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ABSTRACT

The stochastic shortest path problem lies at the heart of many questions in the formal veri-
fication of probabilistic systems. It asks to find a scheduler resolving the non-deterministic
choices in a weighted Markov decision process (MDP) that minimizes or maximizes the
expected accumulated weight before a goal state is reached. In the classical setting, it
is required that the scheduler ensures that a goal state is reached almost surely. For the
analysis of systems without guarantees on the occurrence of an event of interest (reach-
ing a goal state), however, schedulers that miss the goal with positive probability are
of interest as well. We study two non-classical variants of the stochastic shortest path
problem that drop the restriction that the goal has to be reached almost surely. These
variants ask for the optimal partial expectation, obtained by assigning weight 0 to paths
not reaching the goal, and the optimal conditional expectation under the condition that
the goal is reached, respectively. Both variants have only been studied in structures with
non-negative weights.

We prove that the decision versions of these non-classical stochastic shortest path
problems in MDPs with arbitrary integer weights are at least as hard as the Positiv-
ity problem for linear recurrence sequences. This Positivity problem is an outstanding
open number-theoretic problem, closely related to the famous Skolem problem. A decid-
ability result for the Positivity problem would imply a major breakthrough in analytic
number theory. The proof technique we develop can be applied to a series of further
problems. In this way, we obtain Positivity-hardness results for problems addressing the
termination of one-counter MDPs, the satisfaction of energy objectives, the satisfaction
of cost constraints and the computation of quantiles, the conditional value-at-risk – an
important risk measure – for accumulated weights, and the model-checking problem of
frequency-LTL.

Despite these Positivity-hardness results, we show that the optimal values for the
non-classical stochastic shortest path problems can be achieved by weight-based deter-
ministic schedulers and that the optimal values can be approximated in exponential time.
In MDPs with non-negative weights, it is known that optimal partial and conditional ex-
pectations can be computed in exponential time. These results rely on the existence of
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a saturation point, a bound on the accumulated weight above which optimal schedulers
can behave memorylessly. We improve the result for partial expectations by showing that
the least possible saturation point can be computed efficiently. Further, we show that a
simple saturation point also allows us to compute the optimal conditional value-at-risk
for the accumulated weight in MDPs with non-negative weights.

Moreover, we introduce the notions of long-run probability and long-run expectation
addressing the long-run behavior of a system. These notions quantify the long-run average
probability that a path property is satisfied on a suffix of a run and the long-run average
expected amount of weight accumulated before the next visit to a target state, respec-
tively. We establish considerable similarities of the corresponding optimization problems
with non-classical stochastic shortest path problems. On the one hand, we show that
the threshold problem for optimal long-run probabilities of regular co-safety properties is
Positivity-hard via the Positivity-hardness of non-classical stochastic shortest path prob-
lems. On the other hand, we show that optimal long-run expectations in MDPs with
arbitrary integer weights and long-run probabilities of constrained reachability properties
(aU b) can be computed in exponential time using the existence of a saturation point.
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1

CHAPTER

ONE

INTRODUCTION

Modern software and hardware systems have reached a level of complexity that makes
it outright impossible for a human to analyze and understand their behavior without
auxiliary tools. To gain trust that a system behaves as intended, testing the system in a
variety of environments suggests itself and is an integral part of any systems development
process. Testing can help to detect many errors and, if the system works correctly on
a vast variety of inputs, this can be sufficient assurance for the correctness in many
application areas. Nevertheless, there are usually infinitely many possible executions of
a system. So, testing cannot be exhaustive and testing alone cannot provide a guarantee
that the system will behave correctly in all situations. In many safety-critical application
areas, computer systems play such an important role that more rigid guarantees on the
correctness of a system are of utter interest.

A great success story providing such guarantees was initiated in the late 1970s and
early 1980s. In his seminal work [Pnu77], Pnueli suggested the use of temporal logics
to reason about program correctness. Just a few years later, in the early 1980s, model
checking was invented independently by Clarke and Emerson [CE81] and by Queille and
Sifakis [QS82]. This technique takes a mathematical system model M with a set of states
and transitions between these states and a formal specification φ of the correct executions
of the system as input and answers the question whether all possible executions of M
satisfies the specification φ. For the development of this novel verification paradigm,
Pnueli and Clarke, Emerson, and Sifakis received the Turing award in 1996 and 2007,
respectively. Model checking today constitutes one of the most important approaches in
the area of formal verification that aims to provide rigorous mathematical guarantees of
the correctness of a system.

The inherent properties of the system to be analyzed determine the mathematical
model to use. On the one hand, a system might exhibit non-deterministic behavior. In
concurrent systems for example, the order and the precise timing in which computations
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take place cannot be predicted exactly. Hence, each system state might have multiple
possible successor states depending on the order of the concurrently executed computa-
tions. In order to verify that the system behaves correctly, it is required to verify that
all possible resolutions of these non-deterministic choices of successors lead to a correct
computation with respect to the given specification. Other reasons to model a system
with non-deterministic choices include user interactions or the use of the system in un-
known environments. The main model for purely non-deterministic systems is provided
by transition systems.

On the other hand, it can be reasonable to assume a probabilistic behavior of a sys-
tem. In probabilistic programs, randomization is explicitly employed and leads to a
transition structure that chooses successors according to a given probability distribution.
Also quantum processes can lead to precisely known probabilistic behavior. For other
systems, there might be sufficiently much data – for example on the failure of hardware
components, on the message loss in a lossy channel, or on the behavior of the environment
– to assume a probability distribution over possible successor states. Purely probabilistic
systems can be modeled by Markov chains in which the successors of each state are chosen
according to a specified probability distribution in each step. Markov decision processes
(MDPs) combine non-deterministic and probabilistic behavior. In each state, an action
can be chosen non-deterministically from a set of enabled actions and afterwards the
successor is chosen according to a probability distribution associated to the state-action
pair.

The necessity to verify systems that exhibit probabilistic behavior lead to the devel-
opment of probabilistic model checking [Var85, VW86, CY95] soon after the invention of
model checking. The probabilistic model-checking problem does not address the satis-
faction along all possible executions anymore, but rather asks for the probability that
an execution satisfies a specification. In the presence of non-deterministic choices, the
problem turns into an optimization problem asking for the minimal or maximal possible
satisfaction probability when ranging over all possible resolutions of the non-deterministic
choices. The specifications are usually given in a (non-probabilistic) temporal logic, such
as linear temporal logic (LTL) or computation tree logic (CTL), or as an automaton.
Temporal logics can further be extended by operators expressing that the (optimal) sat-
isfaction probability of formulas satisfies an inequality constraint such as in probabilistic
computation tree logic (PCTL) [HJ94].

1.1 Stochastic shortest path problems
Besides the question whether a system execution satisfies a certain specification that
can either hold or not on an execution, quantitative aspects play an important role
when checking that a system behaves as intended. These aspects are for example the
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termination time, the utility achieved, e.g., the number of successfully completed tasks,
the costs of an execution, the energy or resource consumption, and many quantities
more that are accumulated during an execution. We model such quantities with weight
functions that assign positive and negative weights to transitions in the model. In MDPs,
once a resolution of the non-deterministic choices is fixed by specifying a scheduler, we
obtain a random variable assigning the accumulated weight to runs in the model. The
expected value of this random variable is subject to typical verification questions like
“What is the worst-case expected termination time of the probabilistic program?”. Such
questions lead us to the stochastic shortest path problem: The problem asks maximize or
minimize the expected accumulated weight before reaching a target state in a weighted
finite-state MDP. For the expected value of the accumulated weight before reaching a goal
state to be well-defined, it is necessary that a goal state is reached almost surely. The
problem generalizes the well-known shortest path problem on weighted graphs. An early
formulation of the problem can be found in [EZ62] and the problem has subsequently also
been studied under the name first passage problem [Der70,Whi83]. It is known that this
classical stochastic shortest path problem is solvable in polynomial time [BT91, dA99,
BBD+18].

Example 1.1. Consider the model of a probabilistic program depicted in Figure 1.1.
The weight function wgt denotes the time required for each transition. Depending on a
user input, the program moves to state s or t. In both of these states, the successor is
chosen randomly with probability 1/2 for both possible successors. After the probabilistic
transition, the system will either terminate after some more time or another user input is
requested, leading to state s or t again. If we want to provide a guarantee on the worst-
or best-case expected termination time among all possible sequences of user inputs, we
have to find a scheduler making decisions in the state “user input” that maximizes or
minimizes the expected time until termination. For the scheduler that always moves to
state s, we compute the expected termination time as follows: 3 time units are required
to reach s. The loop back to “user input” is taken once in expectation leading to an
expected time of 3 time units. To see this, note that the loop is taken a first time with
probability 1/2, a second time with probability 1/4, and so on. Finally, if the loop is
not taken anymore, it takes 6 time units until termination. So, the expected termination
time is 12 time units. Analogously, the expected termination time when always moving
to t is 13. It is known that the maximal or minimal value in a classical stochastic shortest
path problem is obtained by a memoryless scheduler that always chooses the same action
in each state [BT91,dA99,BBD+18]. So, in fact we can now guarantee that the expected
termination time of the example probabilistic program lies between 12 and 13 for all
(infinitely many) possible sequences of user inputs. ◁

In the MDP literature, a variety of objectives addressing the expected value of accu-
mulated weights has been studied. Besides the classical stochastic shortest path prob-
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sinit

user input ts

termination
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wgt : +2 wgt : +3
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wgt : +5 wgt : +2

Figure 1.1: Example of a stochastic shortest path problem. The two possible transitions
from state s and t are taken with probability 1/2 each.

lem, other objectives address the expected total weight, discounted sums of accumulated
weights, mean payoffs, and the accumulation of weights during a finite time horizon (see,
e.g., [Put94, Kal11]). To integrate problems addressing expected values of accumulated
weights, expectation operators have been integrated into temporal logics as in probabilis-
tic reward computation tree logic [AHK03] and probabilistic alternating-time logic with
rewards [CFK+13a]. Furthermore, the optimizations of expected accumulated weights in
various forms are implemented in the PRISM [KNP11] and the STORM [DJKV17] model
checkers including the classical stochastic shortest path problem.

Non-classical stochastic shortest path problems. The stochastic shortest path
problem as just presented has one major restriction: It requires the target to be reached
with probability 1. The limitation to schedulers reaching the goal almost surely, however,
is often too restrictive. First, there are models that have no such scheduler. Second, even
if such schedulers exist, the expectation of the accumulated weight of schedulers missing
the goal with a positive probability might be of interest as well. Important applications in
which this is the case include the semantics of probabilistic programs (see, e.g., [GKM14,
KGJ+15,BEFH16,CFG16,OGJ+18]) where no guarantee for almost sure termination can
be given. The analysis of program properties at termination time gives rise to stochastic
shortest path problems in which the goal (halting configuration) is not reached almost
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surely. Other examples are the fault-tolerance analysis, e.g., expected costs of repair
mechanisms, in selected error scenarios that can appear with some positive, but small
probability, or the trade-off analysis with conjunctions of utility and cost constraints that
are achievable with positive probability, but not almost surely (see, e.g., [BDK+14]).

This motivates the switch to variants of the stochastic shortest path problem where
the requirement to reach the target with probability 1 is relaxed. One option studied
in [CFK+13a] and implemented in [CFK+13b] is to seek for a scheduler optimizing the
expectation of the random variable that assigns weight 0 to all paths not reaching the
goal and the accumulated weight of the shortest prefix reaching the goal to all other
paths. We refer to this expectation as partial expectation. A second option is to con-
sider the conditional expectation of the accumulated weight until reaching the goal under
the condition that the goal is reached as done in [BKKW17]. Partial expectations are
suitable to describe situations in which some reward or cost is accumulated but only
retrieved if a certain goal is met. In particular, partial expectations can be an appropri-
ate replacement for the classical expected weight before reaching the goal if we want to
include schedulers which miss the goal with some – possibly very small – positive probabil-
ity. In contrast to conditional expectations, the resulting scheduler still has an incentive
to reach the goal with a high probability, while schedulers maximizing the conditional
expectation might reach the goal with a very small positive probability. Conditional ex-
pectations can be particularly useful to analyze the costs or utilities achieved in events
with smaller probabilities, such as the incurred repair costs in case of an unlikely error
scenario. In [CFK+13a] and [BKKW17], partial and conditional expectations, respec-
tively, have been addressed in systems with non-negative weights. The general variants
with weight functions that take positive and negative values have not been studied in
the literature. In this thesis, we focus on these general variants of these non-classical
stochastic shortest path problems.

Conditional expectations also play a crucial role in risk management: The conditional
value-at-risk, also known as expected shortfall or tail loss, is an established risk measure
quantifying the expected loss in bad cases [Ury00,AT02]. Given a probability value p, the
value-at-risk of a random variable X is the worst p-quantile. In other words, it is defined
such that an outcome is worse than the value-at-risk with probability p. The conditional
value-at-risk is the expectation of X under the condition that the outcome is worse than
the value-at-risk. The conditional value-at-risk quantifies where the outliers in the distri-
bution are located by specifying the average of the outcomes above the value-at-risk, i.e.,
the average of the worst p outcomes. As a pure worst-case analysis is often inappropriate
in a probabilistic setting, the conditional value-at-risk constitutes an important tool in
risk management to quantify these worst outcomes, going beyond the value-at-risk that
does not take unlikely outliers into consideration. For MDPs, the conditional value-at-
risk has been studied for mean-payoffs and for weighted reachability where on each run
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only once a terminal weight is collected when a target state is reached [KM18]. We will
consider the conditional value-at-risk for the more general accumulated weight before
reaching the goal, i.e. for the classical stochastic shortest path problem.

1.2 Related problems

There is a variety of problems closely related to stochastic shortest path problems. We
give a brief overview of several of these problems in the sequel. For the problems ad-
dressing the long-run satisfaction of path properties that we address at the end of this
section, the connection to stochastic shortest path problems is not quite obvious on first
sight. In this thesis, however, we will disclose parallels and show that techniques for the
treatment of stochastic shortest path problems can also be applied to notions of long-run
satisfaction.

Cost problems and quantiles. Besides the expected value, several further aspects
of the distribution of the random variable assigning the accumulated weight can be of
interest in the context of verification. Many problems surround decision problems of the
form

Is Prmax
M (accumulated weight ≤ w) ≥ p?

That is, these problems ask whether the maximal (or minimal) probability that the
accumulated weight stays below a bound w is at least (or at most) p in an MDP M for
given values w and p. For the precise meaning of “accumulated weight ≤ w”, there are
several options. It can refer to the total accumulated weight of a run, to the accumulated
weight before reaching a goal state, or it requires that the accumulated weight never
exceeds w during a run.

On the one hand, one might be interested in maximizing or minimizing the probability
that the accumulated weight lies within the given bound w or exceeds the bound when
a goal state is reached – a problem addressed in [HK15,HKL17,BBD+18] and called the
cost problem in [HK15]. On the other hand, quantile queries ask for the minimal weight
w such that the weight of a path stays below w with probability at least p for the given
value p under some or all schedulers [UB13, BDD+14, RRS17]. Both of these problems
have been addressed for MDPs with non-negative weights and are solvable in exponential
time in this setting [UB13, HK15]. The decision version of the cost problem with non-
negative weights is furthermore PSPACE-hard for a single inequality on the accumulated
weight and EXPTIME-complete if a Boolean combination of inequality constraints on
the accumulated weight is considered [HK15]. For the setting with arbitrary weights,
[BBD+18] provides solutions to the qualitative question whether a constraint on the
accumulated weight is satisfied with probability 1 (or > 0). Further, it is known that the
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quantitative problem is undecidable if multiple objectives with multiple weight functions
have to be satisfied simultaneously [RRS17].

One-counter MDPs. The termination problem of one-counter MDPs introduced
in [BBE+10] can also be seen as an instance of the question with which probability a con-
straint on the accumulated weight is satisfied maximally or minimally. In a one-counter
MDP, there is a counter that can be increased, decreased or left unchanged in each step.
The process typically starts with counter value 1 and terminates if the counter value
reaches 0. The termination problem asks for the maximal probability of termination that
a scheduler can achieve. While it is decidable whether the maximal termination proba-
bility is 1 in polynomial time and in exponential time if termination is required to occur
inside a specified set of states [BBE+10], the computation of the optimal value and the
quantitative decision problem whether the optimal value exceeds a threshold p are left
open in the literature. Also the problem to compute the minimal or maximal expected
termination time of a one-counter MDP that terminates almost surely under any sched-
uler is open. There are, however, approximation algorithms for the optimal termination
probability [BBEK11] and for the expected termination time of almost surely terminat-
ing one-counter MDPs [BKNW12]. One-counter MDPs can be seen as a special case
of recursive MDPs [EY15]. For general recursive MDPs, the qualitative decision prob-
lem whether the maximal termination probability is 1 is undecidable while for restricted
forms, so-called 1-exit recursive MDPs, the qualitative and also the quantitative problem
is decidable in polynomial space [EY15]. One-counter MDPs can be seen as a special
case of 1-box recursive MDPs in the terminology of [EY15], a restriction orthogonal to
1-exit recursive MDPs.

Energy objectives. If the accumulated weight that can increase and decrease along a
run models a resource like energy, a further natural objective is to keep the accumulated
value above 0 at all times instead of trying to reach the value 0 as in one-counter MDPs.
This objective is often called an energy objective. There has been work on combinations
of the energy objective with further objectives such as parity objectives [CD11,MSTW17]
and expected mean payoffs [BKN16]. Again, previous work on this objective focused on
the possibility to satisfy the objective (or the combination of objectives) almost surely.
The quantitative problem whether it is possible to satisfy an energy objective with proba-
bility greater than some threshold p is open. Note that the maximal probability to satisfy
an energy objective corresponds directly to the minimal termination probability of the
corresponding one-counter MDP.

Long-run satisfaction of path properties. Besides encoding quantitative fea-
tures of a model into a weight-structure, a further branch of research addresses ways to
quantify the degree to which a specification is satisfied by a model (see [Hen13] for an
overview of the field). This includes work on the robust satisfaction of temporal spec-
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ifications [KV99, TN16], vacuity and coverage semantics [KV03, CS09, CKV06, KLS08],
robustness distances [CHR12], and the more general model-measurement semantics based
on automatic distance functions of [HO13].

One line of research in this direction attempts to measure the degree to which a spec-
ification is satisfied when evolving over time. This includes, e.g., the work on frequency-
LTL [BDL12, FK15, FKK15]. In frequency-LTL, temporal operators are relaxed by fre-
quency constraints. A formula then does not have to hold on all suffixes, but the frequency
of suffixes that satisfy a formula – defined as the limit of the fraction of the number of
suffixes that satisfy the formula over the number of all suffixes – has to be at least some
rational q for example. Alternatively, averaging LTL [BMM14] rather than truth values,
assigns quantities to pairs of paths and formula. It is based on a quantitative labeling
function for atomic propositions and inductively defines the semantics of temporal oper-
ators as the average of the value of φ at the respective positions. A notable similarity
of these two quantitative extensions of LTL is the undecidability of the model checking
problem of the full logics [BDL12, BMM14]. Decidable fragments of frequency-LTL can
be obtained by restricting the nesting of temporal operators or the allowed frequency
thresholds [BDL12,FK15,FKK15].

In this thesis, we study a series of optimization problems concerned with the degree
of satisfaction of a property in a system in the long-run. In non-probabilistic systems,
we address the optimization of long-run frequencies defined as in the definition of the
quantitative globally operator of frequency-LTL. In probabilistic systems, we extend this
notion to long-run probabilities, expressing the average probability that a system will
satisfy a property when we start to observe it after many steps, i.e., the long-run aver-
age satisfaction probability. Finally, long-run expectations express the long-run average
amount of weight that will be accumulated in expectation before the next visit to a goal
state. This notion can be used to determine, for example, the expected time until the
next message is processed when starting to observe a system after many steps. Long-run
probabilities and long-run expectations can be useful for the analysis of the properties
of systems in the long-run equilibrium after some initialization phase. This is helpful,
e.g., to quantify the availability of system components. For a case study in this direction
employing probabilistic model checking to analyze system availability, see [LPM+15].

1.3 Contributions and structure of the thesis

In Chapter 2, we provide basic definitions and the notation we use throughout the
thesis. Additionally, we briefly present some well-known, basic results for MDPs that are
of importance in the subsequent chapters.
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Chapter 3 addresses the non-classical stochastic shortest path problems. We first see
that the partial and conditional expectation in Markov chains can be easily computed in
polynomial time. For MDPs, however, we observe that these problems are considerably
more complicated than the classical stochastic shortest path problem:

Result A. The optimal partial and conditional expectation in an MDP can be irrational.
Infinite-memory schedulers can be necessary to achieve the optimal value.

This stands in strong contrast to the classical problem where the optimal value is
rational, if finite, and can be achieved by a memoryless scheduler. Some techniques
known from the classical setting to decide finiteness of the optimal values and to pre-
process the input MDP can be transferred to the non-classical setting simplifying all
subsequent investigations. Despite the irrationality of optimal values, we can show that
optimal schedulers exist and that the memory requirement, although infinite, takes a
rather simple form:

Result B. If the optimal partial (or conditional) expectation is finite in an MDP, the
optimal value can be achieved by a weight-based deterministic scheduler, i.e., the optimal
decisions depend only on the current state and the weight accumulated so far.

For MDPs with non-negative weights, it has been shown in [CFK+13a,BKKW17] that
the optimal partial and conditional expectations, respectively, can be computed in expo-
nential time. The algorithms rely on the existence of a saturation point, a bound on the
accumulated weight such that an optimal scheduler can behave memorylessly as soon as
the accumulated weight exceeds that bound. We refine this result for partial expectations
by providing the least possible saturation point. While the resulting algorithm still runs
in exponential time, the considerably smaller saturation point we provide might lead to
a considerably faster computation in practice. Finally, we show that the existence of a
simple saturation point can be exploited to compute optimal conditional values-at-risk
for accumulated weights before reaching a goal state in MDPs with non-negative weights
as well.

In Chapter 4, we investigate the notions regarding the long-run behavior of a system:
long-run frequencies and long-run probabilities of path properties and long-run expecta-
tions. In the non-probabilistic setting, we study the optimization of long-run frequencies
in transition systems. After identifying easily solvable instances, we focus on regular
co-safety properties given by non-deterministic finite automata (NFAs). By providing a
product construction for a transition system and an NFA that keeps track of runs of the
NFA on suffixes of a path in the transition system, we obtain the following result:

Result C. Given a transition system T and a regular co-safety property represented by
an NFA A, the optimal long-run frequency of the co-safety property can be computed
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in time polynomial in the size of T and exponential in the size of A. The corresponding
threshold problem is PSPACE-hard.

For the special case of constrained reachability properties (aU b), this implies that optimal
long-run frequencies can be computed in polynomial time.

In probabilistic systems, the situation for long-run probabilities becomes more diffi-
cult. Again, for several types of path properties the optimal long-run probability can be
computed efficiently. Turning the attention to regular co-safety properties, deterministic
finite automata (DFA) are more suitable in the probabilistic setting as the product of
an MDP and a DFA is well-behaved. For co-safety properties given as a DFA, we again
provide a product construction starting from an MDP M and the DFA D that keeps
track of the runs of the DFA on the suffixes of the path produced in the MDP. The
constructed MDP MD is an infinite-state MDP equipped with a weight function. Using
Fatou’s lemma, we show that the optimal long-run probability of the property expressed
by D in M and the optimal expected mean payoff in MD agree and can be approxi-
mated via finite-memory schedulers. While the infinite-state MDP MD does not allow
the computation of the optimal expected mean payoff, we can show that for constrained
reachability (aU b), the constructed MDP can be seen as the MDP M equipped with
one counter. For this case, we can prove the existence of a saturation point similar to
the saturation point for non-classical stochastic shortest path problems. This saturation
point can then be employed to obtain the following result:

Result D. Given a labeled MDP M, the optimal long-run probability of constrained
reachability properties (aU b) can be computed in exponential time. The corresponding
threshold problem is NP-hard.

For the analysis of the behavior of quantitative aspects of a system in the long-run,
we introduce the notion of long-run expectation. Interestingly, even in MDPs with both
positive and negative weights, we can prove the existence of a saturation point as a
bound on the number of steps since the last visit to a goal state after which an optimal
scheduler can switch to memoryless behavior. Again, this saturation point can be used
for the computation of the optimal value:

Result E. The optimal long-run expectation in an MDP with arbitrary integer weights
can be computed in exponential time. The corresponding threshold problem is NP-hard.

In Chapter 5, we prove that the non-classical stochastic shortest path problems,
the computation of long-run probabilities, and several related problems studied in the
literature exhibit an inherent mathematical difficulty that suggests that the problems are
not solvable with known techniques. More precisely, we show that this series of problems
is at least as hard as the Positivity problem for rational linear recurrence sequences.



1. Introduction 11

This problem asks whether a linear recurrence sequence (un)n≥0 given by k initial values
u0, . . . , uk−1 and a linear recurrence relation

un+k = α1 · un+k−1 + α2 · un+k−2 + · · · + αk · un

of depth k with rational coefficients α1, . . . , αk stays non-negative, i.e., whether un ≥ 0 for
all n. The famous Skolem problem asking whether such a sequence has a zero is reducible
to the Positivity problem. Both problems have been open for many decades and defy all
solution attempts with known number-theoretic techniques (see [HHHK05,OW14b]). The
decidability of the Positivity problem would constitute a major breakthrough in analytic
number theory, more precisely in the field of Diophantine approximation of transcendental
numbers (see [OW14b]).

To obtain our Positivity-hardness results, we construct an MDP-gadget that ensures
that the difference of the optimal values of various optimization problems in two states
satisfies a linear recurrence relations when increasing the level of accumulated weight.
This gadget forms the basis for all the Positivity-hardness proofs. For several optimiza-
tion problems, we then construct gadgets that also encode the initial values of a linear
recurrence sequence for low levels of accumulated weight. In this way, we can encode
arbitrary linear recurrence sequences into the optimal values of the respective problems.
This encoding allows us then to reduce the Positivity problem to the threshold problems
of the respective optimization problems. Using reductions from further problems and
adjusting the construction when necessary, we can transfer the Positivity-hardness to
various other problems:

Result F. The Positivity problem is polynomial-time reducible to the threshold problems
for the optimal values of the following quantities:

• partial and conditional expectations,

• a two-sided version of partial expectations in MDPs with non-negative weights,

• long-run probabilities of regular co-safety properties,

• conditional values-at-risk for accumulated weights before reaching a goal,

• termination probabilities and termination times of one-counter MDPs,

• the satisfaction probability of energy objectives, and

• the probability that the accumulated weight when reaching a target state satisfies
an inequality constraint (cost problem).

Furthermore, algorithms for the following problems would imply the decidability of the
Positivity problem:
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• the model-checking problem of frequency-LTL (as defined in [FK15,FKK15]),

• the computation of quantiles for the accumulated weight (before reaching a goal).

An overview over the Positivity-hardness results and the decidable restricted versions
of the problems is shown in Table 1.1. The dependencies between the Positivity-hardness
results is also depicted in Figure 5.1 in Chapter 5.

As the Positivity-hardness results show that exact solutions to the non-classical stochas-
tic shortest path problems are not in sight without overcoming major difficulties or might
even be undecidable, we focus on the approximability of the optimal values in Chapter 6.
Using the fact that saturation points still provide us with information on the behavior of
optimal schedulers in the setting of arbitrary weights together with estimations on the
possible growth of weights in end components with negative maximal expected mean-
payoff, we provide a way to approximate optimal values with finite-memory schedulers.
This allows us to conclude that the optimal values can be approximated with reasonable
complexity:

Result G. Given an MDP M and ε > 0, the maximal partial and conditional expecta-
tions in M can be approximated up to an absolute error of ε in time exponential in the
size of M and polynomial in log(1/ε).

As the approximation algorithms behave well with respect to the desired precision
ε, these approximation algorithms have the potential to provide sufficiently accurate
values for practical applications. To conclude the chapter, we show that there are no
polynomial-time approximation algorithms if P ̸= PSPACE.

In Chapter 7, we conclude with remarks on the presented work and on possible
future directions of research.

The results presented in this thesis have partially been published in [PB19], [BBPS19],
and [PB20]. At the beginning of each chapter, we describe the publication status of the
results more precisely and point out which results of this thesis constitute extensions of
the contributions of these publications.
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Optimum computable in
exponential time

Positivity-hard threshold
problem

Partial expectations weights in N [CFK+13a] weights in Z, Sec. 5.2.1
(PSPACE-h., Sec. 3.5) (exponential-time

approximation
algorithm, Sec. 6.2)

Conditional expectations weights in N [BKKW17] weights in Z, Sec. 5.2.1
(PSPACE-h. [BKKW17]) (exponential-time

approximation
algorithm, Sec. 6.3)

Conditional value-at-risk
for accumulated weights

weights in N, Sec. 3.6 weights in Z, Sec. 5.2.4

Cost problems, quantiles weights in N [HK15,UB13]
(PSPACE-hard [HK15])

weights in Z, Sec. 5.2.3

One-counter MDPs qualitative termination
problem with target
state [BBE+10]
(PSPACE-hard, in
polynomial time without
target state [BBE+10])

termination probability
(without target state),
termination time, Sec.
5.2.3

Energy objectives almost-sure
satisfaction [CD11]

satisfaction probability,
Sec. 5.2.3

Long-run probability constrained
reachability properties

regular co-safety
properties, Sec. 5.2.2

(NP-hard), Sec. 4.2.3

Long-run expectation weights in Z —
(NP-hard), Sec. 4.3

Table 1.1: Overview of the results. Contributions of this thesis are written in bold face.
The hardness results in the middle column refer to the threshold problems.
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CHAPTER

TWO

PRELIMINARIES

This chapter contains basic definitions and our notation. Furthermore, we state prelimi-
nary results from the literature that are employed throughout the thesis.

2.1 Markov decision processes
Finite-state Markov decision processes (MDPs) are the main model we work with in
this thesis. We assume some familiarity with MDPs and present the basic notions and
preliminary results only briefly. More details can be found in textbooks, e.g., [Put94].

2.1.1 Definitions
We begin by defining MDPs, Markov chains, schedulers, and the resulting probability
measure on maximal paths in an MDP. Further, we sketch how the quotient of an MDP
by its maximal end components is constructed.

Markov decision process. A Markov decision process (MDP) is a tuple M =
(S,Act, P, sinit) where

• S is a finite set of states,

• Act is a finite set of actions,

• P : S × Act × S → [0, 1] ∩ Q is the transition probability function for which we
require that ∑︁t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S × Act, and

• sinit ∈ S is the initial state.

Depending on the context, we enrich MDPs with
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• a weight function wgt : S × Act → Z,

• a finite set of atomic propositions AP and a labeling function L : S → 2AP, or

• a designated set of goal states Goal.

The size of an MDP M, denoted by size(M), is the sum of the number of states plus
the total sum of the logarithmic lengths of the non-zero probability values P (s, α, s′) as
fractions of co-prime integers and the logarithmic lengths of the weight values wgt(s, α).

We write Act(s) for the set of actions that are enabled in a state s, i.e., α ∈ Act(s)
iff ∑︁

t∈S P (s, α, t) = 1. Whenever the process is in a state s, a non-deterministic choice
between the enabled actions Act(s) has to be made. We call a state absorbing if the only
enabled actions lead to the state itself with probability 1 and weight 0. If there are no
enabled actions, we call a state a trap.

The paths of M are finite or infinite sequences s0 α0 s1 α1 s2 α2 . . . where states and
actions alternate such that P (si, αi, si+1) > 0 for all i ≥ 0. Throughout this section, we
assume that all states are reachable from the initial state in any MDP, i.e., that there is
a finite path from sinit to each state s. We extend the weight function to finite paths. For
a finite path π = s0 α0 s1 α1 . . . αk−1 sk, we denote its accumulated weight by

wgt(π) = wgt(s0, α0) + . . .+ wgt(sk−1, αk−1).

Similarly, we extend the transition probability function to finite paths and write

P (π) = P (s0, α0, s1) · . . . · P (sk−1, αk−1, sk).

A Markov chain is an MDP in which the set of actions is a singleton. There are
no non-deterministic choices in a Markov chain and hence we drop the set of actions.
Consequently, a Markov chain is a tuple M = (S, P, sinit), possibly extended with a
weight function, a labeling, or a designated set of goal states. The transition probability
function P is a function from S × S to [0, 1] ∩ Q such that ∑︁t∈S P (s, t) ∈ {0, 1} for all
s ∈ S.

Remark 2.1 (Rational weights). We could as well allow rational weights instead of
integer weights in the definition of MDPs. An MDP with rational weights can easily
be transformed to an integer weighted MDP by multiplying all weights with the least
common multiple of all denominators of the weights appearing in the MDP. All quantities
of interest, such as expected accumulated weights, scale accordingly. ◁

Remark 2.2 (Infinite state space). The focus of this thesis lies on optimization and
decision problems in finite-state MDPs. Hence, we included the requirement that the
state space is finite in the definition. Nevertheless, we will encounter infinite-state MDPs
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on a few occasions. In these situations, it will be made clear that we drop the requirement
of a finite state space. ◁

Scheduler. A scheduler for an MDP M = (S,Act, P, sinit) is a function S that assigns
to each finite path π a probability distribution over Act(last(π)) where last(π) denotes
the last state of π. This probability distribution indicates which of the enabled actions
is chosen with which probability under S after the process has followed the finite path
π. Given a scheduler S, a path ζ = s0 α0 s1 α1 . . . is a S-path iff ζ is a path and
S(s0 α0 s1 α1 . . . αk−1 sk)(αk) > 0 for all k ≥ 0.

We allow schedulers to be randomized and history-dependent. By restricting the pos-
sibility to randomize over actions or by restricting the amount of information from the
history of a run that can affect the choice of a scheduler, we obtain the following types of
schedulers: A scheduler S is called deterministic if it does not make use of the possibility
to randomize over actions, i.e., if S(π) is a Dirac distribution for each path π. Such
a scheduler S can be viewed as a function that assigns an action to each finite path
π. A scheduler S is called memoryless if S(π) = S(π′) for all finite paths π, π′ with
last(π) = last(π′). In this case, S can be viewed as a function that assigns to each state
s a distribution over Act(s). A memoryless deterministic scheduler hence can be seen as
a function from states to actions. In an MDP with a weight function, a scheduler S is
said to be weight-based if S(π) = S(π′) for all finite paths π, π′ with wgt(π) = wgt(π′)
and last(π) = last(π′). Such a scheduler assigns distributions over actions to state-weight
pairs from S × Act. Finally, let X be a finite set of memory modes with initial mode
xinit and U : X × S × Act × S → X a memory update function. From a finite path
π = s0 α0 s1 α1 . . . αk−1 sk we can extract a sequence of memory modes x0 . . . xk. We let
x0 = xinit , and xi+1 = U(xi, si, αi, si+1) for all i < k. Let us denote the last memory mode
xk after the finite path π by U(xinit , π). A scheduler S is a finite-memory scheduler if
there is such a finite set of memory modes X with an initial mode xinit and an update
function U such that S(π) = S(π′) for all finite paths π, π′ with U(xinit , π) = U(xinit , π

′)
and last(π) = last(π′).

Example 2.3 (Finite- vs infinite-memory schedulers). Consider the example MDPs de-
picted in Figure 2.1. We use arrows connected by an arc to depict transitions belonging
to the same action. All non-trivial probability values are denoted next to the arrows.
In the two example MDPs, there is a non-deterministic choice between actions α and β

in the initial state sinit. Except for the weight of the state-action pair (sinit, β), the two
MDPs are identical. Let S be the scheduler for M given by

S(π) =
⎧⎨⎩β if wgt(π) > 3 and wgt(π) is even,
α otherwise.
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for all finite paths π ending in sinit. Further, let S′ be the scheduler for N given by
the same definition. Both schedulers, S for M and S′ for N , are weight-based and
deterministic. Note that the functions from finite paths to probability distributions over
actions given by S and S′ are different in the MDPs M and N as the definition of the
schedulers depends on the weight functions.

sinit t

s

1/2

1/2

α : 0

β : + 3

τ : + 1

τ : + 5

(a) Example MDP M.

sinit t

s

1/2

1/2

α : 0

β : − 3

τ : + 1

τ : + 5

(b) Example MDP N .

Figure 2.1: Example MDPs to illustrate finite- and infinite-memory weight-based sched-
ulers. Note that the weight of action β in state sinit is positive in M, while it is negative
in N .

In the MDP M, the scheduler S only requires finite memory: as memory modes we
can use the set {0, 1, 2, 3, even, odd}. The update function now updates the memory mode
as follows: As long as the accumulated weight is 3 or less, the memory mode equals that
weight. As soon as the accumulated weight exceeds 3, the memory only keeps track of
the parity of the accumulated weight. As all weights are non-negative, the accumulated
weight along a path stays above 3 once it exceeded this bound. Thus, the parity is
sufficient to determine which action the scheduler chooses.

In the MDP N , however, the scheduler S′ is not a finite-memory scheduler. No matter
how much weight has been accumulated on a finite path, there is always a positive
probability that this weight drops below 3 again. Namely, starting in sinit with even
weight higher than 5, the path sinit β sinit α t τ sinit decreases the weight by 2 and might
be repeated until the accumulated weight is 2. Then, the scheduler does not choose β
again but α although the weight is even. Therefore, the scheduler has to keep track of
the accumulated weight for arbitrarily high values and finite memory is not sufficient. ◁

Once a scheduler S is specified for an MDP M = (S,Act, P, sinit), the behavior
under this scheduler is purely probabilistic. The scheduler induces a natural infinite-
state Markov chain: The states of the Markov chain are the finite paths of M. The



2. Preliminaries 19

path sinit only consisting of the initial state of M takes the role of the initial state in the
Markov chain. The transitions probability from a finite paths π to an extension of the
form π α s with s ∈ S and α ∈ Act is given by S(π)(α) · P (last(π), α, s). This is simply
the probability that S chooses α after π and that the next state is s. If S is a finite-
memory scheduler with the finite set of memory modes X, initial mode xinit and memory
update function U , the induced Markov chain can be seen as a finite-state Markov chain
with state space S × X. The initial state is (sinit, xinit). The probability to move from
(s, x) to (t, y) is given by

∑︂
α∈Act(s),y=U(x,s,α,t)

S(s, x)(α) · P (s, α, t).

Probability measure. Given an MDP M = (S,Act, P, sinit) and a scheduler S, we
obtain a probability measure PrSM,s on the set of maximal paths of M that start in s:
For each finite paths π = s0 α0 s1 α1 . . . αk−1 sk with s0 = s, we denote the cylinder set
of all its maximal extensions by Cyl(π). The probability mass of this cylinder set is then
given by

PrSM,s(Cyl(π)) = P (π) · Πk−1
i=0 S(s0 . . . si)(αi).

Recall that S(s0 . . . si) is a probability distribution over actions and that S(s0 . . . si)(αi)
denotes the probability that the scheduler S chooses action α after the prefix s0 . . . si of
π. In particular, that means that the cylinder set Cyl(π) has positive probability under
PrSM,s(Cyl(π)) iff π is a S-path. The set of cylinder sets forms the basis of the standard
tree topology on the set of maximal paths. By Carathéodory’s extension theorem, we
can extend the pre-measure PrSM,s(Cyl(π)) defined on the cylinder sets to a probability
measure on the Borel σ-algebra of the space of maximal paths with the standard tree
topology. We sometimes drop the subscript s if s is the initial state sinit of M. In a
Markov chain N , we drop the reference to a scheduler and write PrN ,s.

Let X be a random variable on the set of maximal paths of M starting in s, i.e., X
is a function assigning values from R ∪ {−∞,+∞} to maximal paths. We denote the
expected value of X under the probability measure PrSM,s by ES

M,s(X).
The values we are typically interested in are the worst- or best-case probabilities of

an event or the worst- or best-case expected values of a random variable. Worst or best
case refers to the possible ways to resolve the non-deterministic choices. Hence, these
values are formally expressed by taking the supremum or infimum over all schedulers.
Given an MDP M, a state s, an event, i.e., a path set, E, and a random variable X on
the maximal paths of M, we define

Prmax
M,s(E) = sup

S
PrSM,s(E), Prmin

M,s(E) = inf
S

PrSM,s(E),

Emax
M,s(X) = sup

S
ES

M,s(X), and Emin
M,s(X) = inf

S
ES

M,s(X),
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where inf and sup range over all schedulers S for M.

Remark 2.4 (Measurability). For all events and for all random variables investigated in
this thesis, measurability is easily established. In particular, all ω-regular sets of maximal
paths and hence also all sets of maximal paths specified by common temporal logics such
as linear temporal logic (LTL) are measurable. Therefore, measurability questions will
be no concern throughout the thesis and we will not explicitly address these questions.
For more details, see [Put94]. ◁

End components, MEC-quotient. Let M = (S,Act, P, sinit) be an MDP. An end
component of M is a strongly connected sub-MDP. End components can be formalized
as pairs E = (E,A) where E is a nonempty subset of S and A a function that assigns
to each state s ∈ E a nonempty subset of Act(s) such that the graph induced by the
transitions with non-zero probability in E is strongly connected. In other words, there
has to be a path inside E between any two states s and t in E that only uses actions
belonging to the end-component E .

An end component E is called maximal if there is no end component E ′ = (E ′,A′)
with E ≠ E ′, E ⊆ E ′ and A(s) ⊆ A′(s) for all s ∈ E. For each state s there is a unique
maximal end component E containing s. Note that a single state without any actions
is also an end component. We call such end components trivial end components. The
quotient by maximal end components (MEC-quotient) of an MDP M is the following
MDP MEC (M): The set of states SMEC is the set of maximal end components of M.
All actions α that are enabled in some state s of E = (E,A) and do not themselves belong
to E , i.e., α ̸∈ A(s), are enabled in the state E of MEC (M). Let us assume that the
sets of enabled actions at different states in M are disjoint. Then, for each state s ∈ E

and each action α ∈ Act(s) \A(s), the action α is enabled in the state E . The transition
probability function PMEC in MEC (M) is given by PMEC (E , α,F) = ∑︁

t∈F P (s, α, t) for
any maximal end component F = (F,B). The initial state of the MDP MEC (M) is Einit ,
the maximal end component containing the initial state sinit. Maximal end-components
and the MEC-quotient are computable in polynomial time [dA97,CH11]. For more details
and the formal construction of the MEC-quotient, we refer to [dA97,CBGK08].

Non-trivial end components of Markov chains are called bottom strongly connected
components (BSCC). In other words, a BSCC is a subset of states T such that any state
inside T is reachable from any other state in T and such that there are no transitions
from a T -state to a state not in T . It is well-known that the states occurring infinitely
often on a path form a BSCC for almost all paths in a Markov chain (see, e.g., [dA97]).
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2.1.2 Preliminary results

Several optimization problems on MDPs addressing optimal probabilities of simple events
or optimal expected values are solvable in polynomial time via a linear program. We
briefly state a few of these results that are of importance to the contents of this thesis.

Optimal reachability probabilities. Computing the minimal or maximal probability
of the event ♢T that a given set of states T is eventually reached is a recurrent task in
the formal verification of probabilistic systems. A linear programming approach makes
it possible to solve this important problem in polynomial time.

Let us briefly sketch how maximal reachability probabilities can be computed following
the procedure given in [dA97]: Let M = (S,Act, P, sinit) be an MDP. Let T ⊆ S be a set
of target states. Let T be the set of states in MEC (M) = (SMEC ,ActMEC , PMEC , Einit)
corresponding to maximal end components containing a state from T . As a scheduler
can reach any state within a maximal end component from any other state in that end
component with probability 1, we have

Prmax
M,sinit (♢T ) = Prmax

MEC(M),Einit (♢T ).

In the MEC-quotient there are no end components except for trivial one-state end com-
ponents. Hence, with probability 1 under any scheduler for MEC (M), a trap state or a
state in T is reached. Let us denote the set of states in SMEC from which T is unreach-
able by F . The maximal reachability probability can now be computed via the following
linear program with one variable xs per state s ∈ SMEC : Minimize ∑︁s∈SMEC xs under the
conditions

xs = 1 for s ∈ T ,
xs = 0 for s ∈ F ,
xs ≥

∑︂
t∈S′

PMEC (s, α, t) · xt for s ∈ SMEC \ (T ∪ F) and α ∈ ActMEC (s).

By assigning 0 to the states in F , we ensure that the linear program has a unique solution.
The pre-processing step to move to the MEC-quotient might considerably decrease the
size of the linear program. As it only requires graph algorithms and can disregard the
probability values, this can lead to a notable speed-up.

From the solution, we can extract a memoryless deterministic scheduler that realizes
the optimal reachability probability from each state. In the MEC-quotient, we can simply
check for which actions equality is obtained when plugging the optimal values into the re-
spective inequalities in the linear program. The traversal of the maximal end components
in the original MDP can easily be done in a memoryless fashion as well. Minimal reach-
ability probabilities can be computed via a similar linear program. In Markov chains,



2. Preliminaries 22

we can formulate a system of linear equations instead of a linear program to compute
reachability probabilities.

Weighted reachability. A well-known generalization of the optimization of reacha-
bility probability is the optimization of expected terminal weights in a weighted reacha-
bility problem to which the approach of [dA97] can easily be extended: Given an MDP
M = (S,Act, P, sinit), we not only are given a set of terminal target states T , but also
a terminal weight wt ∈ Q for each state in T . The expected terminal weight under
scheduler S is ∑︁t∈T PrSM,sinit (♢t) · wt. We want to maximize this expected value among
all schedulers that reach T with probability 1. We can use the MEC-quotient as above
to make sure that T is reached with probability 1 under any scheduler. The maximal
expected terminal weight can now be computed via a linear program very similar to the
program above: Minimize ∑︁s∈S xs under the conditions

xt = wt for t ∈ T,

xs ≥
∑︂
t∈S

P (s, α, t) · xt for s ∈ S \ T and α ∈ Act(s).

The value xs in the optimal solution equals the maximal expected terminal weight when
starting in s.

Mean payoff. A well-known measure for the long-run behavior of a scheduler S in an
MDP M = (S,Act, P, sinit,wgt) is the expected mean payoff. Intuitively, the mean payoff
is the amount of weight accumulated per step on average in the long run. Formally, we
define the mean payoff as the random variable MP on infinite paths ζ = s0α0s1α1 . . . by

MP(ζ) = lim inf
k→∞

∑︁k
i=0 wgt(si, αi)

k + 1 .

