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ABSTRACT

Numerous applications gather increasing amounts of data, which have to be managed
and queried. Different hardware developments help to meet this challenge. The grow-
ing capacity of main memory enables database systems to keep all their data in memory.
Additionally, the hardware landscape is becoming more diverse. A plethora of homo-
geneous and heterogeneous co-processors is available, where heterogeneity refers not
only to a different computing power, but also to different instruction set architectures.
For instance, modern Intel® CPUs offer different instruction sets supporting the Single
Instruction Multiple Data (SIMD) paradigm, e.g. SSE, AVX, and AVX512.

Database systems have started to exploit SIMD to increase performance. However, this
is still a challenging task, because existing algorithms were mainly developed for scalar
processing and because there is a huge variety of different instruction sets, which were
never standardized and have no unified interface. This requires to completely rewrite the
source code for porting a system to another hardware architecture, even if those archi-
tectures are not fundamentally different and designed by the same company. Moreover,
operations on large registers, which are the core principle of SIMD processing, behave
counter-intuitively in several cases. This is especially true for analytical query process-
ing, where different memory access patterns and data dependencies caused by the com-
pression of data, challenge the limits of the SIMD principle. Finally, there are physical
constraints to the use of such instructions affecting the CPU frequency scaling, which
is further influenced by the use of multiple cores. This is because the supply power of a
CPU is limited, such that not all transistors can be powered at the same time. Hence, there
is a complex relationship between performance and power, and therefore also between
performance and energy consumption.

This thesis addresses the specific challenges, which are introduced by the application
of SIMD in general, and the heterogeneity of SIMD ISAs in particular. Hence, the goal
of this thesis is to exploit the potential of heterogeneous SIMD ISAs for increasing the
performance as well as the energy-efficiency.
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1.1 MOTIVATION

In our increasingly digitalized world, applications and servers have to manage rapidly
growing amounts of data. Applications analyzing this data use Online Analytical Pro-
cessing (OLAP) for this task. They have to process these large amounts of data while
maintaining performance and latency constraints. This includes but is not limited to data
gathered for and from digital health, digital assistants, e-commerce, smart homes and
cities, and industry 4.0. The recent trend for home office and limitations in social life due
to the spread of Covid-19 has fueled the use of cloud services1, online shops2, telehealth 3,
and PCs in general4 even further. The analysis of this data is retrieved by Online Ana-
lytical Processing (OLAP), which typically includes the access and evaluation of only a
small selection of attributes.

To satisfy the demand for performance and low latency, hardware development has es-
tablished a few trends. One of these trends is the growing amount of main memory,
which is available at relatively constant prices. This enables applications to keep all of
their operational data in main memory, which is faster than accessing data on disk. An-
other trend is the introduction of Co-Processors. While GPUs have been common for
more than 20 years now, other accelerators have only become available and affordable
to the general public during the past few years, e.g. dedicated vector processors, FP-
GAs, and multi-socket systems. This growing heterogeneity also causes a diversity of
instruction sets, because each system offers one or more instruction sets tailored to the
hardware. A third development is the increasing density of transistors, which enables
multiple cores and different specialized instructions on the same CPU. However, not all
of these transistors can be powered at the same time. Hence, only a part of the available
chip can be used at a time. This phenomenon is called Dark Silicon [EBA+11]. Thus, it
is necessary to use the right transistors, i.e. the right instructions in order to achieve the
requested performance.

"Unfortunately, improving performance of applications has now become much more difficult
than in the good old days of frequency scaling. This is also affecting databases and data

processing applications in general[..]"
- Jens Teubner and Louis Woods [Teu17]

At the same time, the importance of energy-efficiency as an optimization goal is increas-
ing [HSMR09]. This has different reasons. The cost of powering large-scale data centers
is just one of them. There are also physical constraints like the already mentioned power
limits. Another reason is that energy dissipation is released as heat, which requires cool-
ing, which requires even more energy and limits the ongoing miniaturization of circuits.
It is not hard to guess that this cycle cannot be upheld endlessly. Hence, energy con-
sumption is not only an optimization goal, but also a limiting factor. There are numerous

1https://www.handelsblatt.com/25813516.html, accessed 23/07/2020
2https://de.statista.com/statistik/daten/studie/579708/umfrage/monatliche-

umsatzentwicklung-im-versand-und-internet-einzelhandel/, accessed 24/07/2020
https://www.nytimes.com/interactive/2020/05/13/technology/online-shopping-buying-sales-

coronavirus.html, accessed 24/07/2020
3https://www.gruenderszene.de/health/coronakrise-telemedizin-durchbruch,

accessed 24/07/2020
https://www.hessenschau.de/gesellschaft/wie-die-corona-krise-die-telemedizin-voranbringt,

digitale-sprechstunde-100.html, accessed 24/07/2020
4https://www.cnbc.com/2020/05/04/pc-sales-usage-rise-during-coronavirus-lockdown.html,

accessed 23/07/2020
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approaches for energy-efficient data processing, which aim to also keep the performance
at an acceptable level, like ERIS [Kis17], E²DBMS [TWZX14], an extension of HyPer for
heterogeneous ARM® systems [MRS+14], and even methods to optimize DRAM power
consumption [AOA15]. These approaches rely on the setting of hardware knobs, e.g. the
CPU or DRAM frequency, and the number and affinity of active threads.

A method, which is promising to boost performance and energy-efficiency likewise, is the
use of data-parallelism additionally to the parallelism of instructions. While instruction-
level parallelism is reached by multi-threading, data-level parallelism follows the Single
Instruction (stream) Multiple Data (stream) paradigm, abbreviated as SIMD, where mul-
tiple data elements are processed with one instruction. Hardware support for SIMD is
provided by different instruction sets, e.g. ARM® NEON, ARM® SVE, Intel® SSE, and
Intel® AVX512. These instruction sets offer so-called vector registers, which can store
multiple elements, and instructions to process the data in these vector registers. There-
fore, the use of SIMD is also referred to as vectorized processing. However, a meaningful
use of SIMD is not always trivial, especially when there are dependencies between the
elements in the same vector register. A prominent example, where this situation occurs
is compression. To keep the memory footprint small and to reduce memory I/O, it is
common to compress data. This can be done in different ways, e.g. by saving only the
differences between values instead of the actual value. Thus, values cannot be treated
as independent objects of a vector. Branching, typically realized as masked operations,
is another aspect, which is not supported by all instruction sets. Moreover, technically
it can break the SIMD paradigm, e.g. if only one bit of the mask is set, such that only a
single value is processed. Some of these difficulties have already been identified in the
70s [Fly72] and the growing size of vector registers today increases their significance. In
some cases, it might even be more useful to use scalar processing over vectorized pro-
cessing, which breaks down to the already mentioned choice of the right instructions,
i.e. scalar or vectorized. Additionally, there is no standard for SIMD instruction sets.
Therefore, different manufacturers develop different instruction sets and different ver-
sions of these instruction sets, which do not necessarily show a consistent naming scheme
or function range. For instance, the degree to which intra-register dependencies can be
processed is different. This degree ranges from not possible, e.g. with SSE, to the de-
tection of conflicts between all vector elements with AVX512. Wherever an instruction
set is not offering the appropriate operations, workarounds are necessary, which typi-
cally include a scalar processing part affecting the performance negatively. Moreover,
different vector register sizes and instruction sets can be present on the same system.
Especially Intel® CPUs are equipped with different SIMD instruction sets. Hence, these
CPUs provide a heterogeneous Instruction Set Architecture (ISA). Previous approaches to
provide a unified interface for different instruction sets focus mainly on sequential mem-
ory access and element-wise arithmetic computation, e.g. Sierra [L+14], VC [KL12a],
boost.SIMD [EFGL14], and UME::SIMD [KM17].

"A number of difficulties can be anticipated for the SIMD organization."
- Michael J. Flynn [Fly72]

However, if used appropriately and with a powerful instruction set, substantial perfor-
mance gains over scalar execution can be achieved in query processing [P+19b]. For this
reason, it is worth to analyze and overcome the specific challenges, which are introduced
by the application of SIMD in general, and the heterogeneity of SIMD ISAs in particu-
lar. The goal of this thesis is to exploit the potential of heterogeneous SIMD ISAs for
increasing the performance as well as the energy-efficiency. An appropriate description
of the evolution of this thesis: "Du denkst, es dauert 5 Minuten und dann dauert die Scheiße
6 Stunden." - Michael Manousakis, Steel Buddies

1.1 Motivation 11



1.2 CONTRIBUTIONS

Tweaking the use of different SIMD instruction sets requires a deep understanding of the
specific challenges created by large registers and the growing heterogeneity of instruction
sets. In this thesis, we provide an insight into these challenges and present according so-
lutions, which are a prerequisite for our optimization approach. The main contributions
of this thesis can be summarized as follows:

1. We provide a thorough analysis of the challenges created by the introduction of
wide vector registers. The growing size of vector registers creates inherent and al-
gorithmic challenges, which must be overcome to be of use for data intensive work-
loads. Additionally, the diversity of instruction sets on different hardware platforms
complicates the port of existing solutions and a fine-grained selection of vector reg-
ister sizes.

2. We present a Template Vector Library, which abstracts from heterogeneous instruc-
tion sets while enforcing explicit vectorization. This enables a hardware-oblivious
implementation of portable solutions, which tackle the specific challenges of large
vector registers. The range of functions, which our library provides, so-called prim-
itives, was chosen to work for memory intensive workloads with different memory
access patterns as opposed to existing solutions, which are mainly made for com-
putational workloads, e.g. for scientific simulations.

3. Our Template Vector Library enables a fine-grained choice of the register size and
the instruction set without changing the underlying source code. This offers the
possibility to explore and to use the optimization potential of combining different
instruction sets in the same query. We develop a benchmark-based model, which we
use for the optimization of performance as well as for the optimization of energy-
efficiency. We call this model Work-Energy-Profile.

4. To minimize the number of required benchmarks, we present a method, which
combines several primitive Work-Energy-Profiles into profiles for more complex use-
cases, e.g. for operators.

5. We introduce approaches of applying Work-Energy-Profiles in different scenarios, e.g.
for continuous workloads or for individual queries.

6. An end-to-end evaluation using the popular Star Schema Benchmark [OOC07]
shows the applicability of our optimization approach for analytical queries. To ap-
ply our approach, we use MorphStore [DUP+20], an in-memory query execution
engine, which implements all its operators and compression algorithms using our
template vector library. We also compare our results to MonetDB [IGN+12], a state-
of-the-art column-store.

Additionally to our main contributions, we provide an overview of related work for each
individual topic and a discussion of selected results. Most of our contributions have al-
ready been published in international conferences and large parts of the source code are
available online, which we will reference in the appropriate sections of this thesis. Al-
though our approach is software-based, we also give a short insight into the hardware-
based approaches for performance and energy-efficiency optimization using instruction
set extensions. As we will show, hardware design does not have to be a one-sided pro-
cess, but in a collaborative environment, software requirements can serve input for the
development of hardware, which fits the applications they are made for.

12 Chapter 1 Introduction
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Figure 1.1: Overview of the structure of this thesis

1.3 OUTLINE

Figure 1.1 provides an overview of the topics of this thesis, which roughly reflects our
main contributions. In Chapter 2, we recapitulate the state-of-the-art in column-store
engines and their application of vectorization. We also discuss the effects of vectoriza-
tion on query performance and its physical constraints, which come with instruction set
extensions. Chapter 3 shows why the integration of vector instruction sets into query
execution engines is not trivial. There are reasons following directly from the size of
the vector registers, and there are reasons following from the fact that many existing al-
gorithms were designed for scalar processing. Moreover, the variety of instruction sets
between different hardware systems requires different implementations, which can vary
heavily in their complexity and performance. Therefore, we present a Template Vector Li-
brary, which enables hardware-oblivious explicit vectorization. In Chapter 4, we present
our Work-Energy-Profiles as a model used to optimize for performance and for energy-
efficiency. By using our library, different instruction sets integrate seamlessly into this
approach. We also provide a benchmark concept to create such Work-Energy-Profiles and
a method to create Work-Energy-Profiles for use-cases which were not individually bench-
marked. Then, we apply our optimization approach to complex analytical queries in
Chapter 5. Finally, we provide a summary in Chapter 6. Additionally, we show how
our optimization goals are tackled from the hardware side and which potential future
research topics arise from our work.

1.3 Outline 13
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OVERVIEW AND CHALLENGES OF
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2.2 State-of-the-art Vectorization in Column-
Stores

2.3 Hardware Trends and Effects on Query
Processing



The state-of-the-art in analytical query processing are in-memory column-store engines
[Pla09]. In this chapter, we will give an outline of the characteristics of such systems in
Section 2.1 and present two widely adopted optimizations: vectorization and compres-
sion in Section 2.2. These optimizations are often used in a combination, i.e. vectorization
is used to enhance the compression speed ([D+19, L+15, SGL10]), which improves the
overall performance. However, the use of vectorization in an ever-changing hardware
landscape presents the query execution engine with some challenges, which we will dis-
cuss in section 2.3.

2.1 IN-MEMORY COLUMN-STORE ENGINES

Efficient analytical query processing heavily relies on fast data access. In the memory
hierarchy, disk access has a higher latency and lower bandwidth than the volatile mem-
ory in the lower layers. For this reason, it makes sense to keep data in other layers of
the memory hierarchy, e.g. in main memory. The increasing density of main memory at
relatively low prices allows for the development of in-memory database systems, which
reduce the use of disk to a minimum or completely eliminate it, e.g. HyPer [KN11] or
MonetDB [IGN+12].

Further, analytical queries are characterized by the access of few columns but many rows,
e.g. a simple scan reads all rows of a column. Thus, memory access is not only optimized
by moving the data into main memory, but also by reorganizing it in a so-called column-
store. This means, that data is partitioned vertically, such that columns are stored sequen-
tially, where each element has an ID identifying the tuple it belongs to. To reconstruct a
tuple, a projection on the other columns is done with this ID. A project operator reads the
IDs of a result set and gathers the values of another column, which share the same ID.
For an efficient memory access and evaluation, values and IDs are typically represented
by a numerical data type with a fixed size, i.e. as integer data types. In MonetDB such a
collection of (ID, value)-tuples is called Binary Association Table (BAT), where the value-
part is a memory mapped simple array. A column-store enables linear memory access
during scans and aggregations of columns, because only the column, which is evaluated
has to be read. There are no other attributes of the tuple, which have to be skipped or
read without being used. This increases the performance compared to the random access
required for accessing selected columns in horizontally fragmented relations. A further
optimization is to omit the ID and just use the position in an array instead. This is done in
the read-optimized store of the system C-Store, which shows significant speed-ups com-
pared to row-stores, which use horizontal fragmentation [SAB+18]. Later, the idea was
also adopted by MonetDB, such that only a base value per column is stored now and the
other IDs can be reconstructed from this base value1.

The execution engine of such column-stores requires special operators working on
columnar data instead of the traditional rows, e.g. [BMK+99, BHC12]. Figure 2.1(a) il-
lustrates this using a simple warehouse example query. This query assumes a relation
items with at least 2 attributes product and price. The requested result is the number of
stocked items, which cost less than 150 cents. The data is stored column-wise. To evalu-
ate the example query, at first a scan on the price column is executed. Each value is read
and checked for the condition less than 150. The result of this check can be represented
in two different ways. One way is a bitmask, where each set bit indicates that the corre-
sponding element satisfies the condition. The second way is to store the position of the
matching elements in an intermediate column. Both ways can be used to do a projection
on the quantity column in the second step. With the bitmask, each bit of the mask is read.

1https://www.monetdb.org/blog/monetdb-goes-headless, accessed 08/04/2020
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Pos. product brand price quantity

0 Pasta Etichetta

Privata

99 5

1 Rice Aunt Bee 149 20

2 Toilet paper Hoarders 245 0

3 Pasta A Mamma 199 14

… … … … …

it
e
m
s

‘Pasta‘ 100

‘Rice‘ 101

‘Toilet paper‘ 102

‘Etichetta Privata‘ 200

‘Aunt Bee‘ 201

‘Hoarders‘ 202

‘A Mamma‘ 203

Dictionary

SELECT sum(quantity) FROM items WHERE price < 150; SELECT sum(quantity) FROM items WHERE product = ‘Pasta‘;

price<150?

1100…

bitmask positions

99 149 199 …245

0 1 …

5 20 14 …0

5 20+ =    25

Scan

Project

Aggregate

product == ‘Pasta‘? product == 100? 

1001…

bitmask positions

100 101 100 …102

0 3 …

5 20 14 …0

5 14+ =    19

101100 102

99

…

Memory addresses

149 245 …

5 20 0 …

Memory Layout

201200 202 …

Figure 2.1: A relation (items) and examples illustrating the query execution on data in
columnar layout. (a) A query reading columns with integer data. (b) Data is dictionary
encoded before being processed.

If the current bit is set, the position of this bit is the position of a result element in the
quantity column. The values at these positions are then written sequentially into an in-
termediate column. All values of this intermediate column are then summed up by the
aggregation operator. In this scenario, the columnar layout enables a maximum of linear
memory access. The scan in the first step reads the price column sequentially and writes
the intermediate result sequentially, i.e. the bitmask or the positions. The projection in
the second step sequentially reads the intermediate result. Only the quantity column is
accessed randomly during the projection to gather its values. The result of the projec-
tion is again stored in an intermediate column, which resides sequentially in memory.
Finally, the aggregation reads this second intermediate result sequentially. Some sys-
tems fuse operators whenever possible, e.g. they do the projection and the aggregation
in one step without writing an intermediate result, but the sequential memory access is
preserved. Such in-memory column-stores have become the most common approach for
analytical query processing because they perform better on modern CPUs than the tradi-
tional row-store [Pla09]. Additionally, they are perfectly suited for further optimizations
like vectorization or compression, which we will discuss in the following sections.

2.2 STATE-OF-THE-ART VECTORIZATION IN COLUMN-STORES

Vectorization allows to process a number of values with a single instruction and in a sin-
gle register, the so-called vector register. Hence, vectorization is also called SIMD (single
instruction multiple data). Recent CPUs are equipped with instruction sets for vector-
ized processing. A SIMD instruction set offers two extensions to the basic instruction
set: (1) Vector registers, which are larger than the traditional scalar register, and (2) Spe-
cial instructions working on the vector registers, usually wrapped by a handy library for
a higher level programming language, e.g. for C/C++. From server-grade Intel CPUs
(SSE, AVX, AVX512) to mobile devices (e.g. NEON on Arm CPUs), vectorization is ubiq-
uitously available. Hence, SIMD is also naturally applied in query processing. For more
than a decade, using SIMD has been state-of-the-art when it comes to optimizing column-
store query engines. In this context, vectorization is a tool for single-query optimization,
and the design of the operators is a key aspect to reach this goal.
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Column-stores provide their column data as a sequence of values with the same data
type, which enables fast sequential access by the operators. By vectorizing operators,
data parallelism is added, which can speed up query performance. Moreover, sequential
data access can be vectorized trivially from a programmer’s perspective, because load-
ing a vector register from sequential data in memory is a basic functionality found in all
SIMD instruction sets. The memory access is then still linear or strided, i.e. the mem-
ory address, from which the data is read, moves only forward and in well-defined steps.
However, for an efficient evaluation in vector registers, all values need to have a fixed
size. For this reason, data with a variable length, e.g. strings, are dictionary encoded.
This means that each value is encoded with an integer. These integers are then used dur-
ing query processing instead of the actual values. The mapping between the values and
integers is stored in a separate dictionary. For example, the product and brand columns of
the warehouse example from Section 2.1 are not given with IDs but with names, which
are strings. Figure 2.1(b) shows a dictionary, which maps each value of the product and
brand columns to an integer. These integer values are stored sequentially as shown in the
Figure. A query can now be evaluated on integers instead of strings. This is shown with
an example, which queries the amount of stocked pasta. The scan on the product column
in the first step does only integer comparisons and stores the intermediate result. Al-
though the dictionary can be used to reconstruct the original values, this is not necessary
in this query.

Finally, operators and compression do not make a working system. A processing tech-
nique is required to actually evaluate queries with vectorized operators on compressed
data. In the following, we will explain the mentioned aspects in more detail.

2.2.1 Vectorized Operators

Since in-memory column-store engines assume that all of their data resides in main mem-
ory, fast memory access is the key to performance optimization. From this perspective,
physical operators can roughly be categorized into two groups: (1) Operators with se-
quential memory access, e.g. scan, and (2) Operators with random memory access, e.g.
lookup.

Linear Memory Access

For column stores, this first group can often be vectorized with a very basic SIMD in-
struction set, which offers only generic load and store functions. Hence, first approaches
for vectorized operators using only linear memory access have already been proposed
almost two decades ago. For instance, in 2002, Zhou et al. present SIMD algorithms for
scans, aggregations, nested loop joins, and for building selected index structures [ZR02].
These operators require the data to be stored column-wise, such that multiple values of
a column can be loaded into a vector register with one instruction and then be evaluated
with another instruction. An example operator proposed in [ZR02] is shown in Figure 2.2
on the left side. Since the SSE instruction set with 128 bit registers on 32-bit systems was
common when the work was proposed, we decided to show a corresponding example
implementation using SSE and 32-bit data types on the right side of the figure. The ex-
ample sums up all values in a column y, where column x equals 5. For simplicity, this
implementation hard-codes the element count of the vector register (S in line 1) and the
constant 5 (x_5 in line 2). The columns are given as raw data pointers x_ptr and y_ptr.
The first part, i.e. the for-loop, is used in all operators, which are linearly reading data.
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1 unsigned S = 4; //4 elements per register
2 __m128i x_5 = _mm_set1_epi32(5); //broadcast 5 into vector register
3 __m128i sum = _mm_set1_epi32(0); //initialize sum
4 for (unsigned i=0; i<N; i+=S){ //loop over all array elements
5 //load data from column x and y into vector register
6 __m128i x_register = _mm_load_si128(x_ptr+i);
7 __m128i y_register = _mm_load_si128(y_ptr+i);
8 //compare x to query constraint
9 __m128i Mask =_mm_cmpeq_epi32(x_5, x_register);
10 SIMD_Process(Mask, y_register);
11 }

SELECT SUM(y) FROM <table> WHERE x=5;

20 SIMD_Process(__m128i Mask, __m128i y){
22 //Null all values without a match
23 __m128i temp = _mm_and_si128(Mask, y);
24 //Sum up all values with result from last step
25 sum = _mm_add_epi32(sum, temp);
26 }

SIMD-Aggregation by Zhou et al. Corresponding C-implementation using SSE

Figure 2.2: A SIMD aggregation as proposed by Zhou et al. [ZR02] and a correspond-
ing implementation for C/C++ using the Intel SSE instruction set. Note that the final
aggregation of the four elements in the sum register are not pictured.

In this loop, the function SIMD_condition checks whether a condition is met by the el-
ements of a vector and returns the result as a bitmask. In our example, this is a check
for equality with the number 5. The second part, i.e. the function SIMD_Process, is
specific to the aggregation-operator. Note that the authors use a 1-based index, while
our implementation uses a 0-based index. Apart from this difference, we exchanged the
generic functions and data types with the according SSE intrinsics and types, and added
some initializations and explicit vector load operations. All in all, the translation into a
real programming language is straight forward. After some initializations in line 1-3, the
for-loop starts. In this loop, two vector registers are loaded from linear data in the two
columns x and y (line 6-7). The comparison for equality with 5 is done in line 9. The
result is another vector Mask, which stores either 32 set bits for a match or 32 unset bits
if there was no match for each vector element. This result and the register loaded in line
7 are the parameters for the function SIMD_Process (line 10). Finally, SIMD_Process
(line 20-26) performs the actual aggregation. At first all elements without a match are
nulled using Mask and a logical AND (line 23). Then, the values are added to the values
of the preceding iteration (line 25). The final aggregation of the elements in the resulting
register after the last iteration is done linearly, introduces a minor overhead, and is not
shown in the code.

Random Memory Access

The operators from the second group require at least one of the following vector instruc-
tions: gather, scatter, masked load, masked store, or compress store. Figure 2.3 illustrates
these instructions. A gather loads a vector register with values from various memory
addresses. A scatter operation is the store equivalent of the gather. It stores values from
a vector register to various, non-linear, memory addresses. A selective load, also called a
masked load, uses a bitmask to load only selected values from memory into a register (B).
The elements at positions, which are not loaded, are either zeroed or filled from another
vector register (A). The masked store works the other way round. The bitmask is not
used for loading, but for storing selected elements from a vector register into memory.
The existing values at addresses, which are not written, do not change,i.e. they are not

2.2 State-of-the-art Vectorization in Column-Stores 19



A B C D E F G H

1 0 1 0 0 0 1 1

A C G H

Vector Register

Bitmask

Memory

A B C D E F G H

0 2 1 7 6 5 3 9

A C B G F E D

Offsets

H

Vector Register

Memory

Compress Store
(aka Selective Store)

ScatterMasked Store

A B C D E F G H

1 0 1 0 0 0 1 1

A C G H

Masked Load (aka Selective Load)

A B C D E F G H

1 0 1 0 0 0 1 1

A J C L M N G H

A B C D E F G H

0 2 1 7 6 5 3 9

A C B H G F D J

Offsets

Memory

Vector Register

Gather

I J

I J K L M N O P

Memory Vector Register A

Bitmask

Vector Register B

L
o

a
d

 I
n

s
tr

u
c
ti

o
n

s
S

to
re

 I
n

s
tr

u
c
ti

o
n

s

Figure 2.3: Different instructions for random memory access. Often, this also involves
selective vector lane access.

zeroed. In contrast to this, a compress store does store all selected values linearly into
memory without any gaps for the not selected elements. If the compress store is called
in a loop, the new memory address has to be computed after each iteration, i.e. the new
address is only known at runtime. For this reason, memory access cannot be scheduled
as efficiently as with a common store instruction, where the address offset equals a whole
vector width in every iteration. In literature, the compress store is also called selective
store. However, it is not the store equivalent for a selective load. For a clear distinction
of the instructions, we will call it compress store in the remainder of this thesis. There is
no dedicated compress load, because it is just a special case of the gather instruction, but
there are combinations of the presented instructions, e.g. masked gather. If these instruc-
tions are not supported by the CPU, data has to be moved before it can be loaded into
vector registers, which is another expensive operation. Hence, operators requiring ran-
dom memory access have only been vectorized, when newer instruction sets, e.g. AVX2
on intel CPUs, were widely available.

Polychroniou et al. present a collection of vectorized operators, which use these instruc-
tions [P+15]. Their work includes not only the building of index structures, but also using
them, e.g. the build and probe phase of Cuckoo hashing. This can then be used to realize
more sophisticated physical operators, e.g. hash joins. However, this is only beneficial for
the performance, because the required random memory access instructions are natively
supported by the CPU used by the authors.

Despite this hardware support for random memory access, the best performance is still
shown when linear memory access is used. In some cases, the advantages of linear ac-
cess outweighs the cost of moving data to enable this access, especially if the data is read
multiple times. Schlegel et al. exemplarily show the impact of linear memory access com-
pared to random memory access for a vectorized k-ary search [SGL09]. In one scenario,
they calculate the addresses of the separators in each step. Hence, the separators are not
loaded from sequential addresses. In the other scenario, the separators are written lin-
early to a dedicated memory region before executing the search. Compared to a linear
binary search, the k-ary search with random memory access reached a speed-up of up
to 1.8, while with linear memory access, it reached a speed-up of up to 2.5 on an Intel i7
CPU.
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Figure 2.4: The vectorized linear probing as proposed in [P+15] introduces the high-
lighted random memory access instructions.

Kim et al. [KKL+09] consider a sort-merge join to exploit data-parallelism and to avoid
random memory access as far as possible. They report a comparable performance with a
hash join when using 256-bit registers and a higher performance when using 512-bit reg-
isters. Unlike a hash join, a sort-merge join using a bitonic sort avoids gather and scatter
instructions by using linear load and store instructions as well as shuffle instructions.

The case of random memory access in hash joins, specifically during linear probing, has
been investigated in [P+19a]. Generally, linear probing is a way to find an empty slot
in a hash table to insert a key, when a hash collision occurs, i.e. when a hash function
maps two different keys to the same bucket. In these cases, the next best free slot is
used to insert a new bucket with the second key. Vectorizing this approach introduces
the challenge to find such collisions between the keys or hash values, which are loaded
into the same register. Figure 2.4 shows the control flow of the vectorized linear probing
as proposed in [P+15]. In the load phase, keys are loaded into a register. In the hash
phase, a bucket is computed for each key and an offset is added, which is initially zero.
The lookup phase loads the keys currently stored in the computed buckets and compares
them to the keys loaded in the register. If a bucket is empty (== 0), the corresponding
keys in the register are stored with a scatter operation in the store phase. However, to
avoid storing potential equal hash values, which might exist in the same register, to the
same bucket, another gather operation is used to load the active keys again and compare
them. If the comparison is successful, the lanes (bits holding a vector element) of these
keys in the register are invalidated in the carry handling phase. For all keys, where the
comparison is not successful, the lanes are not invalidated, and they are not stored. If
the keys are equal, there is nothing to be stored and the vector lane containing the key
is also invalidated. If the bucket is not empty but the keys are not equal, a new bucket
has to be found. In this case, the lane is not invalidated and the key cannot be stored
in the current iteration. All invalidated lanes can be reloaded with new keys in the next
iteration, while all other lanes stay in the vector register and an offset is added for the next
hash phase. Thus, there are several random memory access instructions in vectorized
linear probing. Specifically, the lookup phase contains a gather, and the store phase even
contains a scatter and a gather.
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2.2.2 Lightweight Integer Compression

The use of vectorization in operators introduces data parallelism, which increases the
performance. This performance can even further be increased, when more elements fit
into one vector register. This cannot only be achieved by wider vector registers, but also
by smaller data elements. For instance, if only 16 or 8 bit are used per value instead of
32, a 128 bit register can fit not only 4, but 8 resp. 16 values. Hence, the data paral-
lelism is increased because more values can be loaded and evaluated at once. Moreover,
bandwidth is saved if the data required for query evaluation is smaller. To reach this
goal, compression is used. Consequently, compression itself is also vectorized to enable
the compression of multiple values at once [SGL10, L+15]. Since a user is usually inter-
ested in correct results, lossless compression is used in database systems, e.g. the aggre-
gated payroll costs of a company should be calculated exactly instead of approximately,
not only for the tax declaration. A challenge for compression in in-memory database
systems is that the bandwidth savings must outweigh the costs of compression and de-
compression. This is a major difference to the compression used for archives on disks
or on tape, where the compression rate is the most important optimization goal. That
is why in-memory database systems typically use lightweight compression as opposed
to heavyweight compression. In lightweight compression, the compression and decom-
pression performance is higher than in heavyweight compression, potentially on the cost
of the compression rate.

Abstraction Levels

As described in [D+19], there are different lightweight compression techniques, algo-
rithms, and implementations, which address different levels of abstraction.

