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Abstract

Concrete is a predominant construction material due to several advantages; however, the

pure cementitious composites have shown quasi-brittle behavior with undesirable typical

large cracks under tensile loading conditions. Thus, the addition of a small volume of

short fibers is a well-known strategy to increase the ductility and toughness of cementi-

tious matrices besides optimization of the crack opening. Strain-hardening cement-based

composites (SHCCs) is a particular class of fiber-reinforced concretes (FRCC) that can de-

velop controlled multiple cracks while subjected to incremental tensile loading conditions.

However, a proper composition design, especially concerning fiber and bond properties, still

follows a trial and error approach.

This work presents a newly developed model to simulate SHCC at the meso-scale level.

This model is based on Finite-Element-Method and allows for nonlinear behavior for cement

matrix, fiber material, and bond laws. Concerning three complexities of target FRCC, i.e.,

crack formation in the cement matrix, a large number of explicit fibers with arbitrary random

distribution, and fibers’ interaction with the cement matrix via the bond, extra features are

added to standard FE consist of:

• Further development of the Strong Discontinuity Approach (SDA) to model discrete

cracking of continuum elements on the element level

• Discretization of single fibers by truss elements with truss nodes independently placed

of continuum nodes

• Connecting SDA elements to explicit truss elements by particular bond elements.

In this research study, first, theoretical basics and special implementation issues were de-

scribed. Later, this newly developed model was calibrated with several simple configurations.

The bond law utilized in the simulation was derived from single fiber pullout test and calib-

rated with several analyses. In the next step, 2D SHCC dumbbell specimens under tensile

loading condition were simulated, and a series of numerical case studies were performed to

assess the quality, credibility, and limitations of the numerical model. It should be noted
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that cracking patterns could not be directly compared to experimental cracking patterns

as the simulation model’s current state is deterministic by random material properties that

influence the experimental specimen behavior. Taking the effect of random field and other

simplifying assumptions into account, the simulation model seems to describe enumerated

SHCC behavior at an acceptable level.

In summary, a further base is given for the target-oriented design of FRCC material com-

position to reach the given objectives of material properties. The concepts and methods

presented in this study can simulate short and thin polymer fibers in a random position and

steel fibers and structures with long reinforcement in a regular arrangement.
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Kurzfassung

Beton ist aufgrund mehrerer Vorteile ein vorherrschender Baustoff. Die reinen zementhalti-

gen Verbundwerkstoffe zeigten jedoch ein quasi sprödes Verhalten mit unerwünschten typis-

chen großen Rissen unter Zugbelastungsbedingungen. Daher ist, neben der Optimierung der

Rissöffung, die Zugabe eines kleinen Volumens von kurzen Fasern eine bekannte Strategie, um

die Duktilität und Zähigkeit von zementhaltigen Matrizen zu erhöhen. Verbundwerkstoffe

auf Zementbasis mit Verfestigungseigenschaften (SHCCs) sind eine besondere Klasse von

faserverstärkten Betonen (FRCC), die unter inkrementellen Zugbelastungsbedingungen kon-

trollierte Mehrfachrisse entwickeln können. Ein geeignetes Zusammensetzungsdesign, ins-

besondere in Bezug auf Faser- und Verbundeigenschaften, folgt jedoch immer noch der

Versuch-und-Irrtum-Methode.

Diese Arbeit präsentiert ein neu entwickeltes Modell zur Simulation von SHCC auf mesosk-

aliger Ebene. Dieses Modell basiert auf der Finite-Elemente-Methode und ermöglicht nicht-

lineares Verhalten für Zementmatrix-, Fasermaterial- und Verbundgesetze. In Bezug auf drei

Komplexitäten des Ziel-FRCC, d.h. die Rissbildung in der Zementmatrix, eine große Anzahl

expliziter Fasern mit zufälliger Verteilung und die Wechselwirkung der Fasern mit der Ze-

mentmatrix über den Verbund, werden der Standard-Finite-Elemente-Methode zusätzliche

Merkmale hinzugefügt:

• Weiterentwicklung des Strong Discontinuity Approach (SDA) zur Modellierung der

diskreten Rissbildung von Kontinuumselementen auf Elementebene

• Diskretisierung einzelner Fasern durch Stabelemente mit Knoten, die unabhängig von

Kontinuumsknoten angeordnet sind

• Verbinden von SDA-Elementen mit beliebig angeordneten Stabelementen durch neu

entwickelte Verbundelemente

In dieser Forschungsstudie wurden zunächst theoretische Grundlagen und spezielle Imple-

mentierungsprobleme beschrieben. Später wurde dieses neu entwickelte Modell mit mehreren

einfachen Konfigurationen kalibriert. Das in der Simulation verwendete Verbundgesetz wurde
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aus einem Einzelfaser-Ausziehtest abgeleitet und mit mehreren Analysen kalibriert. Im näch-

sten Schritt wurden 2D-SHCC-Hantelproben unter Zugbelastungsbedingungen simuliert und

eine Reihe numerischer Fallstudien durchgeführt, um die Qualität, die Anwendungsmög-

lichkeiten und Einschränkungen des numerischen Modells zu bewerten. Es ist zu beachten,

dass Rissmuster nicht direkt mit experimentellen Rissmustern verglichen werden konnten, da

der aktuelle Zustand des Simulationsmodells durch zufällige Materialeigenschaften bestimmt

wird, die das Verhalten der experimentellen Probe beeinflussen. Unter Berücksichtigung des

Effekts des Zufallsfelds und anderer vereinfachender Annahmen scheint das Simulationsmod-

ell das aufgezählte SHCC-Verhalten auf einem akzeptablen Niveau zu beschreiben.

Zusammenfassend wird eine weitere Grundlage für das zielgerichtete Design der FRCC-

Materialzusammensetzung angegeben, um die vorgegebenen Ziele der Materialeigenschaften

zu erreichen. Die in dieser Studie vorgestellten Konzepte und Methoden können kurze und

dünne Polymerfasern in zufälliger Position und Stahlfasern und -strukturen mit langer Ver-

stärkung in regelmäßiger Anordnung simulieren.
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1 INTRODUCTION

1.1 BACKGROUND

Concrete can be considered as a sophisticated stone consist of aggregates cemented by hy-

draulic cement paste. However, the pure cementitious composites have shown quasi-brittle

behavior with undesirable typical large cracks under tensile loading conditions. Thus, the

addition of a small volume of short fibers is a well-known strategy to increase the ductility

and toughness of cementitious matrices besides optimization of crack opening[20, 72, 122, 83].

An extensive range of composite material properties can be obtained with wide ranges of

properties of fibers and cement matrix. This leads to challenges regarding material design.

The composition of constituents still follows an experimental trial and error process when

objectives for composite material properties are given. Even with known characteristics of

fibers and cement matrix, their interaction due to bond, random fiber orientation, and matrix

cracking is complex. Hence, the behavior of the composite is generally not predictable with

ordinary material models. Thus, several material models explicitly regarding fibers, cement

matrix, and bond have been developed. A respective mesoscopic scale treats a composite as

a structure and puts complex composite material behavior down to constituents’ structural

behavior with each component’s known behavior. Numerous studies have indicated that

Finite-Element-Method (FEM) has proven to provide extremely high adaptability to model

all types of structures [9, 17]. In the present research study, specific approaches are discussed

besides the standard finite elements regarding the mesoscopic modeling of FRCC. This con-

cluded crack formation in the cement matrix, a large number of fibers with arbitrary random

distribution, and the interaction of fibers with cement matrix via the bond. In previous stud-

ies, two approaches are introduced to model the cracking. i.e., smeared crack approaches

and discrete crack approaches. The Smeared crack techniques need regularization techniques

to avoid mesh sensitivity and to reproduce crack energies[13, 12, 51, 100]. These approaches

can be sophisticated if the element sizes are much larger or smaller than the thickness of

so-called crack bands developing due to the quasi-brittle behavior of concrete. In the latter
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1 INTRODUCTION

approach, discrete cracks can be modeled by using interface elements located along con-

tinuum elements boundaries [75]. However, this approach requires a remeshing technique

to capture crack paths[23]. As alternative methods for modeling the discrete cracks as in-

terface elements requires remeshing are Extended-Finite-Element (XFEM) [81, 39, 117] and

the Strong-Discontinuity-Approach (SDA) [35, 52, 97, 4, 5]

Both approaches provide an explicit evaluation of crack width to imply crack tractions and

need no further regularization for mesh objectivity and fracture energy reproduction. XFEM

introduces additional degrees of freedom on the system level, which makes this approach

inconvenient for structures with a large number of cracks. SDA condenses discontinuity

degrees of freedom on the element level leading to enhanced element formulations that do

not explicitly carry additional degrees of freedom to the system level. This makes SDA more

appropriate in case of a large number of cracks.

Three different classes are introduced in the formulation of SDA: Statically Optimal Sym-

metric (SOS), Kinematically Optimal Symmetric (KOS), and Statically and Kinematically

Optimal Nonsymmetric (SKON) [52, 127]. The SDA formulation discussed in the present

research is similar to the KOS; both follow the same way in constructing the matrix of

the strain functions in discontinuity. Two alternative approaches are suggested to treat the

discontinuity or the crack path across neighboring elements. i.e., continuous path and dis-

continuous path. Crack path continuity may be enforced by tracking algorithms [98], but

this stimulates locking effects, specifically in the SOS formulation [127]. The extension of

crack path discontinuities can be reduced by minimizing element sizes whereby the crack

path is clearly indicated. A control of implausible multiple crack path courses is proposed

with adaption methods[110]. Relations for crack tractions depending on crack width are de-

rived from experimental investigations about concrete tensile failure behavior [110, 34, 58].

They generally introduce nonlinearities, e.g., in case non-monotonic behavior with un- and

reloading of cracks in inhomogeneous structures during a loading history.

In modeling of FRCC, fibers have to be treated in addition to the cracked continuum. Models

suggested in previous studies are based on FEM using (1) a smeared crack approach and

stress-strain curves obtained from experiments[60, 116, 42, 119]. These models can be used

just for specific structural elements under the same conditions as applied for experimental

specimen [99]. (2) Discrete crack approaches with crack-width determination, as discussed

above, are used with concerning advanced mechanical property determination due to fiber
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1.2 AIM AND OBJECTIVE

bridging [37, 76]. (3) Bond stress-slip based models where the fibers are discretely modeled

in the cement matrix at the meso-level [22]. In this approach, a wide range of FRCC

regardless of fiber lengths and fiber types can be analyzed. Discrete or smeared approaches

can be applied depending on the crack traction-crack width law or stress-strain softening law

whereby the material properties are assumed as homogenized, finally yielding a macroscopic

approach suitable for the analysis of whole structures.

Mesoscopic models explicitly distinguishing cement matrix, fibers, and fiber-matrix bond

are summarized by [3]. Fibers are treated as embedded elements, whereas the mesh of a

fiber cloud is generated independently from the cement matrix mesh. Moreover, a coup-

ling procedure is used to connect these two independent meshes. These models can also

investigate the effect of production techniques and conditions[120]. Some proposals modify

the constitutive law to consider the effect of fiber-matrix interaction, whereas bond is con-

sidered as rigid [104, 26, 27]. Fibers are modeled as embedded elements. Discrete forces are

applied to the continuum mesh near the fiber ends position to consider fibers’ effect in the

analysis[105]. Furthermore, this effect is described using closing loads to replace the inter-

action between fiber, crossing a cohesive crack, and the matrix [109]. Various approaches

for the fiber-matrix interaction use analytical relations derived from pullout tests, e.g. [63]

basing on experimental investigations [64, 65], or [105] concluding from the model by [44].

Lattice models as alternatives to FEM are proposed, e.g., by [55].

1.2 AIM AND OBJECTIVE

Strain-hardening cement-based composite (SHCC) is a particular class of fiber-reinforced

cement composites (FRCC), which offers a high potential to improve structural behavior

regarding tensile strength and ductility [68, 67, 90]. Thus, a large number of thin, short

polymer fibers are mixed within a matrix of fine-grained concrete. The presented study’s

target composite is a high-strength SHCC made with ultra-high molecular weight polyethyl-

ene (UHMWPE or shortly PE). These fibers have a length of 6 mm and a diameter of 20 µm

[29], which nominal strength is 2 500N/mm2 with a brittle failure mode. The volume frac-

tion of fibers is 2% of the volume regarding the cement matrix. The particular cementitious

matrix used in SHCC has high cement content, a low water-to-binder ratio, a small amount

of fine sand, and no coarse sand or aggregates. This matrix should guarantee a proper in-

teraction with the hydrophobic PE fibers. Thus, this has to provide a high packing density
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1 INTRODUCTION

and strength [30, 31]. The mechanical response of FRCC significantly influenced the cement

matrix, shape, and distribution of fibers in the composite, the mechanical properties of the

interface between the cement matrix and individual fibers[20]. Low tensile strength and

fracture energy are beneficial regarding the development of multiple steady-state cracks and

strain-hardening in the FRCC composite. The strength of the bond between fibers and mat-

rix should be adjusted to let the fibers be active in load-bearing in the crack bridging stage

while ensuring adequate free length for fiber deformation with crack opening and preventing

premature fiber failure.

The work presented herein provides a numerical method that aims to simulate the fiber-

reinforced cementitious composite behavior. It uses the mesoscopic approach combining

models for discrete matrix cracking, explicit fibers, and flexible bond for every single fiber

explicitly.

The model discretization is described by finite elements whereby small displacements and

strains are assumed. The discretized model differentiates continuous and discontinuous con-

tributions to the cement matrix continuum’s displacement field, whereby the discontinu-

ous contributions are treated on the element level with SDA. In this study, discontinuous

displacement contributions are also synonymously referred to as cracks. The extension of

an uncracked continuum element to a cracked SDA element is commanded regarding the

Rankine criteria to be defined and depends on the loading history. Thus, a single element

can experience multiple cracking in different orientations. Cracking is combined with crack

tractions transferred over cracks within the fictitious or cohesive crack concept to dissipate

fracture energy. The loading history can treat different loading conditions, i.e., monotonic

crack loading, unloading, crack closure, and reloading.

Furthermore, truss elements with their nodes independent from continuum element nodes

are arbitrarily embedded in the continuum to model single fibers. Unique bond elements

are utilized to model the interaction between continuum elements and single truss elements.

These elements connect truss nodes and neighbor continuum nodes like a spring for both un-

cracked and cracked elements in a like manner whereby different mechanical characteristics

can be assigned as the bond law, e.g., nonlinear material behavior whereas in a local system

aligned to the truss direction, the longitudinal slip reproduces a given bond behavior and

the lateral slip or intersection is basically avoided by a penalty term.
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1.3 OUTLINE

1.3 OUTLINE

The entire work is structured in six chapters overall. After a general introduction to the

study in chapter 1, the background history and different classification of FRCC and its

components are discussed in chapter 2. Later, the simulation of the fiber pullout test, for

the specific type of fiber used in the enumerated SHCC, is performed within DIANA software

to validate and calibrate the bond-slip relationship, which will be assigned as the bond law

in further simulations.

Different discretization approaches are explained briefly in chapter 3. Three different 2D

sections derived from a random 3D meso-model contain aggregates and mortar are analyzed

to study the differences between these methods. The aggregates are randomly distributed in

the 3D reference model. Several numerical parametric studies are performed to see the mesh

sensitivity of each discretization approach besides studying the influence of random field on

total response.

In chapter 4, the newly developed model is described based on other existing similar ap-

proaches. This model utilizes a discrete matrix cracking approach, and randomly distributed

fibers are modeled explicitly and independently from matrix discretization points. Select

types of elements are introduced, connecting the fiber nodes to neighboring matrix nodes

like a spring. Various types of material behavior can be assigned as bond law to these

bond elements. Later, other numerical aspects required for further numerical simulations

are discussed in detail. Furthermore, numerical case studies are conducted to calibrate and

validate the enumerated numerical method. With the use of these benchmarks, first, the

mesh objectivity of the model is investigated, then different scenarios for the position of fiber

concerning to continuum are considered.

Following this, in chapter 5, a numerical model to simulate a total response of 2D SHCC

dumbbell specimen under tensile loading condition is discussed. The experiment set-up,

loading condition, mechanical properties of specimens are explained, and several numerical

parametric studies are conducted to validate the developed numerical model. The study is

extended in sections of this chapter by further, more in-depth search for influences associated

with mechanical properties of each component of FRCC and model characteristics. In the

end, based on the finding of the study, weaknesses are identified, and enhancements are

proposed.
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2 MATERIAL MODELS

Nowadays, the addition of a small volume of short fibers is a well-known strategy to in-

crease the ductility and toughness of cementitious matrices besides optimizing the crack

opening. In contrast, the pure cementitious composites have shown quasi-brittle behavior

with undesirable typical large cracks under tensile loading condition[20, 72, 122, 83]. This

chapter aims to provide a historical perspective of different components in fiber-reinforced

composites with particular focus on SHCC, which is the target FRC in this research.

2.1 CONCRETE

2.1.1 Structure of concrete as a multi-level system

Concrete can be considered as a sophisticated stone consist of aggregates cemented by hy-

draulic cement paste. The typical response of aggregates can be considered linearly elastic

within the service load range while the mortar is described as a viscoelastic material. The

heterogeneous structure of concrete is explained in terms of a multi-level hierarchy-system.

Concrete is a composite material with a variety of inhomogeneities and structural defects

of different sizes. By simplifying the real structure, scientists have suggested various clas-

sifications for different characteristic levels in order to consider different effects of crack

propagation and crack arresting in concrete.

In research published by Zaitsev and Wittmann in 1981, four different levels of the system

are introduced to classify the concrete based on the inhomogeneities and structural imperfec-

tions of various sizes[126]. The first level is the macro-level which the main inhomogeneities

are given by "big"’ inclusions such as aggregates[118]. The typical linear dimensions of rep-

resentative volume element (RVE) are in order of magnitude of 100mm, and the minimum

dimensions are at least four times the maximum size of aggregate. The average stress and

strain of this RVE are called macro-stress and macro-strain, and the relationship between
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2 MATERIAL MODELS

these two parameters is highly nonlinear, which can be caused by the propagation of im-

perfections. These values are used for the characterization of plain concrete and reinforced

composite structures. The cracks in the interfaces between mortar and aggregates are the

main structural failures at this level. Stress and strain values computed from the meso-level

are used to understand the behavior of these shrinkage cracks.

The second level is the meso-level, which mortar volume between "big" inclusions is con-

sidered, and "little" inclusions define the main inhomogeneity represents the fine aggregates.

Since there is a low chance of occurrence of shrinkage cracks compare to macro-level systems,

they are neglected in this level. Consequently, the effect of "little" inclusions is represented

by some modification factors. The linear dimensions of RVE are in typical order of magnitude

of 10mm. The average stress and strain of this RVE are called meso-stress and meso-strain,

and the relationship between these two parameters is assumed to be quasi-linear.

Micro-level is the third level in which the hardened matrix between "little" inclusions is

considered in the model, and "big" pores demonstrate the main inhomogeneities. The linear

dimensions of RVE are in almost 0. 5mm, whereas the maximum size of pores can be in the

order of magnitude of 10−1 mm. The micro-stress and micro-strain are the average stress and

strain of this RVE, and their relationship is assumed nearly linear. Pores can be distributed

randomly with a high range of various sizes and random shapes.

The complicated pore system’s recommended shape is "hole-with-notch" shape for pores,

leading to cracks due to stress concentration. There can be so-called priori cracks due to

shrinkage stresses in the unloaded specimen. In Fig. 2.1, all cracks are assumed coplanar

and oriented in the direction of applied compressive stress to make the worse scenario. The

cracks will propagate gradually by increasing the load. The related crack length λ, which is

crack length divided by the pore’s radius, depends on the applied load as shown in Eq. (2.1).

qpo =

√
π · Eλ

2 · rpo

√
(1 + λ)7

(1 + λ)2 − 1
(2.1)

where qpo is the applied load, Eλ is the modulus of elasticity of the material, lpo is crack

length, rpo is the radius of the pore.

The last level in this classification of cement composite is Nano-level, in which the hardened

cement paste between "big" pores is assumed with the main inhomogeneities shown by
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"little" pores named capillary pores. The typical dimension of this "little" pores is in

the range of 10−4 mm, whereas the linear dimension of RVE in this level is approximately

5e−4 mm. Some modifications in the mechanical properties of materials represent the ef-

fect of "little" pores in the model, and they will be geometrically neglected, same as in the

meso-level[126].

Figure 2.1: simplified model of micro-level of concrete(hardened cement paste)[126]

Further studies have argued that the macro scale’s fracture behavior can be indicated within

characteristic material structure and processes on meso- and micro-levels with no significant

need for study in the nano-level. Thus, concrete is considered a homogeneous material on the

macro level, and corresponding mechanical properties are utilized in the analysis of concrete

structures in civil engineering. In the meso-scale level, air voids, cracks, inclusions, and

interfaces are considered. Thus, in fracture meso-models, concrete is assumed to be a three-

phase system consist of mortar matrix, aggregates, and interfacial transition zone(ITN),

see Fig. 2.2(b). On the other hand, on the micro-level, each component of the concrete

structure, i.e., the cement matrix, aggregates, and ITN, are considered highly heterogeneous

with complex structure, see Fig. 2.2(a)[8].

Figure 2.2: Multi-level system a)micro, b)meso-, c)macro-level[79]

It has been proven that the classification of concrete structure in different levels helps describe

the real behavior in a simplified and approximate way. A hierarchic system of three different

9



2 MATERIAL MODELS

levels shows that these different models are connected systematically. It means that models

on a given level depend on the previous model results, see Table 2.1[123].

Structural Level Characteristic features Type of models

Micro-level Structure of hardened Material sciencemodels

Meso-level
Pores, Cracks, Material engineering

Inclusions, models, Mechanical
Interfaces and numerical models

Macro-level Geometry of Structural engineering
structural elements models, Material laws

Table 2.1: Characteristic structural features of hardened cement paste and concrete[123]

2.2 STRAIN HARDENING CEMENT-BASED

COMPOSITIES(SHCCs)

2.2.1 Historical background

The idea of using fibers in concrete became universal in the 1960’s following studies on the

use of steel fibers in concrete, while it had been noted back in 19874 by Berard[21, 107, 108].

Krenchel published a fundamental study on FRC in 1964 in Denmark[59], while scientists

in the U.K. tested the usage of glass fibers to strengthen the cement matrix[77, 32]. After

that, numerous studies were carried out with a focus on brittle matrix composites such as

cement-based composites[6, 57, 56]. There was a lack of information on the tensile stress-

strain response of composite since the fracture mechanic approach was used for dealing with

the tensile strength of FRC by [108]. The first time, the tensile stress elongation curve was

published in papers by Naaman in 1972[84, 82, 92]. Naaman used straight smooth steel fibers

within aspect ratio less than 100 and a relatively high volume fraction of fibers(from 1. 5 to

3%). However, no multiple cracking was reported due to relatively weak bond properties.

