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Abstract

Recent advancements in the field of Computer Vision are a by-product of break-

throughs in the domain of Artificial Intelligence. Object detection in monocular

images is now realized by an amalgamation of Computer Vision and Deep Learning.

While most approaches detect objects as a mere two dimensional (2D) bounding

box, there are a few that exploit rather traditional representation of the 3D object.

Such approaches detect an object either as a 3D bounding box or exploit its shape

primitives using active shape models which results in a wireframe-like detection.

Such a wireframe detection is represented as combinations of detected keypoints

(or landmarks) of the desired object. Apart from a faithful retrieval of the ob-

ject’s true shape, wireframe based approaches are relatively robust in handling

occlusions. The central task of this thesis was to find such an approach and to

implement it with the goal of its performance evaluation. The object of interest is

the vehicle class (cars, mini vans, trucks etc.) and the evaluation data is monocu-

lar traffic surveillance videos collected by the supervising chair. A wireframe type

detection can aid several facets of traffic analysis by improved (compared to 2D

bounding box) estimation of the detected object’s ground plane. The thesis encom-

passes the process of implementation of the chosen approach called Occlusion-Net

[40], including its design details and a qualitative evaluation on traffic surveil-

lance videos. The implementation reproduces most of the published results across

several occlusion categories except the truncated car category. Occlusion-Net’s

erratic detections are mostly caused by incorrect detection of the initial region

of interest. It employs three instances of Graph Neural Networks for occlusion

reasoning and localization. The thesis also provides a didactic introduction to the

field of Machine and Deep Learning including intuitions of mathematical concepts

required to understand the two disciplines and the implemented approach.
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1 Introduction

Advances in modern day computing led to revival of a previously computationally-

inhibited discipline of Artificial Intelligence. Graphics Processing Units or GPUs

are the current state of the art and are optimized to perform vectorized arithmetic

operations which are a key computation step in the field. The two most important

facets of Artificial Intelligence (or AI) are Machine Learning and Deep Learning.

Deep Learning is often introduced as Machine Learning with neural networks and

is represented as a sub-field of Machine Learning. Despite being a sub-field, Deep

Learning has gained significant traction due to its contributions in the field of

Computer Vision. Computer vision attempts to assign semantic meaning to a

given image. One way to develop a semantic understanding of an image is by

identifying objects and their locations in the image. Such a task is categorized as

the problem of object detection. Given an image which has a cat and a dog in it,

an object detection algorithm outputs two labels ’cat’ and ’dog’ along with their

corresponding location in the image. The most basic object detection algorithms

output these locations as coordinates of a rectangular bounding box drawn around

the object. This box is also known as the 2D bounding box. But there are ad-

vanced object detection algorithms that output detections adhering to the object’s

true shape constrained by its true 3D geometry. Such a detection is desired as

it provides more room for semantic reasoning of a given image. Object detection

finds numerous applications in self driving cars and surveillance video analysis.

This thesis explores object detection in the context of traffic surveillance videos.

These surveillance videos are captured by the supervising chair of ’Integrated
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Transport Planning And Traffic Engineering’ using pole-mount cameras. An ac-

curate detection of vehicles in these surveillance videos can facilitate automated

traffic analysis of the recorded location. Detections of vehicle objects can be used

to approximate their speed, distance to other vehicles and orientation. These

characteristics can then be fed to algorithms which develop understanding about

traffic flow, speed and density. Such algorithms rely on accurate detection of the

ground plane of the detected object because the centre of the ground plane is used

to approximate object’s location with respect to other objects in a given scene. Dis-

tance between two objects can be estimated by comparing the distances between

the centres of their ground plane. Such distances when calculated across several

frames of a video can be used to build approximations about vehicles’ speed and

their changing relative distances.

The thesis is titled ’Implementation of an Approach for 3D Vehicle Detection

in Monocular Traffic Surveillance Videos’. It is of importance to deconstruct the

title in order to set the right expectation for both readers and evaluators. The

first phrase ’Implementation of an approach’ signifies that the thesis implements

an existing approach and not proposes one. The selection of the implemented

approach is a result of contemporary literature research in the field of deep learn-

ing based computer vision methods. Amongst many possible object detection

techniques, the research was focused on the ones whose detections are a faithful

representation of an object’s true shape. Since an image/video is a two dimen-

sional representation of a 3D world, detecting a vehicle object’s true shape can be

expressed as ’3D Vehicle Detection’, thus making the second phrase in the title.

The third phrase ’Monocular Traffic Surveillance Videos’ indicates that the traffic

surveillance videos are captured using a single camera which results in a monocular

(analogous to looking from one eye) image/video of the surveilled scene.

The chosen approach is called Occlusion-Net [40]. Occlusion-Net detects vehicle

objects using 3D wireframe models. Wireframe models are a popular way to repre-
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sent rigid bodies such as cars. They derive their motivation from the seminal work

of Active Shape Models [4] that represent a given object’s shape as a statistical

model. Any variation across several categories of the same object class is then

captured by varying different dimensions of this statistical model. The term ’Oc-

clusion’ (hidden parts of an object) is a signifier of explicit occlusion handling in

Occlusion-Net. Occlusion-Net uses two dimensional bounding box type detections

from an established 2D object detector known as MaskRCNN [19]. MaskRCNN

also detects the location of predefined keypoints (front-right wheel, back-left wheel,

front-right light etc.) of car object. From the 2D bounding box and locations of

these keypoints it is difficult to reason about 3D geometry and Occlusion status

(occluded or not) of each keypoint. Therefore, Occlusion-Net employs three sepa-

rate Graph Neural Networks (GNN). The first two GNNs identify and localize the

occluded keypoints, the third one enforces a 3D symmetry on the 2D detection

using wireframe models.

Chapter 2 attempts to build intuitions and concepts required for understanding

the essence of Machine and Deep Learning and is highly recommended for the

curious reader. Section 2.1.1 begins with explaining the fundamental differences

between AI and other computer programming related fields. It establishes a notion

of ’intelligence’ and explains that why some machines (or programs they run)

seem intelligent in the first look, but are in reality just a speedy execution of pre-

defined hard coded rules. Section 2.1.2 provides a high level overview of how Deep

Learning is realized and about its ability to work with raw data. This section also

introduces the required vocabulary for further discussions.

The section on essential mathematics (2.2) attempts at establishing a corre-

lation between the different disciplines of mathematics and Machine Learning.

It discusses contributions from Linear Algebra (2.2.1), Probability & Statistics

(2.2.2) and Calculus (2.2.3). Apart from providing a quick refresher of the funda-

mental concepts, this section also lists direct contributions from these disciplines
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such as Principal Component Analysis (2.2.1), representation of features as vectors

(2.2.1), Maximum Likelihood Estimation((2.2.2) and optimization techniques like

gradient descent (2.2.3). Section 2.3 re-introduces Machine Learning and Deep

Learning using the mathematical intuitions built in the previous sections. Histor-

ical learning algorithms like Perceptron 2.3.2 and Logistic Regression (2.3.4) are

first presented individually and later as basis for modern day neural networks. The

section 2.3.3 captures the essence of the term ’feature engineering’ and presents

a visual interpretation of the same. Section 2.3.5 describes the inner working

and formulations of neural networks which are extended to section 2.3.6 in order

to explain Convolutional Neural Networks which are specifically designed neural

networks for solving image related task. Central to this work is the use of Graph

Neural Network (2.3.7) which are a result of combining graph theory’s algorithm

of message passing and neural networks. Section 2.4 introduces the field of Com-

puter Vision and familiarizes the reader with required geometrical intuitions and

vocabulary surrounding different coordinate systems used in digital image forma-

tion. The chapter ends with a discussion on other approaches for object detection

in section 2.5.

Chapter 3 gives an overview of the training dataset (section 3.1) and design

choices (sections 3.2, 3.3, 3.4 and 3.5) made by the authors of Occlusion-Net.

Chapter 4 explains the code implementation of this approach along with the

details of open-source libraries(4.1) for data processing (4.1.2) and Deep Learning

(4.1.3). Details surrounding acquisition of training data(4.2.1)and trained weights

of neural networks(4.2.2) along with usage of training script(4.2.2) are explained

in section 4.2. Sections 4.4 and 4.3 detail both functional and non-functional code

changes respectively. These changes were made to adapt the publicly available

code for evaluation.

Chapter 5 presents the results of qualitative evaluation of the implemented

approach on traffic surveillance videos. It starts with comparing the published re-
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sults in original publications with the results reproduced during this thesis (section

5.1.1). Section 5.1.2 specifically evaluates Occlusion-Net’s performance on mod-

erate and heavy vehicles. The authors of Occlusion-Net also published a failure

analysis report [41], results of which are verified in section 5.2. During evaluation,

it was observed that Occlusion-Net skips some frames (does not process them), sec-

tion 5.3 is dedicated to discuss the reasons leading to skipping of frames followed

by an analysis of skipped frames.

Chapter 6 summarizes the thesis and chapter 7 provides suggestions for possible

future work on Occlusion-Net with respect to its inclusion in an object detection

pipeline.
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2 Technical Background

This chapter attempts at equipping the reader with the rudiments of Machine and

Deep Learning along with introducing disciplines of mathematics that cross-cut

this multidisciplinary field. The presented intuitions are required to set grounds

on which the design and evaluation of the implemented approach are explained in

later chapters. This chapter threads through these concepts systematically and

ends with an introduction to computer vision where these concepts are applied,

followed by an overview of both preceding and contemporary approaches to the

evaluated approach.

2.1 AI, Machine Learning and Deep Learning

Before the discussion transitions into the intricacies of Machine and Deep Learning,

it is essential to view them as united under the umbrella of Artificial Intelligence.

The following section presents this unison and provides a framework of reasoning

that can be applied to question intelligence of a given system that is claimed to

be ’artificially intelligent’. The overall intuition and several anecdotal evidences

are captured from the introduction chapter of Goodfellow at al.’s book titled Deep

Learning [16].

2.1.1 But what is AI ?

Artificial Intelligence or AI could quite literally be understood as an intelligence

that by its true nature is artificial, i.e. the presence of intelligence where it is
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not supposed to be and therefore, must be ’artificially placed’. When the first

programmable computer was conceived, computers were seen as machines that

can perform fast computations and offer impeccable results every time. They were

better than humans at problems that could be described using defined steps which

are often mathematical in nature. For such problems, humans were definitely

inferior to the computer’s accuracy and speed.

But what about the intuitive intelligence of human beings? What about the

virtue of vision? Much work has been done in understanding of the human visual

cortex which is the part of the brain that processes visual information. Despite

developing considerable understanding of the visual perception process, a larger

part of it remains a mystery. Now, given the complexity of the visual process one

can imagine the difficulty or rather the impossibility of breaking down the process

in computer-understandable steps that are often mathematical in nature! The

modern day artificial intelligence attempts to bridge this gap and tries to make

computers more human-like by making them more intuitive.

Humans learn to distinguish colors and differentiate between different objects

through the virtue of experience and constant learning. In order for computers

to mimic humans, they must be provided with similar, if not the same types of

experiences and learning. Humans intuitively use simple primitives for ex. shape,

color and words etc. to derive complex concepts like dimensions (2D-3D), illu-

minance (bright or dark) and language respectively. Similarly, for a computer,

complex concepts must be modelled as compositions of numerous simpler con-

cepts. The computer then must be taught how to derive a complex concept using

these simpler or low-level concepts.

A lot of early successes of the then perceived AI took place in closed rooms with-

out needing the so called worldly knowledge and experience. Amongst the first

successes of a computer beating a human at a thinking game was IBM’s Deep Blue.

Deep Blue was a chess playing computer that defeated the world champion. De-
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spite the remarkable success of the computer program, one must critically analyze

the ’artificially intelligent’ part of it. Modelling a winning chess strategy is surely

a non-trivial task but the game of chess has defined rules that can be summarized

in few lines of code. The computer thus knows before hand, the rules of the game

and then implements the remarkable winning strategy. But is there a learning ex-

perience here? Can one say that the computer learned through its experiences and

became better over time? The right answer is ’No’, this is because the computer

was acting upon a formally described set of rules and therefore, will be superior

to the fellow humans, including the world champions. But the same computer

will fail at what the humans do almost automatically with utmost perfection, like

recognizing a person by their voice, or to identify the boundary between a black

cat sitting on a black couch in an image. This is what Goodfellow et al. in their

book ’Deep Learning’ [16] conclude as ”Ironically, abstract and formal tasks that

are among the most difficult mental undertakings for a human being are among

the easiest for a computer. Computers have long been able to defeat even the best

human chess player, but are only recently matching some of the abilities of average

human beings to recognize objects or speech.”

A human’s knowledge of intuition and the intuition behind that knowledge is

rather difficult to formalize. Formalizing this knowledge in order for it to be under-

stood by a computer is one of the most prevalent challenges of AI. Some attempts

were made to hard-code the world information but did not succeed. This indicates

that our AI system must be able to generate subjective inferences by using raw

data from the real world. This ability of inferring using non-explicitly specified

rules is called Machine Learning. Raw data here refers to the indirectly-related

features or simple concepts that define the object/situation on which the infer-

ence is being done. For e.g. an algorithm called Logistic Regression can be used

to predict whether a Caesarean delivery should be recommended or not (excerpt

from [16]). One of the raw feature fed to this algorithm is the presence/absence of
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a uterine scar, to indicate if there was a previous delivery. Raw features like this

do not directly relate to the output decision but provide their individual contribu-

tions in deciding the output. The final decision is then computed by considering

contributions from many individual raw features. It is important to note that

the success of the prediction algorithm is heavily dependent on the type of raw

features that are being fed to it and how well these features are represented.

If we try to visualize these simple features as forming a base layer, and the layer

above it is represented by more-complex features derived from these simple feature

of the base layer and so on, then, by stacking many layers and thereby extracting

more complex features, in the end we reach the object/situation we are trying to

model. Thus, each layer transforms the features it extracted from the previous

layer and creates a new representation of the features. This results in multiple

layers stacked on one another creating a notion of depth, hence this approach of

AI is called Deep Learning. Deep learning is a sub class of Machine Learning

which in turn is a sub class of AI.

2.1.2 Representational composition by Deep Learning

The last section discussed how a Machine Learning algorithm is expected to use a

representation of the raw data and learn to map this representation to a desired

output. Output here could mean any desired inference that is expected from

the model, like the presence of an object in an image or whether to recommend

Cesarean delivery or not. But how are such representations realized? And what

is a meaningful representation?

Meaning-fullness of a representation: The representation of the raw data

is directly used by the model to generate the output inference. Therefore, the

representation must be such that its value affects the outputs with some magnitude.

A representation would consist of a few to many independent features that ideally

should represent variation in data. These features are famously called ’Factors
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Of Variation’ (Chapter 1, Deep Learning [16]) and should be independent to each

other. Independence here signifies two qualities; first, that each factor of variation

should represent different orthogonal dimensions of the data and second, that it

can change independently without affecting values of other factors. A branch of

AI called Representation Learning (or feature learning) attempts at learning

these factors of variation from the raw data. For e.g. such factors for a speech

recognition algorithm could be the speaker’s age, her accent and her vocal tract’s

size etc. But, these ’Factors of variations’ are hard to comprehend from raw data.

A common methodology of representation learning is to use Autoencoders for

learning these factors of variation. An autoencoder consist of an encoder and a

decoder. The encoder takes raw data as an input and derives a representation

from it, the decoder takes this representation and converts it back to the original

format (Chapter 1, Deep Learning [16]). The autoencoder tries to preserve as

much information as it can about the raw data but at the same time attempts

to learn interesting features about the data. But, identifying these factors from

raw data is a non-trivial task and often can only be done by experts in the field.

Thus one could argue that since representation learning attempts to learn complex

representations which are difficult to identify just by looking at raw data, it does

not solve the problem of Machine Learning but adds another level of indirection

to it. But what if there was something more to look at than just RAW data?

What if these complex representations can be learned from many, relatively easier

to identify, and simpler representations?

Deep Learning solves this central problem of representation learning by in-

troducing composability of representations i.e. complex representations can be

represented as combinations of simpler ones. The previous section elaborated on

why an AI algorithm needs to get a similar (if not same) human experience in order

to derive intelligent and subjective inferences for a particular problem. Humans

learn to differentiate between cats and dogs by sufficiently seeing many examples
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of both the categories. The internals of how this differentiation is learned by a

human brain is still a mystery, but one can at least provide a similar range of

examples of each category to an AI algorithm in order for it to learn to differen-

tiate between the two. The following section introduces the required vocabulary

for future discussion about AI and deep learning.

An AI model (or algorithm) needs sufficient amount of data (for experience) to

solve a given problem. This ample amount of data, this dataset, is known as the

Training Dataset, and the process of teaching is referred to as Training. Like all

other teachings, this one too has to be correctional in nature i.e. one should be able

to correct the model’s errors by empirically checking its outputs. The steps which

are followed to train a model are collectively known as the Learning Algorithm

and an empirical measure of a learning algorithm’s incorrectness is given by the

Loss Function. In order to develop the notion of correctness, one needs to tell

the algorithm what ’correct’ is by feeding it as input, a sufficiently large training

dataset. Each instance of this dataset (a training example) is a pair of features

(x) and an output label (y). The output label represents the desired correct

answer and thus establishes the notion of correctness. The final goal of training

algorithm is to calculate the correct output label for an input feature which was

not present in the training dataset (and thus its output label is unknown). For e.g.

If one is to build a learning algorithm that can classify an image as a cat or non-

cat, then, a single training example’s feature would be an image of a cat with an

output label ’cat’. In order to train this learning algorithm, one can feed this image

to the learning algorithm and measure the degree of incorrectness in its output

using the output label (along with the loss function) of the fed training example.

This incorrectness/loss is measured using the loss function. One could then tell

the learning algorithm about its incorrectness and make it try again by taking this

incorrectness into account. Thus, the algorithm learns from its mistakes and tries

to minimize its incorrectness/loss using the output labels provided. This process

12



Figure 2.1: [16] Illustration of a deep learning model. It is difficult for a computer to
understand the meaning of raw sensory input data, such as this image rep-
resented as a collection of pixel values. The function mapping from a set
of pixels to an object identity is very complicated. Learning or evaluating
this mapping seems insurmountable if tackled directly.Deep learning resolves
this difficulty by breaking the desired complicated mapping into a series of
nested simple mappings, each described by a different layer of the model.
The input is presented at the visible layer, so named because it contains
the variables that we are able to observe. Then a series of hidden layers ex-
tracts increasingly abstract features from the image. These layers are called
“hidden” because their values are not given in the data; instead the model
must determine which concepts are useful for explaining the relationships in
the observed data. The images here are visualizations of the kind of feature
represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given
the first hidden layer’s description of the edges, the second hidden layer can
easily search for corners and extended contours, which are recognizable as
collections of edges. Given the second hidden layer’s description of the image
in terms of corners and contours, the third hidden layer can detect entire
parts of specific objects, by finding specific collections of contours and cor-
ners. Finally, this description of the image in terms of the object parts it
contains can be used to recognize the objects present in the image. Source:
Figure 1.2 from Deep Learning [16]
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is repeated until the algorithm learns a mapping from training example to its

output label. This type of approach where one provides supervision to correct the

algorithm’s output, falls under the Supervised Learning category of Machine

Learning algorithms.

Deep learning provides representational composeability i.e. it allows one to

derive complex representations from simpler ones. This is done in layers with in-

creasing complexities with initial layers representing simpler representations. Such

a layered architecture is shown in 2.1. The figure shows how a deep learning al-

gorithm attempts to learn mappings from images to labels. These layered archi-

tecture or networks are called Artificial Neural Networks (or ANN). The ’neural’

here signifies the similarity of neural networks to the structure of inter-connected

biological neurons. Researchers claim their initial motivation of neural networks

from the miracle of the mammalian neural systems and its perceived functioning.

It is however a known fact that biological neural networks are much more complex

and more unexplored than the most complex of the existing ANN architectures.

Although, an inspirational correlations between the two exists, but any further

attempts at explaining ANN in this thesis will not use this scant correlation.

2.2 Essential Mathematics for ML

AI has been known to solve several problems using high performance computers.

