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Abstract

There has been a lot of research on machine-readable representations of words for natural
language processing (NLP). One mainstream paradigm for the word meaning repres-
entation comprises vector-space models obtained from the distributional information of
words in the text. Machine learning techniques have been proposed to produce such
word representations for computational linguistic tasks. Moreover, the representation
of multi-word structures, such as phrases, in vector space can arguably be achieved
by composing the distributional representation of the constituent words. To this end,
mathematical operations have been introduced as composition methods in vector space.
An alternative approach to word representation and semantic compositionality in natural
language has been compositional matrix-space models. In this thesis, two research
directions are considered. In the first, considering compositional matrix-space mod-
els, we explore word meaning representations and semantic composition of multi-word
structures in matrix space. The main motivation for working on these models is that
they have shown superiority over vector-space models regarding several properties. The
most important property is that the composition operation in matrix-space models
can be defined as standard matrix multiplication; in contrast to common vector space
composition operations, this is sensitive to word order in language. We design and
develop machine learning techniques that induce continuous and numeric representations
of natural language in matrix space. The main goal in introducing representation models
is enabling NLP systems to understand natural language to solve multiple related tasks.
Therefore, first, different supervised machine learning approaches to train word meaning
representations and capture the compositionality of multi-word structures using the
matrix multiplication of words are proposed. The performance of matrix representation
models learned by machine learning techniques is investigated in solving two NLP tasks,
namely, sentiment analysis and compositionality detection. Then, learning techniques for
learning matrix-space models are proposed that introduce generic task-agnostic repres-
entation models, also called word matrix embeddings. In these techniques, word matrices
are trained using the distributional information of words in a given text corpus. We
show the effectiveness of these models in the compositional representation of multi-word
structures in natural language.

The second research direction in this thesis explores effective approaches for evaluating
the capability of semantic composition methods in capturing the meaning representation
of compositional multi-word structures, such as phrases. A common evaluation approach
is examining the ability of the methods in capturing the semantic relatedness between
linguistic units. The underlying assumption is that the more accurately a method of
semantic composition can determine the representation of a phrase, the more accurately
it can determine the relatedness of that phrase with other phrases. To apply the semantic
relatedness approach, gold standard datasets have been introduced. In this thesis, we
identify the limitations of the existing datasets and develop a new gold standard semantic
relatedness dataset, which addresses the issues of the existing datasets. The proposed
dataset allows us to evaluate meaning composition in vector- and matrix-space models.
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2 Chapter 1. Introduction

1.1 Overview

As the amount of text data that humans produce grows overall, the need to intelligently
and automatically process it in order to extract different types of knowledge also increases
(Socher, 2014). Computational linguistics is the study of how to understand, represent,
and produce human (natural) language from a computational perspective. Natural
language processing (NLP) is an interdisciplinary field that draws on artificial intelligence
and computational linguistics and refers to the automatic computational processing of
human languages. It explores how human language can be intelligently and automatically
processed using various automated techniques. In general, it deals with the interaction
between computers and humans, and the purpose is to make computers (machines)
capable of understanding the human language. The ultimate goal of computational
linguistics and NLP is to build autonomous machines that can communicate freely in
natural language (Hausser, 2001).

NLP is very challenging, as human language is ambiguous and always changing
(Goldberg, 2017). For instance, “The man saw the girl with the telescope.” can
be interpreted in different ways. New idioms may be constructed that do not exist
before (Strongman, 2017). Also, another major challenge is that human language is
unstructured. Unstructured data usually refers to information that cannot be represented
with a predefined data model, such as a relational database, and data is not tabular
(Gandomi and Haider, 2015). In terms of natural language, Email messages and word
processing documents are examples of unstructured linguistic data. Humans produce
unstructured natural language, and are capable of interpreting its semantics. The term
semantics in computational linguistics generally refers to the study of how symbols in
natural language carry information about the world, or specifically, the study of the
meaning of a word, phrase, or any piece of text in human language (Saeed, 1997).1 In the
theories of meaning in linguistics, Akmajian et al. (2010, p. 226-234) and Riemer (2010,
p. 24-38) point out to the different answers that have been proposed to the question of
“what is meaning?”. Some answers are as follows: the denotational theory of meaning,
which states that the meaning of a linguistic expression is the thing it refers to or the
(actual) object it denotes; the mentalist theory, which states that if the meaning of a
linguistic expression is not an actual object, it is an idea, feeling, concept, or thought,
that humans produce in their minds when the expression is used; the use theory of
meaning, which says that the meaning of a linguistic expression consists in the way it is
used in the language when humans communicate. Riemer (2010) argues that all theories
of meaning are pertinent to the notion of meaning in linguistics; that is, “recognizing
that the notion of meaning in linguistics is a way of talking about the factors which
explain the language use, we can see that all theories are relevant to this task” (p. 42).
In this thesis, following the idea of Harris (1954), we rely on a specific notion, that is,
the meaning of a linguistic expression comes from its usage. This notion will be made
more evident in the next subsection under the distributional hypothesis definition.

Unstructured linguistic data, however, is not readily understandable by tools and
machines for the automatic computational processing of language. Therefore, tools and

1In this thesis, the term semantics in a general sense is used and refers to meaning. Therefore, these
terms are used interchangeably.
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machines require algorithms that take unstructured human-produced text as input and
produce a structured machine-processable representation of data as output. Machine
learning techniques have been introduced to automatically produce such structured
representations of natural language. They are used to understand the characteristics and
features of the linguistic units1 and to automatically produce the desired representations
of natural language for computational processing. This sub-discipline of machine learning
in NLP is called representation learning. More specifically, machine learning techniques
train a model for natural language representation, called a representation model.

Besides the challenges mentioned above, natural language has a number of properties
that makes representation learning more challenging; specifically, it is discrete symbolic
and compositional (Goldberg, 2017, p. 1-2).

• Discrete symbolic: Letters are the basic linguistic units of natural language. The
combination of letters as discrete symbols creates morphemes and subsequently
words that convey meanings.2 Words denote objects, concepts, and knowledge.
For instance, the words tree and flower are distinct symbols denoting distinct
objects and maintaining different meanings. Then, words as discrete symbolic
representations of objects form sentences, and sentences form a piece of text.

• Compositional: Words form phrases (sequences of words) and sentences. The
meaning of a phrase can be broader than the meaning of its constituent words.
To understand a phrase or sentence, we need to work beyond the level of words
(Goldberg, 2017). Also, words can be combined in many ways to form new meanings.
Compositionality is a natural property of human language. According to Frege’s
principle of compositionality, “The meaning of an expression is a function of the
meanings of its parts and of the way they are syntactically combined” (Partee,
2004, p. 153). Therefore, the meaning of a phrase can be obtained from combining
the meaning of its words (Cresswell, 1976; Halvorsen and Ladusaw, 1979).

In view of the above-mentioned natural language properties that pose challenges for
representation learning, this thesis focuses on two research directions:

1. Approaches and solutions to representation learning (i.e., representation models),
in computational linguistics

2. Approaches for evaluating the capability of the representation models to overcome
the challenges specific to semantic composition.

1.1.1 Representation Models in Computational Linguistics

Developing machine-processable word representations has been a main challenge in
computational linguistics. Among the different representation models to overcome the

1A unit in natural language may refer to a letter, morpheme, word, phrase, clause, sentence, or text
document.

2Morphemes are the smallest meaningful linguistic units in a natural language. However, sometimes
they do not stand alone (i.e., they do not convey any meaning and appear as affixes to attach to a word,
creating a new one). Words always exist on their own and have a meaning (Spencer, 1991). Therefore,
in this thesis, we are interested in words.
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challenges mentioned above are successful continuous and numeric high-dimensional
Vector-Space Models (VSMs). VSMs can be used by various tools and techniques to
automatically process natural language. These models represent characters, words, and
documents by dense numeric vectors in a vector space.

Morphemes are the smallest meaningful linguistic units, however, sometimes they do
not stand alone. Words are the smallest meaningful units that always stand on their
own and maintain their meaning (Spencer, 1991). Therefore, we are interested in word
meaning representations. Popular VSMs represent words by continuous numeric vectors
(mathematical objects). One influential approach to produce word vector representations
in VSMs are distributional representations, which are generally based on the distributional
hypothesis first introduced by Harris (1954). The distributional hypothesis presumes
that “difference of meaning correlates with difference of distribution” (Harris, 1954, p.
156). Therefore, Based on this hypothesis, “words that occur in the same contexts tend
to have similar meanings” (Pantel, 2005, p. 126). Context can be defined generally as a
set of sentences in which the word occurs, or the words that co-occur with the target
word in a give text document. A category of approaches that are based on the idea
of the distributional hypothesis are Distributional Semantic Models (DSMs)., which
produce word vectors summarizing their patterns of co-occurrence in a given context
(Baroni and Lenci, 2010). In these models, words with similar distributions in a context
tend to have closer representations in the vector space. These approaches to semantics
share the usage-based perspective on meaning; that is, the representations focus on the
meaning of words that comes from their usage in a context. Therefore, the context
surrounding an unknown word gives an idea about the meaning of the word. We consider
this perspective on the meaning of linguistic units throughout this thesis. Semantic
relationships between words in NLP can be also understood using the distributional
representations. Many recent approaches utilize machine learning techniques with the
distributional hypothesis to obtain continuous vector representations that reflect the
meanings in natural language, such as word2vec proposed by Mikolov et al. (2013b).

To obtain the representation of larger linguistic units in VSMs, such as phrases
(sequences of words) or sentences, mathematical approaches to composition are intro-
duced that combine the mathematical objects of the word representations to obtain
the representations of phrases and sentences. In this way, NLP tools and systems can
process the larger units using their composed representations. These approaches have
been proposed to address compositionality challenges. Compositional Distributional
Semantic Models (CDSMs) obtain the compositional representation of larger units by
composing the distributional representations of words using various composition meth-
ods. Successful mathematical operations for composition in VSMs have been vector
addition and element-wise vector multiplication. However, these operations are not
word-order sensitive. Therefore, these approaches for compositionality simplify language
assumptions by ignoring word order and grammatical structure. For instance, the vector
representation of the sequence “green light” will be identical to the vector representation
of the sequence “light green,” and therefore, the NLP system cannot differentiate between
the meanings of the two sequences.

The first research direction in this thesis is considering the challenges mentioned
above and the shortcomings of the proposed approaches to composition in VSMs and
investigating the representation models in matrix space introduced by Rudolph and
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Giesbrecht (2010), called Compositional Matrix-Space Models (CMSMs). As opposed to
vector space, matrix space is used to reflect the meaning of words in matrix representations.
Rudolph and Giesbrecht (2010) provide a number of advantageous properties of these
models for NLP, showing that they can simulate most of the known vector-based
mathematical operations for composition. Our main motivation for selecting these
models is that they have shown superiority over VSMs regarding several properties. The
most important property is that the composition operation in the matrix-space models
can be defined as standard matrix multiplication (Rudolph and Giesbrecht, 2010); in
contrast to common vector space operations, this is word-order sensitive. Therefore, for
instance, the matrix representation of the sequence “green light” will not be identical to
the matrix representation of the sequence “light green” in the matrix space. CMSMs
have remained largely unexplored in NLP with a few notable exceptions (Yessenalina
and Cardie, 2011; Irsoy and Cardie, 2015).

The main goal in this thesis is designing and developing machine learning techniques
that can automatically induce continuous and numeric representations of discrete and
symbolic human language in matrix space. More specifically, different machine learning
approaches to train word meaning representations in CMSMs and capture the composi-
tionality of larger units using matrix multiplication of words are investigated. The input
to these machine learning techniques is human language, and the output is a represent-
ation model in the matrix space. Thus, learning techniques transform (map) distinct
symbols in natural language into mathematical objects (matrices) that can be operated
on for computational processing. The main goal of introducing representation models is
to enable NLP systems to understand the natural language to solve multiple natural
language-related tasks. Therefore, the performance of the CMSMs, as representation
models learned by machine learning techniques, is investigated in solving several NLP
tasks. For this purpose, for each NLP task, a learning technique for the CMSMs is
proposed.

Another contribution of this research is studying how CMSMs can be represented by
a type of mathematical model of computation called Weighted Finite Automata (WFA).
The main idea in this study is to show that, if WFA are obtained using learning algorithms,
based on the correspondence between CMSMs and WFA, the learned automata can be
mapped to CMSMs for use in NLP.

1.1.2 Evaluating Semantic Composition in Representation Models

As mentioned above, influential approaches to represent word meanings are through
word vectors that capture the patterns of co-occurrence in a given context (i.e., the
distributional representations; Baroni and Lenci, 2010). In addition, different composition
methods have been introduced to achieve the representation of larger linguistic units
(e.g., phrases) from word representations and capture semantic compositionality. Each
semantic composition method has advantages and limitations. Approaches for evaluating
the capability of these methods to capture the compositional meaning representations
have been one of the challenges in NLP.

A common approach to evaluating word representation models is through the models’
ability to rank pairs of words by their closeness in meaning. Closeness is a measure of
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how close two terms1 are in relation to their semantics; that is, two terms are considered
to be semantically close if there is a sharing of some meaning (Mohammad, 2008). For
instance, the two words teacher and tutor are closer in meaning than the two words
teacher and fish. Sharing of meaning is defined based on the lexical–semantic relations
(i.e., the semantic relations between the lexical items; Cruse, 1986). He points out that
the number of lexical–semantic relations is innumerable, however, certain relations, such
as synonymy, hypernymy (hyponymy), meronymy (holonymy), and antonymy, received
more attention as they are systematic. Morris and Hirst (2004) call the systematic
relations that form predetermined structures as classical lexical–semantic relations, and
the others as non-classical lexical–semantic relations. Closeness in meaning, defined
based on the lexical–semantic relations, can be of two kinds: semantic similarity and
semantic relatedness. Semantically similar terms tend to share several properties. For
example, apples and bananas are both edible, grow on trees, have seeds, and so on. In
terms of lexical–semantic relations, two terms are considered semantically similar if there
is a hypernymy, (co-)hyponymy, synonymy, or antonymy relationship between them as
these relations share common properties (Budanitsky and Hirst, 2001; Mohammad, 2008;
Agirre et al., 2009; Baroni and Lenci, 2010).

Semantically related terms may not have many shared properties, but have at least
one classical or non-classical relation between them that allows them to be considered
semantically close. For example, consider the meanings of coffee and cup. They are
not similar as they have practically no common properties: coffee is a drink, while cup
is an object with a specific shape. However, both are related as they are associated
in the world by commonly co-occurring in a shared event of drinking a cup of coffee
(Mohammad and Hirst, 2005; Harispe et al., 2015). Therefore, two terms are considered
semantically related if there is any lexical–semantic relation between them, classical or
non-classical. In general, similar terms are also related but there are terms that are not
similar but strongly related (associated) and co-occur in shared events. For instance,
surgeon and scalpel are related through the non-classical relation, and doctor and surgeon
are also semantically related through the hypernymy relation; however, they are also
similar as surgeon is a hyponym of doctor. Therefore, semantic relatedness is the broader
class subsuming semantic similarity. Lexical–semantic relations, semantic similarity, and
semantic relatedness are explained in more detail in Chapter 2.4.

Previous studies have shown that the ability to assess semantic relatedness between
terms is central to the understanding of natural language (Hutchison, 2003; Huth et al.,
2016). Therefore, the quantification of semantic relatedness between pairs of terms
in natural language is needed for evaluation purposes in NLP. For this, gold standard
evaluation datasets consisting of pairs of terms with semantic relatedness scores are
created. A gold standard dataset is a dataset that is accepted as a reliable and standard
reference and the best available resource for evaluating methods and models. It is usually
annotated and corrected by human experts. To obtain the semantic relatedness scores in
datasets, human judgments are needed to rank the semantic relatedness between pairs
of terms.

The approach to evaluating a representation model is as follows: given term pairs in a
gold standard semantic relatedness dataset, the closeness of the two term representations

1Terms can be words, phrases, or sentences.
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obtained from a representation model are computed using some metrics, such as the
cosine between the two vector or matrix representations. Then, the computed values are
compared with the gold standard scores in the dataset.

Existing datasets of semantic relatedness in English, such as that by Finkelstein
et al. (2002), only focus on single words (unigrams). However, the concept of semantic
relatedness applies to larger linguistic units produced by composition, such as phrases
or sentences. Therefore, we argue that semantic relatedness can be used to evaluate
methods of semantic composition. Bigrams (two-word sequences) are important in
semantic composition as they are the smallest units formed by composing words. Even
though there is a large body of work on how to represent the meanings of sentences (Le
and Mikolov, 2014; Kiros et al., 2015; Lin et al., 2017), there is relatively little work on
how best to compose the meanings of two words to represent the meaning of a bigram.
One reason for this is a lack of gold standard evaluation resources. Therefore, phrase-
based gold standard semantic relatedness datasets for the development and evaluation
of representation models are useful.

Existing datasets also suffer from shortcomings due to the techniques employed for
annotating data with human judgments. Except in the case of a few small but influential
datasets, such as those by Miller and Charles (1991) and Rubenstein and Goodenough
(1965), annotations were obtained using the rating scales technique. Here, annotators
are asked to choose from categorical or discrete numerical values to rate the data. For
instance, when annotating a pair of words for semantic relatedness, the annotator can
be asked to choose among integer values from 1 to 5, with 1 representing that the
two words are least semantically related or semantically unrelated, and 5 representing
that the words are strongly semantically related. The rating scales technique suffers
from significant known limitations, including inconsistencies in annotations by different
annotators, inconsistencies in annotations by the same annotator at different times, bias
toward a portion of the scale, and problems associated with a fixed granularity (an
annotator may want to choose 1.5 instead of 1 or 2; Presser and Schuman, 1996).

The second research direction in this thesis is identifying the limitations of the existing
gold standard datasets and developing a semantic relatedness dataset that addresses the
issues of the existing datasets. The introduced dataset can then be used to evaluate
semantic composition methods.

1.2 Contributions and Outline of the Thesis

In the following, we outline the contributions of this thesis and clarify the publications
that the results in this thesis are based on. Chapter 2 first sets up the foundation of
the thesis. The next three chapters outline our main contributions to the proposed two
research goals. Chapters 3 and 5 focus on the first research direction, while Chapter 4
concentrates on the second research direction. The conclusion in Chapter 6 distills the
findings and discusses shortcomings and potential future directions of the research. We
give a more detailed chapter summaries in the following.

Chapter 2 Summary
Chapter 2 sets up the foundation of the thesis. It covers the relevant background
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topics, including representation learning and representation models (distributional and
distributed representations) in computational linguistics, the basics of neural networks,
compositionality in computational linguistics, semantic composition methods, CMSMs
and their applications in NLP, and evaluation approaches for semantic composition
methods in compositional representation models.

CMSMs were introduced by Rudolph and Giesbrecht (2010) as word-level representation
models in matrix space that can capture compositional representations of larger linguistic
units, such as phrases, using standard matrix multiplication. This chapter reviews the
advantageous properties of these models for NLP on the theoretical side, showing that
they can simulate most of the known vector-based semantic composition operations.

While this chapter focuses on the background and foundations, Section 2.3.3 is devoted
to our contribution about the correspondence between CMSMs and WFA which is based
on our publication, Asaadi and Rudolph (2016). Since this contribution is closely related
to the introduction and fundamentals of CMSMs, it is presented in this chapter.

Chapter 3 Summary
Chapter 3 provides an experimental investigation of CMSMs as an alternative to VSMs

in NLP applications. For this purpose, the following two NLP tasks are considered:
sentiment analysis and compositionality detection. Compositionality plays an important
role in such tasks, and therefore, they are suitable for evaluating the capability of CMSMs
in capturing word semantic representations and compositionality 1.

Considering the task of sentiment analysis, a supervised learning technique based on
linear regression is proposed to train word matrices in CMSMs from training datasets,
which consist of phrases (sequence of words) and their real-valued sentiment scores.
During the training of the model, compositional matrix representations of phrases are
realized via standard matrix multiplication. Word matrices are trained to contain
semantic and sentiment-related information. The novelty of our approach is a two-step
learning procedure, where the result of the first step is used as initialization for the
second step. After training, the learned model is used to predict the sentiment scores of
previously unseen phrases using the trained word matrices and matrix multiplication
as the composition operation to obtain phrase matrices. Experiments are conducted
with two different training datasets and compared with previous learning approaches to
CMSMs in sentiment analysis (Yessenalina and Cardie, 2011; Irsoy and Cardie, 2015),
as well as to VSMs. The results show the outperformance of the proposed learning
approach for CMSMs over existing approaches for learning CMSMs. It also achieves
competitive performance with learning approaches for VSMs.

In the task of compositionality detection, a supervised learning technique based on
linear regression is also proposed for training CMSMs. The learning approach trains a
model that captures compositional phrase matrices from their word matrices. After the
model is trained, an evaluation method is provided to compare the representations of
previously unseen phrases produced by CMSMs with the gold standard representations
of those phrases obtained from standard and reliable resources. This comparison method
presents how well CMSMs detect the compositionality of phrases. The performance of
CMSMs in the compositionality detection task is compared with various compositional

1This task is also called compositionality prediction task.
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VSMs, from unsupervised to supervised models. The results demonstrate outperformance
of CMSMs over some VSMs and competitive performance with some other VSMs in this
task. The investigations in this chapter show that there are suitable learning methods for
training CMSMs in NLP downstream tasks while requiring fewer training parameters.

Section 3.2 of this chapter which is about learning CMSMs for sentiment analysis is
based on our publication, Asaadi and Rudolph (2017). Section 3.3 is an extension to our
publication.

Chapter 4 Summary
Chapter 4 proposes a gold standard Bigram Semantic Relatedness Dataset (BiRD),

which is then used for examining semantic composition methods. BiRD consists of
3,345 English term pairs (i.e., bigram–bigram and bigram–unigrams) with an associated
semantic relatedness score between the two terms obtained from human annotations.
Each bigram occurs in about eight distinct pairs in BiRD. This is yet another aspect
that makes BiRD unique, as existing datasets were not designed to include terms in
multiple pairs.

The first step to create the dataset is collecting the pairs of terms for annotation.
A lexical database and text resources are used to collect the term pairs. A second
step is instructing the annotators (humans) to annotate our collected data using a
comparative annotation technique, called Best–Worst Scaling (BWS; Louviere, 1991;
Cohen, 2003; Louviere et al., 2015). BWS addresses the limitations of the rating scales
technique by applying comparative annotations (Louviere et al., 2015; Kiritchenko and
Mohammad, 2017). In the employed technique, annotators are not asked to assign a
semantic relatedness score to the terms in pairs. Instead, they are asked to answer some
provided questions by comparing a given set of term pairs. That is, annotators are
given n term pairs at a time. They are asked which pair is the best (highest in terms
of the property of interest, in our case, the closest in meaning or most related) and
which is the worst (lowest in terms of the property of interest, in our case, least close or
least related). After the annotation task is completed by the annotators, the semantic
relatedness score for each pair is computed based on the best–worst responses of the
annotators using a simple counting procedure (Orme, 2009; Flynn and Marley, 2014).
The final step is investigating the quality of the obtained scores. A commonly used
measure of quality in dimensional annotation tasks is the reproducibility of the final
scores—the extent to which repeated independent manual annotations produce similar
results. To assess this reproducibility, consistency of annotations is determined using a
common approach called Split-Half Reliability (SHR; Cronbach, 1951), which provides
a measurement of the reliability of the created dataset. SHR shows that the semantic
relatedness annotations are highly reliable; that is, if the annotations were repeated,
then similar scores and rankings would be obtained. Therefore, BiRD is introduced as a
gold standard semantic relatedness dataset.

We use BiRD to evaluate semantic composition methods on their ability to score
the semantic relatedness between term pairs. The underlying assumption is that the
more accurately a method of semantic composition can determine the representation
of a bigram, the more accurately it can determine the relatedness of that bigram with
other terms. More specifically, we apply various semantic composition methods to word



10 Chapter 1. Introduction

representation models to obtain a compositional representation of bigrams. Then, we
study which composition methods capture the semantic representation of terms in pairs
more accurately. For this purpose, we first compute the semantic relatedness scores
between the representations of terms in pairs using some measures, such as the cosine
between the two vector representations. Then, we compare the obtained scores to the
gold standard scores in BiRD.

The dataset is analyzed to obtain insights into the distributions of semantic relatedness
scores for pairs associated through various lexical–semantic relations. Observations
provide useful suggestions for the creation of new datasets. This chapter is based on our
publication, Asaadi et al. (2019).

Chapter 5 Summary
Chapter 5 introduces CMSMs as generic word representation models in matrix space

(also called word matrix embeddings). Machine learning techniques are proposed to
obtain word embeddings. Word matrices are trained using distributional information of
words based on the distributional hypothesis and Point-wise Mutual Information (PMI)
between words in a given text corpus. As opposed to Chapter 3, where word matrices
are trained on a specific task, such as sentiment analysis, in this chapter, the proposed
models are not trained to capture task-specific information. Therefore, they are called
task-agnostic models, meaning that the semantic information embedded in the word
matrices are not specific to any NLP task. The embeddings provide continuous word
representations of natural language and reflect the semantic relationships between words.

Two learning techniques to obtain word matrix embeddings are proposed in this
chapter. The first is a supervised learning technique based on linear regression, which is
called PMI-based CMSM. It utilizes PMI values for training word matrices, which present
global information about the association between words co-occurring in a given text
corpus. The second technique, called the Compositional Order-Sensitive Matrix Model
(COSMo), is a self-supervised method for training a two-layer linear neural network,
inspired by the skip-gram method (Mikolov et al., 2013a). Self-supervised learning refers
to a learning task in which there are no predetermined labeled training data for training
the matrices and the input data to the neural network determine the labels during the
training procedure. At the core of the method is non-commutative matrix multiplication
during training, which, as opposed to the skip-gram method, is word-order sensitive
when training the word matrices. It is also trained based on the distributional hypothesis,
which provides local information about the association between words. Based on this
hypothesis, words with similar distributions tend to have a close meaning and close
representations in the space.

To investigate the performance of the introduced word matrix embeddings on semantic
representation and compositionality, we evaluate them using the two following evaluation
tasks: (1) semantic relatedness (closeness) and (2) Semantic Textual Similarity (STS).
These tasks refer to determining the relatedness and similarity degrees between pairs of
phrases and sentences, respectively. The performances of the proposed matrix embeddings
in capturing the compositional representation of terms are compared against two existing
matrix representation models (Mai et al., 2019; Chung et al., 2018), as well as skip-
gram word vector embedding (Mikolov et al., 2013b). Compositional representation in
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matrix space is obtained using the multiplication of word matrices. In vector space, it is
obtained using the two following operations: (1) vector addition and (2) element-wise
multiplication; these approaches are reported separately. The results show that the
introduced matrix embeddings outperform the model proposed by Chung et al. (2018)
and perform competitively with the model proposed by Mai et al. (2019). Moreover,
the skip-gram with vector addition as the composition operation outperforms all other
models, while the skip-gram with vector multiplication fails to outperform any model.

Publications:

• Shima Asaadi and Sebastian Rudolph. ‘On the Correspondence between Composi-
tional Matrix-Space Models of Language and Weighted Automata’. In: Proceedings
of the SIGFSM Workshop on Statistical NLP and Weighted Automata (StatFSM
2016). Ed. by Bryan Jurish, Andreas Maletti, Kay-Michael Würzner, and Uwe
Springmann. Association for Computational Linguistics, pp. 70–74.

• Shima Asaadi and Sebastian Rudolph. ‘Gradual Learning of Matrix-Space Models
of Language for Sentiment Analysis’. In: Proceedings of the 2nd Workshop on
Representation Learning for NLP (RepL4NLP 2017). Ed. by Phil Blunsom,
Antoine Bordes, Kyunghyun Cho, Shay Cohen, Chris Dyer, Edward Grefenstette,
Karl Moritz Hermann, Laura Rimell, Jason Weston, and Scott Yih. Association
for Computational Linguistics, pp. 178–185.

• Shima Asaadi, Saif M. Mohammad, and Svetlana Kiritchenko. ‘Big BiRD: A Large,
Fine-Grained, Bigram Relatedness Dataset for Examining Semantic Composition’.
In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers) (NAACL-HLT 2019). Ed. by Jill Burstein, Christy
Doran, and Thamar Solorio. Association for Computational Linguistics, pp. 505–
516.
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This chapter introduces preliminaries and technical concepts of this thesis and provides
references to the relevant history and prior work. Section 2.1 introduces representation
models in computational linguistics. Section 2.2 introduces the principle of composition-
ality in natural language, and Section 2.3 describes compositional matrix-space models
of language and their properties. Finally, Section 2.4 introduces the concept of semantic
relatedness as an approach to examine semantic composition in NLP.

Before continuing, we introduce some notations and aspects of linear algebra that will
be used throughout this thesis.

Vectors: a vector of dimension d, with d as a natural number, is a list of d real numbers
r1, . . . , rd ∈ R, written as v = (r1, r2, . . . , rd). Each element ri shows a dimension of
the vector. We use lowercase bold font letters to denote vectors and v(i) to refer to
the ith element of vector v. Rd indicates the set of all d-dimensional vectors with
real-valued elements. Element-wise arithmetic operations can be done on vectors such as
vector addition defined as (r1, . . . , rn) + (r′

1, . . . , r
′
n) = (r1+r′

1, . . . , rn+r′
n), and vector

multiplication defined as (r1, . . . , rn) ⊙ (r′
1, . . . , r

′
n) = (r1 ·r′

1, . . . rn ·r′
n). Vector addition

and multiplication are commutative (i.e., v + v′ = v′ + v and v ⊙ v′ = v′ ⊙ v), which
means changing the order of operands does not change the result.

Matrices: an n×m matrix over the reals is an array of real numbers with n rows
and m columns, given two natural numbers n and m. We use uppercase letters to denote
matrices and, given a matrix M , M(i, j) refers to the element in the ith row and the
jth column:

M =


M(1, 1) · · · M(1, j) · · · M(1, m)

...
...

M(i, 1) M(i, j) M(i, m)
...

...
M(n, 1) · · · M(n, j) · · · M(n, m)

 .

M(i, :) and M(:, j) refer to all elements in row i and column j in the matrix, respectively.
The set of all n × m matrices with real number elements is denoted by Rn×m. The
transpose of a matrix can be obtained by switching the row and column indices, in
other words, given a matrix M ∈ Rn×m, its transpose M⊤ is a m × n matrix where
M⊤(i, j) = M(j, i).

Matrices can operate as linear mapping in vector space. An n×m matrix applied to
an m-dimensional vector results in an n-dimensional vector u which is a linear mapping
from the input vector v to the output vector u:

u(i) =
m∑

j=1
v(j) ·M(i, j)

for 1 ≤ i ≤ n. Linear mapping is also realized using standard matrix multiplication in
matrix space. Therefore, MM ′ denotes the linear mapping defined by applying first M
and then M ′. Matrix multiplication of the n× ℓ matrix M and the ℓ×m matrix M ′ is
an n×m matrix N = MM ′ defined by

N(i, j) =
ℓ∑

k=1
M(i, k) ·M ′(k, j).
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Matrix product is associative (i.e., (MM ′)M ′′ = M(M ′M ′′) always holds), and paren-
theses can be discarded, but it is a non-commutative operation (i.e., MM ′ does not
equal M ′M in general). In an n × m matrix, row and column indices can also range
from 0 to n− 1 and m− 1, respectively.

Third-order Tensors: a third-order tensor of dimension m× n× d over real values
is a m array of n× d matrices. Third-order tensors are denoted by uppercase bold font
letters, and T(i, j, k) refers to row j and column k of matrix i in T. Rm×n×d indicates
the set of all tensors with real number elements.

2.1 Representation in Computational Linguistics
When dealing with NLP tasks, tools and systems require a structured machine–processable
encoding of the input linguistic data (e.g., words of a natural language) to understand the
natural language for automatic computational processing. Encoding the natural language
in NLP is called representation, and encoding the meaning of linguistic units, such as
words and sentences, in formal structures is called meaning representation (Jurafsky
and Martin, 2014). Work in meaning representation explores how best to represent the
meanings of linguistic units (e.g., words, phrases, or sentences) to the NLP tasks.