After first cracking, all the mentioned experiments on composites showed strain-softening

behavior with localization at that crack section, typical strain-softening tension response is

shown in Fig. 2.3[84, 89].

10
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Figure 2.3: Multi-level systems For concrete

Plenty of studies were published in the 1970s with a focus on fiber-reinforced cement compos-

ites [43, 56, 95, 112, 111]. The desired performance was described in terms of high strength

and ductility. For the first time in the RILEM Symposium in 1978, the strain-hardening

term was used by Kasparkiewicsz, who reported on evidencing of multiple cracking and

strain hardening behavior on several tensile tests. The specimens were paddle-shaped and

contained 2% by volume hooked-ends steel fibers[1, 89]. Naaman and Shah published their

research, where they reported a particular response of tensile specimens consist of 2. 5% steel

fibers by volume. The enumerated specimens showed a ductile response with the so-called

"inelastic multiple cracking range". They demonstrated the qualitative response of FRC

composites in strain-softening and strain-hardening stages. These load-elongation curves

concluded all fiber-reinforced composites, similar to what is shown in Fig. 2.4[85].

Slurry infiltrated fiber concrete(SIFCON) was introduced in the early 1980s. To produce this

composite, first, the mold was filled by fibers, then the cement-based slurry was added to the

fiber network. This production method result in comparatively high range of fiber content

from 5% to 12%[61, 62]. Numerous studies illustrated that SIFCON as an FRCC could show

relatively high ductile behavior besides high strength in tension, which fulfilled both features

as a desirable composite and belongs to strain-hardening composites [87, 89, 91, 86].

After that, Naaman suggested using a new classification to characterize this cement compos-

ite behavior named "High-Performance Fiber Reinforced Cement Composites"(HPFRCC).

This new term used for composites with high strength and toughness-ductility[87, 86]. Nam-

man had used conventional fiber reinforced concrete and "high performance". Two terms

represent the later, i.e., "strain-softening", "strain-hardening" in further researches[87].
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Afterward, in the 1995 workshop, three different models were discussed to describe fibers’

critical volume fraction to achieve multiple cracking and strain-hardening behavior. These

three models are discussed in detail in [93].

Figure 2.4: Stress-strain response under tensile loading a)Conventional strain-softening
FRCC b)Strain-hardening FRCC (HPFRCC) [89]

Fiber-reinforced cement composites have been used in numerous applications. It should be

pointed out that the particular presence of fibers caused changes in the matrix’s fundamental

properties, e.g., tensile strength, strain capacity, and crack tip toughness[111]. This pres-

ence can be as stand-alone or in combination with reinforcing bars and prestressing tendons;

besides, they can be utilized as a strengthener in the existing structure in repair and rehab-

ilitation work. An extensive range of properties of the composite material can be obtained
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with wide ranges of fibers and cement matrix properties, the main fiber characteristics of

interest in fiber-reinforced cementitious composites are shown in Table 2.2.

Fiber characteristics
Material Physio-chemicalNatural organic Natural mineral Man-made

Wood Asbestos Steel Density
Jute Rock wool Polymers(synthetic) Surface roughness

Bamboo Glass Chemical stability
Straw Carbon Fire resistance

Horse hair Metallic Non-reactivity
with cement

Mechanical Geometrical
Dimensions Section Shape

Strength Length Circular Smooth
Elastic modulus Diameter Elliptical Deformed

Transverse modulus Square Indented
Stiffness Rectangular Etched
Ductility Flat Crimped

Elongation to failure Coiled
with end paddles

End hooks
2D, 3D

Table 2.2: Main fiber characteristics of interest in fiber reinforced cement composites[88]

Stand-alone applications include mostly thin products such as cladding, cement boards,

pipes, electrical poles, and slabs on grades and pavements. Fibers are also utilized in hy-

brid applications to support other structural materials such as reinforced and prestressed

concrete, and structural steel. e.g., impact and seismic resistant structures, jacketing for

repair and strengthening of beams and columns, and, in the case of steel, encased beams

and trusses to improve ductility and fire resistance. Unique applications of high-performance

fiber-reinforced cement composites, e.g., bridge decks and unique structures. e.g., offshore

platforms, spacecraft launching platforms, super high-rise structures, blast-resistant struc-

tures, bank vaults, and other high-end structures, see Table 2.3[88].
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Strain-Hardening FRC composites
Hybrid application with reinforced-concrete

and/or prestressed concrete
Energy/Thoughness Mechanical properties Cracking control

Impact, Ductility, Tension, Shear, Seviceability, Corrosion
Seismic, etc. Bending, etc. resistance, Durability, etc.

Stand-alone Hybrid applications
applications with steel members

Thin sheets, Repair, Encased trusses
Pipes, boards, retrofit, and beams,

shells rehabilitaion Fire resistance

Table 2.3: Advantages of using SHCCs in structural applications[88]

2.2.2 Strain-hardening behavior

Strain-hardening cement-based composites(SHCCs), a particular class of fiber-reinforced

concretes, can develop controlled multiple cracks while subjected to incremental tensile load-

ing conditions [73, 67, 90]. The addition of a small volume of short fibers can improve struc-

tural behavior regarding tensile strength and ductility. In previous studies, the contribution

of short fibers in overall behavior and specifically in the post-cracking phase is considered

with smeared crack formulation or crack bands within the finite element method [24, 80, 7].

Numerous test methods have been developed to study the behavior of Cement-based com-

posites under tensile loading. Concerning their tensile response, FRCC can be classified

into two categories, namely, strain-softening composites and strain-hardening(HPFRCC),

see Fig. 2.4.

Strain-softening FRC composites tensile response, see Fig. 2.4(a), started with the crack-free

state and followed by strain-softening branch and immediate crack localization after the first

crack. On the other hand, the tensile response of HPFRCC, shown in Fig. 2.4(b), starts

with a sharp initial slope till reaching to first cracking, part (I), and continues with the

strain-hardening branch (part II) where the micro-cracks form and propagate. The slope in

the crack-free state depends on the stiffness of the cement matrix and fibers, while Young’s

modulus of the concrete is affected by Young’s modulus of the composite. The extension

amount pertains to fiber stiffness and fiber volume fraction. The first stage is characterized

by its stress and strain coordinates (σcc,ϵcc), where the first structural cracking forms and

the strain-hardening branch ends in the peak point (shown with point(B) in Fig. 2.4(b))
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and characterized with its stress and strain (σpc,ϵpc). In this stage, micro/Macro cracks

propagate, and multiple cracking develops until one crack becomes critical and specify the

crack localization, and part III starts. The critical crack will open under increased straining

while crack propagation is stopped, and other cracks become narrower slightly[89]. Three

stages of tensile behavior of SHCCs consist of elastic phase, strain-hardening and multiple

cracking phase and softening phase are shown in Fig. 2.5

Figure 2.5: Tensile behavior of SHCC(elastic phase, strain-hardening and multiple cracking
phase and softening phase)[28]

The desired strain-hardening behavior usually reached through a high number of thin, short

polymer fibers mixed with the fine-grained concrete matrix. The modeled composite is a

high-strength SHCC made with ultra-high molecular weight polyethylene (UHMWPE or

shortly PE). The fibers have a length of 6 - 10 mm and a diameter of 20 µm [29]. Nominal

strength is 2 500N/mm2 with a brittle failure mode. Fibers are mixed up to 2% of volume

with the cement matrix.

The enumerated high strength mixture has a very high cement content and a significant low

water-to-binder ratio of 0. 18, which leads to high homogeneity and satisfactory workability.

The cement paste consists of cement and silica fume with no fly ash and a small amount of

fine sand. The silica fume makes the nature of the mixture highly cohesive. This cementitious

matrix has high packing density in fresh states and a dense microstructure on the hardened

stage in order to make a proper interaction with the hydrophobic PE fibers. The average

spread diameters are 120mm after cone lifting and 145mm after 15 jolts in flow test[30, 31,

28].
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Parameter Unit Value
CEM I 52.5 R-SR3/NA [kg/mm3] 1 460
Fly ash Steament H4 [kg/mm3] −
Silica fume Elkem 971 [kg/mm3] 292
Quartz sand 0.06 - 0.2 mm [kg/mm3] 145
HRWRA Glenium ACE 460 (BASF)∗ [kg/mm3] 35
Water [kg/mm3] 315
HEWRA - high range water reducing agent(superplasticizer)

Table 2.4: Mixture composition of concrete[28]

2.2.3 Micromechanics of SHCC

The distribution and orientation of fibers are of crucial importance to the mechanical prop-

erties of composites. The angle of inclination and position of short fibers can be randomly

selected in SHCC, while these two parameters are computed precisely in the design of con-

tinuous fibers. Since these short fibers are added to the cement paste during the mixture

stage, this leads to random distribution and fiber orientation in the cementitious matrix.

Marshal and Cox describe steady-state cracking in fiber with an analytical formulation,

which is based on energy balance, see Fig. 2.6[78]. In this figure, the gray area between the

stress-displacement relation for bridging fibers and the constant stress line represents the

applied stress and should be less than complimentary energy, is equal to JC/2 where JC is

the crack tip toughness and the critical condition for the matrix is determined by the applied

stress (σa). This area is constant for specific matrix and volume fraction of fiber[78]. Further

studies adapted this formulation for randomly distributed fiber reinforce cementitious with

short fibers and a particular focus on crack bridging mechanisms [68, 71]. In these studies,

it is assumed that the fiber will experience a complete pullout with a frictional bond, which

is weak enough to prevent fiber’s rupture.

Figure 2.6: Steady-state matrix cracking stress[78],[28]
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The crack bridging is defined based on force equilibrium for a single fiber embedded in the

matrix with an embedded length l whereby the load is applied on its free end. In Fig. 2.7, the

load-displacement relation for the frictional pullout of a single fiber is shown. The debonding

occurs when the applied load (P ) is increasing incrementally. The fiber is stretching along

the debonded zone, which leads to an increase of displacement (δ) in the free end. Linear

stress distribution along the debonded zone assumes that the displacement caused by elastic

deformation of the bond is not considered[28].

Figure 2.7: Load-displacement relation for the frictional pullout of a single fiber[28]

The resulting force-displacement relation up to the peak pullout load is

P (δ) =
π

2

√
(1 + η)Efd3fτδe

fφ, δ ≤ δ0 (2.2)

where Ef is modulus of elasticity, df is fiber diameter, τ is the frictional bond strength and

δ0 is a critical displacements at which fiber is fully debonded along the entire embedded

length of l and is computed by Eq. (2.3)[28].

δ0 = (4l2τ)/[(1− η)Efdf ] (2.3)

with

η = (VfEf )/(VmEm) (2.4)

where Vf and Vm are the fiber and matrix volume fractions, respectively. When debonding is

completed, fiber pullout starts and the pullout load decreased. While δ0 < δ ≤ l this force is

related to the displacement and computed by Eq. (2.5) whereby frictional bond is assumed
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to be constant and the elastic stretching of the fiber is neglected

P (δ) = πτldf (1−
δ

l
)efφ, δ0 < δ ≤ l (2.5)

2.2.4 Fiber inclination angle

Positive effect of fiber inclination on the pullout resistance can be seen with the exponential

term in Eq. (2.2)[70],[69]. Considering the contribution of individual fibers in a composite

with randomly distributed and oriented fibers, a relation is proposed in [70] for crack bridging,

see Eqs. (2.6). In this formula, the embedded length for a fiber with length (Lf ) is between

0 and Lf/2 on either side of the crack shown in Fig. 2.8.

Figure 2.8: A fiber crossing a matrix crack[70]

σB(δ) =
4Vf

πd2f

∫ π
2

φ=0

∫ (Lf/2)cosφ

z=0

P (δ)p(φ)p(z) dz dφ (2.6)

where φ is orientation of fiber with respect to tensile loading direction, df is fiber diameter, Vf

is fiber volume fraction, p(φ) and p(z) are the probability density function of the orientation

angle and centroidal distance of fibers from crack plane[28]. A uniformly random location

and orientation of fiber is assumed whereby

p(φ) = sin(φ), 0 ≤ φ ≤ π

2
and p(z) =

2

Lf

, 0 ≤ z ≤ (
Lf

2
) · cos(φ) (2.7)

and the energy absorption for a single fiber of embedded length l which is pulled out within

angle φ is computed as following

Gs =
π

2
dfτ l

2efφ (2.8)
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where τ is bond strength of fiber-matrix interface and f is snubbing friction coefficient[70].

From previous studies, it is observed that the increase in local friction due to high com-

pression at the matrix region near the fiber exiting point has caused the increase in pull-out

forces. Thus, for specimens in pull-out test with the same end-slippage and embedded length

l, the bridging force will be increased with increase of the inclination angle (φ) [70]. This

effect is called "snubbing effect", shown in Fig. 2.9, and has been studied for cementitious

composite with synthetic fibers in [69]. The relation between bridging force for angle pull-out

(P |φ) and (P |φ = 0) for φ = 0 is explained by:

P |φ = efφ · P |φ=0 (2.9)

where snubbing friction coefficient f is an interface material parameter, depends on each

fiber/matrix combination[70] and different values in the range of 0 and 1 are recommended

in literature[125], [124].

(a)

Figure 2.9: a)Frictional pulley model b)load-displacement relation for the frictional pullout
of the inclined single fiber [125]

19



2 MATERIAL MODELS

2.2.5 Bond Behavior of Single Fibers

Experimental references for the following simulations are explained in detail in [31, 28]. Test

set up is shown in Fig. 2.10(a) and Fig. 2.10(b) shows the force-displacement graphs of PE

fibers out of the high-strength matrix obtained at different displacement rates of 0.005 mm/s

with embedment length 2mm. As they are characterized by relatively large scatter, mean

data are used as an experiment reference for the following simulations, see Fig. 2.11(a,b).

(a) (b)

Figure 2.10: a)Testing setup for single fiber pullout b)pullout curves of HDPE fibers out of
the high-strength matrix M2 obtained at different displacement rates of 0.005
mm/s; embedment length 2 mm[31, 28]

Bond stress τ has a unit [N/mm2]. It is advantageously transformed into a stress flow T

with a unit [N/mm] by multiplying it by fiber circumference Uf

T = Uf τ = 2
√

πAf τ (2.10)

derived from, e.g., the fiber cross sectional area Af . The mean value for bond stresses, shown

in Fig. 2.11(b), is defined based on force equilibrium for single fiber and with the use of mean

values obtained from force-displacements curves, shown in Fig. 2.11(a)[31, 28]. It should be

pointed out that the deformation related to the free length part of the fiber is neglected in

the first approach, and its effect will be considered and adjusted later in the simulation of

a single fiber pullout test. A typical course formulated as multi-linear is used for bond slip

behavior and shown in Fig. 2.11(b). The same is used for the negative range with a reversal
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of signs of slip and bond stress. It is characterized by an initial elasticity, maximum bond

stress at a prescribed slip, and constant residual bond stress from another prescribed slip.

(a) (b)

Figure 2.11: Mean data computed based on single fiber pullout tests result; a)force-
displacement and b)bond law (these two graphs will be used as experiment
references for further simulations and reffered as "Experiment" curves

DIANA software version 10.3 is used for modeling this experiment and its setup. Single

fiber is modeled as embedded truss elements and divided into eight elements. The em-

bedded reinforcements used in simulations within have several main characteristics, i.e.,

a)Reinforcements are embedded in structural elements, the so-called mother elements, whereas

Diana ignores the space occupied by an embedded reinforcement. The mother element

neither diminishes in stiffness, nor weight. The embedded reinforcement does not contribute

to the weight (mass) of the element, b)Embedded reinforcements do not have degrees of

freedom of their own and c)in embedded reinforcements the strains in the reinforcements are

computed from the displacement field of the mother elements, which implies perfect bond

between the reinforcement and the surrounding material.[33].

A bi-linear material model, derived from mean data of pullout curves, is assigned to the bond

element, see Fig. 2.12. The residual stress is assumed with nearly zero to cover fiber pullout

at least approximately. Precise modeling of fiber pullout would require a large displacement

approach that exceeds the current small displacement assumption’s scope. The softening

part of bond law B − 1 is an extrapolation of the softening path of the experiment curve

until the bond stress reaches zero value.
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Figure 2.12: Bond law - B - 1 (derived from mean data)

Typical property values for fiber which later will be used for the following numerical simu-

lations are given in Table 2.6.

Parameter Unit Value
Young’s modulus E [N/mm2] 29 000
Poisson’s ratio ν - 0.2
Tensile strength fct [N/mm2] 3.8
Fracture energy Gf [N/mm] 100 · 10−3

Critical crack width wcr [mm] 0.079

Table 2.5: Fine grained concrete property values

Parameter Unit Value
Young’s modulus Ef [N/mm2] 80 000
Embedded length Lemb [mm] 2
Free length Lfr [mm] 5
Diameter ⊘ [mm] 0. 02
Cross sectional area Af [mm2] 3. 14 · 10−4

Table 2.6: Fiber property values

For modeling the experimental set-up in DIANA, the load will be applied in displacement

control conditions on a dummy mass representing the upper support. This dummy mass is

connected to the single fiber tip within a translation spring, representing the free length of

the fiber. The stiffness of this spring is computed from Eq. 2.11.

Kspring = Efiber · A/Lfr = 5. 03N/mm (2.11)
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where Efiber is fiber’s Young’s modulus, A is fiber’s section area and Lfr is free length of

fiber.

Matrix is modeled with eight-node isoparametric solid brick elements. This element is based

on linear interpolation and Gauss integration nodes. The matrix elements located at the

bottom support surface are entirely tied in all degrees of freedom to a corner node. This

node is called a master node, and it is enough to fix this node as point support. Thus, the

total force-displacement graph can be obtained easily by reading the total response in the

master node directly, see Fig. 2.13.

(a) 2D view (b) 3D view

Figure 2.13: Finite element model of single fiber Pullout test in DIANA; a)2D view, b)3D
view

The bond behavior is modeled with a bond-slip mechanism where the relative slip of the

reinforcement and the concrete is described in a phenomenological sense. The mechanical

behavior of the slip zone is then characterized by the interface element with a zero thick-

ness. The constitutive laws for bond-slip defined based on a total deformation theory, which

expresses the tractions as a function of the total relative displacements. In Diana, the re-

lation between the normal traction and the normal relative displacement is assumed to be

linear elastic whereas, in nonlinear simulation, the elastic shear stiffness will be replaced by

computed stiffness derived from predefined bond law in calculations[33].

Several parameters are needed as input for defining a bond material in DIANA, i.e., shear

stiffness modulus, normal stiffness modulus, and nonlinear bond law curve. Diana offers four

predefined curves and the user-defined multilinear diagram for the relations between shear

traction and slip. Below are some guidelines on how to assess the interface elastic stiffness
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parameters in DIANA to compute normal and shear elastic stiffness modulus, see Eq. 2.12.

Kn = 100 ·nf ·Ebulk/Lemb = 1. 18e7N/mm and Kt = Kn/100 = 1. 18e5N/mm (2.12)

where Kn is elastic stiffness of interface in the normal direction, nf is number of fiber

divisions, Ebulk is bulk’s Young’s modulus and the factor 100 defines the ratio between

displacements in interface (which should be small) and continuum elements. Kt is elastic

stiffness of interfaces in tangential direction.

As mentioned before, the bond-slip models for bond-slip reinforcement bars include a non-

linear relation between shear traction and shear slip, whereas the relations between normal

tractions and normal relative displacements are kept linear. A multilinear bond-slip curve

is specified with two values for each point, i.e., shear slip values and corresponding shear

traction values, see B− 1 curve in Fig. 2.14(a). The first point must be the origin (0,0), and

the diagram may also contain descending parts (softening). If the initial shear modulus does

not correspond to the diagram’s initial slope, the modulus is replaced by the initial slope of

the diagram during the initialization phase of the nonlinear analysis[33].

(a) (b)

Figure 2.14: Single fiber pullout simulation - B - 1 bond law a)Bond law graph b)Force-
displacement result

In the second step, the Hordijk material model is used for the softening part of the bond

curve. Within the Hordijk material model, the bond stress is decreasing gradually in soften-

ing, whereas the area under the softening path, which is related to dissipation energy, is

mostly the same as the corresponding area in bond law B − 1 . As it is mentioned before,

the bond laws are defined by multilinear curves in DIANA. Thus, the points for the bond

24



2.2 STRAIN HARDENING CEMENT-BASED COMPOSITIES(SHCCs)

law B − 2 are computed manually concerning the Hordijk formulation explained in [33], see

Fig. 2.15(a). In Fig. 2.15(b), the force-displacement curve related to pullout simulation using

B − 2 as bond-slip relation of bond elements is shown, and more modifications are needed

to achieve better agreement with experiment result.

(a) (b)

Figure 2.15: Single fiber pullout simulation - B - 2 bond law a)Bond law graph b)Force-
displacement result

There is a slight difference between force-displacement result curve of experiment and simu-

lation curve for B−1 bond law, see Fig. 2.14(b). This difference is due to the first assumption

of neglecting the effect of the fiber free length. To consider this effect and adjust the bond

behavior, the bond peak will be shifted to the lower slip with the value has been computed as

a difference between experiment result and B− 1 force-displacement curve, see Fig. 2.14(b),

while the slope in softening part of new bond law is kept the same as the slope in B − 1

bond law. This bond law is called: B − 3 and shown in Fig. 2.16(a). In Fig. 2.16(b), the

force-displacement curve related to pullout simulation using B − 3 as bond-slip relation of

bond elements is shown.
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(a) (b)

Figure 2.16: Single fiber pullout simulation - B - 3 bond law a)Bond law graph b)Force-
displacement result

The results related to B − 3 bond model had good agreement with experimental result, see

Fig. 2.16(b). As it is mentioned before, the residual stress is assumed with nearly zero to

cover fiber pullout at least approximately. However, the area under bond-slip graph, which

is related to the dissipation energy, is considered higher in bond law B − 3 than the values

derived from mean data, see Fig. 2.16(a). In final step, the bond law is modified with several

trail and error in a way to have the same area for result curve equal and the experiment

curve. This modified curve is called B − 4 and shown in Fig. 2.17(a). Results related to

this material model assigned to bond elements is shown in Fig. 2.17(b). The area under

softening phase of pullout is the same for graph derived from mean values of experiment and

simulation within bond law B − 4.
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(a) (b)

Figure 2.17: Single fiber pullout simulation - bond law - B - 4 a)Bond law graph b)Force-
displacement result

(a) (b)

Figure 2.18: Single fiber pullout simulation - bond laws B - 1,2,3 and 4 a)Bond law graph
b)Force-displacement result

To give a better overview of the performed adjustments, all assigned bond laws and corres-

ponding pullout simulation curves are shown together in Fig. 2.18(a,b). The final comparison

between the simulation for B − 4 bond law and experiment result has proven that with this

bond law, the initial slope, maximum pullout force, and the dissipation energy analyzed by

the simulation are in good agreement with corresponding values in experimental reference.

