIMD and scalar
operator variants. Finally, we report performances in terms
of runs per second, i.e., how many times the particular opera-
tor was executed by all threads within 1 second (averaged
through a 1 minute execution period).

3.2 Impact of Vectorization

To analyze the interplay of SIMD and MIMD, we investigate
how operators behave in a concurrent setting, when they
are vectorized with different SIMD extensions. In detail, we
consider scalar execution, AVX2, and AVX-512 extensions.
The results for SSE are omitted, as they mostly exhibit a
similar behavior as scalar or AVX2 vectorization. In addition
to the different SIMD variants, we also vary the number of
cores or the number of operators that are executed simulta-
neously. In particular, we examine the typical use case where
all concurrent operators access a single shared column.
Aggregate-operator: The throughput of this operator

is illustrated in Figures 2-(a,b) for base columns stored in
DRAM and NVRAM, respectively. Our first observation is
that the execution behavior differs significantly for the two
memory types. For NVRAM, we observe the expected behav-
ior, that larger registers imply higher performance, even with

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

.

increasing thread count. When all cores are active, we can no
longer observe a significant difference between SIMD vari-
ants, most likely through memory bandwidth saturation. The
DRAM case, while showing significantly higher throughput
(reflecting the higher read bandwidth limits), yields surpris-
ing results. Primarily, we see that the NVRAM-like large
register’s domination is only visible until a certain concur-
rency level (12 threads). Afterwards, the efficiency leadership
is taken over by smaller counterparts, e.g., by scalar starting
from 18 threads. Apart from this, we observe that perfor-
mance gains are also possible until full CPU occupancy of
36 threads. We assume that these effects are induced by the
caching of large registers and the resulting contention, which
could not be reached in case of NVRAM due to differences
between persistent and volatile memory controllers [28] and
slower cache replacement/trashing.

Select-operator: Our next operator under test is the
selection. Here, we distinguish two degrees of selectiv-
ity (1 % and 10 % of qualifying elements) as they obviously
impact the resulting memory access pattern. The first case
is shown in Figures 2-(c,d). Since a sequential access pat-
tern is dominating here, we can mostly confirm the obser-
vations made for aggregation. The most notable difference
is the decreased level of performance variations between
SIMD variants on DRAM, while the opposite is observed
for NVRAM. AVX-512 loses its domination on volatile mem-
ory later, just starting from 24 threads onwards, while the
scalar implementation is not able to significantly outperform
AVX2 at all. The situation changes with the increase of the
selectivity percentage.
Figures 2-(e,f) demonstrate the case of 10%. Now, more

data has to be written, which changes the pressure on the
memory controller. This becomes even more severe in multi-
threaded scenarios. As a result, we see a general performance
drop for both memory types, compared to their 1% counter-
parts. Furthermore, the impact of the employed SIMD version
to vectorize the operator becomes less significant, however
large registers are still preferable in most cases. Lastly, we
observe that a slight performance increase is still reachable
until full CPU occupancy for both mediums.

Project-operator: The last read-balanced operator in
our analysis is projection. Figures 2-(g,h) demonstrate the
case of data/positions size ratio equaling to 10%, while po-
sitions are unsorted and uniformly distributed. In such a
scenario, the output column would contain 10 times more
elements than the input column. The key difference from
a memory access pattern point of view, compared to the
previous cases, lies in the randomness of reads when extract-
ing the targeted elements. As already reported by previous
research [52], such stochastic data accesses can diminish the
performance advantage of using large registers. Indeed, we

rite (both non-streaming and streaming (ST), no NVRAM

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
a

n
d

w
id

th
 [

G
iB

\s
]

#threads

(a) DRAM

Scalar AVX2_Stream

AVX2 AVX512_Stream

AVX512

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
a

n
d

w
id

th
 [

G
iB

\s
]

#threads

(b) NVRAM

Append

Figure 3: The performance of the append-operator for

various SIMD options and both memory types.

confirm such behavior for both memory types and all con-
currency levels. While insignificant advantages of smaller
registers could still be detected on DRAM, there is virtu-
ally no difference between the SIMD versions on NVRAM.
However, the general performance of persistent memory
execution drops reflecting its pure random read latency and
bandwidth limits. These limits also determine the thread
counts after which performance gains are not feasible any
more (e.g., from 18 threads for NVRAM).
Append-operator: As already mentioned, with regards

to data modifications, we focus exclusively on the append-
operator. The respective experiments are illustrated by Fig-
ures 3-(a,b). Here, we propagate synthetically generated data
from CPU registers to be sequentially stored at the end of
the targeted columns, whereby each thread appends to an
individual column. Neither cache leveraging nor memcpy()
operations are involved. Our first observation is that there
is a huge difference between the two memory types, not
only in terms of performance. While DRAM prefers AVX2
as the fastest write mechanism for a moderate concurrency
level, there is almost no difference between SIMD flavors on
NVRAM. However, what really matters for NVRAM is the
streaming style [26] of stores, as they are able to deliver up
to 5x better throughput (e.g., for a thread count of 3), com-
pared to the non-streaming counterparts. Another crucial
result of our experiments is that there are break-even points
where one implementation hands over its leadership to an-
other. For instance, from 10 threads onward, AVX-512 with
streaming store is the fastest for DRAM. Moreover, there are
most-performing points after which the performance starts