Techniques describe the basic idea for a compression. Techniques can work on two
different levels: The physical level or the logical level. On the physical level, the number
of used bits per value is reduced, while the logical level reduces the number of values.
The physical level compression technique works on either bit-, byte-, or word-granularity
and reduces the number of existing but unused bits. This is why it is called Null Sup-
pression (NS). On the logical level, there are different techniques. The already mentioned
Dictionary Encoding (DICT) encodes values as integers. While not necessarily reducing
the required space, it can be used to encode strings or random data types as integers,
which can then be further compressed with a different technique. Frame-of-Reference
(FOR), Delta Coding (DELTA), and Run-Length-Encoding (RLE) work on integers. FOR
encodes values as the difference to a given reference value, while DELTA stores the dif-
ference to a predecessor. FOR or DELTA can cause a later Null Suppression to reach a
higher compression ratio. RLE detects sequences of the same value and stores this value
only once, together with the length of the sequence.

Algorithms are concrete descriptions of the binary data layout of one or more tech-
niques. Thus, an algorithm explains how to realize a technique or a cascade of tech-
niques. For example, there are NS-algorithms, which try to store as many values as pos-
sible within one processor word, while others try to store each value with a minimum
number of bits or bytes [ZZL+15]. These three groups are referred to as bit-, byte-, or
word-aligned. A fourth group of NS-algorithms clusters sequences of integers with the
same bitwidth into frames. These frame-aligned codes can be regarded as a special case
of bit-aligned codes. An example for an algorithm using a cascade of techniques is PFOR,
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Figure 2.5: Different layouts for storing codes into vector registers and the number of
unused bits depending on the register size and the code size

which combines FOR with a bit-aligned NS algorithm. PDICT works similarly but with
Dictionary Encoding instead of FOR. PFOR-DELTA additionally does DELTA Coding be-
fore applying PFOR [ZHNB06]. As already mentioned, if data is not already present in
an integer format, DICT must even be applied before being able to use any other algo-
rithm, which also results in a cascade of techniques. While a compression technique only
describes an abstract idea, compression algorithms describe concrete data layouts, which
can be optimized for vectorized processing. For instance, Bitpacking (BP) is a bit-aligned
NS compression algorithm, which exists in different variants, e.g. SIMD-BP128 is opti-
mized for 128-bit wide vector registers. SIMD-FastPFOR is a vector-optimized variant of
an advanced PFOR algorithm [L+15]. There are also vectorized algorithms for DELTA,
FOR, and RLE [D+19].

Implementations are the hardware-specific code of algorithms. This code can differ
depending on the instruction set offered by the CPU, especially when vectorization is
used.

This shows, that there is a huge variety in lightweight compression. There are various al-
gorithms for each compression technique and each algorithm can be realized by different
hardware-specific implementations. Moreover, there is no algorithm, which shows the
best performance for every use-case [D+19]. Nevertheless, specialized operators, which
can directly work on compressed data, can increase the query performance, even if the
chosen algorithm is not the most optimal one, because a higher degree of data parallelism
is possible.

Specialized Operators

Especially for data, which has been null suppressed, there is a huge variety of operators,
mostly scans, e.g. [WPB+09, LP13, FLKX15]. These operators can be vectorized to gain
more performance. They either decompress data in-register or not at all.

An example for a vectorized scan, which does an in-register decompression, is SIMD-
Scan by Willhalm et al. [WPB+09]. SIMD-Scan directly loads a sequence of bit-aligned
codes into a vector register (R1). A subset of these codes is then copied into a second
register (R2), which is used for the next steps. Then, the codes in R2 are shifted within
the register, such that a code starts at the least significant bit of each vector lane, i.e. at
the beginning of each vector element. This allows predicate handling using instructions,
which evaluate vector registers on element granularity. The result can be transformed
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into a bit vector and written to memory. After writing back the result, the next subset
of codes is copied from R1 into R2 and the steps are repeated until there are no more
elements left in R1, which have not been evaluated.

BitWeaving [LP13] works without decompression and was originally designed for scalar
processor words, but a variant of BitWeaving, the so-called Vertical BitWeaving, can be
vectorized in a straight-forward way. Like SIMD-Scan, BitWeaving works on null sup-
pressed bit-aligned codes. The vertical variant expects the codes to be stored in a vertical
layout, i.e. a code is spread over multiple processor words. For example, assuming 64-bit
processor words, the first bit of the first 64 codes are stored sequentially in one processor
word. The second bit of the first 64 words is stored in the second processor word and
so on. Hence, there are as many processor words needed as there are bits per code. The
predicate is stored in the same way, i.e. a processor word is always filled with the corre-
sponding bit of the predicate. Each of the processor words containing the codes is then
bitwise compared to the corresponding processor word containing the predicate. The re-
sults after each step are combined bit-wise using a logical AND. In the end, the result is a
bitmask indicating which of the 64 elements matched the predicate. This way, the codes
do not even have to be decompressed in register. Furthermore, the larger the processor
word, the more codes can be scanned at once. For this reason, the vectorization of Vertical
BitWeaving is straight forward and shows a significant performance gain over the scalar
implementation [LUH+18b]. There is also a vectorized variant of horizontal BitWeaving,
where codes are aligned to be loaded sequentially into a vector register with a separating
delimiter bit. This delimiter bit contains the result after the predicate evaluation. How-
ever, this does not only introduce additional computation overhead but also wastes some
space in the vector register depending on the code size. Figure 2.5 exemplarily shows two
different layouts for storing codes horizontally into a vector register. It illustrates how to
store 10-bit codes into a 128-bit register. Layout 1 allows working within word bound-
aries. This is important because horizontal BitWeaving requires an arithmetic addition,
which does not exist for whole vector registers. Layout 2 uses the register width more
efficiently. For comparison, a naive layout without any delimiter bits is also shown. Next
to the layouts, the number of unused bits is shown for different vector sizes.

2.2.3 Processing Techniques

Operators and an option for compression alone do not make a query engine. To run vec-
torized queries, a processing technique is required. Generally, there are three different
ways to process a query: (1) tuple-at-a-time, (2) operator-at-a-time, and (3) vector- or block-
at-a-time. Tuple-at-a-time processing is also known as the Volcano iterator model [Gra94].
In this technique, a next()-function is implemented by each operator, which returns the
next tuple. A query plan is realized as a tree and each node of this tree calls the next()-
function of its children until no tuples are returned anymore. This allows to fuse several
operators into one loop, which computes individual tuples, effectively eliminating the
need for materialization of the intermediate results. As much as the fusion of operators
decreases unnecessary memory access, as much optimization potential does it take away
in other aspects. For instance, capabilities of modern CPUs, e.g. useful prefetching, are
heavily impeded by operator fusion as shown in [M+17]. For this reason, the authors ar-
gue for a relaxed operator fusion, where execution pipelines are split in more places than
only pipeline-breakers. They could show that this has a beneficial effect on query perfor-
mance, even though there is an additional cost for writing and reading the materialized
intermediates.

The opposite of tuple-at-a-time is operator-at-a-time. With the operator-at-a-time technique,
no operators are fused. Instead, each operator processes a whole column producing an
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intermediate result, which is the input for the next operator. This eliminates the issues
mentioned in [M+17] most widely on the cost of additional main memory access.

A system using this technique is MonetDB [IGN+12], which adopts the column-store
concept of C-Store. However, compression of the intermediates reduces memory access
and therefore helps to compensate for this disadvantage. This allows for the combination
of the advantages of both worlds. Moreover, when using SIMD, values from more than
one tuple are processed. For this reason, tuple-at-a-time processing is not applicable when
using SIMD, while operator-at-a-time is.

Vertica is another column-store system, which is a direct successor of C-Store [LFV+12].
One of the improvements over the original C-Store is the heavy and varied use of light-
weight compression. Delta compression and Run Length Encoding can be used to mini-
mize the memory footprint. Additionally, Vertica offers a variant of Dictionary Encoding.
This is a necessary condition for all engines to make use of SIMD, because the over-
whelming majority of SIMD instructions process only numeric values. For being able to
process string values, they have to be encoded as numeric values first, which is done by
Dictionary Encoding.

Apart from compression, an optimization of operator-at-a-time is to process only parts of a
column at once, so-called blocks or vectors, where vector denotes to any number of values
between the actual vector register size and the whole column. This is called vector- or
block-at-a-time. The idea is to write smaller intermediate results, such that they fit into the
cache. If these intermediates even fit into the registers, operators can still be fused.

A system using the vector-at-a-time model is MonetDB/X100, which uses MonetDB as a
base and is able to run vectorized queries on a Cell Engine [HNZB07]. A few adjust-
ments were necessary to reach this. First, the operators were rewritten. Some have been
adjusted to be better suited for auto-vectorizers, e.g. a bitmask is used instead of an
offset vector to scan previously selected elements. Other operators, e.g. the grouped ag-
gregation, are explicitly vectorized using the intrinsics provided for the cell architecture.
Second, the next()-interface has been changed to return a collection of vectors instead of
individual tuples. Finally, the algebra interpreter still runs on a traditional CPU core,
called PPE (Power Processor Element) on the Cell engine. This PPE triggers the actual
execution on the SPEs (Synergistic Processing Element), which contain vector registers
and the means to process them. Unfortunately, this solution is not applicable anymore,
because the Cell Engine is outdated and not produced anymore. However, the idea of
processing columnar data in vectors was kept and turned into a commercial product
called Actian Vector2, formerly Vectorwise[ZB12].

There are also approaches targeting more recent hardware, e.g. VIP, which uses the most
recent SIMD instruction set by Intel, AVX512 [P+19b]. VIP does not build on an existing
system, but implements a bottom-up approach. Explicitly vectorized and precompiled
suboperators are used to build full operators, where suboperators, e.g. hash probing, can
be used in multiple operators. Query execution works by suboperators processing blocks
of tuples from one column and keeping the intermediates in cache wherever possible. A
compression algorithm is also supported and realized by combining suboperators. VIP
supports dictionary coding with subsequent bitpacking. The use of a recent instruction
set and the according large registers (512 bit) combined with the avoidance of compilation
during runtime, leads to competitive performance.

In this work, we focus on the opportunities of vectorization, not on those of optimized
processing techniques. Therefore, we use the plain operator-at-a-time technique without

2https://homepages.cwi.nl/~boncz/, accessed: 20/07/2020
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fundamental changes such as block-at-a-time processing. Nevertheless, all the concepts we
will present are also suited for an application in a block-at-a-time processing environment.

All mentioned processing techniques can profit from minimizing the overhead of reading
and writing intermediates. There are two methods to reach this goal: (1) Avoid interme-
diates completely, i.e. fuse the operators of a query, and (2) Compress the intermediate
results.

As already explained, the first option can easily be applied in tuple-at-a-time process-
ing, although there are the mentioned drawbacks to this approach. However, HyPer
processes vectors instead of tuples, but also applies operator fusion wherever possi-
ble [KN11]. Intermediate results are only materialized at pipeline-breakers, which are
operators requiring more tuples than there are in registers. HyPer translates queries at
runtime using the LLVM framework. Vectorization is thereby introduced by modeling
LLVM vector types [Neu11].

MorphStore is a system, which compresses the intermediate results while heavily apply-
ing the SIMD paradigm [DUP+20]. In MorphStore, all intermediate results are materi-
alized. This comes with a few advantages, e.g. intermediate results can be used multi-
ple times, and extensively nested loops, which cannot be unrolled by the compiler, are
avoided. To minimize the overhead of writing and reading these intermediates, they are
compressed using lightweight integer compression, e.g. static bitpacking or delta. For
this purpose, a so-called morphing-wrapper decompresses the content of a vector regis-
ter before it is passed to an operator, and re-compresses the result before it is written
to memory. This way, specialized operators do not require an implementation for each
compression format. Instead, the core of the operator stays the same. The authors call
this method on-the-fly de-/re-compression.

2.2.4 Summary

Vectorization, is widely used in different aspects of analytical query execution. Data
parallelism is increased by using SIMD registers and instructions in operators and by
compressing data. Vectorization is also used to speed up compression itself. We pre-
sented a selection of vectorized operators and compression algorithms. All mentioned
approaches use explicit vectorization, i.e. they do not solely rely on auto-vectorization.
This provides the highest degree of control and, therefore, the best control over any vec-
torization related optimization knobs. For example, steps like the reorganization of data
to enable linear memory access with vector instructions are identified manually. There-
fore, it will not happen implicitly. Additionally, auto-vectorization by the compiler is
error prone. Some, but by far not all, of the reasons why the compiler might fail to vec-
torize a piece of code are insufficient optimization of complex loops [M+17], the use of
function calls or global pointers, or an unexpected data alignment [ZR02]. This is the
reason, why we will address explicit vectorization in this work.

Finally, a processing technique is required, which glues operators and compression to-
gether to evaluate a query according to an execution plan. We decided for the operator-
at-a-time technique to make the best use of modern CPU features.
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2.3 HARDWARE TRENDS AND EFFECTS ON QUERY PROCESSING

As shown in the last section, there is a huge variety of approaches to vectorize opera-
tors, compression, operators for compressed data, and even whole execution engines.
However, all of them address a specific target architecture limiting their applicability,
because hardware architectures are diverse and change over time, e.g. the cell engine
MonetDB/X100 [HNZB07] is optimized for, is not produced anymore. The SSE and AVX
instruction sets, which many originally vectorized operators and compression algorithms
were developed for, e.g. [WPB+09, ZHNB06, ZR02, SGL10], have been extended by other
instruction sets, which offer wider registers or more instructions, i.e. AVX2 and AVX512.
Moreover, different instruction sets are available on different CPUs. The SIMD instruc-
tion landscape is diverse. Figure 2.6 shows the availability of SIMD instruction sets and
vector registers on different Intel and ARM CPUs. The left side of each graph shows
the number of available instructions, the middle shows the size of the available vector
registers, and the right side shows the possible sizes of the vector elements. All of these
general-purpose CPUs are able to work on the granularities of common integral data
types, i.e. 8, 16, 32, and 64 bit. However, the number of available instructions and the
vector register sizes differ, even between CPUs of the same manufacturer. For instance,
the Xeon Gold and the Xeon Phi are both made by Intel® and support the SSE-, AVX-,
and AVX512- instruction sets, but they support different subsets of AVX512. Thus, even
though both CPUs can work on 128-bit, 256-bit, and 512-bit registers, the exact supported
instructions are partially different. AMD® CPUs partially support the same SIMD in-
struction sets as Intel® CPUs, i.e. SSE and AVX/AVX2, but also implement their own in-
struction set extensions, e.g. SSE4a. Recent ARM® CPUs provide the NEON and NEON2
instruction set, which only work on 128-bit registers. SVE, the newest instruction set for
ARM® cores, which can be tested in an emulator until supporting hardware is available 3,
provides scalable vectors between 128 and 2048 bit [SBB+17].

Generally, the trend in SIMD hardware shows two directions. First, there are more in-
structions providing specialized functionality, e.g. in-register conflict detection with Intel
AVX512. Second, the vector registers become larger, e.g. Intel doubles the size with each
new major instruction set while ARM introduces scalable vectors up to 2048 bit with their
most recent SIMD instruction set SVE. Unfortunately, there is no trend for a standardiza-
tion of the instruction sets across architectures. As shown with the different supported
AVX512 subsets on the Intel CPUs, the opposite is the case. There is no architecture inde-
pendent standard of what a SIMD instruction set has to offer and how it can be used.

Implementing the same algorithm for different architectures requires significantly differ-
ent code. Even the port to higher vector sizes on the same architecture includes a certain
amount of manual refactoring due to the partially inconsistent naming schemes. For this
reason, the implementations of the presented approaches in Section 2.2 cannot be used on
architectures they are not designed for, because they use one concrete instruction set and
vector size. Moreover, any port to a more recent instruction set, must be done by hand,
e.g. an implementation using SSE does run on recent Intel CPUs, but do not use the
wider 512-bit registers or any newer instructions, which might increase the performance.
Hence, porting any solution to another architecture requires a domain expert of the avail-
able instruction set and of the application. However, all previously presented operators
and compression implementations use the instruction set and register size, which was
the most recent by the time the solutions were developed. This rises two questions: (1)
When and how is it beneficial to port a solution to larger vector registers and new in-
struction sets? (2) How can the manual part of porting a solution be minimized without

3Emulator available at https://developer.arm.com/tools-and-software/server-and-hpc/compile/

arm-instruction-emulator, accessed: 11/04/2020
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(a) Intel (b) ARM

Figure 2.6: Diversity in the SIMD hardware landscape.

eliminating the explicit vectorization as used in the solutions presented in Section 2.2?
We address these questions in Section 2.3.1

Finally, the chosen instruction set and vector size influences the CPU frequency [Int20]
potentially leading to more internal changes, e.g. the memory bus frequency. This is
because the circuits implementing SIMD functionality, are more complex than those im-
plementing scalar functionality, but the number of transistors, which can be powered at
the same time, is limited [EBA+11]. This leads to a different energy consumption depend-
ing on the used instruction set. Hence, it makes sense to not only optimize a vectorized
solution for performance, but also for energy consumption. Section 2.3.2 describes the
relationship between energy consumption and a chosen instruction set in more detail.

2.3.1 Diversity of Instruction Sets and Vector Sizes

When using wider registers, the increased parallelism should lead to a higher perfor-
mance. That expectation is depicted in Figure 2.7(a). To check, if this holds true in real-
ity, we run the Star Schema Benchmark (SSB), which is based on the data warehousing
benchmark TPC-H [OOC07]. It consists of 13 analytical queries on denormalized tables
organized in a star schema. This means that there is one fact table, called Lineorder, which
references several dimension table, e.g. Customer and Supplier.

We run the SSB with different instruction sets on an Intel Xeon, which supports the in-
struction sets SSE, AVX2, and AVX512 with their native vector widths of 128, 256, and 512
bit. All values were dictionary encoded, so all queries process integer values. All data is
stored column-wise and reside completely in main memory. The operators for all vector
sizes follow the same algorithm, regardless of the used instruction set, and the query ex-
ecution plan is the same as well. Hence, we used a basic in-memory column-store query
engine. From this benchmark, we extracted the results of two representative queries as
shown in Figure 2.7(b) and (c). The graph shows the speed-up for different vector widths
compared with 128-bit registers. Query 1.1 scales almost as expected. While the speed-
up from using a larger register is not as high as expected, there still is a performance gain
compared to the use of a smaller register. The limited scalability could be explained by
the limited memory bandwidth. In contrast, query 4.1 shows the reverse behavior, which
cannot be explained trivially. The widest register size offering the worst performance
seems to be in conflict with the increased data parallelism.

As a consequence, the choice of the SIMD instruction set and the according vector size
turns out to be an important optimization knob. This optimization potential becomes
even larger when the vector size is not chosen on the query level, but on the operator
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Figure 2.7: Expectation versus reality. The queries of the Star-Schema-Benchmark scale
differently and not as expected. A wider vector size does not guarantee faster query
execution.

level. Figure 2.8 shows the results of the SSB queries 1.1 and 4.1 again with an added bar
for the theoretically reachable optimum. This optimum represents a mixed choice of vec-
tor sizes. It is the sum of the execution times of each operator, where the vector size with
the shortest execution time is chosen per operator. We also considered scalar processing
for this mixed scenario. The boxes next to the graphs indicate how many operators use
each available vector width. They show, that both queries require all available vector
sizes to reach the best performance. An interesting insight is, that the vector size, which
is optimal for most operators is not necessarily the best for the whole query. In this case,
most operators in query 4.1 profit from using 256-bit registers. But the overall query has
the shortest execution time with 128-bit registers. In this specific query, the execution is
dominated by a semi join taking at least six times longer than any other operator. This
semi join has the longest execution time when using registers, which are 256 bit or larger,
which is sufficient to render the benefits of the other operators useless. This seemingly
unpredictable behavior exposes a differentiated potential for optimization.

Absolute optimization potential is the difference between the worst case and the
mixed optimum. For query 1.1 (Figure 2.8a), the worst case scenario is the use of 128-
bit registers. The optimization potential, i.e. the difference between 128-bit registers and
the mixed processing, is 42.4%. For query 4.1 (Figure 2.8b), the worst case scenario is
512-bit registers. The according absolute optimization potential is 23.9%.

Relative optimization potential is the difference between an already existing optimiza-
tion and the mixed optimum. An already existing trivial optimization would be the use
of the largest available registers, which is 512 bit in our case. For this trivial approach,
the relative and absolute optimization potential for query 4.1 are the same. For query 1.1,
512 bit is the best case scenario for a register choice on query granularity. The relative op-
timization potential is 21.3%, almost half of the absolute optimization potential, but still
significant. Assuming that there is already a way to find the best performing vector size
on a per query basis, the relative optimization potential for query 1.1 would not change,
but for query 4.1 it would decrease to 13.4%. However, to the best of our knowledge,
such a reliable optimization does not exist, yet.
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Figure 2.8: The optimization potential of choosing the right vector size. The mixed bar
shows the theoretically reachable execution time if every operator was executed with the
optimal vector size.

The example shows two main challenges for vectorized column-store engines: First, there
seem to be new bottlenecks introduced by larger registers. In Section 3.1, we will have
a deep dive into the reasons for this behavior and present a concrete solution for RLE
using specialized instructions of the AVX512 instruction set, which go beyond basic logic
and arithmetic operations. Second, the right choice of the vector register size and the in-
struction set is beneficial for the performance of query execution. To do this, there must
be implementations to choose from. The implementation of another physical operator
for each combination of register size (r), instruction set (s), data type (t), and operator
algorithm (o), is a possible solution. However, this solution requires r · s · t · o implemen-
tations for each operator, and ideally, they all provide the same interface. Moreover, the
developer solving this task has to be a domain expert not only in database development,
but also in all target architectures, i.e. he has to know all the instruction sets. The optimal
solution for the database developer, as well as for a potential optimizer, is that there is
only one implementation of each physical operator, which is independent of the register
size, data type, or instruction set. The mapping to these quantities is not done during de-
velopment but during compile time or runtime. This concept provides a unified interface
for the optimizer and a separation of concerns for the developer. Concretely, no multi-
domain expert is necessary anymore because the database developer does not implement
for a number of specific architectures, while the back-end developer needs no knowledge
about the application domain. This concept can be realized by a library, which provides
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Figure 2.9: The maximum core frequencies of different Intel CPUs depending on the num-
ber of active cores when no SIMD extension is used and when AVX512 is used. Images
taken from [Int20]

generic interfaces for all required functions and operators. The challenge is to find out
how such a library must be realized to be applicable for the development of a query exe-
cution engine. We will cover this challenge in Section 3.2, where we introduce the general
design of such a library.

2.3.2 Physical Constraints and Energy Consumption

Energy consumption is not only an important optimization goal because of environmen-
tal and economic reasons. It is also a limiting factor, especially when using specialized
instruction sets like SIMD. The power consumption, and therefore also the energy con-
sumption during a period of time, cannot be increased infinitely. Intuitively, one would
assume that the power consumption of a chip scales with its area. This would require
the power density to stay constant, even when the circuit elements, i.e. the transistors,
become smaller. Indeed, this effect was already proven to exist in 1974 [DGR+74] and is
called Dennard scaling or MOSFET scaling. During this time, “very small” circuits re-
ferred to dimensions in the order of one µm, while today’s CPUs are manufactured with
dimensions of barely more than 10 nm. Effects like an increased heat dissipation due to
the dense chip layout played no major role in the 70s, but this has changed when the
dimensions decreased by two orders of magnitude. Thus, Dennard scaling fails with
modern CPUs. To prevent overheating, not all transistors can be powered at the same
time [EBA+11], resulting in longer CPU cycles. The CPU core frequency decreases as
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well as the power consumption. This leads to a number of side effects on the system
when using SIMD extensions.

First of all, vector registers and vector instructions are more complex than their scalar
counterparts and thus, they require more transistors. This means, that a signal takes
longer to traverse the circuit, which implements an instruction, if this circuit is serially-
connected. Since a CPU cycle has to be as long as a signal can take in the worst case,
i.e. when it takes the longest path through the circuit, this causes longer cycles. On the
one hand, complex instructions can be broken down into multiple cycles. On the other
hand, it’s sometimes useful to combine functionality into a single instruction to be able
to internally pipeline the processes and gain performance or lower latencies this way.
This has exemplarily be shown in [HKA+16] and in [AHF+14] for instruction sets, which
processes compressed bitmaps and provide hardware-backed hashing.

Further, the power limits are met earlier with SIMD processing than with scalar process-
ing. For instance, Figure 2.9 shows the maximum core frequencies for different CPUs
when AVX512 is used. The tables are taken from a manual by Intel [Int20]. The more
cores, i.e. the more transistors, are used, the lower the maximum frequency becomes. For
comparison, the first CPU in the list scales down from 3.5 GHz with one active core to
1.9 GHz with 28 active cores. The same CPU without the use of SIMD scales between
3.8 GHz and 2.8 Ghz if only one resp. all 28 cores are used. This shows that not only the
initial single-core frequency is lower when using SIMD, but it scales down faster when
more cores are used. Since the power consumption is lower when the core frequency is
lower, and we assume that the right choice of the SIMD extension finishes query execu-
tion faster than scalar processing, it can also be assumed that energy consumption goes
down. In summary, it can be said that if not all transistors can be used at the same time,
the right transistors must be used. Figure 2.8 showed that these are not always the same.

The frequency scaling of the CPU also has effects on other parts of a system, e.g. the
memory bus. To reduce stalling cycles of the CPU, the memory bus frequency and the
CPU frequency are synchronized. Ideally, the memory bus cycle length is an integral
multiple of the CPU cycle length, which is influenced by the circuit length, i.e. the com-
plexity of the used instructions. For this reason, the memory bus can be clocked down
when a CPU core is clocked down, which is fine as long as all cores using the same mem-
ory bus run on the same frequency. However, if this is not the case, the other cores have
to access the memory with the reduced memory bus frequency, too. This leads to a de-
creased effective bandwidth, an effect, which was already observed, e.g. in [UKHL16].
Alternatively, the bus frequency can be kept high, risking unnecessary and expensive
stalling cycles and a higher energy consumption. The exact way this is realized depends
on the hardware developer. Hence, each system can behave differently. The most effi-
cient combination of CPU frequency and instruction set are not always obvious. This
adds another challenge to the task of using the right transistors. For the software de-
veloper, this complex interplay means that energy consumption and performance are
not necessarily proportional and that they influence each other. For this reason perfor-
mance and energy consumption cannot be regarded as independent of each other. An
optimizer should pay attention to this and regard energy-efficiency and performance not
as a binary choice between optimization goals or as an automatic consequence follow-
ing from each other. There are previous system, which already apply more sophisticated
approaches [TWZX14, MRS+14, KHL18]. However, none of these systems consider the
choice of the instruction set.

In Section 4 we will present a model and an according benchmark to characterize the
relation between energy-efficiency and performance on individual platforms. Further,
we propose an optimizer, which regards these optimization goals as equal and adjustable
according to user defined constraints.
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2.3.3 Summary

The current hardware landscape provides the user with a wide choice of vector sizes
and instructions, where the right choice is not always the obvious one. For instance, the
widest available vector registers are not always beneficial for the performance and can
even slow query processing down. The reasons for this behavior and a selected solution
for RLE compression is presented in Section 3.1. Further, the missing standardization of
the available instruction sets complicates the port between different architectures or even
vector sizes and the choice between them, because a domain expert of the target archi-
tecture and of the application is required. In Section 3.2 we will present a library , which
aims to solve this challenge. Finally, the used instruction set has an effect on the frequen-
cies of different parts of a system, e.g. the CPU and the memory bus. Therefore, not only
the performance, but also the energy-efficiency is influenced. These two quantities are in
a complex relation to each other, which has been examined before, but never with regard
to the instruction set. We will close this gap in Chapter 4.
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As we have shown, vectorization can be beneficial to accelerate query execution. How-
ever, there are two main challenges introduced by growing vector register sizes and var-
ied and evolving landscape of instruction sets: (1) The largest register size does not al-
ways offer the best performance, and (2) The same architecture offers different SIMD in-
struction sets and therefore also different implementations. Since there is no architecture
independent standard of the functionality such instruction sets offer, porting between
instruction sets goes far beyond renaming function calls and data types. In this chapter,
we will cover both of these challenges1. We will address the first challenge in Section 3.1,
where we have a deep-dive into the specific challenges of large vector registers and how
special instructions can help to overcome these challenges. In Section 3.2 we will address
the second challenge. We present a library, which hides the instruction set heterogeneity
by introducing a common interface for so-called vectorization primitives, where the exact
mapping to instruction sets and vector sizes is done by template parameters. On the one
hand, this enables the application developer to vectorize their code in a hardware-oblivious
way, because no knowledge about the target system is necessary to write vectorized code.
The resulting code is portable to every instruction set with an according back-end. On the
other hand, the back-end developer needs no knowledge about the application domain,
because he only implements the primitives. We close this chapter with a discussion of
related work and a summary.

3.1 SPECIAL INSTRUCTION SET INTEGRATION

The growing size of vector registers expose new challenges. Trivial ports of existing so-
lutions are not always beneficial as shown in the last chapter. Special instructions are
required to manage the larger amount of data elements in one vector register. The rea-
sons for this can be distinguished into two groups: First, there are inherent challenges.
Some operations require larger amounts of code or become a performance bottleneck
because of their increased complexity. Second, there are also algorithmic challenges.
Whenever algorithms are designed to load data into registers multiple times depending
on runtime evaluations, this reloading of data produces more overhead the larger the
vector registers are. Additionally, the larger the register is, the higher is the probability
of collisions (equal values) within the registers, which often serves as a trigger for the
said reloads. This chapter shows different situations, where the instructions, commonly
found in SIMD instruction sets, are not sufficient to handle the vector sizes found in mod-
ern CPUs. Further, we will discuss an exemplary solution for a lightweight compression
(RLE), which makes use of specialized instructions introduced with AVX512.

3.1.1 Inherent Challenges

With a growing size of vector registers, a higher number of elements fits into each register.
This raises two major challenges:

1. The logic becomes more complex causing a loss of performance, i.e. additional scalar
registers and more expensive instructions are required.

1Parts of the material in this chapter have been developed jointly with Johannes Pietrzyk, Patrick
Damme, Alexander Krause, Erich Focht, Dirk Habich, and Wolfgang Lehner. The chapter is based on
[U+18, UPD+20]. The copyright of [U+18] is held by the Institute of Electrical and Electronics Engineers
(IEEE); the original publication is available at https://doi.org/10.1109/ICDEW.2018.00023. [UPD+20]
is published under a Creative Commons Attribution License; the original publication is available at http:

//cidrdb.org/cidr2020/papers/p28-ungethuem-cidr20.pdf.
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template<typename T>

...

static __m128i

gather ( T const * const p_DataPtr , __m128i p_vec ) {

return _mm_set_epi64x (

p_DataPtr + _mm_extract_epi64 (p_vec ,1) * 8),

p_DataPtr + _mm_extract_epi64 (p_vec ,0) * 8)

);

}

Figure 3.1: Gather function for SSE. Type checks and casts are not shown for the sake of
simplicity.

2. The code becomes more complex the more elements there are in a vector, up to a
degree where it is not manually manageable anymore.

To illustrate the first point, the gather function serves as an example. The already intro-
duced compress store will show the potential degree of the code complexity.

