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Special Issue

Kai Herrmann*, Hannes Voigt, and Wolfgang Lehner

Online horizontal partitioning of heterogeneous
data
Abstract: In an increasing number of use cases, databases
face the challenge of managing heterogeneous data. Het-
erogeneous data is characterized by a quickly evolving va-
riety of entities without a common set of attributes. These
entities do not show enough regularity to be captured in
a traditional database schema. A common solution is to
centralize the diverse entities in a universal table. Usually,
this leads to a very sparse table. Although today’s tech-
niques allow efficient storage of sparse universal tables,
query efficiency is still a problem. Queries that address
only a subset of attributes have to read the whole univer-
sal table includingmany irrelevant entities. A solution is to
use a partitioning of the table, which allows pruning par-
titions of irrelevant entities before they are touched. Creat-
ing and maintaining such a partitioning manually is very
laborious or even infeasible, due to the enormous com-
plexity. Thus an autonomous solution is desirable.
In this article, we define the Online Partitioning Problem
for heterogeneous data. We sketch how an optimal solu-
tion for this problem can be determined based on hyper-
graph partitioning. Although it leads to the optimal par-
titioning, the hypergraph approach is inappropriate for
an implementation in a database system. We present Cin-
derella, an autonomous online algorithm for horizontal
partitioning of heterogeneous entities in universal tables.
Cinderella is designed to keep its overhead low by oper-
ating online; it incrementally assigns entities to partition
while they are touched anyway duringmodifications. This
enables a reasonable physical database design at runtime
instead of static modeling.
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1 Introduction
Database systems are ubiquitous technological means for
managing large amounts of data. As such, databases are
exposed to the persistent acceleration of society and tech-
nological development. Traditionally modeled database
schemas become quickly outdated by reality and ap-
plication requirements. Where databases should com-
prehensively capture a large and quickly evolving va-
riety of entities, the traditional database design princi-
ples are stretched to their limits. Examples for such ap-
plication areas are product catalogs (e.g., for electronic
devices), clinical findings in patient databases, multi-
tenancy databases, or analytic databases, which are con-
stantly enhanced with derived data. Here, frequently new
entities appear with new combination of attributes or to-
tally new attributes. Typically, entities show some regular-
ity but not enough to allow modeling a decent database
schema.

Acommonsolution in suchareas is tomodel onamore
abstract level and centralize the diverse entities in a uni-
versal table. Instead of a table for each type of product in
a traditional product catalog, the universal table approach
has a single product table containing all product proper-
ties. Usually, this leads to a very sparse table, which most
today’s database systems can store efficiently [1–3]. For
instance column stores use compression to store univer-
sal tables efficiently. Retrieval operations, however, suffer
from the universal table modeling. Queries that address
only a subset of attributes have to read over the whole
universal table including many irrelevant entities that do
not have the addressed attributes. Horizontal partitioning
presents a simple technique to increase the efficiency of
such queries. A partitioning scheme taking into account
the irregularity of the entities allows queries pruning par-
titions of irrelevant entities before they touch the data. De-
signing and maintaining such a partitioning, though, is
a laborious and never ending task most DBAs are not will-
ing to commit to.

In this article, we define the Online Partitioning Prob-
lem for heterogeneous data. We sketch the optimal so-
lution to this problem based on hypergraph partitioning
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and argue that hypergraph approach is inappropriate for
an implementation in a database system. Here, a solution
with little overhead is a necessity. As the main contribu-
tion of the article, we present Cinderella, an autonomous
online algorithm for horizontal partitioning of heteroge-
neous entities in universal tables. Cinderella partitions en-
tities into homogeneous fix-sized partitions, such that the
entities in a partition share most of their attributes. Cin-
derella is designed to keep its overhead low by operating
online; it incrementally assigns entities to partition while
they are touched anyway during modifications. This en-
ables a reasonable physical database design at runtime in-
stead of static modeling. Queries that retrieve only enti-
ties with a subset of attributes can easily prune partitions
which contain entities with only irrelevant attributes. This
increases the locality of queries and reduces query execu-
tion costs.

In the remainder of the article, we define the con-
creteproblem inSection 2anddiscuss theoptimal solution
basedonhypergraphpartitioning inSection 3. Afterwards,
Sections 4 and 5 present Cinderella followed by an evalu-
ation in Section 6. Finally, Sections 7 and 8 briefly discuss
related work and conclude the article, respectively.