However, it must be known that the pillars of modern day AI or any of its sub cat-

egories consist of several classical disciplines from mathematics. Most significant

from those are that of Linear algebra, Probability & Statistics, and Calcu-

lus. The intention here is not to provide an exhaustive course on each of them

but to establish a general intuition about why any AI enthusiast must indulge in

these disciplines and what are their respective contributions in a Machine/Deep

Learning model.
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2.2.1 Linear Algebra

Most of the concepts presented in this chapter are adapted from Ian Goodfellow’s

Deep Learning (chapter 2, [15]). The intuitions around visualization of vectors in

a space are inspired by Grant Sanderson’s online video series titled ’Essence of

Linear Algebra’ (3Blue1Brown, [44]).

One of the most important and relevant contribution from Linear Algebra to AI

is the construct of Scalars, Vectors, Matrices and Tensors. Scalars represent single

valued real numbers. A vector is an array of numbers which represent the vector’s

magnitude in each dimension. For e.g. a vector of size n× 1 represents the tip of

an arrow (a point) in an n-dimensional coordinate system and this arrow has its

other end on the origin of this coordinate system i.e. it originates from the origin.

Vector x has dimensions 3 × 1 and hence is representing a tip of an arrow in a 3

dimensional space.

x =


x1

x2

x3

 (2.1)

Points are represented differently using parenthesis, these parenthesis is what

tells the reader that this point should not be visualized as a vector’s tip but as a

standalone point in space. A matrix is represented by a 2 dimensional array which

has rows and columns. A grid of arrays with m rows and n columns is called a

m× n dimensional matrix. Y represents a 3× 3 matrix called a square matrix.

Y =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (2.2)

Intuitively, a m×n matrix can be imagined as a collection of n column vectors of

size/length m each, stacked adjacent to each other. Tensors are higher dimensional

15



matrices and the algebra of matrices can be generalized to tensors. The future

discussions will be mostly about matrices and vectors, and will include tensors

when required.

Vectors in their essence are a language to describe space. Scalars (a number)

when multiplied with vectors (an arrow) either stretches them or shrinks them

depending on whether the chosen scalar is greater or less than 1. For a 3 dimen-

sional coordinate system the direction of x, y and z axis is given by vectors of

unit magnitude in each direction represented by î, ĵ and k̂ respectively. Thus,

another way to interpret the 3D space vector in equation 2.1 is that its tip can

be reached by scaling the î unit vector by a scalar x1, the ĵ unit vector by x2 and

the k̂ vector by x3. The scalars x1, x2 and x3 tells how much one needs to ’walk’

in each dimension. With this idea a vector can be represented as follows:

x = (x1)̂i+ (x2)ĵ + (x3)k̂ (2.3)

This addition of two or more vectors after multiplying them with a scalar results

in a new vector (x) which is a linear combination of these vectors.

Using all possible combinations of these vectors with all possible scalar values,

one can represent any vector in the 3 dimensional space. This set of all possible

vectors is known as the span of the unit vectors. For imaginative convenience,

think of an arrow in space when a single vector is being discussed, but when an

intuition about all possible vectors is to be made, it is better to think all of them as

points in space (without a tail going to origin). This way one can imagine that the

span of the combination of these three unit vectors in a 3D space is actually every

possible point. The unit vectors are more formally known as the basis vectors.

It is important to think about the span of one single vector which by definition is

all possible vectors one can create by scaling this single vector. One can imagine

that a single vector (an arrow) when multiplied by a number (a scalar) may only

increase (if number > 1 ) or decrease (if number < 1 ) in its length, and therefore
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a combination of all possible vectors would turn out to be a single line extendable

in both directions. The span of a single vector is therefore a straight line.

The confident inference that one can reach any point in the 3D space by different

combination of the three basis vector(̂i ,ĵ and k̂ ) relies on the assumption that

these vectors are independent to each other. This independence can be thought

of as the fact that any of the basis vectors cannot be expressed as linear com-

binations of other basis vectors. This lack of a linear combination makes them

linearly independent to each other.

When dealing with a large dataset of many instances of unknown vectors, it be-

comes important to know how many independent dimensions the data has. These

dimensions are proportional to the total number of linearly independent vectors

one can find. These dimensions actually represent features of the data that are

independent and represent individual concepts that are canonical and thus cannot

be derived from other concepts. Such independent were introduced as factors of

variation in section 2.1.2.

A Matrix from a computer science perspective is a data structure to store

numbers in order to perform faster mathematical operations on these numbers.

What matters, is the cost (in terms of processing time) of accessing an element

in a matrix or multiplying two matrices together. But the fact that matrices and

Linear Algebra predates the first computer by centuries suggests that matrices are

more than just objects for faster computations.

A Matrix from a mathematical perspective is a type of linear transfor-

mation. In other words, a m × n matrix can be used to transform a vector of

length ’n’ to a vector of length ’m’. This transformation is realized by matrix

multiplication which states that on multiplying a m× n matrix by another n× 1

vector, the resulting vector is of dimension m × 1. Thus, it is concluded that a

vector in an n-dimensional space can be transformed to an m-dimensional space

using a m× n matrix. Thus, a linear transformation represents a mapping from
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one vector space or feature space to another. This idea is discussed with the

following intuitive example.

Matrix-Vector Multiplication: Supposing a 2 × 2 matrix A (equation 2.4)

is to be multiplied with a 2× 1 vector v (equation 2.5).

A =

0 −1

1 0

 (2.4)

v =

2
5

 (2.5)

Referring to previous discussions on visualizing a vector, a 2× 1 vector represents

a tip of a vector or a point in a 2-dimensional space. By convention, the upper

element represents the coordinate on x-axis and the lower element represents the

coordinate on y-axis. As explained above, î and ĵ are the two basis vectors that can

be used to reach any point in this space by changing the value of scalars multiplied

by them. So one can write the vector in equation 2.5 as a linear combination of

its basis vectors as shown below.

v = (2)̂i+ (5)ĵ (2.6)

The matrix A tells what happens to vector v when it is multiplied by the matrix,

i.e. where does vector v land. A geometrical intuition for linear transformation

is that once a linear transformation is applied to any given space of vectors, the

resulting space preserves the property that all lines must remain lines and that

the origin must remain fixed. Since all lines remain lines and the origin is fixed,

any linear transformation will at most reverse the direction of a vector, or may be

stretch it (elongate or shrink), or may be move its tip to a new point. Whatever

the case is, the transformed vector can still be represented as a combination of

some basis vectors which represent independent dimensions in this new linearly
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transformed space. The transformed vector vt can be represented as a combination

of these transformed basis vectors as follows:

vt = (2)transformed_î+ (5)transformed_ĵ (2.7)

Therefore, If one could somehow know how much the basis vector will be scaled,

stretched or reversed in this new linear space, one could use this information to

transform any vector from the old space to the new one. This transformation

is what a matrix represents. The first column (0,1) can be thought of as rep-

resenting the coordinates to which the old î basis vector will move to, similarly

the second column (-1,0) represents the new coordinates of ĵ basis vector. These

new coordinates for î and ĵ are represented by transformed_î and transformed_ĵ

respectively. Thus, the new position (vt) of vector v (in equation 2.5) can be cal-

culated by multiplying it first with the transformed_î coordinates and then with

that of transformed_ĵ as:

vt = (2)

0
1

+ (5)

−1

0

 =

2× 0

2× 1

+

5×−1

5× 0

 =

0
2

+

−5

0

 =

−5

2

 (2.8)

The steps of matrix multiplication are not covered in detail, however equation

2.8 can be observed to capture the dynamics of matrix-vector multiplication.

The result in equation 2.8 shows that the tip of the original vector has been

transformed to point (-5,2). The same result can be reached by multiplying

matrix A by a vector v in a relatively more common form.

v_t =

0 −1

1 0

2
5

 =

(0× 2) + (−1× 5)

(1× 2) + (0× 5)

 =

−5

2

 (2.9)

One can read 2.9 as linear transformation of a 2×1 vector by a 2×2 matrix.

Matrix-Matrix Multiplication: By Extending the intuition for matrix-

vector multiplication, one can reason about what a matrix-matrix multiplication
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would represent. Since a matrix represents a linear transformation, its multiplica-

tion with another matrix can be thought of as applying another linear transforma-

tion on top of the previous one. Thus, the resultant matrix of a matrix product

of matrix A and B when multiplied with any vector, will be equivalent to multi-

plying that vector first by matrix B followed by a multiplying the previous result

with matrix A. Hence matrix products can compose many linear transformations

together and can represent the resulting n-dimensional space just by a single n×n

matrix.

Dot Product: Dot product provides a way to reason about the direction of

two vectors relative to each other. Dot product of vector a and vector b is possible

if both are of same dimensions. Following equation shows how to calculate the

dot product of two given vectors.

a.b =

a1
a2

b1
b2

 = a1 × b1 + a2 × b2 (2.10)

The above equation shows the algebraic definition of the dot product of two

vectors, and shows that it is actually a scalar value. Following is a geometric

formulation of a dot product:

a.b =

a1
a2

b1
b2

 = |a||b|cos(θ) (2.11)

The |a| and |b| correspond to the magnitude of the two vectors and is calculated

as
√
a21 + a22 and

√
b21 + b22 respectively. The angle θ denotes the angle between

two vectors.

Dot product is used to reason about how much two vectors point in the same

direction. If the dot product of vector a and b equals the product of their magni-

tudes, this entails that cos(θ) = 1. Since cos(θ) is equal to 1, the angle θ between

the two vectors must be zero, therefore the vectors must be pointing in the same

20



direction. This entails that, the more similar is the direction in which the vectors

point, the higher the value of their dot product would be. Consequently, the dot

product of two orthogonal (perpendicular) vectors is zero.

Linear Transformation in Deep Learning: Applications of linear transfor-

mation are many, but in the context of ML and Deep Learning one can establish

context by referring to the previous discussion about AI (section 2.1.1) and Deep

Learning (section 2.1.2). It was described how Deep Learning aims to learn the

mappings from input to output data. When both inputs and outputs are modelled

as vectors, these mappings can be represented by learned transformation matri-

ces which transform the input vector into the output vector. While training a

supervised machine learning algorithm, both input and output vectors are known

and the aim is to learn/calculate the transformation matrix. Once this transfor-

mation matrix is learned, one can predict the output vector for any unseen input

vector by multiplying the input vector with the learned matrix.

Modelling entities as matrices and vectors not only facilitates representational

convenience and faster calculations, but also introduces techniques that can pro-

vide insights into the training data. Linear Algebra is full of such techniques and

the one that tops the charts is called Eigen Value Decomposition.

Eigen Vectors, Eigen Values and Eigen Decomposition: A matrix trans-

forms vectors from one space (dimension) to another. When a vector is linearly

transformed, the original vector rotates and stretches to a new point in space

and has a new span (a straight line). But there are some special vectors that

when transformed (using a matrix), do not change their spans i.e. they are only

stretched and not rotated. By definition, a span of a vector is all vectors that

can be reached by extending the vector in both directions. Using this definition,

one can say that the transformed version of this special vector still lies in its

old span. Using spans to define eigen vectors, Eigen vectors of a matrix (a lin-

ear transformation) can be understood as all those vectors whose span remains
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unchanged when multiplied (transformed) with this matrix. Although the span

remains unchanged as the eigen vectors are not rotated, but they can be stretched

by a scalar. This scalar is called the Eigen value corresponding to a eigen vector.

The following equation captures the intuition of eigen vectors and eigen value.

Av = λv (2.12)

Equation 2.12 can be interpreted as follows: If a vector v is an eigen vector of

a matrix A then its transformation by A must be equivalent to scaling v by a

scalar λ where λ is referred to as the eigen value of vector v.

Arranging all eigen vectors and eigen value for a given matrix A together in a

matrix followed by some basic matrix arithmetic, the following result is achieved.

A = V diag(λ)V −1 (2.13)

In equation 2.13, A is the matrix being decomposed, V is a matrix of all possible

eigen vectors, and diag(λ) is a matrix of corresponding eigen values. The diag

represents diagonal matrix i.e. its non-diagonal elements are zero. Diagonal

matrices simplify computations, for e.g. calculating a square of a diagonal matrix

is just squaring all its diagonal elements which are just scalars. This ease of

computation makes them easier to work with, therefore, whenever possible, a

diagonal matrix representation must be chosen. The V −1 represents the inverse

of matrix V. A good way to think about an inverse is as a reverse transform of

the original matrix, i.e. if a vector is transformed by a matrix and then by its

inverse, it remains unchanged. The equation 2.13 more formally represents the

Eigen Decomposition of matrix A. Eigen decomposition of a matrix apart from

providing higher computational efficiency (from when the same operation is done

with the original form of matrix), also provides insights in the algebraic nature of

the decomposed matrix. This is because the eigen values actually measures the
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variance of data around an eigen vector. Unfortunately, Eigen decomposition only

exists for square matrices (n×n) but fortunately, there are other techniques of

decomposition.

SVD - Singular Value Decomposition: Unlike Eigen decomposition, the

SVD exists for any m× n matrix. Before explaining SVD, the notion of Rank of

a matrix must be established. Earlier discussions about the linear independence

of two vectors conforms that the two vectors which are linearly independent to

each other cannot be expressed as linear combination of each other, i.e. both

these vectors are needed to represent the space. Extending this idea to a matrix

(collection of vectors), rank p of a matrix can be defined as the total number of

linearly independent vectors (columns) of the matrix. The rank cannot be greater

than the number of columns thus p ≤ n. Using SVD, any m×n matrix A can be

decomposed as a sum of matrices of rank 1, each containing one of the ’p’ linearly

independent vectors. Each summation unit ’i’ is obtained by multiplying Left

Singular Vector ui of dimension (m× 1) with the transpose of Right Singular

Vector vi of dimension (n×1) which results in matrix of dimensions (m×n); same

as the original matrix. Further, each rank 1 matrix is scaled by its corresponding

Singular Value (σ). A matrix A can be decomposed as follows:

A = σ1u1v
T
1 + σ2u2v

T
2 + ...+ σpupv

T
p (2.14)

Stacking all the ’u’ and ’v’ terms in matrices, SVD can be represented in a

similar fashion like eigen value decomposition.

A = Udiag(σ)V T (2.15)

SVD and Eigen Decomposition: SVD uses eigen decomposition as follows.

Given a matrix A, the matrices AAT and ATA are calculated. For any given

matrix of arbitrary dimensions both AAT and ATA are square matrices. Eigen

23



vectors of AAT and ATA are calculated and are composed in matrices U and V (of

equation 2.15) respectively. The eigen vectors for both matrices are same and the

singular matrix (diag(σ)) value is actually the squared root of the corresponding

eigen values.

But what is the importance of knowing the rank and using it for SVD? Suppos-

ing there is a very large (high dimensional) matrix, and its rank ’p’ is significantly

lower than the number of columns. This indicates that there are many columns

(n - p) which are linearly dependent to each other and thus do not represent

independent dimensions of data. The corresponding σ term would be negligible

for such vectors. From a SVD decomposition of a given matrix, one can simplify

the representation of a given matrix by just taking the terms whose correspond-

ing σ values are significant. This reduces the otherwise high dimensional (many

columns) data to dimensions (columns) that are most significant, such a reduction

in dimensions positively impacts the performance of the learning algorithm.

Principal Component Analysis: PCA or Principal Component Analysis

is a dimensionality reduction technique used in varied disciplines. Given some

numerical data, each data point can be represented by a vector, and all the vectors

are combined together into a matrix. The key objective of PCA is to find the most

relevant dimensions (or basis) using which this data can be best described. Since

basis are orthogonal to each other, it is desired that the dimensions calculated from

PCA of the matrix are orthogonal. Intuitively, given a data in many dimensions

(hence many basis), PCA aims to find the dimensions along which most of the

data is centered and varying. If the found dimension is chosen to analyze and

represent data, it will be easier to interpret this data as the number of dimensions

has reduced. Apart from dimensionality reduction, PCA can also be understood

as an instrument of feature extraction, where feature refer to the most relevant

features across which most variation in the data is observed. PCA for any arbitrary

matrix can be done using singular value decomposition. SVD decomposes a given
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matrix in several compositions each corresponding to a singular value. These

singular values are squared root of eigen values, which in turn show variance of

data around the corresponding eigen vector. PCA can then choose ’k’ vectors

( ’k’ is significantly less than dimension of data matrix) corresponding to high

singular values (or variance) as new basis of the data. These selected basis are

called principal components of the data.

Linear algebra provide means to conveniently model/represent real world data

in a well studied mathematical object called matrix. Once such a representation

is realized, known properties of matrices can be applied to explore the data and to

represent mappings of vectorized input features to their corresponding vectorized

output values. Elimination of redundant dimensions is another powerful construct

and is known as dimensionality reduction.

2.2.2 Probability and Statistics

2.2.2.1 Probability

Probability is a tool to quantify uncertainty. The entity whose uncertainty

is being quantified is called a random variable. Random variable could be

discrete or continuous in nature. Supposing the random variable is the result

of tossing an unbiased coin. The two possible outputs; heads and tails of the

random variable result are referred to as its sample space. Assuming the coin is

fair, there is a 50% chance of heads and a 50% chance of tails to be the final state

of result. Such a probability can be expressed as follows:

P(result = heads) = P(result = tails) = 50% =
1

2
(2.16)

Probability Distribution: is a collection of probabilities corresponding to ev-

ery possible state of all possible random variables in the entity being modelled

(chapter 3, Deep Learning [16]). Depending upon whether the variable is dis-

crete or continuous, the probability distribution is given by a Probability Mass
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Function(P) or Probability Density Function(p) respectively. Both of these

functions can also represent distributions of more than one variable and then the

corresponding distribution is called a joint distribution. For a given probability

mass function the sum of all probabilities must be 1. This is called the Normal-

ization Constraint . The joint probability of two discrete random variables

X and Y is represented as follows:

∑
i

∑
j

P(X = xi and Y = yj) = 1 (2.17)

Marginal Probability is the probability of a subset of variables from a joint

probability distribution. The marginal probability for any X = xi in the equation

2.18 can be understood as the sum of all probabilities corresponding to every

possible state of random variable Y when X = xi (chapter 3, Deep Learning [16]).

This result can be generalized for more than one random variable.

∀x ∈ x,P(X = x) =
∑
y

P(X = x and Y = y) (2.18)

Conditional probability gives a probability of an event happening(event 1)

given that another event has already happened/observed (event 2). The events

here could mean a variable X taking a particular value x given that variable Y

has already taken on value y, such a conditional probability can be expressed as:

P(Y = y | X = x) = P(Y = y, X = x)
P(X = x) (2.19)

The denominator here is the marginal probability (P(X = x or P(x)) . The

notion of conditional probabilities give rise to a fundamental rule called Chain

rule. Chain rule decomposes a joint probability distribution over arbitrary num-

ber of random variables. Using chain rule, one can express a joint probability
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distribution as combination of conditional probabilities of the constituent random

variables as follows (chapter 3, Deep Learning [16]).

P(a,b,c) = P(a | b, c)P(b, c) (2.20)

P(b,c) can be further decomposed as:

P(b,c) = P(b | c)P(c) (2.21)

After substituting 2.21 in 2.20 the final decomposition of the joint probability

distribution P(a, b, c) is given as:

P(a,b,c) = P(a | b, c)P(b | c)P(c) (2.22)

Expected Value or expectation over a probability mass function is the sum-

mation over products of all possible states of a random variable(s) and its corre-

sponding probability. It can also be thought of as multiplying each of the likely

outcome by its likelihood and adding all the values to output a single value. Ex-

pected value is often used to form an informed data driven assumptions about the

most likely value a random variable would take. The expected value is equal to

the arithmetic mean (average) of all possible states given that the probability for

each state is same.

Variance(σ2): Describes the spread of a distribution (Chapter 2.8, Think Stats

[8]). This spread can be visualized as a measure of how the values vary around

the mean value of the distribution. The mean(µ) is analogous to average and is

used to calculate variance. A lower value of variance means that the distribution

is clustered near the expected value and a higher value represents that data is

widely spread and not clustered around the mean (Chapter 2.7, Think Stats [8]).