We assume that there are no trap states in M, so all maximal paths are infinite. The
expected mean payoff of the scheduler S is defined as the expected value ES

M,sinit (MP).
The maximal expected mean payoff is the supremum over all schedulers. It is well-
known that this supremum is equal to the maximum over all memoryless deterministic
schedulers (see, e.g., [Put94]). In strongly connected MDPs, the maximal expected mean
payoff does not depend on the initial state. In order to compute the maximal expected
mean payoff, it is easiest to consider the non-trivial maximal end components separately
first. Inside a maximal end component, we can employ a linear programming approach
as presented in [HK79] and [dA97]. Let E = (E,A) be a maximal end component. The
maximal expected mean payoff in E is given by the value of g in an optimal solution to
the following linear program with one variable us per state s ∈ E as well as the variable
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g: Minimize g under the conditions

us + g ≥ wgt(s, α) +
∑︂
t∈E

P (s, α, t) · ut for s ∈ E,α ∈ A(s).

The values of the variables (us)s∈E can be interpreted as a potential (as the term is used
in physics for example). A high value of the variable us indicates that the maximal
expected accumulated weight after a large number of steps when starting from state s
is comparably high. Intuitively that means that in the initial part of a run, starting
in s makes it possible to collect high amounts of weights before the expected collected
weight per step gets closer to the expected mean payoff. We can make this intuition of
a potential precise: Let (us)s∈E and g be an optimal solution to the linear program. For
each pair of states s and t form E, we have that

lim
n→∞

(︂
Emax

E,s (weight after n steps) − Emax
E,t (weight after n steps)

)︂
= us − ut.

For details, consult [Kal11]. Note that the value of a single variable us does not have
a meaningful interpretation. In particular, we can obtain another optimal solution by
leaving g unchanged and adding the same number u ∈ R to all values us with s ∈ E. This
is exactly what we expect from a potential; only the pairwise differences of the values
are important. Once, the optimal values in each maximal end components are known,
the optimal expected mean payoff can be computed by solving a weighted reachability
problem in the MEC-quotient.

Long-run distribution of Markov chains. Let M = (S, P, sinit) be a Markov chain.
The long-run distribution of M is given by the values

θM
t = lim

n→∞

1
n+ 1

n∑︂
i=0

PrM,sinit (state after i steps is t).

We also call these values steady state probabilities. These values exist for all (finite-state)
Markov chains. If M is strongly connected, the values θM

t are the values for the variables
xt with t ∈ T in the unique solution to the set of equations

∑︂
t∈S

xt = 1,

xs =
∑︂
t∈S

xt · P (t, s), for all s ∈ S.

In arbitrary Markov chains M = (S, P, sinit), the values for states t inside a BSCC B
with states B are the product of the values θB

t and the probability PrM,sinit (♢B) that the
BSCC is reached in M. Hence, the long-run distribution can be computed in polynomial
time. For more details, see [BK08,Kul16].
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The long-run distribution is a valuable tool when analyzing the limiting behavior
of a Markov chain. In particular, the expected mean-payoff in a Markov chain M =
(S, P, sinit,wgt) with a weight function wgt : S → Z is given by

EM,sinit (MP) =
∑︂
t∈S

θM
t · wgt(t).

2.2 Linear temporal logic and automata

We assume familiarity with linear temporal logic and finite automata. We briefly present
our notation here.

Linear temporal logic (LTL). Let AP be a finite set of atomic propositions. The
syntax of linear temporal logic (LTL) over AP is given by

φ ::= a|φ ∧ φ|¬φ| ⃝ φ|φUφ

where a ∈ AP. The semantics of LTL are given on words in (2AP)ω. For a word w =
w0w1w2 . . . , the semantics are recursively defined as follows:

w ⊨ a iff a ∈ w0,

w ⊨ φ ∧ ψ iff w ⊨ φ and w ⊨ ψ,

w ⊨ ¬φ iff w ̸⊨ φ,
w ⊨ ⃝φ iff w1w2w3 · · · ⊨ φ,
w ⊨ φUψ iff there is j ∈ N with wjwj+1wj+2 · · · ⊨ ψ and

wiwi+1wi+2 · · · ⊨ φ for all i < j.

We use the usual Boolean abbreviations and the common abbreviations ♢φ for true Uφ

stating that φ holds eventually (on some suffix) and □φ for ¬♢¬φ stating that φ holds
globally (on all suffixes). For more details, consult, e.g., [BK08]. Furthermore, we use
LTL-like notation to denote events such as “♢(accumulated weight < 0)” expressing the
set of paths in a weighted structure with a prefix π such that the accumulated weight of
π is less than 0.

Nondeterministic finite automata (NFA). An NFA is a tuple A = (Q,Σ,∆, Q0, F )
where Q is a finite set of states, Σ a finite alphabet, ∆ ⊆ Q×Σ×Q the transition relation,
Q0 ⊆ Q the set of initial states and F ⊆ Q the set of final states. Let w = w0 . . . wn ∈ Σ∗

be a finite word over Σ. A run of A on w is a sequence of states q0 . . . qn+1 from Q

such that q0 ∈ Q0 and such that (qi, wi, qi+1) ∈ ∆ for all i ≤ n. The run is accepting if
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qn+1 ∈ F . The word w is accepted by A if there is an accepting run of A on w. The
language L(A) of A is the set of accepted words from Σ∗.

Deterministic finite automata (DFA). An DFA is a tuple D = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ a finite alphabet, δ : Q × Σ → Q the transition function,
q0 ∈ Q the initial state and F ⊆ Q the set of final states. For a word w = w0 . . . wn ∈ Σ∗,
the unique run of D on w is the sequence q0 . . . qn+1 starting with the initial state q0 and
satisfying qi+1 = δ(qi, wi) for all i ≤ n. The word w is accepted by D if the unique run
ends in an accepting state, i.e., if qn+1 ∈ F . Again, the language L(D) is the set of words
from Σ∗ accepted by D.

Regular co-safety property. Let AP be a finite set of atomic propositions. A co-
safety property is a set of words Π ⊆ (2AP)ω with the following property: for each w ∈ Π,
there is a prefix π such that Cyl(π) ⊆ Π, i.e., all extensions of π are in Π. In terms of the
usual tree-topology induced by the cylinder sets, co-safety properties are precisely the
open sets. An (ω-)regular co-safety property can be given in terms of an NFA or DFA
A: The automaton A accepts all finite words π such that Cyl(π) belongs to the co-safety
property. So, a word w satisfies to the co-safety property given by A iff it has a prefix
accepted by A.
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CHAPTER

THREE

NON-CLASSICAL STOCHASTIC SHORTEST PATH
PROBLEMS

Stochastic shortest path problems lie at the heart of many verification problems for
systems that exhibit probabilistic and non-deterministic behavior. In a finite-state MDP
that can be used to model such systems, these problems ask for the maximal or minimal
expected accumulated weight before reaching a target state. In the classical setting, it
is required that a target state is reached almost surely. As discussed in Section 1.1,
there are various reasons why the classical stochastic shortest path problem might not be
applicable or does not cover all relevant executions of the system due to this restriction
to schedulers that reach a target state with probability 1. Typical situations in which
this is the case include, e.g., the analysis of probabilistic programs that do not necessarily
terminate almost surely or the analysis of the costs caused in case of an error scenario
that occurs with small but positive probability. In this chapter, we turn our hands to two
non-classical variants of the stochastic shortest path problem in which it is not required
that the target is reached almost surely. For the switch to the non-classical variants, we
have to specify a way to treat executions that do not reach the target. Depending on
the quantitative aspect of a system that is modeled and the verification question under
consideration, different treatments of these executions are appropriate. The two variants
we consider are partial expectations and conditional expectations.

For partial expectations, we assign weight 0 to runs missing the target. An example
situation in which this treatment is appropriate is the following: A system component
processes data and tries to transmit the results to other components. The transmission
might, however, fail with some positive probability. If we are interested in the best- or
worst-case expected amount of data that is successfully transmitted after an execution
of the component, we naturally arrive at a problem that asks to maximize or minimize
the expected accumulated weight (amount of processed data) while assigning weight 0 to
executions that do not reach the target (successful transmission of the results). Note that
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implicitly the optimization of partial expectations requires an analysis of the trade-off
between the accumulation of high amounts of weights and a high probability to reach the
target.

For conditional expectations, we consider the expected accumulated weight before
reaching a target state under the condition that a target state is reached. In other words,
the conditional expectation is the average accumulated weight of all paths reaching a
target state. In particular in situations where the target is reached with a small prob-
ability, the conditional expectation can be a useful measure. Consider for example a
repair mechanism that is activated if a certain unlikely error scenario occurs. If we are
interested in the expected energy consumption of the repair mechanism, the conditional
expectation under the condition that the error scenario occurs provides information on
the amount of energy that should be available for the repair mechanism for example. The
conditional expectation provides bounds on the expected energy consumption during one
execution of the repair mechanism. If we used the partial expectation assigning weight 0
to runs in which the error scenario does not occur, we would obtain the expected energy
consumption by the repair mechanism during one execution of the whole system. For
errors with small probabilities, the latter value might still be interesting, but the condi-
tional expectation seems to provide the more relevant information. It is worth mentioning
that the classical stochastic shortest path problem and these two non-classical stochastic
shortest path problems all coincide in MDPs in which a target state is reached almost
surely under all schedulers.

Besides partial and conditional expectations, we also consider the conditional value-
at-risk, a risk measure that is defined in terms of a conditional expectation (see also
Section 1.1). Given a probability value p, the conditional value-at-risk quantifies the
average of the p worst outcomes of a random variable. We investigate the conditional
value-at-risk of the random variable of stochastic shortest path problems, the accumulated
weight before reaching a target state. The optimization of the conditional value-at-risk
then constitutes a problem that is closely related to our two non-classical stochastic
shortest path problems.

Outline. After summarizing the main techniques used for the solution of the classical
stochastic shortest path problem (Section 3.1), we illustrate the non-classical variants
with examples and show that these problems on MDPs with arbitrary integer weights
impose new challenges compared to the classical setting and also compared to the setting
with non-negative weights: The optimal values can be irrational and infinite-memory
schedulers can be necessary to obtain the optimal value (Section 3.2). Nevertheless, we
are able to employ techniques from the classical setting to prove that we can decide
finiteness of optimal values in polynomial time. Furthermore, the threshold problems for
partial and conditional expectations turn out to be easily inter-reducible demonstrating
the close relationship between the two problems (Section 3.3). Despite the complications
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in the setting of integer weights, we can show that there are always optimal schedulers if
the optimal values are finite and that the optimal scheduler can be chosen to be weight-
based deterministic (Section 3.4). In the setting with non-negative weights, we can refine
the results for stochastic multi-player games of [CFK+13a] for MDPs. We show that
the least possible saturation point that in particular does not rely on estimations of
upper bounds as the saturation point in [CFK+13a] can be computed efficiently (Section
3.5). Finally, we show that also the optimal conditional value-at-risk for the accumulated
weight before reaching the goal can be computed in exponential time in MDPs with
non-negative weights via a simple saturation point (Section 3.6).

Related work. We briefly discuss closely related work: Previous work on partial
or conditional expected accumulated weights was restricted to the case of non-negative
weights. More precisely, partial expectations have been studied in the setting of stochastic
multiplayer games with non-negative weights [CFK+13a]. Conditional expectations in
MDPs with non-negative weights have been addressed in [BKKW17]. In both cases,
optimal values are achieved by weight-based deterministic schedulers that depend on
the current state and the weight that has been accumulated so far, while memoryless
schedulers are not sufficient. Both [CFK+13a] and [BKKW17] prove the existence of a
saturation point for the accumulated weight from which on optimal schedulers behave
memorylessly and maximize the probability to reach a goal state. This yields exponential-
time algorithms for computing optimal schedulers. Moreover, [BKKW17] proves that the
threshold problem for conditional expectations (“does there exist a scheduler S such that
the conditional expectation under S exceeds a given threshold?”) is PSPACE-hard even
for acyclic MDPs.

The optimization of the conditional value-at-risk in MDPs has been investigated in
[KM18] for weighted reachability and mean payoffs. For weighted reachability, which can
be seen as a special case of accumulated weight before reaching the goal, the optimal
conditional value-at-risk is shown to be computable in polynomial time. Furthermore,
[KM18] analyzes the simultaneous satisfaction of constraints on the conditional value-at-
risk, the value-at-risk, and the expected value.

Note on the publication of the results. The results presented in this chapter have
been published in joint work with Christel Baier. Most results appear in [PB19] published
at FoSSaCS 2019. The lower bound for the threshold problem for partial expectations
and the results on the conditional value-at-risk are part of the publication [PB20] at
ICALP 2020.
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3.1 Classical stochastic shortest path problem
Before we move to the non-classical setting, we take a closer look at the classical stochastic
shortest path problem and its solution. Some concepts and techniques used for this
solution will be important to the treatment of the non-classical problems.

Let M = (S,Act, P, sinit,wgt,Goal) be an MDP with a weight function wgt : S×Act →
Z and a set Goal ⊆ S of designated trap states. As we are interested in the accumulated
weight before the set of goal states Goal is reached, it is not important how a run continues
after Goal is reached. Hence, we always assume all states in Goal to be trap states and
further that all states are reachable from the initial state. We define the following random
variable goal on maximal paths ζ of M as follows:

Goal(ζ) =
⎧⎨⎩wgt(ζ) if ζ ⊨ ♢Goal,

undefined otherwise.

The expected accumulated weight before reaching Goal under a scheduler S is given by
the expected value ES

M,sinit ( Goal). It is evident that this expected value is only defined if
PrSM,sinit ( Goal) = 1. The classical stochastic shortest path problem asks for the optimal
value

Emax
M,sinit ( Goal) = sup

S
ES

M,sinit ( Goal)

where the supremum ranges over all schedulers S with PrSM,sinit ( Goal) = 1. We will
sketch the treatment of the maximization problem here. In the setting of integer weights,
the minimization problem can be turned into a maximization problem by multiplying all
weights with −1.

In [BT91], a sufficient condition is given under which the problem can be solved by
a linear program. For the restriction to non-negative or non-positive weights, [dA99]
provides solutions. The solution without further restrictions of the problem requires a
classification of end components that is provided in [BBD+18]. We give a brief overview
over this solution in the sequel and start with a central definition.

Definition 3.1 (see [BBD+18]). We call an end component E positively weight-divergent
if there is a scheduler S for E such that PrSE,s(♢(accumulated weight ≥ n)) = 1 for
all s ∈ E and n ∈ N where ♢(accumulated weight ≥ n) denotes the event that the
accumulated weight of a prefix of a path is at least n. ◁

In [BBD+18], it is shown that the existence of positively weight-divergent end compo-
nents can be decided in polynomial time. The decision procedure distinguishes two types
of positively weight-divergent end components: If the maximal expected mean payoff
inside an end component E is positive, of course arbitrarily high weights can be reached
almost surely. If the maximal expected mean payoff in E is 0, however, an additional
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analysis is necessary. We first move to a smaller end component E ′ in which only the state-
action pairs that enable us to obtain expected mean payoff 0 are included. In other words,
for each of these state-action pairs (s, α), there is a memoryless deterministic scheduler
choosing α in s while achieving expected mean payoff 0. These are exactly the actions
for which an optimal solution to the linear program for the optimal expected mean payoff
presented in Section 2.1.2 leads to an equality in the corresponding constraint. In E ′, the
expected mean payoff is 0 under all schedulers. For this case, the results of [BBD+18]
state that the end component E is positively weight-divergent iff there is a cycle with
positive weight in E ′. The procedure leads to the following result:

Theorem 3.2 (see [BBD+18]). Given an MDP M = (S,Act, P, sinit,wgt,Goal), the
existence of a positively weight-divergent end component can be detected in polynomial
time.

In [BBD+18], it is shown that the value Emax
M,sinit ( Goal) is finite if and only if there

is no positively weight-divergent end component. So, finiteness of Emax
M,sinit ( Goal) can be

decided in polynomial time via the analysis of the end components.
The analysis further shows that in an MDP M without positively weight-divergent

end components, all end components either have negative maximal expected mean payoff
or contain an end component in which all cycles have length 0, called a 0-end component.
The spider construction provided in [BBD+18] allows us to remove all 0-end components.
We add a small modification to the construction by allowing a scheduler to move to a
trap state fail from all states in a 0-end component. This will be important later on as it
allows us to mimic schedulers that stay in a 0-end component with positive probability
by moving to fail with the same probability.

Modified spider construction. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP
and let E = (E,A) be an end component in which all cycles in E have weight 0. The
construction proceeds as follows: Pick a state e ∈ E. For each state s ∈ E, all paths from
s to e inside E have the same weight ws. This follows from the condition that all cycles
have weight 0. For each state s ∈ E, disable all actions in state s. Instead enable one
action βs in each state s ∈ E \ {e} leading to state e with probability 1 and weight ws.
For each state s ∈ E and each action α ∈ Act(s) \A(s), enable a new action βs,α in state
e. Let the weight of this new action in state e be wgt(s, α) − ws. For each state t ∈ S,
let P (e, βs,α, t) = P (s, α, t). In this way, taking action α in state s can be mimicked by
first moving to e via βs and then taking βs,α in state e. Finally, for each state in E,
we add a transition with probability 1 and weight 0 to a new trap state fail (this is the
modification in contrast to the construction from [BBD+18]). A simple instance of the
modified spider construction is illustrated in Figure 3.1.

The spider construction can be applied repeatedly to all 0-end components. Starting
from an MDP M without positively weight divergent end components, we obtain an MDP
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Figure 3.1: Illustration of the spider construction. The gray 0-end component in the
left MDP is removed on the right. All transitions leaving the end component are moved
to start from state e after the construction. The weights are adjusted accordingly. Addi-
tionally, one can move to the new state fail from all states of the former 0-end component.

spider(M) in which all end components have negative maximal expected mean payoff in
polynomial time: Inside each MEC, we identify the existence of 0-end components and
identify all state-action pairs that can belong to a 0-end component. By eliminating the
end components that are maximal among end components using only these state-action
pairs, we remove all 0-end components.

Schedulers for M can be transferred to schedulers for spider(M) and vice versa.
Namely, moving to fail in spider(M) corresponds to staying in a 0-end component of
M forever. If a 0-end component is left in M via state-action pair (s, α), the spider
construction allows to mimic this by moving to the pivotal point e of the removed 0-
end component by the action βs if s is not already e and by then taking action βs,α.
In the other direction, taking action βs,α can be mimicked by moving through the 0-
end component in a memoryless fashion until state s is reached and afterwards taking
action α there. The adjustment of the weights in the spider construction makes sure that
the accumulated weight when leaving the (former) 0-end component is the same in M
and spider(M). For path properties or random variables that are not affected by the
insertion of 0-weight cycles and for which it makes no difference whether a run stays in
a 0-end component forever or moves to an absorbing state fail, the switch from M to
spider(M) and the transformation of schedulers as described above does not influence
the the satisfaction probability or the expected value, respectively. In particular, this
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applies to expected accumulated weights before reaching a target state as in the stochastic
shortest path problems.

In conclusion, the classification of end components and the spider construction from
[BBD+18] combined with the results from [BT91] allow us to solve the classical stochas-
tic shortest path problem in polynomial time: The MDP spider(M) obtained by apply-
ing the spider construction to all 0-end components of an MDP M without positively
weight-divergent end components satisfies the conditions provided in [BT91]. The clas-
sical stochastic shortest path problem can then be solved via a linear program. From
a solution to the linear program, an optimal memoryless deterministic scheduler can be
derived. This leads to the following result.

Theorem 3.3 (see [BT91,dA99,BBD+18]). The classical stochastic shortest path prob-
lem is solvable in polynomial time. If the optimal value is finite, there is an optimal
memoryless deterministic scheduler.

3.2 Two non-classical stochastic shortest path
problems

In order to compute expected accumulated weights before reaching a goal state under
schedulers that do not reach the goal almost surely, we now have to specify how to treat
paths not reaching the goal. In this section, we formally define the two variants we
investigate, partial and conditional expectations. Afterwards, we make first observations
showing that the situation becomes much more complicated than in the classical setting.

3.2.1 Definition of the partial stochastic shortest path
problem

First, consider the following illustrating example.

Example 3.4. The folk dice game “Dice 10,000”, also called “Farkle” or “Zilch” among
others, employs the following basic principle: The active player starts a turn by rolling
6 dice. After each roll of dice, she has to put aside at least one scoring die and collects
points by doing so. Scoring dice are 1s, scoring 100 points, and 5s, scoring 50 points.
We disregard scoring combinations of several dice used in these games for the sake of
simplicity here. After putting away some or all of the scoring dice, the player can roll
the remaining dice again; or if all dice have been put aside, she can roll all six dice again.
Instead of rolling again, the player can also end the turn and receive all points collected
during the move. If the player rolls the dice and no scoring die comes up, the turn ends
automatically and the player receives no points.
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Figure 3.2: An excerpt of an MDP D modelling one turn in the dice game “Dice 10,000”.
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We can construct an MDP modelling one turn of this game. An excerpt of this MDP
D with a weight function wgt representing the points that are accumulated after each
decision is depicted in Figure 3.2. This excerpt represents the situation in which the
player rolled three dice and the outcome was 1, 5, x where x stands for any outcome other
than 1 and 5. We do not include moves that are obviously suboptimal such as putting
aside only the 5 instead of the 1 before rolling two dice again. The hexagonal states are
reached when the player decides to end the turn and to collect points, whereas the square
states are reached when no scoring die comes up in a roll and the turn hence ends with
no points for the player. The initial state of the process is the state “roll 6 dice” which
can be reached again in the excerpt depicted when all remaining dice are scoring in a roll
and the player decides to continue the turn by rolling all 6 dice again.

If we want to investigate how to play optimally in this game, we might in particular
be interested in how we can maximize the expected number of points collected in one
turn and how we can obtain that expectation. In our model D, we hence want to find a
scheduler maximizing the expected accumulated weight before reaching “end turn” while
unsuccessful moves not reaching this target get weight 0. More formally, we can define
the random variable points on maximal runs ζ in D as follows:

points(ζ) =
⎧⎨⎩wgt(ρ) if ρ ⊨ ♢end turn,

0 otherwise.

The value of interest is the maximal expected value Emax
D,roll 6 dice(points) of this random

variable. Note that it is impossible to reach a target state with probability 1 as already
the first roll of 6 dice can fail to score any points. For this reason, this optimization
problem cannot be solved by employing the classical stochastic shortest path problem.

Further, on an intuitive level, we can already observe that the weight collected so far
is important for the decision to be made: If we arrive at the state “1, 5, x” after having
put aside only three 5s so far for 150 points, it seems reasonable to continue to roll one or
two dice for the chance to collect additional points and to possibly be allowed to continue
with all 6 dice again. If, on the other hand, we have already cleared all 6 dice several
times and arrive with 2000 collected points at the state “1, 5, x”, the risk of loosing all
points when rolling again, which is at least 4/9, is most likely not worth the chance to
collect more points in the future. In this situation, we would expect also a precise analysis
to conclude that ending the turn is the best choice. ◁

Formally, we define the partial stochastic shortest path problem as follows.

Definition 3.5 (Partial stochastic shortest path problem). Consider an MDP M =
(S,Act, P, sinit,wgt,Goal). We define the random variable ⊕Goal on maximal paths ζ of
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M by

⊕Goal(ζ) =
⎧⎨⎩wgt(ζ) if ζ ⊨ ♢Goal,

0 otherwise.

We call the expectation ES
M,sinit (⊕Goal) of this random variable under a scheduler S the

partial expectation of S and denote it also by PES
M,sinit . The set Goal is specified in

the signature of the MDP and hence not included in the notation. The maximal partial
expectation PEmax

M,sinit is the supremum supS PES
M,sinit over all schedulers. The minimal

partial expectation is defined analogously. We refer to the task to maximize or minimize
the partial expectation as the partial stochastic shortest path problem. ◁

3.2.2 Definition of the conditional stochastic shortest
path problem

Again, we illustrate the problem with an example.

sinit

s

error

+13+5

1/2 1/2

1/20
19/20

β : + 7

1/10
9/10

α : + 5

Figure 3.3: A model of a probabilistic system in which an error can occur.

Example 3.6. Consider the MDP depicted in Figure 3.3 modeling the behavior of a
probabilistic system. In this system, a certain error scenario occurs with positive prob-
ability. If the error occurs a repair mechanism has to reset different components that
have been in use. The cost of this reset depends on the run of the system so far and is
modeled by the weights that are accumulated. The weights could express the number of
components that have been in use and have to be reset in case of the error for instance.
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The system arrives at state s with accumulated weight +5 or +13 with probability
1/2 each. Then, a decision has to be made whether to choose action α or β. Action α has
weight +5 and leads to the error with probability 1/10. Action β leads to the error with
probability 1/20 and weight +7. We want to determine how the choice in state s should
be made such that the expected costs of the repair mechanism is as low as possible in
case the error occurs.

There are four deterministic schedulers. We call these schedulers Sαα, Sαβ, Sβα, and
Sββ. The first subscript indicates which action the schedulers choose when arriving in
state s with weight +5 and the second index indicates the action for weight +13. Under
each of the schedulers, there are two paths to the error state. We compute the average
cost of these paths for each scheduler weighted with the respective probabilities in the
following table:
Scheduler wgt in s probability of

error
cost of error average cost of

error

Sαα 5 1/2 · 1/10 10
13 1/2 · 1/10 18 14

Sαβ 5 1/2 · 1/10 10
13 1/2 · 1/20 20 40/3 ≈ 13.3

Sβα 5 1/2 · 1/20 12
13 1/2 · 1/10 18 16

Sββ 5 1/2 · 1/20 12
13 1/2 · 1/20 20 16

The average costs of the paths leading to the error state weighted by their respective
probabilities is precisely the conditional expected cost of the repair mechanism under the
condition that an error occurs. We observe that memoryless schedulers are not sufficient
to obtain the optimal conditional expectation. The interplay between the probability
to reach the error state and the weight that is accumulated make more complicated
schedulers necessary for the optimization of conditional expectations. Again, we already
see that the weight accumulated when reaching state s is important for the decision to
be made. ◁

The formal definition of the conditional stochastic shortest path problem now goes as
follows:
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Definition 3.7 (Conditional stochastic shortest path problem). Consider an MDP M =
(S,Act, P, sinit,wgt,Goal). By conditional expectation of a scheduler S, we refer to the
conditional expectation ES

M,sinit (⊕Goal|♢Goal) of the random variable ⊕Goal (defined
in Definition 3.5) under the condition that Goal is reached. We denote the conditional
expectation of a scheduler S by CES

M,sinit . The conditional expectation is well-defined for
all schedulers reaching Goal with positive probability. The maximal conditional expec-
tation CEmax

M,sinit is the supremum supSCES
M,sinit over all schedulers that reach Goal with

positive probability. The minimal conditional expectation is defined analogously. We call
the task to maximize or minimize the conditional expectation the conditional stochastic
shortest path problem. ◁

3.2.3 First observations in the non-classical setting

To start our analysis, we observe that the computation of partial and conditional expec-
tations in Markov chains is easy.

Proposition 3.8. Let M = (S, P, sinit,wgt,Goal) be a Markov chain. The partial expec-
tation PEM,sinit and the conditional expectation CEM,sinit can be computed in polynomial
time.

Proof. In Markov chains, there is no choice between different actions in any state and
hence we assume that the weight function is a map from S to Z. We first collapse the set
Goal to one goal state goal and all states from which goal is not reachable to one state
fail. Note that goal or fail is reached with probability 1. For each state s of M, we can
compute the probability ps

def= PrM,s(♢goal) in polynomial time. Now, we define a new
weight function wgt ′ on all states s ∈ S \ {goal, fail} by

wgt ′(s) def= wgt(s) · ps.

Let M′ be the Markov chain equipped with the new weight function wgt ′. Let fs be
the expected number of visits in M to the state s for all s ∈ S \ {goal, fail} Recall that

{goal, fail} is the random variable from the classical stochastic shortest path problem
that assigns the accumulated weight before reaching goal or fail to a path. For each visit
to a state s, the weight wgt(s) contributes to PEM,sinit with probability ps and there are fs

visits to the state in expectation. So, the partial expectation can be expressed as follows:

PEM,sinit =
∑︂

s∈S\{goal,fail}
fs · wgt(s) · ps = EM′,sinit ( {goal, fail}).

Hence, the partial expectation PEM,sinit can be computed in polynomial time.
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The conditional expectation CEM,sinit is given by PEM,sinit/psinit . If psinit = 0, the
conditional expectation is undefined and otherwise, it is computable in polynomial time
as well.

The optimization of partial and conditional expectations in MDPs, however, is consid-
erably more difficult than the classical stochastic shortest path problem. While optimal
schedulers can be chosen memoryless and the optimal values are rational for the classical
problem, these results do not hold for the partial and conditional stochastic shortest path
problem as we will see in this section by virtue of several examples used in the proofs.

Theorem 3.9. The optimal partial expectation and the optimal conditional expectation
can be irrational.

Proof. Consider the MDP M depicted on the left in Figure 3.4. In the initial state
sinit, two actions are enabled. Action τ leads to Goal with probability 1 and weight 0.
Action σ leads to the states s and t with probability 1/2 from where we will return to
sinit with weight −2 or +1, respectively. The scheduler choosing τ immediately leads to
an expected weight of 0 and is optimal among schedulers reaching the goal almost surely.
As long as we choose σ in sinit, the accumulated weight follows an asymmetric random
walk increasing by 1 or decreasing by 2 with probability 1/2 before we return to sinit. The
probability p to ever reach weight +1 in this asymmetric random walk satisfies

p = 1
2 + 1

2p
3.

The reason is that weight +1 is reached either with probability 1/2 directly or if it is
reached three times with probability p each after weight −2 has been collected with
probability 1/2. The only solution of this equation in the open interval (0, 1) is 1/Φ
where Φ = 1+

√
5

2 is the golden ratio. Likewise, ever reaching accumulated weight n has
probability 1/Φn for all n ∈ N. Consider the scheduler Sk choosing τ as soon as the
accumulated weight reaches k in sinit. Its partial expectation is k/Φk as the paths which
never reach weight k are assigned weight 0. The maximum is reached at k = 2. In Section
3.4, we prove that there are optimal schedulers that are deterministic and weight-based.
With this result we can conclude that the maximal partial expectation is indeed 2/Φ2,
an irrational number.

The conditional expectation of Sk in M is k as Sk reaches the goal with accumulated
weight k if it reaches the goal. So, the conditional expectation is not bounded. If we add
a new initial state making sure that the goal is reached with positive probability as in
the MDP N , we can obtain an irrational maximal conditional expectation as well: The
scheduler Tk choosing τ in c as soon as the weight reaches k has conditional expectation

k/2Φk

1/2 + 1/2Φk
.
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Figure 3.4: Example MDPs with irrational maximal partial and conditional expectation,
respectively.

The maximum is obtained for k = 3; the maximal conditional expectation is

3/Φ3

1 + 1/Φ3 = 3
3 +

√
5
.

In the context of solvency games, a restricted form of weighted MDPs, Berger et al.
call a scheduler that makes the same decisions in each state if the state is reached with
an accumulated weight above a certain bound a “rich person’s strategy” [BKSV08]. Such
a scheduler has a rather simple structure although it requires infinite memory in general.
For the non-classical stochastic shortest path problem, optimal schedulers might not only
require infinite memory but also a more complicated structure:

Theorem 3.10. There is an MDP M in which any scheduler maximizing the partial
expectation requires infinite memory. Furthermore, there is no optimal “rich person’s
strategy” in M.

Proof. Let us first consider the MDP N depicted in Figure 3.5. Let π be a path reaching
t for the first time with accumulated weight r. Consider a scheduler which chooses β for
the first k times and then α. In this situation, the partial expectation from this point on
is:

1
2k+1 (r−k) +

k∑︂
i=1

1
2i

(r−i) = 1
2k+1 +

k+1∑︂
i=1

1
2i

(r−i) = k−r + 4
2k+1 + r−2.

For r ≥ 2, this partial expectation has its unique maximum for the choice k = r−2. This
already shows that an optimal scheduler needs infinite memory. No matter how much
weight r has been accumulated when reaching t, the optimal scheduler has to count the
r−2 times it chooses β.

Furthermore, we can transfer the optimal scheduler for the MDP N to the MDP M.
In state t, we have to make a nondeterministic choice between two action leading to the
states q0 and q1, respectively. In both of these states, action β is enabled which behaves
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Figure 3.5: An MDP M in which the optimal choice to maximize the partial expectation
in state t depends on the parity of the accumulated weight. All non-trivial transition
probabilities are 1/2. The MDP N serves as an auxiliary step in the argument.

like the same action in the MDP N except that it moves between the two states if Goal
is not reached. So, the action α is only enabled every other step. As in N , we want to
choose α after choosing β exactly r−2 times if we arrived in t with accumulated weight
r ≥ 2. So, the choice in t depends on the parity of r: For r = 1 or r even, we choose δ.
For odd r ≥ 3, we choose γ. This shows that the optimal scheduler in the MDP M needs
specific information about the accumulated weight, in this case the parity, no matter how
much weight has been accumulated.

In the proof, the optimal scheduler has a periodic behavior when fixing a state and
looking at optimal decisions for increasing values of accumulated weight. The question
whether an optimal scheduler always has such a periodic behavior remains open. In
Chapter 5, we will see that this question is related to deep questions about the behavior
of linear recurrence sequences.

3.3 Basic results
While we have seen that the non-classical problems pose difficult challenges, we will
rely on techniques known from the classical stochastic shortest path problem to decide
finiteness and simplify the MDPs under investigation in the sequel. Furthermore, we will
uncover the close relationship between partial and conditional expectation by showing
that the associated decision problems, the threshold problems, are inter-reducible.
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3.3.1 Deciding finiteness and preprocessing
Finiteness can be decided in a fashion similar to the classical setting:

Proposition 3.11. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP. Collapse all states
from which Goal is not reachable to a trap state fail. The optimal partial expectation
PEmax

M,sinit is finite if and only if there are no positively weight-divergent end components
in M.

Proof. Suppose there is a positively weight-divergent end component E . Since E is reach-
able and we can accumulated arbitrarily high weights inside E with probability 1, we
can easily construct a sequence of schedulers whose partial expectation diverges to +∞
by letting the schedulers stay in a positively weight divergent end component until an
arbitrarily high weight has been accumulated, before they leave the end component and
reach Goal with positive probability.

Now, suppose that there are no positively weight-divergent end components. So, for
each end component E , there is a number WE and a probability pE such that in E we have
maxs∈E Prmax

E,s (♢(wgt ≥ WE)) < 1. On the other hand, in the MEC-quotient MEC (M) of
M the probability to reach Goal or fail in |S| steps is at least δ|S| where δ is the minimal
transition probability. Let M def= maxs,α |wgt(s, α)|. Then we can conclude that

max
s

Prmax
MEC(M),s(♢(wgt > M · |S|)) ≤ 1 − δ|S|.

All in all, it is impossible for a scheduler to almost surely reach an accumulated weight
above M · |S| + ∑︁

E is an end component WE . Therefore, there is a natural number W such
that maxs Prmax

s (♢(wgt ≥ W )) < 1. Call this probability p. For all n ∈ N we get that
maxs∈S Prmax

M,s(♢(wgt ≥ n ·W +M)) ≤ pn. Hence, the partial expectation of any scheduler
is bounded by the following upper bound on the expected accumulated weight

∞∑︂
n=0

(n+ 1) ·W · pn = W

(1 − p)2 .

For the finiteness of the maximal conditional expectation, we obtain the following
immediate consequence.

Corollary 3.12. Let M be as in Proposition 3.11 and assume that Prmin
M,sinit (♢Goal) > 0.

Then, CEmax
M,sinit is finite if there are no positively weight-divergent end components in M.

Proof. The maximal value CEmax
M,sinit is at most PEmax

M,sinit/Prmin
M,sinit (♢Goal).

To check the finiteness of the maximal conditional expectation, we need an additional
condition if the minimal probability to reach Goal is 0. Let M = (S,Act, P, sinit,wgt,Goal)
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be as in Proposition 3.11 and assume that Prmin
M,sinit (♢Goal) = 0. For each state s, we

define the subset Actmin(s) as the set of actions α ∈ Act(s) with

Prmin
M,s(♢Goal) =

∑︂
t∈S

P (s, α, t) · Prmin
M,t(♢Goal).

An action in Actmin(s) hence allows us to reach Goal with the minimal probability that is
possible from s. Further, let S0 ⊆ S be the set of states that are reachable from sinit within
(S,Actmin). These states are reachable by a scheduler that avoids Goal with probability
1. The condition to check finiteness is given in the following proposition. This condition
is equivalent to the condition given in [BKKW17].

Proposition 3.13 (see also [BKKW17]). Let M, Actmin and S0 be as described above.
The maximal conditional expectation in M is finite if and only if there are no positively
weight-divergent end components in M and no positive cycles in (S0,Actmin).

Proof. If there are positively weight-divergent end components, the maximal partial ex-
pectation and hence the maximal conditional expectation are unbounded. If there is a
positive cycle in (S0,Actmin), let s be a state in this cycle and fix a memoryless sched-
uler F that reaches Goal with positive probability p > 0 from s. Consider the following
sequence of schedulers Sn: The scheduler Sn tries to reach s inside (S0,Actmin) and
take the positive cycle until the accumulated weight exceeds n in state s. This happens
with positive probability qn. If it never happens, Sn stays inside (S0,Actmin) and never
reaches Goal. Otherwise, it switches to the behavior of F. We can see that the conditional
expectation of Sn satisfies

CESn
M,sinit ≥

qn · p · n+ qn · PEF
M,s

qn · p
.

This expression diverges to ∞ for n → ∞. Hence, the conditional expectation in M is
not bounded from above.

Now assume that (S0, Act
min) does not contain positive cycles and that M does not

contain positively weight-divergent end components. So, there is a unique maximal weight
ws of paths leading from sinit to s in (S0,Actmin) for each state s ∈ S0. Consider the
following MDP N : It contains the MDP M and a new initial state tinit. For each s ∈ S0

and each α ∈ Act(s) \ Actmin(s), N , a new action βs,α is enabled in tinit. The action βs,α

has weight ws + wgt(s, α) and the same probability distribution over successors as action
α in state s. In this way, we ensure that Prmin

N ,tinit (♢Goal) > 0 as, intuitively speaking,
a scheduler has to choose immediately how to leave (S0,Actmin). We claim that the
maximal conditional expectations in M and N are equal.

For each pair (s, α) with s ∈ S0 and α ∈ Act(s) \ Actmin(s), let cs,α
def= supTCET

N ,tinit

where the supremum ranges over all schedulers choosing βs,α with probability 1 in the
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first step. By Corollary 3.12, this value is finite. We claim that

CEmax
N ,tinit = max{cs,α|s ∈ S0 and α ∈ Act(s) \ Actmin(s)} def= c.

Clearly, CEmax
N ,tinit ≥ c. On the other hand, consider a scheduler S that chooses actions βs,α

with probability ps,α and reaches the goal afterwards with probability qs,α while obtaining
a partial expectation of Es,α if action βs,α is taken first. As the conditional expectation
when βs,α is chosen is at most cs,α, we get that Es,α ≤ qs,α ·cs,α for all suitable pairs (s, α).
We get that

CES
N ,tinit =

∑︁
s,α ps,α · Es,α∑︁
s,α ps,α · qs,α

≤
∑︁

s,α ps,α · (qs,α · cs,α)∑︁
s,α ps,α · qs,α

≤ c.

We now prove that CEmax
M,sinit = c. A scheduler reaching Goal with positive probability

in M has to choose an action not in Actmin after at least one path. Let s ∈ S0 and
α ∈ Act(t) \ Actmin(s) be such that c = cs,α. For any scheduler T for N starting with
βs,α, we define the following scheduler T′ for M: The scheduler T′ starts by following a
path with maximal accumulated weight from sinit to s. If it reaches s with accumulated
weight ws it chooses α and follows the choices of T from then on. If it does not reach s

with accumulated weight ws, T′ only picks actions in Actmin making sure that Goal will
not be reached. In this way, CET′

M,sinit = CET
N ,tinit . So, CEsup

M,sinit ≥ c.

Before we show the other direction, we define, given a finite path π, a finite path ρ

starting in last(π), and a scheduler Q, the scheduler Q ↑ π by

Q ↑ π (ρ) := Q(π; ρ)

where π; ρ denotes the concatenation of the paths π and ρ.

To show that CES
M,sinit ≤ c for any scheduler S for M with PrSM,sinit (♢Goal) > 0, let

S be such a scheduler and consider the set Π of finite S-paths π in (S0,Actmin) such that
S(π) ∈ Act(last(π)) \ Actmin((last(π))). We know that for each π ∈ Π,

wgt(π) + PES↑π
last(π)

PrS↑π
last(π)(♢Goal)

≤
wlast(π) + PES↑π

last(π)

PrS↑π
last(π)(♢Goal)

≤ c.

We conclude that also

CES
sinit =

∑︁
π∈Π PrSsinit (π) · (wgt(π) + PES↑π

last(π))∑︁
π∈Π PrSsinit (π) · PrS↑π

last(π)(♢Goal)
≤ c

as all summands in the denominator are positive.
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The proof presented here contains a construction that allows us to assume that Goal
is reached with positive probability under all schedulers if the maximal conditional ex-
pectation is finite. More formally, we obtain the following statement:

Corollary 3.14. Let M be as in Proposition 3.11. If CEmax
M,sinit < ∞, we can construct

an MDP N containing M and a new initial state tinit in polynomial time that satisfies
CEmax

N ,tinit = CEmax
M,sinit and Prmin

N ,tinit (♢Goal) > 0.

While the finiteness of maximal partial or conditional expectations already implies
that there are no positively weight-divergent end components, we can transform the
MDP further to also remove 0-end components by the spider construction described in
Section 3.1:

Proposition 3.15. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP. Let spider(M) be the
MDP obtained from M by applying the modified spider construction (see Section 3.1) suc-
cessively to all 0-end components. For each scheduler S for M, we can construct a sched-
uler T for spider(M), and vice versa, such that PrSM,sinit (♢Goal) = PrTspider(M),sinit (♢Goal)
and PES

M,sinit = PET
spider(M),sinit .

Proof. The construction of the schedulers is indicated in Section 3.1. It is clear that
the property to reach Goal is not affected if a run enters the new trap state fail instead
of staying in a 0-end component forever. As the probability distribution on how an
end component is left, is maintained by the spider construction and by the transfer of
schedulers, the probability to reach Goal is not affected by the construction. Similarly,
the random variable ⊕Goal is not affected if Goal is not reached. If Goal is reached, the
spider construction ensures that the accumulated weight when exiting a 0-end component
is not affected.

If an MDP contains no positively weight-divergent end components, the spider con-
struction can remove all 0-end components in polynomial time as we have seen in Section
3.1. So, after we checked for finiteness in polynomial time, we can also include the spi-
der construction in a pre-processing procedure that still runs in polynomial time. All
in all, we can use the results in this section to provide a polynomial-time pre-processing
procedure that allows us to make simplifying assumptions in the sequel. Recall that we
already assume that all states are reachable from the initial state.

Pre-processing. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP. The following steps
can be executed in polynomial time:

1. Collapse all states in Goal to a single trap state goal and collapse all states that
cannot reach goal to a trap state fail.
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2. Check whether the maximal partial expectation is finite (see Proposition 3.11).
If the value is infinite, also the maximal conditional expectation is infinite and
no further analysis is necessary. Otherwise, we know that there are no positively
weight-divergent end components in the MDP.

3. Remove all 0-end components using the modified spider construction. As there are
no positively weight-divergent end components, the construction can be executed in
polynomial time. Afterwards, all end components have negative maximal expected
mean payoff.

4. If interested in the conditional expectation, check whether the maximal value is
finite (see Proposition 3.13). If so apply the construction used for Corollary 3.14,
to obtain an MDP with the same maximal conditional expectation in which Goal
is reached with positive probability under all schedulers.

In the sequel, we can now always assume that this pre-processing procedure has been
performed on the MDPs under consideration.

3.3.2 Inter-reducibility of threshold problems
The natural decision problem associated with the computation of maximal partial or con-
ditional expectations is the threshold problem: Given an MDP M = (S,Act, P, sinit,wgt,Goal)
and a rational ϑ, the threshold problem asks whether PEmax

M,sinit ▷◁ ϑ and whether CEmax
M,sinit ▷◁

ϑ, respectively, for ▷◁ ∈ {<,≤,≥, >}. The threshold problem is of special interest to us
as we can use this decision problem to prove lower bounds on the complexity of computing
maximal partial and conditional expectations. We show that the threshold problems for
partial and conditional expectations are equally hard by providing polynomial-time re-
ductions between the problems. Note that the threshold problems concerning the minimal
partial or conditional expectation, i.e., the question whether PEmin

M,sinit ▷◁ ϑ and whether
CEmin

M,sinit ▷◁ ϑ can be addressed by multiplying all weights with −1 before considering the
maximal values again.

Proposition 3.16. The threshold problems for partial and conditional expectations are
polynomial-time inter-reducible.

Proof. First, we show that the threshold problem for conditional expectation is reducible
to the threshold problem for partial expectations. Let M = (S,Act, P, sinit,wgt,Goal)
be an MDP and ϑ a rational number. W.l.o.g., we can assume that Goal = {goal} is a
singleton and that any scheduler for M reaches goal with positive probability after the
pre-processing described in Section 3.3.1. We construct a new MDP N by adding a new
state goal ′ which is the new goal state in N and a transition with probability 1 from the
old goal state goal to goal ′ with weight −ϑ. We claim that CEmax

M ▷◁ ϑ if and only if
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PEmax
N ▷◁ 0 for ▷◁ ∈ {<,≤,≥, >}. In fact, we show that the claim holds scheduler-wise.

Clearly, any scheduler for M can be seen as a scheduler for N and vice versa. Let S be
a scheduler for both MDPs. Then, we have

PES
N = PES

M − ϑ · PrSM(♢goal) ▷◁ 0 iff PES
M

PrSM(♢goal)
▷◁ ϑ iff CES

M ▷◁ ϑ.

The rational weight −ϑ can be turned into an integer weight by multiplying all weights
in N with the denominator of ϑ.

In the other direction, let again M = (S,Act, P, sinit,wgt,Goal) be an MDP and ϑ a
rational number. Again, we assume that Goal = {goal}. We construct an MDP N by
adding a new initial state tinit and a new goal state goal ′. In tinit, one action leading to
sinit and goal ′ with probability 1/2 each and weight 0 is enabled. Further, the process N
moves from goal to goal ′ with probability 1 and weight +ϑ. Again, each scheduler S for
M can also be used for N and vice versa. For each scheduler, we have that

CES
N ,tinit =

1/2 · (PES
M,sinit + PrSM,sinit (♢goal) · ϑ)

1/2 · (1 + PrSM,sinit (♢goal))
▷◁ ϑ iff PES

M,sinit ▷◁ ϑ.

