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Abstract 

Lipid bilayers and lipid-associated proteins play crucial roles in biology. As in vivo studies 

and manipulation are inherently difficult, membrane-mimetic systems are useful for the 

investigation of lipidic phases, lipid–protein interactions, membrane protein function and 

membrane structure in vitro.  

This dissertation describes a route to leverage the programmability of DNA nanotechnol-

ogy to create DNA-encircled bilayers (DEBs), a novel nano-scaled membrane-mimetic 

system. DEBs are made of multiple copies of an alkylated oligonucleotide hybridized to 

a single-stranded minicircle, in which up to two alkyl chains per helical turn point to the 

inside of the toroidal DNA ring. When phospholipids are added, a bilayer is observed to 

self-assemble within the ring such that the alkyl chains of the oligonucleotides stabilize 

the hydrophobic rim of the bilayer to prevent formation of vesicles and support thermo-

tropic lipid phase transitions. This straight-forward and robust route enables the rational 

design of DEBs so that their size, shape or functionalization can be adapted to the spe-

cific needs of biophysical investigations of lipidic phases and the properties of membrane 

proteins. 

Next, we optimized the DEB system to provide proper anchoring of a large variety of 

lipids by creating an improved DNA scaffold. This scaffold, called DNA double-decker, 

consists of two interconnected DNA minicircles stacked on top of each other. In compar-

ison to the DNA minicircle in DEB system, this scaffold is two times thicker and contains 

two times more hydrophobic strands, which should increase the stability of the lipid bi-

layer rim.  

Finally, we explored the option of using DEBs in studies of GPCRs using CCR5 as a 

model protein. The CCR5 was labeled with DNA strands, purified and characterized. The 

strands on CCR5 are complementary to the protruding strands on the DNA minicircle in 

DEBs. This can allow reconstitution of GPCRs inside DEBs with controlled orientation of 

the receptor.  
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Chapter 1 Introduction 

1.1 Lipid membranes 

1.1.1 Cell membranes 

Cell membranes have an important role in both cell structure and cell function.1 They 

enclose the cell and its compartments, maintaining their boundaries and the essential 

differences between them.2 Furthermore, cell membranes participate in many cellular 

processes including protein synthesis, signal transduction and metabolite transport.3 The 

importance and complexity of the biological membranes was described in 1972 by Singer 

and Nicolson, who proposed the fluid mosaic model.4 This model describes the structure 

of the plasma membrane as a mosaic of components: membrane proteins have amphi-

pathic structure and are embedded in a lipid bilayer that consists of two antiparallel lipid 

leaflets but assumes that the lipid bilayer has little to no effect on the proteins’ behavior. 

Later on, other models were created in order to better explain the function and internal 

organization of the plasma membranes, focusing on structural diversity and asymmetric 

lipid distribution between the bilayers.5–8 While these models state that the lipids are es-

sential for the membrane proteins to function properly, they agree with the fluid mosaic 

model in regards to the composition itself (Figure 1-1).  
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Figure 1-1. Current representation of the plasma membrane, showing the fluid mosaic 

organization proposed by Singer and Nicolson9 Adapted with permission from John Wil-

ley & sons, Inc. [9], copyright (2010). 

Although the composition of the cell membrane varies between different cells, they al-

ways contain three types of lipids: phospholipids, cholesterol and glycolipids.1 The most 

common phospholipids are phosphoglycerides (phosphatidylethanolamine, phosphati-

dylserine, phosphatidylcholine) and sphingomyelin (Figure 1-2).10 Phosphoglycerides 

have a three-carbon glycerol backbone, whereas sphingomyelin is derived from sphin-

gosine.11 The difference in the lipid composition is present even within the same plasma 

membrane: namely, the zwitterionic phospholipids and glycolipids are present in the 

outer part of the membrane, whereas the negatively charged lipids (such as phosphati-

dylserine) are located primarily in the inner part of the cell membrane.12,13  
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Figure 1-2. Common lipids in mammalian cell membranes. a) Schematic representation 

of a phospholipid (here, phosphatidylethanolamine) with hydrophilic head group (orange) 

and hydrophobic tails (green); the presence of double C-C bonds induces the kink in the 

tail. b) Phosphatidylcholine c) Phosphatidylserine d) Cholesterol. 

1.1.2 Principles of membrane organization 

The presence of hydrophobic groups in lipids causes them to spontaneously assemble 

into structures in which these groups will not be exposed to the water. This process is 

greatly affected by the shape of the lipid molecule, which can be characterized as a 

“shape factor” 𝑆:14,15 

 𝑆 =
𝑉

𝐴0𝐿𝐶
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Where 𝑉 is the volume of the molecule, 𝐴0 is the “optimal” area of the lipid headgroup 

considering its protonation state and dimensions, whereas 𝐿𝐶 is the length of the straight 

acyl chain. Depending on 𝑆, lipids can form various structures: for 𝑆 < 1 (inverted conical 

shape) they assemble micelles, for 𝑆 = 1 (cylindrical shape) they form lamellar structures 

and for 𝑆 > 1 (conical shape) they form inverted micelles (Figure 1-2). Since phospholip-

ids are cylindrical, they form bilayers in aqueous environments. However, the planar 

phospholipid bilayer is not stable as its edges are still exposed to water. Therefore, it 

spontaneously closes and forms a spherical vesicle, called liposome.16  

 

Figure 1-3. Principles of lipid organization. a) Schematic representation of lipids with dif-

ferent shape factor S and shape of their preferred assemblies: inverted cone shape lipids 

(S < 1) form micelles (left), cylindrical shape lipids (S =1) form bilayers (middle), cone 

shape (S > 1) form inverted micelles (right). b) Schematic representation of different lipid 

bilayer phases: gel phase or ordered solid (left) at phase transition temperature (Tm) 

changes to liquid disordered (ld, middle) phase. Right: liquid-ordered phase (lo). Blue 

ovals represent cholesterol molecules. 

The fluidity of the lipid membrane depends on the temperature and its composition. The 

temperature where a given lipid bilayer changes from a fluid (liquid disordered, ld) phase 

to a gel (ordered solid) phase is called phase transition temperature (Tm).17 This depends 

on the structure of the lipids; namely, saturated lipids with longer hydrophobic tails will 
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have stronger hydrophobic interactions with each other, which leads to the formation of 

an ordered phase, increasing the phase transition temperature.18 Conversely, unsatu-

rated or lipids with short chains will have lower phase transition temperature. The pres-

ence of cholesterol in the lipid bilayer greatly affects the fluidity of the membrane: it an-

chors between the hydrophobic tails and makes them more rigid, generating liquid-or-

dered (lo) phase, which leads to increased order in the membrane without increased 

melting temperature.16 

Lipids within a lipid bilayer are mobile: they can either rotate around their long axis, bend 

their flexible hydrocarbon chains, diffuse laterally within a monolayer, or migrate from 

one monolayer to other (flip-flop). Lateral diffusion of lipids in membranes is described 

by the modified Einstein relation: 

< 𝑟2(𝑡) > = 4𝐷𝑡𝛼 

Where < 𝑟2(𝑡) > is the mean square displacement (MSD), 𝐷 is a constant called diffu-

sion coefficient, 𝑡 is time and 𝛼 (0 < 𝛼 < 1) is the anomalous exponent. Diffusion coeffi-

cient 𝐷 is the most importan parameter of diffusion and can be determined experimen-

tally by fluorescence correlation spectroscopy (FCS), fluorescence recovery after photo-

bleaching (FRAP) and single particle tracking (SPT).19 While the lateral diffusion is fast, 

the flip-flop occurs less than once a month for any individual molecule. Cholesterol is an 

exception to this rule because it can flip-flop rapidly.14 Molecular dynamic simulations 

and experimental procedures mentioned above have shown that the lipids in the bilayers 

are disordered and confirmed that the lipid membrane is a two-dimensional liquid in 

which the lipids freely move laterally.20–22  

Lipid rafts 

Lipid rafts are subdomains of the plasma membrane that contain high concentrations of 

cholesterol and sphingolipids.23 They exist as distinct liquid-ordered regions of the mem-

brane that are resistant to extraction with nonionic detergents and thicker than the sur-

rounding membrane.24 Lipid raft formation is driven and stabilized by lipid-lipid, lipid-pro-

tein and protein-protein interactions.25 Although the size of individual rafts is small, they 

can constitute a large fraction of the plasma membrane’s surface.18 While rafts have a 

distinctive protein and lipid composition, not all rafts are identical in terms of either the 

proteins or the lipids that they contain.  
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Solubilization of lipid membranes by detergents 

As discussed in the previous section (1.1.1), biological membranes form supramolecular 

aggregates consisting of lipids and membrane proteins. In order to study membrane 

structure and function, it is usually necessary to dissociate the membrane into its com-

ponents.26 The most common membrane solubilization technique is using detergents. 

Detergents (also known as surfactants) are amphipathic molecules consisting of a hy-

drophilic head and a long hydrophobic tail.27 Depending on their structure, detergents 

are classified as ionic, non-ionic or zwitterionic. Ionic detergents possess a net charge 

due to the presence of anionic or cationic head group.28 They have either straight hydro-

phobic chains (e.g. sodium dodecyl sulfate – SDS) or rigid steroid groups (e.g. sodium 

cholate). On the other hand, non-ionic detergents have uncharged head groups contain-

ing such as glycosidic groups (octyl glucoside) or polyoxyethylene moieties (TritonTM). 

Zwitterionic detergents (such as CHAPS (3-((3-cholamidopropyl) dimethylammonio)-1-

propanesulfonate) have both positive and negative charge.  

Due to their amphiphilic nature, detergents tend to form micelles. The minimal concen-

tration needed for micelle assembly is called critical micelle concentration (CMC).29 The 

average number of detergent molecules in a micelle is described as the aggregation 

number.30 The CMC and aggregation number are highly dependent on the structure of 

the detergent: namely, ionic detergents with longer hydrophobic chains form bigger mi-

celles and have lower CMC and aggregation number since fewer molecules are needed 

to form a micelle.31 The temperature at which a detergent solution near CMC separates 

into two phases is defined as the cloud point. The lower phase consists of aggregated 

micelles, whereas the upper phase is detergent-depleted. External factors, such as pH, 

temperature and ionic strength heavily influence the CMC, aggregation number and 

cloud point.32 Detergents are crucial for membrane protein solubilization and crystalliza-

tion, which will be discussed in Section 1.2.3. 
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Figure 1-4. Common detergents used for solubilization of lipid membranes. a) SDS b) β-

octyl glucoside c) Sodium cholate d) TritonTM. Hydrophilic heads are marked red.  

1.2 Membrane proteins 

1.2.1 Membrane proteins in biological membranes 

As some models show, the lipid bilayer not only determines the shape and basic struc-

ture of the cell membrane but modifies the behavior of the proteins it contains.6,7 Despite 

this, the membrane proteins themselves are responsible for most membrane functions 

other than compartmentalization. They play the main role in the transport through the 

cell membrane and signal transduction, catalyze chemical reactions on the membrane, 

and participate in intercellular joining, cell-cell recognition and cell attachment.1 Their 

crucial role is reflected in the fact that membrane proteins make up ~23% of the human 

proteome.33 The importance of membrane proteins in, specifically, human health is even 

better stated in the fact that they represent about 60% of the targets for approved drugs 

and a 38% of all identified disease-related proteins.34 

Membrane proteins can be associated with the lipid bilayer in different ways (Figure 1-5). 

Integral membrane proteins are permanently attached to the membrane and can either 

span the entire membrane (transmembrane proteins) or be associated only to one side. 

All transmembrane proteins contain residues with hydrophobic side chains which interact 

with lipids and thus anchor the protein to the lipid bilayer.1 In most cases, the hydrophobic 

domain of the protein spans the lipid bilayer in α-helical conformation once (e.g. LRR 
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receptor-like serine/threonine-protein kinase) or multiple times (eg. G-protein cell recep-

tors - GPCRs)35. Other transmembrane proteins, such as OmpA (Outer membrane pro-

tein A), span the membrane as a rolled-up β sheet, called β-barrel.36 In comparison to 

the integral proteins, the peripheral proteins are temporarily attached to the surface of 

the lipid bilayer or to an integral protein. 

 

Figure 1-5. Different ways in which membrane proteins interact with lipid bilayer. a) mem-

brane-spanning single -helix b) multiple -helices c) β-barrel d) Interaction by an am-

phipathic α-helix parallel to the membrane plane (in-plane membrane helix) e) Interaction 

by fatty acid chain hydrophobic loop (red) f) Interaction by a covalently bound membrane 

protein. 

Irrespective of the type of the membrane protein, they all need certain conditions in the 

lipid bilayer in order to function properly. Whether the presence of certain lipids is im-

portant for the membrane protein function can be determined by various methods, in-

cluding reconstitution in artificial membranes, X-ray crystallography and lipid array 

screening.37 For example, the presence of cholesterol is crucial for the activity of the 

human 2-adrenergic receptor; phosphatidylserine increases the activity of D-lactate de-

hydrogenase and phosphatidylethanolamine binds to Thermochromatium tepidum pho-

tosynthetic reaction center.38  

One of the most important membrane protein families is the G protein-coupled receptor 

family, that will be further discussed in the following chapter.  

1.2.2 G protein-coupled receptor family 

G protein-coupled receptors (GPCRs), are transmembrane receptors with seven trans-

membrane spanning segments. These receptors are responsible for signal transduction: 
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they control key physiological functions, including neurotransmission, hormone and en-

zyme release from endocrine and exocrine glands, immune responses, cardiac- and 

smooth-muscle contraction and blood pressure regulation.39 Their dysfunction contrib-

utes to some of the most prevalent human diseases, as reflected by the fact that GPCRs 

represent the target, directly or indirectly, of 34% of all current therapeutic agents.40  

The GPCR family has more than 800 receptors organized in 5 classes: rhodopsin (class 

A), secretin (class B), adhesion (originally class B), glutamate (class C), and friz-

zled/taste2. The physiologic function of a large fraction of GPCRs remains unknown; 

these receptors are known as orphan GPCRs.35  

GPCRs share common structural features: they all consist of the extracellular N-termi-

nus, seven hydrophobic transmembrane (TM) helices connected with three intracellular 

and three extracellular loops, and an intracellular carboxyl terminus (Figure 1-6). GPCRs 

show the greatest homology within the TM segments, whereas the most variable struc-

tures are the carboxyl terminus, the intracellular loop between TM5 and TM6 and the N-

terminus. The latter in particular shows the greatest diversity: namely, monoamine and 

peptide receptors have relatively short sequence (10-50 amino acids), whereas glyco-

protein hormone receptors, adhesion and glutamate family receptors have 350-600 

amino acids at their N-terminus.41  

 

Figure 1-6. Structural features of GPCRs: structure determination of Interleukin 8 recep-

tor, alpha (CXCR1). a) CXCR1 topology with two disulphide bonds (gold), extracellular 

loops (ECL1-ECL3) in grey and intracellular loops in blue (IC1), green (ICL2) and red 

(EC3) b) Backbone representation of CXCR1 showing helices in cyan (TM1–TM7 and 
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H8), and loops as described. Disulphide-bonded Cys pairs (Cys 30–Cys 277 and 

Cys 110–Cys 187) are shown as sticks.42 Adapted with permission from Springer Nature: 

Nature [42], copyright (2012). 

Various ligands can bind to GPCRs, ranging from ions (H+ and Ca2+) to small organic 

molecules or peptides and proteins. They can bind either to the TM core (nucleosides, 

eicosanoids), to both the core and extracellular loops (small peptides), to extracellular 

loops and N-terminus (polypeptides < 90 amino acids) or exclusively to the N-terminal 

segment (glycoproteins > 30 kDa).39 Ligand binding triggers the receptor activation, 

which consists of three steps: signal generation, TM signal transduction and signal trans-

fer to cytoplasmic signal molecules. In the special case of photoreception by the visual 

photoreceptor rhodopsin, a covalently bound inverse agonist (11-cis retinal) turns into an 

agonist by photoisomerization (forming all-trans retinal at the transmembrane binding 

site). The classical signal transduction through GPCRs is dependent on receptor-medi-

ated activation of heterotrimeric G proteins, which are composed of three subunits known 

as Gα, Gβ and Gγ. These units dissociate and, depending on the GPCR-ligand complex, 

modulate the activity of different downstream effector proteins, inducing a cell re-

sponse.41 The signaling pathways downstream of GPCRs are complex and their detailed 

description is reported elsewhere.35,41,43,44 

Chemokine receptors 

Chemokine receptors are rhodopsin-like GPCRs found on the surface of certain cells 

that interact with a type of cytokine called a chemokine.45 Chemokines are critical medi-

ators of cell migration during routine immune surveillance, inflammation and develop-

ment.46 After interacting with their specific ligands, chemokine receptors trigger a flux in 

intracellular calcium ions known as calcium signaling.47 This induces a response in the 

cell, including the onset of a process known as chemotaxis that traffics the cell to the 

location of an inflammation.  