Standard deviation(σ) is another metric calculated by taking the square root
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of variance. Given a random variable defined by a function f(x) with its expected

value E(f(x)), the variance can be calculated as:

Var(f(x)) = E[(f(x)− E[f(x)2])] (2.23)

The Covariance between two random variables is a measure of how related

they are. A high absolute value of covariance (not considering the sign) for two

variables indicate that both of them simultaneously diverge significantly from their

respective means (chapter 3.8, Deep Learning [16]). The sign of the calculated

covariance is equally significant, for e.g. if both the variables are positive or

negative simultaneously, then their covariance is a positive value. Contrary to

this, if one variable is positive while other is negative, the covariance is negative.

Covariance jointly captures the relation of two variables with their own respective

means and also with each other. The covariance of two given random variables

(represented as vectors) with zero mean (the mean of each variable is subtracted

from all its value) is equivalent to their dot product (explained in section 2.2.1)

(Chapter 7.4, Think Stats [8]). Thus, covariance is positive if the two vectors point

in the same direction and negative when two vectors point in opposite direction

and is zero when the two vectors are orthogonal or independent(similar to linearly

independent vectors explained in 2.2.1).

There are many known probability distributions that are used to model different

behavior of random variables. Any probability distribution can be expressed using

features like mean and variance. Distributions are important because they can be

used to model assumptions for the random variable in question. For e.g. given

a random variable whose all states have the same probability, then a Uniform

Distribution could be used to model its probability distribution. A uniform

distribution assigns the same probability to each state of the random variable.

For a random variables that have two outcomes a Bernoulli Distribution is
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used. There are many distributions that can be explored depending on the nature

of random variable being modelled.

Normal Distribution or Gaussian Distribution: is one of the most com-

monly found continuous distributions. When plotted on a graph, the distribu-

tion forms a bell shape which is referred to as a bell curve. Corresponding to the

highest point on this bell is the mean of this distribution. Rest of the data is

symmetrically divided on either side of this mean. Precisely, 68% of the data is

within one standard deviation(σ) away from the mean(µ), i.e. between µ−σ and

µ+ σ, 95% lies between two standard deviation which is µ− 2σ and µ+ 2σ, and

99.7% is spread between three standard deviation. Thus, if a given continuous

random variable is known to have a normal distribution, a lot of inferences can

be made about the spread of its data points. Another significant use of normal

distribution is realized by the Central Limit Theorem. The theorem states

that when sufficient number of random samples (each containing datapoints) are

collected from a large unknown and arbitrary distribution of data and the mean

of each sample is calculated, the distribution (plotted graph) of these means ap-

proaches a normal distribution. Further, the mean of this approaching normal

distribution is equal to the mean of the original distribution, and its variance is

equal to that of the original distribution when reduced by a factor of ’n’ where ’n’

is the size of the sample (at least 30). Further, the larger the number of samples

and size of each sample, the more normal the distribution becomes.

Bayes’ Theorem: Provides a proven formula to update the probability for

a certain event given some prior information. Specific to supervised machine

learning, a hypothesis is a function that maps inputs to their output labels using

a matrix (explained in Linear Algebra section 2.2.1). Each value of this matrix

is known as a parameter, and this parameter matrix is often represented by the

term θ. The parameters of the matrix θ are learned during the training phase.

During training, the parameter matrix θ is updated iteratively which in turn
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updates the hypothesis. Every succeeding update takes into account the prior

state of the hypothesis. Using the tool of conditional probability, this problem

can be reformulated as estimating a conditional probability that the calculated

hypothesis H is correct (first event) when the training data is observed (second

event). This conditional probability can be represented as P (H|Data). Using

Bayes’ theorem, one can calculate this conditional probability as follows:

P(H | Data) = P(Data | H) P(Model)
P(Data) (2.24)

In the above equation, P(Model) is called as the prior probability. It represents

the information one has (if any) about the hypothesis and its parameters before

observing the data. The prior is usually estimated by domain experts. Alterna-

tively, a probability distribution (e.g. Normal or Bernoulli) could be assumed over

the parameters and using this distribution, a prior could be created as a starting

point for learning. After each data sample is fed to the learning algorithm, the

quantity P(H | Data) is calculated. P(H |Data) is called the posterior probabil-

ity. Before the next training iteration begins, the prior is updated and is assigned

the value of the posterior. This process continues iteratively until the training is

complete.

After developing the aforementioned intuitions about probability, supervised

learning can be expressed as predicting the output label y (calculated using hy-

pothesis H), of a given input x (comes from training/testing data), using the

conditional probability P (y|x). Where y is the predicted output label and x is the

seen/unseen input.

2.2.2.2 Statistics

Statistics and Probability are two related disciplines of mathematics. While prob-

ability predicts the likelihood of future events, statistics analyze the data collected

in the past. Although this boundary is at times fuzzy, but one could call prob-
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ability a theoretical approximation of a distribution and statistics as an applied

branch of mathematics which analyzes a given distribution. Skiena in his book

’Calculated Bets’ [46] explains this distinction as ”Probability theory enables us to

find the consequences of a given ideal world, while statistical theory enables us to

to measure the extent to which our world is ideal”.

Statistics form the basis of modern day algorithms for Machine Learning. Both

Machine Learning and Statistics develop understanding of how the data is dis-

tributed, but the key difference between the two is that Machine Learning does

this with the aim of making predictions on unseen data, whereas statistical infer-

ences aim to understand the relationship between the data. Prediction of unseen

future data is not the central aim for a statistical inference task but just a possible

by-product.

A supervised ML algorithm maps a given input to its corresponding output

label with the help of a function (or hypothesis). This function contains param-

eters that are updated iteratively until the function reaches the desired accuracy.

The estimation of these parameters and the function itself falls under a topic of

statistics called Point Estimation. Through point estimation, a single most ap-

propriate prediction of some quantity of interest is provided (chapter 5.4, Deep

Learning [16]). The quantity of interest could be a vector of parameters or even

a function. A point estimation learns a mapping between the input and output

labels, the resulting point estimate is essentially a function. Goodfellow et al.

refer to such point estimates as Function Estimators (Pg. 124, Deep Learning

[16]). When observed closely a function estimator is just a point estimator in the

function space (Pg. 124, Deep Learning [16]). Thus, estimating a mapping from

input x to output y can be interpreted as either estimating parameters or estimat-

ing a function mapping from x to y. Notationally, an estimation of a quantity q

is denoted as q̂.
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Machine Learning is mostly about estimating data distributions whose true

nature is elusive to us. This estimation requires sampling as much data (training

set) as we can in order to establish an empirical basis. Different learning constructs

(algorithms) are then applied to approximate (fit) the distribution of collected data

samples. These learning algorithms differ in the assumptions they work with and

a good match happens when the assumptions of the learning algorithm exists in

the sampled data.

Maximum Likelihood Estimation(MLE): is one of the statistical tech-

niques used to fit the given data to match our assumed probability distribution.

Consider a distribution P(D) that is unknown. After sampling data from the

world i.e after attaining pairs of input x and output label y, an estimate about

the distribution is made which is represented as P̂ (D). Further, this estimation is

parameterized by a parameter θ and the estimated distribution is now represented

as P̂ (D; θ). MLE then provides the value of θ that maximizes the likelihood of

this estimated distribution matching the true (but hidden) distribution (P(D)).

For e.g. P̂ (D; θ) can be assumed to follow a Gaussian probability distribution.

The parameters that define a Gaussian distribution are mean and variance, this

mean and variance can be used to approximate θ. The process of calculating the

θ that maximizes a given function is simply by calculating the partial derivative

(explained in 2.2.3) of the function w.r.t θ and equating it to zero. Solving for

θ then gives the value that when plugged in P̂ (D; θ) maximizes the likelihood of

observing the true (but hidden) distribution P(D).

Maximum a Posteriori Estimate(MAP): The two schools of thought in

probability& statistics are that of Frequentist and Bayesian. While the Frequentist

approach of estimating probabilities is just by observing the given data, Bayesian

on the other hand allows inclusion of prior belief for estimation. MAP can be

considered as the bayesian version of MLE. The divide between frequentist and

bayesian can further be understood on the basis of how θ is modelled. The pa-
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rameter θ is no longer just a parameter in the bayesian approach but a random

variable. Since a random variable comes from a probability distribution, θ can

now have its own probability distribution that can be modelled using a prior belief.

While MLE finds the best estimate of θ that maximizes the probability (likelihood)

of seeing the observed data, MAP answers to the question, given the data what is

the most likely θ?

MLE : θ = argmaxθPθ(Data) (2.25)

MAP : θ = argmaxθPθ(θ|Data) (2.26)

In the above equations argmax refers to the value of theta that maximizes the

function on the right. Expanding P(θ|Data) using bayes rule (equation 2.24)

results in the following equation.

P(θ | Data) = P(Data | θ) P(θ)
P(Data) (2.27)

The term P (Data | θ) can be calculated using maximum likelihood estimation.

P(θ) represents the prior and P(θ | Data) represents the posterior probability,

hence the name maximum a posteriori probability. One of the advantages

of bayesian approach is that even in scenarios where training data is not ample,

a correct prior belief can make the model work. Alternatively, in cases where the

prior is highly incorrect, ample amount of data is needed to correct the model.

In Supervised Learning, classification is one of the most common objectives of a

learning algorithm. Classification refers to mapping (or classifying) a given input

to its correct class label. The label of each class can be modelled as a random vari-

able and its distribution can be approximated. Approaches like these which aim to

learn probability distribution of each class in order to differentiate between them

fall in the category of Generative Modelling. Generatively modelled classifiers

33



learn to differentiate between two classes by estimating their respective distribu-

tions, thus they capture the essence of each class. This is opposed to another class

of classification algorithms called Discriminative Classifiers (for e.g. Percep-

tron explained in section 2.3.2), which instead try to learn a decision boundary

separating the two classes, details of which are deferred to later sections. Seem-

ingly, the Discriminative classifiers have outdone their Generative counterparts in

the modern day Machine Learning scenario.

2.2.3 Calculus

”Calculus is the mathematical study of continuous change, in the same way that

geometry is the study of shape and algebra is the study of generalizations of arith-

metic operations.” - Magno Urbano ( Chapter 2, Infinitesimal Calculus [48]).

Calculus or ’Infinitesimal Calculus’ (Chapter 5, Mathematics for Machine Learn-

ing [7]) is a mathematical discipline that deals with approximation of areas

spanned under any arbitrary curve (representing some mathematical function)

and its rate of change. Integral calculus (or integration) approximates the area

(or volume etc.) and differential calculus (or differentiation) provides reasoning

about how the function changes around a given point. Figure 2.2 provides a visual

representation of integration and differentiation on a function/curve f(x). While

both integration and differentiation serves Machine Learning in different ways,

this section only details a particular contribution of differential calculus that led

to the development of Gradient Descent algorithm.

Gradient Descent Gradient descent is an optimization algorithm. Optimiza-

tion refers to the iterative process of finding an optimum solution for a given

problem. In order to find the optimum solution, an optimization objective is to

be defined. One such optimization objective is to find the minimum value of

a given function. Given a function f(x), its minimization objective attempts to

find a value of its parameter ’x’; such that when f(x) is parameterized by ’x’, the
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Figure 2.2: Simplistically, integration of a function refers to the area between two values
of its parameters. Function f(x) is parameterized by x. The value of the area
spanned by the function between x = a and x = b is given by integrating the
function from a to b. The derivative signifies the rate of change or gradient
of the function at a given point. The derivative of f(x) at a point c is shown.
The slope is positive because it goes upwards as x increases. A negative
slope would decrease as x increases. Source: Redrawn from figure 1.1, Pg 2,
Tom M. Apostol - Calculus, Volume-1 [1]

resulting value is the smallest possible value of f(x). This point of smallest value

is called as the minima of f(x).

Since the gradient descent finds a minima and does not create one, it is essential

that the function f(x) has a minima that can be found. Gradient descent provides

best results when f(x) has only one minima. Functions which have only one

minima are known as Convex functions. A non-convex function can be visualized

as having more than one locations where the slope of the derivative is zero, amongst

all such locations, the one where the function has the least value is called as the

Global minima. Thus, a non-convex functions can have more than one local

minima but only one global minima, whereas a convex function only has only one

minima which is both its local and global minima.
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Figure 2.3: Interpreting gradient descent: a) Derivative at point x = b results in a pos-
itive gradient. x is decreased towards the minima. b) Derivative is positive
and x must be increased towards the minima. c. and d. shows all steps
of gradient descent (in green) when a and b are used as starting points
respectively.

The algorithm is named Gradient descent after the term gradient. Gradient is

a vector quantity that represents the slope as well as the direction of the slope.

It is calculated by taking the derivative of the function at a given point. Thus,

if the slope is negative, the gradient would be negative and vice versa. Gradient

descent is an iterative algorithm that updates the parameter ’x’ until the minima

is reached. Each update is guided by a predefined step-size which correspond

to the amount by which the parameter ’x’ will be adjusted. The update step of

gradient descent formulation can be written as follows:

xnew = xold − (step_size)(gradient) (2.28)
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The above equation decreases parameter ’x’ when gradient is positive and vice

versa. Gradient descent iteratively finds the minima of f(x) using the following

algorithm.

1. Start with any random value of x = x0

2. Calculate the gradient (derivative) of f(x) at x = x0

3. Observe the slope at x = x0

a) If slope is positive -> Decrease x by a small step. See figure 2.3 (a)

b) If slope is negative -> Increase x by a small step. See figure 2.3 (b)

4. Repeat 1-3 until x is unchanged (or slightly changed) after several updates,

or the slope is almost zero.2.3 (c) and (d).

Using the above formulation, the algorithm finds the minima of a convex func-

tion f(x). An alternate intuition of the above process is that each step calculates

the gradient at a particular value of x, this gradient is then used to reason about

how the function f(x) will change when a slight change in its parameter ’x’ is

introduced. Thus, the gradient descent algorithm uses gradients as a tool to vary

the parameter x such that the resulting value of f(x) is the smallest possible value.

Further, since the function f(x) has only one parameter, this example corresponds

to gradient descent in one dimension.

Multi Variable Functions: The functions that have more than one parame-

ters are called multi-variable functions. For e.g. f(x,y) represents a multi variable

function with two parameters. Gradient descent can be applied to this function in

a similar fashion but with slight changes. First, since there are two parameters (x

and y), each update step updates these two parameters simultaneously. Second,

the parameter ’x’ is updated by calculating the gradient of the function f(x,y) with

respect to (w.r.t) ’x’ only. Similarly ’y’ is updated by the gradient of ’y’ w.r.t.

to f(x,y). Thus two separate gradients corresponding to x and y are calculated
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for each update step. The gradient of a multi-variate function w.r.t. to a single

variable is called as the Partial Derivative of the function w.r.t. that variable,

and the branch of calculus that defines the rules for this is called Multivariate

Calculus.

Machine learning employs gradient descent for minimizing a given objective func-

tion sometimes know as the Loss Function. In practice, the objective function

has many parameters that can be simultaneously updated using gradient descent

and the rules from multivariate calculus.

Chain Rule: Sometimes, functions are composed of other function, i.e a

function g(x) can be an input to function f(g(x)). This can be expressed as :

u = g(x), and y = f(u) (2.29)

In such a composition of functions, the final function ’y’ is affected by parameter ’x’

indirectly through function ’u’ (or g(x)). To calculate how a change in parameter

’x’ affects the variable ’y’, the chain rule can be applied as follows:

dy

dx
=

dy

du
∗ du

dx
(2.30)

The chain rule can be applied to any depth of composed functions. The gradient

descent and chain rule are combined together to formulate one of the most essential

algorithms in Deep Learning which is known as Back Propagation. There are

many variants of gradient descent, Zhang (2019) [52] provides a detailed overview

of such variants along with insights in the structure of gradient descent algorithm.

The intuitions built in this section (2.2) would serve as basis for upcoming

sections. The next section introduces Machine and Deep Learning using these

intuitions and provides backward references to these concepts when required.
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2.3 Mathematical Introduction to ML

Now that some mathematical intuitions are built, Machine and Deep Learning

can be introduced more concretely.

2.3.1 Ingredients of a Machine Learning Problem

A machine learning problem has two stages viz; estimation and generalization.

Estimation: In supervised machine learning, estimation refers to the process

of learning a mapping between the input data and the corresponding output label.

This mapping is represented by a hypothesis. The process of learning this map-

ping is called training, and is realized by a training algorithm. The subset of

available data used in training is called the training dataset. During estimation,

in order to empirically reason about the success of a hypothesis, the difference in

the value of actual label and the label calculated by the learned mapping (hypoth-

esis) is calculated for each training example. This difference is then summed, and

the resulting value is an indicator of correctness for the chosen hypothesis. This

calculation represents the loss, and is implemented using a Loss Function. A

perfect hypothesis will have a zero loss.

Generalization is the ability of the learned hypothesis to correctly map inputs of

unseen data to their correct output label. Testing dataset is used to evaluate

the generalization or test performance of the learned hypothesis. The loss function

used to evaluate testing performance is same as that in estimation.

Modern day machine learning problems are approached by casting them into

the aforementioned setup. Instead of estimating the hypothesis directly, the train-

ing algorithm tries to minimize the loss using an optimization algorithm (e.g.

Gradient Descent mentioned in section 2.2.3). Once the loss is minimized, the hy-

pothesis that was used to calculate this loss is considered as a good approximation

of input-output mappings.
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Classification: One of the most discussed problem in machine learning is that

of Classification. Given a dataset where each data point belong to a particular

class, machine learning is applied to correctly classify the data points in their

respective classes. Each of these classes can be represented by a numerical label

(0,1,2 etc.). When there are a total of two classes, the machine learning classifier

is called a binary classifier.

A larger part of machine learning is to be able to express a given problem in

stages of estimation and generalization, and to make design choices that find the

best input to output mapping.

Equipped with the knowledge of its ingredients, different machine learning for-

mulations can now be observed in the following sections.

2.3.2 The Perceptron

The Perceptron’s training algorithm an its vectorial representation detailed in this

chapter are inspired from video lectures 5 and 6 by Professor Kilian Weinberger

(2018, [49]).

The Perceptron is a machine learning algorithm developed at the University

of Cornell by Frank Rosenblatt in the late 1950s. Perceptron was an ingenious

classification algorithm that could classify data points in a binary setting, i.e. with

two class labels(+1,-1).

Perceptron can be expressed using the constructs described in section 2.3.1.

Amongst other available classes of hypothesis, the Perceptron uses the class of

linear hypothesis. A linear hypothesis defines a linear mapping between the

inputs and their corresponding labels(outputs). Mathematically, the Perceptron’s

hypothesis can be expressed as follows:

H(x;W, b) = Wx+ b (2.31)
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The above equation can be read as: ’H’ is a function of x and is parameterized

by ’w’ and ’b’.

For a geometric intuition, one can imagine that the datapoints of the two classes

are plotted on a graph of matching dimensions. Here dimensions represent the

number of values/features each data point has and not the total number of train-

ing examples. Once all the available training data points are plotted, the Per-

ceptron tries to find a boundary that separates the two planes. Since Perceptron

chooses a linear hypothesis, this boundary would be linear. This linear boundary

is called a separating hyperplane.

An algebraic intuition of this hyperplane can be developed using the concepts

from Linear Algebra section 2.2.1. The algorithm estimates a vector ’w’ that

is orthogonal (or perpendicular) to the plane that represents a linear separation

between the two classes. The term Wx is actually a dot product of the weight

vector W and input vector ’x’, and hence gives a sense of the orientation of the

input vector x with respect to vector w. According to Perceptron’s algorithm, all

points lying on the side of hyperplane where vector ’w’ points, are classified as

y = +1 and vice versa as shown in figure 2.4(a). The vector b is an offset required

to provide flexibility to move this hyperplane around. Absence of b, would mean

that the learned hyperplane must always pass through the origin. This hyperplane

can be visualized as an infinitely extending geometric object in all directions. For

a 2 dimensional space, the hyperplane would be a 1 dimensional space which

represents a line as shown in figure 2.4(a). In general, an n-dimensional data

space would have an n-1 dimensional hyperplane.

