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Introduction

Recently, the class of sofic groups has attracted much interest [1, 6, 7, 13, 14, 15, 24, ?, 38,

40, 58, 69, 76]. A group is called sofic if it can be approximated by finite symmetric groups

equipped with the normalized Hamming length function (see Theorem 3.5 of [58]). An

alternative characterization of soficity is that the group embeds into a metric ultraprod-

uct of finite symmetric groups equipped with the normalized Hamming length function.

Amenable and residually finite groups are known to be sofic (see Examples 4.2 and 4.4 of

[58]). However, there are more sofic groups than this (see [6, 40]). Some applications of the

notion of soficity are the following: Gromov showed in [29] that Gottschalk’s surjunctivity

conjecture holds for every sofic group. Elek and Szabó [13] settled Kaplansky’s direct

finiteness conjecture for every sofic group. They also proved in [14] that Connes’ embed-

ding conjecture and Lück’s determinant conjecture hold for such groups. Recently, Nitsche

and Thom proved in [56] that certain systems of group equations can be solved over every

group satisfying Connes’ embedding conjecture and hence over every sofic group.

The question whether every group is sofic remains open until now.

In this thesis, motivated by the notion of soficity, more generally, we study various

properties of metric ultraproducts of finite groups, each of them being equipped with a

‘natural’ norm. Here, by a norm on a group G we mean a function ` : G → [0,∞] which

satisfies `(g) = `(g−1) = `(gh), `(gh) ≤ `(g)+`(h), and `(g) = 0 iff g = 1G for all g, h ∈ G.

Such a metric ultraproduct of a family of normed finite groups, i.e., groups equipped with

a norm, along a non-principal ultrafilter reflects ‘asymptotic properties’ of the family. It

can be seen as a limit object associated to the family, which makes it easier to express

such properties. E.g., that a word map on such an ultraproduct is surjective means that

it is almost surjective in a metric sense on the groups of the family (see Chapter 3).

Subsequently, we give a brief outline of the structure of this thesis.

Chapter 0 provides the reader with the necessary prerequisites. In Sections 0.1 and 0.2,

we introduce the necessary group and ring theoretic notation. In Section 0.3, we define

the notions of an algebraic resp. metric ultraproduct of a family of abstract resp. normed

groups (see Definitions 0.3 resp. 0.7). Later we remark that an algebraic ultraproduct can

be seen as a metric ultraproduct (see Remark 0.11). We also introduce the notion of an

invariant length function (or norm) on a group (see Definition 0.5) and provide definitions

of the most common length functions on finite, linear, and projective linear groups (see
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Introduction

Definition 0.12), which we will use in the subsequent chapters. We point out the Lipschitz

equivalence of some of them on the family of finite symmetric or alternating groups and

classical finite simple groups of Lie type (see Fact 0.13).

In Chapter 1, we consider the lattice of normal subgroups of the algebraic ultraproduct

HU of a family H = (Hi)i∈I of universal finite quasisimple groups (cf. the beginning of

Section 1.2). The corresponding lattice, when the Hi (i ∈ I) are finite alternating groups

An of degree n tending to ∞ along U , is linearly ordered and was described completely in

[17]. Lemma 1.8 shows that this result still holds when the Hi (i ∈ I) are double covers

2 ·An = Ãn of alternating groups An (n ≥ 8); essentially we only add a two-element center

compared to the previous situation. Regarding this, in [67] it was claimed that, more

generally, the lattice of normal subgroups of HU , when the Hi (i ∈ I) are non-abelian

finite simple groups, is also linearly ordered. However, this is false in this form in most

cases when the Hi (i ∈ I) are classical groups of Lie type of unbounded rank (i.e., of

type PSLn(q), PSp2m(q), PΩ2m+1(q), PΩ±2m(q), or PSUn(q) for suitable m,n ∈ Z+, q a

prime power) of rank tending to infinity along U . E.g., see Example 1.2. In Lemmas 1.8

and 1.13, we point out a version of ‘relative’ bounded normal generation for universal

finite quasisimple groups, generalizing the results from [49]. From Lemma 1.13 we derive

Theorem 1.3, the main result of Chapter 1, which provides a complete description of the

structure of the lattice of normal subgroups of an algebraic ultraproduct of universal finite

quasisimple groups which are not double covers of alternating groups (as mentioned above,

this case was already settled), correcting the above mentioned misstatement of [67]. It

turns out that considering the universal finite quasisimple groups rather than finite simple

groups is more natural here. We state here Theorem 1.3.

Theorem 1.3. Let (Hi)i∈I be a sequence of universal finite quasisimple groups of Lie

type (i.e., Hi is of type SLn(q), Sp2m(q), the double cover of Ω2m+1(q) or Ω±2m(q) for q

odd, Ω±2m(q) for q even, or SUn(q) for suitable prime power q and m,n ∈ Z+; cf. the list

at the beginning of Section 1.2), each endowed with the norms `rk, and H i := Hi/Z(Hi)

endowed with `pr (see Definition 0.12). Write Vi for the natural module of Hi (i ∈ I;

see Section 0.1(f)). Assume that the dimensions ni := n(Hi) := dim(Vi) tend to infinity

along a fixed ultrafilter U on I. Set G :=
∏
i∈I Hi and define the normal subgroups Nrk :=

{(hi)i∈I ∈ G | limU `rk(hi) = 0} and Npr := {(hi)i∈I ∈ G | limU `pr(hi) = 0} of G (where hi

means the image of hi ∈ Hi in H i). We also define N0 := {(hi)i∈I ∈ G |hi = 1Hi along U}
and suitable subgroups N1, A0, A1 ≤ G defined in Section 1.4. Then the following hold.

(i) The subgroup Npr contains all proper normal subgroups of G containing N0. In

particular, G/Npr is non-abelian simple and Npr/N0 is a characteristic subgroup of

G/N0.

(ii) The normal subgroups of G lying between N0 and Nrk are linearly ordered. Any such

normal subgroup is perfect.

2



Introduction

(iii) Define maps between the following two sets

{N E G |N1 ≤ N ≤ Npr}

{M |M E G, N1 ≤M ≤ Nrk} × {A |A E G, N1 ≤ A ≤ A1}

ΦΨ

by Φ: N 7→ (N ∩ Nrk, N ∩ A1) and Ψ: (M,A) 7→ MA. Then Φ and Ψ are isomor-

phisms of posets and mutually inverse to each other.

(iv) If N is normal in G containing N0 and N1 6≤ N , then N ≤ A0.

(v) A normal subgroup N containing N0 but not N1 is contained in a normal subgroup

K ≤ Npr containing N1 if and only if N ≤ A, where Φ(K) = (M,A) is the image of

K under the map Φ from above.

In this context, one well-known observation (due to Liebeck and Shalev [49]) is that HU
contains a unique maximal normal subgroup Npr/N0 = Npr E HU (cf. Theorem 1.3(i)).

Hence Hmet
U := HU/Npr is simple.

It turns out that this group Hmet
U is isomorphic to the underlying abstract group of

the metric ultraproduct of the groups H i (see Theorem 1.3; i ∈ I) with respect to the (up

to Lipschitz equivalence) unique minimal norm `i (i ∈ I). In Chapters 2–4, we will only

deal with such metric ultraproducts rather than algebraic ones.

In Chapter 2, we discuss the question which abstract and topological groups embed

into a metric ultraproduct of normed finite groups (with the norms chosen arbitrarily).

We introduce the concepts of a C-approximable abstract and topological group for a class

C of finite groups (which was first introduced by Holt and Rees in [34]). This is a common

generalization of the concepts of a sofic, weakly sofic, and linear sofic group (see Defi-

nitions 2.1 and 2.8; note that we allow arbitrary norms on the groups from the class C
compared to Definition 1.1 of [34]).

Glebsky [24] raised the question whether all groups are approximable by finite solvable

groups with arbitrary norm. We answer this in the negative by proving the following

theorem.

Theorem 2.17. Any non-trivial finitely generated and perfect group is not approximable

by finite solvable groups.

This generalizes a counterexample of Howie [35]. On a related note, we establish the

following result, which is based on a private note of Nikolov.

Theorem 2.25. Any non-trivial finitely generated group which can be approximated by

finite groups has a non-trivial quotient which can be approximated by finite projective

special linear groups. In particular, every simple such group can be approximated by finite

projective special linear groups.
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Moreover, we discuss the question which connected Lie groups can be embedded into

a metric ultraproduct of normed finite groups. Regarding this, we prove the following

result.

Theorem 2.33. A connected Lie group is approximable by finite groups as a topological

group if and only if it is abelian.

This provides a negative answer to a question of Doucha [10, Question 2.11]. Referring

to a problem of Zilber [79, page 17] (also Question 1.1 of Pillay [59]), we show the following.

Theorem 2.37. A Lie group equipped with a norm generating its topology that is an

abstract quotient of a product of finite groups has abelian identity component.

We point out that both, Theorem 2.33 and Theorem 2.37, give an alternative proof

of a result of Turing [74]. Finally, we solve a conjecture of Pillay [59, Conjecture 1.7] by

proving the following.

Theorem 2.38. Let G be a pseudofinite group. Then the identity component of any

compactification C of G is abelian.

All results of Chapter 2 are applications of theorems on generators and commutators

in finite groups by Nikolov and Segal [?, 63, 65]. In Section 2.4, we also use results of

Liebeck and Shalev [49] on bounded normal generation in finite simple groups.

In Chapter 3, we study the behavior of word maps on metric ultraproducts of finite

quasisimple and (complex) unitary groups. Let w ∈ Fr be a non-trivial word, where Fr =

〈x1, . . . , xr〉 denotes the free group of rank r ∈ N. Denote by w(G) ⊆ G the image of the

associated word map w : Gr → G, i.e., w(G) := {ϕ(w) |ϕ : Fr → G is a homomorphism}.
Let G be one of the finite groups Sn, GLn(q), Sp2m(q), GO±2m(q), GO2m+1(q), GUn(q) (q a

prime power, n ≥ 2, m ≥ 1), or the unitary group Un (over C). Let dG be the normalized

Hamming metric resp. the normalized rank metric on G when G is a symmetric group resp.

one of the other classical groups (see Definition 0.12) and write n(G) for the permutation

degree resp. the dimension of the natural module of G. We show the following density

result.

Summary of Theorems 3.1, 3.2, and 3.3. For ε > 0 there exists an integer N(ε, w)

such that w(G) is ε-dense in G with respect to the metric dG if n(G) ≥ N(ε, w), i.e., for

all g ∈ G we find h ∈ w(G) such that dG(g, h) ≤ ε.

This confirms metric versions of a conjecture of Shalev [3, Conjecture 8.3] and a con-

jecture posed by Larsen at the 2008 Meeting of the AMS in Bloomington. Equivalently,

we prove that any non-trivial word map is surjective on a metric ultraproduct of groups

G from above such that n(G)→∞ along the chosen ultrafilter.

As a consequence of our methods, we also obtain an alternative proof of the result of

Hui, Larsen, and Shalev [36, Theorem 2.3] that w1(SUn)w2(SUn) = SUn for non-trivial

words w1, w2 ∈ Fr and n sufficiently large.
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In Chapter 4, we discuss isomorphism questions for simple metric ultraproducts of

certain families of finite groups which are ‘close’ to finite simple groups. This is motivated

by the article [73] of Thom and Wilson.

Let U be an ultrafilter on an index set I. Denote by SU a metric ultraproduct of

symmetric groups Sni (i ∈ I) equipped with the normalized Hamming length function

such that ni →U ∞. Note that SU is always simple by Lemma 3.2 of [49]. For X being one

of the Lie types GL, Sp, GO, or GU denote by XU a metric ultraproduct of groups Xni(qi)

(ni ∈ Z+, qi a prime power; i ∈ I; whether the groups are of plus or minus type in the

orthogonal case in even dimension will not be important) equipped with the normalized

rank length function such that ni →U ∞. Write XU (q) for such an ultraproduct when

qi is eventually constant along U , i.e., {i ∈ I | qi = q} ∈ U . Denote by XU resp. XU (q)

the unique simple quotient of XU resp. XU (q). By Theorem 1.3(i) this is precisely the

metric ultraproduct of the groups Xni(qi) (i ∈ I) equipped with the projective rank length

function (see Definition 0.12). Here X denotes the projective Lie type associated to X,

i.e., X equals PGL, PSp, PGO, or PGU when X is GL, Sp, GO, or GU, respectively.

In Theorem 2.2 of [73] Thom and Wilson prove that in this situation always SU1 6∼= XU2

(as abstract groups), where U1 and U2 are ultrafilters on different index sets I1 and I2.

They also show that one can extract the limit characteristic p := limU char(Fqi) of the

finite fields Fqi (i ∈ I) out of the group XU . In this chapter, we extend their results. The

main result of Chapter 4 is the following.

Theorem 4.1. Let G1
∼= G2 with Gj = XjUj (qj), where Xj ∈ {PGL,PSp,PGO,PGU}

(j = 1, 2). Then it holds that q1 = q2. Also we must have X1 = X2 or {X1, X2} =

{PSp,PGO}. Moreover, an ultraproduct X1U1 where the sizes qi of the finite fields Fqi
(i ∈ I1) tend to infinity along U1 cannot be isomorphic to an ultraproduct X2U2(q).

We prove Theorem 4.1 by computing double centralizers of semisimple torsion elements

in the above groups. It remains an open problem whether a group PSpU1(q) can be iso-

morphic to a group PGOU2(q) for an odd prime power q. However, due to the isomorphism

Sp2m(q) ∼= GO2m+1(q) for q = 2e, this is possible in characteristic two.

Chapters 1–3 are completely independent and only depend on the conventions and

definitions of Chapter 0. They can be read in any order. Chapter 4 depends on Chapter 0,

but also on Subsection 3.4.2 of Chapter 3. All mathematical symbols that occur are

explained once again in the Index of Symbols. A version of Chapter 1 was published as

[61]. A version of Chapter 2 was published as [55]. After Andreas Thom and I finished

a first version of this article and circulated it among some experts, it was pointed out

that (independently and slightly earlier) Lev Glebsky found a solution to Zilber’s problem

along the same lines. Chapter 3 was published as [62]. Chapter 4 is not yet published.
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Chapter 0

Notation, basic definitions, and

facts

In this introductory chapter, we fix our notation and provide the reader with some basic

definitions and facts, which are needed and used in the subsequent Chapters 1–4.

0.1 Group theory

For this section let G be a group and S ⊆ G be a subset of G. We call S a normal subset if

it is invariant under conjugation. The neutral element of G is denoted by 1G, the inverse

of g ∈ G is written as g−1, the product of g, h ∈ G is written as gh, and the conjugate

of g by h is written as gh := h−1gh. Write gG := {gh |h ∈ G} for the conjugacy class

of the element g ∈ G. Denote by ord(g) resp. |G| the order of g ∈ G resp. of the group

G. Write exp(G) for the exponent of G. Denote by 1 the trivial group. Denote by Ck

the cyclic group of order k ∈ Z+. Write H ≤ G for the statement ‘H is a subgroup of

G’ and N E G for the statement ‘N is a normal subgroup of G’. Write H ∩ I for the

intersection of subgroups H and I of G. Let H be another group. Denote by G ×H the

direct product of the groups G and H. Write ϕ : G → H for a group homomorphism ϕ

from G to H. Denote by im(ϕ) resp. ker(ϕ) the image resp. kernel of ϕ. Write ϕ : G ↪→ H

resp. ϕ : G� H if ϕ is injective resp. surjective. Write G = G/N for the quotient of G by

a normal subgroup N . Let g denote the image of g ∈ G under the natural homomorphism

π : G → G = G/N . Write G ∼= H if the groups G and H are isomorphic. Write Aut(G)

for the automorphism group of G. Set 〈S〉 resp. 〈〈S〉〉G to be the subgroup resp. normal

subgroup of G generated by S. If the ambient group G is understood, the subscript in the

second case is omitted. For k ∈ N set S∗k := {s1 · · · sk | si ∈ S} to be the k-fold product

of the subset S, where the empty product S∗0 equals the singleton containing the neutral

element {1G}. When T ⊆ G is another subset of G, set ST := {st | s ∈ S, t ∈ T}. The

symbol F always denotes a free group. Write rk(F) for the rank of F. The symbol Fr

denotes the free group of rank r freely generated by x1, . . . , xr. Elements of a free group

are also called words . A word w ∈ F is said to be non-trivial if w 6= 1F. We write 〈S |R〉

7



Chapter 0. Notation, basic definitions, and facts

for the group presented by the generators S and relations R. If G is a permutation group

acting on a set Ω, write H oG = HΩ oG for the wreath product of the group H with G.

Write (hω)ω∈Ω.g ∈ HΩ o G for an element of this group. Write N.H for an extension of

the group N by the group H.

(a) Group actions. All group actions that occur are right actions. When G acts on the

set X, we write x.g for the image of x ∈ X under the map associated to g ∈ G. However,

when X is a ring and α is a ring automorphism , we write xα instead of x.α (for aesthetic

reasons; see Section 0.2 and Subsection 3.4.2). We write stabG(x) := {g ∈ G |x.g = x} for

the stabilizer of x in G and orbG(x) := {x.g | g ∈ G} for the orbit of x under G.

(b) Commutators. For g, h ∈ G we write [g, h] := g−1h−1gh for their commutator . For

g ∈ G set [S, g] := {[s, g] | s ∈ S} and [g, S] := {[g, s] | s ∈ S}. For subgroups H,L ≤ G

write [H,L] := 〈[h, l] |h ∈ H, l ∈ L〉.

(c) Subgroups. We write Z(G) for the center of the group G and CG(S) for the

centralizer of the set S in G. We also write C(S) if the ambient group G is clear from the

context. Write G′ := [G,G] for the commutator subgroup and, more generally, for i ∈ N set

G(i+1) := [G(i), G(i)] to be the (i+ 1)st term in the derived series of G, where G(0) := G.

For i ∈ Z+ write γi(G) for the ith term in the lower central series of G, i.e., γ1(G) := G

and γi+1(G) := [γi(G), G]. We set γω(G) :=
⋂
i∈Z+

γi(G).

(d) Symmetric groups, alternating groups, and permutations. Write Sym(Ω) resp.

Alt(Ω) for the symmetric resp. alternating group on the finite set Ω. Write idΩ for the

identity permutation on Ω. If Ω is clear from the context, we drop the subscript. Set

Sn := Sym(n) resp. An := Alt(n) to be the symmetric resp. alternating group on the set

n := {1, . . . , n}. Write Ãn for the Schur covering group of An (see Section 2.7 of [78];

this symbol only appears in Section 1.3). Fix a permutation σ ∈ Sn. Define the support

supp(σ) ⊆ n of σ to be the set {x ∈ n |x.σ 6= x}. Similarly, define the fixed point set

of σ by fix(σ) := {x ∈ n |x.σ = x}. For k ∈ Z+ define ck(σ) to be the number of k-

cycles of σ. Setting ck := ck(σ) for k ∈ Z+, we say that σ has cycle type (kck)k∈Z+ (cf.

Section 2.3.1 of [78]). Let Ck(σ) ⊆ Sn resp. Ωk(σ) ⊆ n denote the set of k-cycles resp.

the support of the k-cycles of σ. In this situation we have that
⊔
c∈Ck(σ) supp(c) = Ωk(σ)

and
⊔
k∈Z+

Ωk(σ) = n. Set nk(σ) := |Ωk(σ)| = kck(σ) for k ∈ Z+. We call σ k-isotypic if

Ωk(σ) = n, or equivalently, ci(σ) = 0 for all i 6= k. If σ is k-isotypic for one k, we call it

isotypic.

(e) Vector spaces, linear maps, general linear groups, and special linear groups. Let

k be a field. Fix a k-vector space V . The zero vector of V is written as 0, the additive

inverse of v ∈ V is written as −v, the sum of u, v ∈ V is written as u+ v, and the vector

v ∈ V scaled by λ ∈ k is written as λv. Let dim(V ) denote the dimension of V . Write

U ≤ V resp. U < V for the statement ‘U is a k-vector subspace of V ’ resp. ‘U is a proper

k-vector subspace of V ’. Write Sub(V ) for the set of all k-vector subspaces of V . Let

8



0.1. Group theory

codim(U) denote the codimension of the k-vector subspace U in V . Write U ∩W for the

intersection of vector subspaces U and W of V . Let U be another k-vector space. Denote

by U⊕V the direct sum of U and V . We use the same notation for (injective or surjective)

k-linear maps between k-vector spaces as for group homomorphisms (see above). We also

use the same notation for the image and the kernel of a linear map as in the case of a

group homomorphism. Write rk(ϕ) := dim(im(ϕ)) for the rank of the linear map ϕ. For

linear maps ϕ and ψ let ϕ⊕ ψ be their direct sum. Write V/W for the quotient of V by

the k-vector subspace W . Write U ∼= V if U and V are isomorphic as k-vector spaces.

For vectors v1, . . . , vn ∈ V write 〈v1, . . . , vn〉 ≤ V for the k-vector subspace generated by

v1, . . . , vn.

Write M(V ) for the ring of k-linear maps on V . Fix a linear map g ∈M(V ). Denote

by det(g) resp. tr(g) the determinant resp. trace of g. Write k[X] for the polynomial ring

over k with one variable X. All polynomials in k[X] that occur in the text are meant to

be monic ones, i.e., the coefficient of the largest power of X is one. For such a polynomial

χ = a0 +a1X+ · · ·+ak−1X
k−1 +Xk ∈ k[X] of degree k write F (χ) for the Frobenius block

with characteristic polynomial χ, i.e., multiplication by X in the quotient ring k[X]/(χ)

represented in the basis 1, X, . . . , X
k−1

:

F (χ) =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 1

−a0 · · · · · · · · · −ak−1


.

For a scalar λ ∈ k write Je(λ) for the Jordan block of size e ≥ 1 with eigenvalue λ, i.e.,

multiplication by λ+X in k[X]/(Xe) in the basis 1, X, . . . , X
e−1

:

Je(λ) =



λ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λ


.

Call the polynomial χ primary if it is a power ie of an irreducible polynomial i ∈ k[X] (or

equivalently, the ideal (χ) ⊆ k[X] is a primary ideal). Recall that by the existence of the

generalized Jordan normal form of g (sometimes also called primary rational canonical

form), we can write g in the form

g ∼=
⊕

χ primary

F (χ)⊕cχ ,

where the cχ are uniquely determined. In this situation, for χ ∈ k[X] primary set cχ(g) :=

9
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cχ and write Vχ(g) for the g-invariant subspace U on which g|U by the above normal

form acts as F (χ)⊕cχ . Note that Vχ(g) is not uniquely determined. However, when we

use the symbol Vχ(g) for χ ∈ k[X] primary, we mean that V =
⊕

χ primary Vχ(g) is some

decomposition such that g acts F (χ)-isotypically on each Vχ(g) for all χ ∈ k[X] primary.

Also set nχ(g) := dim(Vχ(g)) = kχcχ(g), where kχ = deg(χ). Now drop the assumption

that χ is primary. We call g F (χ)-isotypic if g ∼= F (χ)⊕cχ and isotypic if it is F (χ)-isotypic

for some (not necessarily primary) polynomial χ ∈ k[X].

Denote by idV ∈M(V ) the identity map on V . If the space V is understood, we drop

the subscript. Write diag(λ1, . . . , λn) for a diagonal matrix on V = kn with λ1, . . . , λn ∈ k
on the main diagonal. For a k-algebra R write R× for its units ; so k× = k \ {0}. Write

PM(V ) := (M(V ) \ {0})/k× for the projective space associated to M(V ). Set Mn(k) :=

M(kn). Write GL(V ) := M(V )× resp. SL(V ) := ker(det : GL(V ) → k×) for the general

resp. special linear group of V . Denote by PGL(V ) := GL(V )/Z(GL(V )) = GL(V )/k×

resp. PSL(V ) := SL(V )/Z(SL(V )) = SL(V )/{λ ∈ k× |λdim(V ) = 1} the projective general

resp. projective special linear group of V . Set GLn(k) := GL(kn), SLn(k) := SL(kn),

PGLn(k) := PGL(kn), and PSLn(k) := PSL(kn).

(f) Classical groups of Lie type and vector spaces with form. Denote by Fq the finite

field with q elements. Set GLn(q) := GLn(Fq), SLn(q) := SLn(Fq), PGLn(q) := PGLn(Fq),
and PSLn(q) := PSLn(Fq) (cf. Section 3.3 of [78]).

Fix a vector space V = kn over the field k (which we specify in the subsequent cases).

Set p := char(Fq) to be the characteristic of the field Fq. Now we distinguish three cases

(cf. Section 3.4.1 of [78]).

(i) The symplectic case. We set k := Fq and let f : V × V → k be an alternating

bilinear form, i.e., f is bilinear and f(v, v) = 0 for all v ∈ V .

(ii) The orthogonal case. We set k := Fq and let f : V ×V → k be a symmetric bilinear

form, i.e., f is bilinear and f(u, v) = f(v, u) for all u, v ∈ V . (∗) If p = 2, we require

additionally that f comes from a quadratic form Q : V → k, i.e., Q(λv) = λ2Q(v) and

Q(u+ v) = Q(u) + f(u, v) +Q(v) for all λ ∈ k, u, v ∈ V . Note that this condition forces

f to be alternating, since Q(2v) = 0 = 2Q(v) + f(v, v) = f(v, v) for all v ∈ V .

(iii) The unitary case. We set k := Fq2 and let σ : k → k denote the q-Frobenius

map x 7→ xq (which is an involution). Let f : V × V → k be a σ-conjugate-symmetric

sesquilinear , i.e., f is linear in the first entry and f(u, v) = f(v, u)σ for all u, v ∈ V .

For two vectors u, v ∈ V write u ⊥ v if f(u, v) = 0 and say that u and v are perpen-

dicular in this case. Subsequently, let U,W,Z ≤ V be subspaces. Write U ⊥ W and say

that U and W are perpendicular , if u ⊥ w = 0 for all u ∈ U , w ∈ W . Write U ⊥ W = Z

if U ⊥ W and U ⊕W = Z. In this situation Z is called the orthogonal direct sum of U

and W . If we are not in Case (∗) from above, a vector v ∈ V is called isotropic if v ⊥ v.

In Case (∗), a vector v ∈ V is called isotropic if Q(v) = 0 (as remarked above, here every

vector fulfills v ⊥ v, since f is alternating). Write U⊥ := {v ∈ V |u ⊥ v for all u ∈ U}

10



0.1. Group theory

for the perpendicular space of U . Define the radical rad(f) of the form f to be V ⊥. In

Case (∗), the radical of Q is defined as rad(Q) := rad(f) ∩ {v ∈ V | v is isotropic}. Note

that rad(Q) is a subspace, since Q is semilinear on rad(f) with respect to the 2-Frobenius

map k → k; x 7→ x2 (as it is a quadratic form). If we are not in Case (∗), we say that U is

non-singular if rad(f |U ) = U ∩ U⊥ = 0 and U is called totally isotropic if U ≤ U⊥. Note

that in this case, if U is non-singular, then U ⊥ U⊥ = V , so U⊥ is actually a complement

to U . In Case (∗), we call U non-singular if rad(Q|U ) = 0 and totally singular if Q|U = 0.

A maximal totally isotropic subspace of V is called Witt subspace of V .

We say that f is non-singular if rad(f) = 0. In Case (∗), we call Q non-singular if

rad(Q) = 0 and non-degenerate if even rad(f) = 0. If g is a form like f (resp. R a form

like Q in Case (∗)), we say that f and g (resp. Q and R in Case (∗)) are linearly equivalent

if there is a linear map h ∈ GL(V ) such that f(u, v) = g(u.h, v.h) (resp. Q(v) = R(v.h) in

Case (∗)) for all u, v ∈ V .

Let

GI(V, f) := {g ∈ GL(V ) | f(u.g, v.g) = f(u, v) for all u, v ∈ V }

resp.

GI(V,Q) := {g ∈ GL(V ) |Q(v.g) = Q(v) for all v ∈ V }

denote the full isometry group of (V, f) (resp. (V,Q) in Case (∗)). Note that, when f

and g (resp. Q and R) are linearly equivalent via h ∈ GL(V ), we have an isomorphism

ϕ : GI(V, f) → GI(V, g) (resp. ϕ : GI(V,Q) → GI(V,R)); a 7→ ah. Subsequently, set

G := GI(V, f) (resp. G := GI(V,Q) in Case (∗)) and assume f (resp. Q in Case (∗)) to be

non-singular.

In Case (i), f being non-singular forces n = 2m to be even. Also f is uniquely

determined up to linear equivalence. Hence G is determined up to isomorphism and we

call it the symplectic group of degree 2m over Fq and denote it by Sp2m(q) (cf. Section 3.5

of [78]).

In Case (iii), f is again uniquely determined up to linear equivalence. Here we call G

the general unitary group of degree n over Fq2 and denote it by GUn(q) (cf. Section 3.6 of

[78]). In Chapter 3, we shall also speak about the general resp. special unitary group over

C, which we denote by Un resp. SUn.

In Case (ii), assume first that we are not in Case (∗) (cf. Section 3.7 of [78]). There

exist two equivalence classes of non-singular symmetric bilinear forms (cf. Section 3.4.6

of [78]). Let f be such a form. When n = 2m + 1 is odd and α ∈ F×q is a non-square,

then f and αf are inequivalent, but apparently G = GI(V, f) = GI(V, αf). Denote this

group G by GO2m+1(q) and call it the general orthogonal group of degree 2m + 1 over

Fq. When n = 2m is even, there is a form f+ of plus type (i.e., a Witt subspace of V

is of dimension m) and a form f− of minus type (i.e., a Witt subspace is of dimension

11
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m− 1). We set GO+
2m(q) := GI(V, f+) resp. GO−2m(q) := GI(V, f−) and call these groups

the general orthogonal group of plus type resp. minus type of degree 2m over Fq.

Now assume that we are in Case (∗) (cf. Section 3.8 of [78]). If n = 2m + 1 is

odd, f must be singular, since it is alternating. Hence rad(f) has dimension one and

we have a homomorphism π : G → GI(V/ rad(f), f) = Sp2m(q). It turns out that every

map g ∈ GI(V/ rad(f), f) = Sp2m(q) has a unique lift g̃ ∈ G, so that π is actually an

isomorphism (cf. Section 3.4.7 of [78]) witnessing that GO2m+1(q) ∼= Sp2m(q). Hence we

neglect this case and assume that n = 2m is even and that rad(f) = 0. In this case,

there are again two equivalence classes of quadratic forms Q. One of plus type (i.e., a

Witt subspace of V is of dimension m), which we call Q+, and one of minus type (i.e., a

Witt subspace is of dimension m− 1), which we call Q−. Set GO+
2m(q) := GI(V,Q+) resp.

GO−2m(q) := GI(V,Q−) and call the groups as above.

Now let SUn(q) := SLn(q) ∩GUn(q) denote the special unitary group of degree n over

Fq2 , SO2m+1(q) := SL2m+1(q) ∩GO2m+1(q) denote the special orthogonal group of degree

2m+ 1 over Fq, and SO+
2m(q) := SL2m(q)∩GO+

2m(q) resp. SO−2m(q) := SL2m(q)∩GO−2m(q)

denote the special orthogonal group of plus type resp. minus type of degree 2m over Fq. Note

that Sp2m(q) ≤ SL2m(q), whence there is no special symplectic group. Write Ω2m+1(q)

resp. Ωε
2m(q) (ε = ±) for the kernel of the spinor norm SO2m+1(q) → F×q /(F×q )2 resp.

SOε
2m(q) → F×q /(F×q )2 if p is odd (cf. Section 3.7.1 of [78]). In characteristic p = 2, use

the same notation Ωε
2m(q) for the kernel of the quasideterminant SOε

2m(q) → {±1} (cf.

Section 3.8.1 of [78]).

Let G denote any of the groups Sp2m(q), GO2m+1(q) (q odd), SO2m+1(q) (q odd),

GOε
2m(q), SOε

2m(q), Ω2m+1(q) (q odd), Ωε
2m(q), GUn(q), SUn(q) (m ≥ 1, n ≥ 1, q a

prime power, ε = ±). In each of the above cases, call V the natural module of G. Set

G := G/Z(G). Note that G ≤ GL(V ) and G ≤ PGL(V ).

Then, if G = Sp2m(q), call G the projective symplectic group of degree 2m over Fq
and denote it by PSp2m(q). If G = GO2m+1(q) resp. G = SO2m+1(q) (q odd) call G

the projective general resp. projective special orthogonal group of degree 2m + 1 over Fq
and denote it by PGO2m+1(q) resp. PSO2m+1(q). If G = GOε

2m(q) resp. G = SOε
2m(q)

(ε = ±) call G the projective general resp. projective special orthogonal group of ε type

of degree 2m over Fq and denote it by PGOε
2m(q) resp. PSOε

2m(q). If G = Ω2m+1(q) (q

odd) resp. G = Ωε
2m(q) write PΩ2m+1(q) resp. PΩε

2m(q) for G. Lastly, if G = GUn(q) resp.

G = SUn(q), call G the projective general resp. projective special unitary group of degree

n over Fq2 and denote it by PGUn(q) resp. PSUn(q).

We end up this section by stating an important result which we will use frequently in

Chapters 1–4.

Lemma 0.1 (Witt’s lemma). Assume f (resp. Q in Case (∗)) is non-singular (resp. Q is

even non-degenerate in Case (∗)). Let U,W ≤ V be subspaces such that there is a partial

isometry α : (U, f |U ) → (W, f |W ) (resp. α : (U, Q|U ) → (W, Q|W ) in Case (∗)). Then α
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extends to a full isometry β : (V, f)→ (V, f) (resp. β : (V,Q)→ (V,Q) in Case (∗)).

Remark 0.2. Lemma 0.1 (cf. Section 3.4.8 of [78]) implies that, if f is non-singular (resp.

Q is non-degenerate in Case (∗)), any totally isotropic subspace is contained in a Witt

subspace and all Witt subspaces are conjugate (and hence have the same dimension).

0.2 Some ring and field theory

For Chapters 3 and 4 we need some basic ring and field theory.

Fix a ring R. Write 0 resp. 1 for the neutral element with respect to addition resp.

multiplication in R. Write a+b resp. ab for the sum resp. product of ring elements a, b ∈ R.

Write a−1 for the inverse element of the unit a ∈ R×. Write (r) for the principal ideal

generated by r ∈ R. Write rR for the right ideal generated by r ∈ R. Use the same

notation for ring homomorphisms resp. quotient rings as for group homomorphisms resp.

quotient groups. Write Aut(R) for the automorphism group of R. For a ring automorphism

α ∈ Aut(R) write rα for the image of r ∈ R under α. Sometimes we use the same notation

when α is just an isomorphism between two different rings. Let Rα := {r ∈ R | rα = r}
denote the fixed ring of α. If I ⊆ R is an ideal of R which is fixed setwise by α, write

Iα := {i ∈ I | iα = i} = I ∩ Rα ⊆ Rα for the fixed ideal of α inside I. For a subset S ⊆ R

set S+k := {s1 + · · · + sk | s1, . . . , sk ∈ S} and define S+0 = {0}. Also write CR(S) for

the centralizer of S in R. When the ring R is understood, we omit the subscript. Write

R[X1, . . . , Xn] for the polynomial ring over R in the commuting variables X1, . . . , Xn. For

r ∈ R[X], r = r0 + r1X + · · · rn−1X
n−1 + rnX

n (rn 6= 0) write deg(r) := n for its degree.

Write Φn(X) ∈ Z[X] for the nth cyclotomic polynomial (n ∈ Z+). For a field k write k

for its algebraic closure. Write k[G] for the group algebra of G over the field k. For a

finite field extension L/K write trL/K : L → K for the field trace. Write Gal(L/K) for

the Galois group of the Galois extension L/K.

0.3 Ultraproducts and norms

For this section fix an index set I and a non-principal ultrafilter U on I. We start with

the notion of an algebraic ultraproduct of a family of groups. Note that this notion will

only be used in Chapter 1.

Definition 0.3 (Algebraic ultraproduct). The algebraic ultraproduct of a family of (ab-

stract) groups H = (Hi)i∈I with respect to U is defined as the quotient

HU := G/N0,

where G :=
∏
i∈I Hi and N0 := {(hi)i∈I ∈ G | {i ∈ I |hi = 1Gi} ∈ U}.

Remark 0.4. The subset N0 of G is a subgroup, since U is a filter. It is apparent that

N0 is normal.
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In Chapters 2–4, we will switch from algebraic to metric ultraproducts. To introduce

this notion, we first need to define what a length function (or norm) on a group is.

Definition 0.5 (Length function). A length function `H : H → [0,∞] on the group H is

a function which obeys the following three properties:

(i) `H(h) = 0 if and only if h = 1H (identity of indiscernibles);

(ii) `H(h) = `H(h−1) for h ∈ H (symmetry);

(iii) `H(gh) ≤ `H(g) + `H(h) for g, h ∈ H (triangle inequality).

Call `H invariant, if `H(gh) = `H(hg) for all g, h ∈ H, i.e., `H is invariant under the

conjugation action of H on itself. An invariant length function is also called a norm.

Remark 0.6. Note that there is a one-to-one correspondence between left-invariant met-

rics dH (which may attend the value infinity) on H (i.e., metrics dH : H2 → [0,∞] such

that dH(fg, fh) = dH(g, h) for all f, g, h ∈ H) and length functions `H on H via the

identity `H(g−1h) = dH(g, h) for all g, h ∈ H. Throughout the thesis, we will indicate

that a length function and a left-invariant metric correspond to each other by equipping

them with the same subscript.

A length function `H : H → [0,∞] is invariant, i.e., a norm, if and only if dH is

right-invariant (and hence bi-invariant), i.e., dH(gf, hf) = dH(g, h) for all f, g, h ∈ H.

Throughout the thesis, all length functions that occur will be invariant. Also, subsequently,

we do not add the group to the subscript, when it is clear from the context. By a normed

group we mean a group H equipped with a norm.

Now we introduce the notion af a metric ultraproduct of normed groups.

Definition 0.7 (Metric ultraproduct). The metric ultraproduct of a family of normed

groups H = (Hi, `i)i∈I with respect to U is defined as the quotient

Hmet
U := G/N`,

where G :=
∏
i∈I Hi and N` := {(hi)i∈I ∈ G | limU `i(hi) = 0}. Then Hmet

U is a complete

metric group with respect to the norm `U (h) := limU `i(hi), which is the ultralimit of the

norms `i (i ∈ I). Here h = (hi)i∈I .

Remark 0.8. The function `U is well-defined, since U is an ultrafilter and [0,∞] is com-

pact. It is invariant, since all `i (i ∈ I) are invariant. Also N` is well-defined and normal,

since all `i (i ∈ I) are invariant.

Some authors use a slightly different definition by restricting G to the sequences

(hi)i∈I ∈
∏
i∈I Hi of uniformly bounded length, i.e., supi∈I `i(hi) < ∞. However, we

prefer the above definition, since then the metric ultraproduct is always a quotient of the

product of the finite groups Hi (i ∈ I). For more details on the algebraic and geometric

structure of such ultraproducts see also [67] and [73, ?].
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Remark 0.9. Another thing we mention here is that the tuple (HU , `U ) in Definition 0.7

is always a metric group (i.e., the group operations are continuous), since `U is invariant.

Remark 0.10. In Chapter 4, we shall also use ultraproducts (Xmet
U , dU ) of metric spaces

(Xi, di) (i ∈ I; namely for (Xi, di) = (Mni(k), drk) or (Xi, di) = (PMni(k), dpr)). Such a

metric ultraproduct is defined as Xmet
U :=

∏
i∈I Xi/ ∼, where (xi)i∈I ∼ (yi)i∈I if and only

if limU di(xi, yi) = 0. Also the metric dU is defined as dU (x, y) = limU di(xi, yi) (where

x = (xi)i∈I , y = (yi)i∈I ∈ Xmet
U ).

Remark 0.11. Lastly, we remark that the algebraic ultraproduct of the family H =

(Hi)i∈I of finite groups is isomorphic to the metric ultraproduct of these groups equipped

with the discrete length function (see Definition 0.12 below) with respect to the same

ultrafilter. In this sense we can view every algebraic ultraproduct as a metric ultraproduct.

We end this chapter by introducing the most common length functions on finite, linear,

and projective linear groups, and showing that some of them are ‘equivalent ’ on some

infinite families of finite groups.

Definition 0.12 (Common length functions). On every group H we define the discrete

length function by

`d(h) := 1− δ1H ,h =

0 if 1H = h

1 otherwise
.

On every finite centerless group H we define the normalized conjugacy length function by

`c(h) :=
log|hH |
log|H|

.

On the finite symmetric group Sn (n ∈ Z+) we define the normalized Hamming length

function by

`H(σ) :=
1

n
|supp(σ)|.

On the general linear group GLn(k) = GL(V ), where V = kn is a k-vector space, we define

the normalized rank length function by

`rk(h) :=
1

n
rk(idV −h).

On the projective linear group PGLn(k) = PGL(V ) we define the normalized projective

rank length function by

`pr(h) := min{`rk(h) |h a lift of h}.

Finally, the Cayley length function with respect to some subset S ⊆ H is defined by

`Cay,S(h) := min{n ∈ N |h = s1 · · · sn for si ∈ S ∪ S−1} ∪ {∞}.
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It is a simple matter to check that all of the above length functions, apart from the

Cayley length function, are indeed norms. The latter is invariant if and only if S is

invariant under conjugation. Also note that `H can be pulled back to any subgroup of Sn

(e.g., to An) and, similarly, `rk resp. `pr can be pulled back to any subgroup of GLn(k)

resp. PGLn(k) (e.g., when k = Fq or Fq2 , to the groups G and G in Section 0.1(f)).

By abuse of notation, we still write `H, `rk, `pr for these norms restricted to the smaller

subgroup (cf. Theorem 1.3), and dH, drk, dpr for the corresponding metrics (as remarked

in Remark 0.6). If we want to emphasize the group on which these norms resp. metrics

are defined, we add it to the subscript (e.g., `rk,H : H → [0,∞]).

We call a family of norms (`i)i∈I on a sequence of finite groups H = (Hi)i∈I Lipschitz

continuous with respect to a second such family (`′i)i∈I on the same groups if there is

L > 0 such that `i ≤ L`′i (i ∈ I).

For example, since `c,H ≤ `d,H for any finite centerless group H, the normalized con-

jugacy length function is Lipschitz continuous with respect to the discrete length function

on such groups (with L = 1).

If (`′i)i∈I is also Lipschitz continuous with respect to (`i)i∈I , we call these families

Lipschitz equivalent .

Note the following fact (which we use in the argument at the end of Section 2.4).

Fact 0.13. The length functions `H, 1
n`Cay,τSn , and `c are Lipschitz equivalent on all finite

symmetric or alternating groups Sn or An (n ≥ 5), where τ ∈ Sn is a transposition. The

length functions `pr and `c are Lipschitz equivalent on the classical simple groups PSLn(q),

PSp2m(q), PΩ2m+1(q) (q odd), PΩ±2m(q), PSUn(q) (n,m ∈ Z+, q a prime power).

Proof. The first statement was proven in Proposition 2.7 and Theorem 2.11 of [67].

The second statement follows from Lemmas 5.3, 5.4, 6.3, 6.4, and the end of Section 7

of [49]. Indeed, Lemma 5.4, Lemma 6.4, and the last four lines of Section 7 of this article

imply that the normalized projective rank length function on the above families of groups

is as small as possible (up to a multiplicative constant). Lemma 5.3, Lemma 6.3, and the

last inequality of Section 7 show that the normalized conjugacy length function is Lipschitz

continuous with respect to the normalized projective rank length function. These two facts

imply that both must be Lipschitz equivalent. The proof is complete.
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Chapter 1

The normal subgroup lattice of an

algebraic ultraproduct of classical

groups of Lie type

1.1 Introduction

The purpose of this chapter is to correct statements from the work of Stolz and Thom in

[67] and to generalize them to a setting of quasisimple groups. As stated, Theorem 3.9

of [67] is not correct and the main result of this chapter (Theorem 1.3) should replace it.

Note that already in [12] it was pointed out that some of the techniques and results of [67]

were flawed. Some corrections on results about bounded normal generation in the setting

of unitary groups on finite-dimensional Hilbert spaces can be found in [12]. The statement

of [67, Theorem 4.20] should be considered as an open problem at the time of writing. In

this chapter, we focus entirely on the case of finite groups.