This bond law will be used later in chapter 5 as a first assumption in the simulation of the

2D-dumbbell specimen.
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The Finite Element Method(FEM) has prevailed upon other numerical methods in the cal-

culation of mechanical behavior of components and structural mechanics for many years

[129, 10, 15], about applications in the reinforced concrete structure, see [45]. However,

dependency on the geometry of materials will bring lots of limitations, especially when ag-

gregates are considered in the model in different ranges of sizes and locations. Thus, an

unstructured irregular mesh is needed to cover all the edges adequately. Hence, several dis-

cretization methods have been introduced, regardless of geometry and topology of inclusions.

As an alternative to FEM, new functions have been formulated which are no longer restricted

to finite elements, e.g., Element Free Galerkin(EFG) method[16, 18, 38, 66, 19]. In EFG

method, the omission of elements allows excellent flexibility in the arrangement of nodes,

facilitating adaptive mesh refinement, and large deformation will appear further. Another

method which allows high geometric adaptability with advantages for solving problems of

structural mechanics is Isogeometric Analysis(IGA) method. IGA method used the "Non-

Uniform Rational B-Splines"(NURBS) approach. NURBS are standard approaches in CAD

for the description of free form surfaces, see [25, 36, 14, 96, 48].

The mesh free methods are highly recommended for complex simulation, e.g., large material

distortion, impact loading condition, moving boundaries, the special interaction between

elements moving discontinuities, and widespread crack propagation. In this chapter, several

random 2D sections will be analyzed within regular and irregular mesh methods, and the

results will be discussed briefly, whereas the formulations are discussed in detail in[49], and

presented results are published in[113].

3.1 INTRODUCTION TO MESOSCOPIC SCALE

Based on the heterogeneous concrete structure, different levels are considered to investigate

different effects of crack propagation and crack arresting. In the meso-scale level, air voids,
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3 DISCRETIZATION APPROACHES

cracks, inclusions, and interfaces are considered. Thus, in fracture meso-models, concrete

is assumed to be a three-phase system consist of mortar matrix, aggregates, and interfacial

transition zone(ITN)[8]. In the following simulations, the matrix and aggregates are modeled

and the ITN is neglected in the model. Different scale of modeling for concrete is discussed

in detail in Section 2.1.

3.1.1 3D Random mesoscopic model

A 3D random mesoscopic model has been generated by a program written in MATLAB

software. This model consists of aggregates and mortar, while coarse aggregates are presented

as spheres with randomly distributed size and location. The random distribution of aggregate

is based on Fuller’s curve. This curve can be described by a simple equation given below

and presented in Fig. 3.1.

P (d) = (
di
D
)n (3.1)

Where as: P (d) is Cumulative percentage passing a sieve with the diameter di. di is diameter

of aggregate, D is Maximum aggregate grain size and n is Exponent with a typical value

between 0. 45 and 0. 70 (assumed as 0. 5). In this study, the minimum and the maximum

size of aggregate’s diameter are considered to be 2 and 16 mm respectively and n as 0. 5

with 19 sieves. Fig. 3.2(a) shows aggregate distribution in a 3D mesoscopic model which is

calculated with Eq. (3.1) and based on Fuller’s curve shown in Fig. 3.1. In this model each

of three dimensions of the model is equal to 60 mm.
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Figure 3.1: Grading of aggregate based on Fuller’s curve gradation
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3.1.2 2D Sections random mesoscopic model

As mentioned earlier, the 2D simulation will provide reliable results with fewer complications

in modeling. An example of the 2D section, made out of the 3D random mesoscopic model,

is shown in Fig. 3.2(b). This 3D random mesoscopic model is generated with MATLAB code

written by Tino Kühn [94], and the aggregates are randomly distributed whereas their sizes

are following the fuller cure as mentioned in Section 3.1.1. Several 2D sections have been

created out of this 3D model and analyzed within different discretization approaches which

will be discussed in the following sections.

(a) 3D random mesoscopic model (b) 2D cross section

Figure 3.2: a) 3D random mesoscopic model, and b) 2D section - random mesoscopic
model consist of mortar and aggregates

3.2 INTRODUCTION TO IRREGULAR AND REGULAR

METHODS

Discretization methods are classified into two different categories. The first approach is irreg-

ular mesh, which follows the geometry of different materials, and properties are presented by

the whole element. FEM is the most common method among numerical approaches, which is

used by most commercial software and using an irregular mesh approach as a discretization

method, see Fig. 3.3(a), shows irregular mesh model used for analysis with DIANA. Another

approach is conventional mesh methods, whereby material properties are considered at the

integration point level, see Fig. 3.3(b), which shows the regular mesh model used with in-

house program CaeFem. In the developed model within mesh-free approaches, the material
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3 DISCRETIZATION APPROACHES

is assigned individually to each node (integration point or node, depends on the discretiza-

tion approach). The code will investigate the node’s position, and if the node belongs to the

matrix area or aggregates. Thus, it will assign the corresponding material based on the geo-

metry of components. In this chapter, models are analyzed with three different regular mesh

methods, i.e., Finite element methods with regular mesh, Element Free Galerkin method,

and Isogeometric analysis method and compared with FEM irregular mesh method results

from two programs, i.e., DIANA and CaeFem.

(a) Irregular mesh - DIANA model (b) Regular mesh -CaeFem model

Figure 3.3: Discretized models

3.3 NUMERICAL SIMULATIONS

3.3.1 Model specification

In this section, three 2D sections have been selected to investigate the effect of different

discretization methods, mesh objectivity, and the area fraction of aggregates on the total

reaction of models under tensile loading conditions. Fig. 3.4 shows the 2D sections used for

the simulation.
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3.3 NUMERICAL SIMULATIONS

(a) Model 1 - z=0 mm (b) Model 2 - z=15 mm (c) Model 3 - z=30 mm

Figure 3.4: 2D sections generated from 3D-Random mesoscopic model

The mentioned three models, shown in Fig. 3.4, are subjected to the same loading, boundary

conditions and the same material properties are assigned to the components. Table 3.1, shows

the reference material properties and Fig. 3.5(a,b) show loading and boundary condition

assigned to the 2D models. Plane stress material model is used and all materials are assumed

to behave linearly. Model is fixed on bottom edge and tension load is applied gradually on

top edge of model as prescribed deformation in vertical direction. The results for final stage

of loading equal to 0. 01 mm will be discussed in next section.

(a) Geometry, boundary condition

Figure 3.5: Schematic representation of 2D model, subjected to the prescribed displace-
ment and static boundary conditions
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Table 3.1: Material properties

Aggregates Mortar
Young’s modulus 60000 MPa 20000 MPa
Poisson ratio 0.15 0.2

3.3.2 Analysis results and parameter studies

Three different range of mesh sizes are studied for each of the mentioned 2D sections, Fig. 3.6

shows nine models used for the parameter study. DIANA is a well-known commercial FEM

software and is used to validate results obtained from simulation within the in-house pro-

gram CaeFem[33]. The parameter used for results comparison is the total reaction force in

the vertical direction and in the last stage of loading equal to 0. 01 mm. Tables 3.2, 3.3,

and3.4 show results of each analysis in detail. Each table discussed results obtained for one

of the 2D sections, which is analyzed with four discretization methods within in-house pro-

gram CaeFem, i.e., FE-regular mesh method, FE-Irregular mesh method, EFG method and

IGA method besides results from simulations performed by DIANA. These simulations are

repeated for three different mesh sizes to investigate the mesh objectivity of the methods.

Results comparisons for models with different numerical discretization approaches and with

different numbers of degrees of freedom are shown in Figs. 3.7, 3.8, and3.9.
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(a) Model 1 - Coarse mesh (b) Model 1 - Medium mesh (c) Model 1 - Fine mesh

(d) Model 2 - Coarse mesh (e) Model 2 - Medium mesh (f) Model 2 - Fine mesh

(g) Model 3 - Coarse mesh (h) Model 3 - Medium mesh (i) Model 3 - Fine mesh

Figure 3.6: 2D section models used for sensitivity analysis

The total reaction forces are shown on vertical axes in Figs. 3.7,3.8,and3.9. These axes

are adjusted in a way to focus more on the differences between the various discretization

approaches results. It is observed that different discretization methods are converging to the

same results by increasing the number of degrees of freedom using in the simulation. As

the mesh is getting finer, there is a good agreement in the results obtained from different

discretization methods. However, increasing the number of degrees of freedom will increase
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3 DISCRETIZATION APPROACHES

the time of calculation exponentially. Since the results are not changing significantly for

different mesh sizes, even the model with coarse mesh has provided reliable results.

Table 3.2: Results comparison / Model 1 - z = 0 mm

Model 1 Number Total reactions Total reactions Erorr
Z = 0 mm of Dof Fx[N ] Fy[N ] Percentage

C
oa

rs
e

m
es

h DIANA(Irregular mesh/FEM) 3660 -0.81 -380.89 -
CaeFem(Irregular mesh/FEM) 3660 -0.84 -381.44 0.14%
CaeFem(Regular mesh/FEM) 3872 -0.59 -397.93 4.47%
CaeFem(Regular mesh/EFG method) 3872 -0.60 -397.95 4.48%
CaeFem(Regular mesh/IGA method) 3872 -0.72 -432.47 13.54%

M
ed

iu
m

m
es

h DIANA(Irregular mesh/FEM) 7774 -0.88 -383.22 -
CaeFem(Irregular mesh/FEM) 7774 -0.87 -383.51 0.08%
CaeFem(Regular mesh/FEM) 7442 -1.06 -395.19 3.13%
CaeFem(Regular mesh/EFG method) 7442 -1.06 -395.18 3.12%
CaeFem(Regular mesh/IGA method) 7442 -1.00 -431.01 12.47%

F
in

e
m

es
h DIANA(Irregular mesh/FEM) 14692 -0.85 -384.17 -

CaeFem(Irregular mesh/FEM) 14692 -0.85 -384.34 0.04%
CaeFem(Regular mesh/FEM) 15138 -0.65 -392.00 2.04%
CaeFem(Regular mesh/EFG method) 15138 -0.74 -392.47 2.16%
CaeFem(Regular mesh/IGA method) 15138 -0.83 -427.99 11.41%
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Figure 3.7: Results comparison / Model 1 - z = 0 mm
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Table 3.3: Results comparison / Model 2 - z = 15 mm

Model 2 Number Total reactions Total reactions Erorr
Z = 15 mm of Dof Fx[N ] Fy[N ] Percentage

C
oa

rs
e

m
es

h DIANA(Irregular mesh/FEM) 4310 -4.37 -369.52 -
CaeFem(Irregular mesh/FEM) 4310 -4.41 -370.02 0.13%
CaeFem(Regular mesh/FEM) 3872 -5.82 -385.18 4.24%
CaeFem(Regular mesh/EFG method) 3872 -5.84 -385.25 4.26%
CaeFem(Regular mesh/IGA method) 3872 -6.03 -419.04 13.40%

M
ed

iu
m

m
es

h DIANA(Irregular mesh/FEM) 6776 -4.54 -368.92 -
CaeFem(Irregular mesh/FEM) 6776 -4.56 -369.34 0.11%
CaeFem(Regular mesh/FEM) 7442 -5.36 -381.63 3.45%
CaeFem(Regular mesh/EFG method) 7442 -5.36 -381.62 3.44%
CaeFem(Regular mesh/IGA method) 7442 -5.42 -415.89 12.73%

F
in

e
m

es
h DIANA(Irregular mesh/FEM) 15922 -4.80 -372.08 -

CaeFem(Irregular mesh/FEM) 15922 -4.80 -372.24 0.04%
CaeFem(Regular mesh/FEM) 15138 -5.03 -378.70 1.78%
CaeFem(Regular mesh/EFG method) 15138 -5.03 -378.72 1.78%
CaeFem(Regular mesh/IGA method) 15138 -5.53 -414.32 11.35%
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Figure 3.8: Results comparison / Model 2 - z = 15 mm
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Table 3.4: Results comparison / Model 3 - z = 30 mm

Model 3 Number Total reactions Total reactions Erorr
Z = 30 mm of Dof Fx[N ] Fy[N ] Percentage

C
oa

rs
e

m
es

h DIANA(Irregular mesh/FEM) 4348 -1.98 -367.49 -
CaeFem(Irregular mesh/FEM) 4348 -1.97 -368.00 0.14%
CaeFem(Regular mesh/FEM) 3872 -2.21 -380.91 3.65%
CaeFem(Regular mesh/EFG method) 3872 -2.23 -380.96 3.66%
CaeFem(Regular mesh/IGA method) 3872 -2.64 -414.98 12.92%

M
ed

iu
m

m
es

h DIANA(Irregular mesh/FEM) 6918 -1.99 -368.74 -
CaeFem(Irregular mesh/FEM) 6918 -1.99 -369.03 0.08%
CaeFem(Regular mesh/FEM) 7442 -1.93 -378.46 2.64%
CaeFem(Regular mesh/EFG method) 7442 -1.93 -378.45 2.64%
CaeFem(Regular mesh/IGA method) 7442 -2.36 -413.35 12.10%

F
in

e
m

es
h DIANA(Irregular mesh/FEM) 15576 -2.02 -369.96 -

CaeFem(Irregular mesh/FEM) 15576 -2.02 -370.10 0.04%
CaeFem(Regular mesh/FEM) 15138 -2.25 -376.73 1.83%
CaeFem(Regular mesh/EFG method) 15138 -2.25 -376.75 1.84%
CaeFem(Regular mesh/IGA method) 15138 -2.29 -411.43 11.21%
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Figure 3.9: Results comparison / Model 3 - z = 30 mm

From Figs. 3.7,3.8,and 3.9, it is observed that IGA is the most conservative method among

different discretization methods. The general differences between each 2D model’s total

reactions, see Figs. 3.7,3.8,and3.9, represent the effect of the random field of aggregates and

area fraction of aggregate. The area fraction of aggregates in 2D models, i.e., model 1, model

2, and model 3, is 0. 32, 0. 28, and 0. 26, respectively. It is observed that the total reaction
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forces are decreasing as the area fraction of aggregates is decreasing, which can be explained

by elastic material models assigned to structural components in these three reference cases.

3.3.3 Conclusion

Three 2D models derived from the 3D mesoscopic random model are used to investigate

each discretization method’s capability and weakness. Total reaction forces in the horizontal

direction(perpendicular to the loading direction) are small since deformation is applied in the

vertical direction. These results do not follow a particular pattern concerning discretization

methods, mesh sizes, and area fraction of aggregate. Total reaction forces in loading direction

are the parameter used for parameter study. DIANA and CaeFem provide the same result

with the FE-Irregular mesh discretization method, which proves the developed program’s

accuracy. EFG method has almost the same result as FEM with regular mesh; however,

EFG needs more time to perform the analysis. While the mesh becomes finer, results are

converging, and less error percentage is observed when the number of degrees of freedom

is higher. This error is computed based on result differences of each discretization method

compare to reference simulation performed within DIANA. The focus will be on introducing

fibers in 2D models as truss elements and coupling them with discrete discontinuities in

the next phase of this research. Moreover, the newly developed model’s formulations and

parameter study will be discussed in the following chapters.
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The present chapter starts with a short introduction to the Finite element method. Later,

different numerical approaches are introduced, and the ones used in the newly developed

model are briefly explained. In the following, the formulations utilized in the numerical

model are discussed in detail and several numerical studies are performed to calibrate and

validate the enumerated numerical method. The presented formulations and results are

partly published in[50].

4.1 INTRODUCTION TO FINITE ELEMENT METHOD

The finite element method is a numerical technique applied for solving problems in different

fields, including mathematical physics and engineering, e.g., structural analysis, heat trans-

fer, fluid flow, mass transport, and electromagnetic potential [74]. FEM uses mathematics

to understand and measure any physical phenomena thoroughly.

The solving problem is performed in four different phases. First, it starts with the specific-

ation of geometry, material, and mechanical properties of the system. The second step is

mathematical modeling, including the formulation of equations for presenting the overall

system’s response by considering the boundary condition and loading. Numerical modeling

is the third phase of the whole procedure, including subdividing the infinite continuum in

reality into a discrete number of points concerning space and time, which is called discret-

ization. Finally, in computational modeling, the problem will be solved by processing and

implementing algorithms with the help of computers.

During the modeling and analysis, because of the technique’s numerical nature, errors can

occur due to the simplification of models, rounding, and discretization [101]. A system of

a physical problem under specific loading and condition can be marked out mathematically

by equations conducting the response. Regarding FEM, the structural analysis is based on

three aspects, i.e., equilibrium, constitutive laws, and kinematic formulation.
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In the finite element method, instead of solving the problem for the entire body, the system

of interest will be divided into small elements by discretization techniques and formulate the

equations for each element and combine the individual result to estimate the overall response

of the complete system. Discretization means interpolation, i.e., displacements within an

element are interpolated using the values at nodes belonging to a specific element. Adjacent

elements share common nodes in a way that the continuum will be formed. Generally,

polynomial functions are used to compute variables at any point within an element by

interpolation of the values of the nodes which they belongs. First, the displacements are

computed, and then further results like strain and stress can be calculated.

In the standard finite element method, kinematic compatibility is implied with the discret-

ization of a continuous displacement field [45], components of nodal displacements ūI have

to be chosen such that the kinematic boundary conditions are fulfilled [46].

ū(x) = N (x) · ūI (4.1)

with a local coordinate x, a matrix of shape functions N and a vector of nodal displacements

ūI . This leads to strains

ϵ(x) =
∂ū

∂x
= B(x) · ūI (4.2)

with the matrix of shape function derivatives B [10]. Constitutive laws are used for describing

the relation between stress and strain for deriving the equations for each finite element. These

material laws can be summarized with

σ = σ(ϵ) (4.3)

The small changes of strain and stress in physical or loading time t should be computed from

their total values are defined as following:

ϵ̇ =
∂ϵ

∂t
and σ̇ =

∂σ

∂t
(4.4)

The incremental form of Eq. (4.3) will be as following:

σ̇ = CT (ϵ) · ϵ̇ (4.5)
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with time derivatives σ̇,ϵ̇ of stress and strain with respect to a loading time t and a tangential

material stiffness CT . An equilibrium condition is one of the basic components of structural

analysis besides kinematic compatibility and material laws. An advantageous formulation

based on the principle of virtual works is extensively used for structural analysis. It states,

for any solid body in static equilibrium subjected to small virtual displacement, the virtual

strain energy δU of internal stresses is equal to the virtual work of δW the external forces

acting on it.

δW = δU (4.6)

This equilibrium condition is formulated as integral form

∫
V

δϵT · σ dV =

∫
V

δūT · b dV +

∫
At

δūT · t dA (4.7)

where V is the volume of solid body, b is its body forces, A is its surface and t is surface

traction prescribed at all or part of A. Virtual displacements δū and derived virtual strains

δϵ, both are introduced as vectors and transposed and multiplied by the vectors u, t and σ,

where σ is the field of stress. Applying the displacement interpolation Eqs. (4.1) to virtual

displacement leads to

δū = N · δūI and δϵ̄ = B · δūI (4.8)

Using Eqs. (4.8), with Eq. (4.7) leads to the discretized equilibrium conditions

δūT · [
∫
V

BT · σ dV ] = δūT · [
∫
V

NT · b dV +

∫
At

NT · t dA] (4.9)

This could be summarized as following

δūT · (pI − fI) = 0 (4.10)

where internal nodal forces

fI =

∫
V

BT · σ dV (4.11)
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and external nodal forces

pI =

∫
V

NT · b dV +

∫
At

NT · t dA (4.12)

Virtual displacements δū are kept in this formulation for a later combination with the equi-

librium condition covering a discontinuous displacement field. A linearization is performed

with

ḟI =

∫
V

BT · σ̇ dV =

∫
V

BT ·CT ·B dV · ˙̄uI = KT · ˙̄uI (4.13)

with the tangential stiffness matrix KT .

4.2 INTRODUCTION TO THE STRONG DISCONTINUTY

APPROACH

In previous studies, two approaches have been used for modeling the crack formation in

concrete structures, i.e., smeared crack formulation and discrete crack approach within finite

element method [11]. Smeared crack approaches need regularization techniques to consider

mesh sensitivity and reproduce fracture energy [12, 51, 100]. These techniques are generally

complicated and expensive, depending on the ratio of element size to the crack bands, which

are creating and propagating due to the quasi-brittle behavior of concrete.

In contrast, in discrete crack approaches, the crack width can be computed explicitly for

crack traction and naturally solves the problem of mesh sensitivity and reproduction of

crack energy due to strain-softening behavior. Discrete crack approaches are classified in two

groups: a)Extended-Finite-Element (XFEM) [81, 39, 117] and b)the Strong-Discontinuity-

Approach (SDA)[35, 53, 97, 4, 5].

XFEM is practically expensive for structures with a large number of cracks, since propagating

displacement discontinuities are carried to the system level with considering the additional

degree of freedom and requires corresponding crack propagation criteria for crack propaga-

tion continuation and propagation direction and length. However, SDA treats discontinuity

degrees of freedom on the element level, which simplifies crack propagation criteria and is

the utmost advantage in modeling the structures with a large number of cracks.
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Three different classes are introduced for the formulation of SDA, i.e., Statically Optimal

Symmetric (SOS), Kinematically Optimal Symmetric (KOS), and Statically and Kinematic-

ally Optimal Nonsymmetric (SKON) [52, 127]. The SDA formulation used in this research,

is similar to the KOS; both have the same approach in constructing the matrix of the strain

functions in the discontinuity. The classes mentioned above have the Hu-Washizu principle

as a basis for developing the formulation. While the presented SDA formulation in this

research starts from the well-known principle of virtual work, then couples continuum to

the discontinuity by relating the total displacement based on continuous and discontinuous

displacement parts. The mentioned formulation will be discussed in detail in Section 4.2.1.

Two approaches are introduced to treat the discontinuity or the crack path across neighboring

elements: continuous path and discontinuous path. Crack path continuity can be enforced by

tracking algorithms [98]. However, this may lead to stimulation locking effects, specifically

in the SOS formulation [127]. The extension of crack path discontinuities can relatively

be reduced by reducing element sizes whereby the crack path is indicated. A control of

implausible multiple crack path courses is proposed with adaption methods [110]. Relations

for crack tractions depending on crack width are derived from experimental investigations

about concrete tensile failure behavior [110, 34, 58]. They generally introduce nonlinearities,

e.g., in case non-monotonic behavior with un- and reloading of cracks in inhomogeneous

structures during a loading history.

