
Word Embeddings in Database Systems

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Michael Günther

geboren am 06. Mai 1994 in Dresden

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner

Technische Universität Dresden

Fakultät Informatik

Institut für Systemarchitektur

Lehrstuhl für Datenbanken

01062 Dresden

Prof. Dr. Christian Bizer

Universität Mannheim

Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Institut für Informatik und Wirtschaftsinformatik

Lehrstuhl für Informationssysteme V: Webbasierte Systeme

B6, 26

68159 Mannheim

Tag der Verteidigung: 9. November 2021

ABSTRACT

Research in natural language processing (NLP) focuses recently on the development of
learned language models called word embedding models like word2vec [MSC+13], fast-
Text [BGJM17], and BERT [DCLT19]. Pre-trained on large amounts of unstructured text
in natural language, those embedding models constitute a rich source of common knowl-
edge in the domain of the text used for the training. In the NLP community, significant
improvements are achieved by using those models together with deep neural network
models. To support applications to benefit from word embeddings, we extend the ca-
pabilities of traditional relational database systems, which are still by far the most com-
mon DBMSs but only provide limited text analysis features. Therefore, we implement
(a) novel database operations involving embedding representations to allow a database user to
exploit the knowledge encoded in word embedding models for advanced text analysis
operations. The integration of those operations into database query language enables
users to construct queries using novel word embedding operations in conjunction with
traditional query capabilities of SQL. To allow efficient retrieval of embedding represen-
tations and fast execution of the operations, we implement (b) novel search algorithms and
index structures for approximated kNN-Joins and integrate those into a relational database
management system. Moreover, we investigate techniques to optimize embedding rep-
resentations of text values in database systems. Therefore, we design (c) a novel context
adaptation algorithm. This algorithm utilizes the structured data present in the database
to enrich the embedding representations of text values to model their context-specific se-
mantic in the database. Besides, we provide (d) support for selecting a word embedding model
suitable for a user’s application. Therefore, we developed a data processing pipeline to
construct a dataset for domain-specific word embedding evaluation. Finally, we pro-
pose (e) novel embedding techniques for pre-training on tabular data to support applications
working with text values in tables. Our proposed embedding techniques model semantic
relations arising from the alignment of words in tabular layouts that can only hardly be
derived from text documents, e.g., relations between table schema and table body. In this
way, many applications, which either employ embeddings in supervised machine learn-
ing models, e.g., to classify cells in spreadsheets, or through the application of arithmetic
operations, e.g., table discovery applications [NZPM18], can profit from the proposed
embedding techniques.

3

4

CONTENTS

1 INTRODUCTION 11

1.1 Contribution . 12

1.2 Outline . 13

2 REPRESENTATION OF TEXT FOR NATURAL LANGUAGE PROCESSING 15

2.1 Natural Language Processing Systems . 15

2.2 Word Embedding Models . 16

2.2.1 Matrix Factorization Methods . 17

2.2.2 Learned Distributed Representations 18

2.2.3 Contextualize Word Embeddings 20

2.2.4 Advantages of Contextualize and Static Word Embeddings . . 21

2.2.5 Properties of Static Word Embeddings 22

2.2.6 Node Embeddings . 23

2.2.7 Non-Euclidean Embedding Techniques 25

2.3 Evaluation of Word Embeddings . 26

2.3.1 Similarity Evaluation . 28

2.3.2 Analogy Evaluation . 28

2.3.3 Cluster-based Evaluation . 28

2.4 Application for Tabular Data . 29

2.4.1 Semantic Search . 29

2.4.2 Data Curation . 29

2.4.3 Data Discovery . 29

3 SYSTEM OVERVIEW 31

3.1 Opportunities of an Integration . 31

3.2 Characteristics of Word Vectors . 34

3.3 Objectives and Challenges . 36

3.4 Word Embedding Operations . 38

3.5 Performance Optimization of Operations 40

3.6 Context Adaptation . 42

3.7 Requirements for Model Recommendation 44

5

3.8 Tabular Embedding Models . 44

4 MANAGEMENT OF EMBEDDING REPRESENTATIONS IN DATABASE SYSTEMS 47

4.1 Integration of Operations in an RDBMS 47

4.1.1 System Architecture . 47

4.1.2 Storage Formats . 49

4.1.3 User-Defined Functions . 50

4.1.4 Web Application . 52

4.2 Nearest Neighbor Search . 53

4.2.1 Tree-based Methods . 53

4.2.2 Proximity Graphs . 55

4.2.3 Locality-Sensitive Hashing . 56

4.2.4 Quantization Techniques . 58

4.3 Applicability of ANN Techniques for Word Embedding kNN-Joins . . . 60

4.4 Related Work on kNN Search in Database Systems 61

4.5 ANN-Joins for Relational Database Systems 64

4.5.1 Index Architecture . 64

4.5.2 Search Algorithm . 65

4.5.3 Distance Calculation . 66

4.5.4 Optimization Capabilities . 66

4.5.5 Estimation of the Number of Targets 67

4.5.6 Flexible Product Quantization . 69

4.5.7 Further Optimizations . 70

4.5.8 Parameter Tuning . 71

4.5.9 kNN-Joins for Word2Bits . 71

4.6 Evaluation . 72

4.6.1 Experimental Setup . 73

4.6.2 Influence of Index Parameters on Precision and Execution Time 73

4.6.3 Performance of Subroutines . 74

4.6.4 Flexible Product Quantization . 75

4.6.5 Accuracy of the Target Size Estimation 76

4.6.6 Performance of Word2Bits kNN-Join 77

4.7 Summary . 79

5 CONTEXT ADAPTATION FOR WORD EMBEDDING OPTIMIZATION 81

5.1 Related Work . 81

5.1.1 Graph and Text Joint Embedding Methods 82

5.1.2 Retrofitting Approaches . 85

5.1.3 Table Embedding Models . 86

5.2 Relational Retrofitting Approach . 87

5.2.1 Data Preparation . 89

5.2.2 Relational Retrofitting Problem . 90

6 CONTENTS

5.2.3 Relational Retrofitting Algorithm . 91

5.2.4 Online-RETRO . 93

5.3 Evaluation Platform: Retro Live . 94

5.3.1 Functionality . 94

5.3.2 Interface . 95

5.4 Evaluation . 96

5.4.1 Datasets . 96

5.4.2 Training of Embeddings . 97

5.4.3 Machine Learning Models . 97

5.4.4 Evaluation of ML Models . 99

5.4.5 Run-time Measurements . 104

5.4.6 Online Retrofitting . 104

5.5 Summary . 106

6 MODEL RECOMMENDATION 107

6.1 Related Work . 107

6.1.1 Extrinsic Evaluation . 108

6.1.2 Intrinsic Evaluation . 108

6.2 Architecture of FacetE . 109

6.3 Evaluation Dataset Construction Pipeline 110

6.3.1 Web Table Filtering and Facet Candidate Generation 110

6.3.2 Check Soft Functional Dependencies 111

6.3.3 Post-Filtering . 111

6.3.4 Categorization . 112

6.4 Evaluation of Popular Word Embedding Models 112

6.4.1 Domain-Agnostic Evaluation . 112

6.4.2 Evaluation of a Single Facet . 113

6.4.3 Evaluation of an Object Set . 113

6.5 Summary . 114

7 TABULAR TEXT EMBEDDINGS 115

7.1 Related Work . 115

7.1.1 Static Table Embedding Models . 116

7.1.2 Contextualized Table Embedding Models 116

7.2 Web Table Embedding Model . 118

7.2.1 Preprocessing . 119

7.2.2 Text Serialization . 119

7.2.3 Encoding Model . 120

7.2.4 Embedding Training . 120

7.3 Applications for Table Embeddings . 120

7.3.1 Table Union Search . 120

CONTENTS 7

7.3.2 Classification Tasks . 121

7.4 Evaluation . 124

7.4.1 Intrinsic Evaluation . 126

7.4.2 Table Union Search Evaluation . 127

7.4.3 Table Layout Classification . 128

7.4.4 Spreadsheet Cell Classification . 130

7.5 Summary . 132

8 CONCLUSION 133

8.1 Summary . 133

8.2 Directions for Future Work . 135

BIBLIOGRAPHY 137

LIST OF FIGURES 155

LIST OF TABLES 159

A CONVEXITY OF RELATIONAL RETROFITTING 161

B EVALUATION OF THE RELATIONAL RETROFITTING HYPERPARAMETERS 163

8 CONTENTS

ACKNOWLEDGMENTS

I am very grateful for the opportunity to work on this dissertation project and all the
support I got in the last three and a half years. Thus, I want to thank Wolfgang Lehner
for making this possible and for his trust in me. Furthermore, I would like to thank Maik
Thiele, who believed in me and convinced by to apply for the Ph.D position instead of
an internship. I am grateful for all the knowledge he shared with me and this competent
feedback to all my ideas, even if I changed my mind and reconsidered my approaches
three times a week. Moreover, I also want to thank Christian Bizer for his commitment
to creating the external review.

I want to thank all my current and former colleagues at the chair, who make the work-
ing atmosphere enjoyable. Moreover, I want to say thanks for all the helpful discussions
about my research problems. Further, I want to thank everybody who has organized a
KuK or attended my KuKs. Besides, I also want to thank the colleagues form the research
training group RoSI. I also want to thank Ulrike and Ines for their support with adminis-
trative issues. Furthermore, I want to thank Ulrike for proofreading my publications. In
addition, I would also like to thank all the students who contributed to my research.

Finally, I want to thank my family for always supporting me and making my life easier in
situations where I was stressed. I want to thank Annika for encouraging me and always
paying attention to my doubts and concerns. I also want to thank all my friends who
distracted me from time to time from my dissertation so that I could fully enjoy my free
time.

Michael Günther
Dresden, September, 2021

9

10 CONTENTS

1
INTRODUCTION

Research in natural language processing has received substantial progress by using deep
learning techniques in recent years. Specifically, significant improvements are achieved
by using word embedding models like word2vec [MSC+13, MCCD13], fastText [BGJM17],
and BERT [DCLT19]. Those models are pre-trained on large amounts of unstructured text
in natural language. This allows them to encode text snippets as vector representations
where semantic relations between text values are represented as spatial relations. In this
way, embedding models can be employed by downstream applications to interpret input
text values and have found application in a wide range of NLP [XFS14, Sie15] and in-
formation retrieval tasks [ZKBA15, NMCC16, ZML+20]. The impressive success of word
embedding models has also attracted attention in the data management community. Es-
pecially in data interpretation [ETJ+18, LLS+20a] and data discovery tasks [FMQ+18,
NPZ+20], major successes are achieved by employing word embedding models. How-
ever, the text analysis capabilities of the popular database management systems still only
support traditional text-processing functions, which are restricted to analyze and trans-
form syntactic properties. Thus, they can not capture semantic relations between words,
which are not expressed by syntactic similarities. Accordingly, this thesis aims to im-
prove text analysis in database systems by integrating word embedding functionality in
relational database systems.

In the first place, we aim at extending the text processing capabilities with novel functions
using the powerful abilities of word embedding techniques. Specifically, we encode text
values in the database by dense vectors generated with word embedding models. Ma-
chine learning applications can then easily and efficiently access those vectors. In addi-
tion, novel word embedding operations largely extend the capabilities of the query lan-
guage. Therefore, those operations process the embedding representations maintained in
the database. To efficiently execute those novel operations, we design novel index struc-
tures and search algorithms for operating on high dimensional vectors in the database.
Moreover, we developed a RETRO framework to improve word embedding representa-
tions by using the semantic context of text values in the database system. The frame-
work is integrated into the database to efficiently generated optimized representations
for new text values. ML applications using the improved embeddings can profit from
this optimization process. To further support the database user, we investigate word em-
bedding evaluation techniques and construct a dataset for domain-specific embedding
model evaluation. By reviewing recent research works in the data management commu-
nity, we noticed that many of those applications use word embedding models pre-trained
on text. Thus, we investigate techniques to pre-train embedding models on tabular data
and evaluate their usefulness on table discovery tasks.

11

1.1 CONTRIBUTION

The contribution of this thesis can be summarized in five main aspects.

1. Word Embedding Operations: Based on the powerful abilities of word embed-
ding techniques, we integrate additional functionality for text analysis and machine
learning into a PostgreSQL database system. Therefore, we developed a database
extension [Gün18, GTLY19] to add novel query capabilities to the SQL query lan-
guage by additional word embedding operations. Those operations utilize vec-
tor representations of the text values in the database generated by word embed-
ding models. Essential operations are similarity quantification, analogy calculation,
grouping, clustering, and similarity joins.

2. Efficient Processing of Learned Representations: The word embedding representa-
tions of text values are stored in the database. To efficiently access those vectors and
execute the novel operations described above, we implement novel index structures
and a novel search algorithm [GTL19a]. Besides word embedding representations,
search applications using other learned representations can also profit from those
algorithms.

3. Optimizing Representaions of Database Text Values: A naïve application of a
word embedding model is not sufficient to represent the meaning of text values in a
database which is often more specific than the general semantic encoded in the raw
word embedding. This leads to sub-optimal embedding representations of text val-
ues and potentially undesired results of word embedding operations when applied
to the text values in the database. Thus, to improve the embedding representation,
we designed the relational retrofitting algorithm RETRO[GTL20, GOTL20] to utilize
the information given by the disposition of the text values in the database schema,
e.g., which text values appear in the same column or are related. An additional
variant of the algorithm provides a fast method to generate optimized embedding
representations for text values added later to the database in an online manner. Our
evaluation platform RETROLIVE [GTNL20] support users in the hyperparameter
tuning by visualizing the effects on the resulting embedding representations and
allows evaluating machine learning models on the optimized embedding represen-
tations.

4. Support for Embedding Model Selection: Our PostgreSQL database extension pro-
vides methods to switch between word embedding models underlying the execu-
tion of the embedding operations. In this way, the user can shift between differ-
ent notions of similarity. However, dependent on the domain of the text values in
the database and the application domain, different embedding models are suitable
for a specific task. To support users in the decision of a model, the system should
provide recommendations based on an extensive domain-specific evaluation of the
embedding models. Therefore, we propose an approach [GSTL20b] to automati-
cally construct a facet-structured evaluation dataset from tabular data. The dataset
is organized in a facet structure to facilitate a fine-granular evaluation of the perfor-
mance of the models. For the construction, one can use a large corpus of tables, e.g.,
a Web table corpus or a collection of a company’s CSV files.

5. Embedding Representation of Schema Information: Word embedding models pre-
trained on text turn out to be a poor choice to model semantic relations between
schema information in the column title and instance data appearing in the table
body. Moreover, text values in database systems are differently interpreted than

12 Chapter 1 Introduction

Figure 1.1: Structure of this Thesis

words and phrases in documents. Thus, when processing tabular data word em-
bedding model trained on documents might be suboptimal. To overcome this lim-
itation, we developed a novel embedding technique for text values in tables com-
patible with our system [GTGL21]. Our embedding approach can effectively model
relations between schema and instance terms. In an extensive evaluation, we pre-
train embeddings on Web tables and demonstrate that it can be effectively applied
to text values in various table formats, e.g., Web tables, spreadsheets, CSV files of
open data repositories.

1.2 OUTLINE

Figure 1.1 presents the organization of this thesis. In Chapter 2, we describe the funda-
mentals for this thesis. Specifically, we introduce common word embedding techniques
and their properties. Moreover, we introduce methods for evaluating word embedding
models and applications of word embeddings for data in tables. In Chapter 3, we present
a detailed overview of the research questions we address. Therefore, we analyze popu-
lar pre-trained word embedding models, which we use in the following chapters of the
thesis. Afterward, we introduce the main components of the integration of word em-
bedding techniques into database systems. Thereby, we define requirements for all those
components, which are addressed by our research presented in the following chapters.
Chapter 4 presents the design and the implementation of our word embedding database
systems. This also includes the integration of novel embedding operations. Moreover,
we tackle performance issues of word embedding operations. Therefore, we propose a
novel algorithm for approximated kNN-Joins in this chapter. In the following three chap-
ters, we present additional system components which address the research problems de-
scribed in Chapter 3. We start with our relational retrofitting framework in Chapter 5.
Besides, this chapter also describes an associated Web interface and an online version
of the algorithm to support efficient optimization of updated text values. In Chapter 6,

1.2 Outline 13

we present an algorithm for constructing a dataset for domain-specific word embedding
evaluation. Moreover, we use it to generate a comprehensive dataset and employ it in
an extensive evaluation of common word embedding models. Chapter 7 presents novel
models for training word embeddings on text in tables. In an extensive evaluation, we
show the usefulness of our models for different tasks and table formats. Finally, we con-
clude in Chapter 8. Thereby, we summarize the contribution and results and suggest
some directions for future work.

14 Chapter 1 Introduction

2
REPRESENTATION OF TEXT FOR NATURAL

LANGUAGE PROCESSING

To assess the potential of word embedding methods for database systems, we give a short
introduction to common practices in state-of-the-art natural language processing systems
and how word embeddings are used by those systems in Section 2.1. Then, we take a
closer look at word embedding methods and related embedding methods in Section 2.2.
This is followed by Section 2.3 where we shortly discuss how word embedding models
are evaluated. Finally, we discuss properties of word embeddings that can be utilized
for processing textual data in tables and look at applications that build upon those in
Section 2.4.

2.1 NATURAL LANGUAGE PROCESSING SYSTEMS

Natural language is a tool humans regularly use to communicate with each other. Thus,
there are large amounts of textual data in natural language which are valuable for analyz-
ing them with computers. Moreover, in many applications, it is desired to implement in-
terfaces where users can communicate to the system in natural language and/or that the
system can communicate its output in natural language (e.g. to increase their usability).
All these require techniques to make human languages accessible to computers which are
the subject of the field of natural language processing (NLP) [Eis19]. Understanding and
producing natural language is a challenging task. Even humans able to speak a language
are unable to formally define it. Thus, for many NLP tasks commonly used tools rely on
supervised machine learning techniques [Gol17]. Formerly, linear classification models
have been widely used in NLP. However, neural networks, and especially deep learning
techniques, got more prevalent more recently [Man15, YHPC18]. Those deep learning
models implement complex classification functions by learning hierarchies of represen-
tations from the input. In [Eis19] their dominance is explained by rapid advantages in
the deep learning community, the compatibility of such models with word embeddings
(see Section 2.2), and their efficient implementation on GPUs and TPUs leading to better
hardware utilization.

15

Figure 2.1: Variety of Embedding Techniques

NLP Pipelines The rise of deep learning in NLP has also changed the structure of typ-
ical pipelines for NLP tasks. Today, supervised NLP tasks are typically performed by
end-to-end neural networks [BG19]. Most of those networks utilize so-called word em-
bedding models to encode terms into continuous vector representations. One can dis-
tinguish between static (see Section 2.2.1 and Section 2.2.2) and contextualized word em-
beddings (see Section 2.2.3). Contextualized word embedding models do not statically
map a word to a vector, but also consider other terms in the sentence where the word
occurs. Word embedding vectors can either serve as input vectors or as parameters of
the neural network model which are fine-tuned during the training. While fine-tuning
can increase the performance of a model, it can also hurt the generalization properties
of the neural network, because only embeddings observed in the training data can be
adjusted [Gol17]. Here, fine-tuning is very common.

2.2 WORD EMBEDDING MODELS

The objective of building word embedding models is to encode the semantic of words
into a numerical representation. This objective has a long history. Gottfried Wilhelm
Leibniz already tried to use prime numbers to implement a calculus [Lei76] that assigns
words to numbers from which semantic relations should be derived by arithmetic rela-
tions [Mit79].

Word embedding models perform a transformation from terms of a vocabulary V into a
continuous vector space R

d. A straightforward vector encoding for terms is the one-hot
encoding where the dimensionality d corresponds to the vocabulary size |V | and each
term is represented by the vector that holds a 1 at the index of the term in the vocabulary
and zeros everywhere else. In contrast, word embedding models rather assign terms to
dense vectors of much lower dimensionality. The one-hot-encoding can be seen as a local
representation since each element of a vector encodes the presence of a specific term. State-
of-the-art embeddings are so-called distributed representations [HMR86]. Here, terms are
not assigned to specific dimensions but rather by a d dimensional vector specific for this
term. Those vectors can be seen as activation patterns spanning over all d dimensions.

16 Chapter 2 Representation of Text for Natural Language Processing

Similarly, in the human brain a representation of an object is not encoded by one neuron
but rather by activation statuses of several neurons. Those word vectors are learned by a
word embedding algorithm which is applied to a large corpus of text.

According to the Distributional Hypothesis, the semantic of words can be derived from
their distribution in texts. Thereby, words occurring in the same contexts usually have
a similar meaning [Har54]. Based on this hypothesis, word embedding models capture
distributional properties of words in dense vector representations.

Types of Embedding Techniques: There is a large variety of different word embedding
models (see Figure 2.1). We distinguished them into static and contextualized word em-
bedding techniques. Early static methods utilize matrix factorization to generate embed-
dings (Section 2.2.1). Later techniques generating learned distributed representations (Sec-
tion 2.2.2) where developed, e.g., word2vec [MSC+13, MCCD13] and GloVe [PSM14]. In
Section 2.2.3, we introduce the recently developed contextualized word embedding models,
which differ from the other methods in the sense that the term to vector mapping is per-
formed dependent on the surrounding words in the sentence. Ordinary embedding tech-
niques map terms directly to vectors. To represent unknown terms, several techniques
model subwords, e.g., n-grams, as vectors to enable users to embed tokens not observed
in the text corpus by the embedding training algorithm. Besides word embedding mod-
els, there is a wide range of methods mapping other entities into a dense vector space,
e.g., item2vec [BK16], graph2vec [NCV+17], code2vec [AZLY19], and table2vec [ZZB19].
Especially for embedding nodes in graphs, a large variety of techniques have been pro-
posed [GF18]. Since those techniques have a wide range of applications, including data
management tasks, we take a closer look at them in Section 2.2.6. Traditionally embed-
ding techniques produce representations in a Euclidean vector space. However, for some
applications, other non-Euclidean spaces are favorable, which leads to the development
of embedding techniques like word2bits [Lam18], BinaryBERT [BZH+21], and Poincaré
embeddings [NK17] (see Section 2.2.7).

2.2.1 Matrix Factorization Methods

Many word embedding methods rely on term-context matrices M = [mi,j] ∈ R
|V |×|C|

where each row i represents a word and each column j represents a linguistic context.
Each entry mi,j is either zero or represents a weight if word i is present in context j.
Different definitions of contexts c ∈ C are possible. For large document collections, each
document can be considered as a context [DDF+90]. The weight can then be defined by
the frequency of the word in the document. Also popular is the sliding window approach.
Thereby sequences of 2w + 1 words are observed by shifting a window of this size over
the sentences in a document. For the center words in those sequences, the surrounding
words act as contexts. Here, the weight can be defined as the number of sequences a
center and context word co-occur. Moreover, the distance between a center word and
a context word can also be used for the weighting [PSM14]. Both context types, word
frequency as well as the number of co-occurrences favor associations between frequent
terms and contexts. To reduce this bias, the point-wise mutual information [CH90] can be
used as an alternative association measure:

PMI (w, c) = log
P (w, c)

P (w)P (c)
(2.1)

Here, P (w) and P (c) refer to the probabilities of observing the word w and context c,
and the term P (w, c) denotes the joint probability of observing w in context c. Further

2.2 Word Embedding Models 17

considerations of the use of PMI for creating term-context matrices can be found in [PL02,
TP10].

To reduce the dimensionality of the term-context matrix Singular Value Decomposition is
used. If the dimensionality of the columns of M is reduced to obtain a dense vector for
each context, e.g., for document retrieval, this is called Latent Semantic Indexing [DDF+90].
When the dimensionality of the rows is reduced to obtain dense vectors for terms, e.g.,
to reveal word similarity, this is called Latent Semantic Analysis [LD97]. SVD decomposes
the matrix M into a matrix product UΣV T such that U and V are in column orthonor-
mal form (columns are orthogonal and have unit length), and Σ is a diagonal matrix of
singular values. Afterward, Σk can be obtained by selecting the top k singular values.
Moreover, Uk and Vk are obtained by selecting only the k leftmost columns of U and V .
Then, M ′ = UkΣkV T

k constitutes a low-rank approximation of M . Moreover, a matrix of
k-dimensional embeddings E = UkΣk can be calculated. Here, the rows are a low dimen-
sional approximation of the high dimensional rows of M in the sense that the dot product
of two rows in E is equivalent to the dot product of two rows M ′ [Gol17]. In practice, Uk

is sometimes directly used as the embedding matrix. The embedding vectors can then
be used to quantify similarity between words [LD97]. Usually, a dimensionality between
50 and 300 is selected [Gol17]. The dimensionality reduction has several advantages: On
the one hand, the term-context matrix is usually very sparse and can contain millions of
contexts, making it very unhandy. On the other hand, those large vectors might be noisy,
especially for infrequent terms and contexts. By lowering the dimensionality, the noise
can be reduced. Moreover, by limiting the dimensionality, the latent meaning of words
can be revealed and similarity measures can be improved [TP10].

2.2.2 Learned Distributed Representations

Besides representations directly generated from a co-occurrence matrix, several meth-
ods initialize word vectors randomly and modify them by an optimization algorithm to
satisfy an objective function. Thereby, a word is represented by a d-dimensional vector
(d << |V |). However, a dimension is not interpretable like a column in the term-context
matrix introduced in Section 2.2.1. A property of a word is rather captured by a combi-
nation of values of multiple dimensions. The most popular method in this category is the
word2vec technique proposed in [MSC+13, MCCD13]. Here, two models are introduced:
Continuous Bag of Words (CBOW) and Skip-Gram. Both models use a neural network to
model probabilistic relations between a center word and context words. Figure 2.2 de-
picts the architectures of the models. Both models use a sliding window approach to
obtain sequences of words wt−l, . . . , wt, . . . , wt+l from a large corpus with a fixed-length
k = 2l + 1. The CBOW model tries to predict the center word wt from the surround-
ing context words. In contrast, the Skip-Gram model tries to predict the surrounding
words given the center word. Both models consist of two embedding matrices W and
W ′. The matrix W also serves the matrix of the actual word embeddings after the model
training is finished, however, one might also use W ′ or a combination of both matri-
ces [NMCC16]. Before the training, both matrices are initialized randomly. The models
represent each word in form of a sparse one-hot encoding xi. Those sparse vectors are
then transformed into dense d-dimensional vector representations by multiplying them
with the matrix W . While in the Skip-Gram model h = Wx is directly obtained from the
matrix, in the CBOW model h = 1

2l
(x1 + . . . + xk) is obtained by averaging the vectors

of the context words. Then h is transformed back into a |V |-dimensional vector of scores
by multiplication with W ′. A straight-forward approach to predict probabilities for the
center word in the CBOW model and a context word in the Skip-Gram model is to apply
a softmax function σ(y)i =

exp(yi)∑|V |

j=1
exp(yj)

on the output layer. However, the training of

such a model is too inefficient for a large collection of text [Ron14]. To solve this problem,
[MSC+13] propose to use a technique called negative sampling. Alternatively, one can
use hierarchical softmax as described in [MCCD13].

18 Chapter 2 Representation of Text for Natural Language Processing

Figure 2.2: Architecture of Word2Vec Neural Networks

Negative Sampling To train word embeddings more efficiently, a different objective
is used for training. Thereby, also pairs (w, C) ∈ D of a center word and a context are
considered. The model should then learn to distinguish correct pairs in D from randomly
sampled incorrect pairs (w, C ′) ∈ D̄. The size of D̄ is selected to be n times higher than
the size of D, where n constitutes a hyperparameter of the model. The following loss
function is used:

L =
∑

(w,C)∈D

logP (D = 1|w, C) +
∑

(w,C′)∈D̄

logP (D = 0|(w, C ′) ∈ D̄) (2.2)

For the CBOW model P (D = 1|w, C) is defined as follows:

P (D = 1|w, C) =
1

1 + exp(−wT h)
w ∈ W ′ h =

1

2l
(x1 + . . . + xk) (2.3)

Hereby, w is the vector in W ′ representing the center word w. For the Skip-Gram version,
the context words are considered independently from each other. Thus, context pairs
with only one context word are considered. The probability P (D = 1|w, C) is derived as
follows:

P (D = 1|w, C) =
1

1 + exp(−wT h)
w ∈ W h ∈ W ′ (2.4)

Hereby, h denotes the vector of the center word. P (D = 0|(w′, c′) can be defined by its
complement P (D = 0|w′, C ′) = 1− P (D = 1|w′, C ′)

Relation to Term-Context Matrix In [LG14b] it is shown that the negative sampling
variant of the Skip-Gram model implicitly factorize a term-context matrix M = [mi,j] ∈
R

|V |×|C| like it is used by the matrix factorization methods described in Section 2.2.1.
This matrix constitutes the product of the term and context embedding matrices defined
above: M = W · W ′T . Each value mi,j in this matrix corresponds to the product wi · cj of
a term and a context embedding vector. In [LG14b] it is shown that the objective of the
Skip-Gram model is minimized when mi,j = PMI(wi, cj)− logn where n is the number
of negative samples per word context pair.

2.2 Word Embedding Models 19

GloVe Another popular word embedding model is GloVe [PSM14]. Instead of defining
its objective only on the individual context windows, it utilizes global statistics from a co-
occurrence matrix. First, it constructs an explicit term-context matrix X = [xi,j] ∈ R

|V |×|V |

that relates two words wi and wj if wj occurs in the context window of word wi and holds
a global weighted co-occurrence count in xi,j . Each center word wi is associated with a
vector wi and a bias bi, and each context word wj is associated with a context vector cj

and a bias b̃j. Then, it samples word context pairs (wi, wj) ∈ D, where the matrix X is
not zero for training the vectors according to the following loss function:

∑

(wi,wj)∈D

f(xi,j)(wi
T cj + bi + b̃j − log xi,j)

2 (2.5)

Hereby, f denotes a weighting function which assigns co-occurrence counts to values
between 0 and 1.

fastText A common problem of the embedding techniques described above is the mod-
eling of rare terms. Embeddings obtained for rare terms are suboptimal because of the
little information available to the model. Moreover, for unknown terms, no word em-
bedding can be obtained. To address those problems, [BGJM17] propose an extension of
the Skip-Gram model that models terms as a bag of character n-grams. For each word
w, a set Gw is constructed that contains the n-grams of w as well as w itself. The authors
of [BGJM17] state, it is useful to generate n-grams for all n ∈ {3, 4, 5, 6} in practice. All
n-grams of a corpus obtain a vector representation in the first weight matrix W of the
Skip-Gram model. The calculation of the probability according to Equation (2.4) is then
modified as follows:

P (D = 1|w, c) =
1

1 + exp(−s(w, c))
s(w, c) =

∑

g∈Gw

zg
T vc zg ∈ W vc ∈ W ′ (2.6)

Thereby, the dot product wT h of a word vector and a context vector is replaced by the
scoring function s(w, c), which represents a word by the n-gram set Gw.

2.2.3 Contextualize Word Embeddings

Two syntactically equivalent words always obtain the same vector by the static word em-
bedding models described above. Thus, a limitation of such models is that they can not
cope with polysemy. To solve this problem, contextualized word embedding models take
the context of surrounding words into consideration. Early contextualized word embed-
ding models like CoVe [MBXS17] and ELMo [PNI+18] utilize neural networks with an
LSTM architecture [HS97] to learn from sequences. Later [DCLT19] propose to use the
Transformer architecture [VSP+17] for a contextualized word embedding model called
BERT, which leads to large improvements in downstream NLP tasks.

The BERT model is based only on an encoder part of the Transformer neural network
architecture [VSP+17]. Originally, the Transformer was proposed for machine translation
tasks, where an encoder generates for each input token a vector representation and a
decoder predicts a sequence of output tokens base on the input vectors. BERT only uses
the architecture of the encoder part. This consists of several so-called Transfomer blocks
which themselves consist of a multi-head attention layer and a fully connected layer.
For more details, we refer to [VSP+17]. The model is pre-trained on a large text corpus
and fine-tuned on a task-specific training set. Pre-training requires large computational
resources1. Fine-tuning is comparably fast and has a lower resource consumption.

1The authors stated they run their pre-training procedure for 4 days on 16 TPUs for the largest model.

20 Chapter 2 Representation of Text for Natural Language Processing

Input Encoding: Usually, the BERT model gets an input consisting of two sentences. To
encode the input text, BERT tokenizes the sentences using a wordpiece tokenizer [SN12,
WSC+16] and generates three kinds of input vectors for each token:

1) Token Embedding: Each input starts with the [CLS] token, followed by the wordpiece
tokenization of both sentences. Between both sentences, a [SEP] token is added. For each
unique token, a unique embedding representation is generated.
2) Segment Embedding: To encode the information to which sentence a token belongs,
segmentation embeddings are added. There are only two different segmentation embed-
dings for the two different sentences.
3) Positional Embedding: The position of the token is encoded by position embeddings.
BERT models have a defined length (typically 500 tokens). Each position has a specific
embedding.

The embedding representation of a token is defined by the sum of those three types of
embeddings. Before the pre-training, all three embedding types are initialized randomly.

Pre-Training: Pre-training can be done with various pre-training tasks where it is easy
to generate a large amount of training data. The most common task is the Mask-Language
Model task. For this task, an algorithm randomly selects words from sentences in a large
text corpus and replaces them with a [MASK] token (or a randomly selected word). Then,
the model is trained to predict the mask words in each sentence. Hereby, the output em-
bedding at the position of the [MASK] token is decoded by an additional fully connected
layer with the softmax activation function.

Fine-Tuning: During fine-tuning, the model is trained to solve a specific (NLP) machine
learning task. Here a task-specific labeled corpus is required. However, in practice due
to the pre-training, a much lower amount of labeled data is required to achieve the same
accuracy achieved by a model without pre-training. To fine-tune a model, the BERT-
architecture is extended with tasks-specific layers. For simple classification tasks, a layer
can be added on the output of the output corresponding to the [CLS]. Subsequently, the
model is initialized with the weights obtained from the pre-trained model. Afterward,
the fine-tuning is done by training the model with the labeled data. The authors test the
model on question answering tasks as well as several classification tasks which require
language understanding.

2.2.4 Advantages of Contextualize and Static Word Embeddings

In general, contextualized word embedding models deliver superior performance on
supervised NLP tasks. On the GLUE (General Language Understanding Evaluation)
benchmark [WSM+19], the best-performing models utilize contextualized word embed-
ding models. However, methods for generating static embedding representations are
still relevant [GJ21]. For instance, contextualized embedding models might not be effec-
tive for unsupervised tasks. To effectively use them, a tasks specific fine-tuning step
with training data is required. Embeddings obtained from different layers of a pre-
trained BERT model without fine-tuning deliver only poor performance. This is shown
in [RG19] for a sentence similarity search task. Here, word embeddings obtained from
static embedding models like GloVe [PSM14] produce vector representations superior to
embeddings produced by BERT. However, BERT can be fine-tuned to generate static sen-
tence embeddings by providing additional training data, as shown in [RG19]. Further,

2.2 Word Embedding Models 21

in [BDC20, GTZ+20, GJ21], methods are introduced to utilize BERT to generate state-of-
the-art static word embeddings. Besides, [PWS19] propose a method to improve a BERT
model with static embeddings for question answering. Since contextualized embedding
models require a sequence of words as input similar to a sentence, they are less useful
for tasks where representations for single words are required. Good examples are text
values in tables which usually do not contain whole sentences. Moreover, it is usually
hard to effectively combine pre-trained BERT models with other ML models [Edw21].
Thus, for complex ML models, it might be more effective to use static embedding vectors
or similarity scores derived from word embedding representations as features. Further
limitations derive from the fact that post-processing methods developed for static embed-
ding methods are not applicable for contextualized word embedding models. Examples
are the debiasing of word embeddings according to stereotypical semantic relations like
gender biases [BCZ+16, KB19] and the so-called retrofitting technique [FDJ+15], which
incorporates additional relational information into a word embedding model (see Sec-
tion 5.1.2). In this thesis, we primarily focus on methods for static word embedding
representations. However, this does not limit its applicability to static word embedding
models since those representations can be generated with contextualized embedding rep-
resentations, e.g., with the algorithms proposed in [BDC20, RG19].

2.2.5 Properties of Static Word Embeddings

Word vectors obtained from static word embedding models represent semantic relations
between words in the form of arithmetic relations. This can be utilized to quantify simi-
larity and to solve analogy questions [PSM14].

Similarity Quantification

To quantify the similarity between two words (wi, wj), one can utilize the cosine similar-
ity between their word vectors vi and vj:

simcos(wi, wj) =
vi · vj

||vi||·||vj||
(2.7)

To speed up the computation for many word pairs, one can normalize all word vectors.
This reduces the effort to compute the scalar product of the vectors. To quantify the
similarity of word phrases, one can calculate for each phrase the centroid of the word
vectors obtained from the tokens of the phrase [ALM17]. Calculating weighted centroids
to prefer infrequent words can further improve phrase embeddings obtained in this way.

Word Analogies

In [MCCD13], the authors show that word embeddings can be used to solve so-called
analogy tasks. Thereby, semantic relationships such as gender-inflections, and geograph-
ical relationships can be recovered [LG14a]. Such an analogy task is formed by two pairs
of terms (a, b) and (a′, b′) sharing a relation. Thereby (a, b, a′) correspond to the ques-
tion and b′ to its answer. In an often referred example [MCCD13], (‘man‘, ‘woman‘) and
(‘king‘, ∗) are given whereby the right answer is ‘queen‘. To answer those questions arith-
metic operations are applied to the embedding vectors of the given words. Often, the
embedding vectors are normalized before performing those arithmetic operations, e.g.,
in the experiments in [MCCD13]. In [LG14a], the authors describe three different meth-
ods to solve analogy tasks: PAIRDIRECTION, 3COSADD, and 3COSMUL.

22 Chapter 2 Representation of Text for Natural Language Processing

PairDirection The PAIRDIRECTION method [MYZ13] compares the difference vector of
the given word pair (a, b) with all potential word pairs (a′, b′). The pair with the highest
cosine similarity is selected.

b′ = argmax
b′∈V \{a,b,a}

(simcos(vb′ − va′ , vb − va)) (2.8)

In [LG14a], it is stated that the PAIRDIRECTION method performs well in tasks where
a restricted set of semantically similar candidate solutions is provided. In contrast, it
performs poorly if the embedding vectors of all terms in the vocabulary V are consid-
ered because it only models the direction of the relation vector but neglects the distances
between the individual embedding vectors.

3CosAdd The 3COSADD method first proposed in [MCCD13] solves the analogy by
employing the formula below. Here, all vectors are normalized.

b′ = argmax
b′∈V \{a,b,a}

(simcos(vb′ , va′ − va + vb)) (2.9)

= argmax
b′∈V \{a,b,a}

simcos(vb′ , va′) + simcos(vb′ , vb)− simcos(vb′ , va)

Here, a word b′ is determined, which is similar to a′ and b and dissimilar to a [LG14a].

3CosMul In [LG14a], a third method called 3COSMUL was proposed, which is similar
to 3COSADD but produced better results on several benchmarks.

b′ = argmax
b′∈V \{a,b,a}

sim∗
cos(vb′ , va′) · sim∗

cos(vb′ , vb)

sim∗
cos(vb′ , va) + ε

sim∗
cos(x, y) =

simcos(x, y) + 1

2

(2.10)

≈ argmax
b′∈V \{a,b,a}

log sim∗
cos(vb′ , va′) + log sim∗

cos(vb′ , vb)− log sim∗
cos(vb′ , va)

Thereby, the cosine similarity values are mapped to values between 0 and 1, and ε is
used to prevent division by zero (ε = 0.001). The authors of the paper argue that the
improvement arises from a better balancing of the similarity values by the logarithm.

2.2.6 Node Embeddings

Similarly to word embedding models, a node embedding technique performs a map-
ping f : V → R

d of vertices V in a graph G = (V, E) in a way that geometric rela-
tions in R

d reflect relations of the nodes V in G. The set of node embedding techniques
ranges from shallow metric embedding techniques to techniques based on deep neural
networks [Gro20]. Traditional metric embedding techniques like Isomap [TDSL00] and
Laplacian eigenmaps [BN01] rely on dimensionality reduction techniques. A simple em-
bedding model can be constructed by applying a matrix factorization as described in
Section 2.2.1 to the adjacency matrix of the graph. In the resulting set of embeddings,
the vectors of two nodes u, v ∈ V are close if they are directly connected by an edge
(u, v) ∈ E. This property is called first-order proximity [ZYZZ18].

2.2 Word Embedding Models 23

(a) Deep Walk (b) Node2vec Sampling Strategies

Figure 2.3: Skip-Gram Node Embeddings

Node Embeddings based on Word2vec

In [PARS14], a technique called DeepWalk was proposed to train node embeddings with
the Skip-Gram model (see Figure 2.3b). First, this method generates random walks from
a graph G. Usually, an equal number of random walks for each node n ∈ V is generated.
Afterward, the random walks are treated like sentences. Using the sliding window ap-
proach, pairs (nc, C) of a center node nc and a set of context nodes C can be constructed
and used to train a Skip-Gram model. The model produces vectors that are similar if
the respective nodes occur in similar contexts in random works. In this way, DeepWalk
produces embeddings that preserve higher-order proximity [ZYZZ18].

A generalization of the DeepWalk method is the node2vec method [GL16]. The authors
identified two kinds of special random walks starting from a node n0: (1) walks ob-
tained by a breadth-first sampling and (2) walks obtained by a depth-first sampling (see Fig-
ure 2.3b). Node2vec introduces a framework to bias the random walk generation to re-
semble a breadth-first sampling or a depth-first sampling. Therefore, the authors replace
the uniform transition probability used in DeepWalk with a biased transition probability
P (nx|nv, nt) for transitions from node nv to node nx which depends on the last traversed
edge (nt, nv) defined in Equation (2.11). Thereby, d(nt, nx) refers to the distance between
the preceding and the succeeding node, and Z is a normalization constant to fulfill the
probability rule of sum. The probability depends on the constants p and q. High val-
ues of p and low values of q lead to random walks similar to a breadth-first sampling.
In contrast, an opposing assignment of p and q leads to walks similar to a depth-first
sampling.

P (nx|nv, nt) =

{
πt,x

Z
if (nv, nx) ∈ E

0 otherwise
πt,x =

1
p

if d(nt, nx) = 0

1 if d(nt, nx) = 1
1
q

if d(nt, nx) = 2

(2.11)

DeepWalk is a special case of node2vec with p = 1 and q = 1. The evaluation in [GL16]
shows that different assignments of p and q can lead to significant improvements when
the embeddings are used for node labeling and link prediction tasks.

Graph Neural Networks

Besides the Skip-Gram Model, neural networks in form of Graph Neural Networks can
be used to train node embeddings, e.g., as done in [KW17]. A definition of a standard
GNN architecture is provided in [Gro20]. According to this definition, the GNN holds

24 Chapter 2 Representation of Text for Natural Language Processing

for every node V in the graph G = (V, E) a state vector xv ∈ R
d. Those state vectors are

modified by the graph neural network using a message-passing algorithm. Therefore, it
uses an aggregation function α and an update function γ. α aggregates the state vectors of
the neighbors of a node v into a single vector av. Afterward, γ calculates a new node state
xv

t+1 based on av and the previous state xv
t. A simple definition of α and γ is given in

Equation (2.12).

α(v, t) =
∑

w∈N(v)

Wagg · xw
t γ(v) = σ

(
Wup

(
xv

t

α(v, t)

))
(2.12)

Hereby, σ is an activation function. The alternating execution of α and γ is computed
for a fixed number of iterations. Wagg and Wup are weight matrices that are optimized
during the training of the GNN according to a specific training objective. More complex
GNNs can be built by stacking multiple layers in form of multiple functions αi and γi.

To generate node embeddings, the initial states xv
0 are initialized with random vectors

and any objective function can be used to train the GNN. The resulting state vectors
constitute the desired node embeddings.

2.2.7 Non-Euclidean Embedding Techniques

Usually, word embeddings, as well as node embeddings, are continuous representations
in a Euclidean vector space. However, for some applications, other geometric spaces are
more suitable.

Hyperbolic Node Embeddings

In [NK17, NK18], an algorithm is proposed to learn node embeddings in hyperbolic vec-
tor spaces. The authors observe that Euclidean vector spaces are unsuitable to represent
hierarchical data. In order to represent a large highly connected taxonomy graph in a Eu-
clidean vector space such that connected nodes obtain nearby representations and not-
connected nodes obtain distant representations, the dimensionality of the vector space
needs to be high. In contrast, in a low-dimensional Poincaré ball, this is possible. The
authors show that those embeddings are superior in tasks like graph reconstruction and
link prediction [NK17].