Main approaches to representing natural language differ in a few fundamental ways.
A popular technique is to convert text (a sequence of words) to numeric representations.
One of the most natural approaches is categorical encoding (also called label encoding),
where words of a given text are represented in an increasing order. In this approach,
we first extract the vocabulary from the text. Then, we build a lookup dictionary by
creating a mapping between words and IDs (i.e., each unique word in the vocabulary is
assigned an ID), as for instance shown in Fig. 2.1. One drawback of this approach is
that by treating words as integers, the system may incorrectly assume the existence of
natural ordering. For instance, the dictionary contains entries such as 1: “book” and 2:
“library”. The word with greater ID value may be considered more important by the
NLP system and therefore given a higher weight, which is a wrong assumption.

Word ID
book 1

library 2
magazine 3
journal 4

in 5
exist 6
and 7

Figure 2.1: Example of categorical encoding for a sample sentence “book, magazine and
journal exist in library”.

As Goldberg (2017) asks,“How do we encode such categorical data in a way which is
amenable for us by a statistical classifier?” (p. 89). We need a way to represent natural
language that eliminates the drawback of categorical encoding.
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One–hot representation (Harris and Harris, 2007) is an alternative approach to word
representation. In this approach, given a vocabulary Σ with size |Σ| = V , an ID or index
is assigned to each word in Σ. Then, a function f : Σ → {0, 1}V creates a vector of
length V for each word, where the element corresponding to the word’s ID or index in
the vocabulary is 1 and the other elements are zero as for instance shown in Fig. 2.2.
Therefore, a unique element is associated with each word of the vocabulary. A drawback
of this approach is the immense and sparse representation. For instance, when a text
contains V words, a matrix of size V × V is created where only V elements are one and
the rest of elements are zero, which consumes a lot of storage.

ID
Word book library magazine journal in exist and

1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1

Figure 2.2: Example of one-hot representation of the words in a sample sentence “book,
magazine and journal exist in library”.

A limitation of the mentioned approaches is that information about the syntactic
(arrangement of the words in a sentence) and semantic (meaning of the words in a
sentence) relationships between the words of a text cannot be captured and word
representations are created independently. As an example of a semantic relationship,
consider the word book which can have the meaning of an object to read like “borrow
a book from the library” or of a verb to reserve something like “book a flight”. These
approaches create one representation for book without looking at the semantic relationship
between book and other words in the given sentence. Thus, the representation of book
does not provide information regarding which meaning is used and it is open to multiple
interpretations.

To eliminate the drawbacks of the mentioned approaches, alternative methods have
been introduced such as distributional representations and distributed representations,
which are described in the following.

2.1.1 Distributional Representations
One influential approach to semantic representation is the distributional representation
(also called distributional semantics), which is generally based on the Distributional
Hypothesis first introduced by Harris (1954). The Distributional Hypothesis presumes
that “difference of meaning correlates with difference of distribution” (Harris, 1954, p.
156). John Firth, a linguist, popularized this hypothesis by stating “you shall know a
word by the company it keeps” (Firth, 1962, p. 11).1 More particularly and according
to Pantel (2005), the distributional hypothesis states that “words that occur in the same
contexts tend to have similar meanings” (p. 126). The context of a word can be defined

1Also in (Firth, 1957).



2.1 Representation in Computational Linguistics 17

generally as a set of sentences referred to as a text document where the word occurs, or
as the neighboring words of the target word in a given text document. Therefore, the
context surrounding an unknown word gives an idea about the meaning of the word. A
category of the representation models that produce word representations based on the
distributional hypothesis are Distributional Semantic Models (DSMs). In DSMs, the
meanings of words come from their usage in a context. DSMs are one of the dominant
approaches in VSMs. VSMs introduced by Salton et al. (1975) is an algebraic model
for the representation of any object as a point in a high-dimensional vector space. In
DSMs, vectors in a high-dimensional vector space are used to represent words. Word
meaning representation is then derived quantitatively based on the word’s distributional
information and statistics on word usage in a given text (i.e., from its context) (Goldberg,
2017, p.118). Therefore, word representations in DSMs provide information about
the semantic relationship between them. DSMs are useful in meaning-related tasks
in NLP, such as paraphrase detection1 (Turney, 2013). To produce the distributional
representations of words, Salton et al. (1975) and Deerwester et al. (1990) introduce the
co-occurrence matrix. A term–document co-occurrence matrix computes how often a
term (e.g., a word) occurs in a document (e.g., a sentence or a web page) (Salton et al.,
1975). Rows in the matrix show the words and columns represent the documents. A
word–context matrix shows how often a word occurs in a context if the context is a
phrase, sentence, etc., or how often the word co–occurs with the context if the context
is a word (Deerwester et al., 1990). In the latter case, a context window size is defined
that determines the number of surrounding words in the range of the given word to be
considered as the context words. For instance, a window size of 3 refers to three words
preceding and three words succeeding the given word as the context. A word–context
matrix consists of words in rows and contexts in columns. Each element in the matrix
quantifies the association between a word and a context. There are different ways of
measuring the association between words and contexts, such as raw frequency count of
a word in a context (or the count of co-occurrence of a word with a context). Finally,
each row in the matrix represents the target word vector and each column represents
the context vector (Deerwester et al., 1990). Therefore, each element in the word vector
corresponds to a specific context the word occurs in, and it is separately interpretable.
This way, words that happen in similar contexts have a close vector representation in
the vector space, and thus, a close semantic relationship.

Fig. 2.3 illustrates an example of a word–context matrix given the following three
document excerpts:2

D1. banana and pineapple are tropical fruits.
D2. Boston has available flights to major US cities.
D3. flights to major cities were canceled due to bad weather conditions.

In this example, contexts are defined as the surrounding words of the target words with
a window size of k = 5 (i.e., five words preceding and five words succeeding the target
words in the given document excerpts). An association measure is the number of times

1Paraphrase detection is the task of determining if two phrases or sentences have the same meaning.
2We use document excerpts instead of documents for simplicity purposes.
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Word
Context banana · · · tropical fruit Boston cities

banana 0 · · · 1 1 0 0
pineapple 1 · · · 1 1 0 0

· · · · · · · · · · · · · · · · · · · · ·
flights 0 · · · 0 0 1 2

Figure 2.3: Example of a word–context matrix with a context window size of five.

the word co-occurs with the context, for instance, pineapple and banana co-occurring
once and flights and cities co-occurring twice.

A text, such as a sentence or a document, can also be represented by vectors. Among
the first attempts to represent a text is the Bag-Of-Words (BOWs) representation model
(Harris, 1954) in which the text is represented with an unordered list of its words and
their count in the text. Therefore, in BOWs any information about the order of words is
discarded. This simplifies language assumptions and leads to problems when trying to
understand a text. For instance, consider each document as a sentence and the words in
sentences as the terms:

D1. Banana and pineapple are tropical fruits.
D2. Banana and rambutan are tropical fruits.
D3. Banana and pineapple are yellow fruits.

First, a vocabulary from all sentences is created. In this example, there are eight
unique words in all sentences: Banana, and, pineapple, rambutan, are, tropical, fruits,
and yellow. Using the arbitrary ordering of words listed in our vocabulary, each document
can now be represented with a vector of size V = 8, where each element shows to the
frequency of the corresponding word in the document:

Vocabulary= {Banana, and, pineapple, rambutan, are, tropical, fruits, yellow}
D1 = [1,1,1,0,1,1,1,0]
D2 = [1,1,0,1,1,1,1,0]
D3 = [1,1,1,0,1,0,1,1]

This model has drawbacks at representing texts, such as sparsity and discarding the
word order. As the vocabulary size increases, the dimension of vector representations
also increase. Different arrangements of the same set of words offer different meanings,
which is discarded in BOW.

2.1.2 Distributed Representations
Another approach to obtain distributional representations in VSMs is the distributed
representation (Hinton et al., 1986). In a distributed representation, each word in the
vocabulary set is associated with a low dimensional vector f : Σ → Rd where the
“meaning” of the word is distributed over many dimensions and captured by different
dimensions of the vector. This means that a combination of several dimensions may
capture a given aspect of meaning and that each dimension may contribute to capturing
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several aspects of meaning (Goldberg, 2017, p. 122). Thus, each dimension is not
interpretable separately as opposed to the above-mentioned representations, such as the
word–context matrix in which each dimension corresponds to a specific context the word
occurs in.

Distributed representation models are based on the distributional hypothesis, as they
try to capture the similarity between the words occurring in similar contexts (Goldberg,
2017). Levy and Goldberg (2014) show that distributed representations are deeply
connected to distributional models and current distributed representation models use
distributional signals to learn their representations.

Distributed representations are obtained by machine learning techniques, referred
to as embeddings. More specifically, utilizing neural networks, low-dimensional vector
representations for linguistic units are produced. These representations can be sub-
divided into task-specific representations and task-agnostic representations. Task-specific
representations are trained on a specific NLP task (e.g., sentiment analysis) to obtain
specific information. The definitions are made clear throughout the following section.

In machine learning techniques, a model learns from training samples with respect to
performance measure P and some task T , if its performance as measured by P improves
with more training samples. We can reduce the problem of improving performance P at
task T to the problem of learning a particular target (objective) function f∗. Therefore,
the type of knowledge that the model will learn is formulated as an objective function.
Adjustable model parameters θ are defined to achieve the best approximation f of the
target function f∗ in the given task T (Mitchell, 1997, p. 2).

In supervised learning tasks in machine learning, labeled training datasets are used to
train the model (i.e., a set of n input–output pairs {(x1, y1), . . . , (xn, yn)}). The outputs
(or target values) are predetermined and usually obtained by human annotations. The
objective is to train the model parameters θ, i.e., trainable weights, using the labeled
dataset that result in the best approximation of the target values f(xi; θ) ≈ yi for
1 ≤ i ≤ n.

A widely popular method to obtain distributed word representations is word2vec
introduced by Mikolov et al. (2013a,b). In the following, we first introduce neural
networks and then word2vec.

Neural Networks

Neural Networks (NNs), originally inspired by the biological neural networks, have
received much attention in artificial intelligence, machine learning, and computational
linguistics. Neural networks provide a class of machine learning methods for different
problems “to approximate real-valued, discrete-valued and vector-valued target func-
tions” (Mitchell, 1997, p. 81). A neural network connects several layers of neurons of
which the first is the input, the last is the output, and in the middle there is a number
of user-definable hidden layers. Each neuron is a computational unit that has inputs
and outputs. Neurons of different layers are connected with connecting weights. These
weights are adjustable parameters that are tuned to closely approximate the desired
target function, given input–output data to the network.

There are several types of neural network architectures from Recurrent Neural Net-
works (RNNs) to Convolutional Neural Networks (CNNs), the simplest of which being
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feedforward NNs (Rosenblatt, 1957; Rumelhart et al., 1986).

Feedforward Neural Networks:
The reason these networks are called feedforward is that the information from the input

layer is forward-propagated through the hidden layers to the output layer, and there
is no recurrence during the feed-forward process. That is, there are no loops between
neurons in different layers. The main goal in a feedforward NN is to approximate the
target function f∗ which maps an input xi to a target value yi, given a training set
of n input–output pairs {(x1, y1), . . . , (xn, yn)}. A feedforward NN defines a mapping
function y = f(x; θ) and learns the value of the adjustable parameters θ, i.e., the weight
matrices W connecting the layers and the bias vectors b for each layer, that result in the
best function approximation (Goodfellow et al., 2016). Given a large set of input–output
data as the training set, the goal is to generalize the function f to best approximate the
output of previously unseen input data.

Each neuron in network layers takes input from neurons of previous layers and
computes its activation value. Therefore, each layer’s output is the subsequent layer’s
input. Fig. 2.4 illustrates an example of a two-layer fully connected feedforward NN
with two input neurons, two neurons on the single hidden layer and one output neuron.
W 1 is a 2 × 2 weight matrix and W 2 is a 2 × 1 weight matrix connecting input to hidden
and hidden to output layer, respectively.

b1

g

g

g

x1

x2

o

Input
Layer

Hidden
Layer

Output
Layer

W 1
2×2 W 2

2×1

Figure 2.4: Example of a fully connected feedforward neural network with input x =
(x1, x2), output o, bias b1, and one hidden layer. An activation function g is
applied to its input argument at each layer.

Given a set of training input–output data, the objective is to approximate the tar-
get function f∗ producing the output value by training the weight matrices and bias
vectors (parameters θ) and optimizing the performance of the neural network in the
approximation.

The output value o of a given input x ∈ Rdin is predicted by a network of L layers
using the following computation:

o = gL−1(· · · g2(g1(xW 1 + b1)W 2 + b2) · · ·WL−1 + bL−1)WL,

where W l ∈ Rdl−1×dl shows the weight matrix connecting layer l− 1 with dimension dl−1
to layer l with dimension dl, and each gl is a differentiable activation function, such as
the sigmoid function that is applied element-wise to its argument. bl ∈ Rdl is a bias
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vector at each layer l. In our example, given two inputs x1 and x2 shown as x = (x1, x2),
the output is computed as follows:

h = g(xW 1 + b1),
o = hW 2.

To best approximate the target values, an optimizer and an objective function E (also
called loss function (Goldberg, 2017)) are defined to train the parameters of the network.
The objective function E at any point of training is a function of the difference between
approximation o made by the network and the target value y it is trying to reach. There
are different objective functions. A common one is the Mean Squared Error (MSE)
defined as follows:

E = 1
n

n∑
i=1

(yi − oi)2,

where oi is the output value that is compared with the target value yi, and n is the size
of training set.

To train the weight matrices, different algorithms, such as backpropagation, are applied.
Backpropagation is one of the most popular methods in NNs that minimizes the objective
function by optimizing the weights using an optimizer, such as gradient descent (Cauchy,
1847; Robbins and Monro, 1951; Berstsekas, 1999). Gradient descent is an iterative
optimization algorithm, which is applied to machine learning problems. In gradient
descent, the goal is to find the local minimum/maximum (i.e., local optimum) of an
objective function by taking steps proportional to the negative/positive gradient of the
function at the current point toward the local optimum. In a NN, it computes the
gradient of the objective function E with respect to each element in the weight matrix
W l of layer l for a set of n input–output data:

∂E

∂W l(j, k) =
n∑

i=1

∂E

∂oi
× ∂oi

∂W l(j, k) .

In our example, the gradient of the objective function E with respect to each weight
element is computed using partial derivatives of the functions computed in the forward
propagation:

∂E

∂W 2(j, k) =
n∑

i=1

∂E

∂oi
× ∂oi

∂W 2(j, k) ,

∂E

∂W 1(j, k) =
n∑

i=1

∂E

∂oi
× ∂oi

∂W 1(j, k) ,

where j and k range from 1 to 2, and ∂oi
∂W 2(j,k) and ∂oi

∂W 1(j,k) are computed using the chain
rule as follows:

∂oi

∂W 2(j, k) =∂oi

∂g
× ∂g

∂W 2(j, k) ,

∂oi

∂W 1(j, k) =∂oi

∂g
× ∂g

∂h
× ∂h

∂W 1(j, k) .

Then, each weight element is updated using the negative of the gradient of the objective
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function as follows:
W l(j, k) = W l(j, k) − η

∂E

∂W l(j, k) ,

where η is a constant called learning rate that controls how much the step size is adapted
towards the local minimum of the objective function. This way, the error propagates
backward in the network and all weights of the layers are updated. The forward and
backward propagations are repeated many times (i.e., in many training steps), until there
is no significant decrease in the error computation (i.e., the amount of the decrease is
less than a threshold value ϵ). Thus, the weights are optimized and the network reached
its best approximation of input–output pairs from training set. The network can then
be used to predict the output of previously unseen input data.

Recurrent Neural Networks (RNNs):
RNNs (Rumelhart et al., 1986; Elman, 1990) allow to operate on inputs and outputs

as sequences. The input data x to RNNs is an arbitrary length sequence x1,x2, . . . ,xT

with xt ∈ Rdin (fixed length vector) where at each time step t the input xt is fed to
the network. RNNs have a memory that remembers information from all previous time
steps in a hidden state (also called hidden layer). At each time step, the previous hidden
layer ht−1 is fed to the network at the current time step and is combined with input xt

to compute the current hidden layer as follows:

ht = g(xtU + ht−1W + bt),

where U and W are shared weight matrices for input-to-hidden and hidden-to-hidden
layers, respectively, and bt is the bias of the network. g is a nonlinear activation function,
such as the tanh function. This way, historical information about the input sequence is
kept in the hidden layers. The output yt at each time step is a vector yt ∈ Rdout , which
is computed as follows:

yt = g(htV + c),

where V is a shared weight matrix for the hidden-to-output layer. c is a bias and g is
either a linear or a nonlinear activation function. In general, the output at the final
time step T (i.e., yT ), is used to approximate the prediction of the network for a given
sequence of inputs.

To train the network, training data is fed to the network and the objective function is
computed. Then, the error is back-propagated through the network to update all weight
matrices. We are not concerned with the detail of RNNs in this thesis and the interested
reader is referred to the Deep Learning book by Goodfellow et al. (2016) for details.

2.1.3 Word2vec

Word2vec is a method for learning distributed word vector representations in NLP using
a feedforward NN with one hidden layer. The goal of training the network is to map
the words of a large text corpus (a set of sentences) to vector representations. The
word vectors are obtained based on the distributional hypothesis. Therefore, words with
similar contexts are located in close proximity in vector space. There are two methods
of word2vec to learn word vector representations: Continuous Bag Of Words (CBOW)
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and skip-gram.
The training dataset used in word2vec is a large text corpus of sentences that is not

previously labeled, and therefore, the learning task in word2vec is not a supervised
learning task. To train the weight matrices and approximate the target function, however,
a target label is created for each input during the training procedure. This way, training
is done in a supervised manner. This type of learning is called self-supervised (Sa, 1994).
Note that in some literature, such as the work by Pennington et al. (2014), the learning
of word representations is called as an unsupervised method.

In the self-supervised learning task for representation learning, we are not interested
in the final performance of the model in the given task. Instead, we extract the learned
intermediate parameters as representations that carry the semantic representations. Sim-
ilar to other networks, the weight matrices in word2vec are trained to best approximate
the target value in a self-supervised learning task. However, the network is not used
for the task that it is trained on. Instead, the learned weight matrices are extracted
after training and introduced as the word vector representations that carry the semantic
information of words.

Moreover, word vector representations obtained from word2vec capture the semantic
relationship between words based on the distributional hypothesis. These representations
are not trained on a specific NLP task (e.g., sentiment analysis) to obtain specific
information. Therefore, a task-agnostic representation model is obtained from word2vec,
which is in contrast to task-specific representation models, for example, sentiment
analysis.

In the following, we explain both methods of word2vec introduced in (Mikolov et al.,
2013a,b) and how target labels are created for training the network.

Skip-gram:

As mentioned before, the goal of training the network is to obtain vector representations
for all words in a given vocabulary Σ of size V . The vocabulary is created from a large
text corpus of sentences T . In skip-gram the task is to predict the context words of a
word (called center word) based on a given corpus of sentences.

The input to the network is a center word wt ∈ Σ with t ∈ {1, . . . , V }. Since we
cannot feed the words as strings to the network, we need to map all words to numeric
representations. For this purpose, we assign an index to each word of the vocabulary
and a one-hot encoding of size V is created as a numeric representation of the words
based on their index. For instance, a word with index t in vocabulary is assigned to a
vector of size V , where the tth element of the vector is one and all other elements of the
vector are zero. This way, the input words to the network are one-hot encodings.

The learning task is to train the network to predict the context words of any input
center word wt. Therefore, for each word wt ∈ Σ, t ∈ {1, . . . , V }, we extract a set of
context words (with window size k) Ct = {wt−k, . . . , wt−1, wt+1, . . . , wt+k} co-occurred
with wt in the corpus T from which we created the vocabulary. Recall window size of k
means k words preceding and k words succeeding w in the sentences of T . This way,
target labels for input data are created for a self-supervised learning task.

Fig. 2.5 illustrates the sketch of the network for context window size of k = 2. wt and
each of its context words are represented with one-hot encodings of size V . Now, if we
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look at each context of the input word wt separately, the network architecture for each
output context wc can be illustrated as Fig. 2.6. Considering the input center word wt

and the output context word wc, at each iteration of training, the network produces
a probability of being the context of wt for every word in Σ. Thus, the output vector
of size V in Fig. 2.6 presents the probability of each word at its corresponding index
being the context of wt. The objective here is to produce a probability distribution
close to the one-hot encoding of the context word shown in the figure (i.e., to maximize
the probability of wc and minimize the probability of all other words). Therefore, the
predicted probability distribution is compared with the one-hot encoding of the context
word wc, and the error is computed as a function of the difference between the target
one-hot encoding and the predicted probability distribution. A similar computation is
done for each output context word shown in Fig. 2.5 at the same time and the total
error back-propagates to the network to update all weight matrices accordingly.
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Figure 2.5: Skip-gram architecture for an input word wt and its context words
{wt−2, wt−1, wt+1, wt+2} as output. Context window size is 2 and V is the
size of vocabulary. input and output words are represented with one-hot
encodings.

As shown in Fig. 2.6, the network consists of two layers with trainable weight matrices
WV ×d and W ′

d×V . V is the size of the vocabulary Σ created from T and d is the size of
hidden layer, which as to be decided upon and equals the final number of embedding
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Figure 2.6: skip-gram architecture for an input word wt and an output context word wc.

dimensions. The size of input and output layers is equal to the vocabulary size V . Note
that with a one-hot encoding input vector, the matrix row connected to the vector
element with value 1 is considered in forward propagation since the other elements of
the input vector are zero.

For training the network, each word wt ∈ Σ is paired with its contexts Ct =
{wt−k, . . . , wt−1, wt+1, . . . , wt+k}. The objective is to train the model parameters θ
so as to maximize the log probability of context words co-occurring with wt, or to min-
imize the negative of log probability, called objective function (also called loss function
(Goldberg, 2017)), defined in the following:

min O = − logP (wt−k, . . . , wt−1, wt+1, . . . , wt+k|wt; θ).

Assuming that the word occurrences are completely independent, the objective function
for each word is defined as

min O = − log
2k∏

j=0,j ̸=k

P (wt−k+j |wt; θ).

Given a sequence of training words w1, w2, . . . , wV , the final objective function is to
minimize the average log probability over all words as in Equation 2.1.

minO = − 1
V

V∑
t=1

log
2k∏

j=0,j ̸=k

P (wt−k+j |wt; θ)

= − 1
V

V∑
t=1

2k∑
j=0,j ̸=k

logP (wt−k+j |wt; θ). (2.1)

The probability function is defined using the softmax function:

P (wc|wt) = evwt ·v′
wc

ΣV
w=1e

vwt ·v′
w
, (2.2)
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where vwt and v′
wc

are the model parameters θ with vwt = W (t, :) (i.e., row t of matrix
W ), and v′

wc
= W ′(:, c) (i.e., column c of matrix W ′). The vectors vw and v′

w are
the center and context word vector representations, respectively, extracted from weight
matrices W and W ′. Therefore, after training the network with the given objective
function, we extract WV ×d as the final vector representation of words with each row
as the vector representation of the corresponding word. d is the dimensionality of the
vectors. Also, W ′

d×V as the final vector representation of context words with each column
as the vector of the corresponding word.

Mikolov et al. (2013b) discuss that the above formulation in Equations 2.1 and 2.2
is impractical as the error of computing logP (wc|wt) at each iteration of training is
proportional to V , which is a large number. Therefore, an efficient approximation of the
full softmax is proposed as an alternative to the above computations, called negative
sampling.

Negative sampling is an efficient approximation to Equation 2.1 (Mikolov et al.,
2013b). In this method, at each iteration of training, random words are drawn from the
vocabulary to be considered as the false contexts (called negative samples) of the current
center word. A negative sample wc′ is selected using a unigram probability distribution
with a smoothing parameter α, computed as follows:

q(wc′) = f(wc′)α

ΣV
i=1(f(wi)α)

, (2.3)

where f(w) is the frequency of the word w in the corpus T and V is the size of vocabulary.
Frequencies are raised to the power of α (0 < α ≤ 1), which is the smoothing parameter.
This parameter increases the selection probability of less frequent words and decreases
the probability of more frequent words. Mikolov et al. (2013b) reported that α = 3/4
results in the best performance.

If we create a training data D consisting of pairs of center–context words, (wt, wc), we
denote by P (D = 1|wt, wc) the probability that the pair is in D and by P (D = 0|wt, wc)
the probability that the pair is not in D. If we assume D′ as the set of drawn negative
samples paired with center words, (wt, wc′), the objective is now to maximize the
probability of correct contexts:

arg max
θ

∏
(wt,wc)∈D

P (D = 1|wt, wc; θ)
∏

(wt,wc′ )∈D′

P (D = 0|wt, wc′ ; θ) (2.4)

with P as the sigmoid function:

P (D = 1|wt, wc; θ) = 1
1 + e−vwt .v′

wc
,

where vwt and v′
wc

are extracted from W and W ′ as described above and are considered
as the model parameters θ to be trained. We can maximize the log of the objective
function in Equation 2.4. The training procedure, backpropagation and weight updates
are the same as explained for the feedforward NNs.

Finally, the learned weight matrix W of the network is extracted after training and
introduced as the word vector representations.
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Mikolov et al. (2013b) show that by treating each phrase (sequence of words) as an
individual token, they can similarly train the phrase embeddings as they train the word
vectors.

Continuous Bag Of Words (CBOW):

Similar to skip-gram, the goal of training the network is to obtain vector representations
for all words in a given vocabulary Σ of size V . However, as opposed to skip-gram, the
task in CBOW is to predict the center word given context words as input to the network.
Mikolov et al. (2013a) show the network architecture of this method as in Fig. 2.7, where
wt and each of its context word are represented with one-hot encodings of size V .

...
wt

wt−2

wt−1

wt+1

wt+2

Input Projection Output

Figure 2.7: CBOW architecture to predict the center word wt based on a set of context
words. Illustration is taken from (Mikolov et al., 2013a). Copyright (2013)
by CoRR.

Now, assume for each word w ∈ Σ we extracted a set of context words (with window
size k). The input to the network is one-hot encodings of k context words. The objective
of the network is to predict the center word wt based on a set of given contexts words
{wt−k, . . . , wt−1, wt+1, . . . , wt+k}.

For training the network, each word wt in vocabulary is paired with its contexts
Ct = {wt−k, . . . , wt−1, wt+1, . . . , wt+k}. The objective is to train the model parameters θ
so as to maximize the log probability of the center word co-occurring with the context
words, or to minimize the negative of log probability, as defined in the following:

min O = − logP (wt|wt−k, . . . , wt−1, wt+1, . . . , wt+k; θ).

After training the network, the weight matrix W ′ is extracted as the word vector
representations.

The hierarchy of the studied numeric representation models in this section is illustrated
in Fig. 2.8. The focus of this thesis is on distributed representation models. We aim to
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improve on this topic using an alternative model to VSMs, and propose both task-specific
and task-agnostic representation models. We are not concerned with the symbolic
approaches and do not study these models in this thesis.

Representation models in NLP

symbolic approaches numeric approaches

label encoding one-hot encoding representations based on
the distributional hypothesis

distributional representations
e.g. word-context matrix

distributed representations
e.g. word2vec

Figure 2.8: Hierarchy of representation models in NLP. Symbolic approaches are outside
the scope of this thesis.

2.2 Compositionality in Distributional Semantic Models

Compositionality is a natural property of human language. According to Frege’s principle
of compositionality, “The meaning of an expression is a function of the meanings of its
parts and of the way they are syntactically combined” (Partee, 2004, p. 153). Therefore,
the meaning of a complex expression in a natural language is determined by its structure
and the meanings of its constituents. (Cresswell, 1976; Halvorsen and Ladusaw, 1979).

Based on this principle, we understand the meaning of basketball player from the
meaning of its constituent words: basketball and player, and thus, it is a compositional
phrase. Opposite to compositional expressions are the cases when we use phrases in other
non-literal ways, and therefore, the meaning of a complex expression is not dependent
on the meaning of its parts. For instance, throw in the towel, which means to give up, is
not directly derived from composing the meaning of its constituents, and therefore, it is
not compositional. Moreover, some phrases can be understood as either compositional
or non-compositional depending on their context.

The principle of compositionality in computational linguistics can be formalized as
follows (Rudolph and Giesbrecht, 2010): given a vocabulary Σ of a natural language,
some semantic space S (its elements will be called “meanings”), and a mapping function
[[ · ]] : Σ → S, a semantic composition operation ▷◁: S∗ → S, which maps sequences
of meanings to meanings is defined such that the meaning of a sequence of words
s = σ1σ2 . . . σk can be obtained by applying ▷◁ to the sequence [[σ1]][[σ2]] . . . [[σk]]. This
situation, displayed in Fig. 2.9, qualifies the semantic mapping [[ · ]] as a homomorphism
between the two algebraic structures (Σ∗, ·) and (S, ▷◁).

The study of semantic compositionality is central in computational linguistics, as several
downstream NLP tasks, such as statistical machine translation (Weller et al., 2014),
word sense disambiguation (Akkaya et al., 2012), and sentiment analysis (Yessenalina
and Cardie, 2011), require recognizing compositionality on phrase or sentence levels.

DSMs are concerned with the meaning representation of single words. They show
little consideration on how the meaning of words combine in a phrase or sentence and
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Figure 2.9: Semantic mapping as homomorphism, illustration is taken from (Rudolph
and Giesbrecht, 2010) . Copyright (2010) by ACL.

how meaning might be influenced by way of position of a word in a sentence. Therefore,
different semantic composition methods have been proposed to obtain meaning above
the word-level. DSMs that are equipped with semantic composition methods are called
Compositional Distributional Semantic Models (CDSMs). Generally, any semantic
composition method that is applied to representation models produce compositional
representation models. In these models, different composition methods are defined to
compose the word representations in vector space to model representations of larger
linguistic units. Salton and McGill (1986) introduced vector addition in VSMs as a
composition method, which is the most common method. Given two words wi and wj

and their associated d-dimensional semantic vector representations u ∈ Rd and v ∈ Rd,
respectively, vector addition is defined as follows:

p = f(u,v) = u + v,

where p ∈ Rd is the resulting compositional representation of the phrase wiwj and f is
called the composition function.

Despite its simplicity, the additive method is not a suitable method of composition
because vector addition is commutative. Therefore, it is not sensitive to word order in
the sentence, which is a natural property of human language. For instance, if wi =green
and wj = light, the representation of green light and light green would be the same
discarding the word order.

As an early attempt to provide more compelling compositional functions in linguistic
structures, a context-sensitive composition method was proposed by Kintsch (2001), who
used a more sophisticated composition function to model predicate–argument structures.
Kintsch (2001) argued that the neighboring words “strengthen features of the predicate
that are appropriate for the argument of the predication” (p. 178). For instance, the
predicate run depends on the noun as its argument and has a different meaning in, e.g.,
the horse runs and the ship runs before the wind. Thus, different features are used for
composition based on the neighboring words and, not all features of a predicate vector
are combined with the features of the argument, but only those that are appropriate for
the argument.



30 Chapter 2. Background and Foundations

An alternative seminal work on composition methods was proposed by Widdows
(2008). Widdows introduced a number of more advanced vector operations for semantic
compositionality, such as tensor product with convolution operation to capture composi-
tionality in vector space. Given two vectors u ∈ Rd and v ∈ Rd, the tensor product of
two vectors is a matrix Q ∈ Rd×d with Qij = u(i)v(j). Since the number of dimensions
increases by tensor product, the convolution operation was introduced to compress
the tensor product operation to Rd space. Both operations can be summarized as
p(i) = ∑

j u(j) v(i − j) for 1 ≤ i, j ≤ d, where p ∈ Rd. Widdows showed the ability
of the introduced compositional models to reflect the phrasal meaning on a simplified
analogy task1, where they outperform the additive model.