From the scheduler-wise equivalence, we conclude the equivalence for the maximal partial
and conditional expectation, respectively.

The first reduction presented in the proof introduces the weight −ϑ. If all weights in
M are non-negative, only positive values for ϑ make sense. In this case, −ϑ is negative
and the constructed MDP N does not have only non-negative weights. We will address
the setting with non-negative weights in Section 3.5. There, we will provide a further
reduction for the threshold problems on acyclic MDPs with non-negative weights that
does not introduce a negative weight (Lemma 3.31). That reduction relies on results on
the existence of optimal deterministic schedulers which we obtain in the next Section 3.4.

3.4 Existence of optimal schedulers
We are now going to prove that optimal partial and conditional expectations can be ob-
tained by weight-based deterministic schedulers. After showing that, if finite, the maximal
partial expectation PEmax

M,sinit can be approximated by weight-based deterministic sched-
ulers, we take an analytic approach. We define a metric on the space of weight-based
deterministic schedulers. Under this metric, we obtain a compact space. Then, we prove
that the function assigning the partial expectation to weight-based deterministic sched-
ulers is upper semi-continuous. We conclude that there is a weight-based deterministic
scheduler obtaining the maximum. The first goal is to prove the following proposition:
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Proposition 3.17. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP and assume that
PEmax

M,sinit < ∞. Let WD be the set of weight-based deterministic schedulers for M. We
have

PEmax
M,sinit = sup

S∈WD
PES

M,sinit .

Before we start proving this Proposition 3.17, let us show that it implies the analogous
result for conditional expectations.

Corollary 3.18. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP with CEmax
M,sinit < ∞.

Let WD be the set of weight-based deterministic schedulers for M. We have

CEmax
M,sinit = sup

S∈WD
CES

M,sinit .

Proof. After the pre-processing procedure, we can assume that Prmin
M,sinit (♢Goal) > 0.

Note that weight-based deterministic schedulers in the pre-processed MDP correspond to
weight-based deterministic schedulers in the original MDP. Let ϑ be an arbitrary rational
with CEmax

M,sinit > ϑ. In the proof of Proposition 3.16, we have reduced the threshold
problem whether CEmax

M,sinit > ϑ to the threshold problem by constructing an MDP N
by adding a terminal weight of −ϑ on a transition to a new goal state to M. In this
MDP N , now PEmax

N ,sinit > 0 as ϑ was chosen such that we have a positive instance of
the threshold problem. So, by Proposition 3.17, there is a weight-based deterministic
scheduler T for N with PET

N ,sinit > 0. As the equivalence of the threshold problems for
conditional expectations in M and partial expectations in N in the proof of Proposition
3.16 holds scheduler-wise, we conclude that CET

M,sinit > ϑ when we use T as a scheduler
for M. As we can choose ϑ arbitrarily close to CEmax

M,sinit , the claim follows.

We now prove Proposition 3.17 in two steps. First, we show that for any scheduler
there is an equally good weight-based scheduler (Lemma 3.19). Afterwards, we show
that also the use of randomization does not increase the partial expectation that can be
obtained (Lemma 3.20).

Lemma 3.19. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP with PEmax
M,sinit < ∞. For

each scheduler S for M, there is a weight-based scheduler T such that

PES
M,sinit = PET

M,sinit .

Proof. After pre-processing, we can assume that all end-components have negative max-
imal mean payoff. Let S be a scheduler for M. For each non-trap state s ∈ S and each
w ∈ Z, we let ϑS

s,w be the expected number of times that s is reached with accumulated
weight w under S, and we let ϑS

s,w,α be the expected number of times that α is chosen in
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this situation by S. We have that

ϑS
s,w =

∑︂
π finite path,

last(π)=s,
wgt(π)=w

PrSM,sinit (π) and ϑS
s,w,α =

∑︂
π finite path,

last(π)=s,
wgt(π)=w

PrSM,sinit (π) · S(π)(α).

Note that ϑS
s,w is finite for all non-trap states s ∈ S and w ∈ Z as all end components

have negative maximal expected mean payoff. The idea is now to define a weight-based
randomized scheduler that visits each state-weight pair with the same expected frequency
as S. The claim then follows directly. To this end, we define a scheduler T by

T(s, w)(α) :=
⎧⎨⎩ϑ

S
s,w,α/ϑ

S
s,w if ϑS

s,w > 0,
arbitrary otherwise.

Clearly, only state-weight pairs (s, w) which are reachable under S are reachable under
T. Further, T is well-defined as ∑︁α∈Act(s) T(s, w)(α) = 1 for all reachable (s, w).

For each state-weight pair (s, w), let ϑT
s,w be the expected number of times that (s, w)

is reached under T. Then, the collection of all ϑT
s,w is the unique component-wise least

non-negative solution to the following set of equations: For all (s, w),

xs,w = is,w +
∑︂

t∈S,α∈Act(t)
P (t, α, s) · xt,w−wgt(t,α) · T(t, w − wgt(t, α))(α) (1)

where is,w = 1 iff s = sinit and w = 0, and is,w = 0 otherwise. To see this, consider the
map T : RS×Z

≥0 → RS×Z
≥0 given by

(ys,w)(s,w)∈S×Z ↦→ is,w +
∑︂

t∈S,α∈Act(t)
P (t, α, s) · yt,w−wgt(t,α) · T(t, w − wgt(t, α))(α).

A solution to equation (1) is fixed point of T . Further, T is monotone in all arguments.
So, the least fixed point can be found by repeatedly applying T to the 0-vector in RS×Z

≥0 .
The equation (1) and hence the map T are chosen such that T n(0) contains the expected
number of visits to the state-weight pairs under T within the first n − 1 steps. The
summand is,w reflects that after 0 steps the expected number of visits to (sinit, 0) is 1. We
conclude that limn→∞ T n(0) = (ϑT

s,w)(s,w)∈S×Z.

By spelling out the last steps of the paths in the definition of ϑS
s,w, one can see that

(ϑS
s,w)(s,w)∈S×Z provides a solution to the set of equations and is hence a fixed point of T .

Let ϑS,≤n
s,w be the expected number of visits to (s, w) under S within at most n steps. On

the one hand, clearly ϑS,≤n
s,w ≤ ϑT

s,w for all n. On the other hand, ϑS
s,w = limn→∞ ϑS,≤n

s,w .
Hence, ϑS

s,w ≤ ϑT
s,w for all (s, w). We conclude that ϑS

s,w = ϑT
s,w for all (s, w) because

(ϑT
s,w)(s,w)∈S×Z was the least fixed point of T . By the definition of T, the expected number
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of times action α is chosen in (s, w) under T is hence ϑS
s,w,α as well and the claim follows

because the partial expectation only depends on the expected frequencies of the state
weight pairs (goal, w) for w ∈ Z under the two schedulers.

Now, we show that randomization is not necessary to approximate the optimal partial
expectation.

Lemma 3.20. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP with PEmax
M,sinit < ∞. For

each weight-based scheduler S for M, there is a weight-based deterministic scheduler T

with PET
M,sinit ≥ PES

M,sinit .

Proof. Assume that Goal = {goal} and that all states that cannot reach Goal are col-
lapsed to a trap state fail. Let S be a weight-based randomized scheduler. So, S can be
seen as a function from S×Z to probability distributions over actions. For this scheduler,
we can write eSs,w for the partial expectation that is obtained when starting in state s
with weight w. Observe that

eSs,w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w if s = goal,
0 if s = fail,∑︁

α∈Act(s) S(s, w)(α)∑︁t∈S P (s, α, t)eSt,w+wgt(s,α) otherwise.

The values eSs,w depend monotonically on each other. If one of the values eSs,w was in-
creased, the value at no other state-action pair would decrease. We will successively
determinize the choices of the scheduler while making sure that the partial expectations
from any state-weight pair on do not decrease.

Let (si, wi)i∈N be an enumeration of all state-weight pairs where s is not one of the
two trap states. We recursively define a sequence of scheduler (Si)i∈N. We set S0 = S.
To define Si+1 from Si, we observe that there has to be an action αi such that

∑︂
t∈S

P (s, αi, t)eSi

t,w+wgt(s,α) ≥
∑︂

α∈Act(s)
Si(s, w)(α)

∑︂
t∈S

P (s, α, t)eSi

t,w+wgt(s,αi)

due to the convex combination on the right-hand side. We let Si+1 choose αi when in
state si with weight wi and let Si+1 behave as Si on all other state-weight pairs. By the
observation above, we conclude that

eSi+1
s,w ≥ eSi

s,w

for all state-weight pairs (s, w). So, the sequence eSi(s, w) increases monotonically for
i → ∞ for each (s, w). By the assumption that the maximal partial expectation is
finite, the sequence is also bounded and hence converges to a value e∞

s,w. This value is
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obtained by the scheduler obtained in the limit S∞. This scheduler can be defined on
each state-action pair (si, wi) by

S∞(si, wi) def= Si+1(si, wi) = Sk(si, wi) for all k ≥ i+ 1.

So, S∞ is the desired weight-based deterministic scheduler.

The two lemmata, Lemma 3.19 and Lemma 3.20, imply Proposition 3.17. It remains to
show that the maximal partial expectation is not only the supremum over all weight-based
deterministic schedulers, but that the optimal value is also obtained by a weight-based
deterministic scheduler. Given an MDP M = (S,Act, P, sinit,wgt,Goal) with arbitrary
integer weights, we define the following metric dM on the set of weight-based deterministic
schedulers, i.e. on the set of functions from S×Z → Act: For two such schedulers S and
T, we let

dM(S,T) := 2−R

where R is the greatest natural number such that

S ↾ S × {−(R−1), . . . , R−1} = T ↾ S × {−(R−1), . . . , R−1}

or 0 if there is no greatest such natural number and the schedulers are hence the same.
In other words, R is the smallest absolute value of a weight w in a state weight pair (s, w)
on which S and T disagree.

Lemma 3.21. Let M and dM be as above. The metric space (ActS×Z, dM) is compact.

Proof. We can identify ActS×Z with (ActS×{+,−})N. Due to the symmetric treatment
of positive and negative weights in the definition, the metric dM induces the usual tree
topology on this finitely branching tree of height ω. Therefore, the space is homeomorphic
to the Cantor space 2ω and hence compact.

Having defined this compact space of schedulers, we can rely on the analytic notion
of upper semi-continuity. Recall that a function f : (X, d) → (R∞, d

euclid) where (X, d) is
a metric space, R∞ = R ∪ {−∞,∞}, and deuclid is the Euclidean metric, is called upper
semi-continuous if for each ϵ > 0 and each x0 with f(x0) > −∞ there is a δ > 0 such
that f(x) ≤ f(x0) + ϵ for all x ∈ X with d(x, x0) < δ and if further f(x) → −∞ for
x → x0 for all x0 with f(x0) = −∞.

Lemma 3.22 (Upper Semi-Continuity of Partial Expectations). Consider an MDP M =
(S,Act, P, sinit,wgt,Goal) be an MDP with PEmax

M,sinit < ∞. The function

PE•
M,sinit : (ActS×Z, dM) → (R∞, d

euclid)
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assigning the value PES
M,sinit to a weight-based deterministic scheduler S ∈ ActS×Z is

upper semi-continuous.

Proof. We again use the notation eSs,w to denote the partial expectation under a weight-
based deterministic scheduler S starting from state s with weight w as in the proof of
Lemma 3.20. Let S be a weight-based deterministic scheduler with PES

M,sinit > −∞.
Given ϵ > 0, we will define a natural number R such that any weight-based deterministic
scheduler T with T ↾ S × [−R,R] = S ↾ S × [−R,R] satisfies PET

M,sinit < PES
M,sinit + 4ϵ.

First, we observe that for each state s there is a natural number Ws and a probability
ps < 1 such that Prmax

M,s(♢wgt > Ws) ≤ ps because there are no positively weight-divergent
end components by the assumption that PEmax

M,s < ∞ (this argument was also used in
Proposition 3.11). We define W def= maxs Ws + maxs,α |wgt(s, α)| and p def= maxs ps. Then,
for each state s and each natural number n, we have that

Prmax
M,s(♢wgt > n ·W ) ≤ pn.

So, we obtain the following upper bound on the expected accumulated weight from any
state on:

B
def=

∞∑︂
n=0

(n+ 1) ·W · pn = W

(1 − p)2 .

Further, let ♢=nGoal denote the event that Goal is reached with accumulated weight n
and ♢wgt ≤ −ℓ the event that a prefix of the run has weight ≤ −ℓ. If ℓ is large, the
probability that a path reaches positive weight again after reaching a weight below −ℓ
decreases exponentially for ℓ → ∞ as we have seen. On the other hand, PES

M,sinit > −∞
and so we observe that

lim
ℓ→∞

∑︂
n∈Z

PrSM,sinit (♢
=nGoal ∧ ♢wgt ≤ −ℓ) · |n| = 0.

In other words, this means that the contribution of paths that reach goal with weight
below −ℓ to the partial expectation vanishes for ℓ → ∞. We define ℓϵ to be the smallest
natural number such that

∑︂
n∈Z

PrSM,sinit (♢
=nGoal ∧ ♢wgt ≤ −ℓϵ) · |n| < ϵ.

Note that also ∑︁n∈Z PrSM,sinit (♢=nGoal ∧♢wgt ≤ −ℓ) · |n| < ϵ for all ℓ > ℓϵ due to the use
of the absolute value |n|. Let kϵ be the smallest natural number such that pkϵ · B < ϵ.
Let M def= maxs,α |wgt(s, α)| and define R− def= max{ℓϵ, kϵ ·W +M}. Further, define

H
def= min{0, eSs,r|s ∈ S, 0 ≤ r ≤ M} ≤ 0.
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Finally, let mϵ be the least natural number such that

pmϵ · (R− +B +M −H) < ϵ and pmϵ · (mϵ ·W +M +B) < ϵ.

Define R+ def= mϵ ·W and R def= max{R−, R+}. Note that also pmϵ · (R+B +M) < ϵ. We
claim that R does the job. So let T be a scheduler with T ↾ S×[−R,R] = S ↾ S×[−R,R].
Let

P+ def= {π finite path|wgt(π) > R and any proper prefix π′ satisfies wgt(π′) ∈ [−R,R]},
P− def= {π finite path|wgt(π) < R and any proper prefix π′ satisfies wgt(π′) ∈ [−R,R]}.

The schedulers S and T agree on all paths without a prefix in these two sets. So,

PET
M,sinit − PES

M,sinit =
∑︂

π∈P+∪P−

(eTlast(π),wgt(π) − eSlast(π),wgt(π)) · PrSM,sinit (π)

We will split up the sum to P+ and P−. For a path π ∈ P+, we see that eTlast(π),wgt(π) is
bounded by R+M+B as wgt(π) ≤ R+M and the partial expectation obtained on top of
this weight is bounded by B. Further, eSlast(π),wgt(π) is at least H. To see this note that the
partial expectation from (last(π),wgt(π)) on could only be negative if the weight drops
below 0 again. Along each path back to negative accumulated weight, a state-weight pair
(s, r) with 0 ≤ r ≤ M has to be visited. The value H is a lower bound on the partial
expectation obtained from any such state-weight pair. Finally, Prmax

M,sinit (♢wgt ≥ R) ≤ pmϵ

as R ≥ mϵ ·W . We conclude
∑︂

π∈P+

(eTlast(π),wgt(π) − eSlast(π),wgt(π)) · PrSM,sinit (π)

≤ PrSsinit (P
+) · (R +M +B − min

π∈P+
eSlast(π),wgt(π))

≤ pmϵ · (R +M +B −H) < 2ϵ.

For the remaining sum first consider ∑︁π∈P− PrSM,sinit (π) · eSlast(π),wgt(π). The absolute value
of this sum is at most ∑︁n∈Z PrSM,sinit (♢=nGoal ∧ ♢wgt ≤ −R) · |n| which is less than ϵ

as ℓϵ ≤ R. The sum, ∑︁π∈P− PrTM,sinit (π) · eSlast(π),wgt(π) on the other hand can be bounded
from above: By the definition of R−, the probability to reach positive weight starting
from a weight below R− is at most pkϵ . From then on at most a partial expectation of B
can be obtained. As pkϵ · B < ϵ, we conclude that the considered sum is less than ϵ. All
in all, we conclude

∑︂
π∈P−

(eTlast(π),wgt(π) − eSlast(π),wgt(π)) · PrSsinit (π)
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=
∑︂

π∈P−

eTlast(π),wgt(π) · PrSM,sinit (π) −
∑︂

π∈P−

eSlast(π),wgt(π) · PrSsinit (π) < 2ϵ.

Put together, we obtain PET
M,sinit −PES

M,sinit < 4ϵ. This finishes the case PES
M,sinit > −∞.

If PES
M,sinit = −∞, we have to show for each b ∈ R that there is an R such that all

schedulers agreeing with S on the weight-window [−R,R] have a partial expectation
below b. But as we can make

∑︂
ζ⊨♢Goal∧□wgt∈[−R,R]

wgt(ζ) · PrSM,sinit (ζ)

arbitrarily small, this follows directly.

We arrive at the main result of this section.

Theorem 3.23 (Existence of Optimal Schedulers for Partial Expectations). Let M =
(S,Act, P, sinit,wgt,Goal) be an MDP with PEmax

M,sinit < ∞. There is a weight-based deter-
ministic scheduler S with PES

M,sinit = PEmax
M,sinit .

Proof. As PEmax
M,sinit < ∞, the map PE•

M,sinit : (ActS×Z, dM) → (R∞, d
euclid) is upper semi-

continuous by Lemma 3.22. So, this map has a global maximum because (ActS×Z, dM)
is a compact metric space by Lemma 3.21. This maximum agrees with PEmax

M,sinit by
Proposition 3.17 stating that the maximal partial expectation can be expressed as the
supremum over weight-based deterministic schedulers.

The existence of optimal weight-based deterministic schedulers follows now easily.

Corollary 3.24 (Existence of Optimal Schedulers for Conditional Expectations). Let
M = (S,Act, P, sinit,wgt,Goal) be an MDP with CEmax

M,sinit < ∞. There is a weight-based
deterministic scheduler S with CES

M,sinit = CEmax
M,sinit .

Proof. After pre-processing, we can assume that Prmin
M,sinit (♢Goal) > 0. If we define

ϑ
def= CEmax

M,sinit and apply the reduction of Proposition 3.16 to the threshold problem
CEmax

M,sinit ≥ ϑ, we obtain the MDP N by adding a new goal state goal ′ and a terminal
weight −ϑ on the last step from the original goal to goal ′. In N , we have PEmax

N ,sinit ≥ 0.
So, there is a weight-based deterministic scheduler S with PES

N ,sinit = 0 by Theorem 3.23.
This scheduler used in M obtains CES

M,sinit = ϑ. Note that we did not need weights to
be rational for the proofs of Proposition 3.16 and Theorem 3.23. So, the argument also
works if ϑ is irrational.

3.5 Non-negative weights
As already indicated in Section 3.2.3, major obstacles make the computation of optimal
partial and conditional expectations in MDPs with arbitrary integer weights difficult.
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While optimal schedulers can be chosen to be weight-based and deterministic, a further
characterization of the structure of optimal schedulers turns out to be challenging. In
fact, we will see in Chapter 5 that we cannot expect to make progress on this problem with
known techniques. An algorithm to compute optimal partial and conditional expectations
would solve long-standing open number-theoretic problems. Hence, most likely, such an
algorithm would require the development of new tools, if it exists at all.

Restricting our attention to the important special case of MDPs with non-negative
weights, the situation becomes manageable. The problem to compute optimal condi-
tional expectations in MDPs with non-negative weights has been solved in [BKKW17].
In [CFK+13a], computation algorithms of maximal partial expectations in stochastic mul-
tiplayer games with non-negative weights have been presented. MDPs are a special case
of these multiplayer games. In this section, we adapt the solution from [CFK+13a] to the
simpler case of MDPs with non-negative weights. A key result is the existence of a satu-
ration point, a bound on the accumulated weight above which optimal schedulers do not
need memory. In MDPs, we can provide a smaller saturation point than the one provided
in [CFK+13a]. The running time of the algorithm directly depends on the size of the
saturation point. While the saturation point we provide here still leads to an exponential
time algorithm, like the algorithms for stochastic multiplayer games, our saturation point
for MDPs is the smallest possible saturation point. It can be considerably smaller than
the saturation point provided in [CFK+13a] which can be a great benefit in practice.

3.5.1 Saturation points
In order to be able to compute optimal partial expectations in MDPs with non-negative
weights, we will show that we can further restrict the complexity of schedulers necessary
for the optimization. The key result states that optimal schedulers can be chosen to
behave memoryless as soon as a certain amount of weight is accumulated along a path.
Let us first provide a formal definition of such saturation points.

Definition 3.25 (Saturation point). Let M = (S,Act, P, sinit,wgt,Goal) be an MDP with
non-negative weights and assume that PEmax

M,sinit < ∞ (or CEmax
M,sinit < ∞, respectively). A

saturation point for partial (conditional) expectations in M is a natural number K such
that there is a weight-based deterministic scheduler S that satisfies

1. S(s, w) = S(s, w′) for all state-weight pairs (s, w) and (s, w′) with w,w′ ≥ K,

2. PES
M,sinit = PEmax

M,sinit (CES
M,sinit = CEmax

M,sinit ). ◁

The existence of a saturation point for conditional expectations computable in poly-
nomial time has been shown in [BKKW17]. In the sequel, we adapt the saturation point
result for partial expectations in stochastic multiplayer games from [CFK+13a]. MDPs
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are a special case of these games and we can not only adapt, but also improve the result
for the case of MDPs. In order to prove the existence of a saturation point for par-
tial expectations, we first need a scheduler maximizing the partial expectation among
all schedulers that reach Goal with the maximal possible probability. The behavior of
this scheduler is precisely the optimal behavior as soon as a saturation point is reached.
We first introduce some additional notation. Let M = (S,Act, P, sinit,wgt,Goal) be an
MDP with non-negative weights and assume that PEmax

M,sinit < ∞. Let us assume that
Goal = {goal} and that all states from which Goal is not reachable are collapsed to one
trap state fail. After our pre-processing procedure, we can assume that there are no
non-trivial end components in M as there cannot be any end components with negative
maximal expected mean payoff. For each state s ∈ S, we denote the maximal probability
to reach Goal by

pmax
s

def= Prmax
M,s(♢Goal).

Further, we denote the maximal probability to reach Goal when taking action α in s by

pmax
s,α

def=
∑︂
t∈S

P (s, α, t) · pmax
t .

We then define the set of actions Actmax(s) that enables us to reach Goal with this
maximal probability for each state s by

Actmax(s) def= {α ∈ Act(s) | pmax
s,α = pmax

s }.

Consider the sub-MDP (S,Actmax) which we call Mmax. Note that all schedulers S for
Mmax satisfy PrSMmax,s(♢Goal) = pmax

s for all states s because there are no non-trivial
end components in Mmax. This allows us to compute maximal partial expectations in
Mmax via a classical stochastic shortest path problem. We define a new weight function
to obtain a variant N max of Mmax by wgtN max(s, α) def= wgt(s, α) · pmax

s for all state-action
pairs (s, α) in Mmax. We observe that

PEmax
Mmax,s = Emax

N max,s( {goal, fail}).

This value can hence be computed in polynomial time. More details can also be found in
[CFK+13a]. Furthermore, a memoryless deterministic scheduler Max solving this classical
shortest path problem in N max also maximizes the partial expectation in Mmax. Fix one
such memoryless deterministic scheduler Max. For the saturation point, the following
value is of interest:

M
def= min

s∈S
PEMax

M,s.



3. Non-Classical Stochastic Shortest Path Problems 57

As we also assume that all states are reachable from sinit, we can conclude that PEmax
M,s < ∞

for all states s ∈ S. So, we can define

B
def= max

s∈S
PEmax

M,s.

Of course, we do not yet know how to compute this number. The first existence result of
a saturation point we are going to present, however, is only an auxiliary step before we
provide the smallest possible saturation point later on. Nevertheless, we could replace B
by an upper bound computable in polynomial time such as maxs∈S Emax

M,s( {goal, fail}).
The final ingredient to prove the existence of a saturation point as in [CFK+13a] is the
following value δ quantifying how much smaller the probability to reach Goal under a
non-optimal scheduler is compared to the maximal reachability probability:

δ
def= min

s∈S,α∈Act(s)\Actmax(s)
pmax

s − pmax
s,α .

If the minimum should be taken over the empty set, the scheduler Max is already maxi-
mizes the partial expectation as M and Mmax coincide in this case.

Proposition 3.26 (see also [CFK+13a]). Let M and all notation be as above. The
smallest natural number K with

K ≥ B −M

δ

is a saturation point for partial expectations in M.

Proof. Let S be a weight-based deterministic schedulers. Let the scheduler S ◁K Max

be defined, for all state-weight pairs (s, w), by

S◁K Max(s, w) def=
⎧⎨⎩S(s, w) if w < K,

Max(s, w) otherwise.

We claim that PES
M,sinit ≤ PES◁KMax

M,sinit . Let us denote the partial expectation under S

from a state-weight pair (s, w) on by eSs,w, and similarly for Max. As the weight along
a path cannot decrease and hence S ◁K Max never switches back to the behavior of S
once an accumulated weight of K is reached, it is sufficient to show that eSs,w ≤ eMax

s,w for
each state-weight pair (s, w) with w ≥ K.

If S only chooses actions in Actmax(s) for such state-weight pairs, both schedulers
reach Goal with probability pmax

s . So, the values eSs,w and eMax
s,w only differ by the weights

that are accumulated from then on, while the already accumulated weight contributes
pmax

s · w to these values. Because Max maximizes the partial expectation among all
schedulers choosing only actions in Actmax, we conclude that eSs,w ≤ eMax

s,w in this case.



3. Non-Classical Stochastic Shortest Path Problems 58

So, assume that S(s, w) ̸∈ Actmax(s) for some pair (s, w) with w ≥ K. We can bound
the value eSs,w from above as follows:

eSs,w ≤ (pmax
s − δ) · w +B.

On the other hand, the value eMax
s,w satisfies

eMax
s,w ≥ pmax

s · w +M.

So,
eSs,w − eMax

s,w ≤ B −M − δ · w ≤ B −M − δ ·K ≤ 0.

The existence of a saturation point implies that an optimal scheduler for the par-
tial expectation cannot only be chosen to be weight-based and deterministic, but also
eventually memoryless. This in particular means that there are optimal finite-memory
schedulers as an optimal scheduler only has to keep track of the accumulated weight until
it exceeds the saturation point K.

We use this first saturation point result in the proof of the following theorem that
provides the smallest possible saturation point. The idea is that we can compute the
largest weight w such that the scheduler Max can be improved by changing the action at
precisely one state-action pair with weight w and nowhere else. We then see that Max

cannot be improved above any weight level if it cannot be improved by such a change at
a single state-weight pair. We can conclude that w + 1 is a saturation point. We denote
the partial expectation under the scheduler choosing α in s before acting like Max by

PEMax
s,α

def= pmax
s,α · wgt(s, α) +

∑︂
t∈S

P (s, α, t) · PEMax
t .

Theorem 3.27. Let M and all notation be as above. Then, the smallest natural number
K with

K ≥ max
{︄
PEMax

s,α − PEMax
s

pmax
s − pmax

s,α

⃓⃓⃓⃓
⃓ s ∈ S, α ∈ Act(s) \ Actmax(s)

}︄

is an upper saturation point for partial expectations in M.

Proof. Let us denote the partial expectation under a scheduler S from a state-weight pair
(s, w) on by eSs,w again. Let S be a scheduler maximizing eSs,w for all state-weight pairs
(s, w). We can assume that S is weight-based deterministic and, by the the existence of
a saturation point (Proposition 3.26), that S agrees with Max from some weight level
on. In fact, if we let w be the largest weight level such that there is a state s such that S
chooses an action not in Actmax(s) at the pair (s, w), we can assume that S agrees with
Max on all state-weight pairs (t, v) with v > w. Let us further assume that S is chosen
such that w is minimal among all optimal schedulers.
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Suppose now that w ≥ K. First, suppose that there is a state s such that S(s, w) ̸∈
Actmax(s) and wgt(s,S(s, w)) > 0. In this case,

eSs,w = PEMax
s,α + pmax

s,α · w

as S behaves like Max after this step. By our assumption, we know that eMax
s,w − eSs,w ≤ 0.

If we would have equality, we could change the behavior of S to the behavior of Max at
this state-weight pair. So assume that eMax

s,w − eSs,w < 0. As eMax
s,w = PEMax

s + pmax
s · w, we

observe
0 > PEMax

s − PEMax
s,α + w(pmax

s − pmax
s,α )

and hence
(PEMax

s,α − PEMax
s )/(pmax

s − pmax
s,α ) > w.

This contradicts the assumption that w ≥ K by the definition of K.

Hence, we can assume that for all states s with S(s, w) ̸∈ Actmax(s), we have
wgt(s,S(s, w)) = 0. Denote the set of these states by T . We define for each state
t ∈ T ,

Dt := eSt,w − eMax
t,w .

If the maximal value Dt is 0, we could change the behavior of S to the behavior of Max

at weight level w without affecting the partial expectation. This would contradict the
minimality of w. So, let D def= maxt Dt > 0 and defined T ′ def= {t ∈ T |Dt = D}. Note
that goal and fail are not in T ′. Let t ∈ T and let α = S(t, w). We claim that all states
reachable from t via α are in T ′. As wgt(s, α) = 0, we get

Dt = eSt,w − eMax
t,w

=
∑︂
s∈S

P (t, α, s) · eSs,w − eMax
t,w

= (PEMax
t,α + w · pmax

t,α +
∑︂
s∈S

P (t, α, s)Ds) − (PEMax
t + pmax

t · w)

We conclude

Dt −
∑︂
s∈S

P (t, α, s)Ds ≤ PEMax
t,α − PEMax

t + w(pmax
t,α − pmax

t )

≤ 0.

The last inequality follows from w ≥ K and the definition of K. As t ∈ T ′ and hence Dt

is maximal, this is only possible if Ds = Dt = D for all s with P (t, α, s) > 0. So, indeed
all α-successors of t are in T ′ again. As this holds for all states in T ′ with the respective
action chosen by S at weight level w, there must be a non-trivial end component inside
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T ′. This contradicts the fact that in the pre-processed MDP M, there are no non-trivial
end components.

The saturation point provided in this proposition is computable in polynomial time.
Furthermore, let us show in more detail that it is the smallest possible saturation point:
For any weight w < K, it is suboptimal to follow the decisions of Max. This is implicitly
contained in the definition of K in Theorem 3.27: For a weight w < K, the scheduler
Max can be improved by changing the choice of the scheduler to the action α ̸∈ Actmax(s)
at the state s that obtain the maximum

max
{︄
PEMax

s,α − PEMax
s

pmax
s − pmax

s,α

⃓⃓⃓⃓
⃓ s ∈ S, α ∈ Act(s) \ Actmax(s)

}︄
.

To see that, observe that for the maximizing pair (s, α), we have

w · pmax
s,α + PEMax

s,α > w · pmax
s + PEMax

s

if w is less than K and hence less than PEMax
s,α −PEMax

s

pmax
s −pmax

s,α
.

3.5.2 Computation of optimal values

The existence of a computable saturation point allows us to reduce the problem of
computing the maximal partial expectation to a weighted reachability problem. Let
M = (S,Act, P, sinit,wgt,Goal) again be an MDP with non-negative weights and assume
that PEmax

M,sinit < ∞. After our pre-processing procedure, we can assume that M does not
contain non-trivial end components, that all states that cannot reach Goal are collapsed
to a trap state fail and that Goal = {goal} is a singleton. In order to construct the
weighted reachability problem, we extend the state space by explicitly encoding the ac-
cumulated weight into the states. States in the transformed MDP are of the form (s, w)
with s ∈ S and w ∈ N. Let K be the saturation point given in Theorem 3.27. The
key insight is that we can easily compute the maximal partial expectation when starting
in state s with weight w ≥ K: As the scheduler Max defined in the previous section is
optimal at the weight levels above K, this partial expectation is PEMax

s +w · pmax
s . In our

weighted reachability problem, we can hence make state-weight pairs (s, w) with w ≥ K

terminal with this partial expectation as terminal weight. Let W be the maximal weight
occurring in M. After making the state-weight pairs at weight levels K and above ter-
minal, state-weight pairs with weight above K + W − 1 are not reachable anymore. In
this way, we obtain a finite-state MDP for the weighted reachability problem.

Let us define the instance of the weighted reachability problem more formally. We
construct an MDP N . The state space is S × {0, . . . , K + W − 1}. The actions are the
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same as in M. The transition probability function PN is given by

PN ((s, w), α, (t, w + wgt(s, α))) = P (s, α, t)

for all s, t ∈ S and w < K. All other transition probabilities are 0. In particular all
state-weight pairs (s, w) with w ≥ K are traps. The initial state is (sinit, 0). To all trap
states, we assign a terminal weight: For w < K, we assign terminal weight 0 to state
(fail, w) and terminal weight w to state (goal, w). For K ≤ w < K + W and s ∈ S, we
assign terminal weight PEMax

M,s + w · pmax
M,s to state (s, w). Recall that PEMax

M,s and pmax
M,s are

computable in polynomial time.
Let terminal be the random variable that assigns the terminal weight of the trap state

reached to runs in N . Note that N does not contain non-trivial end components. So,
a trap state is reached almost surely under any scheduler. Weight-based deterministic
schedulers for M that switch to the behavior of Max as soon as the accumulated weight
exceeds K now correspond precisely to memoryless deterministic schedulers for N . As
we know that one of these schedulers maximizes the partial expectation in M and a
memoryless deterministic scheduler maximizes the expected terminal weight in N , we
can restrict our attention to such schedulers. Given such a scheduler S viewed as a
scheduler for M and as a scheduler for N , the construction makes sure that

PES
M,sinit = ES

N ,(sinit ,0)(terminal).

To see that, note that for a path π in M that reaches goal or fail with accumulated
weight less than K, the corresponding path π̂ in N satisfies terminal(π̂) = ⊕Goal(π).
For a path π in M that reaches an accumulated weight of at least K in the last step, the
corresponding path π̂ in N has precisely the expected partial expectation under Max of
the continuations of π as its terminal weight. We conclude

PEmax
M,sinit = Emax

N ,(sinit ,0)(terminal).

Therefore, we can use the linear program computing the maximal expected terminal
weight in a weighted reachability problem to compute maximal partial expectations. We
give the linear program in the following proposition. The non-existence of non-trivial end
components makes sure that this linear program for weighted reachability has a unique
solution.

Proposition 3.28. Let M be an MDP with non-negative weights as above, let K be the
saturation point provided in Theorem 3.27, and let W be the maximal weight occurring
in M. The maximal partial expectation PEmax

M,sinit is the value of the variable xsinit ,0 in the
unique solution to the following linear program with variables (xs,w)s∈S,w∈{0,...,K+W −1}:
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Minimize ∑︁s∈S,w∈{0,...,K+W −1} xs,w under the following constraints:

xs,w = pmax
M,s · w + PEMax

M,s for w ≥ K,

xgoal,w = w and xfail,w = 0 for w < K,

xs,w ≥
∑︂
t∈S

P (s, α, t) · xt,s+wgt(s,α). for w < K, s ∈ S \ {goal, fail} and α ∈ Act(s).

From a solution x to the linear program, we can easily extract an optimal weight-
based deterministic scheduler. This scheduler only needs finite memory because the
accumulated weight increases monotonically along paths and as soon as the saturation
point is reached Max provides the optimal decisions.

Further, we can construct and solve the linear program in time exponential in the size
of M. As the saturation point K is computable in polynomial time, the numeric value of
K+W is at most exponential in the size of M. Further, all values occurring in the linear
program can be computed in polynomial time. So, this linear program is exponential in
the size of the MDP and can hence be solved in exponential time. We state this result
in the concluding theorem:
Theorem 3.29 (see also [CFK+13a]). Given an MDP M = (S,Act, P, sinit,wgt,Goal)
with non-negative weights and with PEmax

M,sinit < ∞, the value PEmax
M,sinit is computable in

exponential time.

The analogous result for conditional expectations is shown in [BKKW17]. The algo-
rithm presented there iteratively fixes optimal decisions for different weight levels starting
at a saturation point moving downwards. For each weight level, optimal decisions are
derived from the solutions to linear programs.

3.5.3 Lower bounds
For conditional expectations, a lower bound for the threshold problem is provided in
[BKKW17].
Theorem 3.30 (see [BKKW17]). The threshold problem for maximal or minimal condi-
tional expectations in acyclic MDPs with non-negative weights is PSPACE-hard.

To obtain the analogous result for partial expectations, we provide a further reduction
between from the threshold problem for conditional expectation to the threshold problem
for partial expectations. As mentioned in Section 3.3.2, the first such reduction we
presented introduces a negative weight when starting with an MDP with non-negative
weights. For acyclic MDPs we can avoid this negative weight:
Lemma 3.31. The threshold problem for conditional expectations in acyclic MDPs with
non-negative weights is polynomial-time reducible to the threshold problem for partial
expectations in such MDPs.
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Proof. Let M = (S,Act, P, sinit,wgt,Goal) be an acyclic MDP with non-negative integer
weights. After pre-processing, we assume that all states are reachable from sinit, that
Goal = {goal} is a singleton, and that all states from which goal is not reachable are
collapsed to one trap state fail. Further, we can assume that Prmin

M,sinit (♢Goal) > 0 because
CEmax

M,sinit < ∞ as M is acyclic. Let ϑ be a rational. We are going to construct an acyclic
MDP N and threshold values ϑ1 and ϑ2 such that CEmax

M,sinit > ϑ iff PEmax
N ,tinit > ϑ1 iff

PEmax
N ,tinit ≥ ϑ2 and an analogous statement for minimal conditional/partial expectations.

The structure of this MDP N is sketched in the following Figure 3.6:

sinit

goal fail

fail ′

MDP M

τ | +R

p
1 − p

Figure 3.6: Construction of the MDP N . The probability p and the weight R are
chosen such that pR = ϑ.

So, the essential task is to find appropriate values for p and R and corresponding
threshold values for N . For this we need to tackle the problem that different paths from
sinit to fail in M might have different accumulated weights.

For each non-trivial transition probability P (s, α, t) ∈ (0, 1) in M, let ms,α,t be the
denominator of the probability in a co-prime representation as a fraction of non-negative
integers. Let m be the product of the values ms,α,t for all such transitions (s, α, t). The
number of digits of a binary representation of m is polynomially bounded in the size of
M. The length of the denominators ms,α,t is taken into account in the size of M. As
there are only polynomially many transitions in M, the product of all these denominators
still has a polynomially long binary representation.

As M is acyclic, the probability of each path π from sinit to goal or fail is a ratio-
nal number of the form ℓ/m for for some natural number ℓ. The same applies to the
probabilities for reaching goal from sinit and the partial expectations under deterministic
schedulers. That is, if S is a deterministic scheduler then

PrSM,sinit (♢goal), PES
M,sinit ∈ {ℓ/m | ℓ ∈ N }
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Consider a representation of the threshold ϑ as the quotient a/b of two positive integers
a, b. Let

δ
def= 1

bm

Then, for each deterministic scheduler S, the value ϑ · PrSM,sinit (♢goal) and the partial
expectation PES

M,sinit are integer-multiples of δ. This yields:

If y = PrSM,sinit (♢goal) and PES
M > ϑy then PES

M ≥ ϑy + δ. (*)

Let now
w

def= 1 + max
{︂

wgt(π) | π is a path from sinit to fail in M
}︂

and define
p

def= δ

2w and R
def= 2wϑ

δ
.

Note that w is finite (recall that M is acyclic) and computable in polynomial time and
that the logarithmic length of the numerator and denominator of the rational numbers
p and R is polynomial in the sizes of the given MDP M and the threshold value ϑ.
Obviously:

pw = δ

2 and pR = ϑ (†)

We now construct a new MDP N that extends M by a fresh state fail ′ and an action τ

that is enabled in state fail with weight wgtN (fail, τi) = R and the transition probabilities
PN (fail, τ, goal) = p, PN (fail, τ, fail ′) = 1−p. For all other states, the enabled actions
and their transition probabilities and weights are the same as in M.

We claim that CEmax
M,sinit > ϑ iff PEmax

N ,tinit ≥ ϑ+ δ iff PEmax
N ,tinit > ϑ+ δ

2 . Let us
first observe that M and N have the same schedulers. Moreover, if S is a scheduler and
y = PrSM,sinit (♢goal) then:

(1) PrSN ,sinit (♢goal) = y + p(1−y)

(2) PES
M + ϑ(1−y) ≤ PES

N < PES
M + ϑ(1−y) + δ

2

Proof of (2): The claim is obvious if y = 1 because then CES
M = PES

M = PES
N .

Suppose now that y < 1. As the accumulated weight of all paths from sinit to fail
is at most w−1 we have:

PES
M + pR(1−y) ≤ PES

N < PES
M + p(R+w)(1−y)

The claim then follows from (†).
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Suppose now that CEmax
M,sinit > ϑ. Pick a deterministic scheduler S such that CES

M > ϑ.
Thus, with y = PrSM,sinit (♢goal) we have y > 0 and PES

M > ϑy. By (*) we have

PES
M ≥ ϑy + δ.

Using the first inequality of statement (2) we obtain:

PES
N

(2)
≥ PES

M + ϑ(1−y) ≥ ϑy + δ + ϑ − ϑy = ϑ+ δ.

Hence, PEmax
N ,tinit ≥ ϑ + δ. Suppose now that PEmax

N ,tinit > ϑ + δ
2 . Pick a determinis-

tic scheduler S such that PES
N > ϑ + δ

2 . Let y def= PrSM,sinit (♢goal). The assumption
Prmin

M,sinit (♢goal) > 0 yields y > 0. Using the second inequality of statement (2) we obtain:

PES
M + ϑ(1−y) + δ

2
(2)
> PES

N > ϑ+ δ

2 .

This yields:
PES

M > ϑy

But then CES
M > ϑ, and therefore CEmax

N ,tinit > ϑ. So, CEmax
M,sinit > ϑ iff PEmax

N ,tinit ≥ ϑ+ δ iff
PEmax

N ,tinit > ϑ+ δ
2 .

With a similar argument, we will show that also CEmin
M,sinit < ϑ iff PEmin

N ,tinit ≤ ϑ− δ
2 iff

PEmin
N ,tinit < ϑ− δ

2 . Instead of (*), we use here the following analogue fact:

If y = PrSM,sinit (♢goal) and PES
M < ϑy then PES

M ≤ ϑy − δ. (**)

Suppose first that CEmin
M,sinit < ϑ. Pick a deterministic scheduler S such that CES

M < ϑ

and let y = PrSM,sinit (♢goal). Then, y > 0 and PES
M < ϑy. By (**) we get PES

M ≤ ϑy−δ.
We now rely on the second inequality of statement (2) and obtain:

PES
N

(2)
< PES

M + ϑ(1−y) + δ

2 ≤ ϑy − δ + ϑ − ϑy + δ

2 = ϑ− δ

2

Hence, PEmin
N ,tinit < ϑ − δ

2 . Suppose now that PEmin
N ,tinit ≤ ϑ − δ

2 . Pick a deterministic
scheduler S such that PES

N ≤ ϑ− δ
2 . By assumption, y def= PrSM,sinit (♢goal) > 0. The first

inequality of statement (2) yields:

PES
M + ϑ(1−y)

(2)
≤ PES

N ≤ ϑ− δ

2

Hence:
PES

M ≤ ϑy − δ

2 < ϑy
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But then CES
M < ϑ, which implies CEmin

N ,tinit < ϑ.

This reduction now allows us to conclude PSPACE-hardness also for all threshold
problems for partial expectations:

Theorem 3.32. All threshold problems for maximal or minimal partial expectations in
acyclic MDPs with non-negative integer weights are PSPACE-hard.

Proof. Immediate from Theorem 3.30 and Lemma 3.31.

3.6 Conditional value-at-risk
We turn our attention to the conditional value-at-risk. The conditional value-at-risk is
a measure focusing on the tail of the distribution of a random variable. The value-at-
risk is the worst p-quantile, i.e., the value such that p of the outcomes are worse. The
value-at-risk provides the best bound on the p worst outcomes, but it is not affected by
the distribution of outliers. While a pure worst-case analysis is overly pessimistic in a
probabilistic setting, the conditional value-at-risk is a good compromise taking outliers
with their respective probabilities into account. It is defined as the expectation of X
under the condition that the outcome is worse than the value-at-risk. In Figure 3.7, the
value-at-risk and the conditional value-at-risk for some value p and two distributions of
a random variable X are illustrated for which high outcomes are the bad cases.

VaR CVaR

X
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Figure 3.7: Illustration of value-at-risk (VaR) and conditional value-at-risk (CVaR).

For MDPs, the distribution of a random variable depends on the chosen scheduler.
Providing guarantees on the worst- or best-case conditional value-at-risk hence turns into
an optimization problem again. In the context of weighted MDPs, the conditional value-
at-risk has been studied for mean-payoffs and for weighted reachability where on each run
only once a terminal weight is collected when a target state is reached [KM18]. In the
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sequel, we consider the conditional value-at-risk for the more general accumulated weight
before reaching the goal, i.e. for the classical stochastic shortest path problem. To the
best of our knowledge, this problem has not been studied. For MDPs with non-negative
weights, we provide a simple saturation point that allows the computation of worst- and
best-case conditional values-at-risk in exponential time. We return to the problem with
arbitrary weights in Chapter 5.

Formal Definition. Given an MDP M = (S,Act, P, sinit,wgt,Goal) with a scheduler
S, a random variable X defined on runs of the MDP with values in R and a value
p ∈ [0, 1], we define the value-at-risk as VaRS

p (X) = inf{r ∈ R|PrSM(X ≥ r) ≤ p}. So,
the value-at-risk is the point at which the cumulative distribution function of X reaches
or exceeds 1 − p. The conditional value-at-risk is now the expectation of X under the
condition that the outcome belongs to the p worst outcomes. Denote VaRS

p (X) by v.
Following the treatment of random variables that are not continuous in general in [KM18],
we define the conditional value-at-risk as follows:

CVaRS
p (X) = 1/p(PrSM(X > v) · ES

M(X|X > v) + (p− PrSM(X > v)) · v).