4.2.1 Virtual work principles for SDA

The general Hu-Washizu variational principle describes independent fields for displacements,

strains and stresses. A displacement field is assumed as

u = ū+ û (4.14)

with a part ū which is continuous over the whole domain under consideration and an en-

hancement û which, e.g., allows for discontinuities. Strain is assumed as

ϵ = ∇symū+ ϵ̂ (4.15)

45



4 NUMERICAL MODELING

with an assumed enhancement ϵ̂ which is not subject to any interelement continuity require-

ments. The corresponding four-field Hu-Washizu principle can be written as

∫
V
∇symδūT · σ(ϵ) dV =

∫
V
δūT · b dV +

∫
At

δūT · t dA∫
V
δϵ̂T · [σ(ϵ)− σ̂] dV = 0∫

V
δσ̂T · [∇symû− ϵ̂] dV = 0∫

V
∇symδûT · σ̂ dV =

∫
V
δûT · b dV +

∫
At

δûT · t dA

(4.16)

with variations δ, the symmetric nabla operator ∇sym, assumed stress σ̂ and stress σ(ϵ)

from a material law[52]. With û = 0,u = ū this corresponds to the basics explained in [115].

Finite element interpolations for stresses and strains are assumed with

σ̂ = S · s

ϵ̂ = G · e
(4.17)

Standard interpolation functions N and enhancing functions Nc

ū = N · d

û = Nc · dc

(4.18)

are used for displacements. Displacement gradients are derived with

∇symū = B · d

∇symû = Bc · dc

(4.19)

Thus, using a Galerkin approach the interpolations yield from Eq. (4.16)

δdT ·
∫
V
BT · σ(ϵ) dV = δdT · f ext

δeT ·
[∫

V
GT · σ(ϵ) dV −

∫
V
GT · S dV · s

]
= 0

δsT ·
[∫

V
ST ·Bc dV · dc −

∫
V
ST ·G dV · e

]
= 0

δdT
c ·

∫
V
BT

c · S dV · s = δdT
c · f ext

c

(4.20)

with

f ext =
∫
V
NT · b dV +

∫
At

NT · t dA

f ext
c =

∫
V
NT

c · b dV +
∫
At

NT
c · t dA

(4.21)
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Different types of enhancement will be discussed in the following.

1) Displacements are not enhanced, i.e. dc = 0,u = ū. This makes Eqs. (4.16, 4.20)4

obsolete. Eqs. (4.20)1,2 reduce to

∫
V
BT · σ(ϵ) dV = f ext∫

V
GT · σ(ϵ) dV = 0

(4.22)

The second equation corresponds to the orthogonality condition set by [115]. Together with

a linear elastic material law

σ(ϵ) = C · [∇symū+ ϵ̂] = C · [B · ū+G · e] (4.23)

the well-known form is obtained as following:

∫
v

⎡⎣ BT ·C ·B BT ·C ·G

GT ·C ·B GT ·C ·G

⎤⎦ dV ·

⎛⎝ d

e

⎞⎠ =

⎛⎝ f ext

0

⎞⎠ (4.24)

This is the "statically optimal symmetric formulation" (SOS). Regarding kinematic discon-

tinuities SOS ensures natural traction continuity (t = n · σ) but might introduce spurious

stress transfer [52].

2) Stresses and strains are not enhanced independently, i.e. σ̂ = σ(ϵ) = σ and e = 0.

Strains are derived from enhanced displacements instead

ϵ = ∇symū+ ϵ̂, ϵ̂ = ∇symû (4.25)

and we obtain σ̂ − σ(ϵ) = 0 and ϵ̂−∇symû = 0 and from Eq. (4.16 )

∫
V
∇symδūT · σ dV =

∫
V
δūT · b dV +

∫
At

δūT · t dA∫
V
∇symδûT · σ dV =

∫
V
δûT · b dV +

∫
At

δûT · t dA
(4.26)

Interpolation of strains according to Eqs. (4.19) yields

ϵ = B · d+Bc · dc (4.27)
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and further regarding Eq. (4.26) to

δdT ·
∫
V
BT · σ dV = δdT · f ext

δdT
c ·

∫
V
BT

c · σ dV = δdT
c · f ext

c

(4.28)

With the linear elastic material law Eq. (4.23) the well known form

∫
V

⎡⎣ BT ·C ·B BT ·C ·Bc

BT
c ·C ·B BT

c ·C ·Bc

⎤⎦ dV ·

⎛⎝ d

dc

⎞⎠ =

⎛⎝ f ext

f ext
c

⎞⎠ (4.29)

is obtained. This is the "kinematically optimal symmetric formulation" (KOS). It avoids

spurious stress transfer with kinematic discontinuities but might violate natural traction

continuity [52].

3) The "statically and kinematically optimal nonsymmetric formulation" (SKON) avoids

the former deficiencies using a Petrov-Galerkin approach. But this leads to unsymmetric

systems it is not treated with its details. For its discussion and comparison with SOS and

KOS see [54, 40].

A variant of KOS will be further discussed in the following. The displacement enhancement

û = Hd ŭ = Hd Nc · dc (4.30)

with a continuous field ŭ and a Heaviside function Hd defining a line of discontinuity within

the domain V . Displacement gradients is computed as

∇symû = [δd n⊗Nc +Hd ∇symNc] · dc

= Bc · dc

(4.31)

whereas δd is the Dirac-delta function, the normal n along the line of discontinuity and the

tensor product operator ⊗ connecting the n-index with the first Nc-index. Applying the

enhancement strain operator Bc to Eq. (4.28)2 yields

δdT
c ·

∫
V

δd (n⊗Nc)
T · σ dV + δdT

c ·
∫
V

Hd ∇symNT
c · σ dV = δdT

c · f ext
c (4.32)
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4.2 INTRODUCTION TO THE STRONG DISCONTINUTY APPROACH

and with the discontinuity traction t = nT · σ

δdT
c ·

∫
Ad

NT
c · t dV + δdT

c ·
∫
V

Hd ∇symNT
c · σ dV = δdT

c · f ext
c (4.33)

with the discomtinuity surface Ad due to the Dirac-delta integration property. This corres-

ponds to a virtual work principle

∫
Ad

δŭT · t dV +

∫
V

Hd ∇symδŭT · σ dV =

∫
V

Hd δŭ
T · b dV +

∫
At

Hd δŭ
T · t dA (4.34)

Equations (4.34), (4.16)1 are used for weak equilibrium conditions Eqs. (4.7). The fulfill-

ment of Eqs. (4.34), (4.16)1 should also yield variational consistency regarding the two-field

Eqs. (4.26) derived from the four-field Hu-Washizu variational principles Eq. (4.16).

4.2.2 Explicit crack modeling with SDA

The following discussion to a large extent follows the research work published in[4]. A

displacement discontinuity is regarded on the element level. A 2D continuum element with

four nodes with a single discontinuity is shown in Fig. 4.1. The displacement field is assumed

Figure 4.1: Kinematics of strong discontinuity approach[50]

to consist of a continuous part ū and an enhancing part û which might include discontinuous

contributions

u(x) = ū(x) + û(x) (4.35)

with a local coordinate x. This corresponds to the KOS approach.
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4 NUMERICAL MODELING

Following the rules for kinematics, equilibrium and material behavior are again utilized

within this setup. Regarding kinematics the total displacement is decomposed according to

Eq. (4.35) with an enhanced discontinuous part

û(x) = H ∥u(x)∥ (4.36)

composed of a discontinuity splitting term

H =

⎧⎨⎩ r, x ∈ V +

r − 1, else
(4.37)

with a constant splitting parameter 0 ≤ r ≤ 1 to be chosen and a rigid body displacement

term

∥u(x)∥ =

⎡⎣ 1 0 −y + y0

0 1 x− x0

⎤⎦ ·

⎛⎜⎜⎜⎝
u0,x

u0,y

β

⎞⎟⎟⎟⎠ = Nw(x) ·w (4.38)

where β is the rotational degree of freedom, u0,x,u0,y are translational degrees of freedom and

r = 0. 5 is generally used in the following. Here w and Nw are introduced as discontinuity

degree of freedom and the discontinuity shape function, respectively, which lead to a fixed

crack with center x0. The element’s splitting into domains V −,V + with respect to the crack

orientation. Eq. (4.38) leads to a rigid body displacement of nodes as following where Mw

collects the values of Nw at the element nodes

ûI =

⎡⎢⎢⎢⎢⎢⎢⎣
Nw(x1)

Nw(x2)

Nw(x3)

Nw(x4)

⎤⎥⎥⎥⎥⎥⎥⎦ ·w = Mw ·w (4.39)
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4.2 INTRODUCTION TO THE STRONG DISCONTINUTY APPROACH

with nodal coordinates xI ,I = 1 . . . 4. This is split into domains V +,V − by H · ûI with a

diagonal

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1

H1

. . .

H4

H4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.40)

with HI from Eq. (4.37) according to nodal mappings into V + or V −, see Fig. 4.1.

Nodal displacements ūI describe the continuous displacement field, see Eq. (4.1), and nodal

displacements H · ûI represent the discontinuous displacement field together form the nodal

displacements for the total displacement.

uI = ūI +H · ûI (4.41)

The interpolation of the total displacement field is determined with

u(x) = N (x) · uI = N (x) · ūI +N (x) ·H · ûI (4.42)

i.e., the interpolation operator is applied after superposing continuous and enhanced nodal

contributions which is characteristic for KOS [52], this includes a continuous mapping of the

discontinuous displacement field. With total nodal displacements u given from a computa-

tion on the system level and the discontinuity degrees of freedom w determined on element

level, see following Section 4.2.4, the actual continuous field ū is recovered with

ū(x) = N (x) · uI −N (x) ·H ·Mw ·w (4.43)

using Eqs. (4.42,4.39). Continuum strains are derived from the actual continuous field with

ϵ =
∂ū

∂x
=

∂u

∂x
−H ∂ ∥u(x)∥

∂x
= B(x) ·uI−B(x) ·H · ûI = B(x) · uI −Bw(x) ·w (4.44)

with B according to Eq. (4.2) and

Bw(x) = B(x) ·H ·Mw (4.45)
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This leads to zero strains in case uI = H · ûI , i.e. when the total nodal displacements

reproduce the discontinuous displacement field H ∥u(x)∥.

The approach may be extended to multiple fields of displacement discontinuities. A second-

ary discontinuity, e.g., is introduced with the extension of Eq. (4.36)

u(x) = ū(x) +H1 ∥u(x)∥1 +H2 ∥u(x)∥2
= ū(x) +H1 Nw,1 ·w1 +H2 Nw,2 ·w2

= ū(x) +
[
H1Nw1 H2Nw,2

]
·

⎛⎝ w1

w2

⎞⎠
= ū(x) +N II

w ·wII

(4.46)

The extensions to M II
w , see Eq. (4.39), and BII

w , see Eq. (4.45), are straightforward with

the number of discontinuity degrees of freedom doubled on the element level whereby H

remains unchanged. The application of SDA to other than four-node 2D elements, in par-

ticular triangular elements and 3D elements, is also straightforward. The latter introduces

six discontinuity degrees of freedom for each discontinuity according to spatial rigid body

movements and has a plane-convex polygon separating an element. Further, the discontinu-

ity contour can be changed with modifications of H to consider the rotating crack approach

during a loading history. Earlier, the kinematics is discussed, and discontinuity equilibrium

will be formulated in the next step. A weak form∫
V

H δ∇sym ∥u∥T · σ dV +

∫
Ad

δ ∥u∥T · td dA

=

∫
V

H δ ∥u∥T · b dV +

∫
At

H δ ∥u∥T · t dA
(4.47)

in analogy to Eq. (4.7) is used with the symmetric Nabla operator ∇sym, the path Ad

along the discontinuity and the traction td along the discontinuity, see Fig. 4.1, differ from

Eq. (4.34) with a derivation in a general context.. The discontinuity interpolation Eq. (4.38)

yields

∇sym ∥u∥ = 0

δ ∥u∥ = Nw · δw
(4.48)
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4.2 INTRODUCTION TO THE STRONG DISCONTINUTY APPROACH

which in analogy to Eq. (4.10) leads to a discretized discontinuity equilibrium

δwT · (pw − fw) = 0 (4.49)

with

fw =

∫
Ad

NT
w · td dA (4.50)

and

pw =

∫
V

HNT
w · b dV +

∫
At

HNT
w · t dA (4.51)

Compare to Eqs. (4.11,4.12), fw,pw are not nodal forces assigned to nodal degrees of free-

dom but generalized ‘discontinuity’ forces assigned to the discontinuity degrees of freedom

whereby fw can be considered as internal due its dependence on generalized internal ‘stresses’

td and pw as external due to its dependence on given loading terms b,t.

Finally, a generalized type of material behavior has to be regarded. In analogy to Eq. (4.3),

a general form is given by

td = td(w) (4.52)

which follows the fictitious or cohesive crack model [47]. In analogy to Eq. (4.5) it should

be specified in an incremental form

ṫd = CTw(w) · ẇ (4.53)

This leads to a linearization of the internal discontinuity forces

ḟw =

∫
Ad

NT
w ·CTw ·Nw dA · ẇ = KT,nn · ẇ (4.54)

with a tangential discontinuity stiffness matrix KT,nn in analogy to Eq. (4.13).
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4.2.3 Coupling of continuum to discontinuity

The discretized continuous part described by Eq. (4.10) and the part including a discontinuity

only described by Eq. (4.49) has to be coupled. This is started by deriving the virtual

continuous displacement from the total displacement and the discontinuous part as given

with Eqs. (4.35,4.36)

δū = δu−H δ ∥u∥ (4.55)

and applying the interpolations Eqs. (4.42,4.38)

δū = N · δuI −HNw · δw (4.56)

Later, the virtual strains are given by Eq. (4.44)

δϵ = B(x) · δuI −Bw(x) · δw (4.57)

Eq. (4.7) is still applicable due to continuity of ¯and δ̄. Thus the application to the weak

equilibrium form for the continuous field Eq. (4.7)

δuT
I ·

∫
V

BT · σ dV − δwT ·
∫
V

BT
w · σ dV

= δuT
I ·

∫
V

NT · b dV − δwT ·
∫
V

HNT
w · b dV

+δuT
I ·

∫
At

NT · t dA− δwT ·
∫
At

HNT
w · t dA

(4.58)

leads to an extended form of Eq. (4.10)

δuT (pI − fI)− δwT · (pw − fc) = 0 (4.59)

with pI from Eq. (4.12), fI from Eq. (4.11), pw from Eq. (4.51) and coupling discontinuity

forces

fc =

∫
V

BT
w · σ dV (4.60)

with Bw from Eq. (4.45). Adding the conditions for the extended discretized equilibrium

for the continuous field Eq. (4.59) and the discretized equilibrium for the discontinuous field
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4.2 INTRODUCTION TO THE STRONG DISCONTINUTY APPROACH

Eq. (4.49) yields two sets of combined discretized equilibrium conditions for a particular

element

rI = pI − fI = 0

rw = fc − fw = 0
(4.61)

with residuals rI ,rw as δuI ,δw are independent and arbitrary.

Terms of Eq. (4.61) remain to be linearized with their derivations with respect to the loading

time t. The internal nodal forces time derivative ḟI from Eq. (4.13) has to be extended to

imply the total displacement time derivative by Eq. (4.44)

ḟI =

∫
V

BT · σ̇ dV =

∫
V

BT ·CT · ϵ̇ dV

=

∫
V

BT ·CT ·B dV · u̇I −
∫
V

BT ·CT ·Bw dV · ẇ

= KT,uu · u̇I −KT,uw · ẇ

(4.62)

with the tangential stiffness matrices KT,uu,KT,uw. The time derivative of the coupling

discontinuity forces, see Eq. (4.60), is derived in an analogous way

ḟc = =

∫
V

BT
w ·CT ·B dV · u̇I −

∫
V

BT
w ·CT ·Bw dV · ẇ

= KT,wu · u̇I −KT,ww · ẇ
(4.63)

with further tangential stiffness matrices KT,wu,KT,ww. The time derivative of the internal

discontinuity forces fw is given by Eq. (4.54) and ṗI , see Eq. (4.12), is ruled by prescribed

ḃ,ṫ.

Thus, incremental equilibrium conditions ṗI−ḟI = 0,ḟc−ḟw = 0 corresponding to Eq. (4.61)

are given with⎡⎣ KT,uu −KT,uw

−KT,wu KT,ww +KTnn

⎤⎦ ·

⎛⎝ u̇I

ẇ

⎞⎠ =

⎛⎝ ṗ

0

⎞⎠ (4.64)

This is decoupled with the second row to be solved firstly on the element level

ẇ = DT,w · u̇I (4.65)
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with

DT,w = [KT,ww +KTnn]
−1 ·KT,wu (4.66)

and the solution ẇ to be used for the first row

KT,u · u̇I = ṗ (4.67)

with

KT,u = KT,uu −KT,uw · [KT,ww +KTnn]
−1 ·KT,wu (4.68)

whereby the latter is assembled on the system level and solved for the nodal displacement

increments of the whole system.

4.2.4 Loading time discretization and equilibrium iteration

The Euler backward approach with a constant time step ti = ∆t · i, i = 1 . . . n is used for

loading time discretization. It is performed with

ẇi ≈ ∆w

∆t
=

wi −wi−1

∆t

u̇i
I ≈ ∆uI

∆t
=

ui
I − ui−1

I

∆t

ṗi ≈ ∆p

∆t
=

pi − pi−1

∆t

(4.69)

Equilibrium pi−1
I − f i−1

I = 0,f i−1
c − f i−1

w = 0 is assumed for the preceding time ti−1. The

loading pi is basically prescribed for all time steps. This yields a nonlinear set of algebraic

equations

KT,u(uI ,w) ·∆uI = ∆p (4.70)

according to Eq. (4.67) to gain a solution ui
I = ui−1

I + ∆uI on the system level with a

potential residuum

rI = pI − fI (4.71)
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see Eq. (4.61)1. Iterated values of ui
I ,∆uI are indicated with νui

I ,∆
νuI . A first starter for

Eq. (4.70) is given with

KT,u(u
i−1
I ,wi−1) · δ1uI = ∆p (4.72)

and ∆1uI = δ1uI and 1ui
I = ui−1

I +∆1u.

The displacements derived on the system level can be used for each element to iterate for

its discontinuity degrees of freedom using the generally nonlinear set of equations

∆w = DT,w(uI ,w) ·∆uI (4.73)

according to Eq. (4.65) with a potential residuum

rw = fc − fw (4.74)

see Eq. (4.61)2. A first starter for Eq. (4.73) is given with

δ1w = DT,w

(
1ui

I ,w
i−1

)
·∆1uI (4.75)

and ∆1w = δ1w and 1wi = wi−1 +∆1w and a residuum

1rw = fc

(
1ui

I ,
1wi

)
− fw

(
1wi

)
(4.76)

For |1rw| > tolw this is iteratively solved with the Newton-Raphson method in the general

form

δµ+1w = − ∂rw(w)

∂w

⏐⏐⏐⏐
w=µwi

· µrw

∆µ+1w = ∆µw + δµ+1w

µ+1wi = wi−1 +∆µ+1w

(4.77)

The Jacobian is given with

∂rw(w)

∂w
=

fc (
1ui

I ,w)

∂w
− fw (w)

∂w
= − (KT,ww +KT,nn) (4.78)

see Eqs. (4.63,4.54).
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With |µrw| ≈ 0 and discontinuity equilibrium and wi given on the element level the compu-

tation continues for an improved ui on the system level. From Eq. (4.71) the current residual

is given with

1rI = pi
I − fI

(
1ui

I ,w
i
)

(4.79)

and for |1rI | > 0 the general Newton-Raphson iteration is performed with

δν+1uI = − ∂rI(uI)

∂uI

⏐⏐⏐⏐
uI=νui

I

· νrI

∆ν+1uI = ∆νuI + δν+1uI

ν+1ui
I = ui−1

I +∆ν+1uI

(4.80)

which is nested with w-iterations on the element level. The Jacobian is determined as

∂rI(uI)

∂uI

= −∂fI(uI ,w)

∂uI

− ∂fI(uI ,w)

∂w
· ∂w
∂uI

= −KT,uu +KT,uw ·DT,w

= −KT,u

(4.81)

see Eqs. (4.62, 4.65,4.68). System equilibrium is reached with |νru| ≈ 0 and yields the

solutions for the total displacements ∆uI ,u
i
I of all nodes and for the discontinuity degrees of

freedom ∆w,wi for all elements. This leads to strains and strain increments with Eq. (4.44)

and finally to bulk stresses at time ti with a constitutive law. The solutions for the following

time steps are derived in the same way whereby following the prescribed loading history.

4.2.5 Crack initiation, geometry and tractions

Crack initiation depends on predefined criteria, whereas the crack formation pertain with

the loading history. A Rankine criterion is used in the following, i.e. a crack initiates when

principal tensile stress exceeds the uniaxial tensile strength of the bulk material. The normal

to the crack surface coincides with the direction of the respective principal stress.

Phenomena become complex from a phenomenological point of view after crack initiation.

Mesoscopic crack development is characterized by (1) micro-crack alignment, (2) micro-crack

enlargement, (3) crack bridging by aggregates, (4) macro cracking, cracking evolves within

the so-called process band with a width of 2-3 times the largest aggregate size, see Fig. 4.2.
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Figure 4.2: a) Scheme of mesoscopic crack formation b) Fictitious crack model[50]

This is simplified with the fictitious or cohesive crack model [47] in order to remain within

the framework of continuum mechanics.

This model has to be related to finite elements. Element stresses are computed in element

integration points. Numerical integration is performed with the Gaussian scheme with four

sampling points for the 2D quad element currently under consideration. As the element size

is chosen to be relatively small for FRCC specimen subject to the investigation, the mesh

size is in the magnitude of [mm] and generally smaller than the crack bandwidth. Cracks

are not allowed concerning every integration point; however, they are placed in an element’s

geometric center. Thus, a crack initiates when the center projection of the integration

point’s largest principal stresses exceeds the uniaxial tensile strength whereby the normal

to the crack surface coincides with the direction of centered principal stress. This yields

the data x0,y0 and V +,V − for H, see Eqs. (4.38,4.40) and Fig. 4.1, utilized for the SDA

extension of an element fulfilling the criteria during a loading history.