Logic Complexity

The gather operation is a crucial part of different query operators, e.g. the projection or
some join variants. The parameters of a gather are a memory address and a vector with
offsets as arguments. It returns a vector containing the values at the memory address
with the added offsets. If we assume that each value of a dataset has a bitwidth of 64
bit, a gather is easily implemented for the 128-bit SSE registers: There are two values
to load from memory. The two offsets are extracted into scalar registers and added to
the address. Then, a set instruction is used to fill a register with the values at the two
retrieved addresses. Figure 3.1 shows the according code of a gather function.

Going from 64-bit values to 32-bit values, there are four offsets to extract and four mem-
ory addresses to compute. Together with the base address pointer, this accumulates to
9 required registers. This does not pose a big challenge, because there are 16 general
purpose 64-bit registers on modern Intel CPUs, which are available in user mode. How-
ever, when gathering 16-bit values, already 17 registers needed. This means, that not
the whole gather function can be executed completely in registers. When gathering 8-bit
values, not even half of the computed and extracted addresses and offsets fit into the reg-
isters at the same time. Additionally, each extraction from the vector register and each
computation of a new address is a separate instruction. Note that there are no actual 16-
bit or 8-bit general-purpose registers, but the least significant bits of a larger register are
used to store smaller data types. When extracting a value from a vector register into one
of the scalar general purpose registers, the remaining bits are zeroed[Int16]. This is likely
to result in higher latencies the more elements there are in a vector register.

Fortunately, since AVX2, there are dedicated gather intrinsics for 32-bit and 64-bit values,
which map directly to the vpgatherqq- and vpgatherdd-machine-instructions. These intrin-
sics can also be used to gather 8-bit and 16-bit elements. For instance, the source code for
16-bit elements is shown in Figure 3.2. First, the elements in the offset-vector are copied
into a second vector and shifted in a way, that each offset uses the 16 least significant
bits of a 32-bit element (l. 5-6). Using these two shifted vectors, the data elements are
gathered into two vector registers (l. 7-8). After this, all elements in one of the registers
with the gathered values are shifted by 16 bit to use the 16 most significant bits of each
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1 template<typename T>

2 ...

3 static __m256i

4 gather ( T const * const p_DataPtr , __m256i p_vec ) {

5 __m256i p_vec_1 = _mm256_srli_epi32 (p_vec , 16);

6 __m256i p_vec_2 = _mm256_srli_epi32 ( _mm256_slli_epi32 (p_vec , 16) ,16);

7 __m256i d_vec_1 = _mm256_i32gather_epi32 (p_DataPtr , p_vec_1 , 2);

8 __m256i d_vec_2 = _mm256_i32gather_epi32 (p_DataPtr , p_vec_2 , 2);

9 return _mm256_or_si256 (

10 _mm256_slli_epi32 (d_vec_1 , 16) ,

11 _mm256_srli_epi32 ( _mm256_slli_epi64 (d_vec_2 , 16) , 16)

12 );

13 }

Figure 3.2: 16-bit gather function for AVX2. Type checks and casts are not shown for the
sake of simplicity.
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Figure 3.3: Projection of 108 values with different bitwidths of the base data elements.
(a) Runtime. The figure also shows the optimal runtime, which would be achievable if
it scaled linearly. (b) The runtime offset of using SSE over AVX2. The gather function,
which does not have an according intrinsic in SSE, is a crucial part of the projection.

element, while the other register stores the gathered values in the 16 least significant bits
(l. 10-11). Finally, the two registers are combined with a bitwise OR (l. 9-11).

This requires no additional scalar registers and only 6 vector registers, while there are
at least 16 256-bit registers available with AVX2. The according 8-bit version requires 10
vector registers, which is still within the available amount. Hence, the expected perfor-
mance loss for AVX2 is smaller than for SSE.

To check whether our assumptions are true, we implemented a projection, which uses
the gather as a core function. Then, we created a synthetic dataset containing 108 values
and the same amount of arbitrary offsets. We did this for the bitwidths 8, 16, 32, and 64.
Then we called the projection with a pointer to the synthetic dataset and the offsets for
different processing styles using AVX2 and SSE, as well as 8-, 16-, 32-, and 64-bit base
data. The system we used was equipped with an Intel Xeon Gold 6130. The dataset fit
completely into the main memory. The measured runtimes are shown in Figure 3.3(a).
We additionally showed the theoretical optimum, which could be achieved if the AVX2-
gather scaled linearly. The graph shows, that neither SSE nor AVX2 scale linearly. How-
ever, AVX2 is noticeably faster than SSE, although a projection should be highly bound
by the bandwidth of random memory access. Obviously, the workarounds necessary
for SSE, introduce enough overhead, that this is not the case. On the other hand, the
workarounds for 16 and 8 bit in AVX2 do not scale worse than the 32-bit intrinsic. We
assume that this is because all additional computations can be done without accessing
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//a) AVX-512

_mm512_mask_compressstoreu_epi64 (dataPtr , mask , vec);

//b) SSE

switch (mask){

case 0: return ; // store nothing

case 1: _mm_storeu_si128 (dataPtr , vec);

return ; // note: depending on the base data type , using

_mm_extract* can be possible

case 2: vec = _mm_shuffle_epi8 (vec , _mm_set_epi8

(7 ,6 ,5 ,4 ,3 ,2 ,1 ,0 ,15 ,14 ,13 ,12 ,11 ,10 ,9 ,8));

// exchange lanes before storing

_mm_storeu_si128 (dataPtr , vec);

return ;

case 3: _mm_storeu_si128 (dataPtr , vec);

return ; // store everything

}

//c) NEON

switch (mask){

case 0: return ; // store nothing

case 1: vst1q_lane_u64 (dataPtr , vec , 0); return ; // store 1st lane

case 2: vst1q_lane_u64 (dataPtr , vec , 1); return ; // store 2nd lane

case 3: vst1q_u64 (dataPtr , vec); return ; // store everything

}

Figure 3.4: Different vectorized compressstore specializations.

the cache, which is fast enough to do it while waiting for memory access. In contrast
to that, the SSE workaround uses more instructions and, for 8 and 16 bit, more values
than there are available registers. This results in a higher computational overhead and
cache accesses, which cannot be hidden by the latency introduced by random memory
access. In Figure 3.3(b) the overhead of using SSE over AVX2 is shown for different base
data widths. While this overhead is negligible for 64 and 32 bit, where all values fit into
the registers and the number of additional instructions is still manageable, it increases to
28.5% and 50% for 16 bit and 8 bit respectively.

The gather function is not the only case, where the increasing vector widths demand new
instructions because they become a performance bottleneck otherwise. The same holds
true for other operations, e.g. permutations, scatter, horizontal aggregations, to name just
a few.

Code Complexity

The additionally required logic is not the only issue arising from large vector registers.
In some cases, the sheer amount of source code becomes unmanageable. One of these
cases is the already introduced compress store, which stores selected elements of a vector
consecutively, where the selection is done by a bitmask. In Figure 3.4, we show the imple-
mentations for 64 bit base data using SSE, AVX512, and Arm Neon. For smaller base data,
i.e. 8, 16, and 32 bit, the code grows for every instruction set, which does not have a ded-
icated compress store instruction. Currently, this applies to all SIMD extensions, we have
used, except for AVX512. For instance, with SSE, 128-bit registers can be used. Assuming
base data with 32 bit, the corresponding bitmask contains 4 bit, because 4 elements fit into
one vector. This bitmask has one out of 24 = 16 possible values and each of these possible
values must be treated in the implementation. If the base data is smaller, there are even
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1 template<typename T>

2 ...

3 static void

4 compressstore ( T * p_DataPtr , _m128i p_vec , uint16_t mask ) {

5 while(mask != 0){

6 if (( mask & 0x1) == 0x1){

7 * p_DataPtr = _mm_extract_epi8 (p_vec , 0);

8 p_DataPtr++ ;

9 }

10 mask = (mask >> 1);

11 p_vec = _mm_srli_si128 (p_vec , 1);

12 }

13 return ;

14 }

Figure 3.5: 8-bit compress store for SSE. Type checks and casts are not shown for the sake
of simplicity.

28 = 256 values for 16 bit and 216 = 65 536 values for 8 bit. This would obviously result
in a switch-case statement, which is not written by hand anymore. Moreover, if the value
of the bitmask is one of those at the end of the 65 536 case-statements, the comparisons
done by the time this statement is reached, will have had a significant negative impact
on the performance. The case becomes even more severe when assuming 8-bit base data
in a 256-bit register, which results in 232 different possible mask values. Thus, another
solution must be found.

One way of doing a compress store for 8 bit manually using SSE, is shown in Figure 3.5:
The least significant bit of the mask is checked (l. 6). If it is set, the corresponding value
in the vector is extracted and stored (l. 7), and the output pointer is incremented (l. 8).
Afterwards, the mask is shifted by one bit (l. 10) and the vector is shifted by one byte
(l. 11). Then, the least significant bit of the mask is checked again. This is repeated until
no more set bits in the mask are left (l. 5). This solution can be further optimized, e.g. by
introducing a switch-case-statement, which only treats those cases likely to appear often,
e.g. consecutive matches at the beginning of the mask. However, it is not as efficient as a
hardware supported instruction.

A similar code complexity is also reached with other functions if there is no according
intrinsic, i.e. all masked operations.

3.1.2 Algorithmic Challenges

When algorithms are vectorized, this is often done for SSE or AVX, which are common
SIMD instruction sets available on all non-museum Intel CPUs. The provided vector
sizes are 128 bit (SEE) and 256 bit (AVX). This means, one vector register can hold two
64 bit elements or four 32 bit elements with SSE, and four 64-bit elements or eight 32-
bit elements with AVX. These elements are evaluated in parallel by using the according
intrinsics, but the originally sequential algorithm often requires an additional step, when
it is vectorized. This step can be one of the two following cases:

1. There are possible collisions (equal values) within a vector register before or after
the evaluation, which have to be detected and treated separately. This introduces
additional memory access and computation.
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Figure 3.6: Example for input and output of RLE compression.

2. Only a part of the evaluated register meets a condition. The remaining part has to
be reloaded and evaluated again.

If there are never more than eight elements in one register, this additional step is manage-
able. However, with a growing number of elements per vector, the potential for collisions
in a register increases as well as the overhead for additional memory access to fill another
vector register. The impact of additional gather instructions caused by collisions in hash-
ing, are described in [P+19a]. An example, where additional memory access is introduced
because a register meets a condition only partially, is the state-of-the-art vectorized run
length encoding (RLE). RLE is one of many compression techniques, which can be used
to compress base data or even intermediates to accelerate query processing [D+19]. In
Figure 3.6, we show an example of the input and output of RLE on a sequence of integer
data. In this section, we will use RLE as an example to illustrate the significance of the
additional load instructions and to show a solution. First, we show the comparison based
state-of-the-art vectorization of RLE, which reloads those parts of a vector register, which
are not part of the current run. Then, we show the shortcomings of this comparison-based
approach in more detail. Finally, we propose and evaluate an alternative implementation
relying on a special instruction, which detects conflicts within one register.

State-of-the-Art Vectorization of RLE

Generally, to compress a sequence of integers with RLE, the corresponding runs have to
be determined and this can be done by comparing each element with its predecessor. If
they are equal, a run continues. If they are not equal, a new run starts. These compar-
isons can be done for more than one element at once using SIMD instructions as shown
in [DHHL17, UDP+17]. In detail, this state-of-the-art RLE comparison-based vectoriza-
tion works as follows, whereby the authors used 128-bit vector registers:

1. One 128-bit vector register v1 is loaded with four copies of the current input element.
2. The next four input elements are loaded into a vector register v2.
3. The intrinsic _mm_cmpeq_epi32() is employed for a parallel comparison, so that the

four elements in v1 and v2 are pair-wise compared at once. The result is stored in a
vector register.

4. Next, a 4-bit comparison mask is obtained using the intrinsic _mm_movemask_ps().
Each bit in the mask indicates the (non-)equality of two corresponding vector ele-
ments. The number of trailing one-bits in this mask is the number of elements for
which the run continues. If this number is 4, then a run’s end has not been reached
and the execution continues at step 2 (new iteration). Otherwise, a run’s end is
reached that means that run value and run length are appended to the output. The
execution continues with step 1 at the next element after the run’s end (new itera-
tion).
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Figure 3.7: Execution behavior of the comparison-based implementation. As illustrated,
the number of necessary iterations depends on data characteristics.

The execution behavior of this vectorization concept is depicted in Fig. 3.7 for two differ-
ent data sets. A detailed description follows in the next section. We refer to this 128-bit
implementation as RLE128. Since only common intrinsics are used, this comparison-
based implementation can easily be adapted to 256 and 512 bit-wide registers by loading
more elements in the wider registers and by using the appropriate intrinsics of AVX2
(256 bit) or AVX-512. Additionally, step 3 and 4 can be merged into one step in AVX-
512, because there is an intrinsic producing a bitmask directly from the comparison. The
corresponding implementations are denoted as RLE256 and RLE512.

Shortcomings of this Comparison-based Vectorization

As already mentioned, Fig. 3.7 highlights the resulting execution behavior for two differ-
ent input sequences of integers. Both have in common that in each iteration, four integers
are loaded and compared with a vector containing the current run value. If this compari-
son for equality is not true for all elements, the current run ends. In this case, the register
with the run value is filled with four copies of the new value and the next four elements
after the beginning of the new run are loaded. Obviously, the number of necessary iter-
ations is data dependent and Fig. 3.7 shows that clearly. In detail, Example 1 in Fig. 3.7
depicts a fully vectorized execution behavior. Fully vectorized means that each integer
value is only processed once. In contrast to that, in Example 2 several integers are loaded
and compared multiple times. The redundant processing is usually negligible as long as
the overhead is not dramatic.

To analyze the magnitude of this redundant processing, we counted the load instructions
for different average run lengths and all possible variances for each average run length,
whereby we used an input sequence with 100 million integers in all experiments. For
instance, the maximal variance for an average run length of 5 is ±4 resulting in the in-
terval [1, 9] for the possible run lengths. Then, we selected the minimal and the maximal
number of load instructions and visualized them in Fig. 3.8(a) for RLE128, RLE256, and
RLE512. The x-axis shows the average run length and the y-axis shows the number of
loaded elements as a percentage of the elements in the input sequence, e.g. 200% means
that on average every element is loaded twice. The colored area shows the range be-
tween the maximal and minimal number of load instructions. Fig. 3.8(b) shows a close
up of Fig. 3.8(a) with the y-axis ranging only until 200%. From these experiments, we can
conclude:
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Figure 3.8: (a) The number of loaded integers as a percentage of the integers in the un-
compressed data set. Depending on the vector width, the average run length, and the
variance of the run length, the number of loaded integers differs heavily. In particular
for data sets with small average run lengths. (b) A close up of (a) to show the repeating
pattern at every vector size.

1. The state-of-the-art RLE vectorization uses a significantly higher number of load
operations for sequences with short runs than for sequences with long runs.

2. The redundant processing dramatically increases with increasing vector widths. For
example, RLE512 processes each element 5 times on average when the average run
length is 3. Furthermore, not only the absolute number increases, but also the size
of the covered area grows.

3. There is a pattern with a minimum and a maximum spanning exactly one vector
width, which is repeated for every vector width (in number of elements).

4. For large run lengths, the number of loaded integers approaches more or less 100%,
i.e. every value is only processed once, which is the optimal scenario.

Impact on Performance The presented high proportion of redundancy for sequences
with small runs has a negative effect on the performance–measured in million integers
per second (mis)–as illustrated in Fig. 3.9(a). In this experiment, we used again input
sequences with 100 million integers and varied the average run length, whereby we used
a fixed variance of ±5. However, the results were the same for other data characteristics.
As shown, only run lengths, which are greater than ∼ 150 reach the peak performance
for all vector widths, while small run lengths reach only a fraction of the peak perfor-
mance. Additionally, the performance increases not even smoothly for RLE512. This
becomes more obvious when looking at the speed up in Fig. 3.9(b). The speed up of
RLE512 compared to RLE128 increases until a run length of ∼ 8 is reached and decreases
afterwards. The sampled run lengths in this region are 20 and 36, both being shortly after
a maximum load number in Fig. 3.8. For larger run lengths, the number of loaded values
becomes smaller and the speed up becomes constant.

Conflict Detection-based Vectorized RLE

Intel’s latest version of their vectorization extension is AVX-512. In addition to an in-
creased vector width of 512-bit (16 x 32-bit), AVX-512 also offers a variety of new instruc-
tions. One of the new instruction feature sets is called Conflict Detection (AVX-512 CD)
which allows the vectorization of loops with possible address conflicts. This instruction
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Figure 3.9: RLE compression speed and speed up for different average run lengths, a
fixed run length variance of ±5, and different vector widths.
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Figure 3.10: Example for the _mm512_conflict_epi32 intrinsic.

feature set is currently supported by Intel Xeon Phi Knights Landing (KNL) and by recent
Xeon processors.

Some key features of AVX-512 CD are (1) the generation of conflict free subsets, i.e. sub-
sets which contain no equal elements, and (2) the count of leading zeros of the elements
in a vector. For example, the intrinsic _mm512_conflict_epi32 creates a vector register
containing a conflict free subset of a given source register. An example for this is shown in
Fig. 3.10. In other words and as illustrated in this figure, this intrinsic transforms a vector
register with 16 32-bit elements (illustrated by A, B and C) in a new vector register with
16 bitmasks (each represented by 32-bit values). Each bitmask encodes the positions of
equal previous elements in the vector. The bitmasks for the first three elements A, B, and
C are zero in our example, because there are no equal previous elements. The A element
at the third position in the input register is in conflict (equal to) with the element at po-
sition 0 in the input register. Thus, the least significant bit of the corresponding bitmask
is set to 1, the rest of the bitmask is filled with zeros. The element A at position 4 is in
conflict with the previous elements at positions 3 and 0 (equal previous elements). There-
fore, the corresponding bits in the bitmask are set to 1, all other bits are zero. Another
CD-feature is the intrinsic _mm512_lzcnt_epi32, which counts leading zeros. Given a
vector of 16 values, this intrinsic counts the number of leading zeros for all values at once
and writes the results in a vector register with 16 values.
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Figure 3.11: Run detection using conflict detection instructions

RLE Implementation Concept with AVX-512 CD To overcome the presented short-
comings of the comparison-based RLE vectorization, our novel approach–called RLE512-
CD–uses the conflict detection innovations of AVX-512 in an appropriate way. Generally,
our novel approach consists of four steps, which are repeated until all input elements are
processed:

Loading Step: In this first step, 16 input elements are loaded into a 512-bit vector register.
Run Detection Step: In the second step, we detect if there are any runs beginning in this

register and where they begin.
Run Length Detection Step: The run length of all finished runs have to be determined in

the third step.
Storage Step: The determined runs are written to memory.

While the loading step is trivial, the steps 2-4 are explained in more detail below.

Run Detection Step To avoid any redundant element processing for small run lengths,
the main challenge of this step is to detect all runs included within the loaded 16 elements.
This challenge can effectively be realized using the AVX512-CD innovations as illustrated
in Fig. 3.11:

In the first sub-step, we create a new vector register containing a conflict free
subset (cfss) of the given source register with the 16 loaded elements using the
_mm512_conflict_epi32 intrinsic. The example in Figure 3.11 shows the first 7 values
of a vector register containing two different values spread over 3 runs. As described
above, the newly created vector consists of 16 bitmasks, where each bitmask shows the
equality to all previous elements. However, for detecting a run it is sufficient to know if
the direct predecessor of an element is equal because all elements are either the beginning
of a new run or the continuation of another run. If an element is equal to its direct prede-
cessor, the element continues a run. If they are not equal, a new run starts. Hence, only
one bit in every bitmask of cfss is of interest, i.e. the bit which indicates the equality with
the direct predecessor. To find this bit for all elements in parallel, two more operations
are necessary:

First (second sub-step), we count the leading zeros of all bitmasks in cfss (lzcnt). The
number of leading zeros should decrease with every element if a run is continued because
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Figure 3.12: Run length determination using conflict detection instructions.

there is always one more bit set in the subsequent element, e.g. the bitmask at position 1
should have 32 − 1 = 31 leading zeros, the bitmask at position 2 should have 32 − 2 = 30
leading zeros and so on. If a run is not continued, the next bit is not set and the number of
leading zeros does not decrease. To find out if the number of leading zeros is decreasing,
we compare lzcnt with a predefined vector, containing decreasing numbers, for inequality
(third sub-step). As shown in Fig. 3.11, this comparison returns 0 for every element which
continues a run. Vice versa, it returns 1 for all elements which start a new run. Thus, the
position of the ones in the final bitmask indicates the position of the start of all runs in
this register. Note that the first element always starts a new run.

Run Length Detection Step With the previous step, we know the start positions and
the run values of all runs within the register. The next challenge is to determine the
run length of each run. Fundamentally, the run length is already encoded in the results
of the conflict detection (cfss) operation, because each continuous sequence of 1s in the
bitmasks indicates a subsequent occurrence of equal numbers. Hence, the number of the
most significant subsequent 1s in the bitmask of every last element of a run indicates the
length of the run. To get this number, at first the position of the last element of every run
has to be determined. This can be done by using the bitmask generated as the result of
the run detection (cfss). Since every 1 in this bitmask indicates the beginning of a new
run, we can get the end of the runs by shifting this mask one bit to the right. Now every
1 indicates the end of a run. Then, the bitmasks at these end positions in the output
of the conflict detection (in cfss) are selected. In Fig. 3.12, which continues the example
from Fig. 3.11, one bitmask is selected as an example. In this example the second run,
consisting of 3 elements is treated. The continuous sequence of 1s is highlighted. There
are only 2 instead of 3 set bits because the bit of the first element, i.e. the least significant
element, of a run is always set to 0. We will add this bit later. In order to retrieve the
number of subsequent set bits in this bitmask, 3 sub-steps are executed:

1. Shift the elements in the result of _mm512_conflict_epi32 by the number of leading
zeros (leading zeros were derived during run detection). In Fig. 3.12 we shift by 28
bits. Now, the sequence is at the beginning of the bitvector.

2. There is no intrinsic for counting leading 1s, so the result from the previous sub-step
is inverted.

3. Then, the leading zeros are counted in the third sub-step. In the example, there are
two leading zeros.
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Figure 3.13: (a) The number of loaded integer as a percentage of the integers in the data
set. Only RLE512-CD shows a constant behavior. (b) The number of vector instructions
per million loaded integers (excluding loading and storing) is significantly higher for
RLE512-CD compared to RLE512 and RLE256. This shows that the lower number of
loaded integers do not come for free.

Since the bit for the first element of a run is always set to 0 during conflict detection, the
result has to be increased by 1. Hence, the run length for the second run is 2 + 1 = 3. In
our implementation, these steps are executed in parallel for all runs by using the intrinsics
shown in Fig. 3.12.

Storage Step Before storing the results, it must be checked whether the first run of a
register is a continuation of the last run of the previous register. If it is a continuation, the
run lengths are added and the run is stored once. While these are trivial steps, we avoided
branching by applying bitmasks instead of conditions, i.e. the comparison between the
last and the first run of two registers returns whether the last bit in a bitmask is set. This
bitmask is then used to add the run lengths by applying _mm512_mask_add_epi32, which
adds the content of two registers only if the corresponding bit in the bitmask is set.

Finally, the run values and run lengths must be written back to main memory. For this,
there are two possible cases: (a) per integer or (b) per vector. Case (a) represents the
output format proposed by the state-of-the-art implementation [DHHL17], where a se-
quence of (value, run length)-tuples is stored. An advantage of option (a) is that the
output is independent of the vector word size. The disadvantage is that the values and
run lengths cannot be loaded sequentially into a vector register again for processing the
compressed values, e.g. for aggregating. Case (b) stores sequences of values and run
lengths which are as long as a vector word, e.g. 16 values followed by 16 run lengths.
Option (b) requires the vector word width as necessary metadata but it is also ideal for
processing the compressed data with vector instructions. We implemented both cases,
case (a) using a scatter store provided by AVX-512 and case (b) using the result of the run
detection as a write mask.

Evaluation

In this section, we evaluate and compare our novel CD-based RLE implementation
(RLE512-CD) with the state-of-the-art implementation. For this evaluation, all imple-
mentations are done with C/C++ and we compiled them with g++ 7.0.1 using the opti-
mization flag -O3. Then, all experiments were executed on an Intel Xeon Phi KNL 7250
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and on an Intel Xeon Gold 6130 supporting all vector widths of 128 (SSE), 256 (AVX2),
and 512 (AVX-512). The maximum core frequency is 1.6 GHz. Moreover, all experiments
were performed with a benchmark framework for data compression techniques [DHL15]
running entirely in main memory and single-threaded.

Data Processing Behavior We already analyzed the processing behavior of the state-of-
the-art implementation. For this analysis, we also used the above mentioned evaluation
setting with the Xeon Phi. As we have shown, this implementation suffers from a sig-
nificantly higher number of redundant load operations for sequences of integer values
with short average run lengths. In contrast to that, our novel RLE512-CD implementa-
tion is branch-free and every integer sequence value is only loaded once as illustrated
in Fig. 3.13(a). The y-axis shows the number of loaded integers as the percentage of the
integer count in the uncompressed data for RLE128, RLE256, RLE512, and for RLE512-
CD. It is clearly visible that our novel implementation loads the input data set only once,
independent of the data characteristics, and that the amount of loaded data is smaller
than for the state-of-the-art implementation. Additionally, we observe that the difference
is smaller when the average run-lengths are longer.

However, this constant data loading behavior comes at a cost. The total number of exe-
cuted vector instructions of RLE512-CD is higher than for the state-of-the-art implemen-
tation. Fig. 3.13(b) shows the number of vector instructions per million loaded integers
(excluding operations on masks and other scalar operations) for RLE512, RLE256 and
RLE512-CD. Thus, it comes down to the number of loaded and processed integers versus
the amount of executed instructions. Depending on the system, this can have different
effects on the compression speed.

Performance Fig. 3.14 shows the compression speed for RLE512 and RLE512-CD with
two different storage options: RLE512-CD stores the result data integer-wise like RLE512
with a scatter store while RLE512-CDAligned stores the result vector-wise. Again, each
run length has been tested with all possible run length variances. The first obvious find-
ing is that RLE512-CD shows an almost constant compression speed as expected. The
second finding is that the run length, where one or the other algorithm is more effective,
varies depending on the system. However, for both systems, the scatter store used in
RLE512-CD is too slow to compete with RLE512. Only for a run length of 3, RLE512-
CD is slightly faster than RLE512. For RLE512-CDAligned, there are 3 different regions:
(1) RLE512-CDAligned always outperforms RLE512 for very small run lengths (<12 resp
<13). (2) Between the run lengths of 12 and 40 resp. between 13 and 24, there is no binary
decision possible between RLE512 and RLE512-CDAligned. RLE512 shows the highest
peak performance but also the lowest possible performance. RLE512-CDAligned does
not reach the peak performance but guarantees an almost constant compression speed,
i.e. it is robust. Although, there is a small difference between the fastest and the lowest
compression speed of RLE512-CDAligned on the Xeon Gold, the size of this second re-
gion is roughly the same for the best and the worst case. (3) for run lengths greater than
40 resp. 24, the state-of-the-art implementation always shows the highest compression
speed. Hence, at the transitions of these regions, the applied implementation should be
changed. Additionally, in region (2) a decision between maximal peak performance and
robustness must be made.

The same regions as for the compression speed (in mio integers per second) can be shown
for the speed up in Fig. 3.14. Here, the baseline is RLE512 and the maximal and the min-
imal speed up is shown for RLE512-CDAligned. The lower curve compares to the max-
imal compression speed of RLE512 and the upper curve compares against the minimal
compression speed. The graph shows that the chances to gain a speed up greater than 1
are higher, the lower the run length is. As already mentioned, this graph looks different
on different systems, where the execution of vector instructions or the loading of a vec-
tor register is faster or slower. Additionally, in a multi-threaded scenario the loading of
integers might become a bottleneck earlier, e.g. because of shared caches.
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Figure 3.14: The compression speed for RLE512 varies depending on the run length
and the variance of the run length, while our novel implementation shows a constant
compression speed for two different tested systems. The costs of the scatter store for
RLE512CD are clearly visible. The speed up for RLE512-CDAligned compared to RLE512
scales accordingly.

3.1.3 Summary

In this section, we examined the challenges coming with large vector registers. On the
one hand, there are inherent challenges, which originate from the sheer amount of ele-
ments per register resulting an increased complexity of the logic as well as the code. We
could show that this quickly leads to a loss of performance and to code sizes, which are
not manageable anymore. On the other hand, there are algorithmic challenges, because
many algorithms were designed for scalar processing or for the common but small 128-
or 256-bit registers. We explained this with a state-of-the-art example for lightweight
compression (RLE) and provided a different solution using features of Intel’s most recent
SIMD instruction set AVX512. We could show that this solution has a constant compres-
sion speed, which is higher than the state-of-the-art approach for small run lengths.
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3.2 HARDWARE-OBLIVIOUS VECTORIZATION

Vectorization is usually done by using intrinsics, which are functions wrapping the un-
derlying machine calls. Unfortunately, these intrinsics are different for each instruction
set. Even the same manufacturer is not entirely consistent with the naming scheme across
their different SIMD extensions. Furthermore, not only the naming schemes are differ-
ent, but also the function range as we will show in the following section. To hide this
heterogeneity, we developed a library, the Template Vector Library (TVL)2, which en-
ables hardware-oblivious vectorization. Unlike existing approaches, e.g. [L+14, KL12b],
we do not rely on overwriting standard operators and do not abstract the explicit vector-
ization away. This enables the use of functions beyond the basic arithmetic operations,
e.g. the conflict detection provided by AVX512 or gather/scatter operations, to achieve the
best performance. We will discuss such abstraction guidelines for our TVL in the fol-
lowing section in more detail. Then, we show our realization for the query processing
domain. Finally, an evaluation will show the efficiency of our TVL for different hardware
and compare it with manual implementations.

3.2.1 Abstraction Guidelines

The SIMD hardware landscape is increasingly diverse as illustrated in Figure 2.6. For this
diversity, three metrics are important: (1) The number of available vector instructions3,
(2) The vector length, and (3) The granularity of the bit-level parallelism, i.e., on which
data widths the vector instructions are executable. Figure 2.6(a) shows the metric val-
ues for two recent Intel architectures: Xeon Skylake and MIC Knights Landing. Generally,
Intel offers several SIMD extensions such as SSE (Streaming SIMD Extensions), AVX (Ad-
vanced Vector Extensions), AVX2, or AVX-512. Both architectures in Figure 2.6(a) offer
SIMD functionality up to Intel’s latest extension AVX-512, resulting in a very high num-
ber of vector instructions with three different vector lengths of 128-, 256-, and 512-bit. The
SIMD processing can be done on 64-, 32-, 16-, and 8-bit data elements on both architec-
tures. As depicted, the number of vector instructions differs between both architectures,
because not all subsets of AVX512 are supported by all architectures.