Binary Word Embeddings

All embedding techniques described above produce continuous representations. Usu-
ally, those embeddings are stored with 32-bit floating-point values, e.g., in the popular
embedding framework Gensim [RS10]. This leads to relatively large embedding models.
Often the embedding vectors require much more memory than the vocabulary, e.g, this
is the case in the popular pre-trained Google News Word2vec model2. To overcome this
problem, some word embedding techniques generate word bit vectors that require less
memory and achieve similar quality as traditional word embedding models. Thereby

2https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
(Access: 08/26/21)

2.2 Word Embedding Models 25

each word is assigned to a bit vector. In [TGH19], a technique is proposed that com-
presses pre-trained embedding models with an autoencoder architecture to achieve this.
Other models like BinaryBERT [BZH+21] and word2bits [Lam18] directly train binary
embeddings. Word2bits uses the word2vec CBOW model with negative sampling and a
novel concept called virtual quantization. Thereby, the loss function of the CBOW model
is modified to apply the quantization function Q (see Equation (2.13)) on each element of
center word vector v and context word vectors x1, . . . , xk. This function Q assigns values
to −1

3 or 1
3 .

Q(x) =

{
1
3 if x ≥ 0

−1
3 if x < 0

(2.13)

After the training, the quantization function is applied to the sum of the center word
vector and the context word vector for each word to obtain a bit vector. The authors
show in [Lam18] that those bit vectors are able to outperform vectors trained with the
original CBOW model on several benchmarks. Moreover, in Section 4.5.9, we propose a
method to calculate word similarity with word2bit vectors, which is much more efficient
than the similarity calculation with traditional word embeddings.

Limitaions of Non-Euclidean Embeddings

Besides the advantages of those non-Euclidean embeddings, a limitation is that tools
and frameworks working with embedding models are usually designed for Euclidean
embedding models. This limits their utility for real-world applications. For instance,
a hyperbolic embedding model can not be used in standard neural network classifiers.
Moreover, many index structures for Euclidean vectors are not applicable for hyperbolic
and binary embeddings. However, adaptations are possible. For example, multiple neu-
ral network architectures for the hyperbolic space have been developed [GBH18].

2.3 EVALUATION OF WORD EMBEDDINGS

Techniques for evaluating word embedding can be categorized into two groups: intrinsic
and extrinsic [SLMJ15]: Extrinsic methods focus on specific applications of word embed-
ding models, such as Named Entity Recognition, Text Classification, Part-of-Speech Tag-
ging, Sentiment Analysis, and many more. Hence, the quality of a word embedding is
directly derived from a performance metric applied to the outcome of a downstream task
using this embedding. However, [SLMJ15] showed that there is no correlation between
word embedding performance for different downstream tasks. For this reason, extrinsic
methods cannot be used as an objective metric of word embeddings quality. In contrast,
intrinsic techniques investigate properties of word embedding models like the similarity
of word vectors and compare those against manually created datasets either constructed
in the laboratory or on crowd-sourcing platforms.

Intrinsic evaluation methods can be further distinguished according to the properties
they focus on. Often considered are the correlation of vector similarity with similarity
observed by humans, the accuracy observed by deriving analogies from arithmetic prop-
erties of word vectors, and cluster-based properties. An overview of the most commonly
used data collections is given in Table 2.1.

26 Chapter 2 Representation of Text for Natural Language Processing

Dataset Size Comment
MEN [BBBT12] 3,000 word pairs general domain knowledge, semantic relat-

edness, scale from 0 to 50
SimLex-999 [HRK15] 999 terms general domain knowledge, semantic simi-

larity, scale from 1 to 10
MTurk-771 [HDGK12] 771 word pairs semantic relatedness, scale from 0 to 5
RG-65 [RG65] 65 word pairs semantic similarity, scale from 0 to 4
RW [LSM13] 2,034 word pairs semantic similarity of rare words, a scale from

0 to 10
SimVerb-3500 [GVH+16] 3,500 word pairs only verbs, semantic similarity, scale from 0

to 4
TR-9856 [LDH+15] 9,856 word pairs focusses on relatedness of multi-words
WordSim-353 [FGM+01] 353 word pairs focus on relatedness, scale from 0 to 10

(a) Similarity Datasets

Dataset Size Comment
WordRep [GBL14] ≈118M analogies in

26 semantic classes
Google Analogy + data from WordNet

Google
Analogy [MCCD13]

19,544 analogy tasks
build from 550 relations,
14 categories

semantic and syntactic relations, mostly
city-country relations

MSR [MYZ13] 8,000 analogies in
16 morphological classes

syntactic relations

(b) Analogy Datasets

Dataset Size Comment
ESSLLI-2008 [Ass08] 45 terms,

9 categories
every category encompasses 5 verbs

8-8-8 [CCN16] 128 terms,
8 categories

constructed for outlier detection

WikiSem500 [Gam19] 500 cluster of
9 - 14 terms
per language

outlier detection tasks constructed from Wikidata
(multi-lingual)

(c) Cluster-based Datasets

Table 2.1: Data Collections for Intrinsic Evaluation

2.3 Evaluation of Word Embeddings 27

2.3.1 Similarity Evaluation

Word embeddings are often evaluated by similarity metrics. Datasets like MEN [BBBT12]
or SimLex-999 [HRK15] contain similarity ratings of human judges. Based on those rat-
ings, one can construct a ranking of similar words to an initially selected word. Ac-
cordingly, a ranking can be constructed by the word embedding model based on the
cosine similarity of the word representations (see Section 2.2.5). Then, the ranking corre-
lation coefficient of both rankings serves as a quality score of the word embedding model.
However, similarity-based quality assessments heavily depend on the notion of similar-
ity, which is different for all evaluation datasets. For example, in SimLex-999 semantic
similarity was in the focus of consideration, while MEN also assigns higher scores to
related words. Even though similarity-based evaluation is very popular, it is often criti-
cized because similarity is very subjective and biased by certain factors [Bak18].

2.3.2 Analogy Evaluation

The analogy task evaluates if certain relations can be recovered by a given word embed-
ding model. Thereby, analogy queries given by a gold standard are solved by a word
embedding model. Hereby, one of the three methods described in Section 2.2.5 can be
used. For each question, the result is compared to the solution provided by the gold stan-
dard. After all analogy questions are solved, an accuracy value is derived which can be
compared to accuracy values of other embedding models on the same dataset.

There is a variety of publicly available datasets with analogy queries for word embed-
ding models. However, a limitation is that those datasets do not allow a domain-specific
evaluation. The largest data collection is WordRep [GBL14] containing over 118M analo-
gies derived from WordNet. The analogies are grouped according to WordNet relations
such as Antonym, MemberOf, IsA, etc. While WordRep is a very valuable data collec-
tion to test word embeddings, we noticed that the abstraction level of the relationships
is too high for detailed domain-specific evaluations. Other common analogy datasets are
Google Analogy and MSR: Google Analogy [MCCD13] is a subset of WordRep where
over 50% of the analogies are encompassed by country-city relation pairs. MSR [MYZ13]
focuses on syntactic relations.

2.3.3 Cluster-based Evaluation

In [BDK14], a clustering approach is applied to the vectors of a word embedding model
to categorize the respective words in groups. The resulting clusters are compared with
groups given by a gold standard using a set similarity metrics. However, this approach is
criticized because it could depend on the clustering algorithm and its initialization [Bak18].
As an alternative, [CCN16] propose to evaluate word embeddings on the outlier detec-
tion tasks and publish the 8-8-8 dataset for this purpose. Here, the goal is to determine
the outlier for a given set of terms. Using the word embedding model the term with the
highest vector distance to the centroid of word vectors of the provided terms is selected.
This should coincide with the outlier in the gold standard. This method evaluates the
cluster property of a word embedding model independently from a specific clustering
algorithm.

28 Chapter 2 Representation of Text for Natural Language Processing

2.4 APPLICATION FOR TABULAR DATA

Word embeddings have already been applied to text values in tabular data for various
data management applications. At this point, we want to give a brief overview of the
main application areas.

2.4.1 Semantic Search

Word embeddings can be used to enhance the capabilities of search applications. Tra-
ditionally, many of those applications rely on the popular vector space model [SWY75].
This requires syntactic similarity of words, i.e., search results should contain the words in
the query or syntactically similar words [ZD95]. A major problem with those techniques
is that semantically similar or related words are not necessary syntactically similar. To
handle this problem, handcrafted thesauri supply mappings between synonyms [Voo94].
However, such thesauri provide only limited coverage of domain-specific terms. In con-
trast, word embedding models provide a data-driven solution to obtain high-quality sim-
ilarity scores. Therefore, they can be employed to quantify similarity [ALM17] and se-
mantic distance [KSKW15] of text to implement semantic search features. This can also
be utilized for text in tabular data. Thus, word embeddings have been used to implement
semantic SQL queries [BS17] and search systems for unionable tables [NZPM18]. More-
over, in [HPW21, HPR+21], word embeddings are used to answer queries with quantity
filter predicates over semi-structured content. Here, quantity facts extracted from Web
tables are matched to query terms based on word embedding vector distances. Besides,
using embedding models pre-trained on text [HNM+20, YNYR20] pre-train contextu-
alized embeddings with a Transformer architecture jointly on text and tabular data for
semantic parsing tasks on tables like question answering.

2.4.2 Data Curation

Text values in natural language contain references to real-world entities, which are in-
dependent of the dataset in which the values occur. In contrast, ids are often specific
for a particular dataset, and numbers need to be connected to a unit and an attribute
to be interpretable. Therefore, text values are specifically valuable for data integration
and curation tasks, e.g., the linking of entities across datasets [KDSG+16] and missing
value imputation [BSS+18]. Pre-trained word embeddings capture knowledge derived
from the large corpora they are trained on. Several entity matching systems exploit
this knowledge [ETJ+18, MLR+18, BS20, LLS+20a, PB21], leading to substantial improve-
ments when compared to traditional approaches based on heuristics especially for match-
ing textual and dirty data records. Recently, the authors in [TFL+21] propose pre-training
embedding models on tuples of tables to employ them for several data cleaning tasks.

2.4.3 Data Discovery

Knowledge from pre-trained word embeddings can also be utilized for data discovery.
When tokens of two text values are transformed into sets of word vectors, those word
vectors exhibit a pair-wise high cosine similarity. This has been exploited by [FMQ+18]
to find links between tables across datasets. Similarly, in [NPZ+20], the cosine similar-
ity of mean embedding vectors of text values in columns is calculated. Subsequently, this

2.4 Application for Tabular Data 29

similarity is used as a metric in a probabilistic model to obtain a suitable hierarchical nav-
igation structure for organizing tables in data lakes. The resulting navigation structure
supports users in discovering topic-related tables in the data lake. In [DTXO21], the au-
thors propose a framework to find joinable tables in data lakes. Therefore, the framework
transforms text values in the tables into vectors by using a word embedding model and
index them to efficiently search. Afterward, columns with a high amount of text values
with high similarity according to the embedding vectors are considered joinable.

Further, many data discovery systems use word embedding models to encode text as
input for ML models to annotate data. For instance, in [YPS+20], a data discovery sys-
tem is proposed to extract PDF tables and assemble their content in a large master table
in a database. Here, the system uses the word embedding representations of extracted
text values to assign them to concepts corresponding to columns in the master table.
TCN [WSL+21] is a system for column type prediction and prediction of relation types
between columns to extract knowledge. Here, word embedding models are used to en-
code text in cells. To process spreadsheets, [GGPS20] annotate cell types with a model
initialized with word embeddings. Besides directly encoding inputs with word embed-
dings, [DSL+20] proposes a Transformer model with parts of the model initialized with
weights of a contextualized word embedding model. Afterward, this model is pre-train
on tabular data for table interpretation tasks.

30 Chapter 2 Representation of Text for Natural Language Processing

3
SYSTEM OVERVIEW

In this chapter, we provide an overview of the our research objectives on integrating
word embeddings in relational database systems. This involves the implementation of
(a) database queries involving embedding representations and infrastructure for (b) the storage
and efficient retrieval of word embedding representations. Moreover, we investigate techniques
to optimize embedding representations of text values in database systems by (d) a novel
context adaptation algorithm. Besides, we provide (d) support for selecting a word embedding
model suitable for a user’s application. Furthermore, we propose (e) novel embedding tech-
niques to be pre-trained on tabular data. Those techniques model semantic relations arising
from the alignment of words in tabular layouts that can only hardly be derived from text
documents. Thus, many applications working with tabular data profit from using those
embeddings instead of word embeddings trained on text.

We begin with motivating the integration of word embeddings in database systems in
Section 3.1, investigate the characteristics of common pre-trained word embedding mod-
els in Section 3.2, and examine the main objectives of such an integration in Section 3.3.
Afterward, we take a specific look at word embedding operations in Section 3.4. In the
following, we derive detailed requirements to design a system satisfying the objectives
introduced before. Therefore, we investigate performance optimizations in Section 3.5,
context adaptation in Section 3.6, and model recommendation in Section 3.7. Finally, we
look at opportunities and requirements of training embeddings on tabular data in Sec-
tion 3.8

3.1 OPPORTUNITIES OF AN INTEGRATION

Pre-trained word embeddings constitute a rich source of extended common knowledge
in the domain of the text they are originally trained on. Applications can utilize this
valuable knowledge either by employing embeddings in supervised machine learning
models or through the application of arithmetic operations (see Section 2.4). To support
applications to benefit from word embeddings, we aim at extending the capabilities of
traditional relational database systems which are still by far the most common DBMSs.
On the one hand, the database system should support machine applications by providing
an interface to efficiently access embeddings. On the other hand, the database should be
extended by novel text operations based on arithmetic word embedding operations to
enable applications to exploit the knowledge encoded in word embeddings for semantic
queries. Further, applications can be supported by recommending embedding models
and algorithms that optimize embedding representations of text values to better model
their context-specific meaning in the database.

31

SELECT keyword

FROM keywords ,

ORDER BY cosine_similarity (

'comedy ',keyword) DESC

The similarity of keywords to the term “com-
edy” is quantified, and the keywords are
sorted accordingly. The most similar keywords
are “sitcom” and “sketch_comedy”.

(a) Quantify Similarity

SELECT kNN(p.name , 5)

FROM directors AS d

INNER JOIN persons AS p

ON p.id = d. director_id

The query retrieves the five most similar
terms to the directors in the database. For
“Quentin_Tarantino”, this results in other
Hollywood directors like “Martin_Scorsese”,
and movies directed by Tarantino, e.g.,
“Pulp_Fiction”.

(b) Most Similar Operation

SELECT m.title , t.term , t. score

FROM movies AS m,

kNN(m.title , 3, (

SELECT title FROM movies)) AS t

ORDER BY m. title ASC , t. score DESC

The query determines the three most similar
movies to each movie title. In the case of the
movie “Godfather”, this leads to “Scarface”,
“Untouchables”, and “Goodfellas”.

(c) Resticted Most Similar Operation

SELECT g.term , g. group_term

FROM groups (

(SELECT title FROM movies),

'comedy ,horror , documentary ')AS g

The query groups movies to the categories
“Documentary”, “Comedy”, and “Horror”.
Here, “Toy_Story” and “Big_Lebowski” get
grouped into “Comedy” while “Planet_Earth”
gets assigned to “Documentary” and “Psycho”
to “Horror”.

(d) Group Text Values

SELECT term , group_id

FROM cluster (

SELECT keyword FROM keywords)

ORDER BY group_id ASC , term DESC

The query assigns keywords into groups of
similar terms. For instance, “robbery” and
“murder” are assigned to one, and “million-
aire” and “chauffeur” to another group.

(e) Cluster Operation

SELECT analogy ('Godfather ',

'Francis_Ford_Coppola ',m. title)

FROM movies AS m

The query provides the movie title “Godfa-
ther” and its director “Francis_Ford_Coppola”
to the analogy operation. Then, this relation-
ship is investigated for other movie titles. For
the movie title “Inception”, this query returns
the name of its director: “Christopher_Nolan”.

(f) Analogy Operation

SELECT c.name ,

analogy ('USA', 'English ',

name , (SELECT * FROM languages))

FROM countries AS c

The query assigns country names to lan-
guages. For the “Netherlands”, this query re-
turns “Dutch”.

(g) Resticted Analogy Operation

SELECT j.term1 , j. term2

FROM kNN_join (

(SELECT title FROM movies

WHERE release_data = 2010) , 3,

(SELECT title FROM movies))AS j

As in Figure 3.1c, similar movies are ob-
tained for titles in the movie table. How-
ever, this is done only for movies released in
2010. The knn_join operation is used instead
of the knn_in operation to more efficiently
execute the query. For “Shutter_Island” the
query returns “Inception”, “Batman_Begins”,
and “Disturbia”.

(h) kNN Join Operation

Figure 3.1: Examples of Word Embedding SQL Queries (simplified)

Word Embedding Operations: Examples of arithmetic word embedding operations
have been already described in Section 2.2.5. In the context of the schema of a movie
database1 with real-world data from TMDB, this allows a user, for instance, to perform
similarity queries on movie titles. Moreover, the user can utilize the information en-
coded in the word embeddings to reveal semantic relations between the text values in

1https://github.com/guenthermi/the-movie-database-import (Acess 03/22/21)

32 Chapter 3 System Overview

the database. An overview of novel query types implemented with word embedding op-
erations is shown in Figure 3.1c. The capabilities of word embedding operations go far
beyond string functions provided by traditional database systems. For instance, word
embeddings enable domain-specific and multi-lingual similarity queries, data-driven so-
lutions for query expansion, and several other novel query capabilities. Section 3.4 gives
a detailed overview of the definitions of all operations and compares embedding opera-
tions to traditional text processing operations implemented in database systems.

Fast Access Methods for Embeddings: Word Embedding models are typically rela-
tively large sets of vectors. Storing a model requires several gigabytes of storage. There-
fore, storing the whole model in memory might be impractical. Here the database can
assist an application with efficient access methods for word embeddings stored on disk.
To obtain an embedding representation for a text value not in the vocabulary with em-
bedding models based on word2vec and GloVe, it is necessary to calculate vector repre-
sentations with the averaging method [ALM17]. The DBMS can implement operations to
calculate those vectors and manage them in the database. Moreover, to efficiently execute
the operations described above, it is necessary to implement special index structures and
search algorithms. Therefore, integrating these indexes and algorithms into the database
can boost the performance of word embedding applications.

Optimization of Embeddings: Applications working with text in tabular data frequently
utilize word embeddings to represent text. However, word embedding techniques are
usually designed for text documents and are not optimized for text in relational database
systems. With this in mind, we identified opportunities to optimize the application of
word embeddings on text in RDBMSs. In particular, we aim at incorporating the re-
lational context of text values in the database in the vector representation of a textual
value. Applications using embeddings for text in database systems can provide from this
optimization process. Specifically, ML models achieve higher accuracy by using such
optimized embeddings.

Model Recommendation: Different embedding models capture different notions of sim-
ilarity. Based on the application focus, one should decide on an embedding model. How-
ever, text corpora used for training an embedding model, e.g., the complete English
Wikipedia, are usually too large to be overseen by a human user. Routines for recom-
mending models can assist the user. In particular, we aim at designing a data-driven
solution to generate a benchmark. Based on this benchmark, the user should be able to
identify the domains of text values represented in a model.

Tabular Embeddings: While the application of word embedding models on tabular
data has been extensively motivated above, not all semantic relations between words
in tables are captured by traditional word embedding models. In particular, categorical
relations typically existing between text in the schema of a database table and the actual
instance data are in general only poorly represented. Moreover, text values in tables do
not occur in a sentential contexts but rather in a tabular context. This is also reflected
in different methods to format text in cells that are unknown to word embedding mod-
els. By designing novel algorithms to train word embeddings on tabular data, we aim
to overcome those limitations and improve the performance of applications using word
embedding models to model text in tables.

3.1 Opportunities of an Integration 33

word2vec Google News1 GloVe Common Crawl2 fastText Wiki3 word2bits Wiki4

Abbr. W2V-GN GV-CC fT-W W2B-W
Size 3, 000, 000 2, 196, 017 – 400, 000
Dim. 300 300 300 800

1
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing (Access: 03/31/21)

2http://nlp.stanford.edu/data/glove.840B.300d.zip (Access: 03/31/21)
3https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.zip (Access: 03/31/21)
4https://drive.google.com/open?id=107guTTy93J-y7UCO2ZA2spxRIFpoqhjh (Access: 03/31/21)

Table 3.1: Model Characteristics

Existing Systems for Managing Word Embeddings: There are several frameworks to
load word embedding models and execute word embedding operations on text values.
Examples are Gensim [RS10] and the fastText library2 for models trained with the fastText
embedding technique [BGJM17]. Moreover, there are implementations of Web services,
e.g., word2vec-api3 and bert-as-service4, to encode text into embedding vectors and exe-
cute embedding operations. As far as we know, there is only one related research work
that integrates word embedding operations in a database [BS17, BBS17] which is called
a cognitive database by the authors. Besides, [TYS+21] makes use of the strong perfor-
mance of contextualized word embeddings in question answering to develop a new type
of database system called NeuralDB for text in natural language.

Cognitive Database: In [BS17] the authors integrate word embedding operations in Apache
Spark5. This system provides additional text operations in the form of user-defined func-
tions (UDFs) to calculate the similarity of text values based on the cosine similarity of
the respective word vectors and solve analogy questions. All UDFs are implemented in
Python. Those UDFs extend the abilities of SparkSQL. The authors call SQL queries us-
ing those word embedding operations cognitive intelligence queries to highlight the novel
types of queries enabled by word embedding operations. To execute the operations, the
UDFs access the embeddings stored in a separate system table. The embedding tables
are either created from a pre-trained word embedding model, or an embedding model
is trained directly on the database. To directly train embeddings, the authors propose a
technique to serialize text sequences from the tables in the database, which we describe
in more detail in Section 7.1.1.

NeuralDB: Contextualized word embedding models like BERT [DCLT19] pushed the state-
of-the art in question answering tasks significantly. In [TYS+21] the authors utilize this
ability to build a database system, which can answer questions in natural languages
given by a user based on documents stored in the database system. It stores text snippets
and encodes them as embedding vectors. The system determines embeddings similar
to the embedding of the question to find relevant snippets to predict an answer using
a machine learning model. While this is an interesting application of word embedding
models, it does not support systems that use word embeddings beyond question answer-
ing.

3.2 CHARACTERISTICS OF WORD VECTORS

To identify the requirements of handling word embeddings in database systems, it is
important to understand the characteristics of word embedding representations. High-

2https://fasttext.cc/ (Access: 03/23/21)
3https://github.com/3Top/word2vec-api (Access: 03/23/21)
4https://github.com/hanxiao/bert-as-service (Access: 03/23/21)
5http://spark.apache.org/ (Access: 03/24/21)

34 Chapter 3 System Overview

(a) word2vec Vectors (b) GloVe Vectors (c) fastText Vectors (d) word2bits Vectors

Figure 3.2: Cosine Similarity to Nearest Neighbors and Farthest Vectors

(a) word2vec Vectors (b) GloVe Vectors (c) fastText Vectors (d) word2bits Vectors

Figure 3.3: k Distance Diagrams

dimensional data tend to be sparse and uniformly distributed due to the curse of dimen-
sionality [Bel57]. Accordingly, the data points tend to be pair-wise very different and it
is hardly possible to organizing similar data points into groups. This effect does already
occur in vector spaces with only about 15 dimensions [BGRS99]. The authors of [BGRS99]
further show that linear scans often outperform index structures for multi-dimensional
data with more than 10 dimensions due to this phenomenon.

To examine if this effect also occurs in word embedding datasets, we investigated sev-
eral popular pre-trained word embedding models with 300 - 800 dimensions listed in
Table 3.1. All embedding models represent words with vectors of much more then 15 di-
mensions. We sampled 1, 000 vectors of each word embedding model, and determine for
each vector the k = 100 closest vectors (nearest neighbors) as well as the 100 farthest word
vectors according to the cosine distance. Since fastText generates vectors based on their
subwords, there is no static set of vectors. Thus, we generate the embeddings for all terms
in the vocabulary of the word2vec model with fastText to obtain a representative vector
set. Figure 3.2 displays the distributions of the cosine similarity values of the nearest
and farthest vectors6. It compares this to the distributions of sets of uniformly sampled
vectors with the same size and dimensionality. As one can see, the difference between

6The solid line indicates the mean and the transparent area the standard derivation.

3.2 Characteristics of Word Vectors 35

the similarity of the nearest neighbors and the similarity of the farthest vectors is signifi-
cantly greater for all word embeddings in comparison to the uniformly sampled vectors.
This indicates that word vectors tend to build clusters to some extend. Nevertheless, the
cosine distance of a vector to its nearest neighbors is still relatively high and increases
only marginal with a higher value of k. This indicates that indexing word vectors for ex-
act search is still challenging because there are no dense clusters. The word2bits dataset
has the highest dimensionality. Accordingly, the difference between nearest neighbors
and farthest neighbors is the lowest. This also signifies that word embedding models are
affected by the curse of dimensionality.

We further investigate the average cosine distance of the vectors to their nearest neigh-
bors by creating k distance diagrams displayed in Figure 3.3. Therefore, we determine the
average distance for each vector for several different values of k and sort the distance val-
ues. One can see that the distances continuously slightly increasing with the position in
the list while most of the values concentrate around a median value. For the DBSCAN al-
gorithm [EKS+96], the k distance diagram is used to determine a threshold ε to separates
noisy points with an average distance above ε from points in clusters. The threshold ε is
determined by detecting a point of a sudden increase of the distance values in the graph.
In all the graphs in Figure 3.3, the distances increase smoothly, indicating that there is no
clear separation between vectors that are part of dense clusters and vectors outlying the
clusters.

In summary, we can derive the following rationals from this evaluation:

• The curse of dimensionality does apply to word vectors. Thus, indexing techniques
for exact retrieval are not promising and methods utilizing approximation should
be considered.

• In comparison with uniformly distributed data, word vectors tend to form clusters.
Thus, distribution-aware index structures should be used.

• In the k distance diagrams, we can not recognize a separation of noisy data points.
Moreover, the average distance values concentrate around a median value.

3.3 OBJECTIVES AND CHALLENGES

Figure 3.4 provides an overview of the desired extensions of a database system. Those
implement the five objectives mentioned at the beginning of the chapter:

A Word Embedding Operations: The system should provide word embedding oper-
ations that can be combined with the SQL query language similarly as in the ex-
amples in Figure 3.1. Essential operations are similarity quantification, analogy cal-
culation, grouping, and similarity joins. We identified that all those types can be
derived from variants of the kNN-Join [YLK10] operation. Thus, other operations
can be implemented by driver functions using a kNN-Join operation.

B Efficient Storage Engine: The system should be able to store word embedding rep-
resentations of text values next to the actual structured data. Word embedding mod-
els can consist of hundreds of millions of floating-point values. Thus, the system
should store those models on disk and provide fast access to single embedding vec-
tors.

36 Chapter 3 System Overview

Figure 3.4: Management of Embedding Representation in an RDBMS

To efficiently execute operations, a system should provide index structures suitable
for searching word embedding vectors. Since such embedding vectors are high-
dimensional, index structures for exact search like k-d trees [FBF77] are not appro-
priate [SAH08] (see Section 3.2). However, since state-of-the-art word embedding
methods generate learned representations that do not constitute an ideal set of word
vectors, it is appropriate to use index structures for approximated nearest neighbor
(ANN) search.

C Embedding Optimization A naïve application of a word embedding model is not
sufficient to represent the meaning of text values in a database which is often more
specific than the general semantic encoded in the raw word embedding. This leads
to sub-optimal embedding representations of text values a potentially undesired re-
sults of word embedding operations when applied to the text values in the database.
Thus, an algorithm should utilize the information given by the disposition of the
text values in the database schema, e.g., which words appear in the same column or
are related, to improve the embedding representation.

D Adaptivity: The system should provide methods to switch between word embed-
ding models underlying the execution of the embedding operations. Different word
embedding models are suitable for text values of different domains. To select a suit-
able model, the system should recommend models to the user based on a domain-
specific evaluation of the embedding models.

E Pre-Trained Table Embeddings Word embedding models are trained on sequences
of words (i.e., sentences), while text in tables is arranged in a grid format and ap-
pears in the form of schema and instance data. The common word embedding
model can not distinguish between a text value appearing in the table body and the
same text value in the column title and thus, assign the same embedding represen-
tations to both values. Moreover, semantic relations obtained from the alignment
of text values in tables are often poorly represented in word embedding vectors.
Since many applications working with tabular data and using word embeddings
can profit from such relations and separate embeddings for schema and instance
data, we intend to design an embedding technique for tables compatible with our
system.

3.3 Objectives and Challenges 37

3.4 WORD EMBEDDING OPERATIONS

Based on the properties of static word embeddings (see Section 2.2.5), it is possible to
implement several novel operations for text values in database systems. Our goal is to
integrate those operations into a relational database systems. Thereby, we largely extend
the capabilities offered by traditional SQL query interfaces.

Definition of Operations The primary word embedding operations are the calculation
of similarity values and the answering of analogy questions. Based on this functionality,
we implement the following word embedding operations where different interfaces are
provided for each function7:

• cosine_similarity(value_1 varchar, value_2 varchar): This function quantifies the simi-
larity between two text values (see Figure 3.1a).

• kNN(input varchar, k int): It searches for the k most similar text values according to
the input value (see Figure 3.1b).

• kNN_in(value varchar, k int, output_set varchar[]): It searches for the k most similar
text values to the input value in a restricting set of output text values, e.g., to obtain
only results in a specific column in a database relation (see Figure 3.1c).

• groups(values varchar[], groups varchar[]): The input text values are assigned to groups
specified in the second set of text values according to their similarity (see Figure 3.1d).

• cluster(values varchar[], k int): Input text values are clustered into groups by applying
the k-means algorithm on their embedding representations (see Figure 3.1e).

• analogy(value_1 varchar, value_2 varchar, value_3 varchar): It solves analogy queries
using the PairDirection, 3CosADD, or 3CosMul method [LG14a] (see Figure 3.1f).

• analogy_in(value_1 varchar, value_2 varchar, value_3 varchar, output_set varchar[]): This
operation solves Analogy queries, where the result set is restricted to a specific set
of output text values (see Figure 3.1g).

• knn_join(query_set varchar[], k integer, target_set varchar[]): This function performs for
each text value in the first argument a kNN search in the target set (see Figure 3.1h).

Capabilities of Word Embedding SQL Queries The SQL query language itself pro-
vides limited capabilities to compare text values. On the one hand, one can apply the
equal and the LIKE operator to text values to check syntactic equivalences. On the other
hand, popular RDBMSs like PostgreSQL provide string functions for comparing text val-
ues, e.g., regexp_match allows the user to identify substrings matching a regular expres-
sion.

Besides, search features have been implemented and integrated into database systems.
For example, for PostgreSQL, a Full-Text-Search extension8 exists. Moreover, ontologies
are used to enable new query types in RDMBSs [DCES04, LWW13], e.g., to identify rows
with text values that are semantically related in the ontology.

7The results stated for the examples are obtained from the W2V-GN model in Table 3.1
8https://www.postgresql.org/docs/13/textsearch.html (Access: 04/21/21)

38 Chapter 3 System Overview

Word embedding operations enable several novel query capabilities going far beyond the
functionality provided by such traditional text query features:

Context-Sensitive Representation: Employing different domain-specific word embedding
models, enables domain-specific notions of similarity. In this way, context-sensitive sim-
ilarity queries are possible.

Data-Driven Similarity: While traditional similarity queries rely on human-generated the-
sauri, word embeddings provide a data-driven solution to quantify similarities of short
texts. Since popular pre-trained word embedding models contain large vocabularies,
they cover a much larger set of terms than most thesauri provide. Moreover, subword-
based models can quantify similarity for almost any text value pair.

Inductive Reasoning: The operations reduce the demand for explicit knowledge required
in a database. For example, it is not necessary to provide a mapping between cities and
languages in the database. Instead, the mapping can be obtained by an analogy query
like the one in Figure 3.1g.

Complex Similarity Queries: Beside simple queries of word similarity and relatedness,
word embeddings allow more complex query types, e.g., analogy queries. Especially
for data discovery, those operations constitute valuable extensions to the traditional key-
word search features provided, for example, by the PostgreSQL full-text search and sev-
eral data discovery tools [ACD02, BBN19].
To implement semantic search on multi-media data, e.g., videos, images, and audio files,
computer vision and speech recognition tools can tag multi-media objects with words
and phrases describing those objects. Then, one can apply word embedding operations
on those tags. In [BBS17], the authors used the IBM Watson Visual Recognition Service to
obtain tags for images. Then, these tags are used to train word embedding models and
execute semantic queries.

Multilingualism: It is easy to support multiple languages by adding word embedding
models for them. On the fastText website, pre-trained models for over 150 languages
are available9. Moreover, in [MLS13], the authors show how a translation matrix can be
trained to transform embeddings of an embedding model in one language to vectors in
an embedding model in another language. This enables cross-lingual similarity search.
Further, in [VM15], a method is proposed to train directly bilingual word embeddings.

Requirements for the Integration of Word Embedding Operations For the integration
of word embedding operations into a relational database system, we identified the fol-
lowing requirements:

A1 SQL Compatible: All operations should be implemented in a way, that the user can
use them together with the SQL query language.

A2 Flexible Scope: The scope of the operations should not be always be a fixed target
set but could be provided as an argument to the operations themselves, e.g., to
support kNN_in and analogy_in.

A3 Flexible Interfaces: Different interfaces should be provided for the operations, e.g.,
to support vector inputs, as well as textual inputs.

9https://fasttext.cc/docs/en/crawl-vectors.html (Access: 04/27/21)

3.4 Word Embedding Operations 39

Figure 3.5: Two Example Queries: kNN-Search and kNN-Join

A4 Model Independent: The operations should be independent of a specific embed-
ding model. Thus, the system should enable the user to switch the word embedding
model underlying the execution of the operations as also required by objective E in
Section 3.3.

A5 Configuration via GUI: The user should be able to adjust parameters and the config-
uration of the operations via a graphical user interface, e.g., to change the accuracy
when word embedding calculations are approximated.

3.5 PERFORMANCE OPTIMIZATION OF OPERATIONS

As stated in Section 3.3 most word embedding operations can be implemented via kNN-
Joins. Thus, to provide efficient word embedding operations, it is especially important
to efficiently execute kNN-Join operations. The kNN-Join is a generalization of the K
nearest neighbor search (kNN search) operation, a universal data processing technique
and also a fundamental operation for word embeddings trained by word2vec or related
approaches.

Given a set of query vectors R ⊂ R
d and a set of target vector T ⊂ R

d, a kNN query with
query vector r ∈ R in the Euclidean vector space is defined as follows:

Definition 3.5.1. The kNN query of r over T , noted kNN(r, T), can be defined as:

kNN(r, T) = argmin{t1,...,tk}∈T [k]

∑k
i=1 d(r, ti).

Here d denotes the distance function between two elements. Typically, in the context of
word embeddings, the cosine distance is used. However, if all vectors in R and T are
normalized, the cosine distance is proportional to the squared Euclidean distance. The
normalization of the vectors does not change the cosine distance. Thus the kNN(r, T)
for any r and T can be computed using both metrics.

40 Chapter 3 System Overview

If the query is not just one element but instead a set, the operation is denoted as kNN-
Join.

Definition 3.5.2. The kNN-Join between a query set R and a target set T is defined as:
kNN(R ⋉ T) = {〈r, t〉|t ∈ kNN(r, T), r ∈ R}.

Examples for the usage of kNN and the kNN-Join operations in the context of a word
embedding database system is shown in Figure 3.5. While the left query uses the kNN
operation to determine for each movie three terms with similar embeddings to the em-
beddings of movie titles, the kNN-Join query restricts the set of query terms to titles of
movies released in a specific year and the set target terms to titles of movies of specific
genres.

Requirements for kNN-Join in Word Embedding Space We aim at providing a kNN-
Join that is particularly suitable for high-dimensional data and varying target sets. In
detail, we identify the following requirements to be solved by index structures and the
kNN-Join operations:

B1 Minimization of index accesses: Since the word embedding data is stored in data-
base relations on disk, accessing data is time-consuming. Thus, the join operation
should minimize the number of word vectors and the index data that needs to be
retrieved. Often kNN-Joins are implemented by executing multiple kNN queries.
In this case, it should be prohibited to access the index separately for each query.

B2 High-dimensional data: Previously research on kNN-Joins for relational database
systems focuses mostly on low-dimensional data [YLK10]. Because of the curse of
dimensionality [Bel57], techniques for exact kNN-Joins, trying to hierarchical parti-
tion vector spaces, cannot be applied efficiently (see Section 3.2). Fortunately, for
our system approximation is appropriate as mentioned in Objective B in Section 3.3.
Hence, the system should support suitable approximated search techniques to han-
dle large vector sets.

B3 Adaptive kNN-Join algorithm: The index should be adaptive to support B3.1 flexi-
ble target sets and B3.2 online indexing.

B3.1 Flexible target sets: To support word embedding operations, we want to build
one large index over all word vectors provided by an embedding model as well
as derived embedding vectors created for text values in the database10. How-
ever, a target set T of a kNN-Join operation often contains just a small subset of
the vectors in the index. In the join query example in Figure 3.5, T is restricted
to vectors representing movie titles of a specific genre. This is a much smaller
set of vectors compared to the set of all word embedding representations. The
kNN-Join algorithm therefore must be adaptive to different target set sizes and
should enable fast approximated search. This problem can not be overcome
by multiple index structures, since filter criteria can be arbitrary and a large
number of index structures leads to a higher demand for memory and longer
insertion and update time.

10For long text values, the embeddings of tokens are averaged to obtain a representative embedding (see
Section 2.2.5).

3.5 Performance Optimization of Operations 41

Figure 3.6: Context Adaptation of Embeddings of Text Values in Database

B3.2 Online Updates: New text values not present in the word embedding model
beforehand can be added to the database during run-time. However, simple
techniques that average the embeddings of their tokens [ALM17] provide a
convenient way to generate embedding representations for such text value (see
Section 2.2.5). To be considered by kNN-Join operations those vectors need
to be added to the index structures. Thus, the index structures should allow
online-updates.

B4 Different demands on precision and response time: Regarding the approxima-
tion of the vector similarity, it might be relevant for a user to specify how much
the approximated nearest neighbors should agree with the exact values. On the
contrary, real-world systems need to comply with certain latency constraints, e.g.,
for exploratory data processing, fast response times are crucial. Consequently, the
approximated kNN-Join should provide features to configure such trade-offs. Pro-
viding these tunable trade-offs would also support query execution in an online
aggregation manner, i.e., get estimates of a kNN-Join query as soon as the query is
issued and steadily refine during its execution.

3.6 CONTEXT ADAPTATION

In text documents, the semantic of a word strongly depend on the context in which the
word occurs. This context involves the domain of the text document as well as the sur-
rounding words in the sentence. Similarly, in a relational database, the semantic of the
text value depends on the specific domain of the data stored in the DMBS. Moreover, the
position of a text value in the database plays an important role, e.g., “Apple” occurring
in a column named “Fruits” is differently interpreted when it occurs in a column named
“Company”. Thus, the semantic of a text value in the database is often more specific
then the semantic encoded in a word embedding model. Therefore, our objective is to
adjust the embedding representations of text values in the database to better model their
specific meaning in the database.

Figure 3.6 sketches the concept of such a context adaptation. The adaptation algorithm
expects a database and a pre-trained word embedding model as input. For each text
value in the database, a vector representation can be obtained using the word embedding
model. Moreover, from the relational database semantic connections between the text

42 Chapter 3 System Overview

values can be obtained. Both data sources are combined by the adaptation algorithm to
obtain an optimized vector representation for each text value. Afterward, these vector
representations can be stored in the database system.

To achieve this goal, we start by identifying limitations of word embedding models when
applied separately to each text value in the database.

Limitations of Pre-Trained Embedding Models Frequently, word embedding repre-
sentations do not accurately represent the semantic of textual information in databases.
We identified several explanations for this that can be addressed by a context adaption
algorithm:

1. Some text values with a context-specific semantic in the database occur in the gen-
eral domain much more frequently with the broader meaning. Then, this broader
semantic overlies the context-specific semantic. Given the movie table, it is known
that all entities within the movie column are movies, however, word embedding
models misinterpret titles, such as “Brazil” or “Alien” with a different ordinary
meaning.

2. Terms in the database occurring infrequently in the general domain can not be mod-
eled accurately by word embedding models. Moreover, many word embedding
models have a limited vocabulary and cannot generate embeddings for so-called
out-of-vocabulary terms. This is especially unpleasant because it could be circum-
vented by taking the representations of terms related to the missing term into ac-
count.

3. Often, semantic properties of text values are inaccurately represented by a embed-
ding model or missing, even though those properties are implicitly encoded in the
word embedding model. For example, it is hard to derive semantic properties of the
movie “Brazil” from its embedding representation. However, implicit information
about the movie might be encoded in the embedding of its director, e.g., the original
language is likely a language the director is able to speak.

Requirements of Context Adaptation To overcome the limitations described above,
we aim at developing a novel context adaptation algorithm. To be suitable for relational
database systems, this algorithm should support the following requirements:

C1 Holistic: The database provides a specific set of relation types modeled by the
schema, whereas in word embeddings large amounts of implicit relations are mod-
eled. Both need to be combined.

C2 Expressiveness: The adaptation algorithm should model columnar, row-wise, and
foreign key relations.

C3 Online Updateable: It should be possible to generate representations for text values
inserted later into the database. Therefore, the algorithm should be able to generate
representations in an online fashion.

C4 RDBMS Integration: It should be possible to automatically build context-adjusted
representations for text values in a relational database system.

3.6 Context Adaptation 43

3.7 REQUIREMENTS FOR MODEL RECOMMENDATION

Since word embeddings are essentials for many Machine Learning applications, ML prac-
titioners frequently face the problem of choosing the best embedding model for a specific
task. Moreover, for arithmetic word embedding operations, the choice of the word em-
bedding model is important since different embedding models capture different notions
of similarity. Thus, the word embedding model should match the notion of similarity
fitting to the user’s intent. To allow the user to make an informed choice of a word
embedding model, our goal is to evaluate the embedding models on a comprehensive
evaluation dataset with intrinsic evaluation methods described in Section 2.3. As a re-
sult, we obtain an evaluation report, allowing the user to determine proper word embed-
ding models. However, as further detailed in Section 6.1, most of the intrinsic evalua-
tion datasets available are inappropriate for this purpose since they provide just a single
quality variable and are either too small, focus on syntactic similarity only, or cover one
domain only. Thus our research aims at constructing of suitable evaluation datasets for
whom we propose the following requirements:

D1 Generality: While a domain-specific evaluation should be possible, one should be
able to use the dataset to evaluate any word embedding model. Thus, in its core,
the dataset should contain facts that are part of the extended common knowledge.

D2 Domain Granularity: To analyze the performance of embedding models on differ-
ent domain text, the dataset has to be structured into domain-specific categories.

D3 Continuity: Many relations are not distinct, e.g. population numbers, state of resi-
dence, and occupation depend on a specific point in time. Word embedding models
trained on a specific dataset cannot model such time-dependent relationships and
common evaluation metrics focus on bilateral relations. Thus, dataset should be
restricted to distinct relations and continuously valid knowledge.

D4 Volume: To provide a fine-granular view on the performance of word embedding
models every domain-specific partition of the dataset should have a certain size
since otherwise, accuracy values are not expressive.

D5 Flexibility: It should be possible to tailor an evaluation of a word embedding model
to a given application domain. Therefore, the structure of the evaluation dataset
should provide the flexibility to define different evaluation scopes. Here, a scope
may refer to a certain set of objects for which the representation quality should be
evaluated. Another scope could be a set of relation types or a certain domain de-
fined by a domain-specific category. To allow these different evaluation scopes, the
dataset structure should provide the necessary flexibility.

D6 Automatic-Generation: While we aim at providing a comprehensive evaluation
dataset, it may not fit for any domain-specific application area. By designing a
data-driven construction process, engineers can easily execute this process on any
domain-specific table collection of an organization to generate a dataset covering
relations of other fields.