Outcomes of X which are greater than v are treated differently to outcomes equal to v
as it is possible that the outcome v has positive probability and we only want to account
exactly for the p worst outcomes. Hence, we take only p− PrSM(X > v) of the outcomes
which are exactly v into account as well. To provide worst-case guarantees or to find risk-
averse policies, we are interested in the maximal and minimal conditional value-at-risk

CVaRmax
p (X) = sup

S
CVaRS

p (X) and CVaRmin
p (X) = inf

S
CVaRS

p (X).

In our formulation here, high outcomes are considered to be bad. Completely analogously,
one can define the conditional value-at-risk for the lowest p outcomes. If it is not clear
from context, we will sometimes write CVaRS

↑,p(X) to denote the conditional value-at-
risk as defined here, and CVaRS

↓,p(X) to denote the analogous value if low values are
considered to be bad.

Conditional value-at-risk for the classical SSPP. The random variable for which
we want to study the conditional value-at-risk in MDPs is Goal, the accumulated weight
before reaching a goal state. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP and assume
Emax

M,sinit ( Goal) < ∞. Further, we assume that all weights are non-negative here. After
the pre-processing, we can assume that there are no non-trivial end components anymore.
Note that removing 0-end components does not affect the possible probability distribu-
tions over path lengths of schedulers that reach Goal with probability 1. In the following
theorem we will show how to compute worst-case conditional values-at-risk. Afterwards,
we sketch how to treat the case where low outcomes are considered bad.
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Theorem 3.33. Given an MDP M = (S,Act, P, sinit,wgt,Goal) with non-negative weights
and no non-trivial end-components as well as a rational probability value p ∈ (0, 1), the
value CVaRmax

↑,p ( goal) is computable in exponential time.

Proof. Let N be the number of states of M, δ be the minimal non-zero transition prob-
ability, and W the maximal weight occurring in M. As there are no end components,
Goal is reached within N steps from any other state under any scheduler with probability
at least δN . Let ℓ be such that (1 − δN)ℓ ≤ p. Note that ℓ simply has to be chosen bigger
than log(p)

log(1−δN ) and hence can be computed in polynomial time. So, its numerical value
is at most of exponential size. Then, the probability that a path accumulates a weight
higher than K = ℓ · N · W is less than p under any scheduler. So, the value-at-risk
VaRS

p ( goal) is less than K under any scheduler S. So all paths that reach an accumu-
lated weight of at least K certainly belong to the p worst paths under any scheduler. On
these paths, the best thing to do in order to maximize the conditional value-at-risk is
to maximize the expected accumulated weight before reaching the goal. We know that
these optimal values are computable in polynomial time. Hence, we will assign weight
wgt(π) + Emax

M,last(π)( ) to paths π that exceed an accumulated weight of K in their last
step. We can now reduce the problem to a conditional value-at-risk problem for weighted
reachability. We can achieve this by explicitly encoding the accumulated weight up to K
into the state space:

We define a new MDP N with a set of weighted target states as follows: The state
space S ′ is S × {0, . . . , K + W − 1}. The initial state s′

init is (sinit, 0). The set of actions
stays the same. The transition probability function P ′ is defined by P ′((s, i), α, (t, j) =
P (s, α, t) if i + wgt(s, α) = j and i < K, and P ′((s, i), α, (t, j)) = 0 otherwise. There is
no weight function in N , but instead a set of weighted target states. The target states
are (goal, i) with weight i for all i < K and (s, j) with weight jEmax

M,s( goal) for all j ≥ K

and s ∈ S.
Now, we can compute the optimal conditional value-at-risk with the probability value

p for the random variable assigning the terminal weight to a path with the methods for
weighted reachability presented in [KM18] in polynomial time in the size of N to obtain
the value CVaRmax

↑,p ( goal) in M. The linear program presented there requires a guess of
the value-at-risk. However, the value-at-risk in our setting is a natural number between 0
and K, so there are only exponentially many candidates. This results in an exponential
time algorithm for our problem.

If we consider paths with low weight to be bad, the problem is somewhat simpler in
MDPs with non-negative weights. As in the proof of the theorem, we can compute a
natural number K ′ such that the probability that at least weight K ′ is accumulated is
less than 1−p under any scheduler. The value-at-risk for the probability p is then always
less than K ′ and paths accumulating weight at least K ′ are certainly not among the
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worst p paths. We can assign weight K ′ to these paths without affecting the conditional
value-at-risk. Encoding the accumulated weight into the state space allows us to reduce
the problem to a conditional value-at-risk problem for weighted reachability in an MDP
of exponential size yielding an exponential time algorithm again. No matter whether
we consider high or low weights to be bad, the minimal conditional value-at-risk can be
computed completely analogously via the presented construction.
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CHAPTER

FOUR

LONG-RUN SATISFACTION OF PATH PROPERTIES

If a system goes through an intialization phase before working for a long time under
normal operating conditions, the behavior of the system in the long-run is of particular
interest. Checking whether the whole execution satisfies a specification given in LTL
or another temporal logic allows to verify basic properties of the system. It is, e.g.,
possible to express properties like □♢φ – that a formula φ is satisfied infinitely often.
In a messaging system for example, this can be used to check that every message is
eventually processed. This check does, however, not provide any guarantees on the time
needed to process a message or the fraction of time in which the system is ready to
process messages. In this chapter, we investigate the optimization problems for three
quantitative measures that address the long-run behavior of a system in order to answer
such verification questions.

In the non-probabilistic setting, we study the notion of long-run frequencies for ω-
regular properties. As the name suggests, long-run frequencies measure in the long-run
how frequently a property holds and are expressed as the limit of the fraction of the
number of suffixes that satisfy the property over the number of all suffixes. For finite-
state transition systems, we study the optimization of the long-run frequency of a given
property over all paths.

When turning to the probabilistic world, we introduce the corresponding concept of
long-run probabilities. On Markov chains, long-run probabilities are limit-average proba-
bilities for path properties, indicating the probability for a property to hold on the suffix of
a path after many steps. Among others, this notion aims to provide refined measures for
the system availability, understood as the proportion of time a system is functioning un-
der “normal” operating conditions (after the initialization phase). For finite-state MDPs,
the corresponding optimization problem is to compute the optimal long-run probability
of a given property when ranging over all schedulers.
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To address the long-run behavior with respect to quantitative aspects of a system such
as resource consumption or utility, we define long-run expectations in a similar fashion.
Long-run expectations describe the long-run average of the weight that is expected to
be accumulated before a certain target state is reached for the next time. In a sense, it
expresses the average distance to the next target state. For example, we can determine
how long a system needs to finish its current task before being able to process a request
that is sent at some unknown time after the system has been running for a long time.

While a relation to stochastic shortest path problems is obvious for long-run expecta-
tions, we will see that also long-run probabilities share a lot of similarities with variants of
stochastic shortest path problems. To some extend, the same techniques as for stochastic
shortest path problems are applicable to the optimization of long-run probabilities. To
convey a first idea of these long-run notions and the difficulties arising, we illustrate the
notion of long-run probability in an example.

Example 4.1. Consider the MDP N shown in Fig. 4.1. The only non-deterministic
choice is the choice between actions α and β in state a. Action α yields a uniform
distribution over the three successors.

a
b1

c1

b2c2
α

β

1
2 1

2

Figure 4.1: MDP with labels indicated by the state names requiring counting to maxi-
mize the long-run probability of aU b.

We want to determine the maximal long-run probability of aU b. Under the memo-
ryless scheduler Sα that always picks action α, the probability of aU b in the a-state is 1

2
under this scheduler. The states b1 and c1 appear equally often. The probability of aU b

is 1 in state b1 and 0 in state c1. We thus conclude that the long-run probability under Sα

is 1
2 . Similarly, the steady-state probability of the states a and b2 under the memoryless

scheduler Sβ are 1
4 , and the probability that aU b holds from there is 1. The long-run

probability of aU b under Sβ equals 1
2 as well. Interestingly, these two memoryless sched-

ulers are not optimal. Consider the scheduler S that chooses α first and, if it returns to
a directly, chooses β afterwards. In the first visit to the a state, the probability for aU b

is 2
3 . States b1 and c1 are reached with probability 1/3 afterwards. If state a is reached

again directly, the probability of aU b is now 1. Also state b2 is reached with probability
1/3 before returning to a from b1, c1, or c2. Tho compute the long-run probability under
this scheduler, we sum up the satisfaction probabilities for all states that can be visited
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before returning to a from b1, c1, or c2 multiplied with the probabilities of the visits. We
divide the result by the expected number of steps before returning. Note that we sum
up probability 2/3 + 1/3 · 1 for the two possible visits to state a. We obtain a long-run
probability of

2/3 + 1/3 + 1/3 + 1/3
2/3 · 2 + 1/3 · 5 = 5

9 .

The intricate interaction of satisfaction probability and steady-state probability of
each state makes the optimization of long-run probability particularly challenging. We
will see that indeed counting the number of consecutive a-states and basing the decisions
on the counter value is the key to achieve maximal long-run probabilities for aU b. ◁

Outline. We investigate long-run frequencies in Section 4.1. We show how the opti-
mal long-run frequency of a regular co-safety property given by an NFA A in a transition
system T can be computed in time polynomial in T and exponential in A. An accompa-
nying PSPACE-hardness result for the threshold problem implies that we cannot expect
a considerable improvement of the upper bound. Section 4.2 addresses long-run proba-
bilities in MDPs. After identifying easily solvable instances, we provide a construction
allowing to express the optimal long-run probability of a regular co-safety property as the
optimal expected mean payoff in an infinite-state MDP. This construction will also play
a role in Chapter 5. For the special case of constrained reachability properties (aU b), we
prove the existence of a saturation point, a bound on the number of consecutive visits to
a-states before an optimal scheduler can behave memorylessly until the set of a-states is
left. This allows us to obtain a finite-state MDP from the general construction for co-
safety properties and to compute the optimal long-run probability in exponential time.
Again, we also provide a lower bound: the threshold problem for the long-run probability
of constrained reachability properties is NP-hard. In Section 4.3, we introduce the notion
of long-run expectation. Interestingly, we are able to provide a saturation point allowing
the computation of optimal values in exponential time even in MDPs with arbitrary in-
teger weights. The saturation point is not a bound on the accumulated weight, but on
the number of steps without visiting a goal state here. The NP-hardness for long-run
probabilities can easily be transferred to long-run expectations as well.

Related work. The notions we investigate follow the spirit of quantifying the validity
of a property along a path as in frequency-LTL [BDL12, FK15, FKK15] and averaging
LTL [BMM14]. In the work on frequency-LTL [BDL12], a quantitative variant aUq b

of the until operator relaxes the standard meaning of aU b by requiring that a holds
at a fraction of at least q of the positions before b holds. Other variants of frequency-
LTL [FK15, FKK15] allow only quantitative variants □q of the globally operator. The
semantics here is that □qϕ holds on a path if the long-run average of the frequency of
positions at which ϕ holds is at least q. Alternatively, averaging LTL [BMM14] rather
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than truth values, assigns quantities to pairs of paths and formula. It is based on a
quantitative labeling function for atomic propositions and inductively defines the se-
mantics of □φ as the average of the value of φ along the path. Both the full logics
have an undecidable model checking problem [BDL12,BMM14]. Decidable fragments of
frequency-LTL can be obtained by restricting the nesting of temporal operators or the
allowed frequency thresholds [BDL12, FK15, FKK15]. To contrast frequency-LTL with
our notion of long-run probabilities note that frequency-LTL is a logic to specify quantita-
tive measures for the satisfaction of properties along paths using the □q-modality, while
long-run probabilities are a quantitative measure across behaviors. For finite strongly
connected Markov chains, the probabilities for □q-formulas are 0 or 1, while long-run
probabilities can be strictly between 0 and 1. There is still a close connection as for each
finite, strongly connected Markov chain M, □q(aU b) holds in M with probability 1 iff
the long-run probability of aU b is at least q. Nevertheless, the contribution for MDPs
in [FK15, FKK15] are orthogonal to ours. On the one hand, they can treat much more
complex properties with nested □q-formulas. On the other hand, they cannot deal with
formulas of the type □q(aUb) for q < 1. The results in [FK15] only apply to q = 1.
The fragment in [FKK15] can deal with □q-modalities for arbitrary q, but imposes the
constraint that no until operator occurs in the scope of the □q-modality.

Long-run probabilities can be seen as mean-payoff, where the weights are the satis-
faction probabilities. A crucial difference however with mean-payoff and other long-run
properties is that, for long-run probabilities, the “weights” along a path are not fixed a
priori, but do depend on the scheduler. In this aspect, there is some conceptual rela-
tion to dynamic Markov processes [Pap85] where cost or transition probabilities depend
on previously made decisions, or the stochastic variant of the Canadian traveler prob-
lem [FSBW13]. These problems, however, are concerned with finite-horizon objectives;
moreover, their weights are affected by the past, whereas our “weights” (satisfaction
probabilities) are induced by the future scheduler.

Many works address the long-run behavior of MDPs with respect to the accumulation
of weights, e.g., mean payoffs [Kal83,CD11,BBC+14] and other cost objectives [dA98] or
ratios [dA97,vEJ11]. To the best of our knowledge, long-run expectations have not been
addressed in the literature.

Note on the publication of the results. This chapter is based on joint work with
Christel Baier, Nathalie Bertrand, and Ocan Sankur published at LICS 2019 [BBPS19].
The construction for the long-run probabilities of regular co-safety properties in MDPs has
been added (Section 4.2.2). Furthermore, we introduce the notion of long-run expectation
here and the results of Section 4.3 have not been published.
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4.1 Non-probabilistic long-run frequencies
Intuitively, the frequency with which a path property is satisfied on a path quantifies the
fraction of the number of suffixes that satisfy the path property over the number of all
suffixes. In this section, we investigate the optimization of long-run frequencies in non-
probabilistic models. Transitions systems are a standard model for systems that exhibit
non-deterministic, but no probabilistic behavior. As this is the only section in which we
work with non-probabilistic models, we first define our notation for transitions systems.
We assume familiarity with the model.

Definition 4.2. A transition system is a tuple T = (S,∆,AP, L) where S is a finite set
of states, ∆ ⊆ S × S is a transition relation, AP is a finite set of atomic propositions,
and L : S → 2AP is a labeling function. An infinite path in a transition system is a
sequence π = s0s1s2 . . . of states such that (si, si+1) ∈ ∆ for all i. The trace of a
path π = s0s1s2 . . . is the word L(s0)L(s1)L(s2) . . . from (2AP)ω. If we talk about the
properties a path satisfies, we do not distinguish between the path and its trace.

Formally, the long-run frequency is now defined as follows.

Definition 4.3. Let T = (S,∆,AP, L) be a transition system and φ a path property.
The long-run frequency of φ along an infinite path ζ of T is defined as:

lrf φ(ζ) = lim inf
n→∞

1
n+1 ·

n∑︂
i=0

1ζ[i...]|=φ

where 1ζ[i...]|=φ is 1 if ζ[i...] |= φ and 0 otherwise. The maximal long-run frequency of φ is
given by

LFmax
T ,s (φ) = sup

ζ
lrf φ(ζ)

where s ∈ S and ζ ranges over all infinite paths starting in state s. The minimal long-run
frequency LFmin

T ,s (φ) is defined analogously.

The value lrf φ(ζ) is not affected by the addition of a finite prefix to a path, and hence
all states belonging to the same strongly connected component (SCC) of T have the same
extremal values. It thus suffices to determine the optimal values for the SCCs of T . The
optimal value for a given state s of T is then the maximum or minimum of the optimal
values of the SCCs reachable from s. In the sequel we therefore assume T is strongly
connected, and simply write LFmax

T (φ) and LFmin
T (φ).

As a consequence of a result established later for the probabilistic setting (see The-
orem 4.11), the extremal long-run frequencies for invariants, reachability, and Rabin
and Streett conditions are computable in polynomial time. For transition system, these
techniques essentially require to identify “good” cycles ξ where the property under con-
sideration holds from all states along ξ.
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Reasoning about long-run frequencies becomes more challenging when considering
properties that are not prefix-independent and where a classification of cycles into good
and bad ones is not sufficient. As a stepping stone in this direction, we consider regular
co-safety properties where satisfaction is witnessed by “good” prefixes in this section.
We illustrate the problem in the following example for the constrained reachability prop-
erty aU b which is a simple co-safety property for which the problem already becomes
interesting.

a

a ca

c bcc

a

b

c

Figure 4.2: Transition systems requiring memory to maximize the long-run frequency
of aU b.

Example 4.4. Fig. 4.2 gives two examples of transition system labeled with atomic
propositions a, b, and c on which one wants to evaluate the long-run frequency of an
until property. The transition system on the left illustrates, that, memory is required to
maximize the long-run frequency: For aU b, the maximal long-run frequency is achieved
by alternating between the two simple cycles and amounts to 4

9 , which is indeed more than
2
5 the long-run frequency of iterating the bottom cycle only. For the transition system on
the right, the long run frequency of aU b along e.g. the path (abc)ω is 2

3 . The maximal
long-run frequency is 1, which is achieved, e.g., by the infinite path abca2bca4bca8bc . . .

that successively doubles the number of times the self-loop at state a is taken. However,
there is no finite-memory strategy for generating an infinite path where the long-run
frequency for aU b is 1.

Let us take a first glimpse at a construction with which these results can be obtained
algorithmically. In Figure 4.3, we create two copies of each state labeled a that we label
with 0 and 1, respectively. From copies labeled (a, 0), we remove all outgoing edges to
states labeled with b or to states labeled with (a, 1). Likewise, we remove all edges from
copies labeled (a, 1) to states labeled c or (a, 0). The label 1 is supposed to indicate that
aU b will hold from a state on. If there are no cycles consisting only of states labeled a,
the construction indeed ensures that this holds on all infinite paths in the constructed
transition system. For the transition system on the left, we can hence assign weight 1 to
all states labeled with (a, 1) or b and weight 0 to all other states as aU b holds exactly on
the suffixes of an infinite path that start in a state with weight 1. The long-run frequency
of aU b is then equal to the maximal mean payoff in the constructed structure.
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a, 0a, 1

a, 1 a, 0 ca, 0a, 1

c bcc

a, 1a, 0

b

c

Figure 4.3: Weighted transition systems obtained for the transition system from Fig. 4.2:
gray states have weight 1, while others have weight 0.

The transition system on the right contains a cycle of a-states, namely the self-loop on
the upper state. Now, maximizing the mean payoff in the constructed transition system
does not necessarily maximize the long-run frequency of aU b. The mean payoff of the
path looping in state (a, 1) is 1 while no suffix satisfies aU b. To overcome this problem, we
mix the cycle maximizing the mean payoff with a cycle making sure that aU b is satisfied
from states labeled with 1, in this case the cycle (a, 1)bc. Using infinite memory, we can
make sure that the frequency of this cycle in the path is 0 although it occurs infinitely
often. This is exactly what happens in the path (a, 1)bc(a, 1)2bc(a, 1)4bc(a, 1)8bc . . .. ◁

Regular co-safety properties. We now address extremal long-run frequencies in transi-
tion system for regular co-safety properties φ. Fix T = (S,∆,AP, L), a strongly connected
transition system, and let A = (Q,Σ, δ, Q0, F ) be an NFA over the alphabet Σ = 2AP rep-
resenting φ, i.e., an infinite path of T satisfies φ iff it has a prefix accepted by A. Hence,
lrf φ(ζ), also denoted lrf A(ζ), is the long-run average of positions in ζ where a word in
L(A) starts, and we write LF∗

T (A) rather than LF∗
T (φ). We show that the computation

of LFmax
T (A) and LFmin

T (A) reduces to determine the maximal and minimal mean-payoff
in a weighted transition system G with a generalized Büchi side condition. The size of
this transition system is exponential in the size of T .

For simplicity, we suppose here that Q0 = {q0} is a singleton and that q0 is not
accessible from any other state in A. We also assume that q0 /∈ F (otherwise A accepts
the empty word and the long-run frequency of φ along any infinite path is 1). We fix
an arbitrary state s0 ∈ S which we treat as a starting state of T . (Since T is strongly
connected, the extremal long-run frequencies in T do not depend on the choice of the
starting state.) We define a weighted transition system G as follows. Let ℓ = |Q| denote
the number of states in the NFA A. Then, the state space SG of G is equal to

S × ({#} ∪Q)ℓ+1 × 2Q
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while we require that at least one of the entries in ({#} ∪ Q)ℓ+1 is #. The idea is that
in each step of a run of the original transition system T , we non-deterministically choose
whether the suffix starting with that step is accepted by A or not. We can view this
as a promise about the future choices we will make. In the states of G, the information
on runs of the automaton A that still have to be accepted or rejected is stored which
allows us to check that the promises on suffixes accepted or rejected by A were correct in
each step. In the ({#} ∪Q)ℓ+1-component, we store the current state of up to ℓ+ 1 runs
that still have to be accepted in ℓ+ 1 tracks available in the component. The symbol #
denotes tracks currently not in use. As soon as two of these runs reach the same state, we
can stop keeping track of one of the runs. Hence we always have at most ℓ runs to check.
As a new run that is accepting can be started at any step, it is convenient to have an
additional track to start the new run. In the 2Q-component, we store all possible states
of runs that have to be rejected. Note that in order to make sure that the NFA A does
not accept a suffix of a run in T , we have to keep track of all successor states in A after
each step while for the accepted suffixes it is sufficient to specify one successor state after
each step. The transition relation in G will make sure that from no state currently in the
2Q-component, an accepting state can be reached. Hence, we do not have to distinguish
individual runs, but can simply keep track of the set of possible states. For the accepting
runs on the other hand, we have to make sure that all of them are eventually accepted.
Hence, we store the runs explicitly in the ℓ tracks provided in the ({#}∪Q)ℓ-component.
A generalized Büchi condition will make sure that all of these runs are in fact accepting.

Let us define the transition relation ∆G of G. Let us do that by describing how the
possible successors of a state g = (s, (p0, . . . , pℓ), A) with p0, . . . , pℓ ∈ {#}∪Q and A ⊆ Q

are determined. For a state (t, (r0, . . . , rℓ), B) to be a possible successor of g, we first
require that (s, t) ∈ ∆ is a possible transition in T . Now there are two possible promises
whether the suffix of the run of T starting in state t now should be accepted by A.

If it is supposed to be accepted, a successor is constructed as follows: The set B =⋃︁
q∈A δ(q, L(s)). The transition is only possible if B is disjoint from F . To obtain a

possible tuple (r0, . . . , rℓ), first choose r′
i ∈ δ(pi, L(s)) for all i with pi ∈ Q and let r′

i = #
if pi = #. Then, do the following:

1. Let ri = q0 if r′
i = # and r′

j ̸= # for all j < i,

2. let ri = # if r′
i ∈ F or if r′

i = r′
j for some j < i,

3. for all remaining indices i, let ri = r′
i.

Note that by the condition that at least one of the ℓ+ 1 tracks contains # in each state,
step 1 is always possible. Furthermore, step 2 merges tracks which contain the same state
and makes sure that there is at least one track containing # after the transition as there
are only ℓ distinct states in Q.
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If the suffix starting currently is not supposed to be accepted, let B = ⋃︁
q∈A δ(q, L(t))∪

{q0} and require it to be disjoint from F , and skip step 1 in the construction of the possible
tuples (r0, . . . , rℓ).

Note that if in A one of the states in the set A has an L(s)-successor in F , the state
g has no successors. This makes sure that the promise that a suffix will not be accepted
by A cannot be violated on infinite paths. To make sure that also the positive promises
about acceptance are met, we have to employ a generalized Büchi condition. Whenever
a run stored in one of the ℓ+ 1 tracks is accepted or joined with a track of lower index, it
contains # afterwards. Let #i denote the set of states where the ith of the ℓ + 1 tracks
contains #. The generalized Büchi condition

Φ =
ℓ⋀︂

i=0
□♢#i

makes sure that this happens infinitely often on each track. As we join tracks only with
tracks of lower index, this ensures that all positive promises are eventually made true.

To conclude the construction of G, we let the initial states be

(s0, (q0,#, . . . ,#), ∅) and (s0, (#,#, . . . ,#), {q0})

and assign weight +1 to all states containing q0 in one of the tracks in the ({#} ∪Q)ℓ+1-
component while all other states get weight 0.
Lemma 4.5. Let T and A be given and let G and Φ be constructed from T and A as
above. For each infinite path ζ in T , there is a path ξ in G satisfying Φ – and vice versa
– such that lrf A(ζ) = MP(ξ) where MP(ξ) is the mean payoff of ξ according to the weight
function of G.

Proof. Consider any infinite path ζ = (sk)k≥0 of T that starts at s0. We will construct
a path ξ = (sk, (rk

0 , . . . , r
k
ℓ ), Ak)k≥0 in G satisfying Φ and whose mean payoff is exactly

lrf φ(ζ). Note that the path follows ζ in its first component. In each step, we make the
promise that the suffix will be accepted by A iff this is in fact the case for the suffix of
ζ starting at that step. The only non-deterministic choices that remain to be made are
the successors rk+1

0 if rk
0 ∈ Q. As we only promise suffixes that are accepted by A to

be accepted, we can simply follow an accepting run of the suffix in each of these tracks
r·

j. The switch to # when the run is accepted or merged with a run of lower index
is determined by the construction of possible successors. Also the third component is
uniquely determined by the construction and the fact that we add q0 whenever the suffix
of ζ starting now is not accepted by A. We now have that ζ[i . . . ] is accepted by A if
and only if the weight of ξ[i] is 1. So, we indeed have lrf A(ζ) = MP(ξ). Further, we only
promise a run to be accepting if it is indeed eventually accepted. So, each of the tracks
r·

j is set back to # infinitely often and so ξ ⊨ Φ.
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Conversely, consider a path ξ = (sk, (rk
0 , . . . , r

k
ℓ ), Ak)k≥0 of G satisfying Φ. Let ζ =

(sk)k≥0 be the corresponding path in T . If the weight of ξ[i] is 1, the lowest indexed
track r·

j that contained # at ri−1
j is set to q0. To obtain a run of A witnessing that the

suffix ζ[i . . . ] is accepted by A in this case, we can follow the run (rm
j )m≥i provided in

this track until the track is set to #. As ξ ⊨ Φ, this will happen. Then, the run either
reached an accepting state or was merged with a lower indexed track. In the latter case,
we follow the run of this lower indexed track from then on. After at most j-many merges
to another track, an accepting state will be reached.

If the weight of ξ[i] is 0, the state q0 is added to Ai. In each step, all possible successor
states are added to this set and none of these successor states can ever be accepting as
this is prohibited in the transition relation of G. So, ζ[i . . . ] is not accepted by A. Hence,
we can conclude that lrf A(ζ) = MP(ξ) again.

Using [BCHK11,Kar78], one can compute the extremal mean payoff values in G under
the generalized Büchi side condition Φ. The procedure looks for reachable SCCs E in
G in which Φ can be satisfied. As this only requires the SCCs to contain one state
satisfying #i for each i, this can be done in time polynomial in the size of G. In each of
these components E , we then compute the maximal mean-payoff in that component in
polynomial time. The maximum M among these values is also the maximal mean payoff
MPmax

G (Φ) in G under the side condition Φ: Clearly, MPmax
G (Φ) ≤ M . On the other

hand from a cycle σ with mean payoff M in one of these reachable components E , we
can construct a path satisfying Φ with the same mean payoff. We let ρ be a cycle that
starts in the first state of σ and visits states satisfying #i for each 0 ≤ i ≤ ℓ. The path
σ1ρσ2ρσ4ρ . . . satisfies Φ and has mean payoff M because the frequency of ρ in this path
is 0. The minimal mean payoff under a generalized Büchi side condition can be treated
analogously. This allows us to conclude the following result as G is of size polynomial in
T and exponential in A.

Theorem 4.6. LFmax
T ,s (φ) and LFmin

T ,s (φ) are computable in time exponential in the size
of A and polynomial in the size of T .

For a fixed regular co-safety property, the optimal long-run frequency can hence be
computed in polynomial time. In particular, this applies to constrained reachability
properties:

Corollary 4.7. The values LFmax
T ,s (aU b) and LFmin

T ,s (aU b) are computable in polynomial
time.

We now establish the complexity of the decision problem associated with the maxi-
mization of long-run frequency for regular co-safety properties. Formally, given a transi-
tion system T , an NFA A, a rational threshold ϑ, and a comparison operator ▷◁∈ {≥, >
,<,≤}, the threshold problem asks whether LFmax

T (φ) ▷◁ ϑ.
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Theorem 4.8. The threshold problem for the long-run frequency of regular co-safety
properties in transition system is PSPACE-complete.

We split the proof into two parts in the following two lemmata:

Lemma 4.9. Given a transition system T , an NFA A, a rational threshold ϑ, and
a comparison operator ▷◁∈ {≥, >,<,≤}, one can check in polynomial space whether
LFmax

T (φ) ▷◁ ϑ.

Proof. The idea is to use the weighted transition system G, without constructing G ex-
plicitly. Let all notation concerning G be as above, in particular ℓ is the number of states
of Q. As PSPACE equals NPSPACE (Savitch’s theorem), it suffices to provide a non-
deterministic polynomially space-bounded procedure to check whether MPmax

G (Φ) ▷◁ ϑ.
We first show how to solve the threshold problem for ▷◁∈ {≥, >}. In this case, we

have to check the existence of one path in G satisfying the constraint. The algorithm
starts by guessing a state sG in G and checks whether sG is reachable from one of the
initial states. This check can be done in polynomial space because all states of G have a
polynomially large representation and checking whether a state t is a possible successor
of a state s can be done in polynomial time. Then, it checks whether for each 0 ≤ i ≤ ℓ,
there is a state labeled #i in the same SCC as sG. This requires again two reachability
checks that can be done in polynomial space. If these conditions are met, the algorithm
checks whether there is a simple cycle ξMP containing sG with mean payoff of ▷◁ ϑ. As
the length of a simple cycle is bounded by the number of states of G which is at most
N · (ℓ + 1)ℓ+1 · 2ℓ where N is the number of states of T , such a cycle can be guessed
by counting the number of steps up to at most this bound while keeping track of the
sum of the weights in the guessed cycle. These values can be stored in polynomial space
as all weights are 0 or 1. Once, sG is reached again, this non-deterministic algorithm
terminates if the mean payoff of the guessed cycle satisfies the constraint that it is ▷◁ ϑ.
If the algorithm finds such a cycle, we have seen how to obtain a path ζ in G and hence
in T with lrf A(ζ) ▷◁ ϑ.

As PSPACE is closed under complement, the problem for ▷◁∈ {≤, <} can also be
solved in polynomial space: LFmax

T (φ) ≤ ϑ iff LFmax
T (φ) ̸> ϑ, and LFmax

T (φ) < ϑ iff
LFmax

T (φ) ̸≥ ϑ.

Lemma 4.10. The threshold problem “given a transition system T , an NFA A and a
rational threshold ϑ, decide whether LFmax

T (φ) ≥ ϑ” is PSPACE-hard.

Proof. The PSPACE lower bound follows by a polynomial reduction from the intersection
problem for deterministic finite automata (DFA): given k DFA D1, . . . ,Dk over the same
alphabet Σ, is the intersection language L(D1) ∩ . . .∩ L(Dk) nonempty? This problem is
known to be PSPACE-complete [Koz77].
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To provide a polynomial reduction from the intersection problem for DFA, we suppose
we are given DFA D1, . . . ,Dk over some alphabet Σ. W.l.o.g. we may assume that k ≥ 2
and that the empty word is not included in any of the languages L(Di). Let Qi be the
state space of Di, ℓi = |Qi| and ℓ = ℓ1 ·. . . ℓk. Then, L(D1)∩. . .∩L(Dk) is nonempty if and
only if there is a word w ∈ Σ∗ of length at most ℓ such that w ∈ L(Di) for i = 1, . . . , k.

Let $1, . . . , $k,# be pairwise distinct fresh letters (not contained in Σ), and let Γ =
Σ ∪ {$1, . . . , $k,#}. Given a finite word w = σ1σ2 . . . σn ∈ Σ+, let ŵ denote the word
over Σ ∪ {#} that arises from w by inserting (k−1)-times the symbol # after each letter
σj. That is,

ŵ = σ1#k−1σ2#k−1 . . . σn#k−1

For i = 1, . . . , k, one can easily construct in time O(k2+k · size(Di)) a new DFA Bi over
the alphabet Γ such that:

L(Bi) =
{︂

$j
i $k−1

i+1 . . . $k−1
k ŵ : w ∈ L(Di), 1 ⩽ j < k

}︂
Furthermore, we can construct in time linear in the sizes of B1, . . . ,Bk an NFA A over
the alphabet Γ with:

L(A) = L(B1) ∪ . . . ∪ L(Bk) ∪ {#i : i ≥ 1}

Note that A does not accept the empty word and no word starting with a letter in Σ.
Likewise, we can construct in time polynomial in k a strongly connected KS T with the
following states:

• si,j for i = 1, . . . , k and j = 1, . . . , k−1,

• t1, . . . , tk−1 and

• uσ for each symbol σ ∈ Σ.

We treat the symbols in Γ as atomic propositions and identify the singletons {γ} with
γ, where γ ranges over all symbols of the alphabet Γ. The labeling function of T is then
given by:

L(si,j) = $i, L(tj) = # and L(uσ) = σ.

The transition relation of T is depicted in Figure 4.4. The words generated by T are
the substrings of the infinite words y1y2y3 . . . where each word yi has the form

$k−1
1 $k−1

2 . . . $k−1
k ŵ

for some w ∈ Σ+. Let
ϑ = k(k−1) + (k−1)ℓ

k(k−1) + kℓ
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s1,1 s1,2 . . . s1,k−1

s2,1 s2,2 . . . s2,k−1

sk,1 sk,2 . . . sk,k−1

uσ uσ′ . . .

t1 t2 . . . tk−1

. . .

Figure 4.4: The Kripke structure T in the reduction.

Clearly, T ,A, ϑ can be constructed in time polynomial in the size of the DFA D1, . . . ,Dk.
It remains to show that T has an infinite path ζ with long-run frequency lrf A(ζ) at least
ϑ if and only if the intersection language of the Di’s is nonempty.

Let us recall that, formally, the relation of T consists of the following transitions:

si,1 → si,2 → . . . → si,k−1 for i = 1, . . . , k
si,k−1 → si+1,1 for i = 1, . . . , k−1
sk,k−1 → uσ → t1 for σ ∈ Σ
t1 → t2 → . . . → tk−1

tk−1 → s1,1 and tk−1 → uσ for σ ∈ Σ

Suppose first that there is some word w ∈ Σ∗ accepted by each of the DFSs D1, . . . ,Dk.
As stated before, we then can safely assume that |w| ⩽ ℓ. T has a cycle ξ generating the
word v = $k−1

1 $k−1
2 . . . $k−1

k ŵ. We then have:

|v| = k(k−1) + k|w|

The word v contains exactly k(k−1) + (k−1)|w| positions from which a word accepted
by A starts. This follows from the following two observations:

• The suffixes $j
i $k−1

i+1 . . . $k−1
k ŵ of v are accepted by Bi, and therefore by A (for j =

1, . . . , k−1).

• ŵ contains exactly (k−1) · |w| positions from which a subword contained in #+

starts.

Thus, the long-run frequency of the infinite path ξω that repeats this cycle ad infinity is:

lrf A(ξω) = f(|w|)
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where f : R≥0 → R≥0 is the following function:

f(x) = k(k−1) + (k−1)x
k(k−1) + kx

Function f is monotonically decreasing.1 Therefore, f(|w|) ≥ f(ℓ) As f(ℓ) = ϑ, we
conclude that T has an infinite path with long-run frequency at least ϑ.

We assume now that T has an infinite path ζ with long-run frequency at least ϑ.
We first observe that ζ must visit s1,1 infinitely often as otherwise ζ would have an
infinite suffix consisting of t- and u-states, in which case the long-run frequency would
be smaller or equal than (k−1)/k, and therefore strictly smaller than ϑ. Suppose by
contradiction L(D1) ∩ . . .L(Dk) is empty. Then, the average weight obtained by each
cycle s1,1s1,2 . . . s1,k−1 . . . sk,1sk,2 . . . sk,k−1ϱs1,1 where ϱ consists of t- and u-states contained
in ζ in T is less or equal

(k−1)2 + (k−1)y
k(k−1) + ky

= k−1
k

where y is the number of u-states in ϱ, in which case the number of t-states in ϱ is (k−1)y.
But then again, the long-run frequency of ζ would be bounded by (k−1)/k, and therefore
strictly smaller than ϑ. Contradiction. We conclude that L(D1) ∩ . . .L(Dk) must be
nonempty if T has an infinite path with long-run frequency at least ϑ.

This finishes the proof of Theorem 4.8. The hardness result establishes that we cannot
expect an algorithm for the exact computation of maximal long-run frequencies for co-
safety properties that runs in sub-exponential time.

4.2 Long-run probabilities

The aim of long-run probabilities is to provide a probabilistic notion with a similar spirit
as long-run frequencies. Instead of counting the number of suffixes of a run that satisfy a
path property φ, we take an average of the probability after each step that φ is satisfied
on the suffix starting after that step. More formally, let M = (S,Act, P, sinit,AP, L) be
an MDP and let φ be a path property. The long-run probability for φ of an infinite path
ζ under a scheduler S for M is defined as as the long-run average of the probabilities for
φ in all positions of ζ with respect to the residual schedulers S↑ζ[0 . . . i] defined by

S↑ζ[0 . . . i](π) = S(ζ[0 . . . i] · π)

1Each rational function h(x) = (a + cx)/(b + dx) with cb < ad is decreasing. This is a consequence
of the fact the the first derivative is strictly negative. Note that h′(x) = (cb − ad)/(b + dx)2, which is
strictly negative if cb < ad.
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for finite paths π starting in ζ[i]:

lrpS
φ (ζ) = lim inf

n→∞

1
n+1 ·

n∑︂
i=0

PrS↑ζ[0...i]
M,ζ[i] (φ) .

The long-run probability for property φ under scheduler S from state s, denoted LPS
M,s(φ),

is defined as the expectation of the random variable ζ ↦→ lrpS
φ (ζ) under S with starting

state s:
LPS

M,s(φ) = ES
M,sinit (lrp

S
φ ).

We now address the task to compute the extremal long-run probabilities for φ:

LPmax
M,s(φ) = sup

S
LPS

M,s(φ) and

LPmin
M,s(φ) = inf

S
LPS

M,s(φ)

where S ranges over all schedulers for M. In contrast to classical optimization problems
for MDPs, the random variable whose expectation we aim to optimize, namely lrpS

φ ,
depends on the scheduler S itself. In Example 4.1, we have already seen that this
dependency of long-run probabilities on the scheduler in two different ways makes the
optimization problem rather intricate.

In this section, we start with the identification of efficiently solvable instances, includ-
ing the computation of long-run probabilities in Markov chains and prefix-independent
properties (such as Rabin or Streett conditions) where the satisfaction only depends on
the states that are visited infinitely often in MDPs. The latter can be treated by a
polynomial-time analysis of end components. Afterwards, we turn our hands to regular
co-safety properties. We provide a construction of an infinite-state MDP from an MDP
and a regular co-safety property allowing us to express optimal long-run probabilities in
terms of optimal expected mean payoffs. Due to the infinite state space, however, the
construction does not lead to a procedure to compute the optimal values. Nevertheless,
the construction is useful in two respects: On the one hand, it establishes a connection to
non-classical stochastic shortest path problems that we exploit in Chapter 5 to prove that
the threshold problem for the optimal long-run probability of regular co-safety properties
is Positivity-hard and that we hence cannot expect to be able to compute the optimal
values with known techniques. On the other hand, the construction turns out to allow us
to compute optimal long-run probabilities for the special case of constrained reachability
properties (aU b). The key insight is the existence of a saturation point similar to the
saturation points for non-classical stochastic shortest path problems with non-negative
weights that allows us to obtain a finite-state MDP from the constructed infinite-state
MDP. This result leads to an exponential-time algorithm for the computation of optimal
long-run probabilities of constrained reachability properties. By proving that the corre-
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sponding threshold problem is NP-hard, we show that we cannot expect a polynomial
computation algorithm.

It is important to emphasize that the computation of optimal long-run probabilities for
constrained reachability does not easily reduce to reachability via a pre-processing of the
MDP, as it typically does for most verification problems. Also, the traditional reduction
to the case of a Rabin condition for the treatment of arbitrary ω-regular properties fails
here. These highlight the challenge and specificity in computing long-run probabilities.

4.2.1 Efficiently solvable instances

We first investigate special cases for which one can obtain efficient algorithms to compute
optimal long-run probabilities: we explain the case of Markov chains and we identify
restricted classes of properties for MDPs.

Markov chains. For Markov chains, we simply write lrpφ(ζ) for each infinite path ζ.
If φ is an ω-regular property, for each bottom strongly connected component (BSCC) B
of the Markov chain M, the long-run probability for all states in B is the same:

LPB(φ) =
∑︂
t∈B

θB
t · PrM,t(φ)

where θB
t denotes the steady-state probability (defined as the long-run frequency) of

state t in B. Thus, LPB(φ) equals the probability for φ in B viewed as a Markov chain
where the initial distribution is given by the long-run frequencies in B, which again
coincides with the expected mean payoff in B when PrM,t(φ) is viewed as weight for
state t. The long-run frequencies inside the BSCC are computable in polynomial-time
using a linear equation system. The values PrM,t(φ) for the states inside the BSCC are
computable using standard techniques for the analysis of Markov chains against ω-regular
properties (see e.g. [BK08]). The complexity depends on the type and representation of
φ: for instance, exponential-time algorithms exist for LTL formulas [CY95]. Thus, long-
run probabilities for LTL-properties in Markov chains are computable in exponential
time. Moreover, LPM,s(φ) is computable in polynomial time for those properties φ where
PrM,t(φ) is computable in polynomial time, such as constrained reachability properties.

Alternatively, the computation of long-run probabilities as expected mean payoff when
dealing with the weight function that assigns weight wgt(s) = PrB,s(φ) to each state s
can also be written as a quotient of expectations as follows. Let s be an arbitrary state in
B, called reference state. Then, the long-run probability for φ in B equals the quotient of
the expected accumulated weight along paths of length at least 1 from s until returning
to s and the expected return time (i.e., expected number of steps) along such paths from
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s to s. Strong connectivity ensures that both expectations are finite. That is,

LPB(φ) = EB,s(“weight until s”)
EB,s(“steps until s”)

Finally, if B denotes the set of all BSCCs of M then for each state s in M:

LPM,s(φ) =
∑︂
B∈B

PrM,s(♢B) · LPB(φ) .

Efficiently solvable instances on MDPs. We now identify classes of path properties
for which the optimal long-run probability is computable in polynomial time. Anal-
ogously to extremal long-run frequencies in transition systems, we can assume MDPs
to be strongly connected in the sequel. For general MPDs, the optimal value can be
computed by first computing the optimal value in each maximal end component and
afterwards solving a weighted reachability problem on the MEC-quotient. When M is
strongly connected, the optimal long-run probabilities do not depend on the starting state
and we simply write LPmax

M (φ) and LPmin
M (φ).

Theorem 4.11. Let M be an MDP. The values LPmax
M,s(φ) and LPmin

M,s(φ) are computable
in polynomial-time if φ is a condition of one the following types:

• reachability ♢b,

• invariance □b,

• generalized Rabin
n⋀︁

i=1

ℓi⋁︁
j=1

(□♢bi,j ∧ ♢□ai,j)

• or Streett
n⋀︁

i=1
(□♢ai,j → □♢bi,j).

In all these cases, optimal deterministic finite-memory schedulers exist. Moreover, op-
timal memoryless deterministic schedulers exist for reachability, invariances, Büchi and
co-Büchi conditions.

Proof. We provide the argument for LPmax
M,s(φ). The argument for LPmin

M,s(φ) is analogous
and omitted here. As stated above, we may assume that M is strongly connected. It is
well-known [dA97,BGC09,CGK13] that for all properties listed in the theorem there is a
deterministic finite-memory scheduler S that maximizes the probability for φ from every
visited state in the following sense:

PrS↑ς[0...i]
M,ς[i] (φ) = Prmax

M,ς[i](φ)
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for each infinite S-path ς and each position i ∈ N. For reachability, invariances, Büchi
and co-Büchi conditions, we may even suppose that S is memoryless deterministic with
a single BSCC B.

If φ is a reachability, generalized Rabin or Streett condition then Prmax
M,s(φ) = Prmax

M,t(φ)
for all states s, t in M. Moreover, this value is either 0 or 1. But then S obviously achieves
the maximal long-run probability from every state.

The states in M can have different maximal probabilities for invariances φ = □b.
However, for invariances we either have maxs∈S Prmax

M,s(φ) = 0, in which case LPmax
M,s(φ) = 0

for all states s, or the unique BSCC B of S consists of b-states. In the latter case,
PrSM,s(□b) = Prmax

M,s(□b) = 1 for all states s in B. Let now T be the following memoryless
deterministic scheduler:

• From the states not in E , T mimics a memoryless deterministic scheduler maximiz-
ing the probability to reach B (which is 1 as M is strongly connected).

• For the states inside B, T behaves as S.

We then have LPT
M,s(□b) = 1 for all states s in M, which is obviously maximal.

An analogous result for much richer classes of properties cannot be expected given
that, already in the non-probabilistic setting, infinite-memory can be necessary for un-
til properties (see Fig. 4.2 right), and co-safety properties yield PSPACE-hardness (see
Theorem 4.8).

4.2.2 Construction for general co-safety properties
In the non-probabilistic setting, we reduced the computation of maximal long-run fre-
quencies of regular co-safety properties to the computation of maximal mean payoffs.
Now, we want to transfer this idea to the computation of maximal long-run probabilities.
The situation, however, becomes more involved. Non-deterministic automata are not
well-suited for product constructions with MDPs. So, we will use deterministic finite-
automata (DFA) to express co-safety properties. The main idea is to construct an MDP
with extended state space that keeps track of the number of runs currently in each state
of the automaton. We can then assign a weight to each step of the MDP depending on
how many runs of the DFA enter an accepting state during that step. We prove that
the optimal mean payoff in the constructed MDP coincides with the optimal long-run
probability in the original MDP.

However, there is no bound on the number of runs we have to store in the state space
for this construction. Therefore, the constructed MDP will have an infinite state space. In
the next section, we will see that constrained reachability properties constitute a special
case in which we can prove the existence of a saturation point – in this case a bound on
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the number of runs we have to store for the maximization of the long-run probability.
This allows us to cut away states from the infinite state space to obtain a finite MDP of
exponential size and hence an exponential-time algorithm for the computation of maximal
long-run probabilities of constrained reachability properties.