Cracked neighbor elements do not constrain crack directions, i.e., a crack contour extending

over a series of elements is not enforced to be continuous. On the one hand, the principal

stress directions generally will not deviate too much within neighbored elements, on the

other hand, the computed crack contour indicates an extended band without sharp bounds

in vast areas and not a distinct macro crack. The criteria for crack initiation are checked

after each time step for each element, i.e., an explicit check is performed. This might lead

to an overestimation of concrete tensile strength, controlled by the time step size. These

assumptions about position, direction, and checkpoints simplify the procedure to a large

extent. They also easily allow for the initiation of multiple cracks with the same center but

different orientations.
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Furthermore, tractions transmitted depending upon crack width have to be defined for the

fictitious crack model. The general form has already been given with Eqs. (4.52,4.53). Re-

garding 2D, this includes a normal component and a shear component. The behavior of the

normal component has been investigated to a large extent allowing for a softening course

as shown in Fig. 4.3 for normal crack tractions tn depending on normal crack width wn

[102, 41, 106]. This is constrained by the maximum normal stress tct on crack initiation,

Figure 4.3: Relation between normal components of crack traction - crack width[50]

which is the concrete uniaxial tensile strength, the so-called critical crack wcr width where

crack tractions come to zero and further the fracture energy

Gf =

∫ wcr

0

tn dwn (4.82)

These values are generally assumed as material parameters to be determined from exper-

iments. This approach is modified insofar as tct,Gf are used as input parameters and a

parabolic tn − wn-relation

tn = tct
(
δ2n − 2δn + 1

)
, 0 ≤ δn =

wn

wcr

≤ 1 (4.83)

is assumed with an extremal minimum in wcr. Thus, the fracture energy is given with

Gf = 1
3
tctwcr. This yields a value wcr for prescribed values Gf ,tct generally conforming to

experimental data which for wcr anyway are hard to estimate regarding the background given

in Fig. 4.2. The tangential stiffness is given with

dtn
dwn

=
tct
wcr

(2δn − 2) (4.84)
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This describes the state of loading. Unloading is possible from all points of the loading

path and follows a branch indicated in Fig. 4.3 with the point of initial unloading (wn,u,tn,u)

connected to the origin. The pair (wn,u,tn,u) is a state variable comprising the preceding

load history. The ratio (tn,u/wn,u) indicates the unloading stiffness and (tn,u/wn,u)wn the

crack traction with the current wn on the unloading path. Crack closure is modeled with

a penalty approach with a high constant positive stiffness in the range wn ≤ 0. Reloading

elastically retraces crack closure and unloading up to the current (wn,u,tn,u) and continues

along the loading path.

In contrast to the normal component, much less knowledge is available for the shear com-

ponent ts depending on the crack sliding ws. A simple shear retention

ts = αs (1− δn)
2 Ebulk ws (4.85)

is assumed for this purpose with Young’s modulus Ebulk of the bulk material and a shear

retention factor αs. The inclusion of the related normal crack width δn, see Eq. (4.83), scales

the shear traction down with increasing normal crack width. The shear retention factor

is assumed in a range 0 ≤ αs ≤ 0. 01 and subject to parameter sensitivity studies. The

tangential stiffness is assumed with

dts
dws

= αs (1− δn)
2 Ebulk (4.86)

The contribution dts/ dwn is neglected in order to preserve general symmetry. A value

αs > 0 generally proves to be necessary regarding convergence and stability of numerical

computations. The relations of tn,ts depending on wn,ws and their tangential stiffness are

originally formulated in a local coordinate system aligned to the crack orientation. Regarding

Eqs. (4.52,4.53) they remain, specifically for each cracked element, to be transformed into

the global coordinate system to which the derivations of Sections 4.2.2 to 4.2.4 refer to.

A final point pertains to the order of Gaussian numerical integration is to determine quant-

ities like fI . . . and KT,uu . . .. It is performed on the element level whereby results are as-

sembled on the system level if required. This primarily concerns integrations over domains V

of elements extended with SDA to describe cracks or a discontinuity of displacements. Such

discontinuities generally also lead to discontinuities of stresses, which might impair the pre-

cision of the Gaussian integration scheme. Bulk stress discontinuities should be attenuated
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due to equilibrating crack tractions upon the fulfillment of Eq. (4.47). Thus, the ordinary

2 × 2 integration for 2D quad elements is retained for SDA quad elements. This is used as

a reference for parameter studies with varying integration orders in later investigations.

Furthermore, regarding fw, see Eq. (4.50), and KT,nn, see Eq. (4.54), numerical integrations

have to be performed along the discontinuity contour Ad, see Fig. 4.1. With the linear

discontinuity approach Eq. (4.38) and the at most quadratic approach for tractions, see

Fig. 4.3(a) 2-point Gaussian integration generally proves to be sufficient for the 2D setup.

4.2.6 Viscous regularization

Switches between loading and unloading branch of crack tractions are typical for minimal

normal crack width values wn or spatially non-homogeneous structures during a loading

history whereby a crack initiation in a particular element often leads to internal stress redis-

tributions and unloading in neighbored cracked elements. As the tangential stiffness differs in

sign, see Fig. 4.3, the Newton-Raphson iteration for the equilibrium on the element level, see

Eqs. (4.74) – (4.77), tends to yield an oscillating behavior consecutively switching between

the loading and unloading branches.

Two cases can be observed: a stationary residual oscillation with an upper bounded |rw|,

see Eq. (4.74), and an unstable oscillation with strongly increasing and unbounded |rw|.

While the first one generally is followed by convergence in later steps, the latter destabilizes

the whole simulation and leads to a computation exit. This is typical for large systems.

A stabilization may practically be reached by introducing a regularizing additional viscous

contribution to the crack traction, crack width relation Eq. (4.52)

td = f(w) + td,vis

td,vis = ηw ẇ

ṫd,vis = ηw ẅ

(4.87)

with a parameter ηw to reach a damping effect [17]. The function f marks the quasi-static

contribution according to Eqs (4.83,4.85) transferred to the global system. Time derivatives

of w are discretized in time with the one step Newmark-method [9] with time integration
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parameters γ,β

ẇi ≈ γ

β∆t

[
wi −wi−1

]
+

(
1− γ

β

)
ẇi−1 +∆t

(
1− γ

2β

)
ẅi−1

=
γ

β∆t
∆w +

(
1− γ

β

)
ẇi−1 +∆t

(
1− γ

2β

)
ẅi−1

ẅi ≈ 1

β∆t2
[
wi −wi−1

]
− 1

β∆t
ẇi−1 −

(
1

2β
− 1

)
ẅi−1

=
1

β∆t2
∆w − 1

β∆t
ẇi−1 −

(
1

2β
− 1

)
ẅi−1

(4.88)

as second order derivatives occur. The time integration parameters are generally chosen with

γ = 1/2, β = 1/4 to have unconditional stability independent of ∆t. This leads to

ẇi =
2

∆t
∆w − ẇi−1

ẅi =
4

∆t2
∆w − 4

∆t
ẇi−1 − ẅi−1

(4.89)

and firstly

td,vis =
2ηw
∆t

∆w − ηw ẇi−1 (4.90)

The rate of the viscous crack traction is approximated in analogy to Eq. (4.89)1

ṫid,vis =
2

∆t
∆td,vis − ṫi−1

d,vis (4.91)

Using Eqs. (4.89)2, (4.91) for Eq. (4.87)3 yields

∆td,vis =
2ηw
∆t

∆w − 2ηwẇ
i−1 − ∆t

2
ηw ẅi−1 +

∆t

2
ṫi−1
d,vis (4.92)

As ẇi−1,ẅi−1,ṫi−1
d,vis are given and constant in the current setup an algorithmic tangential

stiffness is derived with

∂∆td,vis
∂∆w

=
2ηw
∆t

I (4.93)

with the identity matrix I. The integration of this approach into the Newton-Raphson

iteration on the element level, see Eqs. (4.74) – (4.78), is straightforward by adding td,vis

from Eq. (4.90) to td in Eq. (4.50) and the tangential stiffness Eq. (4.93) to CTw in Eq. (4.53).
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Summing up, the final tangential discontinuity material stiffness CTw from Eq. (4.53) has

two additive contributions: the quasi-static part from Eqs. (4.84,4.86) translated into the

global system and the viscous part from Eq. (4.93). The first one potentially is negative

definite due to the negative stiffness dtn/ dwn, the second one is always positive definite.

A negative definite sum generally impairs the Newton-Raphson equilibrium iteration. But

the sum can always be made positive definite, i.e., regularized, by an appropriate selection

of ηw/∆t. On the other hand, the selection of a viscosity ηw for this viscous regularization

approach is somehow arbitrary as no experimental evidence is currently available. It should

be chosen such that it facilitates convergence behavior but has no significant impact on

simulation results. Based on simulation experiences, considering the viscous regularization

is necessary for large systems; otherwise, the solutions cannot be obtained.

4.3 NEW APPROACH FOR DEFINITION OF EMBEDDED

FIBERS WITH FLIXIBLE BOND

The mechanical properties of fibers have been described in Section 2.2. 2D truss elements are

used to model the fibers, which act uni-axially and ignore the bending effect. These truss

elements are arbitrarily distributed and freely embedded in continuum whereby the fiber

nodes are independent of continuum nodes, and they do not have to share positions, see

Fig. 4.4 Truss elements and continuum elements are coupled by unique bond elements which

Figure 4.4: Truss elements arbitrarily embedded in continuum[50]

are developed in the following. Displacements of truss elements are interpolated, defined by

a relationship as following

ut(x) = Nt(x) · utI (4.94)
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which is similar to Eq. (4.1) but with their specific shape functions Nt. Furthermore, dis-

placements of continuum elements are interpolated according to Eq. (4.42)

u(x) = N (x) · uI (4.95)

in its full form for SDA or restricting to ūI for others.

The difference of displacement or slip is computed as following utilized several anchors points

xa,i placed along with the truss elements, see Fig. (4.4).

s = ut (xa,i)− u (xa,i)

=
[
Nt(xa,i) −N (xa,i)

]
·

⎛⎝ utI

uI

⎞⎠
= Bb(xa,i) ·

⎛⎝ utI

uI

⎞⎠
(4.96)

for a particular anchor point derived from the corresponding truss element’s nodal displace-

ments and the nodal displacements of neighboring continuum elements. This also constitutes

the kinematic variable of the bond element assigned to the anchor point xa,i. The slip induces

bond forces

tb = tb(s) (4.97)

as a counteracting couple for the truss element on the one hand, and the underlying con-

tinuum, on the other hand. The relation is generally nonlinear. It may be considered as

further material relation in analogy to Eqs. (4.3,4.52) and is also assumed to be known. An

incremental form

ṫb = CTb(s) · ṡ (4.98)

is used in the following in analogy to Eqs. (4.11,4.53) and is related to the global coordinate

system. Regarding a local system aligned to the truss direction, the bond-slip relation is

assumed in a way to avoid a lateral slip or intersection by a penalty term, and the longitudinal

slip reproduces a given bond behavior. This is generally connected with an upper limit for

the longitudinal bond force, i.e., a bond strength.
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Regarding the discretization a bond force couple, one part applied to a truss element, the

other part applied to a continuum element, is introduced as point load at xa,i leading to a

couple of nodal forces

fb =

⎛⎝ fbt

fbc

⎞⎠ = BT
b · tb (4.99)

for the truss element fbt on the one hand, and for the neighbor continuum element fbc, on

the other hand. This is in analogy to Eqs. (4.11,4.60) whereby the integration over a domain

is not required as bond is implemented through single forces. This is linearized with

ḟb = BT
b ·CTb ·Bb ·

⎛⎝ u̇tI

u̇I

⎞⎠
= KT,b ·

⎛⎝ u̇tI

u̇I

⎞⎠ (4.100)

for a particular bond element using Eqs. (4.98,4.96). As embedded fibers do not have dis-

placement boundary conditions externally prescribed a minimum number of two anchor

points xa,i, i.e., a minimum of two bond elements are required per truss element to avoid

rigid body movements. They are conveniently placed in truss element integration points.

Nodal forces fb and the tangential stiffness KT,b can be assembled on the system level

for each bond element: fb is added to the assembled fI , see Eq. (4.11), KT,b is added

to the assembled KT,u, see Eq. (4.68), according to the mappings of the underlying truss

and continuum elements. Thus, the introduction of bond elements seamlessly fits into the

solution procedure described in Section 4.2.4.

A standard 2D truss element is given with the isoparametric two-node element with two

degrees of freedom per node, i.e., four degrees of freedom with shape functions, see Eq. (4.94)

Nt =

⎡⎣ Nt1(ξ) 0 Nt2(ξ) 0

0 Nt1(ξ) 0 Nt2(ξ)

⎤⎦
Nt1(ξ) = 1

2
(1− ξ)

Nt2(ξ) = 1
2
(1 + ξ)

(4.101)
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with the local coordinate −1 ≤ ξ ≤ 1. This implies constant longitudinal strains and stresses.

An enhanced approach is chosen for quadratic longitudinal displacements with

N ′
t =

⎡⎣ Nt3(ξ) 0 Nt4(ξ) 0 Nt5(ξ)

0 Nt1(ξ) 0 Nt2(ξ) 0

⎤⎦
Nt3(ξ) = 1

2
(1− ξ)− 1

2
(1− ξ2)

Nt4(ξ) = 1
2
(1 + ξ)− 1

2
(1− ξ2)

Nt5(ξ) = 1− ξ2

(4.102)

introducing a fifth nodal degree of freedom for longitudinal displacements. This, at first, is

valid in a coordinate system aligned with the first displacement direction u′
x following the

truss element axis. This leads to an aligned B-matrix, compare Eq. (4.1)

B′
t =

1

L

[
2ξ − 1 0 2ξ + 1 0 −4ξ

]
(4.103)

with an element length L according to well-known rules of isoparametric finite elements. The

aligned direction is rotated by an angle ϕ to the global direction, see Fig. 4.4. As u′ = T ·u

with

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosϕ sinϕ 0 0 0

− sinϕ cosϕ 0 0 0

0 0 cosϕ sinϕ 0

0 0 − sinϕ cosϕ 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.104)

the final B-matrix is given with

Bt = B′
t · T (4.105)

leading to linear strains with an additional degree of freedom not assigned to a node. Re-

garding embedded truss elements, this enhanced approach yields the same behavior as fully

quadratic elements but with fewer degrees of freedom. The linear and quadratic approaches

work in both 2d and 3D and can be used with different finite elements approaches, including

the SDA approach described in Section 4.2. These cover a wide range of reinforcement types

from a large number of short fibers randomly positioned and orientated, whereby discretized
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with a small number of elements up to long single rebars distributed regularly in composite

whereby each discretized with a large number of elements. In the case of thick fibers, beam

elements can be used instead of truss elements with bending stiffness, whereby this will add

a rotational degree of freedom into the system beneath translational. A rebar bending, e.g.,

might become relevant as so-called dowel action upon the crossing of cracks.

4.4 NUMERICAL SIMULATIONS

4.4.1 Introduction

Previous studies stated in Chapter 2, show that it is not still possible to fully understand

and predict the behavior of fiber-reinforced concrete structures under different loading con-

ditions. Thus, this leads to further investigations and research in this field. In this chapter,

several sensitivity analyses are performed to evaluate the model, which is developed based

on numerical methods and explained thoroughly in Chapter 4. The benchmarks in the fol-

lowing sections, are introduced to study the effect of structural and modeling parameters,

e.g., mesh sensitivity of matrix and fibers, fiber’s angle concerning the loading direction,

and capability of the newly developed model to analyze a model contains all component of

the mesoscopic model. These parameter studies can show both strength points and the re-

striction of the developed model. In the following sections, models under small-displacement

increments (Quasi-static) conditions are discussed, and the Newton-Raphson method is used

to gain equilibrium by iteration for each loading increment. The mechanical properties of

aggregates and matrix are given in Table 4.1 and Table 4.2, respectively.

Parameter Unit Value
Young’s modulus E [N/mm2] 60 000
Poisson’s ratio ν - 0.15

Table 4.1: Mechanical properties of aggregates

Parameter Unit Value
Young’s modulus E [N/mm2] 29 000
Poisson’s ratio ν - 0.2
Tensile strength fct [N/mm2] 3.8
Fracture energy Gf [N/mm] 100 · 10−3

Critical crack width wcr [mm] 0.079

Table 4.2: Mechanical properties of fine grained concrete

68



4.4 NUMERICAL SIMULATIONS

Basic fiber properties have been described in Section 2.2. Typical property values which later

will be used for the following numerical simulations are given in Table 4.3 whereby the fiber’s

strength is reduced compared to nominal values corresponding to practical experience. The

simulation model allows for a wide range of these values. However, the bond law used in the

simulation of benchmarks is B− 5, which is the same bond law used for the reference model

in Chapter 5, to keep the constancy between the benchmarks and larger-scale simulations,

see Table 4.4. Bond law B − 4 is derived from simulation of single fiber pullout test and

discussed in Section 2.2.5. The transformation from bond law B − 4 to bond law B − 5 will

be explained in detail in Section 5.2.

Parameter Unit Value
Young’s modulus Ef [N/mm2] 80 000
Tensile strength ff [N/mm2] 1 600
Length L [mm] 6
Diameter ⊘ [mm] 0. 02
Cross sectional area Af [mm2] 3. 14 · 10−4

Failure load Pfu [N] 0.5

Table 4.3: Mechanical properties of fibers

Parameter Unit Value - B-5
Bond strength τmax [N/mm2] 2.39
Ultimate bond stress τf [N/mm2] 0.0
Slipτmax S1 [mm] 0. 022
Slipτf S2 [mm] 0. 706

Table 4.4: Mechanical properties of bond - B - 5 bond law

A setup of loading and boundary conditions is shown in Fig. 4.5, whereby loading is applied

as prescribed nodal displacement on the top edge of the model and model is fully supported

in bottom edge.
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Figure 4.5: Geometry, boundary condition and acting load for simple benchmark

4.4.2 Mesh sensitivity of models with SDA continuum elements

In the first series of parameter studies, the mesh sensitivity of SDA elements in the developed

model is investigated within four different discretization qualities and unit dimensions (length

and height of 1mm) shown in Fig. 4.6. In Fig. 4.6, the crack’s direction and position are

shown with red dash lines, and the location of crack’s origin point, which is placed in element

center, is displayed with the red circle. Material properties, loading, and boundary condition

for all models are the same, as explained in section 4.4.1.

The simulations load-displacement results are shown in Fig. 4.7. It is observed that the model

with two vertical matrix elements shows the same response as the model with one matrix

element. The contribution of each element in the damage stage is connected to the fracture

energy of matrix material. Thus, in model with two vertical elements, the contribution of

two elements is twice of one element model; however, the length of cracks is half of the

crack’s length in one element model so both models will show the same behavior at the end

in this specific loading and boundary conditions. The same logic can be used to explain that

the response of the model within two horizontal matrix elements is the same as the model

with four matrix elements shown in Fig. 4.7.
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(a) Model within one matrix ele-
ment

(b) Model within two horizontal
matrix elements

(c) Model within two vertical
matrix elements

(d) Model within four matrix
elements

Figure 4.6: Simple matrix models with their crack patterns and crack’s anchor points

Figure 4.7: Simple matrix models - force vs displacement results

The mesh sensitivity of another four models with different discretization is investigated, mod-

els are shown in Fig. 4.8. Material properties, dimensions, loading, and boundary condition

for all models are the same, as explained in section 4.4.1 and shown in Fig. 4.5.
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(a) Model within one matrix
element-very coarse mesh

(b) Model within 16 matrix
elements-coarse mesh

(c) Model within 400 matrix
elements-medium mesh

(d) Model within 1600 matrix
elements-fine mesh

Figure 4.8: Simple matrix models used for checking the size in-dependency of SDA ap-
proach

From the results shown in Fig. 4.9 and based on the mentioned explanation, increasing the

number of elements will increase their contribution in the damage phase and increase the

area under the curve in softening stage.

Figure 4.9: Simple matrix models - force vs displacement results
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The SDA approach is known as a mesh-independent method which performs a natural reg-

ularization in the strain-softening stage. To see this effect, each discretization’s fracture

energy is modified to present the same softening behavior. Thus, for this specific loading,

geometry, and boundary conditions and based on the enumerated explanation, if fracture

energy in one element model is equal to A, in model with 16, 400 and 1600 elements, the

fracture energy should be equal to A/4, A/20, and A/40, respectively, to represent the same

total response. Results are shown in Fig. 4.10.

Figure 4.10: Simple matrix models within modified material properties - mean stress vs
displacement results

Discretization is one of the four stages of FEM explained in chapter 4. Within the numerical

methods, equations are solved for smaller elements to simulate the larger system’s overall

behavior. From the graph shown in Fig. 4.11, it is observed that computation time for a

model with a very fine mesh is almost 400 times of computation time for the model within

one element which both will represent the same results shown in Fig. 4.10. This shows the

big advantage of using the SDA approach, which is the size in-dependency due to natural

regularization, leading to less modeling effort and less time computation.
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Figure 4.11: Simple matrix models - time vs number of degree of freedom

4.4.3 Parameter study of fully embedded fiber model

Geometry, boundary, and loading conditions for fully embedded models are shown in Figs. 4.12.

Uniform prescribed displacement is applied on the top edge of the model to provide longitud-

inal tension conditions. The discretization of matrix elements follows the model within me-

dium mesh (400 matrix elements) presented in the previous section, it is shown in Fig. 4.8(c)

and partly in Fig. 4.12(a). The linear elastic material is assigned to the continuum without

limited tensile strength, and small load steps have been chosen to provide the quasi-static

loading condition. The result corresponding maximum loading equal to 0. 1mm will be dis-

cussed in the following. The fiber is divided into five elements. The influence of fiber angle

is investigated in two conditions, i.e., a)fiber is located in the middle of specimen vertically

in the direction of prescribed load, b)fiber is inclined concerning the loading direction with

45-degree inclination angle (φ), the position of fibers are shown in details in Fig. 4.12.
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(a) Vertical embedded fiber (b) Inclined embedded fiber -
φ = 45◦

Figure 4.12: Geometry, boundary condition and acting load for fully embedded fiber mod-
els

From results, shown in Fig. 4.13, the typical behavior of an embedded fiber is observed, such

as the bond stresses that have maximum absolute values with different signs at the ends

whereby longitudinal stress of fiber is zero at the ends with an intermediate maximum. To

fulfill the fiber cutout’s equilibrium condition, the spatial derivative of longitudinal stresses,

scaled by some constant factors, is equal to the derivative of the bond stresses.

(a) Vertical embedded fiber (b) Inclined embedded fiber - φ = 45◦

Figure 4.13: Fully embedded fiber models - fiber and bond stresses along fiber length -
fibers within 5 element divisions

Regarding the influence of fiber’s orientation concerning tensile loading direction, it is ob-

served that in model with embedded fiber with a 45-degree inclination angle, the maximum

stress in fiber and bond stress is decreased by a factor of 3.12 in comparison to model within

fiber align to load direction. The significant effect of the inclination angle is easily seen from

these results which leads to further investigations, three new models with different inclin-

ation angle (φ) are analyzed whereby enhanced truss elements, see Eq. (4.102), are used
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for better understanding of longitudinal stresses in fibers in a different condition, shown in

Fig. 4.14.

(a) Inclined fiber - φ = 5◦ (b) Inclined fiber - φ = 15◦

(c) Inclined fiber - φ = 30◦ (d) Inclined fiber - φ = 45◦

Figure 4.14: Geometry, boundary condition and acting load for fully embedded fiber mod-
els within different inclination angles

The effect of fiber’s inclination angle on fiber stresses and bond stresses is shown in Fig. 4.15

where the prescribed displacement applied to the model is equal to 0. 1mm. In Fig. 4.15(d),

the results for both linear and enhanced elements are shown for the model with inclined

embedded fiber φ = 45◦. This shows stresses in model with enhanced elements are changing

linearly, which gives a better understanding of the distribution of stresses in fiber.