3.8 TABULAR EMBEDDING MODELS

Word embedding models are frequently used to represent text values in tabular data (see
Section 2.4). However, pre-trained on text documents, those models are rather designed
for words in sentences leading to several limitations discuessed below. Based on this
observation, we propose to pre-train embedding models on tabular data.

44 Chapter 3 System Overview

Limitations of Word Embeddings for Tabular Data

1. While word embedding models are trained to represent tokens in a text, algorithms
working on tabular data often consider a cell as the smallest structural unit for
which they require a single embedding representation. Text values in tabular cells,
however, can be rather diverse. There could be abbreviations, single words, multi-
words, or even comments spanning over multiple sentences. Moreover, text values
in tables frequently contain special signs to format text, which is unusual in text
documents. Therefore, word embeddings cannot model them or obtain inaccurate
representations for them.

2. Text in tables can be separated into schema and instance data. A text value occurring
in the column header of a table has a different semantic when it appears in the table
body. However, word embedding models cannot distinguish between those two
types of text values.

3. Categorical relations like instance-of relations, which frequently exist between table
header and table body, are poorly represented by word embedding models. For
example, in the popular pre-trained W2V-GN model (see Table 3.1), the name of the
German politician “Angela_Merkel” has a higher cosine similar to “country” (0.18)
and “moon” (0.11) than to “person” (only 0.06).

Requirements for Embedding Models To overcome those limitations stated above, we
aim at designing an embedding model satisfying the following requirements:

E1 Flexibility: Our embedding approach should be flexible enough to obtain a single
embedding representation for any text in a cell which can then be used for super-
vised as well as for unsupervised tasks. Thereby, the model should also be able
to generate embeddings for text values that do not appear in the training corpus,
which is especially important because of the large variety of text values in tables. In
this way, it should be possible to apply the pre-trained model to different potentially
much smaller tabular datasets.

E2 Schema Awareness: It should differentiate between text that represents schema in-
formation in a table and text that represents instance data.

E3 Modeling of Tabular Relations: The model should be trained on tabular data in-
stead of text documents. Thereby, the model should learn from tabular relations like
row-wise relations and relations between schema and instance terms, as they exist
between the header terms and the body of the table.

3.8 Tabular Embedding Models 45

46 Chapter 3 System Overview

4
MANAGEMENT OF EMBEDDING

REPRESENTATIONS IN DATABASE SYSTEMS

In this chapter, we investigate techniques to manage word embedding representations
in a database system and and propose a concept to implement novel word embedding
operations according to the objectives A and B in Section 3.3. The results of this research
have been published in several publications [Gün18, GTLY19, GTL19a].

In Section 4.1, we introduce the architecture of FREDDY (Fast Word Embeddings in
Database Systems) [Gün18], a prototype of an extension for PostgreSQL to integrate word
embedding operations. The code is published as an open-source project on Github1. In
addition, a demo of the system has been published in [GTLY19], which provides a Web
interface for FREDDY2 and is described in detail in Section 4.1.4. To provide the de-
sired efficiency, we review related work on fast approximated nearest neighbor search
in Section 4.2, discuss their applicability for word embedding database systems in Sec-
tion 4.3, investigate kNN search features for database systems in Section 4.4, and in-
troduce a novel algorithm for approximated kNN-Joins (ANN-Joins) [GTL19a] in Sec-
tion 4.5, which we integrate into FREDDY.

4.1 INTEGRATION OF OPERATIONS IN AN RDBMS

We choose to integrate the desired additional functionality into PostgreSQL because it is
one of the most popular open-source database systems3, and it provides utilities to build
extensions. Section 4.1.1 describes the system architecture. In Section 4.1.2, we discuss
how to store word embedding representations in the database. It follows a detailed de-
scription of additional functions, which we implemented in PostgreSQL to enable word
embedding functionality in Section 4.1.3. Finally, we describe the Web interface in Sec-
tion 4.1.4.

4.1.1 System Architecture

PostgreSQL can dynamically load extensions with object code in the form of shared li-
braries4. This enables us to develop additional functions which can be executed effi-

1https://github.com/guenthermi/postgres-word2vec (Access: 04/27/2021)
2https://github.com/z-yan/freddyDemo (Access: 04/27/2021)
3It is the 4th most popular DBMS according to https://db-engines.com/en/ranking. (Access: 04/27/21)
4https://www.postgresql.org/docs/13/extend-how.html (Access: 04/27/21)

47

Figure 4.1: FREDDY System Overview

ciently by the database system. FREDDY’s system architecture is sketched in Figure 4.1.
Multiple word embedding datasets (1) can be added to the system. Initialization scripts
(2) create new relations (3) for word vectors in those datasets and index structures (4)
to enable fast approximated kNN queries. For each word embedding model, the scripts
construct separate tables. However, all vector representations derived from a specific
embedding model are stored in the same tables. Section 4.1.2 exposes the details of the
storage formats. To exploit the capabilities of these word embeddings within SQL, we
implemented User-Defined Functions (UDFs) for the operations described in Section 3.4
that operate on the word embedding and index relations. In this way, Requirement A1 of
Section 3.4 is satisfied. Those operations can either be executed on all embedding repre-
sentations stored in the table dedicated to the currently selected word embedding model
or on a restricted set of representations. Additional UDFs serve as helper functions, e.g.,
to select a word embedding model for the execution of the operations. Section 4.1.3 pro-
vides a comprehensive overview of the functions. The extension allows an exact calcu-
lation of search functions like kNN , but also provides the possibility to perform them
in an approximated manner to enable the execution on large input sets and tables. The
UDFs for similarity calculations and search operations (5) are implemented in C, whereas
performance uncritical helper functions and interfaces (6) are realized via the procedu-
ral script language PL/pgSQL. By using the PostgreSQL Server Programming Interface
(SPI), the UDFs can run SQL commands inside the functions, e.g., to access the word
vectors and index structures. All UDFs are bundled into a PostgreSQL extension.

To increase the usability of the system, we developed a Web application (7) to provide
an interface for our system. This application offers a convenient SQL interface for Post-
greSQL (8). Besides, a graphical user interface supports the user to utilize the additional
functionality (9) provided by FREDDY. FREDDY supplies helper functions to switch be-
tween word embedding models used by the novel operations and configure the hyper-
parameters, e.g., for ANN search. To simplify this, the Web application provides widgets
for those purposes and thereby satisfies Requirement A5. By employing the widgets, the
application constructs SQL queries including the helper functions, and executes them
on PostgreSQL via an SQL driver. In Section 4.1.4, we give a detailed overview of the
functionality of the Web Interface.

48 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.2: Storage Formats for Word Embeddings

4.1.2 Storage Formats

Figure 4.2 shows the different storage formats of word embedding representations. Static
word embedding representations are usually stored either in the text format shown on
the left in Figure 4.2 or in a similar structure in binary representation to save space. Both
formats can be converted into each other, e.g., by using the Gensim library [RS10]. The
initialization scripts create two tables for a vector file in the text format. Both tables con-
tain an id column, a column storing the text value, and a column for the corresponding
vectors. The first table stores the original vectors, and the second table contains a nor-
malized version of the vectors to efficiently calculate the cosine similarity between two
vectors. To efficiently retrieve word vectors, index structures are built over the id and the
word column. Usually, either hash indexes or B-Tree indexes are used.

Although PostgreSQL provides array types, we decide to store the vectors as byte arrays
with the type ByteA because it allows a more memory-efficient representation. All vectors
are stored with 32-bit floating-point values so that each vector requires 4 ∗ d + c bytes,
where d denotes the dimensionality of the vector and c is a constant overhead of up to
4 bytes5. PostgreSQL allows compressing ByteA values with a technique called TOAST
(The Overhead-Attribute Storage Technique)6. However, this is usually not effective for
word embedding vectors and therefore not applied in most cases.

If text values not present in the word embedding model are added to the database, e.g.,
because they consist of multiple tokens, new embedding representations can be added
for them using the insert_batch function. Those embedding representations are added
to both embedding tables (see Figure 4.2), as well as to the tables of index structures
described in Section 4.5.1. As mentioned in Section 4.1.1, we store all embedding repre-
sentations of text values in the database in the same tables and do not create a separate
embedding table for each text column. In this way, a lot of storage can be saved because
only one vector needs to be stored for the same text value occurring in multiple columns.
This is especially relevant because the embedding vectors and their index entries usually
require much more memory than the actual text values. Moreover, several of the word
embedding operations introduced in Section 3.4 apply search operations on all word em-
beddings, e.g., for data exploration, or can be applied to embeddings of text values in
multiple tables. To efficiently utilize index structures in those cases, the indexes need to
be built over all embedding vectors.

5https://www.postgresql.org/docs/13/datatype-binary.html (Access: 04/28/21)
6https://www.postgresql.org/docs/13/storage-toast.html (Access 28/04/21)

4.1 Integration of Operations in an RDBMS 49

Binary Word Embeddings In addition to common static word embeddings, FREDDY
also supports binary word vectors trained with word2bits [Lam18] already described in
Section 2.2.7. Here each vector corresponds to a bit vector where each bit corresponds
to 1

3 for a value 1 or −1
3 for value 0. Storing those vectors as floating-point values is

inefficient. Fortunately, the TOAST compression reduces the size significantly7, however,
a binary representation is still much more efficient. Therefore, we partition the original
bit vector in chunks of 64 bit and represent them as an array of unsigned 64 integers and
store this with the bytea type. To enable word embedding operations on those vectors,
specific implementations are provided (see Section 4.5.9).

4.1.3 User-Defined Functions

The database extension consists of implementations of performance-critical functions
implemented in C and a PL/pgSQL script. The C implementations are compiled to
native code packed into a shared library. When the extension is added to the Post-
greSQL server, the PL/pgSQL script is executed. This script adds bindings to the native
functions implemented in the shared library and implements several additional UDFs
in PL/pgSQL. Those include higher-level word embedding operations using the native
functions, helper functions, and multiple interfaces to each word embedding operation.
Moreover, the script executes code to initializes the extension.

Initialization: During the initialization, the init function is executed to set a default
word embedding model. This function gets as arguments the names of tables created
for the word embedding model and the tables providing index structures for them (see
Section 4.5.1) Afterward, the word embedding operations can retrieve the table names
of the selected model by executing specific UDFs. This enables model independence
described in Requirement A4 in Section 3.4. Moreover, hyperparameters for the ANN
search are set.

Word Embedding Operations: We implement UDFs for the functions already described
in Section 3.4 into FREDDY. To efficiently calculate similarity values, a native function cal-
culates the dot product between two normalized vectors, which can be obtained from the
table of normalized word vectors (see Figure 4.1.2). All the higher-level word embedding
operations are either implemented in PL/pgSQL and use the cosine similarity operation,
or native functions implement them. For more efficient approximated implementations
of the word embedding operations, we focus on developing a novel adaptive algorithm
to efficiently execute the ANN-Join operation (see Section 4.5) that fulfills the require-
ments stated in Section 3.5. All other word embedding operations, besides the simple
similarity function, can be implemented efficiently via this ANN-Join operation:

• kNN: The implementation of ANN and ANN_in queries via ANN-Joins is trivial.
Here, an ANN-Join with a single vector in the query set R is used. The target set T
is restricted for ANN_in queries, otherwise, all vectors are added to the target set.

• Grouping: A grouping operation is an ANN-Join with k = 1 where the target T set
usually consists only of a few target vectors.

7For 800-dimensional vectors, we observe a compression ratio between 6 and 8.

50 Chapter 4 Management of Embedding Representations in Database Systems

• Clustering: To implement a cluster operation based on the k-means algorithm, the
function iteratively executes ANN-Joins with a query set R corresponding to the set
of cluster centroids, k = |T |, and a target set T corresponding to the set of input vec-
tors. To obtain an assignment of each input vector to a cluster, the results of the join
are ordered by the similarity values between query and target vector8. Afterward,
the function uses this result list to assign each input vector corresponding to a tar-
get vector to its most similar centroid corresponding to a query vector. For the first
join, the centroids are initialized with randomly selected input vectors. After each
iteration, the function recalculates the centroids. To efficiently do this, the centroids
are calculated based on a sample of vectors in each cluster. After the last iteration,
the function returns the assignment of the ANN-Join.

• Analogies: For analogy operations, the 3COSADD method, explained in Section 2.2.5,
can be used. The other analogy operations described in Section 2.2.5 are also im-
plemented in UDFs. However, here no optimization is applied. To optimize the
efficiency of 3COSADD, a vector is calculated based on the three input vectors ac-
cording to Equation (2.9). Then, this vector is normalized, and an ANN-Join with
k = 1 and a target set T holding all word vectors is applied to retrieve the results.
For the analogy_in function, the target set T contains only the set of vectors pro-
vided to the analogy function.

To efficiently execute word embedding operations trained with a word2bits model, we
use different implementations for cosine similarity and kNN-Join9 described in Section 4.5.9.

Helper Functions: There are several functions to read out and adjust the hyperparam-
eters set during the initialization. Similarly, helper functions enable the user to read out
and switch the implementation underlying the execution of an operation like kNN , e.g.,
to change from an exact algorithm to a faster approximate algorithm.

The insert_batch(varchar[]) function adds representations of text values not present in the
word embedding model. Therefore, it uses the averaging method [ALM17] explained in
Section 2.2.5.

Furthermore, several helper functions are provided to convert arrays between the ByteA

type and PostgreSQL array types. Those are implemented as native functions.

Interfaces: The user can provide embedding representations to the word embedding
operations in three different formats: (1) vectors in the ByteA format, (2) text values refer-
ring to embedding representations present in the vector tables, and (3) ids in the vector
tables. The native word embedding function either accept vector representations or ids.
For increased usability interface functions implemented in PL/pgSQL support the alter-
native formats (1) - (3), read out the required data from the vector tables, and call the
native functions to execute the operation. In this way, the system complies with Require-
ment A3.

4.1 Integration of Operations in an RDBMS 51

(a) Query Interface (b) Configuration (c) Search Analysis View

Figure 4.3: The web-interface of FREDDY

4.1.4 Web Application

A Web application provides a user-friendly interface for FREDDY. A screencast is pro-
vided on the project website10. The application consists of a Web client for the database
with additional functionality to support word embedding operations. The user can enter
a query, or select and edit a pre-defined queries. The application allows the user to switch
between different databases and word embedding models. To gain detailed insights on
how the different index structures and search functions perform and how their param-
eters affect result quality and query performance, we provide several widgets to select
and adjust them. On a second view, the user can evaluate the influence of different index
structures and their search parameters.

Query Interface View The query interface is displayed in Figure 4.3a. The user can
choose between different database schemes (1). For demonstration purposes, we im-
ported a database with movie data, a DBLP11 database, and a music database with data
from Discogs12. A drop-down menu enables the user to select different word embed-
ding datasets from a selection of inserted embedding models. One can add models like
W2V-GN, GV-CC, and W2B-W of Table 3.1. Executing the same query multiple times
using different word embeddings leads to different result sets. In general, it is recom-
mended to choose a word embedding dataset pre-trained on a related topic according to
the database schema. In the text field at (2), the query can be created manually, or the
users get inspired by one of the pre-defined example queries provided by the drop-down
menu above. If a query is executed, its result and the response time appear at (3). The
demonstrator also keeps track of the previous query and its result. They can be retrieved
and compared with the current ones using the tab menu above the result table. In a side-
bar (see Figure 4.3b), the users can choose between the index structures for similarity
search and different analogy query types.

Performance View In a second view illustrated in Figure 4.3c, the demo user can per-
form time and precision measurements for kNN and analogy queries using different con-
figurations and compare the results by employing various plots (1). Visual features, e.g.,

8Although the similarity values are not in the result set according to the kNN-Join definition in Section 3.5,
those values need to be calculated in any case and therefore can be returned by the kNN-Join operation.

9Exact methods for word2bits operations are more efficient. Therefore, an approximation is not necessary.
10https://wwwdb.inf.tu-dresden.de/research-projects/freddy/ (Access: 04/28/21)
11https://dblp.uni-trier.de (Access: 08/26/21)
12https://www.discogs.com (Access: 08/26/21)

52 Chapter 4 Management of Embedding Representations in Database Systems

color, size, etc., encode the index and search parameters. The notations are declared in the
legend at (2). To obtain reliable measurements, the queries are executed multiple times,
and the average values for the response time and the precision are obtained. At (3), the
number of queries that should be executed and the neighborhood k are specified. The
user can configure the search function in the sidebar (see Figure 4.3b), just as in the query
view.

4.2 NEAREST NEIGHBOR SEARCH

In the following, we investigate techniques to efficiently implement nearest neighbor
search. The kNN search problem defined in Section 3.5 and approaches for efficiently
solving it have been extensively studied in the literature. There is not one specific al-
gorithm that fits all applications. The efficiency of kNN search algorithms can strongly
depend on the data characteristics of the vector datasets. Moreover, index structures for
kNN search differ significantly in their memory consumption, index construct time, and
the index operations they provide, e.g., not all indices allow online updates.

A naïve algorithm performs a scan over all vectors in the target set, calculates the distance
to each vector, and selects the k vectors with the lowest distance values. This algorithm
has a linear time complexity of O(|T |·d) for the size of the target set |T | and the dimen-
sionality d. To perform a kNN-Join between R and T , one can execute a kNN search for
every query vector r ∈ R. Here, the time complexity O(|R|·|T |·d) further depends on |R|.
Since word embedding datasets usually consists of millions of vectors with hundreds of
dimensions, calculating all distance values is inappropriate for real-time queries.

To efficiently compute the nearest neighbors, several index structures have been pro-
posed. In general, due to the curse of dimensionality, exact methods like [FN75, FBF77,
Nav02] do not effectively reduce the run-time of kNN search queries [MY18]. The di-
mensionality of popular pre-trained word embedding models is sufficiently high that
this effect occurs (see Section 3.2). The most popular approaches for approximated near-
est neighbor search (ANN search) can be categorized into techniques using tree structures
to organize vectors, proximity graphs, methods base on locality-sensitive hashing, and tech-
niques base on quantization.

4.2.1 Tree-based Methods

Several methods [FB74, Ben75, Gut84] have been proposed to build tree-structured in-
dexes for multi-dimensional data points. One of the most popular hierarchical index
structures is the k-d tree [Ben75, FBF77]. The k-d tree is a binary tree storing k-dimensional
vectors associated with its leaf nodes. All non-leaf nodes are associated with a partition
of the vector space where the root node represents the whole vector space. All non-leaf
nodes define a hyperplane that is perpendicular to an axis of the vector space and di-
vides its partition into two partitions associated with its two successors nodes as in the
example in Figure 4.4. The hyperplane is defined by a key a referring to the axis and a
threshold value v. All vectors in the partition of the parent node with a value greater
than v at dimension a are assigned to the partition of the first child node and all other
nodes are assigned to the partition of the second child node. Several different methods
for constructing a k-d tree are possible. Given all vectors in advance, one can use the
approach of [FBF77] to construct an optimal k-d tree for searching nearest neighbors.

4.2 Nearest Neighbor Search 53

Figure 4.4: k-d tree

Algorithm 4.1: KDSEARCH(r,n = root,C = ∅)
Input: query vector r, node n, candidate list C

Output: k nearest neighbors
1 if n is Leaf? then
2 C = UPDATEKNN(r, n, C);
3 return C;
4 else
5 nnear , nfar = GETSUCCESSORS(n, q);
6 KDSEARCH(nnear , r, C);
7 if BOUNDSOVERLAPTEST(nfar , C) then
8 return C;
9 else

10 C = KDSEARCH(nfar , r, C);
11 end

12 end
13 if BOUNDSWITHINTEST(n, C) then
14 return C and quit ; // terminate directly

15 else
16 return C ; // continue with parent node

17 end

Figure 4.5: k-d tree Search Algorithm

k-d tree Search Algorithm: To find the k nearest neighbors, one can use the recursive
search algorithm shown in Figure 4.5. This algorithm maintains a list C of k already
investigated candidate vectors with the lowest distance to the query vector r. Each recur-
sive step processes a node n of the graph where the first step examines the root node. In
each step, it is checked if the current node is a leaf node. For a leaf node, it is determined
if the vector associated with it is a candidate for the k nearest neighbor by calculating
its distance to the query. If the node is a non-leaf node, a new recursive step is executed
for the successor node nnear holding vectors on the same side of the hyperplane. After
this new recursive step is executed, the algorithm checks if it is possible that the second
successor node nfar holds vectors closer to the query than the candidate list. If this is
the case, this node is investigated in another recursive step. Otherwise the algorithm
terminates.

To check if a partition of the vector space associated with a node needs to be investi-
gated a bounds-overlap-ball test is done. Thereby, the algorithm calculates the ball centered
around the query vector r with the radius equal to the distance between the query and
the farthest vector in the candidate list. If this ball overlaps, it is necessary to investigate
the partition of the node. Also, a ball-within-bound test can be performed after each recur-
sive step to check whether the ball lies in the partition of the node and the algorithm can
terminate.

While this search algorithm only provides effective performance improvements on low-
dimensional data, for high-dimensional data algorithms for ANN search have been pro-
posed. The popular approach of [SAH08] utilizes a combination of multiple k-d trees for
a very efficient approximation of the nearest neighbors which is implemented by [ML14]
in the FLANN framework (Fast Library for Approximate Nearest Neighbors)13.

13https://github.com/mariusmuja/flann (Acess: 04/01/21)

54 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.6: HNSW Graph and Search Algorithm

R-Tree: To construct a near-optimal k-d tree, the distribution of the data needs to be
known beforehand. Thus, updating k-d trees can lead to lower performance improve-
ments. Moreover, k-d trees are not able to effectively index geometric objects like rectan-
gles and polygons. To overcome those limitations, the R-Tree [Gut84] and several variants
of it [SRF87, BKSS90, BKK96] were developed. The idea behind the R-Tree is to organize
spatial objects in a hierarchy of bounding boxes. Objects are associated with leaf nodes.
For each node, a minimal bounding box of the child nodes (or objects in the case of leaf
nodes) is stored. To insert objects, the tree is traversed to the best fitting leaf nodes14 and
the object is added to the node. If the node overflows, i.e., the maximal number of objects
is reached, the insertion algorithm splits the node and adds both splits to the parent node.
This can also cause further overflows in the intermediate nodes leading to further splits.
R-Trees can efficiently solve k nearest neighbor queries [RKV95] as well as range queries.

4.2.2 Proximity Graphs

Recently, techniques for ANN search based on proximity graphs have become very pop-
ular. Many of the state-of-the-art ANN techniques use such graphs [ABF20]. A proximity
graph relates nodes that are close according to a certain distance measure. One form of
a proximity graph is the k nearest neighbor graph (kNN graph). The kNN graph is a
directed graph that represents each spatial point by a node and relates each node to its
k nearest neighbors. For low-dimensional data, [PCFN06] proposes an algorithm to ef-
ficiently construct kNN graphs. However, due to the curse of dimensionality, it has a
nearly quadratic complexity for high-dimensional spaces. Based on the kNN graph, it
is possible to directly return kNN search results for query vectors in the graph. Thus,
the time complexity is O(1). For query vectors not in the index, search algorithms are
proposed to navigate via a greedy search from an initial node through the kNN graph
towards nodes with small distance values to the query vector [HAYSZ11]. To find a start-
ing point, it is common to choose a node randomly or a separate index structure is used,
e.g., in [AM93] an additional k-d tree is constructed and [WWZ+13] employs product
quantization for this purpose.

14Here, different heuristics are possible.

4.2 Nearest Neighbor Search 55

Hierarchical Navigable Small World Graphs (HNSW): One of the most popular tech-
niques in this category on ANN search methods is based on hierarchical navigable small
world graphs (HNSW) [MY18]. To efficiently search, HNSW constructs a multi-layer prox-
imity graph depicted in Figure 4.6. This graph is constructed by an insert algorithm that
incrementally adds nodes for each target vector. In such a graph a lower layer always
contains all nodes from the upper layers. The first node inserted on the top layer of the
graph is the initial node for the search also called the enter-point. The enter-point is the
same for all search operations independent of the query vector.

Insertion Algorithm: First, the insertion algorithm selects a maximum layer Lmax for the
new node determined by an exponentially decaying probability distribution. Then, it
traverses the graph with a greedy algorithm starting from the enter-point on the highest
layer until layer Lmax is reached. This greedy algorithm15 aims at selecting nodes of target
vectors close to the query vector in the current layer. Then, it investigates the next layer
in the same manner starting from the closest point determined on the previous layer.
When the maximum layer Lmax for the new node is reached, the actual inserting process
starts. Thereby, a similar greedy algorithm is executed. It differs from the former one
in the way that it obtains multiple approximated nearest neighbors on each layer which
serve as enter-points on the next layer. Moreover, a node for the new vector is added on
each layer, as well as a specific number of edges to close neighbors. Afterward, the set
of edges of each neighbor is reduced to a maximal number of neighbors Mmax to prevent
nodes to hold too many connections.

Search Algorithm: The search algorithm proposed by [MY18] resembles the insertion al-
gorithm for a node on layer 0. It greedily searches for close neighbors on each layer until
it reaches layer 0. Here, it uses the closest node in layer 1 as the entry point to search
for ef > k close neighbors. Afterward, the k vectors with the lowest distance values are
returned.

Based on the benchmark results of [ABF20], this technique provides the best trade-off
between accuracy and search run-time while index construction time and the size of the
index structures required to achieve this performance are comparably high. The evalua-
tion of recently developed novel graph-based approaches [IM18] and quantization-based
techniques [GSL+20] shows that these techniques achieve comparable or superior perfor-
mance trade-offs16.

4.2.3 Locality-Sensitive Hashing

Conventional hashing functions used for data structures are designed to equally likely
hash an input value to an integer representing a storage bucket id independent from the
input [CLRS09]. In contrast, locality-sensitive hashing (LSH), first proposed by [IM98,
GIM99], tries to hash similar inputs to similar hash values.

Index Construction: Figure 4.7 visualizes the indexing process of vectors with an LSH
technique later used for ANN search. Thereby, several LSH hash functions H1, . . . , Hl

are applied to each input vector v1, . . . , vn. Usually, those hash functions generate a
bit-vector of length m for the original floating-point vector where similar vectors have a
high probability to obtain the same bit-vector. Afterward, a conventional hash function
is applied to each bit-vector to get an integer value x ∈ {1, . . . , S} for each of them. Those
integer values constitute indexes in a hash table with S buckets. The hash tables store
for each vector a reference at the position of its hash value x. In this way, LSH provides
a tool for inverted indexing where the location of the object in the form of the bucket id
can be derived form its content (the original vector).

15For a detailed description of the algorithm, we refer to the original paper [MY18].
16http://ann-benchmarks.com/ (Access: 04/09/2021)

56 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.7: Index Vectors with locality-sensitive Hashing (LSH)

Design of the Hash Functions: Depending on the vector space and the distance mea-
sure different hash functions can be used. In the original approach [GIM99], hash func-
tions are designed for d-dimensional integer vectors and the Manhattan distance (L1
distance). The authors argue that the L1 distance correlates with the Euclidean dis-
tance. Moreover, to handle floating-points, one can transform them to integer values
by scaling them with an arbitrarily high factor and rounding them afterward. To cal-
culate a hash value of a d-dimensional vector v, all d integer values are transformed
into unary encodings of length C (filled up with leading zeros), where C constitutes
the highest integer value in the dataset. Then, the unary encodings of a vector are con-
catenated to a bit-vector of length dC. For each LSH hash function H1, . . . , Hl, a subset
A ∈ {A′ ∈ P([dC]) | |A′|= m} of m dimensions is chosen. An LSH hash function selects
the values at those dimensions and concatenates them to obtain a bit-vector for its input.

By changing the definition of the hash function, other vector spaces and distance mea-
sures can be supported. In [Cha02], hash functions are designed for the cosine distance.
In [DIIM04], an approach specifically for Euclidean distances is proposed. Recently,
[AR15] proposes an approach for data-dependent hashing to exploit the data character-
istics of a specific dataset.

ANN Search with LSH Index: To determine approximated nearest neighbors, the search
algorithm applies all hash functions H1, . . . , Hl to the query to obtain l bit-vectors like
this was done in the indexing process. Then, the conventional hash function transforms
those bit-vectors to l bucket indexes and all vectors in the buckets are retrieved. Those
vectors constitute candidates for the nearest neighbors. In the original paper [GIM99], the
authors propose to retrieve vectors only until a maximum number M is reached. After-
ward, the search algorithm calculates for each candidate its distance to the query vector
and returns the k vectors with the lowest distances.

A limitation of this algorithm is that it is not possible to increase the precision of the
search without reconstructing the index with other parameters. Furthermore, increasing
the number l of hash function leads to more hash tables. Thus, this results in higher stor-
age requirements. To overcome this, [LJW+07] proposes the multi-probe LSH algorithm.
Here, the search algorithm retrieves vectors from more than one buckets per hash func-
tion. To increase recall from each LSH hash value, it derives from the hash value multiple
slightly modified hashes leading to an extended set of buckets. Since LSH hashes tend to
be similar for similar vectors, those buckets contain similar vectors with high probability.

4.2 Nearest Neighbor Search 57

(a) Generating PQ sequences (b) Asymmetric Distance Calculation

Figure 4.8: Product Quantization

4.2.4 Quantization Techniques

Several kNN search techniques employ forms of vector quantization, a method to trans-
form multi-dimensional data points in approximated compact representations [Gra84].
It is the basis of algorithms for compressing vector data, allows the calculation of ap-
proximated distances, and enables the construction of spatial indexes.

Quantization Function Vector quantization can be implemented by a quantization func-
tion q : Rd → {1, . . . , |C|} which assigns a vector y ∈ R

d to the closest centroid vector
cj ∈ C of a fixed finite set C ⊂ R

d. There are different ways to obtain a quantization
function specified by the centroid set C and a distance function d. As a distance function,
usually, the Euclidean distance is used. Set C should be selected so that the distortion
is minimal. The k-means algorithm is commonly used to achieve this goal for a given
number of centroids |C|. Here, the Euclidean distances between each vector y and its
centroid cj equivalent to the mean squared error of the differences in each dimension
is minimized. For efficient ANN search according to the cosine distance, [GSL+20] pro-
pose an alternative algorithm to determining good sets of centroids. The quantization
can be visualized as a Voronoi diagram like the one shown in Figure 4.8b. It displays
the centroids (blue points) and the volumes assigned to them by the quantization func-
tion bounded by the blue lines. The Voronoi diagram itself allows performing a nearest
neighbor search in 2-dimensional vector space in logarithmic time [Sha75]. However, this
becomes inefficient with growing dimensionality [AMN+98]. To lossy compress vector
data, each vector can be replaced with an id of the centroid vector assigned to it by the
quantization function. This reduces each vector to a single number requiring ⌈ld|C|⌉ bits
to be stored. To index a dataset, the vectors are stored together with their quantization
ids and a conventional index structure is constructed for the quantization ids.
Inverted Indexing: For searching approximated nearest neighbors, one can calculate the
nearest α centroids to the query vector, retrieve all vectors with the according centroid
ids as candidate solutions, and calculate their distances to the query vector to obtain close
vectors.

58 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.9: Inverted Multi Index

Product Quantization A simple vector quantization approach might lead to a quite
inaccurate representation of the vector dataset. For a more precise representation, huge
numbers of centroids would be necessary that are impossible to process or even to store.
For this reason, product quantization [JDS11] applies multiple quantizers on m subvectors
u1(y), . . . , um(y) of the original vector y ∈ R

d (see Figure 4.8a.). Those quantizers are
defined by quantization functions q1, . . . , qm with qi : R

d′ → {1, . . . , |Ci|}. Typically, the
cardinalities |C1|, . . . , |Cm| are equal and d′ = d/m for each quantization function. The
product quantization is the sequence of centroids obtained by that process.

y1, . . . yd︸ ︷︷ ︸
u1(y)

, . . . , y(D−d)+1, . . . yD︸ ︷︷ ︸
um(y)

→ q1(u1(y)), . . . , qm(um(y)) (4.1)

Using a dictionary denoted as the codebook, the sequence of centroid vectors can be com-
pactly represented as a sequence of centroid ids.

kNN-Search with PQ-Index Product quantization sequences can be utilized to acceler-
ate the calculation of nearest neighbors by providing a fast way to compute approximated
squared distances. Approximated square distances between a query vector r and a vector
y for which a product quantization sequence is available can be calculated by Equation
(4.2):

d̂2(r, y) =
m∑

i=1

d(ui(r), qi(ui(y)))
2 (4.2)

The squared distances d(ui(r), qi(ui(y)))
2 have to be precomputed at the beginning of

the search process. For every subvector ui(r), there are |Ci| distance values to calculate
since qi(ui(y)) can be any value of Ci. The distance measure is denoted as asymmetric
by [JDS11] since it is defined between quantized and non-quantized vectors as visual-
ized in Figure 4.8b. Despite the effort of the preprocessing, the technique reduces the
computational costs since the number of index entries in large vector datasets is much
higher than m · |Ci|, the number of those squared distances. Furthermore, the retrieval of
the compact product quantization sequences is faster than retrieving the raw vectors. To
further speed up the ANN search, [JDS11] proposes to use standard vector quantization
as described above to build an inverted index for the product quantization sequences.

4.2 Nearest Neighbor Search 59

Inverted Multi-Index A simple inverted index based on quantization could be created
by clustering all possible target vectors TI into n distinct partitions P1∪̇ . . . ∪̇ Pn that corre-
spond to the Voronoi cells of the centroids c1, . . . , cn. To determine the partitions in which
to search for a query r, one has to calculate all the distances d(r, c1), . . . , d(r, cn). How-
ever, this could be time-consuming, especially for kNN-Joins with a large query set R. To
solve this problem, [BL12] propose to use product quantization to obtain a large number
of partitions with low computational effort. Suppose the product quantization sequences
which serve as labels for the partitions consist of two centroid indexes c1, c2 ∈ {1, . . . , n}.
There are n2 partitions (see Figure 4.9). However, to determine the nearest clusters, one
has to calculate only the 2 ·n square distances between the subvectors of the query vector
centroids stored in a codebook.

4.3 APPLICABILITY OF ANN TECHNIQUES FOR WORD EMBED-

DING KNN-JOINS

To efficiently execute kNN-Join operations on word vectors in database systems, a flexible
index structure is required. Accordingly, the goal is to design an index structure satisfy-
ing the requirements stated in Section 3.5. In the following, we analyze the applicability
of the ANN techniques summarized above in Section 4.2.

All techniques described in Section 4.2 aim at minimizing memory access to select use-
ful candidate vectors according to Requirement B1. As of April 2021, the best trade-offs
between query time and accuracy on a popular word embedding ANN benchmark pro-
posed in [ABF20] are achieved by techniques based on graphs and product quantiza-
tion17. The implementation of batch-wise nearest neighbor search can further account for
this requirement. However, this rather depends on the kNN-Join implementation and is
relatively independent of the indexing technique itself. In contrast, the feasibility of the
other three requirements strongly depends on the index algorithm.

Tree-based Indexes: Tree-structured indexes are mainly proposed for low-dimensional
data. However, ANN search based on multiple k-d trees has been proposed [SAH08]
to support high-dimensional data as stated in Requirement B2. Tree-based indexes are
inappropriate for flexible target sets demanded by Requirement B3.1 because the whole
tree needs to be traversed first to obtain candidate vectors. Only after that one can check
the filter constraint. Online updates mentioned in Requirement B3.2 are possible. How-
ever, the performance of the k-d tree might suffer from too many insertions. To increase
the accuracy one can easily retrieve a higher number of candidate vectors from the index
close to the query. In this way, the search algorithm can adapt to different demands on
accuracy and run-time (Requirement B4)

Graph-based Indexes: Although the construction of optimal kNN graphs is infeasi-
ble for large datasets of high-dimensional vectors, proximity graphs are commonly used
for ANN on high-dimensional data (Requirement B2). State-of-the-art techniques like
HNSW [MY18] are constructed incrementally. Thus, online updates (Requirement B3.2)
are well realizable. In general graph-based algorithms can not efficiently handle flexible
target sets (Requirement B3.1). Focusing the search only on targets satisfying certain filter
constraints is not possible, because thereby the connectivity of the graph is not ensured.
To influence the accuracy of the search algorithm (Requirement B4), one can simply re-
trieve a higher number of candidates, e.g., raise the ef parameter in the HNSW search al-
gorithm. However, in [YLFW20], the authors claim that this is less effective for the HNSW
algorithm when compared to parameter tuning in quantization-based approaches.

17http://ann-benchmarks.com/ (Access: 04/09/2021)

60 Chapter 4 Management of Embedding Representations in Database Systems

Locality-Sensitive Hashing: LSH has been developed to overcome the curse of dimen-
sionality. Accordingly, it can cope with a high-dimensionality (Requirement B2). The
handling of flexible target sets (Requirement B3.1) constitutes a problem. If the number
of buckets is high and the filter constraints are selective, the number of retrieved can-
didates can be 0. This problem can be solved by multi-probe LSH. However, selective
filters still lead to an unnecessarily large amount of disk accesses. Online updates (Re-
quirement B3.2) are possible. While the standard LSH algorithm does not provide meth-
ods to increase recall, this gets possible through multi-probe LSH. In this way, different
demands of accuracy and run-time desired in Requirement B4 can be met.

Vector Quantization: Constructing an inverted index using vector quantization is a
relatively simple solution for ANN on high-dimensional data. Thus it is widely ap-
plied [SZ03, BL12, BBS17] even though it does not provide state-of-the-art performance.
Indexes based on a combination of inverted indexing and approximated distance calcula-
tion via product quantization achieve high performance. An index of product quantiza-
tion sequences is appropriate to support flexible target sets (Requirement B2) as long as
the preprocessing effort does not exceed the effort of the brute-force method. It allows re-
trieving only product quantization sequences satisfying the filter criteria for the approx-
imated distance calculation leading to a candidate set of vectors that complies with the
constraints. An inverted index based on quantization might be inefficient for small target
sets since buckets might not contain vectors that comply with the filter criteria. Online
updates (Requirement B3.2) can be implemented for both kinds of quantization-based
indexing methods. To influence the accuracy, a certain number of low approximated dis-
tances can be post verified by exact distance calculation, and the number of partitions
retrieved from an inverted index can be adjusted. Thus, the desired flexibility stated in
Requirement B4 can be met.

4.4 RELATED WORK ON KNN SEARCH IN DATABASE SYSTEMS

There is already limited work done in integrating kNN operations in database systems.
PostgreSQL, for instance, can be extended by PostGIS18, which allows running kNN
queries for low-dimensional (geographical) data. Index structures can be created with
GiST (Generalized Search Trees) to speed up such operations. [BBS17] integrate vector
similarity search for high-dimensional data into Spark for word embeddings. The au-
thors state that simple index structures based on LSH [Cha02] or spherical k-means [DM01]
are used to partition vectors for filtering. However, this might be only useful for a lim-
ited set of query types (see Section 4.3). A system called ADAMpro [GAKS14] adds
ANN search techniques on top of a database system for multimedia retrieval. The vec-
tor database Milvus [WYG+21] provides a similarity search engine for high-dimensional
data. In [WWW+20], the authors propose AnalyticDB-V, an execution engine for SQL
queries that can perform ANN search on feature vectors filtered by additionally provided
filter predicates.

There are two approaches to integrate approximated kNN-Joins into relational database
systems: In [YLK10] approximated kNN-Joins based on z-order curves [Mor66] are in-
tegrated into relational database systems, which however, is only applicable for low-
dimensional data. Just recently [YLFW20] investigated how common algorithms for ap-
proximated nearest neighbor search algorithms can be integrated into PostgreSQL lead-
ing to the development of the so called PASE extension.

18postgis.net (Access: 04/15/21)

4.4 Related Work on kNN Search in Database Systems 61

Figure 4.10: Execution of Queries with Filter Conditions with PASE Indexes

ANN-Joins based on Z-Curves In [YLK10], the authors aim at implementing an al-
gorithm for kNN-Joins only based on SQL operations. In this way, the algorithm can
be executed on any relational database system without integrating novel index struc-
tures and operations into the database system. Their implementation is based on z-order
curve representations of multi-dimensional data. Thereby, the binary representations of
each dimension19 of a data point are interleaved into a single binary sequence. This leads
to one-dimensional representations where two points with low distances in the multi-
dimensional space tend to obtain representations with low distances. This allows the
system to efficiently retrieve candidate solutions for the kNN problem by performing a
range query on the z-value representation around the z-value of each query point. Then,
the kNN-solution is obtained by an exact distance calculation. To increase the accuracy,
the algorithm performs this process on several z-value representations which are gen-
erated from translations of all multi-dimensional points by random translation vectors
v1, . . . , vn. One major limitation of this approach is that it is only applicable to relatively
low-dimensional data. The authors state that the algorithm is inappropriate for data with
more than 30 dimensions. Accordingly, this approach is unsuitable for our requirements
(see Requirement B2 in Section 3.5)

PASE In [YLFW20], the authors propose an extension for PostgreSQL called PostgreSQL
Ultra-High-Dimensional Approximate Nearest Neighbor Search Extension (PASE). While in
our research, we focus on developing novel algorithms to handle ANN-Joins in a database,
this work rather focuses on integrating existing techniques for ANN search operations
deep into a relational database system. Therefore the authors especially focus on the
storage representation of index structures and the implementation of the PostgreSQL
interfaces to access the index data. They implement index structures for two ANN algo-
rithms: (1) IVFFlat20, a simple inverted index similar to the IVFADC index [JDS11] with-
out product quantization, and (2) HNSW [MY18]. The authors claim that IVFFlat has a
lower index building time and produces less storage overhead, while HNSW requires
lower run-time, especially when a lower accuracy of the results is required. To handle
queries with a target set that is restricted by filter constraints and therefore constitutes
only a subset of the vectors in the index, the authors propose a specific execution schema
shown in Figure 4.10. Hereby, the kNN operation continuously retrieves nearest neigh-
bors and check the filter condition in an alternating fashion until k valid elements are
retrieved. There is no open-source implementation available. The extension is available
in the ApsaraDB for RDS online database service21.

Regarding the requirements stated in Section 3.5, PASE provides efficient index structures
for ANN search (Requirement B1), is able to handle high-dimensional data (Require-
ment B2), and can cope with different demands on precision and response time (Require-
ment B4). Furthermore, online updates are supported (Requirement B3.2). However, the

19We assume that all values are integers. The handling of floating-point values is discussed in [YLK10].
20https://github.com/facebookresearch/faiss/wiki/Faiss-indexes (Access 03/29/21)
21https://www.alibabacloud.com/help/doc-detail/147837.htm?spm=a2c63.p38356.a1.1.

4fd41470hUUf8S (Access 03/29/21)

62 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.11: Execution of Queries with Filter Conditions with AnalyticDB-V

index structure is inefficient for processing kNN operations with highly selective filter
constraints on the target set since it always performs a kNN search on the whole set of
vectors. Therefore, it does not provide the required adaptivity according to (Require-
ment B3.1). Moreover, the index structures implemented by the extension rather focus
on original kNN operations and do not provide specific optimizations for kNN-Joins.

AnalyticDB-V In a recent publication [WWW+20], the authors propose an analytical
engine for the OLAP database system AnalyticDB [ZSW+19] to support so-called hybrid
queries which involve ANN search operations and filter criteria. The database is pro-
posed to store structured data as well as feature vectors generated for unstructured data
objects, e.g., image descriptors. While this work rather focuses on vector representations
for media data objects, the authors use similar indexing techniques as we proposed to
use for word embeddings before in [Gün18, GTL19a]. In particular, they use an index,
which constructs product quantization sequences for approximated distance calculation.
Additionally, a novel VGPQ index combines quantization-based inverted indexing with
the product quantization sequences. To solve queries with filter criteria, they consider
four execution schemes shown in Figure 4.11. The brute-force method (a) uses an index
only for the filter constraint on the structured. Accordingly, exact distances are calculated
for all vectors complying with the filter criteria to solve the query. In (b), only the product
quantization sequences are used without inverted indexing. This allows the algorithm to
apply the filter criteria before the execution of the ANN search. (c) resembles the schema
we also used for our execution of kNN-Joins in [GTL19a] and also the execution schema
of PASE (see Figure 4.10). Here, the filter criteria are also applied before the execution of
the ANN search. To use the inverted index, the information, which vectors comply with
the filter, is provided as an additional parameter set to the index operation. This allows
the inverted index to only retrieve vectors that comply with the filter. In contrast to the
schema of PASE, an exact distance calculate is only done for valid candidates leading to
a more efficient search. However, in the case of a selective filter, a large set of buckets has
to be retrieved from the inverted index. In (d), the ANN search is executed before the
filtering, which only makes sense for filter criteria with low selectivity. Based on a cost
model applied to the query, one of the four schemas is used.

