
 
 
 
 

 

Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) / 

This is a self-archiving document (published version):  
 
 
 
 
 
 
 

 

 

 

Diese Version ist verfügbar / This version is available on:  

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-729313    

 

 

 

 

 

 

 

 

 

Elena Vasilyeva, Maik Thiele, Christof Bornhövd, Wolfgang Lehner 

Considering User Intention in Differential Graph Queries 
 

Erstveröffentlichung in / First published in: 

Journal of Database Management. 2015, 26(3), S. 21 – 40 [Zugriff am: 05.11.2020]. IGI Global. 
ISSN 1533-8010 

 

DOI: https://doi.org/10.4018/JDM.2015070102        

 

 

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-729313
https://doi.org/10.4018/JDM.2015070102


Journal of Database Management, 26(3), 21-40, July-September 2015   21

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Differential Queries, Flooding, Graph Databases, Result Ranking, Routing, Top-K Queries

ABSTRACT
Empty answers are a major problem by processing pattern matching queries in graph databases. Especially, 
there can be multiple reasons why a query failed. To support users in such situations, differential queries can 
be used that deliver missing parts of a graph query. Multiple heuristics are proposed for differential queries, 
which reduce the search space. Although they are successful in increasing the performance, they can discard 
query subgraphs relevant to a user. To address this issue, the authors extend the concept of differential queries 
and introduce top-k differential queries that calculate the ranking based on users’ preferences and significantly 
support the users’ understanding of query database management systems. A user assigns relevance weights 
to elements of a graph query that steer the search and are used for the ranking. In this paper the authors 
propose different strategies for selection of relevance weights and their propagation. As a result, the search 
is modelled along the most relevant paths. The authors evaluate their solution and both strategies on the 
DBpedia data graph.
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INTRODUCTION

Following the principle “data comes first, schema comes second”, graph databases allow to store 
data without having a predefined, rigid schema and enable a gradual evolution of data together 
with its schema. Unfortunately, schema flexibility impedes the formulation of queries. Due to 
the agile flavor of integration and interpretation processes, users very often do not possess deep 
knowledge of the data and its evolving schema. As a consequence, issued queries might return 
unexpected result sets, especially empty results. To support users to understand the reasons of an 
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empty answer, we already proposed the notion of a differential query (Vasilyeva, Thiele, Bornhövd, 
& Lehner, 2014), a graph query (for example see Figure 1(a)) which result consists of two parts:

1. 	 A discovered subgraph that is a part of a data graph isomorphic to a query subgraph like in 
Figure 1(b),

2. 	 A difference graph reflecting the remaining part of a query like in Figure 1(c).

Although our approach (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014) already supports 
users in the query answering process, it still has some limitations: the number of intermediate 
results can be very large, e.g., it can reach up to 150K subgraphs for a data graph consisting of 
100K edges and a graph query with 10 edges. A user has two alternatives to deal with so many 
answers. The results can be ranked based on a scoring function, but the size of the result set 
stays the same; as a consequence, the response time can be very high. Alternatively, the results 
can be pruned by optimization strategies that reduce the number of traversals for a query based 
on cardinality and degree of a query’s vertices. This approach reduces significantly the response 
time. As a negative side effect, optimization strategies may remove important subgraphs, since 
these strategies do not consider the users’ intention.

CONTRIBUTIONS

To cope with this issue, we extend the concept of differential queries with a top-k semantic, 
resulting in so-called top-k differential queries (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014). 
These queries allow the user to mark vertices, edges, or entire subgraphs of a graph query with 
relevance weights showing how important graph elements are in a query. To make the search of 
a top-k differential query with multiple relevance weights possible, we present two algorithms 
for the propagation of relevance weights: relevance flooding and broadcasting. Based on the 
propagated weights, the system decides automatically how to conduct the search in order to de-
liver only the most relevant subgraphs to a user as an alternative result set of the original query. 
The initial weights are used to rank the results. The concept of top-k differential queries allows 
us to reduce processing efforts and to rank individual answers according to the user’s interest.

Figure 1. Differential query and its results (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014): (a) 
Differential query, (b) Discovered subgraph, (c) Difference graph
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RELATED WORK

In this section we present solutions for “Why Not?” and “Why Empty?” queries, ranking of 
query results, and flexible query answering.

“Why Not?” Queries

The problem of unexpected answers is generally addressed by “Why Not?” queries (Chapman 
& Jagadish, 2009) determining why items of interest are not in the result set. It is assumed that 
the size and complexity of data prevents a user from manually studying the reasons in a feasible 
way. A user specifies the items of interest with attributes or key values and conducts a “Why 
Not?” query. A “Why Not?” query then could be “Why are the items with predicate P not in the 
result set?” These queries are classified into two groups based on the explanations they provide: 
provenance-based and query rewriting.