Construction Let M = (S,Act, P, sinit,AP, L) be a strongly connected MDP and let
D = (Q, 2AP, δ, q0, F ) be a DFA over AP. As we are interested in the co-safety prop-
erty given by D, only runs of D up to the first accepting state are relevant. Hence,
we can collapse all accepting states of D to one absorbing state accept and all states
form which accept is not reachable to one state reject. Let the set of states Q =
{q0, q1, . . . , qℓ, accept, reject} for some ℓ ∈ N.

We construct a weighted infinite-state MDP MD = (S ′,Act, P ′, s′
init,wgt) in the sequel.

The state space is
S ′ = S × Nℓ+1.

The ℓ + 1 natural numbers in a state store the number of runs of D on suffixes of the
path produced by the MDP so far that are in the respective state of D. The actions Act
are the same as in M. For the transition probability function P ′ we define the following:
Let s′ = (s, n0, . . . , nℓ) and t′ = (t,m0, . . . ,mℓ) be states such that for all i,

mi = ιi +
∑︂

j:δ(qj ,L(t))=qi

nj

where ιi = 1 if i = 0 and ιi = 0 otherwise. For such states, we set

P ′(s′, α, t′) = P (s, α, t).

All other transition probabilities are 0. The weight function does not work on state-
weight pairs as usual, but on single transitions in S ′ × Act ×S ′. For a transition (s′, α, t′)
with s′ = (s, n0, . . . , nℓ) and t′ = (t,m0, . . . ,mℓ), the weight is defined by

wgt(s′, α, t′) =
∑︂

j:δ(qj ,L(t))=accept
nj.

To obtain a weight function on state-weight pairs, one could now take the weighted
average over all possible transitions that can be taken via a state action-pair. As we
will be interested in the mean payoff under this weight function, this change would not
influence the subsequent considerations. The initial state s′

init is (sinit, 1, 0, . . . , 0).
We observe that the sum of the entries in the last ℓ + 1 components increases by at

most 1 in each step. Hence, the total accumulated weight after n steps along any path is
bounded by n and we can already conclude that the mean payoff in MD is bounded by
1 along each path.
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A scheduler for M can be used as a scheduler for MD and vice versa as transitions
in MD are uniquely defined by the transitions in the M component. If we consider a
scheduler S for both M and MD, there is, however, one caveat: If S is a finite memory-
scheduler for MD, the same scheduler is not necessarily a finite-memory scheduler for
M. So, we want to emphasize that the following lemma states that the maximal mean
payoff in MD can be approximated by schedulers that are still finite-memory schedulers
when considered as schedulers for M.

Lemma 4.12. Let M and D be given as above and let MD be the constructed MDP. For
each scheduler T for MD and each ε > 0, there is a finite-memory scheduler F for M
such that, if F is seen as a scheduler for MD:

EF
MD,s′

init
(MP) ≥ ET

MD,s′
init

(MP) − ε.

Proof. Let Xi be the random variable on paths of MD that assigns the weight wgt(ζ[i])
collected in the ith step to a path ζ. By Fatou’s lemma, we have:

ET
MD,s′

init
(MP) = ET

MD,s′
init

(︄
lim inf

n→∞

1
n+1

n∑︂
i=0

Xi

)︄

≤ lim inf
n→∞

ET
MD,s′

init

(︄
1

n+1

n∑︂
i=0

Xi

)︄
.

So, there exists k0 ∈ N such that for all k ≥ k0:

ET
MD,s′

init

(︄
1

k+1

k∑︂
i=0

Xi

)︄
≥ ET

MD,s′
init

(MP) − ε

2 .

Let Q be a memoryless scheduler that minimizes the number of steps to reach a state
in {sinit} × Nℓ+1. This scheduler can be obtained by interpreting a memoryless scheduler
for M that minimizes the number of steps to reach sinit as a scheduler for MD. Let
T = maxt∈S Emin

M,t(“steps until sinit”). So, also in MD, the scheduler Q requires at most
T steps in expectation to reach a state in {sinit} × Nℓ+1.

We now construct a finite-memory scheduler F satisfying the claim of the lemma.
First, choose a natural number k with k ≥ k0 and k > 2T

ε
. The behavior of scheduler F is

as follows. In its first mode, it starts in s′
init and behaves like T in the first k steps. Then,

it switches to the second mode and behaves like Q until it reaches a state in {sinit} ×Nℓ.
Afterwards, it switches back to the behavior of T for k steps as if it was in state s′

init, and
so on. The state it is really in might have entries larger than (1, 0, . . . , 0) in the ℓ + 1
components storing numbers of runs of D. The weights that will be accumulated before
the scheduler switches to the behavior of Q again, can only increase for a different vector
in these components and hence we can take ET

MD,s′
init

(︂
1

k+1
∑︁k

i=0 Xi

)︂
as a lower bound for
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the weight accumulated in each of the periods of k steps in which the scheduler acts like
T. Furthermore, the expected number of steps which F takes to follow T for k steps and
to return to s via Q is at most k+1 + T . Expressing the mean payoff of F as a quotient,
we obtain:

EF
MD,sinit (MP) ≥

ET
MD,s′

init

(︂
1

k+1
∑︁k

i=0 Xi

)︂
k + T

≥
ET

MD,s′
init

(︂
1

k+1
∑︁k

i=0 Xi

)︂
k(1 + ε/2)

≥
ET

MD,s′
init

(︂
1

k+1
∑︁k

i=0 Xi

)︂
k

(1 − ε/2)

≥ (ET
MD,s′

init
(MP) − ε/2) · (1 − ε/2)

by the choice that k > 2T/ε. Using the fact that ET
MD,s′

init
(MP) is bounded by 1 we

obtain:
EF

MD,sinit (MP)
≥ (ET

MD,s′
init

(MP) − ε/2) · (1 − ε/2)
≥ ET

MD,s′
init

(MP) − ε.

The constructed scheduler does not make use of the information stored in the states of
MD except for the current M-state. In the first phase, it explicitly keeps track of the
full path for a finite number of steps. Afterwards, it acts as a finite memory scheduler on
the M-component. So, the scheduler is indeed a finite-memory scheduler when viewed
as a scheduler for M.

The lemma implies that the maximal expected mean payoff can be expressed as the
supremum over all finite-memory schedulers (for M, viewed as schedulers for MD). We
want to carry out the analogous argument to prove that the maximal long-run probabil-
ities can be approximated by finite-memory schedulers as well. There is one additional
difficulty that we have to take care of: If we start with an arbitrary scheduler T for M
and construct a finite-memory scheduler F that acts like T for some number k of steps
before switching to a different behavior, the probability that suffixes that have started
within the first k steps but were not yet accepted by D will be accepted by D changes.
For the argument to work, we have to make sure that these probabilities do not decrease.
We use a result from [EKVY07] on MDPs with multiple reachability objectives, to obtain
the following lemma that we will employ to achieve this.

Lemma 4.13. Let M and D be given as above. For a state q ∈ Q of D, denote by
Dq the DFA obtained from D by changing the starting state to q. For a scheduler S,
write PrSM,s(Dq) to denote the probability under S that a path starting in s is accepted by
Dq. Then, for each scheduler S, there is a finite-memory scheduler R such that for each
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q ∈ Q, we have
PrRM,s(Dq) ≥ PrSM,s(Dq).

Proof. We construct an MDP L in which the events Dq can be expressed as reachability
properties. This MDP L is simply the product of M with all of the automata Dq:

L = M ⊗ Πq∈QDq.

For each q, the q-component of L keeps track of the run of Dq on the path generated in
the first component, i.e., in M. Let acceptq denote all states in which the q-component
contains the state accept. Now, the run of M in the first component is accepted by
Dq if and only if the corresponding run in L satisfies ♢acceptq. For MDPs with multiple
reachability objectives, [EKVY07, Theorem 2] applied to this MDP and these reachability
objectives states that for each scheduler S, there is a memoryless scheduler F such that

PrFL(♢acceptq) ≥ PrSL(♢acceptq)

for all q ∈ Q. If we view this memoryless scheduler as a scheduler for M, this is a
finite-memory scheduler with memory modes in Q|Q|.

Using this result, we are now able to prove the analogue to Lemma 4.12 for long-run
probabilities.

Lemma 4.14. Let M and D be given as above. For each scheduler T for M and each
ε > 0, there is a finite-memory scheduler F for M such that:

LPF
M,sinit (D) ≥ LPT

M,sinit (D) − ε.

Proof. For a scheduler S, let XS
i be the random variable that assigns PrS↑ζ[0...i]

M,ζ[i] (D) to an
infinite path ζ. Let T be an arbitrary scheduler. By Fatou’s lemma, we have:

LPT
M,sinit (D) = ET

M,sinit (lim inf
n→∞

1
n+1 ·

n∑︂
i=0

XT
i )

≤ lim inf
n→∞

ET
M,sinit

(︄
1

n+1

n∑︂
i=0

XT
i

)︄
.

So, there exists k0 ∈ N such that for all k ≥ k0:

ET
M,sinit

(︄
1

n+1

n∑︂
i=0

XT
i

)︄
≥ LPT

M,sinit (D) − ε/2.

As in the proof of Lemma 4.12, we want to follow the behavior of T for some number
k ≥ k0 of steps before returning to the initial state via a different scheduler. However,
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the random variables X ·
i depend on the scheduler and would be affected by this change.

Hence, we first have to make sure that the value added up in these first k steps is not
decreased by the change of the scheduler. For each finite T-path π, we define a scheduler
Rπ using Lemma 4.13: The scheduler Rπ is a finite memory scheduler that satisfies:

PrRπ

M,last(π)(Dq) ≥ PrT↑π
M,last(π)(Dq) (†)

for all states q ∈ Q of D. Furthermore, let Q be a memoryless scheduler that minimizes
the number of steps to reach sinit. For k ≥ k0, we construct a finite-memory scheduler Fk

as follows: It follows T for k steps and keeps track of the path π that is created. Then,
it switches to the behavior of Rπ until a BSCC in the Markov chain induced by Rπ and
M is reached and hence for all q ∈ Q, the suffix created by Rπ was accepted by Dq if it
would be accepted eventually. Then it returns to the initial state sinit via Q and starts
all over again.

For i ≤ k, we now have that XT
i ≤ XFk

i : Due to equation (†), we see that no matter
in which state of D the run on the suffix that started in the ith step of a k step long path
π is, the probability that it will be accepted is not decreased by switching to the behavior
of Rπ and following this scheduler until it is decided whether a path will be accepted or
rejected by Dq for all q. This is what we make sure by following the behavior of Rπ until
a BSCC in the induced Markov chain is reached.

Let T = maxt∈S EQ
M,t(“steps until sinit”). Further, observe that all schedulers Rπ use

|Q||Q|-memory modes that are deterministically updated and hence there are only finitely
many possible schedulers. Let R be the maximal expected time until a BSCC is reached
in the induced Markov chain under such a scheduler.

We can now express the expected long-run probability of Fk by taking

ET
M,sinit

(︄
1

k+1

k∑︂
i=0

XT
i

)︄

as a lower bound on the probabilities that are added up in expectation before F returned
to the initial situation via Q and k + T + R as an upper bound on the expected time
required to return. We obtain

LPTk
M,sinit (D) ≥

ET
M,sinit

(︂
1

k+1
∑︁k

i=0 X
T
i

)︂
k + T +R

≥
ET

M,sinit

(︂
1

k+1
∑︁k

i=0 X
T
i

)︂
k(1 + ε/2)

≥
ET

M,sinit

(︂
1

k+1
∑︁k

i=0 X
T
i

)︂
k

(1 − ε/2)

≥ (LPT
M,sinit (D) − ε/2) · (1 − ε/2)
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by the choice that k > 2(T +R)/ε. Using the fact that LPT
M,sinit (D) is bounded by 1 we

obtain:
LPFk

M,sinit (D)
≥ (LPT

M,sinit (D) − ε/2) · (1 − ε/2)
≥ LPT

M,sinit (D) − ε.

This completes the proof.

In the following lemma, we will now see that for finite-memory schedulers for M the
long-run probability in M and the expected mean payoff in MD indeed agree.

Lemma 4.15. Let M and D be given as above and let MD be the constructed MDP.
Then, for each finite-memory scheduler S for M (also viewed as a scheduler for MD),
we have LPS

M,sinit (D) = ES
MD,s′

init
(MP).

Proof. Let B be the finite-state Markov chain induced by the finite-memory scheduler S
for M. Let B be the set of states of B. These states are of the form s = (s, x) where
s ∈ S is a state of M and x a memory mode of S. Let (θB

s )s∈B the long-run distribution
in this Markov chain.

For the long-run probability under S in M, we can now rely on these steady state
probabilities and obtain

LPS
M,sinit (D) =

∑︂
s∈B

θB
s · PrB,s(D).

For the mean payoff in MD, recall that after a finite path π, the value 1 is added to the
q0-component in the state last(π). Afterwards this value 1 is moved along the transitions
of D. If it ever reaches an accepting state, it results in the reception of weight +1 along
this path. So, the probability that this weight will eventually be received is precisely
PrB,(s,x)(D) where s is the M component of last(π) and x the memory mode of S after
π. As S is a finite-memory scheduler, we furthermore now that the expected number
of steps it takes between the addition of 1 to the q0 and the reception of the weight +1
or the entrance to a BSCC in which the tracked run on D will not be accepted is finite
from each pair (s, x) on. Let Xi be the random variable that assigns the weight in the
ith step to a run and Yi be the random variable that assigns the probability that the
suffix after i steps will be accepted by D under the residual scheduler of S after the finite
path constructed so far. The fact that the expected time until it is decided whether the
1 added to q0 will lead to the reception of weight 0 or +1, implies now that

ES
MD,s′

init

(︄
1

n+ 1

n∑︂
i=0

Xi

)︄
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and
ES

MD,s′
init

(︄
1

n+ 1

n∑︂
i=0

Yi

)︄

converge to the same value for n → ∞ (while the second sum is at least as big as the
first one for all n). So, we conclude that also

ES
MD,s′

init
(MP) =

∑︂
s∈B

θB
s · PrB,s(D).

The Lemmata 4.12, 4.14, and 4.15 together let us conclude the following theorem:

Theorem 4.16. Let M and D be as above. Let MD be the infinite-state MDP constructed
from M and D as described above. Then,

LPmax
M,sinit (D) = Emax

MD,s′
init

(MP).

Of course, the construction presented here does not allow us to compute maximal
long-run probabilities as the constructed MDP MD has an infinite state space. The
possibility to express maximal long-run probabilities in terms of maximal mean payoffs,
however, discloses the connections of long-run probabilities and stochastic shortest path
problems. In the sequel, these connections will become apparent when we prove the
existence of saturation points for a special case of long-run probabilities in the next
section and when we prove Positivity-hardness of the threshold problem for long-run
probabilities in Chapter 5.

4.2.3 Long-run probabilities for constrained reachability
properties

Constrained reachability properties constitute a simple special case of regular co-safety
properties. In this section, we show that we can adapt the key result for the solution of
non-classical stochastic shortest path problems in MDPs with non-negative weights – the
existence of a saturation point – to long-run probabilities of constrained reachability prop-
erties. Together with the construction for general co-safety properties we just presented,
this result allows us to express optimal long-run probabilities in terms of the optimal
expected mean payoff in a finite-state MDP. To illustrate the difficulties we encounter in
more detail, we consider the following variant of the earlier Example 4.1.

Example 4.17. Consider the MDP Nk shown in Fig. 4.5. The only non-deterministic
choice is the choice between actions α and β in state a. Action α yields a uniform
distribution over the three successors.

In Example 4.1, we already hinted at the fact that counting the consecutive visits to
a-states is the key for the optimization of the long-run probability of aU b. Consider the
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a
b1

c1

b2c2
α

β

k−1
k

1
k

Figure 4.5: MDP Nk with labels indicated by the state names.

schedulers Tn for n ≥ 1, that use a counter for the number of consecutive visits to the
a-state, starting with counter value 1 when entering that state via the transitions from
the other states. When in the a-state, Tn schedules action α if the counter value is at
most n and β otherwise.

We compute LPTn
Nk

(aU b) via the quotient representation for Markov chains shown in
Section 4.2.1 using that the Markov chain Cn induced by Tn is strongly connected and
consists of the states b1, c1, b2, c2 and the states (a, 1), (a, 2), . . . , (a, n+1), where (a, i)
means state a with counter value i. We pick (a, 1) as reference state.

Let us first compute the denominator. The expected return time from (a, 1) to (a, 1)
can be written as the sum of the expected number of occurrences eno(s) of the states s
in Cn along the return paths from and to (a, 1). These values are: eno(a, i) = 1

3i−1 for
i = 1, . . . , n+1, eno(b1) = ef (c1) =

(︂
1 − 1

3n

)︂
· 1

2 , eno(b2) = 1
3n , and eno(c2) = k

3n . Note
that each of the states (a, i), b1, c1 and b2 occurs exactly once on each return path from
(a, 1) to (a, 1). Thus, for these states s, the expected number of occurrences equals the
probability of reaching s from the reference state (a, 1). For state c2, we take into account
that the self-loop is taken an expected k − 1-times. We conclude:

ECn,(a,1)(“steps until (a, 1)”)

=
n+1∑︁
i=1

1
3i−1 +

(︂
1 − 1

3n

)︂
·1

2 ·2 + 1
3n + k

3n

= 1
4 ·
(︂
10 + (4k − 2)· 1

3n

)︂
We now compute the expected accumulated ‘weight’ along the return paths from and

to (a, 1) under scheduler Tn. This value can be computed as the sum of the expected
number of occurrences of every state s multiplied with its probability for aU b in Cn.
That is:

ECn,(a,1)(“‘weight’ until (a, 1)”)

=
∑︂

s

eno(s) · PrCn,s(aU b)
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where s ranges over all states in the Markov chain Cn induced by Tn. The probability
values are as follows: PrCn,(a,i)(aU b) = 1

2 ·
(︂
1 + 1

3n−i+1

)︂
for i = 1, . . . , n+1, PrCn,b1(aU b) =

PrCn,b2(aU b) = 1, and PrCn,c1(aU b) = PrCn,c2(aU b) = 0. So, we get:

ECn,(a,1)(“weight until (a, 1)”)

=
n+1∑︁
i=1

1
3i−1 ·1

2 ·
(︂
1 + 1

3n−i+1

)︂
+
(︂
1 − 1

3n

)︂
·1

2 ·1

= 1
4 ·
(︂
5 + (2n+ 3)· 1

3n

)︂
, and

LPTn
Nk

(aU b) =
5 + (2n+ 3)· 1

3n

10 + (4k − 2)· 1
3n

.

To determine which scheduler is optimal among the schedulers Tn with n ∈ N, we
determine the least natural number n such that LPTn

Nk
(aU b) > LPTn+1

Nk
(aU b). Treating

the computed expression for LPTn
Nk

(aU b) as a real function in n, one can check that the
derivative has only one root and that hence the obtained value n indeed yields the optimal
scheduler among these schedulers. For k ≥ 2, we obtain that the optimum is reached for
n = k − 1.

We will see later that the maximal long-run probability of Nk is indeed achieved by
Tn for this n. Note that Nk has 5 states and its size is in O(log k). So, on the one hand,
the memory requirements of optimal schedulers can grow exponentially with the size of
the MDP. On the other hand, the same applies to the logarithmic length of the optimal
values. To see this, we observe that in

LPTk−1
Nk

(aU b) = 5 · 3k−1 + 2k + 1
10 · 3k−1 + 4k − 2

the greatest common divisor of enumerator and denominator is at most 4 (note that
2(5 · 3k−1 + (2k + 1)) − (10 · 3k−1 + (4k − 2)) = 4). Therefore, the binary representation
of the optimal value requires exponentially many bits in the size of Nk. ◁

There is a very simple DFA D that accepts words satisfying aU b: It has three states
q, accept, and reject. Initially, and from q, the automaton moves to accept when reading a
b, to reject when reading anything but an a or b, and it loops back to q when reading an a
(and not simultaneously a b). Given an MDP M = (S,Act, P, sinit,AP, L), the MDP MD

constructed as in the previous section becomes very simple for this automaton D: The
state space of MD is S×N. Also the behavior of the counter in the second component is
easily described: Whenever entering a state labeled with a (and not with b), the counter
value is increased by 1. For all other states, the counter is set back to 0. When entering
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a state labeled with b, the current counter value plus 1 is received as weight. So, the
counter simply keeps track of the number of consecutive visits to a-states.

The key result required now to be able to compute the maximal long-run probability
of aU b in M is the existence of a saturation point allowing us to restrict ourselves to
a finite state space by only keeping track of the counter in MD up to the saturation
point. This saturation point result is similar to the saturation point result for partial
expectation that we have seen in Section 3.5.

We will restrict our attention to the case that M is strongly connected. For general
MDPs, we can maximize the long-run probability of aU b by maximizing the value in
all maximal end components and afterwards computing the optimal value as a weighted
reachability problem. In the light of Theorem 4.16, we can work with the MDP MD and
show how to maximize the mean payoff in this MDP. We label states (s, n) in MD by
the label of state s in M.

Before we prove the existence of a saturation point, we fix useful notations. Given
a state s of M, let pmax

s = Prmax
M,s(aU b), and analogously pmin

s = Prmin
M,s(aU b). Further,

define
A =

{︂
s ∈ S | pmax

s > 0 and pmin
s < 1

}︂
,

B =
{︂
s ∈ S | pmin

s = 1
}︂
, C = S \ (A ∪B).

Then, PrSM,s(aU b) = PrSM,s(AUB) for every s and S. Hence, we may safely assume that
the labeling function fulfills a ∈ L(s) iff s ∈ A and b ∈ L(s) iff s ∈ B. For α ∈ Act(s),
let ps,α = ∑︁

t∈S P (s, α, t) · pmax
t and we write Actmax(s) for the set of maximizing actions,

i.e. actions α ∈ Act(s) with ps,α = pmax
s . For T ⊆ S, a T -EC denotes an end component

consisting of T -states.
In Lemma 4.12, we have seen that the maximal mean payoff in MD can be approx-

imated by finite-memory schedulers for M. The existence of a saturation point will be
formulated as a refinement of this statement. For a given bound K, define the class
FM(K) of finite-memory schedulers F for MD such that

1. for each finite F-path ϱ with last(ϱ) = (s, n) for some s ∈ S and n > K, the
probability PrF↑ϱ

MD,last(ϱ)(aU b) = pmax
s

2. the Markov chain induced by F has a single BSCC,

3. the scheduler F is a finite-memory scheduler when viewed as a scheduler for M.

By definition, any F ∈ FM(K) only schedules maximizing actions in Actmax(·) for paths
ending with (s, n) for some s and n > K by (1); moreover, all states in MD have the
same long-run probability under F, written LPF

MD
(aU b) by (2). We are now ready to

prove the existence of a saturation point:
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Lemma 4.18 (Saturation point). There exists a natural number K computable in poly-
nomial time that satisfies

Emax
MD

(MP) = sup
F∈FM(K)

EF
MD

(MP).

Proof. Recall that we relabeled states in M such that all states from which aU b holds
almost surely are labeled with b and all states from which aU b holds with positive
probability less than 1 are labeled with a. We denote by A and B the sets of states
labeled with a and b, respectively, and C = S \ (A ∪ B). Let us explain how we choose
and how we can compute K. Let

K = max
{︂

|A| + 1, ⌈(T1 + T2)/δ⌉
}︂

(*)

where T1, T2, and δ are defined in the sequel. For each s ∈ S, let

δs = min
{︂
pmax

s − ps,α : α ∈ Act(s) \ Actmax(s)
}︂

with the convention that min∅ = ∞. The value δ is then set as δ = mins∈A δs if there
exists at least one A-state s with δs < ∞ and δ = 1 otherwise. Obviously, δ is computable
in polynomial time in the size of M. Intuitively, each δs is the minimum probability loss
when the first action of an optimal scheduler for aU b is replaced by a non-optimal action.

Next, let Q be a scheduler that maximizes the probability of aU b from all A-states
while minimizing the expected number of steps before B∪C is reached. Such a scheduler
can be found by minimizing the expected number of steps before B ∪ C in the MDP
obtained from M by only allowing actions in Actmax(·). This optimization problem is
then a classical stochastic shortest path problem. The scheduler Q obtaining the optimum
can hence be chosen to be memoryless. We define

T1 = max
s∈A

EQ
M,s(“steps until B ∪ C”).

In order to define T2, we consider a version of MD in which the counter only counts
up to |A| + 1. As soon as the counter value exceeds |A| + 1, we replace the counter value
by the symbol ⊤ until it is reset to 0. If the counter value is |A| + 1 or ⊤ only actions
in Actmax(·) are enabled. Let us denote this MDP by M|A|+1. In other words, M|A|+1

is obtained from MD by collapsing all states of the form (s, k) with k > |A| + 1 to one
state (s,⊤) and afterwards disabling all actions not in Actmax(s) in the states (s, |A| + 1)
and (s,⊤). (For more details, see the definition of K = MK after this proof.)

As a simple path from any state s to a state t in M contains at most |A|-many A-
states, it is possible to reach a state of the form (s, ·) for any s from any state in M|A|+1.
For each s, let ks ≤ |A| be the least counter value such that (s, ks) is reachable from any
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state, i.e., in particular from B ∪ C-states. We can define the following values

es = max
t∈S,k∈{0,1,...,|A|,⊤}

Emin
M|A|+1,(t,k)(“steps until a state of the form (s, ks)”).

as the minimal expected number of steps from the worst possible starting state in M|A|+1

to (s, ks). The values es and a corresponding MD-scheduler R|A|,s for M|A|+1 that min-
imizes the expected number of steps to a state (s, ·) from every state are computable in
polynomial-time via the classical stochastic shortest path problem. Note that the size of
M|A|+1 is at most quadratic in the size of M. We define T2 = max

s∈S
es to complete the

definition of K.
By Lemma 4.12, it is now sufficient to show that for each finite-memory scheduler T

for M that is viewed as a scheduler for MD there is an FM(K)-scheduler such that

EF
MD

(MP) ≥ ET
MD

(MP).

So, let T be a finite-memory scheduler for M with memory modes in the finite set X.
Let CT denote the Markov chain induced by T. We can think of the states in CT as pairs
(s, x) consisting of a state s in M and a mode x ∈ X. The labels of the states of CT

depend on their first component. We may assume w.l.o.g. that CT has a single BSCC,
say BT. This yields that no matter in which state of MD and in which memory mode of
T, we start, we obtain the same mean-payoff which we denote by ET

MD
(MP).

If BT consists of A-states then ET
MD

(MP) = 0 as in MD weights are only received when
entering a B-state. The claim is then trivial as we can deal with any FM(K)-scheduler.
If BT consists of A- and B-states only with at least one B-state, then ET

MD
(MP) = 1

the counter in MD under T will only be reset to 0 when the counter value is received
as weight. In this case, any memoryless scheduler realizing this BSCC will achieve this
expected mean payoff and is in FM(K) as it also maximizes the probability of aU b in
this BSCC.

Suppose now that BT contains at least one state in C. We now explain how to modify
T’s decision for generating a scheduler in FM(K) with the desired property. When using
T as a scheduler for MD, runs are equipped with the component containing the counter.
So, we can extend states (s, x) of BT by a third component to obtain (s, x, k). The third
component does not influence the decision of the scheduler, but simply keeps track of
consecutive visits to A-states and determines the weight that is received when entering a
B-state. Our procedure works by induction on the number ℓT of state-action pairs with
a state s = (s, x) in BT and an action β ̸∈ Actmax(s) such that T(s, x)(β) > 0 and such
that a configuration (s, x, k) in MD with k > K is reachable under T.

If ℓT = 0 then we can deal with S = T. Suppose now that ℓT ⩾ 1. We now show how
to transform T into a new scheduler S that is a finite-memory scheduler for M with a
single BSCC such that ES

MD
(MP) ≥ ET

MD
(MP) and ℓS < ℓT.
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First, fix a state (t, y) in BT with t ∈ C. As t is in C, the counter will be reset to 0
whenever the state (t, y) is reached. So, we can express the expected mean payoff in MD

under T as a fraction of the expected return time from (t, y) to (t, y) and the expected
weight accumulated before returning. Note that the expected weight accumulated before
returning is bounded by the expected number of steps as the counter value and hence the
weight that can be received increases by at most 1 per step. So, the expected accumulated
weight is bounded although the weight that can be received in one step is not bounded.

The scheduler S is constructed from T by first adding additional finite memory always
keep track of the consecutive visits to A-states up to K-many states. The scheduler S

will operate in three different phases. In the first phase, it operates just like T. If it
reaches (s, x, k) for some k > K – which it can detect due to the additional memory –
and T would choose β, it switches to the second mode instead. In the second phase, it
maximizes the probability of aU b in a memoryless fashion by following the decisions of
Q until B ∪ C is reached. There, it switches to the third phase. It randomly chooses a
target state (r, z) in BT with probability P ((s, x), β, (r, z)). This choice is implemented
by a randomized update of the memory mode. So, all possible successors (r, z) that T

would have reached when it would have chosen β at the switch to the second phase of S
can randomly be chosen with precisely the probability that T would have entered that
successor state. In the third phase, S now follows the scheduler R|A|,r until it reaches
the chosen target state r with the least possible counter value kr that is reachable from
B- or C-states. Then, it switches back to the first phase and continues to behave like T

from state (r, z) on.

Let us briefly summarize the behavior of S: If T chooses β in a state (s, x) directly
after more than K consecutive A-states, S instead first maximizes the probability of aU b

before returning to a possible β successor (r, z) of (s, x) and continuing to behave like T.

We make a few observations: First, S does not choose β in state (s, x) anymore if
K or more consecutive A-states have been visited before. Further, it does not create
new state-action pairs that are considered for the number ℓS. The reason is that R|A|,r is
constructed such that it maximizes the probability of aU b whenever |A| or more A-states
have been visited consecutively. As K is chosen to be at least |A|, the second and third
phase of the scheduler do not induce any such state-action pairs. Further, S switches
back to the first phase with the least possible counter value for some state (r, z). So,
also when continuing in the first phase after returning from the third phase, it does not
induce any such “bad” state-action pair that was not present for T. So, indeed we have
ℓS < ℓT.

Let us now estimate the expected mean payoff under S. First, let ensT be the expected
number of steps that T needs to return from (t, y) to (t, y). Let eawT be the expected
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accumulated weight under T before returning to (t, y) when starting in (t, y). So,

ET
MD

(MP) = eawT

ensT .

To compare this value to the expected mean payoff under S, let epsS be the expected
number of times the scheduler S switches from the first to the second phase before
returning to (t, y) in the first phase when starting in (t, y). The expected return time
under S increases by at most T1 + T2 per switch to the second and third phase. The
expected accumulated weight is affected as follows: All increases in the counter value are
received as weight or reset to 0 exactly as under T as long as S does not switch to the
second phase. If it switches to the second phase, the counter value is at least K. The
probability that this counter value will be received as weight is then exactly pmax

s under
S in its second phase. Under T, which would choose β in (s, x) whenever S switches to
the second phase, this probability is ps,β ≤ pmax

s − δ. After S switches back to the first
phase in one of the β-successor states (r, z) of (s, x), all weights received due to further
increases in the counter value are the same as under T until the next phase switch or the
return to (t, y). Therefore the expected accumulated weight from (t, y) before returning
to (t, y) in the first phase under S is increased by at least K · δ · epsS compared to T.
All in all, we obtain

ES
MD

(MP) ≥ eawT +K · δ · epsS
ensT + (T1 + T2) · epsS .

As K is chosen such that K · δ ≥ T1 + T2 while eawT/ensT ≤ 1, we conclude that indeed

ES
MD

(MP) ≥ ET
MD

(MP).

By induction, the claim of the lemma follows.

Using this result and Theorem 4.16, we will now be able to compute the maximal
long-run frequency of constrained reachability probabilities. For this purpose, we define
an MDP K. The structure of this MDP is that of MK using the notation introduced in
the previous proof. Recall that MK is obtained from MD by collapsing all states of the
form (s, k) with k > K to a state (s,⊤) for each s and only enabling actions in Actmax(s)
in this state. More formally, the state space of MK is S × {0, . . . , K,⊤}. The set of
actions is the same as in M. In a state (s, k), all actions in Act(s) are enabled if k < K.
If k = K or k = ⊤, then only the actions in Actmax(s) are enabled. The new transition
probability function P ′ is the following for all actions α:

• For any state (s, k) of MK and any state t ∈ B ∪C, we define P ′((s, k), α, (t, 0)) =
P (s, α, t).
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• For any state s ∈ A and any k ∈ {1, . . . , K}, we define P ′((t, k − 1), α, (s, k)) =
P (t, α, s) for all states t ∈ S.

• For any state s ∈ A and any (t, k) ∈ S × {K,⊤}, we define P ′((t, k), α, (s,⊤)) =
P (s, α, t) if α ∈ Actmax(t).

All remaining transitions have probability 0. The initial state is (sinit, 0) for some sinit ∈
B∪C. As the reachable states are strongly connected in K as M was strongly connected,
reference to the initial state is not important when we address the expected mean payoff.
To complete the definition of K, we adapt the transition-based weight function as follows:

• Transitions from states in A × {k} with k ∈ {1, . . . , K − 1} leading to a B-state
have weight k + 1.

• Transitions from a state (s,K) where s ∈ A have weight K · pmax
s .

• Transitions from states (s,⊤) where s ∈ A have weight pmax
s .

The weight of all other transitions is 0. The MDP K is tailored to compute expected
mean payoffs of FM(K)-schedulers for MD as shown in the following lemma.

Lemma 4.19. With all notation as above, we have

Emax
MD

(MP) = Emax
K (MP).

Proof. The MDP K is constructed such that all FM(K)-schedulers can be used as sched-
ulers for K. As soon as K consecutive A-states have been visited, only actions in Actmax(·)
are enabled in K. But FM(K)-schedulers also only use such actions once K consecutive
A-states have been visited. Given an FM(K)-scheduler F for MD that we also use as a
scheduler for K, observe that if the counter value reaches K in state s, this counter value
will be received as weight with probability pmax

s in MD. This is precisely the weight that
K assigns to all outgoing transitions from (s,K). For each further step to an A-state t,
the increased counter value will be received as weight with probability pmax

t . Also this
expected weight is accounted for in the weight function of K in the outgoing transitions
from states (t,⊤). All other weights when entering a B-state with counter value below
K are the same in MD and K. Hence,

EF
MD

(MP) = EF
K(MP).

So by Lemma 4.18, we conclude that

Emax
MD

(MP) ≤ Emax
K (MP).
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For the other direction, let T be a scheduler maximizing the expected mean payoff in
K. We can assume that T is memoryless and induces only one BSCC. There are two
cases to consider: Either this BSCC consists only of states in A × {⊤}, or not. In the
latter case, a T-path will leave the set of A-states infinitely often almost surely. As in
K only actions in Actmax(cot) are available after K or more consecutive A-states, this
implies that T maximizes the probability of aU b after K such states. Hence, T can
be seen as a FM(K)-scheduler for MD. It follows by the considerations above that
Emax

MD
(MP) ≥ ET

K(MP). If, however, the only BSCC of T consists only of A× {⊤}-states,
the scheduler does not maximize the probability for aU b after K consecutive A-states
although it only takes actions in Actmax(·). In fact, the probability for aU b is 0 in this
BSCC. On the other hand, the mean payoff of T in K is pmax

s for some (s,⊤) in the BSCC
(note that all states in the BSCC have the same maximal probability for aU b). We can
construct an infinite-memory scheduler S for MD that achieves this mean payoff: The
scheduler acts in rounds. In the ith round, it moves to the states of the BSCC of T and
stays inside these A-states for 2i-many steps. Afterwards, it maximizes the probability of
aU b in a memoryless fashion until leaving the set of A-states. Then, it enters the next
round and moves back to the BSCC of T. The expected time between the 2i steps in the
BSCC of T and the 2i+1 steps in the next round is bounded. So, the frequency of steps
in the BSCC of T is 1 due to the increasing number of steps taken there in each round.
The increases in the counter values in these steps are received as weight with probability
pmax

s by the construction of S. Hence, the expected mean payoff of S in MD is pmax
s and

we conclude that Emax
MD

(MP) ≥ ET
K(MP) also in this case. Therefore, we obtain

Emax
MD

(MP) ≥ Emax
K (MP).

Putting together the results shown in Theorem 4.16 and the previous Lemma 4.19,
we obtain the main result of this section:

Theorem 4.20. Given an MDP M = (S,Act, P, sinit,AP, L), we can compute the maxi-
mal long-run probability LPmax

M (aU b) in time exponential in the size of M.

Proof. For each MEC E of M, we can construct an MDP KE as described above and
compute the maximal expected mean payoff in this MDP KE . As the saturation point K
can be computed in polynomial time, its numerical value is at most exponential in the
size of E . Hence, these maximal expected mean payoffs can be computed in exponential
time. The maximal long-run frequency in M can then be computed by solving a weighted
reachability problem in which all end components E are equipped with the possibility to
collect the maximal expected mean payoff in KE as terminal weight.

For the structure of optimal schedulers, we obtain the following consequence.
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Corollary 4.21. Let M = (S,Act, P, sinit,AP, L) be a strongly connected MDP without
end components consisting only of a-states. Then, there is a deterministic finite-memory
scheduler maximizing the long-run probability of aU b that uses a counter of consecutive
a-states up to the saturation point K as memory.

Proof. Let K be the MDP constructed from M as above. As there are no end components
labeled with a, the memoryless deterministic scheduler S that maximizes the expected
mean payoff in K leaves the set A infinitely often almost surely. So, the expected mean
payoff of this scheduler coincides with the long-run probability of aU b. This scheduler
can be seen as a deterministic finite-memory scheduler for M with a counter up to the
saturation point K as memory.

In fact, the statement of the corollary could be refined: If a-end components ex-
ist, infinite-memory schedulers are only necessary to maximize the long-run probability
of aU b, if all memoryless schedulers that maximize the expected mean payoff in the
constructed MDP K induce an a-BSCC. For our purposes in the sequel, however, the
non-existence of a-end components is a sufficient criterion and much easier to check.

So far, we have restricted our attention to maximal long-run probabilities. For con-
strained reachability properties, also minimal long-run probabilities can be treated with
the same techniques as the following easy reduction shows:

Corollary 4.22. Given an MDP M = (S,Act, P, sinit,AP, L), we can also compute the
minimal long-run frequency LPmin

M (aU b) in time exponential in the size of M.

Proof. We can again restrict ourselves to strongly connected MDPs. After defining

A =
{︂
s ∈ S | Prmax

M,s(aU b) > 0 and Prmin
M,s(aU b) < 1

}︂
,

B =
{︂
s ∈ S | Prmin

M,s(aU b) = 1
}︂
, C = S \ (A ∪B).

as before, we observe that LPmin
M (aU b) = 1 − LPmax

M (AUC) if M does not contain
an end component of A-states because we then have PrSM,s(aU b) = 1 − PrSM,s(AUC)
for each scheduler S and each state s. If there is such an A-end component, then
LPmin

M (aU b) = 0.

In Example 4.17, we have already seen that even the binary representation of the
optimal value can require exponentially many bits. Hence, this representation of the
optimal value is certainly not computable in polynomial time. In the sequel, we will
show that also for the threshold problem, we cannot expect a polynomial-time algorithm
by establishing an NP-lower bound. In the proof, we will also encounter a problem with
the length of the binary encoding of the threshold value we want to construct. By using
Taylor’s theorem to approximate the values of a real-valued function in the neighborhood
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of the intended threshold value, we will be able to choose a sufficiently good approximation
of this value with a polynomial binary representation.

Theorem 4.23. Let M = (S,Act, P, sinit,AP, L) be an MDP and let ϑ ∈ Q be given.
The threshold problem “is LPmax

M (aU b) ⩾ ϑ?” is NP-hard.

Proof. We prove the statement by a polynomial reduction from the intersection problem
for unary DFA, i.e., DFA over a one-letter alphabet. This problem is known to be NP-
complete [BKM16].

So, we are given a finite number of unary DFA, say D1, . . . ,Dk over the alphabet
Σ = {0}. where Di = (Qi,Σ, δi, q0.i, Fi). We simply write δi(q) rather than δi(q, 0). We
may suppose the transition functions δi are total and that Qi ∩Qj = ∅ if i ̸= j. W.l.o.g.
we further assume that |Qi| ≥ 2 for all i ≤ k.

We are going to construct an MDP M over AP = {a, b} and a rational value ϑ

such that LPmax
M (aU b) ⩾ ϑ if and only if L(D1) ∩ . . . ∩ L(Dk) is nonempty. The latter

is equivalent to the statement that there exists some n ∈ N with n < ℓ and 0n ∈
L(D1) ∩ . . . ∩ L(Dk) where ℓ = |Q1| · . . . · |Qk|. Let A = (Q,Σ, δ, Q0, F ) denote the NFA
resulting from the union of D1, . . . ,Dk. That is, Q = Q1 ∪ . . .∪Qk, Q0 = {q0,1, . . . , q0,k},
F = F1 ∪ . . .∪Fk and δ(q) = δi(q) if q ∈ Qi. That is, besides the nondeterministic choice
of the initial state, A behaves deterministically.

The automaton A will be incorporated into the MDP M we are going to construct
now. The MDP M is also depicted in Figure 4.6. The state space of M is

S = Q ∪ {a, b, c, sinit}

where the states in Q ∪ {a} are labeled by a and b is labeled by b. The action set is
Act = {α, β, enter , pump, τ}. We define r = ℓ + 3/2. The transition probabilities are as
follows:

• In s ∈ {sinit, a}, actions enter and pump are enabled with the transition probabili-
ties:

P (s, enter , q0,i) = r−1
k·r , i = 1, . . . , k,

P (s, enter , sinit) = 1
r
,

P (s, pump, a) = r−1
r
, P (s, pump, sinit) = 1

r
.

• In each state q ∈ Q, action α is enabled with:

P (q, α, δ(q)) = r−1
r
, P (q, α, sinit) = 1

r

For the final states q ∈ F , additionally action β is enabled with P (q, β, b) = 1.
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sinit a

q0,1 ... q0,k

...
...

b

c

enter enter

pump pump

α α

α α

α αα

α

β

β

τ

τ

Figure 4.6: The MDP M for the proof of Theorem 4.23. Each state-action pair leads
to the initial state sinit with probability 1/r as indicated by the dashed transitions. The
remaining probability mass of (r − 1)/r is uniformly distributed over the remaining suc-
cessors.

• In s′ ∈ {b, c}, action τ is enabled with:

P (s′, τ, c) = r−1
r
, P (s′, τ, sinit) = 1

r

The idea now is to find a threshold ϑ such that the scheduler maximizing the long-
run probability can exceed the threshold if and only if the intersection L(D1) ∩ . . . ∩
L(Dk) is non-empty. Note that the expected return time from sinit to sinit is r under any
scheduler because the probability to reach sinit is 1/r in each step. By Corollary 4.21, we
further know that there is a deterministic finite-memory scheduler maximizing the long-
run probability of aU b in M. For finite-memory schedulers, we can express the long-run
probability as fraction of the expected return time and the weight accumulated according
to the weight function wgt of an MDP N constructed in the previous section as shown
in Lemma 4.15. Recall that for the constrained reachability property aU b this weight
function assigns weight k + 1 to transitions entering a state labeled b after k consecutive
states labeled a and no weights to other transitions. To maximize the long-run probability
hence means to maximize the expected weight before returning to sinit.

As we can restrict ourselves to deterministic schedulers, we can further simplify the
analysis: A deterministic scheduler S will choose the action pump for some number n ≥ 0
of steps before choosing enter . After randomly entering the initial state q0,i among the
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initial states of A, it chooses α for some number mi ≥ 0 of steps and afterwards β. This
is possible if and only if 0mi ∈ L(Di). Clearly, never choosing β is suboptimal and so we
assume w.l.o.g. that S chooses β at some point.

Define ρ = r−1
r

. Using the expected accumulated weight before returning to sinit under
S, we can express the long-run probability by

LPS
M(aU b) =

k∑︂
i=0

ρn+1 · 1/k · ρmi+1 · (n+mi + 2)
r

=
k∑︂

i=0

ρn+mi+2 · (n+mi + 2)
k · r

.

The probability that the n times the scheduler tries to choose pump and the choice of
enter do not lead back to sinit is ρn+1. If this does not happen, the probability to enter
q0,i is 1/k. Choosing mi times α and β afterwards then leads to b with probability ρmi+1.
If b is reached, the state a has been visited n times and mi + 1 states of A that are all
labeled with a have been visited. So, the weight received in this case is n + mi + 2. As
discussed before, the expected return time is r.

Let us denote n + mi + 2 by Ni. The long-run probability of S is determined by
the expressions ρNi · Ni. Consider the real-valued function f(x) = ρx · x for x ≥ 0. Its
derivative is

∂f(x)
∂x

= ρx · (x · log(ρ) + 1).

As log(ρ) is negative, the derivative has one zero and as the sign of the derivative switches
from + to −, the function f(x) is strictly increasing until the maximum is reached and
the function strictly decreases afterwards. To find the maximum among natural numbers,
it is hence sufficient to consider the differences f(N) − f(N − 1) for natural numbers N .
Using ρ = (r − 1)/r, we have

f(N) − f(N − 1) = ρN−1 · (ρ ·N − (N − 1)) = ρN−1 · (1 −N/r). (∗)

Clearly, this value is positive for N < r and negative for N > r. As r = ℓ + 3/2, the
maximum of f(N) is obtained for N = ℓ+ 1. We define

µ
def= min

n∈N,n ̸=ℓ+1
f(ℓ+ 1) − f(n) = min{f(ℓ+ 1) − f(ℓ), f(ℓ+ 1) − f(ℓ+ 2)}.

It is now not hard to check that

LPS
M(aU b) =

k∑︂
i=0

f(Ni)
k · r

≥ f(ℓ+ 1) − µ/(2k)
r

if and only if Ni = ℓ + 1 for all i: If one of the values f(Ni) < f(ℓ + 1), it is at most
f(ℓ+ 1) − µ. In this case, the sum ∑︁k

i=1 f(Ni) is at most k · f(ℓ+ 1) − µ.
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If Ni = ℓ + 1 for all i, then all mi are equal to some m ≤ ℓ − 1 and hence 0m ∈
L(D1) ∩ . . .∩ L(Dk). If there is no choice of n and mi for all i such that Ni = ℓ+ 1 for all
i, then there is no m < ℓ with 0m ∈ L(D1) ∩ . . . ∩ L(Dk). As stated above, this implies
that L(D1) ∩ . . . ∩ L(Dk) is empty. If we define

ϑ′ = f(ℓ+ 1) − µ/(2k)
r

,

we hence have that LPmax
M (aU b) ≥ ϑ′ if and only if L(D1) ∩ . . . ∩ L(Dk) is non-empty.