AnalyticDB-V provides an efficient solution for ANN search for high-dimensional data
(Requirement B1 and B2 in Section 3.5), and it allows to adjust to different demands on
precision and response time (Requirement B4). It also allows online updates (Require-
ment B3.2). However, it only focuses on the execution of kNN search operations and
does not specifically consider kNN-Joins. While it is a good idea to provide different
execution schemes for different filter criteria, the execution schemes do not consider the
execution of multiple queries for the same set of targets. Especially in schema (c), the
filter criteria have to be checked during the retrieval of candidates from the inverted in-
dex for each query vector separately. In this regard, the handling of flexible target sets
(Requirement B3.1) could be improved.

4.4 Related Work on kNN Search in Database Systems 63

Figure 4.12: Index Data Structure

4.5 ANN-JOINS FOR RELATIONAL DATABASE SYSTEMS

We decided to use a quantization-based approach for the implementation of the ANN-
Join algorithm. We made this decision based on our review of common ANN techniques
in Section 4.3 with regard to the requirements for ANN-Joins on word embeddings stated
in Section 3.5. However, it should be noticed that for kNN-Join operations with small
query and target sets, an exact algorithm is applicable using the brute-force method to
calculate all distance values between pairs of query and target vectors. Moreover, for
relatively small query and target sets, the product quantization distance calculation de-
scribed in Section 4.2.4 is applicable. Therefore, an index of product quantization se-
quences needs to be maintained. In all other cases, a combination of inverted indexing
and product quantization distance calculation should be used, which is also used by sev-
eral other ANN search engines [JDS11, WWW+20, GSL+20].

While previous works on ANN search in high-dimensional spaces proposed algorithms
for single ANN queries, we developed an adaptive algorithm for ANN-Joins processing
multiple kNN-queries at a time to satisfy Requirement B1 in Section 3.5. We describe
the index structure for our algorithm in Section 4.5.1 and the search algorithm itself in
Section 4.5.2. To increase the performance for queries with a restricted target set T re-
quested in Requirement B3.1, we identified two opportunities for optimizations outlined
in Section 4.5.4. Those are addressed by the candidate number estimator explained in Sec-
tion 4.5.5 and the flexible product quantization proposed in Section 4.5.6. Additional minor
optimizations are described in Section 4.5.7. Afterward, we discuss the influence of sev-
eral search parameters on precision and run-time and give advice for tuning them in
Section 4.5.8. For supporting fast kNN-Joins on word2bit vectors (see Section 2.2.7), we
provide specific optimizations explained in Section 4.5.9. A comprehensive evaluation of
our ANN-Join approach is done in Section 4.6.

4.5.1 Index Architecture

We propose to use a combination of the inverted multi-index [BL12] described in Sec-
tion 4.2.4 and an index of product quantization sequences for approximated distance cal-
culation. The data structure of our index is shown in Figure 4.12. For each d-dimensional
vector, an index entry is created in the IVPQ Index table. Every entry contains an id to
reference it, equivalent to the id in the vector tables (see Section 4.1.2). For the inverted
multi-index, we divide the vectors into two partitions so that each entry consists of PQ

64 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.13: ANN-Join Algorithm

Algorithm 4.2: KNN-JOIN(R, k, T, α)
Input: query vector set R, results size k, target

vector set T , amplification factor α

Output: k nearest neighbors for each query vector
1 Dpre = PREPROCESSING(R, T , α, k);
2 R′ = R;
3 j = 1;
4 while R′ Ó= ∅ do
5 for ri ∈ R do
6 C∗ = COARSEQUANTIZE(ri);
7 centr(i) = SELECTPAR(C∗, T , α, k, j);
8 end
9 query = CONSTRUCTQUERY(centr , T);

10 Tsub = EXECUTE(query);
11 R′ = {ri | |Tsub(i)|< α · k};
12 j = 2 · j;
13 end
14 for ri ∈ R do
15 for t ∈ Tsub(i) do
16 d = DISTFUNC(ri, t, Dpre);
17 UPDATE(topk [ri], d);
18 end

19 end
20 return topk

Figure 4.14: Pseudo-Code

sequences of length two. To perform an inverted search, the combination of the two coarse
ids refers to a partition to which the vector belongs. Those ids c1 and c2 are represented
by a single id idc = c1 · |Cc|+c2 in the Coarse IDs column. Each of the two coarse ids
corresponds to a d

2 -dimensional centroid22. Those centroids are stored in the Coarse Code-
book table, where the Pos value refers to the partition (either 1 or 2). In addition, a PQ
sequence of length m allows performing approximated distance calculations. The cen-
troids of subvectors for the product quantization with a dimensionality of d

m
are stored

in the PQ Codebook table. Each of those PQ centroids has an id that corresponds to codes
in the product quantization sequences and a position Pos ∈ {1, . . . m} corresponding to
the position of the subvector it is calculated for (u1, . . . , um). The normalized vectors can
be used for the distance calculation of candidate vectors explained in Section 4.5.3.

4.5.2 Search Algorithm

Figure 4.13 shows a flow chart, and Figure 4.14 the pseudo-code of our algorithm. As
input parameters, the algorithm gets a set of query vectors R = r1, . . . rn, a set of target
vectors T , represented as a set of index entry ids, and the desired number k of nearest
neighbors. Furthermore, the configuration parameter α determines the minimum num-
ber of targets per neighbor that has to be considered for the search process. A higher
value of α leads to a higher precision of the result set.

The algorithm consists of four steps:
At first, there is a preprocessing step (Line 1), which is necessary for the product quantiza-

22If d is an odd number, one centroid set should be created with a dimensionality one greater than the
other set.

4.5 ANN-Joins for Relational Database Systems 65

tion-based distance calculation described in Section 4.2.4. As a result, pre-computed dis-
tance values of subvectors are obtained and stored in Dpre. Details about the preprocess-
ing are provided in Section 4.5.6.
After that, data is retrieved from the index in multiple iterations. Therefore, a set of query
vectors to consider R′ is initialized with the set of all queries R, and the iteration count j
is set to 1. In the query construction step (Line 4 to 9), the retrieval of database entries from
the inverted index is prepared. This involves the calculation of the coarse quantization
C∗ for every query vector ri in Line 6 with the algorithm described in [BL12]. It returns
a sequence of the coarse centroid id tuples corresponding to the entries in the Coarse IDs
columns in the IVPQ table (see Figure 4.12) in increasing order according to the distance
between the coarse centroids and the respective partitions of the query vector ri. Then, a
set of partitions to be retrieved from the index for ri is determined using the SELECTPAR
function and added to centr(i). A naïve implementation of SELECTPAR would select the
first j closest partitions for each query from C∗. In Section 4.5.5, we propose a more so-
phisticated approach that uses the candidate number estimator.
After that, a single SQL query is constructed to retrieve the data for all query vectors
from the index using the SPI in the data retrieval step in Line 10. Then, the query vectors
R′ for which not enough index entries (< α · k) have been retrieved are determined. For
those, another query construction and retrieval iteration is done where a higher number
of closest partitions is selected by increasing j.
If the number of targets is sufficient, the distance values between every query vector ri

and its respective index entries Tsub(i) are calculated by a distance function DISTFUNC
(distance calculation step). We elaborate more on the distance function in Section 4.5.3. The
best candidates for the kNN operation are held in a sorted list topk which is updated after
every distance calculation.

4.5.3 Distance Calculation

Besides the adaptive number of partitions and vectors to be considered by the kNN-Join
algorithm influenced by α, the trade-off between precision and run-time also depends
on the distance function, namely: (1) exact calculation, (2) product quantization, and (3)
product quantization with post verification. Product quantization is the fastest one but also
provides the lowest precision. It calculates distance values as described in Section 4.2.4.
The exact calculation is too slow, especially for a large number of target vectors and a
large α. Method (3) strikes a balance between both extremes and therefore represents
the default distance function. In the first place, it calculates the approximated distance
values using product quantization for k · α targets. Second, it refines the k · pvf best
candidates with the exact method to obtain the final top-k. Here, the post verification
factor pvf is the primary factor to influence the precision of the kNN computation. By
adjusting it, the user can control the trade-off between precision and run-time as desired
in Requirement B4 of Section 3.5. In the evaluation in Section 4.6.2, we further investigate
this.

4.5.4 Optimization Capabilities

We identified two promising opportunities for optimizing the search algorithm of Sec-
tion 4.5.2: an estimator for the candidate set size to implement the SELECTPAR function
in Line 7 in the algorithm in Figure 4.14 and flexible product quantization.

66 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.15: Confidence Estimation

Candidate Number Estimator: In Section 4.2.4, we described the advantages of in-
verted indexing for ANN. However, inverted indexing, in general, is poorly suitable
when the target set T is only a subset of all vectors in the index TI , i.e., |T |≪ |TI |. In
those cases, a larger number of partitions need to be considered to retrieve enough can-
didate vectors. However, it is not obvious how many partitions should be examined.
AnalyticDB-V [WWW+20] solves this problem for a single ANN query by continuously
retrieving partitions until enough candidates are identified present in T . However, in
this way, multiple index accesses are necessary. The use of inverted multi-indexing en-
ables fast lookups and therefore allows us to efficiently handle a large number of small
partitions. This increases the accuracy, but it might lead to many index accesses un-
til the desired number of candidates is reached. To solve this problem, we propose in
Section 4.5.5 a method to estimate the number of targets in T observed when a certain
number of partitions is read out from the index. Based on this, we can pick the optimal
number of partitions (Figure 4.14 Line 7) and retrieve all necessary partitions for all query
vectors with one or only a few index accesses.

Flexible Product Quantization: Usually, ANN search approaches are optimized to han-
dle queries with large target sets because those search tasks produce the highest compu-
tational effort. In the case of the ANN-Join problem, tasks with a large query vector
set also require a high computational effort. However, an index structure designed for
queries with large target sets might not effectively reduce the run-time for those tasks.
Especially for the product quantization distance calculation, the run-time required for
the preprocessing step might exceed the execution time of the actual distance calculation
for small target sets. Between the preprocessing effort and the effort for the approximated
distance calculation for each candidate exists a trade-off. This trade-off depends on the
configuration parameters set for the construction of the product quantization index. To
design a solution to deal with target sets of different sizes without constructing multiple
indexes, we introduced a method for flexible product quantization in Section 4.5.6. This
allows us to construct a single product quantization index which enables the search algo-
rithm to switch between a comprehensive preprocessing and a fast preprocessing during
run-time depended on the target set size.

4.5.5 Estimation of the Number of Targets

In Line 7 in Figure 4.14, the SELECTPAR function should select a suitable set of partitions
from the list of nearest partitions C∗. To achieve this goal, we estimate a suitable number
ω ≤ n of nearest partitions, where n = |C∗| constitutes the number of all partitions. The
maximal coarse order ω is selected in a way, that the probability Pest that it is necessary to
run further database requests for the query vector ri to obtain enough candidates (at least
k · α) is lower than a certain value 1 − Pconf . This is done by iteratively incrementing ω
until the confidence value 1− Pest obtained by a probabilistic model is higher than Pconf

4.5 ANN-Joins for Relational Database Systems 67

(see Figure 4.15). The estimation relies on statistics about the distribution of the index.
Those contain the relative sizes of all partitions P1, . . . , Pn compared to the whole index
size (the total number of vectors).

For the estimation, we consider the set of all index entries TI , the target set of the current
query Ti, and a set of selected partitions Tp = P1∪̇ . . . ∪̇Pω. We estimate the probability
1 − Pest that Tsub(i) contains at least β = k · α candidates, which corresponds to the
condition in the algorithm of Figure 4.14 in Line 11. The number of candidates |Tsub(i)|
corresponds to the cardinality of Ti∪Tp. For the estimation, we leverage a hypergeometric
probability distribution (Equation (4.3)) which describes the probability to get s successes
by drawing M elements out of a set of N elements without replacement. In our case, s
is the desired number of targets in Ti ∪ Tp, M is the cardinality of Tp, and N equals |TI |.
The probability 1− Pest of drawing at least β target vectors from the set TI of all vectors
in the index can be calculated with Equation (4.4) by using the cumulative distribution
function.

h(X = s ; |TI |, |Ti|, |Tp|) =
(|Tp|

s

)(|TI |−|Tp|
|Ti|−s

)

(|TI |
|Ti|

) (4.3)

µ = |Ti|·
|Tp|
|TI | σ2 = |Ti|·

|Tp|
|TI | ·

(
1− |Tp|

|TI |
)

· |TI |−|Ti|
|TI |−1

1− Pest = hcdf (β − 1 ; |TI |, |Ti|, |Tp|) = 1−
β−1∑

s=0

(|Tp|
s

)(|TI |−|Tp|
|Ti|−s

)

(|TI |
|Ti|

) (4.4)

However, because of the complexity of the computation of the binomial coefficients, we
have to use an approximation based on the normal distribution stated in Equation (4.5).
To obtain the approximation, we use the mean µ and the variance σ2 from the hypergeo-
metric distribution (see Equation (4.3)). Here, the number x is a specific number of targets
which corresponds to |Ti ∪ Tp|.

N(x;µ, σ2) =
1√
2πσ2

· exp
[

− (x − µ)2

2σ2

]
(4.5)

The approximation of the probability of getting at least β − 1 targets (Equation (4.6)) is
then obtained by its cumulative distribution function. The addition of 0.5 serves as a con-
tinuity error correction. It is added to the formula since the hypergeometric distribution
is a discrete probability distribution. Since β is an integer value, x < β − 1 corresponds
to x < β − 0.5.

hcdf (β − 1;µ, σ2) ≈ 1−
β−1∑

s=0

N(s;µ, σ2) ≈ 1− 1

2
·
(
1 + erf

((β − 1) + 0.5− µ√
2σ

))
(4.6)

The probability hcdf of getting enough targets can be increased by raising the number of
partitions in Tp, which corresponds to the coarse order ω. The algorithm in Figure 4.15
chooses ω so that it is minimal and hcdf is higher than a specific probability Pconf , also
termed the confidence value. From experimental results, we noticed that 0.8 seems to be a
suitable value to achieve a high response time for the algorithm.

The implementation of the SELECTPAR function (Line 7 in Figure 4.14) estimates the max-
imal corase order ω with the proposed algorithm (see Figure 4.15) depended on α, k,
Ti = T , and the previously determined ordered list of partition ids C∗. If not enough

68 Chapter 4 Management of Embedding Representations in Database Systems

(a) Long Code Mode (b) Short Code Mode

Figure 4.16: PQ Sequences of Flexible Product Quantization

candidates could be retrieved in the data retrieval step (3) for specific query vectors, SE-
LECTPAR obtains a larger target set by using a modified α′ = α · j for the estimation. By
increasing α, by multiplication with the iteration count j, a more conservative estimation
is done, and the selectivity in the data retrieval step is reduced. However, the run-time
of the subsequent database queries is presumably much lower than the run-time of the
first query since partitions are only retrieved for a small number of query vectors, where
previous retrieval steps do not deliver enough candidates.

4.5.6 Flexible Product Quantization

The product quantization index provides two parameters: the number of subvectors m
and the number of centroids per quantizer |C|. The optimal setting of both parameters
depends on the desired precision and the response time, as well as on the typical number
of distance calculations α · k, which are performed for every query vector. In general,
higher values of m and |C| correspond to higher precision and higher response times.

If the target set size α · k is large, the computation of the distances (Line 16 in Figure 4.14)
is the most time-consuming step, whereas, for small target sets, the computation time
of the preprocessing step (Line 1) becomes more and more prevalent. Since a low value
for m, i.e., a low number of subvectors, corresponds to a faster distance calculation, the
product quantization speed for large target sets depends mainly on m. However, with a
decreasing number of vectors α ·k, the proportion of the computational effort for the pre-
processing step (Line 1), which is mainly influenced by |C|, increases. By decreasing the
number |C|, the search process gets faster. To be efficient in both situations, we introduce
a flexible product quantization search procedure.

For product quantization search with a small number of distance calculations α · k <
Thflex , an index is created with a large number of subvectors m = 2 · m′, but only a
few centroids in C. Figure 4.16a visualize this case, which we call the Long Codes Mode
since the pq sequences consist of a larger number m of ids. Long codes are specifically
useful for small target sets, where fewer candidates per query need to be retrieved from
the inverted index. For a larger number of distance calculations, the number of dis-
tances to sum up for each distance calculation (see Equation (4.2)) can be reduced by

4.5 ANN-Joins for Relational Database Systems 69

pre-calculating squared distances for pairs of centroids 〈cj, cj+1〉 and pairs of subvectors
〈uj(r), uj+1(r)〉:

d(〈uj(r), uj+1(r)〉, 〈cj, cj+1〉)2 = d(uj(r), qj(uj(y)))
2 + d(uj(r), qj+1(uj+1(y)))

2 (4.7)

where : cj = qj(uj(y)), cj+1 = qj+1(uj+1(y)), j ∈ {2 · i|i ∈ N}

The distance calculation can then be expressed by the following equation:

d̂(r, y)2 =
m′∑

j=1

d(〈u2j−1(r), u2j(r)〉, 〈c2j−1, c2j〉)2 (4.8)

To efficiently calculate this, the product quantization sequences consisting of m numbers
can be transformed into sequences of m′ = m

2 numbers. Therefore, all centroid id pairs
〈id(cj), id(cj+1)〉 can be transformed into single ids:

id(cj, cj+1) = id(cj) · |C|+id(cj+1) (4.9)

This is called the Short Codes Mode displayed in Figure 4.16b. Optimal settings for the
threshold Thflex are discussed in Section 4.6.4.

4.5.7 Further Optimizations

Target List for Product Quantization Search In Figure 4.14 in Line 10, the algorithm
reads out candidates from the inverted index in the form of product quantization se-
quences. A naïve algorithm would directly iterate through the pq sequences and perform
the product quantization distance calculation (target-wise) for all query vectors where
one of the nearest centroids belongs to the partition of the pq sequence. However, to
execute product quantization efficiently, the precomputed distances should stay in the
cache. Since the precomputed distances are specific for the query, it is necessary to col-
lect all product quantization sequences and assign them to the query vectors in the first
place. Afterward, the distance computation can be done query-wise. So, all precomputed
distances specific for a query can stay in the cache. Moreover, the approach of [AKLS15]
could be used to further improve memory locality to speed up the product quantization
search. Thereby, product quantization sequences are compressed to fit into SIMD cache
lines.

Prefetching As displayed in Figure 4.13, we collect the targets in Line 10 of the search
algorithm (Figure 4.14) and assign them to target lists for the query vectors they should
be compared to. This requires a lot of random memory access to the lists of targets. To
speed up this step, we prefetch the target list entries, which have to be updated next
from time to time. We tested the effect of the prefetching with our algorithm on a query
with 10,000 queries, 100,000 targets (300-dimensional vectors), α = 100, and k = 10. For
this query, the construction time of the target list could be reduced by ≈ 35%, from 1.4
seconds to 0.9 seconds. For more details about that, one can take a look at the code23.

23https://github.com/guenthermi/postgres-word2vec/blob/master/freddy_extension/ivpq_
search_in.c (Access 05/04/21)

70 Chapter 4 Management of Embedding Representations in Database Systems

Name Symbol Domain Description

Post Verification Factor pvf N
+, pvf ≤ α number of exact distance calculation per result

Amplification Factor α N
+, α ≥ pvf minimal number of candidates per result

Flexible PQ Threshold Thflex N Threshold for switching between pq distance
calculation with long codes and short codes

Confidence Probability Pconf R, Pconf ∈ [0, 1] minimal confidence of retrieving at least k · α

candidates

Table 4.1: Search Configuration Parameters

Fast Top-K Update In Line 17 of the algorithm in Figure 4.14, the topk gets updated after
every distance calculation. If the distance value is lower than every other index entry, the
new index entry has to be inserted into this array of current nearest neighbors. However,
this can be time-consuming since every other array element with a larger distance has to
be moved. For a large topk, the updates can be accelerated by first adding new candidates
in a buffer. If this buffer gets full or all distance calculations are done, all candidates are
added to the topk in one run. This is particularly useful if post verification (see Section
4.5.3) should be done, and thus a large set of candidates is required in the first place.
Alternatively, one can use a linked list instead of an array for the topk. However, linked
lists are space-consuming which could become a problem for large query sets.

4.5.8 Parameter Tuning

Table 4.1 gives an overview of the parameters to configure the execution of the kNN-Join
operation. By adjusting pvf and α, the user can influence the trade-off between precision
and run-time as required by Requirement B4 in Section 3.5. Section 4.6.2 investigates
the influence on precision and run-time for both parameters. Thflex and Pconf influence
primarily the run-time. Their optimal values for discussed in Section 4.6.3.

4.5.9 kNN-Joins for Word2Bits

Binary Word embeddings trained with the word2bit method [Lam18] described in Sec-
tion 2.2.7 can be used to very efficiently perform kNN search operations. Thereby, the
vectors are stored as bit vectors where 1 refers to 1

3 and 0 to −1
3 . Those vectors are space

efficiently stored in vector tables as described in Section 4.1.2.

Cosine Similarity Calculation: Since binary word2bit vectors have the same magni-
tude of 1

3 in each dimension, all vectors with dimensionality n have the same length of
1
3

√
n. Therefore, the cosine similarity of two vectors u and v with length n is proportional

to the scalar product of the two vectors:

simcos(u, v) =
u · v

|u|·|v| =
(3√

n

)2
(u · v) =

9

n
(u · v) (4.10)

According to Equation (4.10), the similarity between two vectors is proportional to the
count of dimensions with equal binary values substracted by the number of dimensions

4.5 ANN-Joins for Relational Database Systems 71

with unequal binary dimensions. Formally, this relation between the vectors and their
binary representations b(u) and b(v) is defined in Equation (4.11):

simcos(u, v) ∝ u · v =
n∑

i=1

1

9

[
2
(
b(u)i · b(v)i

)
− 1

]
∝

(n∑

i=1

b(u)i ∧ b(v)i
)

︸ ︷︷ ︸
n−dham(b(u),b(v))

−n

2
(4.11)

Consequently, the cosine distance of binary word2bit vectors is linearly dependent on
the Hamming distance between the binary representations. Based on this observation,
we can solve the kNN problem with respect to the Euclidean distance (or the cosine
distance) for those vectors by solving the kNN problem with respect to the Hamming
distance for their binary representations.

kNN(r, T) = argmin
{t1,...,tk}∈T [k]

k∑

i=1

d(r, ti) = argmin
{t1,...,tk}∈T [k]

k∑

i=1

dham(b(r), b(ti)) (4.12)

Implementation: To efficiently perform this calculation, we can utilize bit-wise instruc-
tions, which are available on modern standard CPUs. Specifically, we use a combination
of the XOR and the population count (popcnt) operation, which calculates the Hamming
weight24 of a bit-vector, to efficiently determine the Hamming distance:

dham(b(r), b(ti)) = popcnt

(
XOR

(
b(r), b(ti)

))
(4.13)

Both operations, XOR and popcnt, can be executed by one CPU instruction on sequences
of 64 bit of the two bit-vectors at a time. The sum of this result constitutes the Ham-
ming distance. To implement a kNN-Join operation for word2bit vectors, we created a
UDF which executes kNN queries according to Equation (4.13) in a batch-wise manner.
Our evaluation in Section 4.6.6 shows that this method already achieves sufficient perfor-
mance to process queries on the available pre-trained binary word2bit models. To further
improve the kNN search on very large binary vector sets, recently, several indexing tech-
niques have been proposed [EAT19, OB16] to avoid linear scans.

A limitation of this approach is that the query vectors need to be bit-vectors. This con-
stitutes a problem if vectors need to be generated for text values, which are not present
in the vocabulary of the word2bits model. The averaging method [ALM17] explained
in Section 2.2.5 to index new terms leads to vectors with values not in {1

3 , −1
3}. As a

workaround, one could quantize each value of the resulting vector to one of the two
values 1

3 or −1
3 to obtain valid word2bit vectors.

4.6 EVALUATION

In this section, we first evaluate our adaptive kNN-Join implementation for varying post
verification factors and α values and compare them to the basic batch-wise product quan-
tization approach (see Section 4.6.2). Moreover, we provide a detailed run-time investi-
gation for the sub-routines of the kNN-Join given different query and target set sizes
(Section 4.6.3). To examine the influence of the flexible product quantization, we eval-
uate the impact of using the short and long codes model on the precomputation and
distance calculation in Section 4.6.4. In Section 4.6.5, we evaluate the accuracy of the tar-
get size estimator which is explained in Section 4.5.5. Finally, we evaluate the kNN-Join
algorithm for word2bits vectors in Section 4.6.6.

24The Hamming weight is defined as the number of 1s in a bit-vector.

72 Chapter 4 Management of Embedding Representations in Database Systems

Google News (GN) Twitter (TW)

Size 3, 000, 000 1, 193, 514
Dimensionality 300 100
Coarse Centroids 2 · 32 2 · 20
Product Quantization m = 30, |C|∗= 32 m = 10, |C|∗= 32
Confidence Pconf = 0.8 Pconf = 0.8
Threshold (for flexible product quantization) Thflex = 15, 000 Thflex = 15, 000

∗ number of centroids for each quantizer

Table 4.2: Dataset and Index Characteristics

4.6.1 Experimental Setup

We use two different datasets of word embeddings to evaluate our approach, the popular
Google News word2vec dataset (W2V-GN in Table 3.1) and a dataset of 100-dimensional
word vectors trained on data from Twitter25 with GloVe [PSM14]. We use Python scripts
to create the IVPQ index structures (see Figure 4.12) on these datasets for our adaptive
ANN-Join algorithm with the parameters shown in Table 4.2. In addition, we create for
the baseline approach a pure product quantization index with the same parameters used
to generate the product quantization sequences in the IVPQ index table. We integrated
our implementation of the ANN-Join algorithm into the word embedding database sys-
tem FREDDY as a user-defined function.

As a baseline, we use the exhaustive product quantization search as described in [JDS11],
which can easily be generalized to an ANN-Join operation. Basically, it makes no use of
inverted indexing and thus calculates approximated distance values between any query
vector in R and any target vector in T to determine the kNN results. To make the com-
parison fair, we implemented a batch-wise search algorithm as UDF, like it is done for the
adaptive search algorithm.

We guarantee repeatability by publishing the implementation in the Github repository of
FREDDY26. The machine we run the evaluation on is a Lenovo ThinkPad 480s with 24GB
main memory, an Intel i5-8250U CPU (1.6GHz), and a 512GB SSD. The computation runs
only on a single core in a PostgreSQL instance on a Ubuntu 18.04 Linux System.

4.6.2 Influence of Index Parameters on Precision and Execution Time

In Figure 4.17, the execution time and precision curves for different α values and increas-
ing pvf values are shown. All the kNN-Joins are executed on 5,000 query and 100,000
target vectors with k = 5. The post verification factors used for the computation are
10, 20, . . . , 100. The precision is determined by calculating the amount of nearest neigh-
bor results of a query vector which concur with the exact results relative to the number
of k. Since doing the exact calculation for all query vectors of a kNN-Join is very time-
consuming, we draw bootstrap samples of the query vectors of size 100 to derive an
estimation of the actual precision value by determining the precision of the results of the
samples. The measurements for every configuration are done 20 times and the median
run-time values and the mean precision values are determined. The value of α · k is
always lower than Thflex . Thus, the Long Codes Mode is used.

25https://nlp.stanford.edu/projects/glove/ (Access: 06/10/21)
26ANN-Join implementation: https://github.com/guenthermi/postgres-word2vec/blob/master/

freddy_extension/ivpq_search_in.c (Access: 06/10/21)

4.6 Evaluation 73

(a) Google News (b) Twitter

Figure 4.17: Evaluation of Execution Time and Precision

As one can see, for most of the chosen values of pvf and α, the adaptive search with PQ
distance calculation has the shortest execution time and also outperforms the product
quantization baseline method in terms of run-time by achieving similar precision values.
Join operations with exact distance calculation have significantly longer execution times
than the other methods, however achieving the highest precision value. Nevertheless,
post verification might be the better choice in most cases since it achieves high precision
values while being much faster than the exact computation. For increasing values of pvf ,
the execution time, but also the precision generally increases. Regarding the α values,
one can also observe that higher values lead to higher precision values at the expense of
execution time.

The post verification method is significantly slower than the product quantization dis-
tance calculation method, even though pvf has a low value. This is the case since the use
of post verification requires calculating at least k exact distance values for each query vec-
tor. Furthermore, it needs to retrieve the raw vector data for every target vector, which
has to be considered for distance calculation. Moreover, it is necessary to hold these vec-
tors in memory until the distance computation starts. During the distance computation,
the vectors of the currently best candidates have to be stored together with the product
quantization sequences in a separate TopK list to apply the post verification step later.
For high values of pvf , on the one hand, the post verification step gets time-consuming,
while on the other hand, more updates of the TopK lists are required during the distance
calculation step.

4.6.3 Performance of Subroutines

We evaluate the performance of the search algorithm by measuring the execution time
of certain subroutines of the algorithm denoted by numbers 1 to 4 in Figure 4.13. This is
done for different cardinalities of query sets R and target sets T . The query and target

74 Chapter 4 Management of Embedding Representations in Database Systems

Figure 4.18: Time Measurement for increasing sizes of query set R and target set T

vectors are sampled from the whole set of word embeddings of the Google News dataset.
The results of our measurements are shown in Figure 4.18 for different values of |R| and
|T |. For the measurements, we set α = 100 and pvf = 10. We use a fixed target set size
of 10, 000 while increasing |R| and a query set size of 10, 000 while increasing |T |. All
measurements are done five times and the average value is determined. The distance
computation time increases with the query set size as well as with the number of target
vectors. The query construction time only increases with an increasing query set size. If
the query set size is fixed, the query construction time slightly decreases with increasing
target set size because a higher number of partitions has to be determined for every query
vector in case the number of targets is very low. The main effort during the query con-
struction is the calculation of the coarse quantization for every query vector. Since this
process does not change with the number of target vectors, the execution time is rather
constant. The data retrieval time effort is nearly constant for an increasing number of
query vectors, while its execution time increases if the target vector set grows. The pre-
processing has to be done per query vector. Therefore only the query set size influences
its execution time.

4.6.4 Flexible Product Quantization

Flexible product quantization (Section 4.5.6) can adjust the product quantization distance
calculation to smaller or larger sets of vectors. The product quantization sequences in our
index structure for the Google News dataset consist of codes ci ∈ {0, . . . , 31} of length
30, which can be combined into shorter codes c′

i ∈ {0, . . . , 1023} with length 15. The
overall execution time of a kNN-Join with product quantization distance calculation is

4.6 Evaluation 75

(a) Execution Times of Both Methods (b) Precomputation and Distance Computation

Figure 4.19: Evaluation of Short and Long Codes Calculation

(a) Estimated Size Values (b) Divergence (Absolute) (c) Confidence

Figure 4.20: Estimation of Target Set Size

shown for both methods in Figure 4.19a. Figure 4.19b shows the execution times for the
precomputation and the distance calculation step. We use query sets of size 5, 000. The
target set size |T | is shown on the x-axis. The value α is set to |T |

2·k . The measurements
are done 10 times with randomly sampled query and target vectors, and average values
are determined. For small target sizes with |T |≤ 20, 000, the computation via long codes
is faster. For larger target sets, the overhead of the distance calculation for long codes
becomes prevalent such that the calculation with short codes is faster.

4.6.5 Accuracy of the Target Size Estimation

The number of targets determined in the retrieval step of the algorithm before the dis-
tance calculation can be estimated. For this purpose, we leverage an approximation of
the hypergeometric distribution as described in Section 4.5.5. The estimated number of
targets derived from the index is µ, as defined in Equation (4.3). In Figure 4.20a, a scatter

76 Chapter 4 Management of Embedding Representations in Database Systems

(a) Increasing Query Size (|T |= 10, 000) (b) Increasing Target Size (|R|= 10, 000)

Figure 4.21: Performance of Word2Bits kNN-Join Algorithms

plot of the estimated and actually derived number of targets is shown. For these mea-
surements, kNN-Joins with a single randomly sampled query vector are executed, and
the number of targets obtained in the first retrieval step is determined inside the user-
defined function. This is done for all α ∈ {1, . . . , 100}, k = 10, and target sets of size
|T |= 1, 000. For each α value, 10 queries are executed. The divergence of the estimation
is higher if the desired number of targets per query vector gets higher. This can be no-
ticed in the 4th-grade polynomial regression curve of the sample points in Figure 4.20b.
However, if the number of desired targets is near |T |, it is apparently decreasing.

To prevent the system from executing lots of database queries, one can adjust the con-
fidence value Pconf . It represents how likely it is that only one database request is suf-
ficient to derive the desired number of targets from the index. This is also evaluated
by single query kNN-Joins with α = 10 and the same search parameters as in the last
experiment. The number of queries where the condition is satisfied (only one request
is required) in relation to Pconf is shown in Figure 4.20c. For each confidence value
Pconf ∈ {0.05 · i|i = 1, . . . , 20}, 1, 000 queries are executed. As desired, the amount of
queries where the condition is fulfilled rises to 100% if the confidence value increases up
to 1. However, the actual confidence is higher than Pconf since the confidence can only be
increased step-wise by incrementing ω.

4.6.6 Performance of Word2Bits kNN-Join

We evaluate the performance of our implementation of kNN-Joins for word2bit vectors
via the Hamming distance calculation. Therefore, we compare the performance of this
calculation with a kNN-Join implementation using the exhaustive product quantization
search. Further, we investigated the run-time of the subroutines of this implementation.

Dataset: For our evaluation, we used a dataset27 of 400, 000 800-dimensional word2bit
vectors trained on Wikipedia. We already presented the data characteristics of this em-
bedding model in Section 3.2.

27https://drive.google.com/open?id=107guTTy93J-y7UCO2ZA2spxRIFpoqhjh (Access: 03/31/21)

4.6 Evaluation 77

(a) Increasing Query Size (|T |= 10, 000) (b) Increasing Target Size (|R|= 10, 000)

Figure 4.22: Performance of Word2Bits kNN-Join Subroutines

Performance of Bit-wise Calculation: We evaluate the performance of our word2bits
specific kNN-Join algorithm with respect to increasing sizes of the target set |T | and the
query set |R|. We choose the base-wise product quantization kNN-Join implementation
as a baseline. This algorithm also serves as a baseline in the experiments described in
Section 4.6.2. The product quantization index created for this purpose consists of m = 40
quantization functions with |C|= 32 centroids. For each parameter setting, we execute
the kNN-Join algorithms 10 times and determine the mean run-time.

The results of this evaluation are shown in Figure 4.21. As one can see, the exact kNN-
Join algorithm based on the Hamming distance calculation outperforms the approxi-
mated algorithm based on the product quantization index in all situations investigated
here. Moreover, Figure 4.21a shows the absolute performance difference increases with
increasing query size. A similar effect is observed in Figure 4.21b for increasing target
sizes. However, in this scenario, the difference in the run-time measurements increases
only slightly. Accordingly, the relative difference between the run-time measurements is
much higher for small target sizes.

Performance of Subroutines: The word2bits kNN-Join algorithm retrieves all target
vectors as binary representations from the vector table in the database. Afterward, the
distance calculation is performed to obtain the k nearest neighbors. We evaluate the run-
time of the two subroutines while increasing the size of the query and the target set.
Therefore, we execute 10 kNN-Join queries for each data point depicted in Figure 4.22.
Figure 4.22a shows the mean run-time values for query sizes |R| between 100 and 1, 000,
where the target set contains 10, 000 vectors. In contrast, Figure 4.22b visualizes the mean
run-time values for target sizes |T | between 100 and 1, 000, where the query set encom-
passes 10, 000 vectors. As one can see, for large query sets R, the distance calculation
is the most comprehensive subroutine. However, if the query set is smaller, the vector
retrieval step also requires a significant amount of the total execution time. Other sub-
routines do not demand a significant amount of run-time in all the experiments demon-
strated here.

78 Chapter 4 Management of Embedding Representations in Database Systems

4.7 SUMMARY

In this chapter, we presented our integration of word embedding operations into re-
lational database systems. This lead to the development of the PostgreSQL extension
FREDDY (Section 4.1). Thereby, various novel query types are enabled (see Section 3.4).
We implemented them as UDFs (see Section 4.1.3) to allows the user to combine them
with the functionality of SQL. This enables the user, for instance, to apply standard SQL
operations on records obtained by word embedding operations based on the semantic
similarity or relatedness of their attributes to certain text values. Moreover, the novel
operations are independent of a specific embedding model. Thus, they can utilize differ-
ent word embedding datasets which have been imported into the database. This enables
the user to switch between different notions of similarity. In addition, a Web application
(see Section 4.1.4) serves as a user-friendly interface for executing word embedding SQL
queries.

Since most of the word embedding operations can be executed via kNN-Joins (see Sec-
tion 4.1.3), we proposed in Section 4.5 an ANN-Join algorithm to increase the efficiency of
the operations. To achieve this, we surveyed related work on nearest neighbor search in
Section 4.2. Based on our analysis of the applicability of those techniques for ANN-Joins
of word vectors (see Section 4.3), we decided to build the design of our algorithm upon
state-of-the-art vector quantization techniques for approximated nearest neighbor search.
Our algorithm implements two novel optimizations: candidate number estimation (see
Section 4.5.5) and flexible product quantization (see Section 4.5.6). In contrast to related
work (see Section 4.4), our algorithm can efficiently execute kNN-Join tasks with a large
query set, as well as queries with a large target set. Therefore it is well-suited for the
different kinds of kNN-Join tasks performed during the execution of word embedding
operations. The results of our evaluation in Section 4.6 show the effectiveness of those
optimizations and the efficiency of the search algorithm in general. In addition, we pro-
pose an algorithm specifically for kNN-Joins on word2bits embeddings in Section 4.5.9
which also shows its effectiveness in the evaluation in Section 4.6.6.

4.7 Summary 79

80 Chapter 4 Management of Embedding Representations in Database Systems

5
CONTEXT ADAPTATION FOR WORD

EMBEDDING OPTIMIZATION

In this chapter, we survey techniques for optimizing embedding representations of text
values by utilizing additional structured data. Based on this, we introduce a novel con-
text adaptation algorithm called RETRO to optimize embeddings of text values in database
systems by exploiting relations between text values in relational database systems, as
stated in Objective C in Section 3.3. To cope with the demands of a context adaptation
process in relational database systems, we design this algorithm to satisfy the require-
ments stated in Section 3.6. Our research on the relational retrofitting framework RETRO

has led to several publications [GTL19b, GTL20, GTNL20, GOTL20] on which this chap-
ter is based.

In the first Section 5.1, we discuss related work. In Section 5.2, we describe our relational
retrofitting approach RETRO. Afterward, we introduce the evaluation platform RETRO-
LIVE in Section 5.3. It follows a comprehensive evaluation of the proposed techniques
in Section 5.4. Finally, we summarize our contribution and findings presented in this
chapter in Section 5.5.

5.1 RELATED WORK

Several methods have been proposed to combine the abilities of word embedding mod-
els with the relational knowledge of a structured data source. Those methods can be
broadly categorized in joint embedding methods described in the following Section 5.1.1
and retrofitting approaches introduced in Section 5.1.2. Moreover, we discuss the applica-
bility of table embedding models for this purpose if the structured data source constitutes
a set of tables in Section 5.1.3. While joined embedding approaches design embedding
models to be trained directly on texts and relational data in a joint manner, retrofitting
approaches constitute post-processing methods, which adjust an already pre-trained em-
bedding model by exploiting relational data.

81

(a) Joint Embedding Approach (b) RC-Net Algorithm

Figure 5.1: Joint Embedding Methods

5.1.1 Graph and Text Joint Embedding Methods

Joint embedding models consider relational information in the form of property graphs
and word co-occurrences obtained from text documents for training word embedding
models. Therefore, those models design an objective function that takes both aspects into
account. A wide range of different joint embedding models has been proposed [WZFC14,
XBB+14, YD14, ZZW+15, BAMK16]. Figure 5.1a shows the typical architecture of those
joint embedding algorithms. First, the models need to (1) identify links of tokens in the
text documents to nodes in the graph representing the relational knowledge. Those links
are used later in the embedding training to model the connection between the tokens
and the nodes. A simple way of linking is to check for syntactic equivalence. However,
this could lead to wrong and missing links since words could be ambiguous. Specifically,
named entities frequently have multiple names. Therefore, several alternative linking ap-
proaches have been developed. The authors of [WZFC14] propose to use links of named
entities provided by the data sources1, or employing an entity linking system to identify
links between the knowledge graph and the text documents. Alternatively, [ZZW+15]
proposes to link the words in additional entity descriptions to nodes in the knowledge
graph representing the entities. After the linking process, the training objective is de-
fined (2), which usually consists of a textual loss referring to properties of the text and
a structural loss referring to the connections in the knowledge graph. Multiple mod-
els [XBB+14, WZFC14, YD14, ZZW+15] use loss functions similar to the functions used
in the word2vec Skip-Gram or CBOW model as textual loss function and add a structural

1The authors used a text corpus of Wikipedia articles and exploit the fact that the labels of hyperlinks
often refer to entities in Freebase which correspond to the nodes in the knowledge graph.

82 Chapter 5 Context Adaptation for Word Embedding Optimization

loss to treat embeddings nearby if they refer to objects related in the knowledge graph.
While some approaches [XBB+14, YD14] only manage one set of embeddings with links
assigned in step (1), other embedding models [WZFC14, ZZW+15] initialize two separate
sets of embeddings for tokens and nodes in the graph. For the links between both sets
of embeddings, an additional loss function models the alignment in those approaches.
Various structural loss functions have been proposed to model different relation types.
In [YD14, BAMK16], the authors define structural loss functions, which consider entities
either as related or not related. The approaches in [WZFC14, ZZW+15] support differ-
ent relation types. Therefore, a knowledge graph is modeled as a set of triples, and a
structural loss is used, which is similar to the loss of the graph embedding technique
TransE [BUGD+13]. Moreover, in [XBB+14] relational knowledge in the form of cate-
gorical and relational connections is supported. After the loss function is designed, the
training algorithm (3) is applied. Usually, a variant of the stochastic gradient descent
algorithm is used to train a neural network similar to the training of learned embed-
ding models (see Section 2.2.2). To generate training data, different methods are possible.
Some joint learning approaches like RC-Net [XBB+14] generate training data by process-
ing the text documents. Thereby, the structural loss is calculated for nodes liked to tokens
which are traversed. In this way, the structural loss acts as a regularization function for
the neural network model. Alternatively, approaches like pTransE [WZFC14] simulta-
neously generate training samples from the knowledge graph to optimize the structural
loss and word sequences from the text to optimize the textual loss.

Recently, several approaches [PNL+19, ZHL+19] have been proposed to integrate rela-
tional knowledge into the training process of contextualized word embedding models.
Those models are designed for training on a text corpus with entity mentions linked to
entities in a knowledge base. Therefore, the proposed methods train knowledge graph
embeddings for the entities, e.g., in [ZHL+19], the authors use TransE for this purpose.
Those static embeddings are used as additional inputs for a BERT model, which is ex-
tended by layers to integrate them with the embeddings of aligned tokens. For training
the model, in [ZHL+19], a new pre-training objective was designed. Here, the alignment
of entities to their corresponding tokens is masked and should be predicted by the model.

In the following, we describe the joint learning method RC-Net [XBB+14] in detail since
it is, in contrast to the other models, expressive enough to model the different types of
relations occurring in a relational database system (see Requirement C2 in Section 3.6).

RC-Net The model proposed by [XBB+14] considers data in the form of a text corpus
and a knowledge graph with relational and categorical connections. For RC-Net, no spe-
cific method is proposed to link entities from the knowledge base to tokens in the text
corpus. In the evaluation in [XBB+14], the authors derive the linking from syntactic
equivalences between the labels in the knowledge base and the words in the training
corpus. The objective function constitutes a joint loss with three parts: a Skip-Gram loss,
a relational loss, and a categorical loss. Figure 5.1b visualizes the objective function.