76



4.4 NUMERICAL SIMULATIONS

(a) Inclined fiber - φ = 5◦ (b) Inclined fiber - φ = 15◦

(c) Inclined fiber - φ = 30◦ (d) Inclined fiber - φ = 45◦

Figure 4.15: Fully embedded fiber models and different inclination angles - fiber and bond
stresses along fiber length

In Figs. 4.16(a,b) maximum fiber stresses and bond stresses for different inclination angles

are compared. The presented results show that maximum fiber stresses and bond stresses are

decreased by a factor of 3.12 from the model with the fiber orientated along tensile loading

direction to model with φ = 45◦. These results are normalized based on the stresses for the

model with vertical fiber and shown in Fig. 4.17, both graphs for bond and fiber stresses are

laying on each other to establish the internal equilibrium.
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(a) (b)

Figure 4.16: a) Maximum fiber stresses and b)maximum bond stresses in fiber elements in
fully embedded fiber models and within different inclination angles

Figure 4.17: Normalized fiber and bond stresses in fully embedded fiber models and differ-
ent fiber angles

As discussed before, the discretization quality plays a significant role in analyzing the full

system’s behavior. However, for fiber-reinforced concrete structure, which contains a large

number of fibers, (≈ 104), the required fiber discretization quality is an important topic. In

the next step, the influence of the number of fiber’s divisions is investigated by increasing

the divisions from 5 to 10 divisions whereby a linear approach is used for the longitudinal

truss displacements leading to constant longitudinal strains and stresses within a single truss

element. In Fig. 4.18, comparative results are shown for two enumerated models, including 5

and 10 divisions for single fiber. Fiber stresses and bond stresses are computed and compared
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in both conditions of vertical and inclined embedded fiber. Results for models with five

divisions are shown in dash lines. It shows that increasing the number of fiber divisions will

not significantly affect the value of maximum fiber stresses and the computed bond stresses

along the fiber length. In these results, straight lines connect the stresses on neighbored

integration points, and the constant stress approach balances external longitudinal stresses.

Thus, the differences between curves are minimal; the coarse approach will be chosen as

reference for the following simulations, especially in simulations with a large number of

degrees of freedom. This simplification will have a significant effect on modeling effort and

time of calculation. Moreover, the size of fiber elements is in good compatibility with mesh

size for continuum elements in the medium mesh model (see Fig. 4.8).

(a) Vertical embedded fiber (b) Inclined embedded fiber - φ = 45◦

Figure 4.18: Fully embedded fiber models - fiber and bond stresses along fiber length -
fiber within 5 divisions vs 10 element divisions

4.4.4 Parameter study of model within single fiber passing a small gap

The geometry, boundary condition, loading direction, and fiber positions are shown in

Fig. 4.19. The discretization of matrix elements follows the model within medium mesh

(400 matrix elements) discussed in section 4.4.2, it is shown in Fig. 4.8(c) and partly in

Fig. 4.19(a). A small gap of 0. 02mm divides the continuum into two identical sections.

These sections are connected to each other with a single fiber, which passes both sections

equally. Uniform prescribed displacement is applied on the top edge of the model to provide

longitudinal tension conditions.
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(a) Fiber in load direction (b) Inclined fiber - φ = 45◦

Figure 4.19: Geometry, boundary condition and acting load for models within small gap

The linear elastic material is assigned to the continuum without limited tensile strength, and

small load steps have been chosen to provide the quasi-static loading condition. From force-

displacement results, see Fig. 4.20, it is observed that the fiber reaches the fiber’s failure

load, see Table 4.3, when the prescribed displacement is equal to 0. 1mm for the model with

φ = 0. This displacement stage is shown as δ0 in Fig. 4.20 and will be used as a reference

for further investigations and parameter studies.

Figure 4.20: Models within small gap - total response vs displacement results

In Fig. 4.21, fiber stresses along the fiber length for δ = δ0,φ=0 are shown for two conditions

(φ = 0◦,45◦). From these results, it is observed that bond elements have reached the peak

magnitude for bond strength in both cases, corresponding to bond strength discussed in

Section 4.3 and stated in Table 4.4). On the other hand, stress in intermediate fiber elements

has reached almost the maximum tensile strength of fiber mentioned in Table 4.3 for both

conditions.
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(a) Fiber in load direction (b) Inclined fiber - φ = 45◦

Figure 4.21: Models within small gap - fiber and bond stresses along fiber length

Several sensitivity analyses are performed by the use of the newly developed model to invest-

igate the effect of fiber’s inclination angle concerning tensile loading conditions. Three new

models with different inclination angles (φ) are analyzed whereby enhanced truss elements

are used for better understanding of longitudinal stresses in fibers in a different condition;

models are shown in Fig. 4.22.

(a) Inclined fiber - φ = 5◦ (b) Inclined fiber - φ = 15◦

(c) Inclined fiber - φ = 30◦ (d) Inclined fiber - φ = 45◦

Figure 4.22: Geometry, boundary condition and acting load for models within small gap
and different inclination angles
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The effect of the inclination angle of fiber on fiber stresses and bond stresses is shown in

Fig. 4.23 where the prescribed displacement applied on the model is equal to 0. 1mm. From

these results, it is observed that in all models with different inclination angles, the computed

fiber stresses along the fiber length and bond stresses in bond elements are almost equal to

fiber’s tensile strength and bond strength, respectively. In Fig. 4.23(d), the result for both

linear and enhanced elements are shown for the model with φ = 45◦, which shows stresses in

model with enhanced elements are changing linearly, and this gives a better understanding

of the distribution of stresses in fibers.

(a) Inclined fiber - φ = 5◦ (b) Inclined fiber - φ = 15◦

(c) Inclined fiber - φ = 30◦ (d) Inclined fiber - φ = 45◦

Figure 4.23: Models within small gap and different inclination angles - fiber and bond
stresses along fiber length

In Fig. 4.24, the curves show the total response of models with different inclination angles.

From these results, it is observed that the total response of model is increasing with the

increase in inclination angle.
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Figure 4.24: Models within small gap - total response vs displacement results

As it is discussed in detail in Section 2.2.5, the effect of the inclination angle is considered

with the factor efφ. Based on Eq. (4.106) for the same end-slippage and embedded length l,

the bridging force for the model with inclination angle (φ) can be computed as:

P |φ = efφ · P |φ=0 (4.106)

whereas snubbing friction coefficient f is an interface material parameter, depends on each

fiber/matrix combination[70] and different values in the range of 0 and 1 are recommended in

literature[125], [124]. The effect of inclination angles for models with inclined fiber is shown

in Fig. 4.25. It is observed that the model’s total response is increasing with the increase of

the inclination angle. Based on Eq. (2.2), the ratio between pull-out force for vertical fiber

and inclining fiber models are expected to be equal to a factor of efφ. Thus, in Fig. 4.25(b),

forces are normalized with bridging forces derived from vertical fiber simulation, and it is

observed that normalized bridging forces are in good agreement in respect to formula curve

where snubbing friction factor is assumed (f = 0. 35) [124].

In the simulation of 2D dumbbell experiments, which will be discussed in Chapter 5, no

extra factor is added to the formulation concerning the effect of fiber’s angle since unique

production techniques caused the fibers to be mostly aligned longitudinally in the direction

of applied tension load. The fiber angles in numerated specimens are assumed to be less

than 5◦ concerning the load direction . Thus, based on the graphs shown in Fig. 4.24, no

significant differences are observed between results for φ = 0◦ and φ = 5◦.
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(a) (b)

Figure 4.25: a)Total reaction forces and b)normalized forces for models with gap and dif-
ferent inclination angles fiber angles in δ = δ0,φ=0 and f = 0. 35

4.4.5 Simple model with fibers and aggregates

In this section, four different models are studied, which setup of loading, boundary conditions

and geometry assigned to all models are shown in Fig. 4.26. Elastic material model is assigned

to fibers modeled with embedded enhanced truss elements and have length of 4mm whereas

each single fiber is divided into five elements. Continuum elements are SDA quad elements

whereas secondary cracking is constrained by a minimum deviation of 45 degrees compared

to primary cracking orientation The matrix elements have the dimension of 1mmx1mm, the

discretization of matrix elements is shown in Fig. 4.26.

Mechanical properties assigned to aggregates, matrix, fiber and bond elements are stated in

Tables 4.5,4.6,4.7,4.8, respectively. Very low crack energy is assigned to the matrix elements

to capture softening concerning the small size of the specimen whereas and two weak elements

are introduced to add the imperfection to the analysis. Thus, they have a tensile strength

of fct = 2. 7N/mm2 and shown with gray elements in Fig. 4.26.
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Figure 4.26: Geometry, boundary condition and acting load

Parameter Unit Value
Young’s modulus E [N/mm2] 60 000
Poisson’s ratio ν - 0.1

Table 4.5: Mechanical properties of aggregates

Parameter Unit Value
Young’s modulus E [N/mm2] 25 000
Poisson’s ratio ν - 0.2
Tensile strength fct [N/mm2] 3.0
Fracture energy Gf [N/mm] 20 · 10−3

Table 4.6: Mechanical properties of concrete

Parameter Unit Value
Young’s modulus Ef [N/mm2] 60 000
Poisson’s ratio ν - 0.1
Length L [mm] 4
Cross sectional area Af [mm2] 1 · 10−6

Table 4.7: Mechanical properties of fibers

Parameter Unit Value
Bond strength τmax [N/mm2] 4.78
Ultimate bond stress τf [N/mm2] 0.0
Slipτmax S1 [mm] 0. 022
Slipτf S2 [mm] 0. 354

Table 4.8: Mechanical properties of bond
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4 NUMERICAL MODELING

(a) Model within cementitious
matrix

(b) Model within aggregates

(c) Model within fibers and ag-
gregates

(d) Model within fibers

Figure 4.27: Simple models with fibers and aggregates

Four models are shown in Fig. 4.27, the first model is a model with just matrix elements. The

second model includes six aggregates with a random radius and position; the area fraction of

these aggregates is 6% of the model’s total area. The third model is a model with 33 fibers

which randomly distributed in the model. The volume fraction of fibers is much less than

the magnitude typically used for strengthening fiber reinforced concrete structures; however,

this section aims to generally show the capability of the newly developed model in analyzing

models containing different components of mesoscopic model. In the last model, aggregates

are removed, and the whole model is filled with fibers randomly. Four hundred fibers are

considered in the model, whereas fibers’ inclination is restricted within a range of ±5 degrees

to the loading direction. The volume fraction of fiber is still much less than the typical range

for SHCCs.
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Figure 4.28: Simple models with fibers and aggregates - force vs displacement results

From the results shown in Fig. 4.28, it is observed that two models without aggregates

(models a and d) have the same elastic path whereas the softening curve of model a is

started with a sudden drop which can be a sign of formation of a critical crack. Later, the

model with fibers shows more ductile behavior in softening phase. This can be explained by

the fact that the fibers have a significant role in load-bearing in this stage.

Comparing two models without fibers (models a and b), model b has higher initial slope

because of aggregates with much higher Young’s modulus, but since the area fraction is

not that much high, the difference is not too big. On the other hand, the model without

aggregates starts softening path with a small drop, but shortly after that, both models follow

mostly the same softening path.

Two models contain fibers (models c and d), it is seen that model with aggregate and fibers

have a higher initial slope of elastic path, it can be explained with high Young’s modulus

of aggregate. As mentioned before, fibers have a significant impact on the softening stage;

this can be seen with ductile behavior seen in the softening phase. Moreover, if two models

with aggregate are compared, it is observed that model without fibers has a steep softening

phase.

To sum up, it is observed that the newly developed model is successfully capable in the

simulation of models contains different components of mesoscopic models. However, it should

be stated that the number of fibers in this simplified case study is much lower than the

minimum value needed for achieving the strain-hardening desired as SHCC tensile response.

Moreover, the model with aggregates is not pursued further in the current research, since

the specimen under consideration is made of fine concrete.
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5 SIMULATION AND NUMERICAL PARAMETRIC

STUDIES OF TENSION TEST ON DUMBBELL

SPECIMEN UNDER QUASI-STATIC LOADING

CONDITIONS

In the current chapter, a numerical model is explained to simulate the total response of

2D SHCC dumbbell specimens under tensile loading conditions in order to calibrate and

validate the enumerated numerical method introduced in Chapter 4. It starts from the

experiment set-up, loading condition, mechanical properties of specimens, and continuous

with several numerical parametric studies. The study is extended by further with more

in-depth investigations into the influences associated with the mechanical properties of each

component of FRCC and model characteristics. These particular experiments have been

introduced and partly discussed in published researches in[114, 50].

5.1 EXPRIMENTAL SET-UP

5.1.1 Materials

The composite used for simulation is a high-strength SHCC made with ultra-high molecu-

lar weight polyethylene (UHMWPE; or shortly PE) Dyneema SK62 fibers, produced by

DSM, the Netherlands[2]. The used Dyneema fibers are gel-spun, multi-filament fibers with

high tensile strength, low elongation at their breaking points, and deep longitudinal grooves

showing the oriented fibrils, see Table 5.1. They have a cut-length of 6mm and an average

diameter of 20µm, and mixed up to 2% of volume with the cement matrix. The nominal

tensile strength of fibers is 2 500N/mm2 with a brittle failure mode.

These hydrophobic PE fibers have a high chemical residence to most chemicals, e.g., acids,

alkalis, and water. They show better performance in high-strength SHCC due to their weak
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interracial bonds in water-based composites caused by their nonpolar molecular structure.

This high-strength matrix is developed to exhibit to provide the proper interaction between

PE fibers and hardened cement paste through high packing density and strength[31, 30].

Thus, the developed high-strength matrix should yield a very low fracture toughness to

ensure a steady-state cracking in the strain-hardening phase[68].

The matrix has a high cement content, low water-to-binder ratio, a small amount of fine

sand, and no coarse sand or aggregates to achieve desired micromechanical conditions„ see

Table 5.2. The low tensile strength and evident brittleness are beneficial regarding the

formation of multiple steady-state cracks and strain-hardening in the SHCC composite,

which is discussed in detail in Section 2.2[30].

The PE fibers’ bond properties in the high-strength cementitious matrix have been studied in

detail in previous works published in [31, 29]. The bond is described by a bond-slip relation

with softening after reaching the bond strength and complete pullout of the fibers with

embedment lengths of up to 3mm. The bond strength should be moderated to let the fibers

play their role in crack bridging while ensuring adequate free length for fiber deformation

with crack opening and avoiding premature fiber failure. The reference pullout test and the

bond law utilized in simulation, are discussed in detail in Section 2.2.5.

Parameter Unit Value
Diameter ⊘ [mm] 0. 02
Length L [mm] 6
Aspect ratio - 300
Tensile strength ff [N/mm2] 1 600
Young’s modulus Ef [N/mm2] 80 000
Elongation at break% - 3.5

Table 5.1: Mechanical properties of polymer fibers (Dyneema) used in target SHCC[31]

Parameter Unit Value
CEM I 52.5 R-SR3/NA [Kg/m3] 1 460
Silica fume Elkem 971 [Kg/m3] 292
Quartz sand (0. 06− 0. 2mm) [Kg/m3] 145
Water [Kg/m3] 315
HRWRA Glenium ACE 460 (BASF) [Kg/m3] 35
HDPE fibers (2. 06% by volume) [Kg/m3] 20

Table 5.2: Mixture composition of high-strength SHCC[31]
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5.1.2 Specimen production and testing

Unique dumbbell-shaped specimens with a very thin cross-section in the gauge portion are

designed and produced in order to use as reference experiments of 2D FEM simulations of

SHCC with a discrete fiber representation, see Fig. 5.1(a). The molds consist of plastic

elements assemble through bolted connections. The small thickness is achieved by pressing

profiled elements into the molds filled with fresh SHCC until the purposefully dimensioned

spacers impeded any further displacement. The pressed material is squeezed towards the

molds’ open ends, which is aligning the fibers longitudinally. The predominantly longitud-

inal orientation of the fibers is also a desired aspect concerning the performed numerical

simulations.

The specimens are cured for 27 days in the molds. The curing is done in sealed plastic bags

in a climatic chamber with constant temperature (20◦C) and humidity (65◦C) conditions.

This curing procedure allows minimizing the development of shrinkage cracks, which can be

promoted by the high cement content in the investigated SHCC as well as large surface area

and a small cross-section of the samples[114].

Before testing, the specimens are extracted from the mold assembly together with the profiled

mold elements. The latter are connected to each other by long threaded rods at the specimen

ends, as shown in Fig. 5.1(b). The extraction is done to apply the speckle pattern necessary

for the optical monitoring of the deformations during the test as well as for cutting the

notches. Before the test starts, these elements are bolted back to the specimens and confined

the samples during the gluing process[114].

The specimens have a cross-section of 3. 5mmx40mm in the gauge portion and 40mmx40mm

at their ends. The total specimen length is 250mm with a gauge length of 100mm. The

transition zones between the large cross-sections at samples’ ends and the thin gauge portions

are 35mm long. These geometrical proportions ensure proper fixation of the samples in

the testing machine on one hand, and failure localization in the gauge portion, on the

other[114]. Fig. 5.2(b) shows a specimen fixed in the testing machine and the confining mold

elements. Non-rotatable boundaries were ensured by gluing the specimens in thick steel

rings, which were bolted to the machine cross-members. The same testing conditions are

used as the previous works on common specimen geometries published in [31, 29]. The tests

are performed in a hydraulic testing machine Zwick 1200 in a displacement controlled mode

with a displacement rate of 0. 05mm/s. Notched and un-notched specimens are tested. The
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Figure 5.1: a) Naked un-notched SHCC specimen, b) specimen fixed in the testing ma-
chine. The lateral confining elements were removed shortly before load
initiation[114, 50]

notches with a length of 5mm and a height of 4mm, are cut in the middle on both sides

of the samples, the position and dimensions of notches on both sides of the specimen are

shown in Fig. 5.5(a). The results on notched specimens with a fiber content of 2% are used

as reference experiments and shown in Fig. 5.2.

Figure 5.2: Experimental results on notched specimens with a fiber content of 2%
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5.2 FINITE ELEMENT SIMULATIONS

The 2D SHCC tensile models are analyzed with in-house program CaeFem used newly de-

veloped model introduced in Chapter 4. As it is mentioned before, the specimen is very thin

in mid-region with t = 3. 5mm to provide 2D conditions. The loading is applied by displace-

ment control condition on the top edge while the specimen is fixed in lower support. The

test results related to two nominally the same notched specimens explained in Section 5.1,

are used as experimental references. Each component of cement-based composites should be

modeled separately on the mesoscopic scale. The model is in the context of plane-stress.The

embedded fibers are represented by 2D truss elements[128]. Thus, the matrix elements are

2D four-node continuum elements with linear elastic material behavior and limited tensile

strength rolled by Rankine criteria to extend to cracked SDA element and depends on load

history. The fixed cracks approach is applied whereas secondary cracking is allowed. The

formulation of mentioned material models and methods are discussed in detail in chapter 4.

Due to the localization of cracks in the notched area, special attention will be given to the

middle of the dumbbell specimen for numerical simulation, see Figs. 5.3 and 5.4. During

the experiments, the deformations are evaluated using Digital Image Correlation in which

three virtual calipers were placed longitudinally on specimen edges and in the middle. The

deformation axes diagrams shown in Fig. 5.2 represent the average of the elongation of these

profiles, which show the whole gauge surface in the mid of the specimen.

In Figs. 5.3 and 5.4, each DIC image represents a specific step of crack development. They

show how the cracks are formed, propagated, and localized in the notched area during the

experiments. It should be stated that the notches did not impede multiple crack formation

in the whole gauge surface, which is typical for SHCC. However, they concentrated the crack

formation in the middle of the sample and allowed modeling a smaller region of 40 mm length

in the middle of the sample. This way, the modeling effort will be efficient, and the required

computational time will be optimized and is schematically shown in Fig. 5.5(a). The notched

area is discretized with 1560 quad continuum elements with a thickness of t = 0. 1mm. A

total number of 1698 fibers is computed for the simulation model considering the single fiber

volume of 1. 88 · 10−3 mm3, and 2% volume fraction of fiber.
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Figure 5.3: DIC images, crack pattern during tensile test at different load steps:
1)u = 0. 02mm, 2)u = 0. 3mm, 3)u = 0. 52mm, 4)u = 0. 77mm ,
5)u = 1. 02mm, 6)u = 1. 27mm, 7)u = 1. 52mm, 8)u = 1. 77mm,
9)u = 2. 02mm, 10)u = 2. 27mm, 11)u = 2. 52mm[Specimen N1 ][114]

Figure 5.4: DIC images, crack pattern during tensile test at different load steps:
1)u = 0. 048mm, 2)u = 0. 3mm, 3)u = 0. 55mm, 4)u = 0. 8mm ,
5)u = 1. 05mm, 6)u = 1. 3mm, 7)u = 1. 55mm, 8)u = 1. 8mm,
9)u = 2. 05mm, 10)u = 2. 3mm, 11)u = 2. 55mm [Specimen N2 ][114]
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Fibers are distributed randomly in the model, whereas the inclination of fibers is restricted

within a range of ±5 degrees from the vertical due to special production techniques explained

in Section 5.1.2, see Fig. 5.5(b). A single fiber is discretized with five constant stress truss

elements. The whole simulation model includes 23 046 degrees of freedom. A viscous reg-

ularization is required in order to avoid premature destabilization of the computation, see

Section 4.2.6. A viscosity value combined with an initial loading time step is chosen for this

purpose; see Eq. (5.1).

ηw = 10
N

mm2

s

mm
, ∆t = 0. 001 s (5.1)

The shear retention factor, see Eq. (4.85), is assumed with αs = 0. 01. This is derived from

parameter studies on Willam’s test discussed in[103, 121, 50].

Figure 5.5: Dumbbell specimen simulation a) Geometry of mid region of specimen with
scheme of discretized center segment b) scheme of random fiber placement[114,
50]

The fine-grained concrete properties are listed in Table 5.3. Truss nodes and neighboring

continuum nodes are coupled by particular bond elements, explained in detail in Section 4.3.