Using the results of [49], it is a simple matter to prove the following result about

‘relative’ bounded normal generation for the alternating groups An with n ≥ 5.

Lemma 1.1. There exists c > 0 such that for any S, T ⊆ An (n ≥ 5) normal subsets with

|S|, |T | ≥ 1, T 6= {id} for any integer

k ≥ cmax{log|S|/ log|T |, 1}

it holds that S ⊆ (TAn)∗k.

Proof. Use Corollary 2.4 of [49] to reduce to the case when T is a single conjugacy class.

Hence, subsequently, we may assume that T is a single conjugacy class. Now assume the

result holds for S being a single conjugacy class C. Then, in the more general case where S

is arbitrary normal and T a single conjugacy class, we have for all conjugacy classes C ⊆ S
that for k ≥ cmax{log|S|/ log|T |, 1} ≥ cmax{log|C|/ log|T |, 1} it holds that C ⊆ (TAn)∗k

and so S ⊆ (TAn)∗k. Hence we may assume that both S and T are conjugacy classes.
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The result in this case follows from Lemma 1.8 below and the Lipschitz equivalence of the

normalized Hamming length function `H and the normalized conjugacy length function `c

on the family of finite alternating groups of degree at least five (see Fact 0.13).

A straightforward consequence of the previous lemma is that for any σ, τ ∈ An (n ≥ 5)

either σ ∈ (τAn)∗k or τ ∈ (σAn)∗k for any integer k ≥ c, which easily implies that the

normal subgroups of an algebraic ultraproduct of alternating groups are linearly ordered

(which was first observed in [17]).

However, in the case of classical finite simple groups of Lie type, all of the above is

false in general. The prototype of a counterexample is given by the following family of

pairs of elements.

Example 1.2. Let h1, h2 ∈ H := SLq(q) ∼= PSLq(q) be the elements given by h1 =

diag(1, λ, . . . , λ) and h2 = diag(1, µ, . . . , µ), where λ, µ ∈ F×q are arbitrary such that

λ 6∈ 〈µ〉 and µ 6∈ 〈λ〉 (e.g., take λ = ζa and µ = ζb, where 〈ζ〉 = F×q and a, b > 1 are coprime

with q − 1 = ab). Then it is easy to show by induction that hk1 has eigenvalue λk and hk2
has eigenvalue µk for |k| < q. From the assumptions it follows that h1 6∈ (hH2 ∪ (h−1

2 )H)∗k

and h2 6∈ (hH1 ∪ (h−1
1 )H)∗k for any such k.

The example shows that Lemma 3.12 in [67] is false. The problem in its proof is that

the rank and Jordan length (in our notation n`rk and n`pr) of g and h do not always

coincide. The correct replacement of this lemma is Lemma 1.13 below.

This example already implies that the normal subgroups of an algebraic ultraproduct

of finite simple groups of type SLq(q) are not linearly ordered. In this chapter, we shall

prove the ‘best possible’ result on relative bounded normal generation in classical finite

quasisimple groups of Lie type and fully describe the lattice of normal subgroups of an

algebraic ultraproduct of the universal such, i.e., quasisimple groups which are the Schur

covering group of a finite non-abelian simple group. We will prove the following theorem.

Theorem 1.3. Let (Hi)i∈I be a sequence of universal finite quasisimple groups of Lie

type (i.e., Hi is of type SLn(q), Sp2m(q), the double cover of Ω2m+1(q) or Ω±2m(q) for q

odd, Ω±2m(q) for q even, or SUn(q) for suitable prime power q and m,n ∈ Z+; cf. the list

at the beginning of Section 1.2), each endowed with the norms `rk, and H i := Hi/Z(Hi)

endowed with `pr (see Definition 0.12). Write Vi for the natural module of Hi (i ∈ I;

see Section 0.1(f)). Assume that the dimensions ni := n(Hi) := dim(Vi) tend to infinity

along a fixed ultrafilter U on I. Set G :=
∏
i∈I Hi and define the normal subgroups Nrk :=

{(hi)i∈I ∈ G | limU `rk(hi) = 0} and Npr := {(hi)i∈I ∈ G | limU `pr(hi) = 0} of G (where hi

means the image of hi ∈ Hi in H i). We also define N0 := {(hi)i∈I ∈ G |hi = 1Hi along U}
and suitable subgroups N1, A0, A1 ≤ G defined in Section 1.4. Then the following hold.

(i) The subgroup Npr contains all proper normal subgroups of G containing N0. In

particular, G/Npr is non-abelian simple and Npr/N0 is a characteristic subgroup of

G/N0.
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(ii) The normal subgroups of G lying between N0 and Nrk are linearly ordered. Any such

normal subgroup is perfect.

(iii) Define maps between the following two sets

{N E G |N1 ≤ N ≤ Npr}

{M |M E G, N1 ≤M ≤ Nrk} × {A |A E G, N1 ≤ A ≤ A1}

ΦΨ

by Φ: N 7→ (N ∩ Nrk, N ∩ A1) and Ψ: (M,A) 7→ MA. Then Φ and Ψ are isomor-

phisms of posets and mutually inverse to each other.

(iv) If N is normal in G containing N0 and N1 6≤ N , then N ≤ A0.

(v) A normal subgroup N containing N0 but not N1 is contained in a normal subgroup

K ≤ Npr containing N1 if and only if N ≤ A, where Φ(K) = (M,A) is the image of

K under the map Φ from above.

1.2 Auxiliary geometric results

In this section, we provide the necessary geometric results for the rest of this chapter.

Subsequently, let H be a quasisimple group from the following list:

(i) linear: SLn(q), n ≥ 2, (n, q) 6= (2, 2), (2, 3);

(ii) symplectic: Sp2m(q), m ≥ 2, (m, q) 6= (2, 2);

(iii) orthogonal: Ω2m+1(q), m ≥ 3, q odd; Ω±2m(q), m ≥ 4;

(iv) unitary: SUn(q), n ≥ 3, (n, q) 6= (3, 2).

Remark 1.4. Here we omit the groups Ω2m+1(q) with q even as they are isomorphic to

the groups Sp2m(q) (see Section 0.1(f)).

Use the notation of Section 0.1(f): Let V be the natural module of H (there are two

such representations when H = Ω2m+1(q) for q odd, corresponding to the two equivalence

classes of non-singular symmetric bilinear forms in this dimension) and n := dim(V ). For

Cases (ii)–(iv) denote by f the corresponding non-singular alternating bilinear, symmetric

bilinear, or conjugate-symmetric sesquilinear form. In Case (iii) for q even, denote by Q

the corresponding quadratic form inducing the non-singular alternating form f .

As we ignore the case that H = GO2m+1(q) with q even, a subspace U of V is non-

singular if f |U is non-singular. The following fact will be used in the Section 1.4.

Lemma 1.5. If U ≤ V is a non-singular subspace with 2 ≤ dim(U) < n/2, then there

exists a perpendicular decomposition W1 ⊥ W2 = U⊥ and an element h ∈ H such that h

is the identity on W2 and interchanges U and W1.
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Proof. Explicit computations with standard bases show that U⊥ always contains a sub-

space W1 isometric to U via an isometry θ : U → W1 with respect to f or Q in the

orthogonal case in characteristic two (here we need dim(U⊥) > dim(U)). Set W2 :=

(U ⊥ W1)⊥. Then h1 : V = U ⊥ W1 ⊥ W2 → U ⊥ W1 ⊥ W2 = V given by

(u,w1, w2) 7→ (θ−1(w1), θ(u), w2) is an isometric involution of V . Hence we may take

h := h1 in the symplectic case.

In the unitary case, if det(h1) = ε ∈ {±1}, letting h2 be the linear map which scales

a non-isotropic vector of U by ε and fixes its perpendicular complement, then h := h1h2

works.

In the orthogonal case for q odd, define h2 as in the unitary case. If the spinor norm

of h1h2 is ε ∈ {±1}, find an element s ∈ SO(U) of spinor norm ε and set h3 := s ⊕ idU⊥

(for the existence of s we use that dim(U) ≥ 2). Then h := h1h2h3 works.

In the orthogonal case for q even (forcing dim(V ) to be even), if the quasideterminant of

h1 is ε ∈ {±1}, find an element s ∈ GO(U) of quasideterminant ε and set h4 := s⊕ idU⊥

(again using dim(U) ≥ 2). Then h := h1h4 is an appropriate choice. The proof is

complete.

The following simple result about the existence of certain non-singular subspaces will

also be used in later sections.

Lemma 1.6. Let U ≤ V , dim(U) = l. Then there exists W ≤ U non-singular such that

dim(W ) ≥ 2l − n.

Proof. Choose W ≤ U maximal non-singular. If there were two vectors u, v ∈ W⊥ ∩ U
with f(u, v) 6= 0, then W ⊥ 〈u, v〉 > W would still be non-singular. Hence f is zero on this

subspace. Moreover, for dimension reasons U = W ⊥ (W⊥ ∩ U). Together this implies

U⊥ ∩ U = W⊥ ∩ U . Hence dim(W⊥ ∩ U) = dim(U) − dim(W ) ≤ dim(U⊥) = n − l, so

dim(W ) ≥ 2l − n, as desired.

We introduce the group of quasiscalars S(H) of H by

S(SLn(q)) := F×q ∼= Cq−1;

S(Sp2m) := {±1};

S(Ω2m+1(q)) := {±1} (q odd);

S(Ω±2m(q)) := {±1};

S(SUn(q)) := {x ∈ F×
q2
|xq+1 = 1} ∼= Cq+1 .

Of course −1 = 1 if char(Fq) = 2.

Our last auxiliary result will be used in Section 1.4:

Lemma 1.7. For any λ ∈ S(H) there is a diagonalizable element h ∈ H for a suitable

basis of V such that all but two of its diagonal entries are equal to λ.
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Proof. Clearly, we may assume that λ 6= 1, since otherwise we can always take h = idV .

If H = SLn(q), take h = diag(λ, . . . , λ, λ−(n−1)) with respect to any basis of V .

If H = Sp2m(q), q odd, and λ = −1, take h = − idV .

If H = SUn(q), take h = diag(λ, . . . , λ, λ−(n−1)) with respect to an orthonormal basis

e1, . . . , en for f , i.e., f(ei, ej) = δij for i, j = 1, . . . , n.

For H = Ω2m+1(q), q odd, and λ = −1 take h = diag(−1, . . . ,−1, 1) with respect to a

basis e1, . . . , e2m+1 such that f(ei, ej) = 0 if i 6= j and f(ei, ei) = 1 for i = 1, . . . , 2m and

f(e2m+1, e2m+1) = 1 or a non-square α ∈ F×q (there are two equivalence classes of such

forms both giving a natural representation of Ω2m+1(q)). Clearly, h has determinant and

spinor norm equal to one.

For H = Ω±2m(q), q odd, and λ = −1 we find a basis e1, . . . , e2m such that either

f(ei, ej) = δij for all i, j = 1, . . . , 2m, or f(ei, ej) = 0 for i 6= j, f(ei, ei) = 1 for i =

1, . . . , 2m − 1 and f(e2m, e2m) = α ∈ F×q a non-square (there are two equivalence classes

of non-singular symmetric bilinear forms corresponding to the two non-isomorphic groups

Ω+
2m(q) and Ω−2m(q)). In either case, we can take h = diag(−1, . . . ,−1, 1, 1) with respect

to this basis, which has determinant and spinor norm one.

In all remaining cases we have S(H) = 1, so the proof is complete.

1.3 Relative bounded normal generation in universal finite

quasisimple groups

In this section, we keep the notation from Section 1.2. Recall that our group H car-

ries the norm `rk, and H := H/Z(H) carries the Lipschitz equivalent norms `pr, `c (see

Definition 0.12 and Fact 0.13).

In the following, we will prove a version of ‘relative’ bounded normal generation for

all universal finite quasisimple groups from families of ‘unbounded rank’ (where we mean

the permutation degree in the alternating case; for the others there is no such notion).

We start with the alternating case. Recall that An (n ≥ 5) is equipped with the Lipschitz

equivalent norms `H and `c (see Definition 0.12 and Fact 0.13). Recall from Section 0.1(d)

that Ãn denotes the Schur covering group of An.

Lemma 1.8. There exists a constant c > 0 such that for any σ ∈ Ãn (n ≥ 5), τ 6∈ Z(Ãn)

for any integer k ≥ cmax{`H(σ)/`H(τ), 1} we have σ ∈ (τ Ãn)∗k. Here σ, τ ∈ An are the

images of σ, τ ∈ Ãn under the canonical homomorphism Ãn � An.

Proof. We prove the lemma for An (n ≥ 5) and derive the corresponding result for its Schur

covering group. Let σ, τ ∈ An, τ 6= id. After conjugating σ, we may assume that either

supp(σ) ⊆ supp(τ) or the opposite inclusion holds. In the first case, σ ∈ Alt(supp(τ)) =

(τAlt(supp(τ)))∗c1 ⊆ (τAn)∗c1 for some integral constant c1 > 0, and in the second case,

σ ∈ Alt(supp(σ)) = (τAlt(supp(σ)))∗k ⊆ (τAn)∗k for any integer k ≥ c2/`H,Alt(supp(σ))(τ) =

c2`H(σ)/`H(τ) with some constant c2 > 0; both times we use Lemma 3.2 of [49]. So we

may take c := max{c1, c2}.
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The statement now extends to the Schur cover Ãn by the following argument. W.l.o.g.,

n ≥ 8 (we may neglect this finite data), so Ãn is a twofold cover of An. It follows from

the standard construction of the two double covers of Sn that, when a and b are lifts of

the transposition (12) and (34), then (ab)2 = z is the unique non-trivial central element

in one of these. This shows that Z(Ãn) ⊆ (τ Ãn)∗c3 for any non-central τ ∈ Ãn and some

absolute integer constant c3 > 0, which implies the claim for Ãn.

Remark 1.9. According to Fact 0.13 by Lipschitz equivalence we can replace `H by `c in

the lemma.

Now we turn to the universal finite quasisimple groups of Lie type from families of

unbounded rank. The proof of ‘relative’ bounded normal generation for these is actually

very similar as for the Schur covering groups of the alternating groups.

We need the following fact which can be deduced by adapting the proof of Lemma 4.1

of [49] to quasisimple groups and looking at Lemmas 5.4 and 6.4, and the end of Section 7

of the same article.

Lemma 1.10. There is an absolute constant c > 0 (independent of H) such that for

h ∈ H \ Z(H), for any k ≥ c/`pr(h) it holds that H = (hH)∗k. Here h denotes the image

of h in H.

Remark 1.11. Again by Lipschitz equivalence we can replace `pr by `c.

We will also make use of the following Proposition 2.13 from [67], which we state here

without proof.

Lemma 1.12 (Proposition 2.13 of [67]). For h ∈ H, if `rk(h) = δ, then `pr(h) ≥ min{δ, 1−
δ}. Here h is the image of h in H.

Here is now the promised result for almost all other universal finite quasisimple groups

from families of unbounded rank:

Lemma 1.13. Let ε > 0 be arbitrary. There exists an absolute constant C > 0 and a

constant D > 0 only depending on ε such that the following holds: Let h1 ∈ H \ Z(H),

h2 ∈ H, `rk(h1) ≤ 1−ε. Then h2 ∈ (hH1 )∗k for all integers k ≥ max{C`rk(h2)/`rk(h1), D}.

Proof. First assume that ε ≤ `rk(h1) ≤ 1−ε. Then by Proposition 2.13 of [67] it holds that

`pr(h1) ≥ ε, so by Lemma 1.10 there is D ∈ N only depending on ε such that (hH1 )∗D = H.

So we may assume, w.l.o.g., that `rk(h1) < ε ≤ 1/8. Assume additionally that `rk(h2) ≤
1/8 as well (we will remove this assumption at the end). Set Ui := ker(1 − hi) ≤ V and

li := dim(Ui) (i = 1, 2).

At first we treat the special linear case, i.e., H = SLn(q): Replace h1, h2 ∈ H by

conjugates in Jordan normal form (where one off-diagonal entry might be different from

0 or 1) as matrices with respect to a suitable basis e1, . . . , en with all 1× 1 Jordan blocks

corresponding to eigenvalue one in the upper left corner. Assuming there are mi of these

for hi, i.e., e1.hi = e1, . . . , emi .hi = emi , it is easy to see that mi ≥ 2li − n (i = 1, 2).
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Indeed, if kj (j ≥ 1) is the number of Jordan blocks Jj(1) of a linear map g on a

vector space kn and l := dim(ker(1 − g)) = n(1 − `rk(g)), we have l =
∑n

j=1 kj and∑n
j=1 jkj ≤ n. Hence k1 = l−

∑n
j=2 kj together with

∑n
j=2 kj ≤

1
2

∑n
j=2 jkj ≤

n−k1
2 imply

that k1 ≥ 2l − n. Applying this to g := hi yields the claim mi ≥ 2li − n (i = 1, 2).

Set m := min{m1,m2} and W ′ := 〈em+1, . . . , en〉. For X := 〈e2m−n, . . . , em〉 the space

Y := X ⊕W ′ gives rise to a quasisimple group K := SL(Y ) (dim(Y ) ≥ 3, since n−m ≥ 1

as h1 6= idV , so that K is quasisimple). Note that X is well-defined, since by assumption

on l1 and l2 we have n ≥ m ≥ 3n/4 > n/2. Then dim(X) = dim(W ′)+1 = n−m+1 ≥ 2.

Then set Y ′ := 〈e1, . . . , e2m−n−1〉. The operators h1, h2 write as hi = idY ′ ⊕ idX ⊕Ai =

idY ′ ⊕Bi (i = 1, 2) with respect to the decompositions V = Y ′ ⊕ X ⊕ W ′ = Y ′ ⊕ Y .

Assuming m1 ≤ m2 gives 1/6 ≤ `rk(B1) ≤ 1/2 (B1 and B2 are seen as elements of

K = SL(Y ); one gets close to the lower bound when A1 only has Jordan blocks J2(1)), so by

Proposition 2.13 of [67] we have `pr(B1) ≥ 1/6, implying the existence of a constant D ∈ N
with B2 ∈ K = (BK

1 )∗D which yields h2 ∈ (hH1 )∗D (by Lemma 1.10). If m2 < m1, the same

argument shows 1/6 ≤ `rk(B2) and `rk(B1) ≤ 1/2, so as previously `pr(B1) = `rk(B1). By

Lemma 1.10, there is c > 0 such that for all integers k ≥ c/`pr(B1) we have K = (BK
1 )∗k.

Then it holds that h2 ∈ (hH1 )∗k and by

6c`rk(h2)/`rk(h1) = 6c`rk(B2)/`rk(B1) ≥ c/`pr(B1)

we are done in this case with C := 6c.

In the other cases, i.e., H 6= SLn(q), the proof is almost identical: Define U := U1 ∩U2

and l := dim(U) ≥ l1 + l2 − n. From Lemma 1.6 we get W ≤ U non-singular with

dim(W ) ≥ 2l−n. Then we infer dim(W⊥) ≤ 2(n− l) from dim(W ) ≥ 2l−n. This implies

dim(W⊥) ≤ 2(n− l) ≤ 2(2n− (l1 + l2)) ≤ 4(n−min{l1, l2})

and

4 min{l1, l2} − 3n ≤ 2(l1 + l2)− 3n ≤ 2l − n ≤ dim(W ).

As by assumption `rk(h1), `rk(h2) ≤ 1/8, implying that 7/8n ≤ l1, l2, we obtain dim(W⊥) ≤
dim(W ). Now take X ≤ W a non-singular subspace such that dim(X) ≥ dim(W⊥)

is as small as possible such that Y := X ⊥ W⊥ gives rise to a classical quasisimple

group K from the beginning of Section 1.2. As dim(W⊥) ≥ 1 (since h1 6= idV ), then

dim(X) ≤ d dim(W⊥) for some absolute d > 1. With respect to the decompositions V =

Y ⊥ ⊥ X ⊥W⊥ = Y ⊥ ⊥ Y , the operators h1, h2 write as hi = idY ⊥ ⊕ idX ⊕Ai = idY ⊥ ⊕Bi
with isometric automorphism Ai of W⊥ and Bi of Y (i = 1, 2). Now assume l1 ≤ l2. Then

`rk(B1) =
rk(idW⊥ −A1)

dim(W⊥) + dim(X)
,
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which can be bounded from above by 1/2 and from below by the chain

n− l1
2(1 + d)(n− l)

≥ n− l1
2(1 + d)(2n− (l1 + l2))

≥ n− l1
4(1 + d)(n− l1)

=
1

4(1 + d)
.

Hence by Proposition 2.13 of [67] we get that `pr(B1) ≥ 0.25(1 + d)−1, so by Lemma 1.10

there is a constant D ∈ N such that B2 ∈ K = (BK
1 )∗D, implying that h2 ∈ (hH1 )∗D. On

the other hand, if l2 < l1, by the same computation as above 0.25(1 + d)−1 ≤ `rk(B2)

and `rk(B1) ≤ 1/2, so by Proposition 2.13 of [67] we have `pr(B1) = `rk(B1). Applying

Lemma 1.10 gives c > 0 such that for all integers k ≥ c/`pr(B1) we have K = (BK
1 )∗k.

But then h2 ∈ (hH1 )∗k for such k, and, since

4(1 + d)c`rk(h2)/`rk(h1) = 4(1 + d)c`rk(B2)/`rk(B1) ≥ c/`pr(B1),

we are done in this case with C := 4(1 + d)c.

We still need to eliminate the condition `rk(h2) ≤ 1/8. This goes as follows: As

shown previously, the conjugacy class hH1 generates all elements h ∈ H with `rk(h) ≤ 1/8

‘quickly’ and these elements generate the whole group H in constantly many steps (by

Lemma 1.10). In total any h2 ∈ H with `rk(h2) > 1/8 is generated quickly by hH1 .

Remark 1.14. The condition `rk(h1) ≤ 1 − ε for a fixed ε > 0 cannot be removed by

Example 1.2. In that sense, the previous result is best possible.

Remark 1.15. The only universal finite quasisimple groups from families of unbounded

rank which are not covered by Lemmas 1.8 and 1.13 are the double covers of the orthogonal

groups in odd characteristic.

Defining `rk(h) := `rk(h) for h an element of the twofold cover of Ω±2m(q) or Ω2m+1(q)

(q odd) the statement of Lemma 1.13 also holds for these. This is since Ã8 is embedded

into both of them (if m is large enough) as lifts of products of an even number of the

reflections with respect to the vectors e1 − e2, e2 − e3, . . . , e7 − e8 ∈ V , where e1, . . . , e8 is

an orthonormal system for f . So we can argue as at the end of the proof of Lemma 1.8 to

see that the two-element kernel of the covering map is generated ‘quickly’ by conjugates

of any non-central element.

1.4 The lattice of normal subgroups of an algebraic ultra-

product of classical finite quasisimple groups

Let H = (Hi)i∈I be a sequence of groups from the list at the beginning of Section 1.2 and

set G :=
∏
i∈I Hi. Let ni be the dimension of the natural module Vi of Hi. For some ultra-

filter U on I for which limU ni =∞ define the normal subgroup N0 := {(hi)i∈I ∈ G |hi =

1Hi along U} of G as in Theorem 1.3. In this section, we give a complete description of

the lattice of normal subgroups of the algebraic ultraproduct HU = G/N0 of the groups

Hi (i ∈ I) with respect to U .
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Recall from Theorem 1.3 the definitions of the subgroups Nrk := {(hi)i∈I ∈ G | limU `rk(hi) =

0} and Npr := {(hi)i∈I ∈ G | limU `pr(hi) = 0} of G. Here `rk and `pr are the norms from

Definition 0.12 (again we write hi ∈ H i = Hi/Z(Hi) for the image of hi ∈ Hi under the

natural homomorphism). As they are norms, it is clear that Nrk and Npr are normal in G

and contain N0. Moreover, as `pr(hi) ≤ `rk(hi) (hi ∈ Hi; i ∈ I), we get that Nrk ≤ Npr.

The following result is an immediate consequence of Lemma 1.10:

Lemma 1.16. The subgroup Npr contains all proper normal subgroups of G containing

N0. In particular, G/Npr is non-abelian simple and Npr/N0 is a characteristic subgroup

of HU = G/N0.

Proof. When h = (hi)i∈I ∈ G \Npr, there exist ε > 0 and U ∈ U such that `pr(hi) ≥ ε for

i ∈ U . Hence from Lemma 1.10 it follows that there is k ∈ N such that (hHii )∗k = Hi for

i ∈ U . This implies 〈〈h〉〉GN0 = G, as wished.

Hence from now on we may restrict to the normal subgroups of G above N0 which are

contained in Npr. Let us first characterize Npr among the subgroups of G containing Nrk.

For this we recall the definition of the quasiscalars S(H) from the end of Section 1.2.

Lemma 1.17. The map ϕ : Npr → Z :=
∏
U S(Hi) defined by (hi)i∈I 7→ (λi)i∈I , where

λi is arbitrary (from S(Hi)) if `pr(hi) ≥ 1/4 and λi is the unique λ ∈ F×qi for which

`rk(λ−1hi) < 1/4 otherwise, is a surjective homomorphism with kernel Nrk. Moreover,

Z ∼= Npr/Nrk = Z(G/Nrk).

Proof. At first we check that λi is always in S(Hi): This is clear when `pr(hi) ≥ 1/4. So

assume the opposite. In the special linear case there is nothing to check, so consider the

remaining cases. Set Ui to be the eigenspace corresponding to eigenvalue λi of hi and

set dim(Ui) =: li > 3/4ni. Then by Lemma 1.6 there is Wi ≤ Ui non-singular such that

dim(Wi) ≥ 2li − ni > ni/2 ≥ 1. The restriction hi|Wi
is a scalar from the full isometry

group GI(Wi, fi|Wi
), so it must lie in S(Hi).

Let us now show that ϕ is a homomorphism. So let (gi)i∈I , (hi)i∈I ∈ Npr and pick

U ∈ U and sequences (λi)i∈I , (µi)i∈I from
∏
i∈I S(Hi) such that

`rk(λ−1
i gi), `rk(µ−1

i hi) < 1/8

for i ∈ U (this is possible by the definition of Npr). Then it follows that `rk((λiµi)
−1gihi) <

1/4 for i ∈ U by the triangle inequality, establishing that ϕ is a homomorphism.

Also ϕ is surjective: Let λ = (λi)i∈I ∈ Z. In any case, by Lemma 1.7 there is a

diagonal matrix in Hi with all but at most two entries of the diagonal equal to λi. This

gives the desired preimage of λ.

Moreover, the kernel of ϕ consists of all sequences h = (hi)i∈I ∈ Npr such that, when

(λi)i∈I is the image of h under ϕ, then λi = 1 for i ∈ U and some U ∈ U . But this means

precisely that h ∈ Nrk, since then 0 = limU `pr(hi) = limU `rk(λ−1
i hi) = limU `rk(hi).
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Lastly, we have to show that Npr/Nrk is the center of G/Nrk. Since by Lemma 1.16

the quotient G/Npr is non-abelian simple, it suffices to show that [G,Npr] ⊆ Nrk. So let

g = (gi)i∈I ∈ G and h = (hi)i∈I ∈ Npr and let (λi)i∈I be a sequence in
∏
i∈I F×qi such that

(λ−1
i hi)i∈I ∈ Nrk. Let Ui be the eigenspace of hi corresponding to eigenvalue λi and set

Wi := Ui ∩ Ui.gi. Then for w ∈ Wi one computes that w.[gi, hi] = w.g−1
i h−1

i gihi = w. As

dim(Wi)/ni tends to one along U , this verifies that [g, h] ∈ Nrk. The proof is complete.

To describe the normal subgroups N of G with N0 ≤ N ≤ Npr accurately, we need some

definitions: Define L to be the set of null sequences (ri)i∈I along U with ri ∈ [0, 1] (i ∈ I).

Two such sequences (ri)i∈I and (si)i∈I are said to be equivalent (write (ri)i∈I ∼ (si)i∈I

and (ri)i∈I for the corresponding equivalence class) if limU ri/si ∈ (0,∞). Here we set

0/0 := 1 and x/0 := ∞ for x > 0. For two elements r and s of the quotient L/∼ write

r ≤ s if and only if limU ri/si <∞, where (ri)i∈I and (si)i∈I are representatives for r and

s, respectively. It is routine to check that this is a definition and turns (L/∼,≤) into a

linear order.

Now define the function ct : Npr → L/∼ by h = (hi)i∈I 7→ (`pr(hi))i∈I and call ct(h)

the convergence type of h. Denote by L the subset of elements r of L/∼ for which either

r ≥ (1/ni)i∈I or r = (0)i∈I .

Lemma 1.18. The image of the function ct : Npr → L/∼ is equal to L.

Proof. At first we prove that the image of ct lies in L: Namely when r = (ri)i∈I ∈ ct(Npr)

and r 6= (0)i∈I , then ri 6= 0 for all i ∈ U for some U ∈ U . But then it follows that ri ≥ 1/ni

for these i and hence r ≥ (1/ni)i∈I .

The surjectivity is a bit more subtle. We prove it here only for the case that Hi =

SLni(qi); the other cases are analogous. Choose non-central elements gi ∈ SL2(qi) (i ∈
I). Then, if r = (ri)i∈I satisfies ri ≥ 1/ni along U , set hi := g

⊕bniric
i ⊕ idni−2bniric if

ni ≥ 2 bniric and choose an arbitrary element otherwise. Letting h = (hi)i∈I , one sees

immediately that ct(h) = r. Finally, ct(1G) = (0)i∈I completes the proof.

Remark 1.19. The normalized rank length function `rk does not attain any possible value

on the classical quasisimple groups even for large ranks: E.g., 2m`rk(g) for g ∈ GOε
2m(q)

(q even) is even if and only if g ∈ Ωε
2m(q) (see [78, page 77] at the end of Section 3.8.1).

Owing to Lemma 1.18, henceforth we shall consider ct as a function with domain

Npr and codomain L. We extend this function to subsets S ⊆ Npr by setting ct(S) :=

{ct(s) | s ∈ S}. For a normal subgroup N of G between N0 and Npr the set ct(N) is then

called the associated order ideal (see Lemma 1.22 below).

Lemma 1.20. For such a subgroup it holds that ct(N) = ct(N ∩Nrk).

Proof. It is clear that ct(N) ⊇ ct(N ∩ Nrk). Let us prove the converse containment to

finish the proof: Let h = (hi)i∈I ∈ N ≤ Npr. Then there is U ∈ U and λi ∈ F×qi (i ∈ I)

such that `pr(hi) = `rk(λ−1
i hi) < 1/8 for i ∈ U and so, when Ui is the eigenspace of hi

corresponding to the eigenvalue λi for such an i, then li := dim(Ui) > 7/8ni.
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At first assume that Hi = SLni(qi) for all i ∈ I. Then by the same argument as in the

proof of Lemma 1.13 we find a subspace Wi ≤ Ui of dimension dim(Wi) ≥ 2li − ni > ni/2

which has an hi-invariant complement W⊥i . Decompose Wi = W 1
i ⊕W 2

i such that there

is a map gi ∈ Hi = SLni(qi) restricting to the identity on W 2
i and interchanging W⊥i and

W 1
i (i ∈ U).

In the opposite case, i.e., all Hi preserve a form, by Lemma 1.6 there is a non-singular

subspace Wi ≤ Ui with dim(Wi) ≥ 2li − ni > ni/2. Moreover, for all large ni we may also

assume that ni − dim(Wi) = dim(W⊥i ) ≥ 2 (by modifying Wi a little). Now Lemma 1.5

implies the existence of gi ∈ Hi and W 1
i ,W

2
i ≤ Wi (i ∈ U) non-singular such that Vi =

W⊥i ⊥W 1
i ⊥W 2

i and gi restricts to the identity on W 2
i while it interchanges W⊥i and W 1

i .

In both cases it holds that u.[gi, hi] = u.g−1
i h−1

i gihi = u.g−1
i (λ−1

i gi)hi = λ−1
i u.hi for

u ∈ W⊥i , v.[gi, hi] = v.g−1
i h−1

i gihi = λiv.h
−gi
i for v ∈ W 1

i , and w.[gi, hi] = w for w ∈ W 2
i

(i ∈ U). Since dim(W 2
i ) = ni − dim(W 1

i ) − dim(W⊥i ) = ni − 2 dim(W⊥i ) = ni − 2(ni −
dim(Wi)) ≥ 4li−3ni > ni/2, we have that `rk([gi, hi]) = 1−dim(ker(1− [gi, hi]))/ni < 1/2

(i ∈ U). Altogether, this implies that `pr([gi, hi]) = `rk([gi, hi]) = `rk(λ−1
i hi)+`rk(λih

−1
i )+

0 = 2`rk(λ−1
i hi) = 2`pr(hi). Here we use essentially Proposition 2.13 of [67] for the first

equality.

Therefore, setting g := (gi)i∈I ∈ G, by Lemma 1.17 the commutator [g, h] is in Nrk

(and of course in N as N is normal) and has the same convergence type as h.

Remark 1.21. In view of Lemma 1.18, this implies that even the restriction ct|Nrk
: Nrk →

L is surjective.

Now we are ready to justify the name ‘associated order ideal’ for ct(N) for N normal

in G lying between N0 and Npr.

Lemma 1.22. Let N be a normal subgroup of G between N0 and Npr. Then ct(N) is an

order ideal of L. Moreover, the maps

{N E G |N0 ≤ N ≤ Nrk} {order ideals of (L,≤)}
α

β

defined by α : N 7→ ct(N) and β : J 7→ {g ∈ Nrk | ct(g) ∈ J} are isomorphisms of posets

and mutually inverse to each other.

Proof. By Lemma 1.20, we may restrict to the case N ≤ Nrk. Clearly, ct(N) is not empty

as 1G ∈ N . If r ∈ ct(N), Lemma 1.13 implies that, if s ≤ r, then s ∈ ct(N). As (L,≤)

was a linear order, ct(N) is an order ideal.

Concerning the second part: At first note that, as shown previously, α(N) = ct(N)

is an order ideal. Also β(J), for an order ideal J of (L,≤), is a normal subgroup, since

ct(g), ct(h) ∈ J implies that ct(gh) ≤ max{ct(g), ct(h)} ∈ J and ct(g−1) = ct(gh) =

ct(g) ∈ J ; also ct(1G) = (0)i∈I ∈ J . Moreover, both maps α and β are inclusion preserving.

To show that β ◦ α : N 7→ ct(N) 7→ {g ∈ Nrk | ct(g) ∈ ct(N)} is the identity, i.e., that

ct(g) ∈ ct(N) iff g ∈ N , is just another straightforward application of Lemma 1.13. The
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map α ◦ β : J 7→ {g ∈ Nrk | ct(g) ∈ J} 7→ {ct(g) ∈ L | g ∈ Nrk, ct(g) ∈ J} is the identity by

Remark 1.21.

Remark 1.23. Similarly, one can prove that for g ∈ Nrk and S ⊆ Nrk it holds that ct(g)

is in the order ideal of (L,≤) generated by ct(S) if and only if g ∈ 〈〈S〉〉GN0.

Corollary 1.24. The normal subgroups of G lying between N0 and Nrk are linearly or-

dered.

Proof. This holds by the correspondence of Lemma 1.22, since (L,≤) is linear and so its

order ideals are linearly ordered by inclusion.

Corollary 1.25. For N ≤ Nrk normal in G containing N0 it holds that N is perfect, i.e.,

N = N ′.

Proof. Pick h ∈ N and proceed as in the proof of Lemma 1.20. The construction of g shows

that ct(g) ≤ ct(h), so Remark 1.23 implies g ∈ 〈〈h〉〉GN0 ≤ N . Hence the commutator

[g, h] lies in N ′ and ct([g, h]) = ct(h), so ct(N ′) = ct(N). To apply Lemma 1.22 to deduce

that N = N ′, we still need that N0 ≤ N ′. It is therefore enough to show that N0 is

perfect. This follows from the following simple application of Lemma 1.10: Let h ∈ H be

an element with `pr(h) ≥ ε for some fixed ε > 0, where H is one of the Hi. Then the

previously mentioned result implies that H ′ ⊇ (hH)∗kh−k = H for a fixed integer k only

depending on ε. Hence, if h = (hi)i∈I ∈ N0, applying this in every component i for which

hi 6= 1Hi yields that N0 ≤ N ′0, as wished.

Remark 1.26. The argument at the end of the proof also shows that G itself is perfect.

Remark 1.27. In particular, this implies that for N0 ≤ N ≤ Npr normal in G it holds

that N ∩ Nrk = [G,N ] = N ′ by the end of Lemma 1.17 and Corollary 1.25. Hence

Nrk = (Npr)
′ and so Nrk/N0 is characteristic in G/N0 as well. Also Npr/Nrk

∼=
∏
U S(Hi)

from Lemma 1.17.

Using the correspondence of Lemma 1.22, we introduce the normal subgroup N1 as

the normal subgroup of Nrk such that ct(N1) = J1, where J1 := {(ri)i∈I ∈ L |niri <
C for some C > 0 along U}. It is obvious that J1 covers the trivial order ideal J0 =

{(0)i∈I} corresponding to N0, i.e., there is no order ideal properly between them. Hence

N1 covers N0. Let us mention here that for M,N normal subgroups of G between N0 and

Nrk it holds that M is covered by N if and only if the corresponding order ideals α(M)

and α(N) of (L,≤) are of the form α(M) = {r ∈ L | r < s} and α(N) = {r ∈ L | r ≤ s}
for some s 6= (0)i∈I .

Because we will need them later, we introduce the normal subgroups A0 := {h ∈
Npr | ct(h) ∈ J0} =

∏
U Z(Hi) and A1 := {h ∈ Npr | ct(h) ∈ J1}.

Now we complete the picture of the lattice of normal subgroups of G/N0 by looking

at an arbitrary normal subgroup N ≤ Npr of G with N0 ≤ N .

Let us at first assume that N1 ≤ N . Then the following lemma applies:
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Lemma 1.28. Define maps between the following two sets

{N E G |N1 ≤ N ≤ Npr}

{M |M E G, N1 ≤M ≤ Nrk} × {A |A E G, N1 ≤ A ≤ A1}

ΦΨ

by Φ: N 7→ (N ∩Nrk, N ∩ A1) and Ψ: (M,A) 7→ MA. Then Φ and Ψ are isomorphisms

of posets and mutually inverse to each other.

Proof. Obviously, both maps are order preserving. Moreover, Φ ◦ Ψ(M,A) = Φ(MA) =

(MA∩Nrk,MA∩A1) = (M(A∩Nrk), A(M ∩A1)) by Dedekind’s modular law. However,

it is easy to see from the definitions that A ∩ Nrk = M ∩ A1 = N1, so Φ ◦ Ψ = id as

N1 ≤M,A.

Similarly, we compute Ψ ◦Φ(N) = Ψ(N ∩Nrk, N ∩A1) = (N ∩Nrk)(N ∩A1) ≤ N . So

it is enough to show that every element h = (hi)i∈I ∈ N can be written as a product of

elements from N ∩Nrk and N ∩A1. We may assume that ct(h) > (0)i∈I , i.e., h /∈ A0, since

otherwise we can write h = fg with f = 1G ∈ N ∩ Nrk and g = h ∈ N ∩ A0 ⊆ N ∩ A1.

In the opposite case, choose λi such that `rk(λ−1
i hi) = `pr(hi) (i ∈ I). Let gi ∈ Hi be

an element which has all but at most two diagonal entries equal to λi (which exists by

Lemma 1.7). Then, setting f := (hig
−1
i )i∈I and g := (gi)i∈I , h = fg is the desired product

decomposition. Indeed, f ∈ Nrk and g ∈ A1 by construction. To show that f, g ∈ N goes

as follows: As in the proof of Lemma 1.20, find c ∈ G such that ct(h) = ct([c, h]) and

[c, h] ∈ Nrk. Then we have that f, gh−1 ∈ Nrk and ct(f), ct(gh−1) ≤ ct(h) = ct([c, h]),

so that f, gh−1 ∈ 〈〈[c, h]〉〉GN0 ≤ 〈〈h〉〉GN0 ≤ N by Remark 1.23, yielding the claim that

g, f ∈ N . The proof is complete.

Remark 1.29. Essentially, Lemma 1.28 (in combination with Lemma 1.22) says that the

lattice of normal subgroups of G/N1 is isomorphic to the product of the linear order of

order ideals of (L,≤) different from J0 and the subgroup lattice of the abelian group Z ∼=
Npr/Nrk = NrkA1/Nrk

∼= A1/(A1 ∩Nrk) = A1/N1 from Lemma 1.17. If Φ: N 7→ (M,A),

then N 7→ (ct(M), ϕ(A)) is the described isomorphism of lattices, where ϕ is the map

from Lemma 1.17.

In this situation M = N ′ is the commutator subgroup (by Remark 1.27 above) and

ϕ(A) = ϕ(MA) = ϕ(N) ∼= NNrk/Nrk
∼= N/(N ∩ Nrk) = N/N ′ is the universal abelian

quotient.

Now assume that N1 6≤ N . Then it follows from Lemma 1.20 that ct(N) = ct(N ∩
Nrk) = ct(N0) = {(0)i∈I} = J0 (as by assumption N0 ≤ N). Hence we have established

the following result.

Lemma 1.30. If N is normal in G containing N0 and N1 6≤ N , then N ≤ A0.

Finally, we describe when a normal subgroup as in Lemma 1.30 is contained in a normal

subgroup as in Lemma 1.28:
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Lemma 1.31. A normal subgroup N of G containing N0 but not N1 is contained in a

normal subgroup K ≤ Npr containing N1 if and only if N ≤ A (or equivalently ϕ(N) ≤
ϕ(A), with ϕ the map from Lemma 1.17), where Φ(K) = (M,A) is from Lemma 1.28.

Proof. Assume N ≤ K. Then by Lemma 1.30 it holds that N ≤ K ∩ A0 ≤ K ∩ A1 = A

implying ϕ(N) ≤ ϕ(A). Conversely, by Lemma 1.17 the assumption ϕ(N) ≤ ϕ(A) implies

NNrk ≤ ANrk. Thus NNrk ∩ A1 = N(Nrk ∩ A1) = NN1 ≤ ANrk ∩ A1 = A(Nrk ∩ A1) =

AN1 = A by Dedekind’s modular law. So N ≤ A ≤ K, completing the proof.

We end up with a few remarks.

Remark 1.32. An ultraproduct of universal quasisimple groups of bounded rank (along

the ultrafilter) will just result in a quasisimple group X(k) over a pseudofinite field k,

where X is the Lie type selected by U . In this case, its lattice of normal subgroups is

‘understood’. We have N0 = Nrk and Npr = Z(X(k)).

Remark 1.33. Again we have not yet covered the case that the Hi (i ∈ I) are double

covers of Ω±2m(q) or Ω2m+1(q) (m ∈ Z+ suitable, q odd). In this case, define N0 as above

and let A0 be the elements of G =
∏
i∈I Hi which are central along the ultrafilter U .

Then G/N0 is a twofold cover of an ultraproduct G/M0 of orthogonal groups with kernel

M0/N0
∼= C2.

It follows from Remark 1.15 that, if N0 ≤ N E G contains an element non-central

modulo N0, i.e., it is not contained in A0, then M0 ≤ N , so it corresponds to a normal

subgroup of G/M0 (which we understood).

Finally, when N0 ≤ N ≤ A0 with M0 6≤ N and M0 ≤ K ≤ G, then N ≤ K iff

NM0 ≤ K and this again can be decided by considering the lattice of normal subgroups

of G/M0, which we ‘know’.

Using the same argument, one can show that the normal subgroups of an ultraproduct

of the double covers of simple alternating groups are still linearly ordered by inclusion

(since here A0 = M0).
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Chapter 2

Metric approximation of groups

by finite groups

2.1 Introduction

Eversince the work of Gromov on Gottschalk’s surjunctivity conjecture [29], the class of

sofic groups has attracted much interest in various areas of mathematics. Major appli-

cations of this notion arose in the work of Elek and Szabó on Kaplansky’s direct finite-

ness conjecture [13], Lück’s determinant conjecture [14], and more recently in joint work

of Thom and Klyachko on generalizations of the Kervaire–Laudenbach conjecture and

Howie’s conjecture [41].

Despite considerable effort, no non-sofic group has been found so far. In view of

this situation, attempts have been made to provide variations of the problem that might

be more approachable. In the terminology of Holt and Rees, sofic groups are precisely

those groups which can be approximated by finite symmetric groups equipped with the

normalized Hamming length function (in the sense of Definition 1.6 of [71]). It is natural

to vary the class of finite groups and also the metrics that are allowed. Note that our

terminology (see Definition 2.1) differs from the one used in [57], where similar concepts

were studied.