Output label: Since Perceptron is a binary classifier, all the input data points

should map to either of these labels. The output label ’y’ could either be +1 or
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−1. Given an input x, its corresponding predicted label ŷ will be calculated as

follows:

ŷ = sign(H(x;w, b)) = sign(wx+ b) (2.32)

The ’sign’ in the above equation refers to the actual mathematical sign of the

computation.

Interpreting the output: If the value of Wx + b is positive, the input ’x’

will be classified as class +1 and as −1 otherwise. Thus, if the algorithm correctly

classifies an input, then the product of the actual output label y and the predicted

output label(ŷ) calculated by sign(Wx + b) must be greater than zero. This is

because, if the input corresponding to class label y = −1 is correctly classified,

then the sign(Wx + b) must be −ve for this classification to happen, and the

product of two negatives is a positive. The same can be argued for y = +1 case.

Therefore, for every correct classification, the value (y)(sign(Wx + b)) must be

greater than zero. Similarly, If a datapoint is misclassified then the product

(y)(sign(Wx+ b)) must be less than zero.

Training Algorithm: Perceptron’s hypothesis is a linear hyperplane. In

order to learn the correct hypothesis, the Perceptron must learn a hyperplane

that separates the two classes. Since this hyperplane is represented by vector ’w’

and an offset b, the training algorithm attempts at learning ’w’ and ’b’ which

reduces the training error. The algorithm to learn W and b is as follows:

1. Set w = 0 , b = 0, misclassification counter; m = 0.

2. Iterate (loop) over all examples.

3. In each iteration do the following

a) Calculate the product (y)(sign(Wx+ b))
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i. If (y)(sign(Wx+ b)) ≤ 0, then example x is misclassified. W and b

must be adjusted as follows to correctly classify the example x.

A. W = w + yx and b = b+ y

B. increment misclassification counter by 1; m = m+ 1

C. go to next training example

ii. If (y)(sign(Wx+ b)) > 0, then example is correctly classified.

A. W and b need no adjustment for this training example, go to

the next training example.

b) Count the total number of misclassifications made in this run. Equals

to value of m.

i. if no error was made i.e. m = 0, then, the hyperplane is perfect.

Exit.

ii. if m > 0, use the learned hyperplane as starting value (for w and b)

and loop over entire dataset again.

The step of updating the vector W can be intuitively understood as adjusting

the hyperplane so that the new linear boundary correctly classifies the current

training example (or datapoint). This is done by adding the vector y.x to vector

’w’. If the correct label of the point x was −1, then the updated hyperplane vector

would be w− x, thus shifting the linear boundary to incorporate the point in y =

-1 space, this is shown in figure 2.5(c) and (d). When x belongs to 1, the new ’w’

becomes w + x as shown in figure 2.5(a) and (b).

If the input datapoint has n features, then x and W are n × 1 dimensional

vectors. For a binary classifier, y is always a 2×1 dimensional vector.

Once the correct ’w’ and b are learned, the Perceptron algorithm can also be

visualized as a linear transformation of an input vector x by a vector ’w’ to a

vector y. Thus, the hypothesis H(x;w, b) learns a linear mapping (explained in
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Figure 2.4: The Perceptron: a) Perceptron learns a linear boundary(blue line) between
two classes of label ’0’ and ’1’. The vector ’w’ is orthogonal to that lin-
ear boundary(hyperplane). b) The XOR-DataSet: Since no ’single’ linear
boundary exists, the Perceptron fails to classify the samples correctly. c)
MLP - Multilayer Perceptron: A handcrafted two layer Perceptron with 1
hidden and 1 input layer is capable of learning two linear boundaries and
hence correctly classifies the XOR dataset. Neural Networks can learn these
boundaries themselves using backpropagation.

section 2.2.1) between the input and the output vector and thus belongs to the

class of linear classifiers.

The end of Perceptron: The Perceptron claims that it can learn a hyperplane

that separates the two classes provided such a linear hyperplane exists. Percep-

tron instantly became successful, and was thought of as an impeccable discovery in

the field of AI. A book named Perceptron [30] in the praise of this work was writ-

ten that also mentioned that Perceptron can do great things but cannot learn a

decision boundary between outputs of simple XOR function shown in figure 2.4(b).

This is because the XOR function is not linearly separable. Perceptron’s inability

to estimate such a basic XOR function decreased its popularity, and led to a long

period of its dormancy. Attempts at handcrafting Perceptron to specifically learn
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Figure 2.5: Perceptron’s Training Algorithm: All points in direction of W are classified
as 1. a) A point x of label y=1 is on the wrong side of the hyperplane and
hence misclassified. b) w is updated as w + yx, since y is +1, the resulting
vector is w + x, and can successfully classify the point. c) A point x of label
y = -1 is misclassified. d) Since y is -1, w + yx becomes w - x, and now
point x is on the correct side of the hyperplane.

the XOR dataset were able to learn two separate linear boundaries(shown in figure

2.4(c) ), but this solution was of little importance as handcrafting features for a

problem is a non-trivial task. This inability of the the Perceptron was resolved by

neural networks 2.3.5.

Susceptibility to Outliers: Outliers are datapoints that belong to class A but

reside in the space of class B. This is a common problem when dealing with noisy

data. Perceptron’s algorithm will not stop until there is even a single misclassified

point. Thus, it is not good at handling of outliers in dataset.

Interpreting the Output: Apart from the inability to learn a non-linear

boundary, Perceptron’s classification output was also critiqued. It was argued that

in most practical scenarios, a simple Yes/No prediction is not the best choice. For

e.g. if the weather forecasting app needs to predict two classes as rain or no-rain,
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then it is better if the user gets a probabilistic estimate about the application’s

belief of raining that day. A desired output would be - there is a 60% chance that

it will rain today as opposed to It will rain today.

Despite its shortcomings, Perceptron established firm grounds for modern day

machine learning algorithms, especially for Neural Networks.

2.3.3 Feature Transformation

The intuitions presented in this chapter are derived from chapter 4 from the video

lecture series by professor Leslie Kaelbling (2020, [21]).

Features refer to the different values of a single data example. They play an impor-

tant role in formulating a machine learning problem. The last section concluded

that Perceptron can find a hyperplane that linearly separates the data; if such a

hyperplane exist. In practice, it is hard to find a dataset that can be linearly sep-

arated. However, feature transformation can be applied to solve this problem. It

is claimed that a given dataset in d dimensions, can be represented in some higher

d + k dimensions, and in this higher dimension there exists a linear hyperplane

that successfully separates the data. This transformation is applied to a function

that operates on every feature, and thus transforms the entire example , and

consecutively, the entire dataset to a higher dimensional space.

Figure 2.6 (a) A classification problem in one dimension. The two classes ’green’

and ’red’ are linearly inseparable in their original forms. A transformation to

higher dimension space is thus needed to separate them linearly. The transforma-

tion is encoded using a function φ . The function ’phi’ takes a one dimensional

input ’x’ and transforms it into a two dimensional space by calculating (x, x2)

. The new space is called a transformed feature space. In this transformed

space, it is now possible to linearly separate the two classes, as shown in figure

2.6(b).
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Figure 2.6: Transforming Feature Space: a) Shows a binary classification problem in 1
dimension. Data points of two classes blue and green, cannot be linearly
separated. b) A feature transformation function ϕ maps the 1-dimensional
space to a 2-dimensional feature space. A linear separator (blue line) now
exists in this transformed space.

Finding such representations of data is essential and is studied under a facet

of machine learning called Feature Engineering (earlier introduced as represen-

tational learning in section 2.1.2). Feature engineering encompasses many other

tasks like making design choices about numerical representation of data or com-

bining several features to create new features and becomes complex with the

increasing dimensions of data. Many modern day Machine Learning algorithms

derive their accuracy from accurate feature engineering done by domain experts.

Deep Learning reduces the dependency on feature engineering with the help of

Neural Networks (explained in section 2.3.5). In order to understand the work-

ing of a Neural Network, it is imperative to understand the algorithm of Logistic

Regression introduced in the upcoming section.
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2.3.4 Logistic Regression

This section utilizes the chapter 5 from the video lecture series by professor Leslie

Kaelbling (2020, [21]).

Logistic Regression is another linear classification algorithm from the literature of

statistical analysis. Like Perceptron (explained in section 2.3.2), Logistic Regres-

sion is also a linear classifier, however, its approach to find the linear hyperplane

and the interpretation of its prediction makes it a better choice than the Percep-

tron.

Hypothesis: Similar to Perceptron, the hypothesis of logistic regression is also

parameterized by ’w’ and b and equals wx + b. As explained in the previous

section, once the Perceptron calculates this quantity, it checks for the sign of the

result, and predicts the label based on this sign. Logistic Regression on the other

hand, computes the sigmoid of this term, the predicted output label ’ŷ’ is thus

given as:

ŷ = Sigmoid(H(x;w, b)) (2.33)

The Sigmoid function is defined as follows:

σ(wx+ b) =
1

1 + 1
e(wx+b)

(2.34)

For any given input, the sigmoid function outputs a value between 0 and 1. The

benefit of such a transformation is that it can be interpreted as a probability.

Figure 2.7 shows the ’S’ shaped graph of the sigmoid function. Notice that for

any highly negative or highly positive value of ’z’ the function outputs 0 and

1 respectively, thus mapping all inputs to outputs in range 0 and 1. Further,

the function transitions at value 0.5, this value can be used as a threshold for

classification such that if ŷ = σ(wx + b) is greater than 0.5, the input x belongs
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to class label 1 and to class label 0 otherwise. This idea can be represented as

follows:

ŷ =

1, if σ(H(x;w, b)) ≥ 0.5

0, if σ(H(x;w, b)) < 0.5

(2.35)

Figure 2.7: Sigmoid: The ’S’ shaped Sigmoid function has two horizontal asymptotes at
1 and 0. its value at x = 0 is 0.5 and is used as a threshold for classification.
Source: https://towardsdatascience.com/derivative-of-the-sigmoid-function-
536880cf918e

Interpreting the output: The output of sigmoid is interpreted as the prob-

ability of the input belonging to a particular class (mostly to class 1). For e.g.

if the output of σ(wx + b) is 0.7, then the logistic classifier is 70% sure that the

example x belongs to class 1. Since 0.7 is greater than the threshold value of 0.5,

the classifier assigns the label (ŷ) ’1’ to input x. Similarly, if the output value

is 0.1, then the classifier is only 10% sure that the example x belongs to class 1.

Since being 10% sure is not enough (threshold is 50%), the input x is assigned to

class 0. In order to calculate the probability of x belonging to class 0, the output
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probability is subtracted from 1. This is because the sum of all probabilities must

be equal to 1(explained in 2.2.2). Therefore, when the classifier outputs 0.1, the

probability of x belonging to class 0 is 0.9 (1 − 0.1), hence the classifier is 90%

sure that the input example x belongs to class 0. Extending this probabilistic in-

tuition, the Logistic Regression classifier can be seen as an algorithm that assigns

a probability to each data point. This probability can be represented as :

P (xi) =

σ(H(xi;w, b)), if actual y = 1

1− σ(H(xi;w, b)), if actual y = 0

(2.36)

Since σ(wx + b) is equal to the predicted label (ŷ), the above equation can be

written as:

P (xi) =

ŷi, if actual y = 1

1− ŷi, if actual y = 0

(2.37)

The above equation has two if statements, that can be combined into a single

statement as follows:

P (xi) = (ŷi)
yi(1− ŷi)

(1−yi) (2.38)

Since, the logistic classifier assigns these probabilities independently to every

input datapoint, the joint probability of all the datapoints (P(D)) can be repre-

sented as the product of their individual probabilities as shown below:

P (D) =
n∏

i=1

(ŷi)
yi(1− ŷi)

(1−yi) (2.39)

Since probabilities lie between the interval 0 and 1, product of a lot of probabilities

can be difficult to handle as the resulting value can be very small. To avoid this,

a common trick of taking the log of the product term is used as it converts this
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product into a sum. Taking log of the above equation results in the following

equation.

P (D) =
n∑

i=1

(yilog(ŷi) + (1− yi)(1− log(ŷi)) (2.40)

In order for the classification to be correct, it is desired that the assigned proba-

bility to each datapoint be as high as possible (at least greater than 0.5). Thus,

the intention is to maximize the probability P(D). Further, ŷ depends on the

hypothesis, which in turn is parameterized by parameters ’w’ and ’b’. Therefore,

maximizing the probability P(D) can be formulated as a Maximum Likelihood

Estimation or MLE(explained in section 2.2.2.2) problem, where P(D) is param-

eterized by ’w’ and ’b’. Taking the form of MLE described in equation 2.25, MLE

of P(D) can be written as.

MLE : w, b = argmax(w,b)P(w,b)(Data) (2.41)

The above equation provides an answer to the question - What is the value of

parameter ’w’ and ’b’ for which the value P(D) is maximum? Using the concepts

described in 2.2.2.2, in order to calculate MLE, the partial derivative of P(D)

w.r.t to ’w’ and ’b’ is set to zero and the resulting ’w’ and ’b’ correspond to the

maximum value for P(D).

Loss Function : As described in section 2.3.1, the notion of a loss function is

that it evaluates the performance of a machine learning algorithm. Loss function

represents the loss and hence its desired value is zero. If the logistic classifier

correctly classifies all the training examples, the P(D) should be high and loss

should be low. Thus, maximizing the P(D) can also be formulated as minimizing

the loss. Minimizing a given function is same as maximizing it after multiplying
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by ’−1’. Using this idea, the definition of P(D) in equation 2.40 is multiplied by
′ − 1′ to generate a loss function.

Loss(ŷi, yi) = (−1)
n∑

i=1

(yilog(ŷi) + (1− yi)(1− log(ŷi)) (2.42)

Intuitively, the loss function takes as input the predicted value and the actual value,

and calculates the loss (or error) using the equation 2.42. This loss function of

logistic classifier has multiple names viz; log loss, negative log-likelihood loss

function and cross entropy.

Training Algorithm: Logistic Regression formulates the machine learning

problem as an optimization problem. Optimization problem is the class of

problems that have multiple possible solution and the goal of optimization problem

is to find one of them (explained in section 2.2.3). In the case of logistic classifier,

the optimization problem is formulated as minimizing the loss function. The

value of ’w’ and ’b’ corresponding to the smallest value of this loss function is

considered as the solution.

The minimum value of loss function is calculated using Gradient De-

scent(explained in section 2.2.3). It is possible to use gradient descent on logistic

regression because the sigmoid function is differentiable and the resulting loss

function is convex in nature. Since convex functions have only one minimum

value, applying gradient descent results in a sufficiently optimal value of parame-

ters ’w’ and ’b’.

Logistic Regression establishes statistical bridge to machine learning and ex-

ploits probabilistic techniques to formulate machine learning as an optimization

problem. This introduces possibilities of applying various kinds of optimization

algorithms to find better solutions for more complex problems. Despite being a re-

liable classifier and offering easy extensibility to multi class classification, logistic

regression is still a linear classifier and hence only works if data is linearly separa-

52



ble. The next section introduces Neural Networks which are capable of classifying

linearly inseparable data.

2.3.5 Artificial Neural Networks: ANN

The ideas presented in this section are combined from video lectures of Professor

Kilian Weinberger (2018, [49]) and from chapter 9 of the video lecture series by

professor Leslie Kaelbling (2020, [21]).

Artificial Neural Networks (or Neural Networks) are capable to learn non-linear

decision boundaries, hence are different from their linear predecessors. In order

to visualize the network part of neural network, it is imperative to visualize Per-

ceptron and Logistic Regression Classifier(LRC) as shown in the figure 2.8. Both

of them take vectors of ’x’ and ’w’ as inputs, and compute sum of the products of

their individual elements (same as taking a dot product of vector x and vector w),

the result of this computation is then passed to either a sigmoid function (LRC

in figure 2.8(b)) or a sign function (Perceptron in figure 2.8(a)) to compute the

final output. Assuming logistic regression as a single unit of composition, a neural

network can then be considered as many such units stacked on top of each other

forming a single layer of the neural network. When multiple layers are stacked

adjacent to each other, a network of layers is created .

Neuron: Each unit of composition of a Neural Network is called a neuron,

and is called so after the biological neuron of the mammalian neural network.

Researchers claim the biological neural network as the source of inspiration for

designing the Artificial Neural Networks (or ANN); hence the name. Each neuron

first calculates a dot product of input ’x’ and weight vector ’w’ in order to generate

an output variable ’z’. The output of a single neuron ’z’ then passes through

an activation function ’f’ to calculated the activated output ’a’. A detailed

view of neuron is shown in figure 2.9. If Logistic Regression Classifier is used

as a neuron, then the activation function used in the neural network would be
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Figure 2.8: a) The Perceptron visualized as a neuron with a linear activation function.
The sign function (or step function) is nither differentiable nor linear, hence
cannot be an activation function for a neural network. b) Logistic regression
classifier represents a single neuron of a neural network. The sigmoid activa-
tion function is non-linear and differentiable, making it a suitable choice for
neural network’s activation function. Both a) and b) have the offset scalar ’b’
as input, this is a common practice to include ’b’ as an input corresponding
to ’w’ value = 1.

the sigmoid function. Further, the activation function must be non-linear and

differentiable. The requirement of being non-linear conforms that it brings the

desired non-linearity to the neural network. Differentiability of the activation

function ensures that gradient descent (detailed in section 2.2.3) can be applied

to minimize the loss of the neural network.

Layers: The input and output are generally called as input and output layers,

and all the layers in between them are called the hidden layers. Figure 2.10

shows the operations of the first hidden layer, i.e. the layer with data example

as input. Considering a data example has ’m’ features/dimensions, it can be

represented as a m × 1 dimensional vector. Corresponding to each neuron, each

feature of the input has an associated ’w’ value (known as its weight), which is a

54



Figure 2.9: Generalized representation of a single neuron of a neural network. For an
’m’ dimensional input vector, the neuron calculates a dot product of input
vector with the associated weight vectors to generate a pre-activation output
’z’, which is then passed through an activation function ’f’ to calculate the
activation of a neuron.

m× 1 dimensional vector. If the hidden layer has ’n’ neurons, then all the m× 1

dimensional ’w’ vectors can be stacked adjacent to each other resulting in an m×n

dimensional matrix ’W’.

Each neuron first calculates the linear transformation ’z’ of its input, which

is used to calculate the activation ’a’ of the neuron. The activations of all ’n’

neuron in a layer ’l’ are stacked together in an n× 1 dimensional vector ’A’. The

hypothesis of each neuron is wx+b, where ’b’ is scalar value representing the offset.

Stacking all these scalar values across ’n’ neurons, result in a n × 1 dimensional

vector ’B’. Thus the final dimensions of a layer ’l’ with m inputs and n neurons

are as follows:

• Input vector Xl : m× 1

• Weight matrix Wl : m× n
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Figure 2.10: a) Shows a single of a neural network. The input is a datapoint of ’m’
features. Each feature has an associated weight ’w’. All inputs and their
corresponding ’w’ values are vectorized into matrices X and W respectively.
The pre-activation output Z is thus calculated by a matrix -vector multi-
plication follows by addition of intercept vector B. Final activations of all
neurons are stored in vector A, which is calculated by applying the activa-
tion function on each element of Z. b) Shows a simpler representation of
the same layer. Source(b): https://openlearninglibrary.mit.edu/

• Bias vector Bl : n× 1

• Linear computation vector Zl : n× 1

• Activation vector Al : n× 1

Supposing ’f’ represents an activation function acting on Z, the Activation vector

A can be represented as :

A = f(Z) = f(W tX +B) (2.43)

The above equation is a valid matrix multiplication and can be verified by exam-

ples of the same described in Linear Algebra section 2.2.1. The activation function

f, is applied on each element of the ’Z’ vector individually. The calculated ’A’ vec-
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tor becomes the input for the next layer of neural network, and depending on

how many neurons are present in that layer, the required dimensions of all ma-

trices and vectors can be calculated. When all inputs are connected to all units

(neurons) in a layer, the layer is called as a Fully Connected Layer. Further,

the flow of computation is from input layer to the output layer, i.e. the output

of layer ’l’ is the input of layer ’l+1’ and the output of layer ’l+1’ cannot be the

input of any previous layer ’l’. Because of this unidirectional flow of computation

in the forward (from first to last layer) direction, this neural network is called

as a Feed Forward neural network. Figure 2.11 shows all the layers of such a

neural network. A neural network which allows such a feedback is then called a

Recurrent Neural Network (RNN).