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0

100

200

300

400

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

(b) DRAM, Cocktail

Scalar/AVX512 AVX512/Scalar Scalar/AVX2

AVX2/Scalar AVX2/AVX512 AVX512/AVX2

0

100

200

300

400

T
h

ro
g

h
p

u
t[

R
u

n
s/

s]

(a) DRAM, Round Robin

Scalar AVX2 AVX512

Scalar~AVX2 Scalar~AVX512 AVX2~AVX512

0

50

100

150

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(c) NVRAM, Round Robin

0

50

100

150

24 28 36
T

h
ro

u
g

h
p

u
t

[R
u

n
s/

s]
#threads

(d) NVRAM, Cocktail

Figure 4: The performance of aggregate-operators for various homogeneous and mixed SIMD options.

to drop. For example, from 4 threads onward, the perfor-
mance of streaming stores for NVRAM deteriorates.

3.3 SIMD-heterogeneous MIMD Execution

Since our system model assumes the use of MIMD in form of
an inter-query parallelism (cf. Section 2.3), it is possible to use
distinct SIMD extensions (or scalar processing) per thread,
e.g., simultaneously run scalar and AVX-512 schemes, possi-
bly on the same data columns. This combination of heteroge-
neous SIMD-MIMD parallelization is worth investigating, as
the usage of AVX-512 registers for multiple threads leads to
a reduction of the CPU’s clock frequency and, thus, dimin-
ished performance gains. Hence, this section is devoted to
the respective experimental examination. To the best of our
knowledge, mixing SIMD extensions and scalar processing
was not investigated before.

The evaluation design space involves all distinct combi-

nations of available SIMD extensions (or scalar processing)
per thread, multiplied by the number of used threads. For
illustration purposes, we limit our analysis to a selection of
options, combining two SIMD flavors at a time. We use the
following abbreviations for such shaking mechanisms:
SIMD1~SIMD2: means that the employed cores are

evenly (e.g., one-by-one) distributed between two SIMD op-
tions in a round robin (RR) or alternating fashion.

SIMD1/SIMD2 is what we call the sliced cocktail style.
It devotes the first half of all employed CPUs, i.e., CPU1
through CPU18 or all physical cores, to the SIMD1 vector-
ization flavor (reflecting the "bottom" slice). If more than 18
cores are used for the query execution, we fill the SIMD2

flavor on top for these additional resources. This allows us
to vary the ratio between both flavors.
Aggregate-operator: Figures 4-(a-d) show the results for

both RR and cocktail style on both DRAM and NVRAM. We
omit thread counts below 24 for the latter, as they perform
identically to the previously shown pure SIMD variants. Most
importantly, we reveal that the homogeneous SIMD alterna-
tives (depicted as pattern filled bars) can be outperformed
by our suggested combinations for all considered experi-
mental setups. However, the particular throughput improve-
ment varies depending on the shaking mechanism (i.e., RR or
cocktail), concurrency level and memory class. For instance,
on DRAM, for an intermediate level of CPU occupancy (18
threads) the round robin "Scalar~AVX2" shaking yields a
29% increase compared to the best (Scalar) homogeneous ap-
proach, while NVRAM favors the "Scalar~AVX512" scheme
with 5% speedup (over "AVX512") for the same case. For
higher degrees of concurrency, our cocktail shaking mecha-
nism shows a surprising behavior. On DRAM, for 24 concur-
rent threads, "Scalar/AVX512" is able to double the perfor-
mance of the pure AVX-512 implementation. Interestingly,
the opposite approach "AVX512/Scalar" is by far not the best
on volatile memory, while it is the superior scheme for persis-
tent memory—delivering a 10% improvement for 36 threads.

Select-operator: Comparable behavior is detected for
the select-operator, but only for small selectivities, i.e., only
a few percent. While varying the selectivity on NVRAM, we
observe that no throughput increase through shaking SIMD
flavors was possible for any selectivity higher than 1%. We
assume that this is due to lower performance of writes that

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4 8 12 18 24 28 36

(b) NVRAM

Scalar AVX2
AVX512 Scalar/AVX512
AVX512/Scalar AVX512~Scalar

0

50

100

150

200

250

300

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) DRAM

Figure 5: Performance of select-operators (1%) for various homogeneous and mixed SIMD options.

0

20

40

60

80

100

24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) 1 shared

Scalar AVX512

24 28 36

(b) 2 shared

Scalar/AVX512 AVX512/Scalar

24 28 36

(c) 4 shared

Scalar~AVX512

24 28 36

(d) 18 shared

Figure 6: DRAM performance of aggregate-operators for various SIMD options and different # shared columns.

are proportional to the selectivity degree. Thus, Figure 5
depicts our measurements for 1% selectivity on both memory
types. Though the mixed performance gains are lower than
for the aggregation-operator, they still provide significant
improvement, e.g., 25% for "Scalar/AVX512" compared to the
best homogeneous option on DRAM for 24 threads.

