

Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751174

Thomas Kühn, Kay Bierzynski, Sebastian Richly, Uwe Aßmannn

FRaMED: full-fledge role modeling editor (tool demo)

Erstveröffentlichung in / First published in:

SLE '16: Software Language Engineering. New York, 31.10.–1.11.2016. ACM Digital Library, S.
132–136. ISBN 978-1-4503-4447-0.

DOI: https://doi.org/10.1145/2997364.2997371

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751174
https://doi.org/10.1145/2997364.2997371

FRaMED: Full-Fledge Role Modeling Editor (Tool Demo)

Thomas Kühn, Kay Bierzynski
Software Technology Group

TU Dresden, Germany
thomas.kuehn3@tu-dresden.de

kay.bierzynski@mailbox.tu-dresden.de

Sebastian Richly, Uwe Aßmannn
Software Technology Group

TU Dresden, Germany
sebastian.richly@rain-it.eu

uwe.assmann@tu-dresden.de

Abstract
Since the year 1977, role modeling has been continuously
investigated as promising paradigm to model complex, dy-
namic systems. However, this research had almost no in-
fluence on the design of todays increasingly complex and
context-sensitive software systems. The reason for that is
twofold. First, most modeling languages focused either on
the behavioral, relational or context-dependent nature of
roles rather than combining them. Second, there is a lack
of tool support for the design, validation, and generation of
role-based software systems. In particular, there exists no
graphical role modeling editor supporting the three natures
as well as the various proposed constraints. To overcome
this deficiency, we introduce the Full-fledged Role Modeling
Editor (FRaMED), a graphical modeling editor embracing
all natures of roles and modeling constraints featuring gen-
erators for a formal representation and source code of a role-
based programming language. To show its applicability for
the development of role-based software systems, an example
from the banking domain is employed.

Categories and Subject Descriptors I.6.4. [Simulation
and Modeling]: Model Validation and Analysis—Role-
based Modeling; I.6.5. [Simulation and Modeling]: Model
Development—Formal Modeling

Keywords Role-based Modeling

1. Introduction
Current software systems are characterized by increased
complexity, dynamism and context-dependence [18]. Hence,
researchers and practitioners demand new concepts beyond
object-oriented design able to embrace the dynamic and
context-dependent behavior of these systems.

Roles are a natural concept to represent the dynamic,
context-dependent behavior of collaborating objects [20].
Since its introduction in 1977 [1], role-based modeling
has been continuously investigated as promising paradigm
to model complex, dynamic, and context-dependent sys-
tems [13, 20, 23]. Accordingly, multiple role-based mod-
eling languages (RML) have been proposed in the past,
ranging from data modeling [1, 8, 12, 16] via conceptual
modeling [7, 23] through to software architecture model-
ing [9, 19]. This research, however, had only marginal im-
pact on the design of todays complex and context-adaptive
software systems.

To enable the use of RMLs for conceptual modeling to
both researchers and practitioners, two major blocking fac-
tors have to be addressed. First, most RMLs focus either
on the behavioral, relational or context-dependent nature of
roles [14] rather than combining them into one coherent
model. Second, there is a lack of tool support for the de-
sign, validation, and generation of role-based software sys-
tems. In particular, there exists no graphical editor for role-
based modeling supporting all natures of roles. Although
some approaches permit using a graphical editor, e.g. [7–
9, 24], none of these editors encompasses all natures of
roles [14]. To overcome the former deficiency, the Compart-
ment Role Object Model (CROM) was introduced as formal
model combining all natures as well as various modeling
constraints [14]. To address the second issue accordingly,
we introduce the first Full-fledged Role Modeling Editor
(FRaMED), a graphical modeling editor for CROMs embrac-
ing all natures and proposed modeling constraints featuring
distinct code generators generating either a formal represen-
tation of CROM [14] or source code of the Scala Roles Lan-
guage (SCROLL) [15]. To show its applicability for concep-
tual modeling, we employed an example from the banking
domain. In conclusion, FRaMED provides all means neces-
sary to allow both researchers and practitioners to model,
reason about, and implement role-based software systems.1

The paper is structured as follows: Sect. 2 presents the
natures of roles found in role-based languages. Afterwards,

1 The approved artefact of FRaMED is available via: http://st.inf.
tu-dresden.de/intern/framed/framed-ubuntu.ova

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SLE '16: Software
Language Engineering, October 31 – November 1, 2016, Amsterdam, Netherlands.