Mitchell and Lapata (2010) introduced dilation and element-wise vector multiplication
as the composition methods and compared with weighted vector addition p = αu + βv
with α + β = 1. Element-wise vector multiplication, defined as p = g(u,v) = u ⊙ v,
does not consider the word order. The dilation method decomposes v into a parallel and
an orthogonal component to u and then stretches the parallel component to adjust v
along u:

p(i) = v(i)
∑

j

u(j)u(j) + (λ− 1)u(i)
∑

j

u(j)v(j),

where λ is the dilation factor and p is the composed vector. Therefore, u affects relevant
elements of vector v in the composition. An evaluation was done on a compositional
semantic similarity task, which is about determining the similarity degree between pairs
of phrases. They developed a similarity dataset of two-word sequences (bigrams) for this
purpose. For each bigram in a pair (ab, cd), the word vectors are composed using the
introduced composition methods to obtain the bigram vector, and then the two bigram
vectors are compared with each other using the cosine of the angle between them to
determine the similarity degree between the bigrams. They conclude that element-wise
vector multiplication outperforms vector addition.

Baroni and Zamparelli (2010) proposed a method for the compositional representation
of Adjective–Noun (AN) compounds. Adjectives are attributive (i.e., they are treated
as functions over nouns and modify the meaning of nouns when combined with them).
Therefore, adjectives are considered as linear functions mapping the d-dimensional noun
vectors onto the same vector space. This function can be expressed as a d×d-dimensional
matrix M , which is multiplied with the d-dimensional noun vector v, resulting in a
compositional representation of the adjective–noun compound in the same vector space:

p = Mv.

Therefore, adjectives are represented with matrices. In this method, a unique matrix M
is assigned to each adjective and trained using linear regression. To create a training
dataset, AN and noun vectors are obtained by creating a co-occurrence matrix (or a
term–context matrix in which terms are either nouns or ANs) from a large text corpus
based on the distributional semantics (Salton et al., 1975; Deerwester et al., 1990).
To train the adjective matrices using the training dataset, an adjective matrix M is

1Analogy task refers to determining the proportional analogy between two pairs of words, for example,
Berlin is to Germany as Rome is to Italy.
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multiplied with a noun vector v, which is obtained from the co-occurrence matrix. Then,
the i-th row of the matrix is the coefficients of the linear regression that predict the
value of the i-th dimension of the corresponding AN vector p.

Some approaches to the distributional representation of words in VSMs have also been
extended to CDSMs. Turney (2012) proposed a dual-space model for semantic com-
positionality. He created two vector-space models from the word–context co-occurrence
matrix, one from the noun as the context of the words (called domain space) and the
other from the verb as the context of the words (called function space). Therefore, the
dual-space model consists of a domain space for determining the similarity in topic or
subject, and a function space for computing the similarity in role or relationship. He
evaluated his dual-space on the task of similarity of compositions for pairs of bigram–
unigram (ab, c). He computed the domain similarity of words a and c (i.e., computing
the cosine of the word vectors va and vc extracted from the domain space):

simd(a, c) = cos(va,vc) = va.vc

∥ va ∥∥ vc ∥
,

where ∥ · ∥ is the Euclidean norm of a vector v of size d as follows:

∥ v ∥=
√

v(1)2 + · · · + v(d)2.

Similarly, domain similarity of words b and c, simd(b, c), and function similarity of b and
c, simf (b, c) (i.e., computing the cosine of the word vectors extracted from the function
space) are computed. Then geometric mean of the three similarities are computed:

geo(x1, x2, x3) = (
3∏

i=1
xi)

1
3

sim1(ab, c) = geo(simd(a, c), simd(b, c), simf (b, c))

sim(ab, c) =
{
sim1(ab, c) if a ̸= c and b ̸= c,

0 otherwise.

In general, the goal is to have a high combined similarities using the geometric mean
value when the component similarities are high. This way, he introduced the dual-space
model as a CDSM.

2.3 Compositional Matrix-Space Models

Several models have been proposed to model compositionality and address the commut-
ativity issue of vector operations. Among these models, Rudolph and Giesbrecht (2010)
proposed the Compositional Matrix-Space Models (CMSMs) as an alternative to VSMs.
In these models, the semantic space consists of real-valued quadratic matrices S = Rm×m,
and therefore, the meaning of words is represented by matrices [[ · ]] : Σ → Rm×m. Stand-
ard matrix multiplication serves as the composition operation ▷◁: (Rm×m)⋆ → Rm×m,
which, as opposed to many operations in VSMs, is order-sensitive. Rudolph and Gies-
brecht (2010) studied different aspects of CMSMs and provided arguments showing that
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CMSMs are intuitive and natural. In the following, we review the main aspects and
properties of CMSMs proposed by Rudolph and Giesbrecht (2010), which represent an
important premise for this thesis.

Common composition methods in natural language representation models are both
associative and commutative. Therefore, they ignore the order of words within the
sentence in a given natural language. For instance, the semantic representation of
“Sarah likes Chocolate” and “Chocolate likes Sarah” would be the same. Therefore,
the non-commutativity property of the composition method is crucial in compositional
representation models to differentiate between meaning representations of a set of words
with different orders. Matrix multiplication is non-commutative, and therefore, CMSMs
are introduced as more adequate for modeling semantic compositionality in natural
language (Rudolph and Giesbrecht, 2010).

Neurological and cognitive plausibility of CMSMs have also been studied by Rudolph
and Giesbrecht (2010) from an abstract and simplified perspective. Assume that the
mental state of a person at a particular time is encoded as a numeric vector v1. Then
receiving an external signal (e.g., perceiving a new word ω1) causes the change of the
current mental state v1 to a new state v2. Therefore, the external signal can be formulated
as a transition function applied to v1 to map the current mental state of a human to a
new state v2. The transition can be defined as a matrix Mω1 that changes the mental
states linearly: v2 = v1Mω1 . An arbitrary sequence of external signals (e.g., ω1ω2 . . . ωk)
transforms the current mental state to a new state using a sequence of associated
transition functions vk+1 = (. . . ((v1Mω1)Mω2) . . .Mωk

). Therefore, Mω1Mω2 . . .Mωk

represents the state transitions triggered by a sequence of external signals ω1ω2 . . . ωk.
As an example, Fig. 2.10 illustrates the transitions triggered by ω1ω2. This way, the
mental state transformations can be simulated in matrix space as the function space
where matrix multiplication executes the transformations after receiving the external
signals.

Pribram et al. (1960) and Baddeley and Hitch (1974) proposed the concept of working
memory, a limited cognitive system that supports the processes of human thought and
stores information. This working memory of human can be represented by the mental
state vector, which is transformed by sequential external inputs to human memory.
Therefore, the working memory can also be explained by CMSMs, where operations
in working memory, such as storing, deleting, copying, can be realized by matrices
(Rudolph and Giesbrecht, 2010), and matrix multiplication preserves the ordered changes
of successive input information in human memory. For instance, the m×m-dimensional
matrix Mcopy(k,l) defined as

Mcopy(k,l)(i, j) =
{

1 if i = j ̸= l or i = k, j = l,
0 otherwise.

can be applied to a m-dimensional vector v to copy the value of kth element of the
vector to its lth position.

Another advantage of CMSMs exhibited by Rudolph and Giesbrecht (2010) is that
several matrix models can be combined into one model in an appropriate way. Given
a sequence of words s = σ1 . . . σk in a natural language with associated matrix repres-
entations [[σ1]], . . . , [[σk]] ∈ Rm×m according to one model and matrix representations
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ω1 ω2

v1 v1Mω1 = v2 v2 v2Mω2 = v3 v3

ω1ω2

v1 v1Mω1ω2 = v1Mω1 Mω2 = v2Mω2 = v3 v3

Figure 2.10: Cognitive state transformations of a human from state v1 to v3 using
matrices Mω1 and Mω2 as the state transition functions after receiving
external signals ω1 and ω2.

([σ1]), . . . , ([σk]) ∈ Rn×n according to another model in matrix space, the two models can
be combined into one model by assigning to σi a (m+ n) × (m+ n)-dimensional matrix:

{[σi]} =



0 · · · 0
[[σi]]

... . . .
0 0

0 · · · 0
... . . . ([σi])
0 0


.

The matrix multiplication of newly created matrices results in the following matrix:

{[σ1]} . . . {[σk]} =



0 · · · 0
[[σ1]] . . . [[σk]]

... . . .
0 0

0 · · · 0
... . . . ([σ1]) . . . ([σk])
0 0


,

which captures the semantic compositions in the two models simultaneously.
Many words can be interpreted in multiple ways depending on their context. Ambiguity

in natural language happens when a model cannot determine which meaning of a word is
used in a given context. Therefore, associative operations are not able to disambiguate
word meanings. For instance, “The man saw the girl with the telescope.” can be
interpreted in different ways. The first is that the man saw a girl holding a telescope,
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while another possible interpretation refers to the man utilizing a telescope to spot the
girl. Matrix multiplication is associative, which is generally unable to disambiguate the
different meanings of a sentence. However, Rudolph and Giesbrecht (2010) argue that
natural language is inherently stream-like and sequential. Thus, associativity alone seems
more justifiable, and the different meanings of sentences can be resolved by contextual
cues.

2.3.1 Compositional Matrix-Space Models and Compositional VSMs

It has been theoretically shown that CMSMs are capable to simulate well known
composition operations in VSMs and therefore, they subsume compositional VSMs. To
show this, let ψ▷◁ : Rn → Rm×m and χ▷◁ : Rm×m → Rn be the mapping functions
between the vector and matrix representations, and a vector vσ ∈ Rn assigned to each
word σ of vocabulary Σ in a natural language.

Consider vector addition as the composition operation. Given a sequence of words
w = σ1 . . . σk, vw = ∑k

i=1 vσi . Now, define the function ψ+ : Rn → R(n+1)×(n+1) to map
the vector vσ of word σ to the corresponding matrix representation in the following way:

Mσ = ψ+(vσ) =


1 · · · 0 0
... . . . ...
0 1 0

vσ 1

 .
Multiplying the resulting matrices yields:

ψ+(vw) = ψ+(vσ1) . . . ψ+(vσk
)

Mw = ψ+(vw) =


1 · · · 0 0
... . . . ...
0 1 0

vw 1

 .

Now define χ+ : R(n+1)×(n+1) → Rn to extract the lowest row omitting the last element,
which results in:

χ+(Mw) = vw = Σk
i=1vσi .

Element-wise vector multiplication in VSMs, is defined as vw = vσ1 ⊙ · · · ⊙ vσk
where

vw(j) = vσ1(j) · vσ2(j) . . .vσk
(j) for 1 ≤ j ≤ n, given a sequence of words w = σ1 . . . σk.

This operation can be also simulated by CMSMs. This time, let ψ⊙ : Rn → Rn×n encode
the vector vσ to diagonal matrix with the vector elements as its diagonal elements:

Mσ = ψ⊙(vσ) =


vσ(1) 0 · · · 0

0 vσ(2)
...

... . . . 0
0 · · · 0 vσ(n)

 .



2.3 Compositional Matrix-Space Models 35

Then, multiplying the matrices corresponding to words σi results in:

Mw = ψ⊙(vw) =


vw(1) 0 · · · 0

0 vw(2)
...

... . . . 0
0 · · · 0 vw(n)

 .

Now, define χ⊙ : Rn×n → Rn to extract the main diagonal elements of the output matrix,
which is:

χ⊙(Mw) = vw = vσ1 ⊙ · · · ⊙ vσk
.

Similarly, circular convolution operation1, which has been introduced by Plate (1995)
as a composition operation in VSMs, can be simulated via CMSMs. Circular convolution
is interpreted as a compressed outer product of vectors. Given two words σ1 and σ2 with
associated n-dimensional vectors u and v, respectively, circular convolution is defined
as a tensor product of the two vectors which results in a matrix Q of dimension n× n
where Q(i, j) = u(i)v(j), and then a convolution operation is applied to map the matrix
to the n-dimensional vector vw corresponding to w = σ1σ2 where:2

vw(i) =
n−1∑
j=0

u(j)v(i− j) for 0 ≤ i ≤ n− 1.

Fig. 2.11 illustrates the computation of circular convolution operation as a compressed
outer product of two vectors. To simulate this operation by CMSMs, let ψ⊛(vσ) be the

Figure 2.11: Circular convolution operation on two 3-dimensional vectors c and x.
t(i) = ∑2

j=0 c(j)x(i− j) for 0 ≤ i ≤ 2. To avoid confusion, indices start
from 0. Illustration is taken from (Plate, 1995). Copyright (1995) by IEEE
Press.

n× n matrix Mσ associated to word σ where the first row of the matrix is the vector vσ:

1This composition operation is distinct from the convolution operation in neural networks. Convolu-
tion operation in NNs applies a filter to an input data to summarize the features in the input.

2For simplicity and to avoid confusion, vector indices in the equation start from 0 instead of 1.
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Mσ = ψ⊛(vσ) =

 v(1) v(2) v(3)
v(3) v(1) v(2)
v(2) v(3) v(1)

 .
Then multiplying matrices of two words σ1 and σ2, results in:

Mw = ψ⊛(vw) =

 vw(1) vw(2) vw(3)
vw(3) vw(1) vw(2)
vw(2) vw(3) vw(1)

 .
If we define χ⊛(Mw) to extract the first row of the resulting matrix, it outputs vw.

2.3.2 Compositional Matrix-Space Models and Regular Languages
Rudolph and Giesbrecht (2010) showed that symbolic approaches to language (i.e.,
discrete grammar formalisms) can be embedded in CMSMs. This suggests the CMSMs
are compatible with both discrete (e.g., symbolic approaches) and continuous (e.g.,
numeric approaches) settings.

First, they showed how CMSMs determine whether a sequence of symbols belongs to
a given regular language (i.e., given a sequence of symbols determine if it is accepted by
a given finite state automaton).
Definition 2.1 (Finite State Automata). A finite automaton is defined as A =
(Q,Σ, δ, QI , QF) where Q = {q1, . . . , qm} is a finite set of states, Σ is a finite set of input
symbols, δ ⊆ Q× Σ ×Q is the transition function from one state to another labeled by a
symbol in Σ, and QI and QF are the sets of initial and final states, respectively. The
language accepted by A is the set of strings (i.e., sequences of symbols) w ∈ Σ∗ accepted
by A. If we let zero, one, or more transitions from a state on the same symbol, the
automaton is called a nondeterministic finite automaton. This time, δ is a map from
Q× Σ to the power set of Q, 2Q. (Hopcroft and Ullman, 1979, p. 17-20). ♢

Eilenberg (1974) showed that to each symbol σ ∈ Σ a transition matrix [[σ]] = Mσ of
size m × m (where m is the number of states) can be assigned. If we assign to every
symbol σ a matrix with:

Mσ(i, j) =
{

1 if (qi, σ, qj) ∈ δ,
0 otherwise.

for 1 ≤ i, j ≤ m, the matrix Mσ encodes all state transitions labeled by the input symbol
σ. Likewise, for a sequence w = σ1 . . . σk ∈ Σ⋆, the matrix Mw := [[σ1]] . . . [[σk]] encodes
all state transitions labeled w. This matrix determines whether w belongs to a given
regular language, that is if it is accepted by a given finite automaton A.

It has been shown that by selecting an appropriate assignment [[ · ]] for a CMSM, and
defining two vectors vI and vF as follows:

vI(i) =
{

1 if qi ∈ QI,
0 otherwise, vF(i) =

{
1 if qi ∈ QF,
0 otherwise,
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for 1 ≤ i, j ≤ m, w is accepted by the automaton A exactly if vIMwvF ≥ 1 (Rudolph and
Giesbrecht, 2010). Of course, one can also define the two vectors vI and vF differently
and a threshold value r to compare vIMwvF against the threshold value. Based on this
idea, Rudolph and Giesbrecht (2010, p. 912) define the notion of matrix grammars as
follows :

Definition 2.2 (Matrix Grammars). Let Σ be an alphabet. A matrix grammar M of
degree n is defined as the pair ⟨ [[·]], AC⟩ where [[·]] is a mapping from Σ to n×n matrices
and AC = {⟨α1,β1, r1⟩, . . . , ⟨αℓ,βℓ, rℓ⟩} with α1,β1, . . . ,αℓ,βℓ ∈ Rn and r1, . . . , rℓ ∈ R
is a finite set of acceptance conditions. The language generated by M (denoted by
L(M)) contains a sequence of symbols σ1 . . . σk ∈ Σ∗ exactly if α⊤

i [[σ1]] . . . [[σk]]βi ≥ ri

for all i ∈ {1, . . . , l}. We call a language L matricible if L = L(M) for some matrix
grammar M. ♢

Based on the above definition, regular languages are matricible by appropriately encoding
to CMSMs.

Rudolph and Giesbrecht (2010) also studied other formal languages such as non-
regular languages (e.g., L(A) = {w|w = wR}) and non-context free languages (e.g.,
L(A) = {ambmcm|
m > 0}) and showed that some are matricible by appropriate encoding. Moreover, they
showed that the intersection of two matricible langauges is also a matricible language.
However, some formal languages still need to be further investigated. For instance, they
conjectured that not all context-free languages are matricible as they have not been able
to show that, for example, the language of all well-formed parenthesis expressions is
matricible. Some other questions are also open, such as whether matricible languages
are closed under concatenation and require more investigations.

2.3.3 Compositional Matrix-Space Models and Weighted Finite Automata
In this subsection, inspired by the definition of Weighted Finite Automata (WFA)
(Schützenberger, 1961; Eilenberg, 1974; Berstel and Reutenauer, 1988) and their ap-
plications in NLP (Knight and May, 2009), we show a close correspondence between
CMSMs and WFA. As discussed in the introduction chapter, this subsection is based on
my following paper: Asaadi and Rudolph (2016). The motivation is to investigate how
both CMSMs and WFA suit in natural language processing tasks. We first introduce a
semiring (Eilenberg, 1974, p. 122-123) and WFA. The definition of WFA is taken from
(Knight and May, 2009, p. 122) as it has a comprehensive overview of WFA.

Definition 2.3 (Semiring). A semiring is a set S equipped with two binary operations:
addition ⊕ and multiplication ⊙, and two constant neutral elements 0 and 1 such that:

• ⟨S,⊕, 0⟩ is a commutative monoid.

• ⟨S,⊙, 1⟩ is a monoid.

• the distributive property (a⊕ b) ⊙ c = a⊙ c⊕ b⊙ c and c⊙ (a⊕ b) = c⊙ a⊕ c⊙ b
hold for every a, b, c ∈ S.

• a⊙ 0 = 0 ⊙ a = 0 for every a ∈ S. ♢
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Definition 2.4 (Weighted Finite Automata). Weighted finite automata generalize
classical automata in that transitions and states carry weights. These weights can be
considered as the error of the transitions or amount of resources needed to execute
the transitions. Let Σ be a finite alphabet. A weighted automaton A is a tuple of
(QA, λ, α, β) and defined over a semiring (S,⊕,⊙, 0, 1). QA is a finite set of states,
λ : Σ → SQA×QA is the transition weight function, and, α : QA → S and β : QA → S
are two functions assigning to every state its initial and final weight. Thereby, for each
transition e = (q, σ, q′), λ(σ)q,q′ denotes the weight of the label σ associated with the
transition e between q and q′, which are the source and target state of the transition,
respectively. Moreover, A path P in A is a sequence of transitions labeled with σ1 . . . σk,
in more detail:

P := p0
σ1−→ p1

σ2−→ · · · σk−→ pk

with pi ∈ QA. The weight of P is defined as the ⊙-product of the weights of the starting
state, its transitions, and final state:

ω(P) = α(p0) ⊙ λ(σ1)p0,p1 ⊙ · · · ⊙ λ(σk)pk−1,pk
⊙ β(pk).

Now, the weight of a sequence σ1 . . . σk ∈ Σ⋆ is the cumulative weight of all paths
labeled with the sequence σ1 . . . σk, which is computed as the ⊕-sum of the weights of the
corresponding paths:

fA(σ1 . . . σk) =
⊕

P∈PA(σ1...σk)
ω(P), (2.5)

where PA(σ1 . . . σk) denotes the (finite) set of paths in A labeled with σ1 . . . σk. So, the
function fA : Σ⋆ → S which maps every strings in Σ⋆ to S is called the behavior of the
weighted automaton A, also written as ∥ A ∥. ♢

In this thesis, we assume that the semantic space S is the set of the real numbers
R with the usual multiplication and addition. Fig. 2.12 illustrates an example of
WFA over Σ = {a, b}. Inside each state, there is a tuple of the name, initial and
final weight of the state, respectively. As an example, for w = ab we have: fA(w) =
1 × 1.5 × 3 × 0.8 + 1 × 1.5 × 2 × 0.2 + 2 × 4 × 3 × 0.5.

{A, 1, 0.5} {B, 2, 0.2}

{C, 3, 0.8}

b/3

a/1.5

a/4

b/2

b/3

Figure 2.12: Example of WFA A with three states and the alphabet Σ = {a, b}.

Generally, in many NLP tasks, we need to estimate functions that map an arbitrary
sequence of words (e.g., a sentence) in natural language to some semantic space. Using
WFA, an extensive class of these functions can be defined, which assign sequences to
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real numbers. Assigning word sequences of natural language to real numbers is popular
in NLP tasks, e.g., assigning a real-valued sentiment score to a phrase in the sentiment
analysis task.1 To show that CMSMs are also capable of defining such functions to be
used in NLP tasks, we first introduce the notion of a graded matrix grammar (Asaadi
and Rudolph, 2016, p. 72), which constitutes a slight variation of matrix grammars
(Rudolph and Giesbrecht, 2010). In graded matrix grammars, instead of the “yes or no”
decision, if a sequence is part of a language, a real-valued score is assigned. Then, we
show the correspondence between the CMSMs and WFA.

Definition 2.5 (Graded Matrix Grammars). Let Σ be a vocabulary.2 A graded
matrix grammar M of degree n is defined as the tuple ⟨[[·]],Σ,u,v⟩ where [[·]] is a function
mapping words in Σ to n × n matrices of real numbers. Moreover, u,v ∈ Rn. Then
we map each sequence of words σ1 . . . σk ∈ Σ⋆ to a real number (called the value of the
sequence) using the target function φ : Σ⋆ → R defined by:

φ(σ1 . . . σk) = u⊤[[σ1]] . . . [[σk]]v. (2.6)

♢

As discussed above, in WFA, for a behavior of weighted automaton f , a value
f(σ1 . . . σk) is the sum of all possible paths labeled with σ1 . . . σk ∈ Σ⋆. However,
this computation can be described via matrices by the fact that a walk over a graph
corresponds to a matrix multiplication (Eilenberg, 1974, p. 137, Cor. 6.2.). More
precisely, for every σ ∈ Σ, let Eσ ∈ RQA×QA be the transition matrix of σ: [Eσ]pq =∑

e∈PA(p,σ,q) λ(σ)p,q, where PA(p, σ, q) is the set of all transitions labeled with σ from p

to q. Also, the vectors I ∈ RQA and T ∈ RQA show the start and final weights of the
states in QA, respectively. Then, Equation 2.5 can be equally expressed as follows in
terms of matrices with elements in R:

fA(σ1 . . . σk) = I⊤Eσ1 . . . Eσk
T. (2.7)

Hence, we see the correspondence between Equation 2.6 and 2.7. Fig. 2.13 shows this
correspondence.

As mentioned above, many NLP tasks require mapping word sequences in natural
language to real numbers. For instance, a phrase p=“very good” can be assigned to a
real value in [−1, 1] as its sentiment score in the task of sentiment analysis. Consider
each phrase p in a natural language with its target real-valued score r. If we extract the
vocabulary of the language as a finite alphabet Σ in an automaton, then p would be a
string in Σ⋆. The function [[·]] in M applied over the words constructs n× n transition
matrices of symbols in Σ in the automaton. Here, n can be the number of states of the
automaton. So, estimating the function φ in graded matrix grammar corresponds to

1Sentiment analysis task refers to determining the attitudes towards a topic. Attitudes include
evaluative judgment, such as positive (score 1) or negative (score -1). Details are explained in the next
Subsection.

2Vocabulary is equivalent to the alphabet in finite automata. Words in vocabulary correspond to
symbols in the alphabet, and a sequence of words corresponds to a sequence of symbols in the automaton,
called string.



40 Chapter 2. Background and Foundations

Given Σ: vocabulary
(R,+, ·, 0, 1)

Given Σ: alphabet
(S,⊕,⊙, 0, 1)

Graded Matrix Grammar
M = ⟨[[·]],Σ,u,v⟩ of degree n

[[·]] : Σ → Rn×n

∀σ ∈ Σ : [[σ]] ∈ Rn×n

u ∈ Rn and v ∈ Rn

target function φ : Σ⋆ → R
φ(σ1...σk) = u⊤[[σ1]]...[[σk]]v,

σi ∈ Σ

WFA
A = (QA, λ, α, β)

• λ : QA × Σ ×QA → S
• transition matrix:

E : Σ → RQA×QA

[Eσ]pq =
∑

(p,σ,q)∈PA(p,σ,q)

λ(σ)p,q

[Eilenberg’74, ch.6, p.135-137]

• α : QA → S and β : QA → S
• I ∈ RQA and T ∈ RQA : initial and

final weight vectors in A

• fA(σ1 . . . σk) =⊕
P∈PA(σ1...σk) ω(P),

• ω(P) = α(p0) ⊙ λ(σ1)p0,p1 ⊙ · · · ⊙
λ(σk)pk−1,pk ⊙ β(pk)

• fA(σ1 . . . σk) = I⊤Eσ1 . . . Eσk
T

[Eilenberg’74, ch.6, p.137, Cor. 6.2]

Figure 2.13: Correspondence between CMSM and WFA.

estimating the target function of the automaton fA, which computes exactly the score of
a string translated from the phrase p in a natural language. That is, the representation
of a string is obtained with multiplication of transition matrices of its symbols, which
results in a new representation matrix for the string. Then, suitable predefined vectors
I and T translate the resulting matrix to a real value, which denotes the score of the
associated phrase p in the natural language.

Learning techniques are needed to learn WFA to perform in NLP tasks. The problem of
learning WFA in NLP is to find an automaton that closely approximates a target function
fA using a finite set of pairs of strings and their target values {(x1, y1), . . . , (xd, yd)} as the
training dataset (Balle and Mohri, 2015). Given a number of states n, by learning WFA,
one obtains an automaton that is a tuple A = ⟨I,T, {Eσ}σ∈Σ⟩, which approximates the
target function fA(x) and generalizes to predict the target values of previously unseen
strings. Since WFA encode CMSMs and based on the close correspondence between
them, learning a graded matrix grammar to determine the score of phrases in NLP tasks
can be mapped to the problem of learning a weighted automaton. Conversely, if there is
an efficient learning algorithm for learning CMSMs to best approximate a target function
φ in graded matrix grammars, learning WFA can be mapped to the problem of learning
CMSMs in NLP.

In fact, several methods for learning WFA have been described (Balle et al., 2014;
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Balle and Mohri, 2015), for instance, based on the principles of expectation maximiz-
ation (Dempster et al., 1977) and method of moments (Pearson, 1894). However, in
the context of the NLP tasks investigated by us, the method of moments techniques
performed very poorly in terms of scalability and accuracy. Hence, in this thesis, we
reverted to more generic machine learning techniques for learning CMSMs in NLP.

2.3.4 Applications of Compositional Matrix-Space Models

CMSMs can be used as an alternative to VSMs in various NLP tasks. This means that
the semantics of the linguistic units can be represented in matrix-space. These models
are particularly suitable for tasks that require to compute categorical or scalar values
as final labels for given input samples. For instance, computing the semantic similarity
degree between a pair of phrases, determining if a phrase entails or contradicts another
phrase in the textual entailment task, or detecting the sentiment class of a given phrase
in sentiment analysis task can be investigated using CMSMs.

Sentiment analysis is one of the most popular tasks in NLP. The term sentiment
analysis refers to different but related problems. In general, the task refers to determining
the attitudes towards a topic. Attitudes include evaluative judgment (can also be called
valence), such as positive or negative, or emotional states, such as happiness, sadness,
anger, etc. (Mohammad, 2016). With the increasing importance of review websites
for marketing, a lot of research has been done in sentiment analysis to determine the
attitude of people about a special topic automatically. In this thesis, we use sentiment
analysis to refer to determining the polarity (positive, negative, neutral) of a piece
of text. For example, “a very good movie” indicates a very positive sentiment about
the movie while “a bad movie” carries a negative polarity. Therefore, the task is to
determine the polarity of a piece of text from multiple classes (negative, positive, neutral)
and to determine intensities (e.g., weak, medium, extreme) for positive and negative
polarities. Real-valued scores can represent the polarity and intensity in a continuous
interval instead of categorical representations, which is also called fine-grained sentiment
analysis.

Sentiment analysis can be applied to a single word or a sequence of words such as
phrases and sentences. There are many aspects that must be considered in analyzing
complex sequences. First, different parts-of-speech, such as adjectives and adverbs
(e.g., negators and intensifiers), affect the total sentiment of the sequence differently.
Second, a different order of words may result in a different sentiment score. Third, the
compositionality of the constituents of a sequence determines the meaning of the whole
sequence. For instance, a negator followed by an adjective changes the meaning of the
pair negator–adjective phrase. Yessenalina and Cardie (2011) and Irsoy and Cardie
(2015) showed an application of CMSMs in sentiment analysis and how they capture the
above properties in this task. They proposed supervised machine learning techniques for
learning CMSMs in sentiment analysis of short sequences. The proposed methods learn
a matrix representation for each word that captures the compositionality properties of
natural language. In this thesis, we investigate CMSMs in sentiment analysis as one of
the applications of CMSMs in NLP to address the issues discussed in the previous works.

According to Mitchell and Lapata (2010), if a model cannot capture the composition-
ality of basic linguistic units, such as short phrases, it most likely will not be able to
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capture the meaning composition of more complex linguistic units such as sentences.
Multi-Word Expressions (MWEs) are short compounds with two or more words showing
a range of semantic idiomaticity, which refers to non-compositional expressions, and
statistical idiomaticity, which refers to collocations1 like social media, and other types of
idiomaticity, such as syntactic, pragmatic and lexical idiomaticity (Baldwin and Kim,
2010), which are outside the scope of this thesis. We are only interested in semantic
idiomaticity (non-compositional expressions).

Detecting the (non-)compositionality of MWEs is especially important in meaning-
related NLP tasks, such as phrase-based statistical machine translation (Kordoni and
Simova, 2014; Enache et al., 2014; Weller et al., 2014) and word sense disambigu-
ation (McCarthy et al., 2003; Finlayson and Kulkarni, 2011). Therefore, approaches for
detecting the (non-)compositionality of compounds in NLP are needed.

One approach is to train CDSMs to capture the compositional compound repres-
entation from its components’ representations. Recall that based on the principle of
compositionality the meaning of a compositional expression can be determined by the
meaning of its constituents. Thus, if the trained model cannot closely approximate the
representation of a compound from its constituents’ representations, it recognizes the
compound as non-compositional. This way (non-)compositionality of MWEs can be
detected (Farahmand et al., 2015). Gold standard evaluation datasets for the composi-
tionality detection task have been introduced to evaluate the performance of the trained
models using this approach. A gold standard dataset is a dataset that is accepted as a
reliable and standard reference and the best available resource for evaluating methods
and models. It is usually annotated and corrected by humans.

These evaluation datasets consist of pairs of compounds and their compositionality
degrees. The degrees can, for example, take an integer value between 1 to 5 with 1 as
fully compositional and 5 as fully non-compositional. Datasets are created with human
judgments on the compositionality of compounds.

Therefore, the task of (non-)compositionality detection is one of the popular tasks in
NLP in which different composition methods in CDSMs can be evaluated on their ability
to capture the (non-)compositionality of MWEs. The best model that can identify the
(non-)compositional MWEs will be employed in downstream NLP tasks.