Impact of number of shared columns: These facts lead
to the assumption that such unexpected performance gains
most likely depend on the way how various SIMD extensions
interact with the caching subsystem, which can in turn favor
sophisticatedly downclocked physical or hyper cores. Thus,
we investigate the actual impact of caching via experiments
by using different numbers of very large shared columns.
The aggregation-operator on volatile memory is depicted
by Figures 6-(a-d) for a single, two, four, and eighteen shared
columns, respectively. The actual data size was tripled, i.e.,
increased to 2.3 GiB per column, to reduce spatial locality in-
fluence. The previously detected behavior of SIMD mixtures
(e.g., possible superior performance) combined with sequen-

tial access operators is preserved for up to 18 shared columns
per 36 queries, i.e., 1 column is shared by 2 threads. However,
the level of throughput diversity between mixed schemes
is decreasing with the number of shared columns. With 18
columns, only the round robin scheme considerably out-
performs the homogeneous vectorization and, thus, yields
a performance increase. The data access pattern exhibits
crucial importance as well, as for random-read or heavily
read-write mixed operators (e.g., project or select with a high

degree of selectivity), the actual mixed performance increase
tends to disappear even for the single shared data scenario.

3.4 Lessons Learned

From our experimental analysis of typical data intensive
workloads, we draw the following important conclusions:
(1) Given the assumptions of our system model, the em-
ployment of SIMD parallelism can significantly improve the
performance compared to a scalar execution. (2) However,
it is important to carefully select among the available SIMD
options (including scalar processing) to reach the highest
performance. A naïve strategy of always selecting the largest
registers, i.e., AVX-512, may be even harmful compared to
the scalar execution. (3) Furthermore, even within one in-
struction set, different ways to store data (e.g., streaming)
can have a significant impact. (4) The best-performing SIMD
option depends on the level of concurrency, the memory
type, and the operator (or access pattern). (5) Our newly dis-
covered effects of SIMD-cocktails offer a great opportunity
for performance optimization, and in the following section,
we present a strategy to leverage them effectively.

4 OPTIMIZING SIMD-MIMD INTERPLAY

As described in our system model in Section 2, batching of
queries in a multi-threading environment is a common op-
timization technique to benefit from caching effects. This
batch of queries is executed at once and all operators are typ-
ically vectorized using one specific SIMD extension such as

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Batch queries

SIMD Ops

Profiling

Calibration

hours, 1000s of profiles
(few KiB)

Optimization

<1!s

Execution
Up to 2x
speedup

SSE

AVX2

AVX-512

Scalar

Data
Placement

DRAM

NVRAM

Traditional Approach

Online switch for
dominating operator

à +

AVX-512

SIMD-MIMD Cocktail

Figure 7: Deployment model (yellow box) of our adap-

tive SIMD-MIMD vectorization cocktail.

AVX-512 in DRAM as shown in Figure 7. However, as clearly
shown in the previous section, the choice of the optimal
SIMD version applied for operator vectorization depends on
various factors such as the degree of MIMD parallelism, mem-
ory type, access pattern and level of shared (and, therefore,
potentially cached) data processing. In particular, Figures 3,
4, and 5 indicate that some vectorization schemes exhibit
a significantly higher performance compared to others for
certain fixed thread counts. Based on those observations,
we now propose and evaluate an optimization design for an
online decision mechanism as shown in Figure 7 to shake the
best fitting cocktail for the current conditions at run-time.

4.1 Optimization Design

Our proposed online decision mechanism extends the ex-
isting query optimizer of a database system. The main task
of a query optimizer is to translate a descriptive SQL query
into an efficient query execution plan consisting of several
operators. To shake the best fitting cocktail for the operators
under the current conditions, our approach consists of the
following three components:

Profiles. The profiles characterize the behavior of partic-
ular operators (or access patterns). Such platform-dependent

profiles are generated once at deployment time and provide
information about the performance of the individual vec-
torization schemes (either homo- or heterogeneous) in the
context of various concurrency levels and data set configu-
rations. The profiles build the foundation for the adaptive
optimization mechanism. Essentially, one profile per com-
bination <operator> x <medium> x <#threads> x <#shared
columns> is retrieved. For illustrative purposes, in the fol-
lowing we stay with the measurements of Section 3, which
provide us with profile information for our test system. We
use a table format as shown in Table 1, which reflects the case
of 24 threads in Figure 4-(b). Thus, a single profile consists

Table 1: An example profile for <aggregate> on

<NVRAM> @ <24> threads over <1> shared column.