Chemokine receptors are divided into four classes, named according to the type of chem-

okine (CC, CXC, CX3C or XC, depending on the position of conserved cysteine residues 

involved in disulfide bond formation) with which they interact.48 Since chemokines bind 

to the N-terminal of chemokine receptors, the main structural difference between the four 

classes of receptors comes from the spacing of cysteine residues near their N-termini. 
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Once a chemokine is tethered to a chemokine receptor, its unstructured N terminus en-

ters the receptors’ TM domains to induce a conformational change which is translated 

into an intracellular signal.49  

1.2.3 Membrane protein solubilization strategies 

Due to their hydrophobic regions, membrane proteins are prone to aggregation and pre-

cipitation in solution.50 Therefore, the solubilization of the membrane proteins is a pre-

requisite for in vitro functional or structural studies.  

The most common membrane solubilization strategy is using detergents. Since deter-

gents are amphiphilic molecules, their hydrophobic domains interact with hydrophobic 

domains of the membrane protein, while the hydrophilic domains are exposed to water, 

making the protein soluble in water (Figure 1-7 a).26 However, this strategy does not 

provide the native environment for the membrane proteins due to the absence of mem-

brane lipids, which are often crucial for the protein function.28 Furthermore, some deter-

gents (such as sodium-dodecyl-sulphate - SDS) can disrupt the bonds between the 

transmembrane domains of the protein, leading to its denaturation. This can be over-

come by using mild detergents,51 followed by membrane protein reconstitution in the lipid 

bilayer.  

Other strategies focus on substituting the detergents during the membrane protein solu-

bilization. One of them, described in 1996 by Tribet and co-workers, uses molecules 

called Amphipols.52 These consist of hydrophilic polymers with several hydrophobic 

groups, which interact with hydrophobic domains of the protein and stabilize it in the 

solution. However, they are not used often and detergents are still the main way of sol-

ubilizing the membrane proteins. 

1.2.4 Membrane protein reconstitution strategies  

As mentioned in sections 1.2.1 and 1.2.3, in order to ensure that the isolated membrane 

protein of interest is both functional and in a native state, it needs to be reconstituted in 

a system that mimics its native environment as good as possible. Since the function of a 

membrane protein depends on the lipids present in the cell membrane,53 the reconstitu-

tion strategies described below contain an abundance of lipids in comparison to the de-

tergent-solubilized micelle of the protein.  
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Bicelles 

Bicelles are disk-shaped lipid bilayers usually containing detergents and several types 

of lipids. Long-chain phospholipids form the planar region, whereas the short-chain lipids 

or detergents form flanking rims that stabilize the system (Figure 1-7 b).54 The size of the 

bicelles can be controlled by adjusting the molar ratio of long chain to short-chain com-

ponent. Due to their magnetic alignability, they are frequently used for solution and solid-

state nuclear magnetic resonance (NMR) studies.55,56 Applications of bicelles outside of 

NMR spectroscopy include the crystallization of membrane proteins from bicelle formu-

lations, their use as delivery vehicles for membrane proteins to oocyte membranes,57 

and as templates for the synthesis of platinum nanowheels.58 Nevertheless, the size and 

exact composition of the bicelles cannot be fully controlled since other proteins might 

reconstitute in the bicelle together with the target membrane protein, which makes the 

studies inherently challenging.  

Liposomes 

As mentioned in Section 1.1.2, when phospholipids are dispersed in water, they self-

assemble to form spherical vesicles of phospholipid bilayers with an aqueous core, called 

liposomes.1 Liposomes can have one (unilamellar) or more (multilamellar) lipid bilayers.59 

Unilamellar liposomes have been widely used for membrane protein studies, especially 

ion channels and fusion proteins (Figure 1-7 c).60,61 Furthermore, they are used as a 

model system for investigating phospholipid dynamics, cell invaginations, endo- and ex-

ocytosis and location of the membrane proteins in the cell membrane (lipid rafts).5,60,62–

64 However, both the orientation and number of the membrane proteins inserted into the 

bilayer cannot be controlled, making this system inadequate for single-molecule studies. 

Furthermore, the liposome samples are unstable for extended periods of time, precipitate 

and tend to segregate into phase-separated domains.  

Nanodiscs 

Nanodiscs consist of a phospholipid bilayer encircled by polymers, peptides or proteins. 

Most commonly, nanodiscs are encircled by the 2 amphipathic α-helical membrane scaf-

fold proteins (MSPs), derived from Apolipoprotein-A1 (Figure 1-7 d).65,66 The length of 

MSPs determines the diameter of the nanodiscs, which is usually less than 17 nm. De-

pending on the length of MSP, nanodiscs can have diameters up to 17 nm.67 Lately, 

covalently circularized nanodiscs have been assembled with polypeptides circularized 
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by sortase A. These nanodiscs have diameters of 8, 11, 15 and 50 nm.68 Nanodiscs with 

incorporated membrane proteins can be assembled from a detergent solubilized mixture 

of all components by gradual removal of detergent via adsorption on hydrophobic beads 

or by dialysis.69 Nanodiscs are used for structural studies of membrane proteins including 

single molecule investigations,70 X-ray crystallography,71 cryo electron microscopy72 and 

analytical73 and functional studies of membrane proteins. However, since the chemical 

modifications of MSP are challenging, the reconstituted protein cannot easily be chemi-

cally attached to a MSP and therefore will have a large number of possible orientations. 

Furthermore, the size distribution of assembled nanodiscs is heterogeneous. However, 

it is attractive for many applications to form a complex with a molecule that will be capable 

of attaching to the membrane protein and locking it into the desired orientation. Com-

pared to MSPs, double-stranded deoxyribonucleic acid (DNA) is more suitable for chem-

ical modifications. Furthermore, DNA can be self-assembled and form rigid structures 

that are compatible with other biomolecules. The properties of DNA and DNA structures 

will be discussed in the following section (1.3).   
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Figure 1-7. Membrane protein solubilization and reconstitution strategies. Membrane 

proteins (yellow) can be solubilized using detergents (blue) by forming a detergent-solu-

bilized micelle of the protein (a). In presence of lipids (green), membrane proteins can 

be reconstituted into bicelles (b), liposomes (c) and nanodiscs (d)74. Adapted from ref. 

[74] (CC BY 4.0). 

1.3 DNA nanotechnology 

1.3.1 Structure and biological function of DNA 

All living cells store their hereditary information in the form of double-stranded polymer 

chains, called deoxyribonucleic acid (DNA). In prokaryotic cells, DNA is stored in the 

nucleoid, whereas in eukaryotic cells it is stored in chromosomes. Histones are proteins 

responsible for packing DNA inside into chromatin fibers in chromosomes, which repli-

cate during cell division, providing the same genetic material to both daughter cells. The 
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transfer of genetic information is carried away from DNA to proteins via RNA. The pro-

cess where information from a small segment of DNA gets translated to messenger-

ribonucleic acid (mRNA) is called transcription. Later on, the mature mRNA gets tran-

scribed into a protein. The flow of the genetic information through replication, transcrip-

tion and translation is known as the central dogma of molecular biology.  

The structure of DNA helix as described by Watson and Crick consists of two long poly-

nucleotide antiparallel chains composed of four different nucleotides (Figure 1-8). Each 

nucleotide is composed of a -D-deoxyribofuranose linked by phosphodiester bods to a 

phosphate and nucleobase at 3’ and 5’ position, respectively.75 DNA consists of 4 nucle-

obases: adenine (A), guanine (G), cytosine (C) and thymine (T). In the DNA helix, nucle-

obases and sugars are roughly perpendicular to each other, while the nucleobases are 

perpendicular to the central axis. The backbone of the DNA strand is 10 Å away from the 

central axis and consists of phosphate and -D-deoxyribofuranose molecules, whereas 

the nucleobases, due to their hydrophobicity in comparison to other parts of the DNA, 

are located on the inside. Nucleobases form hydrogen bonds with each other: namely, 

A pairs with T whereas C pairs with G. This complementary base pairing, together with 

- stacking among the nucleobases, stabilizes the DNA helix.76 Each turn of the DNA 

helix consists of 10.4 base pairs and (bp) the center-to-center distance between adjacent 

nucleotide pairs is 0.335 nm. The coiling of the two strands around each other creates 

two grooves in the DNA helix: major groove and minor groove. 

 

Figure 1-8. Structure of DNA. Left: Crystal structure of DNA dodecamer at high resolution 

(adapted from PDB: 2HKB). Right: Watson-Crick base pairing. 
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Conformations of DNA 

The DNA helix changes its conformation due to external factors such as the hydration 

level, concentration of metal ions and polyamines, and internal factors such as the nu-

cleotide sequence or the chemical modification of nucleobases. Changes in these factors 

can then lead to changes in the handedness of the DNA helix, length of the helical turn, 

numbers of the bases per turn and difference in major and minor grooves.77 The most 

common conformations of DNA double helix include B-DNA, A-DNA and Z-DNA. B-DNA 

is the most common conformation of the DNA helix that occurs at high hydration levels 

present in cells. As described by Watson-Crick, B-DNA is right-handed and has a wide 

major groove, providing an easy access to DNA-binding proteins.75 In comparison to B-

DNA, A-DNA conformation is favored under dehydrating conditions. The A-DNA helix is 

wider, more rigid than B-DNA, right-handed and has about 11 bp per turn.78 A-form helix 

is com-mon for DNA-RNA hybrids, double-stranded RNA triplex-DNA and protein-DNA. 

On the other hand, Z-DNA is a left-handed form which occurs in DNA sequences con-

taining methylated bases or alternating purine-pyrimidine tracts. In cells, Z-DNA plays a 

role as a transcription enhancer.79 The Z-DNA helix has 12 bp per turn and it is narrower 

than B-DNA and A-DNA.80,81 

A-tracts 

As mentioned above, the DNA sequence can greatly affect the conformation of the helix. 

One example are ‘A-tracts’, which consist of 4-6 adenine base pairs repeated with the 

helical periodicity.82 They produce an overall helix axis bend from 11-28° by decreasing 

the minor groove width from the 5’ to the 3’ direction along the A-strand. This is a result 

of propeller twist in the A-T pairs, which increases negative inclination of the adenine 

bases at the 3’ side of the run of adenine bases.83 Macroscopically, the A-tract-containing 

DNA migrates slower on the gel when compared with the same length DNA.84 The cur-

vature of the A-tracts can be explained by two models: the first one, called the wedge 

model, proposes that the curvature of the A-tract DNA occurs due to cumulative changes 

in dinucleotide steps, while retaining a normal B-DNA conformation; namely, the curva-

ture is produced by uniform roll angles at ApA steps.85 Another version of the wedge 

model proposes that all B-DNA sequences can be characterized by roll between base 

pairs and that ApA steps exhibit little or no roll with the curvature taking place outside the 

A-tract.83,86 The second model, however, proposes that the A-tract has an anomalous 

structure which yields base-pairs with negative inclination relative to the overall helix 
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axis.87 Due to its anomalous structure, when A-tract is in the contact with the B-DNA, the 

bend at the junction is predicted. This model is based on fiber diffraction measurements 

of poly(dA)·poly(dT) and proposed by Crothers.88 The presence of the A-tracts is of cru-

cial importance when it comes to assembly of small circular DNA structures, which will 

be discussed in the following section. 

 

Figure 1-9. Structure of an A-tract DNA bend. The third adenosine nucleotide of the A-

tract at position 6 in each helix is shown in red for orientation a) the deoxyribose of aden-

osine 6 is viewed in line with the best helical axis as computed by CURVES 5.3. b) 270° 

rotation of the A-tract about the z-axis.83 Adapted with permission from Elsevier: Journal 

of Molecular Biology [81], copyright (2001). 

Sticky ended cohesion of DNA double helix – DNA minicircles 

The intrinsic bending of A-tracts has been widely employed, including the assembly of 

structural elements such as double-stranded DNA minicircles (dsDNA MCs).89–94 They 

have been assembled for the first time in 1986 by hybridizing two 21-base strand pre-

cursors (Figure 1-9 a).89 These precursors had two A-tracts and were partially comple-

mentary, forming dsDNA with sticky ends as the main building unit for the DNA minicircle 

assembly. Due to the sticky-end cohesion, dsDNA MCs in various sizes (105 bp – 

168 bp) were assembled. The presence of A-tracts in the design is crucial since they 

induce bending of the helical axis and therefore drastically reduce the ring strain. Fur-

thermore, their presence is necessary for defining the directionality of the functional 

groups attached to the MCs. Thus, DNA MCs with gaps for versatile functionalization 
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have been assembled, which can be hybridized with any desired functionalized oligonu-

cleotide to yield DNA MCs with specific properties.92 Moreover, DNA catenane91 and 

DNA rotaxane90 have been assembled by interlocking dsDNA MCs, which have a great 

potential as components for molecular machines and motors. In 2015 it has been demon-

strated that catenanes can be used to show switchable cyclic catalytic properties.95 

dsDNA MCs can be used as a building unit for higher-ordered structures: namely, when 

dsDNA MCs are labeled with polyamide struts, they can form multimeric structures in a 

controlled manner.93,94  

 

Figure 1-10: DNA minicircles applications. a) A-tract containing 21 nt precursor for circu-

larized DNA assembly89 b) double-stranded DNA rotaxane90 Adapted with permission 

from Springer Nature: Nature Nanotechnology [90], copyright (2010). c) double-stranded 

DNA catenane91 Adapted with permission from ref. [91], copyright (2011), American 

Chemical Society. d) Switchable, cyclic, reconfiguration of a two-ring catenane system 

between the Mg2+-dependent DNAzyme, state A, and the Zn2+-dependent DNAzyme, 

state B, using L3 and L3′ strands as reconfiguration promoters. The Mg2+-dependent 

DNAzyme cleaves substrate S1 leading to the fluorescence of F1, while the Zn2+-de-

pendent DNAzyme cleaves substrate S2, leading to fluorescence of F2.95 Adapted with 

permission from ref. [95], copyright (2015), American Chemical Society. 

1.3.2 Structural DNA nanotechnology 

Structural DNA nanotechnology aims at synthesizing and building sequences of nucleic 

acid complexes with nanoparticles and nanomaterials. It is based on two main effects: 

DNA hybridization induced by Watson-Crick base-pairing and stably branched DNA. The 

concept of DNA nanotechnology was established by crystallographer Nadrian Seeman 
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in early 1980s. He envisioned that a branched DNA can be used to create 3D lattices for 

orienting large molecules (such as proteins), which would simplify their crystallographic 

studies.96 He was inspired by the Holliday junction, a naturally occurring branched DNA 

structure that is a key intermediate in genetic recombination. Holliday junctions consist 

of four DNA strands arranged into four double-helical arms. Since a naturally occurring 

Holiday junction contains sequences with homologous symmetry, it can isomerase 

(brunch migration).97 In order to overcome that, Seeman created a first asymmetric Hol-

iday junction (4-arm junction) with single-stranded sticky ends, that self-assembled into 

a quadrilateral shape (Figure 1-11 a).98 Consequently, the structure can be extended to 

form an infinite 2D lattice. Later on, asymmetric 3-arm, 5-arm and 6-arm junctions were 

created, followed by a synthetic cube made of DNA and DNA-truncated octahedron.99,100  

 

Figure 1-11. Foundations of DNA nanotechnology a) Immobile branched DNA (Holliday 

junction) with self-complementary sticky ends (left) can form a quadrilateral (right). The 

sticky ends outside of the quadrilateral are available so that the structure can be ex-

tended to form a 2D lattice. b) branched DNA with self-complementary sticky ends can 
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be used to form a crystalline array to which biomolecules can be attached. The artistic 

representations in panels a) and b) were inspired from the ref. [98] c) 3D DNA structures 

assembled from immobile junctions: DNA cube constructed from connected three-arm 

junctions99 (left), DNA octahedron constructed from a long DNA strand and five connect-

ing strands100 (middle) and tetrahedron constructed from four DNA single strands.101 

Panel c (left) is adapted with permission from ref. [99], copyright (2003), American Chem-

ical Society. Panel c (middle) is adapted with permission from Springer Nature: Nature 

[100], copyright (2004). Panel c (right) is adapted with permission from The American 

Association for the Advancement of Science: Science [101], copyright 2004. 