2 Online partitioning of universal
tables

In a universal table, heterogeneous entities are like Swiss
cheese. Also known as wide tables, they typically feature
a large number of columns while most of the tuples in the
table instantiate only a small number of these columns.
Figure 1 illustrates such a table for the product catalog sce-
nario. As can be seen, some attributes are very common
among the entities, e.g. name or weight, while others are
specific to only certain kinds of entities, e.g. network for
cell phone. Although the entities exhibit some regularity, it
is hard to find reasonable generalizations that allow a sta-
ble partitioning scheme regarding the attributes the enti-
ties instantiate. While all of today’s cameras feature a sen-

Relation Product

name sensor res screen size network storage tuner rotation weight ...

Sony SLT-A99 24MP 3in — — — — 733g ...
Apple iPhone 5 5MP 4in LTE 32GB — — 112g ...
Samsung UE40F6500 — 40in — — DVB-T/C/S — 9800g ...
WD4000FYYZ — — — 4TB — 7200rpm — ...

Figure 1: Example of a Universal Product Relation for Electronic Devices.

sor and screen, some of them are also equipped with GPS
sensor and Wi-Fi. In the near future, we may see cameras
that may exhibit a mobile connection but lack a storage
card slot.

The overall goal of partitioning a universal table is to
increase the query efficiency. Each partition is described
in the system catalog using a partition synopsis 𝑝, which
lists the attributes instantiated by the entities in the parti-
tion. Likewise, we can list all attributes relevant for a query
in a query synopsis 𝑞. Queries simply return all entities
containing the requested set of attributes. Based on the
synopses, queries can easily prune partitions that contain
only entities with attributes irrelevant to the query, i.e.,
partition for which |𝑝∧ 𝑞| = 0 holds. Correspondingly, the
efficiency of a given partitioning is the ratio of how many
entities are relevant for a workload and howmany entities
are actually read.

Definition 1 (Partitioning Efficiency). Given a universal
table𝑇 containing the entities {𝑒

1
, 𝑒
2
, . . .}, a query set𝑊=

{𝑞
1
, 𝑞
2
, . . .}, and a partitioning 𝑃 = {𝑝

1
, 𝑝
2
, . . .}, the effi-

ciency of 𝑃 is

Efcy(𝑃) =
∑
𝑞∈𝑊,𝑒∈𝑇

sgn(|𝑒 ∧ 𝑞|) ⋅ Size(𝑒)

∑
𝑞∈𝑊,𝑝∈𝑃

sgn(|𝑝 ∧ 𝑞|) ⋅ Size(𝑝)
.

The function Size() yields the size of an entity or a par-
tition, indicating how much has to be read to scan the
entity or all entities in a partition, respectively. Function
sgn(𝑎𝑟𝑔) returns one if its argument 𝑎𝑟𝑔 is positive and
zero if 𝑎𝑟𝑔 equals zero to indicate whether the specific en-
tity or partition is accesses.

The aim of online partitioning of a universal table is to
continuously maximize the efficiency of a given partition-
ing under the presence of modification operations. Modifi-
cation operations are inserts, updates, delete that change
the set of entities or vary the set of used attributes.

Definition 2 (Online Partitioning Problem). Given a uni-
versal table𝑇, a query set𝑊, a partitioning𝑃, and amod-
ification𝑚, online partitioning updates 𝑃 so that Efcy(𝑃)
is maximized for𝑊 after𝑚 is applied to 𝑇.
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The online partitioning problem applies to many differ-
ent database architectures and to various levels in an ar-
chitecture. Most obviously in distributed databases or dis-
tributed file systems, partitions are distributed among the
nodes. In modern main-memory database systems run-
ning on a large shared-memory NUMA system, partitions
resemble the local memory of each CPU core. In tradi-
tional disk-based systems, pagesmay represent a partition
granularity where solving the online partitioning prob-
lem can help to increase the query efficiency on universal
tables.

3 Optimal solution
For an optimal solution of an instance of the online par-
titioning problem, we utilize the 𝑘-way hypergraph parti-
tioning algorithm [4]. Given an instance of the problem,we
can construct a hypergraph such that the partitioning of
the nodes using the connectivity criterion yields the opti-
mal solution for that instance.