SIMD Version #Core Begin #Core End Round Robin

Scalar 1 18 No
AVX2 – – –

AVX-512 19 24 No

of several rows corresponding to the available SIMD exten-
sions in the system, while each row specifies the enumera-
tion interval of cores that has to run accordingly vectorized
queries/operators to produce an optimal cocktail. The exam-
ple in Table 1 tells us we should use scalar processing for
threads 1–18 and AVX-512 for threads 19–24. Furthermore,
the profile indicates that the cocktail-style is to be favored
(for round robin, the corresponding cell would contain the
"Yes" indicator). This format allows for profiling of multiple
SIMD versions (e.g., more than two) used in the cocktail.
Model. As high performance is among the highest pri-

orities of hybrid memory database systems, the switching
algorithm is required to be very lightweight to keep its over-
head as low as possible. Due to this essential requirement,
we adopted a small lookup formula/function as our model
for the selection algorithm. This formula is derived based on
the measurements obtained at deployment time. Essentially
it returns the profile best fitting to the current conditions,
and is defined as: Profile = F(<memory>, <operator>,

<#threads>, <#shared columns>).
Online Switching. The actual online switching compo-

nent leverages the information about the current workload
(or batch) including queries, memory type and the data set
configuration to calculate the aforementioned formula and
navigate to the recommended profile. This step imposes only
a fewmicroseconds of fixed run-time overhead and thanks to
the batching, we do not have to carry out online monitoring.
The batches are executed one after the other and contain
all necessary information. Subsequently, that profile is used
to find out the optimal SIMD-configuration of vectorized
operators to be executed by MIMD-parallel queries. Here,
by workload information we understand the dominating op-
erator (in terms of run-time) within the currently executed
query and data set, which provides information about the
number and size of shared data columns and the respective
memory type. The complete procedure can be executed in
user-space and is possible with user-space knowledge, yet it
imposes only negligible overhead due to its simplicity and is
usually completely amortized by the improvements of the
query execution run-time.

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4.2 Implementation

We implemented a proof-of-concept of our switching ap-
proach using the columnar query engine MorphStore [19, 25].
The schematic view of our implementation is shown in Fig-
ure 7. The advantage of using MorphStore is that its oper-
ators are implemented in a hardware-oblivious way using
the vector abstraction library TVL [59]. Thus, each operator
implementation can automatically be specialized to different
SIMD extensions, which is required for our overall approach.
In our proof-of-concept, all alternative vectorized operators
that can be possibly chosen are pre-compiled as isolated
functions that can be called by our online decision mecha-
nism. As illustrated in Figure 7, we batch concurrent queries
accessing the same base columns [23, 38, 53].
Such a batch determines the characteristics of the work-

load (the concurrency level, memory type, and the dominat-
ing access pattern (i.e., operator)) that are given as param-
eters or can be extracted during query compilation phase
without any significant overhead. We generated a decision
formula as our switching model based on the profile informa-
tion. Obviously, this model is platform-dependent and needs
to be calibrated for different hardware platforms. However,
this calibration has to be done only once per platform.

4.3 Evaluation

To show the efficiency and applicability of our optimization,
we now present selective experimental results and discuss
the deployment costs. The evaluation setup is the same as
in Section 3, but we target more complex scenarios, not just
single operators. Thus, we analyze the behavior of adaptive
SIMD-conscious vectorization exemplified by three selected
queries similar to those we mentioned in Section 1:

(1) SELECT SUM(a) FROM r

This query resembles the basic aggregation case involving
a single shared column analyzed in Section 3.

(2) SELECT SUM(a), SUM(b), SUM(c), SUM(d) FROM r

Here, we extended the aggregated data set to four sepa-
rate equally sized columns being scanned in a sequence in
accordance with the column-at-a-time processing model.

(3) SELECT SUM(a) FROM r WHERE x < const

This query consists of three operators: selection, projec-
tion and aggregation. Both selection and projection (of differ-
ent instances of this query) access shared base data, however,
we ensured the superior domination of selection by using a
selectivity of 1% on a large base column.

The resulting performance of the optimization mechanism
is reflected by Figure 8 for both mediums. Here, for query
(1) our decision mechanism is always able to select the best
SIMD vectorization scheme among the ones we consider
(Figures 8-(a,b)). This is, however, expected as the query ex-
ecution can be exactly mapped to the aggregation profile

4 8 12 18 24 28 36

(b) NVRAM

Scalar
AVX512
Scalar/AVX512
AVX512/Scalar
Scalar~AVX512

0

100

200

300

400

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(a) DRAM

(1) SELECT SUM(a) FROM r

- chosen

- best

4 8 12 18 24 28 36

(d) NVRAM

0

20

40

60

80

100

4 8 12 18 24 28 36

T
h

ro
u

g
h

p
u

t
[R

u
n

s/
s]

#threads

(c) DRAM

(2) SELECT SUM(a), SUM(b), SUM(c), SUM(d) FROM r

4 8 12 18 24 28 36

(f) NVRAM

0

20

40

60

80

100

4 8 12 18 24 28 36
T

h
ro

u
g

h
p

u
t

[R
u

n
s/

s]
#threads

(e) DRAM

(3) SELECT SUM(a) FROM r WHERE x < const

Figure 8: The performance of test queries indicating

best measured and our selected SIMD combination.