The strongest form of approximation is satisfied by LEF (resp. LEA) groups. In this

case, it is well-known that a finitely presented group is not approximable by finite (resp.

amenable) groups with discrete length function, i.e., it is not LEF (resp. LEA), if and

only if it fails to be residually finite (resp. residually amenable). Examples of sofic groups

which fail to be LEA (and thus also fail to be LEF) are given in [6] and [40] (see also [70]),

answering a question of Gromov [29].

In [71] Thom proved that the so-called Higman group cannot be approximated by finite

groups with commutator-contractive norm. In [35] Howie presented a group which by a

result of Glebsky [?] turned out not to be approximable by finite nilpotent groups with

arbitrary norm.

This chapter provides four more results of this type (see Sections 2.3 and 2.5). However,
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in our setting we restrict only to classes of finite groups and do not impose restrictions on

the length functions of the approximating groups other than being invariant, i.e., being

norms (see Definitions 2.1 and 2.8).

Recently, Glebsky [24] asked whether all groups can be approximated by finite solv-

able groups (in the sense of Definition 2.1). In Section 2.3, we answer this question by

establishing that each non-trivial finitely generated perfect group is a counterexample

(see Theorem 2.17). The key to this result is a theorem of Segal [63] on generators and

commutators in finite solvable groups.

In Section 2.4, using results of Nikolov from [?] and of Liebeck and Shalev from [49],

we prove that any non-trivial group which is approximable by finite groups has a non-

trivial homomorphism into a metric ultraproduct of finite simple groups of type PSLn(q)

equipped with the normalized conjugacy length function (see Theorem 2.25).

In Section 2.5, we discuss the approximability of Lie groups by finite groups. It is easy

to see that R as a topological group is not approximable by symmetric groups, i.e., it is not

continuously embeddable into a metric ultraproduct of symmetric groups with arbitrary

norms (see Remark 2.36). Using a much deeper analysis, we show that a connected Lie

group is approximable by finite groups (in the sense of Definition 2.8) precisely when it is

abelian (see Theorem 2.33). In [10, Question 2.11] Doucha asked for groups which can be

equipped with a norm such that they do not embed into a metric ultraproduct of normed

finite groups. Our result implies that any compact, connected, and non-abelian Lie group

is an example of such a group. Thus the simplest example of a topological group which is

not weakly sofic, i.e., not continuously embeddable into a metric ultraproduct of normed

finite groups, is SO3(R). However, we remark that every linear Lie group is an abstract

subgroup of the algebraic ultraproduct of finite groups indexed over N (see Remark 2.35).

Furthermore, in the same section, we answer the question of Zilber [79] if there exists

a compact simple Lie group which is not a quotient of an algebraic ultraproduct of finite

groups. Indeed, we show that a Lie group which can be equipped with a norm generating

its topology and which is an abstract quotient of a product of finite groups has abelian

identity component (see Theorem 2.37). Hence any compact simple Lie group fails to be

approximable by finite groups in the sense of Zilber.

A slight variation of Theorem 2.37 also answers Question 1.2 of Pillay [59]. Moreover,

we point out that Theorems 2.33 and 2.37 provide an alternative proof of the main result

of Turing [74].

Finally, using the same approach as for the previous two results, we solve the conjecture

of Pillay [59] that the identity component of the Bohr compactification of any pseudofinite

group is abelian (see Theorem 2.38).

All results of Section 2.5 follow from a theorem on generators and commutators in

finite groups of Nikolov and Segal [?].
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2.2 Preliminaries

In this section, we introduce the notion of C-approximable abstract and topological groups,

and present examples. Recall the definition of the invariant length functions `d, `c, `rk,

`pr, and `Cay,S (see Definition 0.12). Also recall that F denotes a free group of rank rk(F)

(see the beginning of Section 0.1).

2.2.1 On C-approximable abstract groups

We define metric approximation of an abstract group by a class of finite groups. Through-

out this chapter, let C be such a class. Subsequently, a group is called a C-group if it

belongs to the class C.

Definition 2.1. An abstract group G is called C-approximable if there is a function δ• : G\
{1G} → (0,∞] such that for any finite subset S ⊆ G and ε > 0 there exist a group H ∈ C,

a norm `H on H, and a map ϕ : S → H such that

(i) if 1G ∈ S, then ϕ(1G) = 1H ;

(ii) if g, h, gh ∈ S, then dH(ϕ(g)ϕ(h), ϕ(gh)) < ε;

(iii) for g ∈ S \ {1G} we have `H(ϕ(g)) ≥ δg.

A map ϕ with the above properties is called an (S, ε, δ•)-homomorphism.

Remark 2.2. Note that the above definition differs slightly from Definition 1.6 in [71],

as we impose no restrictions on the norms. However, it is equivalent to Definition 6 from

[24]. Indeed, we may even require that `H ≤ 1 and δ• ≡ 1 in the above definition, without

changing its essence. Namely, choosing ε > 0 small enough, setting c := ming∈S δg, `
′
H :=

min{`H/c, 1}, and defining δ′ : G\{1G} → (0,∞] by δ′• := 1, we can replace δ by δ′ and `H

by `′H . So, in the sense of [34, page 3], if we do not impose restrictions on the norms on the

groups from C, the terms ‘C-approximation property ’, ‘discrete C-approximation property ’,

and ‘strong C-approximation property ’ coincide. Hence, for simplicity, subsequently, we

assume the function δ• to be constant and write just δ for δg (g ∈ G).

Moreover, similar to soficity, being C-approximable is a local property. This is ex-

pressed in the following remark.

Remark 2.3. An abstract group is C-approximable if and only if every finitely generated

subgroup has this property.

Let us now present some examples of C-approximable abstract groups. Subsequently,

denote by Alt (resp. Fin) the class of finite alternating groups (resp. the class of all finite

groups). Indeed, C-approximable abstract groups (in the above sense) can be seen as a

generalization of sofic (resp. weakly sofic) groups as it is shown in Section 2 of [24]:
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Example 2.4. A group is sofic (resp. weakly sofic) if and only if it is Alt-approximable

(resp. Fin-approximable) as an abstract group.

Groups approximable by certain classes of finite simple groups of Lie type have been

studied in [1] and [73, ?].

Every C-group G is certainly C-approximable, since we can take H := G, ϕ to be the

restriction of the identity on G to S, and `H := `d,H to be the discrete length function on

H in Definition 2.1. Hence Remark 2.3 implies:

Example 2.5. Every locally C-group is C-approximable as an abstract group.

Henceforth, let Abd be the class of finite abelian groups which are a direct sum of at

most d cyclic groups. The last example we mention here is the following:

Example 2.6. A finitely generated abelian group which is a direct sum of at most d cyclic

groups is Abd-approximable as an abstract group.

This example will follow from the fact that such a group embeds in a connected abelian

Lie group, which is Abd-approximable as a topological group by Lemma 2.16 below.

There is another common equivalent characterization of C-approximable groups via

metric ultraproducts of normed C-groups with norm. Recall Definition 0.7. Let us call the

class C trivial if either C = ∅ or C = {1}. Here is the promised characterization.

Lemma 2.7. If C is a non-trivial class, every abstract C-approximable group G is isomor-

phic to a discrete subgroup of a metric ultraproduct (HU , `U ) =
∏
U (Hi, `i) of C-groups Hi

with norms `i (i ∈ I) such that diam(Hi, `i) = 1 and the distance between the images of

any two different elements of G is one. If G is countable, I can be chosen to be N with

the natural order and U to be some non-principal ultrafilter on it.

Conversely, any subgroup of a metric ultraproduct of normed C-groups is C-approximable

as an abstract group.

The proof of this result is identical to the corresponding proof in the sofic case, which

is well-known. Hence we omit it here.

2.2.2 On C-approximable topological groups

In view of Lemma 2.7 it is natural to generalize the notion of a C-approximable (abstract)

group to topological groups using ultraproducts:

Definition 2.8. A topological group is called C-approximable if it embeds continuously

into a metric ultraproduct of normed C-groups.

Lemma 2.7 indicates the following class of examples of C-approximable topological

groups:

Example 2.9. Every C-approximable abstract group equipped with the discrete topology

is C-approximable as a topological group.
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Conversely, a C-approximable topological group is C-approximable as an abstract group

when we ‘forget’ its topology.

To present more classes of examples, we need an auxiliary result. The following lemma

gives a sufficient condition for a normed group to be isomorphic to an ultraproduct of

normed finite groups. Its proof is trivial.

Lemma 2.10. Let (G, `G) be a normed group, I an index set, U an ultrafilter on I,

(Ki, `i)i∈I a sequence of normed finite groups, and (KU , `U ) :=
∏
U (Ki, `i) its metric

ultraproduct.

(i) Assume there are maps ϕi : G → Ki, which are isometric and a homomorphism in

the U-limit, i.e.,

lim
U
di(ϕi(g), ϕi(h)) = dG(g, h) and lim

U
di(ϕi(g)ϕi(h), ϕi(gh)) = 0

for all g, h ∈ G. Then there is an isometric embedding ϕ : (G, `G) ↪→ (KU , `U ) in the

ultraproduct defined by ϕ(g) := (ϕi(g))i∈I .

(ii) The embedding ϕ is surjective if and only if for every (ki)i∈I ∈ K :=
∏
i∈I Ki there

exists g ∈ G such that limU di(ϕi(g), ki) = 0.

(iii) It surjects onto the subgroup of elements of finite length of (KU , `U ) if the previous

assertion holds for all (ki)i∈I ∈ K with supi∈I `i(ki) <∞.

Let CP and CSP be the class of finite products of C-groups and the class subgroups of

finite products of C-groups, respectively. Now we investigate which profinite groups are

C-approximable as topological groups. The standard example is given by the following

lemma:

Lemma 2.11. Let Hi (i ∈ Z+) be C-groups. Then the profinite group P :=
∏
i∈Z+

Hi is

isomorphic to a metric ultraproduct of CP-groups and so CP-approximable as a topological

group.

Proof. We want to apply (i) and (ii) of Lemma 2.10 to G := P . Equip G with the norm

`G(h) := max{1/i | i ∈ Z+, hi 6= 1Hi} ∪ {0}, where h = (hi)i∈I ∈ G. Let I := Z+ and U
be some non-principal ultrafilter on I. Set Ki := H1 × · · · × Hi ≤ G and let `i be the

restriction of `G to Ki. Define ϕi : G→ Ki in such a way that for every g ∈ G the distance

dG(ϕi(g), g) is minimal. By definition of `G, we have that dG(ϕi(g), g) < 1/i. Hence it is

easy to verify that condition (i) of Lemma 2.10 is fulfilled. For (ii) define g as the U -limit

in G of the sequence (ki)i∈I ∈ K =
∏
i∈I Ki ≤ GI (which exists by compactness of G).

Then limU di(ϕi(g), ki) ≤ limU dG(ϕi(g), g) + limU dG(g, ki) = 0. This ends the proof.

From the previous example we derive the following result.

Lemma 2.12. For a pro-CSP group P the following are equivalent:
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(i) P is CP-approximable as a topological group.

(ii) P is metrizable.

(iii) P is first-countable.

(iv) P is the inverse limit of a countable inverse system of CSP-groups with all maps

surjective.

(v) P is a closed topological subgroup of a countable product of C-groups.

Proof. The implications (i)⇒(ii)⇒(iii) are trivial. (iii)⇒(iv): Let B be a countable system

of open neighborhoods at 1G. For each B ∈ B we can find an open normal subgroup N ⊆ B
such that P/N is a subgroup of a CSP-group, so itself a CSP-group (by Proposition 0.3.3(a)

and Proposition 1.2.1 of [77]). Let N be the collection of these subgroups. Since
⋂
B =

{1P }, as P is Hausdorff, the same holds for N . Moreover, for M,N ∈ N we have P/(M ∩
N) ≤ P/M × P/N , so P/(M ∩ N) is a CSP-group, too. Hence we may assume that

N is closed for finite intersections and apply Proposition 1.2.2 of [77] to obtain that P

is the inverse limit of the CSP-groups P/N (N ∈ N ) with respect to the natural maps

P/M → P/N for M ≤ N (M,N ∈ N ).

(iv)⇒(v): By the standard construction of the inverse limit, it embeds into a countable

product of CSP-groups, which (by definition) embeds into a countable product of C-groups.

For (v)⇒(i) we only need to show that a countable product of C-groups is CP-approximable.

This is Lemma 2.11. The proof is complete.

Remark 2.13. Lemma 2.12 implies that, if a pro-CSP group embeds continuously into a

metric ultraproduct of normed CP-groups, then it already embeds into such an ultraprod-

uct of countably many groups.

We are now able to present the following important example:

Example 2.14. If P = 〈x1, . . . , xr〉 is a topologically finitely generated pro-CSP group,

then P is CP-approximable as a topological group.

Proof. Indeed, P embeds continuously into the product of all its continuous finite quotients∏
N P/N and finite generation implies that there are only countably many of these. By

Proposition 1.2.1 of [77], we can restrict this map to a product of subgroups of CSP-groups

(which are itself CSP-groups) such that it still is an embedding. But the latter embeds

into a countable product of C-groups. Hence P is CP-approximable (by Lemma 2.12).

However, it is also simple to find examples of profinite groups that are not approximable

by finite groups:

Example 2.15. Uncountable products of (non-trivial) finite groups are not metrizable

and hence not approximable by finite groups.
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Now we turn to Lie groups. The following example demonstrates that connected

abelian Lie groups can always be approximated by finite abelian groups in the sense of

Definition 2.8. Recall that Abd denotes the class of finite abelian groups which are a

direct sum of at most d cyclic groups.

Lemma 2.16. Every d-dimensional connected abelian Lie group L = Rm × (R/Z)n (m+

n = d) equipped with the ‘euclidean’ length function `L is isometrically isomorphic to the

subgroup of elements of finite length of a metric ultraproduct of normed Abd-groups and

hence Abd-approximable.

Proof. We wish to apply (i) and (iii) of Lemma 2.10 to G := L with euclidean length

function `G := `L. Let I := Z+ and U be some non-principal ultrafilter on I. For i ∈ Z+

set

Si :=

{
−i2

i
,
−i2 + 1

i
, . . . ,

i2

i

}m
×
(

1

i
Z/Z

)n
⊆ L,

and Ki := (Z/(4i2))m× (Z/(i))n. Define αi : {−i2/i, (−i2 + 1)/i, . . . , i2/i}m → (Z/(4i2))m

by x 7→ ix, let βi : (1
iZ/Z)n → (Z/(i))n be the canonical isomorphism, and set γi : Si → Ki

to be the map (x, y) 7→ (αi(x), βi(y)). Moreover, equip Ki with the unique length function

that turns γi into an isometry. Let δi : G→ Si be a map such that dG(δi(g), g) is minimal

for all g ∈ G. Now define ϕi := γi◦δi. Clearly, condition (i) of Lemma 2.10 is now fulfilled.

Condition (iii) follows from compactness of closed balls of finite radius in G by the same

argument as at the end of the proof of Lemma 2.11. The proof is complete.

We will see in Theorem 2.33 of Section 2.5 that connected abelian Lie groups are the

only Fin-approximable connected Lie groups.

2.3 On Sol-approximable groups

Subsequently, let Sol (resp. Nil) be the class of finite solvable (resp. nilpotent) groups.

The goal of this section is to establish the following theorem.

Theorem 2.17. Any non-trivial finitely generated and perfect group is not Sol-approx-

imable.

As a consequence, a finite group is Sol-approximable if and only if it is solvable: Indeed,

any finite solvable group is Sol-approximable. On the other hand, a non-solvable finite

group contains a non-trivial perfect subgroup and hence cannot be Sol-approximable by

Remark 2.3 and Theorem 2.17.

Initially, Howie proved in [35] that the group 〈x, y |x−2y−3, x−2(xy)5〉 is not Nil-

approximable. We mimic his proof for any non-trivial finitely generated perfect group

and then extend it by establishing that these groups are not even Sol-approximable using

techniques of Segal [63, 65].

In preparation of the proof of Theorem 2.17 we need an auxiliary result, which is a

generalization of [?, Theorem 4.3] – Theorem 2.18 below. Recall that the pro-C topology
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on a group K is the initial topology induced by all homomorphisms to C-groups equipped

with the discrete topology. Hence the closure S of a subset S ⊆ K in this topology is

characterized as follows: An element k ∈ K lies in this closure if and only if ϕ(k) ∈ ϕ(S)

for all homomorphism ϕ : K → H, where H is a C-group.

Now we can state the auxiliary result relating C-approximable groups to the pro-C
topology on a free group of finite rank.

Theorem 2.18. Let F/N be a presentation of a group G where rk(F) < ∞. Then, if G

is C-approximable, for each finite sequence n1, . . . , nk ∈ N it holds that nF1 · · ·nFk ⊆ N (in

the pro-C topology on F). The converse holds if C is closed with respect to finite products

and subgroups.

The proof of Theorem 2.18 will follow from the two subsequent lemmas (Lemmas 2.20

and 2.21). In the following, set B%(F) := {w ∈ F | `F(w) ≤ %} (the %-ball around 1F with

respect to the Cayley length function `F := `Cay,S on the free group, where S are the

standard generators of F). In preparation of Lemma 2.20 below, we need to introduce the

notion of a C-separable normal subgroup of the free group.

Definition 2.19 (C-separable normal subgroups of free groups). Let N E F, % ∈ N,

ε > 0, δ > 0. Assume there exists a group H ∈ C, a norm `H on H, and a homomorphism

ϕ : F→ H such that for any w ∈ B%(F) we have

`H(ϕ(w)) < ε for w ∈ N

and

`H(ϕ(w)) > δ for w ∈ F \N.

Then we call N (%, ε, δ)-separated by ϕ.

The normal subgroup N is called C-separable if there exists δ > 0 such that for any

% ∈ N and ε > 0 it is (%, ε, δ)-separated by some suitable homomorphism to a C-group (for

some chosen norm `H).

The subsequent lemma is a generalization of [?, Lemma 6.2]. The proof given here

follows the second proof given in the article [?].

Lemma 2.20 (Characterization of C-approximable groups by C-separability). If N E F

is C-separable, then the group G = F/N is C-approximable. When rk(F) <∞, the reverse

implication implication ‘⇐’ also holds.

Proof. We first prove the direction ‘⇒’, i.e., we assume N E F is C-separable and derive

that G = F/N is C-approximable.

Let δ > 0 be such that for any % ∈ N, ε > 0 the normal subgroup N is (%, ε, δ)-separated

by a homomorphism to a C-group. We will construct an (S, ε, δ)-homomorphism (as in

Definition 2.1) from an arbitrary finite subset S ⊆ G to a group H ∈ C (for a suitable

norm `H). Assume S = {s1, . . . , sm} for some s1, . . . , sm ∈ F (all si distinct; if 1G ∈ S,
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2.3. On Sol-approximable groups

then it is represented by 1F). Set % := max{`F(si) | i = 1, . . . ,m} (it is well-defined since

S is finite).

Choose ϕ : F→ H to (3%, ε, δ)-separate N (where H ∈ C and `H is a suitable norm on

H). Then define ϕ : S → H by ϕ(si) := ϕ(si) (it is well-defined, since the si are pairwise

distinct). Clearly, ϕ is an (S, ε, δ)-homomorphism:

If 1G = si ∈ S, then by assumption si = 1F, so that ϕ(1G) = ϕ(1F) = 1H (since ϕ is a

homomorphism). Moreover, if sisj = sk, then s−1
j s−1

i sk ∈ N and so

dH(ϕ(si)ϕ(sj), ϕ(sk)) = `H(ϕ(s−1
j s−1

i sk)) < ε,

since `F(s−1
j s−1

i sk) ≤ 3% by the choice of % ∈ N and the triangle inequality. Lastly, if

si 6= 1G, then si 6∈ N and `F(si) ≤ 3%, whence

`H(ϕ(si))) = `H(ϕ(si)) > δ

again since ϕ is (3%, ε, δ)-separating.

Let us now prove the reverse direction ‘⇐’. Let F have a basis x1, . . . , xr. Assume

there is δ > 0 such that there exists an (S, ε, δ)-homomorphism ϕ : S → H for all S and

ε > 0 (where H ∈ C is equipped with norm `H). Then choose

S := B%(F) = {w ∈ G |w ∈ B%(F)}.

Observe that S is finite, since F is of finite rank r ∈ N. W.l.o.g., assume % ≥ 1, so that

xi
±1 ∈ S (for i = 1, . . . , r). Define ϕ : F→ H by ϕ(xi) := ϕ(xi) (and extend it by freeness

of F).

We claim that N is (%, 2%ε, δ−2%ε)-separated by ϕ. At first note that for any generator

of F we have by left-invariance of `H that

dH(ϕ(xi)
−1, ϕ(xi

−1)) = dH(ϕ(1G), ϕ(xi)ϕ(xi
−1)) < ε, (2.1)

as ϕ is multiplicative up to ε and 1G, xi
±1 ∈ S (by its definition). Now we can prove by

induction on n = `F(w) > 0, n ≤ % that

dH(ϕ(w), ϕ(w)) < (2`F(w)− 1)ε. (2.2)

For n = 1 we have two cases. In the first case, w = xi is a generator, so

dH(ϕ(w), ϕ(w)) = dH(ϕ(xi), ϕ(xi)) = 0.

In the second case, w = x−1
i is the inverse of a generator, whence

dH(ϕ(w), ϕ(w)) = dH(ϕ(xi)
−1, ϕ(xi

−1)) < ε
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by Inequality (2.1). Now assume that Inequality (2.2) is true for n < %. Then we get for

`F(w) = n+ 1 that

dH(ϕ(w), ϕ(w)) = dH(ϕ(xi1)ε1 · · ·ϕ(xin+1)εn+1 , ϕ(xε1i1 · · ·x
εn+1

in+1
))

≤ dH(ϕ(xi1)ε1 · · ·ϕ(xin+1)εn+1 , ϕ(xi1)ε1 · · ·ϕ(xin)εnϕ(x
εn+1

in+1
))

+ dH(ϕ(xi1)ε1 · · ·ϕ(xin)εnϕ(x
εn+1

in+1
), ϕ(xε1i1 · · ·x

εn
in

)ϕ(x
εn+1

in+1
))

+ dH(ϕ(xε1i1 · · ·x
εn
in

)ϕ(x
εn+1

in+1
), ϕ(xε1i1 · · ·x

εn+1

in+1
))

< ε+ (2n− 1)ε+ ε = (2n+ 1)ε,

as desired. Here we use Inequality (2.1) and left-invariance to estimate the first summand

in the second line, the induction hypothesis and right-invariance in the third line, and the

property of ϕ to be multiplicative up to ε in the fourth line. Moreover, the estimate of

the last line is valid, since all the elements of G in the formula lie in S (by definition).

Now if w ∈ N ∩B%(F), w 6= 1F, then

`H(ϕ(w)) = dH(ϕ(w), 1H) = dH(ϕ(w), ϕ(w)) < (2`F(w)− 1)ε < 2%ε,

since w = 1G as w ∈ N and ϕ(1G) = 1H by definition of an (S, ε, δ)-homomorphism. The

case w = 1F is trivial.

If w ∈ B%(F) \N we get

`H(ϕ(w)) = dH(1H , ϕ(w)) ≥ dH(1H , ϕ(w))− dH(ϕ(w), ϕ(w)) > δ − 2%ε

by definition and the triangle inequality. Thus we have shown that N is (%, 2%ε, δ − 2%ε)-

separated by the homomorphism ϕ : F→ H (with respect to the norm `H), so by choosing

ε > 0 small enough, we are done.

The next lemma and its proof is a generalization of [?, Lemma 6.4].

Lemma 2.21. If N E F is C-separable, then for all finite sequences n1, . . . , nk ∈ N we

have nF1 · · ·nFk ⊆ N (in the pro-C-topology on F). When rk(F) < ∞ and C is closed for

finite products and subgroups, the reverse implication ‘⇐’ is also valid.

Proof. We begin with the direction ‘⇒’. So assume N is C-separable and choose a finite

sequence n1, . . . , nk ∈ N . In order to prove that nF1 · · ·nFk ⊆ N , it is enough to prove that

for w ∈ F \N there is a homomorphism ϕ : F→ H to a C-group H such that

ϕ(w) 6∈ ϕ(n1)H · · ·ϕ(nk)
H ⊇ ϕ(nF1 · · ·nFk ).

So find δ > 0 such that N is (%, ε, δ)-separable for all % ∈ N, ε > 0 (w.r.t. C). Take

% := max{`F(w), `F(n1), . . . , `F(nk)}
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and let ϕ : F → H be a homomorphism to the C-group (equipped with norm `H) which

(%, δ/k, δ)-separates N . Then by definition `H(ϕ(w)) > δ, since w ∈ B%(F) \ N and

`H(ϕ(nj)) < δ/k, since nj ∈ N ∩B%(F) for j = 1, . . . , k. Thus clearly

`H(ϕ(w)) > δ = kδ/k >
k∑
j=1

`H(ϕ(nj)
hj ) ≥ `H(ϕ(n1)h1 · · ·ϕ(nk)

hk)

for any choice of hj (j = 1, . . . , k) as `H is a norm, so that ϕ(w) 6∈ ϕ(n1)H · · ·ϕ(nk)
H , as

claimed.

Now we prove the reverse implication ‘⇐’ under the additional assumptions. We

need to construct an (%, ε, δ)-separating homomorphism to a normed C-group for some

fixed δ > 0 and all % ∈ N, ε > 0 arbitrary. Choose an integer l ≥ δ/ε. For each

w ∈ B%(F) \ N and every finite sequence n1, . . . , nk ∈ N ∩ B%(F) with k ≤ l we may

choose a homomorphism ϕw,n1,...,nk : F→ H (H ∈ C) such that

ϕw,n1,...,nk(w) 6∈ ϕw,n1,...,nk(nF1 · · ·nFk )

since nF1 · · ·nFk ⊆ N (in the pro-C topology on F). As F has finite rank, the set B%(F) is

finite and thus there are only finitely many possibilities for the choice of w and n1, . . . , nk.

Taking the tupling of all the corresponding homomorphisms, we get a homomorphism

ϕ : F→
∏

H with ϕ(w) 6∈ ϕ(nF1 · · ·nFk )

for any w ∈ B%(F) \N , n1, . . . , nk ∈ N ∩B%(F), k ≤ l and
∏
H ∈ C (since C is closed for

finite products). Since C is closed for subgroups, we can restrict ϕ to its image I := im(ϕ)

(which is then a C-group), so that we have

ϕ(w) 6∈ ϕ(n1)I · · ·ϕ(nk)
I .

Now set E := {ϕ(n)I |n ∈ N ∩B%(F)}, E :=
⋃
E and equip I with the norm `I := ε`Cay,E

(see Definition 0.12).

We claim that ϕ : F→ I (%, ε′, δ)-separates N for ε′ > ε (I being equipped with norm

`I):

At first choose w ∈ B%(F) \N . Then by construction

ϕ(w) 6∈ {1I}ϕ(n1)I · · ·ϕ(nk)
I

for any k ≤ l and n1, . . . , nk ∈ N ∩ B%(F), whence `I(ϕ(w)) > εl ≥ δ. But if we pick

n ∈ N ∩B%(F), we have

ϕ(n) ∈ {1I}ϕ(n)I ,

so `I(ϕ(n)) ≤ ε < ε′. This completes the proof.

Proof of Theorem 2.18. The result immediately follow from Lemmas 2.20 and 2.21.
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Remark 2.22. If C is closed with respect to finite products and subgroups, Theorem 2.18

implies that residually C-groups are C-approximable as abstract groups, since, if G = F/N

is a finitely generated such group, for each finite sequence n1, . . . , nk ∈ N we obtain

nF1 · · ·nFk ⊆ N = N (in the pro-C topology on F).

In view of Theorem 2.18, when C is closed for subgroups, to prove the existence of a

non-C-approximable group, it suffices to find a normal subgroup N E F of a free group

of finite rank, an element x ∈ F \ N , and a sequence n1, . . . , nk ∈ N such that ϕ(x) ∈
ϕ(n1)H · · ·ϕ(nk)

H for any surjective homomorphism ϕ : F→ H to a C-group.

As both classes Nil and Sol are closed with respect to subgroups, we shall construct

a situation as described before.

Subsequently, let F be freely generated by x1, . . . , xr. Fix a presentation F/N of some

non-trivial perfect group P and an element x ∈ F\N . The assumption that P is perfect is

equivalent to the fact that F = F′N . Hence we can find n1, . . . , nr, n ∈ N such that xi ≡ ni
(i = 1, . . . , r) and x ≡ n modulo F′. Consider a surjective homomorphism ϕ : F � H to

some finite group H (later H will be assumed to be nilpotent resp. solvable). Writing

yi := ϕ(xi), hi := ϕ(ni) (i = 1, . . . , r), y := ϕ(x), and h := ϕ(n), the above translates

to yi ≡ hi (i = 1 . . . , r) and y ≡ h modulo H ′. Clearly, h1, . . . , hr generate H modulo

H ′ (as ϕ is surjective). Now we need a lemma. To state it, we need some notation from

the Section 0.1(b). Recall that in a group G we write [g, h] = g−1h−1gh = g−1gh for the

commutator of the elements g, h ∈ G. For S ⊆ G and g ∈ G we write [S, g] for the set

{[s, g] | s ∈ S}, and for subgroups K,L ≤ G write [K,L] for the subgroup generated by

{[k, l] | k ∈ K, l ∈ L}.

Lemma 2.23 (Proposition 1.2.5 of [65]). Let L E G be groups and suppose that G =

G′〈g1, . . . , gm〉. Then

[L,G] = [L, g1] · · · [L, gm][L,lG]

for all l ≥ 1. Here [L,lG] denotes the subgroup [[L,G], . . . , G︸ ︷︷ ︸
l

] of G.

Proof of Theorem 2.17, Part 1. We apply Lemma 2.23 to G := L := H, m := r, and

gi := hi (i = 1, . . . , r). Moreover, we choose l ≥ 1 to be an integer such that γl(H) =

γω(H) (recall from Section 0.1(c) that γi(H) is the ith term in the lower central series

of H and γω(H) =
⋂
i∈Z+

γi(H)). Hence there exist lij , lj ∈ H (i, j = 1 . . . , r) such

that yi ≡ hi[li1, h1] · · · [lir, hr] (i = 1, . . . , r) and y ≡ h[l1, h1] · · · [lr, hr] modulo γω(H).

Assuming H is nilpotent (so γω(H) = 1), the last congruence shows that

y = ϕ(x) ∈ ϕ(n′1)H · · ·ϕ(n′kNil
)H ,

where kNil = 2r + 1 and (n′j)
kNil
j=1 is the sequence (n, n−1

1 , n1, . . . , n
−1
r , nr). Thus P cannot

be Nil-approximable.

To prove that P is not Sol-approximable, we need the following deeper result of Segal

on finite solvable groups:
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Theorem 2.24 (Theorem 2.1 of [63]). Assume G is a finite solvable group and

γω(G)〈g1, . . . , gm〉 = G

for some m ∈ N. Moreover, assume that G is generated by d elements. Then there is a

fixed sequence (ij)
m′
j=1 of indices in {1, . . . ,m}, whose entries and length m′ only depend

on d and m, such that

γω(G) =

m′∏
j=1

[γω(G), gij ].

Proof of Theorem 2.17, Part 2. Assume that H is solvable. We want to apply Theo-

rem 2.24 to G := H. Since ϕ is surjective, the elements y1 = ϕ(x1), . . . , yr = ϕ(xr)

generate H, so we may set d := r. We still have to define the elements g1, . . . , gm ∈ G.

From the above congruences we conclude that the sequence

h1, . . . , hr, (h
−1
1 )l11 , · · · , (h−1

r )l1r , · · · , (h−1
1 )lr1 , · · · , (h−1

r )lrr

is a good choice for g1, . . . , gm. Thus m := r(r + 1) is bounded in terms of r.

The theorem gives us, similarly as in the nilpotent case, a fixed sequence (n′′j )
kSol
j=1 with

entries in {n, n±1
1 , · · · , n±1

r }, whose length kSol = kNil + 2m′ is bounded in terms of r,

such that

y = ϕ(x) ∈ ϕ(n′′1)H · · ·ϕ(n′′kSol
)H .

Thus P cannot be Sol-approximable.

Note that finite generation is crucial here. Indeed, there exist countably infinite locally

finite-p groups which are perfect and even characteristically simple [53]. By Example 2.5,

these groups are Nil-approximable (since finite p-groups are nilpotent), but by definition

they are not finitely generated. It is known that locally finite-solvable groups cannot

be non-abelian simple [60, page 154], but it seems to be an open problem if there exist

Sol-approximable non-abelian simple groups.

2.4 On Fin-approximable groups

Let PSL be the class of simple groups of type PSLn(q), i.e., n ∈ N≥2 and q is a prime

power and (n, q) 6= (2, 2), (2, 3), and recall that Fin is the class of all finite groups. In this

section, we prove the following result, which is motivated by a private note of Nikolov.

Theorem 2.25. Any non-trivial finitely generated Fin-approximable group has a non-

trivial PSL-approximable quotient. In particular, every simple Fin-approximable group is

PSL-approximable.

To prove Theorem 2.25 we need some preparation. At first we recall a classical lemma

of Goursat [28]:
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Lemma 2.26 (Goursat’s lemma). Let G ≤ K×L be a subdirect product, i.e., the restricted

projection maps πK : G → K, πL : G → L are surjective. Set M := ker(πL) and N :=

ker(πK). Then M E K, N E L, and the image of G in K/M × L/N is the graph of an

isomorphism.

We need Lemma 2.26 for the following auxiliary result (Lemma 2.27 below). Recall

that a profinite group is called semisimple if it is the direct product of finite non-abelian

simple groups. Moreover, a finite group G is almost simple if it has a unique minimal

normal subgroup N which is non-abelian simple; in this case N E G ≤ Aut(N).

Lemma 2.27. Let G be a closed subdirect product of a profinite group A =
∏
i∈I Ai, where

Ai is almost simple (i ∈ I). Then G contains a closed normal semisimple subgroup H such

that G/H is solvable of derived length at most three and each simple factor of H is normal

in G.

Proof. For J ⊆ I let πJ : A→
∏
j∈J Aj be the projection maps. Then by Proposition 1.2.2

of [77] the group G is the inverse limit of the groups πJ(G) (J ⊆ I finite) together with

the natural maps πJ(G)→ πJ ′(G) for J ′ ⊆ J .

Using Goursat’s lemma, one can show by induction on |J | that for J ⊆ I finite there

exist r ∈ N and finite non-abelian simple groups S1, . . . , Sr such that S1 × · · · × Sr E

πJ(G) ≤ Aut(S1) × · · · × Aut(Sr). In this situation, for j0 ∈ I \ J the projection

πJ∪{j0}(G) → πJ(G) either is an isomorphism or there exists a finite non-abelian sim-

ple group Sr+1 such that S1 × · · · × Sr+1 E πJ∪{j0}(G) ≤ Aut(S1)× · · · × Aut(Sr+1) and

the restriction of πJ∪{j0}(G)→ πJ(G) to the socle S1×· · ·×Sr+1 of πJ∪{j0} is the natural

projection onto S1 × · · · × Sr (the socle of πJ(G)).

Now it is clear that G, as the inverse limit of the groups πJ(G) (J ⊆ I finite) and the

maps πJ(G)→ πJ ′(G), contains the inverse limit H of the socles of these groups together

with the restricted maps. It is routine to check that H has the desired properties. The fact

that G/H is solvable of derived length at most three is implied by Schreier’s conjecture.

Now we can start with the proof of Theorem 2.25: We will prove that our group has

a non-trivial PSL-approximable quotient, where we endow the groups PSLn(q) with the

normalized conjugacy length function `c (see Definition 0.12).

If the group in the theorem is not perfect, it has a non-trivial cyclic quotient, which

clearly has the desired property. So let P = F/N be perfect, where F is freely generated

by x1, . . . , xr and N E F. Let F̂ be the profinite completion of F and M := 〈〈N〉〉
F̂

be

the normal closure of N in F̂. Identifying F with its image in the profinite completion, it

follows from Theorem 2.18 that P is Fin-approximable if and only if N = M ∩ F, since

for a sequence n1, . . . , nk ∈ N we have

nF1 · · ·nFk = F ∩ nF̂1 · · ·nF̂k ,

where the closure on the left is taken in F. This is equivalent to saying that the map

F→ F̂/M induces an embedding of P in F̂/M .
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For a profinite group G set G0 :=
⋂
{O Eo G |G/O is almost simple} (here O Eo G

means that O is an open normal subgroup of G).

Claim 2.28. It holds that F 6≤ F̂0M .

Proof. Assume the contrary. Then by perfectness of P there are yi ∈ N such that xiF
′ =

yiF
′ (i = 1, . . . , r). By assumption, there are also zi ∈ M such that xiF̂0 = ziF̂0 (i =

1, . . . , r). Set Y := {y±1
1 , . . . , y±1

r , z±1
1 , . . . , z±1

r }. As F̂0 is closed, by definition we have

that

F̂ = F̂0〈Y 〉 = F̂0〈Y 〉 and F̂ = F′〈Y 〉 = F̂′〈Y 〉,

where all closures are taken in F̂. Hence by Theorem 1.7 of [?] applied to G := F̂ and

H := F̂0 we get that M ≥ 〈〈Y 〉〉
F̂
≥ [F̂0, F̂] ≥ F̂′0. Since F̂0M/M = F̂0/(F̂0 ∩ M) is

abelian by the preceding argument, we cannot have F ≤ F̂0M , since otherwise P would

be abelian and hence trivial. Contradiction proving the claim.

Claim 2.28 implies that P has a non-trivial homomorphism to F̂/F̂0M .

Apply Lemma 2.27 to G := F̂/F̂0 as a subdirect product of all almost simple quotients

of F̂. Let H = K/F̂0 be the semisimple group provided by this lemma. As F̂/K is

solvable, we cannot have K ≤ F̂0M , otherwise the image of P in F̂/F̂0M would be trivial,

contradicting Claim 2.28.

Hence (K ∩ F̂0M)/F̂0 is a proper normal subgroup of the semisimple group H =

K/F̂0 =
∏
i∈I Si, where Si (i ∈ I) are the simple factors, so by Theorem 5.12 of [?] it is

contained in a maximal normal subgroup L/F̂0 of the former (to fulfill the hypothesis of

this theorem, we need that rk(F) < ∞). By the same result, K/L is isomorphic (as an

abstract group) to a metric ultraproduct of the Si equipped with the normalized conjugacy

length function `c,i (i ∈ I). Note that in this situation L is even normal in F̂, since `c,i is

left invariant under Aut(Si) and Si E F̂/F̂0 by Lemma 2.27 (i ∈ I).

Claim 2.29. In this setting we have F 6≤ LM .

Proof. Otherwise [F,K] ≤ [LM,K] ≤ L[M,K] ≤ L(M ∩K) = L. Here the first inclusion

holds by assumption, whereas the second follows from the commutator identity [lm, k] =

[l, k][[l, k],m][m, k] for k ∈ K, l ∈ L and [l, k] ∈ L, since L E K, and [[l, k],m], [m, k] ∈
[K,M ] = [M,K]. The last inclusion holds as M,K E F̂0, and the final equality by the

choice of L. Hence F̂0[F,K] ≤ L.

Let S be a simple factor of H. F̂/F̂0 maps continuously on the finite discrete group

Aut(S) via the conjugation action. The image of this map clearly contains the inner

automorphisms, since these are induced by S itself. The elements x1, . . . , xr generate a

dense subgroup of F̂/F̂0, which must induce all inner automorphisms of S by the previous

fact.

As S has trivial center, we have |S/CS(xi0)| = |[S, xi0 ]| ≥ |S|1/r for some i0 ∈
{1, . . . , r}. Lemma 3.5 of [?] implies that

∏r
i=1 [S, xi][S, x

−1
i ] contains the normal sub-

sets [S, xi]
S ⊆ S for i = 1, . . . , r. Since |[S, xSi0 ]| ≥ |S|1/r, by Theorem 1.1 of [49] there is
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e ∈ N only depending on r such that(
r∏
i=1

[S, xi][S, xi
−1]

)∗e
= S.

This implies that K ≤ F̂0[F,K], since e is independent of the simple factor S. But then

K ≤ L, a contradiction.

From the previous claim we deduce that P still has a non-trivial homomorphism to

F̂/LM . Since F̂/KM is solvable as a quotient of F̂/K, this homomorphism restricts to

KM/LM , which is a non-trivial homomorphic image of the metric ultraproduct K/L.

Since the latter is simple by Proposition 3.1 of [67], we are only left to show that K/L,

which is a metric ultraproduct of the sequence (Si)i∈I of finite simple groups from above

equipped with normalized conjugacy length function with respect to some ultrafilter U ,

embeds into a metric ultraproduct of groups PSLni(qi) (i ∈ I) equipped with the normal-

ized conjugacy length function, since then P would have the same property.

Let us briefly sketch the argument for this: Firstly, if the limit of the ranks of the groups

Si (i ∈ I) is bounded along the ultrafilter U (where the rank of the alternating group An

is defined to be n and the sporadic groups are also considered as groups of bounded

rank) the resulting ultraproduct will be a simple group of Lie type over a pseudofinite

field k or an alternating group An, respectively. In the first case, it clearly embeds into

PSLn(k) for n ∈ N appropriately chosen. However, the latter is a metric ultraproduct of

groups PSLn(qi) (i ∈ I) equipped with the normalized conjugacy length function for some

sequence (qi)i∈I of prime powers. The second case is similar.

Hence we may assume that our ultraproduct does not involve finite simple groups from

families of bounded rank.

Furthermore, we can assume that it contains no alternating groups, as we can replace

any alternating group An by PSLn(q) for some prime power q. Namely, the natural

embedding An ↪→ PSLn(q), where PSLn(q) is equipped with the normalized projective

rank length function `pr, induces norm 1
n`Cay,τSn on An with respect to the conjugacy

class of a transposition τ of the ambient symmetric group Sn. The latter is Lipschitz

equivalent to the normalized conjugacy length function on An by Fact 0.13.

Hence we can assume that all groups Si (i ∈ I) are classical Chevalley or Steinberg

groups equipped with the normalized conjugacy length function. Applying Fact 0.13 once

again, we can replace the norms on the Si (i ∈ I) by normalized projective rank length

functions and embed our metric ultraproduct K/L into a metric ultraproduct of groups

PSLni(qi) (i ∈ I) equipped with the normalized projective rank length function. Thus

K/L is PSL-approximable and so P must have a non-trivial PSL-approximable quotient,

as wished. The proof is complete.
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2.5 On the approximability of Lie groups

In this section, we utilize the following theorem of Nikolov and Segal to deduce two re-

sults concerning the approximability of Lie groups by finite groups and one result on

compactifications of pseudofinite groups.

Theorem 2.30 (Theorem 1.2 of [?]). Let g1, . . . , gm be a symmetric generating set for the

finite group G. If K E G, then

[K,G] =

 m∏
j=1

[K, gj ]

∗e,
where e only depends on m.

Remark 2.31. It was remarked in [?] that it was an open problem at the time of writing

to decide whether a finite product of conjugacy classes in a non-abelian free group is always

closed in the profinite topology.

It is a rather straightforward consequence of Theorem 2.30 that this is not the case.

Indeed, the theorem implies that in F = 〈x1, . . . , xm〉 the profinite closure of the product

of the 2me conjugacy classes of x−1
1 , x1, . . . , x

−1
m , xm contains the entire commutator sub-

group, but it is a well-known fact (see Theorem 3.1.2 of [65]) that the commutator width

in this group is infinite if m > 1.

This implication was first observed by Segal and independently discovered by Gismat-

ullin.

Actually, we shall use the following immediate corollary of Theorem 2.30:

Corollary 2.32. Let G be a quotient of a product of finite groups, then for g, h ∈ G and

N ∈ N we have

[gN , hN ] ∈
(
[G, g][G, g−1][G, h][G, h−1]

)∗e
for some fixed constant e ∈ N.

Recall that Fin denotes the class of all finite groups. At first we prove the following

theorem:

Theorem 2.33. A connected Lie group is Fin-approximable as a topological group if and

only if it is abelian.