The first group, provenance-based methods, generates the following explanations: query-
based (Chapman & Jagadish, 2009; Bidoit, 2014), instance-based (Huang, Chen, Doan, & 
Naughton, 2008; Herschel & Hernández, 2010; Herschel, Hernández, & Tan, 2009), and hybrid 
explanations (Herschel, 2013). Query-based explanations (Chapman & Jagadish, 2009) detect 
operators of a query tree, rejecting the interesting tuples from the result set. For this purpose, 
the original query is manipulated. The extension of this work (Bidoit, 2014) allows to find a full 
solution for query-based answers. Instance-based explanations (Huang, Chen, Doan, & Naugh-
ton, 2008; Herschel & Hernández, 2010; Herschel, Hernández, & Tan, 2009) show how a data 
source has to be modified to deliver missing answers. These explanations fit the data integration 
tasks, because an extraction process can fail and result in wrong data or if data sources are of 
different levels of trust. In contrast to above presented approaches for relational databases, we 
do not deal with a query tree generated for a query execution plan and our source of data is fully 
trusted. Moreover, our solution investigates missing structural parts of a graph query that prevent 
a graph processing engine from delivering a non-empty result set.

The second group, query rewriting methods, modifies a query in such a way that it delivers 
items of interest (Tran & Chan, 2010; Islam, Liu, & Zhou, 2012). A response to a modified query 
includes original query results and items of interest (Tran & Chan, 2010) or unexpected results 
are removed from the result set (Islam, Liu, & Zhou, 2012). The second approach involves a user 
in a query refinement process who has to provide an exemplar subset of tuples to be delivered. 
A relational “Why Not?” query studies the problem only on the level of a vertex and not on the 
level of a subgraph. To apply the above presented solutions, the notion of graph and its refine-
ment have to be introduced.

“Why Empty?” Queries

A solution for the problem of empty answers can be modeled by automatic or interactive “Why 
Empty?” queries based on query rewriting techniques.

In automatic solutions for the query refinement, additional information is required like 
context, preliminary information, or historical data. An original query is extended by constraints 
for a result set that have to be guaranteed (Chaudhuri, 1990). Each modification operator for a 
query is applied according to its application conditions and rules. Automatic techniques for query 
rewriting are commonly used in recommender systems (Jannach, 2007).

In interactive solutions, a user is integrated in a query refinement process. A user decides 
which query candidate has to be followed. For example, an optimization-based interactive 
query relaxation framework for conjunctive queries (Mottin, Marascu, Roy, Das, Palpanas, & 
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Velegrakis, 2013) constructs a query relaxation tree from all possible combinations of attributes’ 
relaxations. Following the tree top-down, a user receives proposals for query relaxations and 
selects preferred ones. The relaxation process terminates (1) if a proposed query candidate has 
delivered a non-empty result set or (2) if such a query candidate was reached that results in 
an empty answer and cannot be further relaxed. This approach (Mottin, Marascu, Roy, Das, 
Palpanas, & Velegrakis, 2013) has only a single objective function. In our settings, it would be 
only a single vertex of interest. To model multiple relevant elements and to detect the optimal 
path between them cannot be achieved by this approach (Mottin, Marascu, Roy, Das, Palpanas, 
& Velegrakis, 2013). Moreover, we do not modify queries, but we provide intermediate results 
and calculate difference graphs as explanations for a user.

Ranking of Query Results

The concept of top-k queries derives from relational database management systems, where 
the results are calculated and sorted according to a scoring function. In graph databases top-k 
queries are used for ranking (sub) graph matches (Zhu, Qin, Yu, & Cheng, 2012; Zou, Chen, & 
Lu, 2007). These ranking strategies differ in the way a data graph is stored in a graph database. 
If a database maintains multiple data graphs, for example chemical structures, then a similarity 
measure based on a maximum common subgraph between a query and an individual data graph 
can be used (Zhu, Qin, Yu, & Cheng, 2012). If a database maintains a single large data graph, 
then the approach of top-k subgraph matches (Zou, Chen, & Lu, 2007) can be applied. In this 
context, a data graph has naturally a hierarchical structure that can be used for (1) index construc-
tion and (2) data subgraphs clustering for effective pruning. These solutions do not consider any 
relevance function for a graph query which is paramount in our setup.

To rank the results, an “interesting” function (Gupta, Gao, Yan, Cam, & Han, 2014), relevance 
and distance functions (Fan, Wang, & Wu, 2013), or estimation of confidence, informativeness, 
and compactness (Kasneci, Suchanek, Ifrim, Ramanath, & Weikum, 2008) can be used. An “in-
teresting” function (Gupta, Gao, Yan, Cam, & Han, 2014) can be defined in advance by a use 
case, for example, it can be a data transfer rate between computers in a network. Up front, we 
do not have any “interesting” function in a data graph. The matching problem can be revised by 
the concept of “output node” (Fan, Wang, & Wu, 2013), which presents the main part of a query 
answer to be delivered to a user. In our settings, this approach could be compared to a single 
vertex with a user-specified relevance weight. Additional semantic information can also facilitate 
the estimation of scoring functions (Kasneci, Suchanek, Ifrim, Ramanath, & Weikum, 2008). 
In contrast, we assume that the data graph has the maximal confidence; our user is interested 
in subgraph matching queries without considering any additional semantic information. The 
compactness of answers is not considered in our work, because we deal with exact matching, 
and the answers containing more relevant parts matching to the initial query are ranked higher. 
Our approach can be further improved by estimating the informativeness, which should be based 
on a user’s preferences. This question is left for future work.