and demonstrates the respective performance. The situation
slightly changes with regard to query (2) which features its
specific data set, while preserving the absolute domination
of the aggregation-operator. According to our optimization
assumption, the switching model again deploys the profile
of elementary aggregation. The respective decisions result
in a strong correlation with the best reachable performance
on both DRAM and NVRAM (Figure 8-(c,d)). Although the
actual best measured strategy is not always selected by the
model (e.g., for thread count 4, 8 and 36 on DRAM), the re-
spective performance losses compared to the optimum do
not exceed a few percents. Finally, the behavior of query
(3) is presented by Figures 8-(e,f) for volatile and persistent
memory, respectively. As mentioned before, the selection
part of this data processing task dominates within its runtime
and, therefore, our optimization model deploys the profile
of elementary selection (i.e., extracted from Figures 2-(c,d)),
the remaining operators follow their default SIMD policies.
The DRAM case demonstrates a high hit rate with the best
measured option (only thread counts 1, 28 and 36 are mis-
predicted) with a worst-case loss of 10% compared to the
best setting (e.g., for 28 threads). Nevertheless, the approach
chosen in this case still outperforms the best respective ba-
sic scheme (Scalar) by 11%. The NVRAM-backed adaptive
selection faces much worse correlation with the optimal mea-
sured scheme. However, this is not an issue for this scenario
as all involved SIMD schemes demonstrate roughly similar
throughput here, due to the slower nature of persistent mem-
ory. Thus, the under-gained performance does not exceed
7% (except for a single outlier at 36 threads).

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

.

Deployment Costs. The deployment of our proposed
optimization imposes the following costs: (i) implementation
of alternatively SIMD vectorized operators (though possibly
automated using the TVL, cf. Section 2.3); (ii) one-time profile
calibration overhead at system deployment phase—several
hours and a few KiB of memory space to store thousands
of measured profiles; (iii) a few microseconds of runtime
overhead spent in the model for online switching.
Lessons Learned. Based on our evaluation, we conclude

that our adaptive SIMD-conscious vectorization approach is
applicable and useful. In nearly all examined cases, it is able
to suggest either the optimal or an only slightly sub-optimal
solution. While the performance delivered that way is able to
considerably outpace the static homogeneous strategies (e.g.,
always using AVX-512), the run-time overhead is negligible.
It is important to note that our approach remains useful
even if only basic SIMD vectorization schemes are explicitly
allowed as, in principle, it will just limit our decision making
algorithms to the corresponding profiles (with the goal to
select the best among the homogeneous options).

5 RELATED WORK

We have already discussed the basics of column-store sys-
tems, data placement in hybrid memory architectures as well
as data-level parallelism based on SIMD and thread-level par-
allelism based on MIMD for column-stores in Section 2. Now,
we focus on works related to the SIMD-MIMD cocktail and
hybrid-memory systems in general.
Vectorization is widely used in column-stores [19, 36, 39,

55], with some query engines being even fully vectorized [52].
However, these systems typically focus on a single SIMD
extension (usually AVX-512), i.e., they do not decide at run-
time which extension to use or whether to mix extensions.
In contrast to that, we found out that having multiple SIMD
variants of the same columnar operator available and mixing
them appropriately often improves query performance in
multi-threaded settings.

Additionally, there are a couple of system-level works ad-
dressing the impact of AVX-512 on the processor’s clock
frequency. Gottschlag et at. [24] observe that AVX-512 code
can slow down scalar code running shortly afterwards or
concurrently on another hyper-core of the same physical
core. They propose separating threads employing AVX-512
from those executing only scalar instructions by schedul-
ing them on different physical cores to limit the slow-down
incurred by AVX-512 on concurrent scalar code. Kumar et
al. [35] propose to de-vectorize short vectorized code sec-
tions using JIT compilation techniques to avoid the negative
impact on scalar code. Unlike in these works, in the setting
we assume, the system is able to decide if a pre-compiled

vectorized or scalar operator variant should be executed.

Nevertheless, our SIMD-MIMD cocktails can also result in a
physical separation of AVX-512 and scalar threads.
Regarding thread-level parallelism (MIMD), our work is

related to scan-sharing [54]. Here, the idea is to make queries
scanning the same data run at the same time to reduce the
number of cache misses. Our approach of mixing SIMD ex-
tensions also requires multiple queries on the same base data
at once. Nevertheless, we could show that even a low number
of concurrent queries suffices to render the heterogeneous
use of SIMD extensions beneficial.
Finally, with the advent of NVRAM, hybrid memory sys-

tems have gained importance in recent years. A number of
persistent programming tool-kits, memory allocators and
file systems [3, 7, 20, 29, 40, 56, 57, 65, 68, 69] have been
developed. These components allow convenient deployment
of NVRAM in a variety of applications, ranging from sci-
entific HPC systems [48] to big data infrastructure, via the
development of persistent memory-centric algorithms and
data structures [15, 16, 32, 42, 43, 60, 61, 67]. Moreover, there
is a number of hybrid memory data systems such as SAP
HANA [4], SOFORT [41, 44, 45], FOEDUS [33], and Pelo-
ton [5]. We believe that our cocktail approach of mixing
SIMD extensions is a suitable means to accelerate the ac-
cess to NVRAM in these systems, which is especially crucial
given the lower bandwidth of NVRAM compared to DRAM.