1.3.3 Scaffolded DNA origami 

The first assembled structures based on immobile junctions and crossovers proved that 

DNA can be used as a building material for nanometer-size structures. However, the 

assembly of relatively complex structures was still challenging because it required mul-

tiple reaction steps and purifications, which resulted in low yields. Therefore, in 2006 

Paul Rothemund published a method where the DNA structures are based on a long 

single stranded DNA ‘scaffold’ strand that folds into a designed pattern. This was 

achieved by the addition of many short single-stranded DNA strands, called ‘staple 

strands’, that bring together the parts of the scaffold strand to give the designed shape.102 

This method creates DNA structures that approximate the outline of any desired shape, 

such as squares, discs and stars. Furthermore, it creates an addressable surface with 

area of 60 x 90 nm2 and enables the assembly of structures with arbitrarily shaped 

holes. DNA origami has been widely employed for building various 2D and 3D struc-

tures.103–105 These structures were used for embedding nanomechanical,106 plasmonic107 

and drug delivery103,108 devices, as an aid to NMR structure determination109,110 and sup-

port for nanomechanical assembly line.109 One of the interesting applications of DNA 

origami structures is for interaction with biological systems, which will be discussed in 

the next chapter. 
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Figure 1-12. Scaffolded DNA origami principle and applications. a) Scaffolded DNA ori-

gami technique is based on folding a long, single-stranded DNA (black) with many short 

staples (orange, green, blue and red) into desired, programmable shapes102 b) first DNA 

origami assemblies proving that the method can be used to form arbitrary shapes. Scale 

bars: 100 nm. Panels a and b are adapted with permission from Springer Nature: Nature 

[102], copyright (2006). c) aptamer-gated DNA nanorobot for targeted drug delivery 

loaded with a protein payload (pink) in closed (left) and open (right) state. Aptamer locks 

consist of a DNA aptamer (blue) and a partially complementary strand (orange).111 

Adapted with permission from The American Association for the Advancement of Sci-

ence: Science [111], copyright 2012. d) DNA origami as a platform for self-assembled 

plasmonic waveguide precursors: gold nanoparticles are arranged on a 6-helix bundle 

DNA origami in a programmable manner by mixing the DNA-functionalized gold nano-

particles with 6-helix bundles containing complementary strands.107 Adapted with per-

mission from ref. 107, copyright (2016), American Chemical Society. e) DNA origami-

directed protein assembly: DNA origami is used to attach two motors of opposite polarity, 

dynein (green) and kinesin (orange), slowing or stalling its motion as a result of this ‘tug 

of war’. When dynein is photochemically cleaved (inset), motility is restored.112 Adapted 
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with permission from The American Association for the Advancement of Science: Sci-

ence [112], copyright 2012. 

1.3.4 DNA nanostructure interaction with lipid bilayers 

As mentioned above, DNA nanostructures can advance the understanding of biological 

processes: namely, they have been used as novel diagnostic tools,113 synthetic compart-

ments of cells,114 modified-release systems for current drugs115 and targeted delivery of 

small molecules,116 peptides, proteins117 and mRNA.118 Since most of the structures men-

tioned above need to interact with lipid membranes in the cells, they need to be assem-

bled in such a way that they interact with lipids, which usually does not occur in nature. 

In order to conjugate a charged molecule such as DNA with amphiphilic molecules such 

as lipids, two strategies have been developed: electrostatic interactions and hydrophobic 

functionalization of DNA.119  

Electrostatic interactions 

Due to its negatively charged backbone, DNA can electrostatically interact with positively 

charged lipids, such as DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) and 

DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) in low salt concentra-

tions.119–121 The presence of divalent cations (such as Mg2+ and Ca2+) enables the elec-

trostatic interaction between DNA and zwitterionic lipids, where divalent cations insert 

between phosphates of the neighboring lipids and neutralize them, resulting in a net 

positive charge. These interactions have been utilized to direct self-assembly of DNA 

origami structures into 2D lattices on supported lipid bilayer.122 

 

Figure 1-13. Utilizing electrostatic interactions between DNA and lipids: in the presence 

of divalent cations, mica-supported lipid bilayers can serve as a platform for self-assem-

bly of DNA origami nanostructures.122 a) schematic representation of the assembly, 
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where DNA origami monomers (green) can stack together on the mica-supported lipid 

bilayer (orange), forming large 2D DNA origami structures b) AFM image of the lattice 

made from the DNA origami monomers. Scale bar: 100 nm. Adapted from ref. [122] (CC 

BY 4.0). 

Hydrophobic functionalization 

The most common way of assembly of DNA-lipid conjugates is by introducing hydropho-

bic groups to DNA. DNA can be hydrophobically functionalized either during the solid-

phase synthesis and after the synthesis.  

Modifications during the solid-phase synthesis include introducing porphyrin,123 -to-

copherol,124 poly(propylene oxide)125 and lipids, particularly cholesterol to DNA.126–129 

Due to its commercial availability, cholesteryl-labeled DNA has been used the most. The 

binding properties of cholesteryl-modified DNA structures depend on the linker on which 

cholesterol is attached: namely, the cholesterol itself tends to go to Lo phase, whereas 

cholesterol linked to tetraethylene glycol (TEG) partitions to liquid disordered phase 

(L).119,130 Cholesteryl-modified DNA structures have been used for the controllable as-

sembly of DNA nanostructures on lipid membranes. This way, membrane sculpting can 

be monitored or membranes can serve as a support for DNA assembly.131 Cholesterol 

and porphyrin are used for anchoring the DNA nanopore into the lipid bilayer, which has 

a great potential for nanopore sequencing.128,132,133  

After the solid-phase synthesis and cleavage from the solid phase, DNA can be hydro-

phobically functionalized by reacting with thiol-, phosphorothioate-, amino- and azido- 

modified DNA. Phosphine-activated thiol-modified DNA reacts with maleimide-labeled 

lipids, resulting in lipid-labeled DNA.134 This method has been used for self-assembly of 

size-controlled liposomes on DNA templates,135 placing and shaping liposomes in recon-

figurable DNA nanocages136 and for studying lipid transfer between bilayers on a pro-

grammable DNA origami platform.137 The most common substrate for phosphorothioated 

DNA are alkyl-iodides.138 This reaction does not only increase hydrophobicity of the DNA 

– it also neutralizes the charge of the backbone. This is particularly important when it 

comes to embedding a DNA structure, such as nanopore, into the bilayer, because it 

provides higher hydrophobic coverage of the pore when compared to cholesteryl- and 

porphyrin- modified DNA nanopores.139,140  
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Figure 1-14. Interactions between hydrophobically functionalized DNA structures and li-

pids. a) DNA origami ring functionalized with 1,2-dioleoyl-sn-glycero-3-phosphoethano-

lamine (DOPE), which serve as seeds for vesicle formation (left). The functionalized rings 

were mixed with lipids in detergent and after the detergent removal, the liposomes with 

precise diameter were formed (right).135 Adapted with permission from Springer Nature: 

Nature Chemistry [135], copyright (2016). b) DNA origami octahedron contains DNA-lipid 

conjugates that were the base for the assembly of fused lipid bilayer wrapped around the 

DNA structure108 . Adapted with permission from ref. [108], copyright (2014), American 

Chemical Society. c) DNA origami nanocages with lipid modifications pointing towards 

inside are used for templated assembly of width-defined membrane tubules.136 Adapted 

with permission from Springer Nature: Nature Chemistry [135], copyright (2017). d) DNA 

origami nanopores that span lipid bilayers, featuring cholesterol-lipid anchors (left, cen-

ter) and alkylated phosphorothioates.128,139,141 Panel c (left) is adapted with permission 
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from The American Association for the Advancement of Science: Science [128], copy-

right 2012. Panel c (right) is adapted with permission from ref. [139], copyright (2013), 

American Chemical Society. 
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Chapter 2 Motivation and objectives 

Phospholipid bilayers and lipid-associated proteins perform a variety of functions vital to 

the survival of organisms. Since studies and manipulation in vivo are inherently challeng-

ing, several in vitro membrane-mimetic systems have been developed. Controlling the 

size and shape of introducing functional elements in a defined way is, however, difficult 

to achieve with common discoidal systems based on polymers, peptides or membrane 

scaffold proteins.  

The aim of this dissertation was to employ the programmability of DNA nanotechnology 

to generate a novel membrane-mimetic system. Using DNA nanotechnology, arbitrarily 

shaped structures with precise dimensions can be created. Furthermore, the assembled 

DNA structures can be functionalized with Å precision with a large variety of artificial 

elements in a modular and programmable fashion. In Chapter 3, a strategy to prepare 

discoidal phospholipid bilayer structures encapsulated by an alkylated ds DNA minicircle 

is discussed, with the aim of assembling DNA-encircled lipid bilayers (DEBs) that provide 

control of size, shape and stability of engineered membrane mimetics. 

In DEB technology, the lipid bilayer is stabilized by a 2 nm thick dsDNA minicircle, which 

stabilizes bilayers consisting of short-chain lipids. While this system provides a reliable 

way of reconstituting bilayers of programmable diameter, we wanted to expand its utility 

further, as reducing the design constraints of the DEBs will allow to tailor them to a wider 

variety of proteins. We have identified to ways to further improve the system: first by 

enabling lipid bilayer reconstitution in smaller-diameter minicircles and, in second place, 

by enabling the reconstitution of bilayers with longer-chain lipids. A solution that could 

help on both sides is to double the thickness of the DNA scaffold; the additional thickness 

would help with longer-chain lipids, while the additional alkylation points would provide 

more stable anchoring of the bilayer rim, leading to a smaller minimum diameter. This 

strategy, called “double-decker scaffold”, is discussed in Chapter 4. 

As mentioned above, introducing functional elements in common membrane mimetic 

systems remains challenging; one of the keys to overcoming these issues is to ensure 
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the correct orientation of the protein within the lipid membrane. By exploiting the versa-

tility of DNA, an approach to modify both the CCR5 and the DEBs with complementary 

DNA strands was taken. These additional anchor points would lock the protein in place, 

while keeping the desired orientation. This approach is discussed in Chapter 5. 

.  
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Chapter 3 DNA-encircled lipid bilayers 

(DEBs) 

The work presented in this chapter is published and sections 3.2, 3.3 and 3.44 were 

adapted with permission from Royal Society of Chemistry: Nanoscale ref [A], Copyright 

(2018). The coarse-grained molecular dynamics simulations were performed by Prof. 

Thomas Huber (The Rockefeller University, Prof. Sakmar Lab) and Dr. Xavier Periole 

(Aahrus University, then Prof. Schiøtt Lab). Protein expression and lipid phase transition 

studies were done by Madhumalar Subramanian (Helmholtz Zentrum Dresden – Ros-

sendorf, Prof. Fahmy Lab). AFM imaging and tSEM imaging were done by Dr. Michael 

Matthies and Dr. Nayan Agarwal, respectively (former Ph.D. students at the Center of 

Advancing Electronics Dresden, TU Dresden, then Dr. Schmidt Lab). 

3.1 Introduction 

Cell compartmentalization by membranes is crucial in biology and membrane-associated 

proteins contribute to fundamental cellular processes in energy conversion, cell commu-

nication and signal transduction. Membrane protein function is often linked to conforma-

tional transitions which may be critically affected by lipid protein interactions.142–146 As in 

vivo investigations are often very challenging, such functional implications of lipid protein 

interactions147 can be more easily studied in vitro with artificial membrane-mimetic sys-

tems which provide a native-like lipid environment. For example, planar discoidal na-

noscale lipid bilayers surrounded by amphipathic polymers148 or surfactant-like helical 

peptides149 have been described. Other than in spherical vesicles, these bilayers provide 

access to both sides of the bilayer, which may become important when studying trans-

membrane proteins and signal transduction. Most commonly, discoidal planar bilayers 

are assembled from dimeric apolipoprotein AI-derived proteins, which encircle a lipid bi-

layer, thereby sealing its hydrophobic rim to form nanodiscs (NDs). These membrane 

scaffold proteins (MSPs) typically support lipid bilayers of 10–16 nm in diameter.65,150,151 
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The demand for controlling the size and shape of discoidal membrane mimetics has been 

met by expression of MSP variants.67 

DNA nanotechnology provides an alternative approach to create membrane nanoparti-

cles with defined and programmable parameters98 since it has proven to enable the fast 

de novo design of arbitrarily shaped structures.102 For large, mega-Dalton-sized struc-

tures, typically measuring tens to hundreds of nanometers, the DNA origami approach 

became particularly popular due to its robustness and versatility.152–154 For some appli-

cations, smaller structures such as tetrahedra,116 icosahedra,155 or structures from DNA 

minicircles (MCs)90,91,107,119,156,157 consisting of fewer synthetic oligonucleotides can be 

better suited and are more economical. Due to the full addressability of DNA structures, 

they can be functionalized with Å precision with a large variety of artificial elements154 

including small molecules, fluorophores, functional groups, biomolecules or inorganic 

nanoparticles107 in a modular and programmable fashion. 

With the aim of leveraging these advantages of DNA nanotechnology for the design and 

synthesis of nanoscale discoidal lipid bilayers in the size range of NDs, we developed 

protein-independent DNA-encircled lipid bilayers (DEBs).  

3.2 Results and discussions 

3.2.1 DEB design 

In our approach, we conceptually replaced the MSP of nanodiscs by a circular double-

stranded DNA minicircle (dsMC). For this, alkylated oligonucleotides were hybridized to 

a single-stranded minicircle (ssMC) such that all alkyl chains point to the inside and thus 

stabilize the lipid bilayer. An overview of the strategy can be observed in Figure 3-1.  
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Figure 3-1. Assembly of the DEBs. a) ssDNA MCs (bottom) react with 7 complementary 

strands, each carrying 4 alkyl groups in red (top) forming a double-stranded DNA MC b) 

in the presence of lipids, bilayer is formed inside the ds DNA MC, resulting in DEB for-

mation. 

3.2.2 DEB formation strategy 

Assembly of DEBs can be broken down into four steps: alkylation of the complementary 

oligonucleotides, ssMC assembly, dsMC assembly and DEB assembly.  

ssMC assembly 

Single-stranded DNA minicircles were assembled by splint ligating a 147 bases long 

linear oligonucleotide consisting of 14 intrinsically curved A-tracts within the sequence to 

facilitate the formation of rings with a diameter on the nanometer scale (16 nm). After the 

ligation, the residual long oligonucleotides, splints and linear side products were enzy-

matically removed by a treatment with Exonuclease I/III (Figure 3-2 b). The synthesis of 

the ssMC was confirmed by a denaturing PAGE gel (Figure 3-2 c) 

Alkylation of complementary strands 

In order to enable lipid-DNA interaction, we needed to introduce hydrophobic groups to 

the DNA. Our approach was based on selective alkylation of phosphorothioates (PTOs), 

established by Gut and Beck in 1995.138 In this reaction, alkyl iodide reacts with the thiol 

group on PTO-labeled DNA via nucleophilic substitution to yield alkyl-protected DNA. 

Our short 21-nt complementary strands were functionalized with two or four internal PTO 

groups. These strands reacted with an excess of ethyl iodide, butyl iodide or decyl iodide 
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(Figure 3-2 a). As a result, the modified phosphorothioate is not charged anymore, which 

increases the affinity of the modified DNA segment to the lipid bilayer rim. The respective 

alkylated oligonucleotides were HPLC purified and alkylation was confirmed by ESI mass 

spectrometry.  

dsMC assembly 

The dsMCs were formed by hybridization of the ssMC with seven complementary alkyl-

ated oligonucleotides (Figure 3-2 d). The position of the alkylation (specific thymidines in 

A-tracts) was chosen in a way that forced the alkyl groups to be oriented towards the 

center of the ring. Excess oligonucleotides were removed by ultrafiltration and the dou-

ble-stranded minicircles (dsMCs) were then analyzed by native agarose gel electropho-

resis (Figure 3-2 e), atomic force microscopy (AFM) and transmission scanning electron 

microscopy (tSEM) Figure 3-3).  

DEB assembly 

Three different types of lipids were selected for the DEB formation, unless otherwise 

stated. As the main component of the bilayer, saturated phospholipids with short chains 

were chosen. Secondly, lipids with positively charged heads were selected in order to 

interact with negatively charged phosphate groups of the dsDNA ring. The phosphate 

groups next to the alkylated PTO groups will be preferentially targeted due to the addi-

tional Van-der-Waals interactions between the lipid and alkyl chains. In order to visualize 

the presence of the lipid bilayer in the dsDNA-nanodisc complex, a fluorescently labelled 

lipid was incorporated. 

After the selected lipids were dissolved in detergent, dsDNA rings were added in stoichi-

ometric ratio (lipid : MC was 450:1) and the complex was formed by removing the deter-

gent (Figure 3-2 f-g). 
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Figure 3-2. Synthesis of DEBs. a) Short oligonucleotides with two or four phosphorothi-

oates are alkylated with alkyl iodides (red). b) A circular single-stranded template is syn-

thesized by enzymatic splint ligation from a long, linear oligonucleotide (grey). Residual 

splints (green) and linear templates are digested by exonuclease treatment. c) A dena-

turing PAGE gel confirms the synthesis of the single-stranded minicircle (ssMC). M, mo-

lecular size marker (nt); lane 1, linear long oligonucleotide; lane 2, ligation reaction before 

exonuclease treatment; lane 3, exonuclease digest. d) The ssMC is hybridized with 

seven alkylated oligonucleotides into double-stranded MCs (dsMC). The position of al-

kylations, and the intrinsic curvature of the A-tracts (grey line in the center of the helix, 
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exaggerated) in a model of an A-tract84,158 (adapted from PDB structure 1FZX). Adeno-

sines are colored red, thymidines blue. e) Native PAGE gel. M, marker (base pairs); 1, 

linear long oligonucleotide; 2, the assembled dsMC complex. f) The dsMC is incubated 

with phospholipids (blue) to form a mature DEB (g). 