In contrast to that, ARM, for example, pursues a completely different approach as high-
lighted in Figure 2.6(b). Instead of providing a high number of vector instructions, ARM
supports much wider vector lengths. While the ARM NEON extension (available in
ARMv7-A and ARMv8-A) was limited to a vector length of 128-bit, the Scalable Vec-
tor Extension (SVE) (available in ARMv8-A AArch64) aims at supporting much more
vector lengths from 128 to 2,048 bits, in 128-bit increments [S+17]. In all cases, the SIMD
processing can be done on 64-, 32-, 16-, and 8-bit data elements.

With this diversity in mind, developing a hardware-oblivious concept will become equally
important as achieving optimal performance. Therefore, the hardware-oblivious concept
should provide the following core aspects:

• Portability and Extensibility: The vectorized code written in a hardware-oblivious
way should be easily portable between vector processing units with different SIMD
capabilities. In addition, the implementation effort for the integration of new SIMD
functionalities offered by a specific vector processing unit should be manageable.
Of course, this also means that the hardware-oblivious approach should be extensible
with new functions that are necessary for the explicit vectorization of application
logic.

2Source code available at https://github.com/MorphStore/TVLLib, last accessed 23/07/2020
3We counted the instructions in the hardware vendor intrinsic guides.
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Figure 3.15: Architecture of the Template Vector Library. The compress store is illustrated
as an example.

• Enabling Explicit Vectorization: To achieve the best performance, explicit vector-
ization of application logic is still the best way [P+19b]. Even if a given code can
be auto-vectorized implicitly, this poses new challenges to the overall system as de-
scribed in [KL12b]. Thus, a hardware-oblivious concept should enable an explicit vec-
torization for the diversity in the SIMD hardware landscape (see Figure 2.6) with
the following properties. On the one hand, the diversity characteristics of SIMD
functionality, vector length and the granularity of the bit-level parallelism should
be treated independently of each other. This is the best way to represent diversity in
a meaningful way. On the other hand, the hardware-oblivious concept should allow a
separation between application logic implementation and specification of the three
diversity characteristics at compile- or run-time. This enables the highest degree of
flexibility in mapping of application logic to a specific SIMD hardware.

3.2.2 Realization for the Query Processing Domain

To fulfill the mentioned requirements, we developed the Template Vector Library (TVL),
an extensible header-only library tailored for data access and analysis. The TVL fol-
lows a separation of concerns concept. That means, it offers hardware-oblivious, but
column-store specific primitives as generic functions. This explicitly enables database
systems programmers to implement each query operator in a vectorized, but hardware-
independent fashion, on the one hand. On the other hand, the TVL is also responsible
for mapping the provided hardware-oblivious primitives to different SIMD hardware.
For this mapping, our TVL includes a plug-in concept, where each plug-in has to im-
plement each provided hardware-oblivious primitive for a specific SIMD hardware in a
hardware-conscious manner.

Hence, the TVL is extensible in two ways: (1) Functionality can be added by introducing
new primitives, and (2) Hardware support for another architecture can be added by im-
plementing the hardware-conscious primitives for this architecture. Existing code, which
was written using the TVL, will then be able to compile and run on the added architecture
without changing anything in the source code but one template parameter.

3.2 Hardware-Oblivious Vectorization 51



Compare Calc

LS Create

Mem

Register

1 2

Extract

42

== ==
+ +

Binary

Unary

invertinvert

Logic

AND

Manipulate
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Hardware-Oblivious Primitives

To enable a hardware-oblivious approach without sacrificing the performance, the TVL
primitives abstract from SIMD intrinsics in such a way that there is the same inter-
face for all SIMD architectures. While scalar or plain mathematical computations are
always a combination of load/store operations, comparisons, arithmetic calculations,
and boolean logic, vectorized query processing in in-memory column-stores requires
additional functionality, e.g. permutation of vector elements as discussed in the liter-
ature [P+15, P+19b, L+15, D+17, K+18, M+17]. Based on this observation, we define
seven different classes of TVL primitives as illustrated in Figure 3.15. In the following,
the characteristics of these classes are explained. Additionally, Figure 3.16 illustrates the
differences between them, i.e. the number of involved vector registers, the origin and
destination of their elements (main memory, literals/scalar register, vector register), and
their function (e.g. loading, storing, arithmetic, comparison).

Load/Store Class: The Load/Store Class contains different load and store primitives. The
most obvious members of this class are sequential load and store primitives. Random
memory access is realized by gather and scatter primitives. A special primitive for se-
lectively storing the elements of a vector is called compressstore. A compressstore takes a
bitmask, a vector, and a pointer as arguments. Then, it stores all elements of the vector,
which have a corresponding set bit in the bitmask, consecutively into memory without
gaps for non-selected elements. The widely supported masked store keeps those gaps,
which is not the desired output of most database operators. Furthermore, data can be
aligned or unaligned in memory, and there are instruction sets, which explicitly support
streaming, also known as non-temporal memory access. To differentiate between these
cases, a template parameter is used, which can have the values ALIGNED, STREAM, and
UNALIGNED for alternative implementations. Load and store primitives are used in virtu-
ally every operator.

Arithmetic Class: The Arithmetic Class provides different unary and binary function
primitives, which are mainly used in aggregations. Currently, the unary function primi-
tives contain the aggregation of all elements of a vector by summing them up, the change
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template <...>

void

compressstore (

typename base_t * dataPtr ,

typename vector_t vec ,

typename mask_t mask

);

Figure 3.17: Compressstore template declaration in C++.

of the sign of a number, and shifting the elements of a vector by a fixed distance. Fur-
ther, there are unary functions working on masks, e.g. counting the leading zeros or the
number of set bits. The currently provided binary function primitives are the four basic
arithmetical operations, modulo, and shift operations, where each element of a vector
is shifted by an individual number of bits. The result returned by arithmetic primitives
is always a single vector or scalar, regardless of the input. The granularity of bit-level
parallelism of the operations is again provided by a template parameter.

Comparison Class: This class provides element-wise comparisons between vectors, e.g.
for equality or greater/less than. These primitives are required by a number of operators,
i.e. intersect, different joins, and selections. The input parameters are the same as for the
binary arithmetic primitives, but the output is a bitmask instead of a vector. This is es-
pecially useful, when the result of a comparison is stored. Instead of storing the bitmask,
the corresponding values can be stored by using the compressstore of the Load/Store Class.

Bitwise Logic Class: In this class, boolean algebra is treated. Currently, a bitwise AND
and a bitwise OR are provided. The necessity for this primitive class is not straight for-
ward. It can be used for the comparison of masks, e.g. in range queries, or for a number
of compression techniques.

Create Class: Sometimes, the elements of a vector are not loaded from memory, but
computed at runtime, or loaded from immediate values or constants. These cases are
treated by the Create Class. This class poses the challenge, that setting the elements of
a vector to different values is an operation whose interface depends on the number of
elements of a vector, i.e., depending on the number of elements per vector, the number of
input parameters varies. This is incompatible with the concept of code which is portable
to different vector lengths. For this reason, we provide two additional primitives in this
class: set1 and set_sequence. The first one sets all elements of a vector to the same value.
The second one fills a vector with a sequence of numbers, where the first number and the
distance between the following numbers are provided as parameters. This is especially
useful for the initial creation of record indexes.

Extract Class: Whenever it is necessary to get a single element out of a vector, the extract
primitive is used. This is the only member of the Extract Class. The same effect can be
achieved by using a compressstore (Load/Store Class) with a single bit set in the bitmask,
but extract avoids the round trip to the main memory, if a corresponding instruction is
available on the targeted architecture.

Manipulate Class: The last class is the Manipulate Class, which takes care of vector ma-
nipulations on the element-level, i.e., permutations of the vector elements. A special
permutation is the rotation. The rotate primitive rotates the elements in a vector by one
element. If there are only two elements in a vector, e.g. two double values in a 128-bit
register, this results in swapping these two elements.

These classes and primitives are specific for an efficient vectorized query processing in
in-memory column stores. An example TVL primitive from the L/S Class, which is
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used in selective database operators, is the compressstore function template as depicted
in Figure 3.17. This specific function takes a pointer (dataPtr) to a memory location, a
vector (vec), and a bitmask (mask) as input parameters. Then, the task is to store the vec-
tor register (vec) in such a way that the vector elements with a corresponding set bit in
the bitmask are stored consecutively to memory. How this function is realized is not the
subject of this template declaration, but of the hardware-conscious specialization.

Additionally to the primitives, we introduce generic datatypes:

• base_t: The base type can be any scalar type. There are hardware-conscious back-
ends for different integer types, and partially for floating point and double types.

• vector_t: The vector type contains one or more values of the same base type.
• mask_t: A mask is a scalar value, which is large enough to store one bit for each

element in a vector.

Depending on these types, there are also automatically derived parameters, e.g. the num-
ber of elements per vector.

Hardware-Conscious Specialization

From a template metaprogramming perspective, our TVL primitives are generic inter-
faces to implement in a vectorized way, but for the execution, we require a hardware-
conscious function template specialization for the underlying SIMD hardware. This
function template specialization has to be implemented, whereby the implementation
depends on the available functionality of the SIMD hardware. However, this is indepen-
dent of the query operators and must be done only once by a domain expert for a specific
SIMD hardware.

In the best case, we can directly map a TVL primitive to a SIMD intrinsic. However, if
the necessary SIMD intrinsic is not available, we are able to implement a work-around in
a hardware-conscious way. To illustrate this specialization, Figure 3.4 shows the imple-
mentation of the compressstore primitive for three different SIMD instruction sets assum-
ing a 64-bit base data type.4 To the best of our knowledge, Intel’s AVX-512 is the only
instruction set, which contains an intrinsic doing exactly what a compressstore is meant
to do, and we map directly to this intrinsic. For architectures without AVX-512, a work-
around has to be implemented. In this work-around, we have to treat all possible values
of the bitmask manually. If no bit in the bitmask is set, the function returns without stor-
ing anything. If all bits are set, the whole register is stored. If only a subset of bits is set,
there are different ways to store the corresponding vector elements. In NEON, there is
an intrinsic to store selected vector elements. In SSE, we could either use an intrinsic to
extract values into a scalar register and then write them to memory, or shuffle the accord-
ing elements to the beginning of the register before writing it to memory. We decided for
the latter because of a higher compatibility with different base data types.

To eliminate the overhead of a function call when using primitives, we inlined all prim-
itives with inline __attribute__((always_inline)). This ensures that the overhead
over using intrinsics is negligible as we show in Section 3.2.4. A nice side effect of our
overall concept is that we are also able to map to a scalar specialization. In this case,
the vector length can be 8-, 16-, 32-, or 64-bit, and we map our TVL primitives to the
corresponding scalar instructions.

4Note that, for the sake of simplicity, the function headers are not shown.
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// let outPtr , mask , and vec be local variables

//a) Using AVX-512 intrinsics directly , no TVL

_mm512_mask_compressstoreu_epi64 (outPtr , mask , vec);

//b) Naive implementation using TVL

tvl::compressstore < avx512<v512<int64_t>> , tvl::UNALIGNED , 64>(outPtr ,

vec , mask);

//c) Fully portable implementation using TVL

using processingStyle = avx512<v512<int64_t>> ;

tvl::compressstore <processingStyle , tvl::UNALIGNED ,

processingStyle::base_t_size_bit> (outPtr , vec , mask);

Figure 3.18: Example usage of the TVL.

Interplay

To connect our hardware-oblivious primitives with the different hardware-conscious spe-
cializations during query compile-time, we decided to use three nested template param-
eters and call a combination of these parameters a processing style. The template param-
eters are derived from the description of the SIMD variety in Section 3.2.1: (1) the vector
extension (e.g. SSE, AVX, NEON, or scalar), (2) the vector size in bit, and (3) the base
data type with bit granularity (e.g. int8, int64, float). An additional optional template
parameter is the bit-granularity of a primitive. This way scenarios can be handled, where
an operation is not performed on the granularity of the base type, e.g. loading 32 bit
values into 64 bit registers to handle potential overflows during later processing. The
Bitwise Logic class does not involve a granularity parameter for the obvious reason that
the comparisons are always executed on a bit granularity. Furthermore, the primitives
in the Load/Store class require the already mentioned template parameter indicating the
alignment in memory. This enables us to define the exact mapping in a very fine-grained
and flexible way. That means, each primitive within a query operator can be called with
its own processing style. An example of how exactly the processing styles are used, is
shown in Figure 3.18. In a), the intrinsics provided by AVX-512 are used directly. This
code will only work on 512-bit registers on Intel architectures providing this instruction.
Snippet b) uses the TVL in a very naïve way. The primitive compressstore is called with
a processing style, that maps to AVX-512. The second template parameter indicates that
the data does not need to be aligned. The mapping to the hardware-conscious implemen-
tation is also highlighted in Figure 3.15. To make the code fully portable to other SIMD
architectures, the derived constants, such as base_t_size_bit, can be used, which are
also provided by our TVL as shown in snippet c) in Figure 3.18.

3.2.3 Integration of new Instructions into the Template Vector Library

The integration of special instructions into the TVL is straight forward because of the
extensible design of the TVL. Most operations only require to add the interface of the
according primitive to the respective class and implement this primitive with the special
instruction for all desired target processing styles. For instance, the horizontal aggrega-
tion is a unary arithmetic calculation, where unary refers to a single input vector instead
of a single input value. Permutations change the vector register by manipulating the po-
sition of the elements. Hence, the permutation fits into the manipulate class. However,
in some cases, more adjustments have to be done:
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1 template<class ProcessingStyle , int Granularity>

2 struct equal {

3 // nice macro for an ugly compiler directive

4 MSV_CXX_ATTRIBUTE_FORCE_INLINE

5 static

6 typename ProcessingStyle::mask_t

7 apply(

8 typename ProcessingStyle::vector_t const & p_vec1 ,

9 typename ProcessingStyle::vector_t const & p_vec2

10 // Default this to a deleted function to get compiler errors instead

11 // of linker errors if this primitive is not supported for a target

12 ) = delete ;

13 };

14
15 template<class ProcessingStyle , int Granularity>

16 struct conflict_detection {

17 MSV_CXX_ATTRIBUTE_FORCE_INLINE

18 static

19 typename ProcessingStyle::vector_t

20 apply(

21 typename ProcessingStyle::vector_t const & p_vec1 ,

22
23 ) = delete ;

24 };

Figure 3.19: Interfaces of a comparison for equality between two different vector registers
(l. 1-13) and between the elements in one vector register (conflict detection, l. 15-24). The
lines, which differ between these two interfaces, are highlighted.

New (sub)classes The existing classes and subclasses may not be sufficient for new
primitives, either because the interface does not fit or because there is no intuitive map-
ping to any of the existing classes. For instance, detecting conflicts within the same regis-
ter, is a comparison but with only one input vector. Additionally, the conflict detection does
not return a mask, but a vector, which contains a collection of masks. This introduces a
new primitive sub-class, the horizontal comparison. Figure 3.19 shows the interface of
the conflict detection (line 15-24) compared to the interface of an equality check between
two input vectors (line 1-13). The different return types and the different amount of input
vectors is highlighted.

Additional template parameters There are primitives, where the existing template pa-
rameters are not sufficient to distinct between all different primitive implementations.
This is especially obvious in the gather primitive. As already explained in chapter 3.1.1,
this primitive becomes tricky for small base data sizes. Besides the sheer performance
loss, there is a second issue, which concerns the size of the offset vector. Typically, the
offset has the same size as the data to be gathered. Hence, if the base data type is only 32
bit, the offset is also only 32 bit. But this way, not the whole dataset might be addressable.
This has been solved to a certain degree in AVX2 by introducing intrinsics for 32-bit gath-
ers, which use 64-bit indices. However, the distinction between the different offset sizes
must be made independently of the base data size. For this reason, the gather primitive
of the TVL requires a second granularity template argument with the size of the offsets.
An overview on the available primitives of each class with their template parameters is
displayed in Table 3.1.
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Class Primitives Template Parameters Parameters Returns

L/S load, Processing Style, Memory Address, void (store),
store, IO-Variant, vector_t (store), vector_t (load)

gather, Granularity, mask_t
compressstore Size offset (compressstore)

in byte (gather)
Arithmetic add, Processing Style, vector_t (unary), vector_t,

sub, Granularity 2x vector_t short (count)
div, (binary),
mul, mask_t (count)
min,
max,

count_matches,
count_leading_zero,

shift_left(_individual),
shift_right(_individual),

inv (unary),
hadd (unary)

Comparison equal, Processing Style, 2x vector_t, mask_t,
less, Granularity vector_t vector_t

lessequal, (horizontal) (horizontal)
greater,

greaterequal,
conflict_detection

(horizontal)
Bitwise Logic bitwise_and, Processing Style 2x vector_t vector_t

bitwise_or
Create set_sequence, Processing Style, base_t, vector_t

set1 Granularity step size
(set_sequence)

Extract extract Processing Style, vector_t, Index base_t
Granularity

Manipulate rotate Processing Style, vector_t vector_t
Granularity

Table 3.1: TVL overview of the currently available primitives and their interfaces

Once the new primitives are implemented for all target processing styles, alternative
physical operators using these primitives, can be implemented. This can involve work-
arounds for those architectures, which do not support a certain functionality. We already
showed the compress store as an example in chapter 3.2.2 and gather as an example in
chapter 3.1.1. Nevertheless, it is not always beneficial to provide a primitive for every
processing style. This is the case when a vectorized work-around has no benefit over
the scalar version. For instance, a work-around for the conflict detection would require to
extract all elements from a vector register and do a scalar comparison with all previously
extracted elements, just to write those results back into a vector register. This is basically
a scalar comparison with the added overhead of extracting and setting vector elements.
Hence, a scalar comparison without this overhead is the more efficient solution. This
nonexistence of a primitive for a certain processing style poses a challenge for the user,
who will be presented with cryptic linker errors when compiling a primitive with an un-
supported processing style. For this reason, all primitive prototypes default to a deleted
function as shown in Figure 3.19 in line 12 and 23. This way, the error is thrown during
compile time, i.e. before linking, which results in the well understandable error message
“file, line x:y: use of deleted function”.
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Figure 3.20: Runtime overhead for column scan. The dataset contained 106 values, which
does not fit into L2 cache anymore.

3.2.4 Evaluation

We used the TVL to realize different columnar query operators. For this evaluation, we
focused on the different Intel instruction sets. Therefore, we implemented template spe-
cializations, i.e. TVL-backends, for scalar processing and different Intel SIMD extensions.
In particular these extensions are SSE, AVX2, AVX-512. Additionally, we realized some
hand-vectorized operators to measure the potential runtime overhead introduced by the
TVL.

Runtime Overhead Consideration

In a first series of experiments, we compared the runtimes of hand-written query operator
code using SIMD intrinsics with runtimes of TVL-enabled query operators. To keep the
results comparable, both variants use the functionalities offered by Intel AVX2. For all
these microbenchmarks, the complete processed data fit at least into the L3-cache of the
Xeon Gold 5120 (Skylake, max. core frequency: 3.2 GHz) and the benchmarks ran single-
threaded. All micro-benchmarks were executed 900 times to minimize the impact of time
measurement. Figure 3.20 exemplary shows the different average runtimes for a column
scan with different range predicate selectivities. We used these selectivities to vary the
runtime behavior. The selectivities are plotted on the x-axis while the y-axis shows the
complete runtime of the operator in milliseconds (lower is better). On the one hand,
the variant using TVL performs slightly better than the variant using SIMD intrinsics for
selectitivies of 5% and 95%, respectively. On the other hand, for selectivities of 25% and
50%, the operator variants behave inversely, resulting in an average runtime overhead
for our TVL approach of around 1.02% for this operator. For the other query operators,
we observed a similar overhead resulting in a negligible overhead. Hence, we conclude
that our TVL offers high flexibility at virtually no performance cost.

Comparison with Autovectorizer

For a second series of experiments, we compare the runtime of code using the TVL to the
runtime of auto-vectorized code. We will further show some limits of vectorization in
general. For these experiments, we consider different memory access patterns, because
the ability of compilers to vectorize code tends to vary depending on the memory access
pattern:
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Figure 3.21: Comparison of scalar, autovectorized scalar, and TVL vectorized code for
different operators. The dataset contained 107 values, which does not fit into L3 cache
anymore.

1. A projection includes sequential and random memory read access as well as sequen-
tial memory write access.

2. A calculation, taking two columns as an input, doing an element-wise aggregation,
and returning another column, addresses only sequential read and write access.

3. Finally, a selection with a selectivity of 10%, incorporates sequential read and write
access, where the read to write ratio is only 1 to 10.

The system, we used for these experiments, was an Intel Xeon Gold 6130 (Skylake, max.
core frequency: 3.7 GHz). The compiler was g++ (version 8.3). All experiments use 107

values per column, where each value is a 64-bit integer. Thus, they do not fit into cache
anymore. Figure 3.21 shows the runtime of the mentioned operators. The first group
of bars shows the hand-implemented scalar code with disabled auto-vectorization.5 The
second group shows this code with enabled auto-vectorization. The remaining bars are
the runtimes of the TVL enabled operators for different processing styles. We chose the
native vector size for each SIMD extension.

The projection shows no significant runtime difference for all scalar versions and only
a small speed-up for the TVL-vectorized versions. The relatively stable performance is
caused by the heavily bandwidth bound characteristics of this workload. Further, auto-
vectorization fails with the message that it is not profitable. In contrast to that, the auto-
vectorization of the calculation is successful. However, it decided to use 256-bit vectors,
where 512-bit vectors are also available. Additionally, the auto-vectorized code is not
faster than the scalar code, but the TVL-vectorized code is, even only by a small amount.
The selection has a lower memory write access rate than the other operators, which is
the most expensive operation in all of the chosen examples. Hence, some optimization
potential can be expected from optimizing the steps before accessing the memory to write
the result. Such an optimization could be the efficient extraction of the selected values
from a vector register. Unfortunately, the selection also fails to auto-vectorize. Where the
TVL-enabled code uses a compress store, the auto-vectorizer tries to implement a masked
scatter but fails due to “bad data references”. Hence, the shortest runtime is retrieved by
using the TVL with AVX512, which translates directly to the compress store intrinsic.
The other TVL variants show no mentionable performance gain, because they cannot use
a hardware-backed intrinsic, but must rely on workarounds.

5We used gcc version 8.3 for compiling
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Figure 3.22: An addition using different vector libraries. (a) The Sierra compiler (a clang
fork) translates the code into vectorized LLVM code, which is then compiled and linked
into an executable. (b) VC overwrites operators depending on the chosen namespace
(c) UME::SIMD encodes the vector- and element-size in the vector type (d) Boost.SIMD
introduces an embedded DSL for vectorization. Boost.Proto, a compiler construction
toolkit for EDSLs is used to optimize, schedule, and translate the AST.

3.2.5 Summary

We introduced the Template Vector Library (TVL), which efficiently hides the hetero-
geneity of instruction sets and vector register sizes from the application developer while
enforcing explicit code vectorization. The TVL allows porting code across all ISAs, which
offer a corresponding back-end. Instead of intrinsics and ISA specific data types, the TVL
offers generic vector and mask data types, and primitives, which are templated func-
tions. We identified seven fundamentally different primitive classes, which are necessary
to implement query operators, and developed the according back-ends for the most com-
mon Intel® and ARM® instruction sets. Finally, our evaluation empirically shows, that
our hardware-oblivious operators with the TVL can efficiently run on different SIMD ex-
tensions with virtually no performance overhead. Additionally, we showed that using
explicit vectorization over an auto-vectorizer does not have a negative effect on perfor-
mance. Moreover, a positive effect can be observed in some cases.
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3.3 RELATED WORK

There is a plethora of approaches for hardware-conscious vectorization for in-memory
column-stores as presented in Chapter 2, e.g. [P+15, P+19b, L+15, D+17, K+18, M+17].
However, these solutions assume a certain instruction set on the target hardware. This
limits their portability significantly and erases the option to combine different instruc-
tion sets. For this reason, hardware-oblivious approaches have been developed. There
are hardware-oblivious concepts designed specifically for in-memory column-stores, and
there are concepts, which do not target a specific application scenario. In the following,
we present examples for both cases.

In-Memory Column-Stores

In addition to hardware-conscious vectorization, there are also some concepts available
towards hardware-oblivious support for in-memory column-stores. For example, Heimel
et al. [H+13] presented a hardware-oblivious extension for MonetDB by using the paral-
lel programming framework OpenCL. As they have shown, they can map single-source
query operators implemented in OpenCL to different parallel processing architectures
like multi-core CPUs or GPUs. Another hardware-oblivious approach in this direction
is Voodoo, which is a declarative intermediate algebra abstracting the detailed architec-
tural properties [P+16]. The Voodoo compiler also produces OpenCL code to support
multi-core CPUs and GPUs. Moreover, Voodoo includes a small set of vector opera-
tions like scatter. However, the main bottleneck of both approaches is OpenCL from a
vectorization performance perspective. This is because OpenCL-based solutions focus
on multi-core scenarios rather than on single-thread performance. Behrens et al. [B+18]
have clearly shown that, e.g. vectorized hashing based on SIMD intrinsics outperforms
OpenCL-based hashing. In contrast to that, our TVL approach achieves similar perfor-
mance compared to SIMD intrinsics.

General Concepts for Hardware-Oblivious Vectorization

There are already approaches for vector libraries, which avoid additional layers like
OpenCL and reduce the additional overhead to a minimum, although none of them was
designed for the use in in-memory column-stores, or for any data driven scenario in gen-
eral. Two examples for such libraries are VC [KL12b] and Sierra [L+14]. Both approaches
automatically translate a generic vector type to the largest available vector size and over-
load standard operators to work with this vector type. Note that the largest available vec-
tor size in VC depends on the chosen namespace. This reduces the translation of the writ-
ten code to exactly one combination of vector size and instruction set, even if the system
offers more, and potentially faster, variants. Additionally, very specialized functions, e.g.
a stream store, which can enhance the performance in some cases but have no equivalent
standard operator, cannot be used. Hence, VC and Sierra work well in plain mathemati-
cal scenarios, but the application in our domain is limited. There also used to be a SIMD
template library, which was supposed to become a part of the boost library [EFGL14].
This library was realized as an embedded DSL (EDSL). This allowed for optimization
and efficient scheduling of the AST by applying Boost.Proto, a compiler construction
toolkit for EDSLs. Nevertheless, it did not make it into a final release of Boost. Metacale,
the company driving the development of Boost.SIMD, has been renamed into Numscale
and later became a part of the Agenium Group. Agenium’s Boost.SIMD github repos-
itory is empty and refers to a successor project called nsimd, which is still open source
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Figure 3.23: Runtime comparison of an aggregation between Sierra (blue and gray) and
the TVL (orange). The dataset contained 107 integers.

but a license fee applies for updates and support6. Additionally, there is currently no
publication explaining how much of the original idea of Boost.SIMD is left in nsimd. An-
other API, which aims to provide a portable SIMD abstraction is UME::SIMD [KM17]. It
supports a wider function range than overloaded operators, e.g. permutations and hor-
izontal aggregations. Additionally, UME::SIMD leaves the choice of the vector element
size and the vector element count to the user by encoding both of these quantities into
the typename of the vector. This enables the use of the actually fastest variant, but this
variant might be a different one depending on the hardware and the instruction set it is
mapped to. To change the code to another variant, all type mentions must be changed,
which requires some amount of refactoring. However, it is possible to realize an aggre-
gation with all of these libraries, because this only requires a basic arithmetic addition.
Figure 3.22 illustrates the realization of an addition with the mentioned libraries. Since
Sierra is available on github and it is documented including example files, we chose to
implement an aggregation using Sierra and compare the runtime with the TVL-enabled
aggregation.

Comparison with Sierra We compared the runtime performance of the TVL to
Sierra [L+14]. Since the functionality of Sierra is limited, we did not implement any selec-
tive operator. Instead, we implemented an aggregation, which is trivially vectorizable.
To not measure the efficiency of an auto-vectorizer, but of Sierra’s SIMD mode and the
TVL primitives respectively, we turned off auto-vectorization. To compile the implemen-
tation for Sierra, we used the sierra fork of clang (version 3.3). For the TVL, we used the
regular clang compiler (version 7). We chose to not compile the TVL code with clang
version 3.3 because of some language features required by the TVL, which were intro-
duced later. All experiments were run single-threaded on an Intel Xeon Gold 6130 CPU
(max. core frequency: 3.7 GHz). Fig. 3.23 shows the runtimes for SSE, AVX, and scalar
processing. In addition to the median of 10 runs, the range of the runtimes is shown. In
Sierra, there are two different versions of scalar processing. The first one, SSE-Scalar, is
compiled for SSE, but with a vector length of 1, i.e., every vector contains only one ele-
ment but the compiler is allowed to use SSE functionality. The second one, AVX-Scalar,
also has a vector length of 1, but is compiled for AVX. For the TVL, we used scalar, SSE,
and AVX2 processing styles with the native vector lengths of the corresponding instruc-
tion set, e.g. 128-bit registers for SSE. The graph shows that in this use-case, the size of

6https://github.com/agenium-scale/boost.simd and https://store.agenium-scale.com, accessed
09 March 2020
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registers does not scale proportionally with the performance. This is because the work-
load mainly consists of sequential memory read access, which is bandwidth limited. The
ranges of the runtimes for Sierra and the TVL are overlapping in all cases except for AVX2.
However, Sierra performs slightly better than the TVL. We suppose that this is because
of the highly SIMD-optimized Sierra compiler. A six times lower cache-reference number
and 30% more instructions per CPU cycle, with slightly slower CPU cycles, for the Sierra
implementation supports this assumption. Considering, that Sierra puts tight limits on
the usable functionality of any vector extension, especially when it comes to selective
operations, it is not applicable for a database system despite the small performance gain
compared to the TVL.

3.4 SUMMARY

In this chapter, we addressed the challenges of the growing size of vector registers in re-
cent SIMD instruction sets, especially AVX512. In particular, there are inherent challenges
introduced by the sheer amount of elements in a vector, and there are challenges arising
from the vectorized algorithms, which are not always fit for large registers. Some re-
cent instruction sets offer specialized functionality, which helps to solve these challenges.
However, the different function range, vector sizes, data types, and intrinsics, require an-
other implementation for each target architecture, which is not necessarily done by sim-
ple refactoring. To overcome this issue, we introduced the TVL, a library for hardware-
oblivious explicit vectorization, tailored for the use in query processing. We implemented
a set of operators necessary to run analytical queries and showed that there is virtually
no overhead to a hand-vectorized implementation. Finally, we discussed related work
and compared our approach against the highly optimized but functionally limited Sierra
compiler. We found that our approach has a small but negligible overhead.
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Figure 4.1: In the last chapter we introduced the Template Vector Library (TVL). In this
chapter we will use the TVL as a basis to optimize queries.