By Lemma 2.16, we already know that connected abelian Lie groups are Fin-approx-

imable. So we are only left to prove that a Fin-approximable connected Lie group is

actually abelian. This will be a consequence of the following auxiliary result:

Lemma 2.34. Let ϕ,ψ : R→ (HU , `U ) =
∏
U (Hi, `i) be continuous homomorphisms into

a metric ultraproduct of finite groups Hi with norm `i (i ∈ I). Then for all s, t ∈ R it

holds that [ϕ(s), ψ(t)] = 1H .
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Let us first prove Theorem 2.33 using Lemma 2.34.

Proof of Theorem 2.33. Assume L is a connected Fin-approximable Lie group. Then there

is an embedding ι : L ↪→ (HU , `U ) =
∏
U (Hi, `i) into a metric ultraproduct of normed finite

groups. If a, b ∈ L are in the image of the exponential map, Lemma 2.34 implies that ι(a)

and ι(b) commute. So as ι is injective, a and b commute. Hence by connectedness L = L0

is abelian. This ends the proof.

We are still left to prove Lemma 2.34:

Proof of Lemma 2.34. For ε > 0 by continuity we can choose N ∈ Z+ large enough such

that `U (ϕ(s/N)), `U (ψ(t/N)) < ε. Set G := HU , g := ϕ(s/N), and h := ψ(t/N) and apply

Corollary 2.32. This gives

[ϕ(s), ψ(t)] = [gN , hN ] ∈
(
[HU , g][HU , g

−1][HU , h][HU , h
−1]
)∗e
,

whence `U ([ϕ(s), ψ(t)]) < 8eε by invariance of `U and the triangle inequality. Since ε > 0

was arbitrary, the proof is complete.

Note that Theorem 2.33 provides an answer to Question 2.11 of Doucha [10] whether

there are groups with norm that do not embed into a metric ultraproduct of normed finite

groups. Since every compact Lie group can be equipped with a norm that generates its

topology, every such group with non-abelian identity component is an example of such a

group by Theorem 2.33. (Indeed, the theorem even provides topological types of groups

which cannot occur as subgroups of such a metric ultraproduct.)

Before we continue with our next result, let us state the following two remarks.

Remark 2.35. In Theorem 2.33, the topology of the Lie group matters. Indeed, any

linear Lie group is Fin-approximable as an abstract group by Remark 2.3, since all its

finitely generated subgroups are residually finite by Malcev’s theorem and hence Fin-

approximable by Remark 2.22.

Thus any linear Lie group L is embeddable (as an abstract group) into a metric ul-

traproduct of normed finite groups indexed over, say, the partially ordered set of pairs

consisting of a finite subset of L and a positive rational number. We will now show that

we can even choose this index set to be N. Namely, if L ≤ SLn(C), then L can be em-

bedded into the algebraic ultraproduct
∏
U SLn(pp!), where U is a non-principal ultrafilter

on the set of prime numbers. Indeed, this ultraproduct is isomorphic to SLn(k), where

k =
∏
U Fpp! is a pseudofinite field. Now it is straightforward to see that k contains the

field k0 =
∏
U Fp together with its algebraic closure k′ := k0. However, k′ is an alge-

braically closed field of characteristic zero and cardinality 2ℵ0 (a result due to Shelah [66])

and hence isomorphic to C. Note that, if we view the above algebraic ultraproduct as a

metric ultraproduct, the induced topology on SLn(C) is discrete.

48



2.5. On the approximability of Lie groups

Since some non-linear Lie groups admit finitely presented subgroups which are not

residually finite [8], it is clear that such embeddings cannot exist without the assumption

of linearity.

Remark 2.36. When one approximates with symmetric groups, one cannot even embed

the real line R in a metric ultraproduct of such groups with norm. E.g., for the symmetric

group Sn it holds that all norms ` on it satisfy `(σl) ≤ 3`(σ) for every l ∈ Z and σ ∈ Sn.

Let us demonstrate this briefly: First assume that σ consists of just one n-cycle. Then

for any m ∈ Z+ coprime to n we have that σm is as well an n-cycle and hence conjugate

to σ. Recall from Section 0.2 that for a subset S ⊆ R of a ring R we set

S+k := {s1 + · · ·+ sk | si ∈ S}.

At first assume that l = 2k is even. Then it holds that l = 2k ∈ ((Z/(n))×)+2 ⊆ Z/(n).

This follows from the Chinese remainder theorem and the easy facts that

((Z/(pe))×)+2 = Z/(pe) for every prime p > 2 and ((Z/(2e))×)+2 = (2) ⊆ Z/(2e),

where e ≥ 1.

If l is odd, then l ∈ ((Z/(n))×)+3 ⊆ Z/(n), which follows as previously from

((Z/(pe))×)+3 = Z/(pe) for every prime p > 2 and ((Z/(2e))×)+3 = 1 + (2) ⊆ Z/(2e),

for e ≥ 1.

In total, if l is even, we find m1,m2 ∈ Z+ coprime to n such that σl = σm1σm2 , and if

l is odd, we find l1, l2, l3 ∈ Z+ coprime to n such that σl = σl1σl2σl3 . Since the σmi , σlj

(i = 1, 2, j = 1, 2, 3) are conjugate to σ, applying ` to both sides of these two equations,

using the triangle inequality and invariance of `, this immediately yields the inequality

`(σl) ≤ 3`(σ).

If σ is not an n-cycle, we can apply the previous construction on every cycle of σ. The

proof is complete.

Using the above inequality, it is simple to deduce that the only continuous homomor-

phism of R into a metric ultraproduct of finite symmetric groups with norm is trivial.

Referring to the question of Zilber [79, page 17] (also Question 1.1 of Pillay [59])

whether a compact simple Lie group can be a quotient of the algebraic ultraproduct of

finite groups, we present the following second application of Corollary 2.32:

Theorem 2.37. A Lie group equipped with a norm generating its topology that is an

abstract quotient of a product of finite groups has abelian identity component.

The proof of this result is almost identical to the proof of Theorem 2.33.

Proof. Let (L, `L) be such a Lie group with norm and a, b ∈ L be in the image of the

exponential map. For ε > 0 we find N ∈ Z+, g, h ∈ L such that `L(g), `L(h) < ε and
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gN = a, hN = b. Then applying Corollary 2.32 to G := L yields

[a, b] = [gN , hN ] ∈
(
[L, g][L, g−1][L, h][L, h−1]

)∗e
,

whence `L([a, b]) < 8eε by the invariance of `L and the triangle inequality. This shows

that a and b commute. Hence, as L0 is generated by the image of the exponential map, it

must be abelian.

Theorem 2.37 implies that any compact simple Lie group, the simplest example being

SO3(R), is not a quotient of a product of finite groups, answering Zilber’s question (and

hence also answers Question 1.1 of Pillay [59]).

Moreover, Theorem 2.37 remains valid if we replace the product of finite groups by

a pseudofinite group, i.e., a group which is a model of the theory of all finite groups (as

Corollary 2.32 is still valid in this case, with the same proof). It then also provides a

negative answer to Question 1.2 of Pillay [59] whether there is a surjective homomorphism

from a pseudofinite group to a compact simple Lie group.

Before we state the last theorem of this section, we digress briefly by pointing out a

further application of Theorems 2.33 and 2.37.

Referring to [74], we call a compact group G with compatible norm `G Turing-appro-

ximable if for all ε > 0 there is a finite subset Sε ⊆ G, a group Hε, and a bijection γε : Sε →
Hε such that for all g ∈ G there is s ∈ Sε with dG(g, s) < ε and dG(gh, γ−1

ε (γε(g)γε(h))) < ε

for g, h ∈ Sε. Define for g ∈ Hε

`ε(g) := |Hε|−2
∑

f,h∈Hε

dG(γ−1
ε (fgh), γ−1

ε (fh)).

It is routine to check that `ε is a norm on Hε and that for all g ∈ Hε we have

|`ε(g)− `G(γ−1
ε (g))| < 3ε.

Set δε : G→ Sε such that dG(δε(g), g) is minimal for all g ∈ G.

In this situation we can apply Lemma 2.10, setting I := Z+, U to be a non-principal

ultrafilter on I, Ki := H1/i, and ϕi := γ1/i ◦ δ1/i. Again one checks easily that we may

apply (i) and (ii) of this lemma. Hence a Turing-approximable group is isomorphic to a

metric ultraproduct of normed finite groups. Thus Theorem 2.33 as well as Theorem 2.37

imply that a Turing-approximable Lie group has abelian identity component. This is the

main result of [74]. By Lemma 3.4 of [23], the latter condition is also sufficient for a

compact Lie group to be Turing-approximable.

Let us now turn to pseudofinite groups. By a compactification of an abstract group G

we mean a compact group C together with a homomorphism ι : G→ C with dense image.

Pillay conjectured that the Bohr compactification (i.e., the universal compactification) of

a pseudofinite group has abelian identity component (Conjecture 1.7 in [59]). We answer

this conjecture in the affirmative by the following result:
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Theorem 2.38. Let G be a pseudofinite group. Then the identity component of any

compactification C of G is abelian.

The proof is again just an easy application of Corollary 2.32.

Proof. As G is pseudofinite it satisfies the statement of Corollary 2.32 (and so does its

image in C). An easy compactness argument shows that C has the same property. Now

let %i : C → GL(Vi) be the irreducible unitary representations of C and Li the image of

%i (i ∈ I). By the Peter–Weyl theorem, C embeds continuously into
∏
i∈I Li, and so C0

embeds into
∏
i∈I L

0
i .

But as Li is a compact quotient of C, Corollary 2.32 holds in it, and so, as in the proof

of Theorem 2.37, it follows that L0
i is abelian (i ∈ I). But then C0 must be abelian as

well, from the above embedding.
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Chapter 3

Word maps are surjective on

metric ultraproducts

3.1 Introduction

Recently, there has been increasing interest in word maps on finite, algebraic, and topo-

logical groups [2, 3, 16, 22, 26, 27, 31, 32, 36, 41, 43, 44, 45, 46, 47, 51]. Recall that for

a word w ∈ Fr, where Fr denotes the free group of rank r freely generated by x1, . . . , xr

(see the beginning of Section 0.1), and a group G the symbol w(g1, . . . , gr) denotes the

evaluation at w of the homomorphism Fr → G which is defined by xi 7→ gi for i = 1, . . . , r.

We call the map Gr → G which sends (g1, . . . , gr) ∈ Gr to w(g1, . . . , gr) ∈ G the word

map associated to w and write w(G) ⊆ G for its image.

Subsequently, fix a non-trivial word w ∈ Fr. For a fixed finite group G the word image

w(G) can just be {1G} if w is a law for G – when G is a finite simple group, the possible

word images were characterized by Lubotzky in [51]. In analogy, for a fixed compact

group G the word image w(G) can be contained in any neighborhood of the identity, as

was proved by Thom in [72, Corollary 1.2]. However, examples show that for fixed w and

a family G of finite simple groups resp. compact connected simple Lie groups, for G ∈ G
one should expect w(G) to be large in G if the order resp. dimension or rank of G is large.

There are two intriguing conjectures regarding this observation. Letting G be the class

of finite non-abelian simple groups, Shalev conjectured [3, Conjecture 8.3] that, if w is not

a proper power, the associated word map on G is surjective if the order of G is sufficiently

large. Similarly, if G is the class of simple connected compact groups, Larsen conjectured

at the 2008 Meeting of the AMS in Bloomington that w is surjective on G ∈ G if the rank

of G is sufficiently large.

Shalev’s conjecture was disproved for groups of type PSL2(q) in [39] using trace poly-

nomials, however, it remains plausible that such word maps are surjective once the rank

is large enough (as conjectured in [48, Conjecture 4.6]). Remarkably, Lyndon proved this

for infinite symmetric groups, see [11]. A weak form of Larsen’s conjecture (surjectivity

on SUn (over C) for infinitely many n ∈ N) was proved by Elkasapy and Thom in [16] for
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all words w ∈ F2 \ F
(2)
2 .

In this chapter, we prove that metric versions of Shalev’s and Larsen’s conjectures

are true. Let us explain what we mean by this. For ε > 0 and a subset Y ⊆ X of a

metric space (X, d) say that Y is ε-dense in X if d(x, Y ) := infy∈Y d(x, y) ≤ ε for all

x ∈ X. Recall from Chapter 0.1(d) that Sn denotes the symmetric group acting on the

set n = {1, . . . , n} and `H : Sn → [0, 1] the normalized Hamming length function (see

Definition 0.12; the associated metric is denoted by dH). The following metric analog of

Shalev’s conjecture holds for symmetric groups.

Theorem 3.1. Let w ∈ Fr be a non-trivial word and ε > 0. There exists an integer

N(ε, w) such that w(Sn) is ε-dense in Sn with respect to the normalized Hamming metric

if n ≥ N(ε, w).

For a classical group G ≤ GL(V ) of Lie type with natural module V (see Section 0.1(f))

set n = n(G) := dim(V ). Recall from Definition 0.12 that `rk : G → [0, 1] denotes the

normalized rank length function (write drk for the associated metric). In analogy to

Theorem 3.1 we then have the following.

Theorem 3.2. Let w ∈ Fr be a non-trivial word and ε > 0. Let G be one of the groups

GLn(q), Sp2m(q), GO2m+1(q), GO±2m(q) or GUn(q) (q a prime power, n ≥ 2, m ≥ 1).

There exists an integer N(ε, w) such that w(G) is ε-dense in G with respect to the nor-

malized rank metric if n = n(G) ≥ N(ε, w).

Recall from Section 0.1(f) that Un resp. SUn denote the general resp. special unitary

group (over C) of degree n ∈ Z+. Equip these groups with the normalized rank length

function `rk. We will also prove the following metric version of Larsen’s conjecture.

Theorem 3.3. Let w ∈ Fr be a non-trivial word and ε > 0. There exists an integer

N(ε, w) such that w(Un) is ε-dense in Un with respect to the normalized rank metric for

all n ≥ N(ε, w).

First of all, note that in the metric context there is no notable difference between

An and Sn, GLn(q) and SLn(q), GO2m+1(q) resp. GO±2m(q) and Ω2m+1(q) resp. Ω±2m(q),

GUn(q) and SUn(q), and similarly between Un and SUn when n is large, so that we

are essentially talking about families of quasisimple compact groups. We conjecture that

results analogous to Theorem 3.3 hold for other families of compact Lie groups of increasing

rank. Also note that density with respect to the normalized rank metric implies density

with respect to the normalized Hilbert–Schmidt metric on Un – this was also unknown to

the best of our knowledge.

Let us now say some words about the proofs of Theorems 3.1, 3.2, and 3.3. First

observe that it suffices to prove both results for r = 2. Indeed, if w ∈ Fr for r ≥ 2, then

via a suitable embedding Fr ≤ F2 = 〈x, y〉 we can view w as a non-trivial word in the two

variables, x, y. Hence we shall restrict to the case w ∈ F2 = 〈x, y〉. We may also assume
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that w is cyclically reduced, since w(G) is a characteristic subset for any group G, so that

up to a change of variables w = xa or w = xa1yb1 · · ·xalybl for some l ∈ Z+. In the first

case, we call w a power word . Note that in this case we can replace w = xa by any word

v = ua, where u ∈ F2 \ (〈x〉 ∪ 〈y〉) is arbitrary, so that we are in the second case (since

then v(G) ⊆ w(G) for all groups G).

Now let (G, dG) be one of the groups from Theorem 3.1, 3.2, or 3.3 together with the

corresponding metric. Write n = n(G) for its permutation degree resp. the dimension of

its natural module. In all three theorems, instead of proving the existence of N(w, ε), we

will prove the equivalent statement (including the corresponding quantitative bounds for

N(w, ε) mentioned below) that there exists a function d : [0, 1]→ R of type d(x) = Cx1/e,

where e = e(w) ≥ 1 only depends on w and C > 0 depends on the choice of e, such that

dG(g, w(G)) ≤ d(1/n) for all g ∈ G. This just means that N(w, ε) = Ow((1/ε)e(w)), where

now the implied constant in the O notation may still depend on w.

Now we give a brief outline of the proofs of Theorems 3.1, 3.2, and 3.3. For the

convenience of the reader we will prove Theorem 3.3 before proving Theorem 3.2, as their

proofs follow the same idea, but the details of the latter are more involved.

In the proof of Theorem 3.1, at first we consider the case when w = xa is a power word

(a /∈ {0,±1}) to determine the precise quality of the quantities supσ∈Sn isotypic dH(σ,w(Sn))

and supσ∈Sn dH(σ,w(Sn)) for n→∞ (see Lemmas 3.4, 3.5, and 3.6). Lemmas 3.5 and 3.6

show that the above estimate with d(x) = Cx1/2 is optimal in this case (up to the constant

C) and also demonstrates that the argument using Jensen’s inequality, at the end of

Subsection 3.2.4, gives the optimal estimate in the power word case (see Remark 3.16).

However, as remarked above, one could neglect the power word case if one is not interested

in the precise quality of the function d. In the case that w is not a power word, we first

settle the case where the permutation σ which we want to approximate by word values

is isotypic (see Section 0.1(d)) using the cycle structure of elements of PSL2(q) acting

on the projective line Lq (see Subsections 3.2.2 and 3.2.3), and then deduce the general

case using an application of Jensen’s inequality and the fact that a permutation σ ∈ Sn

has less than
√

2n distinct cycle types (see Subsection 3.2.4). Note that the idea used in

the proof of partitioning the set n into copies of projective lines Lq and letting copies of

groups PSL2(q) act on them already appears in [43, Proof of Proposition 8]. In this case,

one needs a number theoretic result by Linnik [50] to prove the existence of the constant

e = e(w) ≥ 1. However, the qualitative statement of Theorem 3.1 remains true without

this assumption. Assuming a conjecture of Chowla [5] one can show that any e > 2(l+ 1)

works.

We proceed by giving an overview of the proof of Theorem 3.3. The proof of the

results in [16] relied on the analysis of a certain algebraic condition on the abelianized Fox

derivative of w and our new strategy is a generalization of this – see Subsection 3.3.3 for

details. We use monomial matrices and draw a connection to the normalized dimension of

the second cohomology group of finite quotients of the Cayley complex of the one-relator
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group K = F2/〈〈w〉〉. As an intermediate step, we consider the largest free nilpotent group

H which is a quotient of K, i.e., when c = c(w) ≥ 0 is determined by w ∈ γc+1(F2) \
γc+2(F2) (recall that (γi(L))i∈Z+ denotes the lower central series of the group L; see

Section 0.1(c)), then H = F2/γc+1(F2). Using Jennings’ embedding theorem, for all

sufficiently large primes p we find arbitrary large finite p-groups H(p) of composition

length h = h(w) equal to the Hirsch length of H, which are quotients of K and where the

above normalized dimension gets arbitrarily small. A quantitative analysis then reveals

that one can take any number greater than h(w) for the exponent e = e(w). In the worst

case, we get that c ≤ 2l by a result of Fox [19] and then h(w) ≤
∑c

k=1 2k < 22l+1.

In Subsection 3.3.2, we point out that our method of proof together with a fact on

the linearized permutation representation of Sn (see Lemma 3.23) implies as well that

w1(SUn)w2(SUn) = SUn for non-trivial words w1, w2 ∈ Fr and large n, providing an

alternative proof for Theorem 2.3 of [36]. However, it still remains unclear how to prove

surjectivity of single words w in general.

Finally, in Section 3.4, we use the same cohomological method as in Section 3.3, but

with coefficient groups (k[X]/(χ))× for χ ∈ k[X] a polynomial instead of U1 and a modified

version of Lemma 3.21 (namely Corollary 3.26) to settle Theorem 3.2. We remark here

that our proof for GLn(k) works for all fields k (not only for finite ones) and we conjecture

that the same is true for the other Lie types.

After finishing a first version of this chapter, we noted that there is an alternative root

to the proof of Theorem 3.1, which uses the ideas from Section 3.3 and 3.4, but with finite

cyclic groups Ck instead of coefficients in U1. We present this in Subsection 3.4.3.

The statement that w has dense word image on a suitable class of normed groups (as

in Theorems 3.1, 3.2, and 3.3) is equivalent to surjectivity of w on metric ultraproducts

of those normed groups, where n(G) → ∞ along the ultrafilter. Forming such a metric

ultraproduct of symmetric groups leads to a so-called universal sofic group, whereas for

complex unitary groups we obtain a group which surjects continuously on a universal

hyperlinear group.

Let us end by drawing some connections to related questions and articles. To prove

that the cardinality of the word image w(G) for G a quasisimple group is large (which was

done in [43, Theorem 2] and [44, Theorems 1.9 and 1.11]), Shalev and Larsen approximate

an element which has a logarithmically large conjugacy class (e.g., in Sn an n-cycle and

in a classical group of Lie type an element admitting a cyclic vector) and exploit that

the cardinality of conjugacy classes is continuous in the normalized Hamming resp. rank

metric, i.e., |gG|/|hG| ≤ |(gh−1)G| which is bounded by |G|LdH(g,h) resp. |G|Ldrk(g,h) (for

some constant L > 0; see Fact 0.13; this is used, e.g., in [49]; see also [67, Corollary 2.14 and

Theorem 2.15]). Hence metric density also implies that log|G||w(G)| → 1 when n(G)→∞.

In private communication with Shalev, he conjectured, because of the above connection,

that the word image w(Sn) is actually C/n-dense for a fixed constant C > 0, as indicated

by Theorem 1.9 of [44] stating that |w(Sn)| ≥ n−4−εn! for n sufficiently large. To prove
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the latter fact, it is enough to find one conjugacy class in the image w(Sn) which comes

from an element being C-close to an n-cycle, as such a class has a centralizer of order

polynomially bounded in n. However, in [42] it is shown that for power words the even

better estimate |w(Sn)| ≥ Cn−1n! holds, but Lemma 3.6 of Subsection 3.2.1 demonstrates

that though the word image misses some large ε-balls, i.e., ε = Ω(1/
√
n). Hence the word

image can be distributed quite non-uniformly in the metric sense.

Similarly, using results of [49] or [12], if one can approximate a conjugacy class of large

cardinality resp. norm, one gets bounded width of the word image. In any case, maybe

both questions about cardinality and width of the word image have the same simple

answer, namely that w is eventually surjective (when w is not a proper power in the case

of finite simple groups).

The rest of this chapter is structured as follows. In Section 3.2, we give the proof of

Theorem 3.1, Section 3.3 presents the proof of Theorem 3.3, and in Section 3.4, we prove

Theorem 3.2.

3.2 Symmetric groups

This section is devoted to the proof of Theorem 3.1. Recall the notation from Section 0.1(d)

and Section 0.2. At first we consider the case that w = xa is a power word separately to

determine the quantity supσ∈Sn dH(σ,w(Sn)) as a function of 1/n for large n up to a factor

2
√

2 (see Lemmas 3.5 and 3.6). We also consider the quantity supσ∈Sn isotypic dH(σ,w(Sn))

(see Lemma 3.4 below). However, as explained in the introduction of this chapter, this

case is somehow superfluous by the argument given there. Hence, if the reader is not

interested in these details, we propose to skip this section.

3.2.1 Power words

We can certainly assume that a ≥ 2, replacing a < 0 by −a and ignoring the trivial case

w = x. We need some number theoretic notation for this subsection. For x, y ∈ Z+ denote

by rad(x) the radical of x, which is the product of all primes dividing x, and by the y-part

πy(x) of x the biggest integer z ∈ Z+ such that rad(z) = rad(gcd{x, y}) and z | x.

The isotypic case. Assume first that the permutation σ ∈ Sn which we want to ap-

proximate by w-values is isotypic. Then we have the following.

Lemma 3.4. Let σ ∈ Sn be a k-isotypic permutation and set ck := ck(σ). Then we have

dH(σ,w(Sn)) ≤ a/n with equality if and only if rad(a) | k and ck − a bck/ac = a− 1.

Proof. Let τ ∈ Sn be such that dH(σ, τa) is minimal. Set a′ := πk(a). Note that an l-cycle

of τ gets transformed into gcd{l, a} cycles of length l/ gcd{l, a} of τa, so ck(τ
a) is a multiple

of a′. Hence, subsequently, we can certainly restrict to the case a′ - ck, since otherwise we

can take τ of cycle type ((ka′)ck/a
′
), so that τa = σ (so in particular k, a′, gcd{k, a} 6= 1).
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Assume first that rad(a) | k, i.e., a = a′. Then ck(τ
a) is a multiple of a. Let c′k be

the number of k-cycles in σ which are not cycles in τa. Call these k-cycles bad. Then

c′k ≥ ck − a bck/ac ≥ 1 and the middle term is at most a − 1. Hence σ and τa differ in

at least c′k points (at least one point for each bad k-cycle of σ). However, if dH(σ, τa) =

c′k/n = (ck−a bck/ac)/n, then each bad k-cycle of σ would have support strictly contained

in the support of a cycle of τa (by optimality of τ the supports cannot be equal). But this is

impossible, since then τa would have a cycle of length bk for some b ≥ 2, so cbk(τ
a) ≥ a and

our set n would be to small. So σ and τa differ in at least ck−a bck/ac+1 ≤ a points. This

bound is also attained by choosing τ of cycle type (11, (k(ck − a bck/ac)− 1)1, (ak)bck/ac)

(so that τa is of cycle type (11, (k(ck − a bck/ac)− 1)1, kabck/ac)).

Now assume that rad(a) - k, i.e., a′ < a. Then ck(τ
a) is a multiple of a′. If rad(a) |

k(ck−a′ bck/a′c), similarly to the above, we can take τ of cycle type (11, (k(ck−a′ bck/a′c)−
1)1, (ka′)bck/a

′c), so that τa is of cycle type (11, (k(ck − a′ bck/a′c) − 1)1, ka
′bck/a′c), and

dH(σ, τa) = ck − a′ bck/a′c + 1 ≤ a′ < a. In the opposite case, rad(a) - k(ck − a′ bck/a′c)
write a = a1a2, where a1 < a is the k(ck − a′ bck/a′c)-part of a. Then in the arithmetic

progression k(ck−a′ bck/a′c)−1, k(ck−a′ bck/a′c)−1−a1, . . . , k(ck−a′ bck/a′c)−1−a1(a2−
1) there is a unit u modulo a2 (which is of course also a unit modulo a1 and so modulo

a). If the last number is the only such, we must have a2 = 2. In this case, we take τ ′ of

cycle type (12, (k(ck−a′ bck/a′c)−2)1, (ka′)bck/a
′c), so that τ ′a is of cycle type (12, (k(ck−

a′ bck/a′c)−2)1, ka
′bck/a′c) and dH(σ, τa) ≤ dH(σ, τ ′a) = ck−a′ bck/a′c+ 2 ≤ a′+ 1 < a (as

a′ 6= 1). In the opposite case, we can choose u = k(ck−a′ bck/a′c)−1− ia1 with i ≤ a2−2.

Set t := 1 + ia1. If u < 0, one can choose τ ′ of cycle type (1k(ck−a′bck/a′c), (ka′)bck/a
′c), so

that τ ′a is of cycle type (1k(ck−a′bck/a′c), ka
′bck/a′c) and

dH(σ, τa) ≤ dH(σ, τ ′a) =
k(ck − a′ bck/a′c)

n
<

1 + a1(a2 − 2)

n
< a/n.

In the opposite case, we take τ ′ of cycle type (1t, u1, (ka′)bck/a
′c), so that τ ′a is of cycle

type (1t, u1, ka
′bck/a′c) and dH(σ, τa) is bounded by

dH(σ, τ ′a) ≤ ck − a′ bck/a′c+ t

n
≤ (a′ − 1) + (1 + a1(a2 − 2))

n
< a/n,

where the second inequality is strict when t ≥ k, and the last inequality holds since a′ ≤ a1.

To see the first inequality, first take a big cycle of length ck − a′ bck/a′c with support on

the bad cycles of σ such that on each of these there is exactly one point where this cycle

does not agree with σ. Then, adding t consecutive fixed points on this cycle, we produce

at most t more errors.

The general case. Now we consider the case that the permutation σ ∈ Sn which we want

to approximate by w-values is arbitrary. At first we estimate the quantity dH(σ,w(Sn))

from above.

Lemma 3.5. Set D := 1
rad(a)

∑rad(a)
k=1 (πk(a)− 1) = 1

a

∑a
k=1 (πk(a)− 1). For any ε > 0
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and n ∈ Z+ sufficiently large (in terms of ε) we have that

dH(σ,w(Sn)) ≤ (1 + ε)

√
2D

n
.

for all σ ∈ Sn.

Proof. Let the permutation σ which we want to approximate by word values be of cycle

type (kck)k∈Z+ . At first we justify that we may assume ck ≤ πk(a) − 1 (k ∈ Z+). Note

that the function d(x) = (1 + ε)
√

2Dx obeys the following properties:

(i) For all N ∈ Z+ it holds that d(x) ≥ Nx for x > 0 small enough;

(ii) d is concave;

(iii) d(0) = 0.

For a fixed N ∈ Z+ assume that dH(σ,w(Sn)) ≤ d(1/n) for all n ≥ N and σ ∈ Sn

with ck(σ) ≤ πk(a) − 1 for all k ∈ Z+. For σ ∈ Sn arbitrary write σ = σ1σ2 such

that the supports Ω1 := supp(σ1) and Ω2 := supp(σ2) of σ1 and σ2 are disjoint and

ck(σ1) = ck − πk(a) bck/πk(a)c ≤ πk(a) − 1 (so πk(a) | ck(σ2) = πk(a) bck/πk(a)c). Then

dH(σ,w(Sn)) ≤ n1
n dH(σ1, Sym(Ω1)), where n1 := |Ω1|, since σ2 ∈ w(Sym(Ω2)). Now if

n1 < N , for n sufficiently large we have that

dH(σ,w(Sn)) ≤ n1/n < N/n ≤ d(1/n)

by Property (i). In the opposite case, if n1 ≥ N , Properties (i) and (ii) and Jensen’s

inequality imply that dH(σ,w(Sn)) ≤ n1
n dH(σ1, w(Sym(Ω1))) ≤ n1

n d(1/n1) ≤ d(1/n).

So, subsequently, fix σ ∈ Sn with ck ≤ πk(a) − 1 (k ∈ Z+). Let u be the biggest unit

modulo a with u ≤ n. Then set t := n− u ≤ a− 1. Choosing τ ∈ Sn of cycle type (1t, u1)

so that τa has the same cycle type, we see that

dH(σ, τa) ≤
t+ 1 +

∑
k∈Z+

ck

n
≤
a+

∑
k∈Z+

ck

n
=:

e

n
,

since we make at most one mistake on each cycle of σ (if τa would be one big cycle) plus

the modification of t+ 1 points. This estimate is worst possible if the number of cycles of

σ is maximal. Hence, assuming n is large and modifying it slightly if necessary, we may

assume ck = πk(a)− 1 for all k ≤ l rad(a) and ck = 0 otherwise for some large l ∈ Z+. In
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this situation we have

n =

l rad(a)∑
k=1

k(πk(a)− 1)

= l

rad(a)∑
i=1

i(πi(a)− 1) +

(
l

2

)
rad(a)

rad(a)∑
j=1

(πj(a)− 1)

∼ D rad(a)2

2
l2.

Here we use the fact that πk(a) depends only on the congruence class of k modulo rad(a).

Similarly,

e = a+ l

rad(a)∑
i=1

(πi(a)− 1) ∼ D rad(a)l,

so that
e

n
∼ 2

rad(a)l
∼
√

2D

n
.

The proof is now complete.

In the next lemma, we establish that the constant D in Lemma 3.5 is optimal up to

factor 2
√

2.

Lemma 3.6. With D defined as in Lemma 3.5, for any ε > 0 there are infinitely many

n ∈ Z+ and σ ∈ Sn such that

dH(σ,w(Sn)) ≥ 1− ε
2

√
D

n
.

Proof. Set E := 1
rad(a)

∑rad(a)
k=1 bπk(a)/2c = 1

a

∑a
k=1 bπk(a)/2c. Fix l ∈ Z+ and choose

σ ∈ Sn such that ck(σ) = bπk(a)/2c for k ≤ l rad(a) and ck(σ) = 0 otherwise. Then we

have

n =

l rad(a)∑
k=1

k bπk(a)/2c

= l

rad(a)∑
i=1

i bπi(a)/2c+

(
l

2

)
rad(a)

rad(a)∑
j=1

bπj(a)/2c

∼ E rad(a)2

2
l2,

using the same trick as in the proof of Lemma 3.5.

Next we establish a lower bound for e := ndH(σ,w(Sn)). Fix τ ∈ Sn such that dH(σ, τa)

is minimal. Recall that a cycle of σ is called good if it is a cycle of τa and bad otherwise.

Similarly, we call a point x ∈ n good if x.σ = x.τa and bad otherwise. Now fix k ∈ Z+. If

there are exactly i good k-cycles of σ (so they are k-cycles of τa as well), then the other
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ck(τ
a)− i k-cycles of τa contain at least i bad points. Indeed, either ck(τ

a) = 0 and there

is nothing to show, or ck(τ
a) ≥ πk(a) and i ≤ ck(σ) = bπk(a)/2c by the choice of σ, which

implies ck(τ
a)− i ≥ πk(a)− bπk(a)/2c ≥ bπk(a)/2c ≥ i.

Hence, indexing the cycles of σ with some set I and writing bi for the number of bad

points in the ith cycle, we obtain from the previous argument that |{i ∈ I | bi = 0}| ≤∑
i∈I bi = e. This implies that e ≥ |I|/2, since |{i ∈ I | bi = 0}| ≤

∑
i∈I bi < |I|/2 leads to

the contradiction
∑

i∈I bi ≥ |{i ∈ I | bi 6= 0}| = |I| − |{i ∈ I | bi = 0}| > |I|/2.

Therefore

e ≥ |I|
2

=
1

2

l rad(a)∑
k=1

bπk(a)/2c =
l

2

rad(a)∑
i=1

bπk(a)/2c =
E rad(a)

2
l

and we obtain
e

n
&

1

l rad(a)
∼
√
E

2n
.

The claim follows from the fact that D/2 ≤ E(≤ D).

This ends this subsection. In the following, we assume that w is not a power word. To

attack this case, we start by collecting some basic facts about the groups PSL2(q) for q a

prime power.

3.2.2 The cycle structure of elements from PSL2(q)

In this subsection, we recall some well-known facts about the cycle structure of the elements

from PSL2(q) ≤ Sym(Lq) acting on the projective line Lq of order q, where q = pe is a

power of the prime p. The key observation, which we will exploit in Subsection 3.2.4 to

prove Theorem 3.1, is here that these elements are all almost isotypic.

Consider an element g ∈ SL2(q) and write g ∈ PSL2(q) for the corresponding per-

mutation on Lq. Then g has two eigenvalues λ, λ−1 ∈ Fq2 . Recall from Section 0.1 that

o := ord(λ) denotes the multiplicative order of λ. We have the following complete distinc-

tion into three disjoint cases.

Case 1: If λ = ±1, then g has at least one eigenvector. If it has a second eigenvector

not contained in the span of the first one, we have g = ± id, so g = idLq . If this is not the

case, in a suitable basis

g = ±

(
1 1

0 1

)
,

so g has precisely one fixed point [1 : 0] and the remaining q/p cycles are all of length p.

Case 2: In the case when λ ∈ Fq \{±1}, we see that g is diagonalizable over Fq, whence

o = ord(g) divides q − 1. So choose coordinates such that g = diag(λ, λ−1). Then g has

the two fixed points [1 :0], [0 :1] on Lq corresponding to the eigenvectors of g over Fq. Take

any other point x = [a :b] ∈ Lq (i.e., ab 6= 0). Then the orbit of x under 〈g〉 ≤ PSL2(q) has
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length k = o/2 resp. k = o when o is even respectively odd. Namely, x.gl = x is equivalent

to [λla :λ−lb] = [λ2la :b] = [a :b], which is equivalent to λ2l = 1, meaning that o/2 | l for o

even and o | l for o odd.

Case 3: In the last case, λ ∈ Fq2 \ Fq. Since (X − λ)(X − λ−1) = χg(X) ∈ Fq[X],

it follows that λ−1 = λq is the Galois conjugate to λ in Fq2 , so o = ord(g) divides q + 1.

Moreover, g has no fixed points as g has no eigenvector over Fq. However, embedding into

SL2(q2), we can again assume g = diag(λ, λ−1). Then the same argument as above shows

that all cycles of g have length k = o/2 resp. k = o when o is even resp. odd.

To summarize our observations, let us state the following corollary.

Corollary 3.7. The cycle type of g acting on Lq only depends on o = ord(λ) and q if o > 2.

Namely, if 2 < o and o | q − 1 (Case 2), then it is (12, (o/2)2(q−1)/o) resp. (12, o(q−1)/o)

when o is even resp. odd, and if 2 < o and o | q + 1 (Case 3) it is ((o/2)2(q+1)/o) resp.

(o(q+1)/o) when o is even resp. odd.

3.2.3 Effective surjectivity of word maps over finite fields

In this subsection, using the facts from Subsection 3.2.2, we demonstrate that permutations

of certain cycle type are attained as w-values inside groups of type PSL2(q), thus providing

the crucial ingredient for the proof of Theorem 3.1 in Subsection 3.2.4.

As in the previous subsection, let q = pe be a power of the prime p. The map

trw : SL2(Fq)2 → Fq defined by (g, h) 7→ tr(w(g, h)) is surjective. Indeed, this can be

seen from the existence of trace polynomials and the theorem of Borel [4] that the word

map associated to w on SL2(Fq) is dominant – but it follows also from direct inspection

as explained below. Here we show surjectivity of trw for p large enough but in an effective

way. Throughout this subsection, assume that w is not a power word and p - ai, bi for

i = 1, . . . , l, where w = xa1yb1 · · ·xalybl as in the introduction.

Lemma 3.8. For any t ∈ Fq there exists m ≤ l and unipotent elements g, h ∈ SL2(qm)

such that trw(g, h) = t.

Proof. A classical result (going back to [20]) says that

trw(g, h) = f(tr(g), tr(h), tr(gh))

is a polynomial in tr(g), tr(h), and tr(gh), where

f(X,Y, Z) = fl(X,Y )Z l + · · ·+ f0(X,Y ) ∈ Z[X,Y, Z]

is uniquely determined and called the trace polynomial of w.

Now we define g(U, V ), h(U, V ) ∈ Z[U, V ] by

g(U, V ) :=

(
1 0

U 1

)
and h(U, V ) :=

(
1 V

0 1

)
.
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Then tr(g(U, V )) = tr(h(U, V )) = 2 and tr(gh) = UV + 2 in Z[U, V ]. Computing fn(2, 2)

from above gives fn(2, 2) = a1b1 · · · albl, in particular, f is non-trivial.

Now substituting 1 for V and reducing modulo p gives a polynomial

r(U) := trw(g(U, 1), h(U, 1)) = a1b1 . . . alblU
l + s(U) ∈ Fp[U ],

with deg(s) < l, of degree l by assumption on w, as p - a1b1 · · · albl. Hence the equation

r(U) − t = 0 is an equation over Fq of degree l, so has a solution in one of the fields Fqi
for i = 1, . . . , l.

Remark 3.9. If l is odd, then m can also be chosen odd, since then at least one irreducible

factor of r(U) must be of odd degree.

As a consequence of Lemma 3.8 together with the facts mentioned in Subsection 3.2.2,

for any fixed integer k > 1 we get a word value in some groups of the form PSL2(qim) for

all i ∈ Z+, where q depends on k, consisting only of k-cycles up to two fixed points. We

conclude the following corollary.

Corollary 3.10. Let k > 1 be an integer. Assume that 2k | q− 1 resp. k | q− 1 when k is

even resp. odd. Then there exists m ≤ l such that there is an element σ ∈ w(PSL2(qim)) ⊆
Sqim+1 of cycle type (12, k(qim−1)/k) for all i ∈ Z+.

Proof. Let i ∈ Z+ be arbitrary. Choose λ ∈ F×q of order 2k resp. k when k is even resp.

odd. Then apply Lemma 3.8 to t := λ + λ−1 ∈ Fq to get g, h ∈ SL2(qm) ≤ SL2(qim) for

some m ≤ l with trw(g, h) = tr(w(g, h)) = t. Note that w(g, h) ∈ SL2(qm) ≤ SL2(qim) is

diagonalizable with eigenvalues λ, λ−1 ∈ F×q ⊆ F×
qim

. Setting σ := w(g, h) ∈ PSL2(qim) ≤
Sqim+1, Corollary 3.7 of Subsection 3.2.2 immediately implies the claim.

Remark 3.11. If l is odd, using Remark 3.9, one can even remove the two fixed points

from the above element σ. Indeed, assuming 2k | q+ 1 resp. k | q+ 1 when k is even resp.

odd and going through the proof of Corollary 3.10 together with the fact that m can be

chosen odd, one gets σ ∈ Sqim+1 of cycle type (k(qim+1)/k) for all odd i ∈ Z+.

The next result shows that there is also a word value in PSL2(q) ≤ Sym(Lq) ∼= Sq+1,

which is close to a (q + 1)-cycle in Sq+1. It can be considered as a weak version of [44,

Theorem 4.1] which permits an elementary proof.

Lemma 3.12. Assume that q > 4l. Then there exists σ ∈ w(PSL2(q)) ⊆ Sym(Lq) ∼= Sq+1,

which differs in less than 2 +
√
lq points of Lq from a (q + 1)-cycle in Sq+1.

Proof. Using the same trick as in the proof of Lemma 3.8, one sees that the map

trw : SL2(q)× SL2(q)→ Fq

meets at least q/l points. This implies that the set Λ ⊆ F×
q2

of eigenvalues of elements

from w(SL2(q)) has cardinality at least 2(q/l − 1) (two eigenvalues for each trace value
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apart from the trace values ±2; if 2 | q one can take 2q/l − 1). Now assume that the

multiplicative order of all these eigenvalues is less than b := 2
√
q/l. Then we obtain the

contradiction

|Λ| ≤
dbe−1∑
i=1

ϕ(i) ≤ (dbe − 1)2

2
− 2 < 2(q/l − 1),

where the second inequality holds since by assumption dbe − 1 ≥ 4. Hence Λ contains an

element λ of order o ≥ 2
√
q/l > 4. Let f ∈ w(SL2(q)) with eigenvalues λ, λ−1 ∈ Fq2 .

Then by Corollary 3.7 the permutation σ := f ∈ PSL2(q) consists apart from zero or two

fixed points only of cycles of type o/2 resp. o when o is even resp. odd. This implies that

σ differs in less than 2 +
√
lq points from a (q + 1)-cycle in Sym(Lq) ∼= Sq+1.

Remark 3.13. For even q one can improve the estimate by a factor 1/2, since o will

always be odd.

3.2.4 Proof of Theorem 3.1

In this subsection, we use the facts provided by Subsection 3.2.3 to establish Theorem 3.1.

We may assume that w = xa1yb1 · · ·xalybl as in Subsection 3.2.3, as the case that w is a

power word was already settled by Lemma 3.5. We start with the isotypic case and prove

the general case as a consequence.

The isotypic case. At first let σ ∈ Sn be k-isotypic, i.e., n = ckk for ck := ck(σ). We

can certainly restrict to k > 1, since the identity is always in w(Sn). Subsequently, we

prove two estimates for the quantity dH(σ,w(Sn)). The first estimate will be suitable for

small k, whereas the second will be better for large k.

Estimate for small k. Let p be the smallest prime such that p - ai, bi for i = 1, . . . , l

and 2k | p− 1 resp. k | p− 1 when k is even resp. odd. Apply Corollary 3.10 to q := p to

get the integer m ≤ l. Set q := pm and write

n =

s∑
i=1

ni(q
i + 1) + n0

such that
∑j

i=1 ni(q
i + 1) + n0 ≤ qj+1 for all 0 ≤ j ≤ s (i.e., use a greedy algorithm to

produce such a representation, starting with the biggest summand qs + 1).

Then ni ≤ q − 1 for i ≥ 1 and n0 ≤ q. Moreover, using a standard estimate for the

q-ary representation of positive integers, one obtains
∑s

i=0 ni < q(logq(n) + 1).

Write n =
⊔s
i=1 niLqi tn0 as a disjoint union of ni copies of the projective lines Lqi for

i = 1, . . . , s and n0 singletons. Using Corollary 3.10, let g, h ∈ Sn be permutations which

restrict to maps g, h ∈ PSL2(qi) acting on the copies of Lqi such that w(g, h) has cycle

type (12, k(qi−1)/k), and which fix the remaining n0 points. Then, if we label the points in
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an optimal way, we get

ndH(σ,w(g, h)) = n0 + 2
m∑
i=1

ni ≤ 2
m∑
i=0

ni ≤ 2q(logq(n) + 1).