In this thesis, as another application of CMSMs, we investigate these models in
the compositionality detection task in NLP. We consider these two tasks, sentiment
analysis and compositionality detection, for practical investigations of CMSMs since the
compositionality properties of natural language play an important role in such tasks.

2.4 Examining Semantic Composition Methods

As mentioned in Section 2.1, influential approaches to meaning representations have
involved DSMs in vector space, which produce word vectors that capture the patterns
of co-occurrence in a given context (i.e., the distributional representations) (Baroni
and Lenci, 2010). In this way, words with similar distributions in a given context
tend to have close representations in vector space. In addition, different composition

1Collocation is a group of words (e.g., a two-word phrase) that co-occur more commonly in a given
context.
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methods have been introduced to achieve the representation of larger linguistic units (e.g.,
phrases) from word representations and capture semantic compositionality. Examining
different semantic composition methods in capturing the semantic representation of
larger linguistic units has been a main challenge in NLP, and different approaches have
been proposed.

In the study of examining word representation models, a common approach is exploiting
their ability to rank pairs of words in natural language by their closeness in meaning.
Closeness is a measure of how close two term are in terms of their semantics; that is,
two terms are considered to be semantically close if there is a sharing of some meaning
(Mohammad, 2008). For instance, the two words teacher and tutor are closer in meaning
than the two words teacher and fish. Sharing of meaning is defined based on the lexical–
semantic relations (i.e., the semantic relationship between the lexical items; Cruse, 1986).
He points out that the number of lexical–semantic relations is innumerable, however,
certain relations, such as synonymy, hypernymy (hyponymy), meronymy (holonymy),
and antonymy, received more attention as they are systematic and recur in a number of
pairs of related terms. Morris and Hirst (2004) classify the lexical–semantic relations
into classical and non-classical relations, as described below.

Classical Lexical–Semantic Relations:
The classical category refers to the systematic relations that form predetermined

structures and depend on shared properties (Morris and Hirst, 2004). They can be
generally classified into hierarchical and non-hierarchical relations.

Hierarchical relations: These relations can be represented using graph structures.

• Hyponymy and Hypernymy (Taxonomy): Hyponymy is the well-known is-a relation
that associates a term of a certain type to another term of a more general type.
The more general term is called a hypernym, which subsumes the hyponyms. A
chain of hyponyms defines a hierarchical taxonomy of elements: Sports car is a
hyponym of car and a car is a kind of vehicle (Riemer, 2010). Transitivity is one
of the main properties of taxonomy (Fig. 2.14(a)).

• Meronymy and Holonymy: Meronymy and holonymy relations are used to define
the part–whole relationship between lexical items. A meronym denotes a part, and
a holonym denotes the whole (Riemer, 2010). spokes is a part (or meronym) of
wheel, and wheel is a meronym of bicycle. Conversely, wheel is a holonym of spokes
(Fig. 2.14(b)).

Non-Hierarchical relations: These relations are not represented using graph structures.
Instead, a ternary relationship is defined.

• Synonymy: Two terms are synonymous if they are substitutable in sentences in any
context without changing the meaning of the sentences or their truth conditions
(Jurafsky and Martin, 2014). Edmonds and Hirst (2002) argue that absolute
synonymy is quite rare, and almost no two terms are interchangeable in all of their
contexts; therefore, terms are near synonymous. A ternary relation R(T1, T2, C)
is defined as the terms T1 and T2 are synonyms in the context C. In the rest of
the thesis, we use the term synonymy to refer to near synonymy.
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vehicle

bus car

sports car compact car SUV

(a) Example of hyerpnymy/hyponymy lexical–
semantic relations.

bicycle

brake chainring wheel

spokes tire rim

(b) Example of meronymy/holonymy lexical–
semantic relations.

Figure 2.14: Examples of hierarchical lexical–semantic relations.

• Antonymy: This term refers to opposition or a relationship of incompatibility
between two terms in relation to some given aspects of contrast, for instance,
hot–cold in terms of temperature and long–short in terms of length (Riemer, 2010).
A ternary relation R(T1, T2, C) is defined as the terms T1 and T2 are antonyms
in relation to the aspect C.

Non-Classical Lexical–Semantic Relations:
Non-classical relations “do not depend on the shared properties as required of classical

relations” (Morris and Hirst, 2004, p. 2). There are implicit connections between the
terms (Zesch and Gurevych, 2010), and they cannot be classified into hierarchical and
non-hierarchical relations. They do not form any structure, such as a graph structure. A
few types observed by Morris and Hirst (2004, p. 4) are as follows:

• Commonly co-occurring words (associated words; coffee–cup, car–drive);
• Problem solution or cause (homeless–drunk);
• Positive qualities (brilliant–kind); and
• Negative qualities (homeless–alcoholic).

Closeness in meaning, defined based on the lexical–semantic relations, can be of two
kinds: semantic similarity and semantic relatedness. While these terms may be used
interchangeably in some contexts, it is important to know their distinction. Semantically
similar terms tend to share several properties. For example, apples and bananas are both
edible, grow on trees, have seeds, and so on. In terms of lexical–semantic relations, two
terms are considered to be semantically similar if there is a hypernymy, (co-)hyponymy,
synonymy, or antonymy relationship between them as these relations share common
properties (Budanitsky and Hirst, 2001; Mohammad, 2008; Agirre et al., 2009; Baroni
and Lenci, 2010). For instance, bananas and apples are similar as they are co-hyponyms
of fruits, as their hypernym, and share common properties; moreover, auto and car are
similar as they are synonyms.

Semantically related terms may not have many shared properties, but have at least
one classical or non-classical relation between them that allows them to be considered
semantically close. For example, consider the meanings of coffee and cup. They are not
similar as they have practically no common properties: coffee is a drink, while cup is an
object with a specific shape. However, both are related as they are associated in the
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world by commonly co-occurring in a shared event of drinking a cup of coffee. Similarly,
the words surgeon and scalpel are not similar as surgeon is a profession and scalpel is an
object, but they are related, as the former uses the latter for their work (Mohammad
and Hirst, 2005; Budanitsky and Hirst, 2006; Mohammad, 2008; Harispe et al., 2015).
Therefore, two terms are considered semantically related if there is any lexical–semantic
relation between them, classical or non-classical.

According to Kolesnikova and Gelbukh (2015) and Mel’cuk (1996), the term Lexical
Function (LF) is used to describe the lexical–semantic relations between lexical items in
natural language in the mathematical sense. This is defined as a mapping from a lexical
item w0, called the LF argument, to a set of items {w1, . . . , wn} that have a particular
relation (association) with w0. This can be represented as follows:

LF (w0) = {wi}, 1 ≤ i ≤ n.

For instance, synonymy relation for car will be described as syn(car) =
{auto, autombile}. A lexical item w can have different types of lexical–semantic re-
lations, expressed as follows: {LF1(w), LF2(w), . . . , LFm(w)}. If a lexical item w has
different relations, defined as relatedness:

R(w) = {LF1(w), LF2(w), . . . , LFl(w)},

and a set of different lexical relations, defined as similarity:

S(w) = {LF1(w), LF2(w), . . . , LFk(w)},

then S is a subset of R: S(w) ⊂ R(w) and k < l; that is, relatedness is a broader class
than similarity is. For instance, R(car) = {{vehicle}, {auto, atuomobile}, {road, drive}}
and S(car) = {{vehicle}, {auto, automobile}}. Note that there is an implicit association
between the two terms road and drive as they co-occur commonly in a shared event of
drive a car on the road, which is considered a non-classical relation. In general, similar
terms are also related but there are terms that are not similar but strongly related
(associated) and co-occur in the shared events, such as terms with non-classical relations
(e.g., surgeon–scalpel, drive–car).

For a lexical item w, an expression LF (w) can be defined for each lexical relation,
that is, hypo(w), hyper(w), mero(w), holo(w), syn(w), ant(w), non-classical(w). Now,
if a lexical item w0 is in {hypo(w) ∪ hyper(w) ∪mero(w) ∪ holo(w) ∪ syn(w) ∪ ant(w) ∪
non-classical(w)}, the two items w and w0 are absolutely related, but they may not be
similar. If the lexical item w0 is in {hypo(w) ∪ hyper(w) ∪ syn(w) ∪ ant(w)}, they are
also considered similar items.

The distributional hypothesis states that “words that occur in the same contexts tend
to have similar meanings” (Pantel, 2005, p. 126). This hypothesis mentions similarity
and not relatedness, and the works based on the distributional hypothesis use the term
semantic similarity rather than semantic relatedness. However, as Mohammad and
Hirst (2005) and Mohammad (2008) point out, the distributional hypothesis is generic
enough to contain both relatedness and similarity. Recall the co-occurring words example
surgeon–scalpel that are considered a non-classical relation, and therefore, belong to the
semantic relatedness. They commonly co-occur in the same contexts. Thus, based on the
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distributional hypothesis, DSMs produce close vector representations for semantically
related words (as well as similar terms).

Therefore, the quality of the semantic representation of words produced by representa-
tion models can be evaluated by computing their relatedness (i.e., the strength of their
semantic association), as their closeness in meaning in vector space using some measures.
The ability to assess semantic relatedness is central to the use and understanding of
natural language (Hutchison, 2003; Huth et al., 2016). Therefore, the quantification
of semantic relatedness in NLP is needed for examining word representation models.
For this, gold standard evaluation datasets consisting of pairs of terms with semantic
relatedness scores are created. A gold standard dataset is a dataset that is accepted as a
reliable and standard reference and the best available resource for evaluating methods
and models. It is usually annotated and corrected by human experts.

Existing gold standard evaluation datasets of semantic relatedness in English, such as
that by Finkelstein et al. (2002), only focus on single words (unigrams). However, the
concept of semantic relatedness applies to larger linguistic units produced by composition,
such as phrases or sentences. Therefore, we argue that semantic relatedness can be used
to evaluate methods of semantic composition. Previous studies focused on the evaluation
of semantic composition using semantic similarity on phrase level (e.g., Turney (2012) and
Mitchell and Lapata (2010)). In this thesis, however, we focus on semantic relatedness,
not only because it is the broader class subsuming semantic similarity (Rubenstein and
Goodenough, 1965; Resnik, 1995; Budanitsky and Hirst, 2006) but also because many
psychological and neuro linguistic studies have demonstrated the importance of semantic
relatedness. These studies show that the human brain stores information in a thematic
manner (based on relatedness) rather than based on similarity (Hutchison, 2003; Huth
et al., 2016). Moreover, Hill et al. (2015) suggest that relatedness judgments have broader
use in studies of human semantic cognition. Another limitation of similarity is that it
can be only defined between terms categorized as the same Part-Of-Speech (POS). In
contrast, two terms can be related even if they represent different parts of speech (Zesch
and Gurevych, 2010). For instance surgeon and the verb operate belong to different parts
of speech, but they are related as they commonly co-occur and have many common
co-occurring words, such as scalpel, surgery, and patient.1

Thus, to investigate semantic composition methods using closeness in meaning, gold
standard semantic relatedness evaluation datasets must be developed, which is one focus
of this thesis.2

Relatedness measurements may vary across different fields (Deza and Deza, 2014). In
computational linguistics, the relatedness measure can be formalized using a semantic
distance measure (Harispe et al., 2015), such as distributional distance, and the re-
latedness score can be obtained by inversing the distance values (Budanitsky and Hirst,
2006). The study of different semantic relatedness measures is out of the scope of this
thesis, and the interested reader is referred to Johnson (1995), Budanitsky and Hirst

1We are aware that some words may have several meanings depending on their context. In this
thesis, whenever we compare two words, we consider their meanings in the same context.

2Antonymy is a broad concept in lexical–semantic relations. Some studies, such as that by Budanitsky
and Hirst (2001), do not consider antonymy in the semantic similarity category. In this thesis, we are
not concerned with the study of antonymy and exclude it in the development of our semantic relatedness
dataset.
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(2006) and Zesch and Gurevych (2010) for further information. In this thesis, we use the
cosine value between the two term representations to refer to their relatedness (closeness)
degree. The cosine of the two vectors v1 and v2 is computed as:

cos(v1,v2) = v1.v2
∥ v1 ∥∥ v2 ∥

,

where ∥ · ∥ computes the Euclidean norm of a vector v of size d as follows:

∥ v ∥=
√

v(1)2 + · · · + v(d)2.

The cosine value ranges between −1 and 1, and higher cosine values indicate higher
closeness between term meaning representations.
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Compositional representation models were introduced to capture the representation
of compositional expressions, such as phrases (sequences of words), for downstream
NLP tasks. Among different models, we discussed advantageous theoretical properties
of CMSMs in Chapter 2, demonstrating their principled suitability and expressivity in
NLP tasks. The model has been shown to cover numeric (e.g., VSMs) and symbolic
approaches. Moreover, the plausibility of CMSMs in the light of structural and cognitive
considerations has been supported. In view of these advantageous properties, CMSMs
seem to be a suitable candidate for a diverse range of NLP tasks. These established
beneficial properties motivate a practical investigation of CMSMs in NLP applications,
which is the focus of this chapter.

For practical applicability, machine learning methods are needed to train word matrix
representations from available training datasets for different NLP tasks. Thus, similar to
word vectors, each word matrix is supposed to contain semantic information about the
word. With a few notable exceptions (Yessenalina and Cardie, 2011; Irsoy and Cardie,
2015), learning CMSMs has remained largely unexplored and this topic is discussed in
detail in this chapter.

Depending on the NLP application, the information of interest encoded in the matrices
needs to be utilized in different forms. In Section 3.1, we discuss various possible ways
(forms) of utilizing the semantic information encoded in the matrix representation of
words and phrases. We consider whether the required information for the NLP application
should be in the form of a vector, a scalar, or just a Boolean value. In Chapter 2.3.4, we
introduced two applications of CMSMs in NLP: sentiment analysis and compositionality
detection. As explained before, we use sentiment analysis to refer to determining the
polarity (positive, negative, neutral) of a piece of text. Compositionality detection is also
concerned with detecting if a given compound (two-word sequence) is compositional or
non-compositional. In this chapter, we aim at investigating the performance of CMSMs
on meaning composition in these two NLP applications. We consider these two tasks for
practical investigations since compositionality properties of natural language play an
important role in such tasks. Therefore, we address the problem of learning CMSMs
using machine learning techniques for sentiment analysis and compositionality detection1

tasks in Sections 3.2 and 3.3, respectively, and review the related work. In the sentiment
analysis, we look into a learning technique for compositional phrase scoring models; that
is, phrases are “scored” by scalar values. In the latter task, we address the scenario
aimed at simulating a compositional vector representation for words and phrases by
means of CMSMs. In each section, we evaluate the performance of the learned models
empirically against other compositional models from the literature. By means of these
investigations, we show the following results:

• There are scalable methods for learning CMSMs; and

• In terms of model quality, the learned models are competitive with other baseline
models and state-of-the-art CMSM-based models, while requiring significantly
fewer training parameters.

1This task is also called compositionality prediction task.
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3.1 Utilizing Matrix Representations in CMSMs

As discussed in Chapter 2, Rudolph and Giesbrecht (2010) have argued in favor of
using quadratic matrices as representatives for the meaning of words and – by means
of composition – phrases (i.e., word sequences). The matrix representation of a phrase
thus obtained then arguably carries semantic information encoded in a certain way. This
way of representation necessitates a “decoding step”, where we utilize the information of
interest encoded in the matrix representations in different forms: a vector, a scalar, or
just a Boolean value.

Vectors

Vectors can represent various syntactic and semantic information of words and phrases,
and are widely used in many NLP tasks. The information in matrix representations in
CMSMs can be utilized in a vector shape allowing for their comparison and integration
with other NLP vector-space approaches. There are numerous options to obtain vectors
from matrices, among them the different functions χ : Rm×m → Rn, introduced in
Chapter 2.3.1.

One alternative option can be derived from the neurological motivation laid out in
Section 2.3, where we assume that mental states correspond to vectors and word matrices
encode mental state transformations. If we assume that the perception of a phrase
will always start from a fixed initial mental state α ∈ Rm, then the mental state after
perceiving s = σ1 . . . σk will be α⊤Mσ1 . . .Mσk

= α⊤Ms. Consequently, one simple but
plausible vector mapping operation would be given by the function χα where the vector
v associated with a matrix M is

v = χα(M) = α⊤M.

Scalars

Scalars (i.e., real values) may also represent semantic information in NLP tasks, such as
semantic similarity degree in similarity tasks or sentiment score in sentiment analysis.
Also, the information in scalar form requires less storage than matrices or vectors. To
map a matrix M ∈ Rm×m to a scalar value, we may employ any m2-ary function, which
takes as input all entries of M and delivers a scalar value.

There are plenty of options for such a function. In this thesis, we focus on the class
of functions brought about by two mapping vectors α ∈ Rm and β ∈ Rm, mapping a
matrix M to the scalar value r as follows:

r = α⊤Mβ.

Again, we can motivate this choice along the lines of neurological plausibility described
in Chapter 2.3. If, as argued, α represents an “initial mental state” then, for a sequence
s, the vector vs = α⊤Ms ∈ Rm represents the mental state after receiving the sequence
s. Then rs = α⊤Msβ = vsβ is the scalar obtained from a linear combination of the
entries of vs, that is rs = b1 · v(1) + . . .+ bm · v(m), where β = (b1 · · · bm).
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Clearly, choosing appropriate “mapping vectors” α and β dependents on the NLP
task and the problem to be solved. However, it turns out that with a proper choice of
the token-to-matrix mapping, we can restrict α and β to a very specific form. To this
end, let

α = e1 =


1
0
...
0

 and β = em =


0
...
0
1


which only moderately restricts the expressivity of our model as made formally precise
in the following theorem (Asaadi and Rudolph, 2017, p. 180).

Theorem 3.1. Given matrices M1, . . . ,Mℓ ∈ Rm×m and vectors α,β ∈ Rm, there are
matrices M̂1, . . . , M̂ℓ ∈ R(m+1)×(m+1) such that for every sequence i1 . . . ik of numbers
from {1, . . . , ℓ} holds

α⊤Mi1 . . .Mik
β = e⊤

1 M̂i1 . . . M̂ik
em+1

♢

Proof. If α is the zero vector, all scores will be zero, so we can let all Ŵh be the
(m+ 1) × (m+ 1) zero matrix.

Otherwise, let W be an arbitrary m×m matrix of full rank, whose first row is α (i.e.,
e⊤

1 W = α⊤). Now, let

M̂h :=
(
WMhW

−1 MMhβ

0 · · · 0 0

)
for every h ∈ {1, . . . , ℓ}. Then, we obtain

M̂gM̂h =
(
WMgMhW

−1 WMgMhβ

0 · · · 0 0

)

for every g, h ∈ {1, . . . , ℓ}. This leads to

e⊤
1 M̂i1 . . . M̂ik

em+1
= e⊤

1 WMi1 . . .Mik
β

= α⊤Mi1 . . .Mik
β. q.e.d.

In words, this theorem guarantees that for every CMSM-based scoring model with
arbitrary vectors α and β there is another such model (with dimensionality increased
by one), where α and β are distinct unit vectors. This theorem justifies our choice
mentioned above.

Boolean Values

Matrix representations can also be mapped to boolean values. Any function ζ : Rm×m →
{true, false} can be seen as a binary classifier which accepts or rejects a sequence of
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tokens as being part of the formal language Lζ defined by

L = {σ1 . . . σk | ζ([[σ1]] . . . [[σk]]) = true}.

One option for defining such a function ζ is to first map to a scalar (for instance using
the mapping discussed before) and then compare that scalar against a given threshold
value as defined in matrix grammars in Chapter 2.3.2, Definition 2.2.

3.2 Learning Approach to CMSMs in Sentiment Analysis
We propose a supervised learning approach to CMSMs in the task of sentiment analysis
based on linear regression, which determines the real-valued sentiment score of short
phrases. Training CMSMs using machine learning algorithms yields a low-dimensional
real-valued quadratic matrix for each word. Since we consider the task of sentiment
analysis, word representations must be trained to contain sentiment-related and compos-
itional information.

Gradient descent (Berstsekas, 1999; Cauchy, 1847) is an iterative optimization al-
gorithm, which is applied to linear and nonlinear problems in machine learning. In
gradient descent, the goal is to find the local minimum/maximum (i.e., local optimum)
of a loss function (also called objective function) by taking steps proportional to the
negative/positive gradient of the function at the current point toward the local optimum.
The loss function computes the error between the predicted and target values in the
training set.

There are several variants of gradient descent optimization methods. One basic
distinction made is that of batch as opposed to stochastic learning: given a set of training
examples, in batch gradient descent, at each iteration parameter updates are done after
seeing all training examples, while in stochastic gradient descent parameters are updated
after seeing each training example.

We found gradient descent to be a suitable optimization method for learning CMSMs
in sentiment analysis. We consider two variants of CMSM learning in predicting the
scores of phrases in the sentiment analysis task.

3.2.1 Gradient Descent-based Matrix-Space Models

This variant of learning algorithm for CMSMs in sentiment analysis, called Gradient
descent-based Matrix Space Models (GMSM), employs the standard gradient descent
optimization technique to train the word matrices. As illustrated in Fig. 3.1(a), the
input to the learning algorithm is a training dataset containing pairs (si, ωi) of phrases
si with associated real values ωi for i ∈ {1, . . . , N}, where N is the size of the training
dataset. si = σ1 . . . σki

is a phrase consisting of a sequence of ki words and ωi is a scalar
value representing si’s associated target score. The learning algorithm optimizes a loss
function by training a set of parameters of a model using the training dataset. In our
algorithm, the model parameters to train are the word matrices [[σj ]] ∈ Rm×m for each
word σj and the mapping vectors α,β ∈ Rm. Recall that in sentiment analysis we map
the phrases to scalars the same way as described in Section 3.1. As justified by Theorem
3.1, we fix the mapping vectors α and β to unit vectors e1 and em, respectively, which



54 Chapter 3. Task-Specific Learning Approach to CMSMs

input:{(s1, ω1), . . . , (si, ωi), . . . , (sN , ωN )}
si =σ1 . . . σki

σj ∈ Σ, ωi ∈ [−1, 1]

output: φ : Σ⋆ → R
φ(si) ≈ ωi

Learning algorithm
for CMSM

1. model parameters to train

[[σj ]] σj ∈ Σ

2. objective: minimize the loss function

C([[·]]) = 1
2

N∑
i=1

(ω̂i − ωi)2 + penalty([[·]])

(a)

input:{(s1, ω1), . . . , (si, ωi), . . . , (sN , ωN )}
si =σ1 . . . σki

σj ∈ Σ, ωi ∈ [−1, 1]

output: φ : Σ⋆ → R
φ(si) ≈ ωi

Learning algorithm
for CMSM

• scoring function
φ(σ1...σki

) =α⊤[[σ1]]...[[σki
]]β,

• fix α = e1 and β = em:

e1 =


1
0
...
0

 and em =


0
...
0
1


(b)

Figure 3.1: Supervised learning procedure for phrase scoring in sentiment analysis. The
input to the learning algorithm is a training set of size N . Σ is the vocabulary
extracted from training set.

reduces the number of model parameters for training. We extract all the words from
phrases in the training dataset as our vocabulary Σ, creating for each a quadratic matrix
of size m×m. This provides us with the initial values of our model parameters.

We consider the batch gradient descent optimization method for training. The objective
of the learning algorithm is to train the model parameters in order to minimize the loss
function defined as the Summed Squared Error (SSE):

E([[·]]) = 1
2

N∑
i=1

(ω̂i − ωi)2 (3.1)

in which ω̂i is the score of phrase si = σ1 . . . σki
predicted by the model and ωi is its

target score from the training dataset. N is the size of the training set. ω̂i is computed
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as follows:
ω̂i = e⊤

1 [[σ1]][[σ2]] . . . [[σki
]]em, (3.2)

which is the product of word matrices [[σj ]] in the same order as they appear in the
phrase being mapped to a scalar using the mapping vectors.

To prevent from over-fitting1 and ill-conditioned matrices in learning, a penalty term
is added to the loss function. Therefore, our final loss function is defined as follows:

C([[·]]) = E([[·]]) + penalty([[·]]). (3.3)

The penalty introduces additional information during the training. L2 regularization
can be considered as the penalty term, defined as follows:

∥ Mσ ∥2
2= λ

(
(
∑
l,k

Mσ(l, k)2)1/2)2,
which is the squared 2-norm of a word matrix Mσ = [[σ]]. λ > 0 is the regularization
parameter that shows the strength of the regularization effect. In our learning algorithm,
using the L2 regularization, the penalty term becomes as:

penalty([[·]]) = λ

2
∑

σ

∥ [[σ]] ∥2
2,

where:
∥ [[σ]] ∥2

2=
∑
l,k

Mσ(l, k)2.

We use L2 regularization because it is differentiable with respect to matrices. In
gradient descent, at each iteration of training, the loss function is computed and the
parameter values are updated towards the local optimum of the loss function. Here,
the parameters to be updated are the word matrices. Therefore, we update each word
matrix Mσ as follows:

Mσ = Mσ − η · (∂C([[·]])
∂Mσ

) = Mσ − η · (∂E([[·]])
∂Mσ

+ λMσ), (3.4)

where η is the step size towards the local minimum of the loss function, called learning
rate. ∂C([[·]])

∂Mσ
is the partial derivative of the loss function with respect to the word matrix

Mσ. ∂E([[·]])
∂Mσ

is computed as follows:

∂E([[·]])
∂Mσ

=
N∑

i=1

∂E([[·]])
∂ω̂i

× ∂ω̂i

∂Mσ
, (3.5)

and the derivative of the penalty term with respect to Mσ is λMσ.
According to Petersen and Pedersen (2012, p. 10) the derivative of the predicted

score ω̂i for a phrase si = σ1 . . . σki
with respect to the j-th word matrix Mσj = [[σj ]] is

1Over-fitting in machine learning happens when the model fits a dataset perfectly and is unable to
generalize to other datasets.
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computed as follows:

∂ω̂i

∂Mσj

=
∂(α⊤Mσ1 . . .Mσj . . .Mσki

β)
∂Mσj

= (α⊤Mσ1 . . .Mσj−1)⊤(Mσj+1 . . .Mσki
β)⊤.

(3.6)
If a word σj occurs several times in the phrase, then the partial derivative of the phrase
with respect to Mσj is the sum of partial derivatives with respect to each occurrence of
Mσj .

Iterative training of the word matrices continues until there is no improvement in
decreasing the error (i.e., the loss function converges to its local minimum). We discuss
it in detail in the experiments section.

The output of a supervised learning algorithm is an approximation to a target scoring
function φ∗ using the trained parameters. In our algorithm, as illustrated in Fig. 3.1(b),
after training the word matrices, the output is a scoring function φ (an approximation
to φ∗) that closely approximates the scalar value ωi for each phrase si = σ1 . . . σki

using
the following computations:

ω̂i = φ(σ1 . . . σki
) = e⊤

1 Msiem (3.7)

Msi = Mσ1Mσ2 . . .Mσki
= [[σ1]][[σ2]] . . . [[σki

]], (3.8)

where ω̂i is an approximation to ωi. The scoring function φ∗ is defined in Definition
2.5 in Chapter 2. Note that the matrix representation of a phrase si = σ1 . . . σki

is the
matrix product of the trained word matrices in the corresponding order.

3.2.2 Gradual Gradient Descent-based Matrix-Space Models

The novelty of this variant of learning algorithm for CMSMs, which is called Gradual
Gradient descent-based Matrix Space Models (Grad-GMSM), consists in a two-step
learning procedure, where the result of the first step is used as initialization for the
second step. In this approach, we (1) perform an “informed initialization” exploiting
available scoring information for single words (unigrams), (2) apply a first learning
step only on parts of the matrices using scored one- and two-word sequences from our
training set (unigrams and bigrams), and (3) use the matrices obtained in the last step
as initialization for training the full matrices on the whole training set.

Informed Initialization:

In this step, we first take all the words in the training dataset as our vocabulary,
creating quadratic matrices of size m × m with entries from a normal distribution
N (µ, σ2). Then, we consider the unigrams si = σ with associated score ωi in the training
set. We exploit the fact that for any matrix M , computing e⊤

1 Mem extracts exactly the
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entry of the first row, last column of M :

ω̂i = e⊤
1 Mem =

1
...
0


⊤x1,1 · · · x1,m

... . . . ...
xm,1· · ·xm,m


0

...
1

 = x1,m.

Hence, to minimize the loss function, we update this entry in every matrix Mσ that
corresponds to a unigram si = σ of a scored unigram (si, ωi) in our training set by this
value, in other words, we let

Mσ =

· · · · ωi
... . . . ...
· · · · ·

 . (3.9)

This way, we have initialized the word-to-matrix mapping such that it leads to perfect
scores on all unigrams mentioned in the training set.

First Learning Step:
After initialization, we consider bigrams (two-word sequences). The predicted score

ω̂i of a bigram si = σ1σ2 is computed as follows:

ω̂i = e⊤
1 Mσ1Mσ2em =

1
...
0


⊤x1,1 · · · x1,m

... . . . ...
xm,1· · ·xm,m


y1,1 · · · y1,m

... . . . ...
ym,1· · ·ym,m


0

...
1



=

x1,1
...

x1,m


⊤ y1,m

...
ym,m

 = ∑m
j=1 x1,jyj,m.

We observe that for bigrams, multiplying the first row of the first matrix (row vector)
with the last column of the second matrix (column vector) yields the score of the bigrams.
Hence, as far as the scoring of unigrams and bigrams is concerned, only the corresponding
row and column vectors are relevant – thanks to our specific choice of the vectors α = e1
and β = em.

This observation justifies the next learning step: we use the unigrams and bigrams in
the training set to learn optimal values for the relevant matrix entries only. We apply
the batch gradient descent optimization method on the training set to minimize the loss
function defined as the SSE with the penalty term:

C([[·]]) = E([[·]]) + penalty([[·]]) = 1
2

D∑
i=1

(ω̂i − ωi)2 + λ

2
∑

σ

∥ [[σ]] ∥2
2,

where D is the size of the subset of training set used in this step (i.e., all scored unigrams
and bigrams). ∥ [[σ]] ∥2

2 is the squared 2-norm of the word matrix σ, and λ is the
regularization parameter. Word matrices are trained and updated in the same way as
explained in Section 3.2.1.
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Second Learning Step:
Using the entries obtained in the previous learning step for training part of the word

matrices, we finally repeat the optimization process using the whole training set and
optimizing all the matrix entries simultaneously in the same way as described in Section
3.2.1. The loss function is defined the same as in Equation 3.3, and matrices are updated
in the same way as in Equation 3.4. The training procedure continues until there is
no improvement in decreasing the error (i.e., the loss function converges to its local
minimum).

3.2.3 Experiments and Discussion
As explained before, the sentiment analysis task is to determine the polarity (negative,
neutral, positive) and intensity (weak, medium, extreme) of a piece of text, that is, to
rate the sentiment of a single word or a sequence of words (a phrase). Real-valued scores
can express the polarity and intensity in a continuous interval, also called fine-grained
sentiment analysis.

In the following, we show the results of training CMSMs to capture the sentiment
scores of compositional phrases using our proposed learning approach. We conduct
several experiments with two different datasets and compare the results with prior works
on learning CMSMs and VSMs for sentiment analysis.

Datasets:
We use the following datasets for our experiments:

• MPQA (Multi-Perspective Question Answering) opinion corpus1: This dataset
contains newswire documents annotated with phrase-level polarity and intensity.
We extracted the annotated verb and noun phrases from the documents, obtaining
9, 501 phrases. In line with Yessenalina and Cardie (2011) and Irsoy and Cardie
(2015), we removed phrases with low intensity. The levels of polarities and intens-
ities, their translation to numerical values, and their occurrence frequency in the
dataset are as per Table 3.1.