Unfortunately, we cannot compute the threshold ϑ′ in polynomial time and its binary
representation might be of exponential length. Nevertheless, any threshold ϑ with ϑ′ ≤
ϑ ≤ f(ℓ+ 1)/r still works. The goal now is hence to find such a threshold ϑ that can be
computed in polynomial time.

The following inequality is well-known:

ρℓ =
(︂
1 − 1

r

)︂ℓ
≥ 1 − ℓ

r
= 1 − r − 3/2

r
= 3

2r .

Analogously, ρℓ+1 ≥ 1
2r

. To get an estimate for µ, we obtain using (∗) that

f(ℓ+ 1) − f(ℓ) = ρℓ(1 − r − 1/2
r

) ≥ 3
4r2 .

and
f(ℓ+ 2) − f(ℓ+ 1) = ρℓ+1(1 − r + 1/2

r
) ≤ − 1

4r2 .

Taking the sign into account, we obtain that µ ≥ 1
4r2 . In addition, k ≤ r as we assume

that all Di have at least two states. So, it would be sufficient, if we find an approximation
of f(ℓ+ 1) up to an absolute error of 1

16r3 . If this approximation is η, we can choose

ϑ = η − 1/16r3

r

to ensure that ϑ′ ≤ ϑ ≤ f(ℓ+ 1)/r. As r occurs in the denominator, we can approximate
f(ℓ + 1)/r up to an absolute error of 1/16r2. Plugging in ℓ = r − 3/2 and substituting
z = 1/r, we need an approximation of

g(z) def= zf(1/z − 1/2) = z

(︄
1/z − 1

1/z

)︄1/z−1/2

(1/z − 1/2)

up to an absolute error of z2/16 at z = 1/r.

We will use Taylor’s theorem to obtain this approximation. We consider g(z) as a
real-valued function for z ∈ [−1/2, 1/2] \ {0} and define g(0) def= 1

e
where e is Euler’s
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number. Using standard methods from calculus, we see that the function f is at least
three times continuously differentiable on [−1/2, 1/2]. Calculating the derivatives, we
obtain the following Taylor approximation around z = 0:

g(z) = 1
e

− z

2e − z2

12e + O(z3)

for z → 0. So there are reals c0, z0 > 0 such that⃓⃓⃓⃓
⃓g(z) −

(︄
1
e

− z

2e − z2

12e

)︄⃓⃓⃓⃓
⃓ ≤ c0z

3

for |z| < z0. If |z| < 1/32c0, the expression

1
e

− z

2e − z2

12e = 1
e

(1 − z/2 − z2/12)

approximates g(z) up to an absolute error of z2/32. As (1 − z/2 − z2/12) < 1, for z > 0,
it is now sufficient to approximate 1/e up to an absolute error of z2/32 to obtain an
approximation of g(z) up to an absolute error of z2/16. This is doable in polynomial
time.

To conclude, let L = max{1/z0, 32c0}. For r > L, the above procedure works as
z = 1/r then satisfies |z| < z0 and |z| < 1/32c0. So, we can compute a threshold ϑ in
polynomial time for such r which completes the reduction of the intersection problem for
unary DFA to the threshold problem for maximal long-run probabilities in MDPs. As L
is defined in terms of the function g, i.e. independent of all variables, and as there are
only finitely many instances with r = ℓ+ 3/2 ≤ L, this finishes the proof.

While we have shown the general quantitative threshold problem for the long-run
probability of aU b to be NP-hard, the qualitative variants are efficiently solvable:

Remark 4.24 (Qualitative threshold problems). In a strongly connected MDP M, de-
ciding whether LPmax

M,s(aU b) is 1 and deciding whether it is positive are easy: The value is
positive iff there is a b-state. Further, LPmax

M,s(aU b) = 1 if and only if one of the following
two conditions is met:

• There is an end-component consisting only of states labeled with a or b that contains
at least one b state, or

• there is an a-end component such that we have Prmax
M,s(aU b) = 1 for all (any) states

s of the end component.

As we have seen, infinite-memory schedulers are necessary for the maximization of the
long-run probability if only the second condition is satisfied.
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For the minimal value LPmin
M,s(aU b), the situation is similarly simple: The value is

less than 1 iff there either is a state not labeled with a or b, or there is an end component
containing no b-state. The value is 0 iff there is an end component containing no b-
state. ◁

4.3 Long-run expectations
In this section, we are looking at a notion of long-run expectation that is defined anal-
ogously to long-run probabilities. It captures the long-run average of the weight that is
expected to be accumulated before the next visit to a goal state. The goal of this notion
is the possibility to provide guarantees on the quantitative aspects of a system modeled
by weights in long-run equilibrium. The following example demonstrates that the notion
might be useful to provide guarantees on the system behavior that capture the intended
behavior more precisely than, for example, expected return times from a goal state to a
goal state.

Example 4.25. Consider the MDP M depicted in Figure 4.7. Suppose the quantity
we are interested in is the expected time, i.e., number of steps, until reaching goal. So,
we assign weight +1 to all state-action pairs. Suppose further that the MDP models a
system component that is working on some task and sometimes receives updated infor-
mation from other components. The modeled component, however, only checks whether
it received updated information when it is in state goal. We are now interested in the
expected time that passes between the update by another component at an arbitrary mo-
ment after the system has been running for a long time and the moment the component
checks for the update.

There are two memoryless schedulers Sα and Sβ always choosing α and β, respec-
tively. First, note that under Sβ it takes 5 steps to return from goal to goal. Under Sα

the number of steps for this return is 3 with probability 2/3 and it is 7 with probability
1/3. This yields an expected return time of 13/3 < 5.

Nevertheless, we are not interested in the time that passes between two checks for an
update but the time that passes until the next check from a random moment in time.
Somewhat counter-intuitively, this expected time is lower under Sβ than under Sα: Let
us first consider scheduler Sβ. At a random moment of time, the process is in any of the
states s, b3, b2, b1, and goal with the same probability. The expected times until the next
visit to goal are 4, 3, 2, 1, and 0, respectively. The average expected time is hence

4 + 3 + 2 + 1
5 = 2.

We call this value the long-run expectation (of the accumulated weight before reaching
a goal state). For scheduler Sα, the situation is slightly more complicated. States s, t,
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Figure 4.7: Illustration of long-run expectations.

and goal are visited on each path from goal to goal while a4, . . . , a1 are only visited with
probability 1/3 on such a path. So, the fraction of time in which the process is in states
s, t, and goal is 3/13 for each of these states. For states a4, . . . , a1, this fraction is only
1/13 each. The expected time until reaching goal on the other hand, is 10/3 from state
s, 7/3 from state t, and i from state ai for all i. For the long-run expectation, we hence
obtain the value

3
13 · (10/3 + 7/3 + 0) + 1

13 · (4 + 3 + 2 + 1) = 27
13 > 2.

In conclusion, that means that although the process checks for updates less frequently
under Sβ (once every 5 steps) than under Sα (once every 13/3 steps in average), the
expected time until information updated at a random moment in the long-run is recog-
nized by the modeled component is less under Sβ (2 time steps) than under Sα (27/13
time steps). ◁

Let M = (S,Act, P, sinit,wgt,Goal) be a weighted MDP with integer weights and a
designated set of states Goal. As we are interested in the long-run behavior of the system
now, we do not want the states in Goal to be absorbing. Therefore, we slightly change
the definition of the random variable Goal expressing the accumulated weight before
reaching Goal that we also used for stochastic shortest path problems. On infinite paths
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ζ, we define Goal(ζ) = wgt(π) where π is the shortest prefix of ζ with last(π) ∈ Goal.
If ζ ̸⊨ ♢Goal, then Goal(ζ) is undefined.

The long-run expectation under scheduler S along ζ is now defined as

lreS(ζ) = lim inf
n→∞

1
n+ 1

n∑︂
i=0

ES↑ζ[0...i]
M,ζ[i] ( Goal).

The long-run expectation of a scheduler S is

LRES
M = ES

M,sinit (lre
S).

Note that the long-run expectation of a scheduler S is defined if the probability to reach
Goal infinitely often PrSM,sinit (□♢Goal) is 1. The optimal long-run expectation is

LREmax
M = sup

S
LRES

M

where the supremum ranges over all schedulers S with PrSM,sinit (□♢Goal) = 1. The goal
of this section is to compute the maximal long-run expectation.

As for expected mean payoffs and long-run probabilities, the challenging part when
maximizing the long-run expectation lies in the maximization inside the MECs. If we
know the optimal values in each MEC, computing the optimal value of the whole MDP
can easily be done by solving weighted reachability problem in polynomial time. Hence,
we consider only strongly connected MDPs in the sequel. Furthermore, we assume that
the maximal expectation of Goal is finite from each state. This is equivalent to the non-
existence of positively weight-divergent end components without a Goal-state. In the
presence of 0-end components and of end-components with negative maximal expected
mean-payoff that do not contain a Goal-state, there are schedulers that do not reach Goal
infinitely often almost surely. The treatment of MDPs with such end components will
not be discussed here and is left as future work.

Here, we simplify the analysis by assuming that all end-components contain a Goal-
state. In such an MDP M, all schedulers S satisfy PrSM,sinit (□♢Goal) = 1. Further,
there is a simple bound U computable in polynomial time such that |ES

M,s( Goal)| ≤ U

for all schedulers S and all states s: If |S| is the number of states and q the minimal
transition probability, Goal is reached within |S| steps with probability at least q|S| under
each scheduler. Hence, the expected number of steps until Goal is at most |S|/(q|S|). If
W is the maximal absolute value of weights occurring in M, then U = W · |S|/(q|S|)
serves as such a bound.

Before we show how to maximize long-run expectations, we begin with a hardness-
proof showing that we cannot expect a polynomial-time algorithm for the computation
of optimal long-run expectations:
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Proposition 4.26. Given an MDP M and a rational ϑ, deciding whether

LREmax
M ≥ ϑ

is NP-hard.

Proof. There is an easy reduction from the threshold problem for long-run probabilities
of constrained reachability properties which we have just shown to be NP-hard. Given
an MDP M with labels a, b, and c we construct an MDP N as follows. All states labeled
b or c are now Goal-states. Furthermore, all in-going edges to b-states get weight +1. All
other weights are 0. Now, the maximal long-run probability of aU b in M is equal to the
maximal long-run expectation in N .

Employing Fatou’s lemma as we have seen before, we can prove that the maximal
long-run expectation can be approximated by finite-memory schedulers.

Lemma 4.27. Let M = (S,Act, P, sinit,wgt,Goal) be a strongly connected MDP with a
designated set of states Goal that intersects all end components. Then,

LREmax
M = sup

F
LREF

M

where F ranges over all finite-memory schedulers for M.

Proof. Let ε > 0. By definition of LREmax
M , there is a scheduler S with LRES

M >

LREmax
M − ε/3. By Fatou’s Lemma, we get that

LRES
M = ES

M

(︂
lim infn→∞

1
n+1

∑︁n
i=0 E

S↑ζ[0...i]
M,ζ[i] ( Goal)

)︂
≤ lim infn→∞ ES

M

(︂
1

n+1
∑︁n

i=0 E
S↑ζ[0...i]
M,ζ[i] ( Goal)

)︂
.

So, there is a natural number N such that, for all n ≥ N ,

ES
M

(︄
1

n+ 1

n∑︂
i=0

ES↑ζ[0...i]
M,ζ[i] ( Goal)

)︄
≥ LRES

M − ε/3 > LREmax
M − 2ε/3.

The idea now is to obtain a finite memory scheduler F form S by following S for a
large number of steps k. In order to ensure that the accumulated expectation in the first
k steps under F is no less than the accumulated expectation under S, the scheduler F

switches to a new mode after k steps in which it maximizes the expectation of Goal in a
memoryless fashion. Once Goal is reached, F returns to the initial state and starts from
the beginning again.

More formally, let U be a memoryless scheduler maximizing EU
M,s( Goal) from all

states s while minimizing the worst-case expected number of steps until Goal, TU =
maxt EU

M,t(steps until Goal) among all such schedulers.
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Further, let R be a scheduler which minimizes the expected number of steps to sinit

from each state t while maximizing the expected value of Goal whenever |S| consecu-
tive states not in Goal have been visited where S is the set of states of N . Let TR be
maxt∈S ER

M,t(steps until sinit). This value and the scheduler R are computable in polyno-
mial time: We can encode the number of consecutive states not in Goal up to |S| into
the state space. If |S| or more consecutive such states have been visited, only actions in
Actmax are enabled. In the resulting MDP N of polynomial size, the schedulers R simply
minimizes the expected number of steps until a state corresponding to sinit is reached and
hence can be computed in polynomial time. As we remove actions only after |S| many
steps, we do not restrict copies of which states s are reachable from any state compared
to M. In N the scheduler R can be chosen to be memoryless. Regarded as schedulers
for M, the scheduler R has |S|-many memory modes.

Now, let Fk be the scheduler which follows S for k > N steps, then behaves like U

until Goal is reached and afterwards like R until it starts again in the initial state. We
define T = TU + TR. The expected accumulated expectation eaeF under this scheduler
until it starts again is at least

ES
M

(︂
1
k

∑︁k−1
i=0 ES↑ζ[0...i]

M,ζ[i] ( Goal)
)︂

− T · U
≥ k(LREmax

M − 2ε/3) − T · U

where U = W · |S|/(q|S|) is the bound on the absolute value of the expected accu-
mulated weight before reaching Goal described above with |S| the number of states, q
the minimal transition probability, and W the maximal absolute value of the weights
occurring in M. The expected number of steps is at most k+T and at least k. We claim
that for

k ≥ 6T · U
ε
,

LREFk
M ≥ LREmax

M − ε. This follows by a straight-forward computation using that
LREmax

M ≤ U and that

LREFk
M ≥ min

{︄
k(LREmax

M −2ε/3)−T · U
k

,
k(LREmax

M −2ε/3)−T · U
k+T

}︄
.

If the minimum is k(LREmax
M −2ε/3)−T ·U

k
, then

LREFk
M ≥ k(LREmax

M −2ε/3)−T · U
k

≥ LREmax
M − ε

follows from the fact that k(LREmax
M −2ε/3)−T ·U ≥ k ·LREmax

M −ε because k ·ε/3 ≥ T ·U
by the choice of k.
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If the minimum is k(LREmax
M −2ε/3)−T ·U

k+T
, then

LREFk
M ≥ k(LREmax

M −2ε/3)−T · U
k + T

≥ LREmax
M − ε

follows from the fact that k(LREmax
M −2ε/3)−T · U ≥ (k+T ) · LREmax

M − (k+T ) · ε
which holds because k · ε/3 ≥ T · U + T · LREmax

M − T · ε by the choice of k and
the fact that LREmax

M ≤ U . So, the scheduler Fk for k = max{N + 1, 6T · U
ε
} ob-

tains a long-run expectation at most ε worse than the optimum. This proves that
LREmax

M = supF EF
M,sinit (lreF).

Note that we have made sure that the scheduler Fk in the proof maximizes the expected
value of Goal whenever k consecutive states not in Goal have been visited as it is in the
phase where it behaves as U or R whenever that happens. So, we can further restrict
the supremum to range over all finite-memory schedulers F for which there is a natural
number NF such that F (more precisely, the appropriate residual scheduler) maximizes the
expected value of Goal whenever NF consecutive states not in Goal have been visited.
Note that the bound depends on the scheduler. In the sequel, we provide a saturation
point which is such a bound that only depends on the MDP.

Saturation point. The key insight for the computation of maximal long-run expecta-
tions is now that there is again a saturation point, in this case a bound on the number
of consecutive visits to states not in Goal after which an optimal scheduler can behave
memorylessly.

Lemma 4.28. Let M be a strongly connected MDP with a designated set of states Goal
that intersects all end components. There is a natural number K computable in polynomial
time such that for any ϵ > 0 there is a finite-memory scheduler T that maximizes the
expected value of Goal whenever K consecutive steps not visiting Goal have been made
such that

LRET
M,sinit ≥ LREmax

M,sinit − ϵ.

Proof. We recall that ENSub = |S|/q|S| can be used as an upper bound for the expected
number of steps until the next visit to Goal from any starting state under any scheduler
where S is the set of states and q the minimal transition probability. So, Eub = W ·ENSub,
where W is the maximal absolute value of weights occurring in M, is an upper bound for
the expected value of Goal form any state under any scheduler. Finally, for all states s
and all schedulers Q, the expected accumulated expectation

∑︂
ζ path from s to Goal

PrQM,s(ζ)
length(ζ)∑︂

i=0
EQ↑ζ[0...i]

M,ζ[i] ( Goal)

before reaching Goal is bounded by EAEub = ENSub · Eub.
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We show how to compute K. First, we define Emax
s = Emax

M,s( Goal) for s ∈ S and
Emax

s,α = wgt(s, α)+∑︁t∈S Pr(s, α, t)Emax
M,t( Goal) for s ∈ S \Goal and α ∈ Act(s). Further,

Actmax(s) denotes the set of all actions with Emax
s = Emax

s,α . We now define

δ = min
s∈S\Goal,α ̸∈Actmax(s)

Emax
s − Emax

s,α .

If the minimum ranges over the empty set, any scheduler maximizes the expectation of
Goal and the claim of the theorem holds trivially.

As above, let U be a memoryless scheduler maximizing EU
M,s( Goal) from all states s

while minimizing the worst-case expected number of steps until Goal,

TU = max
t

EU
M,t(steps until Goal),

among all such schedulers. Further, for each state s, let Rs be a scheduler which minimizes
the expected number of steps to s from each state t while maximizing the expected value
of Goal whenever |S| consecutive states not in Goal have been visited. Let TR be
maxs,t∈S ERs

M,t(steps until s). In the previous proof, we have seen that these schedulers
can be computed in polynomial time and can be chosen to be finite-memory schedulers.

Finally, let T = TU + TR. We claim that

K = max
{︄
T · Eub + EAEub + Eub · ENSub

δ
,
EAEub + 2Eub · T

δ
, |S| + 1

}︄

satisfies the desired property.
To show this, let S be a finite memory scheduler that is ϵ-optimal and for which there

is a natural number NS such that S maximizes the expected value of Goal whenever
NS consecutive states not in Goal are visited. Such a scheduler exists by Lemma 4.27 and
the discussion after that lemma. W.l.o.g. we can assume that the Markov chain induced
by S has one BSCC B. The states of B are pairs (s, x) of states of M and memory
modes of S. We still write Goal to denote the set of states in B whose first component
is in Goal. Let π be a path of length at least K in B starting in (s0, x0) ∈ Goal and not
visiting Goal again afterwards with last(π) = (s1, x1). Assume that S chooses an action
α ̸∈ Actmax(s1) in memory mode x1 with positive probability. Let p be the probability
that S produces π and chooses α afterwards when starting in (s0, x0). Further, let p(t,y)

be the probability that the first state in Goal that is reached under S when starting in
(s1, x1) while choosing α is (t, y).

We construct a scheduler F which does not choose non-maximizing actions after π
anymore: This scheduler F behaves like S and uses additional memory to keep track
whether the run follows the path π. Whenever the path π is completed and S would
choose α, the scheduler S switches to a new memory mode xt,y with probability p(t,y) for
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all (t, y) in Goal. In this mode it behaves like U until Goal is reached. Then, it switches
to the behavior of Rt until t is reached. Afterwards it starts to behave like S in memory
mode y. As soon as it reaches (s0, x0) again it starts over again keeping track of whether
π is completed. We claim that LREF

M,s0 ≥ LRES
M,s0 .

We express the long-run expectation of both finite memory schedulers as the fraction
of the expected accumulated value of expected accumulated weight before goal and the
return time to the initial configuration in state s0 with memory mode x0 for S and
memory configuration as initially in the description above for F. We write eaeS for that
expected accumulated expectation which is

∑︂
ζ path from (s0, x0) to (s0, x0)

PrSB,(s0,x0)

length(ζ)∑︂
i=0

ES↑ζ[0...i]
M,ζ[i] ( Goal)

and similarly for F. For the expected number of steps to return we write ensS. So, we
can write

LRES
M = eaeS

ensS
.

The schedulers F and S only differ on how they reach a state (t, y) in Goal to continue
like S after having completed π. Afterwards, they behave in the same way again as
they reach the states (t, y) with the same probabilities by construction of F. Hence,
we can provide bounds on eaeF and ensF by looking at the behavior after π before F

returns to the behavior of S. For the expected number of steps to return under F we
get ensS − p · ensS(s1,x1),α,Goal as a lower bound where ensS(s1,x1),α,Goal denotes the expected
number of steps under S from (s1, x1) to Goal when choosing α first. As an upper bound,
we can simply choose ensS + p · T because T bounds the expected number of steps F

needs after π before returning to the behavior of S form some state (t, y) in Goal on.
For the expected accumulated expectation, we get

eaeS − p · EAEub + p · (K · δ − T · Eub)

as a lower bound. The term −p · EAEub captures a bound on the expected accumulated
expectation that is possibly lost by not following S after it would choose α after π
anymore. The term p ·K · δ captures that for each i ≤ K, we have that the expectation
after π[0 . . . i] is increased by at least PrSB,π[i](π[i . . . length(π)]) · pα · δ where pα is the
probability that S chooses α after π. In other words, after each prefix of π the expected
accumulated weight before reaching Goal increases by at least the probability that π is
completed and α chosen afterwards times δ as the expected accumulated weight before
Goal after π when choosing α under S is at least δ lower than under F as F then maximizes
the expected accumulated weight while α ̸∈ Actmax. Finally, in the in expectation at most
T steps F needs to switch back to the behavior of S, it accumulates an expectation of
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−Eub in the worst case in each step. So,

LREF
M ≥ eaeS + p · (K · δ − T · Eub − EAEub)

ensS − p · ensS(s1,x1),α,Goal

or
LREF

M ≥ eaeS + p · (K · δ − T · Eub − EAEub)
ensS + p · T

.

We show that in both cases LREF
M ≥ LRES

M = eaeS

ensS
. For the first case, let a = eaeS,

b = ensS, c = p · (K · δ − T ·Eub − EAEub), and d = −p · ensS(s1,x1),α,Goal . So, we want to
show that

a+ c

b+ d
≥ a

b
.

As b+ d is positive, this is equivalent to

a+ c ≥ a+ ad

b
.

Note that a/b is LRES
M and hence its absolute value is bounded by Eub. The absolute

value of d is bounded by p · ENSub. dividing by p and plugging the values back in, we
obtain that the inequality we want to prove holds if

K · δ − T · Eub − EAEub ≥ Eub · ENSub.

That explains the choice that K ≥ (T · Eub + EAEub + Eub · ENSub)/δ. For the second
possibility, we let d be p · T . By the same analysis, we obtain that the inequality holds,
if K ≥ (EAEub + 2Eub · T )/δ.

This finishes the proof that LREF
M ≥ LRES

M. Under F action α is not chosen after
the path π anymore, but instead actions from Actmax are chosen. At the same time,
under F there are no new such paths of length greater than K after which an action not
in Actmax is chosen. (As K ≥ |S| + 1 also during the execution of Rs no such choices are
made). As S only chooses actions in Actmax whenever NS-many states not in Goal have
been visited consecutively, there are only finitely many paths of length at least K after
which actions not in Actmax are chosen. We can repeat the construction for these paths
one by one to obtain a finite-memory scheduler T that maximizes the expectation of

Goal whenever K steps not visiting Goal have been made. This scheduler still satisfies
LRET

M ≥ LRES
M ≥ LREmax

M − ϵ.

Computing optimal long-run expectations. In the sequel, we describe an algo-
rithm for the computation of optimal long-run expectations exploiting the existence of a
saturation point.
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Given a strongly connected MDP M = (S,Act,Pr,wgt, sinit,Goal) with a designated
set of states Goal that intersects all end components, we can compute the saturation
point K as in the previous section in polynomial time. We work with a weight function
wgt from S to Z. We know that it is sufficient to consider schedulers that maximize the
expected weight before reaching Goal as soon as K consecutive states not in Goal have
been visited. We construct an MDP MK as follows:

• The state space of MK is SK = ((S \ Goal) × {1, . . . , K,⊤}) ∪ Goal.

• The actions of MK are the actions Act of M. In states of the form (s,K) or (s,⊤),
however, only actions from Actmax(s) are enabled.

• The transition probability function PrK is defined as follows:
For states g, h ∈ Goal, we have PrK(g, α, h) = Pr(g, α, h).
For a state g ∈ Goal and a state s ∈ S \Goal, we have PrK(g, α, (s, 1)) = Pr(g, α, s)
and PrK((s, i), α, g) = Pr(s, α, g) for all i ∈ {1, . . . , K,⊤}.
For states (s, i) and (t, j) in (S\Goal)×{1, . . . , K,⊤}, we have PrK((s, i), α, (t, j)) =
Pr(s, α, t) if j = i+ 1, or if j = ⊤ and i is K or ⊤.
All remaining transitions have probability 0.

• The weight function wgtK is defined as follows:
For g ∈ Goal, wgtK(g) = wgt(g).
For states (s, i) with i < K, we have wgtK((s, i)) = i · wgt(s).
For states (s,K), we have wgtK((s,K)) = K · Emax

M,s( Goal).
For states (s,K), we have wgtK((s,⊤)) = Emax

M,s( Goal).

• The initial state is sinit or (sinit, 1).

Lemma 4.29. Let M be a strongly connected MDP with a designated set of states Goal
that intersects all end components. Let MK be the MDP constructed above where K is
a saturation point for M. Then, the maximal long-run expectation in M is equal to the
maximal mean-payoff in MK.

Proof. There is a one-to-one correspondence between schedulers for MK and schedulers
S for M that maximize ES

M,s( Goal) as soon as K consecutive states not in Goal have
been visited.

We show that for each such finite-memory scheduler F for M and the corresponding
finite-memory scheduler F′ for MK , we have that LREF

M = EF′

MK
(MP). As we know

that LREmax
M is the supremum over this value for such finite-memory schedulers and

Emax
MK

(MP) is the supremum over all memoryless schedulers for MK , which correspond
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to such finite-memory schedulers for M, this is sufficient to conclude that the optimal
values are equal.

So, let F be a finite-memory scheduler for M that maximize ES
M,s( Goal) as soon as

K consecutive states not in Goal have been visited. Let F′ be the corresponding finite-
memory scheduler for MK . The induced finite Markov chains CF and CF′ have the same
structure and we denote them by C form now on. In particular, if we start in a state
(g, x) with g ∈ Goal for some memory mode x, the distribution over path lengths until
another state in Goal is reached and the distribution over which state in Goal that is
are the same in both Markov chains. We want to prove that also the expected value
of the accumulated sum over EF

M,(s,y)( Goal) before returning to Goal and the expected
accumulated weight according to wgtK before returning to Goal are the same.

Let Π(g,x) be the set of all finite paths in C ending in a state in Goal. The expected
value of the accumulated sum over EF

M,(s,y)( Goal) before returning to Goal is the fol-
lowing value

∑︂
π∈Π(g,x)

Pr(π) ·
length(π)∑︂

i=0
EF

M,π[i]( Goal)

=
∑︂

π∈Π(g,x)

Pr(π) ·
length(π)∑︂

i=1

∑︂
ρ∈Π(g,x),π[0...i]∈P ref(ρ)

Pr(ρ)
Pr(π[0 . . . i])wgt(ρ)

=
∑︂

π′∈P ref(Π(g,x)),length(π′)≥1
Pr(π′) ·

∑︂
ρ∈Π(g,x),π′∈P ref(ρ)

Pr(ρ)
Pr(π′)wgt(ρ)

=
∑︂

π′∈P ref(Π(g,x)),length(π′)≥1

∑︂
ρ∈Π(g,x),π′∈P ref(ρ)

Pr(ρ) · wgt(ρ)

=
∑︂

ρ∈Π(g,x)

Pr(ρ) ·
length(ρ)∑︂

i=0
wgt(ρ[i]) · (number of prefixes of ρ[0 . . . i] of length ≥ 1)

=
∑︂

ρ∈Π(g,x)

Pr(ρ) ·
length(ρ)∑︂

i=0
wgt(ρ[i]) · i =

∑︂
ρ∈Π(g,x)

Pr(ρ) · wgtK(ρ)

So, indeed the expected value of the accumulated expected value of Goal in M under
F equals the expected weight before reaching goal according to wgtK under F′. As also
the distribution over which states in Goal are reached next and how long that takes are
the same, it follows that the long-run expectation LREF

M = EF′

MK
(MP).

As a direct consequence of the lemma, we obtain the following result:

Theorem 4.30. Let M be a strongly connected MDP with a designated set of states
Goal that intersects all end components. The optimal long-run expectation LREmax

M can
be computed in exponential time.
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Figure 4.8: Illustration of the computation of long-run expectations via expected mean
payoffs.

Example 4.31. In Example 4.25, we considered the long-run expectation in a simple
MDP. Each state-action pair was assigned weight 1 in that example. Here, we depict the
MDP again in Figure 4.8 with the update weights as in the construction presented above.
As each state is only reachable along exactly one path from goal before the path returns
to goal, the construction yields a simple result. With the new weight function, it is now
not hard to compute the expected mean payoff under Sα always choosing α. Using the
steady state probabilities of the states that are given in Example 4.25, we obtain

3
13 · (1 + 2) + 1

13 · (3 + 4 + 5 + 6) = 27
13 .

For Sβ, we obtain an expected mean payoff of 2 – the values agree with the long-run
expectations we computed in Example 4.25.

The representation as a mean payoff sheds some light on the counter-intuitive obser-
vations in Example 4.25: Long paths even with small probability have a larger impact on
the long-run expectation than on the expected return time because they contain many
states from which the expected time until the next goal state is high. For the expected
return time only the number of states but not the expected time from these states on
plays a role. ◁
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CHAPTER

FIVE

POSITIVITY-HARDNESS

The goal of this chapter is to show that a series of optimization problems on MDPs –
including non-classical stochastic shortest path problems, the conditional value-at-risk for
accumulated weights, the long-run probability of regular co-safety properties, and several
related problems – possesses an inherent mathematical difficulty that makes a solution
with known techniques unlikely. We obtain these results by reductions from the Positivity
problem to the respective decision versions of the problems:

Definition 5.1 (Positivity problem). The Positivity problem for linear recurrence se-
quences asks whether such a sequence stays non-negative. More formally, given a natural
number k ≥ 2, and rationals αi and βj with 1 ≤ i ≤ k and 0 ≤ j ≤ k − 1, let (un)n≥0 be
defined by the initial values u0 = β0, . . . , uk−1 = βk−1 and the linear recurrence relation

un+k = α1un+k−1 + · · · + αkun

for all n ≥ 0. The Positivity problem asks to decide whether un ≥ 0 for all n.1 The
number k is called the order of the linear recurrence sequence.

The Positivity problem is closely related to the famous Skolem problem. The Skolem
problem asks whether there is an n such that un = 0 for a given linear recurrence
sequence (un)n≥0. It is well-known that the Skolem problem is polynomial-time re-
ducible to the Positivity problem (see, e.g., [EvdPSW03]). The Positivity problem
and the Skolem problem are outstanding problems in the fields of number theory and
theoretical computer science (see, e.g., [HHHK05, OW12, OW15]). Their decidability
has been open for many decades. Deep results establish decidability for both prob-
lems for linear recurrence sequences of low order or for restricted classes of sequences

1We do not distinguish between the Positivity problem and its complement in the sequel. So, we also
refer to the problem whether there is an n such that un < 0 as the Positivity problem.
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[STM84, Ver85, OW14a, OW14b, OW14c]. A proof of decidability or undecidability of
the Positivity problem for arbitrary sequences, however, withstands all known number-
theoretic techniques. In [OW14b], it is shown that decidability of the Positivity problem
(already for linear recurrence sequences of order 6) would entail a major breakthrough
in the field of Diophantine approximation of transcendental numbers, an area of analytic
number theory.

We call a problem to which the Positivity problem is reducible Positivity-hard. From a
complexity theoretic point of view, the Positivity problem is known to be at least as hard
as the decision problem for the universal theory of the reals [OW14c], a problem known
to be coNP-hard and to lie in PSPACE [Can88]. As most of the problems we address
are PSPACE-hard, the reductions in this chapter do not provide new lower bounds on
the computational complexity. The hardness results in this section hence refer to the far-
reaching consequences on major open problems that a decidability result would imply.
Furthermore, of course the undecidability of the Positivity problem would entail the
undecidability of any Positivity-hard problem.

The proof idea we develop in this chapter turns out to be applicable to a variety of
problems:

Main result. The Positivity problem is polynomial-time reducible to the threshold prob-
lems for the optimal values of the following quantities:

• partial and conditional expectations,

• a two-sided version of partial expectations in MDPs with non-negative weights,

• long-run probabilities of regular co-safety properties,

• termination probabilities and termination times of one-counter MDPs,

• the satisfaction probabilities of energy objectives,

• the probability to satisfy an inequality on the incurred costs (cost problems), and

• conditional values-at-risk for accumulated weights before reaching a goal.

Furthermore, an algorithm for

• the model-checking problem of frequency-LTL (as defined in [FK15,FKK15]), or

• the computation of quantiles for accumulated weights (before reaching a goal)

would imply the decidability of the Positivity-problem.
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Figure 5.1: Overview of the dependencies between the Positivity-hardness results. If not
stated otherwise, the squares refer to the threshold problems for the respective quantities.
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Outline. To obtain these results, we construct an MDP-gadget in which a linear
recurrence relation can be encoded in terms of the optimal values for a variety of opti-
mization problems (Section 5.1). To be able to conduct a reduction from the Positivity
problem, we afterwards construct gadgets encoding also the initial values of a linear re-
currence sequence – first, in terms of optimal partial expectations (Section 5.2.1). By
the inter-reducibility of the threshold problems, the Positivity-hardness for conditional
expectations follows directly from the Positivity-hardness for partial expectations. Fur-
thermore, we can adjust the construction slightly to obtain a Positivity-hardness result
for a two-sided version of partial expectations using two weight functions with non-
negative weights. Relying on the possibility to express long-run probabilities in terms
of expected mean payoffs established in Chapter 4, the hardness for two-sided partial
expectations allows us to prove the Positivity-hardness of the threshold problem of op-
timal long-run probabilities of regular co-safety properties (Section 5.2.2). This result
in turn implies that the model-checking problem for a simple fixed frequency-LTL for-
mula is Positivity-hard as well. The optimal termination probabilities of one-counter
MDPs behave similarly to optimal partial expectations in terms of the dependency of
the optimal values on the optimal values at successor states. We can hence reuse the
MDP-gadget for linear recurrence relations to show Positivity-hardness of the threshold
problem for the termination probability of one-counter MDPs after constructing a further
gadget encoding initial values of a linear recurrence sequence (Section 5.2.3). Afterwards,
we show how to adapt the construction to obtain the same result for the termination time
of almost surely terminating one-counter MDPs. The Positivity-hardness of the termi-
nation problem of one-counter MDPs has immediate consequences for cost problems, the
computation of quantiles, and the satisfaction probability of energy-objectives. Finally,
we prove Positivity-hardness of the threshold problem for the optimal conditional-value-
at-risk for accumulated weights. We obtain the result by proving the optimization of the
expectation of an auxiliary random variable Goal to be Positivity-hard. This random
variable assigns the accumulated weight to a path reaching Goal if this weight is negative
and 0 if this weight is non-negative (Section 5.2.4). An overview of the dependencies
between the Positivity-hardness results is depicted in Figure 5.1.

Related work. In [AAOW15], the Skolem-hardness for decision problems for Markov
chains has been established. The problems are to decide whether for given states s, t and
rational number p, there is a positive integer n such that the probability to reach t from s

in n steps equals p and the model checking problem for a probabilistic variant of monadic
logic and a variant of LTL that treats Markov chains as linear transformers of probability
distributions (a connection between similar problems and the Skolem problem has also
been conjectured in [BRS06, AAGT15]). These decision problems are of quite different
nature than the problems studied here, and so are the reductions from the Skolem prob-
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lem. In this context also the results of [COW16] and [MSS20] are remarkable as they show
the decidability (subject to Schanuel’s conjecture) of reachability problems in continuous
linear dynamical systems and continuous-time MDPs, respectively, as instances of the
continuous Skolem problem. In other areas of formal verification, the Skolem problem
and the Positivity problem play an important role in the context of the termination of
linear programs [BAGM12,Tiw04,Bra06,OW15].

The Positivity-hardness results leave the possibility open that the problems under
consideration are undecidable. Known undecidability results on MDPs typically require
switching to more expressive models. This applies, e.g., to recursive MDPs [EY05],
MDPs with two or more weight functions [BKKW14, RRS17] or partially observable
MDPs [MHC99, BGB12]. We are, however, not aware of natural decision problems for
standard (finite-state) MDPs with a single weight function and single objective that
are known to be undecidable. Remarkable undecidability results in this context are
also presented in [KK15]: The hardness of deciding almost sure termination and almost
sure termination with finite expected termination time for purely probabilistic programs
formulated in the probabilistic fragment of probabilistic guarded command language
(pGCL) [MMM05] is pinpointed to levels of the arithmetical hierarchy (for details on
the arithmetical hierarchy, see, e.g., [Odi92]). The results reach up to Π0

3-completeness
for deciding universal almost sure termination with finite expected termination time
(Π0

1-complete problems are already undecidable while still co-recursively enumerable).
Undecidability is not surprising as the programs subsume ordinary programs. But the
universal halting problem for ordinary programs is only Π0

2-complete showing that decid-
ing universal termination with finite expected termination time of probabilistic programs
is strictly harder. Similarly deciding termination from a given initial configuration is Σ0

1-
complete for ordinary programs (halting problem) while deciding almost sure termination
with finite expected termination time for probabilistic programs from a given initial con-
figuration is Σ0

2-complete. Operational semantics of pGCL-programs can be given as
infinite-state MDPs [GKM14]. Applied to the purely probabilistic fragment, this leads
to infinite-state Markov chains.

Note on the publication of the results. The proof technique presented in this
chapter and several of the Positivity-hardness results have been published in joint work
with Christel Baier at ICALP 2020 [PB20]. In this chapter, we extend these results by
additionally providing the Positivity-hardness proofs for the problems addressing one-
counter MDPs, cost constraints, energy objectives, and the computation of quantiles
(Section 5.2.3).
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5.1 MDP-gadget for linear recurrence relations
The MDP-gadget we construct in this section will form the basis to all Positivity-hardness
proofs in this chapter. Let us start by the following observations on the relation between
the optimal values at different states for different starting weights in stochastic shortest
path and related problems. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP. The solution
to the classical stochastic shortest path problem satisfies the so called Bellman equation.
If V (s) denotes the value when starting in state s, i.e., the maximal expected accumulated
weight before reaching Goal from state s, then

V (s) = max
α∈Act(s)

wgt(s, α) +
∑︂
t∈S

P (s, α, t) · V (t)

for s ̸∈ Goal and V (s) = 0 for s ∈ Goal. For the partial stochastic shortest path problem,
we have to include the weight accumulated so far into the equation as we have seen in
Chapter 3. So, let V (s, w) denote the maximal partial expectation when starting in state
s with weight w. Letting V (s, w) = w if s ∈ Goal and V (s, w) = 0 if Goal is not reachable
from s, we obtain the following equation for all remaining states s:

V (s, w) = max
α∈Act(s)

∑︂
t∈S

P (s, α, t) · V (t, w + wgt(s, α)). (∗)

Already in this equation, the value V (s, w) hence possibly depends on the values V (s, w−
1), . . . , V (s, w − k) for some k. We want to exploit this interrelation to encode linear
recurrence relations

un+k = α1un+k−1 + · · · + αkun

into the optimal values V (s, w). Of course, the values P (s, α, t) are all non-negative. So,
we cannot directly encode a linear recurrence into the optimal values for different weight
levels at one state as the coefficients can be negative. To overcome this problem, we
instead consider the difference V (s, w) − V (t, w) for two different states s and t.

Given the coefficients α1, . . . , αk of a linear recurrence relation, we assume that the
coefficients are all sufficiently small for the following construction – which is justified
by the argument provided at the end of this section. We construct the MDP-gadget
depicted in Figure 5.2. The gadget contains states goal, s, and t, as well as s1, . . . , sk

and t1, . . . , tk. In state t, an action γ is enabled which has weight 0 and leads to state ti
with probability αi if αi > 0 and to state si with probability |αi| if αi < 0 for all i. The
remaining probability leads to goal. From each state ti, there is an action leading to t

with weight −i. The action δ enabled in s as well as the actions leading from states si

to s are constructed in the analogously. If αi is negative, action δ reaches state ti with
probability |αi|. Otherwise it reaches si with probability αi. As the gadget depends on
the inputs α1, . . . , αk, we call it Gᾱ.
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t

t1

t2

goal

s

s1

s2

1−|α1|−|α2|

|α1|
|α2|

γ

wgt : −1

wgt : −2

1−|α1|−|α2|

|α1|
|α2|

δ

wgt : −1

wgt : −2

Figure 5.2: The gadget Gᾱ to encode linear recurrence relations. The example here is
depicted for a linear recurrence of depth 2 with α1 ≥ 0 and α2 < 0.

This gadget Gᾱ will be integrated into MDPs without further outgoing edges from
states s1, . . . , sk, t1, . . . , tk. For any optimization problem for which the optimal values
V depend on the state and the weight accumulated so far and satisfy Equation (∗), we
can encode a linear recurrence in an MDP containing this gadget (and possibly further
actions for state t and s): If we know that an optimal scheduler chooses action γ in state
t and action δ in state s if the accumulated weight is w, then

V (t, w) − V (s, w)

=
(︄

1 −
k∑︂

i=1
|αi|

)︄
(V (goal, w) − V (goal, w)) +∑︂

1≤i≤k, αi≥0
αiV (t, w−i) − αiV (s, w−i) +

∑︂
1≤i≤k, αi<0

(−αi)V (s, w−i) + (−αi)V (t, w−i)

=
k∑︂

i=1
αi(V (t, w−i) − V (s, w−i)).

Note that this linear recurrence relation also holds for the optimal values in the
classical stochastic shortest path problem for example. So, the gadget alone is not yet
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enough for a hardness proof. The missing ingredient is the encoding of the initial values
of a linear recurrence sequence. In order to include the encoding of the initial values in
our approach, it is necessary that optimal schedulers cannot be chosen to be memoryless.
If the optimal scheduler can be chosen weight-based but not memoryless in general, we
aim to encode the initial values by adding further outgoing actions to the states t and
s. By fine-tuning the weights and probabilities of these actions, we can achieve that for
small weights w some of the new actions are optimal while for large weights the actions γ
and δ of the gadget are optimal. If we manage to design the other actions such that the
differences V (t, w+ i) −V (s, w+ i) are equal to given starting values βi for a sequence of
weights w,w+1, . . . , w+k while actions γ and δ are optimal for weights larger than w+k,
we can encode arbitrary linear recurrence sequences. This is the goal of the subsequent
sections.

To conclude the section, we provide the missing argument that we can indeed assume
that the initial values of a given linear recurrence sequence and the coefficients of the
linear recurrence relation are small without loss of generality: Let (un)n≥0 be a linear
recurrence sequence specified by the initial values u0 = β0, . . . , uk−1 = βk−1 and the
linear recurrence relation un+k = α1un+k−1 + · · · +αkun for all n ≥ 0. For any µ > 0 and
λ > 0, the sequence (vn)n≥0 defined by vn = µ · λn · un for all n is non-negative if and
only if (un)n≥0 is non-negative. Furthermore, it satisfies vi = µ · λi · βi for i < k and

vn+k = λ · α1 · vn+k−1 + λ2 · α2 · vn+k−1 + · · · + λk · αk · vn.

By choosing λ and µ appropriately, we can scale down the initial values and coefficients
of the recurrence relation for any given input. We will use this argument throughout the
chapter.

5.2 Reductions from the Positivity problem

To encode initial values of a linear recurrence sequence, we construct further MDP gad-
gets. For partial expectations and the termination probability and time of one-counter
MDPs, we can construct these gadgets directly. Putting together these gadgets with
the gadget Gᾱ from the previous section, we obtain the basis for the Positivity-hardness
results of the respective threshold problems. The Positivity-hardness of the remaining
problems is obtained as a consequence of these results, possibly via some auxiliary steps.
In any case, the gadget Gᾱ constructed in the previous section lies at the heart of the
reductions.
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t

xj goal yj

s

fail

1 − ( 1
2k2(k−j) + βj)

1
2k2(k−j) + βj

γj|wgt : +k − j

1 − 1
2k2(k−j)

1
2k2(k−j)

δj|wgt : +k − j

Figure 5.3: The gadget Pβ̄ encoding the initial values in the reduction to the threshold
problem for partial expectations.

5.2.1 Partial and conditional stochastic shortest path
problems

In this section, we show how the initial values of a linear recurrence sequence can be
encoded in terms of optimal partial expectations in a way consistent with the encoding
of a linear recurrence relation in Gᾱ. Afterwards, we show how to exploit this encoding
to provide a reduction from the Positivity problem to the threshold problem for partial
expectations.

Let k be a natural number and let (un)n≥0 be the linear recurrence sequence given by
rationals αi for 1 ≤ i ≤ k and βj for 0 ≤ j ≤ k−1 via u0 = β0, . . . , uk−1 = βk−1 and
un+k = α1un+k−1 + · · · + αkun for all n ≥ 0. W.l.o.g., we can assume that ∑︁i |αi| < 1

4
and that 0 ≤ βj <

1
4k2k+2 for all j as we have argued above.

Now we construct a gadget Pβ̄ that encodes the initial values β0, . . . , βk−1. The gadget
is depicted in Figure 5.3 and contains states t, s, goal, and fail. For each 0 ≤ j ≤ k−1, it
additionally contains states xj and yj. In state xj, there is one action enabled that leads
to goal with probability 1

2k2(k−j) + βj and to fail otherwise. From state yj, goal is reached
with probability 1

2k2(k−j) and fail otherwise. In state t, there is an action γj leading to xj

with weight k− j for each 0 ≤ j ≤ k−1. Likewise, in state s there is an action δj leading
to yj with weight k−j for each 0 ≤ j ≤ k − 1.