DOI: http://dx.doi.org/10.1145/2997364.2997371

Final edited form was published in "SLE '16: Software Language Engineering. Amsterdam 2016", S. 132–136. ISBN: 978-1-4503-4447-0
https://doi.org/10.1145/2997364.2997371

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://st.inf.tu-dresden.de/intern/framed/framed-ubuntu.ova
http://st.inf.tu-dresden.de/intern/framed/framed-ubuntu.ova

Sect. 3 briefly discusses related graphical RMLs. Sect. 4
describes FRaMED’s architecture and employed frameworks.
Sect. 5 showcases the design of a role-based conceptual
model for a banking application and finally, Sect. 6 con-
cludes the paper.

2. Nature of Roles
Roles are not a new concept. Yet, there is still no common
understanding of roles in the literature [13, 23]. On the
contrary, [23] and [13] identified 26 features attributed to
roles that we group into the following three natures.

The behavioral nature establishes that unrelated objects
can play roles and roles adapt the behavior of playing ob-
jects [13, 23]. Additionally, objects can play roles of a dif-
ferent type multiple times. Consider, for instance, the role of
a customer of a bank that can be played by either a per-
son or a company and allows them to make transactions,
deposits, and withdrawals. Obviously, one person can be a
customer in several banks. This nature is usually captured
by the fills-relation between classes and role types denot-
ing those classes whose objects can play roles of the given
type. In contrast, the relational nature states that roles de-
note the binding ends of relationships. This nature is present
in most modeling languages, e.g. ER [4] and UML [22].
Still, these languages do not foster the dynamism and flex-
ibility of roles, as roles degenerate to named placeholders.
Hence, [1, 2, 8, 11, 23] introduced roles tied to relation-
ships as first-class citizens permitting them to be played by
unrelated objects and having relationship specific proper-
ties. To model that consultants advise customers, one can
specify a relationship type advises between the consultant
and customer role types and add relationship specific fields.
However, all these modeling languages assume that relation-
ships are context-independent and cannot play roles them-
selves. Thus, transactions between accounts managed by a
bank cannot be modeled properly. To resolve this, RMLs
have incorporated the context-dependent nature of roles,
e.g. [6, 9, 12, 20], that characterizes roles and relationships
as context-dependent. Both are encapsulated in a context as
definitional boundary. Yet, different approaches use differ-
ent terms for this conceptual entity. Consequently, compart-
ments were introduced in [13] to generalize the different
terms. Compartments can have properties and behavior, as
well as play roles themselves. In accordance, a transaction
for the transferal of money from a source to a target account
would be modeled as compartment type and would play the
role of a money transfer within a bank compartment. In con-
trast to context-dependent roles, only few approaches also
include context-dependent relationships, e.g. [9, 12].

Including these natures into one RML already leads to
a rich modeling framework, yet its expressiveness is deter-
mined by the available kinds of constraints. These range
from classical relationship cardinalities, e.g. [4, 22], over
mathematical relationship constraints, e.g. [2, 8], to role

R
ol

e-
B

as
ed

L
an

gu
ag

es

B
eh

av
io

ra
l

R
el

at
io

na
l

C
on

te
xt

ua
l

G
ra

ph
ic

al

E
di

to
r

Su
pp

or
t

Lodwick (2000) [23] # #

Generic Role Model (2002) [5] # # G# #

ORM 2 (2005) [8] #

E-CARGO Model (2006) [25] G# # # #

Metamodel for Roles [6] # # #

INM (2009) [16] G# #

DCI (209) [20] # # #

Onto-UML (2012) [7] G# G# G# �

Helena Approach (2014) [9] �

RSQL (2016) [12] #

SCROLL (2015) [15] # # #

formal CROM (2015) [14] #

FRaMED

 : fulfilled, G#:partly, #: unfulfilled, �: possible

Table 1. Comparison of RMLs, based on [13].

constraints, e.g. [9, 21, 25]. Within a bank compartment
type, for instance, one could specify that each consultant ad-
vises at least one customer with relationship cardinalities,
that no consultant advises himself as a customer with an
intra-relationship constraint, and that each bank must have
at least one consultant [14]. Although various RMLs have
introduced different kinds of constraints, only CROM [14]
includes most of them. Consequently, FRaMED is founded on
its notation and definitions.