Polarity Intensity Score Frequency
negative high, extreme −1.0 1581
negative medium −0.5 1940
neutral medium, high, extreme 0.0 4475
positive medium 0.5 1151
positive high, extreme 1.0 354

Table 3.1: Polarity and intensity categories in the MPQA dataset, their translation to
sentiment scores, and their occurrence frequency.

• SCL-OPP (Sentiment Composition Lexicon with Opposing Polarity Phrases)2:
This dataset consists of 602 unigrams, 311 bigrams, and 265 trigrams (three-word

1http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
2http://www.saifmohammad.com/WebPages/SCL.html

http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
http://www.saifmohammad.com/WebPages/SCL.html
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sequences) that have been taken from a corpus of tweets, and annotated with real-
valued sentiment scores in the interval [−1,+1] with human judgments (Kiritchenko
and Mohammad, 2016b). Each phrase in the dataset contains at least one negative
word and one positive word. For instance, the phrase “happy tears” carries a
positive sentiment score, while the unigrams “tear” and “happy” carry negative
and positive sentiment scores, respectively. The dataset contains different noun
and verb phrases. The frequency of polarities are as per Table 3.2.

Polarity Frequency
negative 647
neutral 12
positive 519

Table 3.2: Phrase polarities and their occurrence frequencies.

Experiments on MPQA:

The purpose of this experiment is to evaluate the performance of CMSMs in predicting
the sentiment value of phrases with different lengths. In this experiment, we compare
the results of our proposed approach with two previous methods for learning CMSMs
introduced by Yessenalina and Cardie (2011) and Irsoy and Cardie (2015). We also study
the impact of different types of matrix initialization as well as the number of dimensions
on the CMSM performance.
K-fold cross-validation (Mosteller and Tukey, 1968) is an approach that randomly

splits the whole dataset into K groups (folds) of approximately equal size. The K − 1
folds are used for training the model and the remaining fold is kept for testing the model
after training is done. This way, we train a model K times. At each time, a distinct fold
is considered as the test set, and the average performance of the trained model in K
times is the overall performance of the model. In our experiments, we apply a ten-fold
cross-validation process on the training dataset as follows: eight folds are used as the
training set, one fold as the validation set, and one fold as the test set. We apply the
ten-fold cross-validation to both learning steps. The number of iterations in the first
and second learning step of Grad-GMSM is set to T = 400 each. The same number of
iterations is set in GMSM. In each step, we train the model parameters on the training
set and at each iteration of training, we evaluate the performance of the current model
on validation set using the Mean Mean Absolute Error (NLP) defined as follows:

L = 1
n

n∑
i=1

|ω̂i − ωi|,

where n is the size of the validation set. Note that validation set is not used for training
the model parameters. Finally, a model with the minimum MAE on validation set is
taken as the final model (i.e., the parameter values that result in minimum MAE on
validation set are considered as the optimal values). Since we have two learning steps,
the optimal parameter values from the first step are considered as the initial values for
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the second learning step. We then record the MAE of the final model for the test set after
training in the second step. The learning rates η of the first and second learning steps of
Grad-GMSM were adapted experimentally and set to 0.001 and 0.01, respectively. The
learning rate of GMSM is also set to η = 0.01.

Word matrices are initialized in two ways: (1) with a normal distribution N (0, 0.01)
(2) with an identity matrix plus noise drawn from a normal distribution N (0, 0.01) as it
is also suggested in previous works (Socher et al., 2012; Maillard and Clark, 2015). The
results of the Grad-GMSM approach with both initializations and the GMSM approach
with the former initialization are reported. We call our Grad-GMSM with the latter
initialization Grad-GMSM+IdentityInit.

The dimension of matrices is set to m = 3 in order to be able to compare our
approach with previous methods for learning CMSMs introduced by Yessenalina and
Cardie (2011), called Matrix-space OLogReg+BowInit, and Irsoy and Cardie (2015),
called multiplicative RNN (mRNN). Yessenalina and Cardie (2011) proposed the first
supervised learning technique for CMSMs in sentiment analysis after Rudolph and
Giesbrecht (2010) introduced the model. Also inspired by CMSMs, Irsoy and Cardie
(2015) proposed a Multiplicative RNN to train the CMSMs for sentiment analysis.

Yessenalina and Cardie (2011) propose a model to predict an ordinal sentiment score
(e.g., label 0 for highly negative sentiment, 1 for medium negative, 2 for neutral, and so on)
for a given phrase. The model learns an interval for each sentiment label. Therefore, the
model parameters to optimize are the word matrices as well as a set of threshold values,
which indicate the intervals for sentiment labels. The word matrices are initialized in two
ways: random initialization using the normal distribution, and BOWs initialization. In
the latter case, first a Bag-of-Words Ordered Logistic Regression (BOW-OLogReg) model
is trained on the same dataset in which each word in the BOWs model learns a scalar
weight using ordered logistic regression. Then, a specific element of matrices is initialized
with the learned weights from BOW-OLogReg. They apply Ordered Logistic Regression
(OLogReg) to train word matrices and optimize the threshold values by maximizing
the probability of predicting the sentiment interval of given phrases in the dataset or
minimizing the negative log of the probability. To avoid ill-conditioned matrices, they
add a projection step to matrices after each training iteration by shrinking all singular
values of matrices close to one. The trained model with random initialization is called
Matrix-space OLogReg+RandInit and the one with BOW initialization is called Matrix-
space OLogReg+BowInit. They show outperformance of the latter model compared
with the random initialization of the matrix-space model.

In multiplicative RNN proposed by Irsoy and Cardie (2015), a multiplicative interaction
between the input vector and the previous hidden layer in a RNN is introduced using
a shared third-order tensor T ∈ Rd×m×d. At each time step, the input word vector
v ∈ Rm is multiplied with the weight tensor T, which results in a matrix M of size d× d.
Then the resulting matrix is multiplied with the previous hidden layer ht−1 to finally
obtain the current hidden layer at time step t. Therefore, if the current hidden layer of
a RNN is defined as follows:

ht = g(vtU + ht−1W + b),



3.2 Learning Approach to CMSMs in Sentiment Analysis 61

then the Multiplicative RNN computes the current hidden layer as follows:

ht = g(vtU + ht−1W + v⊤
t Tht−1 + b),

where in both equations U and W are the shared weight matrices for input-to-hidden and
hidden-to-hidden layers, respectively, and b is the bias of the network. g is a nonlinear
activation function, such as tanh function. vt is the specific input word at time t, while
ht is the result of the current hidden layer. This means that the multiplicative relation
between the input and the previous hidden layer is added to the current hidden layer
computation. Thus, they incorporate multiplicative interaction in matrix-space models
to RNNs using the term v⊤

t Tht−1. They use pre-trained word vectors of dimension
m = 300 from word2vec (Mikolov et al., 2013b) as the input to their network.

Table 3.3 compares the result of our approach with the explained Yessenalina and
Cardie (2011)’s approach and Irsoy and Cardie (2015)’s approach in matrix-space. As we
observe, Grad-GMSM+IdentityInit obtains a significantly lower MAE than previously
proposed methods and our Grad-GMSM and GMSM approaches. Moreover, the GMSM-
based models train lower number of parameters as they do not optimize the threshold
values for sentiment classes intervals.

Ranking
Method loss
Matrix-space OLogReg+RandInit (Yessenalina and Cardie, 2011) 0.7417
Matrix-space OLogReg+BowInit (Yessenalina and Cardie, 2011) 0.6375
Multiplicative RNN (Irsoy and Cardie, 2015) 0.5147
GMSM 0.3645 ± 0.007
Grad-GMSM 0.3429 ± 0.013
Grad-GMSM + IdentityInit 0.3086 ± 0.009

Table 3.3: Performance of different methods for learning CMSMs on MPQA dataset
in sentiment analysis. The average MAE in a ten-fold cross-validation is
reported.

By comparing Grad-GMSM+IdentityInit with Grad-GMSM we also observe faster con-
vergence of the former over the latter, since the lowest MAE of Grad-GMSM+IdentityInit
is obtained after 114.55 iterations on average. In Grad-GMSM, the lowest MAE happens
on average after 161.85 iterations. GMSM cannot converge to its best model in T
iterations, and we reported the results after T iterations.

Table 3.4 shows the sentiment scores of some example phrases obtained by our method
and Matrix-space OLogReg+BowInit method (Yessenalina and Cardie, 2011). As shown
in the table, the two methods’ results coincide regarding the order of basic phrases: the
score of “very good” is greater than “good” (and both are positive) and the score of “very
bad” is less than “bad” (and both are negative). Also, “not good” is characterized as
negative by both methods. On the other hand, there are significant differences between
the two methods. For example, our method characterizes the phrase “not bad” as mildly
positive while Matrix-space OLogReg+BowInit associates a negative score to it, the
same discrepancy occurs for “not very bad”. Intuitively, we tend to agree more with our
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method’s verdict on these phrases.

Grad-GMSM Matrix-space
Phrase +IdentityInit OLogReg+BowInit
good 0.64 2.81
very good 0.84 3.53
not good −0.43 −0.16
not very good −0.23 0.66
bad −0.69 −1.67
very bad −0.81 −2.01
not bad 0.32 −0.54
not very bad 0.21 −1.36

Table 3.4: Sample phrases with average sentiment scores obtained from different meth-
ods.

In general, our findings confirm those of Yessenalina and Cardie (2011): “very” seems
to intensify the sentiment score of the subsequent phrase, while the “not” operator
not only flips the sentiment of the phrase syntactically following it but also gradually
dampens the sentiment of the phrases. In contrast, the scores of phrases starting with
“not very” defy the assumption that the described effects of these operators can be
combined in a straightforward way. Adverbs and negators play an important role in
determining the sentiment scores of phrases.

Fig. 3.2 provides a more comprehensive selection of phrases and their associated scores
by our method Grad-GMSM+IdentityInit. We obtained the range of sentiment scores
by taking the minimum and maximum values predicted in the ten-fold cross-validation.
Average values are computed by taking the average of predicted scores in the ten-fold
cross-validation. We obtained an average of φ(very very good) = 0.98, which is greater
than “very good”, and φ(very very bad) = −0.95 less than “very bad”. Therefore, we
can also consider “very very” as an intensifier operator. Moreover, we observe that
the average score of φ(not really good) = −0.34 is not equal to the average score of
φ(really not good) = −0.58, which demonstrates that the matrix-based compositionality
operation shows sensitivity to word orders, arguably reflecting the meaning of phrases
better than any commutative operation could.

Although the sentiment scores of the training dataset consist of only the values of
Table 3.1, the training of the model is done in a way that sentiment scores for phrases
with more extreme intensity might yield real values greater than 1 or lower than −1,
since we do not constrain the sentiment scores to [−1,+1]. Moreover, in our experiments
we observed that, as opposed to Matrix-space OLogReg+BowInit, no extra precautions
were needed to avoid ill-conditioned matrices or abrupt changes in the scores while
training.

To observe the effect of a higher number of dimensions on our method, we repeated
the experiments for Grad-GMSM+IdentityInit with m = 50, and observed a MAE of
e = 0.3092 (i.e., virtually the same as for m = 3), and almost similar values for the
number of iterations T = 122. The results confirmed the observation of Yessenalina and
Cardie (2011), that increasing the number of dimensions does not significantly improve



3.2 Learning Approach to CMSMs in Sentiment Analysis 63

Figure 3.2: Sentiment scores for sample phrases obtained by our method (trained on
MPQA dataset). Range of sentiment scores are obtained by taking the
minimum and maximum values of the predicted scores in the ten-fold cross-
validation. Average values are computed by taking the average of predicted
scores in the ten-fold cross-validation.

the prediction quality of the obtained model.

Experiments on SCL-OPP:

The purpose of this experiment is to investigate CMSMs in predicting the sentiment
composition of phrases that contain words with opposing polarities. The sentiment value
of words (unigrams) is given for training the CMSM. In the first part of the experiments,
we compare our results with the results of a supervised learning technique in the vector
space taken from the work by Kiritchenko and Mohammad (2016b). In the second part,
we explore different choices of dimensionality in learning CMSMs.

For the first experiment, we apply a ten-fold cross-validation process on the training
dataset as follows: eight folds are used as training set, one fold as validation set and
one fold as test set. We set the number of iterations to T = 500. We train the
model parameters on the training set and at each iteration of training, we evaluate the
performance of the current model on validation set using the MAE defined as follows:

L = 1
n

n∑
i=1

|ω̂i − ωi|,

where n is the size of the validation set. Finally, a model with the minimum MAE on
validation set is taken as the final model; that is, the parameter values that result in
minimum MAE on validation set are considered as the optimal values. We then record
the Pearson correlation coefficient r for the test set, which measures the linear correlation
between the predicted and the target sentiment value of phrases. The Pearson coefficient
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value ranges from −1 to 1 with higher values showing more correlation between the
predicted and target values and lower values showing they are more inversely correlated.
The Pearson value r of pairs of predicted and target values (ωi, ω̂i) is computed as
follows:

r =
∑

i(ωi − ω̄)(ω̂i − ¯̂ω)√∑
i(ωi − ω̄)2

√∑
i(ω̂i − ¯̂ω)2

for 1 ≤ i ≤ n,

where n is the size of the test set, and ω̄ and ¯̂ω are the mean values of the target and
predicted values of the test set. We repeat the ten-fold cross-validation ten times and
average the results.

The dataset contains unigrams, bigrams, and trigrams. Kiritchenko and Mohammad
(2016b) report the results of training bigrams and trigrams separately using VSMs. To
compare with Kiritchenko and Mohammad (2016b), we report the results for training
only trigrams in the dataset since training bigrams does not exploit matrix properties in
our method. Therefore, we only need to train the full matrices using the second learning
step in the Grad-GMSM method.

Word matrices are initialized with an identity matrix plus noise drawn from a normal
distribution N (0, 0.01). Then, we use the sentiment value of unigrams to initialize the
corresponding element in the word matrices as our “informed initialization” explained in
Section 3.2.2.

We set the dimension of matrices to m = 200 in line with Kiritchenko and Mohammad
(2016b) as well as m = 5. The learning rate η in the second learning step of Grad-GMSM
is set to 0.017 and 0.001 for dimensions 200 and 5, respectively, which are chosen as the
optimal values via empirical experiments. We call the model GMSM-IdentityInit as the
second learning step of Grad-GMSM is similar to GMSM.

The results of our method are compared with the results obtained by Kiritchenko and
Mohammad (2016b), who study different patterns of sentiment composition in phrases.
They analyze the efficacy of baseline and a supervised learning method in VSMs on the
SCL-OPP dataset and the effect of different features used for training. Table 3.5 shows
the results of different methods for training the trigrams. As baselines, Kiritchenko and
Mohammad (2016b) consider the sentiment score of the last unigram of the phrase (Row
1), POS rule1 (Row 2), and the sentiment score of the most polar unigram of the phrase
(Row 3) to predict the overall sentiment score of the phrase. As a supervised method, they
apply Radial Basis Function kernel-based Support-Vector Regression (RBF-SVR). In
RBF-SVR the following set of features are evaluated on predicting real-valued sentiment
scores: all unigrams (uni), sentiment score of unigrams (sent. score), POS tags (POS),
concatenation of unigram embeddings (emb(conc)) to obtain phrase embedding, average
of unigram embeddings (emb(avg)), and maximal vector of the unigram embeddings
(emb(max)). The word embeddings are obtained from word2vec (Mikolov et al., 2013a).
Row 8 considers the following features, which give the best results: uni, sent. score,
POS, and emb(conc). Comparing the results of Row 7 and 8 show that concatenation
of unigram embeddings as the composition operation outperforms average of unigram

1The POS rule assigns to the phrase the sentiment score of the words in the following priority order:
adjectives, verbs, the most polar word. Therefore, if the phrase has adjectives, assign the score of the
last adjective to the phrase, otherwise, if it has verbs, assign the sentiment score of the last verb. If none
of them exist in the phrase, assign the score of the most polar word to the phrase.
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Pearson
Row Method r

Baselines
1 Baseline last unigram 0.376
2 Baseline POS rule 0.515
3 Baseline most polar unigram 0.551

Supervised methods
4 RBF-SVR(POS, sent. score) 0.578
5 RBF-SVR(POS, sent. score, uni) 0.711
6 RBF-SVR(POS, emb(conc), uni) 0.744
7 RBF-SVR(POS, sent. score, emb(avg), emb(max)) 0.710
8 RBF-SVR(POS, sent. score, uni, emb(conc)) 0.753
9 GMSM + IdentityInit (m=5) 0.734
10 GMSM + IdentityInit (m=200) 0.737

Table 3.5: Performance comparison of different methods for learning CMSMs on SCL-
OPP trigram phrases in sentiment analysis. Pearson value r is used as the
performance measure. The average of ten repeated runs is reported for
supervised learning methods.

embeddings (emb(ave)) and maximal embeddings (emb(max)). They analyze the results
for bigrams and trigrams separately; however, we only report the results on trigrams in
Table 3.5.

Our approach does not use information extracted from other resources, such as pre-
trained word embedding, nor POS tagging (i.e., we perform a light-weight training). As
it is shown in Table 3.5, we observe an outperformance of our model on trigram phrases
(Row10) over baseline methods and emb(ave) as the composition operation (Row 7). We
also obtained similar results with lower dimensions (Row 9) which still outperforms the
described methods. This introduces an advantage of CMSMs over VSMs.

Now, we combine bigrams and trigrams as our training set and apply our regular
training procedure using Grad-GMSM on all phrases. We consider it important that the
learned model generalizes well to phrases of variable length. Hence we find the training
of one model per phrase length not conducive. Rather, we argue that training CMSM
can and should be done independent of the length of phrases, by ultimately using the
combination of different length phrases for training and testing, given the sentiment value
of unigrams. Ten-fold cross-validation is used as before. Note that unigrams are only
included for initialization of the training step, and we excluded them from the validation
and test sets. This time we repeated the experiments on the Grad-GMSM+IdentityInit
model with values of m (i.e., different numbers of dimensions). The number of iterations
is set to T = 500. The learning rate η is set to 0.01 and 0.001 for the first and second
learning steps, respectively. For each dimensionality, we take the average of five runs of
ten-fold cross-validation. As shown in Table 3.6, the results improve only marginally
when increasing m over several orders of magnitude. By increasing the dimensionality,
the number of parameters to train grows, which might lead the model to get stuck in
local optima. Also, the average number of required iterations remains essentially the
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same, except for m = 1, which does not exploit the matrix properties. We see that – as
opposed to VSMs – good performance can be achieved already with a very low number
of dimensions.

Number of Ranking Pearson Total number
dimensions loss r of iterations

1 0.389 0.463 283.48
2 0.300 0.702 179.75
3 0.293 0.716 130.13
5 0.289 0.722 153.60

10 0.292 0.724 150.17
50 0.293 0.721 151.35

100 0.291 0.722 153.30
200 0.289 0.724 157.15
300 0.292 0.722 160.36

Table 3.6: Performance comparison for different dimensions in the SCL-OPP dataset
using the Grad-GMSM+IdentityInit method.

3.2.4 Related Work

There is a lot of research interest in compositional sentiment analysis in NLP. Mohammad
(2016) studies the task of sentiment analysis comprehensively. In this thesis, as explained
in Chapter 2.3.4, we use sentiment analysis to refer to determining the polarity and
intensity of a piece of text, which can also be a real-valued score. Yessenalina and Cardie
(2011) focus on learning sentiment scores of short sequences based on supervised machine
learning techniques. They apply ordered logistic regression method on compositional
matrix-space models to acquire a matrix representation of words. The learning parameters
in their method include the word matrices as well as a set of thresholds which indicate
the intervals for sentiment classes since they convert the sentiment classes to ordinal
labels. They argue that the learning problem for CMSMs is not a convex problem, so it
must be trained carefully and specific attention has to be devoted to a good initialization
to avoid getting stuck in local optima. We address this issue in our proposed learning
method for CMSMs. Moreover, our learning method does not need to constrain the
sentiment scores to certain intervals, and therefore, the number of parameters to learn is
reduced to only word matrices.

Recent approaches have focused on training different types of neural networks for
sentiment analysis, such as the work by Socher et al. (2013, 2012). Socher et al. (2012)
propose a Recursive Neural Network in which the vector representations of phrases are
trained using a tree structure. Each word and phrase is represented by a vector v and a
matrix M . When two words in the tree are composed, the matrix of one is multiplied
with the vector of the other word. Therefore, the composition function is parameterized
by the words that participate in it. In their work, they predict the fine-grained sentiment
scores of short phrases using the trained Recursive Neural Network. A problem with this
model is that the number of parameters becomes very large as it needs to store a matrix
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and a vector for each word and phrase in the tree together with the fully labeled parse
tree. This means that the dataset must be preprocessed to generate the parse trees. In
contrast, compositional matrix-space models do not rely on parse trees, and therefore,
preprocessing of the dataset is not required. Each word is represented only with matrices
where the compositional function is the standard matrix multiplication, which replaces
the recursive computations with a sequential computation. Socher et al. (2013) address
the issue of the high number of parameters by introducing a Recursive Neural Tensor
Network in which a global tensor-based composition function is defined. In this model, a
tensor layer is added to their standard Recursive Neural Network, where the vectors of
two words are multiplied with a shared third-order tensor in this layer and then passed
to the standard layer of the network. The output is a composed vector of the words,
which is then composed with the next word in the same way. The model is evaluated
on both fine-grained and binary (only positive and negative) sentiment classification of
phrases and sentences.

Irsoy and Cardie (2015) propose a multiplicative RNN as a compositional model with
multiplicative operation inspired by CMSMs, and evaluate the model on fine-grained
sentiment analysis. They show that their proposed architecture is more generic than
CMSMs and outperforms additive neural networks in sentiment analysis. They use
pre-trained word vectors of dimension 300 from word2vec (Mikolov et al., 2013b) as the
input to the network, and explore different sizes of the shared third-order tensor. The
results on the task of sentiment analysis are compared with the work by Yessenalina and
Cardie (2011). We also compare the results of our method for learning CMSMs with this
approach using the same task and show that our method performs better while using
fewer dimensions.

Kiritchenko and Mohammad (2016b) create a dataset of unigrams, bigrams, and
trigrams, which contains specific phrases with at least one negative and one positive
word. They analyze the performance of a Support-Vector Regression in vector space
considering different features. We show that our trained model can predict the sentiment
score of such phrases with a lower number of dimensions. In the work by Kiritchenko and
Mohammad (2016c), they create a sentiment composition lexicon for phrases containing
negators and adverbs with their associated sentiment scores and study the effect of
modifiers on the overall sentiment of phrases. Adverbs and negators play an important
role in determining the sentiment scores of phrases.

There are several deep neural network models on the task of compositional sentiment
analysis, such as Hong and Fang (2015) who apply Long Short-Term Memory (LSTMs)
and deep recursive neural networks, and Wang et al. (2016) who combine CNNs and
RNNs leading to a significant improvement in sentiment analysis of short phrases. These
techniques do not focus on training word representations that can be readily composed
and, thus, are not comparable directly to our proposed method.

3.3 Learning Approach to CMSMs in Compositionality
Detection

Multi-Word Expressions (MWEs) are short compounds with two or more words showing
a range of semantic compositionality. The semantics of a compositional MWE, such
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as graduate student, is a function of the semantics of its components and can be
understood from the meaning of its components. Therefore, compositional compounds are
decomposable. The semantics of a non-compositional compound cannot be understood
from the semantics of its parts, such as couch potato in which the meaning of the
compound cannot be obtained from the meaning of couch and potato (Baldwin and Kim,
2010).

Detecting the compositionality of MWEs is especially important in meaning-related
NLP applications, such as phrase-based statistical machine translation (Kordoni and
Simova, 2014; Enache et al., 2014; Weller et al., 2014) and word sense disambigu-
ation (McCarthy et al., 2003; Finlayson and Kulkarni, 2011). Therefore, approaches for
detecting the (non-)compositionality of compounds in NLP are needed.

One approach is to train compositional representation models to capture the com-
positional compound representation from its components’ representations. In such
methods, target representation of compositional compounds must be provided from
standard resources for training and testing. Thus, if the trained model cannot closely
approximate the target representation of a compound, it recognizes the compound as
non-compositional. This way (non-)compositionality of MWEs can be detected (Farah-
mand et al., 2015). Gold standard evaluation datasets for the compositionality detection
task have been introduced to evaluate the performance of the trained models using
this approach. These datasets consist of pairs of compounds and their compositionality
degrees. The degrees can, for example, take an integer value between 1 to 5 with 1 as
fully compositional and 5 as fully non-compositional. They can also take binary values,
for example, 0 as non-compositional and 1 as compositional. Datasets are created with
human judgments on the compositionality of compounds.

In the compositionality detection task, different compositional models can be evaluated
on their ability to distinguish between the compositional and non-compositional MWEs.

In this section, we first propose a learning technique for CMSMs that is trained to
produce compositional representations of compounds from their components’ repres-
entations. Then, using the available gold standard evaluation datasets, we conduct
experiments to investigate CMSMs on detecting compositionality of MWEs and compare
with popular compositional models in vector space. Since the evaluation datasets are
labeled with compositionality degrees, to predict these values, we compare the compound
representation produced by the models with the target representation, and based on
the closeness (proximity) of the two representations in the semantic space, the models
compute a degree of compositionality. Closeness or proximity of two representations
can be computed in two ways: Squared Euclidean (SE) norm and the cosine value. We
conduct experiments for both measures. Details of computations are explained in Section
3.3.2 on experiments.

3.3.1 Learning Approach

Fig. 3.3 shows the learning procedure for CMSMs. The task is to learn a model that can
compose the word representations to obtain the compositional compound representation.

The training dataset for the supervised learning algorithm is a set of pairs (si,vi)
, where si is a compound and vi is the vector associated with it. The length of the
compounds is limited to two-word sequences (i.e., bigrams), as they are the most basic
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input :{(s1,v1), . . . , (si,vi), . . . , (sN ,vN )}
si = σ1 . . . σki

σj ∈ Σ, vi ∈ Rm

output : ψ : Σ∗ → Rm

ψ(si) ≈ vi

Learning algorithm
for CMSM

1. model parameters to train

T ∈ Rm×m×m

2. objective: minimize the loss function

ET =
N∑

i=1

∥ v̂i − vi ∥2
2

Figure 3.3: Supervised learning procedure for phrase scoring in the compositionality
detection task. {si,vi}N

i=1 is the training set of size N . Σ is the vocabulary
extracted from training set.

compositional structures and also to respect the evaluation dataset standards. The
compounds in the training dataset are frequent two-word sequences with a frequency
threshold of 50 extracted from the English Wikipedia dump 20181 used as our corpus.
After extracting the frequent compounds, the compound vectors and their constituent
word vectors are obtained by training the vector embeddings of all words and compounds
using word2vec (Mikolov et al., 2013a) and fastText (Bojanowski et al., 2017) on the
corpus, separately. In these models, short phrases can also be considered as individual
tokens, and the model is trained to extract a vector representation for those phrases
as well as for words. It has been shown that these models capture the semantics of
short phrases as well as words (Mikolov et al., 2013b). In the end, we have two training
datasets; one training dataset consists of compounds with their vector representations
extracted from the word2vec embeddings, and the other which includes the compounds
with vector representations from the fastText embeddings. Now, we use the created
training dataset for our supervised learning algorithm to train our model. We report the
results of the experiments with the two training datasets separately.

In the learning algorithm, our model parameter is not the word matrices, but instead,
we train a shared tensor T ∈ Rm×m×m, which then produces the word matrices. We
explain why we use a tensor T as our model parameter to train. We exploit the
fact that for every word σ a vector vσ is readily available (from word2vec or fastText
embeddings) and, as many investigations in distributional semantics have shown, the
semantic closeness between two words σ and σ′ correlates with smaller distances between
their vectors vσ and v′

σ. We want to preserve that information by making sure that
closeness (proximity) of vσ and v′

σ entails proximity of their associated matrices [[σ]] and
[[σ′]]. To this end, we let

[[σ]] = vσT, (3.10)

1https://dumps.wikimedia.org/

https://dumps.wikimedia.org/
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where T ∈ Rm×m×m is a third-order tensor and vσT yields the matrix Mσ with

Mσ(i, j) =
m∑

k=1
vσ(k)T(k, i, j).

This way, instead of training the word matrices directly, we only train the shared tensor
T as the model parameter. Besides having the above-mentioned effect, the usage of
a shared tensor significantly reduces the number of model parameters to be trained.
Moreover, as the size of the vocabulary increases, the number of parameters to train
remains fixed. Using a shared tensor in this way is inspired by Irsoy and Cardie (2015).

The objective of the learning algorithm is to train T to minimize the loss function ET ,
defined in Equation 3.11, during the training procedure.

ET =
N∑

i=1
||v̂i − vi||22, (3.11)

where ∥ · ∥2
2 is the square of the 2-norm (Euclidean norm) of the vector difference, and

N is the size of the training dataset. ∥ · ∥2 computes the Euclidean norm of a vector v
of size m as follows:

∥ v ∥2=
√

v(1)2 + · · · + v(m)2.

The vector v̂i is the approximated vector representation for si computed by our model
as follows:

v̂i = α⊤[[σ1]] . . . [[σki
]] (3.12)

in which word matrices are obtained from Equation 3.10. Note that [[σ1]] . . . [[σk]] is the
compositional matrix representation of the compound, but since the training dataset is
only available in vector space, we use a global mapping vector α to map the final matrix
to a vector representation. T must be trained to produce suitable word matrices which
consequently are mapped to the vector representation of the corresponding compound
using Equation 3.12. Gradient descent optimizer is used to train the tensor T as a
regression task.

The output is to learn a composition function ψ which predicts the vector v̂i for a
compound si = σ1 . . . σki

through the multiplication of its word matrices [[σj ]] ∈ Rm×m,
obtained from the trained tensor T, and the projection of the resulting matrix to the
vector space Rm using the global mapping vector α ∈ Rm as follows:

v̂i = ψ(si) = α⊤[[σ1]] . . . [[σki
]].

Finally, the CMSM learns to compose the word matrix representations and predicts
the vector representation of the compound by mapping the final compound matrix to
the vector space.

The model detects non-compositionality with the assumption that most of the training
compounds extracted from the corpus are compositional and a composition function
ψ can be learned for them. This entails that the compounds for which a composition
function ψ cannot be learned with a low error are non-compositional.

After learning CMSM as a compositional model, we evaluate the performance of the
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model on the compositionality detection task using a procedure, illustrated in Fig. 3.4.
The evaluation dataset consists of compounds si and their corresponding compositionality
degrees ri. For evaluation purposes, we apply the learned function ψ to the compounds
in the dataset to predict the vector representations of the compounds. The predicted
vector v̂i is compared with the target vector representation vi of the compound by
computing the SE norm between the two representations, as shown in Equation 3.13 (or
the cosine value, as shown in Equation 3.14):

SE(v̂i,vi) =∥ v̂i − vi ∥2
2, (3.13)

cos(vi, v̂i) = v̂i.vi

∥ v̂i ∥∥ vi ∥
, (3.14)

where ∥ · ∥2 and ∥ · ∥ compute the Euclidean norm of a vector v of size m as follows:

∥ v ∥2=∥ v ∥=
√

v(1)2 + · · · + v(m)2.

input : {(s1, r1), . . . , (sM , rM )} (Evaluation Dataset)

ψ : Σ⋆ → Rm

V̂ = {v̂1, . . . , v̂M }

SE(w2v(si), v̂i) = r̂i

i ∈ {1, . . . ,M}

R̂ = {r̂1, . . . , ˆrM }R = {r1, . . . , rM } ,

output : ρR,R̂ ∈ [−1, 1]

Figure 3.4: Evaluation procedure of the learned model on the compositionality detection
task using the gold standard evaluation dataset of size M . Pearson correl-
ation value between the predicted and the target compositionality degree
of compounds is computed. w2v produces the target representation of the
compound from the word2vec and fastText methods. Note that evaluation
results are reported with both SE and the cosine value.

Note that the target representations vi of compounds si in the evaluation dataset are
obtained from the trained word2vec and fastText embeddings on the English Wikipedia
dump corpus.