3.2.3 DEB analysis 

Assembled and purified DEBs were characterized by atomic force microscopy (AFM) 

and transition scanning electron microscopy (tSEM). AFM imaging of the dsMCs and 

DEBs revealed a doubling of the height of the empty DNA minicircles from ~1.3 nm to 

~2.5 nm due to the addition of the lipid bilayer (Figure 3-3 a-c). Absolute diameters or 

heights of soft, compressible biomolecules can usually not be measured with standard 

AFM imaging due to the mechanical deformation during scanning caused by the AFM 

tips and additional deformations caused by interactions with highly charged surfaces. As 

a result, both the DNA (actual thickness = 2 nm) and the DMPC bilayer (thickness = 

4-5 nm) appear thinner than in force-free environments. The tSEM images (Figure 3-3 

d-f) also confirm the presence of a lipid bilayer in the DEBs with short (14 ethyl) and 

longer (28 decyl) alkyl chains. 

 

Figure 3-3. Analysis of dsMCs and DEBs. a) An AFM image of empty dsMCs (R = 4 

butyl) and corresponding DEBs (b). c) Height profiles. d) tSEM images of empty dsMCs. 

e) tSEM image of a DEB with 14 ethyl modifications (positively stained). f) tSEM image 

of a DEB with 28 decyl modifications. Scale bars, 50 nm. 

Assembled DEBs were purified either by size-exclusion chromatography (SEC) or by 

ultracentrifugation, where DEBs formed one sharp band, coming from the fluorescent 

lipid, that contained both lipids and DNA. The intensity of the band depends on dsMC 

hydrophobicity: namely, the intensity was higher for DEBs containing 28 decyl groups 
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than DEBs containing 28 butyl groups. The decyl-alkylated DEBs show higher lipid re-

tention rate, leading to increased fluorescence of the ultracentrifuge layer due to the 

higher concentration of lipids, as can be seen in Figure 3-4 a-c.  

 

Figure 3-4. Analysis of DEBs. Gradient ultracentrifugation results of Rhodamine-PE- con-

taining DEBs with 28 butyl groups (a), and 28 decyl groups (b). The latter was analyzed 

by native SDS PAGE (c). LM = control lipid mix  

In syntheses of ssMCs at high concentrations, dimeric ligation products occurred as a 

side product (Figure 3-5). They were separated by SEC from the monomers and exhib-

ited twice the circumference of monomers (Figure 3-5 d, e). This result demonstrates 

that the DEB approach can be extended to enable designs with custom sizes.  

 

Figure 3-5. Analysis of dimeric ligation products. a) Denaturing PAGE gel (6 %) of a splint 

ligation experiment for the synthesis of ssMC after exonuclease treatment. For entropic 

reasons, circularizations are favored over polymerizations. In some experiments, dimeric 
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single-stranded minicircles were observed as side products. Note that the electrophoretic 

mobility of the ssMC is different from the one in Figure 3-2 c. In general, circulated oligo-

nucleotides have a lower mobility than their linear equivalents, but the extent of this dif-

ference is a function of the concentration of the PAGE gel. In Figure 3-2 c, a 15% gel 

was used, whereas a 6% gel is shown that was chosen to increase the resolution for the 

high molecular weight ssMC dimer. The splints (green) are only added to the scheme for 

clarity; they are digested during the exonuclease step. b) Elution profile of a size exclu-

sion chromatography (SEC) run of a DEB preparation. Fraction 1 contains dimeric DEBs 

(c), fraction 2 monomers (d). Scale bars, 50 nm 

3.2.4 Lipid phase transition in DEBs 

We compared the thermotropic phase transition of DMPC in conventional MSP-based 

NDs with that of DEBs by using the emission of the lipophilic dye LAURDAN as a sensor 

of lipid order.159 The dye binds at the sub-headgroup region of lipids. Its excited state 

energy depends on the dipolar relaxation processes in its environment leading to a red 

shift of LAURDAN fluorescence with increasing hydration that accompanies the gel to 

liquid phase transition of the lipid. Therefore, the phase transition can be monitored by 

the relative intensity difference measured at two LAURDAN emission wavelengths, i.e. 

the so-called general polarization (GP).160 The midpoint temperature Tm for the gel to 

liquid transition of DMPC in DEBs was 25 °C and agrees with literature data on DMPC 

vesicles,161 whereas DMPC in NDs showed a slightly higher Tm (31 °C) as reported 

(Figure 3-6 a, b).161 

However, the change of the GP value in DEBs was only ~50 % of that in NDs transition, 

which may indicate restricted lipid mobility at the alkylated DNA-lipid interface. Upon 

doping of the DMPC bilayer with the cationic lipid DMTAP, no phase transition was ob-

served (Figure 3-6 c, d), which we attribute to the additional electrostatic interactions of 

the positively charged head groups with the dsMC, and to a preferential binding of LAUR-

DAN at the DNA lipid interface.  
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Figure 3-6. Lipid phase transition of DEBs. Emission spectra of LAURDAN (exc = 340 

nm) in DMPC-filled DEBs carrying two ethyl groups per hybridized 21-mer (a) and in 

MSP-based NDs (b) recorded at 10 °C, 20 °C, 25 °C, 30 °C, 40 °C and 50 °C. Inserts 

show the temperature dependence of the generalized polarization, GP = (I440 - I490) / 

(I440 + I490) which reveals the gel to liquid phase transition of the lipid bilayer (Tm: 

transition midpoint temperature).129 c) Emission spectra of LAURDAN (λexc = 340 nm) 

in DMTAP:DMPC (1:10) with DEBs carrying four ethyl or butyl chains per 21-mer (cps: 

counts per second). Insert: LAURDAN emission from the identical lipid mixture in vesi-

cles. d) The generalized polarization (GP) calculated from the intensities at 435 nm and 

495 nm indicates a marginal phase transition in both ethylated (open squares) and bu-

tylated (filled squares) DEBs. The GP value determined for vesicles comprised of the 

same DMTAP/DMPC mixture (circles) evidences a phase transition with Tm= 33 °C. 

3.2.5 Coarse-grained simulations of DEBs  

In order to calculate stability of the complexes, we prepared coarse grain molecular dy-

namics (CGMD) simulations of a DEB using the MARTINI force field (Figure 3-7).162,163 

The simulations show that both the position of alkyl chains on the dsDNA ring and their 

length play a crucial role in the stability of DEBs: specifically, they showed that the shorter 

alkyl chains (ethyl – octyl) do not anchor the lipid bilayer completely, leading to the re-

duced stability of the DEBs, whereas the longer alkyl chains (decyl, dodecyl) stabilize 

the complex during the entire simulation period (5 S). These results are not completely 

in agreement with experimental results since the DEBs with lower alkylation points were 
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assembled (14 ethyl groups, Figure 3-7 e). However, the yield of the DEBs with 28 decyl 

groups was higher than yield of DEBs with 28 butyl groups (as discussed in Section 

3.2.3), which can be explained with lower stability of the DEBs with less alkyl groups. 

The DEB with 28 decyl groups was stable over a 5-microsecond duration with the 4 nm 

thick DMPC bilayer encircled by the 2 nm thick dsDNA rim. The interaction of the alkyl 

chains (Figure 3-7 a-b, red) with the lipid bilayer could also be clearly observed, demon-

strating the effectiveness of our modification strategy.  

 

Figure 3-7. Coarse grain molecular dynamics model of a DEB composed of a 147 bp 

dsMC with 14 butyl (a), 28 butyl (b) and 28 dodecyl (c) groups and 434 DMPC lipids. 

DNA is white, alkyl chains red, DMPC head groups blue. Snapshots were taken after 
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1-microsecond intervals. Up: view down the membrane normal of a structure at the end 

of the 5 microseconds long trajectory. Down: View rotated 90 degrees. 

3.3 Conclusions and outlook 

In summary, we report the formation of DEBs as a novel strategy to prepare nanoscale 

discoidal bilayer structures encapsulated by an alkylated dsMC. The difficulty in prepar-

ing nanoscale membrane mimetics is to prevent formation of vesicles, which are the 

preferred state of lipid bilayers. Thus far, only the shaping of spherical vesicles with DNA 

structures has been reported. With the DEB technology we have realized for the first time 

the use of DNA to assemble planar lipid bilayers with dimensions that are comparable to 

protein-stabilized NDs. In contrast to the DNA origami approach, which requires hun-

dreds of oligonucleotides and expensive single-stranded scaffold strands, the minimal-

istic DEB design can be accomplished with only two commercial synthetic oligonucleo-

tides and facilitates upscaling. Only one oligonucleotide has to be chemically modified, 

and the chosen alkylation of phosphorothioate is among the most economical and scal-

able modification approaches. We have demonstrated a high alkylation density of up to 

two DNA backbone alkylations per helical turn without additional linkers, to stabilize the 

lipid bilayer. In addition to the demonstrated ease of DEB size variation, the core struc-

ture of DEBs is provided by a covalently circularized ssMC. The proposed DEB design 

is thus inherently independent of more sophisticated biochemistry required for improving 

stability and monodispersity of protein-based scaffolds via circularization.68 We anticipate 

that further developments of the DEB technology will provide a nanoscale membrane 

mimetic that profits from the attractive links to DNA technology towards higher order as-

semblies and spatial arrangements of lipid bilayers for studying their interactions with 

membrane-associated proteins. 

3.4 Methods 

3.4.1 Materials 

Enzymes and respective buffers were purchased from New England Biolabs. Oligonu-

cleotides were synthesized by Integrated DNA Technologies and chemicals were pur-

chased from Sigma- Aldrich unless stated otherwise. Lipids in chloroform solution were 
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purchased from Avanti Polar Lipids. Denaturing polyacrylamide gel electrophoresis 

(PAGE) gels (15% TBE urea gels), SYBR Gold gel stain and Pierce detergent removal 

columns were purchased from Thermo Fisher Scientific. Ladders for the PAGE were 

either 10 bp ladder (Invitrogen) or O’GeneRulerTM 1kb plus ladder (Thermo Fisher). 

Oligonucleotide sequences 

short oligonucleotide with 2 phosphorothioate (PTO) groups: 5’-TTT TTC ACA CTT 

T*TT* CAC ACT-3’ 

short oligonucleotide with 4 PTO groups: 5’-TT*T T*TC ACA CTT T*TT* CAC ACT-3’ 

(asterisks indicate the locations of backbone phosphorothioates) 

long oligonucleotide: 5’-(TGT GAA AAA AGT GTG AAA AAG)7-3’  

splint: 5’-CTT TTT TCA CAC TTT TTC AC-3’ 

3.4.2 Alkylation of short oligonucleotides 

The chemical modification of the phosphorothioated oligonucleotides was conducted by 

following a modified protocol of Gut and Beck.138 Phosphorothioate–modified oligonucle-

otides (20 nmol, 21 nt) were reacted with 1 µmol alkyl-iodide in 90% DMF (Alfa Aesar) 

and 10% 30 mM Tris-HCl pH 7.5 (1000 µL). The mixture was incubated at 65 °C for 4 h. 

The excess of the organic solvent was removed by gel permeation using NAP-25 col-

umns (GE Healthcare). The collected water fraction was purified by reversed phase 

HPLC (loaded volume: 125 µL per run) using a Dionex (ICS-5000+ TC) system with a 

MultoKrom 100-5 C18 column (flow rate 1 mL/min) using the following gradient starting 

points (difference to 100%: triethyl ammonium acetate (TEAA; 20 mM; pH 8 with 3% 

acetonitrile (ACN))): 

0 min, 3% ACN 

10 min, 10 % ACN 

25 min, 21% ACN 

30 min, 100% ACN 

35 min, 100% ACN 
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40 min, 3% ACN 

The retention time for the starting compound (phosphorothioated oligonucleotide) was 

8.1 min, whereas the retention time for the alkylated oligonucleotides was 15.2 min (2 

ethyl groups per short oligonucleotide), 19.0 min (4 butyl groups per short oligonucleo-

tide) and 26.1 min (4 decyl groups per short oligonucleotide). The eluted samples were 

collected for further experiments and characterization. 

Mass spectrometry 

The mass of the alkylated oligonucleotides was determined from the collected HPLC 

fractions with a combined HPLC-MS system (Waters ACQUITY UPLC S4 with a Ultra 

Performance/Waters ACQUITY TQ Detector). The masses of the functionalized oligonu-

cleotides were determined by deconvolution of the peaks with multiple charges. 

3.4.3 ss DNA MC design and preparation 

The long oligonucleotide (147 nt, IDT Ultramer) and the splint (19 nt) were designed with 

the OligoAnalyzer Tool (idtdna.com) disregarding potential sequences with strong sec-

ondary structures. The long oligonucleotide (3.33 µM, 100 pmol) was hybridized to the 

splint (66.67 µM, 2 nmol) in 1X ligase buffer (50 mM Tris-HCl, 10 mM MgCl2, 1 mM ATP, 

10 mM DTT, pH 7.5; total volume: 30 µL) using a 12 min thermal annealing program 

(80 °C, 1 min, 80°C – 25 °C -5 °C/min, 25 °C hold). The annealed mixture was diluted 

twofold in 1X ligase buffer and treated with 1 µL polynucleotide kinase (10 000 units/mL) 

and 1 µL T4 ligase (400 000 units/mL) for 1 h at room temperature, after which another 

0.5 µL of each enzyme were added and the reaction mixture was incubated for one more 

hour at 30 °C. The mixture was purified with Zymo Oligo Clean & Concentrator columns 

(Zymo research) according to the manufacturer’s protocol and the DNA was recovered 

in 40 µL of water. The non-circular byproducts or linear oligonucleotides were digested 

in 1X exonuclease I buffer (67 mM Glycine-KOH, 6.7 mM MgCl2, 10 mM β-ME, pH 9.5) 

supplemented with 1X exonuclease III buffer (10 mM Bis-Tris-Propane-HCl, 

10 mM MgCl2, 1 mM DTT, pH 7), and 1.5 µL of exonuclease I (20 000 units/mL) and 

1.5 µL exonuclease III (20 000 units/mL; total volume: 55 µL) for 3 h at 37 °C. The re-

moval of the enzymes and buffer exchange were performed with Zymo Oligo Clean & 

Concentrator. ssMCs were recovered in 20 µL of water and analyzed by denaturing 

PAGE.  
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Denaturing PAGE 

For the denaturing PAGE analysis, 15% gels were cast with 1X TBE buffer (100 mM Tris 

base, 100 mM boric acid, 2 mM EDTA) containing 6 M urea and run in 1x TBE buffer. 

9 µL of sample solution were mixed with 9 µL of 2X gel loading dye (7 M urea, 

89 mM Tris, 89 mM boric acid, 2 mM EDTA, pH 8.0, 12% Ficoll, 0.01% bromophenol 

blue, 0.02% xylene cyanole). As a reference, 2 µL of 10 bp DNA ladder (Thermo Scien-

tific) were added. The gels were run at 200 V, ̴55 °C for 45 min inside an isolating 

Styrofoam box filled with ~2 L of hot tap water, after which they were stained and imaged 

the same way as described native PAGE (see below). 

3.4.4 dsDNA MC formation 

The ds DNA MCs were formed by hybridization of the ssDNA ring (7 µM) with comple-

mentary alkylated oligonucleotides (70 µM) using a 12 min thermal annealing program 

(80 °C, 1 min, 80°C – 25 °C -5 °C/min, 25 °C hold) in 12 mM MgCl2 and 5 mM TE buffer 

(50 µL). The excess of the complementary oligonucleotides was removed by ultrafiltra-

tion as described below. The purified ds MCs were analyzed by native PAGE. 

Purification of ds MCs with ultrafiltration columns 

Passivation of the ultrafiltration filter (10 kDa MWCO, Amicon Ultra, AMD Millipore) mem-

branes was carried out by incubating them in 400 µl of 1X buffer H (50 mM HEPES pH 

7.4, 200 mM Na2SO4 and 5 mM MgSO4) for 30 min, after which the buffer was passed 

through the filters at 14,000 rfc for 2 min. The assembled ds DNA MC solution was added 

to the passivated filters and washed two times with 400 μL of 1X buffer H at 14,000 rfc 

for 13 min. After the final wash, the filter was reversed, placed in a fresh tube, and cen-

trifuged at 1,000 rfc for 2 min. The collected purified dsMC solution was used for further 

characterization and reactions. 