The bond-slip relation is defined so that the lateral bond is constrained with an elastic penalty

approach in order to avoid mutual intersections and is flexible in a longitudinal direction

according to the governing bond-slip law. Linear elastic material models with limited tensile

strength are assigned to embedded truss elements; fiber mechanical properties are shown in

Table 5.4.
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Parameter Unit Value
Young’s modulus E [N/mm2] 29 000
Poisson’s ratio ν - 0.2
Tensile strength fct [N/mm2] 3.8
Fracture energy Gf [N/mm] 100 · 10−3

Critical crack width wcr [mm] 0.079

Table 5.3: Mechanical properties of fine grained concrete

Parameter Unit Value
Young’s modulus Ef [N/mm2] 80 000
Tensile strength ff [N/mm2] 1 600
Length L [mm] 6
Diameter ⊘ [mm] 0. 02
Cross sectional area Af [mm2] 3. 14 · 10−4

Failure load Pfu [N] 0.5

Table 5.4: Mechanical properties of fiber

Within the current mesoscopic framework, bond properties have to be based on experimental

data for pullout of single fibers in fine-grained concrete blocks. Such experiments are ex-

plained in detail in Section 2.2.3. As they are characterized by relatively large, scatter mean

data are used for the following. A typical course formulated as spline and with considering

some modifications, which are explained in Section 2.2.5, is shown in Fig. 5.6. This bond

law is derived from the simulation of a single fiber pullout test and used as the first approach

and later will be modified to improve the simulation results compared to the reference ex-

periments, the same used for the negative range with a reversal of signs of slip and bond

stress. It is characterized by an initial elasticity, maximum bond stress at a prescribed slip,

and constant residual bond stress continuous from another prescribed slip on, see Table 5.5.

The residual stress is assumed with nearly zero to cover fiber pullout at least approximately.

Precise modeling of fiber pullout would require a large displacement approach that exceeds

the current small displacement assumption’s scope. In Fig. 5.6, A bi-linear graph is used in

pullout simulation within DIANA software and is discussed in detail in Section 2.2.5. The

Spline graph in this figure is assigned to bond elements in the in-house program CaeFem.

The spline and bi-linear graphs are the same in all the mentioned bond characteristics, i.e.,

initial elasticity, maximum bond stress at the prescribed slip, and the constant residual bond

stress.
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Parameter Unit Value - B-4
Bond strength τmax [N/mm2] 2.39
Ultimate bond stress τf [N/mm2] 0.0
Slipτmax S1 [mm] 0. 076
Slipτf S2 [mm] 0. 760

Table 5.5: Mechanical properties of bond - B - 4

Figure 5.6: Bond law - B - 4 (bi-linear vs spline)

As the loading is applied on top with vertical prescribed displacements, see Fig. 5.5(a),

reaction forces come as results and yield a computed load-displacement curve to be compared

with experimental results. The experiments’ displacement base must be adjusted to reach

comparable displacements for the discretized notched center part. Even though there is

a different length of the simulation model and the experimental model, based on what is

discussed about Figs. 5.3 and 5.4, it can be assumed that the deformation read from DIC

images can be determined as notched area deformation due to localization of cracks because

of notches. Load-displacement results from simulation and experiments are shown in Fig. 5.7,

whereby loading is expressed in terms of mean stress according to a common convention.

This simulation is performed within the in-house program CaeFem, and the bond law as-

signed to the bond elements is B − 4, the spline shown in Fig. 5.6. The SHCC behavior

is characterized by highly increased tensile strength, a superior ductile behavior with steep

hardening phase compared to simulation of plain concrete notched model without fibers, see

Fig. 5.7.
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Figure 5.7: Mean stress - displacement results - bond law - B - 4 and plain concrete

Comparing SHCC experiment and simulation characteristic items are commented as follows:

• The initial stiffness of the experimental specimen is significantly lower compared to

the simulation. This is attributed to the pre-cracking of the very thin specimen; the

micro-cracks are created during handling and fitting the specimen in the experiment

setup before the test is started, see Fig. 5.6.

• Experimental curves show a distinct roughness whereby single spikes are hypothetically

assigned to particular cracking events. As the number of spikes is much lower than the

number of final cracks, these particular events presumably belong to instantaneously

larger cracks with localizations arising from the actual scatter of material properties,

i.e., matrix tensile strength, bond properties and fracture energy. Dynamic phenomena

presumably also come into play with these effects. The current simulation model does

not cover random fields and short-time dynamics.

• The experiment has a steep hardening phase compare to a slight increase observed in

the simulation result. Since the crack bridging phase is the significant characteristic

of SHCCs, several parameter studies are planned to improve the simulation result to

have a better agreement with experiments concerning the hardening phase.

• The maximum response of simulation has almost the same value as the experiments

concerning the scatter experiment graphs. Thus, the slight increase of the hardening

branch in simulation leads to much higher displacement values corresponding to the

maximum total response. Accordingly, the crack localization and start point of the

softening phase will be started at higher applied displacement load[50].
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The load-displacement characteristics demonstrate the global behavior. However, the

simulation allows local investigations for whole loading history and results in matrix

strains and stresses, cracking patterns, crack width, dissipated energy, fiber and bond

stresses, and fiber failure events.

The crack patterns on the deformed mesh geometry for three prescribed displacements

are shown in Fig. 5.8. The presented crack pattern in Fig. 5.8c for u = 1. 56mm,

indicates a state in which the bridging stage is ended and crack localization is started. A

crack fully intersects an element through its center by definition, see also Section 4.2.5,

and is indicated by a thicker dark gray line.

Although outer geometry and boundary conditions are symmetric concerning the ver-

tical and horizontal center lines, symmetry is not preserved in the simulation results

due to fibers’ random positions. Computed crack contours spreading over neighbored

elements are not continuous but slightly deviate in their orientation. The interpreta-

tion of this simulation property has also been discussed in Section 4.2.5. Secondary

cracking is constrained by a minimum deviation of 45 degrees compared to primary

cracking orientation and occurs relatively soon. This introduces some bias into second-

ary crack orientation. Some overall skewness of fiber orientations presumably triggers

the overweight with a counterclockwise orientation.

The simulation crack patterns are deterministic; on the contrary, the experimental

specimen behavior is influenced by random material properties. Thus the simulation

crack patterns cannot be directly compared to experimental cracking patterns.
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Figure 5.8: Crack pattern results - bond law - B - 4 (displacements scaled by factor 10)
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In Fig. 5.9, fiber stresses and bond stresses are shown for the mentioned three prescribed

displacements. Figs. 5.9(a,b) show the stage shortly after loading is started; small

values are computed for stresses in fiber and bond elements. The highest values of

stresses belong to the fibers in the center of the notched model and following the crack

pattern shows in Fig. 5.8(a) whereby u = 0. 01mm. Figs. 5.9(c,d) show the stage

corresponding to the halfway of hardening phase whereby u = 0. 76mm. In this stage,

several fibers in the mid part of the specimen experience stress almost equal to the

fiber’s tensile strength, and the stresses in the bond elements, connected these fibers

to the matrix, also experience high values equal to the maximum bond strength. The

stress pattern in this stage is also compatible to the crack pattern. Figs. 5.9(e,f) show

the stage at the end of hardening phase whereby u = 1. 56mm. It is observed that more

fibers, located in the center of the model, are reaching the limited strength comparing

to the previous level. At this stage, the localization of the critical crack and softening

phase will be started.
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(c) Fiber stress in N/mm2 , u = 0. 76mm

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

(d) Bond stress in N/mm2 , u = 0. 76mm

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

0

200

400

600

800

1000

1200

(e) Fiber stress in N/mm2 , u = 1. 56mm
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(f) Bond stress in N/mm2 , u = 1. 56mm

Figure 5.9: Fiber stresses and bond stresses - bond law - B - 4 (displacements scaled by
factor 10)
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5.2.1 Numerical reference model

Previous studies have argued that the aimed strain-hardening can be modeled whereas

a bond behavior, assigned to the bonds connecting fibers to the matrix in SHCC

simulations, starts with a very high initial slope [116]. It means that the bond elements

pass the elastic phase on the pullout curve sharply and the softening phase has begun

with much lower slips comparing to corresponding mean values derived from single fiber

pullout tests simulations. On the one hand, it can be due to the fibers group effect

due to the interactions between fibers or/and fibers and the surrounding matrix at the

same time in the composite. This effect becomes significant in the case of composites

with the high volume fraction of fibers, which in the present work is 2%. On the

other hand, the fibers are connected to the matrix elements with the bond elements, in

which one or more surrounded matrix elements can experience the crack initiation at

the same time, which may cause a fast drop, and immature softening behavior occurs

in much lower slips. Thus, a new bond law is introduced, B − 5, which is the same as

bond law: B − 4 in most of the bond properties except the initial slope, see Table 5.6.

This means that the softening phase of the bond curve begins in a lower prescribed

slip based on this bond law compare to the corresponding one in B − 4.

Parameter Unit Value - B-4 Value - B-5
Bond strength τmax [N/mm2] 2.39 2.39
Ultimate bond stress τf [N/mm2] 0.0 0.0
Slipτmax S1 [mm] 0. 076 0. 022
Slipτf S2 [mm] 0. 760 0. 706

Table 5.6: Mechanical properties of bonds - B - 4 and 5

Figure 5.10: Bond law - B - 4 vs B - 5
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In Fig. 5.10, two bond laws are shown and compared. The prescribed slip corresponding

to the ultimate bond stress in bond law B − 5 is determined so that the area, under

the softening phase of both curves, has the same value.

Figure 5.11: Mean stress - displacement results - bond law - B - 4 vs B - 5

In Fig. 5.11, the total responses of both models with different bond laws are presen-

ted. It is observed that model with bond law B − 5 has a very good agreement with

experiment references concerning the modeling of stain-hardening and crack bridging

stage of target composite, which is the most significant characteristic of SHCCs. On

the other hand, the initial slope in experiments is lower than the simulation curve.

This can be the effect of microcracks, which are created in the specimens during the

production and preparation stage and caused because of the shallow thickness of the

specimens.

The crack patterns on the deformed mesh geometry for three prescribed displacements

are shown in Fig. 5.12 and following the same arrangements as the ones shown in

Fig. 5.8. The presented crack pattern in Fig. 5.12(c) for u = 0. 76mm, shows a state

which softening branch is started, Fig. 5.12(b) shows the results in half way of hardening

phase, u = 0. 38mm and Fig. 5.12(a) is related to state shortly after loading is started

u = 0. 01mm.

103



5 SIMULATION AND NUMERICAL PARAMETRIC STUDIES OF TENSION TEST ON
DUMBBELL SPECIMEN UNDER QUASI-STATIC LOADING CONDITIONS

As mentioned before, the simulation crack patterns can not be directly compared to

experimental cracking patterns due to the significant influence of the random material

properties in experiment. Two crack patterns are shown in Figs. 5.8(b) and 5.12(c),

both are occurred at the same loading step (u = 0. 76mm) and have different assigned

bond laws. By comparing these two patterns, it is observed that: the model with bond

law B − 5 experience more cracks than the model with bond law B − 4 under same

applied load u = 0. 76mm.

This can be explained by this fact that model with bond law B − 5 has reached the

peak of total response at this loading stage, whereas its hardening phase is ended, and

the localization of crack will be started. The higher total response compared to the

model with bond law B − 4 at the same applied load means more cracks are created

and propagated in matrix elements, and fibers actively contribute in the load-bearing.
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Figure 5.12: Crack pattern results - bond law - B - 5 (displacements scaled by factor 10)
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In Fig. 5.13, fiber stresses and bond stresses are shown for the mentioned three pre-

scribed displacements. Figs. 5.13(a,b) show the stage shortly after loading is started,

small values are computed for stresses in fiber and bond elements. The highest values

of stresses belong to the fibers in the center of the notched model and following the

crack pattern shows in Fig. 5.12(a) whereby u = 0. 01mm. Figs. 5.13(c,d) show the

stage corresponding to the halfway of hardening phase whereby u = 0. 38mm. In this

stage, several fibers in the mid part of the specimen experience stress almost equal to

the tensile strength of the fiber, and the stresses in the corresponding bond elements

also have high values equal to bond strength. The stress pattern in this stage is also

comparable to the crack pattern.

Figs. 5.13(e,f) shows the stage at the end of the hardening phase, whereas the crack

bridging stage is stopped, and the crack localization and softening phase will be started,

u = 0. 76mm. It is observed that more fibers, which are located in the center of the

model, reaching the limited strength compared to the previous level and the model

with bond law B− 4 at the same load step, shown in Figs. 5.13(e,f) and Figs. 5.9(c,d).

As it is mentioned before, at this loading step, the model with bond law B − 5 has

a higher total response which means that fibers are playing a significant role in load-

bearing, it is shown by higher stresses mostly equal to fiber strength in fibers in mid

of specimen Fig. 5.13(e). Thus, higher engagement of fibers in load bearing leads to

more cracks observed in the crack pattern shown in Fig.5.12(c) than in Fig. 5.8(b).
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(a) Fiber stress in N/mm2 , u = 0. 01mm
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(c) Fiber stress in N/mm2 , u = 0. 38mm
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(d) Bond stress in N/mm2 , u = 0. 38mm
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(e) Fiber stress in N/mm2 , u = 0. 76mm
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(f) Bond stress in N/mm2 , u = 0. 76mm

Figure 5.13: Fiber stresses and bond stresses - bond law - B - 5 (displacements scaled by
factor 10)
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5.3 MATERIAL AND MECHANICAL PARAMETRIC STUDIES

5.3.1 Studies on effect of different parameters in bond stress - slip

relationship(Maximum bond strength, ultimate bond stress, initial stiffness)

In this section, first, three different bond laws are assigned to bond elements to invest-

igate the effect of maximum bond strength on the specimen’s overall response. These

three bond laws are different in maximum bond strengths while the area under the

curves has been kept the same by shifting the slip corresponding to the ultimate bond

stress, see Table 5.7 and Fig. 5.14.

Parameter Unit Value - B-5 Value - B-6 Value - B-7
Bond strength τmax [N/mm2] 2.39 2.20 2.60
Ultimate bond stress τf [N/mm2] 0.0 0.0 0.0
Slipτmax S1 [mm] 0. 022 0. 022 0. 022
Slipτf S2 [mm] 0. 706 0. 765 0. 651

Table 5.7: Mechanical properties of bonds - B - 5, 6 and 7

Figure 5.14: Bond laws - B - 5, 6 and 7

From simulation results shown in Fig. 5.15, it is observed that a slight change in the

value of maximum bond strength has a direct effect on the value of maximum mean

stress. When the reference maximum bond stress is multiplied by the factor of 0. 92

and 1. 087, the maximum mean stress will be changed with the factor of 0. 94 and

1. 067 compare to maximum mean stress of reference model, respectively. This shows

that the result is mostly subjected to the same ratio matter as bond-slip behavior is

varying, and the total response curve is following the bond-slip curve shape.
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Figure 5.15: Mean stress - displacement results - bond laws - B - 5, 6 and 7

The crack patterns for enumerated simulations within three different bond laws at the

same loading step are shown in Fig. 5.16 and following the same arrangements as the

ones shown in Fig. 5.9. As mentioned before, the simulation crack patterns can not be

directly compared to experimental cracking patterns due to the significant influence

of the random fiber field. From crack patterns shown in Fig. 5.16, it is observed that

the crack patterns are mostly the same and slightly different in some matrix elements.

This can be explained by this fact that based on the total response results shown in

Fig. 5.15, all the three simulations reach the peak of response mostly at the same

loading step which is used as a reference step for patterns shown in Fig. 5.16 Thus, for

enumerated simulations, the shown load step is the beginning of the crack localization

stage.
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Figure 5.16: Crack pattern results - bond laws - B - 5, 6 and 7 - u = 0. 76mm (displace-
ments scaled by factor 10)
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(a) Fiber stress in N/mm2 , B - 5
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(b) Bond stress in N/mm2 , B - 5
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(c) Fiber stress in N/mm2 , B - 6

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

(d) Bond stress in N/mm2 , B - 6
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(e) Fiber stress in N/mm2 , B - 7
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(f) Bond stress in N/mm2 , B - 7

Figure 5.17: Fiber stresses and bond stresses - bond laws - B - 5, 6 and 7 - u = 0. 76mm
(displacements scaled by factor 10)
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In Fig. 5.17, fiber stresses and bond stresses are shown for each mentioned three simu-

lations within three different bond laws at the same prescribed displacements loading

condition. From these contour results, it is observed that the model with a lower

bond strength also experienced lower stresses in fibers, it means that with higher bond

strength, the bond elements can transfer higher stresses between matrix elements and

truss elements. Thus, the fibers have more contribution in load-bearing, and this leads

to higher stresses in fibers and increases the total response of the specimen, as shown

in Fig. 5.15.

As it is mentioned before the residual stress is assumed with nearly zero to cover fiber

pullout at least approximately. To investigate the effect of residual stress(ultimate

stress), two new bond laws are introduced, see Table 5.8 and Fig. 5.18. Bond laws B−8

and B − 9, are different from bond law B − 5 in residual stresses and corresponding

slips. In bond law B−8, the residual stress is half of the assigned bond strength at the

same slip corresponding to the ultimate bond stress in bond law B − 5. On the other

hand, bond law B − 9 represents a plastic behavior with a plateau, which starts when

the stress in bond element reaches the bond strength, and the residual stress remains

equal to bond strength for the higher slip.

Parameter Unit Value - B-5 Value - B-8 Value - B-9
Bond strength τmax [N/mm2] 2.39 2.39 2.39
Ultimate bond stress τf [N/mm2] 0.0 1.2 2.39
Slipτmax S1 [mm] 0. 022 0. 022 0. 022
Slipτf S2 [mm] 0. 706 0. 706 0. 706

Table 5.8: Mechanical properties of bonds - B - 5, 8 and 9

Figure 5.18: Bond laws - B - 5, 8 and 9
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Figure 5.19: Mean stress - displacement results - bond laws - B - 5, 8 and 9

From the results shown in Fig. 5.19, it is observed that the arrangement of total re-

sponses of specimens is following the changes applied to the bond laws. These changes

in bond laws refer to the softening phase and residual stresses, while the bond strength

and initial slopes are kept the same in all three applied bond laws. Thus, the sim-

ulations representing dumbbell specimens’ responses are also varied from reference

simulation in the softening stage. However, all three simulations present the same

path for elastic and strain-hardening stages. In the presented results, it is observed

that the utilization of bond law with lower residual stress leads to a steep decrease

of stresses softening phase compare to model with higher residual stress. The newly

developed numerical model stopped the model’s analysis with plastic bond laws at the

end of the hardening phase and could not reach the convergence even with much lower

load steps.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

(a) B - 5

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

(b) B - 8

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

(c) B - 9

Figure 5.20: Crack pattern results - bond laws - B - 5, 8 and 9 - u = 0. 76mm (displace-
ments scaled by factor 10)
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Crack patterns for enumerated simulations within three different bond laws at the same

loading step, are shown in Fig. 5.20 whereas following the same arrangements as shown

in Fig. 5.9. The chosen load step is the hardening phase’s endpoint and corresponds

to the peak of the response curve. It is observed that the crack patterns are mostly

the same and slightly different in a couple of matrix elements. This can be explained

by this fact that based on the total response results shown in Fig. 5.19, all the three

simulations experience the same paths and values for elastic and hardening phase and

basically response the same in these stages. Since the reference load step corresponds

to the highest response and they are mostly in the same conditions regarding crack

formation and distribution of stresses in elements.

In Fig. 5.21, fiber stresses and bond stresses are shown for each mentioned three simula-

tions within three different bond laws at the same prescribed displacements loading con-

dition. As it is explained for the crack patterns, the models experience the same elastic

and hardening phase and have mostly the same crack patterns, see Figs. 5.20and 5.19.

Since all the three mentioned models have the same total response and crack patterns

at the reference load step, the fiber stresses and bond stresses are expected to be the

same.The results are shown in Fig. 5.20 prove this theory. In the result contours for

all three conditions, the highest fibers stresses, almost equal to fiber strength, are ob-

served in the fibers located in the notched area. Thus, the highest bond stress, equal

to bond strength, are observed in corresponding bond elements.
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(a) Fiber stress in N/mm2 , B - 5
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(b) Bond stress in N/mm2 , B - 5
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(c) Fiber stress in N/mm2 , B - 8
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(d) Bond stress in N/mm2 , B - 8
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(e) Fiber stress in N/mm2 , B - 9
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(f) Bond stress in N/mm2 , B - 9

Figure 5.21: Fiber stresses and bond stresses - bond laws - B - 5, 8 and 9 - u = 0. 76mm
(displacements scaled by factor 10)
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5.3.2 Mesh sensitivity in matrix elements

Continuum elements in the reference model are SDA quad elements with dimension

of 1mmx1mm. In this step of parameter studies, each of these SDA elements are

divided to four 2D elements with dimension of 0. 5mmx0. 5mm to study the effect

of continuum element size in total response of specimens under tension quasi-static

loading condition. It should be mentioned that the decrease of mesh size of matrix

elements from 1mmx1mm to 0. 5mmx0. 5mm increases the degrees of freedom of

simulation from 26 073 to 30 753. Besides, model with smaller matrix mesh size needs

smaller load steps for achieving the convergence in analysis. These two changes increase

the time of computation from 130 959 second to 359 513 second which is a factor of 2. 7.

Figure 5.22: Mean stress - displacement results - effect of mesh sensitivity of matrix ele-
ments

From the results shown in Fig. 5.22, it is observed that the finer mesh model has less

stiffness compare to the coarser mesh model. A sharp decrease of mean stress is seen

after the hardening phase’s peak in the model with fine mesh. Generally, it is expected

that changes in the discretization of matrix elements should not have a significant

effect on the softening path. Thus, in the softening path, the propagation of cracks is

stopped, and crack localization is started, so SDA elements’ contribution is decreased

in this stage, and fibers are highly contributing to load-bearing.

Several items concerning the comparison between results related to reference simulation

and simulation with finer mesh for matrix element should be considered as follows:

– Dissipated crack energy might have mesh dependency in case all elements are

cracked, related case studies are discussed in Section. 4.4.2. On the other hand,
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it should be noted that smaller elements have less crack width due to the same

specimen elongation.

– The fiber discretization is not refined for model with finer matrix mesh with

regards to large computational effort.

– Finer discretization generally leads to softer response, but this is very pronounced

in this case and indicates a mesh dependency regarding the strain softening range.

These items need further research which currently exceed the scope of the present

work. Respective conclusions are basically assumed to be still valid but maybe subject

to more precise specifications.
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Figure 5.23: Crack pattern results - effect of matrix element size - element size = 0. 5mm
(displacements scaled by factor 1)

The crack patterns on the deformed mesh geometry for three prescribed displacements

are shown in Fig. 5.23. The presented crack pattern in Fig. 5.23(c) for u = 0. 76mm,

corresponds to the peak of total response in reference simulation, Fig. 5.23(b) shows the

results in halfway of hardening phase of reference model, u = 0. 38mm and Fig. 5.23(a)

is related to state shortly after loading is started u = 0. 01mm.
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The crack patterns presented in Fig. 5.23, following the same arrangements as shown in

Fig. 5.8. By comparing the crack patterns shown in Fig. 5.12, related to the reference

model, with Fig. 5.23, more crack elements are observed in the notched area and both

supports in the model with the smaller size of the matrix than the reference model

when the applied load is increasing.