The obtained values from SE (or the cosine value) are compared with the target
compositionality degrees of the compounds in the dataset. If the SE value is high, the
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model recognizes the compound as less compositional or non-compositional. If the cosine
value is high, the model recognizes the compound as more compositional. To investigate
the performance of the model on compositionality detection, the Pearson correlation
between the target and obtained values of all compounds are computed. A higher
Pearson value indicates better performance of the model on detecting compositionality.

3.3.2 Experiments and Discussion
We evaluate the performance of several compositional models on predicting the degree
of MWEs’ compositionality and compare them with the performance of CMSMs.

Compositional Models:
Each model defines a composition function f over the constituent word vectors to

predict the compound vector. Given two words wi and wj with associated vectors
vi ∈ Rm and vj ∈ Rm, we evaluate the following models:

• Weighted additive model : In this model, the predicted compound vector representa-
tion vij is the weighted sum of the constituent word vectors (Mitchell and Lapata,
2008; Reddy et al., 2011).

v̂ij = f(vi,vj) = λ1vi + λ2vj λ1 + λ2 = 1,

where λ1 and λ2 are the weight coefficients.
• Multiplicative model : In this model, the predicted compound vector representation

vij is the element-wise product of the constituent word vectors (Mitchell and
Lapata, 2008; Reddy et al., 2011).

v̂ij = f(vi,vj) = vi ⊙ vj .

• Polynomial regression model : In this model, to predict the compound representation
vij , the constituent word vectors are stacked together [vi,vj ] and a polynomial
function ψ is applied to them (Yazdani et al., 2015):

v̂ij = f(vi,vj) = ψ([vi,vj ])θ,

where θ is the weight matrix to be trained, and ψ is the quadratic transformation
in our experiment, defined as follows, which is applied to the stacked vectors:

ψ(x1, . . . , x2m) = (x2
1, . . . , x

2
2m, x1x2, . . . , x2m−1x2m, x1, . . . , x2m).

Therefore, it models a nonlinear relationship between the compound representation
and the constituent words’ representations, and then θ is trained using linear
regression.

• Feedforward NN : In this model, the constituent word vectors are stacked together
as the input vector, and the input and output weight matrices are trained in order
to predict the vector representation of the compound (Yazdani et al., 2015).

v̂ij = f(vi,vj) = σ([vi,vj ]W )V,
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where W and V are the input-to-hidden and hidden-to-output layer weight matrices
to be trained and σ is a nonlinear function, such as the sigmoid function. The size
of the hidden layer h in the network is set to 300.

• RNN : In this model, as explained in Chapter 2.1.2, the input word vectors are
fed into the network sequentially. The hidden state at time step t is computed as
follows:

ht = g(vtU + ht−1W + b),

where g is an activation function, such as tanh, to introduce nonlinearity. The
hidden state ht−1 from previous time step is combined with the current input vt

and a bias b. The new hidden state ht that we computed will then be fed back
into the RNN cell together with the next input and this process continues until
the last input feeds into the network.
Inputs are the word vectors of the compounds in a sequence. The size of the
hidden layer is set to 300. We only require the output of the last time step T in
the sequence, and therefore we pass the last hidden layer hT through a linear layer
to generate the predicted compound vector representation:

v̂ij = hTV + c,

where V is the shared weight matrix of the linear layer.

• CMSM : This model has been introduced in Section 3.3.1.

For all models tested, the predicted compound vectors are compared with the target
vector representation of the compounds through the closeness (proximity) measurements.
Recall that the constituent word vectors and the target compound vectors in the training
and evaluation datasets are obtained by training the vector embeddings of all words and
compounds using word2vec (Mikolov et al., 2013b) and fastText (Bojanowski et al., 2017)
on English Wikipedia dump 20181 used as our corpus. It has been shown that these
models capture the semantics of short compositional phrases as well as words (Mikolov
et al., 2013a). We report the results of word2vec and fastText separately.

Datasets:

Training Datasets: For some models (CMSM, Polynomial regression model, feed-
forward NN, and RNN), we require to fit the composition function f using supervised
learning to capture the compositional representation of the compounds. Therefore,
as described in Section 3.3.1, we create a training dataset from frequent two-word
compounds extracted from our corpus, Wikipedia dump 2018. For this purpose, we first
extract frequent two-word sequences with a frequency threshold of 50 from our corpus
and then we train the word and compound representations using word2vec and fastText.
Recall that we create two training datasets: one dataset consists of compounds with
associated target representations obtained from the fastText method, and the other
includes two-word compounds with associated target representations obtained from
word2vec. We limit our experiments to bigrams as they are the most basic compositional

1https://dumps.wikimedia.org/

https://dumps.wikimedia.org/
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structures and to respect the evaluation datasets standard. We assume the majority
of compounds are compositional and train the compositional models on each training
dataset separately. We split each training dataset to the training and development sets
for experimental purposes.

Evaluation Datasets: Finally, we use two recent gold standard evaluation datasets
which reflect the compositionality judgments of MWEs to evaluate all compositional
models:

• Farahmand15 1 (Farahmand et al., 2015) provides 1, 042 English noun–noun com-
pounds (bigrams) extracted from Wikipedia which were annotated with a non-
compositionality degree between 0 (fully compositional) to 1 (fully non-
compositional) using crowdsourcing. Each compound was annotated by four
annotators for binary non-compositionality judgments, and the average of annota-
tions was considered as the final score of the compound which is a value from
{0, 0.25, 0.5, 0.75, 1}.

• Reddy++2 (Ramisch et al., 2016; Reddy et al., 2011) provides 180 English noun–
noun and adjective–noun compounds (bigrams) with real-valued compositionality
degree ranging from 1 (fully non-compositional) to 5 (fully compositional) ob-
tained from crowdsourcing and averaged over around ten to twenty annotators per
compound.

The vector representation of bigrams in the evaluation datasets are obtained from
word2vec and fastText for examining the learned compositional models.

Experimental Setting and Results:
To train the models with word2vec, the size of the training and development sets are

7, 692 and 854 compounds, respectively, and fixed for all models. The size of the training
and development set for training the models with fastText embedding are 11, 566 and
1, 156 compounds, respectively, and fixed for all models. The batch size for training is set
to B = 10. The learning rate is adapted experimentally for each model. We apply early
stopping by computing the MSE value of the development set to prevent overfitting. If
the absolute difference of development loss in two consecutive iterations is less than the
threshold value ϵ = 10−5, we stop the training. The tensor T in the CMSM is initialized
with a random Gaussian distribution N (0, 0.01). The size of all vectors is set to 300 in
both experiments with word2vec and fastText.

Once the models are trained using each training dataset, we evaluate their performance
on detecting the compositionality degrees of compounds in the evaluation datasets,
Farahmand15 and Reddy++.

In the evaluation phase with word2vec embeddings, some compounds of the evaluation
datasets do not exist in our trained embeddings on Wikipedia dump. Therefore, we
remove those compounds from the evaluation datasets and consider 800 compounds from
the Farahmand15 and 148 compounds from the Reddy++ dataset. In the evaluation
with fastText, all compounds of the Farahmand15 and the Reddy++ datasets exist in

1https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
2http://pageperso.lif.univ-mrs.fr/ carlos.ramisch/?page=downloads/compounds

https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
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Performance measures Cosine SE

Model
Dataset Reddy++ Farahmand15 Reddy++ Farahmand15

Additive 0.631 0.398 0.621 0.393
Multiplicative 0.218 0.055 0.225 0.057
Polynomial regression 0.699 ± 0.008 0.404 ± 0.005 0.698 ± 0.008 0.394 ± 0.005
Feedforward NN 0.658 ± 0.027 0.395 ± 0.016 0.642 ± 0.029 0.382 ± 0.018
RNN 0.688 ± 0.011 0.394 ± 0.006 0.687 ± 0.010 0.382 ± 0.006
CMSM 0.710 ± 0.012 0.401 ± 0.005 0.700 ± 0.011 0.389 ± 0.004

Table 3.7: Average Pearson value (with standard deviation for the trained models) for
compositionality judgment on the two evaluation datasets. Two measures
cosine and the SE norm are used to measure the performance of compositional
models. word2vec embedding is used for the experiments.

our trained fastText embedding on Wikipedia dump and therefore, we test the models
on the whole dataset.

To measure the closeness (proximity) between the predicted compound representations
from the models and the target representations of compounds, we compute the cosine
value as well as the SE norm between the two representations. We expect a low cosine
value for non-compositional compounds as the composition functions cannot capture
their representations. We also compute the SE between the predicted and the target
vector representation of the compound being sensitive to small errors. We expect a
high error value for non-compositional compounds as the composition functions cannot
capture their representations (Yazdani et al., 2015). Then, we compute the Pearson
correlation value r between the computed values and the compositionality judgments
from the evaluation datasets. r ranges from −1 to 1 with higher values showing more
correlation between the predicted and target values.

We report the average results over fifteen runs of training and evaluation. Table 3.7
and 3.8 show the average Pearson correlation coefficient r between the predicted and
target degrees of each evaluation dataset for different supervised and unsupervised
compositional models. Table 3.7 shows the results of the word2vec embeddings and
Table 3.8 shows the results of the fastText embeddings. The performance measures of
the models are shown in two ways as described before. First, if a method captures the
compositional representation of the compounds, the cosine between the predicted and
target representations has a higher value, otherwise, the cosine is a low value. Therefore,
the “Cosine” column in both tables shows the result of Pearson correlation value between
the computed cosine of the representations and the target degrees in the evaluation
datasets which are normalized between −1 (non-compositional) and 1 (compositional)
compounds. Second, if a method captures the compositional representation of the
compounds, following Yazdani et al. (2015), the SE value between the predicted and
target representation of a compositional compound must be low and close to 0, otherwise
it is a high value. Therefore, the “SE” column in the tables shows the result of the
correlation between the SE of the representations and target degrees in the evaluation
datasets, which are normalized to 0 (fully compositional) and 1 (fully non-compositional).
The tables demonstrate that the two measures provide very similar results.
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Performance measures Cosine SE

Model
Dataset Reddy++ Farahmand15 Reddy++ Farahmand15

Additive 0.355 0.527 0.348 0.523
Multiplicative 0.091 0.021 0.104 0.028
Polynomial regression 0.583 ± 0.011 0.521 ± 0.003 0.576 ± 0.011 0.5132 ± 0.003
Feedforward NN 0.583 ± 0.009 0.493 ± 0.004 0.586 ± 0.010 0.482 ± 0.005
RNN 0.565 ± 0.005 0.505 ± 0.003 0.557 ± 0.005 0.495 ± 0.003
CMSM 0.617 ± 0.009 0.513 ± 0.004 0.605 ± 0.009 0.503 ± 0.004

Table 3.8: Average Pearson value (with standard deviation for the trained models) for
compositionality judgment on the two evaluation datasets. Two measures
Cosine similarity and the SE norm (SE) are used to evaluate the performance
of compositional models. fastText embedding is used for the experiments.

We report the best results of the additive model obtained by adapting λ1 and λ2
(ranging from 0 to 1 with a step size of 0.1) in these models. As we observe in both tables,
the multiplicative model is not powerful enough to model compositionality. These results
are in line with the results reported by Yazdani et al. (2015). The CMSM is trained
to capture the compositionality better than other models in the Reddy++ dataset in
both tables, which means that CMSM gives a higher SE value and lower cosine to
non-compositional compounds.

The number of training iterations for each supervised compositional model to reach
its optimum performance is shown in Table 3.9. As it is shown in the table, the CMSM
converges to its best model in less training iterations on average. The different iteration
numbers in the two experiments are due to the different learning rates adapted to obtain
the best models on the word embeddings. In the Farahmand15 dataset, the additive
model shows a competitive result in comparison to CMSM, while in the Reddy++
dataset, the CMSM outperforms the additive model considerably. We conjecture that
this is because the Reddy++ is a dataset with much more fine-grained values, and
CMSM tends to be more accurate in predicting the nuanced values than other models.

Average iterations Average iterations
Model in word2vec in fastText
Multiple Regression 114 221
Neural Network 320 258
RNN 98 126
CMSM 124 169

Table 3.9: Average number of training iterations for each supervised compositional
model trained using word2vec and fastText.

Moreover, Reddy++ contains adjective–noun and noun–noun compounds as opposed
to Farahmand15, which contains only noun compounds. Therefore, we conclude that
CMSM can predict the compositionality of adjective–noun compounds better than the
studied compositional models. Various parameters, such as the training dataset and
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vector embeddings, impact the performance of the models. Therefore, in our experiments,
we used the same training data and vector embeddings for all models to obtain a more
reliable indication regarding the relative performance of the models.

Based on these results, we can conclude that a CMSM can be trained to capture the
semantic compositionality of compounds more efficiently than baseline VSMs. Moreover,
CMSM is sensitive to syntactic properties such as the word order of the compound which
affects the representation of compounds. Furthermore, multiplicative interaction shows
a better performance in matrix space than in vector space. The results suggest that
matrix multiplication should be considered instead of additive models in vector space as
the composition operation for compositionality prediction in meaning-related NLP tasks.

Finally, we study the time cost required for training CMSMs in the studied datasets
(SCL–OPP and MPQA) and with two different dimensionality (5 and 200). Note that
we report the time cost for ten-fold cross validation. Results in Table 3.10 show the
advantage of smaller dimensionality of CMSMs in faster convergence.

Model Time (MPQA) Time (SCL–OPP)
CMSM (m=5) 13 4
CMSM (m=200) 270 90

Table 3.10: Time cost for training CMSMs with different dimensionality and datasets.
Time is reported in minutes.

3.3.3 Related Work

Reddy et al. (2011) study the performance of compositional models on compositionality
detection of multi-word compounds. For this purpose, they provide a dataset of noun
compounds with fine-grained compositionality scores as well as literality scores for
constituent words based on human judgments. They analyze both constituent-based
models and composition-function-based models regarding compositionality detection of
the proposed compounds. In constituent based models, they study the relations between
the contribution of constituent words and the judgments on compound compositionality.
They argue if a word is used literally in a compound, most probably it shares common
co-occurrences with the corresponding compound. Therefore, they evaluate different
composition functions applied on constituent words and compute their similarity with
the literality scores of phrases. In composition-function-based models, they evaluate
weighted additive and multiplicative composition functions on their proposed dataset,
and investigate the similarity between the composed word vector representations and the
target compound vector representation. The results show that in both models, additive
composition outperforms other functions. Biemann and Giesbrecht (2011a) aim at
extracting non-compositional phrases using automatic distributional models that can
determine the compositionality degree of a phrase. This degree indicates how much
the compositionality assumption holds for the given phrase. For this purpose, they
create a dataset of English and German phrases which attracted several models ranging
from statistical association measures and word space models (Biemann and Giesbrecht,
2011b).
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Salehi et al. (2015) explore compositionality detection of MWEs using constituent-based
and composition-function-based approaches on three different VSMs, consisting of count-
based models, word2vec, and multi-sense skip-gram model. In a similar work, Farahmand
et al. (2015) proposed a larger dataset of multi-word expressions annotated with non-
compositionality judgments. Yazdani et al. (2015) explore different compositional models
ranging from simple to complex models such as neural networks for non-compositionality
detection of MWEs. Representation of words are obtained from word2vec (Mikolov et al.,
2013a), and the models are trained using compounds extracted from the Wikipedia
dump, assuming that most compounds are compositional. Therefore, the trained models
are expected to give a relatively high error to non-compositional compounds. They
improve the accuracy of the models using latent compositionality annotation and show
that this method improves the performance of nonlinear models significantly. Their
results show that a polynomial regression model with a quadratic degree outperforms
other models.

Cordeiro et al. (2019) and Cordeiro et al. (2016) explore the performance of various
representation models (GloVe (Pennington et al., 2014), word2vec and PPMI-based mod-
els) regarding predicting semantic compositionality of noun compounds over previously
proposed datasets. Vector addition is considered as the composition operation, and the
performance of word embeddings are investigated using different parameter settings
for training them. They also study the impact of corpus preprocessing on capturing
compositionality with DSMs. Recent deep learning techniques also focus on modeling
the compositionality of more complex texts without considering the compositionality of
the smaller parts such as the work by Wu and Chi (2017) which is out of the scope of
our study. None of the mentioned works, however, has investigated the performance of
CMSMs in compositionality detection of short phrases on MWE datasets.

3.4 Conclusion

In this chapter, we studied the behavior of CMSMs on different aspects (e.g., dimension-
ality) experimentally. According to experimental investigations, CMSMs are a promising
framework to model task-specific semantic compositionality, such as sentiment analysis
and compositionality detection of short sequences. Matrix product as the composition
operation outperforms vector composition operations in the compositional sentiment
analysis task. It performs competitively to compositional VSMs in the compositionality
detection task. Adverbs and negators in natural language play an influential role in
determining the sentiment scores of phrases. The results in the sentiment analysis task
showed that multiplicative interaction in CMSMs captures the effect of adverbs and
negators on the sentiment score when composed with a phrase. Moreover, CMSMs do not
rely on parse trees, and therefore, preprocessing of the texts in datasets is not required.
Each word is represented only with matrices where the compositional function is the
standard matrix multiplication, which replaces the recursive computations in parse trees
with a sequential computation. CMSMs also showed a better performance in capturing
more fine-grained degrees in the compositionality detection task and tend to be more
accurate in predicting the nuanced values than other models. They can also predict the
compositionality of adjective–noun compounds better than the studied compositional
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models.
We have seen strong evidence that CMSMs are capable of embedding relevant in-

formation in considerably fewer dimensions compared with VSMs, which gives a clear
advantage in terms of computational cost, storage, and convergence in learning. We
are aware that experiments have been only done on short length sequences, and further
investigation is needed for examining CMSMs on longer sequences, such as sentences.
Matrix multiplication on long sequences can cause the final matrix to contain extremely
small values. Therefore, when updating word matrices in the gradient descent algorithm
using Equation 3.4, the derivative of the loss function with respect to a word matrix Mσ

is a function of Equation 3.6. Small values from the result of the derivative may not
update the word matrix values adequately. Therefore, mechanisms are needed to avoid
this issue when training CMSMs on long sequences. Moreover, when CMSMs are trained
on long sequences in a specific task, such as, sentiment analysis, not all words contain
task-specific information. A method is needed to pay attention and give more weights to
those words that carry the relevant information, for instance, sentiment-carrying words
in sentiment analysis.

Overall, this chapter demonstrates that CMSMs compose attractive theoretical features
and practical behavior, which strongly suggest CMSMs as a suitable model for semantic
compositionality in NLP downstream applications.

A central question related to CMSMs is how the linearity limits their applicability.
In Chapter 2.3, we studied that Rudolph and Giesbrecht (2010) justified CMSMs by
showing that matrix multiplication can realize mental state transitions triggered by the
sequence of input tokens. Using linear mappings to represent those functions introduces
limitations that need to be further investigated. An obvious issue is the word sense
disambiguation problem that cannot be modeled via linear mappings. Therefore, we
need to equip the CMSMs with simple nonlinear functions to introduce non-associativity
to the CMSMs and resolve word sense disambiguation problems in natural language.
Thus, a line of further research is to generalize CMSMs from the linear approach, very
much in line with the current trend in deep learning.
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Several approaches for evaluating semantic composition methods on their ability to
capture the semantic representation of compositional terms1 have been proposed. A
common evaluation approach to word representation models is through the models’
ability to rank pairs of words by their closeness in meaning. Closeness is a measure of
how close two terms are in terms of their semantics (Mohammad, 2008). Two terms
are semantically close if they share some meaning. (Mohammad, 2008). For instance,
the two words teacher and tutor are closer in meaning than the two words teacher and
fish. Sharing of meaning is defined based on the lexical–semantic relations (i.e., the
semantic relations between the lexical items; Cruse, 1986). As explained in Chapter 2.4,
closeness in meaning can be of two kinds: semantic similarity and semantic relatedness.
Both similarity and relatedness can be used for evaluating word representation models.
In terms of lexical–semantic relations, two terms are considered to be semantically
similar if there is a hypernymy, (co-)hyponymy, synonymy, or antonymy relationship
between them as these relations share common properties (Budanitsky and Hirst, 2001;
Mohammad, 2008; Agirre et al., 2009). Two terms are considered semantically related
if there is any lexical–semantic relation between them, classical or non-classical. As
discussed in Chapter 2.4, semantic relatedness is the broader class subsuming semantic
similarity (Budanitsky and Hirst, 2006), and psychological and neuro linguistic studies
have demonstrated the importance of semantic relatedness (Hutchison, 2003; Huth et al.,
2016). These studies show that the human brain stores information in a thematic manner
(based on relatedness) rather than based on similarity (Hutchison, 2003; Huth et al.,
2016). Moreover, Hill et al. (2015) suggest that relatedness judgments have broader use
in studies of human semantic cognition. Another limitation of similarity is that it can
be only defined between terms categorized as the same POS. In contrast, two terms can
be related even if they represent different parts of speech (Zesch and Gurevych, 2010).
Previous studies have also shown that the ability to assess semantic relatedness is central
to the use and understanding of natural language (Hutchison, 2003; Santus et al., 2015;
Huth et al., 2016). Therefore, the quantification of semantic relatedness is needed for
such evaluations in NLP. For this, semantic relatedness datasets annotated with human
judgments are created.

Existing datasets of semantic relatedness, such as that by Finkelstein et al. (2002),
only focus on pairs of unigrams (i.e., in this case, single words). However, the concept
of semantic relatedness applies more generally to any unit of text, such as phrases and
sentences (sequence of words). Bigrams (i.e., in this case, two-word sequences), are
especially important since they are the smallest unit formed by composing words. Even
though there is a large body of work on how to represent the meanings of sentences (Le
and Mikolov, 2014; Kiros et al., 2015; Lin et al., 2017), there is relatively little work on
how best to compose the meanings of two words to represent the meaning of a bigram.
Thus, it would be useful to have large semantic relatedness datasets involving bigrams
for evaluating semantic composition. Existing datasets also suffer from shortcomings
due to the annotation techniques employed.

In this chapter, we introduce a new dataset, called Bigram Semantic Relatedness
Dataset (BiRD), for evaluating the semantic composition methods. The dataset includes

1Note that the expressions term and lexical item are used interchangeably throughout this chapter.
Lexical items can be words, phrases, or sentences.
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3,345 English term pairs AB–X with a real-valued semantic relatedness score r between
the two terms. The first term AB is a bigram (A represents the first word in the bigram
and B represents the second word), and the other term X in the pair is either another
bigram or a unigram. Section 4.1 describes the procedure to create the dataset, which is
summarized as follows:

1. We first selected a set of target bigrams AB. For each AB, we created several pairs
of the form AB–X, where X is a unigram or bigram. As X’s, we chose terms from a
diverse set of natural language resources and from various types of lexical–semantic
relations. (Details in Section 4.1.1.)

2. We used Best–Worst Scaling (BWS) annotation technique (Louviere, 1991; Cohen,
2003; Louviere et al., 2015; Kiritchenko and Mohammad, 2017) to obtain semantic
relatedness by prompting four pairs at a time and asking annotators to mark
the pair that is most related and the pair that is least related. Kiritchenko and
Mohammad (2017) showed through empirical experiments that BWS produces
more reliable and more discriminating scores than those obtained using rating
scales technique.
Once the annotations were complete, we obtained real-valued scores of semantic
relatedness for each pair using simple arithmetic on the counts of how often an
item is chosen as best and worst. (Details in Section 4.1.2.)

3. To evaluate the quality of BiRD, we determined the consistency of the BWS
annotations. A commonly used approach to determine consistency in dimensional
annotations is to calculate Split-Half Reliability (SHR; Cronbach, 1951). We
showed that our semantic relatedness annotations have a high reliability; that is,
if the annotations were repeated, similar scores would be obtained. (Details in
Section 4.1.3.)

After the creation of BiRD, we present analyses of the dataset in Section 4.2 to obtain
insights into the relatedness scores of pairs from different types of lexical–semantic
relations. In Section 4.3, we present benchmark experiments on using BiRD as a testbed
to evaluate various semantic composition methods. Specifically, we conduct experiments
to gain insights into research questions such as: Which common composition method
captures the semantics of a bigram more accurately?; Which of the two terms in a bigram
has greater influence on the semantics of the bigram?. Finally, Section 4.4 presents the
related work and reviews the existing gold standard datasets on semantic relatedness
and similarity.

We also developed interactive visualizations that allow for easy exploration of the
dataset. The BiRD and visualizations of the data are made freely available online.1

4.1 BiRD: Bigram Semantic Relatedness Dataset

4.1.1 Term Pair Selection
Randomly selecting term pairs (AB–X) will result in most pairs being unrelated. This is
sub-optimal in terms of the human annotation effort that is to follow. Further, since our

1http://saifmohammad.com/WebPages/BiRD.html

http://saifmohammad.com/WebPages/BiRD.html
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goal is to create a gold standard relatedness dataset, we wanted it to include term pairs
across the whole range of semantic relatedness: from maximally unrelated to maximally
related. Thus, a key challenge in term-pair selection is obtaining pairs with a wide
range of semantic relatedness scores, without knowing their true semantic relatedness in
advance. In addition, we wanted the dataset to satisfy the following criteria:

• For each target bigram AB, we wanted to include several pairs of the form AB–X,
where X is a unigram or bigram.
Motivation: Applications of semantic relatedness, such as real-word spelling cor-
rection (Hirst and Budanitsky, 2005) and textual entailment (Mirkin et al., 2006),
often require judgments of the form ‘is AB–X1 more related or less related than
AB–X2’.

• There should exist some pairs AB–X, such that X is BA and a common English
bigram.
Motivation: This is useful for testing the sensitivity of semantic composition models
to word order.

• The unigrams and bigrams should be commonly used English terms.
Motivation: Data annotation of common terms is expected to be more reliable.
Also, common terms are more likely to occur in application datasets.

• There should exist pairs that are taxonomically related (i.e., semantically similar),
for example, hypernyms, hyponyms; and there should exist pairs that are not
taxonomically related but semantically related nonetheless.
Motivation: This increases dataset diversity.

• We focus on noun phrases (adjective–noun and noun–noun bigrams).
Motivation: Noun phrases are the most frequent phrases in English.

To pursue these criteria, we compiled a set of term pairs from three diverse resources
(Wikipedia, WordNet, and a machine translation phrase table) as described below.
Wikipedia: We chose to collect our target bigrams from the English Wikipedia dump
(2018).1 The corpus was tagged with POS using the Natural Language ToolKit (NLTK).2
For each of the adjective–noun and noun–noun bigrams AB in the corpus, we checked
to see if the bigram BA (its transpose) also exists in the corpus. We refer to such
pairs of bigrams as transpose pairs. Only those transpose bigrams (AB and BA) were
selected that were both noun phrases and where both AB and BA occur in the corpus
with frequencies greater than a pre-chosen threshold t (we chose t = 30). For a pair of
transpose bigrams, the bigram with the higher frequency was chosen as AB, and the
bigram with the lower frequency was chosen as the corresponding BA. The above process
resulted in 4,095 transpose pairs (AB–BA).
WordNet: WordNet is a lexical English database from which the lexical–semantic
relations between terms such as synonymy, hypernymy, etc. can be extracted (Fellbaum,
1998). WordNet represents word senses, the many different meanings that a single word
can have. Therefore, there are synonym sets (called synset) indicating a distinct sense
and containing synonymous words. A word with several senses (meanings) belongs
to different synsets. Each synset is connected via lexical–semantic relations, such as
hypernymy to other synsets. The different senses of a word are ordered based on their

1https://dumps.wikimedia.org/
2https://www.nltk.org/

https://dumps.wikimedia.org/
https://www.nltk.org/
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frequency in a certain text. If there is no information on frequency, they are ordered
randomly. Among the 4,095 ABs, 330 exist in WordNet version 3.0.1 For each of
these, we selected (when available) synonyms (at most five), a hypernym, a hyponym, a
holonym, and a meronym from WordNet.
Translation Phrase Table: Word-aligned parallel corpora map words in a text of
one language to those in a text of another language. Often this can lead to more than
one word/phrase in one language being mapped to a common word/phrase in the other
language. We refer to such terms as being co-aligned. Due to the nature of languages
and the various forms that the same text can be translated to, co-aligned terms tend to
include not just synonyms but also other semantically related terms, and sometimes even
unrelated terms. Thus, we hypothesize that it is beneficial to include pairs of co-aligned
terms in a semantic relatedness dataset as they pertain to varying degrees of semantic
relatedness.

These co-aligned pairs can be extracted from Phrase Tables used in automatic ma-
chine translation systems. Phrase tables, generated from parallel corpora, indicate the
probability of a word/phrase being translated to a word/phrase in a different language.

We used an English–French phrase table from the Portage Machine Translation Toolkit
(Larkin et al., 2010) to determine additional pairs AB–X. French was chosen as it is
close to English and there exist English–French parallel corpora of sufficient size. This
phrase table was created using a large English–French parallel corpus harvested from
the Canadian government web sites. The phrase pairs in source–target languages were
filtered out using an approach based on the statistical significance of pair co-occurrence
in the parallel documents as described in the work by (Johnson et al., 2007). The final
phrase pairs were assigned with alignment frequency in the parallel documents. Fig. 4.1
shows an example of the phrase software development paired with French phrases in the
second column and their corresponding frequencies in the third column. Note that the
number of pairs are more than what is shown in the example table.

English term French translations Frequency
software development développement de logiciels 232

conception de logiciels 71
élaboration de logiciels 66
le développement de logiciels 65
logiciels 33
mise au point de logiciels 28
...
production de logiciels 7
réalisation de logiciels 3
nouveau logiciel 1

Figure 4.1: Example of some French translations for bigram AB=software development
with their frequencies in the phrase table.

To extract the co-aligned term pairs from the phrase table, we looked for each bigram
AB (e.g., software development) in the phrase table. If AB is a translation of a term X ′

(e.g., développement de logiciels) in French with a frequency of at least t = 30, we collect
1https://wordnet.princeton.edu/download/current-version

https://wordnet.princeton.edu/download/current-version
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French term English translations Frequency
développement de logiciels software development 232

software 13
develop software 7
developing software 5
software engineering 1
experimental development 1

conception de logiciels software development 71
software design 43

élaboration de logiciels software development 66
user interface 2
development 2

le développement de logiciels software development 65
developing software 7

logiciels software development 33
computer programming 30
computer applications 12
computer program 5
existing computer 2
industrial machinery 2
computer 87
source 77
product 69
application 30
program 11

Figure 4.2: Example of the collected English terms that are aligned to some of the
AB=software development’s French translations with alignment frequencies
in the phrase table.

other possible English translations of X ′ (see, for example, Fig. 4.2). Then, we sort all
English translations based on their frequency. We repeat this process for all eligible X ′

phrases in Fig. 4.1, as can be seen in Fig. 4.2. Specifically, for each AB–X ′ entry in the
phrase table (where X ′ is a French term) we keep the five most frequent English unigrams
and the five most frequent English bigrams other than AB that are aligned to X ′ and
pair them with AB to create co-aligned pairs (e.g., (software development–computer
programming)). Note that all the extracted terms can be either a noun unigram or a
nominal bigram. Moreover, unigrams and bigrams are distinct from words A and B.

Among the 4,095 ABs, 454 occurred in the phrase table. This resulted in 3,255 AB–X
pairs in total, 1,897 where X is a unigram, and 1,358 where X is a bigram.