6 CONCLUSION

To achieve highest performance in analytics, both data-level
parallelism using SIMD and thread-level parallelism using
MIMD are mandatory in scale-up hybrid memory databases.
In this paper, we performed a thorough evaluation and analy-
sis of typical SIMD-vectorized MIMD-concurrent workloads
on NVRAM and compared their behavior to DRAM. Based
on the revealed behavior we suggested recommendations for
efficient deployment of available data parallelism primitives.
Further, we proposed mixtures of various SIMD versions to
be combined in a single query execution environment and
showed that such cocktails could be leveraged via adaptive
SIMD-MIMD shaking, our proposed approach allows to sig-
nificantly increase the performance gains of vectorization
for analytical workloads. We verified the effectiveness of
our ideas through a prototypical implementation based on
profiling and an inter-query concurrency mechanism.

ACKNOWLEDGMENTS

This work was partly funded by (1) the German Research
Foundation (DFG) via an individual project LE-1416/27-1 as
well as by a Reinhart Koselleck-Project (LE-1416/28-1), and
(2) the European Union’s Horizon 2020 research and innova-
tion program under grant agreement No 957407 (DAPHNE).

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

REFERENCES
[1] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos,

and Samuel Madden. 2013. The Design and Implementation of Modern

Column-Oriented Database Systems. Found. Trends Databases 5, 3

(2013), 197–280.

[2] Daniel J. Abadi, Samuel Madden, andMiguel Ferreira. 2006. Integrating

compression and execution in column-oriented database systems. In

SIGMOD. 671–682.

[3] Alfons Kemper Thomas Neumann Takushi Hashida Kazuichi Oe

Yoshiyasu Doi Lilian Harada Sato Mitsuru Alexander van Renen, Vik-

tor Leis. 2018. Managing Non-Volatile Memory in Database Systems.

In SIGMOD. 691–706.

[4] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze,

Carsten Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad

Sharique, Sebastian Seifert, Surendra Vishnoi, Daniel Booss, Thomas

Peh, Ivan Schreter, Werner Thesing, Mehul Wagle, and Thomas Will-

halm. 2017. SAP HANA Adoption of Non-volatile Memory. Proc. VLDB

Endow. 10, 12 (2017), 1754–1765.

[5] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind

Logging. PVLDB 10, 4 (2016), 337–348.

[6] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.

2015. Main-Memory Hash Joins on Modern Processor Architectures.

IEEE Trans. Knowl. Data Eng. 27, 7 (2015), 1754–1766.

[7] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm.

2016. Makalu: Fast Recoverable Allocation of Non-volatile Memory.

In OOPSLA. 677–694.

[8] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009.

Dictionary-based order-preserving string compression for main mem-

ory column stores. In SIGMOD. 283–296.

[9] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and

evaluation of main memory hash join algorithms for multi-core CPUs.

In SIGMOD. 37–48.

[10] Peter A. Boncz, Martin L. Kersten, and StefanManegold. 2008. Breaking

the memory wall in MonetDB. Commun. ACM 51, 12 (2008), 77–85.

[11] Peter A. Boncz, StefanManegold, andMartin L. Kersten. 1999. Database

Architecture Optimized for the New Bottleneck: Memory Access. In

VLDB. 54–65.

[12] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:

Hyper-Pipelining Query Execution. In CIDR.

[13] Andrea Cerone and Alexey Gotsman. 2016. Analysing Snapshot Isola-

tion. https://doi.org/10.1145/2933057.2933096

[14] Surajit Chaudhuri and Umeshwar Dayal. 1997. An Overview of Data

Warehousing and OLAP Technology. SIGMOD Record 26, 1 (1997),

65–74.

[15] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking

Database Algorithms for Phase Change Memory. In CIDR. 21–31.

[16] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile

Main Memory. PVLDB 8, 7 (2015), 786–797.

[17] George P. Copeland and Setrag Khoshafian. 1985. A Decomposition

Storage Model. In SIGMOD. 268–279.

[18] Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich,

and Wolfgang Lehner. 2019. From a Comprehensive Experimental

Survey to a Cost-based Selection Strategy for Lightweight Integer

Compression Algorithms. ACM Trans. Database Syst. 44, 3 (2019),

9:1–9:46.

[19] Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander

Krause, Dirk Habich, and Wolfgang Lehner. 2020. MorphStore: Ana-

lytical Query Engine with a Holistic Compression-Enabled Processing

Model. Proc. VLDB Endow. 13, 11 (2020), 2396–2410.

[20] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.

2019. Performance and Protection in the ZoFS User-Space NVM File
System. In SOSP. 478–493.

[21] Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck,

Matthias Uflacker, and Hasso Plattner. 2019. Hyrise Re-engineered:

An Extensible Database System for Research in Relational In-Memory

Data Management. In EDBT. 313–324.

[22] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System

Software for Persistent Memory. In EuroSys. 15:1–15:15.

[23] Georgios Giannikis, DarkoMakreshanski, Gustavo Alonso, and Donald

Kossmann. 2014. Shared Workload Optimization. Proc. VLDB Endow.

7, 6 (Feb. 2014), 429–440. https://doi.org/10.14778/2732279.2732280

[24] Mathias Gottschlag, Peter Brantsch, and Frank Bellosa. 2020. Au-

tomatic Core Specialization for AVX-512 Applications. In SYSTOR.

25–35.

[25] Dirk Habich, Patrick Damme, Annett Ungethüm, Johannes Pietrzyk,

Alexander Krause, Juliana Hildebrandt, and Wolfgang Lehner. 2019.