Figure 2 illustrates the optimal solution by a simple ex-
ample. Given are entities 𝑒

1
, . . . , 𝑒

6
and queries 𝑎, . . . , 𝑓.

For each query only a subset of entities is relevant, e.g.,
for query 𝑒 only entity 𝑒

4
and 𝑒

6
are relevant. In the hy-

pergraph, each node represents an entity and each hyper-
edge represents a query, such that the edge connects ex-
actly those nodes that are relevant for the query. By 𝑘-
way partitioning the nodes of the hypergraph, we parti-
tion the entities into 𝑘 = ⌈ Size(𝐸)⋅|𝑇|Size(𝑃) ⌉ partitions. We assume
that all entities in 𝑇 are equally sized and compactly dis-
tributed on uniform partitions. The connectivity criterion
minimizes the total number of partitions all hyperedges
connect. In the context of entity partitioning, the connec-
tivity corresponds to the number of distinct partitions that
can contain relevant entities for a query. In the example of

Figure 2: Optimal Solution using Hypergraph Partitioning.

Figure 2, the optimal partitioning of the entities 𝑒
1
, . . . , 𝑒

6

for given queries is {{𝑒
1
, 𝑒
2
, 𝑒
3
}, {𝑒
4
, 𝑒
5
, 𝑒
6
}}. The other par-

titioning shown in the figure has a high connectivity and
therefore is not an optimal solution.

The construction of the graph requires the workload,
hence, the result of the partitioningwill be tailored for this
workload. We call it the dependent solution of the prob-
lem. Whenever a workload is not available or where the
solution should be more general and robust, we can base
the hypergraph on the attributes of the entities. The pro-
cedure is similar to the one shown in Figure 2, except that
𝑎, . . . , 𝑓 are attributes, i.e., entity 4 and 6 instantiate at-
tribute 𝑒. We call the partitioning scheme resulting from
this attribute-based hypergraph the independent solution
of the problem, as it is independent fromaparticularwork-
load.

To solve the online partitioning problem, either de-
pendently or independently, we would create the hy-
pergraph for all entities including the one affected by
the modification and determine the partitioning. Unfortu-
nately, this is infeasible in practical scenarios as hyper-
graph partitioning is NP-hard [4]. Even with heuristic hy-
pergraph partitioning algorithms, the solution comes with
considerable overhead for two reasons. First, the approach
represents each individual entity in the hypergraph,which
causes an enormous amount of data accesses. Second, it
recalculates the complete partitioning with each modifi-
cation operations althoughmost of the entities remain un-
changed. A practical solution of the online partitioning
problem has to exhibit small overhead, such that the over-
head does not exceeds the benefit achieved with the parti-
tioning scheme.

4 Cinderella
Cinderella works incrementally. It relies on the basic as-
sumption that the data is already well partitioned. Trig-
gered by a modification operation, Cinderella merely ad-
justs the partitioning so that the modified entity fits well
in. Cinderella creates partitions of a fixed maximum size.
Partitions that reach their capacity limit are reorganized
with a split operation. We will focus the discussion of Cin-
derella on the insert operation, since the remaining data
manipulation operations are based on the insert. Similar
to the optimal solution, Cinderella can create a workload
dependent or a workload independent solution. For sim-
plicity in the discussion, we will assume the workload in-
dependent setup.

The basic insert procedure is illustrated in Figure 3.
Given two partitions cataloged with their synopses and
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Figure 3: Insert Procedure.

a new entity, Cinderella scans the partition catalog to find
the partition which fits best to the entity. Every partition
is rated and the entity is inserted to the partition with
the highest rating. We will discuss the rating in detail in
Section 5. There are two possible exceptions from this ba-
sic procedure, illustrated in the left and in the right of
the figure. First, the rating can become negative indicat-
ing that the new entity fits none of the existing partitions
well. In this case, Cinderella creates a newpartition for the
newentity. Second, thehighest ratedpartitionhas reached
the maximum capacity 𝐵 so that the entity does not fit in
space-wise. Here, Cinderella splits the partition into two
new partitions.

The split subroutine consists of two steps. First, Cin-
derella picks two entities as seeds for the two new parti-
tions. These two seed entities are chosen to be as differ-
ent as possible regarding the partitioning goal by maxi-
mizing the XOR cardinality of the pair’s synopses. Second,
Cinderella distributes the remaining entities one by one
among the two new partitions. It rates all entities against
the two new partitions, resulting in two ratings per en-
tity. Cinderella determines the entity–partition pair with
the highest rating and inserts the entity into that partition.
Cinderella repeats the procedure until no entity is left and
the old partition is completely split.