Relational loss: The relational loss is inspired by TransE [BUGD+13], which models re-
lations by translation operations of embedding representations. Thereby, a relation is
defined by a triple (h, r, t) ∈ S of two tokens h, t ∈ V and a relation r ∈ R which is
obtained from the knowledge resource. The tokens h and t correspond to the word em-
beddings vh and vt, and the relation r is assigned to a relation embedding vr. If the
relation (h, r, t) holds, the distance d(vh + vr, vt) should be small. During the training of
the model, d(vh+vr, vt) should be minimized if (h, r, t) is a valid relation and maximized
if (h, r, t) is invalid. Therefore, the authors define the relational loss function Er:

Er =
∑

(h,r,t)
∈S

∑

(h′,r,t′)
∈S′

(h,r,t)

[γ + d(vh + vr, vt)− d(vh′ + vr, vt′)]+ (5.1)

5.1 Related Work 83

Here, S′
(h,r,t) denotes a set of corrupted triples:

S′
(h,r,t) = {{(h′, r, t)|h′ ∈ V } ∪ {(h, r, t′)|t′ ∈ V }} \ S (5.2)

In Equation (5.1), γ > 0 is a hyperparameter, d(x, y) denotes the Euclidean distance, and
[x]+ = max(x, 0) the positive part of x. A naïve way to optimize Er is to maximize the
norm of the embedding representations. To prevent this, a soft-norm constraint is ap-
plied on the relational embeddings that forces each dimension ri of an embedding vr to
be within the range (−1, 1). To efficiently calculate the loss, only a sample of triples is
drawn from S′

Categorical loss: The categorical loss function treats the embeddings of text values which
are part of the same group to be similar. To do this, the authors propose to define for each
pair of tokens (wi, wj) a similarity score s(wi, wj) that is non-zero if both tokens belong
to at least one common category. The score s(wi, wj) is higher if the two tokens belong to
small categories with only a few instances and lower if the terms only belong to a broad
category. The scores should be defined in a way that all similarity scores of a token wi

sum up 1:

∀wi ∈ V :
∑

wj∈V

s(wi, wj) = 1 (5.3)

The categorical loss Ec itself is defined by the following equation:
∑

wi∈V

∑

wj∈V

s(wi, wj)d(vi, vj) (5.4)

Joint Loss: The joint loss function combines Er, Ec, and the Skip-Gram loss function L,
which should be maximized into a single loss function:

J = αEr + βEc − L (5.5)

Thereby, the hyperparameters α and β constitute weights for the relational and the cate-
gorical loss.

Training Algorithm: The training of the embedding model resembles the training of the
Skip-Gram model. Thus, the training is done by processing word context pairs by a
neural network (see Section 2.2.2). The additional loss functions Er and Ec serve as regu-
larization functions. For optimizing the ANN model, a stochastic gradient descent algo-
rithm is used.

Applicability for Context Adaptation In Section 3.6, we defined several requirements
for a method for a context adaptation approach to optimize the embedding represen-
tations of text values in database systems. Requirement C1 stated that the adaptation
should be holistic in the sense that it can capture the knowledge from structural and tex-
tual knowledge resources. Joint learning models are effective approaches to construct
embedding models with these capabilities.

Several different kinds of relations between text values can be extracted from a relational
database system. Requirement C2 expects from an adaptation algorithm enough expres-
siveness to model those relations. Most of the relations of text values in DBMSs can
effectively be modeled by categorical and relational connections. So principally, RC-Net
provides the desired expressiveness. However, RC-Net only allows generating one em-
bedding for multiple syntactical equivalent text values. In a database, the same text value

84 Chapter 5 Context Adaptation for Word Embedding Optimization

might occur in several tables and carry different semantic properties. Moreover, a text
value in a database system is not equivalent to a token in a text. RC-Net can not handle
such cases.

Another important feature for the desired optimization algorithm is updatability (Re-
quirement C3). Joint models require to process text during training. After the training
process, they can not react to changes in the structural knowledge resource and update
the embedding representations accordingly. Thus online updates (Requirement C3) are
not possible. According to Requirement C4, the context adaptation should be integrated
into a database system. This is not the case for any of the joint learning algorithms.

5.1.2 Retrofitting Approaches

Retrofitting approaches expect an already existing set of embedding representations which
they adjust by incorporating additional structured knowledge in a post-processing man-
ner.

Original Retrofitting The original retrofitting model [FDJ+15] proposed by Faruqui et
al. takes word embeddings in a matrix W 0 and a graph G = (Q, EF) representing a
lexicon as input [FDJ+15]. The retrofitting problem is formulated as a dual objective
optimization function: The embeddings of the matrix W are adapted by placing similar
terms connected in the graph G closely together while at the same time the neighborhood
of the terms from the original matrix W 0 should be preserved. Here, Q = {q1, . . . , qn} is
a set of nodes where each node qi corresponds to a word vector vi ∈ W 0 and EF ⊂
{(i, j)|i, j ∈ {1, . . . , n}} is a set of edges. The graph is undirected, thus (i, j) ∈ EF ⇔
(j, i) ∈ EF . The authors specified the retrofitting problem as a minimization problem of
the following loss function:

ΨFaruqui(W) =
n∑

i=1

[
αi||vi − v′

i||2+
∑

j:(i,j)∈EF

βi||vi − vj ||2
]

(5.6)

The constants αi and βi are hyperparameters. ΨFaruqui(W) is convex for positive values of
αi and βi. Thus, the optimization problem can be solved by an algorithm, which iterates
over every node in Q and updates the respective vector in W according to Equation (5.7).
The update function for any vector vi is obtained from the root of the partial derivative
∂ΨFaruqui(W)

∂vi
.

vi =

αiv
′

i +
∑

j:(i,j)∈EF

(βi + βj)vj

αi +
∑

j:(i,j)∈EF

(βi + βj)
(5.7)

However, Faruqui et al. decided to use this simplified update function:

vi =

αiv
′

i +
∑

j:(i,j)∈EF

βivj

αi +
∑

j:(i,j)∈EF

βi
(5.8)

While there is no justification in the paper, the update function in Equation (5.8) gets
along with some advantages. The update function in Equation (5.7) can shift embed-
dings strongly to prevent an adaptation of its neighboring nodes. This leads to a higher

5.1 Related Work 85

loss in the summand of this single vector but lowers the value of the global loss function.
This might not be advantageous since the result of a classification task might depend on
a few embeddings and not on the whole embedding corpus. Moreover, Equation (5.8)
is slightly faster to compute. In contrast to Equation (5.7), using the update function of
Equation (5.8), the algorithm does not converge to a global minimum. Further, using this
equation, the results of the retrofitting depend on the order in which the vectors are up-
dated as already observed by [SC16]. The calculation using updates as in Equation (5.8)
does not solve the optimization problem in Equation (5.6), however, can be considered as
a formulation of a recursively defined series. For every vi ∈ W , the series converges to a
specific vector which is the desired output of the retrofitting process.

Retrofitting Adaptations Several papers proposing different adaptations of the model
proposed by Faruqui et al. [FDJ+15] for specific tasks and data sources: In [KHC15],
the authors propose a model to specialize a word embedding model to either capture
similarity or relatedness. [MST+16] investigates retrofitting methods that disambiguate
between similar and dissimilar relations. Functional relations of property graphs can
be retrofitted as proposed by [LMP18]. While Faruqui et al. update the vectors one by
one, we used a matrix formulation that updates whole vectors at once. A similar matrix
update for retrofitting was first proposed by [SC16].

Applicability for Context Adaptation Like the joint learning methods retrofitting ap-
proaches also capture the knowledge from structural and textual knowledge resources
and thus fulfill Requirement C1 of Section 3.6. In general, an adaptation via retrofitting
is faster and requires lower resource consumption than the training of a new embed-
ding model as done by the joint embedding approaches. According to the experiments
in [FDJ+15], retrofitting can improve word embeddings according to intrinsic tasks bet-
ter than the joined learning approach proposed by [YD14], which also favors a post-
processing approach.

As far as we know, there is no retrofitting approach that is expressive enough to capture
all the different relation types which exist between text values in database systems. Thus,
Requirement C2 is not satisfied.

Requirement C3 demands an online updatable version of the retrofitting algorithm. Sim-
ple retrofitting approaches like the original approach are very fast and allow retrofitting
of hundreds of thousands of vectors in only a few seconds on ordinary consumer hard-
ware (see Section 5.4.5). However, the run-time of the algorithm increases linearly with
the size of the dataset, and in the case of frequent updates, a few seconds are still unac-
ceptable. Unfortunately, existing approaches do not allow online updates.

The integration of retrofitting algorithms into relational database systems has not been a
subject of research. Therefore, Requirement C4 is not satisfied.

5.1.3 Table Embedding Models

Besides using models to incorporate relational information in the form of a graph into
embedding representations, it is also possible to directly train embedding models on tab-
ular data. Multiple static [GRE+17, ZZB19] and contextualized word embedding mod-
els [DSL+20, YNYR20] have been proposed for this purpose. In Chapter 7, we give a
detailed overview of those methods and their applications. Several of these techniques
like TABERT [YNYR20] allow joint training on a text corpus and a corpus of tables. In

86 Chapter 5 Context Adaptation for Word Embedding Optimization

Figure 5.2: Relational Retrofitting: base embeddings W 0 and relation T , retrofitted em-
bedding W and augmented relation T+

this way, those techniques combine knowledge from (semi-) structured and unstructured
textual information. However, those techniques aim at training an embedding model by
using large corpora of tables, e.g., in the evaluation in [YNYR20], the authors used 26
million tables for training TABERT. In contrast, our goal is an adaptation of embedding
representations of text values to the local domain-specific database, which usually con-
tains a comparable small set of tables. Thus, it is not clear how those techniques perform
on such comparable small sets of tables. Moreover, most of the limitations mentioned for
the joint learning methods in Section 5.1.1 also apply to table embedding models. Never-
theless, one can execute post-processing techniques like RETRO on embedding represen-
tations generated by table embedding models for the text values in the database. In this
way it is potentially possible to further improve embedding representations generated
by table embedding models.

5.2 RELATIONAL RETROFITTING APPROACH

Based on our review of context adaptation methods above in Section 5.1, we decided
to use a retrofitting method to optimize embedding representations of text values in
database systems. However, since previously developed retrofitting approaches do not
satisfy all the requirements for an application on relational database systems stated in
Section 3.6, we design a novel retrofitting framework called RETRO2 [GTL20] for this pur-
pose. We build upon the idea of the original retrofitting approach proposed by [FDJ+15]
and our proposed optimization model can be viewed as a generalization of this approach.

Figure 5.2a depicts the application of RETRO on a database system. Therefore, it uti-
lizes the information given by the disposition of the text values in the database schema,
e.g., which values appear in the same column or are related, to improve the embedding
representation. RETRO is able to automatically derive high-quality numerical represen-
tations of textual data residing in databases without any manual effort. Specifically, the
framework pursues the following three opportunities for optimizing embedding repre-
sentations of text values in the database:
1) It combines word embedding knowledge with relational information by moving vec-
tors in the direction of text value vectors that are related or appear in the same column.
In the example, the embedding for “Valerian” will be close to other movie titles and close
to its director “Luc Besson”. In this way, it is more similar to movies of French directors,

2https://github.com/guenthermi/postgres-retrofit (Access: 08/26/21)

5.2 Relational Retrofitting Approach 87

Figure 5.3: Overview of the RETRO Framework

which might be beneficial for information retrieval and ML tasks.
2) Performing those adaptations, RETRO generates unique representations for every dis-
tinct text value in the database. Thereby, ML models are qualified to distinguish the
national soccer team “Brazil” from the sci-fi movie with the same name.
3) It integrates the semantic of related text values into the text value embeddings. In
this way, ML models can recover information about properties of related text values not
prevalent in the embedding itself. For instance, from a movie description column in the
database, it could be derived that “Valerian” is based on a comic which is then also rep-
resented in the movie title embedding. This information would not be available if word
embedding and relational information are considered separately.

Overview of the RETRO Framework Figure 5.3 gives an overview of the RETRO frame-
work. It starts with analyzing the schema of the relational database system. Specifically, it
identifies columns with text values and relations between those columns. Two columns
are considered related if they are either part of the same table or foreign key relations
connect the tables of the columns. Then, for each text column, its values and their re-
lations to text values in related columns are extracted. This process is described in Sec-
tion 5.2.1. Afterward, an optimization problem described in Section 5.2.2 is solved by the
relational retrofitting algorithm (see Section 5.2.3), and the resulting vectors are stored in
the database. To generate embedding representations of text values added later to the
database, we propose an algorithm for online updates in Section 5.2.4.

Applications Retrofitted embeddings of text values in database systems can be utilized
in various applications. Supervised machine learning models constitute one field of ap-
plications. Since it is relatively easy to evaluate such ML models with respect to the
embedding model used to encode the input, we use them to determine the effectiveness
of our retrofitting approach. To allow the ML models to take the relations of text values
in the database into account, we provide them either directly with a graph of text value
relations or in the form of additional node embeddings trained on the graph as shown
in Figure 5.2b. On the one hand, we implemented simple feed-forward neural networks
for various tasks. On the other hand, we developed a graph-neural network model for
missing value imputation, which operates on the embedding representations of text val-
ues in the database. Section 5.4.3 provides more details about the implementation of the
models.

88 Chapter 5 Context Adaptation for Word Embedding Optimization

5.2.1 Data Preparation

RETRO learns a matrix of vector representations W = (v1, . . . vn) with vi ∈ R
D for every

text value T = (t1, . . . tn) in a cell of a database. Multiple syntactically equivalent text
values in a column obtain one common embedding, however, syntactically equivalent
text values occurring in different columns are assigned to separate embedding represen-
tations. The matrix W is initialized with embedding representations obtained by using
a pre-trained embedding model. In addition, relations are extracted and compiled into a
graph G.

Embedding Vector Initialization

The optimal method for the initialization of the embedding vectors depends on the em-
bedding models. We apply RETRO to embeddings generated with static word embedding
models like Word2Vec and GloVe and embeddings of a BERT-based model, which is fine-
tuned to produce static embedding representations.

Static Word Embedding Models: To find initial embedding vectors for every text value,
we tokenize the text values based on the vocabulary of the word embedding model
and average those vectors to obtain representations for complete database text values.
This procedure [ALM17], described in Section 2.2.5, is convenient to represent short
phrases [AMCG15, ZWX15]. Since large word embedding datasets like the Google News
word2vec dataset (W2V-GN in Table 3.1) contain mainly multi-words and phrases, it is
not trivial to find the optimal tokenization. To take into account multi-word tokens, we
propose the following tokenization approach: First, a lookup trie (prefix tree) is created
for the dictionary of the given word embedding dataset, where every node represents
a token. By considering the lookup trie the longest possible sequences of nodes are ex-
tracted, e.g., “bank account” instead of “bank”, resulting in a bag of tokens for each text
value. Text values consisting only of unknown tokens initially get assigned a null vec-
tor. However, since RETRO is also considering the relations to other text values, these
values get assigned a meaningful representation in the learning phase. Finally, a ma-
trix W 0 = (v′

1, . . . v′

n) stores all embedding representations, forming the basis for the
retrofitting process.

Contextualized Word Embedding Models: One can also use a BERT-based model such
as SentenceBert [RG19] to directly obtain a set of embeddings for text values. Sentence-
Bert produces static embeddings for phrases to solve NLP tasks very efficiently by calcu-
lating cosine similarity values. We use this method to get initial embeddings for W 0.

Extracting Data from the Database

To capture the semantic relations between text values, we extract columnar and relational
connections from the relational schema. Those connections are used by RETRO to create
a representation capturing the context of the text value in the database and thus help to
preserve their semantic more accurately compared to a plain word embedding represen-
tation.

5.2 Relational Retrofitting Approach 89

Columnar Connections: Text values appearing in the same column usually form hy-
ponyms of a common hypernym (similar to subclass-superclass relations). Thus, they
share a lot of common properties, which typically lead to similarity. We capture this
information and assign each text value ti to its column C(i).

Relational Connections: Relations exhibit from the co-occurrence of text values in the
same row and from foreign key relations. Those relations are important to characterize
the semantic of text value in the database. We define a set of relation types R for each
specific pair of related text value columns. Those columns are related because they are
either part of the same table or there exists a foreign key relationship between their tables.
For every relation type r ∈ R, there is a set Er containing the tuples of related text value
ids. Relation types are directed.

Graph Generation: Columnar and relational connections can also be compiled in a
graph G = (V, E). The node-set V = VC ∪ VT consists of nodes VT for every distinct
text value in a database column and blank nodes for every column VC . The edge set
E =

⋃
r∈R Er ∪ EC consists of a set of edges Er for every relational type and edges EC

connecting text values of one column to a common column node.

5.2.2 Relational Retrofitting Problem

RETRO considers relational and columnar connections (see Section 5.2.1) to retrofit an
initial embedding. Accordingly, we define a loss function Ψ adapting embeddings to be
similar to their original word embedding representation W 0, the embeddings appearing
in the same column (columnar loss ΨC), and related embeddings (relational loss ΨR).

Ψ(W) =
n∑

i=1

[
αi||vi − v′

i||2+βiΨC(vi) + ΨR(vi, W)
]

(5.9)

The columnar loss is defined by ΨC and treats every embedding vi to be similar to the
constant centroid ci of the original embeddings of text values in the same column C(i).

ΨC(vi) = ||vi − ci||2 ci =

∑
j∈C(i)

v′

j

|C(i)| (5.10)

The relational loss ΨR treats embeddings vi and vj to be similar if there exists a relation
between them and dissimilar otherwise. Er is the set of tuples where a relation r exists.
Ẽr is the set of all tuples (i, j) Ó∈ Er where i and j are part of relation r. Thus, each of both
indices has to occur at least in one tuple of Er.

ΨR(vi, W) =
∑

r∈R

[∑

j:(i,j)
∈Er

γr
i ||vi − vj ||2−

∑

k:(i,k)

∈Ẽr

δr
i ||vi − vk||2

]
(5.11)

α, β, γ, and δ are hyperparameters. Ψ should be a convex function. We proved in Ap-
pendix A that convexity is assured if the hyperparameters fulfill the following inequali-
ties:

∀r ∈ R, i ∈ {1, . . . , n} (αi ≥ 0, βi ≥ 0, γr
i ≥ 0) (5.12)

∀vi ∈ W (4αi −
∑

r∈R

∑

j:(i,j)∈Ẽr

δr
i ≥ 0)

90 Chapter 5 Context Adaptation for Word Embedding Optimization

In practice, however, other parameter configurations that do not comply might work as
well. Given the property of convexity, an iterative algorithm can be used to minimize Ψ.
This algorithm iteratively executes for all vi ∈ V the following equation, which is derived
from the root of the partial derivative ∂Ψ(W)

∂vi
.

vi =

αiv
′

i + βici +
∑

r∈R

[∑
j:(i,j)
∈Er

(γr
i + γ r̄

j)vj − ∑
k:(i,k)

∈Ẽr

(δr
i + δr̄

k)vk

]

αi + βi +
∑

r∈R

[∑
j:(i,j)
∈Er

(γr
i + γ r̄

j)− ∑
k:(i,k)

∈Ẽr

(δr
i + δr̄

k)
] (5.13)

5.2.3 Relational Retrofitting Algorithm

The retrofitting algorithm can be expressed as a set of matrix operations that can be solved
efficiently. We update all vectors at once using a recursive matrix equation in a similar
way as this was done in the retrofitting variant of [SC16]. Ψ(W) can be minimized by
iteratively calculating W k starting with the base vectors W 0:

WR =
∑

r∈R

[
((γr

ij) + (γ
r̄
ij)

T)− ((δr
ij) + (δ

r̄
ij)

T)
]
W k

W ′ = αW 0 + βc+WR

D = diag
(
α+ β +

∑

r∈R

[∑

j:(i,j)
∈Er

(γr
i + γ r̄

j)−
∑

k:(i,k)

∈Ẽr

(δr
i + δr̄

k)
])

W k+1 = D−1W ′

c = (c1, . . . , cn) α = (α1, . . . , αn) β = (β1, . . . , βn) (5.14)

The matrices (γr
ij) and (δr

ij) are derived from γi and δi as defined in Section 5.2.3. Usually,
a low number of iterations is sufficient. For our experiments, we set it to a fixed number
of 10.

Parameter Configuration To configure the hyperparameters, we define four global pa-
rameters α, β, γ, and δ, from which we derive the setting of all other parameters. All αi

values are equivalent to the global value α. The other parameters are set to values that
depend on the dataset. Every embedding vi has one columnar connection and |Ri| rela-
tional connections. Accordingly, we set the βi values by taking into account the number
of relationship types |Ri|+1 (including the columnar relationship) for weighting the in-
fluence of the columnar information. Respectively, the values γi are weighted by |Ri|+1
and the relation-group-specific outdegree values odr(i):

βi =
β

|Ri|+1
γr

ij =

{
γr

i = γ/(odr(i) · (|Ri|+1)) (i, j) ∈ Er

0 otherwise

odr(i) = |{j : (i, j) ∈ Er}| (5.15)

5.2 Relational Retrofitting Approach 91

(a) Influence of α = 1, 2, 3 (b) Influence of β = 1, 2, 3

(c) Influence of γ = 1, 2, 3 (d) Influence of δ = 0, 1, 2

Figure 5.4: Examples for Different Hyperparameter Settings

To fulfill condition (5.12), we set the δ values dependent on the maximal number of rela-
tion types mr and the maximal number of relations mc of any node in r.

δr
ij =

δr
i =

δ
mc(r)mr(r) (i, j) ∈ Ẽr

0 otherwise

mr(r) =max({|Ri|+1|(i, j) ∈ Er ∪ Er̄})
mc(r) =max(|{i : (i, j) ∈ Er}|, |{j : (i, j) ∈ Er}|) (5.16)

Example. The influence of the hyperparameters is visualized in Figure 5.4: We retrofit
2-dimensional embeddings for a small example dataset containing three movies and the
country where those movies have been produced. The base embedding model is obtained
by projecting the popular Google News word2vec dataset (W2V-GN in Table 3.1) with
PCA on two dimensions. There are two columns (movie and country) and one relation
group (see Section 5.2.1). “Amélie” was produced in “France”, the other movies in the
“USA”. We set the hyperparameters α, β, γ, and δ to different values and performed the
relational retrofitting.

As shown in Figure 5.4a, the learned embeddings stay closer to their original embeddings
when the α values increase. Higher values of β make it easier to cluster the columns from
each other, e.g., reduce the distances between the movie vectors of “Inception” (red),
“Godfather” (green), and “Amélie” (blue). The γ value controls the influence of rela-
tional connections. This brings the representations of text values that share a relation
closer together. The δ factor causes vectors with different relations to separate and thus
prevent concentrated hubs of vectors with different semantic. One can see in Figure 5.4d
how δ = 0 causes all vectors to concentrate around the origin of the coordinate system.
If δ is set to a high value like δ = α = 2, the algorithm places the vectors far from the

92 Chapter 5 Context Adaptation for Word Embedding Optimization

Figure 5.5: Online Retrofitting Process

origin of the coordinate system. However, related text values still get assigned to similar
representations. In the example, the retrofitting algorithm is still converging for this con-
figuration. However, for higher values of δ, some vectors will drift away more and more
with every iteration.

Performance Optimization The maximal number of relations in Er is defined by |Cs|·|Ct|,
where |Cs| and |Ct| refer to the cardinalities of the columns involved in r. However, in
practice, most relations are much smaller, hence |Ẽr|>> |Er|. To optimize the extensive
calculation of ((δr

ij) + (δ
r̄
ij)

T)W k in (5.14), we utilize the following condition:

(((δr
ij) + (δ

r̄
ij)

T)W k)i,∗ = 2
(
δ̂rW k − δ̂r

i

∑

j:(i,j)∈Er

vj

)

δ̂r = (δ̂r
1, . . . , δ̂r

n) δ̂r
i =

1
mc(r)·mr(r) ∃k : (i, k) ∈ Er

0 otherwise
(5.17)

By calculating the vector δ̂rW k once and subtracting the centroid of the small number
of related embeddings of every embedding vi, we can speed up the calculation for most
cases.

5.2.4 Online-RETRO

When inserts and updates are performed frequently on a database, re-running RETRO
would be too costly. Therefore, we developed an online update method to perform rela-
tional retrofitting only on a given set of text values, which can be hundred times faster
than a complete re-run. Its implementation is integrated as a user-defined function into
our PostgreSQL extension FREDDY.

An overview of the online retrofitting process is given in Figure 5.5. Before running
the online retrofitting algorithm, it is necessary to execute the relational retrofitting al-
gorithm (1) at least one time. Then, (2) initializes the database for the online retrofitting
algorithm. Thereby, tables are created in the database, which contain information about

5.2 Relational Retrofitting Approach 93

the connections between the text values, which have been extracted by the RETRO frame-
work before. Moreover, aggregated values which are necessary for the online retrofitting
algorithm are pre-computed. This involves mc(r) and mr(r) from Equation (5.16), a cen-
troid for each column in the database to efficiently determine c (see Equation (5.14) and
Equation (5.10)), and aggregates of word embeddings to perform a fast calculation of
Equation (5.17).

To execute an online update, the database client needs to provide a delta file (3) with
information about the changes to the database. This file contains a list of text values
for which new embeddings should be calculated and their relations to other text values.
For each of those text values and relations, an additional property should specify if it is
added to the database since the last (online) retrofitting step. This information is neces-
sary to update the information about text value connections in the first step of the online
retrofitting algorithm (4). After that, the text values specified in the delta file are tok-
enized, and their base embeddings are calculated by using the word embedding model
stored in the database. Then, those vectors are adjusted to the structured data in the
database by the core online retrofitting algorithm. This algorithm works similarly to the
retrofitting algorithm in RETRO. It consecutively adjusts the embedding vectors of the
text values specified in the delta file, however, does not update all the other embedding
vectors. Therefore, it uses the information about text value connections and the aggre-
gated values from the database. Afterward, the aggregates of columns of text values in
the delta file and the table with the retrofitted embedding representations are updated.

5.3 EVALUATION PLATFORM: RETRO LIVE

For studying the impact of the relational retrofitting process, we developed a Web-based
evaluation tool RETROLIVE. The application has been presented at EDBT 2020, and a
description of the evaluation platform has been published in [GTNL20].

5.3.1 Functionality

The tool guides the user through the whole retrofitting process. We integrated sev-
eral database schemas and target word embedding datasets the users can choose from
into the platform. RETROLIVE allows exploring their data statistics and characteristics.
Moreover, it enables the user to set and fine-tune the various hyperparameters of the
retrofitting learning problem. The impact of the hyperparameter values, the input data
characteristic, and target embeddings can be studied in detail using either visualizations
like 2-dimensional projections or by using word similarity and analogy benchmarks. To
demonstrate the usefulness of the embeddings generated by the relational retrofitting ap-
proach, RETROLIVE comes with the implementation of several pre-defined classification
and regression tasks for extrinsic evaluation. Furthermore, the users can define their own
machine learning tasks. Finally, the platform also provides embedding representations
generated with approaches such as the node embedding technique DeepWalk [PARS14]
and the original retrofitting method [FDJ+15] from Faruqui et al. The user can use those
as baseline embedding representations and apply them in the machine learning tasks via
the RETROLIVE tool.

94 Chapter 5 Context Adaptation for Word Embedding Optimization

Figure 5.6: User Interface of RETROLIVE

5.3.2 Interface

Users access RETROLIVE through an interactive Web interface shown in Figure 5.6, where
they can configure and explore the whole relational retrofitting process. There are six
main views:

Config and Retrofit Those views allow to select the database (three are pre-defined)
and the target word embedding model and configure the retrofitting process by setting
the hyperparameters (A). For example, the users can specify lists of specific relations
and columns for retrofitting to ignore in the config view. This is especially important
if the retrofitting is executed on the same data used for the ML task, e.g., predicting
the genres of movies expressed in the database by foreign key relations. Further, the
relational retrofitting process can be triggered and monitored (B).

Results In this view, the user can inspect the extracted relational information (see Sec-
tion 5.2.1) from the input schema in the form of graph (C). Additionally, the embedding
statistics for each text column are presented (D).

Analysis In the analysis view, the users can inspect the characteristic of the retrofitted
embeddings and compare them with the base embedding representations (plain). An in-
teractive histogram (E) shows the distribution of the cosine similarity between the plain
word vectors and the retrofitted vectors, i.e., to which degree certain vectors have been
changed during the retrofitting process. The user can click on the individual bins to see
additional information, e.g., in how many relations certain terms have been involved, in
how many different columns a term appears, and a complete list of embeddings in the
selected bin. For instance, one can observe that the average number of relations of a term

5.3 Evaluation Platform: Retro Live 95

decreases with increasing similarity to the base embedding. Moreover, a 2-dimensional
projection (PCA) shows the user-selected plain and retrofitted vectors (F). In the context
of the TMDB example database3, it can be seen that the vectors for movies and directors
are arbitrarily distributed in the word embedding (red). However, after applying rela-
tional retrofitting, the movie and director vectors (blue) are clustered.

ML Tasks To show the benefits of relation retrofitting, the users can run different ML
tasks (Section 5.4.4). The users select the embedding model (retrofitted, node, plain,
etc.) they want to use for the given task. Training and testing data is retrieved from
the database by using pre-defined SQL queries which can be also modified by the user.
Diagrams visualize the results (G).

Evaluation We include 14 intrinsic evaluation tasks into RETROLIVE to test word simi-
larity, e.g., SimLex999 [HRK15] MEN [BBBT12], or analogies, e.g., Google Analogy [MCCD13]
(H). Here, the users can investigate whether original retrofitting and relational retrofitting
affect the intrinsic task performance of the embedding representations.

5.4 EVALUATION

For the evaluation, we apply RETRO and the original retrofitting method on two pop-
ular datasets (see Section 5.4.1). For the base of the retrofitting, we employ different
pre-trained word embedding models. The details of the training are discussed in Sec-
tion 5.4.2. To evaluate the effect of the relational retrofitting on the performance of the
embeddings in machine learning tasks, we implement several machine learning models
described in Section 5.4.3. Afterward, we apply those models to various tasks on the
two datasets, analyze the results, and compare them to the results of baseline approaches
in Section 5.4.4. In addition, we evaluate the run-time of the relational retrofitting algo-
rithm in Section 5.4.5 and the online retrofitting algorithm in Section 5.4.6. An intrinsic
evaluation of the effect of the retrofitting algorithm is later presented in Section 6.4.2.

5.4.1 Datasets

We choose two popular real-world datasets: The Movie Database (TMDB)4 and the Google
Play Store Apps (GPSA) dataset5. The TMDB dataset consists of three CSV files for
movies, credits, and user ratings where n:m relations, e.g., movies-genre, are encoded by
JSON-like objects in the cells of the values. GPSA contains two tables for apps and their
reviews. Both datasets are imported into a PostgreSQL database system. For TMDB, a
database with 15 tables and 493, 751 unique text values in total is constructed. The GPSA
database contains only 7 tables with 27, 571 text values. In the case of GPSA, we removed
duplicates and apps without reviews.

3see Section 5.4.1 for more information on this database
4https://www.kaggle.com/rounakbanik/the-movies-dataset (Access: 08/26/21)
5https://www.kaggle.com/lava18/google-play-store-apps/ (Access: 08/26/21)

96 Chapter 5 Context Adaptation for Word Embedding Optimization

5.4.2 Training of Embeddings

We built RETRO on top of PostgreSQL. Given an initial configuration including the con-
nection information for a database and the hyperparameter configuration, RETRO fully
automatically learns the retrofitted embeddings and adds them to the given database. We
trained relational embeddings for both databases, TMDB and GPSA, with a fixed num-
ber of 10 optimization iterations. For the binary classification and an imputation task,
we used a grid search to identify good hyperparameter configurations for the relational
retrofitting (RR) described in detail in Section 5.4.4. For the other ML tasks, we chose a
configuration of α = 1, β = 0, γ = 3, δ = 3. We also trained word embeddings with the
basic retrofitting approach of Faruqui et al., denoted as MF. Here, we use 20 iterations
and the standard parameter configuration of αi = 1 and the reciprocal of the outdegree
of i for βi. We used two initial embeddings: The first one is obtained from the popular
300-dimensional Google News embeddings6 (W2V) and the tokenization process from
Section 5.2.1. The second one (SBert) is generated by the SentenceBert model bert-large-
nli-mean-tokens7 which is fine-tuned for the natural language inference (NLI) task. Node
embeddings (DW) are trained with DeepWalk with its standard parameters and a repre-
sentation size of 300.

5.4.3 Machine Learning Models

The embeddings provided by RETRO can be used as input for ML models to solve specific
tasks. Here, we distinguish two cases: models that only use the RETRO embeddings and
models that additionally incorporate the graph representation of the relations either by
incorporating node embeddings or by using graph convolutional neural network layers
that can directly operate on the graph whose nodes we annotate with the embeddings
generated by RETRO. While RETRO already uses relational information implicitly, we
argue that ML models can still profit from their explicit encoding.

Node Embeddings

Node embedding techniques, which we described in Section 2.2.6, are frequently used
to create vector representations for nodes in graphs to apply ML models to them. Most
of these embedding techniques try to capture certain properties of the neighborhood of
nodes in spatial relations of the node vectors. In this work, we use the node embed-
ding technique DeepWalk [PARS14] that has already been applied successfully for data
integration tasks [IU18]. Given the graph representation of the database text values (see
Section 5.2.1), node embedding techniques can be directly applied without any additional
effort. For our work, we use the embeddings generated by DeepWalk in two ways: first,
as a strong baseline in our evaluation (see Section 5.4.4). Second, we follow the notion of
[GAS16] that showed that combining word embeddings with node embeddings by sim-
ple vector combination methods improves their performance in intrinsic word similarity
tasks. Specifically, the authors showed that a combination of word embeddings and node
embeddings captures the human notion of similarity more accurately than word embed-
dings themselves. During testing several combination methods, we decided to use the
concatenations of both embeddings since those show good improvements across differ-
ent ML tasks.

6https://code.google.com/archive/p/word2vec/ (Access: 08/26/21), W2V-GN in Table 3.1 in Section 3.2
7https://github.com/UKPLab/sentence-transformers (Access: 08/26/21)

5.4 Evaluation 97

Artificial Neural Networks

Artificial neural networks provide general-purpose solutions for ML models operating
on textual and relational data. In this work, we provide models applicable to common
classification tasks used on database systems which are: binary classification, multi-class
classification, e.g., missing value imputation, and link prediction. For the binary classifica-
tion, a classifier has to determine if a text value is assigned to a label or not. In case of
a category imputation problem, the classifier can select a label from a set of labels. The
link prediction problem is typically defined on graphs where the goal is to predict links
that are missing or likely to be created in the future like a probable friendship relation in
a social network [LNK07]. In our case, we consider the link prediction task for a specific
relation. We train our embeddings without considering the respective relations. After-
ward, we take a portion of word pairs that are linked by the relation and a portion of
words where no relation exists and train a neural network to predict whether the relation
is present. This is a similar procedure as done in [LMP18].

In order to learn from word embedding inputs, rather simple (deep) feed-forward net-
works are commonly used [GFEC16] as well as complex models like graph neural net-
works [PLH+18]. In this work, we implement simple networks which typically need less
run-time and complex models with generally higher classification performance.

Feed-forward Networks: For the multi-class classification, we create an ANN with two
hidden layers. The first layer has 600 and the second 300 neurons. We use sigmoid acti-
vation functions for the fully connected inner layers. For binary classification, one 300-
dimensional hidden layer is sufficient. In the case of the binary classification, a sigmoid,
and in the case of category imputation, a softmax function is used for the output layer.
We use binary cross-entropy as a loss function for binary classification and categorical
cross-entropy for category imputation.

For link prediction, we use an ANN, which gets an edge encoded by a source and a target
embedding. Both embedding layers are processed by an inner layer, then get subtracted,
and the result is processed by another layer, which is then connected to the output. Sig-
moid is used as an activation function and binary cross-entropy for the loss. The binary
output value classifies the edge as present or not.

To prevent overfitting, we added dropouts [SHK+14] and L2 regularization for the binary
classification.

Graph Convolutional Neural Networks: One class of graph neural network approaches
(see Section 2.2.6) is the class of Graph Convolutional Neural Networks (GCNs) [KW17,
HYL17]. Those are widely applied for node labeling but have also been used for text
classification [PLH+18, YML19]. There are several variants of GCN approaches. The de-
sign of our GCN model is inspired by GraphSage [HYL17]. Here, the input of a GCN
is a graph G = (V, E) with features X ∈ R

n×m annotated to the nodes V , where n is
the number of nodes and m denotes the dimensionality of the input feature vectors. In
the training process, the network learns to predict labels for nodes in a graph, given an
incomplete set of labels as the training set. In this way, we can use GCNs to label text
values in a database with the graph definition from Section 5.2.1. In detail, the GCN is
defined by a list of hidden layers Hm′′×m′

i and a message-passing function µ : V → R
m′

which accumulates for a node the features assigned to it and the features of its neigh-
boring nodes Nv ⊆ V to a single vector. To calculate the output X l+1 of each layer Hl,

98 Chapter 5 Context Adaptation for Word Embedding Optimization

µ accumulates the accumulated feature vectors, a linear projection with the matrix Hl is
applied, and the ReLU activation function processes the result:

X l+1
v = ReLU (Hl · µ(v)) (5.18)

The output X l+1
v forms the node’s features applied to the following layer. The last layer

represents the labeling of the nodes. Our message-passing function averages the features
of neighboring nodes and concatenates the result with the features of the node itself:

µ(v;Nv, X l) =
(1

|N |
∑

i∈Nv

X l
i

)
, X l

v (5.19)

This allows the network to separate between features of the node itself and the accumu-
lated features from neighboring nodes in the first layer. In our experiments, we use only
one 300-dimensional hidden layer and a layer to predict the labels. GCNs scale linearly
with the number of nodes in the graph. In our use case, this corresponds to the number
of text values in the database. Therefore, we suggest reducing the training run-time for
large databases by using neighbor sampling [HYL17]. This is done by selecting only up
to a certain number s of neighbors N ′

v ⊆ Nv to calculate the aggregated value µ(v;N ′
v, X l)

of a node v for each layer.

Training: All networks are trained with the NAdam optimizer [Doz16]. Following com-
mon practices to prevent irregular updates of the weights, we normalize the embedding
vectors before they are processed by the network. During training, we monitor the loss
on a validation set, stop training if it does not improve for 50 epochs, and select the model
with the lowest validation loss. The accuracy is determined on a separate test set.

5.4.4 Evaluation of ML Models

Competitors

To demonstrate the applicability of RETRO and its learned representations for different
tasks, we use the following baseline approaches:

DataWig: Missing value imputation on CSV files with text values can be accomplished
with DataWig [BSS+18]. This recently published category imputer is based on n-gram
representations of text values that are utilized by LSTM neural networks to assign single
text values or rows of text values in a CSV file to categories. As an input, the imputer gets
a CSV file, a list of columns used for the imputation, a column, which contains the values
which should be assigned to categories, and the column which usually holds the output
category. The imputation is then trained on a sample set of rows. We compare DataWig
against imputation using our embeddings in Section 5.4.4.

Mode Imputation: A very simple imputation method is to replace a null value with
the mode value (most frequent value) in the column. According to [BSS+18], most data-
wrangling frameworks implement only such simple imputation methods for category
imputation, especially if there is only non-numerical data given. Mode is a very popular
and often used imputation method and, thus, it also serves as a good baseline.

5.4 Evaluation 99

Figure 5.7: Binary Classification of US-American Directors with Different Embedding
Types

DeepWalk: Node embeddings generated by DeepWalk (see Section 5.4.3) are often used
for link prediction tasks and thus can be used to predict missing foreign key relations in
database systems. The prediction is usually performed using feed-forward neural net-
works similar to the use of text value embeddings proposed in this paper. The details
are described in Section 5.4.4. DeepWalk not only serves as a baseline but can also be
combined with other text embeddings by concatenation [GAS16].

Binary Classification

We use the feed-forward network architecture described above to classify directors of
the TMDB dataset as either US-American or non-US-American. We extract the citizen-
ship from Wikidata [VK14] by using the SPARQL query service. Thereby, we derive
33, 647 directors holding in total 37, 203 citizenships. We omit 387 directors holding the
US-American and another citizenship according to Wikidata because this could be con-
sidered ambiguous. From the remaining set of directors, the TMDB database contains
9, 054 persons, which are considered for the classification.

For all experiments, we sample 10 times embeddings of 3, 000 US-American directors
and 3, 000 non-US-American. One half of a sample set is used to train the ANN. The
other half is used as a test set. The retrofitting approaches are performed on the Google
News (W2V) and SBert embeddings. For the Google News (W2V), we executed the clas-
sification on different hyperparameter settings to investigate their influence on this task.
Figure B.1a in Appendix B visualize the average accuracy values for all tested parameters.
One can see that high values for γ and δ deliver good results. This suggests that relational
information is more important for a good classification in this task. Configurations with
a high value of δ but low values for α and γ lead to non-converging configurations and
worse classification results. The classification is also performed on embeddings derived
by concatenation of DeepWalk embeddings and the other embedding types. In combi-
nation with node embeddings (Figure B.1b), the optimal configuration has higher values
for α and β, since the relational connections are already represented by the node em-
beddings. The β parameter has a low influence on this task since all inputs are part of
the same column. Figure 5.7 shows the distributions of the recognition accuracy values
achieved by the classifier for RR (α = 1, β = 0, γ = 3, δ = 3) and the other embedding

100 Chapter 5 Context Adaptation for Word Embedding Optimization

Figure 5.8: Classification of Birth Places of US-American Directors with Increasing Sam-
ple Size

types. Relational retrofitting (RR) achieves the best accuracy values on both word em-
bedding datasets. W2V-based embeddings deliver slightly better results, however, this
does not hold for all ML tasks, as shown by the results below. The node embeddings
(DW) are outperformed by all other types, besides the plain word embeddings (PV) and
the baseline retrofitting approach (MF), which achieves similar performance. However,
combining node embeddings with all other approaches increases the achieved accuracies
above 90% in all cases except the plain word vectors. Additionally, we ran the experi-
ments for varying numbers of training samples for W2V. We trained the neural network
with 200 to 1, 000 samples and validate the accuracy with 1, 000 test samples. Since the
deviation is much higher for such small sample sets, we trained the ANNs 20 times. The
result is shown in Figure 5.8. The influence of the training sample size is at the lowest
for the plain word embeddings. If the sample sizes are small, DeepWalk is getting out-
performed by the plain word embeddings. Hence, DeepWalk needs a larger amount of
training data to achieve comparable results.

Missing Value Imputation

As a basic data integration task, we perform missing value imputation for categories on
both datasets using the feed-forward and GCN architectures described for multi-class
prediction in Section 5.4.3.

Imputation of Movie Languages: In the TMDB dataset, “original language” is an at-
tribute of movies with exactly one value for each movie. Subsequently, the prediction
of those attribute values can be considered as a typical value imputation problem. To
perform the classification, we ignore the “original language” column in the movie table

5.4 Evaluation 101

Figure 5.9: Comparison of Imputation Methods for the Original Language Attribute

Figure 5.10: Comparison of Imputation Methods for App Categories

while retrofitting the embeddings. Afterward, we train the networks using 5, 000 training
samples and 5, 000 samples to evaluate the accuracy. Sampling, training, and evaluation
are repeated 10 times for each embedding and network type. In addition to the embed-
ding approaches, we apply mode imputation and DataWig with an equivalent sampling
strategy. DataWig is provided with textual movie information in the form of the origi-
nal CSV file. It contains all information imported into the database, except directors and
actors, which reside in other tables. Figure 5.9 compares the accuracy values for all meth-
ods and embedding types. Since most of the movies are in the English language, the
mode imputation (MODE) performs quite well and achieves an accuracy of 71.09% in
the average case. For this task, SBert-based embeddings perform better in comparison to
W2V-based ones. Using the feed-forward architecture DeepWalk achieves good accuracy
values, which are clearly better than the DataWig results and only slightly lower than the
results of the relational retrofitted embeddings (α = 1, β = 0, γ = 3, δ = 3). This sug-
gests that relational information is important for this task, which may be the case since
the original language can often be derived from the set of languages spoken in the movie
stored in the database. Word embedding information can only contribute a little to bet-
ter classification. In combination with DeepWalk, all embedding types improve on the
task. We also tested the GCN network, however, only in combination with the neighbor
sampling because the size of the database leads to high resource consumption otherwise.
GCNs achieve the highest average accuracy in this setting. Because of the high preva-
lence of relational features, no clear difference is recognizable between the types of text
embeddings used in the network.