Native PAGE 

For the native PAGE analysis, 10% gels were cast with 1X TBE buffer containing 12 mM 

MgCl2. Running buffer contained 1X TBE buffer and 12 mM MgCl2. 15 µL of sample 

solution were mixed with 3 µL of 6X gel loading dye (50% glycerol, 5 mM Tris-HCl, 1 mM 

EDTA, 12 mM MgCl2, 0.25% bromophenol blue and 0.25% of xylene cyanol). Electro-

phoresis was performed at 65 V for 12 h at room temperature. As a reference, 2 µL of 
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1 kb plus DNA ladder (Thermo Scientific) were added. After the electrophoresis, the gel 

was removed from the gel cassette and stained for 10 min with 1X SYBR Gold in 50 mL 

1X TBE supplemented with 5% ethanol and imaged with a Typhoon FLA 9500 gel scan-

ner (GE Healthcare) using the excitation wavelength of 488 nm suitable for SYBR Gold 

stained gels. 

3.4.5 DEB formation and purification 

14:0 DMTAP (1,2-dimyristoyl-3-trimethylammonium-propane), 14:0 Rhodamine-PE (1,2- 

dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)) and 

DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine were mixed in a 9.9:1.4:88.7 molar 

ratio to reach 112.3 µL total volume. The chloroform was evaporated using an argon line 

for 2 h, followed by drying under vacuum for the next 2 h. The lipid film was dissolved in 

90 µl of 60 mM sodium cholate in buffer H (final concentration: 1.5 mM) and sonicated 

five times for 1 min. Next, 30 µL of the ds DNA MCs were added (2.4 µM) to obtain a 

ratio of 450 lipids per dsMC and the mixture was incubated for 1 h at room temperature. 

The detergent was removed with Pierce detergent removal columns according to manu-

facturer’s protocol and eluted in 120 µL buffer H. DEBs were further purified in 50mM 

HEPES (containing 100 mM Na2SO4 and 8 mM MgSO4) on a Superdex 200 Increase 

column (GE Healthcare) at a flow rate of 0.75 ml/min using an Akta Avant system (GE 

Healthcare). 

Ultracentrifugation 

Unpurified DEB solution (120 μL) was mixed with 630 μL of 45% iodixanol in 1X buffer 

H and placed at the bottom of a centrifuge tube (6.0 mL, 13 x 64 mm, Beckman Coulter). 

Six additional layers of iodixanol solution (26%, 22%, 18%, 14%, 10%, 6%, and 2%) in 

1X buffer H (750 µL) were added to the centrifuge tube. The tube was spun in a SW-41-

Ti rotor (Beckman Coulter) at 41,000 rpm = 288,000 rfc and 4 °C for 6 h, after which the 

contents were fractionated (500 μL per fraction) and analyzed by MgCl2-supplemented 

SDS PAGE (see below). 

MgCl2-supplemented SDS PAGE 

MgCl2-supplemented SDS PAGE gels (10%) were cast with 0.13 M Tris-HCl buffer pH 

8.8, 12 mM MgCl2 and 0.05% SDS. 6.25 mM Tris-HCl buffer with 12 mM MgCl2 and 
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0.05% SDS was used as a running buffer. 10 µL of sample solution (DEBs carrying 2 

ethyl chains per 21-mer) were mixed with 10 µL of SDS gel loading dye (0.2 M Tris HCl, 

0.1% SDS, 20% Glycerol and 0.25% of bromophenol blue). Electrophoresis was per-

formed at 65 V for 12 h. As a reference, 3 µL of 1 kb plus DNA ladder (Thermo Scientific) 

were added. The gel was imaged with a Typhoon FLA 9500 gel scanner using the exci-

tation wavelength of 575 nm suitable for 14:0 Rhodamine PE signal. After the first imag-

ing, the gel was post-stained with SYBR Gold and imaged the same way as native PAGE. 

tSEM characterization 

Carbon-coated TEM grids (400 mesh copper, carbon on Formvar, Science Services Mu-

nich) were plasma-treated for 15 s. 4 µL of the sample solution were applied on the TEM 

grid and incubated for 5 min. The excess solution was removed from the grid with a filter 

paper wick. Next, 5 µL of a 1% uranyl formate solution was applied for 90 s to stain the 

DEBs, and the solution was removed with a filter paper. The samples were scanned on 

a Gemini SEM500 (Zeiss) SEM/STEM system operated at 10 kV. 

AFM imaging 

70 µL of a 0.01% poly-L-ornithine solution was applied on a freshly cleaved mica plate. 

After 1 min the plate was washed with water and blown dry using compressed air. A 

small circle (diameter ca. 3 mm) was drawn using a permanent marker. 3 µl of sample 

were applied into the center of the circle and incubated for 1 min. Next, the mica plate 

was covered with 70 µl of imaging buffer (5 mM Tris-HCl pH 8.0 supplemented with 

120 mM NiCl2). The scans are performed using a Cypher ES AFM (Asylum research) 

using BL-AC40TS tips (BioLever Mini, Olympus). The AFM was operated in AC mode, 

at a scanning frequency of 0.5 Hz and a set point of 300 mV. Height profiles were ob-

tained with Gwyddion software. 

3.4.6 Expression and purification of MSP1D1 

The standard expression of MSP1D12 was adapted from literature.164 Briefly, the 

MSP1D1- pET28a plasmids were grown overnight in BL21Gold (DE3) cells (Agilent 

Technologies) at 37 °C in double strength YT medium containing 50 μg/mL kanamycin. 

After induction with 0.3 mM isopropyl-β-D-thiogalactopyranoside, the temperature was 

decreased to 28 °C. The cells were harvested 4 h later, frozen in liquid nitrogen, and 
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stored at -80°C until further use. For purification, cells were resuspended in buffer A 

(50 mM Tris–HCl, 200 mM NaCl, pH 7.4) containing protease inhibitors (Roche Applied 

Science) and lysed twice by sonicating at 30% amplitude for two minutes with repeated 

30 s pulse and 30 s pause. Cell debris was removed by centrifugation (15,000 g, 70 min, 

4°C). Imidazole was added to the supernatant to a final concentration of 25 mM. The 

sample was loaded onto a Ni-NTA column (GE-Healthcare), equilibrated with buffer B 

(buffer A containing 25 mM imidazole). The column was washed with buffer B. Finally, 

the protein was eluted by gradient elution using increasing concentrations of imidazole 

(280 mM, 500 mM and 1 M; one CV each). Fractions containing MSP1D1 were identified 

by SDS-PAGE. A desalting step with PD10 columns (GE Healthcare) equilibrated with 

buffer A was performed to remove imidazole. The desalted MSP1D1 sample was con-

centrated using Vivaspin4 columns (Sartorius) and the final protein concentration meas-

ured by absorbance at 280 nm using a calculated extinction coefficient of 21,430 M−1 

cm−1 and a molecular weight of 24,793 kDa (ProtParam, ExPASy). Purified MSP1D1 

was frozen in liquid nitrogen and stored at -80 °C until further use. 

3.4.7 Assembly of MSP-based lipid nanodiscs 

The protocol of phospholipid nanodisc assembly was adapted from the original publica-

tion. A completely dried DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine, Avanti Li-

pids) lipid film was solubilized in buffer A, containing cholate as detergent twice the con-

centration of the lipid, and sonicated until a clear solution was obtained. The respective 

lipid/sodium cholate solution and MSP1D1 were mixed to yield a final concentration of 

12 mM lipid and 0.2 mM MSP1D1 (DMPC:MSP1D1 = ratio 60:1). For fluorescence meas-

urements, LAURDAN was added in a ration 1:200 to DMPC, respectively. The mixture 

was incubated for 1 h at 25 °C. The detergent was removed with Detergent Removal 

spin columns (Pierce). The approximate size and the homogeneity of the DMPC-filled 

nanodiscs were verified by size exclusion chromatography. 

3.4.8 Fluorescence measurements of LAURDAN-labeled DEBs and vesicles 

Fluorescent measurements were performed a Fluorolog 3 FL3-11 (HORIBA Europe 

GmbH, Oberursel). Samples containing 1-(6-(dimethylamino)-2-naphthalyl)-1-dodec-

anon (LAURDAN) in 100 µL cuvettes were excited at 340 nm (10 nm bandwidth) and the 

general polarization (GP) calculated5 from emissions at 440 and 490 nm as GP = (I440-
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I490) / (I440 + I490) if not stated otherwise. Scan speed was 100 nm min-1 and 900 V 

photomultiplier voltage was chosen. The emission spectrum was averaged from 4 scans. 

A thermostatted cuvette holder connected to a circulating water bath was used to record 

temperature-dependent spectra after three minutes of thermal equilibration.  

3.4.9 Coarse-grain molecular dynamics calculations 

Models 

A circular DNA model in a standard internal coordinate representation (with tilt, roll, 

twist, shift, slide, and rise inter base pair step parameters) was generated with a modified 

version of the vdna-plugin-2.27 using vmd-1.9.3.8. The plugin was modified to include 

the repeating 21-mer sequence motif. The internal coordinates were converted into an 

atomistic model using the rebuild module of the x3dna-2.39 package with non-standard 

residues encoding the chain breaks between the 21mers and the alkylated phosphorothi-

oates. For the coarse-grained models, a separate model was built with unmodified bases 

to facilitate the conversion to the Martini model, which then was modified to include chain 

breaks and alkylations. This atomistic model of the ring/DNA complex was converted into 

a MARTINI-v2.2 coarse grained model using the martinize script. The MARTINI force 

field for lipids and its extension to DNA were used in combination with the ElNeDyn ap-

proach to maintain the structure of the DNA backbone. A tight elastic network was ap-

plied as suggested by Uusitalo et al.163 This CGMD approach is well suited to study com-

plex biological membranes. Inspired by a recent study by Maingi et al,140 conventional 

MARTINI beads and parameters were used to describe the S-alkyl chains modifications 

to the DNA rings. The S atom was mapped to the phosphate group to which it was chem-

ically linked in the atomistic model. This new backbone bead was assigned a P5 type 

and the charge was set to zero. The beads of the alkyl chain were modeled by a C2 

bead. All additional bonds were given a 4.5 nm reference value and a 5000 kJ/mol∙nm-2. 

Bond angles of the first bead of the chain relative to the backbone beads (previous and 

following bead, at 105 and 145 degrees, respectively, and with a force constant of 

50 kJ/mol∙rad-2) were used to restrict the orientation of the chain. The remaining bond 

angles were set to 180 degrees with a 25 kJ/mol∙rad-2 force constant. Improper dihedrals 

were used to force planarity of the backbone bead anchor of the alkyl chain, its neighbors 



3.4 Methods  

 

46 
 

in the chain and the first bead of the chain. This precaution prevents back flips of the 

chain. 

Simulations 

All molecular dynamics simulations were performed using the GROMACS simulation 

package version 5.1.19 Conventional simulation setups associated with the MARTINI 

were used. These include a 20 fs time step for production run, a 0.9 nm cutoff and 

500 kJ/mol∙nm-2 force constant for ElNeDyn, and non-bonded interactions (van der 

Waals and electrostatic) cutoff at 1.1 nm and shifted to zero using the potential-modifier 

implementation in GROMACS. A relative dielectric screening constant of 15 and the Ver-

let neighbor search were used. The DNA, the membrane bilayer (DMPC), and the aque-

ous phase (water plus ions when present) were coupled independently to an external 

temperature bath at 300 K using Berendsen and Bussi thermostats (T=0.5 ps) for equi-

libration and for production, respectively. The pressure was weakly coupled to an exter-

nal bath at 1 bar using a relaxation time of 2 ps following a semi-isotropic pressure 

scheme. Each system was run for 5 microseconds. 
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Chapter 4 Further improvements of DEBs 

Madhumalar Subramanian (Helmholtz-Zentrum Dresden-Rossendorf, Prof. Fahmy Lab) 

contributed to this work by doing SEC of double-deckers. Artistic representation of dou-

ble-deckers was done by Dr. Michael Matthies, former member at the Center of Advanc-

ing Electronics Dresden, TU Dresden, Schmidt Lab.  

4.1 Introduction 

Membrane proteins (MPs) perform a variety of functions vital to the survival of organisms, 

thus understanding their behavior is of utmost importance for unraveling physiological 

processes.1 Due to their hydrophobic regions, MPs are prone to aggregation and precip-

itation in solution.50 Consequently, biophysical studies including crystallization and struc-

ture determination of MPs are challenging.55,71,73 This can be overcome by inserting MPs 

into artificial cell membranes (see section 1.2.4 for more details), such as conventional 

nanodiscs (NDs), which consist of a phospholipid bilayer stabilized by a membrane scaf-

fold protein (MSP).66,67 These proteins play an important role in nanodisc stabilization, 

but do not provide control over size and shape of the nanodisc.68  

To overcome these issues, we recently engineered DNA-encircled lipid bilayers (DEBs), 

where we leveraged the programmability of DNA nanotechnology to create phospholipid 

bilayers stabilized by a double-stranded DNA minicircle.165 DNA nanotechnology pro-

vides an alternative approach to create membrane nanoparticles with defined and pro-

grammable parameters166 since it has proven to enable the fast de novo design of arbi-

trarily shaped structures.98 DEBs are made of multiple copies of an alkylated oligonucle-

otide hybridized to a single-stranded minicircle, in which up to two alkyl chains per helical 

turn point to the inside of the toroidal DNA ring. When phospholipids are added, a bilayer 

is observed to self-assemble within the ring such that the alkyl chains of the oligonucle-

otides stabilize the hydrophobic rim of the bilayer. This prevents the formation of vesicles 

and supports thermotropic lipid phase transitions. DEBs are completely free of protein 
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and can be synthesized from commercially available components using routine equip-

ment. The diameter of DEBs can be varied in a predictable manner. The well-established 

toolbox from structural DNA nanotechnology will ultimately enable the rational design of 

DEBs so that their size, shape or functionalization can be adapted to the specific needs 

of biophysical investigations of lipidic phases and the properties of membrane proteins 

embedded into DEB nanoparticle bilayers (Chapter 3).  

Although this system has been proven to reproducibly reconstitute the bilayers with pro-

grammable diameter, it has potential for further improvements. First of all, one dsDNA 

helix is only 2 nm thick. This is not enough to accommodate long-chain lipids. Secondly, 

since current alkylation patterns are not sufficient to stabilize the lipid bilayer inside 

smaller DEBs, it is necessary to modify the DEB scaffold in order to assemble DEBs with 

smaller diameter.  

In this chapter, we explore the option of using a larger and improved DNA-based scaffold 

for lipid bilayer assembly in order to ensure proper anchoring of a large variety of lipids. 

To achieve this, we created a scaffold that consists of two interconnected DNA helices, 

called DNA double-decker. This structure has a thickness of ~4 nm and contains two 

times more hydrophobic strands in comparison to the previous system, which should be 

sufficient in protecting the lipid bilayer rim and providing more stable anchoring of the 

bilayer. 

4.2 Results and discussions 

4.2.1 Strategy to design DNA double-deckers 

Our approach proposes the assembly of the lipid bilayer stabilized with DNA instead of 

MSP. In comparison to our previous approach where we used one DNA minicircle for 

stabilization of the lipid bilayer (Section 3.2.1), here we use two interconnected DNA 

minicircles, called double-deckers. DNA double-deckers consist of one long circular DNA 

scaffold that is held together by alkylated staples, resembling the shape of two dsDNA 

rings stacked on top of each other. An overview of the strategy can be observed in Figure 

4-1. 
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Figure 4-1. Artistic representation of double-decker showing the scaffold (grey) folded 

into two stacked rings with staples. 

4.2.2 Assembly strategy of functionalized DNA double-deckers 

Assembly of double-decker scaffold 

To assemble the circular double-decker scaffold, three linear oligonucleotides (101 bp, 

100 bp and 93 bp) were ligated with three splints (Figure 4-2 a). In order to support the 

circularization of the DNA in the double-decker assembly, the oligonucleotides consist of 

several A-tracts, which provide the curvature for the double-decker assembly, which 

makes circularization easier. After the ligation, the residual linear products were removed 

with Exonuclease I/III (Figure 4-2 a). The assembly products were analyzed by denatur-

ing PAGE gel, confirming that the final product contains only 294 nt long circularized 

ssDNA (Figure 4-2 b). 



4.2 Results and discussions  

 

50 
 

 

Figure 4-2. Double-decker scaffold assembly and analysis. a) double-decker scaffold 

was assembled by splint ligation of three linear oligonucleotides, followed by Exonucle-

ase digestion b) 6% denaturing PAGE of assembled double-decker scaffold: M, molec-

ular size marker (nt); lane 1, ligation reaction before exonuclease treatment; lane 2, ex-

onuclease digest  

Staple alkylation 

Similar to our previous approach (Section 3.2.2), we introduced hydrophobic groups to 

our system by alkylating DNA staples such that two alkyl groups per helical turn were 

present. In order to connect part of the scaffold in the upper ring with part of the scaffold 

in the lower ring, the staples are 42 nt long, which is twice as long as the complementary 

strands for DEBs (Figure 4-3). This means that the alkylated staples carry two times 

more alkyl groups than the complementary strands for single minicircle design. This is of 

particular importance when it comes to purification of the alkylated staples: namely, due 

to their increased hydrophobicity, they could not be purified by techniques used for the 

purification of the short strands (e.g. HPLC, C18 column). The hydrophobic interactions 

between the alkylated staples and the column material stopped DNA from being eluted 

from the column. Therefore, it was necessary to purify the alkylated staples with a less 

hydrophobic HPLC column, which was C4.  
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The increased number of hydrophobic groups in the staples also affected the sample 

preparation for HPLC: namely, the alkylation yield was increased tenfold (calculated from 

peak area on chromatogram) when chloroform extraction of the sample was conducted 

prior to HPLC purification. This way, the alkylated staples were purified from the excess 

of alkyl-iodide, which resulted in better solubility of the staples in water. The optimizations 

of staple alkylation are discussed in detail in the following section. 