By a celebrated result of Linnik [50], one has that the least prime which is congruent to

1 modulo 2k resp. k is bounded by D1k
D2 for some constants D1 > 0, D2 ≥ 1. Choosing

D1 large enough, one can also ensure that p - ai, bi for i = 1, . . . , l, e.g., take p congruent

to 1 modulo 2ka1b1 · · · albl. Hence q ≤ Dl
1k
D2l, so that

dH(σ,w(g, h)) ≤ 2Dl
1k
D2l(log2(n) + 1)/n.

Remark 3.14. The logarithmic term in this argument can be removed if l is odd. Namely,

then we require 2k | p+ 1 resp. k | p+ 1 for k even resp. odd, and can choose m ≤ l odd,

so that we are in Case 3 of Subsection 3.2.2, where no fixed points occur. However, then

we may only use the odd i and thus get a bigger constant.

It is probably also true that, when w is not a square, σ ∈ w(Sn) if k is fixed and ck is

even and large enough in terms of k (Lemma 3.42(ii) of Subsection 3.4.3 can be seen as a

weak form of this conjecture which is true). But this also would not improve our estimate.

The result of Linnik is not necessary for the qualitative statement of Theorem 3.1. We

only need it to get a nice function d, which is mentioned in the introduction. There are

weaker versions of Linnik’s result available with an elementary proof, e.g., see [68].

Estimate for large k. Let p be the smallest prime such that p - ai, bi for i = 1, . . . , l

and p > 4l. Set q := p and write n =
∑s

i=1 ni(q
i + 1) + n0 and n =

⊔s
i=1 niLqi t n0 as

above. Using Lemma 3.12, let g, h ∈ Sn = Sym(n) be permutations which restrict to maps

g, h ∈ PSL2(qi) acting on the copies of Lqi such that w(g, h) differs in less than 2 +
√
qil

points from an (qi + 1)-cycle for i = 1, . . . , s, and which fix the remaining n0 points.

Again, under an optimal labeling, an n-cycle differs from σ in at most ck points. Hence,

using the triangle inequality,

dH(σ,w(Sn)) ≤ 1

k
+

1

n

(
s∑
i=1

ni(
√
lqi + 2) + n0

)
.

The second term can be estimated by D3/
√
n for suitable D3 > 0 depending on q and l.

Remark 3.15. By Theorem 1.3 of [44] there exists a constant D4 > 0 such that there

are elements g, h ∈ Sn which restrict to permutations on the support of each k-cycle of σ

such that dH(σ,w(g, h)) ≤ D4/k. However, the proof presented there uses some algebraic

geometry and the weak Goldbach conjecture, and using it instead of the above estimate

would not improve the exponent e mentioned in the introduction. Note here that we found

an alternative proof of this result of Larsen and Shalev after having finished a first version

of this chapter, which is presented in Lemma 3.42(iii) of Subsection 3.4.3.
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Global estimate for isotypic elements. Using the first estimate for

k ≤
(

n

2Dl
1(log2(n) + 1)

) 1
D2l+1

and the second one in the opposite case, one obtains that

dH(σ,w(Sn)) ≤ Citn
−1/eit

for any eit > D2l+ 1 ≥ 2 and Cit appropriately. Assuming a conjecture by Chowla [5], we

can take D2 arbitrarily close to one, so that eit can be taken arbitrarily close to l + 1.

We will now use our knowledge about the isotypic case to conclude the proof of the

theorem in the general case.

The general case. Now we are ready to establish Theorem 3.1. A basic ingredient we

need is the elementary fact that a permutation on n letters has less than
√

2n different

cycle types.

Proof of Theorem 3.1. By Lemma 3.5, we may restrict to the case when w is not a power

word. Set dit(x) := Citx
1/eit and note that dit is monotone and concave. Recall from

Section 0.1(d) that Ωk := Ωk(σ) denotes the support of all k-cycles of σ ∈ Sn and nk := |Ωk|
for k ∈ Z+. Let S be the set of numbers k ∈ Z+ such that nk > 0 and note that |S| <

√
2n.

Then for n ≥ 2

dH(σ,w(Sn)) ≤
∑
k∈Z+

nk
n
dH(σ|Ωk , w(Sym(Ωk)))

≤
∑
k∈S

nk
n
dit

(
1

nk

)

≤ dit

(∑
k∈S

1

n

)
≤ dit

(√
2n

n

)
= dit

(√
2/n

)
,

where the second last inequality is implied by Jensen’s inequality applied to the concave

function dit, and the last one by monotonicity of dit. We can now set d(x) := dit(
√

2x) =√
2Citx

1/(2eit). This finishes the proof.

Remark 3.16. In the power word case w = xa (a > 1), Lemma 3.4 shows that dit(x) = ax

is optimal. Applying the above argument, this produces d(x) = a
√

2x. Lemmas 3.5 and 3.6

demonstrate that the term
√
x in this expression is ‘correct’. However, the coefficient

√
2a

is far from optimal, since it is apparent that D ≤ a − 1, where D is the constant from

Lemmas 3.5 and 3.6. Still, the argument from above using Jensen’s inequality produces

the optimal bound N(w, ε) = O((1/ε)2) in this case.
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3.3 Unitary groups

In this section, we present the proof of Theorem 3.3 (Subsection 3.3.1 below) and draw

some connections to the article [16] of Elkasapy and Thom (see Subsection 3.3.3).

3.3.1 Proof of Theorem 3.3

Denote by K the one-relator group

〈x, y |w〉 = F2/〈〈w〉〉

associated to w.

The key observation is the following lemma involving the second cohomology group of

a quotient of the Cayley complex of K, in which we interpret monomial matrices in Un as

1-cochains.

Let X be the Cayley complex of the presentation 〈x, y |w〉 of K, i.e., its 1-skeleton is

the directed Cayley graph Γ := Cay(K, {x, y}) and for each vertex v ∈ V (Γ) = K we glue

in a 2-cell cv along w starting at v.

For π : K � G being a surjective homomorphism to a finite group G of order n set

g := π(x), h := π(y) and let X(π) be the quotient of the 2-complex X induced by π, whose

1-skeleton is the Cayley graph Γ(π) := Cay(G, {g, h}) of G. Consider also permutations

σg, σh ∈ Sn = Sym(G) arising from the action of G on itself. Set d(π) := dim(H2(X(π),R))

to be the dimension of the second cohomology group of X(π).

Lemma 3.17. For every diagonal unitary matrix M ∈ Un we can find monomial ma-

trices Mg,Mh ∈ U1 o Sn ≤ Un such that Mg = (λi)
n
i=1.σg and Mh = (µi)

n
i=1.σh so that

w(Mg,Mh) is diagonal and differs in at most d(π) diagonal entries from M . Hence, set-

ting ε(π) := d(π)/n, the image of the word map w(Un) is ε(π)-dense in Un with respect to

the normalized rank metric.

Proof. Write C•(π) resp. C•(π) for the chain resp. cochain complex over R associated to

X(π) with differentials

di(π) : Ci(π)→ Ci−1(π) resp. codifferentials di(π) := (di(π))∗ : Ci−1(π)→ Ci(π)

for i ∈ N. A 1-cochain α : X1(π) → R assigns to each edge e of Γ(π) a real number

αe. Then the Cayley graph Γ(π) together with this assignment encodes two elements

gα, hα ∈ R o Sn ⊆ Rn×n, where the permutation part of gα resp. hα is given by the action

of g resp. h on the vertices V (Γ(π)) = G of Γ(π), and the first part is induced by the

values αe (e ∈ E(Γ(π))). The group R o Sn can be seen as the set of monomial matrices in

Rn×n, where the entries marked along the corresponding permutations are added instead

multiplied.
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Given the 1-cochain α, its image under the codifferential d2(π) : C1(π) → C2(π) is

defined by

d2(π)(α)(c) =
∑
e∈∂(c)

εeα(e)

for all c ∈ X2(π), where ∂(c) is the set of edges of the boundary of the cell c and εe ∈ {±1}
is the corresponding orientation. Now C2(π)/ im(d2(π)) = H2(X(π),R).

Choose M = diag(λv)v∈G ∈ GU(`2G) = Un arbitrary and find βv ∈ R such that λv =

eiβv for v ∈ G. Then there exists a function α : X1(π) → R such that d2(π)(α)(cv) = βv

for all but at most d(π) vertices v ∈ V (Γ(π)) = G.

But, letting ϕ : RoSn → U1 o Sn ≤ Un be the homomorphism induced by exponentiation,

we also see that

w(ϕ(gα), ϕ(hα)) = (eid
2(π)(α)(cv))v∈G. id .

Hence Mg := ϕ(gα), Mh := ϕ(hα) is a suitable choice of matrices. The last statement of the

lemma follows from the definition of the normalized rank metric on Un (see Definition 0.12).

This completes the proof.

Remark 3.18. Subsequently, for a chain x ∈ Ci(π) (i = 0, 1, 2) write x∗ ∈ Ci(π) for

the corresponding dual cochain defined by 〈x, ·〉 = x∗, where 〈·, ·〉 is the inner product

associated to the basis Xi(π) of Ci(π).

If w ∈ F′2, it is clear that d(π) ≥ 1, as any element∑
v∈G

λvc
∗
v ∈ im(d2(π))

lies in the hyperplane given by
∑

v∈G λv = 0 (here we use that G is finite). This reflects

the fact that then w(Un) ⊆ SUn. Moreover, in this case, if d(π) = 1, the word map

w : SUn× SUn → SUn is surjective (by transitivity we can then achieve equality on any

n − 1 diagonal entries in the above proof). Namely, if w(g, h) = u for g, h ∈ Un and

u ∈ SUn, we can find λ, µ ∈ C such that λn = det(g) and µn = det(h). Then g′ := λ−1g,

h′ := µ−1h lie in SUn and satisfy w(g′, h′) = u.

In the opposite case, when w ∈ F2 \F′2, either w(1, x) or w(x, 1) is of the form xm for

m ∈ Z \ {0}. So the word w is always surjective on Un and SUn, since every element of

these groups is diagonalizable and hence has an mth root (of determinant one in the case

of SUn).

Remark 3.19. In the situation of the proof of Lemma 3.17 write C• = C•(X) resp.

C• = C•(X) for the chain resp. cochain complex over R associated to X. Then we have

a commutative diagram

0 C0 C1 C2 0

0 C0(π) C1(π) C2(π) 0

d1 d2

d1(π) d2(π)

,
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where the top arrows are K-equivariant, the bottom arrows are G-equivariant, and the

vertical arrows are induced by π. The duality defined in Remark 3.18 identifies Ci(π)

G-equivariantly with Ci(π). Then, further identifying via the isomorphisms

C1(π) ∼= g · R[G]⊕ h · R[G] and C2(π) ∼= R[G],

where the latter is given by cv 7→ v (v ∈ G), and letting ∗ : R[G] → R[G] be the natural

involution given by g 7→ g−1 (g ∈ G), one computes that the map d2(π) is then given by

d2(π)(g · 1) = π(∂w/∂x)∗ and d2(π)(h · 1) = π(∂w/∂y)∗. Here ∂w/∂x resp. ∂w/∂y denote

the Fox derivative [19] of w with respect to x resp. y, i.e., if w = xa1yb1 · · ·xalyal and

εi := sgn(ai), δi := sgn(bi), then

∂w

∂x
=

l∑
i=1

εix
a1yb1 · · ·xai−1ybi−1x

εi−1

2 (1 + xεi · · ·+ xεi|ai−1|),

∂w

∂y
=

l∑
i=1

δix
a1yb1 · · ·xaiy

δi−1

2 (1 + yδi · · ·+ xδi|bi−1|).

Later we will apply Lemma 3.17 to a family of surjective homomorphisms π(p) : K �

H(p) (p a sufficiently large prime) to finite groups H(p) of order np = ph (h is a constant

defined later) such that ε(π(p))→ 0 as p→∞. This is only possible if the corresponding

map d2(π(p)) in the above proof for G = H(p) is non-trivial for sufficiently large p. Hence

next we characterize when this happens for an arbitrary homomorphism π : K � G.

Lemma 3.20. Let G = F2/N = 〈x, y〉/N be a (not necessarily finite) quotient of the

one-relator group K, i.e., w ∈ N , and set g := x, h := y in G. Define π : K � G as

in Lemma 3.17. Then d2(π) in the proof of Lemma 3.17 is identically zero if and only if

w ∈ N ′ = [N,N ].

Proof. By assumption, we have w ∈ N . If w ∈ N ′, then w =
∏k
i=1 ni is a product of

elements ni ∈ N (i = 1, . . . , k), where the multiset (ni)
k
i=1 equals (n−1

i )ki=1. Consider

the w-loop lv(w) with arbitrary starting vertex v ∈ V (Γ(π)). The above shows that each

subloop of lv(w) associated to ni (i = 1, . . . , k) returns to v and hence any edge in Γ(π) is

traversed equally often in both directions. But then one sees immediately that d2(π) = 0.

Conversely, the assumption d2(π) = 0 implies that the loops lv(w) (v ∈ V (Γ(π)))

traverse all of its edges equally often in both directions. Let ∆ be the undirected simple

graph which is the image of the loop lv(w). Then ∆ is homotopic to a bouquet of circles

each of which is traversed equally often in both directions by the loop l corresponding to

lv(w) under the chosen homotopy. But this means precisely that the homotopy class of l

lies in π1(∆)′. Pulling back the generators of the group π1(∆) to elements of N , we see

that w ∈ N ′.

Now we show how to define the maps π(p) : K � H(p) and quotients H(p) appropri-

ately (for p a sufficiently large prime) such that ε(π(p))→ 0 for p→∞.
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Since F2 is residually nilpotent, there exists a unique integer c = c(w) ≥ 0 such that

w ∈ γc+1(F2)\γc+2(F2). Set H := F2/γc+1(F2) to be the free 2-generated nilpotent group

of class c (in which w is trivial) and let π : K � H be the corresponding quotient map.

By Jennings’ embedding theorem, every finitely generated torsion-free nilpotent group

N can be embedded into the group U := UTd(Z) of upper unitriangular matrices over Z
(for d ∈ Z+ sufficiently large; such an embedding can even be explicitly computed from a

polycyclic representation of N by an algorithm due to Nickel [54]; see also [30] and [64]).

Since the factors of the lower central series γi(F2)/γi+1(F2) (i = 1, . . . , c) are free abelian,

H is a poly-Z group and we obtain that H can be concretely realized as a subgroup of

UTd(Z) for some dimension d = d(w).

Define the central series Hi := H∩γi(U) of H for i = 1, . . . , d (note that the group γl(U)

consists of the upper unitriangular matrices u = (uij) ∈ U with uij = 0 for 1 ≤ j−i ≤ l−1).

Then Hi/Hi+1 ≤ γi(U)/γi+1(U) ∼= Zd−i (the ith off-diagonal). Let Bi ⊆ Zd−i be a basis

of Hi/Hi+1 and set hi := dim(Hi/Hi+1) = |Bi| (i = 1, . . . , d − 1). Let p be a prime not

dividing some hi×hi minor of the (d−i)×hi-matrix associated to Bi for all i = 1, . . . , d−1.

Then, writing U(p) := UTd(Z/(p)) and letting H(p), Hi(p) (i = 1, . . . , d) be the image

of H,Hi in U(p), we see that Hi/Hi+1
∼= Zhi � Hi(p)/Hi+1(p) ∼= (Z/(p))hi . Define

π(p) : K � H(p) to be the induced quotient map to the finite p-group H(p).

Now refine the central series (Hi)
d
i=1 to a central series (Lj)

h+1
j=1 such that Lj/Lj+1

∼= Z
for j = 1, . . . , h, where h :=

∑d−1
i=1 hi is the Hirsch length of H. Then still Lj/Lj+1

∼=
Z � Lj(p)/Lj+1(p) ∼= Z/(p) for j = 1, . . . , h and p as above. Let xj ∈ H be such that

〈xj〉Lj+1 = Lj for j = 1, . . . , h. Note that the map d2(π) associated to the surjective

homomorphism π : K � H is non-trivial, since if it where trivial, then by Lemma 3.20

applied to π and N = ker(π) = γc+1(F2) we would have w ∈ N ′ = [γc+1(F2), γc+1(F2)] ≤
γc+2(F2), which is not the case by the choice of c. Hence from the local nature of the

definition of d2(π) it follows that there is an edge e ∈ E(Γ(π)) such that 0 6= d2(π)(e∗) =∑
v λvc

∗
v with λv ∈ Z \ {0}. This element corresponds to the element 0 6= y =

∑
v λvv ∈

Z[H] in the group ring. Subsequently, let k be a field of large enough characteristic such

that the image of y in k[H] is non-trivial, and for z ∈ k[H] an element in the group algebra

of H, write z(p) for its image in k[H(p)]. It follows that for p large enough the elements

v in the support supp(y) ⊆ H are mapped injectively to the elements v(p) = π(p)(v) ∈
supp(y(p)) ⊆ H(p) (e.g., take p larger than all matrix entries of elements v form supp(y)).

Now the k-dimension of im(d2(π(p))) can be bounded from below by the k-dimension

of the right ideal y(p)k[H(p)] as the action of H(p) on C2(π(p)) (here with coefficients in

k) equals its right action on the group algebra k[H(p)]. We bound the dimension of the

latter from below by the following lemma.

Lemma 3.21. In this situation the right ideal y(p)k[H(p)] ⊆ k[H(p)] generated by y(p)

has k-dimension at least (p− f)h for a constant f = f(w) only depending on w.
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Proof. For l = 0, . . . , h write

y =
∑

e∈Zh−l
xe11 · · ·x

eh−l
h−l ce

for e = (e1, . . . , eh−l) and ce ∈ Z[Lh+1−l]. We prove by induction on l that for all e ∈ Zh−l

the right ideal ce(p)k[Lh+1−l(p)] is either zero or has k-dimension at least (p−f)l, obtaining

the claim for l = h as c∅ = y 6= 0 and so y(p) 6= 0 for p large enough.

For l = 0 there is nothing to prove, as ce is either zero or it spans a one-dimensional

ideal in k = k[Lh+1]. Now for the induction step assume the statement is proven for

l ≥ 0. Let e ∈ Zh−1−l be arbitrary and write ce =
∑

i∈Z x
i
h−lc(e,i). If ce = 0, we are

done, so assume the opposite. Then, certainly, the set S := {i ∈ Z | c(e,i) 6= 0} 6= ∅ is

an invariant of y and so of w, hence m := maxS −minS ≤ f(w) for some function f of

w. Set z := xminS
h−l . Since the right k[Lh−l(p)]-ideals generated by ce(p) and (z−1ce)(p)

have the same dimension, we may consider the element u := z−1ce instead of ce. This

equals u =
∑m

i=0 x
i
h−lc(e,i+minS). Now it is easy to see that the set of linear combinations∑p−m−1

k=0 (uxkh−ldk)(p) with dk ∈ k[Lh+1−l] arbitrary for k = 0, . . . , p −m − 1 generate a

k-subspace of dimension at least (p −m)(p − f)l. Indeed, by choosing d0 appropriately,

one can obtain any element of c(e,minS)k[Lh+1−l] as the left coefficient in k[Lh+1−l] of x0
h−l.

Then, choosing d1 such that xh−ld1x
−1
h−l ∈ k[Lh+1−l] is appropriate, one can obtain any

left coefficient in front of x1
h−l in some coset of the right ideal c(e,minS)k[Lh+1−l], etc. Since

by assumption p−m ≥ p− f , we are done.

Now, as a consequence of Lemma 3.21, we obtain the following immediate corollary.

Corollary 3.22. Applying Lemma 3.17 to π(p) as above, we obtain that ε(π(p)) ≤ 1 −
(1 − f/p)h ≤ hf/p = hfn−1/h for n = ph, where h = h(w) and f = f(w) are defined as

above.

Proof. Lemma 3.21 and the comment preceding it imply that

dim(H2(X(π(p)),R)) ≤ ph − (p− f)h.

Normalizing, we obtain the desired identity.

The homomorphisms π(p) : K � H(p) for p ≥ p0 = p0(w) a sufficiently large prime

suffice now to prove the quantitative version of Theorem 3.3 given in the introduction.

Namely, one proves by induction on n ≥ 1 that for D = D(w) > 0 sufficiently large

drk(g, w(Un)) ≤ ε(n) := (D log(n) + 1)n−1/h

for all g ∈ Un. Set ε(0) := 0.

Indeed, this is true for n < ph0 . Now for n ≥ ph0 we pick the largest prime p such

that ph ≤ n and the largest integer l ≥ 1 such that lph ≤ n. Then via the embedding
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Un−lph ⊕U⊕l
ph
≤ Un, writing n1 := n− lph and n2 := lph, we see that

drk(g, w(Un)) ≤ n1

n
ε(n1) +

n2

n
hf/p

for all g ∈ Un by the induction hypothesis and Corollary 3.22. Since p is the largest

prime such that p ≤ n1/h, Bertrand’s postulate implies that p ≥ n1/h/2. Moreover, by

construction n1 < n/2, so that the above term can be bounded by

1

2
(D log(n/2) + 1)(n/2)−1/h + 2hfn−1/h ≤ (D log(n) + 1)n−1/h

again if D is large enough.

3.3.2 Further implications

It is easy to see that our method of proof implies that w(SUn) has width at most two in

SUn for n large enough, which was first proven in [36, Theorem 2.3] using Gotô’s trick,

Borel’s theorem and the representation theory of SU2. The reason for this is the following

basic fact about the linearized permutation representation of the Weyl group Sn.

Lemma 3.23. Let V = Rn be the permutation representation of Sn. Let V0 be the sub-

representation of V of all vectors whose entries sum to zero. If U1, U2 ≤ V0 are subspaces

and dim(U1) + dim(U2) ≥ n− 1, then U1 + U2.σ = V0 for some σ ∈ Sn.

Proof. This is a consequence of the fact that the exterior power Λk(V0) is irreducible for

k = 0, . . . , n−1, see Proposition 3.12 of [21]. Note that the determinant pairing h : Λk(V0)×
Λn−1−k(V0)→ R given by h(v1∧· · ·∧vk, vk+1∧· · ·∧vn−1) = v1∧· · ·∧vn−1 ∈ Λn−1(V0) ∼= R,

is non-degenerate. Using irreducibility, we can easily see that this implies the claim.

Indeed, set k := dim(U1), choose a basis u1, . . . , uk for U1 and a linearly independent set

u′k+1, . . . , u
′
n−1 in U2. Now we have that h(u1 ∧ . . . ∧ uk, (u′k+1 ∧ . . . ∧ u′n−1).σ) 6= 0 if and

only if U1 + U2.σ = V0. By irreducibility, the set {(u′k+1 ∧ . . . ∧ u′n−1).σ |σ ∈ Sn} spans

Λn−1−k(V0). The fact that h is non-degenerate implies the claim.

We immediately obtain the following corollary.

Corollary 3.24. Let w1, w2 ∈ F2 be non-trivial. Then

w1(SUn)w2(SUn) = SUn

for n sufficiently large.

Proof. Set Ui ≤ wi(R o Sn) ∩ Rn ≤ V := Rn to be a vector subspace of the diagonal

matrices Rn which lies in the above wi-image and has maximal dimension with respect

to this property (i = 1, 2). In Lemma 3.17, Corollary 3.22, and the remarks thereafter,

we have shown that dim(Ui) ≥ n−1
2 for n large enough. Applying Lemma 3.23 to U1, U2

and V , and exponentiating, we see that for every diagonal matrix g ∈ SUn there are

hi ∈ wi(SUn) (i = 1, 2) such that g = h1h
σ
2 , so that w1(SUn)w2(SUn) = SUn.
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3.3.3 Concluding remarks

Lemma 3.17 and the above proof of Theorem 3.3 can be seen as a generalization of the

methods used in [16] and clarify various aspects of it. Let us demonstrate this briefly.

For a word w ∈ F′2 \ F′′2 set π : K � H := F2/F
′
2 = Z2 = 〈g, h〉 to be the natural

homomorphism. Applying Lemma 3.20 to π, we see that d2(π) is non-trivial, so again

we get an edge e ∈ Γ(π) such that d2(π)(e∗) 6= 0, which corresponds to an element

z = z(g, h) ∈ Z[H] = Z[Z2] = Z[g±1, h±1] in the integral group ring. By symmetry, it is

no loss to assume that e is rooted at 1H and labeled by h.

The Laurent polynomial pw(X) defined in Section 3 of [16] is now precisely equal to

z∗(X, 1) = z(X−1, 1), where z(g, h) = d2(π)(e∗) = π(∂w/∂y)∗ (see Remark 3.19). Here

z∗(X, 1) is just the image of z under the homomorphism Z[Z2] = Z[g±1, h±1] � Z[Z] =

Z[X±1] induced by gahb 7→ X−a, as, e.g., for w = [xa, yb] = x−ay−bxayb, a, b > 0 we have

z(g, h) = (h+ · · ·+ hb)(1− ga) and pw(X) = −b(X−a − 1).

Now we can find a suitable homomorphism ϕ : Z2 = 〈g, h〉 � Z = 〈X〉 such that the

induced ring homomorphism Z[Z2] = Z[g±1, h±1] � Z[Z] = Z[X±1] maps z to a non-

zero element ϕ(z) = p(X) (e.g., take as the kernel of the homomorphism ϕ a saturated

copy of Z in Z2 which does not hit any element in the support of z). For n ∈ Z+ we

define the homomorphism π(n) : K � H(n) = Z/(n) just by composing ϕ ◦ π with the

natural projection Z � Z/(n). One now quickly derives the conclusions of Lemma 3.1,

Corollary 3.2, and Proposition 3.8 of [16] from the following lemma.

Lemma 3.25. Let p(X) be as above. Write z(n) for the image of z in Z[H(n)]. Define

Wn := {ω ∈ C | p(ω) = 0 and ωn = 1}. The (right) ideal z(n)R[H(n)] has codimension

|Wn|, so in particular, if the least prime dividing n is large enough, then it has codimension

one and the word map w on SUn is surjective by Lemma 3.17 and Remark 3.18.

Proof. By the Chinese remainder theorem, we have the isomorphism

R[H(n)] = R[Z/(n)] ∼= R[X]/(Xn − 1) ∼=
⊕

χ|Xn−1
χ irreducible

R[X]/(χ) ∼= Ren ⊕ Cdn/2e−1,

where en = 2 if n is even and en = 1 if n is odd. This holds, since the (monic) irreducible

polynomials χ | Xn − 1 are either of the form X ± 1 (so that R[X]/(χ) ∼= R) or of the

form (X −ω)(X −ω) for ω ∈ C \R an nth root of unity (so that R[X]/(χ) ∼= C). The last

isomorphism in the above equation is given by X 7→ (ωχ)χ, where ωχ is a root of χ. Hence

the ideal generated by z(n) has as codimension precisely the number of nth roots ω for

which p(ω) = 0, as claimed. The second claim follows from the fact that p(X) ∈ Z[X±1]

and the minimal polynomial of a primitive mth root of unity, m > 1 dividing n, over

Q is the cyclotomic polynomial Φm(X) of degree ϕ(m) ≥ p − 1, where p is the least

prime divisor of n. Hence, if p − 1 > deg(p(X)), we have Wn = {1}. This completes the

proof.

73



Chapter 3. Word maps are surjective on metric ultraproducts

The above shows that the result from [16] is precisely the simplest application of

Lemma 3.17, namely when G = H(n) is taken to be cyclic. We can now also understand

that Question 4.4 from [16] has a negative answer. Indeed, assume that for every choice

of ϕ : Z2 = 〈g, h〉 � Z = 〈X〉 in the above construction, the image im(d2(π(n))) ⊆
R[H(n)] ∼= R[X]/(Xn − 1) has codimension greater than one, i.e., d2(ϕ ◦ π)(ϕ(g) · 1) and

d2(ϕ ◦ π)(ϕ(h) · 1) as Laurent polynomials in Z[X±1] have a non-trivial nth root of unity

as a common root. Now choose α ∈ Aut(F2) arbitrary. Replacing w by α(w) will not

improve this situation. To see this, set x′ := α(x), y′ := α(y) and obtain by the chain rule

d2
α(w)(ϕ ◦ π)(ϕ(g) · 1) = ϕ ◦ π

(
∂w

∂x
(x′, y′)

∂x′

∂x
+
∂w

∂y
(x′, y′)

∂y′

∂x

)∗
,

d2
α(w)(ϕ ◦ π)(ϕ(h) · 1) = ϕ ◦ π

(
∂w

∂x
(x′, y′)

∂x′

∂y
+
∂w

∂y
(x′, y′)

∂y′

∂y

)∗
,

where d2
α(w)(ϕ ◦ π) denotes the map corresponding to d2(ϕ ◦ π) but with α(w) in the role

of w. But then, as α is an automorphism, we see that ϕ ◦ π(x′) = Xa and ϕ ◦ π(y′) = Xb

with a, b ∈ Z coprime (as they must generate Z = 〈X〉). Hence

ϕ ◦ π
(
∂w

∂x
(x′, y′)

)
=
∂w

∂x
(Xa, Xb) resp. ϕ ◦ π

(
∂w

∂y
(x′, y′)

)
=
∂w

∂y
(Xa, Xb),

which is equal to d2(ϕ′ ◦ π)(ϕ′(g) · 1)∗ resp. d2(ϕ′ ◦ π)(ϕ′(h) · 1)∗, where ϕ′ : Z2 = 〈g, h〉�
Z = 〈X〉 is given by g 7→ Xa, h 7→ Xb (see Remark 3.19). But these two expressions

seen as Laurent polynomials in Z[X±1] by our assumption have a non-trivial nth root of

unity ω as a common root. But then, by the above equations, d2
α(w)(ϕ ◦ π)(ϕ(g) · 1) and

d2
α(w)(ϕ ◦ π)(ϕ(h) · 1) also must have ω as a root, so that the image im(d2

α(w)(π(n))) ⊆
R[H(n)] ∼= R[X]/(Xn − 1) has codimension greater than one.

In retrospect, as has been pointed out to us by Jack Button, the study in [16] would

have been much clearer, when the connection to Fox calculus and the even more classical

subject of Alexander polynomials would have been observed from the start.

Let us end this section by drawing some further connections to related facts. In case

that K is residually finite, one could also prove Theorem 3.3 using Lück’s approximation

theorem together with the fact that the second L2-Betti number of a one-relator group is

zero by a well-known result of Dicks and Linnell [9] – or the validity of the L2-zero divisor

conjecture for torsionfree nilpotent groups applied to H (see [52] for more background).

However, our argument is much more explicit and does even give an effective estimate.

3.4 Finite groups of Lie type

In this section, we prove Theorem 3.2 using aspects presented in Section 3.2 and 3.3 – for

convenience of the reader we decided to present the proof first in the case of unitary groups

Un, where the methods come into play in the most natural way. However, we will now use
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the same cohomological method as in Lemma 3.17 together with Lemmas 3.20 and 3.21

of Section 3.3, but instead of using the additive group of R as our coefficient group, we

now will use groups of type (Fq[X]/(χ))× for χ ∈ Fq[X] some polynomial. Indeed, we will

need the following modified version of Lemma 3.21, which is an easy consequence of it.

Corollary 3.26. In the setting of Lemma 3.21, using coefficients in Z instead of the field

k, there is a non-zero c ∈ N and f ∈ N such that for all large primes p there exists a

subset C ⊆ H(p) of at least (p − f)h coordinates so that the projection of the right ideal

y(p)Z[H(p)] onto Z[C] contains the module (cZ)[C].

Proof. Applying Lemma 3.21 to k = Q, we get a set C ⊆ H(p) of coordinates of size

|C| ≥ (p − f)h such that y(p)Q[H(p)] projects surjectively on these. Hence we generate

the unit vectors in Q[H(p)]/Q[H(p) \ C]. So multiplying by the least common multiple c

of the denominators of the involved scalars, we obtain that the projection of y(p)Z[H(p)]

onto the coordinates C still contains the module (cZ)[C].

Subsequently, we fix the symbol c to be the constant from Corollary 3.26. For the rest

of this chapter, all polynomials from k[X] that occur are meant to be monic polynomials.

Recall from Section 0.1(e) that for a polynomial χ ∈ k[X] for a field k we write F (χ) for

the Frobenius block associated to χ, that is multiplication by X in k[X]/(χ) with respect

to the standard monomial basis. Similarly, for λ ∈ k write Je(λ) for the Jordan block of

size e with respect to λ, that is multiplication by λ + X in k[λ,X]/(Xe). Recall that a

polynomial χ ∈ k[X] is called primary if it is the power of an irreducible polynomial, i.e., if

the ideal it generates is primary. Recall that for an element g ∈ End(V ), V is irreducible

resp. indecomposable resp. cyclic as a k[X]-module, where X acts as g, if and only if

g ∼= F (i) resp. g ∼= F (χ) resp.
⊕l

i=1 F (χi) ∼= F (χ1 · · ·χl) for an irreducible polynomial

i ∈ k[X] resp. a primary polynomial χ ∈ k[X] resp. pairwise coprime primary polynomials

χ1, . . . , χl ∈ k[X].

3.4.1 The linear case

We start by proving Theorem 3.2 in the case when G = GLn(q). We consider here the

more general case that G = GLn(k) for an arbitrary field k. So let V = kn be the natural

module of G. We use the same approach as in Subsection 3.2.4, first approximating

isotypic elements g ∈ GL(V ) by word values, i.e., we first assume that V is the direct sum

of isomorphic cyclic k[X]-submodules so that g ∼= F (χ)⊕cχ for some polynomial χ ∈ k[X]

of degree k, and then deducing the general case by using the Frobenius normal form and

Jensen’s inequality.

The isotypic case. So let χ, cχ and k be as previously mentioned. We want to approx-

imate F (χ)-isotypic elements by word values with these parameters, so that n = cχk. As

in Subsection 3.2.4, we distinguish two cases, one in which k is small and one in which it

is large (compared to cχ).
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Estimate for small k. In view of Corollary 3.26 we need the following auxiliary fact.

Lemma 3.27. It holds that F (χ(Xc))c ∼= F (χ)⊕c.

Proof. The block F (χ(Xc)) is the matrix of multiplication by X in the ring k[X]/(χ(Xc)),

so that F (χ(Xc))c is the multiplication by X
c

in k[X]/(χ(Xc)). But k[X]/(χ(Xc)) =⊕c−1
i=0 X

i〈Xc〉k holds for dimension reasons, so that the claim follows.

Now we use the same idea as in Lemma 3.17 with appropriate coefficient group. Con-

sider the ring R := k[X]/(χ(Xc)) and write cχ = rc + s for r ∈ N and 0 ≤ s < c.

Corollary 3.26 and Lemma 3.27 give us that in R× o Sym(r) ≤ GLckr(k) we have that

w(R× o Sym(r)) approximates the block diagonal matrix (F (χ(Xc))⊕r)c ∼= F (χ)⊕cr up to

an error of d(1/r). Hence, since the function d is concave, we obtain

drk(g, w(GLn(k))) ≤ cr

cχ
d(1/r) + s/cχ < d(c/cχ) + c/cχ.

Estimate for large k. On the other hand, the matrices F (χ) and F (Xk − 1) differ

only in the last row, so by rank one. The last matrix is the permutation matrix of a

k-cycle, which we can approximate by word values by the result for symmetric groups

(Theorem 3.1). Hence drk(F (χ), F (Xk − 1)) ≤ 1/k, implying that

drk(g, w(GLn(k))) < d(1/k) + 1/k.

Global estimate for isotypic elements. Now we combine both estimates as in the proof

for symmetric groups. Using the first estimate if k ≤
√
n/c and the second in the opposite

case, we obtain

drk(g, w(GLn(q))) < d
(√

c/n
)

+
√
c/n,

as wished. Subsequently, in analogy to the proof of Theorem 3.1 in Section 3.2, write dit

for the function of 1/n on the right.

The general case. Using the Frobenius normal form, we can write g ∼=
⊕

k∈Z+
F (χk)

⊕ck ,

χk being the invariant factor of degree k and ck := cχk .

Now we can finish the proof. Define the set S ⊆ Z+ as in Subsection 3.2.4. Writing

nk := ckk, we get that

drk(g, w(GLn(k))) ≤
∑
k∈S

nk
n
dit(1/nk)

≤ dit

(∑
k∈S

1/n

)
≤ dit

(√
2/n

)
,

as at the end of Subsection 3.2.4, as desired.
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Remark 3.28. Similarly to the symmetric case, one verifies that such a bound is also

attained for power words w = xp when char(k) = p.

3.4.2 The case of quasisimple groups of Lie type stabilizing a form

We proceed by proving Theorem 3.2 for quasisimple groups of Lie type of unbounded

rank which stabilize a form. Recall the notation of Section 0.2 and the setting from

Section 0.1(f):

The group G is of the form Sp2m(q), GO2m+1(q), GO±2m(q) or GUn(q) (n ≥ 2, m ≥ 1),

V = kn is the natural module of G, and f is the form stabilized by G. If we are in

Case (∗) of Section 0.1(f), i.e., G is orthogonal and p = char(k) = 2, recall that Q denotes

the quadratic form inducing f . In the unitary case, f is semilinear in the second entry

with respect to the q-Frobenius endomorphism σ : k → k; x 7→ xq. In the other cases, let

σ denote the identity on k. The sign ε ∈ {±1} of f is defined to be +1 if f is symmetric

bilinear or conjugate-symmetric sesquilinear, and to be −1 if f is alternating.

For a fixed g ∈ G, which we want to approximate by w-values, subsequently, consider V

as a k[X]-module, where X acts as g. If we are not in Case (∗), a non-singular submodule

of V is said to be orthogonally indecomposable if it is not an orthogonal direct sum of

non-trivial proper submodules (with respect to the form f). In Case (∗), when rad(f) is

one-dimensional, V is said to be orthogonally indecomposable, if V/ rad(f) is orthogonally

indecomposable with respect to f (the induced form on the quotient).

In analogy to the linear case, V (resp. V/ rad(f) in Case (∗)) is the orthogonal direct

sum of such submodules. Hence, following the same strategy as in Subsection 3.4.1, we

first consider the case when V is itself orthogonally indecomposable. To provide a pleasant

presentation, we recall the classification of such modules V in the case that p = char(k) 6= 2

or that g is non-unipotent for an arbitrary field k (all statements are well-known and are,

e.g., used in Section 6 of [49]; see also [75]). When p = 2, k is finite, and g is unipotent,

we refer to Section 3 of [25].

§1 Structure of orthogonally indecomposable modules

In this subsection, we recall the classification of orthogonally indecomposable k[X]-modules,

where k is an arbitrary (not necessarily perfect) field to provide a concise reference of this

topic. All the results are summed up for finite fields in Fact 3.40. If the reader is not

interested in the subsequent technical details, we propose to skip this subsubsection.

Auxiliary facts. We start by collecting some auxiliary facts, which we will use in the

classification.

Lemma 3.29. Fix a k-vector space U . Let R ⊆ End(U) be a faithful cyclic representation

of the abelian k-algebra R, i.e., there is a vector u ∈ U such that u.R = U . Then

CEnd(U)(R) = R. In particular, if an abelian group A ⊆ End(U) acts on the vector space

U with a cyclic vector, then CEnd(U)(A) = k[A].
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Proof. Let c ∈ CEnd(U)(R) and u be a cyclic vector as in the lemma. Then the value u.c of c

determines c, since for any v ∈ U we find r ∈ R such that u.r = v and so v.c = u.rc = u.cr.

Hence, if u.c = 0, we must have c = 0. For an arbitrary c, by assumption we find r ∈ R
such that u.c = u.r. Then u.(c− r) = 0 and as R is abelian, c− r ∈ CEnd(U)(R). But then

c− r = 0 by the preceding argument, so that c ∈ R.

Remark 3.30. This is a perfect analog of the corresponding statement for transitive

abelian permutation groups, see [37, page 158, Hilfssatz 3.1].

For a k-vector space U , subsequently, let U∗ denote the σ-semilinear functionals on U .

Equipping it with the dual action (u∗.g)(u) := u∗(u.g−1) for u ∈ U , u∗ ∈ U∗, the space U∗

becomes a k[X]-module, too. We will also need the following simple connection between

the centralizer of an action and the forms it stabilizes.

Lemma 3.31. Let H be a group acting on the k-vector spaces U and U ′. Let f : U×U ′ → k

be an H-invariant non-singular bilinear resp. σ-sesquilinear form over k (in the last case,

it is σ-semilinear in U ′). Then any other such H-invariant form h : U ×U ′ → k, which is

not necessarily non-singular, is of the form h = f(•.c, •) for an element c ∈ CEnd(U)(H).

Proof. The form f is the same as an H-equivariant bijective linear map ϕf : U → U ′∗.

Consider the same map ϕh for h.

Set ψ := ϕh ◦ ϕ−1
f ∈ CEnd(U ′∗)(H), which exists as ϕf is invertible by assumption.

Define d := ψ∗ ∈ CEnd(U ′)(H) as the adjoint of ψ with respect to the natural pairing

between U ′∗ and U ′, i.e., via (u∗.ψ)(u) = u∗(u.d) for all u ∈ U ′, u∗ ∈ U ′∗. Then h(u, v) =

ϕh(u)(v) = (ψ ◦ ϕf (u))(v) = (ϕf (u).ψ)(v) = ϕf (u)(v.d) = f(u, v.d). Taking as c the

adjoint of d with respect to f , we get the claim.

If G is orthogonal and p = 2, we still need the following fact.

Lemma 3.32. Assume we are in Case (∗) of Section 0.1(f), i.e., G is orthogonal and

p = char(k) = 2. Let Q,Q′ : U → k be quadratic forms inducing the symmetric bilinear

form f on a k-vector space U . Then Q−Q′ is a semilinear form on U with respect to the

2-Frobenius. In particular, when Q is H-invariant for some group H acting on U , and H

does not fix a hyperplane in U , then Q is uniquely determined.

Proof. We have that (Q−Q′)(u+v) = Q(u)+f(u, v)+Q(v)− (Q′(u)+f(u, v)+Q′(v)) =

(Q−Q′)(u) + (Q−Q′)(v), so Q−Q′ is additive and hence semilinear with respect to the

square map. The second claim follows from the fact that in this case ker(Q−Q′) ≤ U is

an H-invariant subspace of codimension at most one.

The classification. Write g =
⊕

χ primary F (χ)⊕cχ in generalized Jordan normal form.

Consider a ‘block’ U ≤ V such that g|U acts as F (χ) for some χ = ie ∈ k[X] primary, with

i irreducible of degree d and e ≥ 1. This means that the action of g|U on U is isomorphic

to multiplication by X in the k-algebra Rχ := k[X]/(χ) ∼= U . In particular, the g-invariant
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subspaces of U form a chain 0 = U0 < U1 < · · · < Ue = U , where Uj corresponds to the

ideal (ie−j) ⊆ Rχ (j = 0, . . . , e). By finiteness, we can assume that e is as large as possible.

Let λ ∈ k be a root of i and set Kχ := k[λ] ∼= k[X]/(i) to be the residue field of Rχ. For a

polynomial r = a0 + a1X + · · ·+ ak−1X
k−1 +Xk ∈ k[X] with a0 6= 0 write r∗ for the dual

polynomial a−σ0 Xdeg(r)rσ(X−1) with ‘normalized’ reversed coefficients twisted by σ. Call

the polynomial r self-dual if r = r∗, i.e., when its set of roots is preserved under inversion

and an extension of σ, or equivalently, the map α : Kχ → Kχ defined by α|k = σ and

X = λ 7→ λ−1 extends (uniquely) to an automorphism of Kχ. Note that χ is self-dual

if and only if i is self-dual. The restricted form h := f |U induces a map ϕh : U → U∗.

Let W := rad(h) = U ∩ U⊥ be its radical. Then h descends to a non-singular form h on

U := U/W . As W is clearly g-invariant, i.e., a submodule, and the set of submodules of

U is a chain 0 = U0 < U1 < · · · < Ue = U , where g acts as F (ij) on Uj (j = 0, . . . , e),

when W = Uj , we have that g acts as F (ie−j) on the quotient U = U/W . The form h

induces an isomorphism of the g-modules U and U
∗
. Now g also acts as F ((i∗)e−j) on U

∗
.

Hence, if j < e, i.e., U is not totally singular, we need to have that i = i∗, i.e., i and so χ

is self-dual.