Figure 2.11: A Feed Forward neural network with two fully connected hidden layers. A0

is a common notation to represent the input data. A1 and A2 show the
activations of hidden layer 1 and 2 respectively. The arrows point from
left to right. Considering moving to the right as moving forward, the flow
of computations always flow in the forward direction i.e. A2 cannot be
an input to the first hidden layer. Source: https://cs231n.github.io/neural-
networks-1/
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Loss Function: Since each neuron in a layer has its own loss function (log loss

of LRC), the total loss of a layer is the sum of individual losses of its neurons.

Similarly, the loss of entire neural network is the combined loss of its layers. In

order to calculate the loss for a single training example, computations must be

done from leftmost to the rightmost layer. This computation is called as a forward

pass. A forward pass of an input xi calculates the corresponding predicted label

ŷi for that input. This predicted label is then used to calculate the loss for this

training example.

Training: Neural Networks are also trained using the basic principle of gradient

descent which is also used to train the Logistic Regression Classifier(LRC). In LRC,

the gradient (derivative) of a loss function w.r.t. a ’w’ value indicates how much

the ’w’ value affects the loss function, and gives an estimate on how should ’w’ be

changed so that this loss is minimized. In a Neural Network, the loss function is

calculated after a forward pass is done for an input. This loss function directly

depends on the weights associated with the last layer and indirectly to the weights

in all other layers. In order to optimize weights in all layers, their gradient w.r.t.

to the loss function must be calculated. The algorithm encompassing all these

gradient calculations of individual gradients is known as Back Propagation or

Error Back Propagation. Using the chain rule from calculus (2.2.3), back

propagation devises a strategy to find gradient of ’w’ values of each layer w.r.t

the loss function, this calculation reveals how the weights of each layer affect the

Loss function. Once all the gradients are calculated, a single step of gradient

descent for optimizing the neural network is taken. The calculation of gradients

starts from the last layer of the neural network and goes backwards till the first

layer. Since the flow of computation is backwards, and the algorithm can be

thought of as propagating the ’error’ or loss through the network, it is rightly

named as error back propagation. Figure 2.12 shows a back propagation using
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a simplistic notation of neural network. Sathyanarayana (2014, [45]) provides a

gentle introduction to backpropagation.

Figure 2.12: Back propagation in a neural network. Loss is calculated using a forward
pass. In order to know how much the weights of all layers need to be up-
dated, their gradient w.r.t. the loss must be calculated in a backward pass.
Adapted from source: https://openlearninglibrary.mit.edu/courses/course-
v1:MITx+6.036+1T2019/course/

Multi Class classification: Often Neural Networks employed for classification

tasks, perform their inference on multiple classes as opposed to two in the case

of a binary classifier. Logistic regression is extensible in binary case by using

One-versus-All method, which splits the multi-class classification problem into

subsets of binary classification problems. In a multi-class case, the output of

the neural network must give probability estimates of all the classes. The input

example is then classified as the class with highest probability. Therefore, for ’m’

different classes, the output layer must have ’m’ neurons. Further, the sum of all

output probabilities must be 1 for each input. Such an output can be achieved by

using a softmax function [33]. Softmax is an activation function that takes the
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pre-activation output (z) of the last hidden layer (also called logits )and assigns

probabilities to each value of the vector such that their sum is 1.

Choice of Activation Functions: Sigmoid was the initial choice to train the

hidden layer of Neural Networks, until another activation function named Recti-

fied Linear Unit or ’ReLU’ was introduced. ’ReLU’ provides faster convergence

(finding a minima) which made it an industry standard and the most preferred

activation function. Sigmoid, however is still required in the output layer of a

binary classifier. Nwankpa et al. (2018, [33]) compares contemporary activation

functions and provide an analysis of their adoption in Deep Learning applications.

Neural Networks are Universal Approximators: A mathematical con-

struct is said to be universal estimator if it can approximate any function in the

universe. Approximation of a function f(x) can be defined in terms of its approx-

imated function g(x) and a very small value ϵ as follows:

f(x)− g(x) = ϵ (2.44)

The above equation entails that the difference between the true function f(x)

and its approximation g(x) must be a very small insignificant value ϵ, which means

that the approximated function is similar to the true function.

Neural Network can approximate any function. Cybenko(1989, [6]) provide the-

oretical intuitions and prove that Artificial Neural Networks are indeed universal

approximators. While this theoretical proof holds, finding a good approximation

in practice is still a challenging problem. Increasing neurons and adding more

layers are common practices to improve these approximations, however such al-

terations can also introduce new problems. The features of a neural network such

as the number of neurons in a layer, number of total layers, and the step-size of

gradient descent algorithm etc., are known as Hyperparameters. The process

of finding the right value for each hyperparameter is called as Hyperparameter

Tuning.
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Being universal approximators, Neural Networks can learn any complex non-

linear function. One way of visualizing the learned non-linear function is as a

combination of specific parts of all the functions learned in each hidden layer

of the neural network. Thus, the computations and boundaries learned in the

first hidden layer, are reused to perform new computations and learn complex

boundaries using the previous layers as building blocks. This composition of

simpler representations into complex ones is referred to as the Representational

Composeability by Deep Learning in section 2.1.2.

There are many flavours of Artificial Neural Network that are adapted to suit

the domain they are applied to. One of such domains is that of image analysis

for which a particular Neural Network is crafted and is called the Convolutional

Neural Network (or CNN). The upcoming section is dedicated to CNN.

2.3.6 Convolutional Neural Network: CNN

This section is largely adapted from chapter 9 of the video lecture series by Pro-

fessor Leslie Kaelbling (2020, [21]).

Convolutional Neural Networks (CNN) are amongst the most successful variants

of Neural Networks and they are specifically designed to perform on image pro-

cessing tasks. The word Convolutional is indicative of the convolution operation

that is the first operation performed on an image fed to a CNN. A black and

white (also known as greyscale image) image is represented as a matrix of pixels,

with each pixel value depicting a shade of grey using a range of values between 0

(white) and 255 (black). A coloured image (also known as RGB image) generally

has three such matrices corresponding to a similar scale of Red, Green and Blue.

Such an image is said to have three channels. For ease of discussion, a greyscale

image is a good reference as the same intuitions can be easily extended to coloured

images.
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Convolution Operation: A convolution operation in its essence is similar to

a dot product in many ways. The convolution operation is done between a vector

of pixel values from a sub-section of the image and the vector of elements of an

object called a filter. To provide a simpler visualization, let us consider a one

dimensional image which is represented by a vector of pixels whose values could

be either ’0’ or ’1’, such an image is shown in figure 2.13. The figure 2.13 shows

a convolution operation across all the pixels of the 1-Dimensional image using a

filter of length 3. The filter takes a dot product with pixel vectors and spans

across the entire image while doing so. The resulting image vector is show in

figure 2.13(c). The convolution operation is a linear operation and is followed by

a transformation by using the Rectified Linear Unit function or ReLU (figure

2.13(d)). ReLU is an activation function that outputs the max(0, input). Thus

if the input to the ReLU function is a negative value, it outputs 0, otherwise, it

outputs the input.

Filter as a Feature Detector: The filter used in figure 2.13 consists of three

values [−1,+1,−1]. When the filter is moved across the image, its each step can

be visualized as evaluating the neighbourhood of a single pixel by centering the

filter on that particular pixel. The result of a convolution operation using this

particular filter would be equal to 1 only when the pixel vector is equal to [0, 1, 0],

i.e. the neighbours of the central pixel are zero. Thus, the filter is specifically

looking for isolated pixels in a given image, i.e. pixels whose neighbours do not

have any image content. The convolved image vector is then passed through the

ReLU function which only outputs values that are greater than zero (i.e. all 1

values of this example) which is indicative of filter’s findings. Similarly, different

filters can be used to find other kinds of features in an image such as presence

of an edge (left edge or right edge) etc.

Two dimensional Images: A 2-D image works well with a 2-D filter. Figure

2.14 shows convolution of a 2-D image by a 2-D filter. Every single operation can
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Figure 2.13: Convolution operation using a 1-D filter on a 1-D image: a) First
Convolution operation: Shows the starting position of the filter. Ev-
ery operation calculates the dot product between the filter vector and
the pixel vector(shown in blue). b) Convolution operation on the sec-
ond position: The filter now moves right by one pixel and convolves
over this set of pixels.c) The last convolution operation. The origi-
nal image now has a new representation after the convolution operation.
d) ReLU of the convolved image. ReLU outputs max(0, pixel-value)
Adapted from source: https://openlearninglibrary.mit.edu/courses/course-
v1:MITx+6.036+1T2019/course/

now be considered as a dot product of the filter and pixel matrices. The final

image in figure 2.14(d) shows the resulting convolved image. It is evident that the

final image has lesser dimensions (3 × 3) than the original image (5 × 5). Such

a reduction is undesirable because a CNN has more than one convolutional layer

and a subsequent reduction in each layer can cause the final image to be very small.

To resolve this shrinking problem, a technique called padding is applied. Figure

2.15 shows a padded version of the input image from figure 2.14, the image from

2.14 is extended by adding pixels of value ’zero’. Such a padding with zero-valued

pixels is known as zero-padding. Due to this padding, the final convolved image

now has the same dimensions as the original image. Similar to the 1-D example,
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Figure 2.14: Convolution operation using a 2-D filter on a 2-D image: a) First Con-
volution operation: Shows the starting position of the filter. Every oper-
ation calculates the dot product between the filter matrix and the pixel
matrix (shown in blue). b) Second Convolution operation: The filter now
moves right by one row and convolves over this set of pixels.c) Last con-
volution operation. d) The final representation of the convolved image.
Adapted from source: https://openlearninglibrary.mit.edu/courses/course-
v1:MITx+6.036+1T2019/course/

a ReLU operation is applied to the final convolved image but is not shown in the

figure.

Pooling Layer: The features extracted by the convolution filter are detected

relative to their original location in the image, i.e the detected feature’s position in

the convolved vector would change according to its corresponding position in the

image. Thus if the object of interest is slightly moved, its convoluted vector will

also be different. This entails that the convolution operation is susceptible to slight

modification(s) in the location of the input feature. This property is undesirable

because an object can have two images and in one of the images the object could

be slightly shifted to the right/left. In such a scenario, it is desirable that a single

convolution filter (that detects features of the given object) should be able to detect
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Figure 2.15: Convolution operation on a padded image: a) Shows the im-
age from figure 2.14 after zero padding. b) Shows the addi-
tional values added in the previously calculated convoluted value.
Adapted from source: https://openlearninglibrary.mit.edu/courses/course-
v1:MITx+6.036+1T2019/course/

the object’s features in both images. The ability of a network to handle such a

slight shift is called as Translational Invariance. Pooling layers are introduced

to make CNN translation invariant. One variant of pooling layer is called as max-

pooling layer, where a 2D filter is grazed across the convoluted (and ReLU’ed)

output and the max-pooling operation outputs the maximum pixel value in the

corresponding pixel matrix. Pooling aims at reducing the spatial (height and

width) dimensions of the convoluted output. This is done by summarizing the

neighbourhood (e.g. by taking max or average) of each value in the convoluted

output, and thus slight variations in the input image do not affect the final output

obtained after pooling operation.

Once several convolutions and pooling operations are performed, the resulting

image representation is of lower dimensions but has the granularity of complex

features as opposed to that of independent pixels in the input image. Each convo-

65



Figure 2.16: A CNN with all layers. The CNN has two sets of Convolution, ReLU
and Pooling layers. These two sets represent the feature extraction
process. The fully connected layer is later used for classification and
takes the flattened (unrolling a matrix into a vector) output of last pool-
ing layer as input. Source: https://www.mathworks.com/solutions/deep-
learning/convolutional-neural-network.html

lution, ReLU and pooling operation can be understood as extracting features from

the image, whose complexity increases as more layers are added. A visual repre-

sentation of this idea can be seen in image 2.1. Thus, the resulting representation

of an input image is composed of simple but meaningful features present in the

image. Hence, CNN (Deep Learning) provides representational composeabil-

ity(explained in section 2.1.2).

Fully Connected Layer: Once the features are represented, a fully connected

layer (explained in section 2.3.5) is implemented and the learned features are

used as input to this layer. The fully connected layer is simply the vanilla neural

network explained in section 2.3.5. For a multi class classification problem, a

softmax function is to be used in the last layer of the CNN. Similarly, for a binary

classification a sigmoid function would suffice.
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Parameters: The CNN uses the same underlying training algorithm of gradient

descent and back propagation. There are many handcrafted feature detectors

(another name for convolution filters) such as line or edge detectors but the main

aim of CNN is to learn the filters required for a specific problem during training.

Thus, apart from the weights of the fully connected layer, the CNN also learns

the filters used in the convolutional operation. The size of the filter however is a

design choice and cannot be learned.

Figure 2.16 shows an example of a CNN with two sets of convolution (followed

by ReLU) and pooling layers. After the feature extraction stage, a fully con-

nected layer of neural network is used to perform classification. The output of

classification is interpreted using a softmax function (multi-class classifier).

Absence of CNN would mean directly feeding an input image to a fully connected

layer, this might work in theory but would be extremely expensive to train. This is

because for a simple image of 640×480 resolution, a total of 307200 (corresponding

to each pixel input) weights in the first layer would be required. CNN on the other

hand convolve over the raw inputs using a k× k filter. A common choice of k is 3,

hence only a total of 9 weights are to be learned for the first layer as opposed to

307200 in the case of a classical Neural Networks. This reduction in training cost

has further added to the popularity of CNN.

Both ANN and CNN are designed to work on data that resides in a eucledian

space. In other words, for data that can be faithfully (without loss of information)

represented in a coordinate system of choice, ANN and CNN provide efficient

mechanism to solve any objective function. However, many real world entities

and their interactions cannot be represented faithfully in any eucledian coordinate

system. Such entities are said to exist in a non-eucledian space. Graph Neural

Networks or GNN are specially crafted neural networks that can work on such

non-eucledian data without the need of a lossy eucledian representation. The
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following section uses the concepts of ANN and CNN to build an understanding

about Graph Neural Networks.

2.3.7 Graph Neural Networks

The presented ideas around Graph Neural Networks are collated from lecture 8 of

video lecture series presented at Stanford University(2019, [20]).

Graphs are an abstract data structure that can be used to model almost any real

world entity/situation. A graph structure consists of nodes and edges. Nodes

in a graph are usually representative of entities and edges signify connections

between such entities. A single node can be connected to more than one nodes

and the connected nodes are referred to as the neighbours of the node in question.

Figure 2.17(a) shows structure of a basic graph. To visualize representation of a

real world application by graphs, one can imagine the inner workings of a social

networking platform on which a user is connected to other users through a notion of

connection (for e.g. through sending connection requests etc.). Such a relationship

(connections) between two entities (users) can be modelled with graphs, where

nodes of a graph are different users and edges emerging from a user connect her

with other users of choice. Connections could be of many types, for e.g. user

’1’ follows user ’2’, or user ’1’ is friends with user ’2’ etc. Such information

about connections can be encoded in the edges of the graph. Once such a graph

structure is created, graph specific algorithms can be applied to learn the nature

(the target problem defines this nature) of a particular user based on the type of

users it is connected with or more specifically, its neighbours.

Graph represents Non-Euclidean space: The graph structure explained

above, inherently exists in a 3-Dimensional setting where there is no notion of a

coordinate system. The above example of a graph representing a social network

cannot be faithfully represented using a defined eucledian coordinate system.

Any attempts at such representations will result in a lossy representation at a
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Figure 2.17: Graphs and Neighbourhood Aggregation : a) An arbitrary graph with 6
nodes (A-F) connected with edges. b) Node A is the target node selected
for this example. c) Shows neighbourhood aggregation for node A. The
computation graph is created using the neighbourhood of A. Node B,C
and D are direct neighbours of A and hence are connected directly in the
computation graph. Nodes B,C and D further have their own computa-
tion graph where the node A is also an input.Image adapted from source:
http://web.stanford.edu/class/cs224w/slides/08-GNN.pdf

cost of losing the graph’s hidden structural information. It is therefore desired to

keep the graph structure as it is, and develop algorithms that makes use of hidden

information in these structures.

Graph Neural Networks: Graph Neural Networks (GNN) or Graph Convo-

lutional Network (GCN) can be understood as a generalization of neural networks

to graph data structures (Jie Zhou et al., 2019 [53]). Traditional neural networks

(and CNNs) are trained to work on eucledian data (e.g. 2D images), therefore to

treat graphs as they are, an extension of neural network to work on non-eucledian

structures is necessary. That is, given an input graph and its corresponding ground

truth, a GCN should learn to alter the input graph structure to match the ground

truth. Ground truth can be either a complete graph itself, or more specifically
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Figure 2.18: Graph Neural Networks : a) Deconstruction of computation graph of node
A (previously shown in figure 2.17(c)). Each aggregation operation is fol-
lowed by a neural network composition to learn relevance of individual
contributions by neighbouring nodes. Layer-0 is analogous to input layer
of a traditional neural network and Layer-1 and Layer-2 are representative
of hidden layers. Layer-1 takes node vectors (input value of each node) as
input. b) Every node of the graph creates a computation graph and results
in a similar 2-Layer GCN. Analogous to a neural network weights across
each layer are shared amongst all computation graphs. Image adapted from
source: http://web.stanford.edu/class/cs224w/slides/08-GNN.pdf

could be a graph’s edge or node. Thus given an input graph, a trained GCN

can either predict a complete graph or predict values for edges and node features

which is also known as link prediction and node labelling respectively.

Convolutions in GCN: The idea of convolutions is particularly interesting

in GCNs, this is because, in a traditional CNN2.3.6, the convolution operation

refers to the process of scanning a 2D eucledian pixel space (arranged in 2D pixel

coordinate) with a filter/kernel. Each convolution operation represents multipli-

cation of kernel matrix and pixels matrix of similar dimensions. In terms of the

central pixel targeted by the convolution filter, the convolution operation can be

defined as an aggregation of the central pixel with its upper, lower, left and right
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neighbouring pixel. Thus convolution operation for a given central pixel takes into

account its immediate neighbours. In a graph structure, there is no idea of a co-

ordinate system, or the notion of up/down and left/right. Graphs operate on the

notion of neighbours and neighbourhood, consequently, the idea of convolution in

CNN cannot be directly applied to graphs.

Convolutions in GNN is realized for each node by collecting information from

its neighbours and creating a new representation for the node using some prede-

fined rule of aggregating this information. For e.g. one rule of aggregation could

be to take an average of the sum of information (assuming some vector encoding

node features) passed by a node’s neighbour to the node. This process is known

as message passing or neighbourhood aggregation. Figure 2.17(c) shows

neighbourhood aggregation for node A. The order of neighbourhood aggregation

defines a computation graph for each node. Each node has its own computa-

tional graph as shown in figure 2.18(b).

Neural Networks in GCN: While the rules of aggregation are pre-defined,

the magnitude by which each neighbour’s information is affecting the final rep-

resentation (such that it matches the ground truth) is difficult to approximate.

For e.g. if a node (with two neighbours) in an input graph does neighbourhood

aggregation to match values in some ground truth graph, it is possible that value

of one of its neighbouring nodes affects the output more than the other neigh-

bouring node. A weight can therefore be assigned corresponding to each node’s

value and the same can be learned using a fully-connected feed-forward neural

network (explained in section 2.3.5). Similarly, weights can also be assigned to

all edges and their target representation could be reached from the input graph

once such weights are learned. Figure 2.18(a) captures this intuition and shows

aggregation points and neural network for node A’s computation graph(shown in

figure 2.17(c)). Aggregation points can consist of functions like sum or average,

and the boxes represent fully connected neural networks of varying complexity.
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Figure 2.18(a) captures the notion of layers in a GCN. Each node’s computation

graph (figure 2.18(b)) has two hidden layers (layer 1 and 2) and one input layer

(layer 0). The weights across all corresponding layers are shared. Thus, layer-1

of computational graphs of all nodes share the same weights. Similarly, weights

across all the second layers (layer-2) are also shared.