 

Figure 4-3. Alkylation of double-decker staples. Alkyl iodides (butyl-iodide, decyl-iodide) 

react with phosphorothioates (8 per staple), resulting in alkylated DNA strand.  

Double-decker assembly 

The double-deckers were assembled by hybridization of the double-decker scaffold with 

7 staples. As shown on Figure 4-4, two staples participate in the scaffold crossover, 

whereas the remaining five staples connect the upper part of the scaffold to the lower 

part of the scaffold via single crossovers. For this design, single crossovers were chosen 

over double crossovers because they induce minimal twist on the DNA.167,168 This pro-

vides more control over the alkyl group positioning, which is crucial for lipid bilayer re-

constitution. However, one double crossover is present, as the scaffold crossover must 

still be present as shown in the figure. To drive folding of the scaffold uniformly and en-

sure precise orientation of the hydrophobic functionalizations, the scaffold had several 

A-tracts next to its crossover. The crossovers of the staples 1 and 5 (Figure 4-4) were 

positioned half a helical turn from the center of A-tracts un upper minicircle and one 

helical turn from the center of A-tracts in lower minicircle. This way, A-tracts are present 

in each helical turn (either in the upper or the lower ring), which provides orientation 

control of the alkyl groups without long repetitive sequences. As with the design de-

scribed in Section 3.2.2, the position of alkylation (specific thymidines in A-tracts) was 

chosen to orient the alkyl groups towards the center of the double-decker. This was 
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achieved by positioning phosphorothioates at the end of the A-tracts for the upper ring, 

whereas the lower ring had phosphorothioate modifications at the beginning of A-tracts. 

Recently, Dr. Yusuke Sato (Kent State University, Dr Schmidt Lab) designed a double 

decker with A-tracts in the lower ring shifted by 5 nucleotides. This way, the curvature of 

the A-tracts follows the orientation of each staple in the bottom ring, which enables more 

precise control of the orientation of the phosphorothioates. On the other hand, that de-

sign has exclusively double crossovers, which might induce twist in the structure.  

 

Figure 4-4. Assembly of double-deckers. The double-decker scaffold (left) is hybridized 

with seven alkylated oligonucleotides into the double-decker ring (right). Bottom: se-

quence design of the scaffold crossover and staples 1 and 2. 

4.2.3 Optimization of double-decker staple alkylation 

As described in the previous chapter, the procedure used to prepare the alkylated short 

strands in DEBs (21 nt, 2-4 PTO groups; Section 3.2.2) could not be applied for double-

decker staple (42 nt, 8 PTO groups) preparation. Therefore, in order to achieve the high-

est possible yield, it was necessary to optimize the conditions of both the reaction and 

purification steps. 

Optimization of reaction conditions 

In order to determine the time needed for alkylation to occur, the reaction mixture was 

sampled at several time points (0 h, 0.5 h, 1 h, 2 h and 4 h) during the reaction. Initially, 
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the reaction was performed following the protocol by Gut and Beck,138 where DNA was 

alkylated at pH 8.0 and later on analyzed by denaturing PAGE gel. Since the alkylation 

introduces hydrophobic groups to the strands while removing the negative charge from 

the phosphorothioates, alkylated DNA staples will migrate slower than the unmodified 

ones. However, the PAGE gel analysis showed that the amount of oligonucleotides gets 

drastically reduced during the reaction (Figure 4-5), which can be attributed to aggrega-

tion of alkylated staples during the reaction. The results were independent of alkylation 

agent (butyl-iodide, decyl-iodide), as well as the material and grade of the reaction ves-

sels used. Solubilization of the reaction products in different organic solvents also did not 

increase the amount of DNA, leading us to believe that the reaction conditions should be 

modified as the initial DNA material might behave differently. 

It has been reported that alkyl-phosphorothioates are sensitive towards hydrolysis in 

basic conditions (pH> 8).169,170 In order to prevent hydrolysis during the reaction and po-

tentially increase the amount of DNA, the pH of the reaction was changed from 8.0 to 

7.5. The PAGE analysis of the reaction mixture after the same time points (0 h, 0.5 h, 

2 h and 4 h) showed that the amount of DNA increased. Furthermore, it showed that 

highest possible alkylation occurs after 2 h of incubation at 65 °C. The same test was 

performed at pH 7.0 and 8.5, but the concentration of recovered DNA after the reaction 

was too low to be detected photometrically.  

 

Figure 4-5. Denaturing PAGE of alkylation products. Alkylation of double-decker staples 

with decyl iodide at pH 8.0 (left) leads to DNA loss 30 minutes after the reaction. On the 

other hand, alkylation at pH 7.5 (right) results in higher yield of alkylated DNA, showing 

that the optimal time for reaction is 2 h. L, ladder (nt) 
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Optimization of purification conditions 

The alkylation of the staples was followed by the removal of excess alkyl-iodides and 

organic solvents. This step is particularly important because it enables better resolution 

on reversed-phase (RP)-HPLC. For the alkylation of DEB complementary strands, the 

excess of alkyl-iodide was removed by gel permeation using resin-based columns prior 

to RP-HPLC purification. However, this approach was not successful for the purification 

of the double-decker staples as no DNA could be detected in the flowthrough. One of the 

possible reasons might be the increased hydrophobicity of alkylated staples, which in-

creases biding to the column and subsequently reduces the elution of the alkylated sta-

ples. In order to overcome this, the column-free method for alkyl-iodide removal was 

developed, where the excess of alkyl-iodide was removed by chloroform extraction. For 

this, the solvent was evaporated after the reaction and the pellet was dissolved in a wa-

ter: acetonitrile solution 50:50. Upon addition of chloroform and vortexing, the mixture 

separated into water and organic phases. The amount of DNA in both phases was de-

termined photometrically, showing that the DNA was present exclusively in the aqueous 

phase, while the alkyl-iodides remained in the organic phase. The implementation of this 

purification step resulted in a 30-fold yield increase (calculated from the peak area on 

the HPLC chromatogram) when compared to the sample without extraction (Figure 4-6).  

Finally, the sample was purified with RP-HPLC. As discussed in Section 3.2.2, DEB com-

plementary strands were purified by RP-HPLC by using C18 column. However, the al-

kylated double-decker staples could not be eluted from the column due to strong inter-

actions with carbon chains in the column. Elution of the staples did not occur even when 

solvents with low relative polarity (e.g. tetrahydrofuran - THF) were used as a mobile 

phase. Therefore, it was necessary to use a column with less hydrophobic functionaliza-

tion. A C4 column was selected for this; the butyl-modified staples were eluted between 

8 min and 10 min, whereas the decyl-modified staples were eluted between 12 min and 

18 min (Figure 4-6). The broad peak for decyl-staples is probably the consequence of 

incomplete alkylation, where staples with less alkyl groups are at the beginning of the 

peak and the ones with more at the end.  
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Figure 4-6. HPLC chromatograms of alkylated staples. Alkylation products with and with-

out chloroform extraction are in blue and red, respectively, while the starting staple is in 

gray. a) butyl-alkylated staples are eluted between 8 min and 10 min b) decyl-alkylated 

staples are eluted between 12 min and 18 min. Both chromatograms show the increase 

in yield for samples purified by chloroform extraction  

4.2.4 Double-decker characterization 

Double-deckers were folded by slow annealing in the presence of MgCl2 and purified by 

agarose gel electrophoresis (Figure 4-7). The double-deckers without alkyl groups form 

one clear band on the gel, whereas the alkylated double-deckers show aggregation (Fig-

ure 4-7 a). Although Mg2+ is often used for DNA nanotechnology assemblies, it can in-

duce lipid aggregation.171,172 Since the double-deckers have twice as many hydrophobic 

groups as DEBs, the aggregation effect from Mg2+ is stronger. In order to prevent that, 

the structures were assembled in NaCl, which showed aggregations only with decyl-

labeled double-deckers. However, when assembled with NaCl and detergent, the aggre-

gates in alkylated double-deckers were not observed (Figure 4-8 a).  
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Figure 4-7. Analysis of non-functionalized double-deckers (dsDDs) assembled in MgCl2 

buffer. a) AGE of reaction products, showing correctly folded structures (red arrows) and 

aggregates for alkylated dsDDs. L, ladder (bp); ssDD, double-decker scaffold b) tSEM 

image of gel-purified non-functionalized double-deckers 

The product bands were excised and analyzed by atomic force microscopy (AFM) and 

transmission scanning electron microscopy (tSEM). The results are shown in Figure 

4-7 b and Figure 4-8 b-d, demonstrating that the double-deckers assembled success-

fully. The tSEM analysis showed that both alkylated and non-alkylated double-deckers 

tend to accumulate on certain areas on the grid, resulting in densely packed electron 

micrographs. This effect was independent of the concentration of double-deckers, lead-

ing us to believe it was due to electrostatic interactions between double-deckers and 

areas on the grid created during the plasma discharge step. AFM analysis of double-

deckers showed that the average height of double-deckers is 2.5 nm, which is double 

the height of dsMCs (Section 3.2.3). As with DEBs (1.3 nm instead of 2 nm), height of 

the double-deckers measured by AFM was lower than calculated (2.5 nm instead of 4 

nm) due to the strong electrostatic interactions between the DNA and the surface.  
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Figure 4-8. Analysis of alkylated double-deckers (dsDDs) assembled in NaCl buffer. a) 

AGE of the reaction products shows the correctly folded structures (red arrows) for as-

semblies with and without sodium-cholate (Na-cholate). When assembled with Na-cho-

late, dsDDs with decyl groups form less aggregates. L, ladder (base pairs), ssDD, dou-

ble-decker scaffold b) tSEM image of butyl-alkylated dsDDs c) AFM image of decyl-al-

kylated dsDDs with height profile (d) 

4.2.5 Approaches for lipid bilayer assembly in double-deckers 

As was the case with DEBs (Section 3.2.3), the characterization of functionalized double-

deckers was followed by the lipid bilayer reconstitution. Initially, the conditions for the 

lipid bilayer reconstitution were based on the ones for DEBs, where lipids solubilized in 

sodium-cholate were mixed with DNA. The lipid bilayer formation occurred when the de-

tergent was removed with detergent-removal columns. However, this method did not re-

sult in a lipid bilayer inside the double-deckers (Figure 4-9). Assuming the detergent re-

moval step was the critical parameter, other detergent removal methods were applied, 

including dialysis and size-exclusion chromatography of diluted detergent mix; these 

were also unsuccessful. Similarly, changing the detergent or lipids did not lead to positive 

results. There are several reasons for this: first of all, there is still room for improvement 

of the incubation and detergent removal steps, such as changing the detergent or buffer 
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composition and applying reduced force during the detergent removal (gravity flow in-

stead of centrifugation of the samples). Secondly, the double-decker design shows chi-

rality: namely, during the assembly, the scaffold crossover can be oriented in two ways, 

generating two structures. One of them has alkyl groups oriented towards the inside of 

the torus, whereas the other one has the alkyl groups oriented towards the outside: in 

the latter the bilayer cannot be formed. Finally, since A-tracts in the lower ring are not 

completely synced with crossovers, it is possible that the design of the lower ring need 

to be changed.  

 

Figure 4-9. tSEM micrographs of attempts to synthesize lipid- double-deckers. a) Butyl- 

functionalized double-deckers with DMPC dissolved in sodium-cholate, which was re-

moved by detergent columns. b) Decyl- functionalized double-deckers with DMPC dis-

solved in sodium cholate and β-octyl glucoside; the detergents were removed by deter-

gent columns. c) Decyl-functionalized double-deckers with DMPC dissolved in sodium 

cholate and β-octyl glucoside; the detergents were removed by dialysis. 

4.3 Conclusion and outlook 

In this work, we showed that alkylated double-deckers can be robustly assembled. Alkyl-

ated DNA structures can be used for membrane mimetic system assemblies (DEB tech-

nology), which has been discussed in Chapter 3. In comparison to DEBs, the assembled 

double-deckers are thicker and carry two times more alkyl groups, which can potentially 

provide stronger anchoring of the bilayer. Furthermore, the lipid composition of the bi-

layer can be finely tuned since the increased thickness of the scaffold provided by dou-

ble-deckers enables the reconstitution of lipids with longer chains.  

In future experiments, we aim to prove the hypothesis that the double-deckers can be 

used as a scaffold for the lipid bilayer reconstitution. This can be done by controlling the 
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chirality of the structures and by adjusting the lipid bilayer assembly conditions, such as 

lipid and detergent composition and detergent removal protocol. Later, the lipid-filled 

double-deckers can be used for membrane protein (MP) reconstitution and studying MP 

interaction with ligands. In order to lock the orientation of the MP, it can be labeled with 

DNA strands and attached to the complementary strands on double-decker.  

The ultimate goal of the project is to establish a new method for the structure determina-

tion of MPs by X-ray free electron laser (XFEL). In order to do that, MPs will be reconsti-

tuted in lipid-filled double-deckers and aligned on a tubular 6-helix bundle or a flat DNA 

origami structure. Furthermore, the interaction of two or more different MPs could also 

be analyzed by dimerized or trimerized DEBs. These interactions could be better observ-

able by attaching quantum dots, fluorophores or gold nanoparticles to double-deckers.  

4.4 Methods 

The methods listed in this section are unique to this chapter, while the ones that were 

common with the previous chapters were not mentioned again (3.4.1, 0 and 0). 

4.4.1 Materials 

Oligonucleotide sequences 

Staples with 8 PTO groups:  

5’- CGAAAAA*AG*TGCTACGTC*CA*GAGAAAAA*AC*GAAGAAAAA*GT*G -3’ 

5’- CTTACACT*AA*AAAATCTGT*CG*CTGACCGC*AA*AAAAGCCT*CT*A -3’ 

5’- TGAAAAA*AT*GACTAAAAA*GA*GGCCCTGCT*AA*AAAAGTCG*TT*C -3’ 

5’- GCAGGCA*TG*GTGAAGGCC*GG*TGCACGAGT*AA*AAAAGTAT*GT*C -3’ 

5’- GTGTGAG*AG*TAAGTCAAT*AA*CGATACTAT*AA*AAATCGTA*GA*A -3’ 

5’- CTATGG A*AG*CTAACAGCA*CG*AACTAAGTG*AA*AAAATCAT*GT*A -3’ 

5’- GCAAAAA*AG*GATGAAAAA*GC*TGTGAGAGG*AA*AAAGGTCG*TG*A -3’ 

(asterisks indicate the locations of backbone phosphorothioates) 

long oligonucleotides:  
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5’- TTACTCTCACACTCGTGCTGTTAGCTTCCATAGAGCTTTTTCATCCTTTTTTGC 

CACTTTTTCTTCGTTTTTTCTCTGGAGTCAGCGACAGATTTTTTAGT -3’  

5’- GTAAGTCACGACCTTTTTCCTCTCACTACATGATTTTTTCACTTAGTTTCTACGA 

TTT TTATAGTATCGACATACTTTTTTACTCGTGCGAAC -3’ 

5’- GACTTTTTTAGCAGGGCTAGAGGCTTTTTTGCGCGTAGCATTTTTTCGCTCTTTT 

TATCATTTTTTCAACCGGCCTTCACCATGCCTGCGTTATTGAC -3’ 

splints:  

5’- GGAAAAAGGTCGTGACTTACACTAAAAAATCTGTCGCTG -3’ 

5’- GCCCTGCTAAAAAAGTCGTTCGCACGAGTAAAAAAG -3’    

5’- ACAGCACGAGTGTGAGAGTAAGTCAATAACGCAG -3’   

4.4.2 Staple alkylation  

The chemical modification of the phosphorothioated staples was conducted by following 

a modified protocol of Gut and Beck.138 Phosphorothioate–modified oligonucleotides 

(20 nmol, 21 nt) were reacted with 1 µmol alkyl-iodide in 90% DMF (Alfa Aesar) and 10% 

30 mM Tris-HCl pH 7.5 (1000 µL). The mixture was incubated at 65 °C for 4 h. The 

excess of the organic solvent was removed under reduced pressure and 200 µL of 50% 

acetonitrile (ACN) and 150 µL of chloroform were added to the resulting dry solid and 

mixed thoroughly. The above mixture was centrifuged at 2500 rcf for 30 s to separate 

the phases. The collected water phase was purified by reversed phase HPLC using a 

Dionex (ICS-5000+ TC) system with a MultoKrom 100-5 C4 column (flow rate 

0.7 mL/min) using the following gradient starting points (difference to 100%: triethyl am-

monium acetate (TEAA; 20 mM; pH 8 with 3% acetonitrile (ACN))): 

0 min – 0% B 

40 min – 100% B 

45 min – 100% B 

50 min – 0% B 
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The retention time for the starting compound (phosphorothioated oligonucleotide) was 

7.0 min, whereas the retention time for the alkylated oligonucleotides was 9 min (8 butyl 

groups per staple) and between13 min and 18 min (8 decyl groups per staple). The eluted 

samples were collected for further experiments and characterization.  