102 Chapter 5 Context Adaptation for Word Embedding Optimization

Figure 5.11: Link Prediction for Genres

Imputation of App Categories: In the GPSA dataset, we classify the category attribute
for each app. For the training of the embeddings, we omit the category information and
the genre relation since genre and category are often equivalent. The apps in the dataset
are grouped into 33 categories. Again, we compared our imputation to DataWig and the
mode imputation. Since DataWig can only be executed on singular tables, we omit the re-
view data. We sampled 10 times two disjunct sets of 400 apps as training and testing sets.
The resulting accuracy values of the imputation are shown in Figure 5.10. Here, the mode
imputation achieves only very poor accuracy values since the apps are distributed more
evenly over the category values. DataWig achieves clearly better performance, which is
similar to the performance of the plain word embeddings of the app name. This is prob-
ably the case because DataWig might also rely strongly on the app name since all other
attributes are quite unrelated to the category information. The relational retrofitted em-
beddings (α = 1, β = 0, γ = 3, δ = 3) can utilize the reviews and achieve an up to 13%
more accurate result only with the feed-forward architecture. DeepWalk only reaches a
classification accuracy, which is comparable to mode imputation, since the classification
can not be done based on relational information. Accordingly, a concatenation with other
embeddings does not make sense for this task. When using the GCN architecture on the
embeddings, the accuracy improves on all settings. Also in this setting, the relational
retrofitted embeddings achieve the best results. As one would expect, GCNs without
neighbor sampling achieve better results compared to GCNs with sampling.

Link Prediction

To evaluate our model for the link prediction, we decided to predict the movie-genre
relations in TMDB. There are 20 genres in total. Usually, a movie is assigned to multi-
ple genres in the dataset. This prediction is difficult because the metadata present in the
dataset itself provides only limited information about the genres. Thus, the classification
should take into account knowledge encoded during the pre-training of the word em-
bedding models. Another difficulty constitutes the fact that it is quite subjective in which
genre a movie fits, and it can be assumed that the genre information is incomplete since
some movies are not assigned to a genre. Furthermore, the genre information is rather di-
verse. For example, one genre is “TV Movie”, which refers to the media it is published in,
while the majority of the genres refer to content aspects like this is the case for “Horror”
or “Comedy”. For training our neural network, we select sets of 5, 000 movie-genre re-
lations and 5, 000 arbitrary connections between movies and genres which are not in the
dataset and serve as negative examples. Then, we split those pairs into 9, 000 samples for

5.4 Evaluation 103

TMDB MF DW RR

Run-time 7.39s 548.72s 418.13s

Deviation ±0.07s ±0.83s ±1.15s

GPSA MF DW RR

Run-time 12.23s 1130.63s 178.78s

Deviation ±0.30s ±13.85s ±0.55s

Table 5.1: Run-time of Embedding Methods

training and 1, 000 samples for testing. We repeated this 10 times. Figure 5.11 presents
the results of the accuracy evaluation. The DeepWalk (DW) embeddings usually used for
link prediction fail in this setting. This is probably the case because the node vector of
the genres are potentially meaningless since all of those nodes have only a single edge to
the same blank node. Retrofitted vectors clearly outperform the plain word embeddings
where relational retrofitting (RR) is superior to standard retrofitting (MF). In combination
with node embeddings, some text-based approaches achieve better results.

5.4.5 Run-time Measurements

We measure the training time of the two retrofitting methods and DeepWalk by mea-
suring their execution when executed in a single thread for both datasets. The measure-
ments are repeated 10 times. Due to the very high training times of DeepWalk, we used a
subset of the TMDB database with 12,593 unique text values. The results of the measure-
ments are shown in Table 5.1. As one can see, the retrofitting algorithms (MF and RR)
are faster than the DeepWalk (DW) node embedding method. The fastest method is the
basic retrofitting approach (MF) which is expected since relations are modeled in a much
simpler fashion. This leads to lower accuracy in ML tasks, as shown in the evaluation re-
sults above. Comparing the run-times between GPSA and TMDB, we see an increase for
all methods except relational retrofitting (RR). This behavior is explained by the larger
amount of relational groups in TMDB compared to GPSA, leading to a larger amount
of comprehensive matrix multiplications, which is the most time-consuming routine for
relational retrofitting.

5.4.6 Online Retrofitting

To evaluate the online retrofitting algorithm, we designed two user scenarios for the data
in the GPSA dataset. For both scenarios, we measure the run-time and the accuracy of
the algorithm.

Setup of Experiments: To evaluate the online retrofitting, we apply a sampling func-
tion to randomly remove text values, run the retrofitting on the reduced dataset, and
online update the missing values. However, completely random sampling would lead to
unrealistic setups. Therefore, we designed two specific sampling functions for the GPSA
dataset modeling two more realistic scenarios: The first sampling function samples 10
apps for which we only removed one randomly selected review each. In contrast, the
second sampling function also samples 10 apps but removes the apps together with all
associated reviews. This usually involves multiple hundred text values. In the evalua-
tion tasks below, the experiments are executed 10with different sets of text values gener-
ated by the respective sampling function. As base word embedding model, the W2V-GN
model is used.

104 Chapter 5 Context Adaptation for Word Embedding Optimization

Process Only Reviews Apps and Reviews

Online-RETRO Initialization 5.448s (± 0.087) 5.482s (± 0.083)

Parse Delta File 0.001s (± 0.000) 0.022s (± 0.004)
Add Connections 0.001s (± 0.001) 0.016s (± 0.003)
Retrieve Old Vectors 0.041s (± 0.013) 0.039s (± 0.012)
Create Base Vectors 11.221s (± 0.142) 11.165s (± 0.141)
(incl. Tokenization)
Online Retrofitting 0.019s (± 0.007) 0.423s (± 0.066)
Update Aggregates 0.001s (± 0.000) 0.005s (± 0.000)
Insert Vectors 0.003s (± 0.000) 0.071s (± 0.012)

Table 5.2: Run-time of Online Retrofitting

(a) Only Reviews
α = 1 β = 0 γ = 3 δ = 3

(b) Apps and Reviews
α = 1 β = 0 γ = 3 δ = 3

(c) Only Reviews
α = 1 β = 1 γ = 1 δ = 1

(d) Apps and Reviews
α = 1 β = 1 γ = 1 δ = 1

Figure 5.12: Online Retrofitting Evaluation

Run-time Evaluation: To analyze the run-time properties of the online retrofitting, we
divide it into seven sub-procedures (see Figure 5.5) and measure their execution time
in the two scenarios. In addition, we measure the execution time of the initialization
of Online-RETRO. Table 5.2 shows the mean run-time values and the standard devi-
ation. One can see that the overall execution time is much lower than the execution
time of a complete re-run of the retrofitting (see Table 5.1). The most time-consuming
sub-procedure is the creation of the base vectors. It requires even more execution time
than the initialization. This is the case since for the tokenization of the text values, the
algorithm builds a trie of all tokens in the vocabulary of the word embedding model
annotated with the embedding representations (see Section 5.2.1). This process could
potentially be optimized by storing and indexing the trie in the database to determine
the tokenization efficiently and only retrieving the required vectors. Besides this pro-
cess, the retrieval of the old vector dataset and the Online-Retro sub-procedure are the
most time-consuming steps in the calculation. Here one can notice that the Online-Retro
process requires much more time in the second scenario. The run-time of the remaining
sub-procedures is relatively short.

Deviation from Re-running RETRO: The vectors resulting from the online retrofitting
algorithm can slightly differ from the results of a re-run. This is specifically the case since
the vectors generated by the retrofitting before the execution of the online retrofitting,
which are not updated during Online-Retro, are learned without the knowledge of the
later added text values. Embeddings added later then adapt to those slightly different
embeddings and thus also obtain slightly different embedding representations. To quan-
tify this delta, we calculate for both scenarios the average Euclidean distance and the
cosine similarity of the resulting embeddings after each of 10 online retrofitting iterations
to the results of a complete re-run. For both scenarios, we execute this evaluation process
with the hyperparameter settings α = 1, β = 0, γ = 3, δ = 3 and α = 1, β = 1, γ = 1, δ =
1. Figure 5.12 visualizes the mean and the standard deviation in each iteration. If only

5.4 Evaluation 105

reviews are inserted, one online retrofitting iteration is enough to achieve 0.99 or higher
cosine similarity (see Figure 5.12a and Figure 5.12c). In the following iterations, nothing
changes because the reviews are not directly related. In the second scenario, however,
there are relations between new text values, ie., app names and reviews, whose vectors
get updated. In the first iteration, reviews get more similar to the original embeddings of
app names, and the app name embeddings get more similar to the original embeddings
of the reviews. In the next iteration, this reverts and leads to the alternating behavior
shown in Figure 5.12b and Figure 5.12d. This leads to the highest similarity in iteration
10, where the embeddings are very similar to the embeddings determined by a re-run
(see Figure 5.12b and Figure 5.12d). The remaining deviation results from short reviews
like “Great” and “Nice”, which are shared by multiple apps. In general, the deviation is
higher with the hyperparameter setting α = 1, β = 0, γ = 3, δ = 3 (see Figure 5.12a and
Figure 5.12b) since the values of the optimal embedding representations depend stronger
on related text values in a setting with high values of γ and δ.

5.5 SUMMARY

In this chapter, we investigated methods to optimize embedding representations of text
values in database systems. In Section 5.1, we surveyed approaches to utilize the struc-
ture knowledge from the database to adapt the embedding representations to the context-
specific meaning of their text values. We concluded that the concept of retrofitting qual-
ifies best for the requirements defined in Section 3.6. Accordingly, we decided to im-
plement a novel relational retrofitting algorithm for text values residing in relational
database systems. This led to the development of the framework RETRO (Section 5.2)
for automatically generating optimized embeddings for text values in relational database
systems. RETRO is complemented with Online-Retro to generate optimized representa-
tions for newly inserted text values without re-running RETRO itself (see Section 5.2.4). In
addition, we implement the evaluation platform RETROLIVE to investigate the influence
of hyperparameters and the resulting embeddings (see Section 5.3). To execute Online-
Retro from the database, we integrated it as a UDF into the FREDDY Extension (see Sec-
tion 4.1). Our Evaluation in Section 5.4 demonstrates that relational retrofitting is more
efficient than the common node embedding techniques DeepWalk and thus can be used
for optimizing text values in large datasets. We further show how ML models for several
tasks can profit from relational retrofitting and achieve better results as achieved by the
original retrofitting algorithm on two real-world datasets. To evaluate Online-Retro, we
analyzed its execution on two user scenarios on real data in Section 5.4.6 In those settings,
Online-Retro allows generating nearly optimal embeddings for inserted text values much
faster than re-running the RETRO framework.

106 Chapter 5 Context Adaptation for Word Embedding Optimization

6
MODEL RECOMMENDATION

To select a suitable word embedding model for a query in a word embedding database
system, a solution to recommend embedding models is necessary. Furthermore, the train-
ing of high-quality word embedding models requires large text corpora, e.g., 840 billion
tokens for the popular pre-trained GloVe Common Crawl model (GV-CC in Table 3.1),
which in many cases are not available. Thus, it is common to reuse pre-trained general-
purpose models. Therefore, machine learning developers frequently face the problem of
choosing a pre-trained embedding for their given task. For instance, for building a search
engine for a movie website, they should be sure that the selected word embedding re-
flects the movie domain appropriately. Besides simply reusing pre-trained models, they
also can be adapted to better fit a domain-specific context using retrofitting, as discussed
in Chapter 5. Moreover, higher quality domain-specific word embeddings can be pro-
duced by mapping domain-specific embeddings in a general-purpose word embedding
model, as shown in [SLS18]. In all those cases, identifying the best pre-trained word
embedding for a given task is crucial. To solve this problem, we propose a framework
to automatically construct an evaluation dataset for domain-specific evaluation. We em-
ploy this framework on a large corpus containing 125M tables extracted from HTML Web
pages to construct a novel benchmarking dataset, which assists ML developers with se-
lecting a suitable model. The results of our research on this topic are already published
in [GSTL20b]. Parts of this chapter are based on this work. The dataset itself is also
published in [GSTL20a].

In the following, we present our work on the extraction framework, which leads to the
construction of our evaluation dataset FACETE. This dataset is designed to fulfill the re-
quirements presented in Section 3.7. Specifically, it compromises a large number of rela-
tions, consists of continuous valid facts of the extended general knowledge, covers sev-
eral domains, and is flexible enough to adapt an evaluation to the application domain
of the word embedding models. To approach this, we first review existing methods for
word embedding evaluation in Section 6.1. Then, we explain the desired architecture
of our evaluation benchmark in Section 6.2. In the following, Section 6.3 describes the
construction pipeline for FACETE. Afterward, we present the results of an exemplary
evaluation of popular pre-trained embedding models using FACETE in Section 6.4 and
finally conclude in Section 6.5.

6.1 RELATED WORK

As stated in Section 2.3, word embedding evaluation methods are categorized into ex-
trinsic and intrinsic methods in the literature. In the following, we survey methods in
both categories for domain-specific evaluation and discuss their limitations.

107

6.1.1 Extrinsic Evaluation

Extrinsic evaluation methods capture quality measures for results of an application task
obtained by using different embedding models. For instance, one can evaluate the ac-
curacy or the F1 measure of an ML algorithm which utilizes embedding representations
provided by the given embedding models. Recently, several benchmarks to test lan-
guage understanding and question answering have been proposed [RZLL16, ZBSC18,
WSM+19]. Especially contextualized embedding model like BERT are evaluated by ex-
trinsic evaluation on such tasks [DCLT19]. Because of this focus on specific applications,
extrinsic methods are always domain-specific. An extrinsic evaluation task should be
designed to be as close as possible to the actual application. In [RK19], one can find a
good example for an extrinsic evaluation for static embedding models trained to capture
the semantic of words in a specific domain. To obtain an accurate estimate of the perfor-
mance of an embedding model in an application, extrinsic evaluation is preferred over
intrinsic evaluation. However, extrinsic evaluation has also several limitations:

Limitations: [SLMJ15] shows that the correlation of the evaluation results across differ-
ent extrinsic tasks is low. Thus, one should not deduct from the outcome of one extrinsic
evaluation task the performance of a model in a different task. Therefore, extrinsic eval-
uation is only possible if a comprehensive gold standard for the application task is avail-
able. Especially for unsupervised tasks, this may constitute a problem. Moreover, intrin-
sic methods are preferred when an exhaustive extrinsic evaluation is too time-consuming.
This particularly applies to the training of deep learning models, which are common in
natural language processing, and require high computational effort. In contrast, the re-
sults of an intrinsic evaluation are directly available since they are independent of the
application task.

6.1.2 Intrinsic Evaluation

Section 2.3 already provides a comprehensive overview of datasets for the intrinsic evalu-
ation of word embeddings. Those datasets are designed by the NLP community to cover
a wide range of linguistic relations in form of evaluation tasks that involve frequently
used words. However, as far as we know, there is no dataset that provides an overview
of the performance of a word embedding model according to different domains. Besides
those generic datasets, there is a small number of benchmarks for very specific domains.
For instance, in [NØL18], the “Schlumberger oilfield glossary” (slb)1 was constructed
from which the authors derive 878 synonym pairs, 284 antonym pairs, and 934 alterna-
tive form pairs used to intrinsically evaluate their model for the oil and gas domain. For
applications designated for tasks involving text from other domains, only generic intrin-
sic evaluation datasets are applicable. However, here several problems exist:

Limitations: Intrinsic evaluation datasets proposed by the NLP community (see Ta-
ble 2.1 in Section 2.3) facilitate researchers to compare embedding techniques trained
on the same text against each other. However, for the application of pre-trained word
embedding models in database systems, the goal is slightly different. Here, one aims
to evaluate pre-trained models usually trained on different texts to represent semantic
knowledge in the domain of the database. Most of the existing data collections are rela-
tively small and map the word embedding model on just a single number, neglecting all

1http://www.glossary.oilfield.slb.com/ (Access: 08/03/21)

108 Chapter 6 Model Recommendation

Figure 6.1: Facet Data Structures

variations of the performance in different domains. Moreover, many of them have been
labeled manually and therefore are biased by certain factors, e.g., the subjectiveness of
rating scales and the meaning of similarity, as well as the lack of penalties for overesti-
mating similarity of two dissimilar words [BKR+16, AG16]. Some of the datasets contain
a few categories of relations (e.g. WordRep [GBL14]). However, they are too generic and
primarily consist of linguistic categories. Thus, a fine-granular evaluation according to
Requirement D2 and the desired flexibility (Requirement D5) are not provided. Besides,
an automatic adaptation for a specific domain is not possible (Requirement D6).

6.2 ARCHITECTURE OF FACETE

To allow the user flexibility in the evaluation of embedding models according to Require-
ment D5, we employ the notion of facets to structure our dataset.

Facet-Oriented Data Structure The dataset should be structured in multiple so-called
facets, which are categorized in a handful of broader categories as displayed in the bot-
tom right-hand corner in Figure 6.1. Facets are frequently used for classification pur-
poses where one or multiple facets are applied to classify objects to category values or
combinations of values. Facet classification originates from systems to organize books in
libraries [Ran39]. Later it has also been adapted for information retrieval systems [PD91,
BL00]. In contrast to hierarchical classification schemes, multiple facets can be applied to
one object. For a particular domain, only certain facets are relevant. A facet classification
scheme is flexible in the sense that it allows to select only those facets relevant for a spe-
cific use case or a domain and do the classification based on them [Her07]. This makes
the concept of facets appealing for the data structure of our evaluation dataset. For the
storage schema, we choose to represent every facet as an injective relation F ⊆ O × V ,
which is stored as a set of tuples.

6.2 Architecture of FacetE 109

Figure 6.2: System Overview: Extraction and Evaluation

Example Given a specific object set O (e.g. “soccer players”), one can apply facets to it.
Figure 6.1 shows in the bottom left-hand corner a set of facets for soccer players (“team”,
“country”, “position”). Each facet holds a set of values V to which the objects (e.g. soccer
players) can be assigned.

6.3 EVALUATION DATASET CONSTRUCTION PIPELINE

To compile an intrinsic evaluation dataset that fulfills the requirements mentioned in
Section 3.7, we decide on a data-driven approach. Specifically, we leverage the Dresden
Web Table Corpus (DWTC) [EBH+15] that consists of 125 million Web tables. The extrac-
tion process, shown in Figure 6.2, is divided into four steps: 1) Filtering Web tables and
facet candidate generation, 2) determining soft functional dependencies to decide which
facets and facet values are appropriate for a word embedding evaluation, 3) post-filtering
leading to the final set of facets, and 4) facet clustering to facilitate a domain-specific eval-
uation.

6.3.1 Web Table Filtering and Facet Candidate Generation

Since our goal is to construct an English evaluation dataset, we consider only potential
English Web tables. To detect them, we employ a lightweight language identification tool
called WhatTheLang2, which is based on a small fastText model. Moreover, we only in-
corporate columns with a header occurring at least 10 times. Other columns are unlikely
to contain knowledge from the general domain (see Requirement D1). Since numerical
values cannot effectively be represented by many word embedding models, we also omit
them and only consider text values of Latin letters.

To create facets, we extract all textual header pairs and the associated instance values
from the filtered Web tables (see Figure 6.1). All header pairs that occur less than four
times are omitted since they are not part of the extended general knowledge, which is
expected to be represented in a word embedding model.

2https://github.com/indix/whatthelang (Access: 08/03/21)

110 Chapter 6 Model Recommendation

6.3.2 Check Soft Functional Dependencies

To be useful for a word embedding evaluation, the relations inside a facet should be
unambiguous, as stated in Requirement D3. This is the case if the value set V of the facet
functional depends on the object set O, e.g., the city depends on the soccer airport’s name.
However, since Web tables can be noisy, we employ soft functional dependencies (SFD)
instead. A similar approach is used in [LB19] to extract knowledge from Web tables.
We calculate SFD scores for the pairs of text values taken from the facet generation step
described above. Given those pairs in the form of a bag of value tuples MO,V ⊆ O × V
with the multiplicity defined by function m : 〈O, V 〉 → N, we calculate the SFD for every
object o ∈ O as in Equation (6.1). The value vmax refers to the most common value for the
object o.

SFD(o) =
m(〈o, vmax〉)∑

〈o,v′〉∈MO,V

m(〈o, v′〉) (6.1)

We omit facets with an average SFD smaller than 80%. In addition, all objects with
SFD(o) < 80% are discarded. Moreover, we omit object-value tuples occurring less than
4 times.

6.3.3 Post-Filtering

Not all facet candidates that fulfill the SFD condition are applicable to evaluate word em-
bedding models. Therefore, in a post-processing step, deny lists and pooling are applied.

Deny Lists: Some of the headers are very generic, e.g., “name” and “description”. Ac-
cordingly, object-value pairs with such header text values model different relation types,
making them unsuitable for modeling facets. Moreover, we cannot categorize them.
Thus, they are not compatible with Requirement D2.

Pooling: As stated in Requirement D1, we aim to include facts of the extended com-
mon knowledge to provide a dataset suitable for a wide range of word embedding mod-
els. For this reason, we apply pooling to exclude facets that model relations which are
unlikely represented in word embedding models. We select three commonly used large
pre-trained word embedding models: Word2Vec (W2V-GN in Table 3.1), GloVe (GV-CC
in Table 3.1), and fastText3. For each model and each facet, we sample a set of analogy
tasks out of terms that can be represented by the model. To solve the analogy tasks, we
employ the 3COSADD method (see Section 2.2.5) and restrict the search space to the text
values in the value set of the facet V . The size of the task set |T | is chosen depending on
the number of possible values |V |, where for larger value sets, a larger task set is used. If
not more than 5·|T |

|V |−1 and less than 50% of the provided tasks are solved correctly by any
of the selected word embedding models, the facet candidate is omitted.

3fastText Common Crawl (600 billion tokens),
https://fasttext.cc/docs/en/english-vectors.html (Access: 08/03/21)

6.3 Evaluation Dataset Construction Pipeline 111

6.3.4 Categorization

To enable domain-specific evaluation (Requirement D2), we divide the resulting facets
into the following broader categories: “sports”, “geographic”, “music”, “movie / video
games”, “literature”, “economy”, “technology”, and “misc”, which are chosen based on
a look at the data. The category “misc” is created since some domains only contain a
small number of facets.

The categorization is done using a fastText model by providing a list of keywords for
each category. For the “misc” category, we provide keywords for all the small categories
for which facets exist. The fastText model determines similarity scores of the category
keywords to header text values, as well as text values in the object set O and value set V
of the facet. Based on those scores, the most similar category is selected. Finally, for each
category, a JSON file is compiled containing the respective facets.

6.4 EVALUATION OF POPULAR WORD EMBEDDING MODELS

To demonstrate the value of our approach, we perform in this section an evaluation of
popular pre-trained word embedding models. From the results provided by such a pro-
cess, database users can decide on an embedding model for an SQL query containing
word embedding operations (see Section 3.4), and ML developers can select a suitable
model to represent the input text. FACETE enables an evaluation of word embedding
models on different granularity. While the evaluation presented here focuses on analogy
tasks, one can also derive similarity-based metrics or construct cluster-based evaluation
tasks from FACETE.

Word Embedding Models We choose four popular English pre-trained word embed-
ding models. This includes the models used in the pooling step in Section 6.3.3: Word2Vec,
GloVe, and fastText, as well as a Sentence-BERT model [RG19] called SBert4, which is
fine-tuned on the STS benchmark [CDA+17].

Since Word2Vec and GloVe would suffer from the out-of-vocabulary problem, we tok-
enize longer text values and average the embedding vectors corresponding to the re-
spective terms in the vocabulary of the embedding model (see Section 2.2.5). For the
tokenization process, we use the method described in Section 5.2.1, which takes account
of multi-word tokens. SBert and fastText do not have this problem since they inherently
include a tokenization process based on word-pieces or n-grams.

6.4.1 Domain-Agnostic Evaluation

Using the word embedding models introduced above, we run an analogy evaluation for
the facets in each category of FACETE. The analogy tasks are solved using the 3COSADD
method (see Section 2.2.5). However, some facets include a large number of relations
from which a quadratic amount of analogy tasks could be constructed. To reduce the
number of analogy tasks to the number of relations in the facet, we modify the 3COSADD
method: We calculate the centroid of the embedding representations of all text values of

4roberta-large-nli-stsb-mean-tokens,
https://github.com/UKPLab/sentence-transformers (Access: 08/03/21)

112 Chapter 6 Model Recommendation

Figure 6.3: Evaluation of Different Domains: Coverage and Distribution of Accuracy
Values

the object set O and the centroid of the text values in the value set V . The former is
used as the vector a and the latter as vector b in Equation (2.9) in Section 2.2.5. For each
facet, we determine the accuracy as the amount of correctly solved analogy tasks and the
coverage as the proportion of relations where both text values have a word embedding
representation. The distributions of the accuracy values and the average coverage values
for each category are shown in Figure 6.3. As one can see, no embedding model out-
performs the others in all categories, confirming our hypothesis that word embeddings
should be selected on a case-by-case basis. While fastText and SBert have a coverage of
100% due to their processing model, Word2Vec and Glove also achieve high coverages in
most of the categories by using the proposed tokenization strategy.

6.4.2 Evaluation of a Single Facet

To compare the representation of a specific property across multiple word embedding
models, e.g., for the application in an ML task, one can select a single facet out of our
dataset for evaluation. As an example, we use the facet character→actor with 111 rela-
tions and compare two embeddings. We choose the plain Word2Vec model already used
before and a model resulting from applying the RETRO framework of Chapter 5 on the
Word2Vec model. For retrofitting, the TMDB movie database (see Section 5.4.1) is used.
The retrofitted embedding model achieves an average accuracy of 16.21%, while the plain
Word2Vec model achieves 11.71% only. This result suggests using the retrofitted embed-
ding model, even though those low accuracy values indicate that an ML task related to
the character→actor relation requires more input data.

6.4.3 Evaluation of an Object Set

Instead of evaluating word embeddings on a granularity of facets, one can also calculate
the accuracy based on a set of objects relevant to an application. In Figure 6.4, one can see
the distribution of the accuracy values from an evaluation of the 100 most frequent city
names in FACETE considering six facets in the geographic category with a city object set.

6.4 Evaluation of Popular Word Embedding Models 113

Figure 6.4: Evaluation of City Representations

Here, the accuracy is calculated on the number of values assigned correctly to an object
considering the six facets. While Word2Vec achieves the best results in the geographic
category (see Figure 6.3), this experiment shows that Glove performs better regarding
frequent city terms.

6.5 SUMMARY

To identify a suitable model for an application using word embeddings, a comprehensive
evaluation is necessary. In Section 3.7, we already discussed the specific requirements for
an evaluation dataset. In this chapter, we reviewed related work regarding those re-
quirements in Section 6.1. We identified that available datasets from the NLP community
are designed to evaluate the capabilities of embedding techniques but fail to evaluate
to which extend particular domains and word relations are represented in specific pre-
trained models. As a solution, we proposed in Section 6.3 a data processing pipeline to
automatically generate an evaluation dataset from large table corpora, which we apply to
a corpus of Web tables to obtain a comprehensive evaluation dataset called FACETE. The
resulting dataset consists of relations organized in multiple facets, which are assigned
to eight broader categories (see Section 6.2). In Section 6.4, we demonstrated the appli-
cation of FACETE in an exemplary evaluation of popular pre-trained word embedding
models. The evaluated models perform very differently on the various domains cap-
tured by FACETE, and no model achieves the best scores in all domains. These results
expose the importance of an application-specific section of the word embedding model.

114 Chapter 6 Model Recommendation

7
TABULAR TEXT EMBEDDINGS

We presented a comprehensive overview of word embedding applications, where an em-
bedding model is used to represent text in tables in Section 2.4. Many of those applica-
tions reuse models pre-trained on text documents. Presumably, several of those appli-
cations could profit from a model pre-trained directly on tabular data. In this chapter,
we investigate how table embedding models can improve such applications. Therefore,
we implement a novel algorithm to train embeddings on a large table corpus and eval-
uate it on several different tasks involving data in diverse tabular data formats. Results
of this comprehensive evaluation and the proposed embedding algorithm presented in
this chapter have already been published in [GTGL21]. Our embedding algorithm is
designed with respect to the requirements of Section 3.8. Accordingly, the resulting em-
bedding models represent tabular relations between text values in tables. Moreover, the
models are schema-aware and applicable for a wide range of applications and tabular
data formats.

In the following, we discuss related work on constructing embedding models for tables
in Section 7.1. Afterward, Section 7.2 introduces our approach for embedding text values
in tables. In Section 7.3, we present several applications of word and table embedding
models. Those use the models in unsupervised (see Section 7.3.1) and supervised (see
Section 7.3.2) settings. We continue with a comprehensive evaluation of our table em-
bedding techniques in Section 7.4 and conclude in Section 7.5.

7.1 RELATED WORK

In recent years, several research works have investigated techniques for pre-training em-
bedding models on tabular data. However, most of those approaches aim at designing
an embedding model for a specific application task or a specific dataset. Using the re-
sulting models on different datasets for different tasks is often not possible or entails
some limitations. In the following, we discuss previously proposed table embedding
approaches. We categorize the related work into approaches based on the underlying
embedding technique. Section 7.1.1 reviews models based on static embedding tech-
niques, and Section 7.1.2 discusses contextualized embedding models. For word em-
bedding models, a comparison between static and contextualized embedding models is
discussed in Section 2.2.4

115

7.1.1 Static Table Embedding Models

Several embedding models have been proposed which use a static word embedding
model like word2vec [MSC+13]. Similar to node embedding techniques like DeepWalk
and node2vec (see Section 2.2.6), those techniques serialize sequences and apply the
word embedding algorithm to them. For serializing sequences from tables, different ap-
proaches have been proposed. In [BS17], the text is serialized from a relational database
system. The proposed algorithm serializes sequences row by row. In addition, the seri-
alizer integrates sequences of rows in other tables referenced by foreign keys. To model
relations of text values to the schema, table names and column names are integrated into
the sequences. The resulting word embedding model captures relations of text values in
the database system. However it is very specific for the database it is trained on. Simi-
larly, in [CPT20], an embedding model is trained on random walks obtained of a graph
generated from a specific relational database system. The model does not only gener-
ate embeddings for text values in the table body but also for rows and columns, which,
however, have no textual bonding. Thus, row and column embeddings for a new table
can not be obtained. In [GRE+17], word2vec [MSC+13] is used to generate embeddings
for cells in tables later used for blocking. For this purpose, the authors serialize text se-
quences from table relations. To distinguish cells in the table body and cells in the table
header, the proposed serializer adds specific prefixes to the text values. Because of the
large diversity of cell values in tables in comparison to terms in natural language texts,
the application of this model is limited on the tables it is trained on.

Limitations: Since the techniques described above use traditional word embedding
models like word2vec and GloVe, they suffer from the out-of-vocabulary problem. This
is especially problematic since text values occurring in tables are often very specific for
the table and do not frequently occur in other tables or text documents. Accordingly, it is
hardly possible to apply such a pre-trained embedding model on other table corpora as
stated in Requirement E1 in Section 3.8. Subword-based embedding models like fastText
could be used to overcome this limitation. However, in this case, the embedding tech-
nique can not distinguish between subwords occurring in the schema or the body of a
table (see Requirement E2).

7.1.2 Contextualized Table Embedding Models

An example of a contextualized Web table embedding model is TabVec [GGS18]. This
model trains embeddings for whole tables to solve the table layout classification task
(see Section 7.3.2) in an unsupervised way. The model generates random embeddings
for words occurring in the table corpus. Then it aggregates the embedding vectors of
words in the context of a cell vector. Finally, aggregates of the cell vectors are used as
an embedding representation of the whole table. To solve the layout classification task,
tables with similar layouts are clustered by an algorithm, which uses the embedding
vectors, and the user should manually label the clusters.

Recently, the authors in [GGPS20] propose an embedding model specifically for the clas-
sification of cells in spreadsheets. The model uses sentence embeddings [CKS+17] to
encode text values in cells, where the tokens of the text values are represented by a pre-
trained GloVe model. After encoding the cell values, for each cell, an embedding is de-
rived based on neural networks with an auto-encoder architecture. Instead of calculating
an embedding for a cell only on its content, the authors include the content values of the

116 Chapter 7 Tabular Text Embeddings

surrounding cells in the spreadsheet into the calculation of the embedding representa-
tion. Moreover, style attributes are incorporated. Since a spreadsheet does not provide
information to separate between cells of schema and cells of instance terms, this is not
considered by the embedding model.

Building on the success of transformer-based language models like BERT [DCLT19], mul-
tiple tabular embedding models [DSL+20, YNYR20, HNM+20, ITMI21, WDJ+21] have
been designed using the Transformers architecture [VSP+17]. Specifically, the models
TaBERT [YNYR20] and TaPas [HNM+20] conduct a pre-training jointly on text utter-
ances and tables for semantic parsing tasks, e.g., text-to-sql tasks and question answer-
ing tasks. For pre-training on relational tables with associated text snippets like page
titles and captions, the authors in [DSL+20] propose a model called TURL. A model
solely trained on tables called TABBIE is proposed by [ITMI21]. Just recently, the au-
thors of [WDJ+21] present TUTA, an embedding model for tables with a hierarchical
header structure. For applying the model, TaBERT, TaPas, TURL, and TUTA serialize
tables into sequences. However, TURL and TUTA employ a masked attention mecha-
nism to restrict the attention mechanism of the Transformer model, e.g., TURL utilizes a
visibility matrix to focus attention on cells, which are related by the cell structure. TAB-
BIE uses two separate transformer networks to model row-wise and column-wise se-
quences where the cell embeddings of both transformers are averaged in each layer. For
the pre-training of transformer-based table embedding models, dummy tasks are used,
which are similar to the masked-language model task (see Section 2.2.3) or the ELECTRA
task [CLLM20] in the case of TABBIE pre-training. For applying the ELECTRA task on
tabular data, cells are corrupted by replacing the content with a generated content in the
input tables, and a binary layer decides if the cell content is part of the original table
or not. For the application of the models, the models are usually fine-tuned on specific
supervised classification problems. Specifically, applications for those transformer-based
models are question answering over tables [YNYR20, HNM+20] and table understand-
ing tasks [ITMI21, DSL+20], e.g., entity linking, column type annotation, and schema
augmentation. To incorporate information from language models pre-trained on text,
those models either initialize the model parameters with weights of a pre-trained word
embedding model [YNYR20, WDJ+21] or encode the input cells with a word embedding
model [ITMI21].

To differentiate between different types of text values, [DSL+20] use separate embed-
dings for text values containing schema-information like cells in the headline and text
values in the table body. Moreover, additional input embeddings can be added to the
embeddings of the input tokens like segment and positional embeddings in the original
BERT model (see Section 2.2.3) to differentiate between text values in the headline and
surrounding text like the page title. Similarly, in [HNM+20], the authors use additional
embeddings for rows and columns to encode the position of a token in the table. To rep-
resent cells, [DSL+20] uses separate entity embeddings added to the input embeddings.
In [YNYR20], pooling layers are used to aggregate embeddings of tokens to represent
cells.

A different neural network architecture is used in the TCN [WSL+21] model. Here, the
authors propose an embedding-based approach with a convolutional neural network ar-
chitecture for table interpretation tasks. For each value in a table, the network aggregates
embeddings of related values in the same table and embeddings of related values in other
tables, e.g., syntactical equal text values. The embedding vectors are initialized with em-
beddings generated with the traditional GloVe embedding model. Afterward, the whole
model is pre-trained with a Masked Language Model objective. By taking into account
those inter-table connections between values, this model outperforms table models like
TURL, which only consider a single table, on various table interpretation tasks.

7.1 Related Work 117

Figure 7.1: Web Table Types and Embedding Process

Limitations: While some of the models, e.g., TURL, are applied in a comprehensive
evaluation on different evaluation tasks, the evaluation datasets are very similar to the
data used in the pre-training. Frequently, the data used in the tasks constitute a subset
of the dataset used for pre-training. Only for TUTA, the pre-trained model is applied to
different table types (Web tables and spreadsheets) [WDJ+21], but, also here, both table
types are used during the pre-training. It would be interesting to investigate the applica-
tion of the proposed table model to tasks on other datasets. This is especially relevant for
application on datasets that are too small for comprehensive pre-training or contain fewer
annotations as the dataset in the pre-training step, e.g., for spreadsheets, it is often hard to
identify which cells belong to which table. To apply the approaches above, the models re-
quire the whole table as input. When only single text values of cells are provided, the re-
sulting representations are presumably worse. This limits the applicability and thus runs
contrary to Requirement E1 in Section 3.8. For instance, cells in spreadsheets often do not
belong to a specific table. Moreover, to achieve good performance, Transformer models
are usually extended by layers dedicated to a specific classification task, and a fine-tuning
is done. Usually, one fully connected layer is added to the Transformer model. However,
this procedure might not work well for complex models where the input could not nat-
urally be encoded into a single sequence. Our attempts to integrate a BERT model into a
classifier for the layout classification problem (see Section 7.3.2) to encode the rows and
columns of tables lead to worse results in comparison to using static embeddings. An-
other limitation of several Transformer-based models like TaPas and TaBERT constitutes
the limited input size, which has to be configured before pre-training. To encode large
tables, the authors of [YNYR20] propose to extract content snapshots relevant to an ad-
ditionally provided utterance, and [LLS+20b] summarizes the input by retaining tokens
with high TD-IDF scores. Only TURL produces separate embeddings for schema and
instance text values and accordingly satisfies Requirement E2.

7.2 WEB TABLE EMBEDDING MODEL

To fulfill the requirements in Section 3.8, we designed the embedding process visual-
ized in Figure 7.1. For the pre-training, we need a large source of tabular data suit-
able to train an embedding model. While the tabular data format is pervasive across
all fields in academia and industry, we decided to use data from Web tables. Web ta-
bles not only constitute a large source of tabular data (hundreds of millions of tables)
but also capture a wide range of domains, making them suitable to pre-train an em-
bedding model valuable for a wide range of different tasks. Moreover, a remarkable
amount of research has already investigated the problem of mining and cleaning Web

118 Chapter 7 Tabular Text Embeddings

table data [CTT00, WH02, CHZ+08] which led to large already pre-processed corpora
of Web tables like the DWTC corpus [EBH+15] containing 125 million Web tables. We
utilize the DWTC corpus (1) to derive suitable Web tables. After a pre-processing step
(2), we serialize tabular relations in the form of text sequences (3). Those text sequences
are encoded by an encoding model (4) with respect to the type (schema text and instance
text). Then, a word embedding technique is applied to them (5). While this method sim-
plifies the training of the embedding models, it also provides the possibility to utilize
the enormous research made by the NLP community on optimizing embedding mod-
els. Moreover, it provides the flexibility of applying different embedding models or even
models to be invented in the future.

7.2.1 Preprocessing

In our training, we focus only on English tables. Therefore, we employ the lightweight
language classifier WhatTheLang on tables from pages of potential English domains to
determine relevant tables. Moreover, we filter out text values with non-Latin letters.
For many Web tables, it is easy to separate the schema information from the rest of the
data. For instance, header rows are often labeled in the HTML code by a <thead> tag.
We restrict the corpus to tables where such information is present. Nonetheless, it still
encompasses over 40 million tables. Since numerals and special signs do not capture a
specific meaning across different contexts they can occur in, we regularize them by re-
placing them with “@” and “*” characters. This also slightly reduces the large variety of
text values observed in Web tables and therefore helps the embedding model to general-
ize. A similar regularization process was also done in the Web table embedding approach
of [GRE+17]. Moreover, spaces are replaced by underscores to coalesce the tokens of a
cell into a single token.

7.2.2 Text Serialization

To model different relations according to Requirement E3, we create different serializers
to generate sequences from tables:

• Row-wise Serializer: The simplest way of serializing tables is to serialize them row
by row. Many of the related approaches described in Section 7.1 perform a sim-
ilar serialization process. A model trained on the resulting sequences potentially
represents the relatedness of text values in cells.

• Taxonomy Serializer: The taxonomy serializer is designed to produce sequences
that capture relations between schema and instance data to build a model which
fulfills Requirement E2. For this purpose, we construct a weighted bipartite graph
of text values occurring as header and data (non-header) cells. Two text values are
connected if one text value serves as a header for the other text value in a table.
Thereby, we exclude relations where both text values are equal because this may
result from a repetition of the header. Each edge gets assigned the frequency of the
relation as weight. Data nodes with only one edge and edges which occur only once
(weight < 2) are removed. For header-data node pairs with edges in both directions,
the edge with the lower weight is removed. Then, we build upon the idea of Deep-
Walk [PARS14] to serialize random walks from a graph which are used later to train
a language model. We use the graph to construct 100 random walks per node where
the transition probability from one node to another is determined by the weight of
the edge divided by the sum of all weights.

• Combined Serializer: To train a model capturing row-wise and taxonomical rela-
tions, the output of both serializers is combined.

7.2 Web Table Embedding Model 119

Movie Title Release Date Language
Godfather 1972 English
Amélie 2001 French
Inception 2010 English

Title Original Language Production Year Genre
Psycho English 1960 Horror
Good Bye, Lenin! German 2003 Comedy

Figure 7.2: Unionable Tables

7.2.3 Encoding Model

To represent different types of text values, an encoding model is applied. In our case, we
separate between two types: schema and instance. Previous embedding approaches [TML15,
GRE+17] add annotations to words to disambiguate different types. However, this is
not applicable for embedding models working with subword information (e.g. ngrams).
Therefore, we propose to use a different encoding for each type. Each encoding is defined
by an offset. To encode a character, e.g., “a” (unicode 97), the offset, e.g., 255, is added
to the numerical unicode representation and interpreted as the resulting sign, e.g., “Š”
(unicode 352). This leads to valid encodings since all characters are ASCII signs after pre-
processing. In this way, an embedding model can differentiate for every single character
if it belongs to a header or instance data text value. Besides our application, this method
might also be useful for other typed documents, e.g., documents written in a markup
language like TeX and HTML.

7.2.4 Embedding Training

For the training of the embedding model, different word embedding techniques can be
applied to the sequences. For the applications in Section 7.3, we use the fastText [BGJM17]
approach described in Section 2.2.2 to train embedding models. This leads to flexible em-
bedding models which are able to encode any content of the HTML Web table cell (see
Requirement E1). It produces static embeddings, which can be employed for unsuper-
vised and supervised classification tasks.

7.3 APPLICATIONS FOR TABLE EMBEDDINGS

Our goal is to investigate a cross-section of applications for our table embedding models.
This encompasses the table union search task (Section 7.3.1), where the model is used
in an unsupervised setting, and two supervised tasks where the model is used on Web
tables and spreadsheets (Section 7.3.2).

7.3.1 Table Union Search

Tabular data repositories consist of thousands or millions of tables. Data discovery tech-
niques support users in finding useful tables in such repositories. One typical data dis-
covery task is the unionable table search task [MNZ+18]. Thereby, a user wants to find

120 Chapter 7 Tabular Text Embeddings

tables about a specific topic to merge them into a master table. Figure 7.2 displays two ex-
amples of incomplete movie tables, which can be used to create a master table for a more
complete overview of movies. One can find unionable tables by searching for high union-
able column pairs 〈A, B〉 as described in [NZPM18]. The authors propose three measures
for unionability, which can also be combined to an ensemble unionability measure. All
three measures define unionability as the probability that the text values in columns A
and B are part of the same domain. The best single unionability measure is the natural
language unionability based on word vector representations of the column pairs. How-
ever, calculating it for all column pairs is not possible for large repositories because of the
quadratic growth of the number of pairs. To solve this problem, the authors calculate the
mean word vectors for text values in a column as representations of the columns, which
can be stored in an index. One can then efficiently search for mean vectors with high
cosine similarity to a given column vector which is effective because the cosine similarity
correlates with the unionability as shown in [NZPM18]. For implementing the search
algorithm, one can use the nearest neighbor search techniques described in Section 4.2.
The authors utilize an LSH index specialized for the cosine distance [Cha02]. To generate
the word vectors, the authors used a fastText model trained on Wikipedia articles as fT-W
in Table 3.1. As shown in Section 7.4.2, the usage of our Web table models can improve
the unionability search.

7.3.2 Classification Tasks

We implement ML models for two different classification tasks with tabular input. Those
models utilize the pre-trained embedding models to encode the semantic of cells in the
tables. First, we introduce a classifier for the layout type of Web tables. Here the input
is similar to the tables in the training corpus. Afterward, a classifier for the cell type in
spreadsheets is introduced. Here, the tabular input is fundamentally different from the
training corpus.