Geometric Deep Learning: Graph neural networks are studied under the

recent field of Geometric Deep Learning. Graphs and their related concepts

are a part of a field called Graph Theory which is studied in both mathematics and

theoretical compute science. Geometric deep learning explores and exploits the

relationship between Deep Learning and Graph Theory using a family of neural

networks (GNN) that are designed to work on Non-Euclidean data.

Graphs are applicable in multiple domains and their generalization to neural

networks is a recent phenomenon. Geerts et al. (2020 [12]), Zonghan Wu et al.

(2020, [50]) and Jie Zhou et al. (2019 [53]) provide a comprehensive survey of

contemporary approaches in Graph Neural Networks.

All previous sections establish general principles of ANN, CNN and GNN. This

thesis presents an existing approach that applies these constructs to the field of

Computer Vision. The next section introduces Computer Vision and enables the

reader with the required vocabulary and concepts to understand the implemented

approach.

2.4 Specific Topics in Computer Vision

Computer Vision is often described as sub field of Artificial Intelligence. Its pur-

pose being extracting semantic information from images. It can also be described

as a related field of Computer Graphics. While Computer Graphics deals with

capturing the 3-Dimensional world on a 2-Dimensional image (both digital and

physical), computer visions employs techniques to derive semantic meaning from

these images. Example of typical tasks in Computer Vision could be object de-
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tection, image segmentation and reconstructing the 3D scene using a 2D image.

Object detection refers to the task of identifying and localizing a particular object

of interest in a given digital image. Identification answers the question of whether

the object is present in the image, whereas localization gives the location of the

object in a given image. In practice, the localization algorithm outputs coordi-

nates of a bounding box (a rectangle encompassing the object of interest). These

coordinates are represented in pixel coordinates of the image.

Pixel Coordinates: A digital image is a collection of pixels. In order to refer

a particular pixel in an image, a pixel-coordinate system is used. The origin of

this coordinate system is generally on the bottom left (when the image is viewed

from front).

The 3D World: The objects whose image is created using a digital camera are

mostly 3D in nature and exist in a real 3D world. This 3D world can be represented

by a 3D coordinate system. Given a 3D object, the process of a creating its 2D

digital image can be understood as a transformation of its 3D geometry (originally

referenced by a 3D world coordinate system) to a 2D pixel coordinate system.

Using the intuitions of matrices and vectors from Linear Algebra section (2.2.1),

a point on the real world object can be represented as a 3× 1 vector. The point’s

transformed location in the 2D pixel coordinate system is then a 2×1 dimensional

vector. Such a vector transformation can be encoded in a matrix that can perform

a series of desired transformations. Once such matrix is calculated for a given

setting, any arbitrary point in the 3D world can be successfully mapped to its

2D location in the image. Such a transformation is a result of a projection of 3D

world on a 2D image and is therefore called as a Projective Transformation.

The matrix used for encoding such a transformation is known as the camera

projection matrix and is commonly represented using the symbol (π).

Projective Transformation: A dimension of the 3D world is lost when it is

tricked into a 2D picture. The squares and circles amongst other planar objects
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loose their essence in the 2D representation of a 3D space. What maps such planar

objects to a picture is an instance of a Projective Transformation. Almost all geo-

metric properties of objects are lost when they undergo projective transformation.

For e.g. a circle becomes an ellipse, angles do not remain same and even the ratio

of distances is not preserved. What remains of these geometric objects is their

property of straightness. This preserved property becomes a general guideline for

projective transformation. Therefore, any mappings of the points of a given plane

is called its projective transformation if all the straight lines are preserved. i,e they

are still straight. These transformations are studied under the field of Projective

Geometry.

Why not Euclidean Geometry?: The classical euclidean geometry cannot be

used to study projective transformation. This is because Euclid’s lemma that two

parallel lines meet at infinity is inherently contradictory, as it is starkly opposed

by another, more convincing dictum, that ’infinity’ does not exist! Leaving no

room for such abstract ideas in science, researchers suggested a more formal way

of defining what infinity is in this context. A new geometric object or space

is created by extending the regular euclidean space. The two parallel lines are

now said to meet at what are called ’ideal points’, which lie in this extended

space. This extension of the euclidean space where this intersection happens is

called the Projective space. In essence, the claim is that the point in euclidean

space where parallel lines meet; the point at infinity, is now being represented

by the ideal point in projective space. In a 2D euclidean space, a point ’P’ is

represented by coordinates (x,y). In order to represent this point in the coordinates

of the projective space, a third coordinate is added to ’P’, and it becomes (x,y,1).

This is a convenient representation as the point(s) in projective space can be

converted to euclidean space by taking the first two coordinates of projective space

point represented by (x,y,1) and vice versa. However, this transformation is only

valid if the third coordinate of the projective space coordinate is 1. In scenarios
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where a projective space coordinate is represented by (x, y, k), the corresponding

eucledian point is calculated by first dividing all three values of projective space

point by ’k’. The resulting coordinates (x/k, y/k, 1) are then used to derive the

point’s eucledian counter part which is given by (x/k, y/k). Extending this idea

further, a set of points [(x, y, 1), (2x, 2y, 2) …(kx, ky, k)] lying in projective space,

represent a single point (x,y) in euclidean space. This is why these points are

called homogeneous coordinates of point (x,y). Intuitively, a point in 2D euclidean

space forms a line in its projective space. Thus, in the real world, two parallel lines

appear to meet at a distant point, but in their projected image this distant point

becomes a line. This section on eucledian and projective geometry is adapted from

Hartley and Zisserman’s Multiple View Geometry (chapter-1, [18]).

Intrinsic and Extrinsic Matrix: The transformation that the projection

matrix encodes from world to pixel coordinates, can be divided in two stages.

First, the real world 3D coordinate system is mapped to another a 3D coordinate

system called the camera coordinate system. A camera coordinate system has

its origin centered on the optical axis of the camera. The second transformation

maps all points in the camera coordinate system to the pixel coordinate of the

digital image. The matrix performing the second transformation depends on the

type of camera and its focal length etc. Since these properties are intrinsic to

the camera, the matrix encompassing them is called an Intrinsic Matrix. The

Extrinsic matrix transforms the world coordinates to the camera coordinates and

is called extrinsic because it only depends on factors which are external to camera

such as its pose and location in the chosen world coordinate. For additional details

on the projection matrix, David A. Forsyth and Jean Ponce’ Computer Vision: A

Modern Approach (1.2 & 1.3, [11]) can be referred.

The literature of Computer Vision details many native algorithms for extracting

semantic meaning from images. In the last decade, the advances in deep learning

have further empowered such algorithms by generalizing them to multiple use
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cases. Niall O’ Mahony et al.(2019, [26]) draws a comparison between classical

Computer Vision techniques and modern day Deep Learning aided Computer

Vision.

The upcoming section detail object detection algorithms that have arrived in

recent years by Deep Learning aided Computer Vision. It also establishes context

for the 3D object detection approach evaluated in this thesis.

2.5 Previous work

Most relevant to this thesis, is the object detection task of computer vision. Ob-

ject detection consists of both classification and localization of all objects in a

given image or a video frame. While classification assigns a class label to the

object, localization deals with identifying the location of the object by estimating

the coordinates (in pixel coordinates) of a box (square or rectangle) that contains

the detected object. These coordinates are estimated by a technique called Re-

gression, which uses the same ideology of predictive pipeline as classification, but

instead of predicting a class label, it predicts a continuous value. It uses the pixel

coordinates of labelled bounding boxes as the ground truth and predicts these

coordinates on unseen images. Regression uses a different loss function than a

classification algorithm. The most commonly used loss function in a regression al-

gorithm is known as the Mean Squared Error (or MSE) loss function. Stephane

Lathuiliere et al. (2020, [23]) explain and evaluate regression with modern day

neural network. A single CNN can be extended to do both classification and

regression simultaneously.

2D Bounding Box Detection: Modern day object detection resulting in a

two dimensional bounding box (square or rectangle) marks its beginning with R-

CNN (Ross Girshick et al., 2014 [14]). Girshick et al. ([14]) used classical signal

processing algorithms to generate region proposals that are cropped from the

input image. Each region proposal is then treated as a single image and goes
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through a CNN that extracts relevant features. These extracted features are

then used for classification using a Support Vector Machine(SVM) classifier.

SVM is a type of classification algorithm that is often used in combination with

CNN. Evgeniou and Pontil (2001, [9]) elaborate on both theory and application

of the support vector machine algorithm. The CNN in R-CNN is also trained

to regress the coordinates of the bounding box. Since the network works with

proposed regions, the ’R’ in R-CNN stands for ’Region’. R-CNN was compute

intensive due to a large number of region proposal per image (approx 2000). Over

several years, improvements to RCNN were proposed resulting in Fast-RCNN

(Ross Girshick, 2015 [13]) and Faster-RCNN (Shaoqing Ren et al., 2016 [43]).

The Faster-RCNN was further extended for the task of semantic segmentation

and pose estimation, the new architecture was called Mask-RCNN (K. He et

al., 2017 [19]). Semantic segmentation is the task of assigning a class label to

each pixel in the image and pose estimation is estimating the pose of an object by

detecting its joints (e.g. joints of human beings in the case of pedestrian detection).

Given an object of interest, Mask-RCNN can detect a set of object keypoints in

an image. These keypoints are also known as landmark points. Another approach

developed around the same time was that of You Only Look Once or YOLO

(Joseph Redmon et al., 2015 [42]) based detectors. YOLO does not extract region

proposals explicitly but divide the image in predefined grids (e.g. 7 × 7) and

then generate bounding boxes for each grid. YOLO performs object detection in

a single step as opposed to the two step process (Proposal + Detection) of the

R-CNN family. Zou et al.(2019, [54]) surveys the evolution of object detection

algorithms stemming from both classical and modern methods and presents a

comprehensive survey of last two decades.

The need for 3D detection: Estimation of every real world 3D object as a

rectangular box is inherently flawed, and it was argued that a 3D object must be

detected in its entirety and not just as a 2D bounding box. One way of doing such
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a 3D estimation is through hardware aided approaches of LIDAR (Light Detection

and Ranging), that can scan the 3D geometry of the object through sensors. Such

a scan results in a 3D representation of a 3D object through many points which are

collectively called as a point-cloud. Although LIDAR faithfully represents a 3D

object, but its hardware setup is costly and often not helpful for additional analysis

other than recognizing the 3D geometry of an object. Therefore, architectures

that could estimate 3D shape of an object from its 2D image without the need for

additional hardware were needed. 3D estimation from 2D: A 3D estimation of

a 2D object is an ill posed problem. This is because the 2D image is a projection of

a 3D object, therefore one dimension of the 3D object is lost. The lost dimension

is precisely the distance of each point on 3D object from the camera, this lost

distance is often referred to as the Depth(Lecture 2 & 3, [5]). Depth estimation

on monocular (a single instance of an image) images from RGB cameras has been

an active research area in computer vision.

The object of interest in this thesis is the vehicle class (car, vans, trucks etc.) of

road users. All these objects are rigid bodies and thus have a fixed 3D geometry.

This fact helps to model prior shape information that can be used to develop

constraints to estimate a 3D bounding box. Arsalan Mousavian et al. (2017,

[31]) exploits this geometric knowledge by first estimating a 2D bounding box and

regressing (using regression) the height, width, length and orientation (yaw) of

the possible 3D box. The final location of the 3D bounding box is then estimated

by arguing that the projection of 3D bounding box should tightly fit inside the

detected 2D bounding box. This entails that at least one vertex of the 3D box

should lie on every edge of 2D bounding box (4 in total). Lijie Liu et al. (2019,

[25]), Andretti Naiden et al. (2019, [32]), and Fang et al. (2019, [10]) build

on the same idea and propose independent improvements for 3D bounding box

estimation.
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Another geometric approach is based on the assumption that vehicles of same

category have similar size and geometry (e.g. cars). Thus, their 3D geometry

can be represented by pre-estimated 3D CAD models which can be used as tem-

plates. Further, object detection algorithms like MaskRCNN can also localize

keypoints(features) of a given object. Florian Chabot et al.(2017, [2]) first predict

the keypoints and a probable template class for a detected object, and later in the

second stage, a template from the predicted template class is matched using the

detected keypoints and the annotated keypoints on the template.

Deformable Templates: Instead of using rigid templates (as Chabot et al.,

[2]), a template that could be deformed or adjusted according to the detected

object would result in a more accurate 3D detection. Inspired by the seminal

work of Active Shape Models (T. F. Cootes et al., 1995 [4]), Zia et.al (2013,

[51]) attempted to develop wireframe models for car objects. These models were

simplified versions of rich 3D CAD models and had annotated keypoints. A 3D-

CAD model with ’n’ annotated keypoints can be represented by 3n × 1 vector.

After a training set of such CAD models is created, Principal Component Analysis

or PCA (PCA explained in section 2.2.1) can be applied on the resulting vector

space. Once PCA is done, each vector/shape can be represented as a sum of

these principal components. Varying the coefficients of each principal component,

results in a different shape of the object.

Occlusion Modelling: While many Deep Learning approaches use deformable

models and achieve reasonable success in detection, modelling occlusion remained

a challenge. Occlusion is omnipresent; vehicles in an image occlude their own

parts (because all parts of a 3D object are never visible in a single image), vehicles

could also be occluded by both other vehicles and other objects (street lights etc.).

Therefore, a definite reasoning about occlusion is indispensable to accurate object

detection in crowded scenes.
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The presented approach: Most previous approaches either do not model

occlusion or model it as a second class objective. The presented approach called

Occlusion-Net (Reddy et al., 2019 [40]) explicitly reasons about occlusion statistics

of a detected object. It uses wireframe models to reason about the final 3D shape

of the detected car object. Such an explicit modelling for occlusion combined

with 3D shape estimation results in a better approximation for 2D locations of

the detected car’s keypoints (landmarks).

Need for 3D estimation: The aim of this thesis is to enable traffic researchers

with 3D-constrained 2D detection of car objects in traffic surveillance videos.

Amongst other possible post processing analysis, a 3D detection allows faithful

estimation of the ground plane of a detected objects. Once such a ground plane

is estimated, the centre of the detected ground plane can be used to estimate

distance between two cars in pixel coordinates. If mappings between pixel and

GPS coordinates for the image frame are present, pixel distances can be used to

estimate real world distances between two car objects. Speed of the car object can

also be calculated across several frames provided it is tracked. Such understanding

of traffic junctions from their surveillance videos can facilitate future research in

traffic analysis and its related disciplines.

The upcoming chapters are dedicated to Occlusion-Net’s design, an explanation

of its implementation done during this thesis and the results of a qualitative eval-

uation of its performance on traffic surveillance videos collected by the presiding

chair.
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3 Design of Implemented Approach

The Occlusion-Net [40] incorporates a multi stage pipeline for training and infer-

ence. The objective of explicit occlusion modelling and localization of occluded

keypoints is realized by using Graph Neural Networks or GNN (explained in sec-

tion 2.3.7). Sections 3.3, 3.4 and 3.5 elaborate on the three instances of GNN used

in Occlusion-Net. Section 3.1 provides insights in the custom dataset collected and

annotated by the authors of Occlusion-Net. Occlusion-Net uses an Off-the-Shelf

detector for extracting region of interests, details of which are explained in section

3.2

3.1 Training Dataset

The dataset used by Occlusion-Net is collected by the authors of Occlusion-Net

and is named as Carfusion dataset [39]. Carfusion dataset was generated by

recording busy traffic intersections using multiple mobile cameras simultaneously.

Thus, there are several views of each car object. This publicly available dataset has

53000 images and their corresponding annotations in text files of the same name as

image. These annotations are labelled manually. Each image has two associated

text files for ground truth out of which one provides bounding box coordinates

of the car object and the other contains keypoint annotations and their visibility

status. Following is the annotation format for keypoints annotations file.

x-coordinate, y-coordinate, keypoint-ID, object-ID, visibility-status: 1 If visible,

else 2.
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The original Carfusion dataset has 14 keypoints out of which 12 are selected

for training Occlusion-Net. The data set provides the location label of all the

12 keypoints i.e. both visible and occluded. However, the location of occluded

keypoints is not used for training. The supervision for location of the occluded

keypoints is explained in section 3.4. The Keypoint-ID in object annotation files

is assigned based on the following table.

Car Section Keypoint Name Keypoint-ID

Wheels

Front Right 1

Front Left 2

Back Right 3

Back Left 4

Headlights

Front Right 5

Front Left 6

Back Right 7

Back Left 8

Car Top

Front Right 10

Front Left 11

Back Right 12

Back Left 13

3D-CAD Models Dataset: Apart from 2D images, Occlusion-Net also co-

alesce three dimensional Computer-Aided Design (3D-CAD) models. The CAD

models are taken from a public repository called ShapeNet [3]. ShapeNet provides

richly annotated and large scale CAD models of many objects out of which the

authors chose 472 models of car objects. Each of these models are annotated with

12 keypoints (same as 2D car image) using an open source 3D simulation software

called Blender [17].
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3.2 Keypoint Detection : MaskRCNN

The Occlusion-Net’s [40] central algorithm is applied to the section of the image

that contains the car object. The area of an image where the object of interest

(here car object) is present can be generated by using any modern day object

detection framework such as YOLO [42] or MaskRCNN [19]. These object detec-

tors take an image as input and output pixel coordinates of bounding boxes that

contain the object of interest. Supposing a given image with three car objects as

input, the output will be pixel coordinates of three bounding boxes corresponding

to each of these car objects. Thus, such detectors generate locations of region of

interests from an image.

These detectors can be extended to incorporate detection of keypoints or fea-

tures of the object of interest. Thus, for a car object the detector could detect

features such as the front and back wheel etc. Occlusion-Net works with a total of

twelve such keypoints, details of which are provided in the previous section. For

the implementation and also in the published paper, the authors chose MaskR-

CNN (explained in section 2.5) as the off-the-shelf detector. The bounding boxes

and keypoints generated by MaskRCNN serves as input to the initial stage of

Occlusion-Net pipeline.

Training: MaskRCNN detector is trained only for car object category with

visible keypoints. This means that during training, the features which are visible

in the car’s image are fed to the training algorithm. The features that are not

fed to the algorithm are then implicitly categorised as occluded. This assumption

of categorising non-labelled keypoints as occluded keypoints is used to generate

ground truth for the next stage of the training pipeline explained in 3.3

At test time however, the detector outputs estimated locations of all 12 key-

points; both visible and invisible. The authors demonstrate that only from such

an output it is difficult to differentiate between visible and invisible keypoints
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and thereby justify the need of explicit mechanism to differentiate between the

two. The following section details such a mechanism which distinguishes between

occluded and visible keypoints.

3.3 Occluded Edge Prediction : 2D-KGNN Encoder

The output of the MaskRCNN detector is fed as input to the 2D-KGNN. The 2D-

KGNN is the abbreviation for Two Dimensional - Keypoint Graph Neural Network.

The term 2D is indicative of the 2D locations of the keypoints. The 2D-KGNN

predicts which keypoints are occluded.

Training: Since 2D-KGNN Encoder is a Graph Neural Network (explained in

2.3.7), it is evident that it expects a graph as an input. This graph is generated

using the output of MaskRCNN. In order to generate the ground truth graph,

keypoints are joined together such that a car shape is formed. Thus, the result-

ing graph has 12 vertices/nodes, each representing a keypoint. The visible and

occluded keypoints are separated and added in different lists. The information of

keypoints being occluded comes from the previous stage where the non-labelled

keypoints were implicitly assumed as occluded.

The occluded keypoints from the previous step are added to list o and the visible

ones to list v. The edge between two nodes encodes the information of whether

any of the two nodes is occluded or not. An edge connecting two nodes Vi and Vj

is represented as εij. The visibility information of the two nodes connected by an

edge is encoded based on following rule:

εij =

1, if i ϵ v and j ϵ v

0, otherwise
(3.1)

As per equation 3.1, the edge encodes 1 if both the nodes are visible i.e. they

belong to set v, if either of the two nodes is occluded i.e. belongs to set o, the edge
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encodes a zero. This is a convenient representation to display occlusion dynamics

of a given graph. The GNN is employed to learn how to predict occluded keypoints

by using the information encoded in the edges of the ground truth graph.