The top-k processing is also used in XML repositories (Amer-Yahia, Koudas, Marian, Sriv-
astava, & Toman, 2005). The authors relax the original query, calculate the score of a new query 
based on its content- and structure-based modifications, and search for the matches. While Amer-
Yahia et al. relax the query and search for a matching document, we process a data graph without 
any changes to the original query. Instead, we do search for exact subgraph matches. Subgraphs 
can also be matched and ranked by approximate matching and simulation-based algorithms, 
which can result in inaccurate answers with a wrong graph shape or non-matching vertices. 
Since we provide exact matches, the class of inexact algorithms is not considered in our work.
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Flexible Query Answering

Solution for an empty-answer problem for graph data can be modeled by approximate queries or 
keyword-based queries. In the first group, approximate queries (Mandreoli, Martoglia, Villani, 
& Penzo, 2009) are supported by a flexible model for querying graph-modeled data that is not 
bounded to any specific graph data model. Approximation works for both: the vocabularies and 
the structure. A top-k list of approximated embedding are proposed to a user as a result. This work 
considers semantic relatedness between vertices to identify if the connection is meaningful and 
deals with incorrect annotations for edges and vertices. In contrast, we assume that descriptions 
are grammatically correct, and we discover missing structural patterns of a query. The second 
group, keyword-based queries, does not include topology information, which is of a main focus 
of our work. Therefore, these studies are not discussed here.

The empty-answer problem can also be solved by introducing uncertain predicates in queries 
(Zhou, Shaverdian, Jagadish, & Michailidis, 2010). Zhou et al. assume that the data graph itself is 
exact, and a user has limited knowledge about predicate values for vertices or edges. A user has 
to define which predicates are uncertain. Then the query processing engine automatically gener-
ates a set of exact predicates matching to uncertain predicates, which a user has to annotate with 
probability. After composition of predicates a list of exact queries is generated, which is ranked 
based on given probabilities. In contrast, in our solution a user is only slightly involved into the 
query answering process: a user has to choose only which vertices are relevant. Alternatively, 
our query processing engine automatically indicates relevance weights. Moreover, we focus on 
the structure of a graph query and not on the predicates of vertices and edges.

A different approach tackling the problem of overspecified queries can be modeled by the 
SPARQL language (Prud’hommeaux & Seaborne, 2008). SPARQL provides the OPTIONAL 
clause, which allows processing of a graph query if a statement or an entire subgraph is missing 
in a data graph. The UNION clause allows specification of alternative patterns. Defining a flex-
ible query is not straight-forward: a user has to produce all possible combinations of missing 
edges and vertices in a graph query to derive results, this requires good knowledge of SPARQL. 
Moreover, this language does not support relevance weights on a graph query directly, and a 
user cannot influence directly the search in the database. Furthermore, it does not support the 
calculation of difference graphs.

PRELIMINARIES

In this section we present a general overview on the used graph model and differential queries 
in graph databases.

Property Graph

A graph database stores data as vertices and edges. Any query to a graph database and correspond-
ing results may be understood as graphs themselves. As an underlying graph model we use the 
property graph model (Rodriguez & Neubauer, 2010; Vasilyeva, Thiele, Bornhövd, & Lehner, 
2014), a very general model, describing a graph as a directed multigraph. It models entities via 
vertices and relationships between them via edges. Each graph element can be characterized by 
attributes and their values.
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Differential Queries

If a user receives an empty result set from a graph database, a differential query can be triggered 
that investigates the reasons of an empty result (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014). 
The differential query is the initial graph query delivering an empty answer, marked by a key-
word. In our work we focus on such queries that have to be specified in the form of a graph, such 
as subgraph matching queries. In order to provide some insights into the “failure” of a query, a 
user receives intermediate results of query processing consisting of two parts: data subgraphs 
and missing parts of the original graph query. The first part consists of a maximum common 
subgraph between a data graph and the graph query that was discovered by any maximum com-
mon subgraph algorithm suitable for property graphs. This can be for example the McGregor 
maximum common subgraph algorithm (McGregor, 1982). The second part reflects a difference 
graph – a “difference” between a graph query and a discovered maximum common subgraph. It 
shows the part of a differential query that is missing from a data graph and therefore displays the 
reason why the original query “failed”. The difference graph is also annotated with additional 
constraints at the vertices, which are adjacent to the discovered subgraph as connecting points.

As an example, imagine a data graph derived from text documents that contains information 
about patients, their diagnoses, and medical institutions. We store the data graph together with 
a source description in a graph database to allow its collaborative use by several doctors. Assume 
a doctor is interested in names of all patients ( P ), their diseases ( I ), their cities of residence 
( C ), medical institutions ( O ), and information documents ( D .) like in Figure 1(a). If the 
query does not deliver any answer, the doctor triggers the query as a differential query and re-
ceives the following results:

•	 The discovered subgraph in Figure 1(b): A person, called Bob, living in San Francisco, 
whose information was described in “Report”, which is about osteosclerosis.