4.4.3 Double-decker scaffold preparation 

The long oligonucleotides (101 nt, 100 nt and 93 nt, Eurofins) and the splints (39 nt, 36 nt 

and 34 nt) were designed with the OligoAnalyzer Tool (idtdna.com) disregarding potential 

sequences with strong secondary structures. The long oligonucleotides (3.33 µM each, 

100 pmol) were hybridized to the splints (5 µM each, 150 pmol) in 1X ligase buffer (total 

volume: 30 µL) using a 12 min thermal annealing program (80 °C, 1 min, 80°C – 25 °C -

5 °C/min, 25 °C hold). The annealed mixture was diluted twofold in 1X ligase buffer and 

treated with 1.5 µL polynucleotide kinase and 1.5 µL T4 ligase for 1.5 h at 30 °C. The 

mixture was purified with Zymo Oligo Clean & Concentrator columns (Zymo research) 

according to the manufacturer’s protocol and the DNA was recovered in 30 µL of water. 

The non-circular byproducts or linear oligonucleotides were digested in 1X exonuclease 

I buffer supplemented with 1X exonuclease III buffer, and 1.5 µL of exonuclease I and 

1.5 µL exonuclease III (total volume: 55 µL) for 3 h at 37 °C. The removal of the enzymes 

and buffer exchange were performed with Zymo Oligo Clean & Concentrator. ssDDs 

were recovered in 20 µL of water and analyzed by denaturing PAGE (described in Sec-

tion 3.4.3).  

4.4.4 Double-decker preparation 

The double-deckers were formed by hybridization of the double-decker scaffold (7 µM) 

with alkylated staples (10.5 µM) using a 20 min thermal annealing program (80 °C, 1 min, 

80 °C – 60 °C -5 °C/min, 57 °C, 1 min, 55 °C – 25 °C -5 °C/min, 25 °C hold) in 150 mM 

NaCl, 5 mM TE buffer and 1.5 % sodium-cholate (50 µL). The purified double-deckers 

were analyzed by agarose gel electrophoresis.  

Agarose gel electrophoresis 

For the AGE analysis, 1% agarose gels (Roche) were casted with 0.5X TBE buffer con-

taining 12 mM MgCl2 and stained with 1X Sybr safe DNA gel stain (Life technologies). 
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0.5X TBE buffer with 12 mM MgCl2 was used as a running buffer. 15 µL of sample solu-

tion were mixed with 3 µL of 6X gel loading dye (50% glycerol, 5 mM Tris, 1 mM EDTA, 

12 mM MgCl2, 0.25% bromophenol blue and 0.25% of xylene cyanol). Electrophoresis 

was performed at 70 V for 2 h at 4 °C. As a reference, 3 µL of 1 kb plus DNA ladder 

(Thermo Scientific) were added. The gel was imaged with a Typhoon FLA 9500 gel scan-

ner (GE Healthcare) using the excitation wavelength of 473 nm suitable for SYBR safe 

stained gels. For purification of the double-deckers and for experiments involving quan-

tum dot functionalized 6-HBs, 0.75% agarose gels were casted and the electrophoresis 

was performed at 70 V for 2 h at 4 °C. The running buffer was cooled to 4 °C before 

usage. The samples were extracted from the gel with DNA gel extraction columns (Bio-

Rad, Freeze ’N Squeeze) by centrifuging the excised bands at 5,000 rcf for 10 min. 
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Chapter 5 Applications of DNA-encircled li-

pid bilayers to study GPCRs 

The work described in this chapter was done at The Rockefeller University, Prof. Sakmar 

Lab and it has several contributors. Mizuho Horioka (Prof. Sakmar Lab) contributed 

equally to this work; her contribution included isolation, purification and characterization 

of DNA-labeled CCR5. Prof. Thomas Huber (Prof. Sakmar Lab) and Dr. Xavier Periole 

(Aarhus University, Prof. Schiøtt Lab) performed the coarse-grained molecular dynamics 

simulations. Prof. Thomas Huber designed the CCR5 construct and performed the SMD-

TIRF experiments. Prof. Thomas Huber, Prof. Thomas Sakmar, Prof. Karim Fahmy and 

Dr. Thorsten-Lars Schmidt provided useful suggestions and numerous discussions. This 

work will be submitted for publication soon after submission of the dissertation. 

5.1 Introduction 

Lipid bilayers and lipid-associated proteins play a crucial role in biology.1,142,173 Since 

studies and manipulation in vivo are inherently challenging, several in vitro membrane-

mimetic systems have been developed. Common systems are based on polymers,148 

peptides174 or proteins.65,66 With these methods, however, it is difficult to control the size 

and shape or to introduce functional elements in a defined way. Therefore, we created 

DNA-encircled bilayers (DEBs), consisting of a phospholipid bilayer stabilized by an al-

kylated dsDNA minicircle (Chapter 3). For this, alkylated oligonucleotides are hybridized 

to a single-stranded DNA minicircle (ssMC) such that all alkyl chains point to the inside 

stabilizing the lipid bilayer. 

Having established a technique to assemble lipid bilayers stabilized by dsDNA ring, we 

continued to examine whether this platform can be used for membrane protein reconsti-

tution and locking the membrane protein orientation. For that, we decided to use C-C 

chemokine receptor type 5 (CCR5) as a model receptor. CCR5 is a chemokine receptor 
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(Section 1.2.2) expressed on macrophages, monocytes, dendritic cells, T-cells, fibro-

blasts and neuronal cells.175 It participates in the inflammatory response by directing cells 

to sites of inflammation.176 Furthermore, it is required for the cellular entry of HIV-1 and 

represents one of the main therapeutic targets for HIV-1 treatment.177 The only FDA- 

approved drug that targets CCR5 is maraviroc, which is an allosteric inhibitor.178 CCR5 

ligands include CCL3, CCL4 (MIP 1α and 1β, respectively), CCL3L1 and CCL5 

(RANTES). As the crystallographic structures of CCR5-maraviroc complex179 and CCR5-

CCL5 binding site180 have already been determined, CCR5 has a potential to be a good 

model receptor.  

In this chapter, we explore the option of using DEBs as a reconstitution system for CCR5 

which will control the orientation of the protein. To achieve this, we designed the receptor 

construct with multiple protein tags. DNA-labeling of the receptor occurs through reaction 

of SNAP- and CLIP- tag with benzylguanine (BG) and benzylcytosine (BC)-labeled fluo-

rescent oligonucleotides, respectively. The DNA-labeled receptor is purified using tan-

dem affinity purification, where epitope tags on N and C termini are used to purify the full 

length receptor. Finally, the stability of the DEBs chosen for CCR5 reconstitution was 

calculated using coarse grained molecular dynamics simulations. 

5.2 Results and discussions 

5.2.1 Strategy for DEB-CCR5 complex assembly 

To generate a CCR5-DEB complex in which the orientation of CCR5 is locked, we de-

cided to reconstitute the ssDNA-labeled CCR5 in DEBs labeled with complementary 

ssDNA. Hybridization of the strands from CCR5 with the ones on DEBs would aid with 

the insertion of the CCR5 into the bilayer, while allowing the control of its orientation.  

CCR5 design 

The CCR5 construct was designed to provide the binding sites for the ssDNA while keep-

ing the protein functional and providing features for the protein analysis. This was 

achieved by designing a construct with multiple protein tags (Figure 5-1). The FLAG and 

1D4 tags are located at the N-terminal and C-terminal of the protein, respectively. They 

are responsible for protein purification, ensuring that only the full protein construct is used 
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in the later experiments. In order to provide a reaction site for ssDNA attachment, the 

construct contained SNAP and CLIP tags which were oriented on the opposite sides of 

the CCR5. Additionally, to immobilize the protein on the surface and allow fluorescence 

studies, the protein had two OLLAS tags.  

 

Figure 5-1. CCR5 construct. On the top and bottom side of the transmembrane domains 

of the protein (yellow) are located SNAP and CLIP tags (green), respectively. These tags 

serve as a reaction site for fluorescently-labeled DNA strands. FLAG and 1D4 tags are 

used for tandem affinity purification, whereas the two OLLAS tags were used for protein 

immobilization on the surface.  

DEB design 

To determine the ideal size of the DEB for the protein reconstitution, molecular models 

of ds DNA minicircles with various sizes (84 bp, 105 bp, 126 bp and 147 bp) were gen-

erated. As shown in Figure 5-2, the 84 bp and 105 bp minicircles would be the proper 

size for the receptor. However, the edge of the bilayer reconstituted in small minicircles 

would have a large positive curvature, which will decrease the stability of the bilayer. 

Furthermore, the characterization of small minicircles (84 bp) can be challenging. There-

fore, we decided to reconstitute the protein in 105 bp minicircles and 126 bp minicircles. 

In contrast to the original DEB design where repetitive sequence was used (Chapter 3), 

the 105 bp and 126 bp minicircles were designed with five and six different addresses 

for the alkylated oligonucleotides, respectively. These alkylated oligonucleotides provide 

additional functions. Two oligonucleotides have protruding strands that interact with the 
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oligonucleotide-labeled CCR5. One has a protruding sequence to hybridize with the oli-

gonucleotide that is attached to the SNAP-tag, while the second one has a protruding 

sequence to hybridize with the oligonucleotide on the CLIP-tag. Both of these protruding 

strands point in the opposite direction, roughly perpendicular to the plane of the minicir-

cle. This way, the strands on the opposite sides of the protein will hybridize to the strands 

on the dsDNA minicircle, leaving the protein in the bilayer with the desired orientation. A 

third oligonucleotide carries a protruding strand for optional surface immobilization with 

a biotinylated oligo, while the remaining oligonucleotides either have no additional func-

tion or they carry a Cy3 or Cy5 dye. 

 

Figure 5-2. Molecular models of CCR5 in DNA minicircles. The GPCR is shown as a 

solvent-accessible surface colored by residue type (white, hydrophobic; green, polar; 

blue, basic; red, acidic). The positions of the alkyl groups are indicated by yellow spheres. 

a) CCR5 in 84 bp, 105 bp, 126 bp and 147 bp rings (top view) b) side view of CCR5 in 

84 bp minicircle. 

5.2.2 DNA labeling 

To label the oligonucleotides that will react with the SNAP-and CLIP- tags and hybridize 

with the protruding strands from DEBs, we used strain-promoted azide-alkyne cycload-

dition. These oligonucleotides had azido group on one end and a fluorophore on the 

other end (Cy5 and Cy3 for SNAP- and CLIP- tag, respectively). The azido group for the 
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SNAP- binding oligonucleotide reacted with BG-BCN whereas the azido group for the 

CLIP-binding oligonucleotide reacted with BC-BCN. BG-BCN and BC-BCN were synthe-

sized by reacting BCN (N-[((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-yl)methyloxycarbon-

yloxy]succinimide) with BG and BC, respectively. Synthesized molecules were purified 

by HPLC and their structures were confirmed by LC-MS.  

The 2-step labeling of oligonucleotides enables the fine tuning of reactants and reaction 

conditions, providing custom SNAP- and CLIP- tag substrates. This way, we assembled 

substrates of higher polarity by introducing BCN with PEG spacer, thus generating BG-

PEG-BCN and BC-PEG-BCN. Oligonucleotides labeled with these compounds have 

higher solubility in water, which leads to their higher accessibility during the reaction with 

protein and, therefore, potentially increase the yield of the labeled protein.
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Figure 5-3. Synthesis of substrates for the CCR5 tags. a) Synthesis of the SNAP sub-

strate. In first reaction BCN reacts with BG, forming BG-BCN, which in second reaction 

conjugates with azido group on the Cy3-labeled oligonucleotide. b) Synthesis of the 

CLIP- substrate, where BCN reacts with BC, forming BC-BCN. BC-BCN reacts with azido 

group on the Cy5-labeled oligonucleotide, forming the BC-BCN oligonucleotide. 

5.2.3 CCR5 labeling and purification 

In order to isolate full-length receptor from receptor truncation products, we employed a 

tandem affinity purification strategy, described by Rico et. al.181 The transfected 

HEK293T cells expressing SNAP-CCR5-CLIP were lysed with a buffer containing DDM, 

CHAPS, and CHS. To immobilize the solubilized receptor, the 1D4-Sepharose immu-

noaffinity matrix was used. The receptor was fluorescently labeled on-resin, washed sev-

eral times and eluted using 1D4 peptide. Since the 1D4 tag is located on the C-terminal 

of the receptor, this purification step removes the cellular components and C-terminal 

receptor truncations. Since this step does not remove N-terminal truncations, the second 

immunoaffinity purification was performed using anti-FLAG M2 agarose, which resulted 

in full-length receptor without truncations. The purification products were analyzed by 

dual-color near-infrared (NIR) immunoblotting. To assess labeling efficiency, the recep-

tors were immobilized on the surface and single-molecule detection total internal reflec-

tion fluorescence (SMD-TIRF) was used.  

To test the CCR5 labeling and purification conditions, the SNAP- and CLIP- tag were 

initially labeled with ATTO 549 and ATTO 647, respectively. The NIR immunoblot anal-

ysis showed that the protein is present after the 1D4 elution. However, a large fraction 

of protein is lost during the FLAG purification step, yielding in poor recovery of the full 

construct (Figure 5-4 a, left). Consequently, the amount of purified protein did not in-

crease when it was labeled with fluorescently-labeled oligonucleotides (Figure 5-4 a, 

middle), suggesting that the FLAG purification conditions need to be improved. Further-

more, the SMD-TIRF analysis showed that labeling with oligonucleotides was not effec-

tive due to presence of many single-labeled receptors. Therefore, it was needed to 

change both labeling and FLAG-purification conditions.  

Since the initial labeling and FLAG elution were done in a buffer containing detergents, 

HEPES and glycerol, we hypothesized that the lack of salts might be responsible for the 



5.2 Results and discussions  

 

69 
 

low yield because of several reasons. First of all, the presence of salts will reduce the 

electrostatic interaction between the protein and anti-FLAG M2 agarose end therefore 

increase the amount of eluted protein. Secondly, it should reduce the electrostatic repul-

sion between labeling oligonucleotides and negatively charged surface of the protein and 

micelles. Therefore, we performed labeling and FLAG-elution experiments in a buffer 

containing 150 mM NaCl. To increase the stability of the receptor, DOPC and DOPS 

were added in trace amounts. This contributed to a significant increase of the yield, which 

is represented by increased fluorescence of the protein band on NIR immunoblot gels 

(Figure 5-4 a, right). However, the SMD-TIRF analysis showed low labeling efficiency of 

the receptors labeled with oligonucleotides with many signals from SNAP-tag and low 

signals from CLIP-tag. In contrast, the receptors labeled with fluorophores showed high 

labeling efficiency, showing that labeling with DNA needs to be optimized.  

 

Figure 5-4. Analysis of labeled CCR5. a) Reducing SDS-PAGE and NIR-immunoblot of 

CCR5-labeled with fluorophores (left), oligonucleotides (center) and oligonucleotides in 

NaCl-supplemented buffer (right) after 1D4/FLAG tandem affinity purification. M, marker; 

1, cell lysate; 2, 1D4 elution; 3, FLAG elution. Full-length SNAP-CCR5-CLIP (∼75 kDa, 

yellow band) was detected using antibodies against the 1D4 (red) and FLAG (green) 

epitopes. b) SMD-TIRF of oligonucleotide-labeled CCR5 in presence of NaCl, followed 

by the sequential purification with complementary oligonucleotides. Green, signal from 

Cy3-labeled oligonucleotide on the SNAP tag; red, signal from Cy-5 labeled oligonucle-

otide on the CLIP tag. 