We now glue together the two gadgets Gᾱ and Pβ̄ at states s, t, and goal. Finally, we
equip the MDP with a simple initial gadget (see Figure 5.4): From the initial state sinit,
one action with weight +1 is enabled. This action leads to a state c with probability 1

2
and loops back to sinit with probability 1

2 . In c, the decision between action τ leading to
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state t and action σ leading to state s has to be made. Let us call the full MDP that we
obtain in this way M.

t

t1

t2

goal

s

s1

s2

xj

fail

yj

c

sinit

1 − |α1| − |α2|

|α1|

|α2|

γ

wgt : −1

wgt : −2

1 − |α1| − |α2|

|α1|

|α2|

δ

wgt : −1

wgt : −2

1 − ( 1
2k2(k−j) + βj)

1
2k2(k−j) + βj

γj|wgt : +k − j

1 − 1
2k2(k−j)

1
2k2(k−j)

δj|wgt : +k − j

1
2

1
2

wgt : +1

τ σ

Figure 5.4: The full MDP for the Positivity-hardness proof for partial expectations.
The MDP contains the upper part for all 0 ≤ j ≤ k − 1. The middle part is depicted for
k = 2, α1 ≥ 0, and α2 < 0.

The cumbersome choices of probability values lead to the following lemma showing
the correct interplay between the gadgets constructed via straight-forward computations.

Lemma 5.2. Consider the full MDP M. Let 0 ≤ j ≤ k − 1. Starting with weight
−(k−1)+j in state t or s, action γj and δj maximize the partial expectation. For positive
starting weight, γ and δ are optimal.
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Proof. Suppose action γi is chosen in state t when starting with weight −(k − 1) + j.
So, state xi is reached with weight −(k − 1) + j + (k − i) = 1 + j − i. Then the partial
expectation achieved from this situation is

(1 + j − i)( 1
2k2(k−i) + βi).

For i > j this value is ≤ 0 and hence γi is certainly not optimal. For i = j, we obtain a
partial expectation of

1
2k2(k−j) + βj.

For i < j, state xi is reached with weight 1 + j − i ≤ k. Further, βi ≤ 1
4k2k+2 and

1
2k2(k−i) ≤ 1

2k2(k−j)·k2 . So, the partial expectation obtained via γi is at most

k

2k2(k−j) · k2 + k

4k2k+2 <
1

2k2(k−j) .

So, indeed action γj maximizes the partial expectation among the actions γi with 0 ≤
i ≤ k − 1 when the accumulated weight in state t is −(k − 1) + j. The argument for
state s is the same with βi = 0 for all i. It is easy to see that for accumulated weight
−(k − 1) + j with 0 ≤ j ≤ k − 1 actions γ or δ are not optimal in state t or s: If goal
is reached immediately, the weight is not positive and otherwise states t or s are reached
with lower accumulated weight again. The values βj are chosen small enough such that
also a switch from state t to s while accumulating negative weight does not lead to a
higher partial expectation.

For positive accumulated weight w, the optimal partial expectation when choosing γ
first is at least 3

4w by construction and the fact that a positive value can be achieved from
any possible successor state via one of the actions γj and δj with 0 ≤ j ≤ k−1. Choosing
γj on the other hands results in a partial expectation of at most (k + w) · ( 1

4k2k+2 + 1
2k2 )

which is easily seen to be less as k ≥ 2.

For each weight w, denote by e(t, w) and e(s, w) the optimal partial expectation
when starting in state t or s with accumulated weight w in M as if the respective state
was reached from the initial state with weight w and probability 1. For each weight
w ≥ −k+ 1, denote by d(w) the difference e(t, w) − e(s, w) between these optimal partial
expectation when starting in state t and s with weight w. Comparing action γj and δj

for starting weight −(k−1)+j, we conclude that the difference between optimal values
d(−(k−1)+j) is equal to βj, for 0 ≤ j ≤ k − 1. By the fact that Gᾱ encodes the given
linear recurrence relation as soon as γ and δ are the optimal actions as shown in Section
5.1, we conclude the following lemma:
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Lemma 5.3. Consider the linear recurrence sequence (un)n≥0 given above by α1, . . . , αk

and β0, . . . , βk−1 and the MDP M constructed from this sequence. We have

d(−(k−1) + n) = un

for all n with the values d(w) just defined.

Let us now consider a run of the MDP M. For any w > 0, state c is reached with
accumulated weight w with positive probability. An optimal scheduler now has to decide
whether the partial expectation when starting with weight w is better in state s or t:
Action τ is optimal in c for accumulated weight w if and only if d(w) ≥ 0. Once t or s is
reached, the optimal actions are given by Lemma 5.2. Let S be the scheduler that always
chooses τ in c and actions γ, γ0, . . . , γk−1, δ, . . . as described in Lemma 5.2. We conclude
that S is optimal if and only if the given linear recurrence sequence is non-negative.
We can compute the partial expectation of scheduler S in the constructed MDP. The
partial expectation turns out to be a rational. Hence, using this partial expectation as
the threshold ϑ, we obtain the Positivity-hardness of the threshold problem for partial
expectations.

Theorem 5.4. The Positivity problem is polynomial-time reducible to the following prob-
lem: Given an MDP M and a rational ϑ, decide whether PEmax

M > ϑ.

Proof. We will compute the partial expectation of scheduler S always choosing τ in c

and actions γ, γ0, . . . , γk−1, δ, . . . as described in Lemma 5.2 in the constructed MDP M
depicted in Figure 5.4: Recall that the scheduler S chooses γ and δ, respectively, as long
as the accumulated weight is positive. For an accumulated weight of −(k − 1) + j for
0 ≤ j ≤ k − 1, it chooses actions γj and δj, respectively.

We want to recursively express the partial expectations under S starting from t or
s with some positive accumulated weight n ∈ N which we again denote by e(t, n) and
e(s, n), respectively. In order to do so, we consider the following Markov chain C for
n ∈ N that is also depicted in Figure 5.5 for the case k = 2: The Markov chain C has
5k states named t−k+1, . . . , t+k, s−k+1, . . . , s+k, and goal+1, . . . , goal+k. States t−k+1,
. . . , t0, s−k+1, . . . , s0, and goal+1, . . . , goal+k are absorbing. For 0 < i, j ≤ k, there are
transitions from t+i to t+i−j with probability αj if αj > 0, to s+i−j with probability |αj|
if αj < 0, and to goal+i with probability 1 − |α1| − . . . − |αk|. Transitions from s+i are
defined analogously.

The idea behind this Markov chain is that the reachability probabilities describe how,
for arbitrary n ∈ N and 1 ≤ i ≤ k, the values e(t, nk + i) and e(s, nk + i) depend on n

and the values e(t, (n − 1)k + j) and e(s, (n − 1)k + j) for 1 ≤ j ≤ k. The transitions
in C behave as γ and δ in M, but the decrease in the accumulated weight is explicitly



5. Positivity-Hardness 135

t+k

t+1
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t−k+1

goal+k

goal+k−1

s+k

s+1
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s−k+1

1 − |α1| − |α2|

|α1|

|α2|

1 − |α1| − |α2|

|α1|

|α2|

Figure 5.5: The Markov chain C depicted for k = 2 with α1 ≥ 0 and α2 < 0.

encoded into the state space. Namely, for n ∈ N and 0 < i ≤ k, we have

e(t, nk + i) =
k∑︂

j=1

(︂
PrC,t+i

(♢t−k+j) · e(t, (n−1)k + j)

+ PrC,t+i
(♢s−k+j) · e(s, (n−1)k + j)

)︂
(5.1)

+
k∑︂

j=1
PrC,t+i

(♢goal+j) · (nk + j)

and analogously for e(s, nk + i). We now group the optimal values together in the
following vectors

vn = (e(t, nk + k), e(t, nk + k − 1), . . . , e(t, nk + 1), e(s, nk + k), . . . , e(s, nk + 1))t

for n ∈ N. In other words, this vector contains the optimal values for the partial expec-
tation when starting in t or s with an accumulated weight from {nk + 1, . . . , nk + k}.
Further, we define the vector containing the optimal values for weights in {−k+1, . . . , 0}
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which are the least values of accumulated weight reachable under scheduler S.

v−1 = (e(t, 0), e(t,−1), . . . , e(t,−k + 1), e(s, 0), e(s,−1), . . . , e(s,−k + 1))t.

As we have seen, these values are given as follows:

e(t,−k + 1 + j) = 1
2k2(k−j) + βj and e(s,−k + 1 + j) = 1

2k2(k−j)

for 0 ≤ j ≤ k − 1.

As the reachability probabilities in C are rational and computable in polynomial time,
we conclude from (5.1) that there are a matrix A ∈ Q2k×2k, and vectors a and b in Q2k

computable in polynomial time such that

vn = Avn−1 + na+ b,

for all n ∈ N. We claim that the following explicit representation for n ≥ −1 satisfies
this recursion:

vn = An+1v−1 +
n∑︂

i=0
(n− i)Aia+

n∑︂
i=0

Aib.

We show this by induction: Clearly, this representation yields the correct value for v−1.
So, assume vn = An+1v−1 +∑︁n

i=0(n− i)Aia+∑︁n
i=0 A

ib. Then,

vn+1 = A(An+1v−1 +
n∑︂

i=0
(n− i)Aia+

n∑︂
i=0

Aib) + (n+ 1)a+ b

= An+2v−1 +
(︄

n∑︂
i=0

(n− i)Ai+1a

)︄
+ (n+ 1)A0a+

(︄
n+1∑︂
i=1

Aib

)︄
+ A0b

= An+2v−1 +
n+1∑︂
i=0

(n+ 1 − i)Aia+
n+1∑︂
i=0

Aib.

So, we have an explicit representation for vn. The value we are interested in is

PES
M =

∞∑︂
ℓ=1

(1/2)ℓe(t, ℓ).

Let c = ( 1
2k ,

1
2k−1 , . . . ,

1
21 , 0, . . . , 0). Then,

( 1
2k

)nc · vn =
k∑︂

i=1

1
2nk+i

e(t, nk + i).
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Hence, we can write

PES
M =

∞∑︂
n=0

( 1
2k

)nc · vn = c ·
∞∑︂

n=0
( 1
2k

)nvn

= c ·
∞∑︂

n=0
( 1
2k

)n(An+1v−1 +
n∑︂

i=0
(n− i)Aia+

n∑︂
i=0

Aib)

= c ·
(︂
(

∞∑︂
n=0

( 1
2k

)nAn+1)v−1 + (
∞∑︂

n=0
( 1
2k

)n
n∑︂

i=0
(n− i)Ai)a+ (

∞∑︂
n=0

( 1
2k

)n
n∑︂

i=0
Ai)b

)︂
.

We claim that all of the matrix series involved converge to rational matrices. A key
observation is that the maximal row sum in A is at most |α1|+ . . .+|αk| < 1 because the
rows of the matrix contain exactly the probabilities to reach t0, . . . t−k+1, s0, . . . , and
s−k+1 from a state t+i or s+i in C for 1 ≤ i ≤ k. But the probability to reach goal+i from
these states is already 1−|α1|− . . .−|αk|. Hence, ∥A∥∞, the operator norm induced by
the maximum norm ∥ · ∥∞, which equals maxi

∑︁2k
j=1 |Aij|, is less than 1.

So, of course also ∥ 1
2kA∥∞ < 1 and hence the Neumann series ∑︁∞

n=0( 1
2kA)n converges

to (I2k − 1
2kA)−1 where I2k is the identity matrix of size 2k×2k. So,

∞∑︂
n=0

( 1
2k

)nAn+1 = A
∞∑︂

n=0
( 1
2k
A)n = A(I2k − 1

2k
A)−1.

Note that ∥A∥∞ < 1 also implies that I2k − A is invertible. We observe that for all n,

n∑︂
i=0

Ai = (I2k − A)−1(I2k − An+1)

which is shown by straight-forward induction. Therefore,

∞∑︂
n=0

( 1
2k

)n
n∑︂

i=0
Ai = (I2k − A)−1

(︄ ∞∑︂
n=0

( 1
2k

)nI2k − A
∞∑︂

n=0
( 1
2k
A)n

)︄

= (I2k − A)−1
(︄

2k

2k−1I2k − A(I2k − 1
2k
A)−1

)︄
.

Finally, we show by induction that
n∑︂

i=0
(n− i)Ai = (I2k − A)−2(An+1 − A+ n(I2k − A)).

This is equivalent to

(I2k − A)2
n∑︂

i=0
(n− i)Ai = An+1 − A+ n(I2k − A).
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For n = 0, both sides evaluate to 0. So, we assume the claim holds for n.

(I2k − A)2
n+1∑︂
i=0

(n+ 1 − i)Ai = (I2k − A)2
n∑︂

i=0
(n− i)Ai + (I2k − A)2

n∑︂
i=0

Ai

IH= An+1 − A+ n(I2k − A) + (I2k − A)2
n∑︂

i=0
Ai

= A− An+1 + n(I2k − A) + (I2k − A)2(I2k − A)−1(I2k − An+1)
= A− An+1 + n(I2k − A) + I2k − A− An+1 + An+2

= An+2 − A+ (n+ 1)(I2k − A).

The remaining series is the following:
∞∑︂

n=0
( 1
2k

)n
n∑︂

i=0
(n− i)Ai

=
∞∑︂

n=0
( 1
2k

)n(I2k − A)−2(An+1 − A+ n(I2k − A))

= (I2k − A)−2
(︄ ∞∑︂

n=0
( 1
2k

)nAn+1 −
∞∑︂

n=0
( 1
2k

)nA+
∞∑︂

n=0
( 1
2k

)nn(I2k − A)
)︄

= (I2k − A)−2
(︄
A(I2k − 1

2k
A)−1 − 2k

2k−1A+ 2k

(2k−1)2 (I2k − A)
)︄
.

We conclude that all expressions in the representation of PES
M above are rational and

computable in polynomial time. As we have seen, the originally given linear recurrence
sequence is non-negative if and only if PEmax

M ≤ PES
M for the MDP M constructed from

the linear recurrence sequence in polynomial time in the previous sections.

We have obtained the first Positivity-hardness result of this chapter. The proof con-
tains all ingredients that we need for the subsequent proofs. In particular, the computa-
tion of the value of a scheduler that is optimal iff the given linear recurrence sequence is
non-negative will be very similar in later proofs.

Remark 5.5. There is no obvious way to adjust the construction such that the Positivity-
hardness of the question whether PEmax

M ≥ ϑ would follow. One attempt would be to
provide an ε such that PEmax

M > ϑ iff PEmax
M ≥ ϑ + ε. This, however, probably requires

a bound on the position at which the given linear recurrence sequence first becomes
negative. But this question lies at the core of the Positivity problem. The analogous
observation applies to all Positivity-hardness results in the sequel.

The Positivity-hardness of the threshold problem for conditional expectations now fol-
lows directly by the inter-reducibility of the threshold problems for partial and conditional
expectations (see Proposition 3.16):
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Theorem 5.6. The Positivity problem is reducible in polynomial time to the following
problem: Given an MDP M and a rational ϑ, decide whether CEmax

M > ϑ.

Two-sided partial expectation. As we have already seen in Chapter 3, the
non-monotonic behavior of weights along a path prohibits the switch to a memory-
less behavior of an optimal scheduler for large weights in the partial and conditional
stochastic shortest path problem (see Section 3.2.3). Instead of using arbitrary integer
weights, we can simulate such non-monotonic behavior with two non-negative weight
functions: In the definition of the random variable ⊕Goal, we can replace the choice
that paths not reaching Goal are assigned weight 0 by a second weight function. Let
M = (S,Act,Pr, sinit,wgtgoal ,wgt fail , goal, fail) be an MDP with two designated absorb-
ing states goal and fail and two non-negative weight functions wgtgoal : S × Act → N and
wgt fail : S × Act → N. Assume that the probability Prmin

M,sinit (♢{goal, fail}) = 1. Define
the following random variable X on maximal paths ζ:

X(ζ) =
⎧⎨⎩wgtgoal(ζ) if ζ ⊨ ♢goal,

wgt fail(ζ) if ζ ⊨ ♢fail.

Due to the assumption that goal or fail is reached almost surely under any scheduler,
the expected value ES

M,sinit (X) is well-defined for all schedulers S for M. We call the
value Emax

M,sinit (X) = supS ES
M,sinit (X) the optimal two-sided partial expectation. We can

show that the threshold problem for the two-sided partial expectation is Positivity-hard
as well by a small adjustment of the construction above.

Theorem 5.7. The Positivity problem is polynomial-time reducible to the following prob-
lem: Given an MDP M = (S,Act,Pr, sinit,wgtgoal ,wgt fail , goal, fail) as above and a ratio-
nal ϑ, decide whether Emax

M,sinit (X) > ϑ.

Proof. Given the parameters α1, . . . , αk and β0, . . . , βk−1 of a rational linear recurrence
sequence, we can construct an MDP M′ = (S,Act,Pr, sinit,wgt, goal, fail) with one weight
function wgt : S × Act → Z similar to the MDP M depicted in Figure 5.4. W.l.o.g., we
again assume that ∑︁i |αi| < 1

4 and that 0 ≤ βj <
1

4k2k+2 for all j. The initial gadget and
the gadget Gᾱ are as before. The gadget Pβ̄, however, is slightly modified and replaced
by the gadget Tβ̄ depicted in Figure 5.6. For this gadget, we define α = ∑︁k

i=1 |αi|,
p1 = (1 − α)( 1

2k2(k−j) + βj), p2 = (1 − α)(1 − ( 1
2k2(k−j) + βj)), q1 = (1 − α) 1

2k2(k−j) , and
q2 = (1 − α)(1 − 1

2k2(k−j) ). With the transitions as in the figure, the probability to reach
goal or fail and the weight accumulated does not change when choosing action γj or δj

compared to the gadget Pβ̄. The only difference is that the expected time to reach goal
or fail changes. The steps alternate between probability α and probability 0 to reach goal
or fail – just as in the gadget Gᾱ. In this way, it makes no difference for the expected
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Figure 5.6: The gadget Tβ̄ encoding initial values in terms of two-sided partial expec-
tations.

time before reaching goal or fail when a scheduler stops choosing γ and δ. We can, in
fact, compute the expected time T to reach goal or fail from sinit under any scheduler
quite easily: Reaching t or s takes 3 steps in expectation. Afterwards, two further steps
are taken 1/α-many times in expectation. So,

T = 3 + 2
α
.

The optimal scheduler S for the partial expectation in M′ is the same as in the MDP
M above. Also the value ϑ of this scheduler can be computed as in Theorem 5.4. So,
PEmax

M′,sinit > ϑ if and only if the given linear recurrence sequence is eventually negative.

Note that all weights in M′ are ≥ −k. We define two new weight functions to obtain
an MDP N from M′: We let wgtgoal(s, α) = wgt(s, α) + k and wgt fail(s, α) = +k for all
(s, α) ∈ S × Act. Both weight functions take only non-negative integer values.

Any scheduler S for M′ can be viewed as a scheduler for N , and vice versa, as
the two MDPs only differ in the weight functions. Further, we observe that for each
maximal path ζ ending in goal or fail in M′ and at the same time in N , we have
X(ζ) = ⊕goal(ζ) + k · length(ζ). (Recall that ⊕goal(ζ) equals wgt(ζ) if ζ reaches goal
and 0 if ζ reaches fail.) As the expected time before goal or fail is reached is constant,
namely T under any scheduler, it follows that for all schedulers T we have

ET
N ,sinit (X) = PET

M′,sinit + k · T.

Therefore, Emax
N ,sinit (X) > ϑ + k · T if and only if the given linear recurrence sequence

eventually becomes negative.
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While the two-sided partial expectation is certainly interesting in its own right, it
will also play an important role in the proof of the Positivity-hardness of the threshold
problem for the optimal long-run probability of a regular co-safety property in the next
section.

5.2.2 Long-run probabilities and frequency-LTL
In Chapter 4, we have seen that the optimal long-run probability of a regular co-safety
can be expressed in terms of an optimal expected mean-payoff. This insight allows us to
draw a connection between long-run probabilities and two sided-partial expectations that
we just discussed. Recall that for an MDP M = (S,Act,Pr, sinit,wgtgoal ,wgt fail , goal, fail)
with two designated absorbing states goal and fail and two non-negative weight functions
wgtgoal : S × Act → N and wgt fail : S × Act → N, the two-sided partial expectation was
defined as the expectation of the following random variable X on maximal paths ζ:

X(ζ) =
⎧⎨⎩wgtgoal(ζ) if ζ ⊨ ♢goal,

wgt fail(ζ) if ζ ⊨ ♢fail.

In Section 4.2.2, we provided a construction given an MDP M and a DFA D that
encoded at each point in time j of a run ρ of M how many runs of D on the suffixes
ρ[i . . . ] with i ≤ j are currently in which of the states of D. Whenever a label read in
M leads to a transition from a state q in D to an accepting state, the number of runs
in that state q is received as weight in the constructed MDP that we will call MD. We
want to exploit this construction to mimic a behavior similar to the payoff according
to the random variable X. Consider the DFA D depicted in Figure 5.7. The state
space is Q = {qinit, q1, q2, accept, reject}. The alphabet is 2{a,b,c,goal,fail}. From the initial
state letters satisfying a ∧ b ∧ ¬c lead to q1, letters satisfying a ∧ c ∧ ¬b to q2 and all
remaining letters to reject. From q1, letters satisfying a ∧ ¬goal lead back to q1, letters
with goal ∧ ¬a to accept, and all remaining letters lead to reject. Transitions from q2 are
defined analogously with goal replaced by fail.

Consider a run ρ of an MDP M labeled with {a, b, c, goal, fail} for which we keep
counters of the number of runs on suffixes of ρ in each of the states of D: We only need
counters c1 and c2 for states q1 and q2 as these are the only states multiple runs can be
in before being accepted or rejected. The update of the counters as in Section 4.2.2 can
directly be determined from the DFA D: E.g., if {a, b} is read, counter c1 is increased; if
{a, c} is read, counter c2 is increased. On {a}, both counters stay the same. If no a is
read, the counters are reset to 0. If at the same time goal is read, the value of c1 is received
as weight. If fail is read, the value of c2 is received as weight. So, the behavior of the
counters is very similar to the accumulation of two non-negative weight functions. Which
of the two weight functions or the two counters is used to determine the payoff depends
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a ∧ ¬goal

a ∧ ¬fail

Figure 5.7: The DFA D mimicking two-sided partial expectations. All transitions on
letters not satisfying one of the labels lead to a rejecting sink that is not depicted.

on whether goal or fail is reached next. In the sequel, we will show that indeed already
the fixed co-safety property of this simple DFA D suffices to prove Positivity-hardness of
the threshold problem for long-run probabilities.

The proof of the Positivity-hardness of the threshold problem for the two-sided partial
expectation with non-negative weights contains most of the necessary ingredients we need:
Let (un)n≥0 be a rational linear recurrence sequence given by initial values β0, . . . , βk−1 and
the coefficients α1, . . . , αk of the recurrence. In the proof of Theorem 5.7, we showed that
we can construct an MDP M = (S,Act,Pr, sinit,wgtgoal ,wgt fail , goal, fail) and rationals ϑ,
T with the following properties from the given parameters:

• For the two designated states goal and fail, we have Prmin
M,sinit (♢{goal, fail}) = 1.

• The expected number of steps until goal or fail is reached is T under any scheduler.

• The weight functions wgtgoal and wgt fail assign a weight between 0 and 2k to each
state-action pair.

• Emax
M,sinit (X) > ϑ if and only if there is an n with un < 0.

From this MDP M, we now construct a labeled MDP K. For each state-action pair
(s, α) of M with s ̸∈ {goal, fail}, we add a chain r1

s,α, . . . , r
4k
s,α of new states as depicted

in Figure 5.8: We redirect the transition from s when choosing α to this chain by setting
PK(s, α, r1

s,α). In the states of the chain only one action τ is enabled. The process
moves through the chain with probability 1 via this action, i.e., PK(ri

s,α, τ, r
i+1
s,α ) = 1
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Figure 5.8: Construction of K.

for all i < 4k. Then, the original transition is taken from the state r4k
s,α by setting

PK(r4k
s,α, τ, t) = P (s, α, t) for all states t of M. Instead of making goal and fail absorbing,

we furthermore add transitions back to the initial state sinit from goal and fail with
probability 1. Note that the expected time from sinit until sinit is reached again from goal
or fail is now T ′ = T (4k + 1) + 1 in K under any scheduler.

The labeling is now defined as follows: All states except for goal and fail are labeled
with a. States goal and fail are labeled with their names. Furthermore, in each of the
chains r1

s,α, . . . , r
4k
s,α, the first wgtgoal(s, α) of the states are labeled with b in addition to

the label a. The next wgt fail(s, α) states are labeled with c in addition to the a. As
wgtgoal(s, α) + wgt fail(s, α) ≤ 4k, this is always possible.

Consider now a path π of M from sinit to goal or fail. There is a unique corresponding
path π̂ in K. The counters induced by the DFA D as described above now behave exactly
like the accumulation weight functions wgtgoal and wgt fail . The counter value c1 counting
the number of runs in state q1 of D is precisely wgtgoal(π) when entering goal or fail as in
each chain of states r1

s,α, . . . , r
4k
s,α exactly wgtgoal(s, α)-many runs of D enter state q1. The

counter c2 behaves analogously in terms of the weight function wgt fail . As all states not
in {goal, fail} are labeled with a, the counters are also not reset. When entering goal, the
random variable X assigns weight wgtgoal(π) to the path π. The same weight is received
from the counter c1 in this case. When entering fail, weight wgt fail(π) is assigned by X

and received from the counters.
As the time required to reach sinit again from goal or fail in K in expectation is T ′ under

any scheduler, a scheduler maximizing the expected mean payoff in KD, i.e., according to
the weight function induced by the counter for D, hence has to maximize the expected
value of X when considered as a scheduler for M. By Theorem 4.16, the maximal mean
payoff in KD equals the maximal long-run probability LPmax

K,sinit (D). Putting these results
together, we obtain that

LPmax
K,sinit (D) > ϑ

T ′

if and only if the given linear recurrence sequence is eventually negative. We conclude
the Positivity-hardness result for long-run probabilities:
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Theorem 5.8. There is a fixed DFA D such that the Positivity problem is polynomial-
time reducible to the following problem: Given an MDP M and a rational χ, decide
whether LPmax

M (D) > χ.

Note that the Positivity-hardness holds for the fixed simple DFA D. This DFA con-
tains two states for which we have to keep a counter. In contrast, a DFA for aU b,
contains only one such state and allowed us to prove the existence of a saturation point.
This reflects exactly that partial expectations with non-negative weights can be computed
via the existence of a saturation point while the threshold problem for two-sided partial
expectations with non-negative weights is Positivity-hard.

A consequence of this result is that model checking of frequency-LTL in MDPs is at
least as hard as the Positivity problem. The decidability of the model-checking problem
for the full logic frequency-LTL has been left open in [FK15,FKK15]. Proving decidabil-
ity of the model-checking problem hence would settle the decidability of the Positivity
problem. The frequency-globally modality G>ϑ

inf (φ) of frequency-LTL is defined to hold
on a path π iff

lim inf
n→∞

1
n+ 1

n∑︂
i=0

1π[i... ]⊨φ > ϑ,

i.e. iff the long-run frequency of φ exceeds ϑ.

Theorem 5.9. There is a polynomial-time reduction from the Positivity problem to the
following qualitative model checking problem for frequency-LTL for a fixed LTL-formula
φ: Given an MDP M and a rational ϑ, is Prmax

M (G>ϑ
inf (φ)) = 1?

Proof. Consider the MDP K, the DFA D, and the threshold ϑ′ = ϑ/T ′ constructed above.
As the sets of states labeled with b and with c are disjoint and included in the set of states
labeled with a, and likewise the sets of states labeled with a, goal, and fail are pairwise
disjoint in K, a path of K has a prefix accepted by D if and only if the path satisfies

φ = (b ∧ (aU goal)) ∨ (c ∧ (aU fail).

We claim that there is a scheduler S with LPS
K,sinit (D) > ϑ′ if and only if there is a

scheduler T such that G>ϑ
inf (φ) holds with probability 1 under T in K.

Suppose there is a scheduler with S with LPS
K(D) > ϑ′. By Lemma 4.14, we can

assume that S is a finite-memory scheduler as the maximal long-run probability can be
approximated by finite-memory schedulers. As K is strongly connected, we can further
assume that S induces only one BSCC. We claim that under this scheduler S also
G>ϑ

inf (φ) holds with probability 1. For finite-memory schedulers, it is easy to check that
the expected long-run probability equals the expected long-run frequency as we obtain a
finite-state Markov chain: Let xs be the steady state probability of states s enriched with
memory modes in the single BSCC BS induced by S. Further, let ps be the probability
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that a run starting in s under S satisfies φ. Then, LPS
K(D) = ∑︁

s∈BS xs · ps (see Section
4.2.1). But the same expression also computes the expected frequency with which φ holds
on suffixes as shown in [FK15]. Furthermore, in a strongly connected Markov chain, the
frequency of φ along almost all paths agrees with the expected frequency (see [FK15]).
So,

lim inf
n→∞

1
n+ 1

n∑︂
i=0

1ζ[i... ]⊨φ > ϑ

holds on almost all paths ζ.
Conversely, if there is a scheduler T such that G>ϑ

inf (φ) holds with probability 1 under
T in K, the expected value ES

K(lim infn→∞
1

n+1
∑︁n

i=0 1ς[i... ]⊨φ) > ϑ. By an argument using
Fatou’s lemma analogously to the proof of Lemma 4.14, we can find a finite memory
scheduler with expected long-run frequency, and hence long-run probability, greater than
ϑ.

5.2.3 One-counter MDPs, energy objectives, cost
problems, and quantiles

In the introduction (Chapter 1), we discussed several problems and notions related
to stochastic shortest path problems – namely, one-counter MDPs, energy objectives,
cost problems, and quantiles. The core decision problem that arises for these notions
is the threshold problem for the maximal or minimal probability that the accumu-
lated weight satisfies an inequality constraint. More formally, given an MDP M =
(S,Act, P, sinit,wgt,Goal), an integer w, a probability value p ∈ [0, 1], and two inequal-
ity operators ▷◁, ▷◁′∈ {<,≤,≥, >} these questions come in a number of natural variants
where the maximum can also be replaced by a minimum:

1. Is Prmax
M,sinit (♢(accumulated weight ▷◁ w)) ▷◁′ p ?

2. Is Prmax
M,sinit ( Goal ▷◁ w) ▷◁′ p?

3. Is Prmax
M,sinit (total accumulated weight ▷◁ w) ▷◁′ p?

In question 3, we encounter the problem that the total accumulated weight of a path is
only defined if all transitions have weight 0 from some point on. If we require schedulers
to make sure that this is the case on almost all paths, we can alternatively add a state
goal together with transitions to this new states from all state in end components in
which all weights are 0. Instead of considering the total accumulated weight, we could
then consider the random variable goal as in question 2. Hence, we focus on the first
two questions. Note that in an MDP M with non-negative weights in which Goal is
reached almost surely, the first two questions coincide.
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For an overview what is known about these questions and one-counter MDPs, energy
objectives, cost problems, and quantiles, we refer to the discussion in Chapter 1. The
positive results from the literature concern MDPs with non-negative weights, qualitative
thresholds (p = 0 or p = 1), and the approximability of the optimal probabilities. The
general questions 1 and 2 in MDPs with integer weights are open.

Recall that a one-counter MDP is a finite-state MDP equipped with a counter and
for each transition it is specified whether it increases or decreases the counter or leaves it
unchanged (see [BBE+10,BBEK11,BKNW12]). The process starts with counter value 1 is
said to terminate as soon as the counter value reaches 0. The change of the counter value
behaves exactly like the accumulation of weight in our settings. On the other hand, we
can treat a weighted MDP as a one-counter MDP by viewing a transition with weight w as
a sequence of |w|-many steps in which the counter is increased or decrease, respectively.
This comes with the caveat that the size of the one-counter MDP corresponding to a
weighted MDP is then polynomial in the size of the weighted MDP and the numeric
value of the weights. In other words, the size of the one-counter MDP is roughly the size
of the weighted MDP when assuming that weights are encoded in unary. In our setting,
the termination of a one-counter MDP corresponds to the event

♢(accumulated weight < 0)

that the accumulated weight of a prefix of a path is below 0. The threshold problem
for the optimal termination probability of a one-counter MDP is hence an instance of
question 1. Besides the optimal termination probability, also the optimal expected time
before termination in one-counter MDPs that terminate almost surely has been addressed
in the literature. The threshold problem for the optimal expected termination time is
open as well. The complement of the termination of a one-counter MDP is described by
the condition

□(accumulated weight ≥ 0)

that the weight of all prefixes of a run is non-negative. This is precisely the energy
objective (see [CD11,BKN16,MSTW17]).

Question 2 is addressed in [HK15,HKL17,BBD+18] and called the cost problem (with
atomic cost formula) in [HK15]. The maximal or minimal value w such that a constraint
as in question 2 is satisfied is called a quantile. The computation of such quantiles is
addressed in [UB13,BDD+14,RRS17]. Of course, an algorithm computing quantiles can
directly be employed to solve the corresponding threshold problem.

In this section, we will show that the threshold problem for the optimal termination
probability of a one-counter MDP and hence question 1 is Positivity-hard. Our proof will
allow us to conclude that also question 2 is Positivity-hard and hence also an algorithm for
the computation of quantiles of the accumulated weight before reaching the goal would
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imply the decidability of the Positivity problem. Furthermore, we will show that the
threshold problem for the optimal expected termination time of almost surely terminating
one-counter MDPs is Positivity-hard, too.

Termination probability of one-counter MDPs. First, we will use the above
formulation of termination in terms of weighted MDPs to show the result for the ter-
mination probability of one-counter MDPs. We reuse the gadget Gᾱ which is possible
because the maximal termination probabilities p(s, w) in terms of the current state s

and counter value (accumulated weight) w satisfy the same optimality equation (∗) from
Section 5.1 as maximal partial expectations if we set p(s, w) = 1 for all w < 0. The
missing ingredient is again a gadget to encode the initial values of a linear recurrence
sequence. We first address the maximal termination probability and line out the neces-
sary adjustments to show Positivity-hardness also for the threshold problem for minimal
termination probabilities afterwards.

Theorem 5.10. The Positivity problem is reducible in polynomial time to the following
problem: Given an MDP M and a rational ϑ ∈ (0, 1), decide whether

Prmax
M,sinit (♢(accumulated weight < 0)) > ϑ.

Proof. Let k ≥ 2 be a natural number, α1, . . . , αk and β0, . . . , βk−1 rationals. Let (un)n≥0

be the linear recurrence sequence defined by the given k initial values and the linear
recurrence relation ui+k = α1 · ui+k−1 + · · · +αk · ui for all i ≥ 0. W.l.o.g., we can assume
that ∑︁k

i=1 |αi| < 1/(k + 1) and that 0 ≤ βj < 1/(k + 1) for all 0 ≤ j ≤ k − 1. We are
going to construct an MDP M and a rational ϑ ∈ (0, 1) such that

Prmax
M,sinit (♢( accumulated weight < 0)) > ϑ iff un < 0 for some n ≥ 0.

The MDP M is depicted in Figure 5.9 for k = 2 and assuming that α1 ≥ 0 while
α2 < 0. The weight function is called c. The initial gadget and the gadget Gᾱ are included
as before while goal is replaced by an absorbing state trap. The new gadget Oβ̄ encoding
the initial values β̄ works as follows: For 0 ≤ j ≤ k − 1, the action γj enabled in t leads
to state xj with probability k−j

k+1 + βj. By assumption on βj, this probability is less than
k−j+1

k+1 . The remaining probability leads to trap. In state s, the action δj leads to yj with
probability k−j

k+1 and to trap with the remaining probability. For 0 ≤ j ≤ k − 1, one
reaches trap from xj and yj with probability 1 and a counter change of −(j + 1).

In order to terminate, the accumulated weight has to drop below 0 before reaching
trap. As soon as the trap state is reached with non-negative accumulated weight, the
process cannot terminate anymore. The optimal decision in order to maximize the ter-
mination probability in state t is now easy to determine. Let ℓ be the current weight. If
0 ≤ ℓ ≤ k− 1, choosing action γ leads to termination with probability less than 1/(k+1)
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Figure 5.9: Full MDP for the reduction to the threshold problem for termination prob-
abilities of one-counter MDPs. The MDP contains the upper part for all 0 ≤ j ≤ k − 1.
The middle part is depicted for k = 2, α1 ≥ 0, and α2 < 0.

as trap is reached immediately with probability at least k/(k + 1). Choosing action γj

makes it impossible to terminate if ℓ > j. If ℓ ≤ j, then choosing γj lets the process
terminate if xj is reached. This happens with probability k−j

k+1 +βj. As βj < 1/(k+ 1) for
all j, the maximal termination probability is reached when choosing γℓ. If ℓ ≥ k, then γj

leads to termination with probability 0 for all j. Hence, action γ is optimal. Analogously,
we see that the optimal choice in state s with weight ℓ is δℓ if ℓ ≤ k − 1 and δ otherwise.

Let p(r, w) denote the optimal termination probability when starting in state r ∈ {t, s}
with accumulated weight w ≥ 0. The linear recurrence sequence (un)n≥0 now can be
found in terms of these optimal values: Consider again the difference d(w) = p(t, w) −
p(s, w). For counter value w ≤ k − 1, we have seen that γw and δw, respectively, are the
optimal actions. Hence, d(w) = uw in this case as we have just seen that the optimal
termination probability when starting with weight w ≤ k − 1 is k−w

k+1 + βw in t and k−w
k+1

in s. Furthermore, for w > k − 1, actions γ and δ are optimal. So, by the discussion
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in Section 5.1, the sequence of differences satisfies the linear recurrence relation given by
α1, . . . , αk. Therefore, d(w) = uw for all w ≥ 0. The state choice is reached with any
positive accumulated weight with positive probability. For the optimal choices in the
state choice with accumulated weight w, we observe that again choosing τ is optimal iff
d(w) ≥ 0. This in turn holds if and only if uw ≥ 0. Consider the scheduler S which
always chooses τ in state choice and afterwards behaves according to the optimal choices
as described above. This scheduler S is optimal if and only if the sequence (un)n≥0 is
non-negative. To complete the reduction, we compute the value

ϑ
def= PrSM,sinit (♢(accumulated weight < 0)).

We will see that ϑ is a rational computable in polynomial time and we know that
Prmax

M,sinit (♢(accumulated weight < 0)) ≤ ϑ if and only if the scheduler S is optimal
which is the case iff (un)n≥0 is non-negative.

In order to be able to obtain an explicit representation of the optimal termination
probabilities p(t, w) and p(s, w), we group these values into segments of k consecutive
weight values. We consider the Markov chain C (see Figure 5.5) again to determine how
the values for accumulated weights (n+ 1) ·k, . . . , (n+ 1) ·k+k− 1 depend on the values
for accumulated weights n ·k, . . . , n ·k+k−1. Similar to before, for n ≥ 1 and 0 ≤ i < k,
we have

p(t, nk + i) =
k∑︂

j=1

(︂
PrC,t+i

(♢t−k+j) · p(t, (n−1)k + j)

+ PrC,t+i
(♢t−k+j) · p(s, (n−1)k + j)

)︂
(5.2)

and analogously for p(s, nk+i). We now group the optimal values together in the following
vectors

vn = (p(t, nk + k − 1), p(t, nk + k − 2), . . . , p(t, nk), p(s, nk + k − 1), . . . , p(s, nk))t

for n ∈ N. In other words, this vector contains the optimal values for the termination
probability when starting in t or s with an accumulated weight from {nk, . . . , nk+k−1}.
The vector v0 is

(p(t, k − 1), . . . , p(t, 0), . . . p(s, k − 1), . . . , p(s, 0))t

and these values occur as transition probabilities in M under the actions γk−1, . . . , γ0 and
δk−1, . . . , δ0.
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As the reachability probabilities in C are rational and computable in polynomial time,
we conclude from equation (5.2) that there is a matrix A ∈ Q2k×2k computable in poly-
nomial time such that vn+1 = Avn for all n ∈ N. So, vn = Anv0 for all n ∈ N.

As state choice is reached with weight w with probability (1/2)w for all w ≥ 1, the
value ϑ = ∑︁∞

w=1(1/2)wp(t, w). Let c = ( 1
2k ,

1
2k−1 , . . . ,

1
21 , 0, . . . , 0). Observe that for all

n ∈ N, (︃ 1
2k

)︃n

· c · vn =
k∑︂

i=1

1
2nk+i

p(t, nk + i).

Hence, we can write

ϑ =
∞∑︂

n=0

(︃ 1
2k

)︃n

· c · vn − p(t, 0) = c ·
∞∑︂

n=0

(︃ 1
2k

)︃n

· vn − p(t, 0)

= c ·
∞∑︂

n=0

(︃ 1
2k

)︃n

· An · v0 − p(t, 0) = c ·
(︄ ∞∑︂

n=0

(︃ 1
2k

· A
)︃n
)︄

· v0 − p(t, 0).

We have to subtract p(t, 0) as the state choice cannot be reached with weight 0, but
the summand 1 · p(t, 0) occurs in the sum. As p(t, 0) = k

k+1 + β0, this does not cause a
problem. We claim that the matrix series involved converges to a rational matrix. As
before ∥ 1

2kA∥∞ < 1 and hence the Neumann series ∑︁∞
n=0( 1

2kA)n converges to (I2k − 1
2kA)−1

where I2k is the identity matrix of size 2k×2k. So,

ϑ = c · (I2k − 1
2k
A)−1 · v0 − p(t, 0)

is computable in polynomial time and

Prmax
M,sinit (♢(accumulated weight < 0)) ≤ ϑ

if and only if the given linear recurrence sequence (un)n≥0 is non-negative. The construc-
tion can be carried out in time polynomial in k and in the size of the representations of
α1, . . . , αk and β0, . . . , βk−1.

Note that the absolute value of the weights in the constructed MDP are at most k.
Hence, the one-counter MDP corresponding to the constructed MDP is only polynomially
larger after we replace the transitions with a weight by a sequence of states decreasing or
increasing the counter value.

The construction shows that the threshold problem for the maximal termination prob-
ability of one-counter MDPs is Positivity-hard. Using exactly the same ideas, we can show
that the threshold problem for the minimal termination probability is Positivity-hard as
well. Let us describe the necessary changes in the construction that are also depicted
in Figure 5.10. We rename the state trap to trap′ and add a transition with weight −k
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to a new absorbing state trap. From the states xj and yj now state trap is reached di-
rectly with probability 1 and weight −j. Furthermore, the probability to reach xj when
choosing γj in t is changed to j+1

k+1 + βj and the probability to reach trap′ is adjusted
accordingly. The analogous change is performed for δj. Now, it is easy to check that the
optimal choice to minimize the termination probability in state t is to choose γ if the
accumulated weight is ≥ k. In this case the probability of termination is less than 1

k+1 . If
the accumulated weight is 0 ≤ ℓ < k, the optimal choice is γℓ. The analogous result holds
in state s. From then on the proof goes as we have just seen for the maximal termination
probability with the change that we have to consider the scheduler S always choosing
σ in the state choice this time. This scheduler is optimal to minimize the termination
probability if and only if the given linear recurrence sequence is non-negative. With these
adjustments, we conclude:

Corollary 5.11. The Positivity problem is reducible in polynomial time to the following
problem: Given an MDP M and a rational ϑ ∈ (0, 1), decide whether

Prmin
M,sinit (♢(accumulated weight < 0)) < ϑ.

t

t1

t2

trap′

trap

c : −k

s

s1

s2

xj yj

1 − |α1| − |α2|

|α1|
|α2|

γ

c : −1

c : −2

1 − |α1| − |α2|

|α1|
|α2| δ

c : −1

c : −2

c : −j

j+1
k+1 + βj

k−j
k+1 − βj

γj

c : −j

j+1
k+1

k−j
k+1

δj

Figure 5.10: Necessary changes to the construction for the result for minimal ter-
mination probabilities. The initial component of the MDP is omitted here and stays
unchanged.
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Energy objectives. As the energy objective □(accumulated weight ≥ 0) is satisfied
if and only if ♢(accumulated weight < 0) does not hold, the Positivity-hardness of the
threshold problem of the optimal satisfaction probability of an energy objective follows
easily. As

Prmax
M,sinit (□(accumulated weight ≥ 0)) = 1 − Prmin

M,sinit (♢(accumulated weight < 0)),

we conclude:

Corollary 5.12. The Positivity problem is reducible in polynomial time to the following
problems: Given an MDP M and a rational ϑ ∈ (0, 1), decide whether

Prmax
M,sinit (□(accumulated weight ≥ 0)) > ϑ

and decide whether

Prmin
M,sinit (□(accumulated weight ≥ 0)) < ϑ.

Cost problems and quantiles. The proof of the Positivity-hardness of the threshold
problem for the termination probability of one-counter MDPs in fact also serves as a
proof that cost problems and the computation of quantiles of the accumulated weight
before reaching a goal state are Positivity-hard. Observe that in the MDP constructed
for Theorem 5.10 and Corollary 5.11, almost all paths ζ under any scheduler satisfy
♢(accumulated weight < 0) iff they satisfy trap(ζ) < 0 iff their total accumulated weight
is less than 0. Thus, we obtain the following corollary:

Corollary 5.13. The Positivity problem is reducible in polynomial time to the following
problems: Given an MDP M with a designated set of trap states Goal and a rational
ϑ ∈ (0, 1), decide whether

Prmax
M,sinit ( Goal < 0) > ϑ

and decide whether
Prmin

M,sinit ( Goal < 0) < ϑ.

The analogous result also holds for the total accumulated weight.

Termination times of one-counter MDPs. To conclude the section, we show that
not only the threshold problems for optimal termination probabilities, but also for the
optimal expected termination times in one-counter MDPs that terminate almost surely
is Positivity-hard. We again work with weighted MDPs. Let T be the random variable
that assigns to each path in a weighted MDP M the length of the shortest prefix such
that the accumulated weight is < 0 after the prefix. To reflect precisely the behavior of a
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trap

terminal terminal ′

c : +1

c : 0

c : −1

Figure 5.11: Necessary changes to the construction for the result for for maximal
expected termination times.

one-counter MDP, we now will work with MDPs where the weight is reduced or increased
by at most 1 in each step. We make a small change to the MDP constructed for the
proof of Corollary 5.11 that is depicted in Figure 5.10. The initial component (that is
not depicted) stays unchanged. For the remaining transitions, all transition reduce the
weight or leave it unchanged. The transitions with weight 0 do not occur directly after
each other except for the loop at the state trap that we adjust in a moment. Hence, we
can add additional auxiliary states such that along each path starting from s or t not
reaching the state trap, the weight is left unchanged and reduced by 1 in an alternating
fashion. So, if a path starts in state s or t with accumulated weight w and terminates
(i.e. reaches accumulated weight −1) before reaching the state trap this takes 2(w + 1)
steps. Now, we replace the loop at the state trap by the gadget depicted in Figure 5.11
and let us call the resulting MDP N . So, when reaching trap the accumulated weight
is increased by 1 before it is reduced in every other step until termination. That means
that if a path starting in state s or t with weight w does not terminate before reaching
trap, the termination time is 2(w + 1) + 3 steps.