Algorithm 1 lists the complete insert routine. As can
be seen the procedure’s complexity depends on the num-
ber of partitions and the cardinality of the synopses, which
is either the number of queries in the workload or the to-
tal number of attributes in the universal table. In case of
a split, complexity additionally depends on the number of
entities in the split partition, which is given by the maxi-
mum partition capacity in the system.

The adjustment routines that Cinderella performs for
the other modification operations rely on the insert rou-
tine. Upon deletes, Cinderella merely removes the deleted
entity from its partition. The partitioning itself remains un-
changed, except the free space of the affected partition

Algorithm 1: Online Horizontal Partitioning
input : Entity E with Synopsis SE

bestPartition, rating ← rate(SE , synopses, wp, ws);
if rating ≥ 0 then

if bestPartition.isFull() then
P1, P2 ← createTwoNewPartitions();
entities ← bestPartition ∪ {E};
addTwoMostDifferent(entities, P1, P2);
repeat

bestEntity′, bestPartition′;
bestRating′ ← −∞;
foreach Entity E′ in entities do

P , r ← rate(SE′ , {SP 1, SP 2}, w′
p, w′

s);
if r > bestRating′ then

bestRating′ ← r;
bestPartition′ ← P ;
bestEntity′ ← E′;

add(bestEntity′, bestPartition′);
remove(bestEntity′, entities);

until entities.isEmpty();
delete(bestPartition);

else
add(E, bestPartition);

else
P ← createNewPartition();
add(E, P );

exceeds a configured limit. In this case, Cinderella dis-
tributes the remaining entities of the almost empty par-
tition to the other partitions using the insert routine and
deletes the partition. Upon updates, Cinderella also runs
the insert routine but without actually inserting. In case,
the updated entity is assigned to a new partition it is
moved. Otherwise, Cinderella updates the entity in place.

Assigning entities to partitions during insert and split
relies on rating how well an entity and a partition fit to-
gether. The next section will detail this rating.

5 Cinderella rating
The Cinderella rating compares an entity synopsis with
a partition synopsis to determine how well the entity
would fit in the partition. Figure 4 illustrates the compar-
ison. Considering a single attribute, there are four cases:
(1) the attribute is in both, entity and partition (𝑒 ∧ 𝑝),
which is homogeneity between entity andpartition; (2) the
attribute is only in the partition (¬𝑒∧𝑝), which is a hetero-
geneity on side of the entity; (2) the attribute is only in the
entity (𝑒∧¬𝑝),which is a heterogeneity on sideof theparti-
tion; (4) the attribute is in none of the two (¬𝑒 ∧ ¬𝑝). This
last case is obviously irrelevant for the rating and is not
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Figure 4: Cinderella Rating.

considered. For the three relevant cases, Cinderella counts
the number of matching attributes. The three scores are
normalized with the total number of involved attributes
|𝑒 ∨ 𝑝|.

Homogeneity is the primary score in the rating. It is
positive evidence that the entity fits well into the partition
and increases the rating. The two heterogeneity scores are
secondary in the rating. They represent negative evidence
and decrease the rating. However, there is a crucial differ-
ence between the two. Partition heterogeneity has a larger
impact on homogeneity of a partition if the new entity is
added. While heterogeneity on the side of the entity re-
sults only in a single entity with fewer attributes than the
partition, heterogeneity on side of the partition results in
multiple entities with fewer attributes than the partition.
Heterogeneity on side of the partition requires updating
the partition synopsis, which renders all the old entities
in the partition heterogeneous to the partition. To account
for these different impacts, Cinderella multiplies the parti-
tion heterogeneity score with the size of partition relative
to the maximum partition capacity 𝐵 and the entity het-
erogeneity score with the relative size of the entity.