•	 The difference graph in Figure 1(c): There is no informaon about any medical institution 
located in San Francisco, which provided the “Report”.

Differential Query Processing

The processing of a differential query is based on the discovery of maximum common subgraphs 
between a query and a data graph as well as on the computation of difference graphs. Firstly, 
the system selects a starting vertex and edge from a graph query. Secondly, it searches a cor-
responding data subgraph in a breadth-first or depth-first manner. If a maximum possible data 
subgraph for a chosen starting vertex is found, then the system stores this intermediate result, 
chooses a next starting vertex, and searches again. This process is repeated with every vertex as 
a starting point. If the search is done only from a single starting vertex, then the largest maximum 
common subgraph might be missing, because not all edges exist in a data graph. In a final step, 
the system selects the maximum common subgraphs from all intermediate results, computes the 
corresponding difference graphs, and returns them to a user.

Due to the nature of the differential queries, redundant intermediate subgraphs and their 
multiple processing create a potentially significant processing overhead. The number of inter-
mediate results can reach up to 150K subgraphs (Figure 6 (d)) for a data graph of 100K edges. 
In order to cope with this issue, we already proposed different strategies for the selection of a 
starting vertex (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014): based on cardinality or degree 
of vertices. Although the number of answers is reduced, it can still remain large to be processed 
manually. As a side effect, some subgraphs, which are potentially relevant for a user, might be 
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excluded from a search, because the strategies do not take a user’s intention into account. To 
avoid this, we propose an extended concept of differential queries – top-k differential queries, 
which process a graph query and rank results according to user-defined relevance weights.

TOP-K DIFFERENTIAL QUERY PROCESSING

In this section we describe the extended version of our approach (Vasilyeva, Thiele, Bornhövd, 
& Lehner, 2014) – the relevance-based search and cost-minimizing routing with relevance 
flooding and broadcasting and the detection of an optimal traversal path through a differential 
query, and ranking of results.

Top-K Differential Queries

We define a top-k differential query as a directed graph ( ), , , , ,k
qG V E u f g k=  over attribute 

space 
.

 V EA A= ∪ , where:

1. 	 ,V E  are finite sets of N  vertices and M  edges, respectively;
2. 	 2:u E V→  is a mapping between edges and vertices;
3. 	 ( )f V  and ( )g E  are attribute functions for vertices and edges;

4. 	 VA  and EA  are their attribute space, and
5. 	 k  is a number of required results.

The goal of a top-k differential query is to search subgraphs based on relevance weights and 
to rank the discovered subgraphs according to a relevance-based scoring function. For this, we 
introduce so-called relevance weights for vertices ( )ivω  and edges ( )jeω  in a graph query, 
which annotate graph elements, vertices and/or edges, in a graph query with float numbers 
[ ]0;1∈ . A weight 0ω =  denotes low relevance and thus reflects the default of a vertex and 

an edge. In our work we do not concern negative evidence, because if a graph element is not 
interesting to a user, then it would not be included in the query. Graph elements with higher 
relevance weights in a query are more important to a user than those with lower values. The 
introduction of relevance weights does not affect the definition of top-k differential queries, this 
is just an additional property for edges and vertices: ( ) ( )V f Vω ⊆  and ( ) ( )E g Eω ⊆ .

The relevance weights are used for several purposes, e.g. (1) for steering our search in a 
more relevant direction, (2) for earlier processing of elements with higher relevance, and most 
importantly (3) in a scoring function for the ranking itself. The values facilitate the discovery of 
such subgraphs that are more interesting to a user, and the elimination of less relevant subgraphs.

The processing of top-k differential queries is performed as depicted in Figure 2. After a user 
has annotated a query with the relevance weights, a relevance-based search or cost-minimizing 
routing is started. When no new data subgraphs can be found, the system stops the search, 
calculates the rank of discovered subgraphs, and returns results to a user. In the following, we 
describe all these processing steps in more detail.
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Specification of Relevance Weights

Relevance weights described in the previous paragraph can be determined based on a user’s 
preferences or based on a particular use case. If relevance weights are assigned by a user, then 
the more important graph elements get higher weights. With reference to our running example 
(Figure 1), if a doctor is more interested in the names of patients and their diseases, then he 
provides the highest relevance to corresponding vertices: ( ) 1Pvω =  and ( ) 1Ivω =

If relevance weights are determined by a particular use case, then they are defined consider-
ing specific features of the use case – an objective function, which the use case tries to minimize 
or maximize. Some examples of objective functions would be the data transfer rate in networks 
of hubs or traffic in the road networks. If a user aims to maximize the objective function, then 
graph elements with higher values of the objective function are annotated by higher relevance 
weights. In our approach, we do not assume any specific use case and expect that relevance 
weights are defined by a user.