Finally, after the selection of term pairs from the three resources, we chose to filter
the term pairs, keeping only those ABs that occurred in at least three unique pairs.
Therefore, for a given AB, apart from the AB–BA entry, there should be at least two
other entries of the form AB–X, generated using WordNet or the phrase table. We also
manually examined the remaining entries and removed those with terms that are not
known to many people. For instance, we removed the bigram “breeding stock” since
its meaning is not known to many people. The final master term pair list consists
of 3,345 AB–X pairs in total (1,718 where X is a unigram, and 1,627 where X is a
bigram), corresponding to 410 ABs. Thus on average, each AB occurred in about eight
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Source # a–n # n–n # both
Wikipedia_transpose 80 330 410
WordNet_synonym 18 70 88
WordNet_is-a 49 220 269
WordNet_part-whole 7 30 37
PhraseTable_co-aligned 440 2,101 2,541
All 594 2,751 3,345

Table 4.1: Number of pairs from different sources. a–n denotes adjective–noun pairs
and n–n denotes noun–noun pairs.

distinct pairs. This is yet another aspect that makes BiRD unique, as existing datasets
were not designed to include terms in multiple pairs. Table 4.1 shows the number of
adjective–noun pairs, the number of noun–noun pairs, and the total number of pairs
from different resources in BiRD. We grouped the hypernym and hyponym pairs into a
common class, which we refer to as the is-a pairs. Similarly, we group the meronym and
holonym pairs into a common class, which we refer to as the part-whole pairs.

4.1.2 Annotating for Semantic Relatedness

We use the comparative annotation method BWS (Louviere, 1991; Cohen, 2003; Louviere
et al., 2015) to obtain the annotations. Existing datasets suffer from shortcomings due
to the annotation techniques employed. Except in the case of a few small but influential
datasets, such as those by Miller and Charles (1991) and Rubenstein and Goodenough
(1965), annotations were obtained using the rating scales technique. In this technique,
annotators are asked to choose from categorical or discrete numerical values to rate
the data. For instance, when annotating a pair of words for semantic relatedness, the
annotator can be asked to choose among integer values from 1 to 5, with 1 representing
that the two words are least semantically related or semantically unrelated, and 5
representing that the words are strongly semantically related. Rating scales suffer from
significant known limitations, including: inconsistencies in annotations by different
annotators, inconsistencies in annotations by the same annotator at different times, scale
region bias (annotators often have a bias toward a portion of the scale, usually toward
the middle), and problems associated with a fixed granularity (an annotator may want
to assign 1.5 to an item instead of 1 or 2; Presser and Schuman, 1996).

BWS is an annotation technique that addresses the limitations of the rating scales
technique by employing comparative annotations (Louviere, 1991; Cohen, 2003; Louviere
et al., 2015; Kiritchenko and Mohammad, 2017). Annotators are given n items at a
time (an n-tuple, where n > 1 and commonly n = 4). They are asked which item is
the best (highest in terms of the property of interest) and which is the worst (lowest in
terms of the property of interest). When working on 4-tuples, best–worst annotations
are particularly efficient because each best and worst annotation will reveal the order
of five of the six items (i.e., for a 4-tuple with items A, B, C, and D, if A is the best,
and D is the worst, then A > B, A > C, A > D, B > D, and C > D). Therefore, the
annotator is not concerned with rating the data using categorical or discrete numerical
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values and a fixed granularity. Moreover, since the annotator annotates the best and
worst responses, scale region bias issues are resolved. It has been analytically shown that
annotating 2N 4-tuples produces highly reliable scores, where N is the number of items
to be annotated (Louviere, 1991; Kiritchenko and Mohammad, 2016a, 2017; Mohammad,
2018a). Kiritchenko and Mohammad (2017) showed through empirical experiments that
BWS produces more reliable and more discriminating scores than those obtained using
rating scales.

From the list of N = 3, 345 term pairs, we generated 2N = 6, 690 distinct 4-tuples
(each 4-tuple is a set of four term pairs) such that each term pair appears in roughly
equal distinct tuples, and no term pair appears more than once in a tuple. If 2N 4-tuples
are generated from N pairs, and each pair is to occur in an equal number of tuples, then
each pair will occur in eight tuples. The annotators were presented with a 4-tuple at a
time and were asked to specify which of the four pairs is closest in meaning (or most
related) and which is the least close (or least related). Detailed annotation instructions,
with examples of appropriate and inappropriate responses, were provided. Notably,
we made it clear that if terms in the pair have several meanings in different contexts,
then the annotators should consider the meanings that are closest to each other or the
meanings in the same context. We also asked the annotators to be mindful of word order
(i.e., the meaning of a bigram AB may be different from the meaning of its transpose
BA). An example is as follows:

Q1: Which pair is closest in meaning (or most related)?

• (building block, unit)
• (traffic light, intersection)
• (water quality, health)
• (fantasy world, system)

Answer: (building block, unit)

Q2: Which pair is least close in meaning (or least related)?

• (building block, unit)
• (traffic light, intersection)
• (water quality, health)
• (fantasy world, system)

Answer: (fantasy world, system)

The full questionnaire along with annotation instructions and several examples is
provided in the Appendix 6.

We set up the annotation task on the crowdsourcing platform Figure Eight1. We did
not collect personally identifiable information from the annotators. The compensation
that the annotators would receive was clearly stated. We selected a pool of annotators

1https://www.figure-eight.com/

https://www.figure-eight.com/
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fluent in English and with a history of high-quality annotations. Annotators were told
that they could annotate as many instances as they wished. Prior to the annotation, the
planned procedure was approved by the National Research Council Canada’s Research
Ethics Board.

We annotated bout 2% of the data. These questions are referred to as gold questions.
Figure Eight interspersed the gold questions with the other questions. If a crowd worker
answered a gold question incorrectly, then they were immediately notified. This served
as an additional way to guide the annotators. If an annotator’s accuracy on the gold
questions fell below 70%, then they were refused further annotation, and all of their
annotations were discarded. This served as a mechanism to avoid malicious annotations.

In the task settings for Figure Eight, we specified that we needed annotations from
eight people for each 4-tuple. Note that since each term pair occurs in eight different
4-tuples, it is involved in 8 × 8 = 64 best–worst judgments. In all, 57,482 pairs of best
and worst responses were obtained from 427 annotators. Gold questions were annotated
more than eight times.

Annotation Aggregation:
After the completion of BWS responses and annotations by annotators, the final

semantic relatedness scores were calculated from the BWS responses using a simple
counting procedure (Orme, 2009; Flynn and Marley, 2014): For each term pair, the
semantic relatedness score is the proportion of times the term pair AB–X was chosen as
the best minus the proportion of times the term pair was chosen as the worst:

rAB−X = #bestAB−X

num
− #worstAB−X

num
,

where num is the total number of 4-tuple judgments (i.e., best–worst responses by
annotators), in which the pair AB–X occurs. #bestAB−X and #worstAB−X are the
number of times AB–X was chosen as the best or worst response in the 4-tuple annotations.
The scores range between −1 to 1. Then, they were linearly transformed to the interval:
0 (lowest semantic relatedness) to 1 (highest semantic relatedness). Now, BiRD consists
of 3,345 English term pairs along with their real-valued scores for semantic relatedness.

4.1.3 Reliability of Data Annotations

A commonly used measure of quality in dimensional annotation tasks is the reproducibility
of the final scores—the extent to which repeated independent manual annotations produce
similar results. To assess this reproducibility, we calculate average SHR (Cronbach, 1951)
as follows: The annotations for each 4-tuple are randomly split into two halves. One
set is put in bin 1 and another set in bin 2. Next, two independent sets of semantic
relatedness scores for all pairs are produced independently from the two bins, 1 and
2, respectively, using the counting procedure. Then the Pearson correlation between
the two sets of scores is calculated. The correlation between the two sets of relatedness
scores determines the quality of the annotations. High quality annotations have a higher
Pearson correlation closer to 1. This process is repeated 100 times, and the correlations
are averaged (Fig. 4.3). An SHR of r = 0.9374 indicates high reliability. Table 4.2
summarizes key annotation statistics.
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Figure 4.3: Split-half reliability approach to determine the consistency of dataset. Pear-
son value r is used to determine the reliability degree.

# Term Pairs # Tuples # Annotations per Tuple # Annotations # Annotators SHR
3,345 6,690 8 (for most tuples), >8 (for some) 57,482 427 0.9374

Table 4.2: BiRD annotation statistics. SHR = Split-Half Reliability (as measured by
Pearson correlation).

4.2 Studying Bigram Semantic Relatedness
Since very little prior work exists on the semantic relatedness of bigrams, several research
questions remain unanswered, including:

• If both AB and BA are common English bigrams, then what is the average semantic
relatedness between AB and BA?

• What is the range of semantic relatedness between a bigram and its hypernym or
hyponym? What is the average semantic relatedness of such pairs? How do these
averages and standard deviations vary with respect to the different lexical–semantic
relations?

• What is the distribution of semantic relatedness values for co-aligned terms?

We now present analyses of the relatedness dataset to obtain insights into these
questions. Fig. 4.4 shows example adjective–noun and noun–noun entries from BiRD.
Observe that for the term adult female, the WordNet synonym and the transposed bigram
(BA) are marked as being most related. Note that the WordNet-provided hyponym
amazon is marked as less related (probably because that sense of amazon is rare). For
the term ageing population, the most related term is ageing society—a co-aligned term in
the phrase table. (Other co-aligned terms have lower relatedness scores.) The transpose
bigram population ageing is also marked as highly related. WordNet does not provide a
synonym for ageing population. The term green light is most related to go-ahead from
WordNet synonym and traffic light from WordNet is-a relations. Its transposed bigram
light green is marked as only slightly related. The term science laboratory is also mostly
related to lab and research lab which are the synonyms from WordNet. BiRD can be
examined for each individual relation and sorted by relatedness scores to determine other
example pairs that seemingly should be closely related, but are not highly semantically
related in the perception of the average English speaker. These include pairs such as
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subject area–discipline (WordNet synonym) and frying pan–spider (WordNet hyponym).
The AB–BA pairs with low relatedness, such as law school–school law, home run–run
home, and traffic light–light traffic are especially useful in testing whether semantic
composition methods generate suitably different representations for the terms in such
pairs.

Table 4.3 shows the average semantic relatedness scores as well as standard deviations
for the term pairs from various sources.

Figure 4.4: Example entries from BiRD.

Observe that, on average, the AB–BA pairs and the AB–WordNet synonym pairs are
found to be the most related. On average, the AB–WordNet part-whole pairs and the
AB–phrase table co-aligned pairs have the lowest semantic relatedness scores. The high
average relatedness and low standard deviation (σ) for the transpose bigrams indicate
that these pairs tend to be closely related to each other. The standard deviation is
markedly higher for the other sources of term pairs. Manual examination of such pairs
(especially those involving WordNet synonyms) revealed that this is often because one
of the terms might be related to the other in a rare sense (such as in the adult female–
amazon pair). The high standard deviations for hypernyms, hyponyms, meronyms, and
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Source avg. rel. σ

Wikipedia_transpose 0.669 0.118
WordNet_synonym 0.640 0.194
WordNet_is-a 0.550 0.177
WordNet_part-whole 0.453 0.193
PhraseTable_co-aligned 0.463 0.189

Table 4.3: Average and standard deviation (σ) of relatedness scores for term pairs from
various sources.

holonyms, indicate that pairs connected by these relations in the WordNet can still
exhibit a wide range of semantic relatedness.

The standard deviations also indicate that 95% of the co-aligned pairs have semantic
relatedness scores between 0.09 and 0.83 (a wide interval). Manual examination revealed
that the lowest score pairs were unrelated, and the highest score terms were often
synonymous. Thus co-aligned pairs from phrase tables are indeed a good source of term
pairs for a semantic relatedness dataset since they include pairs with a wide variety of
relatedness values.

Fig. 4.5 illustrates the trend of each type of relation for relatedness scores in the
interval [0, 1] (grouped into bins of size 0.05). The colors show all seven relation types.
The numbers on each bar indicate the number of records for each relation type. Complete
interactive visualizations of the data to explore more examples and further study on the
relatedness from different resources are made freely available online.1

4.3 Evaluating Methods of Semantic Composition on BiRD

Language representation models have been proposed to represent word meaning in NLP.
An area of active research is how these word vector representations can be composed to
create representations for larger linguistic units of text such as phrases and sentences
(Mitchell and Lapata, 2010; Baroni and Zamparelli, 2010; Socher et al., 2012; Tai et al.,
2015). Even though there is a large body of work on how to represent the meanings of
sentences (Le and Mikolov, 2014; Kiros et al., 2015; Lin et al., 2017), there is relatively
little work on how best to compose the meanings of two words to represent the meaning
of a bigram. One reason for this is a lack of gold standard evaluation resources. A
common approach to evaluate semantic composition method is through their ability to
rank pairs of terms by closeness (or relatedness) in meaning (Pennington et al., 2014;
Levy and Goldberg, 2014; Faruqui and Dyer, 2014). BiRD allows for the evaluation of
semantic composition methods through their ability to rank pairs involving bigrams, by
semantic relatedness.

Here, we present benchmark experiments on commonly used semantic composition
methods by measuring their ability to rank the term pairs in BiRD by relatedness scores.
The underlying assumption is that the more accurately a method of semantic composition
can determine the representation of a bigram, the more accurately it can determine the

1http://saifmohammad.com/WebPages/BiRD.html

http://saifmohammad.com/WebPages/BiRD.html
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relatedness of that bigram with other terms.
We focus on unsupervised approaches1 as we wanted to identify how well basic

composition operations perform. The applicability of BiRD is broader though, and it can,
for instance, be used for the following purposes: (1) evaluating a large number of proposed
supervised methods of semantic composition, such as LSTM-based methods (Zhu et al.,
2016); and (2) evaluating the large number of measures of semantic relatedness, such the
measures introduced by Budanitsky and Hirst (2006); and (3) studying the mechanisms
underpinning semantic composition.

We test four natural language representation models in vector space to obtain word rep-
resentations: ELMo (Peters et al., 2018), fastText (Bojanowski et al., 2017), GloVe (Pen-
nington et al., 2014), and a traditional model based on matrix factorization of a word–
context co-occurrence matrix (Turney et al., 2011). We test four mathematical composi-
tion operations on representation models: (1) vector addition, (2) element-wise vector
multiplication, (3) tensor product with circular convolution (Widdows, 2008), and (4)
dilation (Mitchell and Lapata, 2010). In adjective–noun and noun–noun bigrams, the
second word usually plays the role of a head noun, and the first word is a modifier. We
test the performance of two baseline methods that do not employ vector composition:
one that represents a bigram with the vector for the first word and one that represents a
bigram with the vector for the second word.

Word Representations:
We use ELMo representations pre-trained on the 1 Billion Word Benchmark corpus,2

GloVe word embeddings pre-trained on the 840B-token CommonCrawl corpus,3 and
fastText word embeddings pre-trained on Common Crawl and Wikipedia using CBOW.4
For the traditional model, we use the exact word–context co-occurrence matrix described
in Turney et al. (2011) and explained in Chapter 2.1.1. They created the matrix from a
corpus of 5 × 1010 tokens gathered from university websites. The rows correspond to
terms (single words from WordNet) and columns correspond to contexts (single words
from WordNet appearing to the left or the right of the term in phrases or sentences on
the websites). Each element of the matrix is the Positive Pointwise Mutual Information
(PPMI) score (Church and Hanks, 1990) between the word and the context. PMI is
a measure of association between words in a given text. The PMI score between two
words x and y is computed given the probability of each word p(x) and p(y) and the
joint probability of the words p(x, y) in the given text as follows:

PMI x,y = log p(x, y)
p(x)p(y) .

The word probabilities are estimated by counting the number of occurrences of words x
and y and normalizing by N , the size of the corpus (i.e., the total number of words in the
corpus). p(x, y) is estimated by counting the number of co-occurrence of the words (i.e.,
number of times y follows x), and normalizing by N . PMI can take negative and positive

1In these approaches semantic composition is obtained without training a specific model for composi-
tionality.

2https://allennlp.org/elmo
3https://nlp.stanford.edu/projects/glove/
4https://fasttext.cc/docs/en/crawl-vectors.html

https://allennlp.org/elmo
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/crawl-vectors.html
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values, where a value of zero indicates the statistical independence between occurrences
of two words, and higher values show more association between them. PMI can be seen
as representing global information of a word in relation to the entire corpus. A variation
of PMI is Positive PMI (PPMI) in which the negative PMI values are mapped to zero.
This way, PPMI gives a high value to two words when there is an interesting semantic
association between them and otherwise is zero indicating that the co-occurrence of the
two words is not informative (Turney et al., 2011).

The extracted co-occurrence matrix is decomposed to UdΣdV
⊤

d via truncated Singular
Value Decomposition (SVD). SVD is a factorization technique that decomposes a word–
context matrix M ∈ Rm×n into the product of three matrices UΣV ⊤. Σ with size r × r
is a diagonal matrix of singular values expressing the importance of each dimension
where r is the rank of M . U of size m× r and V of size n× r are orthonormal matrices.
If M is a high-dimensional sparse matrix, we can select the top d singular values from
Σ where d < r and let Ud and Vd be the matrices that are created by selecting the
corresponding columns from U and V , meaning that we selected the d most important
dimensions from the original matrix. Hence, M̂ = UdΣdV

⊤
d is the truncated SVD which

is a low-dimensional matrix that best approximates the original matrix M , meaning that
it minimizes the Frobenius norm ||M − M̂ ||F (or Euclidean norm) over all matrices M̂
wit rank d, which captures most important information from the original matrix.

Word vectors are obtained from the matrix UdΣp
d, where rows correspond to the

d-dimensional word vectors and p is the weight factor for singular values in Σd. p adjusts
the weights of the dimensions and can vary between −1 to 1. When p is −1 it shows
that smaller singular values have more weight, and when it is 1 it means that we give
more weight to dimensions with higher singular values. We set parameter p to 0.5, the
dimensionality of word vectors in GloVe, fastText and Word–Context Matrix to d = 300,
and ELMo to d = 1024.

Unsupervised Compositional Models:
For a bigram w1w2, let u ∈ Rd and v ∈ Rd denote the vectors for words w1 and w2,

respectively. Each of the methods below applies a different composition function f on
the word vectors u and v to obtain the vector representation p for the bigram w1w2:
p = f(u,v):

• Addition (Salton and McGill, 1986): add the two word vectors (p = u + v).

• Multiplication (Mitchell and Lapata, 2010): element-wise multiplication of the two
vectors (p = u ⊙ v, where pi = ui · vi).

• Tensor product with convolution (Widdows, 2008): outer product of two vectors
resulting in matrix Q (q(i, j) = u(i)v(j)). Then, circular convolution is applied to
map Q to vector p. This is equivalent to:

p(i) =
∑

j

u(j) · v(i− j) for 1 ≤ i, j ≤ 1.

• Dilation (Mitchell and Lapata, 2010): decompose v to parallel and orthogonal
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components to u, and then stretch the parallel component along u:

p(i) = v(i)
∑

j

u(j)u(j) + (λ− 1)u(i)
∑

j

u(j)v(j)

for 1 ≤ i ≤ d, where λ is the dilation factor. We set λ = 2.

For the two baseline experiments that do not employ vector composition, we consider
head only: p = v and modifier only: p = u.

Semantic Relatedness:
The relatedness score for a term pair AB–X in the BiRD is computed by taking the

cosine between the vectors representing AB and X, where X can be a unigram or a
bigram. Given u and v as the vectors for AB and X, respectively, the cosine is computed
as follows:

cos(u,v) = u.v
∥ u ∥∥ v ∥

,

where ∥ · ∥ computes the Euclidean norm of a vector v of size d as follows:

∥ v ∥=
√

v(1)2 + · · · + v(d)2.

Evaluation:
As evaluation metric, we use the Pearson correlation ρ of the relatedness scores

predicted by a method with the gold relatedness scores in BiRD, which measures the
linear relationship between the two values. The Pearson coefficient value ranges from −1
to 1 with higher values showing more correlation between the predicted and gold values
and lower values showing they are more inversely correlated. Some words in BiRD do
not occur in some of the corpora used to create the word vectors. Thus, we conduct
experiments on a subset of BiRD (3,159 pairs) for which word vectors exist for all models
under consideration. To determine if the differences between the correlation scores are
statistically significant, we perform Steiger’s Z significance test (Steiger, 1980).1 The
procedure for evaluation is summarized in Fig. 4.6. As it is shown, first word vectors from
a representation model are obtained, and then the compositional representation of the
bigrams are computed using a semantic composition function. The cosine values between
the two term representations in pairs are computed, and finally, they are compared with
the gold relatedness scores in BiRD using the Pearson correlation.

Results:
Table 4.4 shows the results. Observe that among the methods of semantic composition,

the addition model performs best (for all four ways of representing word vectors). The
scores are statistically significantly higher than those of the second best (dilation).
The element-wise vector multiplication and tensor product with convolution perform
poorly (even worse than the baseline methods). Among the four models of word vector
representations, the best results of the addition model are obtained using ELMo and
fastText models performing competitively. Overall, the results show that ELMo and

1Statistical significance refers to the claim that the obtained results are not likely to occur by chance.
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input : {⟨(AB,X), r⟩1, . . . , ⟨(AB,X), r⟩n} (BiRD Dataset)

Representation model

vA,vB,vX1 ,vX2

Semantic composition
function f(vx,vy) = vxy

f(vA,vB) = vAB, f(vX1 ,vX2) = vX

compute cosi(vAB ,vX) = r̂i

∀i ∈ {1, . . . , n}

R̂ = {r̂1, . . . , r̂n}R = {r1, . . . , rn} ,

output : ρR,R̂ ∈ [−1, 1]

Figure 4.6: Illustration of the evaluation procedure for semantic composition methods
using BiRD. Note that here we assume that X is a bigram. If it is a unigram,
then vX is computed in the first step. ρR,R̂ is the Pearson correlation score.

fastText with addition as the composition operation capture the meaning composition
better than other representation models and composition operations. These results differ
substantially from the observations by Mitchell and Lapata (2010). In particular, in
their work the multiplication model showed the best results, markedly outperforming
the addition model. Our results are consistent with the findings of Turney (2012), where
the addition model also performed better than the multiplication model. It should be
noted though that unlike BiRD, which has scores for semantic relatedness, the Mitchell
and Lapata (2010) and Turney (2012) datasets have scores for semantic similarity.

Method ELMo GloVe fastText Matrix
Factor.

Baselines
head only 0.487 0.342 0.403 0.339
modifier only 0.460 0.438 0.495 0.425

Composition methods
addition 0.603 0.564 0.601 0.582
multiplication 0.203 0.182 0.328 0.244
tensor product 0.380 0.374 0.382 0.451
dilation 0.589 0.523 0.569 0.496

Table 4.4: Pearson correlations of model predictions with BiRD relatedness scores.
Highest scores are in bold.

Surprisingly, the baseline model that uses the vector for the modifier word obtains
better results than the one that uses the vector for the head noun. The difference is
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statistically significant. To better understand this, we compute relatedness correlations
using the weighted addition of the two word vectors (p = αu + (1 − α)v), where α is
a parameter that we vary between 0 and 1, in steps of 0.1. Fig. 4.7 shows the results.
Observe that giving more weight (but not too much weight) to the modifier word than
the head word is beneficial. α = 0.7 and α = 0.8 produce the highest correlations. These
results raise further questions as to under what conditions the role of the modifier is
particularly prominent, and why.

Figure 4.7: Pearson correlation coefficient (ρ) of the model predictions using weighted
addition with BiRD relatedness scores. α varies from 0 to 1 in steps of 0.1.
α = 0.7 and α = 0.8 produce the highest scores.

4.4 Related Work
In this section we review the related work in semantic similarity and semantic relatedness
datasets for evaluation of CDSMs, on word and phrase levels.

Evaluation of CDSMs:
As discussed before, a common approach to examining CDSMs in capturing meaning

composition is through their ability to rank pair of terms (e.g. phrases) by their closeness
in meaning. Closeness of meaning can be of two kinds: semantic similarity and semantic
relatedness. Both semantic relatedness and similarity can be used to evaluate CDSMs
and several datasets have been proposed for examining CDSMs. However, we argued
semantic relatedness is the broader class subsuming semantic similarity. Moreover, many
psychological and neuro linguistic studies have demonstrated the importance of semantic
relatedness. Therefore, we propose semantic relatedness as a more suitable approach for
examining CDSMs in capturing meaning composition.

There exist other approaches for examining CDSMs. The lexical substitution approach
evaluates the meaning composition at the level of individual words (McCarthy, 2002;
McCarthy and Navigli, 2007). In this approach, the task is to find a meaning-preserving
replacement for a target word in the context of a sentence. For instance, the word match
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in the sentence “We spent the afternoon at a football match.” can be replaced with game
without changing the meaning of the sentence. This approach addresses the word sense
disambiguation issue by providing the context of the target word in which it occurs.
McCarthy and Navigli (2009) and Buljan et al. (2018) proposed lexical substitution
datasets for evaluating CDSMs. Datasets contain sentences and a target word in each
sentence for substitution evaluation. Each target word has two correct substitutes and
two confounders, and CDSMs are supposed to rank the correct substitutes higher than
the confounders.

Word-Pair Semantic Similarity and Relatedness Datasets:
Several semantic similarity and relatedness datasets involving unigram pairs (word

pairs) exist. Rubenstein and Goodenough (1965) and Miller and Charles (1991) provided
influential but small English word-pair datasets with fine-grained semantic similarity
scores. More recent larger datasets including hundreds of pairs annotated with human
judgments were provided by Finkelstein et al. (2002) (for relatedness) and Hill et al.
(2015) (for similarity). Word-pair relatedness datasets exist in some other languages as
well, such as the one by Gurevych (2006) in German, Panchenko et al. (2016) in Russian,
and Santus et al. (2015) in both English and Mandarin Chinese. Huang et al. (2012)
introduce a similarity dataset of pairs of words. The dataset is created with human
judgments on similarity ranking of two words in sentential context, which addresses
the issue of word sense disambiguation for polysemous words (i.e., words with several
meanings in different contexts). However, none of the relatedness datasets include items
that are bigrams.

Bigram Semantic Similarity Datasets:
Mitchell and Lapata (2010) created a semantic similarity dataset for 324 bigram pairs

using crowdsourcing. The terms include adjective–noun, noun–noun, and verb–object
bigrams. Using the rating scales technique, annotators were asked to choose an integer
between one and seven, indicating a coarse semantic similarity rating. Turney (2012)
compiled a coarse-grained dataset of 2,180 bigram–unigram synonym pairs from WordNet
synsets (synonym sets) that were marked as having a similarity of 1. The bigrams are
either noun–noun or adjective–noun phrases. Other pairs were created taking bigrams
and random words that do not exist in the same synsets. These were marked as having
a similarity of 0. He thus created a dataset of synonyms and non-synonyms. As opposed
to Mitchell and Lapata (2010), this dataset was not annotated with human judgments.
The dataset was used in a compositional similarity task, which was then formulated as
2,180 multiple-choice questions (seven-choice questions). In each question, the stem is
the bigram of a pair and choices are unigrams in which only the unigram of that pair is
the correct answer. Distractors include head word, modifier word, hypernym or synonym
of the head word, hypernym or synonym of the modifier word, and two other random
nouns. In contrast to these datasets, BiRD has fine-grained relatedness scores.

There exist datasets on the semantic similarity between sentences and between docu-
ments for evaluation of sentence- and document-based representation models (Marelli
et al., 2014; Agirre et al., 2014; Cera et al., 2017). Those are outside the scope of this
thesis as we consider composition of words to obtain phrases.
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Other Natural Language Datasets Created Using BWS:
BWS has been used for creating diverse datasets for NLP tasks, such as relational sim-

ilarity (Jurgens et al., 2012), word sense disambiguation (Jurgens, 2013), word-sentiment
intensity (Kiritchenko and Mohammad, 2016a), word-emotion intensity (Mohammad,
2018b), and tweet-emotion intensity (Mohammad and Kiritchenko, 2018). The largest
BWS dataset is the NRC Valence, Arousal, and Dominance Lexicon, which has valence,
arousal, and dominance scores for over 20,000 English words (Mohammad, 2018a).

4.5 Conclusion
We created a dataset of semantic relatedness for term pairs involving bigrams with
fine-grained human ratings. We used the comparative annotation technique BWS,
which addresses the limitations of traditional rating scales technique. We showed
that the ratings obtained are highly reliable (high SHR r = 0.937). We analyzed the
dataset to obtain insights into the distributions of semantic relatedness scores for pairs
associated through various relations, such as WordNet assigned lexical–semantic relations,
transposed bigrams, and co-aligned terms in a parallel corpus. We showed that co-aligned
terms can be related to varying degrees (from unrelated to synonymous), making them
a useful source of term pairs to include in relatedness datasets. Finally, we presented
benchmark experiments on using BiRD as a testbed to evaluate various methods of
semantic composition in vector space. We found that the vector addition performed best
among different composition methods when tested using different representation models.
Moreover, giving more weight to the modifier word in the weighted addition model can
improve results further. Among the different representation models, ELMo and fastText
competitively outperform the other models. In other words, when addition is applied
to ELMo and fastText representation models, it captures the semantic composition
representations better than the other representation models and composition methods.

The introduced dataset provides a quantification of semantic relatedness that can
be used (1) for evaluating different measures of semantic relatedness, such as those
introduced in the work by Budanitsky and Hirst (2006); (2) for evaluating a large
number of proposed supervised methods of semantic composition, such as LSTM-based
methods (Zhu et al., 2016); and (3) for evaluations in real-word spelling correction (Hirst
and Budanitsky, 2005) and textual entailment (Mirkin et al., 2006) tasks, which often
require judgments of the form ‘is AB–X1 more related or less related than AB–X2’. We
made BiRD freely available to foster further research.
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In Chapter 2, we studied distributed word representation models (also called word
embeddings)1 in vector space, such as word2vec (Mikolov et al., 2013b). However, one
of the main challenges in word embeddings is how to achieve a word representation that
captures semantic compositionality. Successful performance of CMSMs on capturing
compositionality and semantics in NLP tasks studied in Chapter 3 motivated us to
investigate CMSMs as generic word representation models (or word embeddings) in
matrix space as opposed to word embeddings in vector space, such as word2vec.

In this chapter, we propose learning methods for CMSMs to introduce word-level
matrix embeddings as an alternative model to word representations in matrix and vector
spaces. As opposed to Chapter 3, where CMSMs are trained on a specific NLP task,
such as sentiment analysis, in this chapter, the introduced models are not trained on any
specific task to capture task-specific information. Therefore, they are called task-agnostic
representation models. Moreover, they are trained using distributional information of
words based on the distributional hypothesis and PMI between words in a given text
corpus. The introduced matrix embeddings reflect the semantic relationships between
words and can be used to represent words in downstream NLP tasks. Our goal to
introduce the word-level embeddings, as opposed to sentence-level embeddings, is to
allow for a dynamic composition of word matrices to longer phrases and even sentences
using matrix multiplication.

We first review the related work on learning word representation models in vector and
matrix spaces in Section 5.1. These models are then compared against our proposed
models in the experiments.

Section 5.2 introduces two learning methods for CMSMs which result in two word-level
matrix embeddings:

1. The first method is a supervised learning technique for word-level matrix em-
beddings based on linear regression. The training dataset consists of bigrams
(two-word sequences) labeled with associated Normalized Point-wise Mutual In-
formation (NPMI), which is a scalar. NPMI presents global information about
the association between words co-occurring in a given text corpus. We create
the training dataset from a large corpus of sentences by extracting bigrams and
computing their associated NPMI. The objective of the training is to train a
function that best approximates the NPMI value of bigrams by multiplying their
word matrices and mapping the resulting matrix to a scalar. (Details in Section
5.2.2).

2. The second method is a learning technique inspired by the skip-gram method
(Mikolov et al., 2013b) in vector space, explained in Chapter 2.1.3, adapted for
matrix space. Similar to skip-gram, a neural network is trained using a large
unlabeled corpus of sentences to maximize the probability of context words being
predicted correctly, given a specific input word. However, there are substantial
differences between our learning method and skip-gram, which we describe in
Section 5.2.3. Since training is not based on a predetermined labeled dataset, the
learning task is referred to as self-supervised, explained in Chapter 2.1.3. Moreover,
after training the network, it is not used for the prediction of previously unseen

1The terms representation model and embeddings will be used interchangeably throughout the chapter.
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input data. Instead, the weights of the network are extracted and introduced
as generic word matrix embeddings. (Details in Section 5.2.3). At the core of
the method is non-commutative matrix multiplication during training, which, as
opposed to the skip-gram method, is word-order-sensitive when training the word
matrices.
Since the network can be trained with different kinds of context window sizes, we
propose three variations of the context window and report the performance of all
variations. (Details in Section 5.2.3).