Homogeneity score: ℎ+ = |𝑒∧𝑝|
|𝑒∨𝑝|

Entity heterogeneity score: ℎ−
𝑒
=

Size(𝑒)⋅|¬𝑒∧𝑝|
𝐵⋅|𝑒∨𝑝|

Partition heterogeneity score: ℎ−
𝑝
=

Size(𝑝)⋅|𝑒∧¬𝑝|
𝐵⋅|𝑒∨𝑝|

Finally, the Cinderella rating is a linear combination of the
three normalized scores. For more compact configuration,
Cinderella rating expresses three factors in the linear com-
bination with two weights. The primary weight𝑤

𝑝
defines

the ratio between homogeneity score and the heterogene-
ity scores. The secondary weight 𝑤

𝑠
defines the ratio be-

tween the two heterogeneity scores. The Cinderella rating
calculates as:

𝑟 = 𝑤
𝑝
ℎ

+
− (1 − 𝑤

𝑝
) (𝑤
𝑠
ℎ

−

𝑒
+ (1 − 𝑤

𝑠
)ℎ

−

𝑝
)

As both the default insert routine and the split operation
require the rating, the split uses alternative weights 𝑤󸀠

𝑝

and𝑤󸀠
𝑠
.

6 Evaluation
We implemented a prototype to evaluate Cinderella’s par-
tition efficiency, parameter impact, and runtime behav-
ior for data sets of varying irregularity and different par-
tition capacities. To conduct such experiments, we gen-
erated synthetic data sets and a corresponding workload,
which allowed us to precisely control the irregularity. We
preferred synthetic data over real world examples, since
there are no known data sets with configurable irregular-
ity. Though, the experiments show that it is important to
understand the influence of the irregularity on Cinderella.
In the experiments, we inserted the entities of the data set
one after another using Cinderella in its workload inde-
pendent mode. In Section 6.1, we detail the data andwork-
load generation. Sections 6.2 to 6.4 present the results.

Obviously, it is notpossible topartitionahighly irregu-
lar data set perfectly to reach 100% partitioning efficiency.
Consequently, the evaluation will include the lower and
upper baseline to determine the opportunities. The lower
baseline equals the randomdistribution of entities on par-
titions. For the upper baseline, we used dependent hy-
pergraph partitioning in the implementation of the frame-
work patoh [4]. Due to the complexity, it does not provide
the optimum, but a close approximation based on up-to-
date algorithms.

6.1 Data set & workload generation

Generating data sets with specific irregularity requires the
ability to evaluate the irregularity of a given data set in the
first place. Irregularity expresses how far a data set is from
fitting into a regular modeled schema. A data set contain-
ing groups of entities with perfectly distinct attribute sets
is regular. In an irregular data set, entity groups have over-
lapping attribute sets. Hence, the share of possible differ-

Figure 5: Calculation of Irregularity & Data Set Generation.
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ent overlappings of data set is a good measure for the ir-
regularity of the data set.

Figure 5 shows how this irregularity measure is de-
fined. For a given data set, the irregularity schema forms
equivalence classes of entities 𝐸/∼ and attributes𝐴/∼, so
that two entities are equal if they have the same attribute
set and two attributes are equal if they are instantiated by
the same entities. The entity classes separate into regular
ones 𝐸

𝑅
, whose entities have exactly one attribute classes

𝐴/∼ as attribute set, and the irregular ones 𝐸
𝐼
, whose at-

tribute sets are not a single attribute class. Correspond-
ingly, the total number of possible irregular entity classes
𝑚 equals the number of possible attribute sets which are
not an attribute classes or empty, so that 𝑚 = |P(𝐴/∼) \
(𝐴/∼∪ {0})|. Finally, the irregularity 𝐼 is the ratio between
the number of irregular entity classes 𝐸

𝐼
actually existing

in the data set and the total number of possible irregular
classes𝑚, so that 𝐼 = |𝐸

𝐼
|𝑚
−1.

Based on this measure, we generated data sets with
specific irregularities by inverting the three steps of Fig-
ure 5. First, we fixed the number of attribute classes. In
our experiments, we set 𝐴/∼ = 15, which results in 𝑚 =
32 752. Second, we filled the irregularity schema with the
15 regular entity classes to ensure that the number of at-
tribute classes is fixed. Subsequently, we added further
entity classes to reach the required 𝑚. Third, we gener-
ated 25 000 entities by randomly picking an entity class for
each entity. After generating the data set, we created corre-
sponding queries. The assumption is that the existing en-
tity classes represent common attribute pattern, which are
also often accessed by queries. We generated 500 queries,
each containing a slightly varied attribute set of a ran-
domly chosen entity class.