To maximize the labeling efficiency of the receptor with oligonucleotides, several labeling 

methods were employed. At first, we hypothesized that the presence of ssDNA might be 
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responsible for reduced labeling efficiency. Therefore, we tried labeling in the presence 

of short strands (hexamers) complementary to SNAP- and CLIP- tag oligonucleotides, 

but it did not increase the labeling efficiency. In order to check whether labeling kinetics 

is sequence-dependent, we swapped the CLIP- and SNAP- oligonucleotides. The SMD-

TIRF showed that the SNAP- tag labeling was effective, which was not that case with 

CLIP-tag; this proved that labeling does not depend on the DNA sequence. Then, we 

hypothesized that high hydrophobicity of BG- and BC- BCN attached on charged DNA 

can behave as a detergent, forming micelles and making them inaccessible to SNAP 

and CLIP tags, resulting in lower labeling efficiency. Therefore, we decided to label the 

oligonucleotides with BG- and BC- BCN having 3 PEG residues, resulting in reduced 

hydrophobicity and detergent-like behavior. This approach, however, did not result in 

increased double-labeled receptors. Finally, the double-purification was employed, 

where the tandem affinity purification was followed by the sequential purification with 

oligonucleotides. In the latter step, the oligonucleotide-labeled CCR5 was attached to 

the beads functionalized with complementary to the CLIP oligonucleotide, washed and 

released from the beads by strand displacement. Later on, the same procedure was 

employed for the SNAP oligonucleotides. This step dramatically improved the fraction of 

double-labeled receptors from 9% to 41% (Figure 5-4 b). 

5.2.4 Coarse-grained simulations of DEBs for CCR5 reconstitution 

The stability of the DEBs chosen for CCR5 reconstitution was calculated by coarse 

grained molecular dynamics simulations using the Martini force field. The simulations 

show that the lipid bilayer cannot be stabilized in DEBs containing short alkyl chains 

(ethyl-octyl), leading to the complete disassembly of the system (Figure 5-5 a, b). On the 

other hand, the dodecyl alkyl groups (Figure 5-5 c) stabilize the bilayer during the entire 

simulation period (5 S). Lipid bilayer assembly in butyl and decyl-modified MCs was 

experimentally tested, revealing that these modifications are not sufficient in anchoring 

the lipid bilayer. 
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Figure 5-5. Coarse grained molecular dynamics model of a DEB composed of a 105 bp 

dsMC with 20 butyl (a), 20 octyl (b) and 20 dodecyl (c) groups and lipids. DNA is white, 

alkyl chains red, DMPC head groups blur. Snapshots were taken after 1-microscond 

intervals. Up: view down the membrane normal of a structure at the end of the 5 micro-

seconds long trajectory. Down: View rotated 90 degrees.   
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5.3 Conclusions and outlook 

In conclusion, we have established a method to produce, purify and characterize recep-

tors conjugated with oligonucleotides. The labeling oligonucleotides are formed in a 2-

step reaction that can be modified to provide a variety of products. The preparation of 

double-labeled CCR5 with oligonucleotides is the first step in the DEB-CCR5 complex 

assembly, where CCR5 will be reconstituted in DEBs with protruding strands. The pro-

truding strands on DEBs will hybridize to oligonucleotides on the protein which will pro-

vide control of its orientation. Furthermore, DNA-labeled receptors have a great potential 

for numerous studies, including their arrangement on DNA origami structures. This way, 

the programmable, self-assembled receptor arrays with sub-nanometer precision can be 

formed. 

5.4 Methods 

The methods listed in this section are unique to this chapter, while the ones that were 

common with the previous chapters were not mentioned again (3.4.1, 453.4.9). Methods 

described in Sections 5.4.3, 5.4.4 and 5.4.5 are based on the protocols181 developed by 

Dr Carlos Rico and Prof. Thomas Huber (The Rockefeller University, Sakmar Lab).  

5.4.1 Materials 

Oligonucleotide sequences 

SNAP- tag oligonucleotide: 5’ – /5AzideN/CCTCCTCTCTTCCTTCACC/3Cy3Sp/ – 3’ 

CLIP- tag oligonucleotide: 5’ – /5Cy5/CCACCACCATCAACCAAC/3AzideN/ – 3’ 

DNA minicircle (MC) sequence (105 bp): 5‘ – GCTAAAAAACGCGCAAAAATGTCTAAA 

AAAGTGTGAAAAAGTGTGAAAAAAGTGTGAAAAAGTGTGAAAAAAGGCTGAAAAAT 

GCAGAAAAAACGTGCAAAAAGT – 3’ 

DNA MC splint: 5’ – GCGCGTTTTTTAGCACTTTTTGC – 3’ 

DNA MC complementary strand hybridizing to the SNAP-tag oligonucleotide: 5’ – GTT 

GGTTGATGGTGGTGGCGCGTTT*TT*TAGCACTTT*TT*G – 3’ (asterisks indicate the 

locations of backbone phosphorothioates) 
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DNA MC complementary strand hybridizing to the CLIP-tag oligonucleotide: 5’ – CAC 

GTTT*TT*TCTGCATTT*TT*CAGCCTGGTGAAGGAAGAGAGGAGG – 3’ 

DNA MC biotin strand: 5’ – TT*TT*TAGACATTT*TT*CGATGTCTTCGACATAAACAT 
CCCTT/3Biotin/ – 3’ 

DNA MC Cy3 strand: 5’ – TT*T T*TC ACA CTT T*TT* ACG CAT/3Cy3Sp/ – 3’ 

DNA MC Cy5 strand: 5’ – /5Cy5/TT*TT*TGTCGATGT*GT*G – 3’ 

5.4.2 Labeling oligonucleotides for SNAp tag and CLIP tag 

BG-BCN and BC-BCN synthesis 

In order to generate BG-BCN and BC-BCN, two reactions were set with 11 µM of BG-

NH2 and BC-NH2 in dried DMSO, respectively. Each of them was made to react with 1.5 

molar equivalents of BCN-NHS ester and 1.5 molar equivalents of trimethylamine. Total 

volume of each reaction was 390 µL. The samples were incubated for 90 min with con-

stant nutation, after which the reaction volume was separated in 4 tubes, mixed with 1 

mL diethyl ether and centrifuged for 7 min at 20.000 rcf and 4 °C. The supernatant was 

discarded and the precipitate was purified by reversed phase HPLC using a X system 

with Protein and peptide C18 250x10 mm column, GraceVydac (flow rate 4.5 mL/min, 

monitor absorbance 250 nm) using the following gradient starting points (difference to 

100%: trifluoroacetic acid (TFA; 0.1%)): 

0 min, 5% B (70% acetonitrile (ACN) and 0.1% TFA in H2O) 

5 min, 10% B 

25 min, 70% B 

28 min, 100% B 

30 min, 100% B 

32 min, 10% B 

Both BG-BCN and BC-BCN were eluted at 24.4 min and collected for further characteri-

zation. 
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Oligonucleotide labeling with BG-BCN and BC-BCN 

To conduct the conjugation reaction, 50 µM of Cy5-azido and Cy3-azido labeled oligo-

nucleotides reacted with 1mM BG-BCN and BC-BCN in 100 µL, respectively. After over-

night incubation, the samples were mixed with 50 µL 5 mM TE buffer and 50 µL DMSO 

and purified by reversed phase HPLC using a X system with Protein and peptide C18 

250x4.6 mm column, GraceVydac (flow rate 1.5 mL/min) using the following gradient 

starting points (difference to 100%: triethyl ammonium acetate (TEAA; 20 mM; pH 8)): 

0 min, 0% B (acetonitrile)  

5 min, 7% B 

35 min, 100% B 

37 min, 100% B 

39 min, 7% B 

The conjugated Cy5-BG and Cy3-BC oligonucleotide were eluted at 19.1 min and 16.8 

min, respectively and collected for further characterization.  

5.4.3 CCR5 preparation and labeling 

Ten 100-mm x 20-mm polystyrene dishes were plated with HEK293T cells at 4.0x106 

cells/dish in DMEM + 10% FBS. 24 hours post-plating, 100 µL of Plus Reagent was 

mixed with 80 µg of CCR5-SNAP in 7.5 mL of DMEM. In a separate vessel, 170 µL of 

lipofectamine reagent was mixed with 5 mL of DMEM. After 15 minutes, the transfection 

solutions were mixed and incubated for an additional 15 minutes. Media was removed 

from HEK293T cells and supplemented with 2.8 mL of DMEM. 1.2 mL of the transfection 

solution was added to each plate and the cells were incubated for 4 hours before sup-

plementing the media with 4 mL of DMEM + 20% FBS. 24 hours post-transfection, media 

was removed from the cells and cells were harvested in 2 mL/dish of PBS and 1 mM 

phenylmethylsulfonyl fluoride (PMSF). Cells were pelleted in a 50 mL vessel at 1,500 

rpm using a Beckman GS-6R centrifuge at 4 °C for 5 minutes. The harvesting solution 

was removed and the cell pellet was solubilized in 5 mL of Navratilova Lysis buffer (20 

mM HEPES pH 7.4, 0.1 M (NH4)2SO4, 1 mM CaCl2, 5 mM MgCl2, 10% Glycerol, 0.1% 
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CHS, 1.0% DDM, 1.0% CHAPS) supplemented with a protease inhibitor cocktail (com-

plete, mini, EDTA-free, Roche, Product No. 11836170001) for 2 hours at 4 °C. Cell ly-

sates were then centrifuged at 55,000 rpm for 30 minutes, 4 °C, using a TLA 100.3 rotor. 

The supernatant was added to 600 µL of 50% slurry 1D4 mAb Sepharose 2B resin and 

incubated overnight at 4 °C. Resin was pelleted in a GS-6R for 5 minutes, 2,000 rpm, 

4 °C and then transferred to a Ultrafree-MC-HV Durapore PVDF 0.45 µm centrifugal unit. 

SNAP-CCR5-CLIP was labeled in 400 µL of Buffer T (150 mM NaCl, 2.75*10-6 % DOPC, 

1.18*10-6 % DOPS, 0.02% CHS, 0.1% CHAPS, 0.1% DM, 50 mM HEPES pH 7.4, 

10% glycerol) with 3 µL of 2 µM SNAP-oligo and CLIP-oligo and 1 mM DTT for 2 h at 

4°C. Resin was then washed 3 x 0.5 mL in Buffer T for 30 minutes each at 4 °C. CCR5-

DNA complex was eluted from the 1D4 resin by incubating the sample with 1D5 peptide 

in Buffer T (0.33 mg/mL) twice for 30 minutes on ice and eluting by centrifugation. 1D4 

purified CCR5-SNAP was added to 100 µL of FLAG M2 resin and incubated overnight 

at 4 °C. FLAG resin was transferred to a separate Durapore spin filter and washed 3 

times with 0.5 mL of Buffer N for 30 minutes each at 4 °C. CCR5-DNA was eluted by 

incubating the resin twice with 100 µL of buffer T and FLAG peptide (200 µg/mL) for 30 

minutes on ice. The FLAG purified CCR5-DNA was further analyzed by NIR-immunob-

lotting and fluorescence correlation spectroscopy. 

5.4.4 NIR-immunoblotting 

Samples were mixed with DTT at 150 mM final concentration and NuPAGE loading 

buffer. Samples were loaded into a NuPAGE 4-12% Bis-Tris gel in MES-SDS buffer. 

Electrophoresis was conducted at a constant voltage of 115V. The gel was removed from 

the cassette and rinsed in water before equilibrating in Western Transfer buffer (48 mM 

Tris, 39 mM glycine, 1.3 mM SDS, 20% MeOH, pH 9.2). 1 piece of Immobilon PVDF 

membrane-Fl was incubated for 1 minute at room temperature in 100% MeOH. The 

PVDF membrane and 2 pieces of extra thick blot papers (Bio-Rad) were rinsed in West-

ern transfer buffer. Western transfer was performed in a semi-dry apparatus for 45 

minutes with a constant voltage of 18V. After electrophoresis, the membrane was placed 

in 10 mL of Odyssey blocking buffer (PBS) and incubated for 1 hour at room temperature. 

The membrane was then placed in 10 mL of blocking buffer with anti-1D4 mouse mono-

clonal (1:1,000), anti-FLAG rabbit polyclonal (1:1,000) antibodies, and 0.2% Tween-20. 

The membrane was incubated overnight at 4 °C. Membrane was then washed 5×5 
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minutes in 1x PBS-T (0.1% Tween-20). Membrane was incubated for 1 hour at room 

temperature in 10 mL blocking buffer supplemented with 0.2% Tween-20, 0.01% SDS, 

goat anti-mouse IR 680 RD (1:10,000), and goat anti-rabbit IR 800 CW (1:10,000). Mem-

brane was washed again 5×5 minutes in 1× PBS-T and then 2×5 minutes in 1× PBS 

buffer. Membranes were visualized using a LICOR Odyssey SA using 100 µm resolution, 

and intensity level 7 for both 700 and 800 nm excitations. Images were processed using 

Image Studio Lite Version 4.0 and ImageJ. For the line scan analysis, a rectangle of 45 

× 120 pixels was drawn around the desired gel lane and set as First Lane under Analyze, 

Gels, in ImageJ. The command ‘Plot Lanes’ was then selected with vertical and horizon-

tal scale factors set to 1.0 with uncalibrated optical density. Using the magic wand, an 

area under the curve was selected and saved as x and y coordinates for replotting in 

GraphPad Prism 7. 

5.4.5 SMD-TIRF 

The protocol for SMD-TIRF characterization was adopted from Naganathan et al.182To 

silanize a microplate, freshly cleaned 384-well-glass-bottom microplate was loaded with 

20 µL 3-glycidyloxypropyl trimethoxysilane (GOPS, Aldrich) per well. After 60 min incu-

bation at RT, the GOPS was removed by shaking off the plate over a sink. The plate was 

rinsed three times by evenly spraying 70% ethanol, which was removed by shaking off.  

The plate was covered in Whatman filter paper and centrifuged upside-down for 5 min 

at 500 rcf. The plate was covered with its lid and dried under reduced pressure overnight 

(less than 0.05 Torr/6.7 Pa pressure).  

After drying, 10 µL of coating solution (250 µL of 20 mg/mL biotinyl-bovine serum albumin 

(biotinyl-BSA) (final concentration 1 mg/mL), 10 µL 5% bovine serum albumin BSA (final 

concentration 0.1 mg/mL), 2.24 mL H2O, 2.5 mL 0.2 M borate, 1.85 µL 10% n-dodecyl-

β-D-maltoside (DM), filtered with Steriflip) were loaded to each well of the silanized mi-

croplate. The plate was centrifuged for 5 min at 500 rcf and incubated in a sealed plastic 

bag with a wet filter paper. For the first 90 min the plate was incubated at RT, followed 

by overnight incubation at 4 °C. Next day, the wells were aspirated manually using a fine 

tip placed in a corner of the well bottom. This was followed by loading 10 µL of blocking 

solution (300 µL 1 M Tris base, 2.7 mL H2O, 3 mL 0.2 M borate, filtered with Steriflip) per 

well and centrifuging the plate for 5 min at 500 rcf. After the centrifugation, the plate was 
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incubated for 30 min at RT, after which the wells were aspirated and loaded with 20 µL 

purified water per well. The water was aspirated and the plate was dried under laminar 

flow for 2 h at RT.  

To immobilize NeutrAvidin on the BSA-coated surface, 10 µL of priming solution (10 µL 

0.37% DM, 990 µL PBS) were loaded to each well and aspirated. Later on, 10 µL of 

NeutrAvidin solution (6 µL 10 mg/mL NeutrAvidin, 40 µL 5% BSA, 10 µL 0.37% DM, 

944 µL PBS, centrifuged for 10 min at 12,000 rcf) was loaded to each well, incubated for 

15 min at RT and aspirated. 10 µL of blocking solution (40 µL 5% BSA, 10 µL 0.37% DM, 

944 µL PBS) were loaded to each well and incubated for 10 min at RT.  

To immobilize biotinylated antibody, 10 µL of biotinylated antibody solution (10 µg bioti-

nylated 1D4 (e.g., 1.84 µL 5.42 mg/mL 1D4-ss-biotin), 40 µL 5% BSA, 10 µL 0.37% DM, 

950 µL PBS) were loaded to each well and incubated for 15 min at RT. After the wells 

were aspirated, 10 µL of biotin solution (3 µL 1 mM biotin (3 µM final concentration), 40 

µL 5% BSA, 10 µL 0.37% DM, 947 µL PBS) were loaded to each well and incubated for 

10 min at RT. After the aspiration of the wells, 10 µl of blocking solution (40 µL 5% BSA, 

10 µL 0.37% DM and 950 µL PBS) were loaded to each well and incubated for 10 min 

at RT. The wells were aspirated and loaded with 20 µL of CCR5 sample in serial dilutions 

(1:10, 1:100, 1:1000, 1:10000), to which 80 µL of imaging buffer (1.6 µL 10.9 U/µL GOD 

(27.8 mg 195.7 U/mg glucose oxidase (final concentration 10.9 U/µL), 150 µL purified 

water 322 µL 78% glycerol (final concentration 50%), filtered with Ultrafree-MC spin fil-

ter), 8.5 µL 272 U/µL CAT, 5 µL 200 mM Trolox in DMSO, 5 µL 200 mM MV (methyl 

viologen dichloride hydrate) and 40 µL 10% glucose). The sample was imaged using a 

customized SMD-TIRF microscopy workstation based on a Zeiss AxioVert 200M inverted 

microscope (laser power for the three lasers (488, 561, 642 nm) was 50 mW, exposure 

time 500 ms, electron-multiplying (EM) gain 200, analog-to digital converter (ADC) 

range12e-/unit).  
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