(A): Hence, if U is non-singular and we are not in Case (∗) of Section 0.1(f), then

U = V and χ is self-dual, since U ⊥ U⊥ = V is an orthogonal decomposition of V . If

we are in the Case (∗) and U is non-singular, either W = 0 and we are in the previous

situation, or W = rad(f) is one-dimensional and Q is non-trivial on W . This implies that

i has degree one, so i = X−λ. Then for v ∈W \{0} we have Q(λv) = λ2Q(v) = Q(v) 6= 0

implying that λ = 1, i.e., g is unipotent. Then also V = U .

So assume that U is singular. Then W must contain the minimal submodule U1 of U .

Fix a vector u1 ∈ U1 \ {0}.

(B): First assume that U1∩rad(f) = 0 (which is always true unless we are in Case (∗) of

Section 0.1(f) and n = dim(V ) is odd). Then by assumption we find another block U ′ ≤ V
(with respect to the decomposition associated to the above generalized Jordan normal form

of g) and a vector u′ ∈ U ′ such that f(u1, u
′) 6= 0. This implies that f |U×U ′ : U×U ′ → k is

separating in U , as U ∩U ′⊥ ≤ U is g-invariant, but does not contain U1. Hence we obtain

an injective g-equivariant linear map ϕ : U → U ′∗. This implies that g acts as F (χ′) on

U ′, where χ′ = (i∗)e
′

for some e′ ≥ e. But by assumption on e, we must also have e′ ≤ e,

implying that ϕ must be an isomorphism, i.e., U ′ ∼= U∗, and f |U×U ′ is also separating

in U ′. Then the submodule U ⊥ U ′ is non-singular, so, since V was indecomposable,

V = U ⊥ U ′, as V = (U ⊥ U ′) ⊥ (U ⊥ U ′)⊥ is an orthogonal decomposition of it.

(C): Now assume that rad(f) is one-dimensional and rad(f) ≤ U and we are not in (A)

(i.e., we are in Case (∗) of Section 0.1(f) and n = dim(V ) is odd). As rad(f) is g-invariant,

this implies U1 = rad(f). As in (A) it follows that g is unipotent. But since we are not

in (A), we must have U2 ≤W . Fix a vector u2 ∈ U2 \ U1. Similarly to the above, we find

another block U ′ ≤ V such that f descends to a non-singular form on U/U1 × U ′, so that
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g acts as F ((X + 1)e) on U and as F ((X + 1)e−1) on U ′.

From this starting point we classify all cases that occur. We distinguish three cases.

Case 1: χ is not self-dual. Then we are in paragraph (B) from above and U ′ ∼= U∗ 6∼= U ,

so that V must be orthogonally indecomposable, since the only direct sum decomposition

of V is then U ⊕ U ′ and neither of the summands, by the above reason, carries a non-

singular form. Also the pairing between U and U ′ ∼= U∗ (as k[X]-modules) is canonical.

Hence f is given by f(u⊕ u′, v⊕ v′) = u′(v) + εv′(u)σ, where u′, v′ ∈ U ′ are interpreted as

elements from U∗.

Remark 3.33. When we consider the isomorphisms U ∼= Rχ and U ′ ∼= U∗ ∼= Rχ∗ , we can

write the pairing f |U×U ′ : U × U ′ ∼= Rχ ×Rχ∗ → k more explicitly as

Rχ ×Rχ∗ 3 (u, v) 7→ `χ(uvα),

where α : Rχ∗ → Rχ is the isomorphism given by α|k = σ and X 7→ X
−1

, and `χ : Rχ → k

is the form ` constructed in the proof of Lemma 3.34 below. This is completely analogous

to the construction of f in Case 2 below (cf. the proof of Lemma 3.34), where χ = χ∗ and

so U = U ′ ∼= R := Rχ = Rχ∗ and hence α ∈ Aut(R).

Case 1*: Orthogonal case in characteristic two. In this case, we still have to determine

Q. Since f vanishes on U and U ′, we must have that Q is semilinear with respect to

the 2-Frobenius endomorphism on them. Hence the subspace {u ∈ U |Q(u) = 0} resp.

{u′ ∈ U ′ |Q(u′) = 0} is g-invariant and has codimension at most one in U resp. U ′. Thus

Q must vanish on U and U ′ if d > 1, since then every proper submodule of U resp. U ′ has

codimension at least d. If d = 1 we have that g|U ∼= F ((X − λ)e) ∼= Je(λ). Let u1, . . . , ue

be a basis in which the element g is represented by Je(λ). Q must vanish on Ue−1, so

that Q(ue) = Q(ue.g) = Q(λue + ue−1) = λ2Q(ue) + λf(ue, ue−1) + Q(ue−1) = λ2Q(ue),

so that either Q ≡ 0 on U or λ = 1, the latter being a contradiction to the fact that i is

not self-dual. The same holds on U ′. Hence Q : V → k is given by Q(u⊕ u′) = f(u, u′) as

Q(u) = Q(u′) = 0 for u ∈ U , u′ ∈ U ′, and one easily verifies that this quadratic form Q is

g-invariant and induces f .

Case 2: χ = χ∗ is self-dual and λ2 6= 1 if f is bilinear. For this case we need a

preparatory lemma (Lemma 3.34 below).

Preparation for Case 2. Write K := Kχ = k[λ], R := Rχ, and let α resp. τ be the

automorphism of R resp. K such that α|k = τ |k = σ and α : X 7→ X
−1

resp. τ : λ 7→ λ−1

(so that α induces τ on the residue field K of R). Note that both are involutions. Recall

from Section 0.2 that Rα resp. Kτ denote the subring of R resp. the subfield of K whose

elements are fixed by α resp. τ . Also define tr±1
τ : K → K to be the map x 7→ x ± xτ

and Nα : R → Rα resp. Nτ : K → Kτ to be the map r 7→ rrα resp. x 7→ xxτ . Recall from

above that the action of g on U is isomorphic to multiplication by X in R ∼= U .
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Lemma 3.34. In this situation there is a natural bijection between the equivalence classes

of non-singular alternating resp. symmetric bilinear resp. σ-conjugate-symmetric sesquilin-

ear forms on U ∼= R and the factor group

R×α /Nα(R×) ∼= K×τ /Nτ (K×).

Proof. Let ` : R → k be a k-linear form such that f : (u, v) 7→ `(uvα) is a non-singular

σ-sesquilinear form. It is easy to see that this is equivalent to (ie−1) 6⊆ ker(`). Then f is

g-invariant as uX(vX)α = uXvαX
−1

= uvα for all u, v ∈ R and any other such (possibly

singular) form is given by fc(u, v) := f(u.c, v) = `(cuvα) for c ∈ R by Lemmas 3.29

and 3.31 as U ∼= R is a cyclic module over R. Moreover, the map c 7→ fc is easily seen to

be bijective.

Now let us construct a form ` explicitly such that the corresponding form f is non-

singular alternating resp. symmetric bilinear resp. σ-conjugate-symmetric sesquilinear.

At first assume that K/k is separable (which is always the case when k is finite). Define

S := K[Y ]/(Y e) = k[λ, Y ]/(Y e) and β ∈ Aut(S) via Y 7→ −Y and β|K = τ . Now let

s = λ + s1Y + · · · + se−1Y
e−1 ∈ S with s1 6= 0. Then s is conjugate to λ + Y in S via

the k-automorphism Y 7→ s1Y + · · · + se−1Y
e−1

of S. So assume subsequently, w.l.o.g.,

that s = λ + Y . Consider the homomorphism ϕ : k[X] → S given by X 7→ s. Then

ϕ(i) = i(s) =
∑d−1

j=0(Dji)(λ)Y
j
, where Dji is the jth Hasse derivative of i, so that, since

i is separable, ϕ(i) = u1Y + · · ·ue−1Y
e−1

with u1 6= 0. This shows that ϕ(χ) = ϕ(i)e = 0,

showing that (χ) ⊆ ker(ϕ). But it is easy to check that ϕ is surjective as K = k[λ], so

that for dimension reasons we must have equality, i.e., k[X]/(χ) = R ∼= S as k-algebras

via ϕ : X 7→ s. Next, dropping the assumption s = λ+ Y , we find appropriate coefficients

for s such that α corresponds to β via ϕ. For this we have to solve the equations ssβ = 1

and s0 = λ for s =
∑e−1

j=0 sjY
j

inductively. This meanse−1∑
j=0

sjY
j

e−1∑
j=0

(−1)jsτjY
j

 = 1,

together with s0 = λ. The coefficient of Y
0

in the above product is always one, since

τ : λ 7→ λ−1. Computing the coefficient of Y
k

for k ≥ 1 gives

k∑
j=0

(−1)k−jsjs
τ
k−j = sτ0sk + (−1)ks0s

τ
k +

k−1∑
j=1

(−1)k−jsjs
τ
k−j = 0.

Abbreviate the last term by tk and observe that tτk = (−1)ktk. This means that

Nτ (s0) tr(−1)k

τ (sk/s0) = tr(−1)k

τ (sk/s0) = −tk.

81



Chapter 3. Word maps are surjective on metric ultraproducts

But the condition on tk means precisely that

tk ∈ ker(tr(−1)k−1

τ ) = im(tr(−1)k

τ ),

so that the system has a solution. Hence we have found s such that ϕ carries α into β. We

can now define the K-linear form Λ: S ∼= R ∼= U → K by S 3 u0+u1Y +· · ·+ue−1Y
e−1 7→

ue−1 and the τ -sesquilinear form S2 → K by (u, v) 7→ Λ(uvβ), so that

Λ(uvβ) =

e−1∑
j=0

(−1)e−1−jujv
τ
e−1−j .

has sign (−1)e−1. Hence choosing δ ∈ K× such that δτ = (−1)e−1εδ, i.e., 0 6= δ ∈
ker(tr

(−1)eε
τ ), and setting F (u, v) := δΛ(uvβ) for u, v ∈ S gives a τ -sesquilinear form of the

desired sign ε, so that ` := trK/k ◦δΛ induces an appropriate form f on U ∼= S, when K/k

is separable. Note that by construction δΛ(uβ) = ε(δΛ(u))τ for u ∈ S ∼= U and, similarly,

`(uα) = ε`(u)σ for u ∈ R ∼= U .

In the inseparable case, we have i = i′(Xpa) for a separable polynomial i′, where pa is

the degree of inseparability of K/k. Set Ksep := k[λp
a
]. Then R contains Rsep := 〈Xpa〉k ∼=

k[Z]/(i′e(Z)) ∼= Ksep[Y ]/(Y e) = k[λp
a
, Y ]/(Y e) =: Ssep. Then define trR/Rsep

: R → Rsep

by u0 + u1X + · · · + upa−1X
pa−1 7→ u0, where ui ∈ Rsep (i = 0, . . . , pa − 1), and set

` := `sep ◦ trR/Rsep
, where `sep : Rsep → k has already been defined in the separable case.

Then ` induces a non-singular form f of the desired type on U ∼= R, since for 0 6= u = u0 +

u1X+· · ·+upa−1X
pa−1 ∈ R ∼= U with uj ∈ Rsep (j = 0, . . . , pa−1) there is a uk 6= 0. Then

trR/Rsep
(u(X

k
)α) = uk, so that f(u,X

k
v) 6= 0 for appropriate v ∈ Rsep ⊆ R ∼= U . Also

note that trR/Rsep
commutes with α (which stabilizes Rsep), so that still `(uα) = ε`(u)σ

for all u ∈ R ∼= U .

Finally, we have to prove the claimed correspondence. We already mentioned that

c 7→ fc is a bijection. Assume that f was already alternating resp. symmetric bilinear

resp. σ-conjugate-symmetric sesquilinear. That fc has the same property means now that

`(cuuα) = 0 implying that `(cu1) + `(c1uα) = `(c(u+uα)) = 0 resp. `(c(u−uα)) = 0 resp.

`(cu)− `(cuα)σ = 0 for all u ∈ R ∼= U .

In the first two cases, we see immediately that all c ∈ Rα satisfy the assumption. But

since f is non-singular and dimk(Rα) = dimk(R)/2, there are no other such c. In the

last case, we can use the property of ` that `(u)σ = `(uα), so that the condition becomes

`((c− cα)u) = 0, which means c ∈ Rα as well.

Changing the coordinates g-invariantly of a form f(u, v) = `(uvα) means to multiply

both entries by some c ∈ R. Hence we get a natural one-to-one correspondence between

R×α /Nα(R×) and the non-singular forms f (in each of the three cases).

It remains to show that R×α /Nα(R×) ∼= K×τ /Nτ (K×). For this purpose consider the

natural homomorphism of groups π : R×α → K×τ /Nτ (K×). That u ∈ ker(π) means that

there is v ∈ R× such that u ≡ vvα modulo (i). Now let 1 ≤ k ≤ e − 1 and assume we
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have found v ∈ R× such that uk := u−Nα(v) ∈ (ik)α. We want to find w ∈ (ik) such that

uk+1 = u − Nα(v + w) ∈ (ik+1)α. This means uk − vαw − vwα = uk − Nα(v) trα(w/v) ∈
(ik+1)α. But it is easy to check that α acts on K = R/(i) as it acts on (ik)/(ik+1).

Therefore, since uk ∈ (ik)α and Nα(v) ∈ R×α , the system can be solved. Thus we find

v ∈ R× such that u = Nα(v) and the proof is complete.

Remark 3.35. Using for ` the trace trR/k is not a good choice, since this trace is zero if

i is inseparable.

Remark 3.36. The proof shows that, if i is separable, all possible non-singular forms f

are of the form (u, v) 7→ trK/k ◦δΛ(uvβ) for suitable 0 6= δ ∈ ker(tr
(−1)eε
τ ) as above. This

is, since then K×τ ⊆ R×α surjects on K×τ /Nτ (K×) under the map π in the proof and δ is

determined up to a factor in K×τ .

Now we apply Lemma 3.34.

Discussion of Case 2. We are either in paragraph (A) or (B) from above. We first

show that (B) cannot occur. Assume we are in paragraph (B), i.e., V = U ⊥ U ′ and

U ∼= U ′ ∼= U∗. Then Lemma 3.34 gives that

f =

(
f11 f12

f21 f22

)
=

(
c 1

ε d

)

for some c, d ∈ Rα. By this notation, which we shall use also in the subsequent cases,

we mean that f(u1 ⊕ u2, v1 ⊕ v2) = `(u1f11v1 + u1f12v2 + u2f21v1 + u2f22uv2), where

` : R ∼= U → k is the linear form from the proof of Lemma 3.34. If c resp. d was a unit in

R, we could split off U resp. U ′. So assume c, d ∈ (i). Then(
1 a

0 1

)(
c 1

ε d

)(
1 0

aα 1

)
=

(
c+ εa+ aα + aaαd ∗

∗ ∗

)
,

so that taking a such that K 3 a /∈ ker(trετ ) gives a transformation such that {u⊕ua |u ∈
U ∼= R} splits off. Here we used that α is non-trivial, since λ 6= λ−1. Hence U = V , so

we are actually in paragraph (A), and f is determined up to K×τ /Nτ (K×) as described

in Lemma 3.34 (so uniquely when k is finite, since then the norm Nτ : K× → K×τ is

surjective).

Case 2*: The orthogonal case in characteristic two. In characteristic two we still need

to determine Q.

At first assume that K/k is separable (which is certainly true if k is finite). In this

case, from the proof of Lemma 3.34 and Remark 3.36 we get

f(u, v) = trK/k

δ e−1∑
j=0

ujv
τ
e−1−j

 ,
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as 1 = −1. Noting that trK/k = trKτ/k ◦ trK/Kτ and that

trK/Kτ

δ e−1∑
j=0

ujv
τ
e−1−j

 = δ
e−1∑
j=0

(ujv
τ
e−1−j + uτj ve−1−j)

= H(u+ v)−H(u)−H(v),

where

H(u) := δΛ(uuβ) = δ
e−1∑
j=0

uju
τ
e−1−j

is a g-invariant Hermitian form over K which induces the previous Kτ -bilinear form.

Setting Q := trKτ/k ◦H gives an appropriate quadratic form Q inducing f .

If K/k is inseparable and pa is the degree of inseparability, then f is given by f(u, v) =∑pa−1
i=0 fsep(ui, vi), as in the proof of Lemma 3.34, where u =

∑pa−1
i=0 uiX

i
, v =

∑pa−1
i=0 viX

i

with ui, vi ∈ Rsep (i = 0, . . . , pa − 1), so that we can define Q by Q(u) :=
∑pa−1

i=0 Qsep(ui),

where Qsep is the quadratic form we defined in the separable case.

It remains to prove that Q is uniquely determined. So assume Q′ would be another

g-invariant quadratic form inducing f . Arguing as in Case 1* for Q−Q′ instead of Q, we

obtain that, if Q−Q′ 6≡ 0, we must have that g is unipotent, i.e., λ = 1, a contradiction.

Thus Q is unique.

Case 3: i = X ± 1 and f is bilinear. We can restrict to i = X − 1 by multiplying g by

− id (which stabilizes f) if necessary.

Case 3.1: p is odd. Write R := Rχ = k[X]/((X−1)e) and S := k[Y ]/(Y e) as in Case 2

and note that R ∼= S via X 7→ 1+Y . Define α as there and set R±1 := im(tr±1
α ) = ker(tr∓1

α )

to be the ±1-eigenspace of α : Rχ → Rχ. In analogy to Lemma 3.34 we have the following.

Lemma 3.37. In this situation there is a natural bijection between the equivalence classes

of g-invariant alternating resp. symmetric bilinear forms on U and the quotient

R(−1)e−1/Nα(R×) resp. R(−1)e/Nα(R×).

Hence equivalence classes of g-invariant non-singular alternating resp. symmetric bilinear

forms are in bijection with k×/(k×)2, as R×1 /Nα(R×) ∼= k×/(k×)2, (which equals C2 if k is

finite) in the case e is even resp. odd, whereas all g-invariant alternating resp. symmetric

forms on U in odd resp. even dimension are singular.

Proof. Find s ∈ S such that ssβ = 1 and a0 = 1 so that X 7→ s defines an isomorphism

R ∼= S carrying α to β as in the proof of Lemma 3.34 (here one uses that 2 6= 0). Define Λ

as in the proof of Lemma 3.34 with τ = id, so that f : S2 → k; (u, v) 7→ Λ(uvα) has sign

(−1)e−1. Then by Lemma 3.31 any other possible form is given by fc. Now fc has sign

(−1)e−1 if and only if c ∈ im(trα) = R1 and sign (−1)e if c ∈ im(tr
(−1)
α ) = R−1.

According to Lemma 3.37 we have the following two cases.
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Case 3.1(a): ε = (−1)e−1. Then we have that

f =

(
f11 f12

f21 f22

)
=

(
c 1

1 d

)
,

so that we can use the same trick as in Case 2 to obtain U = V . Indeed, since V is orthog-

onally indecomposable, c, d ∈ (i), so that, if we apply the same coordinate transformation

as there, we get

f ′ =

(
f ′11 f ′12

f ′21 f ′22

)
=

(
1 a

0 1

)(
c 1

1 d

)(
1 0

aα 1

)
=

(
c+ a+ aα + aaαd ∗

∗ ∗

)
.

Taking f ′11 modulo (i) gives 2a0 ∈ k, where

a =

e−1∑
j=0

ajY
j
,

so that, taking a0 6= 0, we have found the g-invariant non-singular subspace {u⊕ ua |u ∈
U ∼= R}, contradicting the assumption.

Remark 3.38. Hence, if k = Fq is finite, we get the two inequivalent possibilities that

f(u, v) = `(uvα) and f(u, v) = β`(uvα) for β ∈ k× a non-square. These correspond to

V1(2k) and Vβ(2k) resp. V1(2k + 1) and Vβ(2k + 1) of Section 2.4 resp. 2.5 of [25]. Note

that Vβ(l)⊥2 = V1(l)⊥2 (use the trick in Section 3.4.6 of [78]). Hence, if g is isotypic of

type F ((X±1)e)⊕c, where ε = (−1)e−1, V is either of type V1(e)⊥c or Vβ(e) ⊥ V1(e)⊥(c−1)

(cf. Propositions 2.3 and 2.4 of [25]).

Case 3.1(b): ε = (−1)e. In this case, V = U ⊕ U ′ and due to Lemma 3.37 there is no

non-singular g-invariant form on U ∼= U ′. We show that we can change the coordinates

such that U and U ′ are totally singular. For this define deg(c) := max{j ∈ {0, . . . , e} | c ∈
(ij)}. Write

f =

(
f11 f12

f21 f22

)
=

(
a b

−bα d

)
and assume, w.l.o.g., that deg(a) ≤ deg(d) and b ∈ 1 + (i) (at the start we may even

assume that b = 1). Again we obtain

f ′ =

(
1 x

0 1

)(
a b

−bα d

)(
1 0

xα 1

)
=

(
a− bαx+ bxα + dxxα b+ dx

−(b+ dx)α d

)
.

We have that R−1 = im(tr−1
α ) = tr−1

α (R−1), so that we find x ∈ bR−1 such that a− bαx+

bxα = a − Nα(b) tr−1
α (x/b) = 0. Then the new entry a′ := f ′11 has degree deg(dxxα) ≥

min{e, deg(d) + 2} and still f ′12 = b′ ∈ 1 + (i). Hence, repeating this procedure, eventually

we obtain a = c = 0, so that in suitable coordinates f12 = f21 = 0.
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Remark 3.39. If k = Fq is finite, in this subcase, we only get the representative W (2l+1)

resp. W (2l) of Section 2.4 resp. 2.5 of [25] in the symplectic resp. orthogonal case.

Case 3.2: p = 2. In this case, to give a reasonable classification, we need some

assumption on the field k. The case that k is quadratically closed, i.e., every quadratic

polynomial has a solution, is considered in [33].

In the case that k = Fq is finite, we refer to Chapter 3 of [25], which shows that

there are four types of indecomposables (namely W (m), Wα(m), V (2k), and Vα(2k),

which satisfy certain relations given in Table 1 of [25]). Letting the transformation g act

F ((X + 1)e)-isotypically and choosing coordinates such that f (which is preserved by g)

is in the normal form of [25, Theorem 3.1], we see that f restricted to all but constantly

many Jordan blocks of g is of the form W (e).

§2 The Frobenius normal form for elements g ∈ G

We wish to apply the same method as in Subsection 3.4.1, for which we need an analog

of the Frobenius normal form for elements g ∈ G.

Write g = h ⊥ u = h ⊥ u1 ⊥ u−1, where u1,−u−1 are unipotent and h has only

eigenvalues different from ±1. This is possible by considering the Cases 1, 2, and 3 of

indecomposables in the previous subsubsection.

We obtain a normal form for h in the same way as the Frobenius normal form is

obtained from the generalized Jordan normal form: In the first summand we collect all

orthogonally indecomposable summands from Case 1 resp. Case 2 of the form F ((ii∗)e) =

F (ie) ⊕ F (i∗e) with i ∈ k[X] irreducible and not self-dual resp. F (ie) with i ∈ k[X]

irreducible and self-dual (and i 6= X ± 1) and e as large as possible. Then we split off this

summand and proceed in the same way with the perpendicular complement.

For u1 and u−1 we use the normal form provided by [25, Propositions 2.2, 2.3, 2.4, and

Theorem 3.1].

We still need the following fact, which follows from the analysis of Cases 1, 2, and 3

of the previous subsubsection:

Fact 3.40. Whenever χ ∈ k[X] is self-dual and is not divided by X±1 in the bilinear case,

then there exists a non-singular form f (coming from a quadratic form Q when p = 2)

which is preserved by F (χ) (f is even unique up to linear equivalence). On the other

hand, for all e we have that there is a form f (together with Q when p = 2) preserving

F ((X ± 1)e)⊕2.

§3 Proof of Theorem 3.2 for the remaining groups

We decompose g ∼= h ⊥ u1 ⊥ u−1 as described above. Hence, using Jensen’s inequality,

we only need to consider two cases: (a) g = h and (b) g = ±u, where u is unipotent. Now

we can apply the previous considerations to elements that are F (χ)-isotypic for χ ∈ k[X]

self-dual of degree k which is not divided by X ± 1 in Case (a), and elements that are
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F ((X ± 1)e)⊕d-isotypic, where d = 1 or 2 and k = de in Case (b). It is enough to consider

these two isotypic cases. Again we derive an estimate for k small and k large.

Estimate for small k. In Case (a), we have that g ∼= F (χ)cχ for χ self-dual and there is

up to equivalence only one form f preserved by F (χ) (which follows from the first part of

Fact 3.40 above). We can approximate the linear map g by elements from w(〈X〉oSym(r)),

where 〈X〉 ⊆ R× = (k[X]/(χ(Xc)))× and cχ = rc + s for 0 ≤ s < r, as in the estimate

for small k in Subsection 3.4.1. But X ∈ R× preserves a non-singular form f as χ(Xc)

is again self-dual (which again follows from Fact 3.40 above), so that also the group 〈X〉
preserves such a form and we are done by uniqueness.

In Case (b), we have g ∼= F ((X ± 1)e)⊕dcd,e . Since k = de is small, cd,e is large and

we can certainly assume it to be even. Observe that F ((X ± 1)e)⊕2 always supports

a non-singular form, so that F ((Xc ± 1)e)⊕2 will do as well (by Fact 3.40). Hence we

can use the same trick as in Case (a) and use Fact 3.40 in the unitary case and [25,

Propositions 2.3, 2.4, and Theorem 3.1] in the bilinear case, which says that the form f is

essentially determined by g up to a constant number of summands F ((X±1)e)⊕d (namely,

with the notation used there, most of its blocks will be U(e) in the unitary case and V1(e)

or W (e) in the bilinear case).

Estimate for large k. In this case, we assume that g ∼= F (χ) in Case (a) (so cχ = 1)

and g ∼= F ((X ± 1)e)⊕d for d = 1 or 2. Here we want to apply the following simple fact.

Lemma 3.41. Let C > 0 be a fixed constant. Assume that V = X ⊕ Y ⊕ Z, where X

and Y are totally isotropic, n − 2 dim(X), n − 2 dim(Y ) ≤ C, i.e., X and Y are close to

a Witt subspace, and codimX(X ∩X.g), codimY (Y ∩ Y.g) ≤ C, i.e., X and Y are almost

g-invariant. Then g can be approximated by word values.

Proof. Note that dim(Y ⊥) = n − dim(Y ) ≤ n+C
2 , so that dim(X ∩ Y ⊥) ≤ C. Hence

we can find X ′ ≤ X of dimension at least dim(X) − C ≥ n−3C
2 such that f |X′×Y is

separating in X ′. Hence, choosing Y ′ ≤ Y which induces all σ-semilinear functionals X ′∗,

we can assume by passing from X to X ′ and Y to Y ′ that f |X×Y is non-degenerate, so in

particular dim(X) = dim(Y ).

Now let g′ be an extension of g|X∩X.g−1 : X ∩ X.g−1 → X ∩ X.g to an invertible

linear map X → X. By Subsection 3.4.1, we find h = w(x, y) ∈ w(GL(X)) such that

drk,X(g′, h) ≤ d(1/ dim(X)) ≤ d( 2
n−C ).

We extend h to all of V as follows: Extend x, y ∈ GL(X) to Y by taking their dual

on Y , so that they fix X and Y setwise, and then extend them to V with Witt’s lemma.

Then set h := w(x, y) on all of V . Write Y.(g − h) = (Y.(g − h) ∩ Y ) ⊕W . Then, since

h fixes Y , W is injectively mapped by the natural map Y.(g − h) → (Y + Y.g)/Y , but

the last quotient, by assumption, had dimension at most C, so that dim(W ) ≤ C. Now

f(x.(g−1 − h−1), y) = f(x, y.(g − h)) = 0 for x ∈ X, y ∈ Y , when x ∈ ker(g−1 − h−1) =

(ker(g − h)).h as g−1 − h−1 = h−1(h− g)g−1. But the vector space of all such x ∈ X has

dimension at least dim(X)(1− d(1/ dim(X))−C/ dim(X)), which follows from the above

estimate on drk,X(g′, h) and the fact that g and g′ agree on X ∩X.g−1.
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Hence the dimension of Y.(g−h)∩Y is at most dim(X)(d(1/ dim(X)) +C/ dim(X))),

so that, using dim(W ) ≤ C, the dimension of Y.(g−h) is at most dim(X)(d(1/ dim(X))+

2C/ dim(X)). Hence the rank of g − h is small on X and Y , so is small on V . This ends

the proof.

Now V is the direct sum of orthogonally indecomposable modules, each type of which

occurs at most once. Subsequently, we construct subspaces X, Y , and Z with the property

required by Lemma 3.41. Write Sj (j = 1, 2, 3) for the orthogonally indecomposable

summands of V described in Case j from above.

For each orthogonally indecomposable summand S = U ⊕ U∗ ∈ S1 of V as in Case 1

set XS := U , YS := U∗, and ZS := 0. Then define X1 :=
⊕

S∈S1 XS , Y1 :=
⊕

S∈S1 YS , and

Z1 := 0. Define χ1 by the fact that all the summands from Case 1 grouped together act

as F (χ1).

In Case 2, for each S = U ∈ S2 we have that g acts as F (χS) = F (ieSS ) on S, where iS

is irreducible of degree dS and χS is of degree kS = dSeS . Set χ2 :=
∏
S∈S2 χS ∈ k[X] and

set k2 := deg(χ2). The form f on
⊕
S2 is given by (u, v) 7→ `(uvα) =

∑
S∈S2 `S(uSv

αS
S ),

where u = (uS)S∈S2 , v = (vS)S∈S2 , and `S , αS (S ∈ S2) are as described in Case 2 above.

Set X := (XS)S∈S2 ∈ R :=
∏
S∈S2 RS =

∏
S∈S2 k[XS ]/(χS), α := (αS)S∈S2 , and recall

that g acts on V ∼= R as multiplication by X. Also recall that Rα = {r ∈ R | rα = r}.
That the vectors v, . . . , v.gl−1 for v ∈

⊕
S2 span a totally singular subspace hence

means that `(vX
j
vα) = `(Nα(v)X

j
) = 0 for j = 0, . . . , l− 1, where we write Nα(v) = vvα.

Write u = Nα(v). We demonstrate how to find such a vector v for which the vectors

v, . . . , v.gl−1 are linearly independent in the orthogonal case for p = char(k) 6= 2 (i.e.,

σ = id and ε = 1). The other two cases are similar. So assume that f is non-singular

symmetric bilinear. Let λS ∈ k be a root of iS . Define i′S to be the minimal polynomial

over k of λS + λ−1
S and let χ′S ∈ k[X] be the minimal polynomial of XS + X

−1
S ∈ RS

(S ∈ S2). Note that i′S(X + X−1)XdS/2 = iS and χ′S(X + X−1)XkS/2 = χS , so that

deg(i′S) = deg(iS)/2 and deg(χ′S) = deg(χS)/2. This holds as λS 6= λ−1
S are conjugate in

KS = k[X]/(iS), so that 2 | dS (S ∈ S2). Hence the i′S resp. χ′S are pairwise coprime, since

the iS are coprime (S ∈ S2). Define χ′2 by χ′2 :=
∏
S∈S2 χ

′
S ∈ k[X], so that deg(χ′2) = k2/2.

Set l := deg(χ′2)− 1. Note that Rα is a k-subalgebra of R of k-dimension l + 1 = deg(χ′2)

and ` descends to a k-linear functional Rα → k. The minimal polynomial of X+X
−1 ∈ Rα

over k is χ′2, so that Rα = k[X+X
−1

] ∼= k[X]/(χ′2) (here we used that the χ′S are pairwise

coprime for S ∈ S2). This implies that the (X + X
−1

)j and hence the X
j

+ X
−j

(j =

0, . . . , l − 1) span an l-dimensional k-subspace of Rα and are hence linearly independent.

Now note that `(X
j
u) = 0 is equivalent to `(X

−j
u) = 0 when u ∈ Rα, as ` has the

property `(x)σ = `(x) = ε`(xα) = `(xα) and X
α

= X
−1

(as we are in the orthogonal

case). But for j ≤ l − 1, X
j

+ X
−j 6= 0 from the previous observation, so that the two

preceding equations are equivalent to `((X
j

+ X
−j

)u) = 0. Now from the construction

of ` one sees that f restricts to Rα as a non-singular form (here we use that we are in

the orthogonal case and p 6= 2). Hence W := 〈(X + X
−1

)j | j = 0, . . . , l − 1〉⊥ ∩ Rα is
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one-dimensional. Let 0 6= u ∈ W be a generator of this subspace. We show that u is a

unit in Rα ⊆ R. Assume the contrary, namely that uS ∈ (iS) for some S ∈ S2. Then the

k-linear functional `u : Rα → k which is zero on all RS′,αS′ (S 6= S′ ∈ S2) and which equals

x 7→ `(ri′eS−1
S (XS + X

−1
S )x) for r ∈ R×S,αS arbitrary must be a linear combination of the

functionals Rα → k; x 7→ `((X +X
−1

)jx) (j = 0, . . . , l− 1), since `u(u) = 0 and the latter

functionals span the space of all such functionals. This means that there is a polynomial

s ∈ k[X] of degree l− 1 = deg(χ′2)− 2 such that s(X +X
−1

) is zero on RS′,αS′ for S′ 6= S

and lies in (i′eS−1
S (XS + X

−1
S )) = (ieS−1

S ) ∩ RS,αS on RS,αS . This means that χ′S′ | s for

S′ 6= S and i′eS−1
S | s. Hence, since the polynomials i′T ∈ k[X] (T ∈ S2) are irreducible

and pairwise coprime, to achieve an arbitrary r, we hence need that s = (χ′2/i
′
S)s0, where

s0 ∈ k[X] is arbitrary of degree less than dS/2. Hence we would need in the worst case

that deg(s) = l = deg(χ′2)− 1, which is a contradiction. So we have that u is a unit in Rα

and every such unit is in the image of the norm Nα : R → Rα, since k is a finite field, so

that we find an appropriate vector v ∈ R such that Nα(v) = u. Also, since v is a unit in

R, the space X2 := 〈v.gj | j = 0, . . . , l−1 = deg(χ′2)−2〉 is actually of dimension l. Hence,

setting Y2 := X2.g
l and choosing Z3 appropriately, we are done in this case.

Now, in Case (a), we have that g acts as F (χ) = F (χ1χ2). Setting X := X1 ⊕ X2,

Y := Y1 ⊕ Y2, and Z := Z1 ⊕ Z2 (and cutting of a further dimension if necessary when

p = 2 by restricting to Q = 0), we can apply Lemma 3.41 to F (χ).

In Case (b), when S ∈ S3, one can easily extract almost invariant isotropic subspaces

XS , YS , and a space ZS as needed in Lemma 3.41 from the explicit representations given

in [25, Propositions 2.2, 2.3, 2.4, and Theorem 3.1] and sum them up as in Case (a).

Final proof. The final proof is now identical with the one given in the last two para-

graphs of Subsection 3.4.1.

3.4.3 An alternative way of proving Theorem 3.1 using wreath products

The techniques of Section 3.3 and 3.4 provide an alternative proof of Theorem 3.1. The

reason for this is the following lemma on isotypic elements.

Lemma 3.42. Let σ ∈ Sn be k-isotypic of type (kck). Then the following hold.

(i) There exists a prime p0(w) such that, if all prime divisors of k are greater than

p0(w), then, if ck ≥ N(w), the element σ lies in the word image w(Sn).

(ii) There are constants N(w), m(w) such that also, if k has prime divisors ≤ p0(w),

for m(w) | ck and ck ≥ N(w)m(w) the permutation σ lies in w(Sn). In particular,

any permutation of type (kck) can be approximated up to distance m(w)/ck by word

values if ck ≥ N(w)m(w).

(iii) If ck = 1, we can approximate σ up to error C(w)/n for a fixed constant C(w) > 0

(which is Theorem 1.3 of [44] without fixed constant).
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Proof. Use the setting of Section 3.3 together with Corollary 3.26 of Section 3.4 with

coefficient group the cyclic group Ck, i.e., look at the wreath product Ck o Sck .

For (i) we find the finite p-groups H(p) such that d2(π(p)) is non-trivial. Then, as

H(p) acts transitively on the coordinates of C2(π(p)), the image im(d2(π(p))) contains a

vector x(p) ∈ C2(π(p)) ∼= R[H(p)] with all coefficients non-zero and integral (otherwise

it would be contained in the union of the coordinate hyperplanes, which is impossible

as Z ⊆ R is infinite). Then, using coefficients in Ck, we get that w(Ck o Sph) contains

an element of cycle type (kp
h
), when k is not divisible by a prime dividing one of the

coefficients of x(p). Now, if we use for p two distinct primes p1, p2, we can write every

ck ≥ N(w) := (ph1 − 1)(ph2 − 1) as a sum of numbers ph1 , p
h
2 , so that, taking disjoint unions

of the previous construction, every σ of type (kck) with ck ≥ N(w) lies in the word image

w(Sn).

To obtain (ii), use the same idea as in (i), but instead of using coefficients in Ck, take

coefficients in Cmk, where m = m(w) is defined to be the least common multiple of all

coefficients of x(p1) and x(p2) from above. Doing the same construction, we obtain that

any element σ of type (kck) with m | ck and ck/m ≥ N(w) lies in w(Cmk o Sck/m) ⊆ w(Sn).

For the second part of (ii) write ck = rm + s, where 0 ≤ s < m, and use the former

construction on Smkr and fill up by the identity.

For (iii) just take a fixed group H(p) where d2(π(p)) is non-trivial. Then pick an

element with only non-zero coefficients as in (i). Plugging in the coefficient group Cr, we

see that we differ in boundedly many points from a k-cycle, where k = n = rph. For

arbitrary n write n = rph+s, where 0 ≤ s < ph, use the former construction on rph points

and fill up with the identity.

Remark 3.43. We conjecture that m = 1, if k is odd, and m = 2 if k is even, can be

taken (which would be the best possible outcome, as, when w ∈ F′2, its image w(Sn) lies

in An).

The estimate for arbitrary elements follows as at the end of Subsection 3.2.4.
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Chapter 4

Isomorphism questions for metric

ultraproducts

4.1 Introduction

In [73, ?] Thom and Wilson discussed various properties of metric ultraproducts of finite

simple groups. In particular, they asked the question which such ultraproducts can be

isomorphic. In Theorem 2.2 of [73], a metric ultraproduct of alternating groups is distin-

guished from a metric ultraproduct of classical groups of Lie type, where the permutation

degrees resp. dimensions of the natural module tend to infinity. This is done by considering

the structure of centralizers of torsion elements in these groups (see Theorems 2.8 and 2.9

of [73]). In the case of a metric ultraproduct of classical groups of Lie type, in Theorem 2.8

of [73], investigating the structure of such centralizers of semisimple and unipotent torsion

elements, Thom and Wilson even extract the ‘limit characteristic’ of the group. At the

end of Section 2 of [73] they ask which metric ultraproducts of classical groups of different

types can be isomorphic.

In this chapter, we will give an almost complete answer to this question in the case when

the field sizes are bounded. We will show that for a metric ultraproduct of alternating

or classical groups of Lie type of unbounded rank over fields of bounded size one can

extract the Lie type (up to one exception). Also one can extract the ‘limit field size’. Our

results are summed up in Theorem 4.1 below. To state it, we first need to introduce some

notation.

Recall the definitions from Section 0.1(a)–(f) and Section 0.3. Also recall the classifi-

cation given in Subsection 3.4.2 §1. Let H = (Hi)i∈I be a sequence of groups where either

Hi = Sni is a symmetric group or Hi = Xi(qi) is a classical group of Lie type Xi over the

field Fqi (resp. Fq2i in the unitary case; i ∈ I). Here let each Xi be one of GLni , Sp2mi ,

GO±2mi , GO2mi+1 (qi odd), or GUni for suitable mi, ni ∈ Z+ (i ∈ I). Throughout, let

G := Hmet
U be the metric ultraproduct of these groups (see Definition 0.7) with respect

to the normalized Hamming length function `H resp. the normalized rank length function
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`rk (see Definition 0.12) when Hi is a symmetric resp. a classical linear group of Lie type.

Assume that the permutation degrees resp. dimensions of the natural module ni of Hi

(i ∈ I) tend to infinity along U .

Note that, since U is an ultrafilter, we may assume that each group Hi is of the

same type, i.e., all groups Hi are either symmetric, general linear, symplectic, general

orthogonal, or general unitary groups. In these five distinct cases, we write SU , GLU , SpU ,

GOU , or GUU for G. Also, when the field sizes qi are bounded, we may assume that qi = q

is constant (i ∈ I), setting q := limU qi. Throughout, set Z := Z(G) and G := G/Z.

If the groups Hi (i ∈ I) are symmetric groups, then Z = 1 and G = G. Now assume

that all groups Hi are of type X(qi) (i ∈ I; i.e., they are not symmetric groups). Then

G = G/Z = Hmet
U is the metric ultraproduct of the groups H i := Hi/Z(Hi) with respect

to the projective rank length function `pr. Recall from Theorem 1.3 that G is the unique

simple quotient of G.

Similarly to the above, write PGLU , PSpU , PGOU , or PGUU for G when all the groups

Hi (i ∈ I) are general linear, symplectic, general orthogonal, or general unitary groups.

Moreover, in this case, if all the fields Fqi (i ∈ I) are equal to Fq (or Fq2 in the unitary case),

we write GLU (q), SpU (q), GOU (q), GUU (q) resp. PGLU (q), PSpU (q), PGOU (q), PGUU (q)

for G resp. G. Also write MU , MU (q) resp. PMU , PMU (q) for the metric ultraproduct

of the spaces Mni(qi), Mni(q) resp. PMni(qi), PMni(q) with respect to the metrics drk

and dpr (i ∈ I; see Remark 0.10), so that GLU ⊆MU , GLU (q) ⊆MU (q), PGLU ⊆ PMU ,

PGLU (q) ⊆ PMU (q). Throughout, if not stated otherwise, let k = Fq when G is classical

non-unitary and k = Fq2 in the unitary case.

If all Hi (i ∈ I) are symplectic, orthogonal, or unitary, write fi for the forms stabilized

(and Qi for the quadratic form in the orthogonal case in characteristic two).

The main result of this chapter is now as follows.

Theorem 4.1. Let G ∼= G1
∼= G2 with Gj = XjUj (qj), where Xj ∈ {GL, Sp,GO,GU} (j =

1, 2). Then it holds that q1 = q2. Also we must have X1 = X2 or {X1, X2} = {Sp,GO}.
Moreover, an ultraproduct X1U1 where the sizes qi of the finite fields Fqi (i ∈ I1) tend to

infinity along U1 cannot be isomorphic to an ultraproduct X2U2(q).

Let us say some words about the proof of Theorem 4.1. Our strategy is to compute

double centralizers of semisimple torsion elements of a fixed order o ∈ Z+ in the above

metric ultraproducts. If the sizes qi (i ∈ I) of the fields Fqi are bounded, it turns out that

these are always finite abelian groups. Then we consider the maximal possible exponent,

which such a double centralizer can have. It turns out that this data is enough to determine

the limit field size q and the Lie type (up to the exception mentioned in Theorem 4.1). If

the field sizes qi (i ∈ I) tend to infinity, a double centralizer of such a torsion element of

order o > 2 is always infinite.
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4.2 Description of conjugacy classes in SU , GLU(q), and PGLU(q)

In this section, we give a description of the conjugacy classes of groups of type SU or

PGLU (q). We will make use of this in the subsequent sections. At first we consider

GLU (q) instead of PGLU (q). Throughout this chapter, all polynomials from k[X] that

occur are meant to be monic polynomials.

Conjugacy classes in SU and GLU (q). For an integer k ∈ Z+ and a polynomial ξ ∈ k[X]

define rk(σ) := |fix(σk)|/n resp. rξ(g) := dim(ker(ξ(g)))/n for σ ∈ Sn resp. g ∈ Mn(q).

Extend this definition to SU and MU (q) by setting rk(σ) := limU rk(σi) and rξ(g) :=

limU rξ(gi) for σ = (σi)i∈I resp. g = (gi)i∈I . Both expressions are well-defined, since for

σ = (σi)i∈I = (τi)i∈I ∈ SU one has

1

ni

∣∣∣|fix(σki )| − |fix(τki )|
∣∣∣ ≤ dH(σki , τ

k
i )

≤ dH(σki , σ
k−1
i τi) + · · ·+ dH(σiτ

k−1
i , τki ) (4.1)

= kdH(σi, τi)→U 0.