Table Layout Classification

Information stored in tables on the Web has demonstrated its usefulness for several in-
formation retrieval tasks, e.g., question answering [SMH+16], building knowledge car-
ousels [CLK+16], data integration tasks like knowledge base completion [CHZ+08], and
entity augmentation [ETBL15]. All these tasks require extracting knowledge from Web
tables where the table’s layout type needs to be determined.

Problem Definition: Web tables can be classified into tables containing genuine content
with a semantically significant layout and non-genuine tables, which only align page el-
ements in the HTML document [PHLM01, EBH+15]. To extract content from genuine
tables, those tables are further categorized into four layout classes shown on the left of
Figure 7.1: ENTITY, RELATION, MATRIX, and OTHER, which is the problem we are focus-
ing on. This is based on the classification done by [LRMB16], which is commonly used
in the field. An entity table provides information on a specific entity in the form of an
infobox. Relation tables contain multiple entities, where each row lists several attributes
of one entity. A matrix table presents property values of the relation between two types
of entities mentioned in the the table’s first row and first column. While most of the
non-genuine tables are already filtered out during the extraction of Web tables, e.g., for
the construction of the DWTC corpus [EBH+15], there are still some tables used to lay-
out data that do not fit into one of the categories. Those tables get assigned to category
“Other”.

7.3 Applications for Table Embeddings 121

Figure 7.3: Embedding LSTM Model

Model Definition: We developed an LSTM-based model shown in Figure 7.3. First,
for every cell content, an embedding is created. If a schema-aware embedding model
is used, we create a header cell embedding and a data cell embedding and concatenate
them. This is done since it is often not clear for a Web table if a cell contains schema
or instance information. For the pre-trained Web table embedding models, we apply
the different encoding models for header and data cells to obtain the embeddings. For
each direction (up, down, left, and right), a sequence of embeddings is created and fed
into an LSTM network. Therefore, the first four embeddings of one row or one column
are concatenated to a combined embedding. In addition, each combined embedding is
concatenated to itself multiplied element-wise with the mean of all non-zero embeddings
of the sequence NZ, which helps the model detecting cell values with an outstanding
semantic. The maximal sequence length is set to 10. Small sequences are padded to
a length of 10 and a width of 4 with zero vectors. For example, LSTM 1 in Figure 7.3
would receive a sequence defined by Equation (7.1), starting with the concatenation of
embeddings for v1,1, v1,2, v1,3, and a zero vector:

ei = e′
i ⊕

(
e′

i ◦ 1

|NZ|
10∑

j=1

e′
j

)
, e′

i = vi,1 ⊕ . . . ⊕ vi,4 (⊕ : Concatenation) (7.1)

NZ = {e′
j | j ∈ {1, . . . , 10}, e′

j Ó= 0} (◦ : Element-Wise (Hadamard) Product)

In addition, a concatenation of all embedding sequences is fed into a dense layer DenseW .
This layer calculates a probabilistic weight vector w of size 10. Each of the four LSTM
networks calculates a set of 10 outputs which are aggregated by using the weights w
and concatenated with the final status value of the LSTM. This enables the classifier to
weight the importance of the cell positions with respect to the table content. The results

122 Chapter 7 Tabular Text Embeddings

Figure 7.4: Cell Classification Model

of those calculations are fed into two dense layers DenseC1 and DenseC2 to perform the
final classification. To predict one of the four classes, we use a one-vs-all strategy [RK04]
by training the network four times for each class. We then determine the prediction by
taking the maximum value, which seems to outperform a multi-class prediction with
softmax activation.

Spreadsheet Cell Classification

Spreadsheets are widely used in industry to organize data. While this data format al-
lows humans to easily handle and modify data, it is hardly machine-readable. To extract
data from spreadsheets, it is necessary to determine whether cells contain instance data,
schema information (header cells), or metadata [KTRML16]. While this classification it-
self helps to extract data from spreadsheets, more complex spreadsheet annotation tasks
like table recognition can be done based on this classification [KTRL19].

Problem Definition: The smallest structural unit of a spreadsheet is a cell. Usually,
the creator of a spreadsheet organizes data in a sheet in the form of tables, where one
spreadsheet can contain multiple tables. Those cells can be classified based on their role
in the layout of their tables. While different classification schemes can be found in the
literature, we distinguish three main types according to the classification of [KTRL19]:
HEADER (H), DATA (D), and METADATA (M). Headers are captions of table columns de-
scribing the cells below them. In practice, tables in spreadsheets often contain multi-row
headers. Metadata cells provide additional information about a table or the spreadsheet
as a whole. Footnotes and comments are typical examples of the content of metadata
cells. In contrast to the other types, Data cells do not describe other cells but contain the
actual instance data. We consider the cell classification task as a supervised classification
problem. Thereby, an algorithm is supplied with a set of spreadsheets where the label
of each cell is provided. Based on the provided labels, it should derive a classification
function to label cells in unseen spreadsheets.

7.3 Applications for Table Embeddings 123

Model Definition: To solve the cell classification problem, we propose a GNN-based
classification model. Figure 7.4 depicts its architecture. The classifier can be trained on a
corpus of multiple spreadsheets. Similar to [KTRL19], we construct a graph G = (V, E)
for each sheet to represent its spatial structure. The nodes V of this undirected graph
represent the cells. Neighboring nodes up to a distance of three cells are connected by
edges E annotated with the direction p and distance δ. Afterward, a graph neural net-
work (GNN) is trained on the graphs. This GNN uses a pre-trained embedding model
to obtain an input feature vector of the cell content for each node. It is defined by a list
of hidden layers Hm×m′

i and a message-passing function µ : E8 → R
m′

. The µ function
takes as input all edges connected to a node C0 and generates for this node an input
vector for the next layer:

µ(〈C1,C0〉, . . . , 〈C8, C0〉) = (7.2)

M(C0)⊕ . . . ⊕ M(C8)⊕ υ(d〈C1, C0〉)⊕ . . . ⊕ υ(d〈C8, C0〉)
First, the function obtains the embedding vectors of node C0 and the neighboring nodes
C1, . . . , C8 in the eight directions (see Figure 7.4) denoted by M(C0), . . . , M(C8). To con-
struct the initial embeddings, we use a pre-trained embedding model. For a schema-
aware model, a header embedding and an embedding representing an instance text value
are obtained and concatenated (see Figure 7.4) for each cell. Then, the embedding is con-
catenated with the mean embedding vector of the row and the mean embedding vector of
the column. For the intermediate layers, M(C0), . . . , M(C8) constitute the output vectors
of the last layer. The function µ concatenates the received embedding vectors with the en-
coding of the distance values. Therefore, the encoding function υ calculates the inverted
unary encoding of the distances δ − 1. For example, for a direct neighbor (δ = 1), the
value 0 is encoded by the unary encoding 000, which leads to the representation 111 after
inverting. In the same way, a distance δ = 3 is encoded by 001, the inverted unary encod-
ing of 2 (unary: 110). For missing neighbors, zero embedding vectors and the distance
encoding 000 are used. To calculate the output Xi+1 of each layer Hi, µ calculates the
input vectors from the features of the previous layer stored in the matrix N i, the matrix
Hi is multiplied, and the sigmoid activation function σ is applied to the result. Thereby,
N : V → E8 denotes the neighbor function that returns the incoming edges of the given
node.

Xi+1 = σ(N i · Hi) N i =

µ(N (Xi
1)

...
µ(N (Xi

n)

 (7.3)

The proposed GNN can be seen as a specific variant of GraphSage [HYL17]. However,
in our case, the message-passing function receives a fix-sized list instead of an unordered
set of vectors.

7.4 EVALUATION

In this section, we present the results of our evaluation of table embedding models.
Therefore, we train four different embedding models with our proposed embedding pro-
cess. In addition, we use various pre-trained word embedding and table embedding
models as baselines. In the following, we give an overview of the pre-trained models. To
evaluate if models are schema-aware, we conduct an intrinsic evaluation in Section 7.4.1.
Besides, we evaluate the performance of our embedding models in the application tasks
described in Section 7.3. Specifically, Section 7.4.2 discusses the evaluation results for ta-
ble union search, Section 7.4.3 presents the evaluation of the proposed table layout clas-
sification model, and the evaluation results of the spreadsheet classification are shown in
Section 7.4.4.

124 Chapter 7 Tabular Text Embeddings

Table Embedding Models The embedding process of Section 7.2 allows generating dif-
ferent embedding models by using different configurations. We trained the following
four table embedding models:

• Wplain : We obtain a basic Web table model by using the row-wise serializer without
a pre-processing step. Since types are not annotated without pre-processing, the
serialize does not separate between schema and instance terms.

• Wrow : For this model, we use the row-wise serializer with pre-processing. Here, the
serializer separates between schema and instance terms.

• Wtax : This model is trained on the output of the taxonomy serializer after pre-
processing and encoding the sequences according to the cell type.

• Wcombo: For this model, we use the combined serializer after pre-processing and
encoding.

The embedding technique, which we choose for training the models, is fastText [BGJM17].
For supervised tasks, we train the models to produce vectors with only 64 dimensions
to increase the efficiency of the ML models and prevent overfitting. For the unsuper-
vised tasks of Section 7.4.1 and Section 7.4.2, the models are configured to produce 150-
dimensional vectors.

Baseline Embedding Models We compare our Web table models with several base-
line embedding models. Those encompass three popular pre-trained word embedding
models mentioned in Table 3.1 in Section 3.2, a pre-trained contextualize BERT model,
and two contextualized table embedding models. For some experiments we only use the
fastText word embedding model (fT-W) since fastText is also used for training the Web
table embedding models. Thus, it can best be compared to our models. Moreover, fT-W
has also been used by [NZPM18] for the table union search (see Section 7.3.1). In the fol-
lowing we describe, how we used the models to encode text values for the investigated
application:

• fastText Wikipedia (fT-W): While this model is trained on different input sequences,
it behaves similarly to Wplain . Thus, it is able to directly encode a text value in a cell
to a static vector representation.

• Word2vec Google News (W2V-GN): This model is trained with the Skip-Gram
model [MSC+13, MCCD13] (see Section 2.2.2). Thus, it has a fixed vocabulary, and
many text values can not directly be modeled. To model text values consisting of
multiple tokens, we use the tokenization strategy described in Section 5.2.1 and av-
erage the vectors corresponding to the tokens.

• GloVe Common Crawl (GV-CC): This model trained with GloVe [PSM14] (see Sec-
tion 2.2.2) also suffers the out-off-vocabulary problem. Here, we also apply the pro-
cedure of Section 5.2.1 to model text values.

• BERT-Large, Uncased, Whole Word Masking (BERT-Large): This model1 is trained
with the contextualized embedding technique BERT [DCLT19] described in Sec-
tion 2.2.3. Usually, BERT models are designed for supervised tasks where the model
is fine-tuned. However, fine-tuning is not possible in unsupervised settings. More-
over, in deep learning models with a complex architecture, e.g., the models de-
scribed in Section 7.3.2, it might not be effective to integrate the whole BERT model.

1https://github.com/google-research/bert (Access: 08/17/21)

7.4 Evaluation 125

Therefore, we use the bert-as-a-service framework2 with the standard configuration
to obtain static representations from a BERT model for unsupervised tasks. In this
way, a text value is tokenized, the pre-trained model is applied, and the embeddings
obtained from the last but not least hidden layer are averaged to obtain a static vec-
tor representation.

• TaPas-Base (TaPas): This model3 is pre-trained with the contextualized table em-
bedding model TaPas [HNM+20] described in Section 7.1.2. Since this model is
proposed for semantic parsing tasks over tables, e.g., question answering, it expects
a text utterance and a table as input. We use this model for the table union search
task (see Section 7.3.1) for encoding table columns. For our applications, the input is
usually different. Thus, we provide only an empty string as utterance to the model
and the input column. For inputs without a column header, an empty header string
is provided. Since TaPas can only encode a limited number of tokens, we truncate
all text values longer than 100 characters and provide only the first 100 rows to the
model. After applying the model, we average the embeddings of the last hidden
layer to obtain a static representation.

• TURL: The authors of the table embedding approach TURL [DSL+20] also provide
a pre-trained table model4. However, here no tokenization function is implemented
for pre-processing a tabular input for the model. Thus, we implemented a function5,
which encodes the input in a way similar to the data loaders implemented for the
evaluation tasks in the paper. However, it could be further investigated if other
tokenization strategies lead to superior results. For the table union search task, the
column provided is encoded as a core column. If a header is provided to the model,
we encode this as a header line with the TURL model. To obtain embeddings for
the header the corresponding embeddings of the last hidden layer are averaged. To
obtain an embedding for data cells, we take the entity embedding of the last hidden
layer.

7.4.1 Intrinsic Evaluation

In the following, we evaluate the embedding models regarding their representation of
relations between schema and instance text values. Therefore, we conduct an intrinsic
evaluation in the form of an unsupervised link prediction.

Dataset: To obtain the text value relations, we build a taxonomy graph of INSTANCE_OF
and SUBCLASS_OF relations. Therefore, we utilize a reduced version of the YAGO 4
ontology [TWS20] consisting of entities present in the English Wikipedia6 and labels from
schema.org7 ontology [GBM16]. We use the graph to obtain for each instance all related
classes. However, we ignore the generic relations to the root class “Thing”, which is valid
for all instances and not expected to be represented by the embedding models. Then, we
randomly sample 10, 000 valid instance-class relations and 10, 000 relations not present
in the dataset (negative sample set) together with their respective labels. An embedding
model M : s → R

d should assign similar vectors to the labels of entries in the valid rela-
tion set Ev and dissimilar vectors to labels in pairs of the negative sample set En. Ideally,

2https://github.com/hanxiao/bert-as-service (Access: 08/17/21)
3https://huggingface.co/google/tapas-base (Access: 08/17/21)
4https://github.com/sunlab-osu/TURL (Access: 08/17/21)
5https://github.com/guenthermi/table-embeddings/blob/transformer-table-models/

unionability_search/turl_embedding_model.py (Access: 08/19/21)
6https://yago-knowledge.org/data/yago4/en/ (Access: 02/05/2021)
7https://schema.org/docs/developers.html (Access: 02/05/2021)

126 Chapter 7 Tabular Text Embeddings

Figure 7.5: Precision-Recall Curves of Instance-Of Relations

a threshold th separates the cosine similarity values of all valid pairs from the values of
all negative sample pairs:

∀〈v1, v2〉 ∈ Ev : simcos(M(v1), M(v2)) > th (7.4)

∀〈n1, n2〉 ∈ En : simcos(M(n1), M(n2)) ≤ th

Higher thresholds lead to more undetected relations (false negatives) and lower values
to more falsely detected relations (false positives). To evaluate an embedding model, we
calculate all cosine similarity values and sort the pairs accordingly. For each position in
the resulting list, one can calculate precision and recall. For the Web table embedding
models, class terms are encoded with header embeddings and instance terms with data
embeddings.

Results: Figure 7.5 presents the resulting precision-recall curves for the Web table em-
bedding models, the fastText word embedding model, and the other popular word em-
bedding models. The area under the curve (AUC) for the schema-aware Web table em-
bedding models is much larger than the AUC of the word embedding models, Wplain ,
and Wrow model.

7.4.2 Table Union Search Evaluation

To evaluate the unionability search (see Section 7.3.1), we use a benchmark8 introduced
by [NZPM18]. It contains annotated unionable columns of tables created from real-world
data of an open data repository. To evaluate embedding models, we sample 10, 000
unionable column pairs and 20, 000 non-unionable column pairs from this dataset. After-
ward, we use the embedding model to obtain a vector for each text value in the columns
and calculate for each column the mean embedding vector. Then, we calculate the cosine
similarity values for each pair in the sample sets to create a ranking of the pairs where
high values should indicate unionability. Figure 7.6a shows the interpolated precision-
recall curves for the rankings obtained by different embedding models. The best ranking
is obtained by the Web table embedding models with pre-processing followed by the
baseline Web table embedding model Wplain . A fastText model as used by [NZPM18]

8https://github.com/RJMillerLab/table-union-search-benchmark (Small) (Access: 02/05/2021)

7.4 Evaluation 127

(a) Column to Column (b) Column to Column Header

Figure 7.6: Precision-Recall Curves of Unionability Search

constructs a less optimal ranking. The transformer-based table embedding models TaPas
and TURL only obtain similar results like the fastText model. This might be the case
since those models are not designed for such unsupervised tasks. A fine-tuning with the
unionability benchmark might be beneficial to obtain better static embedding vectors.

For some applications, only the schema of the candidate tables is available since retriev-
ing the data of all tables is not possible or too costly. To cope with this setting, we obtain
embeddings of the headers of the candidate columns instead of mean embeddings to
pre-filter candidates. For Wtax , Wrow , and Wcombo, we use the encoding model for header
cells. Figure 7.6a shows the result obtained in this setting. Here, also Wtax and Wcombo

achieve the best performance on this much harder retrieval task. Wplain and fT − W ,
which can not implement a different encoding for header cells, achieve lower precision
values. TaPas and TURL achieve comparably worse results. Since those models are de-
signed to encode a whole table, a single header cell might not be a suitable input. Wrow

achieves the lowest AUC score since it does not model relations between header and data
cells.

7.4.3 Table Layout Classification

For our evaluation of the layout classification model (see Section 7.3.2), we use a human-
labeled dataset similar to the one used by [EBH+15]. The novel dataset contains more
tables than the previously used table collection.

128 Chapter 7 Tabular Text Embeddings

Figure 7.7: Layout Classification Accuracy

ENTITY MATRIX RELATION OTHER

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

RF 87.93 87.44 87.67 84.66 75.16 79.58 80.16 89.79 84.70 85.19 68.37 75.80
Wplain 87.02 90.07 88.51 77.14 83.49 80.15 86.05 84.91 85.46 81.37 72.79 76.78
Wrow 87.74 90.03 88.85 76.86 84.25 80.30 86.27 84.48 85.34 80.65 73.92 77.07
Wtax 86.97 90.47 88.66 78.78 81.78 80.15 85.46 86.35 85.88 84.36 72.66 78.03
Wcombo 87.64 89.74 88.66 78.53 81.34 79.81 85.15 86.61 85.85 83.32 73.06 77.80
fT-W 80.75 88.18 84.26 79.94 69.93 74.55 80.08 84.07 82.00 79.54 63.40 70.45

Voting Classifier

Wplain 88.08 90.79 89.40 80.76 82.31 81.49 85.65 87.76 86.69 84.54 72.83 78.21
Wrow 88.38 90.76 89.54 81.10 82.36 81.65 85.56 87.64 86.57 83.99 73.10 78.11
Wtax 87.94 90.96 89.41 81.34 80.92 81.04 85.56 87.64 86.57 83.99 73.10 78.11
Wcombo 88.45 90.30 89.35 80.90 80.29 80.52 84.76 88.67 86.65 85.59 72.61 78.53
fT-W 83.74 90.53 86.97 84.02 72.09 77.54 81.53 87.43 84.36 85.39 66.41 74.64

Table 7.1: Table Layout Classification Results

Human-Labeled Dataset: The dataset is created by experts using a Web tool specifically
designed for this purpose9. We published the dataset10 to enable others to reproduce our
result and further investigate the table layout classification problem. It contains 5,777
tables. We consider only the English tables since our embedding model is trained on
English data. Those comprise 75% of the dataset.

Baselines: We compare the results of our Web table embedding models to the random
forest model proposed in [EBH+15], which serves as a baseline (RF). To train and evaluate
the random forest model, we extract the same features engineered by the authors for all
tables in the dataset. Besides, we use the pre-trained Wikipedia fastText model (fT-W)
introduced above together with our LSTM-based classifier to compare it to our Web table
embedding models.

Model Training: All models are trained 50 times on 1,732 samples (40%). The accu-
racy is validated on 2,165 random samples (50%). 10% of the data are ignored and only

9https://github.com/jgonsior/dwtc-table-manual-classificator (Access: 02/05/2021)
10https://wwwdb.inf.tu-dresden.de/misc/web-table-embeddings/labeled_layouts/data.db.gz

(Access: 03/16/2021)

7.4 Evaluation 129

used for monitoring the training process. We train the LSTM model with the novel Web
table embeddings and the fT-W model. As described in Section 7.3.2, we use the embed-
ding models to encode text values in the cells of the tables. However, for the English
fastText model , we do not encode the text values with a special alphabet and obtain
only one embedding per text value. The random forest classifier is trained with the
hand-crafted features of [EBH+15]. In addition, we investigated combinations of the
hand-crafted features and embedding features. However, concatenating the manually
designed structured features with the embedding features to train a classifier leads to
poor performance. This might be the case because random forest classifiers generally
perform better on structured data, and neural network classifiers achieve better results
on embedding features [AP21]. Thus, we combine the classifiers themselves by a simple
voting method that averages the prediction of both classifiers.

Results: Figure 7.7 presents the distributions of the accuracy values obtained in the
evaluation of the models. The LSTM model outperforms the baseline when using Web
table embeddings, whereas it delivers the lowest accuracy with word embeddings. In
combination with the RF baseline (Voting), the accuracy values of all embedding models
improve. A closer look reveals that the schema-aware models Wtax and Wcombo perform
slightly better than the other Web table embedding models. The mean accuracy values of
Wtax (p = 0.005) and Wcombo (p = 0.049) are significantly higher than the mean accuracy
of Wrow . Table 7.1 presents the results for each layout type. The Web table embedding
models achieve better F1 scores than the RF classifier and the fT-W model on all classes.
Wtax and Wcombo perform slightly better on tables with classes Relation and Other com-
pared to Wrow and Wplain .

7.4.4 Spreadsheet Cell Classification

In the following, we present the evaluation of our GNN-based model for spreadsheet
cell classification (see Section 7.3.2) with different embedding models. We conduct this
evaluation on a dataset of annotated spreadsheets. A random forest classifier working
with manually selected structured features [KTRML16] serves as a competitive baseline.

Dataset: The DECO dataset published in [KTR+19] provides a comprehensive collec-
tion of 854 sheets with annotations for all non-empty cells in the sheets. Cells are an-
notated with seven labels. According to [Koc20], those are assigned to the three meta
labels mentioned in Section 7.3.2: DATA (DATA, DERIVED, and GROUPHEAD), HEADER
(HEADER), and METADATA (METATITLE, NOTES, and OTHER). While the dataset con-
tains 1.7M labeled cells, most of the cells (> 94%) belong to the “Data” metaclass, and
only very few labels are Headers (< 1.7%). Therefore, we evaluate our classifier only on
181 small sheets with up to 100 cells, which have a more even distribution of the labels
(Data: 78%, Header: 13%, Metadata: 9%).

Baseline: For the cell classification problem, [KTRML16] proposes a comprehensive set
of hand-crafted features. Further, the authors in [KTRML16] evaluate several common
classifiers on those features. As the random forest classifier achieves the highest accuracy,
we use it together with the features extracted for the DECO dataset features11 as a base-
line approach in our experiments. In addition, we also used the pre-trained Wikipedia
fastText model (fT-W) as a baseline embedding model for training our proposed GNN-
based model.

11https://drive.google.com/file/d/1_xOEBfryuFzOUU6bHRZOJl8m1bYko4Wg/view?usp=sharing
(Access: 02/05/2021)

130 Chapter 7 Tabular Text Embeddings

Figure 7.8: Cell Classification Accuracy

DATA HEADER METADATA

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

RF 92.4 97.6 94.9 86.3 81.4 83.6 78.1 46.1 57.4
Wplain 94.8 95.2 94.9 89.4 87.7 88.5 56.5 54.9 54.8
Wrow 94.3 96.0 95.2 89.8 88.0 88.8 60.0 50.1 53.2
Wtax 94.1 96.5 95.3 88.3 87.9 88.0 64.3 48.2 53.9
Wcombo 94.2 95.7 95.0 88.5 88.1 88.3 60.0 50.3 53.2
fT-W 92.2 93.6 92.9 81.9 79.9 80.8 53.0 46.2 48.1

Voting Classifier (GNN-Model + Random Forest)

Wplain 94.5 97.9 96.2 92.2 88.8 90.4 73.2 53.6 61.2
Wrow 94.3 98.5 96.3 92.7 89.0 90.8 77.8 49.9 60.0
Wtax 94.0 98.5 96.2 91.5 88.6 90.0 79.3 48.6 59.6
Wcombo 94.1 98.3 96.1 91.8 89.1 90.4 77.4 49.9 59.7
fT-W 92.6 97.3 94.9 88.7 82.9 85.6 71.5 46.4 55.3

Table 7.2: Evaluation Results for Layout Types

Model Training: For the training of each model, we sample 50 times 72 sheets as a
training set and 90 sheets for testing. In this way, the models are required to classify
cells from unseen sheets on the test set. For the random forest classifier, we create feature
vectors from the manually designed features. Therefore, we encode categorical features
by one-hot encodings. To apply the GNN model, we create graphs for all sheets in the
training and testing set. The graphs are annotated with feature vectors obtained by an
embedding model for the content of each cell. Therefore, we use our three Web table em-
bedding models and the fastText model fT-W. As described in Section 7.3.2, we obtain for
schema-aware models two embeddings for each type and concatenate them. For Wplain

and fT-W, only one embedding is obtained for each cell. The training of the GNN is
done in 150 epochs with the Adam optimizer [KB15]. In addition, we again use a voting
method to combine the random forest classifier with the GNN-based classifiers.

Results: Figure 7.8 presents the distributions of the accuracy values of the classification
models. As one can see, GNN models trained on Web table embedding models outper-
form the GNN model trained with word embeddings and achieve similar results as the
random forest classifier. All GNN models can profit from a combination with the random
forest classifier via the voting method. Table 7.2 shows the class-specific mean values for

7.4 Evaluation 131

precision, recall, and F1 score. The random forest model is better at recognizing meta-
data cells. This might be the case since metadata cells can be identified by the style and
font features that the GNN model does not consider. In contrast, the GNN models obtain
much better F1 scores for header cells. The voting classifiers achieve the best F1 scores
for all classes.

7.5 SUMMARY

In this chapter, we discussed the training of embedding models on tabular data. There-
fore, we reviewed techniques proposed for embedding tabular content in Section 7.1.
Those include embedding models, which produce static embedding representations for
cells in tables, and contextualized table embedding models, which are in the primary
focus of current research in this field. Then, we presented our techniques for serializ-
ing tables for training embedding models in Section 7.2. Thereby, we take into account
our requirements defined for a table embedding technique in Section 3.8, which are not
completely covered by the related work. Furthermore, we implement novel solutions for
data discovery tasks like table union search, table layout classification, and spreadsheet
cell type classification (see Section 7.3). We used the proposed embedding procedure
to pre-train several table embedding models. We then conducted in Section 7.4 a com-
prehensive evaluation on them. The results show that those models capture semantic
relations between schema text and text in instance data not recognized by word embed-
ding model trained on text (Section 7.4.1). In Section 7.4.2, we compared our embedding
models to word embedding models and transformer-based table embedding models in
the table union search tasks. In contrast to those recently proposed table embedding
models, our models are designed to obtain static embedding representations and do not
aim at encoding a whole input table. In the proposed setting, our static table embedding
models outperform those complex models. This indicates that those models are less use-
ful compared to static embedding techniques in unsupervised settings. An interesting
research direction would be to investigate how fine-tuning methods could be employed
to produce better static embedding representations of cells with those models. We fur-
ther evaluated our embedding models together with our supervised ML models for table
layout classification (see Section 7.4.3) and spreadsheet cell type classification (see Sec-
tion 7.4.4). The results demonstrate that our models are useful for a wide range of ap-
plications and a diverse set of tabular data formats. Our findings suggest that models
pre-trained on tables constitute competitive alternatives to pre-trained embeddings on
text. This is especially the case for applications where tabular and or schema information
has to be modeled.

132 Chapter 7 Tabular Text Embeddings

8
CONCLUSION

In this last chapter, we summarize the content of this thesis to provide a general overview
of the motivation, challenges, and results of our research in Section 8.1. Further, Sec-
tion 8.2 discusses directions for future work.

8.1 SUMMARY

The focus of this thesis is the integration of techniques based on word embedding models
into relational database systems. Accordingly, we began with a comprehensive overview
of word embedding algorithms and their application for data management tasks in Chap-
ter 2. In this context, we also discussed the differences between static and contextualized
word embedding techniques. The focus in this thesis lay on static embedding repre-
sentations and their integration in database systems. However, multiple methods have
been proposed to generate static representations with contextualized word embedding
models. We described the properties of word embedding representations and techniques
for the evaluation of word embedding models. We also introduce techniques like node
embedding methods and graph neural networks, which are closely related to word em-
bedding techniques and have also inspired our research. Finally, we gave an overview of
applications of word embedding models on tabular data, which serve as inspiration for
our research and can potentially benefit from it.

Chapter 3 gave a detailed overview of our goals for integrating word embeddings into
database systems. Those have a two-fold character. On the one hand, we intended to use
word embeddings to extend the text analysis capabilities of database systems. On the
other hand, our research focus encompasses the development of novel algorithms to im-
prove applications of word embedding models working with tabular data. We surveyed
existing systems for managing word embedding models and analyzed popular word em-
bedding models to identify requirements for handling word embeddings in database
systems. To further refine our research focus and challenges, we designed an system
overview with five components. Those components encompass the (a) novel word em-
bedding operations, (b) fast access methods for embedding representations, (c) novel
optimizing algorithms for embedding representations of text values in the database, (d)
solutions for recommending pre-trained embedding models, and (e) embedding tech-
niques for tabular data. For all of them, we gave motivation and analyzed the challenges
that lead to concrete requirements.

133

The subject of Chapter 4 is the extension of the capabilities of database systems with
word embedding techniques. In this context, we described the system architecture and
implementation of our PostgreSQL extension FREDDY, which integrates novel word em-
bedding operations in the DBMS, and the associated Web interface. Moreover, we investi-
gated techniques for optimizing the run-time performance of the embedding operations.
Since most word embedding operations can be executed via the kNN-Join operations, we
review the scientific literature on kNN search. After discussing the advantages and dis-
advantages of current approaches for kNN search in database systems applicable for our
problem, we introduced our novel flexible algorithm for approximate kNN-Joins, which
we integrated into the FREDDY extension. This algorithm builds on the related work but
implements novel optimization techniques to better fit the requirements of word embed-
ding operations. Moreover, we integrated a novel kNN-Join algorithm for binary word
embedding representations. In our evaluation, we demonstrated that our proposed op-
timizations effectively increase the performance of the kNN-Join algorithm and the effi-
ciency of the kNN-Join operation for bit-vectors.

In Chapter 5, we investigated techniques for optimizing embedding representations of
text values in relational database systems. Therefore, we surveyed embedding tech-
niques to create vector representations that capture semantic properties of text values
obtained from relational data and text documents. Based on the concept of retrofitting,
we designed a novel algorithm with the specific goal of optimizing embedding represen-
tations of text values in database systems. This algorithm incorporates relational infor-
mation obtained from the alignment of text values in the database and foreign key rela-
tions into embedding representations derived for the text values from pre-trained word
embedding models. In addition, we designed an online algorithm to support instant op-
timization of embedding representations of text values added to the database with insert
queries. For our evaluation, we developed simple feed-forward and complex graph neu-
ral network classification models for various classification tasks. Our results demonstrate
how those ML models profit from the optimization of embedding representations.

For the recommendation of pre-trained word embedding models, Chapter 6 investigates
techniques for domain-specific word embedding evaluation. Our review on word em-
bedding evaluation techniques indicates that an evaluation based on currently available
datasets is not appropriate for deciding on a pre-trained word embedding model for a
particular domain. To solve this problem, we developed an extraction framework to
construct comprehensive word embedding evaluation datasets from a large collection of
tabular data. We employ our approach on a large corpus of millions of Web tables to
obtain a dataset covering a wide range of domains and relation types. Because of the the
dataset’s facet-structured architecture, one can obtain a detailed report on the applicabil-
ity of word embedding models for specific domains and applications. Our evaluation of
common pre-trained word embedding models on this dataset indicates that there is not
a single best model for all applications.

Finally, Chapter 7 is concerned with methods for training embedding models on tabular
data. Here, we investigated static and contextualized embedding techniques for tables
and their limitations. Current techniques cannot differentiate between cells modeling
schema and instance data, suffer from the out-of-vocabulary problem, or are not effective
for obtaining static embedding representations. We presented a novel embedding ap-
proach covering all those aspects. In our evaluation, we demonstrated that our approach
effectively models relations between schema information and instance data. Moreover,
we showed that models pre-trained with our approach are applicable for several different
application tasks and tabular data formats.

134 Chapter 8 Conclusion

8.2 DIRECTIONS FOR FUTURE WORK

Developing embedding models for text, tabular data, and other data formats is still an ac-
tive research field. Moreover, embedding techniques and their applications for database
systems and tabular data gain more and more attention in the data management commu-
nity. Accordingly, further integrating word embedding techniques and database systems
is definitely an interesting topic for future research. In the following, we present some
promising directions, which arise from our work on this topic:

Novel word embedding operations: The novel word embedding operations, which we
integrate into FREDDY, already offer a wide range of novel text analysis capabilities.
However, word embedding models offer many other query opportunities one could in-
tegrate into relational database systems. Specifically, systems like TabVec [GGS18] allow
users to label objects based on the clustering of embedding vectors. More comprehensive
clustering operations could support such applications, e.g., for fitting a clustering to a
given set of labels. Moreover, techniques like [MLS13] allow the projection of embedding
representations between different models. Integrating such techniques into database sys-
tems would enable novel operations like cross-lingual similarity search. Besides, con-
textualized embedding models offer a wide range of new query possibilities, e.g., high
performance in tasks like question answering [DCLT19, HNM+20] and table summariza-
tion [GCS19]. First attempts to integrate those capabilities into database systems have
been made by NeuralDB [TYS+21], which offers an efficient query engine for answering
natural language queries over a database storing a large document collection.

Deep integration of kNN-Join algorithm: Our novel kNN-Join algorithm already a-
chieves large performance gains in comparison to a naïve algorithm. However, deeper
integration of our proposed index structures into PostgreSQL could lead to further per-
formance improvements. In [YLFW20], the authors propose a deep integration of index
structures based on product quantization into PostgreSQL, which leads to significant per-
formance gains. By further integrating our index structures into PostgreSQL, one could
also address the optimization of queries involving multiple kNN-Join operations and em-
bedding models. Moreover, in our search algorithm, one could integrate techniques for
an automatic configuration of the hyperparameters for specific precision and execution
time requirements. In this way, the usability of the algorithm could be increased.

Support a wider range of embedding models: While this thesis restricts its focus on
embedding models for text values in the database, it would be useful to support em-
bedding representations for other data types. While some techniques developed in this
thesis, like the kNN-Join algorithm, could be easily used for vector representations like
image descriptors [Low04] and node embeddings (see Section 2.2.6), different embedding
representations might require different operations. Moreover, our relational retrofitting
algorithm can not take non-textual values into account. We presume that embedding
representations of text values could be improved by techniques for including numerical
values and embedding representations of non-textual content into RETRO.

8.2 Directions for Future Work 135

136 Chapter 8 Conclusion

BIBLIOGRAPHY

[ABF20] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-
Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Al-
gorithms. Information Systems, 87:101374, 2020.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A System
for Keyword-Based Search Over Relational Databases. In Proceedings 18th
International Conference on Data Engineering, pages 5–16. IEEE, 2002.

[AG16] Oded Avraham and Yoav Goldberg. Improving Reliability of Word Similar-
ity Evaluation by Redesigning Annotation Task and Performance Measure.
In Proceedings of the 1st Workshop on Evaluating Vector-Space Representations
for NLP, pages 106–110, 2016.

[AKLS15] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Cache
Locality is Not Enough: High-performance Nearest Neighbor Search with
Product Quantization Fast Scan. Proceedings of the VLDB Endowment,
9(4):288–299, 2015.

[ALM17] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Simple but Tough-to-Beat
Baseline for Sentence Embeddings. In 5th International Conference on Learning
Representations, ICLR 2017, 2017.

[AM93] Sunil Arya and David M Mount. Approximate Nearest Neighbor Queries
in Fixed Dimensions. In Proceedings of the Fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 271–280. Citeseer, 1993.

[AMCG15] Abdulaziz Alghunaim, Mitra Mohtarami, Scott Cyphers, and Jim Glass. A
Vector Space Approach for Aspect Based Sentiment Analysis. In Proceedings
of the 1st Workshop on Vector Space Modeling for Natural Language Processing,
pages 116–122, 2015.

[AMN+98] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and
Angela Y Wu. An Optimal Algorithm for Approximate Nearest Neigh-
bor Searching Fixed Dimensions. Journal of the ACM (JACM), 45(6):891–923,
1998.

[AP21] Sercan Ö. Arik and Tomas Pfister. TabNet: Attentive Interpretable Tab-
ular Learning. Proceedings of the AAAI Conference on Artificial Intelligence,
35(8):6679–6687, May 2021.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal Data-Dependent Hashing
for Approximate Near Neighbors. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, pages 793–801, 2015.

[Ass08] Association for Logic, Language and Information. ESSLLI 2008 Workshop on
Distributional Lexical Semantics, 2008.

137

[AZLY19] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learn-
ing Distributed Representations of Code. Proceedings of the ACM on Program-
ming Languages, 3(POPL):1–29, 2019.

[Bak18] Amir Bakarov. A Survey of Word Embeddings Evaluation Methods. CoRR,
abs/1801.09536, 2018.

[BAMK16] Danushka Bollegala, Mohammed Alsuhaibani, Takanori Maehara, and Ken-
ichi Kawarabayashi. Joint Word Representation Learning using a Corpus
and a Semantic Lexicon. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, pages 2690–2696. AAAI Press, 2016.

[BBBT12] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. Distri-
butional Semantics in Technicolor. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
136–145. ACL, 2012.

[BBN19] Dan Brickley, Matthew Burgess, and Natasha Noy. Google Dataset Search:
Building a Search Engine for Datasets in an Open Web Ecosystem. In The
World Wide Web Conference, pages 1365–1375. ACM, 2019.

[BBS17] Rajesh Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. Cognitive
Database: A Step towards Endowing Relational Databases with Artificial
Intelligence Capabilities. CoRR, abs/1712.07199, 2017.

[BCZ+16] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and
Adam Tauman Kalai. Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. In Advances in Neural Informa-
tion Processing Systems, pages 4349–4357. Curran Associates, Inc., 2016.

[BDC20] Rishi Bommasani, Kelly Davis, and Claire Cardie. Interpreting Pretrained
Contextualized Representations via Reductions to Static Embeddings. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pages 4758–4781. ACL, 2020.

[BDK14] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, pre-
dict! A Systematic Comparison of Context-Counting vs. Context-Predicting
Semantic Vectors. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 238–247. ACL,
2014.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, USA, 1957.

[Ben75] Jon Louis Bentley. Multidimensional Binary Search Trees used for Associa-
tive Searching. Communications of the ACM, 18(9):509–517, 1975.

[BG19] Yonatan Belinkov and James Glass. Analysis Methods in Neural Language
Processing: A Survey. Transactions of the Association for Computational Lin-
guistics, 7:49–72, 2019.

[BGJM17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching Word Vectors with Subword Information. Transactions of the Associ-
ation for Computational Linguistics, 5:135–146, 2017.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is ”Nearest Neighbor” Meaningful? In Proceedings of the 7th Inter-
national Conference on Database Theory, pages 217–235. Springer, 1999.

138 BIBLIOGRAPHY

[BK16] Oren Barkan and Noam Koenigstein. Item2vec: Neural Item Embedding for
Collaborative Filtering. In 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2016.

[BKK96] Stefan Berchtold, Daniel A Keim, and Hans-Peter Kriegel. The X-tree: An
Index Structure for High-Dimensional Data. In Proceedings of the 22th Inter-
national Conference on Very Large Data Bases, pages 28–39. Morgan Kaufmann
Publishers Inc., 1996.

[BKR+16] Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, and David
Weir. A Critique of Word Similarity as a Method for Evaluating Distri-
butional Semantic Models. In Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 7–12. ACL, 2016.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. In Proceedings of the 1990 ACM SIGMOD international conference
on Management of data, pages 322–331. ACM, 1990.

[BL00] Vanda Broughton and Heather Lane. Classification Schemes Revisited: Ap-
plications to Web Indexing and Searching. Journal of internet cataloging, 2(3-
4):143–155, 2000.

[BL12] Artem Babenko and Victor Lempitsky. The Inverted Multi-Index. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 3069–3076. IEEE,
2012.

[BN01] Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Tech-
niques for Embedding and Clustering. In Advances in Neural Information
Processing Systems, volume 14, pages 585–591. MIT Press, 2001.

[BS17] Rajesh Bordawekar and Oded Shmueli. Using Word Embedding to Enable
Semantic Queries in Relational Databases. In Proceedings of the 1st Workshop
on Data Management for End-to-End Machine Learning, pages 1–4, 2017.

[BS20] Ursin Brunner and Kurt Stockinger. Entity Matching with Transformer Ar-
chitectures - A Step Forward in Data Integration. In International Conference
on Extending Database Technology, Copenhagen, 30 March-2 April 2020, pages
463–473. OpenProceedings, 2020.

[BSS+18] Felix Biessmann, David Salinas, Sebastian Schelter, Philipp Schmidt, and
Dustin Lange. Deep Learning for Missing Value Imputation in Tables with
Non-Numerical Data. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages 2017–2025. ACM, 2018.

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating Embeddings for Modeling Multi-Relational
Data. In Advances in Neural Information Processing Systems, pages 2787–2795.
Curran Associates, Inc., 2013.

[BZH+21] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu,
Michael Lyu, and Irwin King. BinaryBERT: Pushing the Limit of BERT
Quantization. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 4334–4348. ACL, 2021.

[CCN16] J. Camacho-Collados and R. Navigli. Find the Word that does not belong: A
Framework for an Intrinsic Evaluation of Word Vector Representations. In
Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for
NLP, pages 43–50. ACL, 2016.

BIBLIOGRAPHY 139

[CDA+17] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Spe-
cia. SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and
Cross-Lingual Focused Evaluation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pages 1–14. ACL, 2017.

[CH90] Kenneth Ward Church and Patrick Hanks. Word Association Norms, Mu-
tual Information, and Lexicography. Computational Linguistics, 16(1):22–29,
1990.

[Cha02] Moses S Charikar. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting, pages 380–388. ACM, 2002.

[CHZ+08] Michael J Cafarella, Alon Y Halevy, Yang Zhang, Daisy Zhe Wang, and Eu-
gene Wu. Uncovering the Relational Web. In Proceedings of the 11th Interna-
tional Workshop on Web and Databases, 2008.

[CKS+17] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine
Bordes. Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 670–680. ACL, 2017.

[CLK+16] Fernando Chirigati, Jialu Liu, Flip Korn, You Wu, Cong Yu, and Hao Zhang.
Knowledge Exploration Using Tables on the Web. Proceedings of the VLDB
Endowment, 10(3):193–204, 2016.

[CLLM20] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Gen-
erators. In International Conference on Learning Representations, 2020.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to Algorithms. MIT press, 2009.

[CPT20] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan.
Creating Embeddings of Heterogeneous Relational Datasets for Data Inte-
gration Tasks. In Proceedings of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, pages 1335–1349. ACM, 2020.

[CTT00] Hsin-Hsi Chen, Shih-Chung Tsai, and Jin-He Tsai. Mining Tables from Large
Scale HTML Texts. In COLING: The 18th International Conference on Compu-
tational Linguistics, pages 166–172. Morgan Kaufmann, 2000.

[DCES04] Souripriya Das, Eugene Inseok Chong, George Eadon, and Jaannathan
Srinivasan. Supporting Ontology-Based Semantic Matching in RDBMS. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30, pages 1054–1065. VLDB Endowment, 2004.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171–4186. ACL, 2019.

[DDF+90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
and Richard Harshman. Indexing by Latent Semantic Analysis. Journal of
the American Society for Information Science, 41(6):391–407, 1990.

140 BIBLIOGRAPHY

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.
Locality-Sensitive Hashing Scheme Based on p-stable Distributions. In Pro-
ceedings of the 20th Annual Symposium on Computational Geometry, pages 253–
262. ACM, 2004.

[DM01] Inderjit S Dhillon and Dharmendra S Modha. Concept Decompositions for
Large Sparse Text Data Using Clustering. Machine Learning, 42(1-2):143–175,
2001.