If a user needs support in determining, which elements have to be specified by a weight, a 
user can use one of the following strategies:

•	 Minimum-Representative Element Strategy: For this strategy, we define cardinality 

( )iC v  of a query vertex iv  ( ( )jC e  of a query edge je ) as a number of data vertices 

(edges) matching to vertex iv  (to edge je ). A graph element with the least number of rep-
resentatives is preferred. This strategy is based on the following principle: if a graph element 
has fewer representatives in a data set, it can be of more interest to a user than more general 
described graph elements with more instances. This is valid for edges and vertices. This 
strategy facilitates the reduction of number of answers.

•	 Maximum-Connected Vertex Strategy: For this strategy, we analyze degree of vertices 
that describes the number of connections (outgoing and incoming) in a graph query. It is 
calculated for each vertex. Vertices with the maximum degree are preferred and they get 
the highest relevance weights. This strategy is based on the following principle: if a graph 
element has the most number of connections to other vertices then it represents more informa-
tion about a graph query than other vertices. Such vertices represent the topological centers 
of a graph query. As a consequence, they can be potentially of more interest to a user than 
less connected vertices. This strategy helps to find larger maximum commons subgraphs.

Relevance-based Search

After a user has annotated the graph query, the relevance-based search is conducted, which is 
outlined in the dashed box in Figure 2. This is the first option for discovery of relevant subgraphs. 
At the stage of pre-processing, the relevance weights are transformed into the format required 
by the relevance flooding: edge relevance weights are converted into the relevance weights of 
incident vertices. Afterwards, the relevance flooding propagates the weights along the graph query, 
if at least one vertex does not have a user-defined relevance weight. Then, relevant subgraphs 
are searched in a data graph. After the search, the post-processing is executed over relevance 
weights to prepare them for the further ranking.



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 26(3), 21-40, July-September 2015   29

Pre-Processing and Post-Processing of Relevance Weights

Relevance flooding considers relevance weights only on vertices. To account for the relevance 
weights on edges, we transform them into the weights of incident vertices before the flooding. 
The pre-processing consists of two steps: assignment of missing relevance weights and trans-
formation of relevance weights. If a graph element is not annotated by a relevance weight, then 
the default value is assigned to it. Afterwards, the system distributes the relevance weights of 
edges to their incident vertices as follows:

1. 	 The user-defined relevance weight of an edge is distributed equally across its ends: the 
source and target vertices.

2. 	 Given a set of K  incident edges to a vertex iv , the relevance weight of a vertex ( )ivω  is 
the sum of the square root of edges’ relevance weights ( )jeω , which are incident to the 

vertex iv , and its initial relevance weight ( )init
ivω  (if any):

( ) ( ) ( )
1

 
K

init
i j i

i

v e vω ω ω
=

= +∑ 	

The post-processing is conducted after the subgraph search; it prepares the weights for the 
ranking. By default, the user-defined weights are used in the ranking, therefore, the weights 
changed during the relevance flooding have to be reset to values derived at the pre-processing 
step. Non-annotated graph elements are specified by the minimal weights:

( ) 1min
je

M
ω = 	

( ) 1min
iv

N
ω = 	

Figure 2. Top-k differential query processing
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If we want to use the relevance flooding weights for the ranking, we have to derive the 
weights for edges by multiplying the weights of their sources and targets:

( ) ( ) ( ) source target
j j je e eω ω ω= ∗ 	

Relevance Flooding

The goal of relevance flooding is to annotate all vertices in a graph query by relevance weights. 
It takes place if not all vertices of a graph query have user-defined relevance weights. This is 
necessary to allow the subgraph search based on relevance weights and to facilitate the early 
detection of the most relevant parts of a graph query, which are specified by relevance weights. 
The algorithm for relevance flooding is based on similarity flooding (Melnik, Garcia-Molina, 
& Rahm, 2002), where two schemas are matched by comparing the similarity of their vertices. 
We extend this algorithm to propagate the relevance weights to all vertices in a graph query and 
to keep the initial user-defined relevance weights.

The relevance flooding takes several observations into account: locality and stability of 
relevance. The locality assigns higher relevance weights to the direct neighbors and lower rel-
evance weights to remote vertices. The stability keeps the relevance weights provided by a user 
and prevents the system from reducing them during the flooding.

Relevance flooding works as described in Algorithm 1. In the main part at lines 1 – 9, each 
vertex broadcasts its value to direct neighbors according to the locality property. Afterwards, the 
values are normalized to the highest value at line 18 and user-defined relevance weights are set 
back to ensure the stability of given relevance weights at line 16. If a termination condition is 
satisfied, the propagation is interrupted at line 23. As the termination condition, we can use a 
threshold ε  for the difference of relevance weights of two subsequent iterations or the number 
of iterations κ , which corresponds to the size of the longest path between two vertices in a 
graph query.