In the last chapter, we introduced the Template Vector Library (TVL), which enables an
easy selection of the SIMD instruction set to achieve optimal performance. As we have
shown in Section 2.3.1, there is a significant performance optimization potential when
the instruction set is chosen per operator, and not per query. However, as we have also
shown, this choice is not trivial and different queries benefit from a different choice.
Moreover, in Section 2.3.2 we explain that the use of SIMD puts tighter limits to other
optimization knobs, e.g. frequency scaling. This also affects the energy-efficiency, which
has become another important optimization goal. For instance, the achievable CPU fre-
quency, which is a main factor for the energy consumption of CPUs, is influenced by
the chosen instruction set and the number of active CPU cores. Hence, performance and
energy-efficiency are related optimization goals influencing each other. To optimize for
both of these two goals, a mapping between performance and energy-efficiency is nec-
essary. In this chapter, we propose a model, called Work-Energy-Profiles (WEPs), which
shows this mapping. We create such WEPs for the primitives of the classes in our TVL
and some frequently used primitive combinations. Then, we use these WEPs to create
models for more complex operators, which were implemented with the TVL. These mod-
els can then be used to select the optimal instruction set and cpu frequency on an operator
level. Figure 4.1 shows a rough outline of this approach. The upper part of the figure,
i.e. the TVL and the implementation using it, was covered in the last chapter. The lower
part, i.e. the optimization using WEPs, is the subject of this chapter1. In particular, we
the following topics are discussed:

1. We show why benchmarks are necessary to create reliable models in Section 4.1, i.e.
we explain why a completely analytic model is not feasible.

2. In Section 4.2, we explain our Work-Energy-Profiles. This includes the general idea,
the characteristics of our test systems, and example profiles for these test systems.

3. Since benchmarking is time-consuming, we present a method for creating WEPs for
all applications, which rely on the TVL, by combining the WEPs of the primitives
(Section 4.3).

4. We show how to apply WEPs in order to optimize a workload or a query in Sec-
tion 4.4.

5. Finally, in Section 4.5 we focus on previous approaches of optimization for energy-
efficiency in a discussion of related work.

1Parts of the material in this chapter have been developed jointly with Alexander Krause, Patrick Damme,
Johannes Pietrzyk, Thomas Kissinger, Willi-Wolfram Mentzel, Dirk Habich, and Wolfgang Lehner. The chap-
ter is based on [UKHL16, UKM+16, UDP+17]. The copyright of [UKHL16] and [UDP+17] is held by Springer
International Publishing AG; the original publications are available at https://doi.org/10.1007/978-3-

319-54334-5_10 and https://doi.org/10.1007/978-3-319-67162-8_5. The copyright of [UKM+16] is
held by the authors; the original publication is available at https://doi.org/10.1145/2882903.2899390.
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Figure 4.2: Circuit for the input capacitance of a MOSFET including the lead resistance
(left) and the characteristic curve (right) of the capacitance. Additionally, the threshold
and overdrive voltages of the MOSFET are illustrated. In the subthreshold region, there is
no current at the drain, the transistor is switched off. In the ohmic region, there is a current
passing the capacitor, but gate switching is not reliable. Transistors in CPUs work in
the saturation region. Note that real characteristic curves are steeper, and the subthreshold
region is narrower and the threshold and overdrive voltages are usually not shown in
these diagrams. This figure aims to explain the sheer concept.

4.1 WHY WE NEED BENCHMARKS

The exact performance and energy consumption of a CPU are not trivially predictable,
and they are not computable in an acceptable amount of time. To understand the
reasons for this claim, a short excursion to the characteristics of transistors is use-
ful. There are different kinds of transistors. In modern CPUs, mostly MOSFETs
(metal–oxide–semiconductor field-effect transistors) are used. The transistors consist at
least of a source, a drain, a gate between the source and the drain, a body, and an isolator
separating the gate from the body. The name MOSFET was kept, even when the gate ma-
terial changed from metal to silicon. Simply put, a transistor works like a resistor, which
is controlled by voltage. By changing the voltage between the gate and the source, the
resistance between the drain and the source is changed. This causes a change in the cur-
rent. A high and a low current level equal a 1 or a 0. In the equivalent circuit diagram2 of
a transistor for the frequencies relevant in CPUs, this is modeled by a resistance and three
capacitances. For the sake of simplicity, we show only the resistance and a single capac-
itance in Figure 4.2. The supply voltage is denoted as VDD. The diagram in Figure 4.2
shows the characteristic curve of the capacitance, i.e. the voltage as a function of the time.
Only if the voltage between the gate and the source surpasses a threshold VT H , there is a
channel between the source and the drain, i.e. there is a current. If the voltage increases,
the current also increases. The region below this threshold is called the subthreshold region,
in which the transistor is switched off. The region above this threshold is called the linear
region or ohmic region. In this region, the drain current grows approximately proportional
to the drain-source-voltage. This can be used to amplify incoming signals. If the voltage
passes a second limit, the overdrive voltage VOV , the current is not changed significantly
anymore. Instead, the supply voltage can be used directly to change the current. There
is a clear distinction between the current levels when the switch is open versus when the
switch is closed. This region is called the saturation region or overdrive region. CPUs work

2An equivalent circuit diagrams do not show existing circuits, but the behavior of an electric component.
For this reason, we are using the terms resistance and capacitance over resistor and capacitor.
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Figure 4.3: There are two ways of changing the physically possible gate switching time:
(1) The supply voltage is increased and (2) the resistance and/or capacitance is decreased.
The latter are constants, which cannot be changed after the transistor has been built,
because they depend on the hardware design.

in this saturation region, because transistors working in the linear region do not reliably
map the supply voltage to distinct 0 or 1 values3.

This means, the minimal length of a cycle (x-axis), and therefore the maximum switching
frequency, is determined by the intersection of the characteristic curve of the capacitance
with the overdrive voltage. To increase the maximum frequency, there are two different
ways: (1) Increase the supply voltage, and (2) Change the shape of the curve. Both of
these possibilities are pictured in Figure 4.3. The left side shows option (1). As shown,
the curve becomes steeper when the supply voltage is increased from VDD1 to VDD2. This
results in a smaller cycle length at t1 instead of t2. Option (2) is shown on the right side.
The shape of the curve depends on the resistance R and the capacitance C. If R or C
changes, the curve changes, too.

However, both options have limits. Changing the capacitance or the resistance can only
be done during hardware development, because these quantities follow from the mate-
rials and the physical design of the transistors. The supply voltage can be changed dy-
namically, but the switching power consumption depends quadratically on the supply
voltage. Additionally, the energy conversion efficiency of a transistor is not 100%. There
is leakage energy, which is emitted as heat. A high number of densely packed transistors
working in the saturation region produce enough heat that the threshold and overdrive
voltage are affected, which requires a higher increase of the supply voltage to increase
the frequency. But again, this produces even more heat. Thus, increasing the supply volt-
age only makes sense to a certain degree, where this degree depends on the number and
density of active transistors. This is a main reason why the maximum CPU frequency
for vectorized processing is below the frequency for scalar processing, which uses fewer
transistors per instruction, and why it decreases even further when using multiple cores.

Even when the supply voltage stays within these boundaries, energy consumption is not
trivially predictable. For instance, an increased voltage would lead to a higher energy
consumption per cycle, if the cycle length does not change. But a shorter cycle length
could amortize for the higher voltage. Jejurikar et al. showed this complex relationship

3This statement is backed by personal experience with the Tomahawk chip, where we were able to select
the supply voltage manually.
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exemplarily for the Transmeta Crusoe Processor [JPG04]. They show that with an in-
creasing supply voltage, the static energy consumption and the leakage energy per cycle
decrease, while the switching energy per cycle increases. If all of these parts are added
to show the overall energy consumption per cycle, there is an optimum for energy con-
sumption, which is far below the maximum frequency.

While this is an interesting finding, it is still not sufficient to estimate the energy con-
sumption for a given application on a modern CPU. First, the Crusoe CPU was con-
structed to be especially energy-efficient and simple. The compatibility with x86 CPUs is
reached by emulating the instructions, not by implementing them in hardware. However,
in most modern CPUs there are several instruction sets available, e.g. for vectorization,
and the properties of the transistors are not something a user can find in a documenta-
tion. To estimate their energy consumption it would be necessary to know how many
and which transistors are used for each instruction, and the physical chip design. As we
have shown, even a single transistor is already a quite complex element. A gate can be
realized with different amounts of transistors, e.g. there are implementations of the XOR
gate, which use between 4 and 16 transistors. An instruction is built from an arbitrarily
high number of gates. With the introduction of more instruction sets on a CPU, the va-
riety of gate combinations increases further. Nowadays, the way these gates are placed
and connected on a chip is not even known by the developer. Chip design is done for the
logical layout, while the physical layout is automatically computed. On top of this, all in-
structions, which use data from main memory or any shared cache, introduce additional
potential stalling cycles, where the occurrence of stalling cycles depends not only on the
CPU, but on the memory and its usage by any other system components.

In conclusion, there are several hardware layers built on each other: transistors are con-
nected to create gates, which are connected to create instructions, which are scheduled
depending on the software and the availability of shared resources. Each of these lay-
ers has its own properties, which are usually not known by the software developer or
which can only be determined during runtime. If all of these variables are known, it is
possible to retrieve reliable estimations from a simulation done with the automatically
generated physical design of the CPU and all other system components. However, such
simulations have a longer runtime than the application on the actual hardware, and the
developer would have to provide the design. Hence, this method is not practicable. For
this reason, we use a benchmark-based approach, which does not require any knowledge
of the chip design but provides real-world and hardware-specific insights.

4.2 WORK-ENERGY-PROFILES

Modern hardware and operating systems offer several control knobs to adjust hard-
ware settings and accordingly influence the performance and the energy consumption.
However, a mapping between the hardware configuration, performance, and energy-
efficiency is not always trivial as explained above. For example, two CPU cores process-
ing a query in scalar mode might perform as well as a single core processing the same
query using SIMD, but their energy consumption differs. Further, the performance equal-
ity in this example might not exist for all applications, e.g. if it is bandwidth bound, such
that enabling a second core hardly produces a performance gain. Nevertheless, the de-
termination of a hardware configuration offering the best energy-efficiency for a desired
performance is important for applications. Energy-efficiency has even been called "The
new holy grail of data management systems research" in a highly respected publication
by Harizopoulos et al. [HSMR09]. To capture all hardware configuration possibilities and
to consider all hardly predictable effects, we propose to solve this challenge using our so
called Work-Energy-Profiles (WEPs).
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Scalar processing

Example configuration D:
4 active cores @ 2.0 GHz
4 active cores @ 2.5 GHz
SIMD processing (SSE)
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Scalar processing

Figure 4.4: A fictional minimalist Work-Energy-Profile with highlighted example configu-
rations. It shows some effects as observed in real profiles.

Basically, a WEP is a mapping between performance and energy-efficiency for all possible
hardware configurations. The WEPs have to be determined for a specific application and
on a concrete hardware system. Based on these WEPs, we are able to select an energy-
efficient hardware configuration for a requested application performance range. First,
we introduce our WEPs as a general solution. Then, we introduce the systems we use
to demonstrate our approach and a benchmark concept to create WEPs for these systems
Finally, we discuss selected example profiles.

4.2.1 A Model for Performance-Energy Mapping

Work-Energy-Profiles (WEPs) show the mapping between performance and energy-
efficiency for different hardware configurations. In this context, a configuration covers
all system knobs, which are adjustable independent of the implementation. Depending
on the hardware and operating system, this can include different properties. The Tem-
plate Vector Library (TVL) allows to choose the instruction set if there are more than one
available. This makes the instruction set a possible part of the configuration. However,
as already explained, there are more properties influencing the performance as well as
energy-consumption. The following list shows the most common of these properties:

• CPU core frequency
• Number and ID of active cores, where the ID is important if there are multiple sock-

ets or heterogeneous cores
• Number of active threads and use of multi-threading
• Instruction set and (vector) register size

Figure 4.4 illustrates the idea of WEPs. Performance and energy-efficiency span a two-
dimensional space, and each configuration is represented by a position in this space.
Even if this example is a fictional one to keep it simple, two effects are shown, which we
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Number of Cores 64 (4 sockets à 16 cores)

Hyperthreads per core 2

Frequencies 1.0 GHz - 3.7 GHz

Frequency Steps 100 MHz

Number of Freq. Steps 28

SIMD Extensions SSE4.2, AVX2, AVX512

L1, L2, L3 Cache 2 x 32 kB (instruction and data cache),
1024 kB, 22528 kB

Table 4.1: Configuration options of the Intel Xeon Gold 6130

also observed in real WEPs: (1) The best performing configuration is not always the most
energy-efficient one (configuration C vs. D), and (2) There are multiple configurations,
which offer a similar performance, but a different energy-efficiency, and vice versa (con-
figuration A vs. B). In the next section, we will explain the energy-efficiency metric we
are using.

Generally, a WEP can represent a system view or a thread view. A system view covers the
configurations from a system perspective, i.e. the number and ID of the active cores
and the frequencies of the active and inactive cores. This kind of profile is illustrated in
Figure 4.4. A thread view does not include this system knowledge, but only the properties
connected to a single thread, e.g. the frequency of the CPU core the thread is running on,
or the instruction set it is using. A Work-Energy-Profile of a thread view can look different
for the same application. This depends on the load of the remaining system, e.g. if other
threads are using shared resources like main memory or shared cache. A Work-Energy-
Profile of a system view is always the same for the same application4, but becomes more
populated the more complex the system is, i.e. the more configurations exist. This com-
plexity can be caused by a larger number of cores or heterogeneous cores. To demonstrate
the general applicability of our approach, we used different systems with a different com-
plexity, which we will introduce in the following.

4.2.2 Test Systems and Configurations

We chose a set of fundamentally different systems designed for different use-cases: A
server, a notebook, and a single-board computer, which mainly serves as a test platform
for mobile devices. A necessary requirement for the test systems was the possibility to
measure the power consumption without the overhead of an external measuring device.
With an external measuring device, the power used by peripherals and the dissipation
power of the device would distort the measurement results. The power consumption
in the server and the notebook is determined by using RAPL counters, which are fine-
grained enough to measure even short-running applications [HDVH12]. The power con-
sumption of the two clusters of the single-board computer are measured with dedicated
sensors, which are part of the board. All of these Systems run a Linux operating sys-
tem. The server is running an Ubuntu 18.10. The notebook runs Ubuntu 18 LTS. The
single-board computer runs an Ubuntu 16 LTS. Since the configurations we can change
are properties of the CPU, we focus on the description of the different CPUs.

4Minimal differences can be caused by aged hardware, processes of the operating system, and inaccuracy
of measurement.
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System A: Server with multi-core CPU

Our first system is a server equipped with an Intel® Xeon Gold 6130. We’ve already
used this system for the evaluations in Chapter 3, because the Intel SIMD instruction
sets up to AVX512 are available. There is a total of four CPU sockets. Each of these
sockets features 16 cores. Hyperthreading is possible with two hyperthreads per core.
Table 4.2 summarizes the properties of this system. A special feature compared to the
notebook and the single-board computer is the cpu driver. This CPU supports the intel_-
pstate driver. Generally, on Linux systems, users can use the CPUfreq interface to select
a so-called scaling governor. This governor estimates the cpu frequency, which should
be used according to a specific algorithm, e.g. to reach a maximum performance or to
minimize power consumption. Then, the driver is responsible for setting this frequency.
However, with the intel_pstate diver, the governors are bypassed and the driver uses its
own scaling algorithms. These algorithms can be selected like governors and even have
the same names, i.e. performance and powersave, but they do not behave in the same way
as the governors with the same name5.

System B: Notebook with many-core CPU

The second system we use is a conventional notebook equipped with an Intel i7-3960X.
A summary of its properties is shown in Table 4.2. This CPU has 6 cores and each core
can run two hyperthreads. Hence, 12 threads can run at once. The frequency can be
adjusted between 1.2 GHz and 3.3 GHz, where the first frequency step is 100 MHz from
1.2 to 1.3 GHz, and the remaining steps are 200 MHz. L2 cache is 256 kB per core. The
15360 kB L3 cache is shared between all cores. The most recent available SIMD extensions
are SSE4.2 and AVX. AVX2 and AVX512 are not available on this CPU. For this reason,
the classical vectorized RLE-encoding shown in Section 3.1.2 will only work on 128-bit
registers, and the RLE-encoding with conflict detection will not run at all. However, in
contrast to system A, this system runs with the acpi CPU driver, which allows for a wide
variety of selectable CPU governors, which are shown in the following list:

• Performance Runs at maximum frequency to reach maximum performance
• Powersave Runs at minimum frequency to draw minimum power
• Conservative Scales the frequency up or down in mainly equidistant steps accord-

ing to the current load
• Ondemand Scales the frequency up or down according to the current load, but more

dynamically than the conservative governor, e.g. the frequency can jump directly to
the maximum without intermediate steps

• Userspace The user can define the frequencies, the same effect can be achieved by
narrowing the frequency range for the other governors

System C: Single-board computer with heterogeneous CPU

Our third system is a single-board computer equipped with an ARM®

big.LITTLE™ CPU, the ODROID-XU3. We chose this system because it is different
from systems A and B in several ways. First, all components are hard-wired onto one
board including the main memory, where the main memory of the other systems is
conventionally plugged into DRAM slots. Second, the CPU features ARM® cores instead

5source: https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html, accessed
14/05/2020
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Number of Cores 6

Hyperthreads per core 2

Frequencies 1.2 GHz, 1.3 GHz - 3.3 GHz

Frequency Steps 200 MHz

Number of Freq. Steps 7

SIMD Extensions SSE4.2, AVX

L1, L2, L3 Cache 32 kB, 256 kB, 15360 kB

Table 4.2: Configuration options of the i7-3960X

LITTLE Core Cluster big Core Cluster

Core Description ARM-Cortex A7 ARM-Cortex A15

Number of Cores 4 4

Hyperthreads per core 1 1

Frequency Range 0.2 GHz - 1.4 GHz 0.2 GHz - 2.0 GHz

Frequency Steps 100 MHz

Number of Freq. Steps 13 19

SIMD Extensions NEON NEON

L1, L2, L3 Cache 32 kB, 512 kB (shared), - 32 kB, 2048 kB (shared), -

Table 4.3: Configuration options of the ARM® big.LITTLE™ ODROID-XU3

of Intel® cores. Third, the cores are heterogeneous. There are two clusters, one with
four Cortex A7 cores, and one with four Cortex A15 cores. Both clusters can be used
independently, i.e. the system is not restricted to cluster switching and frequencies can
be set per cluster. All cores offer the same instruction set, but the A15 cores are more
powerful and their cluster is equipped with more L2 cache. Hence, this cluster is referred
to as the big cluster, while the A7 cluster is referred to as the Little cluster. The L2 cache
is shared between all cores of the same cluster. There is no L3 cache. An overview of the
properties of the two clusters can be found in Table 4.3.

The heterogeneity on this system produces a wide spectrum of configuration choices.
There are 13 frequency steps on the A7 cluster and 19 on the A15 cluster, as well as 24
different combinations of active and inactive cores. The 24 combinations are composed
of 5 variants per cluster (0 - 4 active cores), where one variant is subtracted, which only
includes inactive cores. Hence, there are 52 − 1 = 24 combinations. In combination
with the cpu frequencies, this sums up to 13 · 19 · 24 = 5928 different configurations per
instruction set. Since the SIMD instruction set NEON is offered additionally to the scalar
instruction set, there is a maximum of 5928 · 2 = 11856 available configurations. This
is not further reduced by the CPU frequency of a potentially inactive cluster, because
that frequency influences the performance of the active cluster if resources, e.g. memory
buses, are shared, as explained before.

4.2.3 Creation of Work-Energy-Profiles - Benchmarking

One of our main challenges is the creation of WEPs covering a large number of possible
hardware configurations. To tackle this challenge, we developed a benchmark concept to
examine the behavior of performance and energy-efficiency for different hardware con-
figurations in a uniform way. Fundamentally, the same test-case or application task has
to be repeated and recorded for all possible configurations on the target systems. More-
over, not only the task but also the test data has to be the same in order to produce
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Figure 4.5: An overview of the benchmark setup.

comparable results. Therefore, we separated the generation of test-cases and data from
the control-flow of our benchmark concept. Generally, an overview of our benchmark
concept is depicted in Figure 4.5. The Controller is the centerpiece of our benchmark. It
starts the Work Generator which produces tasks and test data. This Work Generator has
to be adjusted for each application scenario. After the Work Generator has finished, the
Controller chooses the first hardware configuration and starts the first test run. Within
a test, the corresponding tasks are processed by every worker, whereas a worker is a
thread running on a (virtual) core. The workers count their finished tasks. After a fixed
time span, the Controller shuts down the threads and collects the number of finished
tasks which are later used for calculating the performance. During an active test, the
values necessary for the energy computation are recorded by a Measuring Device. De-
pending on the abilities of the Measuring Device, the energy computation is either done
by the device itself or by the Controller. In both cases the final values are collected by
the Controller. For eliminating odd side effects, a test can be run multiple times. This
is repeated for all configurations, with the same tasks on the same test data. After all
configurations have been processed, the Controller generates a Work-Energy-Profile for
the selected task and data as depicted in Figure 4.6. This profile can then be used for
in-depth analysis and optimization purposes, e.g. for choosing an energy-efficient con-
figuration satisfying the requested performance constraints or for optimizing the applied
algorithm.

Metrics

In addition to this general benchmark sequence as presented above, it is important, which
metrics have to be measured at all. In our case, performance and energy-efficiency are
the relevant metrics and specified in detail below:

Work and Performance: The hardware processes the work generated by the Work
generator. This work consists of a task and the data to be processed. The task is re-
peated over the same amount of data, e.g. scan of records or hashing of keys, for each
hardware configuration. Then, the number of finished tasks during a fixed time span is
denoted as work done. Accordingly, the performance is denoted as:

performance =
work done

time
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The goal of our benchmark is not the evaluation of a real-life scenario but the compa-
rability between the test runs with the same task and data definitions. Therefore, the
processed data must have the same size and type in every task execution and break con-
ditions must be reached after processing the same amount of data. Furthermore, since
tasks can implement different operations on different data, a quantitative comparison
between them is only possible when the performance is normalized to the same amount
of processed data.

Energy: The electric power p is the product of the amperage i(t1) and the voltage v(t1)
measured at a time t1 (Eq. 4.1). Thus, it describes the power consumption of a measured
system at a discrete point in time. In contrast, the electrical energy E is the integral over
time of the whole power curve, consisting of all power values taken during the measure-
ment (Equation 4.2). Thus, the consumed energy grows while time passes, whereas the
power can rise and drop.

p(t) = v(t) · i(t) (4.1)

E =

∫ tend

tt

p(t) dt =

∫ tend

t0

v(t) · i(t) dt (4.2)

The Measuring Device is responsible for determining amperage and voltage. The on-
board power sensors of our ODROID-XU3 hardware satisfy this property. Intel® also in-
troduced on-board energy sensors, called "Running Average Power Limit" (RAPL), with
their Sandy Bridge microarchitecture [HDVH12]. Therefore, our benchmark concept can
be applied to all of our test systems without special instrumentation. The computation of
the energy from these measured values can either be done by the Measuring Device or
by the Controller. For our test systems, the RAPL interface provides a counter for the
energy, while the interface of the ODROID-XU3only provides the power, which leaves
the computation of the energy to the controller.

An optimization for power is necessary, e.g. for thermal chip design or for dimensioning
the necessary cooling, but the reduction of the electricity bill and the extension of the life
span of a battery charge require energy optimization, i.e. the costs on the electricity bill
are calculated from the energy drawn since the last meter reading. Hence, the primary
goal for increasing energy-efficiency is the reduction of the overall energy drawn by the
system while doing the same amount of work. Only reducing the power, e.g. by reducing
the core frequencies, could lead to longer execution times and therefore to a higher energy
consumption.

Energy-Efficiency: To achieve the objective of reducing the overall energy consumed by
the system for a specific amount of work, the natural decision for quantifying the energy-
efficiency is to calculate it as the quotient of work done and consumed energy [HSMR09,
THS10, WFXS11]. Accordingly, we call this relation the Work-Energy Quotient (WEQ).

WEQ =
work done

energy
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Since work done/time equals the performance for a certain operation, the mentioned publi-
cations rewrite the quotient as follows:

work done

energy
=

work done

power · time
=

performance

power

However, this notation is an oversimplification. As already discussed, the power level
can change during the measurement and the energy is its integral over time. Thus, the
real power values cannot be restored from the energy, although the rewritten equation
implies that this was possible. Vice versa, energy cannot be computed by an average
power value when the required time is not necessarily the time needed for the compu-
tation but a part of a potentially normalized performance value. For this reason and for
avoiding a confusion of execution time and normalized performance values, we argue
to use work done/energy instead of performance/power. For not mistaking the WEQ for energy
efficiency definitions in other fields, e.g. the energy conversion efficiency, we do not just
call this definition energy-efficiency but work-energy quotient.

Benchmark Setup and Dependencies

Up to now, we described our general benchmark sequence and defined our measured
metrics. A full benchmark tests the same tasks and data configuration on all possible
hardware configurations either on thread level or on system level, and these hardware
configurations have to be set by the Controller. A hardware configuration contains the
settings of hardware components which can be adjusted. Thus, it depends on the hard-
ware system the benchmark is running on. A common configuration could consist of the
following parts:

• Bitmask for defining active workers (ai)
• Frequency of the physical cores (fi)
• If available: Bitmask or index indicating if a specialized instruction set is used, e.g.

SSE (si)

A configuration containing these options could be described by the vector {a0, ..,n−1 ,
f0, ..,m−1 , s0, .., sm−1)} with n = m · hyperthreads per core, where m is the number
of physical cores. Such a description is used to iterate over all possible hardware con-
figurations by our Controller. For our example test hardware C, the ODROID-XU3,
a configuration consists of an 8-bitmask {a0, ..., a7}, two frequencies {fA7, fA15}, and a
byte indicating whether NEON is used or not. The bitmask indicates which cores are
actively processing tasks. Since there are no hyperthreads, one bit per core is sufficient.
The frequencies can be adjusted per cluster. Hence, there are two frequencies in every
configuration, one for the A15-cluster and one for the A7-cluster.

Furthermore, we have to consider the following aspect: The generated work, the process-
ing speed of the hardware and the specifications of the measuring device influence the
accuracy of the tests. This implies that certain aspects have to be considered before im-
plementing this benchmark. First, the Measuring Device must be suitable for the power
range of the system, e.g. an accuracy of 1 W might be accurate enough for a rough es-
timate of a system drawing between 100 and 500 W but not for one drawing between 1
and 10 W. In our implementation, we use the integrated current sensors of the ODROID-
XU3 and the RAPL counters on the Intel® systems, which fulfill this requirement. Second,
the runtime of a single test must be long enough to gain significant results. In detail, it
has to fulfill the following requirements:
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LITTLE cores big cores

Most energy-efficient configuration:
LITTLE cluster: idle @ 1.4 GHz
Big cluster: 3 active cores @ 1.8 GHz

Figure 4.6: WEP of a system view on test system C, and a close-up of the highlighted
performance range.

• Compensate for out-dated values due to the update frequency of the measurement
device. Ideally a new test always starts right after an update cycle of the measure-
ment device.

• Compensate for varying power values, e.g. if the power level changes during a test
case but only one power value is recorded, the measurement result of this particular
test case has only limited expressiveness, because the energy is only computed from
this single power value.

• Finish a significant amount of work on all workers, e.g. if half of the cores are not
able to process at least one request, there is no work done which can be compared,
even if part of the cores would have finished much faster than the other ones.

The integrated sensors of our example test system C only update their values approx-
imately every quarter second. Hence, depending on the exact task, we run every test
between 5 and 10 s to gain between 20 and 40 values to compute the energy from, and to
finish some tasks on every worker even in very low performing configurations. On the
test systems A and B, where we use the RAPL counters and the CPU frequency does not
decrease below 1 GHz, one second per task is sufficient to fulfill the requirements.

4.2.4 Selected Work-Energy-Profiles

In this section, we present selected Work-Energy-Profiles. Each of these profiles was chosen
to demonstrate certain effects. The first example shows a system profile on our hetero-
geneous test system C, which leads us to a deep-dive view of the effects of busy shared
resources. The remaining examples run on the Intel systems. The second example, also
a system profile, shows a comparison between our manually set configurations and the
results of different CPU governors. Finally, the third example is a thread profile for dif-
ferent instruction sets. It shows that the significance of the chosen instruction set can
change, depending on the load of the whole system.

Example 1: System Profile for a Synthetic Scenario on Test System C

To get a deeper understanding of our WEP approach, Figure 4.6 illustrates an example for
an application task running on our test hardware. The application is a synthetic scenario
for scalar processing and consists of an equal ratio of memory accesses and numeric com-
putations. The left chart in this figure shows the corresponding WEP. The performance

4.2 Work-Energy-Profiles 77



(a) Varying frequency on active cluster. The idle cluster runs at full frequency.

(b) Varying frequency on idle cluster. The active cluster runs at full frequency.

Figure 4.7: A memory bound use case with a reduced amount of configurations. Only the
cores of one cluster are active at a time. The bars are clustered by the number and type of
active cores. Within one of these clusters, each bar shows a different core frequency. The
WEQ for the whole CPU (including both clusters) is shown.

is plotted on the x-axis, the y-axis shows the WEQ. Each dot in this chart represents a
specific hardware configuration. As we can see, different hardware configurations offer
a similar performance with a high variance in the WEQ. From this WEP, we are able to
derive various insights.

Generally, we are able to utilize such WEPs to directly identify the most energy-efficient
configuration (high WEQ) for a desired performance range and application task. In
Figure 4.6, we highlighted a specific performance range using a vertical slice. This per-
formance range can be realized with various hardware configurations as depicted in the
right chart of this figure. In this chart, the most energy-efficient configuration is high-
lighted by a thick green line. The x-axis indicates the frequency of the clusters, the y-axis
shows the number of active cores. The left side shows the A7 cluster, the right side the
A15 cluster. A line connects the configuration of both clusters and forms the complete
configuration. The least energy-efficient ones are marked with a thin red line. This close-
up shows the variety inside the configurations, which produce the same performance but
a different WEQ and the most energy-efficient configuration is not necessarily the most
obvious one. For the highlighted performance range, the most energy-efficient configu-
ration consists of 3 active A15 cores running at 1.8 GHz, while all A7 cores are idle at 1.4
GHz. The graph also shows a number of configurations with high CPU core frequencies
on both, the idle cluster and the active cluster, which show a comparatively low WEQ.
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(a) Varying frequency on active cluster

(b) Varying frequency on idle cluster. The active cluster runs at full frequency.

Figure 4.8: A compute bound use case on test system C with a reduced amount of con-
figurations. No shared resources, i.e. no L2 cache and no memory i/o, is used. Only the
cores of one cluster are active at a time. The WEQ for the whole CPU (including both
clusters) is shown.

As already mentioned, the frequency of an idle cluster can still influence the overall per-
formance if resources are shared. In this specific case, the cache and core clock are only
shared within the same cluster, but the memory and the memory bus clock are shared be-
tween both clusters. We assume that the shared bus clock is the reason for the unexpected
behavior.