Fiber stresses and bond stresses are shown for the enumerated three prescribed dis-

placements in Fig. 5.24. Figs. 5.24(a,b) show the stage shortly after loading is started,

small values are computed for stresses in fiber and bond elements. The highest values

of stresses belong to the fibers in the center of the notched model, this corresponds

the crack pattern shows in Fig. 5.23(a) whereby u = 0. 01mm. Figs. 5.24(c,d) show

the stage corresponding to the halfway of hardening phase in reference model whereby

u = 0. 76mm. In this stage, several fibers in the mid part of the specimen experi-

ence stress almost equal to the tensile strength of the fiber, and the stresses in the

corresponding bond elements also have high values equal to bond strength. The stress

pattern in this stage is also comparable to the crack pattern. Figs. 5.24(e,f) show the

stage end of hardening phase whereby u = 1. 56mm. It is observed that more fibers,

which are located in the center of the model, reaching the limited strength compared

to the previous level. This stage is shortly after the softening stage is started.
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(a) Fiber stress in N/mm2 , u = 0. 01mm
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(b) Bond stress in N/mm2 , u = 0. 01mm
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(c) Fiber stress in N/mm2 , u = 0. 38mm
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(d) Bond stress in N/mm2 , u = 0. 38mm
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(e) Fiber stress in N/mm2 , u = 0. 76mm
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(f) Bond stress in N/mm2 , u = 0. 76mm

Figure 5.24: Fiber stresses and bond stresses - effect of matrix element size - element size
= 0. 5mm (displacements scaled by factor 1)
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5.3.3 The effect of concrete tensile strength

Two new models are used to study the effect of concrete tensile strength. The value

of tensile strength, which is assigned to continuum elements in reference simulation, is

fct = 3. 8N/mm2, whereas this parameter in the new models is assumed to be 3. 0 and

4. 6N/mm2.

(a) Overall range

(b) Initial range

Figure 5.25: Mean stress - displacement results - effect of concrete tensile strength; a) over-
all range, b) initial range

From the results shown in Fig. 5.25(b), it is observed that peak of the response curves in

elastic phase is increased by the concrete tensile strength increase, as expected, whereas

this peak is still higher than the concrete tensile strength since it is a total response of

the inhomogeneous composite. The model with lower concrete tensile strength has a

shorter hardening phase compare to the reference model. There is a sharp fall after the

peak, which is continued with a slight decrease in the model with the lowest concrete
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tensile strength. This sudden drop can be explained by this fact that assigning lower

tensile strength leads to cracking of a large number of matrix elements simultaneously

with the lower tensile strength limit. Thus, the model is stabilized later with the

continuation of applied loading. Thus, the model with higher concrete tensile strength

is slightly higher than the reference model in the elastic and hardening phase while the

reference model is stiffer in the softening phase, see Fig. 5.25(a). Since this parameter

is related to the SDA elements, no significant changes are expected in the softening

stage.

5.3.4 The effect of concrete fracture energy

In this section, the effect of concrete fracture energy is studied. The continuum’s

fracture energy is computed with Eqs. 4.82 and is equal to the area under the loading

stage shown in Fig. 4.3. Four new simulations are performed to see this parameter’s

effect on the total response of specimen under quasi-static tensile loading.

The value of fracture energy which is assigned to the continuum elements in reference

simulation is Gf = 1e−1N/mm, whereas this value is multiplied by factors : 2, 0.5,

0.05, 0.005 for parameter studies. As it was explained in chapter 2, concrete must

develop multiple cracks to perform the desired strain-hardening behavior of SHCC. To

this aim, high strength concrete with low crack energy is recommended. However, by

considering the curve results for simulation within very low assigned fracture energy,

shown in Fig. 5.26, a sudden drop is observed when the crack bridging stage is started,

and simulation will be diverged shortly without fulfilling the stain-hardening behavior

of SHCC perfectly. It can be explained with the fact that lots of continuum elements

are cracked at the same time due to the very low fracture energy, and this leads to an

unrealistic behavior, which causes a sudden drop in the start point of the hardening

phase.

Thus, the resulting curve for a small value of fracture energy (Gf = 5e−4N/mm)

does not even reach the tensile strength of concrete in the elastic stage of the total

response. The model will be stabilized later on by redistribution of stresses into the

overall elements, but the simulations with very low fracture energy diverged at a small

hardening phase.
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(a) Overall range

(b) Initial range

Figure 5.26: Mean stress - displacement results - effect of concrete fracture energy; a) over-
all range, b) initial range

On the other hand, simulations with crack energy equal to (Gf = 5e−2N/mm) can

pass the whole path of three stages of SHCC behavior, see Fig. 5.26. It is observed that

in model with higher crack energy than the reference value, (Gf = 2e−1N/mm), the

curve has a higher peak point in total response while the corresponding displacement

load to this peak is also larger than similar parameter in the reference model. The

post-peak path of all three models with higher value than (Gf = 5e−2N/mm), will

meet each other in same point at the end of simulation displacement = 2. 0mm. Since

this parameter affects crack formation in SDA elements, it does not have a significant

effect on the softening path.
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Figure 5.27: Crack pattern results - effect of concrete fracture energy - u =
0. 76mm(displacements scaled by factor 10)

The crack patterns are shown in Fig. 5.27 following the same arrangements, as shown in

Fig. 5.9 whereas the interpretation of this simulation property has also been discussed

in Section 4.2.5. Crack patterns for enumerated simulations within three different

assigned crack energy, i.e., Gf = 2e−1,1e−1,5e−2N/mm, are mostly the same since the

selected load step is the endpoint of hardening phase for all three selected simulations

whereas the crack localization begins.

In Fig. 5.28, fiber stresses and bond stresses are shown for each mentioned three sim-

ulations within three different assigned fracture energy at the same prescribed dis-

placements loading condition. The fibers and bond elements located in the notched

area have reached their maximum values equal to their strength. Moreover, it is ob-

served that the stresses in the fibers and bond elements are mostly the same concerning

the distribution and the values of these parameters. Thus, the differences in the total

responses shown in Fig. 5.26 can be explained with this fact that by increasing the frac-

ture energy of the matrix elements, the contribution of the matrix will be increased in

load-bearing and leads to increase of total response.
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(a) Fiber stress in N/mm2 , Gf = 2e−1N/mm
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(b) Bond stress in N/mm2 , Gf = 2e−1N/mm
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(c) Fiber stress in N/mm2 , Gf = 1e−1N/mm
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(d) Bond stress in N/mm2 , Gf = 1e−1N/mm
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(e) Fiber stress in N/mm2 , Gf = 5e−2N/mm
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(f) Bond stress in N/mm2 , Gf = 5e−2N/mm

Figure 5.28: Fiber stresses and bond stresses - effect of concrete fracture energy - u =
0. 76mm (displacements scaled by factor 10)
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5.3.5 The effect of Young’s modulus of concrete

Two new simulations are performed to see the influence of Young’s modulus of con-

crete on the total response of specimen under quasi-static tensile loading. The value

of Young’s modulus of concrete assigned to the continuum elements in reference sim-

ulation is E = 29000N/mm2, whereas this value is multiplied by factors: 2, 0.5 for

parameter studies.

(a) Overall range

(b) Initial range

Figure 5.29: Mean stress - displacement results - effect of Young’s modulus of concrete; a)
overall range, b) initial range

From the results shown in Fig. 5.29, it is observed that a high range of variation of this

parameter will cause slight changes in the elastic stage of response, whereas the initial

slope of the curve is sharper for higher Young’s modulus of concrete as expected. Based

on the results shown in Fig. 5.29(a), since all graphs reach the same point shortly after

123



5 SIMULATION AND NUMERICAL PARAMETRIC STUDIES OF TENSION TEST ON
DUMBBELL SPECIMEN UNDER QUASI-STATIC LOADING CONDITIONS

starting the strain-hardening stage and following the same path, it can be said that

this parameter does not have a significant effect on the total response of specimen.

5.3.6 The effect of tensile strength of fiber

Two new simulations are performed to study the influence of tensile strength of fiber

on the total response of specimen under quasi-static tensile loading. The value of

tensile strength of fiber assigned to the fiber elements in reference simulation is Ff =

1600N/mm2, whereas this value is multiplied by factors: 2, 0.5 for parameter studies.

Figure 5.30: Mean stress - displacement results - effect of ultimate fiber strength

From the graph results shown in Fig. 5.30, it is observed that for the higher range of

tensile strength of fiber, the total response curve lays on the same path as the reference

curve. However, in the case of the smaller tensile strength of fibers, the strain-hardening

phase is shorter. This graph has a lower peak while it has the same elastic phase and

following the same slope for the hardening phase before the immature softening stage

has started. In the developed program, the fiber element will be eliminated from

simulation when the truss element’s stress exceeds the value corresponding to the fiber

tensile strength. In analysis with lower tensile strength for fibers, several fibers will

fail simultaneously, and this can explain the short hardening phase and sudden drop

in the start point of the softening stage, see Fig. 5.30. Since the full pullout is not

modeled in the model, and the bond elements will stay active in the model even in

higher deformation conditions, the analysis reaches somewhat the plateau.
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5.3.7 The effect of fiber volume fraction

In this section, the influence of fiber volume fraction is investigated by comparing two

new models with the reference model. The volume fraction of fiber in reference model

is 2%; hence two new models with volume fraction equal to 1% are used to see the effect

of this parameter in the total response of specimen under quasi-static tensile loading.

Two approaches are common to investigate this parameter effect, i.e., reducing the

number of fibers, considering this effect as a factor applies to the fiber section area.

Thus, in the first model, fibers have the same cross-section area as the reference model;

however, the number of fibers is reduced by the factor of 0. 5 compare to the number

of fibers in the reference model. In the second model, the number of fibers is kept the

same as the reference model, while the fibers section area is decreased by the factor of

0. 5 compare to the fibers section area in the reference model. It should be stated that

no changes are applied to the bond laws of all three models.

From the graph results shown in Fig. 5.31, it is observed that all three simulations

have the same elastic path, and models with lower volume fraction have shorter strain-

hardening phases. However, in the first model with fewer fibers, the strain-hardening

phase, and the softening stage are mostly scaled with the same reduction factor applied

to volume fraction. This means that the total response peak is reduced by the factor

of 2 compare to reference simulation graph.

On the other hand, the second model with a reduced section area starts its crack-

bridging stage with a sharper slope; however, this model ends this stage with a sudden

drop. Later, The model will be stable again, and the analysis reaches the plateau fairly.

Figure 5.31: Mean stress - displacement results - effect of fiber volume fraction
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Figure 5.32: Crack pattern results - effect of fiber volume fraction - Vf = 2%,Af =
3. 14e−4mm2 (displacements scaled by factor 10)
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Figure 5.33: Crack pattern results - effect of fiber volume fraction - Vf = 1%,Af =
3. 14e−4mm2 (displacements scaled by factor 10)
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Figure 5.34: Crack pattern results - effect of fiber volume fraction - Vf = 1%,Af =
1. 57e−4mm2 (displacements scaled by factor 0.1)

126



5.3 MATERIAL AND MECHANICAL PARAMETRIC STUDIES

The crack patterns for all three models are shown in Figs. 5.32, 5.33 and 5.34 follow-

ing the same arrangements shown in Fig. 5.9. The interpretation of this simulation

property has also been discussed in Section 4.2.5. By comparing these patterns, it is

observed that the first model with the fewer number of fibers experienced more crack

at the load step (u = 0. 38mm), so in the conditions of lack of fiber, the contribu-

tion of the matrix in load-bearing will increase, and more cracks are formed. On the

other hand, models with the same number of fibers and different fiber volume fractions

mostly experience the same crack pattern in the hardening phase.

Fiber stresses and bond stresses are shown in Figs. 5.35 5.36 and 5.37 for each men-

tioned three simulations at the same prescribed displacements loading condition. It

is observed that fibers and bond elements located in the notched area have reached

their maximum values equal to their strength. The range of fiber stresses and bond

stresses in different loading steps for the model with Vf = 2% is mostly the same with

the model with Vf = 1% and less number of fibers. However, in model with Vf = 1%

and lower fiber section area, stresses in fibers located in the notched area are at the

highest value comparing to all other simulations in parameter studies. Thus, the crack

localization is visible in the stress contours in this model’s fibers and bonds elements,

especially in the last load step. It can be explained by this fact that this model is

already in the softening phase at the selected load step.
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(a) Fiber stress in N/mm2 , u = 0. 01mm
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(b) Bond stress in N/mm2 , u = 0. 01mm
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(c) Fiber stress in N/mm2 , u = 0. 38mm
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(d) Bond stress in N/mm2 , u = 0. 38mm
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(e) Fiber stress in N/mm2 , u = 0. 76mm
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(f) Bond stress in N/mm2 , u = 0. 76mm

Figure 5.35: Fiber stresses and bond stresses - effect of fiber volume fraction - Vf =
2%,Af = 3. 14e−4mm2 (displacements scaled by factor 10)
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(a) Fiber stress in N/mm2 , u = 0. 01mm

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Bond stress in N/mm2 , u = 0. 01mm
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(c) Fiber stress in N/mm2 , u = 0. 38mm
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(d) Bond stress in N/mm2 , u = 0. 38mm
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(e) Fiber stress in N/mm2 , Gf = 5e−2N/mm
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(f) Bond stress in N/mm2 , Gf = 5e−2N/mm

Figure 5.36: Fiber stresses and bond stresses - effect of fiber volume fraction - Vf =
1%,Af = 3. 14e−4mm2 (displacements scaled by factor 10)
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(a) Fiber stress in N/mm2 , u = 0. 01mm
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(c) Fiber stress in N/mm2 , u = 0. 38mm
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(d) Bond stress in N/mm2 , u = 0. 38mm
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(e) Fiber stress in N/mm2 , u = 0. 76mm

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

(f) Bond stress in N/mm2 , u = 0. 76mm

Figure 5.37: Fiber stresses and bond stresses - effect of fiber volume fraction - Vf =
1%,Af = 1. 57e−4mm2 (displacements scaled by factor 0.1)
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5.3.8 The effect of considering second crack in matrix elements

In this section, the effect of considering the secondary cracking on the total response of

the specimen is studied, as it is explained before, the secondary cracking is constrained

by a minimum deviation of 45 degrees compared to primary cracking orientation and

expected to form relatively soon. This introduces some bias into a secondary crack

orientation, whereas some overall skewness of fiber orientations presumably triggers

the overweight with a counterclockwise orientation, see Section 4.2.5. The secondary

cracking is not allowed for the new model to investigate the effect on the total response,

crack pattern, and distribution of stresses under the same loading condition as the

reference model.

Figure 5.38: Mean stress - displacement results - effect of secondary cracking in matrix
elements

From results shown in Fig. 5.38 It is observed that in the model which continuum

elements are limited to experience just one crack during the analysis, is slightly stiffer

in softening phase and no significant differences in elastic and hardening stages is

observed. This can be explained by this fact that the cracks in matrix elements are fixed

and stress blocking can occur while the load is increasing. This restriction is visible

in crack patterns shown in Fig. 5.40. by comparing these patterns with crack pattern

belong to reference model(two cracks are allowed in reference model, see Fig. 5.39),

no localization of cracks can be seen in the model crack pattern with one crack in

matrix elements, see Fig. 5.40. However, these crack are different concerning the crack

width. This can be observed in the fiber and bond stresses presented in Fig. 5.41,

which contours show stresses in fibers and bonds elements in notched area reach their
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strengh value. By comparing the stress distribution in fiber and bond elements for

both models (one/two cracks in matrix element), the contours shown in Fig. 5.13 and

Fig. 5.41 are quite similar. This can be explained by this fact that selected load steps

belong to elastic and hardening phase and these models show the same behavior in

these two phases, see Fig. 5.38.
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Figure 5.39: Crack pattern results - effect of secondary cracking in matrix elements - two
cracks are allowed (displacements scaled by factor 10)
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Figure 5.40: Crack pattern results - effect of secondary cracking in matrix elements - one
crack is allowed (displacements scaled by factor 10)
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(c) Fiber stress in N/mm2 , u = 0. 38mm
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(d) Bond stress in N/mm2 , u = 0. 38mm
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(e) Fiber stress in N/mm2 , u = 0. 76mm
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(f) Bond stress in N/mm2 , u = 0. 76mm

Figure 5.41: Fiber stresses and bond stresses - effect of secondary cracking in matrix ele-
ments - one crack is allowed (displacements scaled by factor 10)
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5.4 CONCLUSION

In this chapter, the simulations of 2D SHCC dumbbell specimens under tensile loading

conditions were performed to validate the numerical methods discussed in Chapter 4.

The bond law assigned to bond elements was derived from a single-fiber pullout test

and explained in detail in Section 2.2.5. Later, it was modified and assigned to the FEM

model to provide the desired strain-hardening phase and achieve better agreement with

performed experiments published in[114]. This model was used as a reference model,

and the total responses of several simulations concerning the effect of different material

and structural parameters were investigated.

First, the influence of bond characteristics was studied. It was observed that the total

response of large scale specimen is following the shape of bond behavior. Thus, the

total response has a steep hardening phase if the initial slope of bond law is sharp. On

the other hand, a slight increase in bond strength will cause an increase in the total

response simultaneously.

Furthermore, the mesh objectivity of the model was studied, and it was observed that

by decreasing the mesh size of matrix element with a factor: 0.5, the time of calculation

increased by factor two, and much smaller load steps were needed to provide the

convergence in the model. The simulation result of the model with finer mesh shows

a mesh dependency effects raised in the strain softening range due to the formation

and propagation of cracks in a large area of the specimen, whereas further research is

needed.

From the performed sensitivity analyses regarding matrix properties, it was observed

that the increase in Young’s modulus of concrete and concrete tensile strength would

not have significant results on the total response; however, a decrease in concrete tensile

strength can cause a sudden drop in the response curve. On the contrary, the changes

in concrete fracture energy caused significant changes likewise and were seen as notable

shifts in the total response curve.

In contrast, the increase in fiber’s tensile strength did not influence the total response,

while the decrease caused an immature hardening behavior. Later two analyses, with

lower fiber volume fraction compare to reference model, were performed, i.e., 1)the

increase in fiber volume fraction was obtained by increasing the number of fibers, 2)

134



5.4 CONCLUSION

it was achieved by increasing the fiber section area. It was observed that the total

response was decreased in both cases, and the localization of crack was more visible

in the second model, while the first model response showed smoother hardening and

softening phases.

In the end, the effect of considering the secondary cracking was investigated by perform-

ing a simulation, whereas just one crack is allowed to perform in each matrix element.

It was observed that this model has a stiffer softening path, and crack patterns can

not present the localization of cracks.

It should be stated that simulation cracking patterns cannot be directly compared to

experimental cracking patterns as the simulation model’s current state is deterministic,

whereby random material properties influence the experimental specimen behavior.

The simulation model seems to describe enumerated SHCC behavior at an acceptable

level considering the random field and other simplifying assumptions, nevertheless the

research needs to be extended concerning the mesh dependency aspects.
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6 CONCLUSION

6.1 RETROSPECTIVE VIEW AND FINDINGS

A numerical method was developed to model reinforced cracked material with an ap-

plication focus on fiber-reinforced cement composite. With its use, the total response

of specimens was investigated, focusing on the effect of mechanical characterization of

different components in FRCC, i.e., Matrix, fibers, and bond interfaces.

In the present model, the cement matrix cracking is modeled with the finite element

strong discontinuity approach (SDA). In this method, the extension of the uncracked

element to the SDA cracked element is ruled by the Rankine criterion, depending on

the loading history. Two alternative types of discontinuity consist of the fictitious or

cohesive crack concept employed with crack tractions depending on crack width com-

puted explicitly. This approach is recommended due to several significant advantages.

First, this approach allows for the reproduction of the fracture energy independent of

element size and naturally solves the mesh dependency problem for softening material

behavior. Second, it can be used with nonlinear material laws for the continuum, ar-

bitrary cracking criteria, nonlinear crack traction-crack width relations, and multiple

cracking with different orientations at a given point. Furthermore, SDA’s special for-

mulation is dealing with the discontinuity in element level without explicitly imposing

additional degrees of freedom to the system. These advantages make SDA as a good

alternative in case of a large number of cracks.

In the developed finite element based model, the fibers are explicitly model with truss

elements. The discretization of fibers is independent of the underlying continuum

mesh with truss nodes independent from continuum nodes. Thus, an arbitrary fiber

position and orientation become possible. Nonlinear material behavior can be assigned

to the truss elements, and a newly developed bond element is introduced to couple the

truss elements to continuum elements. This bond interface acts as spring collections

connecting truss nodes and neighbored continuum nodes. Different bond laws can be
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assigned to the bond elements, characterized as nonlinear in the longitudinal direction,

and constrained for mutual intersection in the lateral direction by a penalty approach.

This particular type of coupling allows for fibers crossing a discontinuity or crack of

the underlying continuum without further arrangements.

Single fiber pullout experiment has been modeled with commercial software DIANA to

identify the bond law. Since the experimental results characterized by relatively large

scatter, the mean values were used for generalization.

First, this newly developed model was calibrated with several simple configurations.

Later 2D SHCC dumbbell specimen under tensile loading condition was simulated, and

a series of numerical case studies were performed to assess the quality, credibility, and

limitations of the numerical model. These thin specimens are exposed to tension and

can be modeled in 2D, whereas a high number of fibers are distributed randomly. Fibers

are allowed to have different orientations based on the capabilities of the developed

numerical method. However, due to unique production techniques, the fibers in these

2D dumbbell specimens were oriented in the direction of applied tensile load. It should

be noted that cracking patterns cannot be directly compared to experimental cracking

patterns as the simulation model’s current state is deterministic by random material

properties influence the experimental specimen behavior. Taking the effect of random

field and other simplifying assumptions into account, the simulation model seems to

describe enumerated SHCC behavior at an acceptable level.

6.2 RECOMMENDATIONS

The current approach assumes small displacements, linear elasticity with limited tensile

strength for material behaviors before crack initiation or failure, simple shear retention

for cracks, a viscous stabilization for unstable system behazuhhgvior, and a determin-

istic view with non-scattering system properties.

Further developments and investigations should treat the following items currently

exceeding the scope of this research:

– Mesh dependency aspects for strain softening behavior

– Extension for large displacements for improved modeling of fiber pullout.
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– Replacing of elastic material behavior with limited tensile strength by damage

and/or plasticity in order to describe cement matrix compression behavior.

– Systematic investigation of the influence of type and parameter values for shear

retention and viscous stabilization.

– Introduction of stochastic fields implemented with, e.g., Monte-Carlo methods in

order to model stochastic properties of FRCC.

Especially regarding the last item, it should be mentioned that the computational

effort currently is quite high; thus, further development is necessary. In summary,

however, it can be stated that a further base is given for the target-oriented design

of FRCC material composition to reach the given objectives of material properties.

Besides, the presented concepts and methods can be used for simulation of both short

and thin polymer fibers in a random position and steel fibers and structures with long

reinforcement in a regular arrangement.
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