Following our example in Figure 1 and assigned relevance weights ( )  ( ) 1P Iv vω ω= = , 
at each iteration we propagate the equal relevance weights to all direct neighbors (an exem-
plary weight propagation during the second iteration is shown in Figure 3(b). During the flood-
ing we do not consider the direction of edges, because the processing of a graph can easily be 
done in both directions without any additional efforts. After the first iteration, vertices ,D C  
get the propagated relevance weights from ,P I  according to the locality property (Figure 3 
(a)). Vertex O  still remains without relevance weight. After each iteration, we normalize the 
relevance weights to the highest value and set those of them back to initial values that have 
weights defined by the user. The gray relevance weights in brackets for vertices ,P I  show the 
weights without reset. We repeat the process, until it converges according to the specified thresh-
old ε  or when the number of iterations κ  has exceeded the longest path between two vertices 
( 4κ = ). The results of relevance flooding are presented in Figure 3(c).

Maximum Common Subgraph Discovery with Relevance Weights

User-defined relevance weights represent an interest of a user in dedicated graph elements: such 
elements have to be processed first. We treat a traversal path between all relevant elements in a 
graph query as a cost-based optimization, where we maximize the relevance of a path.
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The search of subgraphs is modeled by the GraphMCS algorithm (Vasilyeva, Thiele, Born-
hövd, & Lehner, 2014), a depth-first search for property graphs, discovering maximum com-
mon subgraphs between a query and a data graph. First, we choose the first vertex to process. 
The vertices with the highest relevance weights are prioritized and processed first. Second, we 
process such an incident edge of the selected starting vertex that has a target vertex defined by 
the highest relevance weight. Finally, this process continues till all vertices and edges in a graph 
query are processed. If a query edge is missing in a data graph, then the system adjusts the search 
dynamically: it selects the incident edge with the next highest relevance weight or revises the 
search from all possible target vertices.

The relevance-based search chooses a next edge to process dynamically based on relevance 
weights of edges’ ends. If several vertices have the same weight, then the edge that has a vertex 
with a minimal cardinality or a minimal degree is chosen to be processed. The proposed strategy 
steers the search in the most relevant direction first, guaranteeing the early discovery of the most 
relevant parts.

Cost-Minimizing Routing

As an alternative, we can conduct cost-minimizing routing to discover high-relevant subgraphs 
(see Figure 2), where a graph query is modeled as a routing network. Cost-minimizing routing 
includes steps similar to the relevance-based search like pre- and post-processing as well as a 
routing-specific subgraph discovery.

Algorithm 1. Relevance flooding
1: For All vertex vi

 In graph query G
q

2: If v
i
 has user-defined weight Then

3: ω = weight of v
i

4: neighbors = neighbors of v
i

5: Δω = ω / number of neighbors (propagation weight)
6: For All neighbor In neighbors
7: store Δω in neighbor
8: For All vertex v

i
 In graph query G

q

9: increase weight of v
i

10: initialize max(ω)
11: For All vertex v

i
 In graph query G

q

12: If max(ω) ≤ weight of v
i
 Then

13: max(ω) = weight of v
i

14: For All vertex v
i
 In graph query G

q

15: If v
i
 has user-defined weight

16: weight of v
i
 = user-defined weight of v

i

17: Else
18: weight of v

i
 = weight of v

i
 / max(ω)

19: initialize sum
20: For All vertex v

i
 In graph query G

q

21: sum = sum + (previous weight of v
i
 – current weight of v

i
)2

22: If sum ≤ ε Or κ ≥ longest path Then
23: terminate flooding
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Pre-Processing and Post-Processing of Relevance Weights

Similarly to the relevance-based search, we have to pre-process and post-process relevance 
weights. For routing we consider relevance weights on edges and vertices without any conver-
sion between each other. To model the cost-minimization approach, the system transforms rel-
evance weights into distances for vertices and edges like ( ) 1  ( ) i idist v vω= −  and 

( ) 1  ( ),j jdist e eω= −  correspondingly. If a graph element does not have any relevance weight, 
then it has the maximal distance:  1 dist = . It means graph elements with lower relevance weights 
add longer distances into processing paths.

At the post-processing step, the system follows the post-processing step of the relevance-
based flooding: if a graph element does not have any weight, a default weight is assigned to it.

Broadcasting

Each vertex keeps a routing table that describes the distance to each vertex with a user-defined 
relevance weight. The entry in a routing table includes three fields: a destination vertex, a distance 
to this vertex, and an adjacent edge as a first edge to follow. The distance is calculated based on 
the aggregated distances of all edges and vertices on the path between two vertices: 

1 1

( , ) ( ) ( )
K L

m n i j
i j

dist v v dist v dist e
= =

= +∑ ∑ , 

where K  is a number of vertices K N≤  and L  is a number of edges L M≤  on the 
path between mv  and nv .

In the extreme case, when no relevance weights are provided the distance is summed up from 
the number of hops and vertices between source and destination vertices. The routing table can 
include several paths to the same vertex via different adjacent edges. If a destination vertex can 
be reached via all adjacent edges without the crossing the source vertex multiple times, then the 
number of entries for this destination vertex equals to the number of adjacent edges.