[Doz16] Timothy Dozat. Incorporating Nesterov Momentum into Adam. 2016.

[DSL+20] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. TURL: Table
Understanding through Representation Learning. Proceedings of the VLDB
Endowment, 14(3):307–319, 2020.

[DTXO21] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional
Similarity-Based Approach. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE), pages 456–467. IEEE, 2021.

[EAT19] Sepehr Eghbali, Hassan Ashtiani, and Ladan Tahvildari. Online Nearest
Neighbor Search using Hamming Weight Trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(7):1729–1740, 2019.

[EBH+15] Julian Eberius, Katrin Braunschweig, Markus Hentsch, Maik Thiele, Ahmad
Ahmadov, and Wolfgang Lehner. Building the Dresden Web Table Corpus:
A Classification Approach. In 2015 IEEE/ACM 2nd International Symposium
on Big Data Computing (BDC), pages 41–50. IEEE, 2015.

[Edw21] Chris Edwards. The Best of NLP. Communications of the ACM, 64(4):9–11,
2021.

[Eis19] Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press,
2019.

[EKS+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, pages 226–231. AAAI Press, 1996.

[ETBL15] Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang Lehner.
Top-K Entity Augmentation Using Consistent Set Covering. In Proceedings
of the 27th International Conference on Scientific and Statistical Database Man-
agement, pages 1–12. ACM, 2015.

[ETJ+18] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty,
Mourad Ouzzani, and Nan Tang. Distributed Representations of Tuples
for Entity Resolution. Proceedings of the VLDB Endowment, pages 1454–1467,
2018.

[FB74] Raphael A. Finkel and Jon Louis Bentley. Quad Trees a Data Structure for
Retrieval on Composite Keys. Acta Informatica, 4(1):1–9, 1974.

[FBF77] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An Algo-
rithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans-
actions on Mathematical Software (TOMS), 3(3):209–226, 1977.

BIBLIOGRAPHY 141

[FDJ+15] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard
Hovy, and Noah A Smith. Retrofitting Word Vectors to Semantic Lexicons.
In Proceedings of the 2015 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
1606–1615. ACL, 2015.

[FGM+01] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. Placing Search in Context: The
Concept Revisited. In Proceedings of the 10th International Conference on World
Wide Web, pages 406–414. ACM, 2001.

[FMQ+18] Raul Castro Fernandez, Essam Mansour, Abdulhakim A Qahtan, Ahmed
Elmagarmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stone-
braker, and Nan Tang. Seeping Semantics: Linking Datasets using Word
Embeddings for Data Discovery. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE), pages 989–1000. IEEE, 2018.

[FN75] Keinosuke Fukunaga and Patrenahalli M. Narendra. A Branch and Bound
Algorithm for Computing k-Nearest Neighbors. IEEE Transactions on Com-
puters, 24:750–753, 1975.

[GAKS14] Ivan Giangreco, Ihab Al Kabary, and Heiko Schuldt. ADAM - A Database
and Information Retrieval System for Big Multimedia Collections. In 2014
IEEE International Congress on Big Data, pages 406–413. IEEE, 2014.

[Gam19] Pablo Gamallo. Using the Outlier Detection Task to Evaluate Distributional
Semantic Models. Machine Learning and Knowledge Extraction, pages 211–223,
2019.

[GAS16] Josu Goikoetxea, Eneko Agirre, and Aitor Soroa. Single or Multiple? Com-
bining Word Representations Independently Learned from Text and Word-
Net. In Thirtieth AAAI Conference on Artificial Intelligence, pages 2608–2614.
AAAI Press, 2016.

[GBH18] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyper-
bolic Neural Networks. In Advances in Neural Information Processing Systems,
pages 5350–5360. Curran Associates, Inc., 2018.

[GBL14] Bin Gao, Jiang Bian, and Tie-Yan Liu. WordRep: A Benchmark for Research
on Learning Word Representations. CoRR, abs/1407.1640, 2014.

[GBM16] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. Schema.org: Evolu-
tion of Structured Data on the Web. Communications of the ACM, 59(2):44–51,
2016.

[GCS19] Li Gong, Josep M Crego, and Jean Senellart. Enhanced Transformer Model
for Data-To-Text Generation. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 148–156. ACL, 2019.

[GF18] Palash Goyal and Emilio Ferrara. Graph Embedding Techniques, Appli-
cations, and Performance: A Survey. Knowledge-Based Systems, 151:78–94,
2018.

[GFEC16] Sahar Ghannay, Benoit Favre, Yannick Esteve, and Nathalie Camelin. Word
Embedding Evaluation and Combination. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC’16), pages 300–
305. European Language Resources Association (ELRA), 2016.

142 BIBLIOGRAPHY

[GGPS20] Majid Ghasemi-Gol, Jay Pujara, and Pedro Szekely. Learning Cell Embed-
dings for Understanding Table Layouts. Knowledge and Information Systems,
pages 1–26, 2020.

[GGS18] Majid Ghasemi-Gol and Pedro Szekely. TabVec: Table Vectors for Classifica-
tion of Web Tables. arXiv preprint arXiv:1802.06290, 2018.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search in
High Dimensions via Hashing. In Proceedings of the 25th International Confer-
ence on Very Large Data Bases, VLDB ’99, pages 518–529, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[GJ21] Prakhar Gupta and Martin Jaggi. Obtaining Better Static Word Embeddings
Using Contextual Embedding Models. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), pages 5241–5253. ACL, 2021.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 855–864. ACM, 2016.

[Gol17] Yoav Goldberg. Neural Network Methods for Natural Language Process-
ing. Synthesis Lectures on Human Language Technologies, 10(1):1–309, 2017.

[GOTL20] Michael Günther, Philipp Oehme, Maik Thiele, and Wolfgang Lehner.
Learning from Textual Data in Database Systems. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pages
375–384. ACM, 2020.

[Gra84] Robert Gray. Vector Quantization. IEEE ASSP Magazine, 1(2):4–29, 1984.

[GRE+17] Anna Lisa Gentile, Petar Ristoski, Steffen Eckel, Dominique Ritze, and
Heiko Paulheim. Entity Matching on Web Tables: a Table Embeddings Ap-
proach for Blocking. In Proceedings of the 20th International Conference on Ex-
tending Database Technology (EDBT), pages 510–513. OpenProceedings, 2017.

[Gro20] Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a Theory
of Vector Embeddings of Structured Data. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
1–16. ACM, 2020.

[GSL+20] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Fe-
lix Chern, and Sanjiv Kumar. Accelerating Large-Scale Inference with
Anisotropic Vector Quantization. In International Conference on Machine
Learning, pages 3887–3896. PMLR, 2020.

[GSTL20a] Michael Günther, Paul Sikorski, Maik Thiele, and Wolfgang Lehner. FacetE,
2020. https://doi.org/10.34740/KAGGLE/DS/540160.

[GSTL20b] Michael Günther, Paul Sikorski, Maik Thiele, and Wolfgang Lehner. FacetE:
Exploiting Web Tables for Domain-Specific Word Embedding Evaluation.
In Proceedings of the Workshop on Testing Database Systems, pages 1–6. ACM,
2020.

[GTGL21] Michael Günther, Maik Thiele, Julius Gonsior, and Wolfgang Lehner. Pre-
Trained Web Table Embeddings for Table Discovery. In Fourth Workshop in
Exploiting AI Techniques for Data Management, pages 24–31. ACM, 2021.

BIBLIOGRAPHY 143

[GTL19a] Michael Günther, Maik Thiele, and Wolfgang Lehner. Fast Approximated
Nearest Neighbor Joins For Relational Database Systems. In Datenbanksys-
teme für Business, Technologie und Web (BTW), pages 225–244. Gesellschaft für
Informatik, 2019.

[GTL19b] Michael Günther, Maik Thiele, and Wolfgang Lehner. RETRO: Relation
Retrofitting For In-Database Machine Learning on Textual Data. arXiv
preprint arXiv:1911.12674, 2019.

[GTL20] Michael Günther, Maik Thiele, and Wolfgang Lehner. RETRO: Relation
Retrofitting For In-Database Machine Learning on Textual Data. In Pro-
ceedings of the 23rd International Conference on Extending Database Technology
(EDBT), pages 411–414. OpenProceedings, 2020.

[GTLY19] Michael Günther, Maik Thiele, Wolfgang Lehner, and Zdravko Yanakiev.
Explore FREDDY: Fast Word Embeddings in Database Systems. In
Datenbanksysteme für Business, Technologie und Web (BTW), pages 529–532.
Gesellschaft für Informatik, 2019.

[GTNL20] Michael Günther, Maik Thiele, Erik Nikulski, and Wolfgang Lehner. Retro-
Live: Analysis of Relational Retrofitted Word Embeddings. In Proceedings
of the 23rd International Conference on Extending Database Technology (EDBT),
pages 607–610. OpenProceedings, 2020.

[GTZ+20] Leilei Gan, Zhiyang Teng, Yue Zhang, Linchao Zhu, Fei Wu, and Yi Yang.
SemGloVe: Semantic Co-occurrences for GloVe from BERT. arXiv preprint
arXiv:2012.15197, 2020.

[Gün18] Michael Günther. FREDDY: Fast Word Embeddings in Database Systems. In
Proceedings of the 2018 International Conference on Management of Data, pages
1817–1819. ACM, 2018.

[Gut84] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In Proceedings of the 1984 ACM SIGMOD International Conference on Man-
agement of Data, pages 47–57. ACM, 1984.

[GVH+16] Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen.
SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Process-
ing, pages 2173–2182. ACL, 2016.

[Har54] Zellig S Harris. Distributional Structure. Word, 10(2-3):146–162, 1954.

[HAYSZ11] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang.
Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor
Graph. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, volume 22, pages 1312–1317. AAAI Press, 2011.

[HDGK12] Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. Large-
Scale Learning of Word Relatedness with Constraints. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge discovery and Data
Mining, pages 1406–1414. ACM, 2012.

[Her07] Susan C. Herring. A Faceted Classification Scheme for Computer-Mediated
Discourse. Language@Internet, 4(1), 2007.

[HMR86] Geoffrey E Hinton, James L McClelland, and David E Rumelhart. Dis-
tributed Representations. In Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Vol. 1: Foundations, pages 77–109. MIT Press,
1986.

144 BIBLIOGRAPHY

[HNM+20] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Pic-
cinno, and Julian Eisenschlos. TaPas: Weakly Supervised Table Parsing via
Pre-training. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4320–4333. ACL, 2020.

[HPR+21] Vinh Thinh Ho, Koninika Pal, Simon Razniewski, Klaus Berberich, and Ger-
hard Weikum. Extracting Contextualized Quantity Facts from Web Tables.
In Proceedings of the Web Conference 2021, pages 4033–4042. ACM, 2021.

[HPW21] Vinh Thinh Ho, Koninika Pal, and Gerhard Weikum. QuTE: Answering
Quantity Queries from Web Tables. In Proceedings of the 2021 International
Conference on Management of Data, pages 2740–2744. ACM, 2021.

[HRK15] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating Se-
mantic Models with (Genuine) Similarity Estimation. Computational Linguis-
tics, 41(4):665–695, 2015.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neu-
ral Computation, 9(8):1735–1780, 1997.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Sys-
tems, pages 1024–1034. Curran Associates, Inc., 2017.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, pages 604–613. ACM, 1998.

[IM18] Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based
on k-nearest neighbor graph for proximity search in high-dimensional data.
arXiv preprint arXiv:1810.07355, 2018.

[ITMI21] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. TABBIE: Pre-
trained Representations of Tabular Data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 3446–3456. ACL, 2021.

[IU18] Tomoharu Iwata and Naonori Ueda. Unsupervised Object Matching for
Relational Data. arXiv preprint arXiv:1810.03770, 2018.

[JDS11] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 33(1):117–128, 2011.

[KB15] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
3rd International Conference on Learning Representations (Poster), 2015.

[KB19] Masahiro Kaneko and Danushka Bollegala. Gender-Preserving Debiasing
for Pre-trained Word Embeddings. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 1641–1650. ACL, 2019.

[KDSG+16] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton,
et al. Magellan: Toward Building Entity Matching Management Systems.
Proceedings of the VLDB Endowment, 9(12):1197–1208, 2016.

[KHC15] Douwe Kiela, Felix Hill, and Stephen Clark. Specializing Word Embeddings
for Similarity or Relatedness. In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages 2044–2048. ACL, 2015.

BIBLIOGRAPHY 145

[Koc20] Elvis Koci. Layout Inference and Table Detection in Spreadsheet Documents. PhD
thesis, Technische Universität Dresden, Dresden; Polytechnic University of
Catalonia, Barcelona, 2020.

[KSKW15] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From Word
Embeddings to Document Distances. In Proceedings of the 32nd International
Conference on Machine Learning, pages 957–966. PMLR, 2015.

[KTR+19] Elvis Koci, Maik Thiele, Josephine Rehak, Oscar Romero, and Wolfgang
Lehner. DECO: A Dataset of Annotated Spreadsheets for Layout and Ta-
ble Recognition. In 2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1280–1285. IEEE, 2019.

[KTRL19] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. A Genetic-
Based Search for Adaptive Table Recognition in Spreadsheets. In 2019 In-
ternational Conference on Document Analysis and Recognition (ICDAR), pages
1274–1279. IEEE, 2019.

[KTRML16] Elvis Koci, Maik Thiele, Óscar Romero Moral, and Wolfgang Lehner. A
Machine Learning Approach for Layout Inference in Spreadsheets. In IC3K
2016: Proceedings of the 8th International Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge Management: Volume 1: KDIR,
pages 77–88. SciTePress, 2016.

[KW17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations. OpenReview.net, 2017.

[Lam18] Maximilian Lam. Word2bits - Quantized Word Vectors. arXiv preprint
arXiv:1803.05651, 2018.

[LB19] Oliver Lehmberg and Christian Bizer. Synthesizing N-ary Relations from
Web Tables. In Proceedings of the 9th International Conference on Web Intelli-
gence, Mining and Semantics. ACM, 2019.

[LD97] Thomas K Landauer and Susan T Dumais. A Solution to Plato’s Problem:
The Latent Semantic Analysis Theory of Acquisition, Induction, and Repre-
sentation of Knowledge. Psychological Review, 104(2):211, 1997.

[LDH+15] Ran Levy, Liat Ein Dor, Shay Hummel, Ruty Rinott, and Noam Slonim.
TR9856: A Multi-Word Term Relatedness Benchmark. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pages 419–424. ACL, 2015.

[Lei76] Gottfried Wilhelm Leibniz. Leibniz-Handschriften zur Philosophie LH 4, 5,
8. http://digitale-sammlungen.gwlb.de/resolve?id=00068621, 1676.

[LG14a] Omer Levy and Yoav Goldberg. Linguistic Regularities in Sparse and Ex-
plicit Word Representations. In Proceedings of the 18th Conference on Compu-
tational Natural Language Learning, pages 171–180. ACL, 2014.

[LG14b] Omer Levy and Yoav Goldberg. Neural Word Embedding as Implicit Matrix
Factorization. Advances in Neural Information Processing Systems, 27:2177–
2185, 2014.

[LJW+07] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In
33rd International Conference on Very Large Data Bases, VLDB 2007, pages 950–
961. ACM, 2007.

146 BIBLIOGRAPHY

[LLS+20a] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew
Tan. Deep Entity Matching with Pre-Trained Language Models. Proceedings
of the VLDB Endowment, 14(1):50–60, 2020.

[LLS+20b] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew
Tan. Deep Wntity Matching with Pre-Trained Language Models. arXiv
preprint arXiv:2004.00584, 2020.

[LMP18] Ben Lengerich, Andrew Maas, and Christopher Potts. Retrofitting Distri-
butional Embeddings to Knowledge Graphs with Functional Relations. In
Proceedings of the 27th International Conference on Computational Linguistics,
pages 2423–2436, Santa Fe, New Mexico, USA, August 2018. ACL.

[LNK07] David Liben-Nowell and Jon Kleinberg. The Link-Prediction Problem for
Social Networks. Journal of the American Society for Information Science and
Technology, 58(7):1019–1031, 2007.

[Low04] David G Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[LRMB16] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. A
Large Public Corpus of Web Tables containing Time and Context Metadata.
In Proceedings of the 25th International Conference Companion on World Wide
Web, pages 75–76. ACM, 2016.

[LSM13] M.-T. Luong, R. Socher, and C. D. Manning. Better Word Representations
with Recursive Neural Networks for Morphology. In Proceedings of the Sev-
enteenth Conference on Computational Natural Language Learning, pages 104–
113. ACL, 2013.

[LWW13] Lipyeow Lim, Haixun Wang, and Min Wang. Semantic queries by exam-
ple. In Proceedings of the 16th International Conference on Extending Database
Technology, pages 347–358. OpenProceedings, 2013.

[Man15] Christopher D. Manning. Computational Linguistics and Deep Learning.
Computational Linguistics, 41(4):701–707, 2015.

[MBXS17] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
Learned in Translation: Contextualized Word Vectors. In Advances in Neu-
ral Information Processing Systems, pages 6297–6308. Curran Associates, Inc.,
2017.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estima-
tion of Word Representations in Vector Space. In 1st International Conference
on Learning Representations, (ICLR), Workshop Track, 2013.

[Mit79] Jürgen Mittelstrass. The philosopher’s Conception of Mathesis Universalis
from Descartes to Leibniz. Annals of Science, 36(6):593–610, 1979.

[ML14] Marius Muja and David G Lowe. Scalable Nearest Neighbor Algorithms for
High Dimensional Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(11):2227–2240, 2014.

[MLR+18] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghaven-
dra. Deep Learning for Entity Matching: A Design Space Exploration. In
Proceedings of the 2018 International Conference on Management of Data, pages
19–34. ACM, 2018.

BIBLIOGRAPHY 147

[MLS13] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting Similarities
among Languages for Machine Translation. arXiv preprint arXiv:1309.4168,
2013.

[MNZ+18] Renée J Miller, Fatemeh Nargesian, Erkang Zhu, Christina Christodoulakis,
Ken Q Pu, and Periklis Andritsos. Making Open Data Transparent: Data
Discovery on Open Data. IEEE Data Eng. Bull., 41(2):59–70, 2018.

[Mor66] Guy M Morton. A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. International Business Machines Company, 1966.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed Representations of Words and Phrases and their Composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 3111–3119. Curran Associates, Inc., 2013.

[MST+16] Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić,
Lina M Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen,
and Steve Young. Counter-Fitting Word Vectors to Linguistic Constraints.
In Proceedings of the 2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
142–148. ACL, 2016.

[MY18] Yu A Malkov and Dmitry A Yashunin. Efficient and Robust Approxi-
mate Nearest Neighbor Search using Hierarchical Navigable Small World
Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(4):824–836, 2018.

[MYZ13] Tomas Mikolov, Scott Wen-tau Yih, and Geoffrey Zweig. Linguistic Reg-
ularities in Continuous Space Word Representations. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAACL-HLT-2013), pages
746–751. ACL, 2013.

[Nav02] Gonzalo Navarro. Searching in Metric Spaces by Spatial Approximation.
The VLDB Journal, 11(1):28–46, 2002.

[NCV+17] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan,
Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning Dis-
tributed Representations of Graphs. In Proceedings of the 13th International
Workshop on Mining and Learning with Graphs (MLG), 2017.

[NK17] Maximilian Nickel and Douwe Kiela. Poincaré Embeddings for Learning
Hierarchical Representations. In Advances in Neural Information Processing
Systems, pages 6341–6350. Curran Associates, Inc., 2017.

[NK18] Maximillian Nickel and Douwe Kiela. Learning Continuous Hierarchies in
the Lorentz Model of Hyperbolic Geometry. In International Conference on
Machine Learning, pages 3779–3788. PMLR, 2018.

[NMCC16] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. mproving
Document Ranking with Dual Word Embeddings. In Proceedings of the 25th
International Conference Companion on World Wide Web, pages 83–84. Interna-
tional World Wide Web Conferences Steering Committee, 2016.

148 BIBLIOGRAPHY

[NØL18] Farhad Nooralahzadeh, Lilja Øvrelid, and Jan Tore Lønning. Evaluation
of Domain-specific Word Embeddings using Knowledge Resources. In Pro-
ceedings of the Eleventh International Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan, May 2018. European Language Re-
sources Association (ELRA).

[NPZ+20] Fatemeh Nargesian, Ken Q Pu, Erkang Zhu, Bahar Ghadiri Bashardoost,
and Renée J Miller. Organizing Data Lakes for Navigation. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
pages 1939–1950. ACM, 2020.

[NZPM18] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. Table Union
Search on Open Data. Proceedings of the VLDB Endowment, 11(7):813–825,
2018.

[OB16] Eng-Jon Ong and Miroslaw Bober. Improved Hamming Distance Search
using Variable Length Substrings. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2000–2008. IEEE, 2016.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 701–710.
ACM, 2014.

[PB21] Ralph Peeters and Christian Bizer. Dual-Objective Fine-Tuning of BERT for
Entity Matching. Proceedings of the VLDB Endowment, 14:1913–1921, 2021.

[PCFN06] Rodrigo Paredes, Edgar Chávez, Karina Figueroa, and Gonzalo Navarro.
Practical Construction of K-Nearest Neighbor Graphs in Metric Spaces. In
International Workshop on Experimental and Efficient Algorithms, pages 85–97.
Springer, 2006.

[PD91] Ruben Prieto-Diaz. Implementing Faceted Classification for Software
Reuse. Communications of the ACM, 34(5):88–97, 1991.

[PHLM01] Gerald Penn, Jianying Hu, Hengbin Luo, and Ryan McDonald. Flexible Web
Document Analysis for Delivery to Narrow-Bandwidth Devices. In Proceed-
ings of Sixth International Conference on Document Analysis and Recognition,
pages 1074–1078. IEEE, 2001.

[PL02] Patrick Pantel and Dekang Lin. Discovering Word Senses from Text. In
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 613–619. ACM, 2002.

[PLH+18] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang,
Yangqiu Song, and Qiang Yang. Large-Scale Hierarchical Text Classification
with Recursively Regularized Deep Graph-CNN. In Proceedings of the 2018
World Wide Web Conference, pages 1063–1072. ACM, 2018.

[PNI+18] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 2227–2237. ACL, 2018.

[PNL+19] Matthew E Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur
Joshi, Sameer Singh, and Noah A Smith. Knowledge Enhanced Contex-
tual Word Representations. In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), pages 43–54. ACL,
2019.

BIBLIOGRAPHY 149

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543. ACL, 2014.

[PWS19] Nina Poerner, Ulli Waltinger, and Hinrich Schütze. BERT is Not a Knowl-
edge Base (Yet): Factual Knowledge vs. Name-Based Reasoning in Unsu-
pervised QA. arXiv preprint arXiv:1911.03681, 2019.

[Ran39] Shiyali Ramamrita Ranganathan. Colon Classification. Madras Library Asso-
ciation, Madras, 1939.

[RG65] Herbert Rubenstein and John B Goodenough. Contextual Correlates of Syn-
onymy. Communications of the ACM, 8(10):627–633, 1965.

[RG19] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3973–
3983. ACL, 2019.

[RK04] Ryan Rifkin and Aldebaro Klautau. In Defense of One-Vs-All Classification.
Journal of Machine Learning Research, 5(Jan):101–141, 2004.

[RK19] Julian Risch and Ralf Krestel. Domain-specific Word Embeddings for Patent
Classification. Data Technologies and Applications, 2019.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest Neigh-
bor Queries. In Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, pages 71–79. ACM, 1995.

[Ron14] Xin Rong. Word2Vec Parameter Learning Explained. arXiv preprint
arXiv:1411.2738, 2014.

[RS10] Radim Rehurek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In In Proceedings of the LREC 2010 Workshop on new
Challenges for NLP Frameworks, 2010.

[RZLL16] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 2383–2392. ACL, 2016.

[SAH08] Chanop Silpa-Anan and Richard I. Hartley. Optimised KD-Trees for Fast
Image Descriptor Matching. In 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2008), pages 1–8. IEEE, 2008.

[SC16] Robert Speer and Joshua Chin. An Ensemble Method to Produce High-
Quality Word Embeddings. arXiv preprint arXiv:1604.01692, 2016.

[Sha75] Michael Ian Shamos. Geometric complexity. In Proceedings of the Seventh
Annual ACM Symposium on Theory of Computing, pages 224–233. ACM, 1975.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. The Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[Sie15] Scharolta Katharina Sienčnik. Adapting word2vec to Named Entity Recog-
nition. In Proceedings of the 20th Nordic Conference of Computational Linguistics,
volume 109, pages 239–243. Linköping University Electronic Press, 2015.

150 BIBLIOGRAPHY

[SLMJ15] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Eval-
uation Methods for Unsupervised Word Embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
298–307. ACL, 2015.

[SLS18] Prathusha Kameswara Sarma, Yingyu Liang, and Bill Sethares. Domain
Adapted Word Embeddings for Improved Sentiment Classification. In Pro-
ceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP,
pages 51–59. ACL, 2018.

[SMH+16] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan.
Table Cell Search for Question Answering. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, pages 771–782. ACM, 2016.

[SN12] Mike Schuster and Kaisuke Nakajima. Japanese and Korean Voice Search. In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5149–5152. IEEE, 2012.

[SRF87] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. In Proceedings of the 13th In-
ternational Conference on Very Large Data Bases, pages 507–518. Morgan Kauf-
mann Publishers Inc., 1987.

[SWY75] Gerard Salton, Anita Wong, and Chung-Shu Yang. A Vector Space Model
for Automatic Indexing. Communications of the ACM, 18(11):613–620, 1975.

[SZ03] Josef Sivic and Andrew Zisserman. Video Google: A Text Retrieval Ap-
proach to Object Matching in Videos. In Proceedings of the 9th IEEE Interna-
tional Conference on Computer Vision - Volume 2, page 1470. IEEE, 2003.

[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science,
290(5500):2319–2323, 2000.

[TFL+21] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li,
Samuel Madden, and Mourad Ouzzani. RPT: Relational Pre-trained Trans-
former Is Almost All You Need towards Democratizing Data Preparation.
Proceedings of the VLDB Endowment, 14(8):1254–1261, 2021.

[TGH19] Julien Tissier, Christophe Gravier, and Amaury Habrard. Near-Lossless Bi-
narization of Word Embeddings. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7104–7111. AAAI Press, 2019.

[TML15] Andrew Trask, Phil Michalak, and John Liu. sense2vec - A Fast and Accu-
rate Method for Word Sense Disambiguation in Neural Word Embeddings.
arXiv preprint arXiv:1511.06388, 2015.

[TP10] Peter D Turney and Patrick Pantel. From Frequency to Meaning: Vector
Space Models of Semantics. Journal of Artificial Intelligence Research, 37:141–
188, 2010.

[TWS20] T. P. Tanon, G. Weikum, and F. Suchanek. YAGO 4: A Reason-able Knowl-
edge Base. In European Semantic Web Conference, pages 583–596. Springer,
2020.

[TYS+21] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebas-
tian Riedel, and Alon Halevy. From natural language processing to neural
databases. Proceedings of the VLDB Endowment, 14(6):1033–1039, 2021.

BIBLIOGRAPHY 151

[VK14] Denny Vrandečić and Markus Krötzsch. Wikidata: A Free Collaborative
Knowledge Base. Communication of the ACM, 57(10):78–85, 2014.

[VM15] Ivan Vulić and Marie-Francine Moens. Monolingual and Cross-Lingual In-
formation Retrieval Models Based on (Bilingual) Word Embeddings. In Pro-
ceedings of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 363–372. ACM, 2015.

[Voo94] Ellen M Voorhees. Query Expansion using Lexical-Semantic Relations. In
Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 61–69. Springer, 1994.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Advances in Neural Information Processing Systems, pages 5998–6008.
Curran Associates, Inc., 2017.

[WDJ+21] Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei
Zhang. TUTA: Tree-based Transformers for Generally Structured Table Pre-
training. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 1780–1790. ACM, 2021.

[WH02] Yalin Wang and Jianying Hu. A Machine Learning Based Approach for
Table Detection on the Web. In Proceedings of the 11th International Conference
on World Wide Web, pages 242–250. ACM, 2002.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation. arXiv preprint
arXiv:1609.08144, 2016.

[WSL+21] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang,
Xin Luna Dong, and Meng Jiang. TCN: Table Convolutional Network for
Web Table Interpretation. In Proceedings of the Web Conference 2021, pages
4020–4032. ACM, 2021.

[WSM+19] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
pages 353–355. ACL, 2019.

[WWW+20] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei
Li, and Yuanzhe Cai. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proceedings of the VLDB
Endowment, 13(12):3152–3165, 2020.

[WWZ+13] Jing Wang, Jingdong Wang, Gang Zeng, Rui Gan, Shipeng Li, and Bain-
ing Guo. Fast Neighborhood Graph Search using Cartesian Concatenation.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2128–2135. IEEE, 2013.

[WYG+21] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus:
A Purpose-Built Vector Data Management System. In Proceedings of the 2021
ACM SIGMOD International Conference on Management of Data, pages 2614–
2627. ACM, 2021.

152 BIBLIOGRAPHY

[WZFC14] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
Graph and Text Jointly Embedding. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1591–1601.
ACL, 2014.

[XBB+14] Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang Wang, Xiaoguang Liu, and
Tie-Yan Liu. RC-NET: A General Framework for Incorporating Knowledge
into Word Representations. In Proceedings of the 23rd ACM International Con-
ference on Information and Knowledge Management, pages 1219–1228. ACM,
2014.

[XFS14] Bai Xue, Chen Fu, and Zhan Shaobin. A Study on Sentiment Computing and
Classification of Sina Weibo with Word2vec. In Big Data (BigData Congress),
2014 IEEE International Congress on, pages 358–363. IEEE, 2014.

[YD14] Mo Yu and Mark Dredze. Improving Lexical Embeddings with Semantic
Knowledge. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), volume 2, pages 545–550.
ACL, 2014.

[YHPC18] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Re-
cent Trends in Deep Learning Based Natural Language Processing. IEEE
Computational Intelligence Magazine, 13(3):55–75, 2018.

[YLFW20] Wen Yang, Tao Li, Gai Fang, and Hong Wei. PASE: PostgreSQL Ultra-High-
Dimensional Approximate Nearest Neighbor Search Extension. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of
Data, pages 2241–2253. ACM, 2020.

[YLK10] Bin Yao, Feifei Li, and Piyush Kumar. K Nearest Neighbor Queries and
kNN-Joins in Large Relational Databases (Almost) for Free. In 2010 IEEE
26th International Conference on Data Engineering (ICDE 2010), pages 4–15.
IEEE, 2010.

[YML19] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph Convolutional Net-
works for Text Classification. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pages 7370–7377. AAAI Press, 2019.

[YNYR20] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 8413–8426. ACL, 2020.

[YPS+20] Wenhao Yu, Wei Peng, Yu Shu, Qingkai Zeng, and Meng Jiang. Experimen-
tal Evidence Extraction System in Data Science with Hybrid Table Features
and Ensemble Learning. In Proceedings of The Web Conference 2020, pages
951–961. ACM, 2020.

[ZBSC18] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A
Large-Scale Adversarial Dataset for Grounded Commonsense Inference. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 93–104. ACL, 2018.

[ZD95] Justin Zobel and Philip Dart. Finding Approximate Matches in Large Lexi-
cons. Software: Practice and Experience, 25(3):331–345, 1995.

[ZHL+19] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun
Liu. ERNIE: Enhanced Language Representation with Informative Entities.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 1441–1451. ACL, 2019.

BIBLIOGRAPHY 153

[ZKBA15] Guido Zuccon, Bevan Koopman, Peter Bruza, and Leif Azzopardi. Integrat-
ing and Evaluating Neural Word Embeddings in Information Retrieval. In
Proceedings of the 20th Australasian Document Computing Symposium. ACM,
2015.

[ZML+20] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. Rep-
BERT: Contextualized Text Embeddings for First-Stage Retrieval. arXiv
preprint arXiv:2006.15498, 2020.

[ZSW+19] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. AnalyticDB:
Real-time OLAP Database System at Alibaba Cloud. Proceedings of the VLDB
Endowment, 12(12):2059–2070, 2019.

[ZWX15] X. Zhou, X. Wan, and J. Xiao. Representation Learning for Aspect Category
Detection in Online Reviews. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pages 417–423. AAAI Press, 2015.

[ZYZZ18] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network Rep-
resentation Learning: A Survey. IEEE Transactions on Big Data, 6(1):3–28,
2018.

[ZZB19] Li Zhang, Shuo Zhang, and Krisztian Balog. Table2Vec: Neural Word and
Entity Embeddings for Table Population and Retrieval. In Proceedings of
the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1029–1032. ACM, 2019.

[ZZW+15] Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen.
Aligning Knowledge and Text Embeddings by Entity Descriptions. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 267–272. ACL, 2015.

154 BIBLIOGRAPHY

LIST OF FIGURES

1.1 Structure of this Thesis . 13

2.1 Variety of Embedding Techniques . 16
2.2 Architecture of Word2Vec Neural Networks 19
2.3 Skip-Gram Node Embeddings . 24

(a) Deep Walk . 24
(b) Node2vec Sampling Strategies . 24

3.1 Examples of Word Embedding SQL Queries (simplified) 32
(a) Quantify Similarity . 32
(b) Most Similar Operation . 32
(c) Resticted Most Similar Operation . 32
(d) Group Text Values . 32
(e) Cluster Operation . 32
(f) Analogy Operation . 32
(g) Resticted Analogy Operation . 32
(h) kNN Join Operation . 32

3.2 Cosine Similarity to Nearest Neighbors and Farthest Vectors 35
(a) word2vec Vectors . 35
(b) GloVe Vectors . 35
(c) fastText Vectors . 35
(d) word2bits Vectors . 35

3.3 k Distance Diagrams . 35
(a) word2vec Vectors . 35
(b) GloVe Vectors . 35
(c) fastText Vectors . 35
(d) word2bits Vectors . 35

3.4 Management of Embedding Representation in an RDBMS 37
3.5 Two Example Queries: kNN-Search and kNN-Join 40
3.6 Context Adaptation of Embeddings of Text Values in Database 42

4.1 FREDDY System Overview . 48
4.2 Storage Formats for Word Embeddings . 49
4.3 The web-interface of FREDDY . 52

(a) Query Interface . 52
(b) Configuration . 52
(c) Search Analysis View . 52

4.4 k-d tree . 54
4.5 k-d tree Search Algorithm . 54
4.6 HNSW Graph and Search Algorithm . 55
4.7 Index Vectors with locality-sensitive Hashing (LSH) 57
4.8 Product Quantization . 58

(a) Generating PQ sequences . 58
(b) Asymmetric Distance Calculation . 58

4.9 Inverted Multi Index . 59
4.10 Execution of Queries with Filter Conditions with PASE Indexes 62

155

4.11 Execution of Queries with Filter Conditions with AnalyticDB-V 63
4.12 Index Data Structure . 64
4.13 ANN-Join Algorithm . 65
4.14 Pseudo-Code . 65
4.15 Confidence Estimation . 67
4.16 PQ Sequences of Flexible Product Quantization 69

(a) Long Code Mode . 69
(b) Short Code Mode . 69

4.17 Evaluation of Execution Time and Precision 74
(a) Google News . 74
(b) Twitter . 74

4.18 Time Measurement for increasing sizes of query set R and target set T . . . 75
4.19 Evaluation of Short and Long Codes Calculation 76

(a) Execution Times of Both Methods . 76
(b) Precomputation and Distance Computation 76

4.20 Estimation of Target Set Size . 76
(a) Estimated Size Values . 76
(b) Divergence (Absolute) . 76
(c) Confidence . 76

4.21 Performance of Word2Bits kNN-Join Algorithms 77
(a) Increasing Query Size (|T |= 10, 000) . 77
(b) Increasing Target Size (|R|= 10, 000) . 77

4.22 Performance of Word2Bits kNN-Join Subroutines 78
(a) Increasing Query Size (|T |= 10, 000) . 78
(b) Increasing Target Size (|R|= 10, 000) . 78

5.1 Joint Embedding Methods . 82
(a) Joint Embedding Approach . 82
(b) RC-Net Algorithm . 82

5.2 Relational Retrofitting: base embeddings W 0 and relation T , retrofitted em-
bedding W and augmented relation T+ . 87

5.3 Overview of the RETRO Framework . 88
5.4 Examples for Different Hyperparameter Settings 92

(a) Influence of α = 1, 2, 3 . 92
(b) Influence of β = 1, 2, 3 . 92
(c) Influence of γ = 1, 2, 3 . 92
(d) Influence of δ = 0, 1, 2 . 92

5.5 Online Retrofitting Process . 93
5.6 User Interface of RETROLIVE . 95
5.7 Binary Classification of US-American Directors with Different Embedding

Types . 100
5.8 Classification of Birth Places of US-American Directors with Increasing Sam-

ple Size . 101
5.9 Comparison of Imputation Methods for the Original Language Attribute . 102
5.10 Comparison of Imputation Methods for App Categories 102
5.11 Link Prediction for Genres . 103
5.12 Online Retrofitting Evaluation . 105

(a) Only Reviews α = 1 β = 0 γ = 3 δ = 3 105
(b) Apps and Reviews α = 1 β = 0 γ = 3 δ = 3 105
(c) Only Reviews α = 1 β = 1 γ = 1 δ = 1 105
(d) Apps and Reviews α = 1 β = 1 γ = 1 δ = 1 105

6.1 Facet Data Structures . 109
6.2 System Overview: Extraction and Evaluation 110
6.3 Evaluation of Different Domains: Coverage and Distribution of Accuracy

Values . 113

156 LIST OF FIGURES

6.4 Evaluation of City Representations . 114

7.1 Web Table Types and Embedding Process 118
7.2 Unionable Tables . 120
7.3 Embedding LSTM Model . 122
7.4 Cell Classification Model . 123
7.5 Precision-Recall Curves of Instance-Of Relations 127
7.6 Precision-Recall Curves of Unionability Search 128

(a) Column to Column . 128
(b) Column to Column Header . 128

7.7 Layout Classification Accuracy . 129
7.8 Cell Classification Accuracy . 131

B.1 Influence of Hyperparameters on Binary Classification for Relational Retro-
fitting with Ψ Function . 164
(a) Only Retrofitted Vectors . 164
(b) Retrofitted Vectors combined with DeepWalk Embeddings 164

LIST OF FIGURES 157

158 LIST OF FIGURES

LIST OF TABLES

2.1 Data Collections for Intrinsic Evaluation . 27

3.1 Model Characteristics . 34

4.1 Search Configuration Parameters . 71
4.2 Dataset and Index Characteristics . 73

5.1 Run-time of Embedding Methods . 104
5.2 Run-time of Online Retrofitting . 105

7.1 Table Layout Classification Results . 129
7.2 Evaluation Results for Layout Types . 131

159

160 LIST OF TABLES

A
CONVEXITY OF RELATIONAL RETROFITTING

In the following, we prove the convexity of Ψ(W) under certain hyperparameter config-
uration. We published this proof already in [GTL19b].

In the definition of the function Ψ(W) in Section 5.2.2, W is procesed row-wise. Here,
we consider each of its elements wi,j separately in function Ψ. This is possible since the
quadratic Euclidean distances can be split in a sum of quadratic differences of coordinate
values.

Ψ(W) =
D∑

d=1

n∑

i=1

[
αi(wi,d − w′

i,d)
2 + βjΨC(wi,d, W)

+ ΨR(wi,d, W)
]

(A.1)

Ψ(W) can be split in Ψ(W) = Ψ̂(W) + Ψβ(W) + Ψγ(W):

Ψ̂(W) =
D∑

d=1

n∑

i=1

[
αi(wi,d − w′

i,d)
2

−
∑

r∈R

[∑

k:(i,k)∈Ẽr

δr
i (wi,d − wk,d)

2
]]

Ψβ(W) =
D∑

d=1

n∑

i=1

(
wi,d −

∑
j∈C(i)

w′
j,d

|C(i)|
)2

Ψγ(W) =
D∑

d=1

n∑

i=1

∑

r∈R

[∑

j:(i,j)∈Er

γr
i (wi,d − wj,d)

2
]

(A.2)

We utilize the fact, that a sum of convex functions is also convex. It is easy to see that
Ψβ(W) and Ψγ(W) are convex functions if all γr

i and βi values are positive. Ψβ(W) is a
simple D-dimensional quadratic function and thus convex. Ψγ(W) consists of sums of
squared differences which are themselves convex functions. Hence, in order to prove the
convexity of Ψ(W), it is sufficient to prove convexity for Ψ̂. As a next step, we create the
Hessian matrix of all second partial derivatives:

H =

∂2Ψ̂(W)
∂w2

1,1
. . . ∂2Ψ̂(W)

∂w1,1,∂wn,D

...
. . .

...
∂2Ψ̂(W)

∂wn,D,∂w1,1
. . . ∂2Ψ̂(W)

∂w2
n,D

(A.3)

161

∂2Ψ̂(V)

∂w2
i,d

=2
(
α −

∑

r∈R

[∑

k:(i,k)

∈Ẽr

(δr
i + δr̄

k)
])

∂2Ψ̂(V)

∂wi,d, ∂wk,d
=

∑

r∈R

φ(i, k, r) if i Ó= k

φ(i, k, r) =

{
4δr

i (i, k) ∈ Ẽr

0 otherwise

∂2Ψ̂(V)

∂wi,d, ∂wj,d′
=0 if d Ó= d′ (A.4)

Ψ̂(W) is convex if and only if the Hessian matrix is positive semi-definite. According to
the parameter configuration defined in Section 5.2.3, the following condition holds:

(i, k) ∈ Ẽr =⇒ (k, i) ∈ Ẽr̄ ∧ δr
i = δr̄

k (A.5)

This leads to the following equivalence:

∂2Ψ̂(V)

∂wi,d, ∂wj,d′
=

∂2Ψ̂(V)

∂wj,d′ , ∂wi,d
(A.6)

Subsequently, H is a symmetric matrix. An interesting matrix property to consider for a
symmetric matrix (aij) is the diagonally dominance. A matrix is diagonally dominant,
if in every row i the magnitude of the element on the diagonal |aii| is greater or equal
than the sum of magnitudes of the remaining elements

∑
j Ó=i|aij |. If a matrix is diago-

nally dominant, it is also positive semi-definite. Therefore, the following is a sufficient
condition to show that Ψ̂(W) is a convex function.

∀i ∈ {1, . . . n × D} : |hij |≥
∑

j Ó=i

|hij |

∀i ∈ {1, . . . n}, d ∈ {1, . . . , D} :
∣∣∣
∂2Ψ̂(W)

∂w2
i,d

∣∣∣ ≥
∑

j Ó=i

∣∣∣
∂2Ψ̂(V)

∂wi,d, ∂wj,d

∣∣∣

2
∣∣∣αi −

∑

r∈R

[∑

j:(i,j)

∈Ẽr

(δr
i + δr

j)
]∣∣∣ ≥

∑

j Ó=i

∣∣∣
∑

r∈R

φ(i, j, r)
∣∣∣

∣∣∣αi −
∑

r∈R

[∑

j:(i,j)

∈Ẽr

2δr
i

]∣∣∣ ≥
∑

r∈R

∣∣∣
∑

j:(i,j)

∈Ẽr

2δr
i

∣∣∣ (A.7)

If we assume that for every i and r the values ai and δr
i are positive, the solution of this

inequality results in Equation (A.8):

αi ≥ 4
∑

r∈R

[∑

j:(i,j)

∈Ẽr

δr
i

]
(A.8)

162 Appendix A Convexity of Relational Retrofitting

B
EVALUATION OF THE RELATIONAL

RETROFITTING HYPERPARAMETERS

For the evaluation of the relational retrofitting hyperparameters α, β, γ, and δ, we per-
formed a grid search for the binary classification of directors of the TMDB dataset (see
Section 5.8). We applied the feed-forward neural network described in Section 5.4.3 on
the relational retrofitted vectors and the embeddings obtained by the concatenation with
node embeddings as described in Section 5.4.4. Figure B.1 shows the average accuracy
values.

163

(a) Only Retrofitted Vectors

(b) Retrofitted Vectors combined with DeepWalk Embeddings

Figure B.1: Influence of Hyperparameters on Binary Classification for Relational Retro-
fitting with Ψ Function

164 Appendix B Evaluation of the Relational Retrofitting Hyperparameters

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, September 6, 2021

165