MorphStore - In-Memory Query Processing based on Morphing Com-

pressed Intermediates LIVE. In SIGMOD Conference. 1917–1920.

[26] Intel. 2018. Intel Instruction Reference Manual (Vol 2A, 3-147). (2018).

[27] Intel. 2020. Intel® Xeon® Processor Scalable Family, Specification

Update. https://www.intel.com/content/dam/www/public/us/en/

documents/specification-updates/xeon-scalable-spec-update.pdf

[28] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.

Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance

Measurements of the Intel Optane DC Persistent Memory Module.

arXiv:cs.DC/1903.05714

[29] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,

Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: reducing

software overhead in file systems for persistent memory. In SOSP.

494–508.

[30] Soroosh Khoram, Yue Zha, Jialiang Zhang, and Jing Li. 2017. Challenges

and Opportunities: From Near-memory Computing to In-memory

Computing. In ISDP. 43–46.

[31] Amandeep Khurana and Julien Le Dem. 2018. The Modern Data

Architecture: The Deconstructed Database. login Usenix Mag. 43, 4

(2018).

[32] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. 2018.

clfB-tree: Cacheline Friendly Persistent B-tree for NVRAM. ACM

Trans. Storage 14, 1 (Feb. 2018), 5:1–5:17.

[33] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores

and NVRAM. In SIGMOD. 691–706.

[34] Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich, Daniel

Molka, and Wolfgang Lehner. 2014. ERIS: A NUMA-Aware In-Memory

Storage Engine for Analytical Workload. In ADMS@VLDB. 74–85.

[35] Rakesh Kumar, Alejandro Martínez, and Antonio González. 2014. Effi-

cient Power Gating of SIMD Accelerators Through Dynamic Selective

Devectorization in an HW/SW Codesigned Environment. ACM Trans.

Archit. Code Optim. 11, 3 (2014), 25:1–25:23.

[36] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas

Neumann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and

OLAP on Compressed Storage using both Vectorization and Compila-

tion. In SIGMOD. 311–326.

[37] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers

per second through vectorization. Softw., Pract. Exper. 45, 1 (2015),

1–29.

[38] DarkoMakreshanski, Georgios Giannikis, Gustavo Alonso, and Donald

Kossmann. 2016. MQJoin: Efficient Shared Execution of Main-Memory

Joins. Proc. VLDB Endow. 9, 6 (Jan. 2016), 480–491. https://doi.org/10.

14778/2904121.2904124

[39] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed

Operator Fusion for In-Memory Databases: Making Compilation, Vec-

torization, and Prefetching Work Together At Last. Proc. VLDB Endow.

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

[40] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia,

Parthasarathy Ranganathan, and Nathan Binkert. 2013. Consistent,

Durable, and Safe Memory Management for Byte-addressable Non

Volatile Main Memory. In TRIOS@SOSP. 1:1–1:17.

[41] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and

Thomas Willhalm. 2014. SOFORT: A Hybrid SCM-DRAM Storage

Engine for Fast Data Recovery. In DaMoN. 8:1–8:7.

[42] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and

Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and

Concurrent B-Tree for Storage Class Memory. In SIGMOD. 371–386.

[43] Ismail Oukid and Wolfgang Lehner. 2017. Data Structure Engineering

For Byte-Addressable Non-Volatile Memory. In SIGMOD. 1759–1764.

[44] Ismail Oukid and Wolfgang Lehner. 2017. Towards a Single-Level

Database Architecture on Non-Volatile Memory. In NVMW.

[45] Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Will-

halm, and Peter Bumbulis. 2015. Instant Recovery for Main Memory

Databases. In CIDR.

[46] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia

Ailamaki. [n.d.]. Data-Oriented Transaction Execution. Proc. VLDB

Endow. 3, 1 ([n. d.]), 928–939.

[47] Kyriakos Paraskevas, Andrew Attwood, Mikel Luján, and John

Goodacre. 2019. Scaling the Capacity of Memory Systems; Evolu-

tion and Key Approaches. In MEMSYS. 235–249.

[48] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael

Lang. 2019. Performance Characterization of a DRAM-NVM Hybrid

Memory Architecture for HPC Applications Using Intel Optane DC

Persistent Memory Modules. In MEMSYS. 288–303.

[49] Ivy Bo Peng, Stefano Markidis, Erwin Laure, Gokcen Kestor, and

Roberto Gioiosa. 2016. Exploring Application Performance on Emerg-

ing Hybrid-Memory Supercomputers. In HPCC/SmartCity/DSS. 473–

480.

[50] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015.

Rethinking SIMD Vectorization for In-Memory Databases. In SIGMOD.

1493–1508.

[51] Orestis Polychroniou and Kenneth A. Ross. 2014. A comprehensive

study of main-memory partitioning and its application to large-scale

comparison- and radix-sort. In SIGMOD. 755–766.

[52] Orestis Polychroniou and Kenneth A. Ross. 2020. VIP: A SIMD vector-

ized analytical query engine. VLDB J. 29, 6 (2020), 1243–1261.

[53] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki.