Similarly, if g = (gi)i∈I = (hi)i∈I ∈ GLU (q) and ξ = a0+a1X+· · ·+ak−1X
k−1+Xk ∈ k[X]

we have

1

ni
|dim(ker ξ(gi))− dim(ker ξ(hi))| ≤ drk(ξ(gi), ξ(hi))

≤
k∑
j=0

drk(ajg
j
i , ajh

j
i )

≤
k∑
j=0

drk(gji , h
j
i ) (4.2)

≤

 k∑
j=0

j

 drk(gi, hi) =

(
k + 1

2

)
drk(gi, hi)

and the latter tends to zero along U . Here we used the same trick as in Estimate (4.1)

above to bound drk(gji , h
j
i ) by jdrk(gi, hi) (j = 0, . . . , k) in Estimate (4.2). Write r(σ) :=

(rk(σ))k∈Z+ and r(g) := (rξ(g))ξ∈k[X]. Now define qk(σ) for k ∈ Z+ via the equality∑
d|k

qd(σ) = rk(σ),

for all k ∈ Z+. Write q(σ) := (qk(σ))k∈Z+ . Applying Möbius inversion, we obtain

qk(σ) =
∑
d|k

µ(k/d)rd(σ).

Alternatively, one can think of qk(σ) as the U -limit of the normalized cardinality of the
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support of all k-cycles in σi (i ∈ I), i.e.,

qk(σ) = lim
U
nk(σi)/ni = k lim

U
ck(σi)/ni.

Similarly, for χ ∈ k[X] primary define qχ(g) via the equality

rξ(g) =
∑

χ primary

deg(gcd{χ, ξ})
deg(χ)

qχ(g),

for all polynomials ξ ∈ k[X]. Write q(g) := (qχ(g))χ primary. Alternatively, one can think

of qχ(g) as the U -limit of the normalized dimensions of the (not unique) subspaces Vχ(gi)

(i ∈ I), i.e.,

qχ(g) = lim
U
nχ(gi)/ni = kχ lim

U
cχ(gi)/ni,

where kχ = deg(χ) = e deg(i). This is because, when g acts as F (χ) and ξ ∈ k[X], then

dim(ker(ξ(g))) = deg(gcd{χ, ξ}).

We claim that the conjugacy classes in SU resp. MU (q) are in one-to-one correspondence

with all tuples (qk(σ))k∈Z+ resp. (qχ(g))χ primary, where the only condition on the sequences

are that ∑
k∈Z+

qk(σ) ≤ 1 resp.
∑

χ primary

qχ(g) ≤ 1.

Here we let GLU (q) act on MU (q) by conjugation. The element g lies in GLU (q) if and

only if qχ(g) = 0 for χ = Xe (e ≥ 1). Indeed, one sees easily that r(σ) resp. r(g) is

conjugacy invariant, and so is q(σ) resp. q(g) for σ ∈ SU and g ∈MU (q).

To see the converse, let σ = (σi)i∈I , τ = (τi)i∈I ∈ SU resp. g = (gi)i∈I , h = (hi)i∈I ∈
MU (q) be elements such that q(σ) = q(τ) resp. q(g) = q(h).

Find a sequence (Ni)i∈I tending to infinity along U such that

Ni∑
k=1

|qk(σ)− qk(σi)|,
Ni∑
k=1

|qk(τ)− qk(τi)| →U 0

resp. such that ∑
χ primary
deg(χ)≤Ni

|qχ(g)− qχ(gi)|,
∑

χ primary
deg(χ)≤Ni

|qχ(h)− qχ(hi)| →U 0.

Then by the triangle inequality

1

ni

Ni∑
k=1

|nk(σi)− nk(τi)| →U 0
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resp.
1

ni

∑
χ primary
deg(χ)≤Ni

|dim(Vχ(gi))− dim(Vχ(hi))| →U 0.

Hence we can conjugate a big part of
⊔Ni
k=1 Ωk(σi) equivariantly to a big part of⊔Ni

k=1 Ωk(τi) resp. an almost fulldimensional part of⊕
χ primary
deg(χ)≤Ni

Vχ(gi) to
⊕

χ primary
deg(χ)≤Ni

Vχ(hi)

equivariantly (with no error in the limit; here again Vχ(gi) resp. Vχ(hi) are not unique).

The remaining part of σi and τi resp. gi and hi can be modified into one big cycle resp.

one big Frobenius block with no change of σ and τ resp. g and h, since Ni →U ∞. Then

we conjugate this cycle resp. Frobenius block onto the other.

The case of PMU (q). Let the group k× = F×q act on all (monic) polynomials ξ ∈ k[X]

by ξ.z := z−kξξ(zX), where kξ := deg(ξ). Extend this action to all tuples q = (qχ)χ primary

with
∑

χ primary qχ ≤ 1 via

q.z = (qχ.z)χ primary

and denote by q the orbit orbk×(q) of q under this action of k×.

Let G = PGLU (q). We claim that the conjugacy classes of elements g ∈ PMU (q) are

classified by the bijection gG 7→ (qχ(g))χ primary, where g is any lift of g in MU (q) (here

we exclude the tuple q where qX = 1 and qχ = 0 otherwise).

Indeed, the map is well-defined, since any other h such that h = g ∈ PMU (q) is of the

form zg for some z ∈ k× (as k = Fq is finite), so that (qχ(h))χ primary = (qχ(zg))χ primary =

(qχ.z(g))χ primary = q(g).z. Also q is constant on conjugacy classes of MU (q) (under the

action of GLU (q)).

Conversely, if qχ(h) = qχ.z(g) = qχ(zg) for some fixed z ∈ k× and all χ ∈ k[X] primary,

then from the above we derive that the elements g and z−1h of MU (q) are conjugate, so

that g and h are conjugate in PMU (q). This proves the claim.

Remark 4.2. For G of type SpU (q), GOU (q), or GUU (q) the conjugacy classes of elements

g ∈ G for which
∑

χ primary qχ(g) = 1 are still characterized by the tuples (qχ(g))χ primary.

The only necessary additional restriction on these tuples is that qχ(g) = qχ∗(g), where χ∗

is the dual polynomial of χ defined in Subsection 3.4.2 §1.

Indeed, assume g = (gi)i∈I , h = (hi)i∈I ∈ G, q(g) = q(h) and∑
χ primary

qχ(g) =
∑

χ primary

qχ(h) = 1.

Then g is conjugate to h.

This holds, since on all but constantly many Frobenius blocks F (χ) of gi resp. hi

(i ∈ I), where χ is a self-dual primary polynomial or of the form χ = ξξ∗, where ξ is
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not self-dual primary (see Subsection 3.4.2 §1), the form fi (and in characteristic two

the quadratic form Qi) is uniquely determined up to linear equivalence, so that we can

map these blocks of gi to such blocks of hi and extend this partial map by Witt’s lemma

(Lemma 0.1).

Conversely, if we have a tuple (qχ)χ primary such that
∑

χ primary qχ = 1 and qχ = qχ∗ ,

we can see from Fact 3.40 that there exists an element g ∈ G such qχ(g) = qχ for all

χ ∈ k[X] primary.

Recall that G = G/Z, where Z = Z(G). For a tuple q = (qχ)χ primary let q denote its

orbit orbZ(q) under the action of Z ≤ k×. Then for the elements g ∈ G (i.e., G is one of

PSpU (q), PGOU (q), or PGUU (q)) such that
∑

χ primary qχ(g) = 1 for one lift g ∈ G of g

the same characterization as for PGLU (q) above holds by the same argument. Again we

need to restrict the tuples q = (qχ)χ primary so that qχ = qχ∗ for all χ primary.

However, we conjecture that the above characterization for G of type SpU (q), GOU (q)

or GUU (q) is false if ∑
χ primary

qχ(g) < 1

for an element g ∈ G.

Remark 4.3. It is easy to see that (χ.z)∗ = χ∗.z for z ∈ Z. Indeed, since zσ = z−1 for z ∈
Z, we have (χ.z)∗ = (z−kχ(zX))∗ = (zk)σa−σ0 Xk(z−k)σχσ(zσX−1) = a−σ0 Xkχσ((zX)−1) =

z−kχ∗(zX) = χ∗.z, where χ = a0 + a1X + · · ·+ ak−1X
k−1 +Xk and σ ∈ Aut(k) is defined

as at the beginning of Subsection 3.4.2.

4.3 Characterization of torsion elements in SU , GLU(q), and

PGLU(q)

In this section, we characterize torsion elements in metric ultraproducts of the above type.

At first note that an invertible element in MU (q), i.e., an element of GLU (q), is algebraic

over k = Fq if and only if it is torsion. Indeed, if g is torsion, then go − 1 = 0 for some

integer o ≥ 1. Conversely, if g is algebraic and invertible, let χ ∈ k[X] be the its minimal

polynomial. Setting o := |(k[X]/(χ))×| <∞ one sees that go = 1 as g is invertible.

Here comes the promised characterization of torsion elements.

Lemma 4.4. An element σ ∈ SU resp. g ∈ GLU (q) is torsion if and only if there is

N ∈ Z+ such that
N∑
k=1

qk(σ) = 1 resp.
∑

χ primary
deg(χ)≤N

qχ(g) = 1.

An element g ∈ PGLU (q) is torsion if and only if any lift g ∈ GLU (q) is torsion.

Proof. Indeed, if the above two conditions are fulfilled, then writing o := lcm{1, . . . , N}
resp. o := lcm{|(k[X]/(χ))×| |χ primary, deg(χ) ≤ N}, we have `H(σoi ) →U 0 resp.
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`rk(goi ) →U 0 meaning that σo = 1 resp. go = 1. Conversely, if we assume σo = 1

resp. go = 1, we get that `H(σoi ) →U 0 resp. `rk(goi ) →U 0, meaning that, asymptotically,

the d-cycles in σi for d | o support the whole set resp. all Frobenius blocks F (χ) for

χ | Xo − 1 primary support the whole vector space, so taking N := o above, we get the

converse direction.

The last statement follows, since the kernel of the surjective homomorphism GLU (q)→
PGLU (q) equals k× = F×q , which is finite. Hence, if g ∈ GLU (q) represents g ∈ PGLU (q)

and the latter is of order o <∞, we have that ord(g) | o(q − 1) <∞.

4.4 Faithful action of SU and PGLU(q) on the Loeb space and

the associated continuous geometry

In this section, we show that the groups SU and PGLU (q) faithfully act on natural asso-

ciated objects. For this purpose we need the so-called Loeb space

L(ni)i∈I := (S, µ)

resp. its vector space analog, the continuous geometry

V (ni)i∈I := (V, dim) ,

which are associated naturally to the metric ultraproduct SU resp. PGLU (q).

Here S resp. V equals
∏
i∈I P(ni) resp.

∏
i∈I Sub(kni) modulo the equivalence relation

(Si)i∈I ∼ (Ti)i∈I resp. (Ui)i∈I ∼ (Vi)i∈I iff µi(Si4Ti)→U 0 resp. dimi(Ui+Vi)−dimi(Ui∩
Vi) →U 0, where µi resp. dimi is the normalized counting measure resp. dimension on ni

resp. kni (and A4B denotes the symmetric difference of the sets A and B). Then one

defines µ resp. dim by

µ(S) = µ((Si)i∈I) := lim
U
µi(Si)

and

dim(V ) = dim((Vi)i∈I) := lim
U

dimi(Vi).

It is easy to check that both are well-defined in this way. Also the operations ∪,∩ resp.

+,∩ are inherited to S resp. V in a natural way, e.g., (Si)i∈I∩(Ti)i∈I := (Si ∩ Ti)i∈I . Write

S ⊆ T resp. U ≤ V iff µ(S ∩ T ) = µ(S) resp. dim(U ∩ V ) = dim(U). Call a permutation

of S resp. V an automorphism iff it preserves µ resp. dim and the relation ⊆ resp. ≤.

Then one observes that SU resp. PGLU (q) is faithfully represented as group of auto-

morphisms of (S, µ) resp. (V, dim).

At first we consider the case G = SU . Indeed, assume for fixed σ = (σi)i∈I ∈ SU that

S.σ = S for all S ∈ S. Then take S = (Si)i∈I , where Si ⊆ ni is taken in the following

way. For each k-cycle c ⊆ ni (k > 1; here seen as a set) we pick sc ∈ c and define

Si by Si ∩ c = {sc, sc.σ2
i , . . . , sc.σ

2(bk/2c−1)
i } and Si ∩ Ω1(σi) = ∅. Then Si4Si.σi = ∅
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and µi(Si) ≥ 1/3|supp(σi)|. This means that S is fixed by σ if and only if supp(σ) :=

(supp(σi))i∈I = (∅) has measure zero. But this means σ = id in the metric ultraproduct

SU .

Now consider the case G = PGLU (q). Here, similarly, assume for fixed g = (gi)i∈I ∈
GLU (q) that V.g = V for all V ∈ V . Then take V = (Vi)i∈I in the following way: The

linear transformation gi is a direct sum of Frobenius blocks F (χ), where χ ∈ k[X] runs

through all (monic) primary polynomials. For each such block b ≤ knii of dimension

kb > 1 (here seen as a subspace) of gi select a cyclic vector vb. Then define Vi by Vi =⊕
b,kb>1 〈vb, vb.g2

i , . . . , vb.g
2(bkb/2c−1)
i 〉. Then one observes that Vi ∩ Vi.gi = 0, so that

dimi(Vi+Vi.gi)−dimi(Vi∩Vi.gi) = 2 dimi(Vi). This shows that qχ(g) = 0 for all χ ∈ k[X]

primary of degree kχ > 1. But one observes that, if q(X−λ)(g), q(X−µ)(g) ≥ ε > 0 for

λ 6= µ elements of k, we can use the following construction: Let ei1, . . . , eiki ∈ VX−λ(gi)

and fi1, . . . , fiki ∈ VX−µ(gi) such that limU ki/ni = ε. Define Vi := 〈eij +fij | j = 1, . . . , ki〉
(i ∈ I). Assume v ∈ Vi ∩ Vi.gi, then there exists numbers α1, . . . , αki , β1, . . . , βki ∈ k such

that

v =

ki∑
j=1

αj(eij + fij) =

ki∑
j=1

βj(λeij + µfij).

This gives that
ki∑
j=1

(αj − βjλ)eij =

ki∑
j=1

(βjµ− αj)fij ,

so that by disjointness of VX−λ(gi) and VX−µ(gi) both sides are zero and so, since the

eij , fij (j = 1, . . . , ki) are linearly independent, we get that αj − βjλ = βjµ − αj = 0,

so that, since λ 6= µ, we obtain αj = βj = 0. Hence v = 0 and Vi ∩ Vi.gi = 0. But

limU dim(Vi)/ni ≥ ε, yielding the same contradiction as above. Therefore we must have

g = λ id (as k = Fq is finite) in the metric ultraproduct GLU (q), i.e., PGLU (q) is faithfully

represented.

Remark 4.5. The above statement about PGLU (q) holds for any such metric ultraproduct

of groups PGLni(ki) where the fields ki are not restricted with the same proof. Here the

kernel of the action GLU → Aut(V, dim) is given by
∏
U k
×
i (the algebraic ultraproduct of

these groups).

Remark 4.6. Hence, if the sequence of subsets (Si)i∈I resp. subspaces (Vi)i∈I is almost

stabilized by each element of a subgroup H of G = SU resp. G = PGLU (q) (or of G =

GLU (q)), we can restrict H to S := (Si)i∈I resp. V := (Vi)i∈I .

Remark 4.7. For an element σ = (σi)i∈I set Ωk(σ) := (Ωk(σi))i∈I ∈ S for k ∈ Z+.

Similarly, for a semisimple element g = (gi)i∈I ∈ GLU (q) (see the next section for the

definition of semisimple elements) set Vχ(g) := (Vχ(gi))i∈I ∈ V for χ ∈ k[X] primary.

Note that these definitions are independent of the chosen representatives (for the unique-

ness of Vχ(g) we need that g is semisimple, since then Vχ(gi) = ker(χ(gi)) for a suitable

representative (gi)i∈I of g).
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Remark 4.8. Call a sequence of subsets (Bi)i∈I ⊆ kni a basis of V ∈ V if there is a

representative (Vi)i∈I of V such that Bi is a basis of Vi (i ∈ I).

Remark 4.9. Call V ∈ V totally singular if it has a representative (Vi)i∈I such that Vi is

totally singular (i ∈ I).

4.5 Centralizers in SU , GLU(q), SpU(q), GOU(q), and GUU(q)

In this section, we provide tools (Lemmas 4.10 and 4.11) to compute centralizers of certain

elements from the metric ultraproducts SU and GLU (q). We will use this in Section 4.6 to

compute centralizers of elements in PGLU (q).

Centralizers of elements in G = SU , GLU (q). Note that for σ = (σi)i∈I ∈ SU resp.

g = (gi)i∈I ∈ GLU (q) we have
∏
U C(σi) ≤ C(σ) resp.

∏
U C(gi) ≤ C(g) (subsequently,

by this notation we mean the metric ultraproduct of subgroups of the Hi (i ∈ I)). In the

following lemma, we characterize when the above inclusion is actually an equality in the

case of SU .

Lemma 4.10. An element σ ∈ SU satisfies
∑

k∈Z+
qk(σ) = 1 if and only if for each choice

of a representative (σi)i∈I of σ the centralizer C(σ) equals
∏
U C(σi).

Before proving Lemma 4.10, we turn to GLU (q). An element g ∈ GLU (q) is called

semisimple if it has a representative (gi)i∈I such that gi ∈ GLni(q) is semisimple, i.e., of

order prime to q.

Lemma 4.11. A semisimple element g ∈ GLU (q) satisfies
∑

χ primary qχ(g) = 1 if and

only if for each choice of a representative (gi)i∈I of g where each gi is semisimple (i ∈ I)

the centralizer C(g) equals
∏
U C(gi).

To prove Lemmas 4.10 and 4.11, we need the following auxiliary result.

Lemma 4.12. The following are true:

(i) Assume σ ∈ Sym(n) is of order k and S ⊆ n has normalized counting measure µ(S).

Then S contains a σ-invariant subset T of measure µ(T ) ≥ 1− k(1− µ(S)).

(ii) Assume g ∈ GL(V ) for a k-vector space V and that the minimal polynomial of g

over k has degree k. Assume U ≤ V , then there exists a g-invariant subspace of U

of codimension at most k codim(U).

Proof. (i): Observe that the biggest σ-invariant subset of S is equal to T =
⋂
i∈Z S.σ

i.

But since σk = id by assumption, we see that actually T =
⋂k−1
i=0 S.σ

i. Hence, since

µ(S.σi) = µ(S) for all i ∈ Z, we have that µ(T ) ≥ 1− k(1− µ(S)).

(ii): Similarly to the above, the biggest g-invariant subspace contained in U is W =⋂
i∈Z U.g

i. Now v ∈
⋂k−1
i=0 U.g

i means that v, . . . , v.g−(k−1) ∈ U . But then v.g−k =

− 1
a0

(a1v.g
−(k−1) + · · ·+ak−1v.g

−1 +v) ∈ U , where χ = a0 +a1X+ · · ·+ak−1X
k−1 +Xk is
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the minimal polynomial of g. Note that a0 = (−1)k det(g) 6= 0. This shows that actually

W =
⋂k−1
i=0 U.g

i, so that codim(W ) ≤ k codim(U).

Remark 4.13. The bounds in Lemma 4.12 are sharp. E.g., take σ of type (kck) and set

n = ckk. Take S of size n − s such that for precisely s ≤ ck k-cycles of σ, S contains

k− 1 elements of each of them and all elements of the remaining k-cycles. Then the set T

constructed in Lemma 4.12 has size n− ks. In (ii) we can use a similar construction.

Now we are able to prove the Lemmas 4.10 and 4.11.

Proof of Lemmas 4.10 and 4.11. At first we prove Lemma 4.10. Assume that σ = (σi)i∈I ,

τ = (τi)i∈I ∈ SU commute and assume that
∑∞

k=1 qk(σ) = 1. Find a sequence (Ni)i∈I

tending to infinity along U such that

lim
U

Ni∑
k=1

qk(σi) = 1 and

(
Ni + 1

2

)
`H([σi, τi])→U 0.

Recall that Ck(σi) denotes the set of k-cycles of σi (see Section 0.1(d)). Call a k-cycle of

σi bad if it is not mapped σi-equivariantly to another k-cycle of σi by τi. Collect the set of

bad k-cycles of σi in C ′k(σi). For each bad k-cycle of σi we get at least one non-fixed point

of [σi, τi], so that |C ′k(σi)|/ni ≤ `H([σi, τi]) for all k ∈ Z+. Hence, if we change τi such

that all bad k-cycles of σi are mapped accurately for k ≤ Ni and all k-cycles for k > Ni

are mapped identically, we get a permutation τ ′i such that

dH(τi, τ
′
i) ≤

1

ni

Ni∑
k=1

k|C ′k(σi)|+
∞∑

k=Ni+1

qk(σi)

≤

(
Ni∑
k=1

k

)
`H([σi, τi]) +

∞∑
k=Ni+1

qk(σi)

=

(
Ni + 1

2

)
`H([σi, τi]) +

∞∑
k=Ni+1

qk(σi).

By the assumption
∑∞

k=1 qk(σ) = 1, the last term in the above estimate tends to zero

along U . Hence τ = (τi)i∈I = (τ ′i)i∈I and [σi, τ
′
i ] = 1.

Conversely, assume that
∑∞

k=1 qk(σ) < 1. Choose the sequence (Ni)i∈I such that

limU
∑Ni

k=1 qk(σi) =
∑∞

k=1 qk(σ) and limU Ni/ni = 0.

For each i ∈ I change σi to σ′i such that the k-cycles of σ′i are the same as in σi for

1 ≤ k ≤ Ni and the other k-cycles of σ′i (k > Ni; if they exist) are grouped into one big Ki-

cycle so that dH(σi, σ
′
i) is minimal possible. It is easy to see that then still dH(σi, σ

′
i)→U 0

as Ni →U ∞. Now σ′i eventually has precisely one Ki-cycle for Ki > Ni. Obtain σ′′i by

dividing this Ki-cycle (if it exists) into two bKi/2c-cycles and at most one fixed point so

that dH(σ′i, σ
′′
i ) ≤ 3/ni is minimal. Note that Ki/ni = 1−

∑Ni
k=1 qk(σi)→U ε > 0, so that

bKi/2c > Ni along U , as limU Ni/ni →U 0 by assumption.
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Now consider the restriction of the centralizers C(σ′i) and C(σ′′i ) to the support of

the unique Ki-cycle of σ′i (which certainly both fix setwise by the previous inequality).

The first group is isomorphic to CKi , whereas the second is isomorphic to CbKi/2c oC2.

Taking the metric ultraproducts of these groups restricted to this support (in the sense

of Remark 4.6), we get an abelian group in the first case, and a non-abelian group in the

second case. Hence, in at least one case,
∏
U C(σ′i) 6= C(σ) or

∏
U C(σ′′i ) 6= C(σ).

Now we prove Lemma 4.11. Assume that g = (gi)i∈I , h = (hi)i∈I ∈ GLU (q) commute,

i.e., [g, h] = id, that g and each gi (i ∈ I) is semisimple, and assume that

∞∑
χ irreducible

qχ(g) = 1.

Note that semisimplicity implies that for each Frobenius block F (χ) in the generalized

Jordan normal form of gi, χ = i1 is irreducible. Choose the sequence (Ni)i∈I such that

lim
U

∑
χ irreducible
deg(χ)≤Ni

qχ(gi) = 1 and

 ∑
χ irreducible
deg(χ)≤Ni

deg(χ)

 `rk([gi, hi])→U 0.

Define Ui := ker([gi, hi] − id). Fix an irreducible polynomial χ ∈ k[X] and apply

Lemma 4.12(ii) inside V := Vχ(gi) to the subspace U := Ui ∩ Vχ(gi) to get a gi-invariant

subspace W = Wiχ ≤ U such that codimV (Wiχ) ≤ kχ codim(Ui), where kχ = deg(χ).

Note here that Vχ(gi) = ker(χ(gi)) is unique, since gi is semisimple. This large-dimensional

subspace Wiχ is mapped accurately by hi, as gi commutes with hi on it. Define h′i to be

equal to hi on each Wiχ and complete it on each Viχ to a map commuting with gi for

deg(χ) ≤ Ni (here we use semisimplicity of gi). On Vχ(gi) with deg(χ) > Ni set h′i to be

the identity. As in the proof for SU above, it follows that drk(hi, h
′
i)→U 0 and [gi, h

′
i] = 1.

Conversely, assume that
∑∞

χ irreducible qχ(g) < 1. Choose the sequence (Ni)i∈I such

that

lim
U

Ni∑
χ irreducible
deg(χ)≤Ni

qχ(gi) =

∞∑
χ irreducible

qχ(g) and lim
U
Ni/ni = 0.

For each i ∈ I change gi into g′i such that all Frobenius blocks F (χ) for χ irreducible

of degree at most Ni are left unchanged and all bigger Frobenius blocks (if there is any

such block) are grouped into one big Frobenius block F (ϕ) of size Ki (for ϕ irreducible).

Define g′′i in the same way, but split the Frobenius block F (ϕ) (if it exists) into two or

three blocks, two of which are F (φ) for φ irreducible of degree bKi/2c and, if Ki is odd, one

block of size one, which is the identity. Then, as above, the centralizer of g′i restricted to

the large Frobenius block F (ϕ) of it, equals C(g′i)
∼= (k[X]/(ϕ))×, whereas the centralizer

C(g′′i ) restricted to the same subspace is non-abelian (again in the sense of Remark 4.6).

Also one sees that their metric ultraproducts are non-isomorphic, similarly to the case of

permutations. The proof is complete.
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Remark 4.14. If G is one of SpU (q), GOU (q), or GUU (q) and a semisimple g ∈ G is

represented by (gi)i∈I and
∑

χ irreducible qχ(g) = 1, one can adapt the above argument for

GLU (q) to see that still C(g) =
∏
U C(gi) when all gi are semisimple.

Indeed, from Subsection 3.4.2 §1 it follows that in the space Wiχ + Wiχ∗ (where

Wiχ,Wiχ∗ are constructed as above) we can still find a big, i.e., almost fulldimensional, gi-

invariant non-singular subspace W ′iχ,χ∗ . Then the form fi (and Qi in the orthogonal case

in characteristic two) on W ′⊥iχ,χ∗∩(Vχ(gi)+Vχ∗(gi)) and (W ′iχ,χ∗ .hi)
⊥∩(Vχ(gi)+Vχ∗(gi)) are

isomorphic (which again follows from Subsection 3.4.2 §1), so that we can still complete

our partial maps to h′i (i ∈ I).

As a consequence of Lemma 4.4 together with Lemmas 4.10 and 4.11, and Remark 4.14,

we get the following corollary.

Corollary 4.15. If σ ∈ SU resp. a semisimple element g ∈ GLU (q), SpU (q), GOU (q), or

GUU (q) is torsion, then C(σ) resp. C(g) is equal to
∏
U C(σi) resp.

∏
U C(gi) for each

representative (σi)i∈I resp. (gi)i∈I of σ resp. g, where we require all gi (i ∈ I) to be

semisimple.

4.6 Centralizers in PGLU(q), PSpU(q), PGOU(q), and PGUU(q)

Now we can deduce the structure of centralizers of semisimple elements from PGLU (q),

i.e., elements that lift to semisimple elements in GLU (q). Let g = (gi)i∈I ∈ GLU (q) be a

semisimple element which maps to g ∈ PGLU (q) = GLU (q)/k×. Here gi is also assumed

to be semisimple (i ∈ I).

Assume that h = (hi)i∈I ∈ GLU (q) is such that [g, h] = µ id for µ ∈ k×, then gh = µg,

so that q(g) = q(gh) = q(µg) = q(g).µ, i.e., µ ∈ stabk×(q(g)). Now let ν ∈ stabk×(q(g)) ≤
k× be a generator of this cyclic group.

It is now easy to see that the conformal centralizer Cconf(g) := {h ∈ GLU (q) | there is µ ∈
k× such that gh = µg} is an extension C(g). stabk×(q(g)) = C(g).〈ν〉 of C(g) by stabk×(q(g)).

Hence C(g) = (C(g).〈ν〉)/k×.

Remark 4.16. The analog statement of Lemma 4.11 is false in PGLU (q). Indeed, take a

semisimple element g ∈ PGLU (q) such that for a lift g ∈ GLU (q) the group stabk×(q(g))

is non-trivial. Choose a representative (gi)i∈I of g ∈ GLU (q) such that qχ(gi) 6= qξ(gi) for

all χ, ξ ∈ k[X] distinct irreducible and gi is semisimple (i ∈ I). Then C(gi) stabilizes each

subspace Vχ(gi) = ker(χ(gi)) ≤ kni . But this means that, if h ∈ C :=
∏
U Cconf(gi), we

have that gh = g, so that C/k× is properly contained in C(g) (namely, C(g)/(C/k×) ∼=
stabk×(q(g)), which is non-trivial).

Remark 4.17. For the groups PSpU (q), PGOU (q), and PGUU (q) the same structure for

C(g) holds, where SpU (q), GOU (q) resp. GUU (q) play the role of GLU (q). The possible

scalars µ ∈ k× are restricted to µ ∈ {±1} in the symplectic or orthogonal case, and to

µq+1 = 1 in the unitary case.
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4.7 Double centralizers of torsion elements

In this section, we compute the double centralizers of (semisimple) torsion elements of

the groups G of type SU , PGLU (q), PSpU (q), PGOU (q), and PGUU (q). Note that for

g ∈ G a group element C(C(g)) = Z(C(g)), since g ∈ C(g), so that C(C(g)) ≤ C(g).

Set C2(g) := C(C(g)) and C2
conf(g) := Cconf(Cconf(g)) to be the double centralizer resp.

double conformal centralizer of g. Here Cconf(g) := {h ∈ G|[g, h] ∈ Z(G)}.

4.7.1 The case SU

Let σ = (σi)i∈I ∈ SU = G be torsion of order o. Then
∑

k|o qk(σ) = 1 by Lemma 4.4. By

Corollary 4.15 we have that C(σ) =
∏
U C(σi). But C(σi) has a subgroup∏

k|o

Ck o Sym(ck(σi))

which is dense in it along U , so that C := C(σ) =
∏
U
∏
k|o Ck o Sym(ck(σi)).

At first, for simplicity, assume that σi is isotypic of type (kcik) (so that ni = cikk).

Assume that τ = (τi)i∈I ∈ Z(C) and τi = (aij).ϕi ∈ Ck o Sym(cik). Assume that

limU |supp(ϕi)|/cik = ε > 0. Then we can conjugate ϕi by φi ∈ Sym(cik) ≤ Ck o Sym(cik) =

C(σi) such that limU dH(ϕiφi, φiϕi) ≥ ε > 0. But this leads to the contradiction

lim
U
dH(τiφi, φiτi) ≥ ε > 0.

Hence we may assume that ϕi = id, applying a small change to τi along U if necessary

(i ∈ I). Now assume that limU |{j | aij = c}|/cik = ε ∈ (0, 1). Then we find permutations

φi ∈ Sym(cik) ≤ Ck o Sym(cik) = C(σi) such that dH(τi, τ
φi
i ) = |{j | aij 6= aij.φi}|/cik ≥

min{ε, 1 − ε} > 0. Hence we can assume that all aij are equal. This shows that, in this

case, Z(C(σ)) is the metric ultraproduct
∏
U Ck

∼= Ck where Ck in the ith component is

generated by the element σi itself (i ∈ I).

In the general case, we obtain that

Z(C(σ)) =
∏

k|o,qk(σ)>0

∏
U

Ck
∼=

∏
k|o,qk(σ)>0

Ck.

This holds, because σ ∈ C(σ), so that, when τ ∈ Z(C(σ)), it must commute with σ.

But this implies that limU |Ωk(σi)4Ωk(σi).τi| = 0, so that τ must stabilize the isotypic

components of σ (in the sense of Remark 4.6), and we can apply the above argument.

4.7.2 The case PGLU(q), PSpU(q), PGOU(q), and PGUU(q)

Recall that k = Fq when G is GLU (q), SpU (q), or GOU (q), and k = Fq2 when G = GUU (q).

Set d = 1 in the first three cases and d = 2 when G is unitary over Fq2 .

Recall that Z = k× when G = GLU (q), Z = {±1} ⊆ k× when G = SpU (q) or
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G = GOU (q), and Z = {z ∈ k× | zq+1 = 1} ⊆ k× = F×
q2

when G = GUU (q). Also, recall

that, if G is not of shape GLU (q), we have zσ = z−1 for z ∈ Z, where σ : k → k is the

identity in the symplectic and orthogonal case, and the q-Frobenius endomorphism x 7→ xq

when G = GUU (q) (cf. the beginning of Subsection 3.4.2). Let g = (gi)i∈I ∈ G ≤ GLU (k)

be semisimple, with gi (i ∈ I) semisimple such that g ∈ G ≤ PGLU (k) = GLU (k)/k× is

torsion of order dividing o, i.e., there is µ ∈ k× such that go = µ id. This implies µ ∈ Z.

Then ∑
χ irreducible
Xo≡µ (χ)

qχ(g) = 1

by Lemma 4.4. Set P := {χ ∈ k[X] |χ (monic) irreducible, χ | Xo−µ}, T := stabZ(q(g)),

Kχ := k[X]/(χ) for χ ∈ k[X] irreducible (as in Subsection 3.4.2 §1), and ciχ := cχ(gi)

(i ∈ I). Hence, similarly to the above, we have

C(g) =
∏
U

∏
χ irreducible
Xo≡µ (χ)
qχ(g)>0

Mciχ(Kχ),

the centralizer being computed in MU (k). Now, by Section 4.6 we ‘know’ the structure of

Cconf(g) ≤ G. For χ ∈ k[X] irreducible consider the g-invariant subspace V := Vχ(g) :=⊕
ξ∈χ Vξ(g) ∈ V , where χ := orbT (χ) is the orbit of χ under T (see Remark 4.7 for the

definition of Vξ(g) ∈ V). Set lχ := |χ| and mχ := |T |/lχ. Note that mχ = |stabT (χ)|, and

so mχ = max{m | |T | | ∃χ′ : χ = χ′(Xm)}. The restriction of the action of Cconf(g)/Z to

Vχ(g) is given by ∏
U

∏
ξ∈χ

C
(
g|Vξ(g)

)o T

 /Z.

We will explain this below.

Definition of the action of T . In this situation t ∈ T ≤ Z ≤ k× acts as the map ϕt which

is constructed as follows: Find Kξ-bases (Bξ,i)i∈I of each Vξ(g) (ξ ∈ χ for all representatives

χ of orbits of the action of T on the irreducible polynomials; see Remark 4.8) and compati-

ble bijections αξ1,ξ2,i : Bξ1,i → Bξ2,i (i ∈ I; i.e., αξ2,ξ3,i◦αξ1,ξ2,i = αξ1,ξ3,i for all ξ1, ξ2, ξ3 ∈ χ,

all χ, and all i ∈ I). If G comes from groups preserving a form, we still find bijections

•∗ : Bξ,i → Bξ∗,i such that b∗∗ = b, the pairing fi restricted to Kξb ×Kξ∗b
∗ → k is non-

singular, the pairing fi restricted to Kξb×Kξ′b
′ is zero for all b ∈ Bξ,i, b′ ∈ Bξ′,i, b′ 6= b∗,

and such that •∗ commutes with the maps αξ1,ξ2,i (i ∈ I). Such bases exist by the classi-

fication in Subsection 3.4.2 §1. The last condition can be fulfilled, since (ξ.t)∗ = ξ∗.t for

all ξ ∈ k[X] and t ∈ T by Remark 4.3. Define ϕt,i by ϕt,i|〈Bξ,i〉Kξ : 〈Bξ,i〉Kξ → 〈Bξ.t,i〉Kξ.t
to be the field isomorphism ϕξ,t : Kξ = k[X]/(ξ)→ Kξ.t = k[X]/(ξ.t); X 7→ tX applied to
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each Kξ-multiple of a basis vector in Bξ,i, i.e.,

ϕt,i

 ∑
b∈Bξ,i

λbb

 =
∑

b∈Bξ.t,i

ϕξ,t(λb)αξ,ξ.t,i(b).

Doing this for all representatives χ of orbits of the action of T on the irreducible polyno-

mials χ ∈ k[X] with χ | Xo−µ, this defines, up to a small error in the rank metric, a map

ϕt,i : k
ni → kni , so set ϕt to be (ϕt,i)i∈I .

The action of T preserves the forms fi (and Qi; i ∈ I). Assume G is not GLU (q). Then

one verifies that T preserves the forms fi (i ∈ I): According to Subsection 3.4.2 §1 for

b ∈ Bξ,i the form fi|U×U∗ : U ×U∗ := Kξb×Kξ∗b
∗ → k is given as U ×U∗ ∼= Kξ ×Kξ∗ 3

(u, v) 7→ β trKξ/k(uv
α) (where α : Kξ∗ → Kξ as remarked in Remark 3.33, noting that

Kξ = Rξ as e = 1, since g is semisimple, and β is either one or a standard non-square

in k×; the latter is only needed in Case 3.1 of Subsection 3.4.2 §1 when G is orthogonal

and b = b∗; but we can even neglect this case by Remark 3.38; so β = 1). In Case 3.2

of Subsection 3.4.2 §1, i.e., p = 2, so fi is alternating and thus b 6= b∗, we can assume

additionally that Q(λb+µb∗) = λµ ∈ k, as all but at most one irreducible block have this

shape W (1) (cf. [25, page 8 and Theorem 3.1]).

Hence for (u, v) ∈ Kξ ×Kξ∗
∼= U × U∗ we obtain fi(u.t, v.t) = trKξ.t/k(ϕt(u)ϕt(v)α) =

trKξ.t/k(ϕt(u)ϕt(v
α)) = trKξ.t/k(ϕt(uv

α)) = trKξ/k(uv
α) = fi(u, v). This holds, since

the action of T commutes with α and ϕt is a field isomorphism. The former is verified

as follows: Let v ∈ k[X]. Then ϕt(v(X))α = v(tX)α = vσ(tσX
−1

) = vσ(t−1X
−1

) =

ϕt(v
σ(X

−1
)) = ϕt(v

α), as desired, since by definition of Z we have tσ = t−1 ∈ Z. Here X

is the image of X in Kξ = k[X]/(ξ).

Now let us fix h ∈ C2
conf(g). We want to understand the shape of h.

Step 1: h stabilizes each Vχ(g) (χ ∈ k[X] irreducible). Assume that h ∈ C2
conf(g|V ) ≤

Cconf(g|V ) does not stabilize each subspace Vξ(g) of V (ξ ∈ χ). Write χ = {ξ1, . . . , ξl}
and assume that Vξ1(g).h = Vξ2(g). Take f = (M1,M2, ∗, . . . , ∗) ∈ C(g|V ) ≤ Cconf(g|V ),

where the jth component of f acts on Vξj (g) (j = 1, . . . , l), then

fh = h−1fh = (∗,Mh
1 , ∗, . . . , ∗).

Now there are three cases according to the classification in Subsection 3.4.2 §1: If

G = GLU (q), we can take M2 = 1Vξ2 (g) and M1 far away from k× idVξ1 (g). Then [f, h] =

(∗,Mh
1 , ∗, . . . , ∗) is far away from k× idV . If G is one of SpU (q), GOU (q), or GUU (q),

ξ1 is not self-dual and ξ2 6= ξ∗1 , we can do the same as before. When ξ∗1 = ξ2 in this

case, we must have M2 = (M−σ1 )>, so that [f, h] = (∗,Mσ>
1 Mh

1 , ∗, . . . , ∗). Again we can

choose M1 ∈
∏
U GLciξ1 (Kξ1) such that (Mσ

1 )>Mh
1 is far away from Z. In the last case,

ξ1 = ξ∗1 is self-dual. Then again M1 and M2 are independent of each other and we can

choose M2 = 1Vξ2 (g). The only restriction on M1 is that it lies in
∏
U GUciξ1

(Kξ1) if
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ξ1 6= X ± 1 or G is GUU (q) (see Case 2 of Subsection 3.4.2 §1) resp. M1 ∈
∏
U Xciξ1

(k)

in the opposite case when ξ1 = X ± 1, where G = XU (q) (X = Sp or GO; see Case 3.1

of Subsection 3.4.2 §1), so again we can choose M1 such that [f, h] = (∗,Mh
1 , ∗, . . . , ∗) is

far away from Z. In all cases, we get a contradiction. This shows that h ∈ C2
conf(g) fixes

each Vχ(g) ∈ V (χ ∈ k[X] irreducible).

Assume now that h|Vχ(g) = M.α, where α corresponds to an element of T lχ = {tlχ | t ∈
T} which induces a non-trivial field automorphism on Kχ.

Step 2: The automorphism α equals the identity idKχ. Then for λ ∈ Kχ we have

(λ id)h = λα id = (λαλ−1)λ id. This implies that for all λ ∈ K×χ stabilizing the forms fi

(or Qi; i ∈ I) on Vχ(g) we have λαλ−1 ∈ Z ≤ k×. When G = GLU (q) or χ is not self-dual,

there is no restriction on λ (of course, if G is one of SpU (q), GOU (q), or GUU (q), then if

h acts as M on Vχ(g), it must act as (M−σ)> on Vχ∗(g)). Hence, in this case, for each

λ× ∈ Kχ there exists κλ ∈ k× such that λαλ−1 = κλ. However, then every vector λ ∈ Kχ

is an eigenvector of the k-linear map α, which forces α = idKχ , since 1 ∈ Kχ is fixed, a

contradiction.

In the opposite case, G is one of SpU (q), GOU (q), or GUU (q) and χ is self-dual. Then

we are in Case 2 and 3 of Subsection 3.4.2 §1. Let τ : Kχ → Kχ be the map defined there,

i.e., τ |k = σ and τ : λ 7→ λ−1, where λ ∈ Kχ is the root of χ. Then τ2 = idKχ and τ = idKχ

if and only if we are in Case 3 of Subsection 3.4.2 §1. Here, if we are in Case 2, C(g)|Vχ(g)

is an ultraproduct of unitary groups over the field Kχ equipped with the involution τ . In

Case 3, C(g)|Vχ(g) is an ultraproduct of symplectic resp. orthogonal groups over Kχ = k.

We proceed as follows: Find totally singular Kχ-subspaces U = (Ui)i∈I , U
′ = (U ′i)i∈I , U

′′ =

(U ′′i )i∈I ∈ V of Vχ(g) (in the sense of Remark 4.9) such that U ⊕ U ′ = U ⊕ U ′′ = Vχ(g),

U ′ ∩ U ′′ = 0 and dim(U) = dim(U ′) = dim(U ′′) = dim(Vχ(g))/2. W.l.o.g., we may

assume that dimKχ(Ui) = dimKχ(U ′i) = dimKχ(U ′′i ) and that the restrictions fi|Ui×U ′i
and fi|Ui×U ′′i are non-degenerate (i ∈ I; as we may by modifying Ui, U

′
i , and U ′′i a little

if necessary). Then define f ′ = (f ′i)i∈I , f
′′ = (f ′′i )i∈I ∈ C(g) ≤ G such that f ′i and f ′′i

act F (ϕ)-isotypically on Ui and such that f ′i resp. f ′′i act F (ϕ∗)-isotypically on U ′i resp.

U ′′i (i ∈ I) for a fixed irreducible polynomial ϕ ∈ Kχ[X] which is not self-dual with

respect to τ . Then f ′h
∣∣
Vχ(g)

= z′ f |′Vχ(g) and f ′′h
∣∣
Vχ(g)

= z′′ f ′′|Vχ(g) for z′, z′′ ∈ Z. Note

that qϕ.z′−1(z′f ′|Vχ(g)) = qϕ(f ′|Vχ(g)) = 1/2 and qϕ.z′′−1(z′′f ′′|Vχ(g)) = qϕ(f ′′|Vχ(g)) = 1/2,

and ϕ.z′−1 and ϕ.z′′−1 are both also not self-dual, since ϕ ∈ Kχ[X] is not self-dual and

z′−1, z′′−1 ∈ Z, so that z′−τ = z′−σ = z′ and z′′−τ = z′′−σ = z′′, whence, e.g., (ϕ.z′−1)∗ =

ϕ∗.z′−1 6= ϕ.z′−1. Then h must stabilize the decompositions Vχ(g) = U ⊕ U ′ = U ⊕ U ′′,
so it must stabilize U . But on the h-invariant totally isotropic subspace U , we can do the

same argument as above for G = GLU (q) to see that α = idKχ .

Hence we have obtained that h|Vχ(g) = M ∈
∏
U Mciχ(Kχ), so that h ∈ C(g).