6.2 Efficiency

The experiment shown in Figure 6, evaluates the efficiency
and the number of splits depending on the irregularity of
the data set for a multitude of weightings. This allows de-
termining the average efficiency and the maximum effi-
ciency reached by any weighting. The upper baseline and
the lower baseline converge with growing irregularity, as
it gets harder to partition an increasingly irregular data
set into homogeneous partitions. Cinderella is subjected
to the same behavior. The maximum efficiency almost
reaches the upper baseline for rather regular data sets. On
the other side, it falls to the lower baseline formore irregu-
lar scenarios. In these cases the given knowledge and com-
putation time is not enough to reach efficiency improve-
ments online. However, a strong point of Cinderella is, that

Figure 6: Efficency depending on Iregularity (𝐵 = 50).

Figure 7: Efficiency depending on Capacity (𝐼 = 0.005).

it never falls below the lower baseline, which can happen
when partitions are not filled. So, Cinderella uses a lot of
its potential and provides significant improvements. Fur-
thermore, the number of splits is mostly independent of
the irregularity.

Figure 7 shows an experiment, whichmeasures the ef-
ficiency of Cinderella’s partitionings for varying partition
capacities. Again, the upper baseline converges against
the lower, as higher capacities cause significantlymore ac-
cesses for heterogeneous partitions. Cinderella shows sim-
ilar characteristics. On the one side, it is able to find effi-
cient partitionings for small capacities. On the other side,
growing capacities cause Cinderella to fall on the lower
baseline. Still, it does not produce worse partitionings
than the lower baseline, which is an important achieve-
ment. However, we should not forget that larger partitions
are in general easier to maintain compared to many small
partitions. The number of splits decreases with growing
partition capacity, as there are more entities in fewer par-
titions.
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6.3 Parameter impact

We also evaluate the effect of the weights 𝑤
𝑝
and 𝑤

𝑠
de-

pending on the scenario. Possible scenarios differ in the
irregularity 𝐼 of the data set and the chosen partition ca-
pacity 𝐵. Figure 8 shows eight sample scenarios and the
achieved efficiency in a heat map where the white parts
represent the highest efficiency. This leads to the following
four basic conclusions.𝑀𝑎𝑡𝑐ℎ factor. On the other hand,
the lower the secondary weight𝑤

𝑠
the more important the

extension of masks compared to the extension of entities.

– In general, 𝑤
𝑠
is rather low to avoid the extension

of synopses and protect the quality. Furthermore, 𝑤
𝑝

is very robust, but tends to be optimal at 0.5, which
shows that especially the homogeneity and the hetero-
geneity of partitions are relevant.

– Themore irregular the data set is, the narrower the op-
timal configuration of𝑤

𝑝
. As the partitioning task gets

harder, it requires more precise decisions.
– The higher the partition capacity, the lower the po-

tential improvement as already shown in Figure 6. Ac-
cordingly, the optimal weighting gets more specific for
even smaller irregularities. In Figure 8, for instance
themeasurementwith𝐵 = 10 and 𝐼 = 0.06 is similar to
the scenario with 𝐵 = 100 and 𝐼 = 0.01, which shows
that the optimal weighting is simply shifted with in-
creasing 𝐵.

– When the actual improvement equals zero, the opti-
mal weighting inverts as illustrated in the two most
irregular scenarios of 𝐵 = 100. Here, it is dangerous
to focus on the heterogeneity of partitions, as enti-
ties will chose partitions with full synopses, which
is usually caused by a high fill level. This contra-
dicts the idea of preferring emptier partitions to avoid

Figure8: Influence of Weighting on Efficiency.

Figure 9: Runtime (𝐼 = 0.005, 𝑤𝑝 = 𝑤󸀠𝑝 = 0.5, 𝑤𝑠 = 𝑤󸀠𝑠 = 0.2).

splits. Consequently, the algorithm performs signifi-
cantly more splits and allocates more partitions than
necessary. Unfortunately, the resulting efficiency is
lower than the lower baseline, as partitions are not
used entirely.