To investigate this assumption, we run a completely memory bound scenario for a re-
duced set of configurations, which cover only active cores on one cluster. Figure 4.7
shows the results of the measurements. It shows the performance and WEQ for the con-
figurations which contain only one active cluster. In Figure 4.7(a) the frequency on the
active cluster is increased, in Figure 4.7(b) the frequency on the idle cluster is increased.
The other cluster is running at its maximum frequency. In both cases the WEQ does
not grow anymore for any core configuration when switching to the higher frequencies.
When changing the frequency on the A15-cluster it even decreases after ≈1 GHz. As
already discussed in Section 4.1, a higher frequency requires a higher supply voltage if
the overdrive voltage cannot be reached within the given cycle time, and the switch-
ing power depends quadratically on the supply voltage. We assume that this point is
reached at ≈1 GHz and that this is the reason for the decreasing WEQ alongside the de-
creased performance. When looking at the number of active cores on the A15 cluster,
the WEQ decreases when enabling more than two cores and setting the frequency to
more than 1 GHz. Additionally, the mean performance decreases in Figure 4.7(b) while
in Figure 4.7(a) it increases by an insignificant amount.

Looking at the big cluster in Figure 4.7(a), the performance decreases when the frequency
is increased over 1.2 GHz. When the frequency of the active cluster is increased, memory
access is required after shorter intervals. If additionally more cores are activated, these
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Figure 4.9: A WEP on system B for RLE with a run length of 100000000 (negligible write
access) and a comparison to the behavior of the different CPU governors.

cores also require memory accesses in short intervals. These requests cannot be satisfied
immediately once the memory buses are saturated. When this happens, the cores have to
wait one or more stalling cycles until their request is answered. Hence, the performance
goes down. The LITTLE cluster has a maximum CPU frequency of 1.4 GHz, which is not
enough to suffer from this effect.

In Figure 4.7(b), where the frequency of the idle cluster is changed, the performance does
not drop after a peak has been reached. This is because the idle cluster does not access the
memory and therefore, it does not cause any stalling cycles on the other cores. However,
the frequency of the idle cluster has to be increased to at least 500 MHz to show the max-
imum performance on the active cluster. This supports the assumption that the memory
bus is shared and clocked down indirectly by the low frequency of the inactive cluster.
This is because a CPU cannot process the data as fast as it is delivered, if the memory bus
has a higher frequency than the CPU core. Hence, the bus has to be clocked down, at the
latest when the cache is completely used by buffered data from the memory, which still
has to be processed.

The counter check for the explanations of the observed effects can be done with a com-
pletely compute bound use-case, which does not use any shared resources, i.e. no L2
cache and no main memory accesses. We run such a case, too. The results are shown in
Figure 4.8. Without the use of shared resources, the performance should increase while
the CPU frequency of the active cluster increases. As shown in Figure 4.8(a), this holds
true. However, the WEQ does not increase further beyond 1.2 GHz on the big cluster,
which is again caused by the superlinearly increasing power consumption. If the effects
in Figure 4.7(b) are caused by a memory bus frequency scaling, they should not be ob-
servable, when the memory bus is not used. This is confirmed by our counter check
experiment as shown Figure 4.8(b). The performance stays at the same level regardless
of the frequency of the inactive cores.
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Example 2: System-Profile for RLE on Test System B

A feature of our test system B is the availability of different scaling governors. This en-
ables us to compare our benchmarked Work-Energy-Profiles to the behavior of the system
depending on the chosen governor. To do this, we run a classical vectorized RLE com-
pression. Our uncompressed test dataset with 4 ·108 integer type numbers requires about
1.5 GB of space. We chose to include only 4 runs in this data set, realized by a run length
of 108, to keep the offset of memory write access low and to read the majority of numbers
only once. However, reading 1.5 GB ensures an execution time, which is long enough for
the conservative and ondemand governors to adjust the CPU frequencies. The performance
and powersave governors always run on maximum resp. minimum frequency. We first
increased the number of used cores, then we enabled hyperthreading at one core after
another. The core frequencies were either set by a governor or manually by our bench-
mark. Figure 4.9 shows the results for these benchmarks.

As in the first example, there are multiple configurations, which provide a similar per-
formance, but a different WEQ. However, each governor only covers a subset of the full
WEP. The lower performance range is covered by the powersave governor. This governor
provides a similar energy-efficiency as the most energy-efficient configurations of our full
profile for the performance range it covers. However, since the powersave governor runs
all cores at their minimum frequency, even the maximum number of active threads only
provides about half of the possible performance. For a higher performance, one of the
other governors has to be chosen. None of these governors provides the optimal WEQ
for any performance range. Only the highest possible performance is covered by sev-
eral configurations of our profile as well as by the governors. These configurations are
highlighted in Figure 4.9. Besides the ondemand and performance governors, there are two
configurations of the full Work-Energy-Profile, providing maximum performance. Sur-
prisingly, one of these configurations uses only half of the available cores and threads.
A reason for this could be that the memory bus is already saturated with 6 threads. A
higher number of threads, which also access the shared memory buses, can cause the per-
formance to stop increasing or even to decrease again, as already explained in example 1.

When interpreting these results, it is important to note that only one governor can be
chosen at a time, while all of them have their individual limitations. The powersave gov-
ernor only covers the lower performance range but shows optimal WEQ in this range.
The performance governor covers a wide performance range up to the maximum reach-
able performance, but shows the lowest WEQ. The conservative governor, which adapts
its frequency iteratively, provides a medium WEQ, but does not reach maximum per-
formance. Finally, the ondemand governor, which is not bound to iterative steps when
increasing the CPU frequency, also shows a medium WEQ, but it can reach the highest
performance. In conclusion, the CPU governors can span the same performance range
as our WEP, but not with the same WEQ. The latter can only be reached by the powersave
governor for a limited performance range. The highest possible WEQ is not even reached
by the powersave governor. It requires the maximum number of threads at 1.5 GHz, which
is apparently not a frequency set by any of the governors.

Example 3: Thread-Profile for a Project Operator on System A

Our last example shows a thread profile for different instruction sets. The workload is a
project operator, which consists mainly of gather and store primitives. We chose system A,
because it offers the most instruction sets out of our test systems. Since this system runs
with the intel_pstate driver instead of the acpi driver like system B, the cpu governors are
not available by default and the frequency setting is done by the driver. For being able
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(a) No other system load. The frequency is set for all cores of the system.

(b) Memory I/O system load. CPU frequency set for the whole system (left) and for the
observed node only (right).

Figure 4.10: Thread profiles for a projection on system A with different instruction sets.
In this example, a meaningful choice of the instruction set becomes more important when
the shared resources, i.e. the bandwidth, are busy.

to change the frequency manually, we set the driver into passive mode. This enables our
benchmark to use the CPUfreq interface, which is also used for the other test systems.
However, this system still behaves different. For instance, when checking for our set
frequency, we recognized, that our frequency setting is ignored for higher frequencies
when the system load is high. This leads to configurations, which are set but are not
active. We call such configurations dead configurations. Dead configurations are not a
hindrance for the application of a profile. Since we measure the performance and energy
for whatever the CPU driver does with our configuration, the profile we create still shows
the results for our set configuration. This causes dense clusters of configurations in the
graphical depiction of our WEP. Albeit, knowing these limitations can reduce the time
necessary for benchmarking.

For our example, we changed the frequency on the system level, i.e. all cores were as-
signed the same frequency, and on the NUMA node level. Setting the frequency on a core
level resulted in ignored frequency settings. Thus, we do not consider this option on sys-
tem A. Then, we changed the system I/O load from none to fully busy. This means, that
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under full load, all other cores run a thread, which produces continuous memory access.
Figure 4.10 shows the corresponding WEP. In Figure 4.10(a), our observed thread is the
only thread, which produces any load on the system caused by the user6. The frequency
in profile (a) is set for all cores on the system. The graph shows, that there is no sig-
nificant difference between the instruction sets. Performance and WEQ behave roughly
proportional and the instruction sets span a similar range.

The picture is different when the other cores produce memory I/O traffic. Figure 4.10(b)
shows the profiles for this system load. These two profiles differ in the frequency set-
ting. In the left profile, the frequency is set for the whole system. In the right profile it is
only set for the NUMA node. A first observation, which is expected, is that the perfor-
mance and WEQ are significantly lower than in profile (a). A second observation is that
performance and WEQ do not scale linearly anymore. Instead, the profile shows an arc
for each instruction set, similar to those, which were produced on the other test systems.
Further, these arcs, are not as close as the configurations in profile (a). Peak Performance
can only be reached by AVX2 and AVX512 in the profiles in Figure 4.10(b), where profile
(a) also had well performing configurations using SSE and scalar processing. Especially
when setting the frequency on a node level (right), there are two clusters of significantly
differently performing instruction sets: one using SSE and scalar processing, and one us-
ing AVX512 and AVX2. Hence, if there is a system load, the choice of the instruction set
does make a difference. Out of the two profiles, the one with the frequency setting on the
system level reaches a slightly higher WEQ. This is because the system operates the other
nodes in performance mode if we do not set the frequency manually. Hence, the cores on
the other nodes potentially run faster than with our manually set frequency, but without
reaching a higher performance due to the already saturated memory bandwidth.

4.3 WORK-ENERGY-PROFILES FOR VECTORIZED QUERY PRO-

CESSING

Benchmarking the WEPs for each operator and compression algorithm and each parame-
ter, which could influence the profile, e.g. the selectivity, takes a large amount of time. For
instance, our test system C offers 5928 configurations per instruction set and the power
sensors update every 0.26 seconds. To get 20 power values, which proved to be enough
to amortize for occasional outliers and operating system tasks, a single benchmark for
one instruction set takes 5926 · 0.26s · 20 ≈ 8.56h. Test system B offers fewer configura-
tions and the counters update more frequently. Hence, a single WEP on system B is done
after half an hour. However, it would still take weeks to benchmark the WEPs for all
operators, compressions, and parameters, which can occur during query execution. For
this reason, we argue to benchmark only the primitives and approximate the profile for
more complex tasks from these basic profiles. We aim to find the most energy-efficient
configurations for different performance ranges by using the approximated profiles. The
absolute performance or WEQ values are not required to be exact for this goal as long as
their ratio is determined correctly. This allows us to break down our applications to the
use of primitives and their ratios. In this section, we will explain, which basic profiles we
are using, how the approximation works, and present selected examples.

6Note that the operating system also produces occasional system load. To reduce this load, we disabled
all unnecessary background processes.
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Figure 4.11: We use three different categories of basic profiles. Load and store profiles are
retrieved from the primitives of the L/S class. Compute profiles are retrieved from the
primitives of the Arithmetic, Boolean Logic, and Comparison classes. Processing profiles
combine load primitives and primitives of one of the compute classes. The remaining
classes, i.e. those working with single registers without memory access or computa-
tion, only play a minor role in our implementations and are therefore not specifically
addressed.

4.3.1 Basic Profiles

Each operator or compression algorithm basically does 3 things: (1) read data from mem-

ory, (2) compute something from this data, and (3) write back a result. Reading and writ-

ing main memory is done with the primitives of the Load/Store class, while the compute

part can be a combination of any primitives of the other classes. This results in three

different classes of basic profiles. Load and store profiles, compute profiles, and process-

ing profiles, which are a combination of load primitives and primitives of the compute

intensive classes, e.g. the arithmetic or comparison classes. The classes, which access a

register without doing a computation or accessing the memory, i.e. the extract, create,

and manipulate classes, do not play a significant role in our implementations. They are

never called within the main loop of any of our operators. For this reason, they are not

specifically addressed here.

Load and Store Profiles Load and store profiles are retrieved from the primitives of the

L/S-class of the TVL as highlighted in Figure 4.11(a). The primitives of the Load/Store

class can show a sequential or a random memory access, which is the main factor influ-

encing the performance and energy-efficiency. Hence, an approximation requires at least

2 basic profiles for reading access and 2 basic profiles for the write access, one for sequen-

tial memory access and one for random memory access each. For the sequential access,

there are only the load and the store primitives, while the random access can be realized

with multiple primitives, e.g. gather, scatter, masked load, and compress store.
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Figure 4.12: Examples for basic WEPs. The left side shows the WEPs. The right side
shows the core configurations, which span the upper hull. In this example, work done
refers to one iteration, which can include a different amount of processed values.

4.3 Work-Energy-Profiles for Vectorized Query Processing 85



Compute Profiles Figure 4.11(b) highlights the classes of the TVL, which can be used
to create compute profiles. Computing something from the data read from memory, can
be arbitrarily complex. For instance, an aggregation might only require additions, while
a join might implement a sophisticated hash function. However, each of these tasks is
composed of primitives, of which some have the same performance and WEQ, e.g. a
bitwise AND and a bitwise OR show the same behavior. This is a trivial finding, because
on the circuit level, both operations can be implemented with a single logic gate per bit.
There are more primitives, which show the same behavior because of obvious reasons,
e.g. min and max, less and greater, shift left and shift right. In these cases, only one of the
primitives require a WEP. This significantly reduces the time, which is necessary to build
all required basic compute profiles. Moreover, all compute operations are a combination
of low level operations, e.g. a subtraction is a combination of a sign change and an ad-
dition. The addition is again a combination of logical AND and XOR operations. Hence,
if the complexity of an operation is known, the profiles of all compute operations can be
reconstructed from a few compute profiles.

Processing Profiles For each set of data read from memory, some kind of predefined
computation is triggered. If this wasn’t the case, the application is either doing a copy
operation, or the read data is not used anymore, which causes the compiler to optimize
out the whole memory access. This is called dead code elimination. It is a basic feature
of the gcc compiler among others, and it is by default activated using the lowest level
of optimization (-O1)7. Hence, it does make sense to combine the read memory access
and the compute operations into one profile. We call such profiles processing profiles. The
classes used for creating such primitives are highlighted in 4.11(c). As long as there is no
branching with heavily different complexities of the branches, the relation between read
data and executed compute operations stays the same regardless of the properties of the
incoming data. This approach shows a more accurate picture of the effects of limited
bandwidth, frequency scaling across shared resources, and other side effects. However,
the ratio between the read primitives and the compute primitives in a processing pro-
file must be close to the actual ratio in an application. Therefore, a set of profiles with
different ratios is required to match a variety of applications.

Example Basic Profiles

The approximation of a profile can either be done for a thread profile or for a system
profile. Hence, basic profiles can be both: thread profiles and system profiles. We will
show some examples for system profiles on our heterogeneous ARM system, and some
examples for thread profiles on the Intel server system.

System Profiles on Test System C As already argued, main memory is the bottleneck
for in-memory database systems and therefore, we use different basic profiles with sig-
nificantly different memory access patterns. We chose basic profiles, which map directly
on frequently used operations to facilitate the understanding of the corresponding tasks,
which we implemented for our Work Generator. For some initial tests of our approach,
we used scalar processing of the following four basic example profiles:

(1) Arithmetic (Compute Profile) This task simulates operations that do not involve any
main memory utilization, e.g. the solution of mathematical equations. In our imple-
mentation, our task includes taking 512 square roots per iteration.

7https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html, accessed 25/05/2020
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Figure 4.13: The shape of processing profiles with different read to compute ratios. The
profile on the left side has a comparably high amount of memory accesses compared to
the compute operations. In the profile on the right side, this ratio is inverted. The profile
in the middle is neither solely memory bound nor compute bound.

(2) L/S and compare (Processing Profile) This task represents bandwidth-bound oper-
ations, like column scans exhibiting a sequential main memory access pattern and
a limited computation overhead. The implementation requires loading data from
memory and a compare operation. Each iteration used 128 KB.

(3) Random Read (L/S Profile) This task represents main memory-bound operations ex-
hibiting a random main memory access pattern. It uses only primitives of the L/S
class. This represents operations such as e.g. lookup. The lookup is done using 32B
in each iteration

(4) Copy (L/S Profile) This task executes a data copy operation, which involves only
sequential memory access. As test data, we used 128 KB per iteration.

While this list of basic profiles is not conclusive, it is sufficient to represent simple op-
erator implementations, e.g. an aggregation, and some compression algorithms, e.g.
classical RLE. The corresponding Work-Energy-Profiles for each operation are shown in
Figure 4.12, where work done denotes to the number of performed iterations. As we can
see in this figure, the profiles show a completely different shape. Again, each dot in each
diagram represents a hardware configuration and for each hardware configuration, we
determined a performance (x-axis) and a WEQ value (y-axis). That means, each basic
profile shows a different behavior with regard to performance and energy efficiency. For
instance, the significantly different shape between the Load and Store profiles show the
importance of distinct basic WEPs for random and sequential memory access. All ba-
sic profiles have in common, that there are hardware configurations offering the same
performance with a different energy efficiency value.

In the examples above, the second basic profile is a processing profile, because it re-
quires reading data from memory and doing a comparison. Depending on the ratio be-
tween memory access and compute operations, these processing profiles look different.
In Figure 4.13, we show the shape of processing profiles for scalar processing with differ-
ent read to compute ratios. The memory access is sequential. From the left to the right,
the amount of compute operations in relation to the read operations is growing. Thus,
the left profile is memory bound, the right profile is compute bound. The profile in the
middle is neither of them, similar to the scan profile. The high number of configurations
in the memory-bound profile, which show a similarly high performance, are the CPU
core frequencies above 1.4 GHz. As already explained, high frequencies are not always
beneficial in memory bound scenarios. In the compute bound profile on the right side,
a higher frequency does increase the performance. Hence, only the configurations with
higher frequencies cover the highest performance ranges.

4.3 Work-Energy-Profiles for Vectorized Query Processing 87



(a) store (b) gather

Figure 4.14: Basic Work-Energy-Profiles for the gather and store primitives on system A.
The memory is also used by all other CPU cores. The frequency is set per NUMA node.

Thread Profiles on Test System A In the last section, we presented the Work-Energy-
Profiles for a projection on System A. In this section, we show the basic profiles for the
two main primitives, which are used by a projection: gather (random read access) and
store. We decided to show the WEPs for a system, which is under an I/O load, because
it is a rather unrealistic scenario that a multi-core system runs the threads, which require
memory access, on only one core at a time. Figure 4.14 shows the WEPs of the store and
gather primitives on thread level for different instruction sets. The frequency was set
on a node level, because this is the most fine-grained reliable adjustment, which we can
achieve with the used system.

By comparing the two profiles, a few expectations are met. First, the store primitive shows
a higher performance and WEQ than the gather primitive. This was expected because
the gather involves random memory access and an additional sequential access to load
the offsets. The store primitive only involves a sequential memory access per iteration.
Second, after a peak has been reached at 2.2 GHz, performance and WEQ decrease again.
This effect is more significant in the gather WEP. This was also expected, because the
gather is bound by the random memory access, which is slower than sequential memory
access. Hence, this bottleneck is reached earlier, i.e. with a lower cpu frequency.

Another interesting insight is the shape of the gather WEP. It looks very similar to the
WEP of the project operator shown in Figure 4.10(b). Since the store only takes a fraction
of the time of the gather in our projection, the whole operator is heavily dominated by
the gather. Therefore, the gather and project profiles look very similar.

Composition of the Upper Hull

When looking at a single profile, e.g. Figure 4.12(d), there are recurring arcs which differ
in their length, height and width. Since they appear, more or less significantly, in all
profiles, they are likely not to be a random pattern. Figure 4.12 also shows the core
configurations which belong to the most energy-efficient configurations of the profile. A
visualization of the configurations which belong to these optimal core configurations is
shown in Figure 4.15. It shows how the arcs in the profiles are generated for the copy
operation. Each core configuration spans an arc. Moreover, Figure 4.15 shows that only
a few configurations serve the upper half of the hull of this profile. The right side of
Figure 4.12 shows the optimal core configurations for the Work-Energy-Profiles next to
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Figure 4.15: Reduced Work-Energy-Profile to only show the core configurations producing
the optimum for a read/write operation.

them. While they differ for each test case, they are always only a subset of all possibilities.
Hence, the upper part of the hull is made of a few combinations of active cores.

In our example in Figure 4.15, one configuration, namely four A15 and one A7 core, even
covers a wide range of the optimum without ever falling significantly under the opti-
mum of any performance range. Only very small performances cannot be reached. By
staying at this core configuration and only changing the frequency depending on the re-
quested performance, we always operate with a good energy efficiency while minimizing
context switching. We call such configurations robust configurations. Using a robust con-
figuration over a slightly more energy-efficient configuration with a different core usage,
can be beneficial because it avoids context switching when adapting configurations on a
relatively low cost.

4.3.2 General Approach

To approximate Work-Energy-Profiles, we propose to combine primitive profiles in a linear
way. For this approximation to succeed, the primitive profiles have to be scaled to reflect
their influence on a whole operator or compression as realistically as possible. This can
be done in an automated way: At first, all WEPs are normalized to a comparable per-
formance metric, e.g. values/s instead of loops/s. Ideally, the work generator already
created the tasks in a way, that all profiles are already normalized. Then, the profiles are
scaled to reflect their influence on performance and WEQ in the overall application. To
do this, one profile, ideally the one with the highest performance and WEQ of all profiles,
serves as a reference. The highest performance and WEQ of this profile are the reference
values. All other profiles are scaled, such that their maximal values are the reference
values multiplied with the fraction of their maximum values of the reference value. For
instance, if profile A has a maximal performance value of 21 and profile B has a maximal
performance value of 7, i.e. 1/3rd of 21, the maximal performance value of profile B is
scaled from 7 to 3 · 21 = 63. Since 63/7 = 9, all performance values of profile B are scaled
by a factor of 9. After an approximation, the new profile, containing (performance,WEQ)-
tuples for i different configurations, is obtained from j scaled low-level profiles and the
tuples of the new profile are determined by
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(Performance, WEQ)i,new = f−1





j−1
∑

0

wj · f(Performance, WEQ)i,j



 (4.3)

where wj is a weighting factor which describes the influence of the profile j. The adjust-
ment function f modifies the performance- and WEQ-values for the combination. This
is necessary if the limiting factors, i.e. the basic profiles, do not scale linearly when the
parameters of the operation are changed. Hence, there are 3 choices, which have to be
made, before the approximation can be done:

1. Basic profiles The appropriate basic profiles have to be chosen, especially the kind
of memory access, i.e. sequential or random, is important to get useful results. If
a processing profile is chosen, the ratio between read and compute operations is
required to select a matching processing profile.

2. Adjustment Function While most of our applications do not require an adjustment
function, there are exceptions to this rule. We will present of these exceptions, clas-
sical vectorized RLE, in the examples below.

3. Weighting Factors The weighting factors depend on how many primitives, which
can be represented by the same profile, are used in the application. In the cases,
where we use a processing profile and a write profile, the ratio between read and
write accesses is sufficient, while the ratio between read and compute operations is
already reflected by the choice of the processing profile.

The basic profiles and the weighting factors can be gathered in an automated way. To
do this, an application, an operator, or a compression is executed with a small amount of
data, but all other parameters, e.g. the selectivity, is not changed. During this execution,
all used primitives are counted. The reduced amount of data causes shorter runtimes but
does not change the ratio between the used primitives. For example, a simple filter with
a selectivity of 10% and n input values will always require reading n values, comparing
n times, and writing out n · 0.1 values. The total amount of values in a dataset does
not change this relation. Since the amount of operators and compression algorithms in a
database are finite and usually manageable. These runs can be done once during setup
time for a representative set of parameters. The type of used primitives then defines the
basic profiles, while their ratio defines the weighting factors. The adjustment function
could also be generated automatically by doing a regression on the primitive count for
different parameters, but since this is barely necessary, we chose to do it manually.

4.3.3 Example Operations

In the following, we will show two examples. First, we show a trivial operator, i.e. the
project operator, which we already introduced in Section 4.2.4. Then, we show classical
vectorized RLE, which requires an adjustment function and weighting factors depending
on the run length.

Project Operator

In a column-store, a project operator is required to reconstruct tuples from a given index.
Since this is required in all queries, which do not analyze only a single column, the project
operator is used frequently. Additionally, it is an expensive operator, because it requires
random memory access to gather the values from different rows. In this example we
assume that the result of the operator is materialized, such that there is a memory I/O
load caused by the remaining system, and that the frequencies are set per node.
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Figure 4.16: Scaled WEPs for gather and store.

Choice of Basic Profiles The main loop of a project operator does two things. First, a
gather retrieves values from a column by using an index list, which was the result of a
previous operator. Second, it stores the retrieved values sequentially into main memory.
Hence, two basic profiles are required: one for the gather and one for sequential memory
write access. Figure 4.16 shows both of these profiles for our test system A. They are
already normalized and scaled as described in the previous section. The graph already
shows that, on our test system A, the project operator is obviously dominated by the
random memory access of the gather primitive.

Adjustment Function f The project operator itself has no parameters, which would
change its behavior, i.e. there is neither branching nor masked operations. Thus, no
adjustment function is required.

Weighting Factors wj In each iteration of the main loop of the project operator, exactly
one gather and one store operation is called. This results in the weighting factors w0 = 1
and w1 = 1.

Evaluation We executed the approximation and computed the upper hull of the ap-
proximated profile. Then, we checked where the configurations of this approximated op-
timum were in the measured profile. In Figure 4.17, the measured profile is shown. The
optimal configurations, which resulted from the approximated profile are highlighted
with red squares. Almost the whole performance range is covered by these configura-
tions. Further, the configurations with higher cpu frequencies, which show a decreasing
performance and WEQ, are not part of our approximated optimum. This is especially im-
portant, because increasing the cpu frequency is a common, but not always helpful, tool
to increase the performance. The only limitation exposed by our approximated optimum
is that it did not recognize the slightly higher performance of AVX512 over AVX2.
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Figure 4.17: The measured WEP of a project operator. The configurations, which were
optimal according to an approximated WEP, are highlighted.

Run Length Encoding

For this example, we will use the classical vectorized RLE compression without conflict
detection as described in Chapter 3.1.2. We made this choice, because in the classical al-
gorithm the amount of memory accesses scales non-linearly with the run length, which
leads to the requirement of an adjustment function. The vectorized RLE algorithm it-
self is fixed, but the input data determines the actual execution behavior. In that regard,
two extremes arise, whereas each execution is interposed there-between. One extreme is
obtained if there is no run in the input data at all (run length equals 1). In this case, RLE-
compressed data is twice as large as the original data, because for each array element, a
run length of 1 is additionally stored. For the processing, this means that our vectorized
compression algorithm performs essentially random reads and random writes with a ra-
tio of 1:1. Random reads, because we always read 4 elements in each iteration, with 3
of them already being read in the previous iteration. The ratio is 1:1 because we always
read, process and write once in each iteration. The second extreme occurs when each
element in the uncompressed data array equals a single value (run length equals num-
ber of elements). In this case, RLE-compressed data consists of two values, the single
value and the number of elements as run length and these two values are written once
by the compression algorithm at the end of the last iteration. Thus, the read/write ratio
approaches 1:0, while the read accesses are still random. Furthermore, between the reads
and writes, there is also the actual compression which is a computation bound work. If
this computation is slower than the I/O accesses, the memory access pattern is not the
bottleneck for the performance anymore, but the computation itself. To summarize, the
following three kinds of primitives are used within our vectorized RLE compression as
well as decompression algorithms: (1) load, (2) store, and (3) compute (comparison prim-
itives). Depending on the input data, these operations are composed differently. While
the number of compute operations per read operation is constant, the ratio between read
and write operations changes depending on the average run length. Hence, the profile
for a specific average run length is within the spectrum between read-bound and write-
bound operations.

92 Chapter 4 Balancing Performance and Energy for Vectorized Query Processing



Figure 4.18: The number of read and write operations as function of the run length.

Choice of basic profiles We have already identified the three kinds of low-level opera-
tions used in the vectorized RLE compression. Now, we need to decide which processing
profile represents these operations best. For every read operation, there is a fixed amount
of compute operations. Thus, we use a processing profile for representing both opera-
tions. The cost of the operations per read access determines the exact processing profile,
i.e. the read compute ratio. In our implementation for the ODROID-XU3, the main loop
uses five operations in every step (additions, comparisons, and conversions), while ev-
ery step loads two registers, one with the current value and one with the values which
are compared. The cost of the compute and compare operations we use, are roughly the
same. This sums up to five compute operations for every two read operations. Of course,
it is a non-acceptable overhead to produce WEPs for each possible ratio. We built profiles
with seven different ratios. The closest that one of these profiles gets to our preferred
ratio of 5:2 is 6:2. The write operation is represented by a write primitive. The weight
factor of the two profiles is determined by the ratio between read and write operations.

Adjustment Function f For getting an idea of how our profiles scale, we need to know
how our limiting factors scale, i.e. the read and write accesses. Since the average run
length of our input data defines the number of read and write accesses, and therefore the
scaling of our profile-primitives, we need a description of these I/O accesses depending
on the run length. We can then use this description for adjusting our primitive profiles ac-
cording to the input data. For RLE compression, the functions for read and write accesses
depending on the average run length can be built explicitly.

Assume a sequence of run lengths RL = [rl0, rl1, rl|RL|−1] with countruns = |RL| runs.
For each run, there are two write operations, one for the value and one for the run length.
Hence, the function for the write operations is

countwrites = 2 · countruns (4.4)

The function for the number of reads depends on more parameters. One of these pa-
rameters is the vector width k. For a scalar c-implementation, k equals 1. For a NEON-
implementation, which stores 4 values in one vector register, k equals 4. In every run,

there is one scalar read for the value of the run followed by ⌊ rli−1

k
⌋ vector reads. The last

vector read contains the end of the run and overlaps with the scalar read and possibly
also the vector read of the following run. The final function for the number of reads is

countreads =

|RL|−1
∑

i=0

(

2 +

⌊

rli − 1

k

⌋)

(4.5)
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Figure 4.19: A benchmarked Work-Energy-Profile for RLE compression on the ODROID-
XU3 with average run length of 45. The approximated optimal configurations are high-
lighted in orange, the actual optimum is highlighted in green.

For constant run lengths this iterative function can be rewritten as the explicit function

countreads = (countruns − 1) ·

(

2 +

⌊

rlconst − 1

k

⌋)

+

(

2 +

⌊

rllast − 1

k

⌋)

Note that we assume a fixed total number of data elements. Thus, the last run might be
shorter than the other runs.

Figure 4.18 shows countreads and countwrites for different run lengths. Both functions are
rational. Hence, our function f must be rational, too. Since the exact weight factors are
determined separately and there are no polynoms in either countreads or countwrites, we
use the most simple rational function f(Performance, WEQ) = (1/P erformance, 1/W EQ).

Weighting Factors wj The weighting factors wj describe the influence of the primitive
profiles. For RLE compression, we use two profiles and the weights w0 and w1, which are
bound by the read and write operations. The ratio between the read and write operations
are the factors w0 and w1. From Equation 4.4 and Equation 4.5 follows w0 : w1 = 2 ·

countruns :
∑|RL|−1

i=0 (2 + ⌊ rli−1

k
⌋). For the decompression this ratio is inverted, since it has

to read what the compression wrote.