At the beginning for each user-defined vertex the system generates and broadcasts a token. 
A token is a unique identifier which is generated and sent from a user-defined vertex to all ver-
tices in a graph query. The broadcasting of tokens is presented in Algorithm 2. After a vertex 
has received a token, it checks whether its distance is initialized at line 2 and sets it if required. 

Figure 3. Relevance flooding (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014): gray relevance 
weights show the case, where the initial relevance weights are not set back: (a) The first itera-
tion (b) Distribution (c) Flooding
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Then the system retrieves the set of direct neighbors of the vertex at line 4 and removes from 
this set that vertex, from which the token came from (line 5). Finally, each neighbor receives 
the token and increments it. If the token was not earlier processed by the vertex, then it is stored 
(line 10) and the vertex broadcasts it to its direct neighbors at line 11. The broadcasting continues 
until all tokens are processed by all vertices. After the broadcast, all vertices have constructed 
their routing tables. Based on the routing tables, a distance of each vertex can be calculated. 
The path to process a graph query is based on these distances: vertices with shorter distances 
are processed first.

Following the example provided earlier, a user defines two relevant vertices: vertices ,P I  
with 1ω =  (see Figure 4(a)). After the broadcasting, the routing tables are constructed as shown 
in Figure 4(b). If we start at vertex P  then we can reach the vertex I  via edge 4e  with 3 dist =  
or via edge 1e  with 7dist = .

Maximum Common Subgraph Discovery with Relevance Distances

After tokens are broadcasted from user-specified vertices of a graph query, the total distances 
are calculated for all vertices based on a search distance to each relevant vertex:

( ) ( )
1

min ,
j

j

K

i e i le
totalDist v dist v v

=

=∑
|

	

where K  is a number of user-defined relevant vertices K N≤
A vertex with the minimal distance is taken as a starting node. The system chooses the 

shortest distance from its routing table and follows the corresponding edge. According to our 
example in Figure 4(b),

( ) ( ) ( ) ( ) ( )dist 3,  dist 5,  dist 6,  dist 2,  dist 3.P C O D Iv v v v v= = = = = 	

Vertex D  has the minimal distance; it is taken as a starting vertex.
If a specific query edge does not have an instance in a data graph, then two scenarios are 

possible. We can use the earlier proposed solution with a restart strategy (Vasilyeva, Thiele, 

Algorithm 2. Broadcasting
1: Input: prevVertex, currVertex, token
2: IF token is not set Then
3: id of token = currVertex
4: neighbors = neighbors of currVertex
5: remove prevVertex from neighbors
6: For all neighbor In neighbors
7: newToken = token
8: newToken += distance to neighbor
9: If newToken Not In neighbor Then
10: store newToken in neighbor
11: broadcast newToken
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Bornhövd, & Lehner, 2014): restart search from a possible target of a missing data edge. Alter-
natively, we can use the advantages of a cost-minimizing routing: we can choose the next short-
est path to a dedicated destination and follow it. Every time, when an edge is not presented in a 
data graph, we adjust search dynamically. If the distances to several destinations are the same, 
then we decide based on cardinalities of corresponding edges. Following the example in Figure 
4(b), if edge 4e  is not presented in a data graph, then the search will continue along edge 3e .

Rank Calculation

The ranking is based only on the discovered subgraphs, the difference graph does not influence 
the rating score. The answers with higher relevance weights are ranked higher. A rating score is 
calculated based on the values of edges and vertices a result comprises. After ratings of all results 
are computed, they are normalized to the highest discovered rating score. Given N  vertices 
and M  edges in a graph query qG , the rating of discovered subgraph 'dG  is calculated as 
follows

( ) ( ) ( )
1 1

,    '  ,    '  
 

0,         0,         

N M
j j di i d

d
i j

e if e Gv if v G
rating G

otherwise otherwise

ωω

= =

 ∈ ∈  = +   
    

′ ∑ ∑ 	

Following our example in Figure 1, the rating of the discovered subgraph in Figure 1(b) 
before normalization equals to   3rating =  by default or   5.68rating =  by using the relevance 
flooding weights from the fourth iteration (see Figure 3(c)).

EVALUATION

In this section, we compare top-k differential queries and unranked differential queries. First, 
we describe the evaluation setup and compare both approaches. Then, we present and interpret 
the scalability of the top-k differential queries.

Figure 4. Cost-minimizing routing: (a) Initial setup (b) Constructed routing tables
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Evaluation Setup

We implemented a property graph model on the top of an in-memory column database system 
with separate tables for vertices and edges, where vertices are represented by a set of columns 
for their attributes, and edges are simplified adjacency lists with attributes in a table. Both edges 
and vertices have unique identifiers. To enable efficient graph processing, the database provides 
optimized flexible tables (new attributes can efficiently be added and removed) and compres-
sion for sparsely populated columns (Bornhövd, Kubis, Lehner, Voigt, & Werner, 2012; Rudolf, 
Paradies, Bornhövd, & Lehner, 2013). This enables schema-flexible storage of data without a 
predefined rigid schema. Our prototypical graph database supports insert, delete, update, filter 
based on attribute values, aggregation, and graph traversal in a breadth-first manner in backward 
and forward directions with the same performance. Data and queries are specified as property 
graphs. In a query, each graph element can be described with predicates for attribute values. To 
specify a dedicated vertex, we use its unique identifier.