3. State of the Art
There exist various role-based modeling and programming
languages in the literature. Hence, we refer the reader to
[23], [26] and [13] for detailed surveys on role-based lan-
guages. For brevity, Tab. 1 compares the related RMLs with
FRaMED by means of their supported nature of roles, their
graphical notation, and editor support. Henceforth, we focus
on those RMLs that provide either a graphical editor or rely
on standardized graphical notations. Up to our best knowl-
edge, Object-Role Modeling (ORM) 2 [8] is the only mod-
eling language that provides a graphical editor. However, it
only supports the relational nature of roles. In contrast, the
following approaches only introduce a graphical notation for
roles. First, the Information Networking Model (INM) [16]
focuses on the context-dependent nature of roles introduc-
ing context and roles as model elements as well as multiple
kinds of relations among them. In contrast to FRaMED, their
notation is very cluttered mixing entities, context-dependent

Final edited form was published in "SLE '16: Software Language Engineering. Amsterdam 2016", S. 132–136. ISBN: 978-1-4503-4447-0
https://doi.org/10.1145/2997364.2997371

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Editor UI

Transformation

Code Generator

FRaMED

Xtend

Build Generate

SWT BOT

GEF

UI
UI Test

EMF Comp.

Epsilon(ETL)

Trans.
Trans. Test

initiate

read create

initiate

Metamodel

Ecore

read

CROM
Ecore

ORM

edits

Figure 1. Architecture

roles, and relationships. Second, Onto-UML [7] is an onto-
logically founded modeling language introducing role types
and relationships. It employs stereotypes to extend classi-
cal UML class diagrams. Last but not least, the Helena Ap-
proach [9] is an architecture modeling language incorpo-
rating both the relational and the context-dependent nature
of roles by providing ensembles as context for roles. Simi-
larly, its notation relies on stereotypes for the basic model
elements and a small extension for occurrence constraints.
While both are usable with any UML editor, they are hard
to comprehend, as they require reading the stereotype anno-
tations [17]. In turn, FRaMED’s graphical notation is greatly
inspired by [3, 10, 21, 22] and the guidelines in [17].

4. Architecture
Generally, FRaMED is built on the Eclipse platform2 and is
available on GitHub.3 It follows a model-driven approach
and employs the Eclipse Modeling Framework (EMF).4

Fig. 1 provides an overview of its software architecture.
For its development, we picked a suitable configuration

of the family of metamodels for RMLs [13] and generated
the corresponding Ecore metamodel within a separate plu-
gin.5 As such, this metamodel only captures the structure of
CROMs and is void of any layout information. To decou-
ple FRaMED from this CROM metamodel, the editor, again,
is implemented as plugin that only emits instances of the
CROM metamodel. The Editor UI handles all user interac-
tions and is implemented employing the Graphical Editing
Framework (GEF).6 Internally, FRaMED uses a custom Ecore
metamodel for the graphical representation of CROM, de-
noted Object Relation Model (ORM). This metamodel is
tailored towards the graphical aspects of CROM, such as
shapes, relations, segments, and bend points. On saving a
ORM instance (*.crom_dia file), another plugin is tasked

2 https://eclipse.org/
3 https://github.com/leondart/FRaMED/releases/tag/v2.0.3
4 https://eclipse.org/modeling/emf/
5 https://github.com/Eden-06/CROM
6 https://eclipse.org/gef/

with its transformation to the corresponding CROM instance
(*.crom file). The Transformation plugin, in turn, utilizes
Epsilon,7 a rule-based model-to-model transformation en-
gine, to declaratively specify the translation of ORM in-
stances to CROM instances. Once a CROM instance is cre-
ated, a user can trigger the Code Generator plugin to either
generate a formal CROM, based on the reference implemen-
tation in [14], or generate SCROLL source code [15]. While
the former can be used to validate a CROM instance, the
latter can be completed to a working role-based application.
Last but not least, we employed JUnit 4, EMF Compare,
and SWTBot to setup a test infrastructure for FRaMED.

Although this architecture is rather complex, it facilitates
separation of concerns by establishing the CROM meta-
model as central representation of the RML. This not only
permits the separate evolution of the metamodel, editor, and
code generators, but also the development of further tools,
such as a text-based editor for CROM or a code generator
for Object Teams [10].

5. Use Case
To explain the role modeling workflow, we designed a small
banking application, extracted from [20], as our running ex-
ample. In this scenario, a bank is a financial institution that
employs consultants, serves customers, and handles money
transfers. Consultants can be persons whereas the latter ei-
ther companies or persons. Additionally, a consultant ad-
vises at least one customer and customers can own multi-
ple savings and checking accounts. Moreover, customers can
initiate transactions to transfer money from one source ac-
count to another target account.