Step 3: We have that h|Vχ(g) = M = λ id for λ ∈ Kχ. According to Subsection 3.4.2 §1

we can find Vi (i ∈ I) such that (Vi)i∈I = Vχ(g) such that either all Vi are totally singular
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(Case 1 of Subsection 3.4.2 §1; if χ is not self-dual; this includes the case G = GLU (q)) orHi

preserves a unitary form (Case 2) or a symplectic or orthogonal form (Case 3) over Kχ on

Vi (i ∈ I). Note from the classification in Subsection 3.4.2 §1 that orthogonally indecom-

posable blocks involving a Frobenius block of size ≥ 2 are non-central in the ambient pro-

jective linear classical group. This shows that qξ(M) = 0 for all ξ ∈ Kχ[X] of degree ≥ 2.

Assume now that there exist distinct λ, µ ∈ K×χ such that qX−λ(M), qX−µ(M) ≥ ε > 0.

If G = GLU (q) or we are in Case 1, F (X − λ) ⊕ F (X − µ) = diag(λ, µ) ∈ GL2(Kχ)

is mapped to a non-central element in PGL2(Kχ), so that by the assumption, since

we have ‘many’ of these blocks, h|Vχ(g) would not commute modulo scalars with all of

C(g)|Vχ(g)
∼=
∏
U Mciχ(Kχ). In Case 2, we use the same argument for a block of shape

diag(λ, λ−τ , µ, µ−τ ) acting on a four-dimensional (Kχ, τ)-unitary space. In Case 3, we use

the same argument with a block diag(λ, λ−1, µ, µ−1) acting on a four-dimensional sym-

plectic or orthogonal space. In total we get that M = λ id for λ ∈ Kχ. If we are in

Case 2 of Subsection 3.4.2 §1, we have the additional assumption that Nτ (λ) = 1, where

Nτ : Kχ → Kχ,τ is the norm defined there. In Case 3 of Subsection 3.4.2 §1, we must have

λ2 = 1.

Step 4: The precise shape of C := C2
conf(g). We know now that h|Vχ(g) = λχ(h) id for

each irreducible χ ∈ k[X] and so h commutes with all of C(g). In order that h ∈ C2
conf(g),

we still need to check that [h, T ] ⊆ Z. Now choose t ∈ T to be a generator and z ∈ Z and

assume that h z-commutes with t, i.e., [h, ϕt] = z id. Let χ ∈ k[X] run through a system

of representatives of the orbits of the action of T and •∗ on the irreducible polynomials

(the action of •∗ is only used when G is not GLU (q)). This means zh = hϕt , so since

h|Vχ(g) = λχ(h) id, we must have h|Vχ.t(g) = z−1ϕχ,t(λχ(h)) idVχ.t , so that h is determined

on all of V = Vχ(g) by λχ(h). In this situation the only condition that needs to be satisfied

is that h|Vχ(g) = h|V
χ.tlχ

(g) = λχ(h) id = z−lχϕχ,tlχ (λχ(h)) id. Note that

ϕχ,tlχ : Kχ
∼= Fqdkχ → Kχ

∼= Fqdkχ (d = 1, 2)

is given by x 7→ qdkχ/mχ , so that the previous condition becomes

zlχ = (λχ(h))q
dkχ/mχ−1. (4.3)

Hence we can write C as follows. When G = GLU (q), we have

C =


h =

⊕
χ irreducible
Xo≡µ (χ)
qχ(g)>0

λχ(h) idVχ(g)

∣∣∣∣∣∣∣∣∣∣∣
∃z ∈ Z : λχ.t(h) = z−1ϕχ,t(λχ(h)) for all χ


. (4.4)

Here the condition from Equation (4.4) is equivalent to Equation (4.3) for χ run-
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ning through a system of representatives of the action of T on the set P := {χ ∈
k[X] irreducible |χ divides Xo − µ and qχ(g) > 0}. For G one of SpU (q), GOU (q), or

GUU (q) we have

C =


⊕

χ irreducible
Xo≡µ (χ)
qχ(g)>0

λχ(h) idVχ(g)

∣∣∣∣∣∣∣∣∣∣∣
R


. (4.5)

where the condition R is that there exists z ∈ Z such that λχ.t(h) = z−1ϕχ,t(λχ(h))

for all χ ∈ P (as in the previous case) and λχ(h)λχ∗(h)α = 1 for all χ ∈ P , where

α : Rχ∗ = Kχ∗ → Rχ = Kχ is defined as in Remark 3.33. If G is one of SpU (q) or GOU (q)

and χ = χ∗ 6= X ± 1 is self-dual, this means kχ is even and λχ(h)q
kχ/2+1 = 1. Also, in this

case, if χ = X ± 1 it means λχ(h)2 = 1. If G = GUU (q) and χ = χ∗, this means that kχ

is odd (since α needs to induce σ : x 7→ xq on k = Fq2) and λχ(h)q
kχ+1 = 1.

4.8 Distinction of metric ultraproducts

Now we want to distinguish all (simple) metric ultraproducts G = XU (q) for distinct

pairs (X, q), where X ∈ {GL, Sp,GO,GU} and q is a prime power (all but PSpU1(q) and

PGOU2(q) as mentioned in Theorem 4.1). For a group H define the quantity

eH(o) := max
h∈H:ho=1H

exp(C2(h)).

Clearly, when H ∼= L, we have eH(o) = eL(o) for all values o ∈ Z+. Our strategy is to

compute eH(o) for the groups H = G, where G = XU (q) as above, for certain values of o

to distinguish these groups (with the only exception: PSpU1(q) ∼= PGOU2(q)?).

4.8.1 Computation of eG(o) when gcd{o, p} = gcd{o, |Z|} = 1

If o is coprime to |Z| (and by semisimplicity of g ∈ G coprime to p), from Subsection 4.7.2

we can compute eG(o). Note that in this situation, when go = µ ∈ Z, we can replace

g by g′ = λg ∈ G such that g′o = 1, choosing λ ∈ Z such that λo = µ−1, since the

homomorphism Z → Z; x 7→ xo is then bijective. So assume, w.l.o.g., go = 1. Then

P ⊆ Q := {χ ∈ k[X] irreducible |χ divides Xo − 1}.

The case G = GLU (q). From Equation (4.4) we see that, the bigger the group T is,

for an element h ∈ C2
conf(g), the more restrictions are imposed to the scalars λχ(h) ∈ K×χ

(χ ∈ P ). Also, the bigger the set P is, the ‘bigger’ is the group C2
conf(g), i.e., there are

more components. Hence, to optimize the exponent of C2(g) = C2
conf(g)/Z, we choose g

such that P = Q and 0 < qX−1(g) 6= qχ(g) > 0 for all χ ∈ P \ {X − 1}. Namely, then

T = stabZ(q(g)) must fix the polynomial X − 1, so that we must have T = 1. Set

fq(o) := min{qe − 1 | o divides qe − 1}.
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4.8. Distinction of metric ultraproducts

Equation (4.4) then gives

eG(o) = exp(C2(g)) = exp(C2
conf(g)/Z) =

1 if o = 1

fq(o) if o > 1
. (4.6)

Let us demonstrate Equation (4.6). The first equality in it holds by the previous argument.

When o = 1, we have g = 1G and so

C2(g) = Z(G) = 1,

so that eG(1) = 1. Now assume o > 1. For each χ ∈ P , if λ ∈ k
×

is a root of χ, the

condition that χ | Xo − 1 is equivalent to λo = 1. Also Kχ = k[λ]. Let µ ∈ k× be an

element of order o with minimal polynomial ξ ∈ k[X]. Then, if λ is a root of χ ∈ P , we

must have λo = 1 and thus λ = µf for some f ∈ N. Hence Kχ = k[λ] = k[µf ] ⊆ k[µ] = Kξ,

so that in Equation (4.4) we have ord(λχ(h)) | |K×χ | | |K×ξ | = fq(o). This shows that

exp(C2(g)) | exp(C2
conf(g)) | lcm{|K×χ | |χ divides Xo − 1} = |K×ξ | = |k[µ]×| = fq(o).

To show the equality exp(C2(g)) = fq(o), take h ∈ C2
conf(g) such that λX−1(h) = 1 and

λξ(h) has order fq(o) = |K×ξ | in k
×

. Then, when h
l

= 1G, we must have hl ∈ Z. But

λX−1(h)l = 1, so that, since qX−1(g) > 0, it follows that hl = 1G. Then λξ(h)l = 1, so

that exp(C2(g)) ≥ l ≥ ord(λξ(h)) = fq(o). This completes the proof.

The case G = SpU (q) or GOU (q). As in the linear case, Equation (4.5) shows that the

optimal exponent of C2(g) is obtained when P = Q and 0 < qX−1(g) 6= qχ(g) > 0 for all

χ ∈ P \ {X − 1}, so that T = 1. Set

f ′q(o) :=

qe/2 + 1 if fq(o) = qe − 1, e is even and o | qe/2 + 1

fq(o) otherwise
. (4.7)

Equation (4.5) then gives

eG(o) = exp(C2(g)) = exp(C2
conf(g)/Z) =


1 if o = 1

2 if o = 2

f ′q(o) if o > 2

. (4.8)

We demonstrate Equation (4.8). If o = 1, we obtain, as in the linear case, that C2(g) = 1

and so eG(1) = 1. If o = 2, g2 = 1 and so P = {X−1, X+1}. From Equation (4.5) we see

that, if h ∈ C2
conf(g), we have λX−1(h)2 = λX+1(h)2 = 1, so that h2 = 1. Also, defining h

by λX−1(h) := 1 and λX+1(h) = −1, we obtain h /∈ Z, so ordG(h) = eG(2) = 2 (1 6= −1,

since the case p = 2 does not occur due to the condition gcd{o, p} = 1). Assume now that

o > 2. As in the linear case, for each χ ∈ P , if λ ∈ k is a root of χ, the condition that
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χ | Xo − 1 is equivalent to λo − 1. Choose µ ∈ k× of order o and let ξ ∈ P be its minimal

polynomial. Then, as previously, if λ is a root of χ ∈ P , we have λ = µf for some f ∈ N.

There are two cases:

In the first case, ξ is not self-dual. This means that µ and µ−1 are not conjugate

in Kξ/k. If they were conjugate, say by an automorphism α, i.e., µα = µ−1, then α ∈
Gal(Kξ/k) needs to be the unique involution (since µ 6= µ−1 as o > 2) given by x 7→ xq

kξ/2

;

in particular, e = kξ would need to be even. Hence this case is equivalent to either e = kξ

being odd or µµα = µq
kξ/2+1 6= 1, i.e., o - qe/2 + 1 = qkξ/2 + 1. This is precisely the

opposite of the first case in Equation (4.7). Here for an element h ∈ C2
conf(g) we can

choose λξ(h) ∈ K×ξ = k[µ]× arbitrarily (λξ∗(h) is then determined by λξ(h)). Arguing

as in the linear case, we obtain exp(C2(g)) = fq(o). Indeed, for h ∈ C2
conf(g), as above,

ord(λχ(h)) | fq(o) and defining h such that λX−1(h) = 1 and λξ(h) has order fq(o), we

see that ordG(h) = eG(o) = fq(o).

In the opposite case, ξ is self-dual and ξ 6= X ± 1 as o > 2. Then e = kξ needs to be

even and

µµα = µq
kξ/2+1 = λξ(h)λξ(h)α = λξ(h)q

kξ/2+1 = 1,

where α is the involution x 7→ xq
kξ/2

of Kξ
∼= F

q
kξ from Subsection 3.4.2 §1 Case 2. This

means that o | qe/2 + 1 and we are in the first case of Equation (4.7). Note that for each

χ ∈ P the map α restricts to an automorphism of each Kχ ⊆ Kξ of order dividing two

(as all the fields are finite). Then α|Kχ = id if and only if kχ | kξ/2, and α|Kχ is the

unique involution of Kχ if kξ/kχ is odd. Now, if λ ∈ k× is a root of χ, then in the first

case λ2 = 1, and in the second case λq
kχ/2+1 = 1; so all χ ∈ P are self-dual. Hence, if

h ∈ C2
conf(g), for each χ ∈ P one of λχ(h)2 = 1 or λχ(h)q

kχ/2+1 = 1 must hold. But

2 | qkξ/2 + 1 if p > 2, and qkχ/2 + 1 | qkξ/2 + 1 in the second case, since kξ/kχ is then

odd. Hence exp(C2
conf(g)) | qe/2 + 1 = qkξ/2 + 1 = f ′q(o). Defining h ∈ C2

conf(g) such that

λX−1(h) = 1 and λξ(h) has order f ′q(o), we see that ordG(h) = f ′q(o).

The case G = GUU (q). Here, as well, Equation (4.5) shows that the optimal exponent

of C2(g) is obtained when P = Q and 0 < qX−1(g) 6= qχ(g) > 0 for all χ ∈ P \ {X − 1},
so that T = 1. Set

f ′′q (o) :=

qe + 1 if fq2(o) = q2e − 1, e is odd and o | qe + 1

fq2(o) otherwise
.

Equation (4.5) gives

eG(o) = exp(C2(g)) = exp(C2
conf(g)/Z) =

1 if o = 1

f ′′q (o) if o > 1
. (4.9)

Again eG(1) = 1 is clear. If o > 1, take µ ∈ k× of order o with minimal polynomial ξ.

Then the argument proceeds as in the bilinear case. But the condition that ξ is self-dual
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4.8. Distinction of metric ultraproducts

is here equivalent to µ being conjugate to µ−1 in Kξ by an automorphism α such that

α|k = σ; x 7→ xq. This forces e = kξ to be odd and µq
dkξ/2+1 = 1, i.e., o | qe + 1 = qkξ + 1.

4.8.2 Proof of Theorem 4.1

Set Gj := XjUj (qj), Zj := Z(Gj), and Gj := Gj/Zj (j = 1, 2). Let pj be the characteristic

of the field Fqj (j = 1, 2). Assume that G ∼= G1
∼= G2. We start by showing that p1 = p2.

Determining the characteristic p. Choose o large enough and coprime to p1, p2, |Z1|,
|Z2|. Then from Equations (4.6), (4.8), and (4.9) we see that eG(o) is of the form qe11 ± 1

and qe22 ± 1. If eG(o) = qe11 − 1 = qe22 − 1 or eG(o) = qe11 + 1 = qe22 + 1, we have

qe11 = qe21 , so that p1 = p2 by the uniqueness of the prime factorization. So, w.l.o.g.,

we have eG(o) = qe1 − 1 = qe22 + 1 for infinitely many o, and so for infinitely many pairs

(e1, e2) ∈ Z2
+. If p1 6= p2 we get a contradiction to Corollary 1.8 of [18]. Hence p1 = p2 =: p.

Determining qd. We can now assume that qj = pej (j = 1, 2). Choose j ∈ {1, 2} and

set X := Xj , q := qj , and d := dj . Consider the quantity f := gcd{eG(o) | o ∈ O}, where

O := {o ∈ Z+ | 2 < o coprime to p, |Z1|, |Z2|; eG(o) ≡ −1 modulo p3}

From Equations (4.6), (4.8), and (4.9) it follows that for every element o ∈ O the number

eG(o) is either of the form qde − 1 or qe + 1. But the second case is excluded by the

condition that eG(o) ≡ −1 modulo p3. Hence qd − 1 | eG(o) = qde − 1 and so qd − 1 | f .

For a prime r set tr := qr−1
q−1 . Then for distinct primes r and s we have

gcd{tr, ts} = gcd

{
qr − 1

q − 1
,
qs − 1

q − 1

}
=

1

q − 1
gcd{qr − 1, qs − 1} =

qgcd{r,s} − 1

q − 1
= 1.

Hence the numbers tr (r prime), being pairwise coprime, have arbitrarily large prime

divisors. Take for r > 2 a prime such that tr has a prime divisor o > p, |Z1|, |Z2|, qd − 1.

Then o is coprime to p, |Z1|, and |Z2|, so that by Equations (4.6), (4.8), and (4.9) we

have eG(o) | fqd(o) | qdr − 1, as o | qr − 1 | qdr − 1. Hence the number fqd(o) must

be one of qdr − 1 or qd − 1, the latter being excluded by the condition o > qd − 1;

so fqd(o) = qdr − 1. If X = GL, X = Sp, or X = GO, since r is odd and d = 1,

Equations (4.6) and (4.8) show that we must have eG(o) = fqd(o) = qdr− 1 = qr− 1 ≡ −1

modulo p3. Hence, in this case, o ∈ O. If X = GU, it could be that eG(o) = qr + 1, when

o | qr + 1. However, gcd{qr + 1, tr} | gcd{qr + 1, qr − 1} | 2 and tr is always odd, so that

gcd{qr + 1, tr} = 1 and hence, as o | tr, also gcd{qr + 1, o} = 1. This shows that here also

eG(o) = fqd(o) = qdr − 1 = q2r − 1 ≡ −1 modulo p3. Therefore again o ∈ O.

Applying this argument for two different primes r, say r1 and r2, which produces two

different primes o, say o1 and o2, we get f = gcd{eG(o) | o ∈ O} | gcd{eG(o1), eG(o2)} =

gcd{qdr1 − 1, qdr2 − 1} = qgcd{dr1,dr2} − 1 = qd − 1.

Altogether, we have shown that f = qd − 1. Plugging in j = 1, 2, we obtain qd11 − 1 =

111



Chapter 4. Isomorphism questions for metric ultraproducts

qd22 − 1 implying that qd11 = qd22 .

Now we exclude all remaining possible isomorphisms but PSpU1(q) ∼= PGOU2(q).

Proof that PGLU1(q) 6∼= PSpU2(q) and PGLU1(q) 6∼= PGOU2(q). Let G1 = GLU1(q) and

G2 = XU2(q), where X = Sp or GO. Set

o :=


q2+1

2 if p > 2

q2 + 1 if p = 2
. (4.10)

Note that o > 2 is coprime to p, |Z1| = q− 1, and |Z2| = |{±1}|. Hence by Equation (4.8)

we have eG(o) = eG2
(o) = q2 + 1. Indeed, o | q2 + 1 | q4 − 1. But o - qf − 1 for f properly

dividing 4, since then o | q2 − 1, but it is easy to see that gcd{o, q2 − 1} = 1. This shows

fq(o) = q4 − 1 and eG(o) = eG2
(o) = f ′q(o) = q2 + 1. But then by G1

∼= G2 we obtain

eG(o) = eG1
(o) = fq(o) = q4 − 1 > q2 + 1 = eG2

(o) = eG(o), a contradiction.

Proof that PSpU1(q2) 6∼= PGUU2(q) and PGOU1(q2) 6∼= PGUU2(q). Let G1 = XU1(q2),

where X = Sp or GO, and G2 = GUU2(q). Define o as in Equation (4.10). Note that

o > 2 is coprime to p, |Z1| = |{±1}|, and |Z2| = q + 1. Then by Equation (4.8) we

have eG(o) = eG1
(o) = f ′q2(o) = q2 + 1 (as above). But by Equation (4.9) we obtain

that eG = eG2
(o) = f ′′q (o) = q4 − 1 > q2 + 1 = eG1

(o) = eG(o), since e = 2 is even, a

contradiction.

Proof that PGLU1(q2) 6∼= PGUU2(q). Let G1 = GLU1(q2) and G2 = GUU2(q). Set

o :=


q5+1

5(q+1) if q ≡ −1 modulo 5

q5+1
q+1 otherwise

.

Note that o is coprime to p, |Z1| = q2− 1, and |Z2| = q+ 1 | q2− 1. Indeed, gcd{o, q+ 1} |
gcd{ q

5+1
q+1 , q + 1} = gcd{5, q + 1} | 5. But 5 - o, so that gcd{o, q + 1} = 1. Similarly,

gcd{o, q−1} | gcd{q5+1, q−1} | gcd{2, q−1} | 2. But o is always odd, so gcd{o, q−1} = 1.

We have that o | q10−1, so that from Equation (4.6) we obtain that eG(o) = eG1
(o) = fq2(o)

is either q10 − 1 or q2 − 1. But clearly q2 − 1 < o, so that we must have fq2(o) = q10 − 1.

But Equation (4.9) gives that eG(o) = eG2
(o) = f ′′q (o) = q5 +1 < q10−1 = fq(o) = eG1

(o),

a contradiction.

Remark 4.18. If qi →U ∞, then double centralizers of semisimple torsion elements are

infinite groups.

Remark 4.19. If q is even, then PSpU1(q) ∼= PGOU2(q) is possible due to the isomorphism

Sp2m(q) ∼= GO2m+1(q). Also it seems hard to distinguish a group PSpU1(q) from a group

PGOU2(q) for q odd.
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Index of Symbols

Set theory

Symbol Explanation

x ∈ X x is an element of the set X

x /∈ X x is not an element of the set X

A ⊆ B A is a subset of B

A ⊂ B A is a proper subset of B

A ⊇ B A is a superset of B

A ⊃ B A is a proper superset of B

|X| the cardinality of the set X

A ∩B the intersection of the sets A and B⋂
S the intersection of the sets in S⋂
i∈I Si the intersection of the sets Si (i ∈ I)

A ∪B the union of the sets A and B⋃
S the union of the sets in S⋃
i∈I Si the union of the sets Si (i ∈ I)

A tB the disjoint union of the sets A and B⊔
S the disjoint union of the sets in S⊔
i∈I Si the disjoint union of the sets Si (i ∈ I)

A \B the difference of the sets A and B

A4B the symmetric difference of the sets A and B

A×B the Cartesian product of the sets A and B∏
S the Cartesian product of the sets in S∏
i∈I Si the Cartesian product of the sets Si (i ∈ I)

Xn the nth power of the set X

P(X) the power set of the set X

f : A→ B f is a map from the set A to the set B

f : A ↪→ B f is an injective map from the set A to the set B

f : A� B f is a surjective map from the set A to the set B

f(x) the value at x of the function f

X/ ∼ the quotient of the set X by the equivalence relation ∼
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Standard sets

Symbol Explanation

N the set of natural numbers {0, 1, 2, . . .}
n the set {1, . . . , n} (n ∈ N)

Z the set of integers {. . . ,−2,−1,−0, 1, 2, . . .}
Z+ the set of positive integers {1, 2, . . .}
Q the set of rational numbers {p/q | p ∈ Z, q ∈ Z+}
R the set of real numbers

C the set of complex numbers

Arithmetic

Symbol Explanation

log(x) the natural logarithm of x

minS the minimum of the set S

maxS the maximum of the set S

a ≤ b a is less than or equal to b

a < b a is less than b

a ≥ b a is greater than or equal to b

a > b a is greater than b

|x| the absolute value of x ∈ C
ab a raised to the power b∑

i∈I xi sum of the xi (i ∈ I)

supi∈I xi supremum of the xi (i ∈ I)

gcdS greatest common divisor of the elements of S

lcmS least common multiple of the elements of S

Basic group theory

Symbol Explanation

1G the neutral element of a group G

g−1 the inverse of the group element g

gh the product of the group elements g and h

gh the conjugate of the group element g by the group element h; gh = h−1gh

g the image of a group element g under a natural homomorphism
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gG the conjugacy class of the group element g inside G; gG = {gh |h ∈ G}
ord(g) the order of the group element g

|G| the order of the group G

exp(G) the exponent of the group G

1 the trivial group

Ck the cyclic group of order k ∈ Z+

G ∼= H the groups G and H are isomorphic

Aut(G) the automorphism group of the group G

H ≤ G H is a subgroup of G

N E G N is a normal subgroup of G

H ∩ I the intersection of the subgroups H and I

G×H the direct product of the groups G and H

H oG the wreath product of the groups H and G

N.H an extension of the group N by the group H∏
H the direct product of the groups in H∏
i∈I Hi the direct product of the groups Hi (i ∈ I)

ϕ : G→ H ϕ is a group homomorphism from G to H

ϕ : G ↪→ H ϕ is an injective group homomorphism from G to H

ϕ : G� H ϕ is a surjective group homomorphism from G to H

im(ϕ) the image of the homomorphism ϕ

ker(ϕ) the kernel of the homomorphism ϕ

G = G/N the quotient of the group G by its normal subgroup N

〈S〉 the subgroup generated by the set S (inside an ambient group)

〈〈S〉〉, 〈〈S〉〉G the normal subgroup generated by the set S (inside the group G)

S∗k the k-fold product of S ⊆ G; S∗k = {s1 · · · sk | s1, . . . , sk ∈ S}
ST the product of S, T ⊆ G; ST = {st | s ∈ S, t ∈ T}
F a free group (of arbitrary rank)

rk(F) the rank of a free group

Fr the free group of rank r (freely generated by x1, . . . , xr)

〈S |R〉 the group generated by the set S with relations R

Group actions

Symbol Explanation

x.g the image of the point x under the action of the group element g

stabG(x) the stabilizer of the point x in the group G

orbG(x) the orbit of the point x under the group G
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Commutators

Symbol Explanation

[g, h] the commutator of the group element g and h; [g, h] = g−1h−1gh

[S, g] the subset {[s, g] | s ∈ S} of an ambient group

[g, S] the subset {[g, s] | s ∈ S} of an ambient group

[H,L] the subgroup generated by all commutators [h, l], h ∈ H, l ∈ L

Subgroups

Symbol Explanation

Z(G) the center of the group G

C(S),CG(S) the centralizer of the set S (inside the group G)

G′, G(1) the commutator subgroup of G

G(i) the ith term in the derived series of G (i ∈ N)

γi(G) the ith term in the lower central series of G (i ∈ Z+)

γω(G) the subgroup
⋂
i∈Z+

γi(G) of G

Permutations

Symbol Explanation

Sym(Ω) the symmetric group on the finite set Ω

Alt(Ω) the alternating group on the finite set Ω

Sn the symmetric group of degree n

An the alternating group of degree n

Ãn the Schur covering group of the finite alternating group An

id, idΩ the identity permutation (on the set Ω)

supp(σ) the support of the permutation σ

ck(σ) the number of k-cycles of the permutation σ

(kck)k∈Z+ the cycle type of a permutation

Ck(σ) the set of k-cycles of the permutation σ

Ωk(σ) the support of all the k-cycles of the permutation σ

nk(σ) the size of Ωk(σ); nk(σ) = kck(σ)
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Vector spaces and linear maps

Symbol Explanation

k the ground field

0 the zero vector

−v the additive inverse of the vector v

u+ v the sum of the vectors u and v

λv the vector v multiplied by the scalar λ

dim(V ) the dimension of the vector space V

codim(U) the codimension of a subspace U of V

U ∼= V the vector spaces U and V are isomorphic

U ≤ V U is a vector subspace of V

U < V U is a proper vector subspace of V

Sub(V ) the set of vector subspaces of V

U ∩W the intersection of the vector subspaces U and W

U ⊕ V the direct sum of the vector spaces U and V⊕
i∈I Vi the direct sum of the vector spaces Vi (i ∈ I)

ϕ : U → V ϕ is a linear map from U to V

ϕ : U ↪→ V ϕ is an injective linear map from U to V

ϕ : U � V ϕ is a surjective linear map from U to V

ϕ⊕ ψ the direct sum of the linear maps ϕ and ψ⊕
i∈I ϕi the direct sum of the linear maps ϕi (i ∈ I)

im(ϕ) the image of the linear map ϕ

ker(ϕ) the kernel of the linear map ϕ

rk(ϕ) the rank of the linear map ϕ

V/W the quotient vector space of V by the subspace W

〈v1, . . . , vn〉 the subspace generated by the vectors v1, . . . , vn

det(g) the determinant of the linear endomorphism g

tr(g) the trace of the linear endomorphism g

F (χ) the Frobenius block of a (monic) polynomial χ ∈ k[X]

Je(λ) the Jordan block of size e ∈ Z+ with eigenvalue λ ∈ k
cχ(g) the number of Frobenius blocks F (χ) the generalized Jordan normal

form of g

Vχ(g) the F (χ)-isotypic vector space part in the generalized Jordan normal

form of g

nχ(g) the dimension of Vχ(g); nχ(g) = deg(χ)cχ(g)

id, idV the identity (on the vector space V )

diag(λ1, . . . , λn)the diagonal matrix with entries λ1, . . . , λn on the diagonal

End(V ),M(V ) the ring of endomorphisms of the vector space V

PM(V ) the projective space associated to M(V )
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Mn(k) the endomorphism ring M(kn)

GL(V ) the general linear group of V ; GL(V ) = M(V )×

SL(V ) the special linear group of V

PGL(V ) the projective general linear group of V

PSL(V ) the projective special linear group of V

GLn(k) the general linear group of degree n over the field k

SLn(k) the special linear group of degree n over the field k

PGLn(k) the projective general linear group of degree n over the field k

PSLn(k) the projective special linear group of degree n over the field k

Classical groups of Lie type and spaces with form

Symbol Explanation

Fq the finite field with q elements

p = char(Fq) the characteristic of the defining field

V the natural module

GLn(q) the group GLn(Fq)
SLn(q) the group SLn(Fq)
PGLn(q) the group PGLn(Fq)
PSLn(q) the group PSLn(Fq)
σ the sesquilinear map x 7→ xq

f(u, v) the σ-sesquilinear form f applied to the vectors u and v

Q(v) the quadratic form Q applied to the vector v

u ⊥ v the vectors u and v are perpendicular, i.e., f(u, v) = 0

U ⊥W the spaces U and W are perpendicular, i.e., u ⊥ w for all u ∈ U , w ∈W
Z = U ⊥W Z is the orthogonal direct sum of U and W , i.e., Z = U⊕W and U ⊥W
U⊥ the perpendicular space of U ; U⊥ = {v ∈ V |u ⊥ v for all u ∈ U}
rad(f) the radical of f ; rad(f) = V ⊥

rad(Q) the radical of Q; rad(Q) = rad(f) ∩ {v ∈ V |Q(v) = 0}
GI(V, f) the full isometry group of (V, f)

GI(V,Q) the full isometry group of (V,Q)

Sp2m(q) the symplectic group of degree 2m over Fq
GO2m+1(q) the general orthogonal group of degree 2m+ 1 over Fq
GOε

2m(q) the general orthogonal group of degree 2m of ε type over Fq (ε = ±)

SO2m+1(q) the special orthogonal group of degree 2m+ 1 over Fq
SOε

2m(q) the special orthogonal group of degree 2m of ε type over Fq (ε = ±)

Ω2m+1(q) the kernel of the spinor norm (or quasideterminant for p = 2)

Ωε
2m(q) the kernel of the spinor norm (or quasideterminant for p = 2; ε = ±)

SO3(R) the special orthogonal group of degree three over R
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GUn(q) the general unitary group of degree n over Fq2
SUn(q) the special unitary group of degree n over Fq2
Un the general unitary group of degree n over C
SUn the special unitary group of degree n over C
PSp2m(q) the projective symplectic group of degree 2m over Fq
PGO2m+1(q) the projective general orthogonal group of degree 2m+ 1 over Fq
PGOε

2m(q) the projective general orthogonal group of degree 2m of ε type over Fq
(ε = ±)

PSO2m+1(q) the projective special orthogonal group of degree 2m+ 1 over Fq
PSOε

2m(q) the projective special orthogonal group of degree 2m of ε type over Fq
(ε = ±)

PΩ2m+1(q) the group Ω2m+1(q)/{± id}
PΩε

2m(q) the group Ωε
2m(q)/{± id} (ε = ±)

PGUn(q) the projective general unitary group of degree n over Fq2
PSUn(q) the projective special unitary group of degree n over Fq2

Ring and field theory

Symbol Explanation

0, 1 the neutral element with respect to addition resp. multiplication

a+ b the sum of the ring elements a and b

ab the product of the ring elements a and b

a−1 the inverse of the unit a

R× the units of the ring R

rR the right ideal generated by r ∈ R
(r) the principal ideal generated by r ∈ R
R/I the quotient of the ring R by its ideal I

rα the image of the ring element r under the ring automorphism α

Rα the fixed ring of the ring automorphism α on R

Iα the subset of the ideal I fixed pointwise by α

Aut(R) the automorphism group of the ring R

S+k the k-fold sum of the subset S of a ring; S+k = {s1+· · ·+sk | s1, . . . , sk ∈
S}

C(S),CR(S) the centralizer of the set S (in the ring R)

R[X1, . . . , Xn] the polynomial ring over R with free commuting variables X1, . . . , Xn

deg(r) the degree of the polynomial r ∈ R[X]

Φn(X) the nth cyclotomic polynomial (of degree ϕ(n))

k the algebraic closure of the field k

k[G] the group algebra of G
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trL/K(x) the trace of x ∈ L with respect to the subfield K

Gal(L/K) the Galois group of the Galois extension L/K

Ultraproducts and norms

Symbol Explanation

I an index set

U a non-principal ultrafilter

HU the algebraic ultraproduct of the sequence H of groups along the ultra-

filter U
Hmet
U the metric ultraproduct of the sequence H of normed groups along the

ultrafilter U
limU the limit operator associated to the ultrafilter U
`, `H a length function (on the group H)

`d, dd the discrete length function (and the associated metric)

`c, dc the normalized conjugacy length function (and the associated metric)

`H, dH the normalized Hamming length function (and the associated metric)

`rk, drk the normalized rank length function (and the associated metric)

`pr, dpr the normalized projective rank length function (and the associated met-

ric)

`Cay,S , dCay,S the Cayley length function for the set S (and the associated metric)

Special symbols in Chapter 1

Symbol Explanation

H = (Hi)i∈I a sequence of quasisimple groups Hi (i ∈ I)

S(H) the quasiscalars of the quasisimple group H (see page 20)

A0 the subgroup of G =
∏
H defined on page 28

A1 the subgroup of G =
∏
H defined on page 28

N0 the subgroup of G =
∏
H defined in Theorem 1.3 (see page 18)

N1 the subgroup of G =
∏
H defined on page 28

Nrk the subgroup of G =
∏
H defined in Theorem 1.3 (see page 18)

Npr the subgroup of G =
∏
H defined in Theorem 1.3 (see page 18)

Φ,Ψ maps defined in Theorem 1.3(iii) (see page 19)

L a poset defined on page 26

∼ an equivalence relation on L defined on page 26

(L/ ∼,≤) a linear order defined on page 26
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L a subset of L/ ∼ defined on page 26

ct the convergence type (see page 26)

α, β maps defined in Lemma 1.22 (see page 27)

GO(U) the general orthogonal group on the submodule U

SO(U) the special orthogonal group on the submodule U

Special symbols in Chapter 2

Symbol Explanation

C a class of finite groups

CP the class of finite products of C-groups

CSP the class of subgroups of finite products of C-groups

Fin the class of all finite groups

Alt the class of all finite alternating groups

Abd the class of all finite d-generated abelian groups (d ∈ N)

Nil the class of all finite nilpotent groups

Sol the class of all finite solvable groups

PSL the class of all finite simple groups PSLn(q)

`F the word length function on the free group F (see page 38)

B%(F) the %-ball of F around the identity 1F in the word metric (see page 38)

S the closure of the set S in the pro-C topology (see page 38)

F̂ the profinite completion of F

Special symbols in Chapter 3

Symbol Explanation

w a non-trivial word

w(g1, . . . , gr) the word map w applied to the tuple (g1, . . . , gr) of group elements

trw the trace of the word map w (see page 62)

O Landau’s O notation

Ω Landau’s Ω notation

rad(x) the radical of the number x ∈ Z+ (see page 57)

πy(x) the y-part of x (x, y ∈ Z+; see page 57)

Lq the projective line over Fq
[a : b] a point on the line Lq ((a, b) ∈ F2

q \ {(0, 0)})
w(G) the image of the word map associated to w on the group G

K the one-relator group F2/〈〈w〉〉 (see page 67)
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X the Cayley complex of the one-relator group K (see page 67)

Γ the Cayley graph Cay(K, {x, y})
X(π) the quotient of X by π (see page 67)

Γ(π) the Cayley graph Cay(G, {g, h}) (see page 67)

X1(π), X2(π) the 1- and 2-skeleton of X(π)

(C•, d•) the chain complex defined on page 68

(C•, d•) the cochain complex defined on page 68

(C•(π), d•(π)) the chain complex defined on page 67

(C•(π), d•(π)) the cochain complex defined on page 67

supp(y) the support of y =
∑

v∈G λvv ∈ k[G]; supp(y) = {v ∈ G |λv 6= 0}
r∗ the dual polynomial of r (see page 79)

tr±1
τ the map x 7→ x± xτ (see page 80)

tr±1
α the map x 7→ x± xα (see page 84)

Nτ the map x 7→ xxτ (see page 80)

Nα the map r 7→ rrα (see page 80)

Dji the jth Hasse derivative of the polynomial i; Dj(Xn) =
(
n
j

)
Xn−j

U∗ the space of σ-semilinear functionals on the vector space U

GU(`2G) the general unitary group of the Hilbert space `2G

Special symbols in Chapter 4

Symbol Explanation

H = (Hi)i∈I a sequence of groups Hi (i ∈ I; see page 91)

G = Hmet
U the metric ultraproduct of the groups Hi (i ∈ I; see page 91)

G = G/Z(G) the unique simple quotient of G

SU a metric ultraproduct of groups Sni (i ∈ I; see page 92)

GLU a metric ultraproduct of groups GLni(qi) (i ∈ I; see page 92)

GLU (q) a metric ultraproduct of groups GLni(q) (i ∈ I; see page 92)

SpU a metric ultraproduct of groups Sp2mi(qi) (i ∈ I; see page 92)

SpU (q) a metric ultraproduct of groups Sp2mi(q) (i ∈ I; see page 92)

GOU a metric ultraproduct of groups GO±2mi(qi) or (for qi odd) GO2mi+1(qi)

(i ∈ I; see page 92)

GOU (q) a metric ultraproduct of groups GO±2mi(q) or (for q odd) GO2mi+1(q)

(i ∈ I; see page 92)

GUU a metric ultraproduct of groups GUni(qi) (i ∈ I; see page 92)

GUU (q) a metric ultraproduct of groups GUni(q) (i ∈ I; see page 92)

PGLU a metric ultraproduct of groups PGLni(qi) (i ∈ I; see page 92)

PGLU (q) a metric ultraproduct of groups PGLni(q) (i ∈ I; see page 92)

PSpU a metric ultraproduct of groups PSp2mi(qi) (i ∈ I; see page 92)
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PSpU (q) a metric ultraproduct of groups PSp2mi(q) (i ∈ I; see page 92)

PGOU a metric ultraproduct of groups PGO±2mi(qi) or (for qi odd)

PGO2mi+1(qi) (i ∈ I; see page 92)

PGOU (q) a metric ultraproduct of groups PGO±2mi(q) or (for q odd) PGO2mi+1(q)

(i ∈ I; see page 92)

PGUU a metric ultraproduct of groups PGUni(qi) (i ∈ I; see page 92)

PGUU (q) a metric ultraproduct of groups PGUni(q) (i ∈ I; see page 92)

MU the metric ultraproduct of the rings Mni(qi) (i ∈ I; see page 92)

MU (q) the metric ultraproduct of the rings Mni(q) (i ∈ I; see page 92)

MU (k) the metric ultraproduct of the rings Mni(k) for a field k

PMU the metric ultraproduct of the spaces PMni(qi) (i ∈ I; see page 92)

PMU (q) the metric ultraproduct of the spaces PMni(q) (i ∈ I; see page 92)

fi, Qi the sesquilinear resp. quadratic form stabilized by Hi (i ∈ I; see page 92)

rk(σ), rξ(g) quantities defined on page 93

r(σ), r(g) the tuple (rk(σ))k∈Z+ resp. (rχ(σ))χ∈k[X]

qk(σ), qχ(g) quantities defined on page 93

q(σ), q(g) the tuple (qk(σ))k∈Z+ resp. (qχ(σ))χ primary

(S, µ) the Loeb space defined on page 97

(V, dim) the continuous geometry defined on page 97

Ωk(σ), Vχ(g) the extension of the corresponding expressions to S resp. V (see Re-

mark 4.7; page 98)

Cconf(g) the conformal centralizer of g ∈ G; Cconf(g) = {h ∈ G | gh =

zhg for some z ∈ Z(G)}
C2(g),C2

conf(g) the double (conformal) centralizer of g (see page 103)

eH(o) the quantity defined on page 108 for a group H and o ∈ Z+
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(S, ε, δ•)-homomorphism, 33

F (χ)-isotypic linear map, 10

C-approximable abstract group, 33

C-approximable topological group, 34

C-group, 33

C-separable normal subgroup, 38

%-ball in a normed group, 38

k-fold product of a subset, 7

k-isotypic permutation, 8

q-Frobenius map, 10

algebraic closure of a field, 13

algebraic ultraproduct, 13

almost simple group, 44

alternating bilinear form, 10

alternating group, 8

automorphism group, 7

Cayley length function, 15

center, 8

centralizer, 8, 13

characteristic of a field, 10

codimension, 9

commutator, 8

commutator subgroup, 8

compactification of a group, 50

conjugacy class, 7

conjugate, 7

conjugate-symmetric sesquilinear form, 10

continuous geometry, 97

convergence type, 26

cycle type of a permutation, 8

cyclic group, 7

cyclotomic polynomial, 13

degree of a polynomial, 13

derived series, 8

determinant, 9

dimension of a vector space, 8

direct product of groups, 7

direct sum, 9

discrete length function, 15

double centralizer, 103

double conformal centralizer, 103

exponent of a group, 7

extensions of groups, 8

field trace, 13

finite field, 10

fixed ideal, 13

fixed point set of a permutation, 8

fixed ring, 13

form of minus type, 11

form of plus type, 11

free group, 7

Frobenius block, 9

full isometry group, 11

Galois extension, 13

Galois group, 13

general linear group, 10

general orthogonal group, 11

general unitary group, 11

generalized Jordan normal form, 9

generated normal subgroup, 7

generated subgroup, 7

generated subspace, 9

generator, 8

group action, 8

group algebra, 13

group homomorphism, 7
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group presentation, 8

identity, 10

identity permutation, 8

image of a group homomorphism, 7

image of a linear map, 9

injective homomorphism, 7

intersection of subgroups, 7

intersection of subspaces, 9

invariant length function, 14

inverse element, 7

inverse vector, 8

isomorphic groups, 7

isomorphic vector spaces, 9

isotropic vector, 10

isotypic linear map, 10

isotypic permutation, 8

Jordan block, 9

kernel of a group homomorphism, 7

kernel of a linear map, 9

length function, 14

linear map, 9

linearly equivalent forms, 11

Lipschitz continuous, 16

Lipschitz equivalent, 16

Loeb space, 97

lower central series, 8

matrix ring, 9

metric ultraproduct, 14

monic polynomial, 9

multiplicative inverse, 13

natural homomorphism, 7

natural module, 12

neutral element, 7

non-degenerate quadratic form, 11

non-singular quadratic form, 11

non-singular sesquilinear form, 11

non-singular subspace, 11

non-trivial word, 7

norm, 14

normal subgroup, 7

normal subset, 7

normalized conjugacy length function, 15

normalized Hamming length function, 15

normalized projective length function, 15

normalized rank length function, 15

normed group, 14

orbit, 8

order of a group element, 7

orthogonal direct sum, 10

orthogonally indecomposable, 77

perpendicular space, 11

perpendicular subspaces, 10

perpendicular vectors, 10

polynomial ring, 9, 13

power word, 55

primary ideal, 9

primary polynomial, 9

primary rational canonical form, 9

principal ideal, 13

pro-C topology, 37

product of group elements, 7

product of ring elements, 13

projective general linear group, 10

projective general orthogonal group, 12

projective general unitary group, 12

projective special linear group, 10

projective special orthogonal group, 12

projective special unitary group, 12

projective symplectic group, 12

pseudofinite group, 50

quadratic form, 10

quotient group, 7

quotient vector space, 9

radical of a form, 11

rank of a free group, 7

rank of a linear map, 9
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relation, 8

right ideal, 13

ring automorphism, 8

scalar multiple, 8

Schur covering group, 8

self-dual polynomial, 79

semilinear functional, 78

semisimple element, 99

special linear group, 10

special orthogonal group, 12

special unitary group, 12

stabilizer, 8

subgroup, 7

subspace, 8

sum of ring elements, 13

sum of vectors, 8

support of a permutation, 8

surjective homomorphism, 7

symmetric bilinear form, 10

symmetric group, 8

totally isotropic subspace, 11

trace, 9

trivial group, 7

Turing-approximable group, 50

ultralimit, 14

units of an algebra, 10

Witt subspace, 11

word, 7

word map, 53

wreath product, 8

zero vector, 8
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