As a data set, we use a property graph constructed from DBpedia RDF triples, where labels 
represent attribute values of entities. This graph consists of about 20  K vertices and 100  K
edges. We have tested each case for each query ten times and have taken the average runtime as 
a measure.

Figure 5. Evaluation of unranked and top-k differential queries (a,d) Graph query (b,e) Perfor-
mance (c,f) Ranking
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General Comparison

We constructed exemplary queries shown in Figure 5(a,d) and marked three edges of the type 
“deathPlace” in the first query and edges of types “nationality”, “rank”, and “country” in the 
second query with relevance weights 1ω = . We evaluated both versions of top-k differential 
queries: with relevance-based search and cost-minimizing routing. The unranked differential 
query delivers results with a lower maximal rating and exhibits similar or longer response times 
than the top-k differential queries (Figure 5(b,e)). The top-k differential queries discover more 
subgraphs of higher ratings than the unranked differential query (Figure 5(c,f)). The unranked 
query also discovers the graphs with low ratings. Flooding-based and routing-based queries 
deliver results of similar quality, but the routing procedure exhibits higher response time. Although 

Figure 6. Performance evaluation for differential and top-k differential queries (Vasilyeva, 
Thiele, Bornhövd, & Lehner, 2014): (a) Ranking (path, 10 edges) (b) Ranking (zigzag, 10 edges) 
(c) Intermediate results (path) (d) Intermediate results (zigzag) (e) Response time (path) (f) 
Response time (zigzag)
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in the second case routing-based top-k differential query delivers larger graphs, it exhibits longer 
response time. Based on this observation, we evaluate only flooding-based approach in the fol-
lowing.

Performance Evaluation

We evaluate two kinds of graph queries: path and zigzag topologies. The query for the path 
topology consists of edges of the same type “successor”, and the first edge is marked by a rel-
evance weight. The query for the zigzag topology consists of edges of two types “birthPlace” 
and “deathPlace”. It starts with “birthPlace” marked by a relevance weight and is extended 
incrementally by a new edge for “deathPlace”, then “birthPlace” etc.

We compare rating distributions for the largest query (ten edges in a graph query) in Figure 
6(a,b). The most of the results delivered by the unranked differential query have low ratings, 
while the proposed solution provides at least 60% of its results with the highest ratings. We 
increase the size of a graph query from one edge up to ten edges and evaluate the scalability of 
the proposed solution. The size of intermediate results grows linearly with the number of edges 
in a graph query (Figure 6(c,d)), and it is lower than at least one order of magnitude for the top-
k differential query. This can be explained by the elimination of low-rated subgraphs from the 
search. The response time evaluation exhibits the steep decrease for the top-k differential query 
(Figure 6 (e,f)). From this we can conclude, the top-k differential query is more efficient than 
the unranked differential query: it delivers results with a higher rating score, omits low-rated 
subgraphs, and consumes less processing time.

CONCLUSION

Heterogeneous, evolving data requires a new kind of storage supporting evolving data schema 
and complex queries over diverse data. This requirement can be implemented by graph databases 
offering the property graph model (Rodriguez & Neubauer, 2010). To express graph queries cor-
rectly over diverse data without any deep knowledge of the underlying data schema is a cumber-
some task. As a consequence, many queries might return unexpected or even empty results. To 
support a user in such cases, we proposed differential queries (Vasilyeva, Thiele, Bornhövd, & 
Lehner, 2014) that provide intermediate results of a query processing and difference graphs as 
the reasons of an empty answer.

In (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014) we showed that the result set of a differ-
ential query can be too large to be manually studied by a user. Therefore, the number of results 
has to be reduced, and the differential queries have to provide a ranking of their results based 
on a user’s intention. To address these issues, we extend the concept of differential queries and 
introduce top-k differential queries (Vasilyeva, Thiele, Bornhövd, & Lehner, 2014) that rank 
answers based on a user’s preferences. These preferences are provided by a user in a form of 
relevance weights to vertices or edges of a graph query.

Top-k differential queries (1) allow marking more relevant graph elements with relevance 
weights, (2) steer the search so that more relevant parts of a graph query are discovered first, 
(3) adjust the search dynamically in case of missing edges based on relevance weights, and (4) 
rank results according to the relevance weights of discovered elements.

The evaluation results show that more meaningful results are discovered according to a user’s 
preferences. Our proposed solution delivers results with high rating scores and omits graphs with 
low ratings. Our approach shows good scalability results with an increasing number of edges in 
a graph query. In the future, we would like to speed up top-k differential queries with database 
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techniques like indexing and pre-sorting to allow even faster processing. We also want to enhance 
the system with an online adaptive propagation of relevance weights based on a user’s feedback.
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