Now, let S be a scheduler and denote the probability not to terminate before reaching
trap under S by pS. For the expected termination time T in N , we now have

ES
N ,sinit =

(︄ ∞∑︂
i=1

(1/2)i(i+ 2(i+ 1))
)︄

+ 3 · pS = 7 + 3 · pS.

The summands (1/2)i(i+ 2(i+ 1)) correspond to the probability to accumulated weight
i in the initial component which takes i steps and the 2(i+ 1) steps needed to terminate
by alternatingly leaving the weight unchanged and reducing it by 1. The three additional
steps after trap occur precisely with probability pS.

Not terminating before trap corresponds exactly to not terminating at all in the MDP
constructed for Corollary 5.11. The termination probability there is hence 1 − pS for any
scheduler. It is hence possible to terminate with a probability less than ϑ in that MDP if
and only if it is possible to reach an expected termination time of more than 10 − 3ϑ in
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N . By Corollary 5.11 and the fact that termination is reached almost surely in N under
any scheduler, we hence conclude:

Corollary 5.14. Let M be a one-counter MDP with initial state sinit that terminates
almost surely under any scheduler, let ϑ be a rational, and let T be the random vari-
able assigning the termination time to runs. The Positivity problem is polynomial-time
reducible to the problem whether

Emax
M,sinit (T ) > ϑ.

By similar changes to the MDP used in the proof of Theorem 5.10, we can show the
same result for the problem whether Emin

M,sinit (T ) < ϑ.

5.2.4 Conditional value-at-risk for accumulated weights
Lastly, we aim to prove the Positivity-hardness of the threshold problem for the condi-
tional value-at-risk in this section. Paths with low weight are considered to be the bad
outcomes in the sequel denoted by the ↓ in the index. The main result of the section is
the following:

Theorem 5.15. The Positivity problem is polynomial-time reducible to the following
problem: Given an MDP M and rationals ϑ and p ∈ (0, 1), decide whether

CVaRmax
↓,p ( goal) > ϑ.

We will use an auxiliary optimization problem to prove this result. We begin with
the following consideration: Given an MDP M with initial state sinit, we construct a new
MDP N . We add a new initial state s′

init. In s′
init, there is only one action with weight 0

enabled leading to sinit with probability 1
3 and to goal with probability 2

3 . So, at least two
thirds of the paths accumulate weight 0 before reaching the goal. Hence, we can already
say that VaRS

1/2( goal) = 0 in N under any scheduler S. Note that schedulers for M can
be seen as schedulers for N and vice versa. This considerably simplifies the computation
of the conditional value-at-risk in N . Define the random variable goal(ζ) to be goal(ζ)
if goal ≤ 0 and to be 0 otherwise. Now, the conditional value-at-risk for the probability
value 1/2 under a scheduler S in N is given by CVaRS

1/2( goal) = 2 · ES
N ,sinit ( goal) =

2
3 · ES

M,sinit ( goal). So, the result follows from the following lemma:

Lemma 5.16. The Positivity problem is polynomial-time reducible to the following prob-
lem: Given an MDP M and a rational ϑ, decide whether Emax

M,sinit ( goal) > ϑ.

Proof. The first important observation is that the optimal expectation e(q, w) of goal for
different starting states q and starting weights w satisfies Equation (∗) from Section 5.1,
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i.e., e(q, w) = ∑︁
r∈S P (q, α, r) · e(r, w+wgt(q, α)) if an optimal scheduler chooses actions

α in state q ̸= goal when the accumulated weight is w. The value e(goal, w) is w if w ≤ 0
and 0 otherwise. This allows us to reuse the gadget Gᾱ to encode a linear recurrence
relation.

We again adjust the gadget encoding the initial values of a linear recurrence sequence.
So, let k be a natural number, α1, . . . , αk be rational coefficients of a linear recurrence
sequence, and β0, . . . , βk−1 ≥ 0 the rational initial values. W.l.o.g. we again assume
these values to be small, namely: ∑︁

1≤i≤k |αi| ≤ 1
5(k+1) and for all j, βj ≤ 1

3α where
α = ∑︁

1≤i≤k |αi|.
The new gadget that encodes the initial values of a linear recurrence sequence is

depicted in Figure 5.12. In states t and s, there is a choice between actions γj and δj,
respectively, for 0 ≤ j ≤ k − 1. After glueing together this gadget with the gadget
Gᾱ at states t, s, and goal, we prove that the interplay between the gadgets is correct:
Let 0 ≤ j ≤ k − 1. Starting with accumulated weight −k+j in state t, the action γj

maximizes the partial expectation among the actions γ0, . . . , γk−1. Likewise, δj is optimal
when starting in s with weight −k+j. If the accumulated weight is non-negative in state
s or t, then γ or δ are optimal. The idea is that for positive starting weights, the tail
loss of γi and δi is relatively high while for weights just below 0, the chance to reach goal
with positive weight again outweighs this tail loss.

First, we estimate the expectation of goal when choosing δi and δ while the accumu-
lated weight is −k+j in s. If i > j, then δi and δ lead to goal directly with probability
1−α and weight ≤ −1. So, the expectation is less than −(1 − α) ≤ −1+ 1

5(k+1) .
If i ≤ j, then with probability 1−α goal is reached with positive weight, hence goal

is 0 on these paths. With probability βi, goal is reached via y′
j. In this case all runs

reach goal with negative weight. On the way to y′
j weight 2k is added, but afterwards

subtracted again at least once. In expectation weight 2k is subtracted k+1
k

many times.
Furthermore, −2k+i is added to the starting weight of −k+j. So, these paths contribute
βi·(2k−2k k+1

k
−3k+j+i) = (−3k+j+i−2)·βi to the expectation of goal. With analogous

reasoning, we see that the remaining paths contribute (−3k+j+i−1) · (α−βi). So, all in
all the expectation of goal in this situation is α·(−3k+j+i−1)−βi. Now, as α ≤ 1

5(k+1)
and βi ≤ α

3 for all i, we see that α·(−3k+j+i−1)−βi ≥ −(3k + 2)α ≥ −1+ 1
5(k+1) . The

optimum with i ≤ j is obtained for i = j as βi ≤ α/3 for all i. Hence indeed δj is the
optimal action. For γj the same proof with βi = 0 for all i leads to the same result.

Now assume that the accumulated weight in t or s is ℓ ≥ 0. Then, all actions lead
to goal with a positive weight with probability 1 − α. In this case goal is 0. However,
a scheduler S which always chooses γ and δ is better than a scheduler choosing γj or
δj for any j ≤ k−1. Under scheduler S starting from s or t a run returns to {s, t}
with probability α while accumulating weight ≥ −k and the process is repeated. After
choosing γj or δj the run moves to xj, yj or y′

j while accumulating a negative weight.
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t
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goal yj
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Figure 5.12: The gadget encoding initial values for the reduction to the threshold
problem for the conditional value-at-risk. The gadget contains the depicted states and
actions for each 0 ≤ j ≤ k − 1. The probability α is ∑︁1≤i≤k |αi|.

From then on, in each step it will stay in that state with probability greater than α and
accumulate weight ≤ −k. Hence, the expectation of goal is lower under γj or δj than
under S. Therefore indeed γ and δ are the best actions for non-negative accumulated
weight in states s and t.

Let now e(t, w) and e(s, w) denote the optimal expectations of goal when starting
in t or s with weight w. Further, let d(w) = e(t, w) − e(s, w). From the argument above,
we also learn that the difference d(−k+j) is equal to βj, for 0 ≤ j ≤ k− 1 . Put together
with the linear recurrence encoded in Gᾱ this shows that d(−k + w) = uw for all w
where (un)n∈N is the linear recurrence sequence specified by the αi, βj, 1 ≤ i ≤ k, and
0 ≤ j ≤ k−1.

Finally, we add the same initial component as in the previous section to obtain an
MDP M. Let S be the scheduler always choosing τ in state c and afterwards following the
optimal actions as described above is optimal iff the linear recurrence sequence stays non-
negative. The remaining argument goes completely analogously to the proof of Theorem
5.10. Grouping together the optimal values in vectors vn with 2k entries as done there,
we can use the same Markov chain as in that proof to obtain a matrix A such that
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vn+1 = Avn. This allows us to compute the rational value ϑ = ES
M,sinit ( goal) via a

matrix series in polynomial time and Emax
M,sinit ( goal) > ϑ if and only if the given linear

recurrence sequence is eventually negative.

By the discussion above, this lemma directly implies Theorem 5.15. With adaptions
similar to the previous section, it is possible to obtain the analogous result for the minimal
expectation of goal. This implies that also the threshold problem whether the minimal
conditional value-at-risk is less than a threshold ϑ, CVaRmin

↓,p ( goal) < ϑ, is Positivity-
hard.
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CHAPTER

SIX

APPROXIMATION ALGORITHMS

The Positivity-hardness results of the previous chapter show that we cannot expect to be
able to compute the optimal values in the non-classical stochastic shortest path problems
we investigated with known techniques. Therefore, we now turn our attention to the ap-
proximability of these values. For practical purposes, efficient approximation algorithms
are usually sufficient for the development of useful tools.

But also from a theoretical point of view, the approximability results we present here
are interesting. After proving Positivity-hardness, the question whether the two non-
classical stochastic shortest path problems are undecidable remains open. The arguably
most famous undecidability result in a similar setting is the undecidability of the empti-
ness problem for probabilistic finite automata (PFA) [Paz71]. In a PFA, the successor
state in each step is chosen according to a probability distribution that depends on the
current state and the current letter of an input word. The emptiness problem asks whether
there is a finite input word w such that the probability to be in an accepting state of the
PFA after reading the input word w is at least ϑ for some given threshold ϑ. In the ter-
minology of MDPs, input words can be regarded as deterministic schedulers that cannot
take any information on the current state or the history of a run into account, but have to
schedule a sequence of actions without further information. From this perspective, PFAs
can be seen to be unobservable MDPs, sometimes called blind partially observable MDPs
(see, e.g., [PT87,MHC99,CCT16]). This emptiness problem for PFAs has been shown to
be undecidable by Paz [Paz71]. Furthermore, Condon and Lipton [CL89] showed that it
is impossible to approximate the value of a PFA, i.e., the supremum over the probabilities
with which finite words are accepted. In this chapter, we will prove that the optimal par-
tial and conditional expectations can be approximated. This is a strong indication that
the problems are fundamentally different from the emptiness problem for PFAs. More
precisely, the goal of this section is the proof of the following theorem.
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Theorem 6.1. Let M = (S,Act, P, sinit,wgt,Goal) be an MDP with PEmax
M,sinit < ∞ and

let ε > 0. The maximal partial expectation PEmax
M,sinit can be approximated up to an absolute

error of ε in time exponential in the size of M and polynomial in log(1/ε).
If further CEmax

M,sinit < ∞, also CEmax
M,sinit can be approximated up to an absolute error

of ε in time exponential in the size of M and polynomial in log(1/ε).

Afterwards, we prove a hardness result for approximations. Namely, we show that
there are no polynomial-time approximation algorithms if P ̸= PSPACE.

Outline. We first show how we can estimate bounds on the growth of the accumulated
weights in an MDP (Section 6.1). Then, we show that there are ε-optimal schedulers for
the partial expectation which become memoryless as soon as the accumulated weight
leaves a sufficiently large weight window around 0. This result uses a weak form of
saturation points. This insight can be used to compute approximations of the optimal
partial expectation (Section 6.2). The result can be extended to conditional expectations
via an approximate binary search (Section 6.3). We conclude by presenting the hardness
result (Section 6.4).

Related Work. For some of the problems that we have shown to be Positivity-hard
in the previous chapter, approximation algorithms have been provided in the literature:
The optimal termination probability of one-counter MDPs is shown to be approximable
in [BBEK11] while an analogous result for the expected termination time of almost surely
terminating one-counter MDPs is shown in [BKNW12]. Conceptually, these approxima-
tion algorithms are similar to our approximation algorithms as they estimate counter
values from which on ϵ-optimal schedulers can behave memorylessly.

In MDPs with an energy objective, it has been shown that the maximal expected
mean payoff among schedulers satisfying the energy objective with probability 1 can be
approximated [BKN16]. For cost problems, [HKL17] proves that the probability with
which the accumulated cost satisfies a Boolean combination of inequality constraints
when entering a target state can be approximated in Markov chains.

Note on the publication of the results. The approximation algorithms for par-
tial and conditional expectations have been presented in [PB19]. Here, we additionally
provide the hardness result (Section 6.4).

6.1 Bounding the growth of weights
In this section, we will start by providing estimations to be able to bound the possible
growth of weights in an MDP. As a result, we are able to provide upper bounds on the
optimal partial and conditional expectation that we need in the subsequent sections. Let
M = (S,Act, P, sinit,wgt,Goal) be an MDP with PEmax

M,sinit < ∞. We have seen in Chapter
3 that finiteness of PEmax

M,sinit can be checked in polynomial time. After a successful check
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of finiteness and the usual pre-processing, we can assume that all end components have
negative maximal expected mean payoff and that Goal consists of an absorbing state
goal that can be reached from all states except for one absorbing state fail. Let δ be
the minimal non-zero transition probability in M and W := maxs∈S,α∈Act(s) |wgt(s, α)|.
To compute an upper bound on the partial expectation in M, we are going to com-
pute a weight value cM and a probability λM such that the probability to accumulated
weight above cM from any state in M is at most λM. Considering the MEC-quotient
MEC (M), there are two ways to accumulate weight: Weights can be accumulated while
taking transitions in the MEC-quotient moving between the MECs and weights can be
accumulated by moving around inside a MEC. For the first way to accumulate weight,
we can make an easy estimation: Moving through the MEC-quotient, the probability to
reach an accumulated weight of |S| · W is bounded by 1 − δ|S| as goal or fail is reached
within S steps with probability at least 1 − δ|S|. It remains to show similar bounds inside
an end component.

We will use the characterization of the maximal expected mean payoff in terms
of super-harmonic vectors due to Hordijk and Kallenberg [HK79] to define a super-
martingale controlling the growth of the accumulated weight in an end component under
any scheduler. We will, however, not dive into the definition of super-martingales here
because the arguments in the sequel can be carried out without the definition. For the
reader familiar with the notion, we will briefly point out the super-martingale. As the
value vector for the maximal mean payoff in an end component is constant and negative
in our case, the results of [HK79] that were also briefly discussed in Chapter 2 yield:
Proposition 6.2 (Hordijk, Kallenberg [HK79]). Let E = (S,Act) be an end component
of M with maximal mean payoff −t for some t > 0. Then there is a vector (us)s∈S such
that −t+ us ≥ wgt(s, α) +∑︁

s′∈S P (s, α, s′) · us′ for all s ∈ S and α ∈ Act(s).
Furthermore, let v be the vector (-t,. . . ,-t) in RS. Then, (v, u) is the solution to a

linear program with 2|S| variables, 2|S||Act| inequalities, and coefficients formed from the
transition probabilities and weights in E.

We will call the vector u a super-potential because the expected accumulated weight
after i steps is at most us − mint∈S ut − i · t when starting in state s.

Let now S be a scheduler for E starting in some state s. We define the following
random variables on S-runs in E : let s(i) ∈ S be the state after i steps, let α(i) be
the action chosen after i steps, let w(i) be the accumulated weight after i steps, and let
π(i) be the history, i.e. the finite path after i steps. To keep the notation simple, we do
not include the scheduler S to the notation although these random variables of course
depend on S.
Lemma 6.3. The sequence m(i) def= w(i) + us(i) satisfies

E(m(i+ 1)|π(0), . . . , π(i)) ≤ m(i) − t
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for all i.

Proof. By Proposition 6.2, E(m(i + 1)|π(0), . . . , π(i)) − m(i) = wgt(s(i),S(π(i))) +∑︁
s′∈S P (s(i),S(π(i)), s′) · us′ − us(i) ≤ −t.

The statement of the lemma means that m(i)+ i · t is a super-martingale with respect
to the histories π(i). We can now estimate the growth of the weight inside an end
component by applying the following theorem by Blackwell [Bla54].

Theorem 6.4 (Blackwell [Bla54]). Let X1, X2, . . . be random variables and define the
random variable Sn

def= ∑︁n
k=1 Xk. Assume that |Xi| ≤ 1 for all i and that there is a u > 0

such that E(Xn+1|X1, . . . , Xn) ≤ −u. Then,

Pr(sup
n∈N

Sn ≥ t) ≤
(︃1 − u

1 + u

)︃t

.

We denote maxs′∈S us′ − mins′∈S us′ by ∥u∥. Observe that

|m(i+ 1) −m(i)| ≤ ∥u∥ +W =: cE .

We can rescale the sequence m(i) by defining m′(i) def= (m(i) − m(0))/cE . This ensures
that m′(0) = 0, |m′(i+ 1) −m′(i)| ≤ 1 and E(m′(i+ 1)|m′(0), . . . ,m′(i)) ≤ −t/cE for all
i. In this way, we arrive at the following conclusion, putting λE := 1−t/cE

1+t/cE
.

Corollary 6.5. For any scheduler S and any starting state s in E, we have

PrSs (♢wgt ≥ (k+1) · cE) ≤ λk
E .

Proof. By Theorem 6.4,

PrSs (♢wgt ≥ (k + 1) · cE) ≤ PrSs (♢wgt ≥ ∥u∥ + k · cE)
≤ PrSs (∃i : m(i) −m(0) ≥ k · cE)
≤ PrSs (sup

i∈N
m′(i) ≥ k)

≤
(︄

1 − t/cE

1 + t/cE

)︄k

.

Let MEC be the set of maximal end components in M. For each E ∈ MEC , let λE

and cE be as in Corollary 6.5. Define

λM
def= 1 − (δ|S| ·

∏︂
E∈MEC

(1 − λE)),
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and
cM

def= |S| ·W +
∑︂

E∈MEC
cE .

Then an accumulated weight of cM cannot be reached with a probability greater than
λM because reaching accumulated weight cM would require reaching weight cE in some
end component E or reaching weight |S| ·W in the MEC-quotient and 1 − λM is a lower
bound on the probability that none of this happens (under any scheduler).

After bounding the growth of the accumulated weight in M, we are now in the position
to provide upper bounds on the partial and conditional expectation.

Proposition 6.6. Let M be as above. There is an upper bound PEub for the partial
expectation in M computable in polynomial time.

Proof. In any end component E , the maximal mean payoff −t and the super-potential
u are computable in polynomial time. Hence, cE and λE , and in turn also cM and λM

are also computable in polynomial time. When we reach accumulated weight cM for
the first time, the actual accumulated weight is at most cM + W . So, we conclude that
Prmax

M,s(♢wgt ≥ k · (cM + W )) ≤ λk
M for all s ∈ S. The partial expectation can now be

bounded by ∑︁∞
k=0(k + 1) · (cM +W ) · λk

M = cM+W
(1−λM)2 .

Corollary 6.7. Let M be as before and assume that CEmax
M,sinit < ∞. There is an upper

bound CEub for the conditional expectation in M computable in polynomial time.

Proof. By the pre-processing described in Chapter 3, we can construct an MDP N in
which goal is reached with positive probability under any scheduler in polynomial time
with CEmax

M,sinit = CEmax
N ,sinit . As q = Prmin

N ,sinit (♢goal) is computable in polynomial time,
the bound CEub def= PEub/q is an upper bound for the conditional expectation in M
computable in polynomial time.

These upper bounds serve as an ingredient for the computation of a weak form of
“saturation point” for MDPs with integer weights in the next section.

6.2 Approximating optimal partial expectations
Recall that there are no saturation points in MDPs with integer weights that provide a
bound on the accumulated weight above which optimal schedulers can switch to memo-
ryless behavior (see Section 3.2.3). Nevertheless, we can compute a bound below which
optimal schedulers can only choose actions that make it possible to reach goal with the
minimal possible probability. This will allow us to approximate the maximal partial
expectation by finite-memory schedulers that switch to memoryless behavior once a suf-
ficiently large weight window around 0 is left.
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Let M be as above with PEmax
M,sinit < ∞ and let PEub be the upper bound on the partial

expectation that we just computed. For each state s ∈ S, we define pmax
s = Prmax

M,s(♢goal)
and pmin

s = Prmin
M,s(♢goal). Further, for opt ∈ {max,min} and each state-action pair

(s, α), let popt
s,α = ∑︁

t∈S P (s, α, t) · popt
t and let Actopt(s) = {α ∈ Act(s)|popt

s,α = popt
s }.

As we have also seen in Chapter 3, we can compute a memoryless deterministic sched-
ulers Max in polynomial time that maximizes the partial expectation among all schedulers
reaching goal with maximal probability. To compute this scheduler, we can solve a clas-
sical stochastic shortest path problem in the MDP Mmax in which only actions in Actmax

are enabled. We scale down the weight of a state-action pair (s, α) to wgt(s, α) · pmax
s and

maximize the accumulated weight before reaching goal or fail according to this weight
function. Likewise, we can compute a memoryless scheduler Min maximizing the partial
expectation among all scheduler reaching goal with minimal probability.

The idea for the approximation is to use the approximate value PEMax
M,s + w · pmax

s for
the maximal partial expectation if a high weight w has been accumulated in state s.
Similarly, for small weights w′, we use the value PEMin

M,s + w · pmin
s . We will first provide

a lower “saturation point” making sure that only actions minimizing the probability
to reach the goal are used by an optimal scheduler as soon as the accumulated weight
drops below this saturation point. The argument is similar to the proof of the existence
of a saturation point in the setting with non-negative weights as in Proposition 3.26.
In contrast to the setting with non-negative weights, it is not the case that below the
“saturation point” there is a fixed memoryless scheduler providing the optimal decisions
– hence the quotation marks.

Proposition 6.8. Let M be as above. Let s ∈ S and let

qs
def= PEub − PEMin

s

pmin
s − min

α ̸∈Actmin(s)
pmin

s,α

.

Then any weight-based deterministic scheduler S maximizing the partial expectation in
M satisfies S(s, w) ∈ Actmin(s) if w ≤ qs.

Proof. Suppose a weight-based deterministic scheduler S chooses an action α ̸∈ Actmin(s)
at state s when the accumulated weight is w < qs. The partial expectation from s on
starting with weight w is then bounded from above by

PEub + w · pmin
s,α .

The scheduler Min achieves a partial expectation from this situation of

PEMin
s + w · pmin

s .
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The value qs is chosen such that it follows that Min achieves a higher partial expectation
from this situation on for w < qs. For an optimal scheduler, we can hence indeed assume
that it only chooses actions from Actmin(s) for weights below qs.

Let q
def= mins∈S qs and let D def= PEub − min{PEMax

s ,PEMin
s |s ∈ S}. Given ε > 0, we

define R+
ε

def= (cM +W ) ·
⌈︂

log(2D)+log(1/ε)
log(1/λM)

⌉︂
and R−

ε
def= q −R+

ε .

Theorem 6.9. With all notation as above, there is a weight-based deterministic scheduler
S such that the scheduler T defined by

T(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S(π) if any prefix π′ of π satisfies R−
ε ≤ wgt(π′) ≤ R+

ε ,

Max(π) if the shortest prefix π′ of π with wgt(π′) ̸∈ [R−
ε , R

+
ε ]

satisfies wgt(π′) > R+
ε ,

Min(π) otherwise,

satisfies PET
sinit ≥ PEmax

sinit − ε.

Proof. Let S be a weight-based deterministic scheduler with PES
sinit = PEmax

sinit . Define

T(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S(π) , if any prefix π′ of π satisfies R−
ε ≤ wgt(π) ≤ R+

ε ,

Max(π) , if the shortest prefix π′ of π with wgt(π′) ̸∈ [R−
ε , R

+
ε ]

satisfies wgt(π′) > R+
ε ,

Min(π) , otherwise.

We give an estimation for the difference PEmax
sinit − PET

sinit . In order to do so, we define the
following two sets:

Π+
ε := {π finite S-path |wgt(π) ≥ R+

ε

and for any proper prefix π′ of π, R−
ε ≤ wgt(π′) ≤ R+

ε },
Π−

ε := {π finite S-path |wgt(π) ≤ R−
ε

and for any proper prefix π′ of π, R−
ε ≤ wgt(π′) ≤ R+

ε }.

Denote by PEmax
s [w] the maximal partial expectation when starting in state s with weight

w. The schedulers S and T agree on all paths not in Π+
ε or Π−

ε . Hence,

PEmax
sinit − PET

sinit

=
∑︂

π∈Π+
ε

PrSsinit (π) · (PEmax
last(π)[wgt(π)] − PEMax

last(π) − pmax
last(π) · wgt(π)) +

∑︂
π∈Π−

ε

PrSsinit (π) · (PEmax
last(π)[wgt(π)] − PEMin

last(π) − pmin
last(π) · wgt(π)).
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For the first sum, we have the following estimation:
∑︂

π∈Π+
ε

PrSsinit (π) · (PEmax
last(π)[wgt(π)] − PEMax

last(π) − pmax
last(π) · wgt(π))

≤
∑︂

π∈Π+
ε

PrSsinit (π) · (PEmax
last(π) − PEMax

last(π))

≤ PrSsinit (Π
+
ε ) ·D ≤ PrSsinit (♢wgt ≥ R+

ε ) ·D

≤ λ
log(2D)+log(1/ε)

log(1/λM)
M ·D = 2log(λM)· log(2D)+log(1/ε)

log(1/λM) ·D = 2log(ε)−log(2D) ·D = ε/2.

For the second sum, consider the following scheduler. On extensions of paths in Π−
ε ,

let S′ be the scheduler which behaves like S until the accumulated weight is at least q

again and then switches to the choices of Min. We know that S only chooses actions in
Actmin(s) when in a state s with accumulated weight below q. On the other hand, Min

is optimal among these schedulers. So, Min is at least as good as S′ on extensions of
paths in Π−

ε with respect to maximizing the partial expectation. Further, starting at a
path in Π−

ε we reach an accumulated weight of at least q only if we accumulate a weight
of at least R+

ε . Afterwards, we can bound the advantage of S over Min by D. So, we
get the following estimation:

∑︂
π∈Π−ε

PrSsinit (π) · (PEmax
last(π)[wgt(π)] − PEMin

last(π) − pmin
last(π) · wgt(π))

≤
∑︂

π∈Π−
ε

PrSsinit (π) · (Prmax
last(π)(♢wgt ≥ R+

ε ) ·D) ≤ ε/2.

So, PEmax
sinit − PET

sinit ≤ ε.

This result now allows us to compute an ε-approximation and an ε-optimal scheduler
with finite memory by linear programming, similar to the case of non-negative weights,
in a linear program with R+

ε +R−
ε many variables and |Act|-times as many inequalities.

Theorem 6.10. PEmax
sinit can be approximated up to an absolute error of ε in time expo-

nential in the size of M and polynomial in log(1/ε).

Proof. We have seen that R−
ε and R+

ε can be computed in time polynomial in the size of
M. Their numeric values are hence at most exponential in the size of M. Furthermore,
these numeric values are linear in log(1/ε). Consider the following linear program with
one variable xs,w for each s ∈ S and R−

ε −W ≤ w ≤ R+
ε +W :

Minimize ∑︁s,w xs,w under the following constraints:

xgoal,w = w, and xfail,w = 0,



6. Approximation Algorithms 167

for w ≥ R+
ε and s ∈ S \ {goal, fail},

xs,w = PEMax
s + pmax

s · w,

for w ≤ R−
ε and s ∈ S \ {goal, fail},

xs,w = PEMin
s + pmin

s · w,

and for R−
ε < w < R+

ε , s ∈ S \ {goal, fail}, and α ∈ Act(s),

xs,w ≥
∑︂
t∈S

P (s, α, t) · xt,w+wgt(s,α).

We can interpret the linear program as a linear program for weighted reachability on an
MDP with state space S × {R−

ε − W, . . . , R+
ε } and the transitions induced by M. This

MDP now has no end components. Hence, the linear program has a unique solution.
This solution corresponds to the optimal value among the schedulers of the form of T in
the previous theorem.

6.3 Transfer to conditional expectations
To approximate the optimal conditional expectation, we will use the reduction from
the threshold problem for conditional expectations to the threshold problem for partial
expectations. Via the approximation algorithm for the optimal partial expectation, we
can conduct an approximate binary search for the optimal conditional expectation. Let us
recall the reduction: Given an MDP M = (S,Act, P, sinit,wgt,Goal) with CEmax

M,sinit < ∞
and a rational ϑ, we add a new initial state s′

init from which sinit is reached with probability
1 and weight −ϑ to obtain an MDP Mϑ. Then, CEmax

M,sinit > ϑ if and only if PEmax
Mϑ,s′

init
> 0.

Let us denote the value PEmax
Mϑ,s′

init
by PEmax

M,sinit [−ϑ], i.e., the parameter −ϑ indicates the
starting weight in the initial state sinit.

The approximation algorithm works as follows: Let M = (S,Act, P, sinit,wgt,Goal)
be an MDP with CEmax

M,sinit < ∞ and let ε > 0. After our pre-processing procedure, we
can assume that p def= Prmin

M,sinit (♢goal) is positive. For the optimal conditional expectation,
we know that

CEmax
M,sinit ∈ [CEMax

M,sinit ,CE
ub].

We perform a binary search to approximate CEmax
M,sinit : We put A0 := CEMax

M,sinit and
B0 := CEub. Given Ai and Bi, let ϑi := (Ai+Bi)/2. Then, we approximate PEmax

sinit [−ϑi] up
to an absolute error of p·ε. Let Ei be the value of this approximation. If Ei ∈ [−2p·ε, 2p·ε],
terminate and return θi as the approximation for CEmax

sinit . If Ei < −2p · ε, put Ai+1 := Ai

and Bi+1 := ϑi, and repeat. If Ei > 2p · ε, put Ai+1 := ϑi and Bi+1 := Bi, and repeat.
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Theorem 6.11. The procedure terminates after at most ⌈log((A0−B0)/(p·ε))⌉ iterations
and returns an 3ε-approximation of CEmax

sinit in time exponential in the size of M and
polynomial in log(1/ε).

Proof. We begin by showing that the algorithm terminates after at most ⌈log((A0 −
B0)/(ε · p))⌉ many iterations, i.e. when |Ai − Bi| ≤ ε · p. We know that PEmax

sinit [−θi] < 0
if Ei < −2pε and PEmax

sinit [−θi] > 0 if Ei > 2pε. By the reduction between the threshold
problems, we conclude that CEmax

sinit ∈ [Ai+1, Bi+1] at any time. So, after at most log((A0 −
B0)/(ε · p)) many iteration, we have that |Ai − Bi| ≤ ε · p and hence CEmax

sinit − ε · p ≤
θi ≤ CEmax

sinit + ε · p. We claim that then Ei ∈ [−2pε, 2pε]. Suppose Ei < −2pε. Then
PEmax

sinit [−θi] < −pε. But we have

0 = PEmax
sinit [−CEmax

sinit ] ≤ PEmax
sinit [−θi + pε] ≤ PEmax

sinit [−θi] + pε

contradicting the supposition. Analogously, we show that Ei cannot be greater than 2pε.
Next, we show that the algorithm returns an 3ε-approximation of CEmax

sinit . As soon as
the algorithm terminates, we have that Ei ∈ [−2pε, 2pε]. So, PEmax

sinit [−θi] ∈ [−3pε, 3pε].
So there is a scheduler S with

PES
sinit [−θi] = PES

sinit − θi · PrSsinit (♢goal) ≥ −3pε.

As PrSsinit (♢goal) ≥ p, this implies CEmax
sinit ≥ CES

sinit ≥ θi −3ε. On the other hand, suppose
that CEmax

sinit > θi + 3ε. Then there is a scheduler T with CET
sinit > θi + 3ε. For this

scheduler, we have

0 < PET
sinit [−θi − 3ε] = PET

sinit [−θi] − 3ε · PrTsinit (♢goal) ≤ PET
sinit [−θi] − 3ε · p.

This contradicts PEmax
sinit [−θi] ≤ 3pε. Therefore, the algorithm indeed returns a 3ε-

approximation of CEmax
sinit .

Finally, we show that the claimed running time is correct: The algorithm stops after
at most ⌈log((A0 − B0)/(ε · p))⌉ iterations. As all values involved can be computed in
polynomial time, this is polynomial in the size of M and linear in log(1/ε). In each
iteration, we have to approximate the maximal partial expectation PEmax

sinit [−θi] up to an
absolute error of p · ε. As the logarithmic lengths of θi and p are polynomial in the size
of M as well, this can be done in time exponential in the size of M and polynomial in
log(1/ε).

So, we have now shown that maximal partial and conditional expectations can be
approximated as stated in Theorem 6.1. For the minimal values, we can simply first
multiply all weights with −1.
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6.4 Hardness of approximations
The approximation algorithms presented above require exponential time. This naturally
raises the question whether optimal values could be approximated more efficiently. We
conclude this chapter by proving that we cannot expect a polynomial-time approximation
algorithm.

Theorem 6.12. If P̸=PSPACE, then there is no algorithm approximating the optimal
partial or conditional expectation in an MDP M up to an absolute error of ε that runs in
time polynomial in M and log(1/ε). This holds even for acyclic MDPs with non-negative
weights.

Proof. The threshold problem for maximal partial expectations is PSPACE-hard even
for acyclic MDPs (see Theorem 3.32). More precisely, given an acyclic MDP M with
non-negative weights weights and initial state sinit, a designated target state goal, and a
rational ϑ, the problem to decide whether PEmax

M,sinit ≥ ϑ is PSPACE-hard. The transition
probabilities in M are given as fractions of co-prime integers. Let D be the product of
the denominators of all transition probabilities. Note that there are only polynomially
many transitions and that the binary length of the denominators is part of the size of
M. Hence, the binary representation of D is polynomial in the size of M.

Furthermore, we know that the maximal partial expectation is obtained by a deter-
ministic scheduler S (see Theorem 3.23). Let S be an optimal deterministic scheduler.
All S-paths from sinit to goal have a probability that is an integer multiple of 1/D. Hence,
also PES

M,sinit = PEmax
M,sinit is an integer multiple of 1/D.

With an algorithm that approximates PEmax
M,sinit up to an absolute error of ε in time

polynomial in the size of M and in log(1/ε), we could approximate PEmax
M,sinit up to an

absolute error of 1/3D in time polynomial in the size of M. Rounding the result to the
closest integer multiple of 1/D would return the exact value PEmax

M,sinit and allow us to
solve the threshold problem in polynomial time.

The proof for the hardness of approximating optimal conditional expectations works
analogously.
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CHAPTER

SEVEN

CONCLUSIONS AND OUTLOOK

We conclude with brief summaries, final remarks, and hints at possible directions for
future work regarding three topics that played an important role in this thesis: Positivity-
hardness, saturation points, and approximations.

Positivity-hardness. Our investigations of two non-classical variants of the stochastic
shortest path problems, the partial and the conditional stochastic shortest path problem,
showed that these variants are most likely not solvable with currently known techniques.
The decision versions of both variants are at least as hard as the Positivity problem for
linear recurrence sequences, a problem that has been open for many decades and to which
known number-theoretic techniques do not seem to be applicable. A decidability result
for these non-classical stochastic shortest path problems and hence for the Positivity
problem would lead to a major breakthrough in analytic number theory.

For the proof of these Positivity-hardness results, we constructed MDP-gadgets that
encode a linear recurrence relation and the initial values of a linear recurrence sequence,
respectively. These gadgets allow for great flexibility and the proof idea can easily be
adapted to a series of further problems on MDPs – most of which have been studied and
left open in the literature – by exchanging the gadget encoding the initial values. In
this way, we proved that problems addressing the optimal termination probability and
the optimal expected termination time of one-counter MDPs, the optimal satisfaction
probability of energy objectives, the optimal probability that the accumulated weight
satisfies an inequality constraint (cost problems, quantile queries), the optimal conditional
value-at-risk for accumulated weights, and the optimal long-run probability of regular co-
safety properties as well as the model-checking problem for frequency-LTL are Positivity-
hard. This series of results shows that we developed a powerful technique to prove the
inherent mathematical difficulty of optimization problems on (finite-state) MDPs.

We expect that the proof technique is applicable to further threshold problems associ-
ated to optimization problems on MDPs. A main requirement for the direct applicability
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of the technique is that the optimal values V (s, w) in terms of the current state s and the
weight w accumulated so far, or a similar quantity that can be increased and decreased,
satisfy an optimality equation of the form

V (s, w) = max
α∈Act(s)

∑︂
t∈S

P (s, α, t) · V (t, w + wgt(s, α)).

In addition, the optimum must not be achievable with memoryless schedulers but the
optimal decisions have to depend on the accumulated weight to make it possible to
encode initial values of a linear recurrence sequence. This combination of conditions is
quite common as we have seen. Furthermore, our and possible future Positivity-hardness
results might be transferrable to further notions resulting from taking long-run averages
(as in the case of long-run probabilities) or conditioning (as in the case of conditional
expectations and conditional values-at-risk).

For optimization problems on MDPs, determining the structure of optimal schedulers
is often a key step for the solution. We were able to prove that schedulers optimizing the
partial or conditional expectation can be chosen to be weight-based and deterministic.
A finer restriction on the necessary structure for optimal schedulers, however, is linked
to deep questions surrounding the Positivity problem: In the MDPs constructed from
the mentioned gadgets, the structure of the optimal scheduler is directly related to the
negativity set {n ∈ N | un < 0} of the given linear recurrence sequence (un)n≥0. The
famous Skolem-Mahler-Lech theorem [Sko34, Mah35, Lec53] states that the set of zeros
{n ∈ N | un = 0} is ultimately periodic, a.k.a. semi-linear, for any linear recurrence
sequence over a field of characteristic 0. In [BG07], it is shown that this is not the
case in general for the negativity sets of real linear recurrence sequences. To the best of
our knowledge, it is not known whether the negativity set of rational linear recurrence
sequences is always semi-linear. A proof that the optimal schedulers for any of the
problems we have shown to be Positivity-hard can be chosen to be ultimately periodic
with respect to the accumulated weight (cf. Section 3.2.3) would imply the analogue
of the Skolem-Mahler-Lech theorem for the negativity set of rational linear recurrence
sequences (and hence also for the positivity set).

Besides the Positivity-hardness that we established, the problems under consideration
exhibit further complications that stand in the way of a proof of inter-reducibility with the
Positivity problem. The MDPs constructed for the Positivity-hardness consist of an initial
component in which positive weights are accumulated and afterwards the accumulated
weight only decreases. General MDPs have a much more complicated structure. In
this vein, it is also remarkable that the threshold problem for the probability that the
accumulated cost when entering a goal state satisfies a Boolean combination of inequality
constraints (cost problem) in finite-state Markov chains is open [HKL17]. For partial and
conditional expectations, on the other hand, the computation is easy in Markov chains.
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All in all, this leaves the possibility open that some or all of the problems we studied
are in fact harder than the Positivity problem. In particular, it could be the case that
the problems are undecidable and that a proof of the undecidability would yield no
implications for the Positivity problem. For this reason, investigating whether some or
all of the threshold problems are reducible to the Positivity problem constitutes a very
interesting – and challenging – direction for future work. Such an inter-reducibility result
would show that studying any of the discussed optimization problems on MDPs could be a
worthwhile direction of research to settle the decidability status of the Positivity-problem.
Some hope for an inter-reducibility result can be drawn from the fact that the optimal
values are approximable for several of the problems – for termination probabilities and
expected termination times of one-counter MDPs, this was shown in [BBEK11,BKNW12]
and we proved this result for partial and conditional expectations in this thesis. This
indicates that there is at least a major difference to undecidable problems in a similar
context such as the emptiness problem for probabilistic finite automata [Paz71,CL89].

Saturation points. In MDPs with non-negative weights, the partial and conditional
stochastic shortest path problems are solvable in exponential time. These results were es-
tablished in [CFK+13a] and [BKKW17], respectively. The key insight is the existence of
saturation points, i.e., bounds on the accumulated weight after which optimal schedulers
can behave memorylessly. So, optimal schedulers for partial and conditional expectations
in MDPs with non-negative weights are not only weight-based and deterministic, but in
addition they have to keep record of the accumulated weight only up to the saturation
point. In particular, this means that there are optimal finite-memory schedulers. The
saturation point provided in [CFK+13a] in the context of stochastic multiplayer games re-
lies on upper bounds for the optimal partial expectation. For MDPs, we showed that the
least possible saturation point is computable in polynomial time without first computing
an upper bound. For practical purposes, this least saturation point might significantly
speed-up computations as the runtime of algorithms to compute the optimal partial ex-
pectation depends directly on the size of the computed saturation point. The saturation
point for conditional expectations provided in [BKKW17] relies on upper bounds as well.
Here, it is not clear whether an efficient computation of a lower or even the least possible
saturation point similar to the computation of our saturation point for partial expec-
tations is possible due to the more intricate inter-play between the accumulated weight
and the probability to reach a goal state. The close connections between the two prob-
lems that we established by simple reductions between the threshold problems, however,
might be useful to obtain a way to compute smaller saturation points for conditional
expectations.

The concept of saturation points turns out to be very useful as it can be applied to
further problems. First, we provided a simple saturation point for the computation of
the optimal conditional value-at-risk of the accumulated weight before reaching a goal
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state in MDPs with non-negative weights. The saturation point simply provides a bound
w on the accumulated weight such that paths exceeding this bound certainly belong to
the p worst (or 1 − p best) outcomes for a given probability value p. This allowed us
to reduce the problem to the computation of the conditional value-at-risk for a weighted
reachability problem in an exponentially large MDP. In [KM18], the optimal conditional
value-at-risk for weighted reachability has been shown to be computable in polynomial
time. The constructed MDP should allow us to also solve problems that address the
simultaneous satisfaction of constraints on the conditional value-at-risk, the value-at-
risk, and the expected value of the accumulated weight before reaching a goal state as
such problems have been solved in [KM18] for weighted reachability objectives.

Second, we showed that saturation points can also be used to solve problems that are
not as obviously related to stochastic shortest path problems. We investigated notions
addressing the long-run satisfaction of path properties. In the non-probabilistic setting,
long-run frequencies quantify how often a path property is satisfied on the suffixes of a
run in a transition system. We proved that optimal long-run frequencies for regular co-
safety properties given by an NFA can be computed in time polynomial in the size of the
transition system and exponential in the size of the NFA. For the probabilistic setting, we
introduced the notion of long-run probability quantifying the long-run average probability
that a suffix satisfies a path property. The situation becomes much more complicated in
the probabilistic setting and the threshold problem for optimal long-run probabilities of
regular co-safety properties is Positivity-hard as mentioned above. For the restricted class
of constrained reachability properties (aU b), however, the existence of saturation points
lead us to a solution. Here, saturation points are bounds on the number of consecutive
visits to states labeled with a. For the proof for the existence of an efficiently computable
saturation point, we used ideas similar to the proofs of the existence of saturation points
for partial and conditional expectations. This allowed us to reduce the computation of the
optimal long-run probability to the computation of the optimal expected mean payoff in
an exponentially large MDP. For weighted MDPs, we furthermore introduced the notion
of long-run expectation that quantifies the average expected value of the weight that will
be accumulated before the next visit to a goal state. Also here, we proved the existence
of a saturation point, even in MDPs with integer weights. Again, the saturation point
provides a bound on the number of consecutive visits to certain states before optimal
schedulers can switch to memoryless behavior.

In all mentioned cases, saturation points are computable in polynomial time and
allow to solve the respective problems in exponential time. For conditional expectations,
it has been shown in [BKKW17] that the threshold problem is PSPACE-hard in acyclic
MDPs with non-negative weights. We transferred this result to partial expectations.
Furthermore, we showed that the threshold problems for optimal long-run probabilities
of constrained reachability properties and for optimal long-run expectations are NP-hard.



7. Conclusions and Outlook 175

Closing the resulting complexity gaps and providing lower bounds (or a polynomial-time
algorithm) for the conditional value-at-risk of accumulated weights before reaching a goal
state remain as future work. Further, investigating to which extend the least possible
saturation points for these problems can be computed as in the case of partial expectations
could be fruitful, in particular for practical applications.

Approximation. While saturation points for the non-classical stochastic shortest
path problems in MDPs with arbitrary integer weights do not exist, we established a
weak analogue that can be seen as a precise version of the following simple idea: If
the accumulated weight along a path is very high or very low, it is close to optimal
to maximize or minimize the probability to reach a goal state in order to maximize
partial and conditional expectations, respectively. Based on this idea, we showed that
the optimal values for both non-classical stochastic shortest path problems in an MDP
M can be approximated up to an absolute error of ε in time exponential in the size of
M and polynomial in the accuracy log(1/ε). Approximation algorithms for termination
probabilities and times of one-counter MDPs using a similar idea have been presented
in [BBEK11,BKNW12].

We expect that this simple idea can be used to obtain approximation algorithms for
further quantities such as optimal conditional values-at-risk for accumulated weights or
optimal long-run probabilities of regular co-safety properties. If a co-safety property is
given by a DFA, the optimization of long-run probabilities implicitly requires a trade-off
analysis between the probabilities that runs starting in different states of the DFA are
accepted. Here, approximate Pareto curves for the satisfaction probabilities of multiple
ω-regular objectives that were shown to be efficiently computable in [EKVY07] might be
helpful. Furthermore, this could lead into the direction of approximation algorithms for
long-run probabilities of more general ω-regular properties although further complications
have to be expected here.

We showed that there is no polynomial-time approximation algorithm for optimal
partial or conditional expectations if P ̸= PSPACE. Nevertheless, there are some possi-
ble improvements for our exponential-time approximation algorithm: Our approximation
algorithms rely on the exact solution to an exponentially large weighted reachability
problem. An approximate solution to this exponentially large problem, however, would
be sufficient to approximate optimal partial and conditional expectations. Standard pro-
cedures to obtain approximate solutions such as value iteration (see, e.g., [Put94]) might
lead to much faster approximation algorithms in practice. For the classical stochastic
shortest path problem, [YB13] presents an involved approximation algorithm combining
Q-learning and policy iteration. It is worth investigating to which extend a similar ap-
proach to the non-classical stochastic shortest path problems is fruitful. Of course, such
approximation approaches are also interesting for partial and conditional expectations in
MDPs with non-negative weights.
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