2013. Sharing Data and Work across Concurrent Analytical Queries.

Proc. VLDB Endow. 6, 9 (July 2013), 637–648. https://doi.org/10.14778/

2536360.2536364

[54] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and

Guy M. Lohman. 2008. Main-memory scan sharing for multi-core

CPUs. Proc. VLDB Endow. 1, 1 (2008), 610–621.

[55] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh

Chainani, David Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam

Lightstone, Shaorong Liu, Guy M. Lohman, Tim Malkemus, René

Müller, Ippokratis Pandis, Berni Schiefer, David Sharpe, Richard Sidle,

Adam J. Storm, and Liping Zhang. 2013. DB2with BLUAcceleration: So

Much More than Just a Column Store. PVLDB 6, 11 (2013), 1080–1091.

[56] Andy Rudoff. 2015. Persistent Memory Programming. Login: The

Usenix Magazine 42 (2015), 34–40.

[57] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and

Hasso Plattner. 2015. nvm malloc: Memory Allocation for NVRAM. In

[58] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,

Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel

Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran,

and Stanley B. Zdonik. 2005. C-Store: A Column-oriented DBMS. In
VLDB. 553–564.

[59] Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Alexander

Krause, Dirk Habich, Wolfgang Lehner, and Erich Focht. 2020.

Hardware-Oblivious SIMD Parallelism for In-Memory Column-Stores.

In CIDR.

[60] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and

Roy H. Campbell. 2011. Consistent and Durable Data Structures for

Non-volatile Byte-addressable Memory. In FAST. 5–5.

[61] Stratis Viglas. 2014. Write-limited sorts and joins for persistent mem-

ory. PVLDB 7, 5 (2014), 413–424.

[62] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper,

Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then.

2018. Get Real: How Benchmarks Fail to Represent the Real World. In

DBTest@SIGMOD. 1:1–1:6.

[63] Adrian Vogelsgesang, Tobias Mühlbauer, Viktor Leis, Thomas Neu-

mann, and Alfons Kemper. 2019. Domain Query Optimization: Adapt-

ing the General-Purpose Database System Hyper for Tableau Work-

loads. In BTW. 313–333.

[64] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner,

Alexander Zeier, and Jan Schaffner. 2009. SIMD-Scan: Ultra Fast in-

Memory Table Scan using on-Chip Vector Processing Units. PVLDB 2,

1 (2009), 385–394.

[65] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File

System for Hybrid Volatile/Non-volatile Main Memories. In FAST. 323–

338.

[66] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steven Swanson. 2019. An Empirical Guide to the Behavior and Use

of Scalable Persistent Memory. arXiv:cs.DC/1908.03583

[67] Jun Yang, Qingsong Wei, Chundong Wang, Cheng Chen, Khai Leong

Yong, and Bingsheng He. 2016. NV-Tree: A Consistent and Workload-

Adaptive Tree Structure for Non-Volatile Memory. IEEE Trans. Com-

puters 65, 7 (2016), 2169–2183.

[68] Songping Yu, Nong Xiao, Mingzhu Deng, Fang Liu, and Wei Chen.

2017. Redesign the Memory Allocator for Non-Volatile Main Memory.

J. Emerg. Technol. Comput. Syst. 13, 3 (2017).

[69] Songping Yu, Nong Xiao, Mingzhu Deng, Yuxuan Xing, Fang Liu,

Zhiping Cai, and Wei Chen. 2015. WAlloc: An efficient wear-aware

allocator for non-volatile main memory. In IPCCC. 1–8.

[70] Mikhail Zarubin, Patrick Damme, Dirk Habich, and Wolfgang Lehner.

2020. Polymorphic Compressed Replication of Columnar Data in Scale-

Up Hybrid Memory Systems. In SYSTOR. 98–110. https://doi.org/10.

1145/3383669.3398283

[71] Mikhail Zarubin, Thomas Kissinger, Dirk Habich, and Wolfgang

Lehner. 2018. Efficient Compute Node-local Replication Mechanisms

for NVRAM-centric Data Structures. In DaMoN@SIGMOD (Houston,

Texas) (DAMON ’18). ACM, New York, NY, USA, Article 7, 9 pages.

https://doi.org/10.1145/3211922.3211931

[72] Jingren Zhou and Kenneth A. Ross. 2002. Implementing database

operations using SIMD instructions. In SIGMOD. 145–156.

[73] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2006.

Super-Scalar RAM-CPU Cache Compression. In ICDE. 59.

Final edited form was published in "SYSTOR '21: Proceedings of the 14th ACM International Conference on Systems and Storage, Haifa, 2021.

ACM Digital Library. ISBN 978-1-4503-8398-1

https://doi.org/10.1145/3456727.3463782

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADP6173.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, Wolfgang Lehner
	SIMD-MIMD cocktail in a hybrid memory glass: shaken, not stirred

	ADPCF01.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, Wolfgang Lehner
	SIMD-MIMD cocktail in a hybrid memory glass: shaken, not stirred

	ADP58F.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, Wolfgang Lehner
	SIMD-MIMD cocktail in a hybrid memory glass: shaken, not stirred

	ADP9D57.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, Wolfgang Lehner
	SIMD-MIMD cocktail in a hybrid memory glass: shaken, not stirred