Evaluation For being able to validate the results of the profile approximation, we also
benchmarked the profiles for RLE compression. This way it is possible to see which per-
formance and WEQ, the approximated configurations really produce. Most of the config-
urations in a profile will not be used since there are other configurations with the same
performance but a higher WEQ. Hence, the useful configurations are the ones which are
part of the upper hull. For comparing the quality of an approximated profile to a bench-
marked profile, we filtered the configurations which are part of the upper hull of the
measured and the approximated WEP. For implementing our approach, the weighting
factors wj , which depend on the average run length and the width of the vector registers
k, must be found. For finding the weighting factors, we apply Equations 4.4 and 4.5. For
the average run length of 45 and 128-bit vector registers (k=4) we get a read write ratio of
≈ 7:1. The ratio for the decompression is inverted, i.e. 1:7. Then we apply Equation 4.3.
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Figure 4.20: A benchmarked Work-Energy-Profile for RLE compression on test system B
with an average run length of 500 and k={1,4}. The calculated optimal configurations and
the actual optimum is highlighted.

The result is an approximated work energy profile. Afterwards, we select the configu-
rations which are part of the upper hull of the newly found profile. Figure 4.19 shows
the measured profile and the configurations of the approximated upper hull on our test
system C. The graphic shows that the match is not exact but close to the optimal solu-
tion. This upper hull still contains many different core configurations which are often
changing. But when applying a profile and changing hardware configurations, it is also
necessary to consider the effects of context switching. This is why there is a clean-up
phase after the upper hull is detected to find the robust configurations. In this phase,
we eliminate configurations which interrupt a sequence of the same core configuration.
The resulting configurations could now be used for configuring a system with regard to
performance and energy balancing.

To show the general applicability of our approach, we also apply it on our test system
B. The process was the same as for test system C. First, we benchmarked the basic write
and the processing profiles. Then, we calculated the read/write ratio from Equations 4.4
and 4.5, applied the approximation Equation 4.3, and filtered the configurations which
are part of the upper hull. For evaluating the result, the real profiles for compression and
decompression have also been measured. Fig. 4.20 shows the benchmarked compression
profile with and without vectorization (k=1 and k=4) for the average run length of 500.
Additionally, the measured upper hull and the configurations of the approximated upper
hull are illustrated. The graph shows a close match between the benchmark and the
approximated configurations with only a few outliers.
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4.4 BALANCING PERFORMANCE AND ENERGY FOR VECTOR-

IZED QUERY PROCESSING

In the previous Sections, we explained how to benchmark primitive Work-Energy-Profiles
(WEPs), and how to use them to generate the WEPs for different and more complex oper-
ators. In this Section, we finally discuss different applications of these profiles to balance
performance and energy-efficiency. We regard two fundamentally different scenarios:

1. System profiles are used to optimize a continuous but varying workload on a whole
system.

2. Thread profiles are used for optimizing individual queries running on dedicated
CPU cores.

We will describe the first case in Section 4.4.1 and the second case in Section 4.4.2. Finally,
we will give a description of how to use the second approach to optimize query execution
in Section 4.4.3.

4.4.1 Continuous System Workload

The first approach, which we applied, is the use of system profiles to determine the op-
timal core usage and frequency for a defined workload. In [UKM+16], we show this
approach in a demonstrator on our heterogeneous test system C, which offers an es-
pecially large configuration space. Our workload consists of sequential memory reads
and compute operations. The ratio between memory reads and computations as well
as the amount of requests is user-defined. This workload shows the characteristics of
some frequently used operations, i.e. scans with differently complex predicates. For the
demonstration, all operations are executed in scalar mode.

The adjustment of the configuration is executed in a loop and is purely reactive. For per-
formance reasons, the loop is not implemented as a busy waiting-loop but with system
signal handlers, which are called after each power counter update. This loop, also called
energy control loop, watches 3 quantities: (1) The read-compute-ratio, (2) the average query
latency, and (3) the length of the query queue. Whenever the energy control signal han-
dler is called, the following steps are executed: At first, a processing profile, which fits
the current read-compute-ratio is chosen. Second, the real average query latency is com-
pared to a user defined latency-threshold, which serves as a soft constraint. This means
that it might be exceeded, but only temporarily. If this threshold is exceeded, a higher
performing configuration out of the hull of the chosen processing profile is chosen. If
the average query latency is below the threshold, a lower performing configuration can
be chosen. The choice of the configuration is initially done in small steps, which always
chose the next best resp. worse performing configuration. The length of the query queue
is recorded after each configuration step. If it is increasing, the configuration steps are
doubled, e.g. after three steps with an increasing queue length, the next 8 better resp.
worse performing configurations are skipped. If it is decreasing, the configuration steps
are decreased in the opposite way until the step width is down to one configuration. A
constant queue length keeps the step width at the same level. However, the latter case
rarely happens in our demonstrator. This approach causes the latency to level out around
the user-defined soft constraint.

Figure 4.21 shows the user interface of the demonstrator. When the screenshot was taken,
a latency-threshold of 1 s was defined, while the measured average latency is at 1.38 s.
Hence, the measured latency is higher than the threshold and during the next iteration
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Figure 4.21: User interface of a demonstration of the use of WEPs for continuous work-
loads.
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Figure 4.22: Comparison of power and energy of two different configurations with the
same WEQ but different performance. Race-to-idle is not the best choice in this case if the
goal is to save energy.

of the energy control loop, a higher performing configuration will be chosen. The current
configuration is shown in the lower right quadrant of the user interface. In this example,
the big cluster is running one core at 200 MHz and the little cluster is running two cores
at 500 MHz. The remaining cores idle at the respective cluster frequency. The reticle
in the WEP shows the position of this configuration in the profile. In this case, most
other configurations perform better than the currently chosen one. As shown in most
other profiles, this configuration is not the most energy-efficient one either. However,
if the system is underutilized, i.e. if there are not enough requests to reach a higher
performance, this configuration makes sense.

4.4.2 Individual Requests

A system, which is used exclusively by a DBMS is not the only possible scenario. An-
other scenario is a system, which processes individual requests, while other applications
are running on the same hardware. In these cases, the DBMS can only use and control
a subset of the system resources, i.e. not all cores. The configurations of a system WEP
cannot be selected in such scenarios. However, each thread can still choose among the
configurations of a thread profile. This includes the instruction set, and the CPU fre-
quency, if the system offers this option. Like for the continuous workload, a threshold
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can be defined by the user. Then, a configuration, which satisfies this threshold, can be
selected. However, since the workload is not continuous, a reactive loop is not neces-
sary. Instead, for each request, the configuration is set before running it. The required
parameters to select the appropriate thread profile, e.g. utilization of the other cores, can
be derived by using operating system tools. This step is important, because as we have
shown in example 3 (project operator) in Section 4.2.4, the load on the remaining system
influences the behavior of an observed thread significantly.

A common approach in such scenarios is called race-to-idle. In this approach, requests
are finished as fast as possible, such that the processing cores can return into a sleep state
or idle at a low frequency as often and as long as possible. This requires to always select
the best performing configuration. However, this is not necessarily the most energy-
efficient approach. Figure 4.22 shows an example explaining this statement. It illustrates
the power graph during the execution of a request for two different configurations. Both
configurations result in the same used energy E1 for the query execution, i.e. the WEQ
is the same, but their performance is different. Such configurations exist in each profile,
which shows a plateau or a decreasing WEQ after a peak has been reached. Configuration
1, which finishes at t1, performs better than configuration 2, which finishes at t2. In a race-
to-idle approach, configuration 1 would be chosen. This assumes that the overall energy
consumption is lower than in configuration 2 because of the long sleep time of the used
CPU. But even a CPU in a deep sleep mode still draws a small amount of power as long as
the system is not switched off completely. The integral of this power over the idle time is
the energy consumption E2. This energy adds to E1 for the overall energy consumption,
while in configuration 2 the overall energy consumption equals E1 only. If configuration
2 had a higher WEQ than configuration 1, the difference would be even higher. Only in
the case that configuration 2 had a lower WEQ than configuration 1, there is a possibility,
not a guarantee, of using less overall energy with configuration 1. For this reason, we
argue to always choose a configuration, which only performs as fast as necessary, not as
fast as possible.

4.4.3 Workflow for Query Execution

Despite being developed and tested for in-memory query processing engines, the sce-
narios mentioned above are very generally applicable to different applications. In this
section, we describe the specific steps to optimize the execution of individual queries,
which run on a dedicated CPU core. This is the approach, which we will also use for the
end-to-end evaluation in the next chapter. As shown in chapter 2.3.1, there is a significant
optimization potential, when the instruction set of a query is optimized on an operator
level instead of the query level. In a combination with the optimal CPU frequency se-
lection, this optimization potential increases even more. Both of these properties, the in-
struction set and the CPU frequency, can be determined using WEPs. To do this, several
steps during setup time and query compile time are required. For the sake of simplic-
ity, we will focus on operators in our explanations. However, the same techniques are
applicable for compression algorithms.

Setup time To minimize the overhead during query compilation and runtime, the pro-
file approximation should be done during setup time, or whenever a new operator is
added. For the approximation, the weights and basic profiles have to be determined
for each operator. Fortunately, the basic profiles do not depend on the amount of data,
which has to be processed. They only depend on the used primitives and the location
of the data in the memory hierarchy. Since we are developing for in-memory query ex-
ecution, we expect our data to be in main memory. The used primitives can easily be
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counted by running each operator with a low amount of input data. If there are param-
eters, e.g. the selectivity, each operator is run multiple times with input data reflecting
these parameters. During these runs, each primitive counts how often it is called. When
these operators are run with larger input data sets, only the absolute amount of primitive
calls changes, but not the ratio between them. For instance, a simple filter with a selectiv-
ity of 10%, which sequentially scans the input data, will always show a read-write ratio
of 10:1 and a read-compare ratio of 1:1 unregarded of the amount of input data. This
means that there is one write call for 10 read calls, and one comparison for each read call.
With these weights and the specification of the used primitives, the approximation of the
WEPs for the operators can be done. After the approximation is done, the upper hull is
filtered from the retrieved WEPs, because the remaining configurations are never optimal
anyway. This procedure is done for different system loads.

Query compile time We assume, that the preferences of the user are known at query
compile time, i.e. if he wants to optimize for performance, energy-efficiency, or a defined
performance threshold. Additionally, a rough estimate of the system load is gathered by
using tools of the operating system. Depending on this load and the user preferences, an
according configuration is selected from an approximated profile for each operator. For
instance, if the user wants a performance optimization, the configuration with the high-
est performance is selected. This configuration contains the instruction set and the CPU
frequency. Our query is then translated into C++ code from an intermediate representa-
tion, e.g. MAL 8. During this translation, the processing style and the CPU frequency for
each operator is defined in the code. Finally, the c++ code is compiled into an executable.

4.5 RELATED WORK

The importance of optimization for energy-efficiency for data management systems has
already been identified in 2009[HSMR09]. The authors show that the most energy-
efficient configuration is not always the one with the highest performance. For instance,
they show that a scan on compressed data performs better than a scan on uncompressed
data. While this was expected, the energy consumption is higher for the scan on com-
pressed data. Although the experiment reads the input data from disk, while we read
data from main memory, they observe the same counter-intuitive behavior as we ob-
served on our test systems. Following from these observations, the authors argue, that
hardware approaches alone are not sufficient to optimize for energy-efficiency. However,
to develop a software-driven approach, two main questions have to be answered:

1. Where lies the largest optimization potential, i.e. which hardware components have
knobs that can be used to save energy?

2. How can these knobs be tuned in a meaningful way?

These questions have been answered differently depending on the exact application sce-
nario and the available hardware. The partitioning of data across disks is a powerful tool
to vary the number of active disks, and therefore the energy consumption. This approach
has been applied in the system E²DBMS [TWZX14]. However, we are considering in-
memory systems in this work, but conventional main memory is not persistent. Hence,
we cannot switch it off like disks to save energy. On the CPU side, E²DBMS adjusts the
CPU frequency in a feedback loop, which checks for the compliance with a user-defined
performance constraint. This approach is similar to our energy-control-loop. However,

8https://www.monetdb.org/Documentation/MonetDBInternals/MALReference, accessed 03/08/2020
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we are using WEPs to adjust the CPU frequency, while E²DBMS assumes a monotonic
relationship between the power level, which defines the CPU frequency, and the perfor-
mance. As we have shown, for in-memory query processing, this assumption does not
hold true for all systems and workloads. Hence, out of the two proposed components, we
can only consider the CPU for optimization, but must find a different way than proposed
in [TWZX14].

Tsirogiannis et al. analyzed the energy consumption of a database server and also found
that the CPU is one of the three components, which make up the main share of a server’s
idle power [THS10]. The other two components are the main memory and the mainboard
itself. While the power level of the main memory was fixed in the system, which was
used in [THS10], the power level of the CPU increased significantly from 48 W to 160 W,
when they were not idle anymore. Again, this shows the huge optimization potential
of CPUs. This potential has been exploited in the system ERIS, which uses a variant of
our WEPs in a hierarchical energy-control-loop [Kis17]. This control-loop runs on different
levels of the system, i.e. there is a system-wide control loop, another one per node, and
finally, one per core. While this approach worked well for workloads on a system level,
it assumed the hardware to run only the database system, which has full control over all
cores of the system. Additionally, it did not consider vectorization.

In the recent years, hardware development brought up main memory with control knobs
similar to those of CPUs, e.g. frequency scaling. This sheds new light on its optimization
potential. Appuswamy et al. showed that main memory has become a promising com-
ponent for energy-aware optimization [AOA15]. Since the properties, which can be ad-
justed, are mostly the same as for CPUs, we expect that the strategies for CPU optimiza-
tion are well transferable to memory. However, this mainly concerns large server-grade
systems, because a number of memory DIMMs is required to account for a mentionable
part of the overall energy consumption. Smaller systems, which could perspectively be
used for ubiquitous computing, e.g. in edge clouds, will hardly benefit from main mem-
ory optimization. For instance, our test system C shows the lowest energy consumption
for the main memory out of all measured components, as can be seen in Figure 4.21.

The energy consumption of such heterogeneous single-board systems, like our test sys-
tem C, has been analyzed and optimized by Mühlbauer et al. [MRS+14]. The authors
used HyPer as a database system on an ARM® big.LITTLE™and generated an estima-
tion of the performance and energy consumption out of microbenchmarks for different
queries. Their main control knobs were the selection of the CPU cluster and its frequency.
Unlike in our test system C, the system of the authors was only able to apply cluster
switching, i.e. only one cluster could be used at a time. Further, the approach is specific
for the used hardware. It is unclear if it shows the same promising effects on a different
hardware.

Summarizing, there are two main components, which show a significant optimization
potential: the CPUs and the memory, may it be disc or main memory. Discs are not
relevant in our in-memory applications and the control knobs of the main memory are
similar to those of the CPU usage. Therefore, we focus on optimizing the CPU.

The question of how to optimize the CPU requires a more differentiated answer. Gen-
erally, there are three different approaches: (1) analytical, (2) benchmark- or monitoring
driven, and (3) analytical models based on benchmarks. An example for the first ap-
proach was proposed by Xu in 2010 [Xu10]. This approach used the power specifications
of hardware vendors to build an analytical model estimating the power consumption of
a workload. However, these specifications turned out to be unreliable, which complies
with our explanations in Section 4.1. Hence, when E²DMBS was proposed, which Xu
was a co-author of, a feedback loop was applied. This makes the frequency scaling of
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E²DMBS an example for the second approach. Another example for the second approach
is ERIS, which uses benchmarked profiles to adjust the CPU knobs while monitoring the
actual performance. These profiles are either generated during an installation phase or
dynamically when the system is running. The benchmark-based model in [MRS+14] is
an example for the third approach.

Hence, the analytical approach does not seem feasible because of a lack of necessary
information. The benchmark- or monitoring-driven approach requires either extensive
benchmarking or fails to portray the behavior of current hardware correctly. To reduce
the amount of necessary benchmarking, a combined approach makes sense. However,
to the best of our knowledge, none of the existing approaches considers vectorization on
arbitrary hardware platforms.

In this sense, we combine benchmarks of primitive profiles, which can contain vectoriza-
tion as a configuration parameter, with an approximation model. These two components
can be derived independently of each other. This means, that the benchmarks do not de-
pend on the approximation, while the parameters of the approximation do not depend
on the hardware-specific benchmarks.

4.6 SUMMARY

In this chapter, we explained the requirement for a benchmark based model to estimate
energy-efficiency and performance. We introduced such a model, and call it Work-Energy-
Profile (WEP). It enables a mapping between performance and energy-efficiency. Further,
we proposed an approach to estimate the profiles of complex applications by combining
a number of basic WEPs. This efficiently reduces the time required for initial bench-
marking. An evaluation using two fundamentally different examples showed that our
approach is close to the optimal solution. Then, we gave an overview of how our Work-
Energy-Profiles can be used in practice. Finally, we closed with a discussion of related
work concerning energy-efficiency on database systems.
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So far, we have examined the challenges and chances of vectorization. We learned, that
the chosen instruction set and the vector width are a crucial choice, but not a trivial one.
To enable this choice in a way that the code base can stay the same, we developed a
library, the Template Vector Library (TVL), which allows to set the instruction set, vector
size, and base data type as a template parameter. Based on this TVL, we presented an
optimization technique, which allows optimizing for performance and energy-efficiency
likewise. The evaluation of this technique was done on an individual operator and on
an individual compression algorithm. In this chapter, we optimize analytical queries
combining a number of operators. First, we introduce the setup for this end-to-end eval-
uation. Then, we show the results for the applied TVL and use this as a basis to explore
the optimization potential when choosing the instruction set on an operator granularity.
Then, we apply our optimization technique to differently used systems and to uncom-
pressed and compressed data and discuss selected results. Finally, we will compare our
results to MonetDB, a state-of-the-art column store.

5.1 EVALUATION SETUP

Software Setup For this evaluation, we use MorphStore[DUP+20]. MorphStore is an
in-memory query execution engine for analytical queries, which uses the TVL to imple-
ment all its operators and compression algorithms. Therefore, the same code base can
be used for all available instruction sets. So far, query execution in MorphStore is single-
threaded. However, any changes of the CPU frequency are initiated by a separate thread
on a separate NUMA node to not interfere with the query execution. On test system A,
we compiled our code with g++ version 8 with the optimization flags -O3 and -flto. On
test system D (see below), we used g++ version 10.0.1 with the same optimization flags.

The Star Schema Benchmark To show the applicability of our approach to complex
analytical queries, we apply the well-known Star Schema Benchmark[OOC07], which
consists of 13 analytical queries. In order to do this, we generate synthetic data using a
data generator provided by Lemire1. The size of the test data is determined by the scale
factor (SF), where a scale factor of 1 generates about 800 MB of data and a scale factor of
10 generates about 7.6 GB. To enable numeric processing of the whole data set, we use
dictionary encoding on all non-integer columns. Further, all non-integer predicates in
the queries are replaced by their respective dictionary keys. If not mentioned otherwise,
we do not apply other compression techniques. Since MorphStore is solely an execution
engine, i.e. it does not provide a query optimizer or a parser, we use MonetDB [IGN+12]
for these preceding steps. We retrieve the query execution plans from MonetDB in the
form of MAL plans 2 and translate them into MorphStore C++ code. For this translation,
a few changes to the original plan are necessary. First, we omit the Order By-clause
because MorphStore does not support sorting, yet. Second, we introduce projections
where candidate lists would have been used in MonetDB.

Hardware Setup As the first test hardware for the end-to-end evaluation, we have cho-
sen our test system A, which offers all Intel vector instruction sets. The second system we
chose is an ODROID-C2, which we will denote as test system D. This switch away from
the ODROID-XU3 (test system C) was necessary, because the Star Schema Benchmark,
which we will be running, requires instructions on 64-bit, which is not provided for all
necessary operations in the NEON version offered by the ODROID-XU3. The ODROID-
C2 features four ARM® Cortex®-A53 cores running at a maximum of ≈1.5 GHz and 2 GB
DDR3 main memory. The main features of this system are summarized in Table 5.1. If

1https://github.com/lemire/StarSchemaBenchmark, accessed 13/07/2020
2https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference, accessed 13/07/2020
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Core Description ARM-Cortex-A53

Number of Cores 4

Hyperthreads per core 1

Frequencies 0.1 GHz - 1.536 GHz

Frequency Steps 150 MHz, 250 MHz, 500 MHz, 296 MHz, 240 MHz

Number of Freq. Steps 6

SIMD Extensions NEON

L1, L2, L3 Cache 32 kB + 32 kB (instruction + data), 512 kB (shared), -

Table 5.1: Configuration options of the ODROID-C2 (test system D).

not mentioned otherwise, the thread executing a query is the only thread running on a
system. Hence, there are no resource conflicts caused by concurrent threads. For all ex-
periments, which do not explicitly apply our optimization, we use the default CPU driver
of each system in performance mode to care for the frequency scaling. As we have shown
in Chapter 4, the powersave governor of the acpi CPU driver does not provide acceptable
performance. Hence, we do not consider the powersave governor for test system D, which
applies the acpi driver. The powersave mode of the pstate driver behaves roughly like the
schedutil and ondemand governors3. While we did not have the chance to test the schedutil
governor, the ondemand governor failed to provide sufficient energy-efficiency in our test
in Chapter 4. Therefore, we also do not consider the powersave mode of the pstate driver
for test system A.

Optimization Knobs In Section 5.3 we will show selected results of our optimization.
This optimization is done per operator, i.e. the code for a query execution is constructed
from several individually optimized operators. This means that each operator of a query
can be executed with an individual instruction set and vector length. Further, the CPU
frequency can be changed on node or on system level before each operator. The choice
of the instruction set and the CPU frequency is done according to our optimization tech-
nique as presented in Section 4.4.3.

5.2 OPTIMIZATION POTENTIAL OF VECTORIZATION

In a first series of experiments, we use the TVL to execute the SSB in MorphStore with
different instruction sets. Our two test systems (A and D) offer different instruction sets.
While test system D offers NEON as the only vector instruction set, test system A offers
SSE, AVX2, and AVX512. To keep it simple, we chose to only use the native vector sizes
of AVX2 and AVX512, although they also offer instructions on smaller vector registers.
Hence, we consider the following processing styles:

• System A:
– scalar < v64 < uint64_t > >
– sse < v128 < uint64_t > >
– avx2 < v256 < uint64_t > >
– avx512 < v512 < uint64_t > >

• System D:
– scalar < v64 < uint64_t > >
– neon < v128 < uint64_t > >

3https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html,
accessed 27/07/2020
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Figure 5.1: Star Schema Benchmark results on different systems for fixed processing
styles.

We first used the same processing style on all operators of a query. Then, we used differ-
ent processing styles for operators working on base data and for operators working on
intermediates only. In both cases, the CPU frequencies are managed by the CPU driver.

5.2.1 TVL for Analytical Queries

In our first runs of the SSB, we use the same instruction set for each operator of a query.
We run the benchmark on test system A with a scale factor of 10. On test system D we
could only run it with scale factor 1, because there is only 2 GB of main memory, which
could not fit all base data and intermediates for larger scale factors. The execution time
of the individual queries of the SSB are pictured in Figure 5.1.

Figure 5.1(a) shows the results for the vectorized execution of test system A. These are
the results, which we already partially used in Section 2.3.1 to motivate the importance
of the right choice of the vector register size. The depiction of all queries of the SSB show,
that the largest vector register size, achieved with AVX512, is often beneficial for the
performance, but not in all cases. In the queries 4.1 and 4.2, AVX512 even shows the worst
performance. A closer look at the individual operators of these queries shows the reason
for this behavior. These queries are heavily dominated by a join and the performance of
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Scalar SSE AVX2 AVX512

Scalar 1 0.96791 0.95683 0.94941315

SSE 0.99605 0.92731 0.94743 0.9367778

AVX2 1.08536 1.03665 0.99002 1.00316438

AVX512 1.51896 1.44266 1.40313 1.3630008

base data

intermediates

Scalar SSE AVX2 AVX512

Scalar 1 0.93786435 0.95021031 0.94617176

SSE 0.85047707 0.86999579 0.85613411 0.8728028

AVX2 0.8183232 0.81304241 0.78575679 0.83494329

AVX512 0.79608686 0.77981009 0.77083946 0.81790197

base data

intermediates

(a) SSB query 1.1 (b) SSB query 4.1

Figure 5.2: Speedup over scalar execution for different instruction sets for operators on
base data and operators on intermediates.

this join makes up the major part of the overall performance. However, the specific hash
join used in MorphStore only profits from AVX512 on test system A if the cardinality of
the result set is only a fraction, i.e. smaller than 1/3rd, of the cardinality of the input.
For higher cardinality ratios, vectorization is not beneficial at all, but scalar processing
shows the highest performance. The exact value of this ratio can differ between systems,
which is just one reason, why we argue for our benchmark-based optimization. Another
interesting insight is the behavior of the queries 3.3 and 3.4. These queries show a similar
performance for SSE and for AVX2, although the latter offers wider vector registers. Only
with the introduction of new instructions in AVX512, the performance increases. This
supports our claim that wider vector registers also require new instructions to make full
use of the increased data parallelism.

Figure 5.1(b) shows the execution times of the SSB queries for test system D. The NEON
instruction set is limited when it comes to functionality. For instance, the result of a
comparison between two vectors is always another vector. This introduces an additional
overhead for creating a bitmask out of these vectors. For this reason, the use of NEON
hardly shows any benefit over a plain scalar execution. A new vector instruction set by
ARM, called SVE, is announced. It will feature a wider range of instructions and a scal-
able vector size. There is already a prototype implementation of the TVL for SVE 4, but
because the according hardware is not yet available, it cannot be tested for performance.
Since the optimization potential for vectorization is very small with the system, which is
physically available for us at the time this thesis is written, we are not considering test
system D for our optimization technique. However, test system A offers more instruc-
tion sets, which show a varying performance as we have shown. Hence, we will use this
system for the following evaluation.

5.2.2 Combination of Instruction Sets

As explained in Section 2.3.1, it can be beneficial to use different instruction sets on differ-
ent operators in the same query. To see if the use of different instruction sets also shows a
different performance in reality, we combined two vector instruction sets in query 1.1 and
4.1 of the SSB. One instruction set is used for all operators working on base data and an-
other instruction set is used for all operators working only on intermediates. The results
for different combinations of instruction sets on test system A are shown in Figure 5.2.
Although the intermediates are small compared to the base data, there is still a difference
in the execution time when they are processed by different instruction sets. If the instruc-
tion set, which works on the base data is changed, this difference increases. Among our

4Available in a dedicated branch of the TVL repository: https://github.com/MorphStore/TVLLib/

tree/simd-arm_sve, accessed: 15/07/2020
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tested instruction sets, the highest performance for query 1.1 is achieved by a combina-
tion of AVX512 for operators on base data and scalar processing for operators on inter-
mediates. Again, this can be explained with a closer look at the individual operators.
Query 1.1 spends most time on selections on base data and on intersections on interme-
diates. While the selections involve mainly sequential read access on one column, the
intersection requires access on two columns, i.e. it requires reading from two different
memory addresses. Like for the join, this causes a performance loss when using large
vector registers if the input-output cardinality-ratio passes a certain threshold. Query 4.1
does not profit from vectorization. Most of the execution time for evaluating this query is
spent on a join, which performs best with scalar processing. Additionally, a second join
operator, which requires less runtime, does also not benefit from vectorization.

Our experiments show that the choice of the instruction set and the according vector
register size can influence the performance positively or negatively, whereas the best
choice is not in all cases the trivial one. This is why we presented an approach to choose
the appropriate vector extension, which we will evaluate in this chapter. As we will show,
it is a feature of our optimization to detect counter-intuitive behavior without having to
actually run all possible combinations of register sizes and cardinality ratios.

5.3 OPTIMIZATION APPLICATION

In order to show the universal applicability of our approach, we consider 3 exemplary
scenarios for our optimization:

1. A query is executed in a single thread on an otherwise idle system. The CPU fre-
quencies can be set for the whole system, because no resources are required by any
other threads.

2. A query is executed in a single thread. There is no other thread running on the CPU
core, the query is executed on, but the remaining cores of the same NUMA node
and the cores on the neighboring NUMA node produce a constant memory I/O
load. This simulates the effects of other queries running on the same system. The
CPU frequencies can be set per NUMA node. Frequency setting itself is triggered
by a separate thread running on another NUMA node, which is otherwise idle.

3. We consider our first scenario, but with compressed base data, which is decom-
pressed on-the-fly during query execution, i.e. it is decompressed per vector register
before this register is handed to the actual operator.

For all of these scenarios, we will show the results of the performance optimization and
discuss selected noticeable details. Then, we have a closer look at the energy optimization
for scenario 1. We will show that the best performing configuration is not in all cases the
most energy-efficient one, and that our optimization is able to find such configurations
at a minimal performance loss.

5.3.1 Performance Optimization

To optimize the performance of the SSB, we execute the steps explained in Section 4.4.3.
In detail, the following steps are done offline: First, we create primitive profiles for each
primitive class and subclass, which we use in our operators. There are two sets of profiles
created: one for an otherwise idle system and one with a bandwidth saturated system.
Then, we count the number of called primitives in each operator with a scalar processing
style for small input sets of 10.000 values. For all operators, where the output cardinality
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Figure 5.3: The results of our optimization for the SSB compared to the results for differ-
ent fixed instruction sets (SF=10, Scenario 1).

can vary and be different from the input cardinality, e.g. joins and selections, we count the
called primitives for different input-output-cardinality ratios. For instance, for the join
we considered 5 different ratios between 1:0 and 1:1. We did not consider larger ratios,
because the query plan optimization, which happens before our optimization, should
and does avoid such constellations wherever possible. For masked I/O operations, we
counted the number of actually read or written values. These counted calls serve as the
weights for our profile approximation. We approximate the operator profiles for all used
operators and for all considered cardinality ratios. Again, this is done for an idle system
and for a bandwidth saturated system. Finally, we extract the upper hull of these operator
profiles and sort them by performance, such that the last configuration in the list is the
one with the highest expected performance. These last configurations are used during
query translation to set the processing style and define the optimal CPU frequency for
each operator. We assume that the cardinalities are already estimated for the purpose of
query plan optimization and we can use this estimation. In the following, we will show
the results of this process.

Scenario 1: Idle System

In the first scenario, there are no resource conflicts with other threads and we can set the
frequency on a system level. We apply or optimization approach to the SSB with a scale
factor of 10. Hence, we set the processing style and the CPU frequency according to the
result of our operator profile approximation. Figure 5.3 shows the resulting execution
time of the individual queries. The graph also compares them to the execution times of
different fixed instruction sets with the pstate CPU driver managing the CPU frequencies.
We reach a shorter execution time in most queries and a similar execution time in one
query (query 3.4). In no case was our approximation significantly slower than the best-
performing variant with a fixed instruction set.

Generally, for most operators, our approach selects AVX512 as the appropriate instruction
set. Only for 2 to 3 operators per query, i.e. never more than 15% of all operators, scalar
processing is selected as shown in Figure 5.4. However, these operators include some
joins, which take up most of the processing time of the queries. Therefore, this selection
is important, and we can observe a speedup of up to 1.4 compared to pure AVX512. Espe-
cially the queries 4.1-4.3 profit from our instruction set selection, although less than 10%
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Figure 5.4: The instruction sets as chosen by our optimization. SSE and AVX2 were never
chosen. The optimal CPU frequency as proposed by our approach was at 3.4 GHz resp.
3.5 GHz. (SF=10, Scenario 1). We observe a speedup compared to scalar execution and to
AVX512 when applying our optimization.

of the operators of these queries are executed in scalar mode instead of using AVX512.
Additionally, the frequency is set to 3.4 GHz or 3.5 GHz for all operators. This leads to
a further speedup, which we can especially observe in the queries 1.1-1.3, where only
AVX512 is selected by our optimization. There are also queries, where AVX512 with au-
tomatic frequency scaling by the CPU driver is already optimal. In the SSB, query 3.4
shows this behavior. In chapter 2, we found that a few operators perform best using SSE
or AVX2. Our results show that these instruction sets play only a minor role to optimize
for performance in scenario 1. We suppose that the explicit setting of the CPU frequency
is responsible for this game change.