6.4 Runtime behavior

Finally, we examine the required time of a single run with
a fixed irregularity, fixed weighting, and two different par-
tition capacities. After each 100 inserted entities, we mea-
sure the required time and the number of splits for the
last 100 entities as well as the total number of partitions.
We excluded the first 200 entities from the evaluation,
as the first inserts often create new partitions instead of
splitting existing partitions. After that initial period, Cin-
derella basically knows the irregularity of the data set and
does not receive completely new entities any more. The
results in Figure 9 show two linear runtimes, which dif-
fer in their base level and the actual increase. The base
level of the higher partition capacity is higher even though
it executes fewer splits. Nevertheless, splitting larger par-
titions is even more expensive compared to many small
splits, according to the split algorithm’s complexity. Even
for a growing number of entities in the system, the num-
ber of splits remains constant. Therefore, the increase of
the required time exclusively depends on the number of
partitions, since for each incoming entity all partitions are
rated. As, the total number of partitions is higher for small
partition capacities, the runtime also increases faster com-
pared to scenarios with larger partitions.

Another interesting aspect of thismeasurementwould
be a comparison of different irregularities. As shown in the
efficiency measurement, Figure 6, the number of splits is
independent of the irregularity,which causes almost equal
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runtime behavior for different irregularities. To maintain
a comprehensible plot, Figure 9 excludes such alterna-
tives.

7 Related work
Handling heterogeneous data sets is no new challenge
and has been addressed in multiple research projects. For
instance, Wu and Madden build partial indexes on data
sets which grow very fast, however, their workloads ac-
cess mainly small local hot spots. Their idea is to use hor-
izontal partitioning to realize flexible indexing depend-
ing on the workload of each partition. The decisions are
based on a cost model to simulate potential benefits and
risks [5]. In contrast to this, we define heterogeneity on
another level and intent to optimize accesses to especially
sparse data sets. Another example for handling heteroge-
neous data sets is proposed by Chu, who uses vertical par-
titioning to obtain homogeneous parts based on attribute
clustering [6]. The retrieved attribute groups infer a hidden
schema, which was not explicitly modeled but exists im-
plicitly within the data set. This is also known as Schema
Mining.

SchemaMining canbe solved by different approaches,
like Nestorov who uses fixed point semantics on a graph
structure [7]. Furthermore, Bunemann applies graph
schemas, which represent the information in a rooted
graph with labeled edges. As they have a natural or-
dering, a schema is inferred by finding the least upper
bound of these graphs. Queries, which have to access
the derived graph structure, can prune subgraphs to gain
a higher performance [8]. Another approach is to use for-
mal concept analysis to extract semantic schema infor-
mation from a flexible data set with irregular concepts.
The set of concepts is iteratively consolidated until it
reaches an intended size and can be efficiently handled
in a database [9]. Although Schema Mining is very simi-
lar to our goal, we laid the focus on storage optimization

for efficient query processing, which should be computed
efficiently in an online solution.

Furthermore, our work aims at autonomously parti-
tion the data set online. A very similar goal has been
realized in the AutoStore by Jindal [10]. This system au-
tonomously adapts to the workload by monitoring it and
triggering reorganizations of the partitioned data set. The
main difference to our work is that we partition incom-
ing entities immediately instead of subsequent reorgani-
zations of an existing data set.

8 Conclusion
The universal table is a common setup in databases involv-
ing a significant share of heterogeneous, hard to model
entities. Horizontal partitioning can help to increase the
efficiency of queries on such universal tables. Maintain-
ing such a partitioning poses an optimization problem in
the field of physical design. We define this as Online Parti-
tioning Problem for heterogeneous data. Hypergraph par-
titioning represents an optimal but practically insufficient
solution to the problem. With Cinderella, we proposed
an autonomous online algorithm for horizontal partition-
ing of heterogeneous entities in universal tables, which is
designed for low overhead. In the evaluation, Cinderella
showed capable of significantly increasing the query ef-
ficiency over random partitioning. The smaller the parti-
tion size the better the achieved efficiency. As smaller par-
titions, however, increase the number of partitions and
thereby the overhead of Cinderella, we will continue our
research and aim to further improve Cinderella. Particu-
larly, we will look to improve the management of a large
number of partition synopses with specialized data struc-
tures and include further aspects of physical database de-
sign like caching or indexing.

Received June 10, 2013; accepted October 2, 2013.

References

1. Acharya, S., Carlin, P., Galindo-Legaria, C., Kozielczyk, K., Ter-
lecki, P., Zabback, P. (2008). Relational support for flexible
schema scenarios. Proceedings of the VLDB Endowment, 1289–
1300.