Each node and edge of the ground truth graph contains the following informa-

tion.

1. Node: Information if the keypoint represented by the node is visible(V l) or

occluded.

2. Node: Human annotated x and y coordinates of visible keypoints in pixel

coordinate frame.

3. Node: Type of keypoint. Each keypoint type has an associated numerical

value as shown in section 3.1

4. Edge: Value of the edge (0 or 1).

The above graph is used as the ground truth to train the graph that is created

by MaskRCNN’s output during training. Following is the content of each node in

MaskRCNN’s output graph.

1. Predictions of x and y coordinates of all 12 keypoints in pixel coordi-

nates(explained in 2.4).

2. The confidence score c that represents how certain MaskRCNN is about a

keypoint’s prediction, the higher the value, the more confident MaskRCNN

is.

3. Type of keypoint.

This graph(created by MaskRCNN) is trained using a GNN (2D-KGNNE) which

learns how to classify each edge as 0 or 1 using the ground truth graph. The edge

prediction can be seen as a binary classification problem where an edge can either
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belong to class ’0’ or ’1’. Thus a cross-entropy loss (2.3.4) is used to train this

classifier.

Prediction: The encoder is trained to approximate the term q(εij|V ), which

represents the conditional probability (explained in 2.2.2) that a given edge (of

graph V ) εij between two nodes Vi and Vj is occluded when graph V is observed.

Graph V is generated by MaskRCNN’s output. The weights learned by the GNN

during training are used to estimate εij. Such predictions are a result of several

message passing or neighbourhood aggregation operations details of which

can be referred to in the original publication and intuitions can be built from

section 2.3.7.

Once the 2D-KGNN learns to differentiate between the visible and occluded

keypoints using edge values, Occlusion-Net proceeds towards estimating locations

(x,y coordinate) of occluded keypoints.

3.4 Occluded Keypoint Localization : 2D-KGNN Decoder

After identification of occluded keypoints, their localization is done using 2D-

KGNN Decoder. Localization in this context is the process of approximating the

(x,y) pixel coordinates of the occluded keypoint. In order to achieve this, another

Graph Neural Network called 2D-KGNN Decoder is employed.

Training: As in the case of 2D-KGNN Encoder, the 2D-KGNN Decoder also

trains with an input graph and learns how to adapt this graph to predict infor-

mation in a given ground truth graph. Once such learning is done, the trained

decoder can predict desired information for any input graph. For training the

2D-KGNN Encoder, the occlusion status of the keypoints was the most important

feature of the ground truth graph, similarly, for 2D-KGNN Decoder, the most

critical feature of the ground truth graph must be the location of the occluded

keypoints.
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Section 3.2 explains that only locations of visible keypoints are fed to the MaskR-

CNN detector. In order to generate the location of occluded keypoints, a technique

from the multi-view geometry literature of computer vision is utilized. This tech-

nique is called Point Transfer. Point transfer allows for inferring the location

of a point in a given image by utilizing its location from another set of images.

Thus given the location of a point in two or more images, its location in a given

image can be calculated. The Tensor ( Linear Algebra, section 2.2.1) that maps

such a transform is known as the trifocal tensor. Out of several approaches

for calculating the Trifocal tensor, the authors use the one that utilizes pose of

the calibrated mobile camera and camera’s intrinsic parameters (explained in 2.4).

Once a trifocal tensor for a given set of views is calculated it can then be used

to carry out such estimations. Hartley and Zisserman explain the fundamentals

of trifocal tensor in chapter 15 The trifocal tensor of their book [18] on multiple

view geometry .

The data collection process mentioned in 3.1 used multiple mobile cameras which

were simultaneously recording each traffic intersection. Consequently, multiple

views of each car object are present. Using this pretext, the authors propose that

for any occluded keypoint in a given image, there must exist at least two images

where the same keypoint is visible. Since all visible keypoints in the dataset are

labelled, the occluded keypoint’s location in an image can be recovered from the

images where the occluded keypoint is visible using the trifocal tensor. This is

how the ground truth locations for occluded keypoints are generated for the 2D-

KGNN Decoder. The ground truth graphs for the decoder contains the following

information.

1. All information present in the ground truth for 2D-KGNN Encoder.

2. Node: x and y coordinates of occluded keypoints in pixel coordinate frame,

calculated by the trifocal tensor.
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The above ground truth graph and the output graph from 2D-KGNN Encoder is

used as input to 2D-KGNN Decoder. The encoder then learns to estimate ground

truth labels from this input graph. The input to 2D-KGNN Decoder has following

information.

1. The graph V created from MaskRCNN’s output.

2. Predictions ε of edge values (0 or 1) from 2DKGNN Encoder.

Prediction: Once trained, the 2D-KGNN Decoder can localize the occluded

keypoints. The mathematical representation of this estimation is Pθ(V
g|V, ε).

Where V g are the occluded keypoints whose location the decoder wants to es-

timate. The term represents the estimation of a set of occluded keypoints V g,

given the output graph V from MaskRCNN, and the output ε of encoder de-

scribing which keypoints are occluded. θ is representative of weights that when

learned, will maximize the likelihood of the conditional probability Pθ(V
g|V, ε)

(Maximum Likelihood Estimation explained in section 2.2.2 ). Once all the weights

are learned using GNN, message passing operations on an input graph using the

learned weights will result in localization of occluded keypoints.

So far the Occlusion-Net pipeline identified (using encoder) and localized (using

decoder) the occluded keypoints. However, these predictions are in 2D i.e. the car

object and all its keypoints represent a 2D projection of a 3D car object (projective

transformation explained in 2.4). The next stage of the algorithm tries to give

this 2D representation a 3D lift in order to retrieve true geometry of the 3D car

object.

3.5 3D Shape Estimation: 3D-KGNN Encoder

The 3D-KGNN Encoder estimates the shape W and the camera projection matrix

π.
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In order to extract a 3D geometry from the 2D keypoints, CAD models are used.

The idea to represent objects as CAD models is taken from an early work by Zia

et.al (2013, [51]). Zia et al. extended an even earlier work which introduced

representation of objects using Active Shape Models ((T. F. Cootes et al.,

1995 [4])). Active Shape Models represent an object’s shape as a set of points (or

vectors) and performs statistical inferences to capture variance between different

points. This inference results in a Point Distribution Model. Principal component

analysis or PCA (explained in 2.2.1) is then performed to capture the most relevant

dimensions of the shape model. Zia et al. [51] on the same grounds represent shape

of a car object by calculating the mean shape µ from all 3D CAD models, and m

principal components. Each principal component is represented by its direction

pj and its standard deviation σj. This shape can be expressed as follows:

Shape = µ+
m∑
j=1

σjpj (3.2)

Once such a representation is calculated, any 3D model of the car object class can

be approximated by varying the magnitude of each dimension by some constant.

Considering sj as the constant/weight of the jth principal component, any shape

X can be represented as:

X(s) = µ+
n∑

j=1

sjσjpj (3.3)

In the above equation the shape X is parameterized by s and hence varies with

different values of s. For a give mean shape of car object, varying s could lead to

different representations of car objects like sedan, SUV and sports car etc.
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Occlusion-Net also models the shape W in a similar fashion and represents it as

a linear combination of mean shape b0 and sum of n principal components, each

defined by its direction bk, standard deviation σk and weight βk as follows:

W = b0 +
n∑

k=1

βkσkbk (3.4)

The 3D-CAD dataset is also annotated with the same 12 keypoints as 2D images.

Training: The 3D-KGNN encoder estimates the shape W and the camera

projection matrix π (explained in 2.4). Mathematically, the encoder is defined as

q(β, π|V ). V is the graph output by 2D-KGNN Encoder-Decoder network. The

formulation can be interpreted as an estimation of β and π given the output graph

of 2D-KGNN network. Once β is predicted, it can be substituted in equation 3.4

to calculate the 3D shape. The ground truth for training 3D-KGNN encoder

contains:

1. All the information present in the ground truth for 2D-KGNN Encoder-

Decoder.

2. A total of 472 3D CAD models of cars, annotated with same 12 keypoints

as 2D image (annotations explained in section 3.1)

3. Camera projection matrix π

It is important to note that the above contents of ground truth do not contain

a 3D shape corresponding to each 2D car in training dataset. In order for the

model to learn to estimate the shape parameters, the camera projection matrix

is used to facilitate training in a self supervised way. Self supervised learning

algorithm themselves create the required ground truth. For estimating 3D shape

of a particular car, the camera projection matrix is used to project a probable 3D

CAD model on the car’s 2D image. This projection is compared with the ground

truth 2D-annotations of car’s keypoints. If it does not match, the coefficient β
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is adjusted until the 3D reprojection matches the 2D ground truth annotations.

This matching results in creating an appropriate 3D shape for any given car.

During this process the 3D-KGNN is also trained to estimate the camera projection

matrix.

The input graph for training 3DKGNN Encoder is the output of predictions

from 2DKGNN Decoder and contains the following information.

1. Predicted graph containing information about occluded edges ε and locations

of occluded keypoints from 2D-KGNN Encoder-Decoder network.

The above input graph is trained using the self supervised training procedure

explained before.

Prediction: Once trained, the 3D-KGNN encoder can predict shape W and

camera parameter π from the output graph of 2D-KGNN network.

Enforcing 3D symmetry on 2D predictions: The 3D shape estimated is

also used to enforce a 3D symmetry on the previously 2D detected keypoints. The

estimated camera projection matrix π is used to project the estimated 3D shape

’W’ on a given car and the 2D location of keypoints resulting from this projection

is the final output of Occlusion-Net. This enforcement of a 3D symmetry corrects

any geometrical irregularities in 2D detections (done by 2D-KGNN network) and

improves the locations of both visible and occluded keypoints.

Summary Occlusion-net is a 4 stage pipeline whose first stage can be replaced

by any off-the-shelf object detector. Three instances of graph neural networks

(GNN) are trained simultaneously in an end-to-end fashion. The first two in-

stances of GNN classify and localize occluded keypoints and the third one en-

forces constraints guided by 3D geometry of the detected car object. Explicit

enforcement of 3D symmetry is essential to introduce geometric reasoning in 2D

detections. Implementation details of realizing this design are explained in the

upcoming chapter.
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4 Implementation

The authors of Occlusion-Net provide a public version of their implementation [38].

Despite the availability of the code, the arduous task of deciphering a sparsely doc-

umented source code in order to derive meaning and a sense of its programming

paradigm remains. The following sections details such challenges along with some

aspects of the implementation followed by the refactoring and functional changes

done in code to make it both usable and user-friendly. Section 4.1 enumerates the

choice of tools and libraries chosen by original authors. The details of dataset ac-

quisition and training scripts are given in section 4.2. Section 4.3 and 4.4 elaborate

on code refactoring and functional changes done for adapting this implementation

to meet the thesis goal. All code changes discussed here are committed in a git

repository that was forked from original Occlusion-Net implementation [38]. This

repository will be made public for future research at the supervising chair.

4.1 Open-Source Tools and Libraries

The public implementation is done in python 3.6. Different modules and libraries

are leveraged to realize this implementation, details of which are explained below.

Section 4.1.1 discusses code packaging followed by an overview of libraries used

for data processing, Neural Network computation and image handling libraries are

detailed in sections 4.1.2, 4.1.3 and 4.1.4 respectively.
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4.1.1 Code Packaging: NVIDIA-Docker

The code is packaged inside a docker [29] container. Docker containers by de-

fault are agnostic to the underlying hardware. This is mostly a benefit of using

docker, as the dockerized container can run on any underlying hardware. However,

there are scenarios where the underlying hardware requires explicit user-level li-

braries and kernel modules that are not included in native docker containers. One

such scenario is when Neural Networks are trained using NVIDIA GPUs. The

processing might provided by these GPUs needs dependencies that run at both

user and kernel level. In order to make the code running inside docker container

access the underlying NVIDIA GPU, NVIDIA Container Toolkit [22] was cre-

ated. NVIDIA container toolkit facilitates building new type of containers called

NVIDA-Docker containers. Code running in such containers can access the un-

derlying GPU. Occlusion-Net’s implementation is packaged in an NVIDIA docker

container and thus requires installation of NVIDIA Container Toolkit to access

and run the source code.

4.1.2 Data Processing Libraries

Occlusion-Net utilizes python’s NumPy library [34] which provides easy-to-use

implementations of a plethora of Linear Algebra computations. It enables repre-

sentation of data using constructs of Vectors and Matrices from Linear Algebra

(explained in section 2.2.1). In addition to representations of data, NumPy also

provide effective and highly optimized functions for numerical computation on

such representations. Optimized functions include user friendly implementations

of otherwise complex operations like Matrix-Matrix multiplication, statistical anal-

ysis methods such as Principle Component Analysis(PCA), sorting and searching

through high dimensional matrices etc.

Another advanced library for numerical and statistical analysis known as Pan-

das [28] is also used in the published code. Pandas extends NumPy and provides
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better performance on larger datasets. It represents tabular data i.e. data in shape

of rows and columns (like in an excel sheet) using a construct called Dataframes.

Pandas specialize in handling such Dataframes and outperform NumPy when data

has more than five hundred thousand or more rows.

4.1.3 Libraries for Neural Networks

For the initial off-the-shelf detector, a public implementation of MaskRCNN [27]

is used. This implementation presents MaskRCNN as a ready to use software

framework. It facilitates both training and inference pipelines, both of which are

leveraged by Occlusion-Net.

For Graph Neural Network, and all related operations including their initializa-

tion and training, a python library named PyTorch [36] is used. PyTorch presents

abstracted implementations of critical operations required to train a Neural Net-

work. Such operations include forward-propagation (2.3.5), backward-propagation

(2.3.5) and gradient descent(2.2.3) etc. PyTorch also provides tools like TorchVi-

sion to facilitate working with image data. Occlusion-Net leverages TorchVision

to manipulate image data.

4.1.4 Computer Vision Library

In order to implement image operations that require computer vision algorithms,

OpenCV or cv2 [35] library is used. cv2 houses more than 2500 algorithms for

both machine learning and classical computer vision related tasks. Interfaces

to annotate images are also provided and are used by Occlusion-Net to overlay

predicted keypoints on processed frames/images.
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4.2 Dataset Acquisition and Training

The public code base of Occlusion-Net provides both training data and trained

weights of neural networks. Section 4.2.1 and 4.2.2 provide an overview of data

acquisition and training respectively.

4.2.1 Acquiring Dataset

The README.md file in the public implementation [38] provides link to request

access to the Carfusion dataset(explained in section 3.1). Amongst other details,

the requester must specify her email address on which she wishes to receive the

download link. The email received with download links contains python script that

can be used for downloading all the data at once. A script named carfusion_to_-

coco.py in the received email can be used to convert this data to match the format

of Microsoft’s COCO dataset [24]. This conversion is important as Occlusion-Net’s

training algorithm accepts data in COCO format. The steps required to setup a

running environment for Occlusion-Net are well documented in the README.md

file of the public implementation.

4.2.2 Training Occlusion-Net

After downloading the dataset and configuring the environment, Occlusion-Net

can be trained on the downloaded data using train.sh script provided in the repos-

itory of the public implementation [38]. On the lab machine of the supervising

chair, Occlusion-Net took approximately 72 hours to finish training. The train-

ing pipeline stores the learned weights by the name ’occlusion_net.pth’ in the

Occlusion_Net/data folder.

Alternatively, the trained weights can directly be downloaded using the link

provided in the README.md file of the public repository. The downloaded weight

file is also of the name ’occlusion_net.pth’ and must be moved to Occlusion_-

Net/data folder.
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Downloading dataset and training is only recommended in scenarios when new

training data is available or when the hyper-parameters of the training algorithm

are changed. In such cases, it is imperative to re-train the associated neural

networks to factor in new changes.

4.3 Refactoring

In order to explore the functional characteristics of Occlusion-Net, it was required

to refactor certain aspects of it for making it suitable for video analysis use case.

As an initial approach, Occlusion-Net was seen as a blackbox accepting images

and returning their processed versions. However a dive inside this blackbox was

required in order to adapt it to context. Sections 4.3.1 and 4.3.2 detail the first

encounter whose limitation led to adaptations explained in sections 4.3.3 and 4.3.4.

4.3.1 Error in Docker File

After first run, the docker file failed with an error message that after debugging

indicated towards a missing installation for Miniconda software. Miniconda is a

distribution of the Conda package management software. This was resolved by

replacing (in Dockerfile) ’curl’ command with ’wget’ to download latest Miniconda

repository. Further, Miniconda was installed using the installation script named

’Miniconda3-latest-Linux-x86_64.sh ’ which was present in the downloaded repos-

itory.

After this step, the docker engine was able to install all the dependencies re-

quired by Occlusion-Net.

4.3.2 Image Directories as Input

The public Occlusion-Net implementation accepts one single image at a time for

testing. This testing is initiated by calling test.sh shell script which in turn calls

infer.py python script. The image to be processed is provided as an argument to
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parameter named ‘ul’ which is passed to test.sh at runtime. The parameter ’ul’

only accepts a single image for each run. Thus, in order to process ’n’ images, the

docker container running Occlusion-Net must be restarted ’n’ times.

In order to observe the detection quality on multiple images, Occlusion-Net was

modified to process an entire image directory in one go. This was realised by

replacing the test.sh argument ‘ul’ to ‘ir’. The ‘ir’ parameter accepts a path

to the image directory which is then parsed as an argument in infer.py file. This

slight modification enables the user to run Occlusion-Net consecutively on multiple

images in a single call to test.sh.

4.3.3 Frame Extraction in Parallel.

Now that the Occlusion-Net can work with multiple images it was required to ex-

tract the images/frames from different traffic surveillance videos. An open source

library known as cv2 [35] was used for this task. Initial attempts of extracting

frames from videos worked well for videos which were of length 10-15 minutes.

However, as the video length increased to 60 minutes or more, the process of

extracting frame became a bottleneck in overall processing.

In order to reduce the frame extraction time, the paradigm of multiprocessing

was utilized. The code for same is provided inside the ‘usage’ folder in the forked

Occlusion-Net repository in the file named videoToframes.py. This python file ac-

cepts the video file’s path as an argument to a parameter named ‘-path’, and out-

puts the extracted frames to the ‘Occlusion_Net/demo’ folder. videoToFrames.py

can extract frames from a high quality 60 minute video under 90 seconds as op-

posed to 30 minutes with a non-parallel program, thereby significantly improving

the overall processing performance.

Each frame after being processed by Occlusion-Net is stored in ‘Occlusion_-

Net/logs’ folder. These processed frames are then converted back to a video using
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another helper script called ‘FramesTovideos.py’ that also performs this task in a

parallel fashion.

For some videos, the length of the resulting video of their processed frames was

significantly shorter than their original video length. Probing further, exposed

the problem of missing frames. Missing frames is the name given to all frames

that Occlusion-Net could not process. Consequently, such frames are not present

in the output folder ‘Occlusion_Net/log’.

Occlusion-Net was modified to store such missing frames in a separate directory.

It was expected to see a correlation between the number of missing frames and the

reduced video length, i.e. the larger the difference in the original and processed

video, the more frames Occlusion-Net skipped for that video. However, such a

correlation was not observed. Instead, an underlying susceptibility of cv2 library

was discovered as the cause of this problem.

FramesToVideos.py combines the processed frames into videos using the vide-

oWriter functionality of cv2 library. The videowriter stops reading new frames

if there is a missing frame sequence (number) in the frame directory. For e.g.

if frame number ’10’ was missing, the videowriter stops reading frames after it

processes frame ’9’. This stopping results in a video that only has ’9’ frames.

This discovery explains the observation that there is no correlation between the

shortened video lengths and number of frames skipped by Occlusion-Net. The

length of the video depends on the frame-number of the first missing frame rather

than the total number of missing frames. Thus, if a video has ’100’ frames and

Occlusion-Net successfully processes ’99’ of them but skips frame-number ’10’, the

resulting video created using FramesToVideos.py will have ’9’ frames in total.