To design a conceptual model of the banking applica-
tion, each of the above domain concepts must be sorted
into either natural types, role types, data types, compart-
ment types, or relationship types. Following the ontological
foundation in [14], Bank and Transaction are modeled
as compartment types, as well as Person, Companies and
Accounts as natural types. In the top-level view of FRaMED
one can create natural, data, and compartment types; spec-
ify their inheritance relation; as well as create and refine the
fills-relation. After adding these model elements by drag-
ging them to the canvas and naming them accordingly, we
“step into” each compartment type to model its internals.
Within a compartment type one can create role types, role
groups, specify various role constraints, create relationship
types between two role types, and specify inter-relationship
constraints, add intra-relationship constraints. Accordingly,
we add the Consultant, Customer, SavingsAccount,
and CheckingAccount as role types, as well as advises,
own_sa and own_ca as relationship types to the Bank. Simi-
larly, a Source role type, a Target role type, and the trans
relationship type are added to the Transaction, highlighted
in Fig. 2. Last but not least, we “step out” to the top-level

7 http://www.eclipse.org/epsilon/

Final edited form was published in "SLE '16: Software Language Engineering. Amsterdam 2016", S. 132–136. ISBN: 978-1-4503-4447-0
https://doi.org/10.1145/2997364.2997371

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://eclipse.org/
https://github.com/leondart/FRaMED/releases/tag/v2.0.3
https://eclipse.org/modeling/emf/
https://github.com/Eden-06/CROM
https://eclipse.org/gef/
http://www.eclipse.org/epsilon/

Figure 2. Banking example in FRaMED.

Figure 3. Focus view of the Transaction compartment type.

view to link the natural and compartment types to those role
types they can play. First, the Fulfillment relation must be
selected then the relation can be drawn from a natural and
compartment types to those compartment types containing
the role types to be filled. Finally, a right click on the individ-
ual fulfillment relation opens up the “Fulfill Roles” dialog,
where the playable role types can be selected. Following
these steps, we finally come to the conceptual model for the
banking application, depicted in Fig. 3, capturing not only
the dynamics of the banking domain, but also its constraints.

Whenever the role model is saved, the corresponding
crom file is generated. Upon right-clicking on this file, the
“Generate” item is available in the context menu expanding
to “SCROLL Code” and “Formal CROM”. Each triggers the
respective code generator. Both generated files could then be
executed with the corresponding runtime library. In sum, the
presented workflow can be easily reproduced and tailored to
more elaborate use cases.

6. Conclusion
This paper presented FRaMED, a graphical role modeling ed-
itor for CROM [14]. Thus, it is the first modeling editor for
role-based domain models that supports all natures of roles
and constraints presented in the literature. It enables the de-
sign of role-based software systems by providing additional
means for validation and code generation. It is open source
and freely available to let both researchers and practitioners
harness the power of role-based modeling. In the future, we
will extend FRaMED, to not only support one member of the
metamodel family for RMLs [13], but all of them.

Acknowledgments
This work is funded by the German Research Foundation (DFG)
within the Research Training Group “Role-based Software Infra-
structures for continuous-context-sensitive Systems” (GRK 1907).
Special thanks go to Lars Schütze, Paul Peschel, David Gollasch,
Johannes Tandler, and Duc Dung Dam for their contributions.

Final edited form was published in "SLE '16: Software Language Engineering. Amsterdam 2016", S. 132–136. ISBN: 978-1-4503-4447-0
https://doi.org/10.1145/2997364.2997371

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

References
[1] C. W. Bachman, M. Daya, C. W. Bachman, and M. Daya.

The role concept in data models. In Proceedings of the third
international conference on Very Large Data Bases, volume 3,
pages 464–476, 1977.

[2] S. Balzer and T. R. Gross. Verifying multi-object invariants
with relationships. In ECOOP 2011–Object-Oriented Pro-
gramming, pages 358–382. Springer, 2011.

[3] S. Balzer, T. Gross, and P. Eugster. A relational model of
object collaborations and its use in reasoning about relation-
ships. In E. Ernst, editor, ECOOP, volume 4609 of Lecture
Notes in Computer Science, pages 323–346. Springer, 2007.
ISBN 978-3-540-73588-5.

[4] P. Chen. The entity-relationship model - toward a unified view
of data. ACM Transactions on Database Systems, 1(1):9–36,
1976.

[5] M. Dahchour, A. Pirotte, and E. Zimányi. A generic role
model for dynamic objects. In Advanced Information Systems
Engineering, pages 643–658. Springer, 2002.