In Figure 5.5 we show the results of query 1.1 and query 4.1 in more detail. The graphs
show the speedup compared to SSE’s 128-bit processing on the left side, and the execu-
tion time on the right side. The "mixed" bar shows the theoretical optimum if the fastest
vector size and the according instruction set is chosen per operator. Unlike our approach,
manual CPU frequency scaling is not considered for the "mixed" scenario. In query 1.1,
a wider vector register size is beneficial for the performance. However, the mixed sce-
nario shows that there is still some optimization potential when selecting the vector size
per operator. Our approach finds such a configuration, which is performing even better
than the plain AVX512 approach. We could achieve a reduction of the execution time by
11.5% compared to AVX512. Compared to SSE, the reduction is at 34.5%. In query 4.1,
AVX512 shows a lower performance than AVX2 and SSE. Hence, larger registers are not
efficient in this query. As already explained, this is mostly because of a join dominating
the performance of the query, which performs best when scalar processing is used, while
the remaining operators profit from AVX512 when a high CPU frequency is set. Our ap-
proach successfully detects this and even sets the CPU frequency for the join to 3.5 GHz
without any intermediate steps like the CPU driver. For this reason, the execution time is
not only below the execution time of AVX512, but also below the execution time of scalar
processing.
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Figure 5.5: Our approach compared to a static choice of the vector size and the theoretical
optimum if the best performing size is chosen for each operator. Additionally, in our
approach we do not rely on the pstate cpu driver to set the frequency. Instead, we set it
according to our approximated operator profiles (SF=10).

Scenario 2: Bandwidth Saturated System

As already argued, the optimal configuration might change when other threads on a sys-
tem are claiming shared resources, e.g. memory bandwidth. This is the setting of our
scenario 2. Additionally to the thread executing our query, all other CPU cores on the
same NUMA node and the neighboring NUMA node run their maximum number of
hyperthreads and continuously request data from main memory. This reduces the effi-
ciently usable bandwidth for our query thread. We are able to set the frequency on a
NUMA node level, which is the most fine-grained reliable setting possible with our sys-
tem. Since the CPU driver setting is a global one, we can not rely on the pstate driver
to manage the frequencies on the remaining nodes. Thus, we set them to the base fre-
quency. The approach is the same as for the idle system with two exceptions. First, the
primitive profiles for the bandwidth saturated system are used for the approximation
of the operator profiles. Second, MorphStore was given an update, which introduced a
range selection, such that the approximation also has to be done for this new operator.
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Figure 5.6: Results for the SSB while there is a continuous memory I/O load produced
by the cores, which are not running the queries (SF=10, Scenario 2).

Again, we also measured the execution time for fixed instruction sets and vector register
sizes. The results for all SSB queries are shown in Figure 5.6. For this scenario with re-
source conflicts, AVX512 is never the worst performing choice. Except for query 4.1 it is
even always the best performing choice. Our approach is able to detect that AVX512 is
the most reasonable choice in most operators. Scalar processing is only selected once per
query in the queries 2.1 to 4.3. Moreover, this does not include the join operators any-
more. However, the previously optimal CPU frequencies of over 3 GHz have decreased.
In Figure 5.7, we show how often a certain CPU frequency is selected during query ex-
ecution. The highest frequency our optimization suggests, is at 2.2 GHz while the most
frequently suggested frequency is only at 1.4 GHz. This seems to be a reasonable choice,
because we can achieve a similar or lower execution time than without our frequency
setting in most queries. The exceptions are queries 4.1 and 4.3, where we still perform
close to AVX512 with CPU frequency scaling.

Scenario 3: Compressed Data

In our third scenario we repeat scenario 1, but with compressed base data. Compress-
ing the base data is common practice in column stores, although a very recent thesis by
Patrick Damme shows that the compression of intermediates can reduce the memory
footprint and the execution time of queries significantly[Dam20]. MorphStore offers a
few compression techniques including static vertical bitpacking (static VBP). Static VBP
is an algorithm for the Null Suppression technique. The number of bits used to store a
value is static for a whole column. This number is chosen to use the smallest amount
of bits, which can still accurately store the largest value of the respective column. The
decompression of the data is done on-the-fly, i.e. when a register with compressed data
is read from memory, it is directly decompressed and handed over to the operator. This
avoids the decompression of the whole column, and therefore writing the decompressed
data to memory, before an operator can be called.

To apply our approach to compressed data, we automatically counted the amount of
called primitives for data compressed to different bit widths. We did this for the aggrega-
tion operator and compared the result to the primitive calls of an aggregation on uncom-
pressed data. This provides us with the difference in primitive calls for each bit width,
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Figure 5.7: The CPU frequencies proposed by our optimization for scenario 2 and the
speedup compared to scalar processing and to AVX512 with frequency scaling by the
CPU driver. The instruction set chosen by our optimization was mainly AVX512. Scalar
processing was only selected for one operator per query in the queries 2.1-4.3. (SF=10)

which is mainly a reduction in memory read accesses and an increase in shift operations
and bitwise logic. Since the in-register decompression is always the same unregarded of
the operator the result is handed to, we can apply the same results for all operators. The
number of primitive calls represents the weights for the profile approximation. Thus,
the changed number of primitive calls requires a new approximation for all operators,
cardinality ratios, and bit widths. The SSB requires 16 different bit widths, one for the
uncompressed intermediate data and 15 for the differently compressed columns of the
base data. As a result, we approximated more than 600 operator profiles to choose from
during query translation. The remaining steps during query translation and compilation
stay the same as in the previous scenarios.

Figure 5.8 shows the query execution times for different instruction sets and for our ap-
proach. As already described by Damme, only compressing the base data has a rather
moderate effect on query performance. Queries 4.1-4.3 benefit the most from the com-
pression. The compressed data decreases the influence of the memory read access and in-
creases the influence of computation. The used computation mainly consists of element-
wise comparisons and bitwise logic, which do not show any dependencies between the
elements of the vector register. Such operations profit from wide vector registers. Hence,
the performance of AVX512 increases. Except for query 4.1, AVX512 is even the best per-
forming instruction set now. However, even in query 4.1, it is still the best performing
vector instruction set. Our approach successfully detects that AVX512 is now the rea-
sonable choice for the runtime dominating joins for all cardinality ratios. Additionally,
the CPU frequency is again set to 3.4 GHz resp. 3.5 Ghz, depending on the exact cardi-
nality ratio, which is slightly below the maximum but more than 1 GHz above the base
frequency. This reduces the execution time further by a small amount.
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Figure 5.8: The execution times of the SSB queries with our optimization approach com-
pared to fixed instruction sets for compressed base data (SF=10). The base data is com-
pressed using static vertical bitpacking.
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Figure 5.9: The energy consumption of configurations with a different optimization goal:
performance and energy-efficiency (SF=10).

5.3.2 Energy Optimization

For showing the optimization for energy-efficiency, we take up scenario 1 again. Our
optimization should already have chosen a configuration, which is as energy-efficient
as possible for the highest achievable performance, because we select the configurations
from the upper hull of the operator profiles. However, we can also explicitly use our
approach to optimize for low energy consumption. To do this, we change a single step
in our described approach: The upper hull of the operator profiles are sorted by WEQ
instead of performance. This way the optimal configuration for each operator is the most
energy-efficient one according to our approach. If performance and energy-efficiency are
related to each other, this configuration should be the same. Hence, energy consump-
tion should be equal regardless of our optimization goal being performance or energy-
efficiency. In Figure 5.9 we compare the energy consumption of all power domains, i.e. all
NUMA nodes, for both optimization objectives for all SSB queries. The graph shows that
we could successfully save energy in all but three queries by changing our optimization
goal. The slightly higher energy consumption in 3 queries is most likely caused by our
coarse grained consideration of cardinality ratios, such that these queries contain opera-
tors, which are in a transition region between two configurations of which our approach
chose the wrong one.
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Figure 5.10: Runtime and energy consumption of the second set of SSB queries on test
system A (SF=10). We compare an optimization for performance with an optimization
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Figure 5.11: Execution time of MonetDB as compared to scalar execution in MorphStore
and to our approach (SF=10).

However, especially for the queries 2.1-2.3 there is a significant difference of the energy
consumption. A reason could be that our approach did not actually find the best per-
forming configuration and the change of the optimization goal accidentally led to the
desired result. To check this, we show the execution time and the energy-consumption
of these queries in Figure 5.10. As shown, we did find better performing configurations
with the optimization goal set to performance, although the difference is insignificant for
query 2.3. On the cost of this insignificantly longer execution time, we gained about 1/3rd
of energy savings. Moreover, this configuration still performs better than AVX512 on all
operators with CPU driver frequency scaling. When looking at the individual operators,
the queries spend most of the execution time on a join again. For query 2.2, our opti-
mization suggested dropping the CPU frequency for its join operators from 3.5 GHz to
1.9 GHz to be most energy-efficient instead of showing the best performance. In query
2.3, only one of the 3 join operators uses this lower CPU frequency, while the other join
operators run at 3.5 GHz.
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5.4 COMPARISON WITH MONETDB

So far, we have compared our optimization approach to different configurations within
MorphStore. Now, we compare our approach to MonetDB [IGN+12], a state-of-the-art
column-store, which processes uncompressed data in a scalar manner. We used Mon-
etDB v. 11.31.13 and configured it with the –enable-optimize flag. We build and run
it on our test system A in a single thread and in read-only mode. Hence, we use the al-
ready described scenario 1 for this comparison. For a fair comparison, we also omit the
GROUP-BY clause, use the same dictionary-encoded data as for MorphStore, and define
all columns as a 64-bit data types (BIGINT). Since the query execution plans we use for
MorphStore are a result of the MonetDB optimization, we can safely assume that Mon-
etDB uses the same plans as MorphStore. We only measure the query execution time in
MonetDB excluding query parsing and optimization. We use a scale factor of 10. Each
query is repeated 12 times, where we omit the first run, because during this run, the data
is loaded from disk into main memory. This is also necessary to ensure a fair comparison
with MorphStore, which works entirely in main memory.

In a first step, we compare the execution time of the SSB queries in MonetDB to its ac-
cording configuration in MorphStore. This configuration is scalar processing of 64-bit
uncompressed integer data5. As we have shown, scalar processing can outperform vec-
torized processing in some queries. Thus, the choice of scalar processing is not made to
produce an intentionally low baseline, but to show a fair comparison. In the second step,
we add our optimization with performance as optimization goal. The results are shown
in Figure 5.11. MorphStore with scalar processing and MonetDB outperform each other
in different queries. There is no system, which is generally faster than the other one.
Hence, MorphStore can keep up with a recent and widely used execution engine. When
applying our optimization, the execution time decreases in all but one query (4.1). How-
ever, our approach outperforms MonetDB in all queries, even in those where MorphStore
was initially significantly slower, e.g. in query 1.1.

5Note that this comparison uses the mentioned updated MorphStore, which includes a range selection.
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In the final chapter, we summarize the challenges we tackled and our solution. Further,
we discuss work, which is only loosely related to this thesis but provide a bigger picture
and partially preceded the work presented in this thesis. Finally, we will give an outlook
on possible future research directions.

6.1 SUMMARY

This thesis investigated the chances and challenges of vectorization for in-memory
column-store engines. In Chapter 2, we gave an overview on the current state of vector-
ization in column-stores. Besides the plain operators, this also includes lightweight com-
pression and specialized operators working on compressed data. We have also shown
that the traditional Volcano iterator model is not suitable anymore for vectorized process-
ing. Further, we gave a short introduction into the growing landscape of different instruc-
tion sets for vectorization. We experimentally show that large vector register sizes alone
are not always beneficial. Moreover, they can also be counter-productive and decrease
the overall performance. Additionally, the use of vectorization is bound to physical con-
straints, which influence not only performance, but also energy-efficiency, where this re-
lationship differs between hardware. Since energy-efficiency has become an increasingly
important optimization goal while the demand for performance has not decreased, we
argue to not treat performance and energy-efficiency as independent optimization goals.

In Chapter 3, we investigated the reasons for the counter-intuitive behavior of large vec-
tor registers. We found that there are inherent and algorithmic reasons. While the in-
herent reasons can be solved by the introduction of new instructions, the algorithmic
reasons require rethinking the existing operations and compression algorithms. Then,
we provided a selected solution for Run Length Encoding, which uses the recently in-
troduced conflict detection instructions, and remodels the compression algorithm com-
pletely. However, since the available instruction sets differ between hardware, several
implementations for different targets are necessary. Even when these implementations
exist, a meaningful choice of the instruction set and register size is crucial for both of
our optimization goals, i.e. performance and energy-efficiency. To enable this choice
on a fine-grained level without the requirement of individual implementations, we pro-
posed the Template Vector Library (TVL). The TVL separates the algorithm implemen-
tation from the underlying hardware. It does this by introducing so-called primitives,
abstract data types, and derived constants, which can be used for implementation. Each
of these primitives and types has a back-end for different instruction sets, vector sizes,
and base data types. The mapping between the implementation and the back-end is de-
fined by a nested template, which we call processing style, hence the name Template Vector
Library.

In Chapter 4, we used the TVL as a basis for a micro-benchmark-based optimization ap-
proach, which treats performance and energy-efficiency as interdependent user-defined
optimization goals. This means, that the user can set a preference on performance, or
energy-efficiency, or on an acceptable threshold of either of these goals. Our optimiza-
tion then finds a configuration consisting of an instruction set and a CPU core count and
frequency, which fulfills the user-defined primary optimization goal while being as op-
timal as possible for the other optimization goal. To reach this, we first explained why
a purely analytic optimization strategy will not be feasible. Then, we introduced the
concept of Work-Energy-Profiles (WEPs), which is the model we use for the mapping be-
tween performance and energy-efficiency. We presented a benchmark concept to create
such profiles and discuss selected results. To create WEPs for more complex applications,
we developed an approximation approach, which combines several primitive WEPs. We
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apply this approach to our operators and compression algorithms and present selected
results. Finally, we show different ways of using these WEPs.

In our end-to-end evaluation in Chapter 5, we applied our optimization strategy to the
popular Star Schema Benchmark (SSB). We used MorphStore as an evaluation environ-
ment. Besides the performance optimization for different scenarios, we have also shown
that the best performing configuration is not necessarily the most energy-efficient one.
For the majority of SSB queries, we were able to find configurations, which required less
energy than our best performing configurations, by using our optimization approach. A
comparison with MonetDB wraps up the evaluation. We have shown that MorphStore
provides a competitive performance, which we can significantly increase by applying our
optimization.

6.2 BEYOND THIS THESIS

In this thesis, we presented software-based optimization approaches to make the best
use of the available hardware. However, performance and energy-efficiency for database
systems is not only targeted by software developers, but also by hardware develop-
ers. In the best case, both sides provide each other feedback and work together for a
hardware/software co-design. In this sense, hardware can be optimized and built for
the software it will be running instead of software trying to use whatever hardware is
available. This section shall provide some insight into this topic1.

Hardware can be designed in two fundamentally different ways: (1) as a design for field
programmable gate arrays (FPGAs), which can be reconfigured multiple times, and (2)
as application-specific integrated circuits (ASICs), which are hard-wired and cannot be
changed after being built. In the first case, development cycles can be almost as short as
the participating developers want them to be, because no hardware has to be built. The
only restriction is the time required for the synthesis of a logical design into a physical
one. In the second case, either hardware has to be built or simulators have to be written
or configured, which leads to development cycles taking years. Aside from these differ-
ences, both approaches have their advantages and disadvantages, which we will briefly
discuss in the following.

FPGAs

For prototyping or for very specialized functionality, which is only requested by a small
user group, FPGAs are the tools of choice. FPGAs are also useful when the same hard-
ware should be able to perform different but very specialized tasks, such that the hard-
ware configuration has to be changed during runtime. The core concept of FPGAs is

1Parts of the material in this chapter have been developed jointly with Tomas Karnagel, Eric Mier,
Dirk Habich, Wolfgang Lehner, Nils Asmussen, Marcus Völp, Sebastian Haas, Benedikt Nöthen, Ger-
hard Fettweis, and further members of the Vodafone Chair Mobile Communications Systems and the
Chair for Highly-Parallel VLSI-Systems and Neuro-Microelectronics, TU Dresden. The chapter is based
on [UHK+17, LUH18a, UHK+15, HAS+16]. [UHK+17] is published under a Creative Commons BY-SA
license; the original publication is available at https://dl.gi.de/20.500.12116/641. The copyright of
[UHK+15] and [HAS+16] are held by the Institute of Electrical and Electronics Engineers (IEEE); the orig-
inal publications are available under https://doi.org/10.1109/ICDEW.2015.7129569 and https://doi.

org/10.1109/NORCHIP.2016.7792904. A revised and extended version of [HAS+16] is also available at
https://doi.org/10.1016/j.micpro.2017.10.002. The copyright of [LUH18a] is held by Springer Na-
ture; the original publication is available under https://doi.org/10.1007/s13222-018-0276-y.
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Figure 6.1: An overview of the Tomahawk architecture.

based on an array of configurable logic blocks each implementing a binary function,
which can be changed by modifying the truth table of the particular function. This ta-
ble is written to the SRAM cells of the logic block and can be overwritten, thus yielding
a reconfigurable processing unit. The number of these logic blocks as well as other spec-
ifications and the price vary heavily between different FPGAs. Simple development kits
cost less than 100 euro while more powerful boards cost up to 7000 euro. Besides dif-
ferences in the interfaces, technology, and additional general-purpose cores, the applied
FPGA chip is responsible for this huge price range. For example, expensive Intel/Al-
tera boards use Stratix FPGAs with up to 5.5 million logic elements versus a MAX 10
FPGA with only up to 50k elements on low-priced boards2. Xilinx covers a similar range
starting with the Spartan-6-boards in the entry-level segment and going up to the Ul-
traScale+ for complex tasks. There are already some approaches to integrate high-end
FPGAs into database systems. For example, [ZBB+16] presents concepts and implemen-
tations for hardware acceleration for almost all important operators appearing in SQL
queries. Here, an SQL query is analyzed and divided into single operators and mod-
ules, which are subsequently concatenated to a data path and loaded onto the FPGA.
Another approach to the fusion of databases with FPGAs is taken by Jahan et al. They
implemented different scans, analyzed their performance, and compared them to a CPU
approach, which makes use of SIMD and multithreading [LUH+18b]. As memory access
is still the main bottleneck in both approaches, they also developed a high-throughput
BitPacking compression for FPGAs [LNH+19] to reduce the memory footprint at mini-
mal computation cost. A more general description of challenges for database developers
working with FPGAs can be found in [Teu17].

The ability to be reconfigurable obviously comes with some limitations compared to
ASICs. First, the resources on an FPGA are limited, i.e. the specific task to be supported
by an FPGA-based implementation has to be carefully selected; second, building an ap-
plication takes some time. For example, the synthesis of an application for an FPGA can
take between several minutes and multiple hours, depending on the complexity of the
application and the available computing power. This is why the main part of debug-
ging must be done in simulations. Finally, the size of an FPGA exceeds the size of most
hard-wired solutions by several orders of magnitude, which also increases the time a
signal takes to traverse the whole circuit. For comparison, a device package with the Xil-
inx Spartan-7 FPGA covers between 64 mm² and 729 mm²3, while the Titan3D (see next
section), uses only 4.95 mm² [HSH+17].

2https://www.altera.com/products/fpga/max-series/max-10/overview.html,
accessed: 03/01/2018
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html,
accessed: 03/01/2018

3https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf,
accessed: 01/01/2018
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Figure 6.2: The Tomahawk DBA module including the processor and two 64 MB SDRAM
modules.

Figure 6.3: Overview of the extensions and the processors they are implemented on. The
processors which have actually been manufactured at this point are highlighted.

Low-Power ASICs

An application specific integrated circuit (ASIC) is basically a hard-wired circuit, which
is designed to perform a certain domain-specific task. However, a database also requires
some general purpose computing abilities. Therefore, it makes sense to extend general
purpose computing units with selected ASICs. To also save energy, extensible low-power
processors like the Tensilica LX5 can be used for this purpose. This requires the domain
experts on all levels from the circuit design to the software development to work together,
which is exactly what was done as a part of the large-scale research project Center for
Advancing Electronics Dresden (cfaed) [CLK+17]. As a result, several generations of the
Tomahawk System-on-Chip (SoC), which features different ASICs on its processing units,
were designed, built, and tested.

Generally, the Tomahawk platform [AMN+14] consists of two subsystems called control-
plane and data-plane as illustrated in Fig. 6.1. The control-plane subsystem comprises
a CPU (traditional fat core), a global memory and peripherals, whereas this CPU is also
called application core (App-Core). The App-Core is responsible for executing the ap-
plication control-flow. The data-plane subsystem consists of a number of processing el-
ements (PEs), each equipped with a local program and data memory. PEs are not able
to access the global memory directly, instead a data locality approach is exploited using
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Figure 6.4: Runtime comparison between TaskC and M3. TaskC runtimes are not differ-
entiated by selectivity since the amount of transferred data is always the same.

scratchpad local memory. That means, the PEs are explicitly isolated from the control-
plane subsystem. The data-plane subsystem is used as an accelerator for the control-
plane. Therefore, this subsystem can be seen as slave unit in the overall system architec-
ture. Both subsystems are decoupled logically and linked together through a controller
called Core Manager (CM). The CM is responsible for the task scheduling of the PEs, the
PE allocation, and data transfers from global memory to the PEs and vice versa. Addi-
tionally, the CM can perform frequency scaling of the PE cores to minimize the power
consumption.

Based on the overall collaborative setting in the cfaed project, this Tomahawk platform
could be tailored for database requirements. A number of modifications has been added
to enhance data processing. This includes minor and uncritical changes like an enlarged
scratchpad memory of the PEs as well as more sophisticated enhancements like special-
ized instruction set extensions for the PEs, realized by ASICs. To further increase the per-
formance, the DMA controller of the global memory has been enhanced to push down
data intensive operations, like filtering or pointer chasing. The objective of this DMA en-
hancement (or intelligent DMA, iDMA) is to reduce the necessary data transfer between
the control and data-plane which is clearly a bottleneck for processing large amounts of
data.

The overall development of the Tomahawk is conducted in cycles, where the first ver-
sion to feature a specialized instruction set for database operations is the Tomahawk 3.
Therefore, it is also called the Tomahawk Database Accelerator (DBA) (Fig. 6.2). The Ti-
tan3D [HAS+16] was a prototype processor representing a single PE. Further, there are
processor prototype designs, which were not built in reality, namely BitiX [HKA+16] and
Hashi [AHF+14]. An overview of the different extensions is shown in Figure 6.3. A more
detailed explanation of the layout of these instructions and of the iDMA can be found
in [UHK+17].

Application of Low-Power ASICs

During several projects, which were preceding this work, we were investigating two
challenges of the Tomahawk:

1. Since it is bare metal without any operating system, how can it be used in the most
efficient and convenient way?
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2. How can the offered instructions be applied beyond their intended use to gain max-
imum performance at minimal energy consumption?

For the first challenge, we considered two different concepts: TaskC, which is a pro-
gramming interface introduced alongside the hardware concept, and M3, a minimalist
microkernel-based operating system developed at the operating system group of TU
Dresden.

Generally, the TaskC concept is similar to CUDA kernels or OpenCL kernels. Therefore,
the implementation of query operators is straightforward. A database query is a data
flow graph represented as host program and within this program, several tasks can be
called, whereas we have to explicitly specify the parallelism by defining the number of
tasks for each operator based on the data size. The size of input and output arrays must
be stated when a task is started. The CM is responsible for the initialization of any data
transfers and for dispatching the tasks to the PEs. Unfortunately, query processing with
TaskC using the proposed Core Manager suffers from the limitation that the resulting
set of data has to be estimated before the task is executed producing unnecessarily large
return arrays. In typical database systems, this size is only known at runtime, after pro-
cessing the input data. Furthermore, the whole output array is always sent back to the
DRAM, regardless of the number of results that have actually been written. This leads
to many expensive transfers which is especially bothering when the resulting dataset is
rather small, compared to the input dataset.

The concept of M3 is to run a microkernel on a dedicated core and remote-control the
other cores. That is, both the microkernel and the applications run alone on their cores,
whereas the applications get linked against a library that provides them with abstrac-
tions for application creation, communication, and memory management. In contrast
to TaskC, where tasks are isolated by definition because they cannot communicate with
other PEs or the DRAM, a central point of M3 is to increase the flexibility for applica-
tions by allowing them to communicate. However, allowing communication requires
isolation, i.e. M3 needs to ensure that applications cannot influence or even destroy each
other, because otherwise the system cannot be used by multiple applications at the same
time. Since the microkernel is running on a dedicated core, it is not involved in a com-
munication between applications, but data is directly exchanged between the cores the
applications run on. For that reason, M3 builds upon a small hardware component for
each core, that allows to establish communication channels between cores or between a
core and a memory. This hardware component can be used by the application, but its con-
figuration, i.e. where data can be sent to, for example, is not accessible by the application,
but only by the microkernel. Thereby, the communication capabilities of applications are
in complete control of the microkernel. The M3 kernel and library allows event driven
data transfer, i.e. data is only sent when necessary and the receiver implements an event
handler for processing incoming messages. It may be expected that the application can
profit from the absence of unnecessary transfers.

To test this hypothesis, we applied the evaluation of a selection with 3 predicates. In
TaskC, 4 tasks, one per PE, is started and each task evaluates every predicate. This elim-
inates any memory accesses for intermediate materialization between predicate evalua-
tions. However, the amount of data written back to memory is as large as defined when
the tasks were spawned, which is the same amount as the input size. This is necessary
to not lose any results, because we do not know the size of the result set at the beginning
of a task. In M3, two PEs evaluate the first predicate. The result of this evaluation is
sent to two other PEs, which evaluate the remaining two predicates. Only the result of
the last evaluation is written back to memory. Figure 6.4 shows the execution time for
our query for M3 with different selectivities and for TaskC, where there is no runtime
difference depending on the selectivity. Hence, the TaskC concept initially developed
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for mobile communications, which has a fixed sender-receiver-model, is not suitable for
query processing, whereas the microkernel approach is promising.

The second challenge was the use of the specialized instructions. What seemed like an
easy task, which only requires some cooperative knowledge exchange, turned out to be
more tricky than expected. For instance, instructions on the Tomahawk like intersection,
union, sort, and difference, perform this operation on a number of sequentially read val-
ues and return the result, which is optimal for working on columnar data. What they
do not return is an additional position or index list, or a bitmap. Thus, a projection to
retrieve the remaining parts of a tuple is not possible, which reduces the applicability
of the operations to index lists. However, if an operator is executed in two phases, the
instructions can still be used in the first phase. The idea is to determine the selectivity
or cardinality of a result set of an operator in the first phase. The actual result is not
written during this first phase. As we have learned, it can be useful to know the size of
a result set, e.g. to not write unnecessary data, not allocate unnecessarily large amounts
of memory, or optimize the order of operators. The second phase executes the operator
again and writes the final result, this time without the specialized instructions, which do
not provide the desired output. In [HAS+16] we have shown exemplarily that this does
indeed increase the average overall query performance including both phases.

6.3 FUTURE RESEARCH TOPICS

The development of SIMD instruction sets is as vivid as the database community present-
ing new systems and architectural concepts every year at the established conferences. For
this reason, the topic of this thesis stays exciting and can serve as the starting point for
further research. In the following, we will briefly present a few ideas for this future re-
search and development.

Integration of Novel Architectures and Instruction Sets As we have shown, the land-
scape of hardware for vectorized processing is manifold and developing. For instance,
the most recent SIMD instruction set of ARM, SVE, provides scalable vector sizes. This
creates new challenges for our TVL and for vectorized programming in general, e.g. con-
stants like the vector size are not known at compile time anymore. It is also crucial to
examine any new instruction set for its ability to tackle the inherent challenges of large
vector register, which is often a prerequisite to overcome the algorithmic challenges, as
we have shown for the RLE example. This new variety in vector sizes and the fact that
current software is not developed for the new instruction set, makes an abstraction of
SIMD programming more important than ever before.

Moreover, there is a project integrating the instructions of the vector engine SX-Aurora
into our TVL. This will give us the opportunity to use a common codebase to investigate
the interplay of the vector engine with its Intel Skylake host processor for efficient query
processing. That means, we want to leverage the wide vector registers as well as the high
memory throughput of the vector engine while compensating the shortage of processing
logic on the SX-Aurora with the Intel Skylake.
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Optimization Push-Down As well as our optimization works, we still have to use tools
provided by the operating system to change CPU frequencies, and we have to know our
processing styles at query compile time. To use the tools of the operating system, we
spawn a separate thread, which runs on an otherwise idle NUMA node. We do this to
ensure a flawless use of the CPUfreq interface even when the remaining system is heavily
used by I/O intensive threads. This additional step of interface usage could be avoided
if the operating system was configuring its frequency by itself according to the specific
hardware, current overall system usage, the used instruction set, and the kind of recent
memory accesses pattern. The case for the choice of instruction sets is different, since
this is defined at compile time. However, a compiler could use primitive profiles to nar-
row down the selection of instruction sets and produce several variants, which can be
chosen from depending on the system usage. Moreover, a global database containing
the primitive benchmark results for different systems can eliminate the requirement for
individual benchmarks on each instance of a system. Such databases already exist for
graphic benchmarks. Thus, given a userbase, which is large enough, and risking less
accuracy due to shortened benchmarks, this is a realizable goal.

Query Prioritization With the physical constraints of vectorization in mind, the prior-
itization of queries gets another dimension. For instance, cores executing low-priority
queries can be advised to use only scalar code or SSE, while high-priority queries are al-
lowed to use AVX-512. This allows for less frequency down-scaling on the whole system,
because AVX2 and AVX-512 scale down the core frequency if multiple cores are used,
where this effect is less significant with scalar or SSE processing.

Hardware Development As briefly shown in Section 6.2, hardware development does
not have to be a one-sided process. In a collaborative environment, feedback from soft-
ware developers can influence hardware design decisions. For query processing, there
are a few features, which are worth considering. Since AVX512 has turned out to not
be the final answer for all memory intensive workloads, the optimization potential may
lie somewhere else. A few of these things could be an upgrade of the memory buses in
size and number, and moving the computation closer to memory. The latter conforms to
the electrical engineering definition of in-memory processing, similar to the previously
mentioned iDMA approach. Especially automatic compression and decompression in
memory and in cache could be extremely beneficial to overcome the memory wall. How-
ever, as our experience has shown, academic research is only able to provide prototypes.
Large scale field tests and production requires industrial engagement.
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