2. Agrawal, R., Somani, A., Xu, Y. (2001). Storage and Querying of
E-Commerce Data. In Enterprise Engineering meets Software En-
gineering (E2mSE) (pp. 149–158). Morgan Kaufmann Publishers
Inc.

3. Beckmann, J. L., Halverson, A., Krishnamurthy, R.,
Naughton, J. F. (2006). Extending RDBMSs To Support Sparse
Datasets Using An Interpreted Attribute Storage Format.
In ICDE.

4. Uçar, B., Çatalyürek, Ü. V., Aykanat, C. (2010). A Matrix Partition-
ing Interface to PaToH in MATLAB. Parallel Computing, 36(5–6),
254–272.



12 | Kai Herrmann et al., Online horizontal partitioning of heterogeneous data

5. Wu, E., Madden, S. (2011). Partitioning techniques for fine-
grained indexing. In 2011 IEEE 27th International Conference
on Data Engineering (pp. 1127–1138).

6. Chu, E., Beckmann, J., Naughton, J. (2007). The case for a wide-
table approach to manage sparse relational data sets. In Pro-
ceedings of the 2007 ACM SIGMOD (p. 821). New York, USA:
ACM Press.

7. Nestorov, S., Abiteboul, S., Motwani, R. (1998). Extracting
schema from semistructured data. ACM SIGMOD Record, 295–
306.

8. Peter Buneman, S. D. (1997). Adding structure to unstructured
data. In Database (1997) (pp. 336–350). Springer.

9. Mühle, H., Voigt, H., Lehner, W. (2010). Ein begriffsbasierter
Ansatz zur semantischen Extraktion von Datenbankschemata.
In Enterprise Engineering meets Software Engineering
(E2mSE).

10. Jindal, A., Dittrich, J. (2011). Relax and Let the Database Do
the Partitioning Online. In M. Castellanos, U. Dayal, W. Lehner
(Eds.), BIRTE (Vol. 126, pp. 65–80). Springer.

Dipl.-Inf. Kai Herrmann
Technische Universität Dresden, Database Technology Research
Group, Nöthnitzer Straẞe 46, 01187 Germany,
Tel.: +49-351-46337895
Kai.Herrmann@tu-dresden.de

Kai Herrmann is a PhD student at the Database Technology Group at
TU Dresden. He received his Computer Science master’s degree
from the TU Dresden in April 2013. For his thesis he developed
a configurable schema mapping layer which allows flexible man-
agement of irregular data sets. From 2009 to 2013, he was a student
research assistant at the Database Technology Group focusing on
flexible data management.

Dipl.-Inf. Hannes Voigt
Technische Universität Dresden, Database Technology Research
Group, Nöthnitzer Straẞe 46, 01187 Germany
Hannes.Voigt@tu-dresden.de

Hannes Voigt received his Master in Computer Science from the
TU Dresden in 2008. Since graduation, he pursues his research
activities as a research assistant in the Database Technology Group
at TU Dresden. In 2010/2011, he was a visiting scientist at SAP Labs,
Palo Alto. His research interests are in flexible data management,
graph database, and physical design.

Prof. Dr.-Ing. Wolfgang Lehner
Database Technology Group, Faculty of Computer Science, Techni-
sche Universität Dresden, 01062 Dresden, Germany, Tel.: +49-351-
46338383
Wolfgang.Lehner@tu-dresden.de

Wolfgang Lehner received his Master, Ph. D., and habilitation in
Computer Science from the University of Erlangen-Nuremberg.
Since 2002, Wolfgang Lehner is full professor and head of the
Database Technology Group at TU Dresden. He was a visiting sci-
entist at IBM Almaden, Microsoft Research Redmond, and SAP
Walldorf. His major research focuses on the efficient processing
of empirically collected mass data with advanced database technol-
ogy.


	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Kai Herrmann, Hannes Voigt, Wolfgang Lehner
	Online horizontal partitioning of heterogeneous data
	Online horizontal Partitioning.pdf
	Online horizontal partitioning of heterogeneous data
	1 Introduction
	2 Online partitioning of universal tables
	3 Optimal solution
	4 Cinderella
	5 Cinderella rating
	6 Evaluation
	6.1 Data set & workload generation
	6.2 Efficiency
	6.3 Parameter impact
	6.4 Runtime behavior

	7 Related work
	8 Conclusion