[6] V. Genovese. A meta-model for roles: Introducing sessions.
In Proceedings of the 2nd Workshop on Roles and Relation-
ships in Object Oriented Programming, Multiagent Systems,
and Ontologies, pages 27–38. Technische Universität Berlin,
2007.

[7] G. Guizzardi and G. Wagner. Conceptual simulation model-
ing with onto-uml. In Proceedings of the Winter Simulation
Conference, page 5. Winter Simulation Conference, 2012.

[8] T. Halpin. ORM 2. In On the Move to Meaningful Inter-
net Systems 2005: OTM 2005 Workshops, pages 676–687.
Springer, 2005.

[9] R. Hennicker and A. Klarl. Foundations for ensemble
modeling–the helena approach. In Specification, Algebra, and
Software, pages 359–381. Springer, 2014.

[10] S. Herrmann. Programming with roles in ObjectTeams/Java.
AAAI Fall Symposium Roles, an interdisciplinary perspective,
2005.

[11] T. Jäkel, T. Kühn, S. Hinkel, H. Voigt, and W. Lehner. Rela-
tionships for dynamic data types in RSQL. In Datenbanksys-
teme für Business, Technologie und Web (BTW), 2015.

[12] T. Jäkel, T. Kühn, H. Voigt, and W. Lehner. Towards a
contextual database. In 20th East-European Conference on
Advances in Databases and Information Systems, 2016.

[13] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann.
A metamodel family for role-based modeling and program-
ming languages. In Software Language Engineering, volume
8706 of Lecture Notes in Computer Science, pages 141–160.

Springer, 2014.
[14] T. Kühn, S. Böhme, S. Götz, and U. Aßmann. A combined for-

mal model for relational context-dependent roles. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on
Software Language Engineering, pages 113–124. ACM, 2015.

[15] M. Leuthäuser and U. Aßmann. Enabling view-based pro-
gramming with scroll: Using roles and dynamic dispatch for
etablishing view-based programming. In Proceedings of the
2015 Joint MORSE/VAO Workshop on Model-Driven Robot
Software Engineering and View-based Software-Engineering,
pages 25–33. ACM, 2015.

[16] M. Liu and J. Hu. Information networking model. In Concep-
tual Modeling-ER 2009, pages 131–144. Springer, 2009.

[17] D. Moody. The physics of notations: toward a scientific ba-
sis for constructing visual notations in software engineering.
Software Engineering, IEEE Transactions on, 35(6):756–779,
2009.

[18] S. Murer, C. Worms, and F. J. Furrer. Managed evolution.
Informatik-Spektrum, 31(6):537–547, 2008.

[19] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. Aßmann.
Using role-based composition to support unanticipated, dy-
namic adaptation-smart application grids. In ADAPTIVE
2012, The Fourth International Conference on Adaptive and
Self-Adaptive Systems and Applications, pages 93–102, 2012.

[20] T. Reenskaug and J. O. Coplien. The dci architecture: A new
vision of object-oriented programming. An article starting a
new blog:(14pp) http://www. artima. com/articles/dci_vision.
html, 2009.

[21] D. Riehle and T. Gross. Role model based framework design
and integration. In Proceedings OOPSLA ’98, ACM SIGPLAN
Notices, pages 117–133, Oct. 1998.

[22] J. Rumbaugh, R. Jacobson, and G. Booch. The Unified Mod-
elling Language Reference Manual. Addison-Wesley, 1st edi-
tion, 1999.

[23] F. Steimann. On the representation of roles in object-oriented
and conceptual modelling. Data & Knowledge Engineering,
35(1):83–106, 2000.

[24] F. Steimann. A radical revision of UML’s role concept. In
UML 2000 - The Unified Modeling Language, pages 194–209.
Springer, 2000.

[25] H. Zhu and M. Zhou. Role-based collaboration and its kernel
mechanisms. Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on, 36(4):578–589,
2006.

[26] H. Zhu and M. Zhou. Roles in information systems: A survey.
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 38(3):377–396, 2008.

Final edited form was published in "SLE '16: Software Language Engineering. Amsterdam 2016", S. 132–136. ISBN: 978-1-4503-4447-0
https://doi.org/10.1145/2997364.2997371

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Introduction
	Nature of Roles
	State of the Art
	Architecture
	Use Case
	Conclusion
	FRaMED_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Thomas Kühn, Kay Bierzynski, Sebastian Richly, Uwe Aßmannn