Multiple workarounds were tried to resolve this issue one of which included

copying the corresponding missing frame from the unprocessed frame directory

thereby not breaking the frame sequence in processed frame directory. However,

a robust program was not possible due to underlying limitation of cv2.
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4.3.4 Video as Input

The problem of missing frames and their erratic reconstruction led to addition

of a new feature which enables Occlusion-Net to accept video files as input, and

output processed video files. test.sh was extended with a new parameter named

’-vid’ which accepts a video’s file path as a parameter. The argument ’-vid’ when

handled in ’infer.py’ file sets a flag named Video to 1. This flag is checked inside

an ’if’ loop and when true, invokes the video processing pipeline that was added

to ’infer.py’.

The video processing pipeline accepts the video as input and processes each

frame with Occlusion-Net. The processed frame is written to the output video file

before next frame is processed. The video output is written using cv2’s videowriter

functionality.

Further, in order to facilitate analysis of missing frames for future work, all

missing frames were stored in a separate ’missing_frames’ directory inside Occlu-

sion_net/logs/ path.

4.4 Functional changes

After adapting Occlusion-Net to suite the video analysis use case, its output was

analyzed. As a part of this exploration few irregularities at functional level were

observed. These irregularities consisted of both missing and mismatched outputs

and are explained in section 4.4.1 and section 4.4.2 respectively along with the

functional changes done to rectify them. The last two sections mention changes

done to aid visual analysis.

4.4.1 Keypoints In Output

Once the videos are processed the processed data is stored in a .json file inside

Occlusion_Net/log path. It was found that this .json file only contained the
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bounding box coordinates of the detected cars and their corresponding object Id’s.

Thus, by default, the Occlusion-Net does not store the location of predicted

keypoints. Since predicted keypoints are a must for any post processing analysis,

they must be a part of the .json file.

In order to extract keypoints, the prediction pipeline was deconstructed. Key-

points and their confidence scores were then extracted from the prediction object.

The code changes and extensions can be tracked in the corresponding git commit.

4.4.2 Mismatched BB and Keypoints

A close inspection of the .json output revealed that there was a mismatch be-

tween the bounding boxes (BB) and their corresponding Keypoints. Both BB

and keypoint have an associated id. This id represents a particular car object in

a given frame. For e.g. it was observed that BB with id ’1’ did not encapsulate

Keypoints corresponding to id ’1’ but corresponding to id ’2’. Such a mismatch

can significantly mislead the post processing analysis and hence must be resolved.

The cause of this discrepancy arose from erratic handling of prediction object

and was resolved by considering only top predictions for both BB and Keypoints,

this implicitly matched their id’s and resolved the problem.

4.4.3 Incorrect Class Labels

The detected car’s class label was wrongly set to ’Person’. Such a mismatch

can hamper future data analysis in situations where both ’Car’ and ’Person’ are

possible outputs of the detector. This was resolved by adjusting the CATEGORY

list inside predictor.py.

4.4.4 Bounding Box Overlay

As a part of qualitative evaluation of Occlusion-Net’s performance and to verify

certain claims by the authors, it was required to observe the position of bounding
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boxes with respect to predicted keypoints. Details of these claims are explained

in the section 5.2. Thus, to overlay or draw bounding boxes, adjustments were

made inside infer.py after which each output frame had both Bounding boxes and

Keypoints drawn on it.

Summary: The implementation process of Occlusion-Net presented several

other challenges (other than the ones mentioned above) which are often encoun-

tered while approaching an unknown code base. After the refactorings and func-

tional changes explained above, the public implementation of Occlusion-Net runs

seamlessly and produces evaluation ready data. Next chapter encompasses a qual-

itative evaluation of this data.
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5 Evaluation

This chapter presents a qualitative analysis of Occlusion-Net’s performance on

video data collected by the supervising chair of Traffic Engineering. Section 5.1

compares Occlusion-Net’s performance on the this video data with the published

results. Evaluation on heavy and moderate vehicles is presented in section 5.1.2.

Section 5.2 verifies the failure analysis published by the authors [41]. The frames

skipped by Occlusion-Net during processing are analyzed in section 5.3. The

chapter ends with section 5.4 which provides a performance estimate of Occlusion-

Net’s detection performance in frames-per-second (fps). All evaluations are per-

formed on the lab machine (Ubuntu-18.04.5 LTS) at supervising chair which has

NVIDIA’s ’GeForce RTX 2070’ graphics card that houses a ’TU106’ Graphics

Processing Unit.

5.1 Qualitative Evaluation

The authors published both qualitative and quantitative results. However, em-

pirical evaluation of Occlusion-Net requires analysis across multiple baselines and

hence is out of scope for this thesis. The qualitative results published by the au-

thors are thus chosen to evaluate both the correctness of implementation and the

authenticity of published results.

5.1.1 Evaluation Across Occlusion Categories

A larger part of published qualitative evaluations display Occlusion-Net’s predic-

tions by varying the nature of occlusion that a car object experiences. This leads
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Figure 5.1: Qualitative evaluation across varying occlusion categories (1-4). Categories
1-3 are successfully reproduced. Category 4 remains irreproducible.

to four different occlusion categories viz; self occlusion, vehicle occluding vehicle,

other object occluding vehicle and truncated vehicle. Each of these categories and

a comparison between their published and reproduced results (using the public

implementation) are explained below.

Self Occlusion: This category considers vehicle/car objects that are not oc-

cluded by any other object or vehicle but self-occlude some of their own parts/key-

points. Such occlusion are typical and always exist in an image of any rigid body.

One can never observe all parts of a 3D object in a single 2D image. The published

results of this category were reproduced as it is on custom videos collected by the

supervising chair and are shown in figure 5.1(1).

Vehicle Occluding Vehicle: This category includes vehicles that are oc-

cluded by other vehicles. The published results only consider occlusion of car

objects with other car objects and not with other heavy vehicles. In the context

of car objects occluding other car objects, the results were reproduced as shown

in 5.1(2).
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Other Object(s) Occluding Vehicle: Scenarios in which a car object is

occluded by any non-vehicle object such as traffic signs, trees and humans are

considered in this category. The ’other’ objects include all objects that are not

explicitly modelled (like car object) in Occlusion-Net. The results of this category

are reproducible and shown in 5.1(3).

Truncated Vehicle: In traffic surveillance videos, it is expected to observe

instances of vehicle objects which are only partially present in a frame. For e.g.

when an object is entering the camera’s view and leaving it, it is evident that such a

vehicle object would appear truncated in several frames. This category considers

such truncated car objects. The results of this category were not reproducible at

all. Despite analysis through several videos, the truncated category remained

irreproducible. Figure 5.1(4-left) shows the published results whose matching

results were not reproduced.

Results of all four occlusion categories are shown in figure 5.1. Each category

contains the image published by authors of Occlusion-Net(left image) and its

reproduced image (right image).

5.1.2 Performance on Moderate and Heavy Vehicles:

Heavy vehicles such as trucks and moderate vehicles such as vans are also accu-

rately detected in most of the frames. However, the performance on these two

classes appears to be relatively less accurate than the car object class.

Inaccurate detections of heavy vehicles particularly suffer from the problem of

multiple hypothesis. Multiple hypothesis is the name given to detections where

a single vehicle is detected with more than one bounding box; each encompass-

ing the same vehicle differently. Since Occlusion-Net is trained to estimate 12

keypoints in each bounding box it receives as input from MaskRCNN (explained

in section 3.2), it ends up wrongly estimating 12 keypoints within each of these
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Figure 5.2: Performance on Heavy Vehicle: Image 1 shows accurately detected heavy
vehicle. Image 2 demonstrates the problem of multiple hypothesis leading
to inaccurate localization of heavy vehicle.

bounding boxes. Figure 5.2 shows the problem of multiple hypothesis on a heavy

vehicle.

Another detection discrepancy observed in both heavy and moderate vehicles is

that of a partial detection. Here the vehicle object is wrongly estimated with

a bounding box that covers the vehicle partially. Occlusion-Net is then forced to

localize all keypoints within this bounding box. The same can be observed for

heavy and moderate vehicle in figure 5.3 and 5.4 respectively.

5.2 Verification of Failure Analysis

The authors of Occlusion-Net also published supplementary material [41], in which

they provide a qualitative approximation of factors that lead to failed object de-

tection by Occlusion-Net. The authors claim that the bounding box from the

initial detector (MaskRCNN) plays a crucial role in the overall performance of the
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Figure 5.3: Performance on Heavy Vehicle: Image 1 shows accurately detected heavy ve-
hicle. Image 2 shows inaccurate detection due to partially covering bounding
box.

detection pipeline. This entails that each failed or erroneous detection must have

an incorrectly approximated bounding box at its source.

In order to verify this claim, the Occlusion-Net was extended to overlay bound-

ing boxes on output frames (described in section 4.4.4) and verify if erroneous

detections correspond to wrongly detected bounding boxes. The failure analysis

of moderate and heavy vehicles explained in section 5.1.2 was also possible only

after overlaying the bounding boxes.

5.2.1 Truncated Cars

In detections across different videos, keypoints corresponding to truncated cars

are always incorrectly localized. In figure 5.5(a), the detected bounding box for

truncated car encapsulates only the visible end of the car, thus forcing Occlusion-

Net to localize all the keypoints within this bounding box. Since, this bounding

box does not contain all the keypoints, any attempt at localizing them inside the
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Figure 5.4: Performance on Moderate Vehicle: Image 1 shows accurately detected mod-
erate vehicle. Image 2 shows inaccurate detection due to partially covering
bounding box.

box is bound to fail. Thus, Occlusion-Net incorrectly localizes all 12 keypoints on

the visible parts of car object.

5.2.2 Overlapping Cars

Another failure class comprises of cars whose bounding box overlap due to their

position w.r.t to each other and to the camera. As a result, one bounding box

can for e.g. encompass two back-right wheels of two different cars. Occlusion-Net

appears to be susceptible to such duplication of keypoints. Such a duplication

leads to a distorted estimate of car’s shape as shown in figure 5.5(b).

Figure 5.5 is generated from evaluation done during this thesis and provides

visual confirmation that every failed keypoint localization has an incorrectly de-

tected bounding box at source.
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Figure 5.5: Failure Analysis Verification: Image 1 shows bounding box encapsulating
only half of the car causing erroneous localization of keypoints. Image
2 shows overlapping cars causing duplication of several keypoints in each
bounding box leading to distorted shape estimation.

5.3 Analysis of Missing Frames

In majority of videos processed with Occlusion-Net, it was observed that Occlusion-

net skips (does not process) some frames of the input video. In order to reason

about this occasional skipping of frames, these missing frames (introduced in sec-

tion 4.3.3) were stored in a separate directory (explained in section 4.3.4) and were

fed to Occlusion-Net using the image directory processing switch ’ir’ (mentioned

in section 4.3.2). Unsurprisingly, these frames were skipped again. A closer inspec-

tion of these frames revealed that they either do not contain any vehicle object,

or the object(s) is in a region where MaskRCNN does not detect a bounding box.

Since in either case no bounding box is detected, Occlusion-Net pipeline cannot

process the frame.

The skipped frame analysis is shown in figure 5.6 and 5.7. The image (1) of both

figures shows a processed frame and highlights the no-detection-area in red. Image

(2) and (3) in both figures shows skipped frames where no objects are present and

objects are present only in no detection area respectively.
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Figure 5.6: Skipped Frames: 1 shows a processed frame. No detection area is highlighted
by area under the red box. 2 and 3 show two categories of missed frames.

The missing frame analysis proves that in order for a frame to be processed by

Occlusion-Net, the frame must have at least one bounding box detected by the

initial detector (MaskRCNN).

5.4 Test Performance

The original publication claims to record a speed of 30 fps(frames per second) at

test time. However, the observed performance on the lab machine is around 9.5

to 10 fps. This difference can be attributed to a difference in the testing hardware

which the authors did not made public.

In order to probe the affect of skipped frames on the overall processing perfor-

mance, the processing time of several videos was recorded as shown in table 5.1.

The skipped frames from each of these videos were stored in a separate directory.

Processing speed was calculated in fps by dividing the sum of processed frames

and skipped frames by total processing time.
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Figure 5.7: Skipped Frames: 1 shows a processed frame. No detection area is highlighted
by area under the red box. 2 and 3 show two categories of missed frames.

In table 5.1, the video named ’raspberrypi_14-00-00.mp4’ skipped 6395 frames

from a total of 18005 frames and resulted in overall processing performance of 9.9

fps. Whereas, the video named ”raspberrypi_FR20_11-45-00.mp4” skipped zero

frames from a total of 18004 and had a performance of 9.6 fps. Despite the former

video missing 6395 frames, its processing took similar time as the latter.

Missing frames do not have a bounding box and therefore are not processed by

Occlusion-Net. This entails that most of the processing cycle is spent in MaskR-

CNN’s detections and Occlusion-Net’s detection pipeline is capable of real time

processing given that it receives the region of interest (image with bounding boxes)

input with a matching rate.

The performance results also conclude that the overall performance is governed

by the number of frames fed to the detection pipeline and both processed and

skipped frames consume processing cycles in equal proportions. Thus, even if

Occlusion-Net skips all the frames in a video, its performance would be equivalent

to the case where it successfully processed a similar number of frames.
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Video Name Processing
Time(s)

No. of
Processed Frames

No. of
Skipped Frames

Processing
Speed(fps)

raspberrypi_11-16-51.mp4 1595 15757 10 9.9
raspberrypi_11-30-00.mp4 1839 17994 12 9.8
raspberrypi_14-00-00.mp4 1815 11610 6395 9.9
ivstCamC_FR20_09-00-00.mp4 4806 23817 25265 10.2
raspberrypi_FR20_11-45-00.mp4 1880 18004 0 9.6
raspberrypi_FR20_12-00-00.mp4 1881 18006 20 9.7
raspberrypi_12-15-00.mp4 1897 18014 1 9.5

Table 5.1: Performance measure of Occlusion-Net in frames-per-second(fps). Final pro-
cessing speed is calculated by dividing total number of frames by processing
time.

Summary: The presented qualitative evaluation reproduces all the published

results except the one with truncated car category. While Occlusion-Net is ca-

pable of localizing heavy vehicles and moderate vehicles, its performance is best

observed across the car object category. The reproducible results of failure analy-

sis (published by the authors) followed by missing frame analysis (not published)

confirms the dependence of Occlusion-Net on initial bounding box detector. Pro-

cessing speed of Occlusion-Net appears to be limited by the detection performance

of initial detector as well.

112



6 Conclusion

Deep Learning is a sub field of Machine Learning that gained traction in recent

years due to the advent of high processing GPUs and availability of sufficiently

large amount of training data. The entire discipline is now advertised as a related

field of computer science. A larger part of this new found connection is because

of the ease by which many complex machine and deep learning algorithms can

be implemented with highly optimized and programmer friendly libraries. These

libraries abstract complex estimation algorithms which are mathematical formu-

lations of ideas from Statistics, Probability, Linear Algebra and Infinitesimal Cal-

culus. Despite such all-encapsulating libraries, most of the algorithms require

readjustments to adapt to the applied context. Such alterations require deep in-

sights into the structure of these algorithms and thus demand familiarity with their

constituting mathematical concepts. Knowledge of such concepts is as important

as the knowledge of the domain in which various machine learning algorithms

are applied. Deep learning provides robust solutions to many classical problems

from the domain of computer vision, most important of which is that of object

detection. It is therefore imperative to understand the required concepts from

computer vision Literature. Chapter 2 attempts at building foundations for all

the concepts discussed in the later chapters.

The implemented approach called Occlusion-Net [40] utilizes the recent con-

struct of Graph Neural Network to model the object detection problem and jus-

tifies the need for explicitly modelling occlusions rather than treating them as a

sub-task of object detection. This separation distinguishes Occlusion-Net from
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other approaches. Further, the novel approach of providing supervision for oc-

cluded keypoints using images where they are visible, significantly eliminates the

dependency on human annotators whose accuracy in labelling occluded keypoints

is often subjective. The lifting of 2D keypoints to fit a 3D shape is a combination

of established model matching approaches with the recent approach of training a

self supervised reprojection loss. This makes Occlusion-Net a combination of su-

pervised and self supervised learning. The design details can be found in chapter

3.

The public implementation provided by the authors [38] is indeed helpful but

is not readily adaptable to video analysis context. The absence of a tracking

algorithm that can uniquely identify every object through several frames prevents

from estimating object trajectories which are essential for traffic flow analysis. The

provided implementation needs both functional changes and refactoring to fit the

current use case. The functional changes done, do not affect the hyper-parameters

of the trained neural networks but make the output more informative, accurate

and analyzable. The entire code is packaged inside Nvidia-Docker and thus is only

available to run on Linux distributions; making this implementation unavailable

on Windows machines. All additions to the publicly available code base and its

packaging details can be found in chapter 4.

Qualitative evaluation of Occlusion-Net confirmed all the published results ex-

cept the one with truncated cars. Although the implementation did not correctly

localize the keypoints of truncated cars, it performed well across several other

occlusion categories and is capable of localizing heavy and medium sized vehicles

as well. However, the car category is the one with most successful predictions. All

of the observed erratic predictions arose due to faulty detections of the bounding

box which is fed as an input (region of interest) to the detection pipeline. This

dependency exposes Occlusion-Net’s susceptibility to the initial detector and calls

for a more robust design for the initial detector.
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Occlusion-Net’s unique graphical approach, ingenious supervision strategy, and

explicit reasoning for occlusions provides new representation of the classical prob-

lem of object detection and thus sets new grounds for future research.
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7 Future Work

In most settings, Occlusion-Net proves to be a robust detection algorithm. How-

ever, during this thesis it was discovered that it is as as robust as the initial

detector which generates the region of interest. In that light, it is imperative to

consider alternative object detection algorithms. YOLO (You Look Only Once)

version five [47] is the latest addition to the famous YOLO family of detection algo-

rithms. The earlier versions of YOLO traded off accuracy for speed and thus were

inferior to MaskRCNN in accuracy. However, the YOLO-V5 version claims to

reduce this gap and therefore can be used as an initial detector for Occlusion-Net.

Initial detections can also be improved by introducing more training data from

German traffic scenes. The new data would require multiple views of the same

object in order to calculate the trifocal tensor which is essential in providing

supervision for occluded keypoints. A possible workaround to bypass the need

of multiple views and trifocal tensor is to provide human labelled annotations of

both visible and occluded keypoints. This would also require code modifications

to incorporate the labelled occluded keypoints in the training pipeline.

Other than Occlusion-Net, detection algorithms that do not need bounding

boxes as inputs can also be explored. Pishchulin et al. [37] propose an approach

for human pose estimation. The approach is bottom-up in nature, i.e it detects

all the human body parts (similar to keypoints of car object) present in an image

as a fully connected graph. Once such a graph is created, individual humans are

detected by cutting this graph into individual groups of keypoints corresponding

to each human object. Such an approach could be extended to keypoint based car
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object detection. Since cars are rigid bodies, their expected geometry is known

and can be leveraged in the final graph cutting stage.

Occlusion-Net is a detection algorithm. In majority of use cases researchers want

to uniquely track the movements of an object through multiple frames. Tracking

algorithms can take an object’s detection in current frame as input, and can

uniquely track the same object in the next frame by either matching its detection in

the consecutive frame with the input detection, or by directly estimating the next

possible position using the input detection. Such approaches are called tracking

by detection and can be employed for meaningful analysis of detected and tracked

objects.

The supervising chair is developing an in-house detection pipeline called Open-

Traffic-Cam. Open-Traffic-Cam aims to facilitate research in questions related

to traffic analysis and will be designed to work on windows operating system.

If Occlusion-Net is extended with aforementioned features, it can be a part of

Open-Traffic-Cam’s detection and tracking step. Since Occlusion-Net is packaged

inside Nvidia-Docker, its inclusion in Open-Traffic-Cam is only possible if its im-

plementation can be adapted to run on windows machines. Amongst many other

refactorings, this adaptation would primarily require to move the code outside

NVIDIA-Docker container.

In nutshell, successful inclusion of Occlusion-Net’s robust algorithm in any em-

pirical result oriented research project would require contextual training data, a

robust initial detection and ability to track objects.
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