In Section 5.3, we evaluate the performance of our word-level matrix embeddings in
capturing semantic representation and compositionality using the two following evaluation
tasks:

1. The Semantic Textual Similarity (STS) task using the SentEval repository (Conneau
and Kiela, 2018), which is about determining the similarity degree of a given pair
of sentences.

2. The semantic relatedness task using the BiRD dataset introduced in Chapter 4
(Asaadi et al., 2019), which is about determining the relatedness degree of a given
bigram–bigram or bigram–unigram pair.

In the experiment section, we compare the performance of our proposed matrix
embeddings against the following three existing embeddings:

1. A state-of-the-art sentence embedding in matrix space proposed by Mai et al.
(2019). They proposed a learning technique for CMSMs to obtain sentence matrix
embeddings inspired by the CBOW method in word2vec.

2. skip-gram word vector embedding (Mikolov et al., 2013b) with two vector compos-
ition operations, addition and element-wise multiplication, to obtain the sentence
representations for evaluation purposes.

3. Word matrix representations trained on the natural language inference task (Chung
et al., 2018), which are then used to represent the meaning of words in down-
stream NLP tasks. Matrix multiplication is used to obtain the phrase or sentence
representations for evaluation purposes.

Finally, we conclude the chapter with discussion and conclusion in Section 5.4.

5.1 Related Work
In this section, we review two very closely related works to CMSMs, which we require
for the rest of the chapter. We also briefly mention the skip-gram method in word2vec
introduced in Chapter 2.1.3.

Chung et al. (2018) propose a model in which CMSMs are augmented with Tree-
structured LSTM (TreeLSTM), called LMS-TreeLSTM (Lifted Matrix-Space TreeLSTM).
LSTM is a variation of recurrent neural networks, which, unlike feedforward NNs,
has feedback connections between the hidden layers and a memory cell to maintain
information in memory for a long period of time (Hochreiter and Schmidhuber, 1997).
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TreeLSTM improves the semantic representation of sentences in LSTM by using the
sentences’ tree structure (a dependency or a constituency tree) (Tai et al., 2015). In their
model, Chung et al. (2018) incorporate CMSMs into TreeLSTMs to capture multiplicative
interaction in the composition of words to sentences. The superiority of multiplicative
composition has been confirmed in previous studies such as (Rudolph and Giesbrecht,
2010; Socher et al., 2012, 2013) and also in our studies in Chapter 3. The whole model
has three parts summarized in Fig. 5.1: the LIFT layer, the composition layer, and the
Tree-LSTM. The objective is to train the network in the natural language inference task
(Bowman et al., 2015). The task refers to determining the inferential relation (entailment,
neutral, or contradiction) between a pair of sentences. It is used as an evaluation task
for natural language understanding and is closely related to understanding the meaning
of linguistic structures (e.g., phrases, sentences). They train and optimize the weights
of the neural network to obtain word matrix representations in matrix space. Then
sentence representations are captured utilizing the multiplicative composition, to be used
in inferential relation predictions. In the LIFT layer, each input word vector v ∈ Rd is
transformed to matrix H using the following computation:

H = tanh(vWLIFT +BLIFT), (5.1)

where WLIFT ∈ R
√

d×
√

d×d is a shared third-order tensor in the network, BLIFT is
the bias matrix, and H ∈ R

√
d×

√
d is the corresponding word matrix of the vector v.

The resulting word matrices serve as input to the composition layer in which they are
composed using matrix multiplication in a tree-structured LSTM to obtain the sentence
matrix representation. Note that nonlinear function is applied after the multiplication of
every two matrices in the tree. The final sentence matrices are then fed into a three-layer
neural network as the classifier to predict the inferential relation between a pair of
sentences, which is a classification task with three classes.

Details of the TreeLSTM architecture are not required for our purposes in this chapter
as we only extract the LIFT layer of the network after training (i.e., the weight tensor
and bias in Equation 5.1), to obtain matrix representations from word vectors. We
compare our word matrix embeddings against the extracted word matrix representations
in this model.

Very recently, a new task-agnostic CMSM-based model called Continual Multiplication
Of Words (CMOW) and inspired by the CBOW method in word2vec has been introduced
by Mai et al. (2019). The CBOW method (Mikolov et al., 2013b) trains distributed word
vector representations in NLP using a two-layer feedforward NN. The network consists
of trainable weight matrices WV ×d and W ′

d×V . V is the size of the vocabulary Σ created
from a given corpus and d is the size of the hidden layer, which equals the final number
of embedding dimensions. For each word wt ∈ Σ, a set of context words co-occurred with
wt with a window size of k, Ct = {wt−k, . . . , wt−1, wt+1, . . . , wt+k}, is extracted from the
corpus. The objective is to train the model parameters θ to maximize the log probability
of the word co-occurring with the given context words, or to minimize the negative of
log probability, as defined in the following:

min O = − logP (wt|wt−k, . . . , wt−1, wt+1, . . . , wt+k; θ).
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Figure 5.1: The LMS-TreeLSTM in schematic form. The word vectors are fed to
the LIFT layer to produce corresponding word matrices, which are then
composed using matrix multiplication to finally obtain the sentence matrix
representation. Note that the TreeLSTM that contains the tree structure is
not visible in the illustration. Illustration is taken from (Chung et al., 2018).
Copyright (2018) by ACL.

After training the network, the weight matrix W ′ is extracted in which each column in
the matrix is the vector representation of the corresponding word in Σ.

Mai et al. (2019) adapt the CBOW to matrix space and produce sentence-level matrix
embeddings. The objective is to train the network to predict a randomly removed word
from a given sentence, using its context words. While an interesting preliminary model,
it restricts compositionality to the sentence level, whereas our objective in this thesis
is to obtain word matrices to test composition operations on a more fine-grained level.
Moreover, the composition operations used during the training procedure are based on
element-wise vector multiplication and matrix multiplication as opposed to our training
procedure, which is only based on the matrix multiplication.

A successful word embedding in vector space has been the skip-gram method in
word2vec proposed by Mikolov et al. (2013b). In skip-gram, a two-layer feedforward NN
is trained to predict the context words of a word (called center word) based on a given
corpus of sentences. Similar to CBOW, the network consists of trainable weight matrices
WV ×d and W ′

d×V . For each word wt ∈ Σ, a set of context words co-occurred with wt

with a window size of k, Ct = {wt−k, . . . , wt−1, wt+1, . . . , wt+k}, are extracted from the
corpus. The objective of the network is to train the model parameters θ to maximize
the log probability of context words co-occurring with the given wt, or to minimize the
negative of log probability, as defined in the following:

min O = − logP (wt−k, . . . , wt−1, wt+1, . . . , wt+k|wt; θ).

After training the network, the weight matrix W is extracted in which each row in
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the matrix is the vector representation of the corresponding word in Σ. Details of the
method is explained in Chapter 2.1.3.

In word2vec, compositionality has primarily been achieved by training phrase embed-
dings (i.e., treating each phrase as a token and train the token vectors), or by applying
mathematical operations to word vectors, such as averaging, element-wise multiplication,
and addition. Mitchell and Lapata (2010) study these composition operations in DSMs,
where they observed that multiplication performs significantly better than addition. We
apply these composition operations to the skip-gram word embeddings in order to obtain
phrase and sentence representations. This way we compare our matrix embeddings with
vector embeddings in meaning representation and compare matrix multiplication with
the vector composition operations in capturing the meaning composition of sentences.

5.2 Learning Methods

In this section, we introduce our proposed two learning methods for CMSMs to obtain
word-level matrix embeddings. The first method is based on linear regression, while the
second method is inspired by the skip-gram method (Mikolov et al., 2013b) adapted to
the matrix space to train word matrix embeddings.

5.2.1 Matrix Initialization

A corpus consisting of a large set of English sentences is employed as the training dataset
to train word matrices in both learning methods. A vocabulary Σ of size V is created
by pre-processing the corpus and extracting all words. Then, each word w ∈ Σ is
assigned a quadratic word matrix Mw and a quadratic context matrix Cw of the same
dimensionality. Yessenalina and Cardie (2011) and Asaadi and Rudolph (2017) point out
that the optimization problem in word-to-matrix mapping is non-convex. Thus, random
initialization of matrices is little effective and a more principled matrix initialization
method is required. After experimenting with several settings, such as sampling the
initial matrices uniformly in the range of [−0.5

d , 0.5
d ], where d represents the matrix

dimensionality, we found the initialization close to the identity matrix also suggested
by Mai et al. (2019) to be most successful for our models. This method combines the
identity matrix I ∈ Rd×d with a noise value from normal distribution N (0, 0.1) for each
element of the matrix:

M = I +

 N (0, 0.1) · · · N (0, 0.1)
... . . . ...

N (0, 0.1) · · · N (0, 0.1)


All word and context matrices are initialized in this way.

5.2.2 Method 1: Regression-Based Method (PMI-based CMSM)

The regression-based learning method is a supervised approach, and therefore, we require
a labeled training dataset. For this purpose, we use a large corpus of sentences to
create the labeled dataset consisting of bigrams and their corresponding normalized PMI
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(Church and Hanks, 1990). PMI is a measure of association between two terms in a
given text. The PMI score between two words x and y is computed given the probability
of each word p(x) and p(y) and the joint probability of the words p(x, y) in the given
text as follows:

PMI x,y = log p(x, y)
p(x)p(y) .

The word probabilities are estimated by counting the number of occurrences of words x
and y and normalizing by the size of the corpus (i.e., the total number of words in the
corpus). p(x, y) is estimated by counting the number of co-occurrence of the words (i.e.,
number of times y follows x) and normalizing by the size of the corpus. PMI can take
negative and positive values, where a value of zero indicates statistical independence
between occurrences of two words, and higher values show more association between
them. PMI can be seen as representing global information of a word in relation to the
entire corpus.

Bouma (2009) argues that since PMI has no fixed upper and lower bound, it is not
known how close a bigram is to perfect association. As the PMI value gets closer to
zero, however, independence between two words given their context can be assumed.
Moreover, terms of low frequency get relatively high PMI scores. It has been shown that
NPMI (Bouma, 2009) illustrates the association between terms better than PMI. NPMI
is a value between −1 to 1, where 1 indicates that two words only occur together, 0
shows that the two words occur independently, and −1 shows that the two words always
happen separately. NPMI is also less sensitive to low-frequency data (Bouma, 2009).
Thus, we use NPMI in this work which is computed as follows:

NPMI x,y = PMI x,y

− log p(x, y) .

The sentences from the corpus are chunked into bigrams. Word and bigram frequencies
are computed without any frequency cutoff since our goal is to obtain the true associative
information between words. Finally, we obtain a labeled training dataset consisting of
bigrams and their corresponding NPMI scores (bi, yi) with 1 ≤ i ≤ n, where n is the size
of the training dataset (i.e., the number of bigrams considered). Based on the created
dataset, each word can occur as the first word or the second word in a bigram. In this
method, we always consider the second word as the context of the first word.

The input to the learning algorithm is the created training dataset. Our goal is
to obtain word and context matrices, which produce the bigram matrix using matrix
multiplication as the composition operation. Then a mapping function is applied to map
the resulting matrix to a scalar, which is the predicted NPMI value of the corresponding
bigram.

The objective of the learning method is to train the model parameters to minimize
the objective function defined as the MSE:

E = 1
n

n∑
i=1

(yi − ŷi)2, (5.2)

where yi is the target NPMI value of the bigram bi and ŷi is the predicted NPMI of the
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bigram obtained from the CMSM. n is the size of the training set. Assuming that bi has
the form wjwk, we obtain ŷi via

Mi = MjCk,

vi = vec(Mi),
ŷi = viβ, (5.3)

where Mj and Ck are the word and context matrices of bigram bi, which produce the
bigram matrix Mi. Then vec : Rd×d → Rd2×1 reshapes the matrix to a vectorized
representation. Finally, the dot product of the vector-turned matrix vi with a global
d2-dimensional vector β is computed to obtain ŷi.

In this method, the model parameters are the word and context matrices as well as the
global mapping vector β. We apply a gradient descent optimization technique to update
word and context matrices as well as the global mapping vector β at each iteration of
the training procedure toward minimizing the error value computed by E. Therefore, at
each iteration, the objective function of the input training set is computed and based on
the obtained error value, model parameters are updated as follows:

Mw =Mw − η
∂E

∂Mw
,

Cw =Cw − η
∂E

∂Cw
,

β =β − η
∂E

∂β
,

where η is a fixed learning rate that determines the step size towards the minimum of
the objective function. ∂E

∂x is the partial derivative of the objective function with respect
to parameter x.

Training the model parameters stops after T iterations. Finally, we introduce Mw for
all w ∈ Σ as the final word matrix embedding (or word representation model). Fig. 5.2
illustrates the learning procedure.

5.2.3 Method 2: Compositional Order-Sensitive Matrix Model (COSMo)

This second method for training matrix embeddings, which we call Compositional Order-
Sensitive Matrix Model (COSMo), is adapted from the skip-gram learning method in
vector space (Mikolov et al., 2013b), explained in Chapter 2.1.3. In skip-gram, word
vector embeddings are trained using a feedforward two-layer neural network. COSMo
also trains the word matrix embeddings using a feedforward two-layer NN. As explained
in Section 5.2.1, a corpus consisting of a large set of sentences is employed as the training
dataset to train word matrices. A vocabulary Σ of size V is created by pre-processing
the corpus and extracting all words. Recall that each word w is assigned a word matrix
Mw and a context matrix Cw. Similar to the original idea in the skip-gram method, the
task is to train the NN to predict the context words of a given input word based on the
available corpus of sentences.

At each iteration of training in the algorithm, we input a sentence s =
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input :{(b1, y1), . . . , (bi, yi), . . . , (bn, yn)}
bi = w1w2 wj ∈ Σ, yi ∈ [−1, 1]

output : {Mw}w∈Σ

Learning algorithm
of PMI-based CMSM

1. model parameters to train

word matrix : Mw ∈ Rd×d w ∈ Σ

context matrix : Cw ∈ Rd×d w ∈ Σ

mapping vector : β ∈ Rd2

2. objective: minimize the objective
function

E = 1
n

n∑
i=1

(yi − ŷi)2

Figure 5.2: Supervised learning procedure of PMI-based CMSM. {(b1, y1), . . . , (b,yn)} is
a training set of size n. Σ is the vocabulary extracted from the corpus.

w1w2 . . . wi−1wiwi+1 . . . wc from which a predefined number n of words are randomly
selected, called center words, that serve as the input to the network. A set of context
words with a window size of l are also extracted from the same input sentence for each
center word. Note that this learning method considers two versions of training with
respect to the position of the context words:

1. Asymmetric training: From a given center word wi, a specified number of context
words is selected to the right. Given an input sentence s, and a context window
size of l, the context words of a center word wi are {wi+1, . . . , wi+l};

2. Symmetric training: From a given center word wi, a specified number of context
words is selected to both sides. Therefore, the context words of a center word wi

in s with a window size of l are {wi−l, . . . , wi−1, wi+1, . . . , wi+l}.

During the training, a matrix Qi
pos ∈ Rd×d representing the input sequence for each

given center word wi and its context words is computed utilizing matrix multiplication.
In the case of symmetric context window size of l, Qi

pos is calculated as follows, where
the composition operation is matrix multiplication:

Qi
pos = Cwi−l

. . . Cwi−1MwiCwi+1 . . . Cwi+l
, (5.4)

and, in the case of asymmetric training, Qi
pos is computed as:

Qi
pos = MwiCwi+1 . . . Cwi+l

,

where Mw and Cw denote the word and context matrices of a word w, respectively. Note
that if the randomly chosen center word happens to be first or last word of the input
sentence, which means there is no preceding or proceeding context word, each “missing”
position is filled with the global Out-Of-Sentence (OOS) matrix Coos that is also trained
alongside the other word matrices.

In line with the original skip-gram with negative sampling (Mikolov et al., 2013b), we
choose k negative samples for each center word in the input sentence that we retrieve
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from a unigram probability distribution with a smoothing parameter α:

q(wj) = f(wj)α

ΣV
z=1(f(wz)α)

,

where f(w) represents the frequency of a word w in the given corpus, and V is the size
of the vocabulary. Frequencies are raised to the power of α (0 < α ≤ 1) to increase the
selection probability of less frequent words and decrease the probability of more frequent
words. q(wj) computes the probability that the word wj is selected as the negative
sample.

Since the multiplication of the center word matrix Mwi with negative sample matrices
Cwj is order-sensitive, we can consider the two following variations of negative sampling
in our method:

1. Asymmetric context of negative samples similar to skip-gram. In this case, the
matrix of each center word wi is multiplied with k number of negative samples as
follows:

Qi
neg =

k∑
j=1

MwiCwj ; (5.5)

2. Symmetric context of negative samples. In other words, negative samples are
evenly distributed to the left and to the right of the center word in the matrix
multiplication process. In this case, Qi

neg is computed as follows:

Qi
neg =

k∑
j=1

MwiCwj +
k∑

j=1
CwjMwi .

The objective function (also called loss function) to maximize, sums up both positive
and negative samples of the center words, computed as follows:

L =
m∑

i=1

(
log σ(RS(Qi

pos) + log σ(−RS(Qi
neg)]

)
,

where Qi
pos and Qi

neg represent the composition of a center word with the specified correct
context words and k negative samples, respectively. Since the composition operation
results in matrices, RS represents an operation that sums all elements in the matrices
Qi

pos and Qi
neg; in other words, for any matrix X ∈ Rd×d:

RS(X) =
∑
i′,j′

X(i′, j′)

for 1 ≤ i′, j′ ≤ d, where then the log(σ(·)) function is applied on the resulting values,
before adding those two terms. σ is the sigmoid function. m is the total number of center
words in the training batch at each training iteration. It is computed by multiplying
the batch size (number of input sentences to training at a time) with n, the number of
randomly drawn center words from each sentence in the batch. Note that the objective
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is to minimize the value of the composition of the center word with negative samples,
and therefore, the negative of RS(Qi

neg) is used in the equation. The composition of
the center word with context words is to be maximized, and therefore, the positive
of RS(Qi

pos) is used in the equation. Similar objective functions can be found in the
literature such as the work by Kaji and Kobayashi (2017).

Finally, the negative of the objective function L is minimized in the training process.
Model parameters for training are the word and context matrices, Mw and Cw for all
w ∈ Σ. In terms of the optimizer used, we experimentally determined gradient descent
as the most efficient choice. Word and context matrices are updated at each iteration of
training. A batch at each iteration of training is defined as a set of input sentences from
the corpus, and an epoch is defined as a complete pass over all sentences in the corpus.
Therefore, after a T number of epochs over the corpus (i.e., iterating T times over the
corpus), we stop the training of matrices. Finally, word matrices Mw for all w ∈ Σ are
extracted and introduced as the matrix embeddings or the word representation model.
Fig. 5.3 illustrates the learning procedure.

Input corpus :{s1, . . . , st, . . . , sN }
st = w1 · · ·wi · · ·wct wi ∈ Σ

input sentence : st

random center word : wi

context words with l=1 : {wi−1, wi+1}
k negative samples : {wj1 , . . . , wjk

}

1. Compute objective (loss) function
L

2. Update word and context matrices,
Mw and Cw, using gradient
descent

output : {Mw}w∈Σ

Repeat until
see all sen-
tences.

Repeat T epochs
over the corpus.

Figure 5.3: Learning procedure for COSMo. Each epoch of training is a pass over all
sentences in the corpus. After T epochs {Mw}w∈Σ are extracted as the
learned word representations.

We can denote all word and context matrices with a V × d× d-dimensional tensors T
and T′; that is, each slice of the tensors is a d× d-dimensional matrix corresponding to a
word in the vocabulary. Fig. 5.4 shows our feedforward two-layer NN, which, as opposed
to skip-gram, consists of weight tensors instead of weight matrices. In this figure, we
assume that the input to the training iteration is a center word wi and wi+1 is the
context word to predict, both are extracted from an input sentence s. The connections
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in the input-to-hidden and hidden-to-output layers show the matrices corresponding to
word and context matrices of wi and wi+1, respectively, which are extracted from the
i-th slice of the corresponding tensors T and T′.

...

...
...

...
· · ·

· · ·

...

...

w1

wi

wV

0

1

0

h1,1

hd,1

h1,d

hd,d

w1

wi+1

wV

0

1

0

Input
Layer

Hidden
Layer

Output
Layer

TV ×d×d T′⊤
V ×d×d

Figure 5.4: COSMo neural network architecture for an input word wi to predict an
output context word wi+1. T and T′ are tensors presenting the word and
context matrices. The hidden layer is a matrix with dimensionality of size
d× d. V is the size of vocabulary. The input and output layers are one-hot
encodings of the corresponding words.

5.2.4 COSMo versus skip-gram

In skip-gram, the composition of center and context words for training is based on the
element-wise vector multiplication, which is not sensitive to word order in the sentences.
In other words, skip-gram discards the position of the context word against the center
word during the training of vector embeddings. In a target space S of matrices in Rd×d

the composition function in CMSMs requires ordered sequences. It ensures that the
composition of two matrices Mi ∈ Rd×d and Mj ∈ Rd×d in this order MiMj differs from
its reverse order MjMi. COSMo introduces order-sensitivity during training by utilizing
matrix multiplication when composing the center and context word matrices, as shown in
Equation 5.4. The same argumentation holds for composing center words with negative
samples. Therefore, symmetric and asymmetric learning methods are introduced in
COSMo.

5.2.5 COSMo versus CMOW

Relatively few matrix-space models have been proposed, especially on a word- or phrase-
level representation. A common approach has been the combination of matrix and vector
space representations by Socher et al. (2013), as described in more detail in related work
of Chapter 3, generally trained on a specific task. To the best of our knowledge, the only
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other approach to train task-agnostic matrix representations is that of Mai et al. (2019),
called CMOW. However, there are significant differences between CMOW and COSMo,
which clearly distinguish the two, which are:

• While CMOW learns a sentence representation in matrix format by adapting
CBOW from the word2vec method, our objective is to learn a word-level matrix
representation, which we tackle by proposing a new PMI-based CMSM method
and a skip-gram adapted COSMo method. A word-level representation allows for
dynamic composition of words to unseen phrases and sentences.

• As is shown in Equations 5.4 and 5.5, our training objective is based on CMSM, that
is standard matrix multiplication is applied in the training process and objective
function. In contrast, CMOW applies the objective function in Equation 5.6. In
this equation, s is a sequence of words in a sentence from which an output word wO

is removed to be predicted by the model. encE
∆(s) is the vectorized representation

of the sequence of words s initially obtained from word matrix multiplication. The
matrix of the output word wO and random negative samples wj are also vectorized.
Then, element-wise vector multiplication is used as the composition operation to
compose vwO and vwj with encE

∆(s) during the training process. This goes against
the original idea of CMSMs and relates more closely to the original word2vec-type
of models.

LCMOW = log σ(vT
wO
encE

∆(s)) +
k∑

j=1
Ewj∼q(wj)[ log σ(−vT

wj
encE

∆(s))]. (5.6)

5.3 Experiments
We evaluate the performance of our proposed word-level matrix embeddings in two ways.
First, we evaluate them on five STS tasks from the SentEval repository (Conneau and
Kiela, 2018). SentEval is a toolkit appropriate for evaluating the quality of represent-
ation models (word-level or sentence-level models), which consists of 17 downstream
NLP (un)supervised tasks with the corresponding gold standard evaluation datasets.
The downstream tasks include semantic textual similarity, natural language inference,
sentiment classification, etc. The STS tasks are about predicting the similarity degree of
the given pairs of sentences. Each task includes several subtasks. We report the average
performance on all subtasks for each STS task. The STS tasks are unsupervised in
SentEval1 and are mainly used to evaluate the performance of representation models
in capturing the meaning representation of sentences. Datasets used in these tasks
consist of pairs of sentences labeled with a real-valued score between 0 and 5 as the
similarity degree between the two sentences with 0 and 5 showing the least and the
most similarity degrees. We use the STS tasks from SentEval for the evaluation of our
matrix-embeddings to allow for comparability with existing approaches. The supervised
tasks in SentEval, such as sentiment analysis, are outside the scope of this chapter

1Unsupervised task in SentEval refers to the task that only evaluates the representation models using
a provided evaluation dataset, and it does not train any model within the SentEval to perform the task.
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because their goal is to train a model to perform on these specific tasks. Therefore, we
are not describing the supervised tasks.

Second, we use BiRD, introduced in Chapter 4, to evaluate our proposed matrix
embeddings on capturing semantic relatedness degrees between pairs of short phrases
and compare with the existing vector and matrix embeddings. In both tasks, word
matrices are multiplied to achieve phrase and sentence representations. Vector addition
and element-wise vector multiplication are used for word vectors to obtain phrase and
sentence representations in those tasks, and they are reported separately.

5.3.1 Experimental Setup

Corpus:
We train our matrix embeddings on the UMBC WebBase Corpus1 (Han et al., 2013),

which contains about 134 million sentences and three billion words, to make our results
comparable to the related work, Mai et al. (2019). For the same reason we fix the
vocabulary to 30,000 most frequent words. No preprocessing to corpus or vocabulary is
applied.

Hyperparameter Settings for the PMI-based CMSM:
For the PMI-based CMSM, the best results were obtained with matrix dimensions 20,

that is, 20 × 20 matrices, learning rate 0.01, batch size 256, and 100 training epochs.
One epoch always represents an entire pass over the whole training set. Note that β in
Equation 5.3 is initialized with a normal distribution N (0, 0.1).

Hyperparameter Settings for the COSMo method:
For COSMo we experimented with three different kinds of context window sizes:

• Asymmetric training with three context words to the right of the center word
(COSMo-3asym);

• Symmetric training with two context words to both sides of the center word
(COSMo-2sym); and

• Symmetric with three context words to both sides of the center word (COSMo-
3sym).

Experiments show the best performance at embedding size 20, that is, 20 × 20 matrices,
with a learning rate of 0.003, and drawing 20 negative samples for each center word. We
experimented with the two variations in the multiplication of center words with negative
samples. As we did not observe a significant difference in the performance, we report the
results with the first variation computed as in Equation 5.5. Three different values for the
smoothing parameter α for negative sampling from a unigram probability distribution
were tested, that is, 0.25, 0.50, and 0.75 (the last being the best value for skip-gram
embeddings reported in (Mikolov et al., 2013b)). For symmetric models, a smoothing
parameter of 0.50 performed best, while asymmetric models showed a preference for 0.25.
When testing the number of sentences to be utilized per batch, symmetric models showed

1https://ebiquity.umbc.edu/resource/html/id/351

https://ebiquity.umbc.edu/resource/html/id/351
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a preference for larger number of sentences, 1024 for symmetric and 256 sentences for
asymmetric models. Each model was trained for a minimum of 20 epochs, stopping when
improvements from one epoch to the next started dropping to below a threshold value
ϵ = 0.10. For COSMo-2sym, no improvement after 20 epochs could be observed. For
COSMo-3sym and COSMo-3asym, this point was reached after 25 epochs. A detailed
hyperparameter study is also provided in the following.

5.3.2 Results on Semantic Textual Similarity

Performance results of all proposed matrix embeddings on STS tasks of SentEval
(Conneau and Kiela, 2018) are reported in comparison to the two baseline matrix-space
models: (1) CMOW (Mai et al., 2019) with matrix embedding size of 28 × 28, and
(2) LMS-TreeLSTM (Chung et al., 2018) with matrix embedding size of 18 × 18. We
also compare them with the vector space skip-gram model using a vector embedding
size of 300. Mai et al. (2019) report their model trained on the UMBC corpus. For
a fair comparison, we trained our proposed models, the skip-gram model, as well as
LMS-TreeLSTM on the same corpus (UMBC) and with the same vocabulary. We utilized
the corresponding vectors trained on UMBC and input them to the method of Chung
et al. (2018) for a fair comparison. For CMOW model, we took the results from their
paper and did not attempt to reproduce the experiments. Performance is measured
by the Spearman correlation since Mai et al. (2019) report their results as Spearman
rather than Pearson values. Spearman measures the degree of relationship between two
variables. While SentEval provides supervised and unsupervised tasks, our main interest
here is on the capability of word-level matrices to compose utilizing matrix multiplication
to represent sentence meanings. Therefore, we use five STS unsupervised tasks providing
different sentence lengths, where the first three tasks in Table 5.1 generally have shorter
sequences, and the last two tasks comparatively longer sentences.

The first two lines in Table 5.1 reports the results achieved by CMOW and LMS-
TreeLSTM baseline models. The subsequent three lines show the results of the proposed
COSMo models, the first two with a symmetric window size of 2 (COSMo-2sym) and 3
(Cosmo-3sym) respectively, while the third line provides the results for training COSMo
with a window size of three to the right only (COSMo-3asym). Line six shows the results
for the PMI-based CMSM learning method. Finally, the last two lines in Table 5.1
represent the output of vector embeddings obtained from the same corpus with the
original skip-gram method and two different vector composition operations to obtain
sentence embeddings: vector addition and element-wise multiplication.

Regarding the CMOW baseline matrices, the proposed learning methods obtain
competitive results on all tasks. LMS-TreeLSTM performs poorly, and our methods
outperform LMS-TreeLSTM significantly on all tasks. On the first three STS tasks,
our trained matrices outperform the baseline matrices that were trained as sentence
embeddings (CMOW). For tasks STS15 and STS16 the CMOW sentence embeddings
achieve better performance. The task STS16 tends to have comparatively longer sentences
than the others on average. This seems to constitute a problem for our approach of
multiplying resulting word matrices to sentence matrices since our models perform
worst on this task. On closer analysis, the most devastating task was that of STS16
question–question subtask without which our model could achieve a Spearman value
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Line Method
Task STS12 STS13 STS14 STS15 STS16

Baseline
1 CMOW (Mai et al., 2019) 39.2 31.9 38.7 49.7 52.2
2 LMS-TreeLSTM (Chung et al., 2018) 21.8 5.2 3.8 9.6 6.6

Proposed models
3 COSMo-2sym 40.1 32.2 40.7 44.6 48.1
4 COSMo-3sym 39.4 30.4 40.7 42.1 48.0
5 COSMo-3asym 40.5 33.4 41.2 44.2 46.5
6 PMI-based CMSM 32.7 26.0 36.8 40.3 43.5

VSM
7 skip-gram (addition) 47.7 50.6 53.0 58.9 54.6
8 skip-gram (multiplication) 10.7 8.6 7.2 7.6 10.7

Table 5.1: Spearman correlation value (times 100) of methods on STS unsupervised
tasks of SentEval.

(times 100) of up to 58.0. On closer inspection it turns out that this question–question
subtask of STS16 has the most varied vocabulary and by far the highest number of
questions (naturally), which we believe to have been underrepresented in the training
corpus. This disfavors a method that composes resulting word matrices to sentence
matrices.

While these results are promising for CMSMs in general, an outperformance of VSMs
would be desirable, and CMSMs may achieve better performance with another learning
method entirely independent of VSM-inspired ones.

Comparing the results of our learning methods suggests that overall COSMo performs
better than PMI-based CMSM does. As regards COSMo, only marginal differences in
terms of symmetry and size of the context window could be observed. Nevertheless, a
slight improvement could be observed with an asymmetric window size of three, that
is, training with three context words to the right only. Similar performance of the
asymmetric model to the symmetric model can be due to the fact that the composition
operation utilized during the training is order sensitive, which considers symmetric
properties implicitly.

Hyperparameter Testing

It has been shown that small adaptations in hyperparameter settings tend to impact final
training outcomes with VSMs and neural networks strongly. It is good practice to evaluate
model behaviors with tests of different hyperparameter combinations experimentally.
This subsection presents the hyperparameter testing for the proposed models in terms
of matrix sizes (embedding size), number of center words in each batch, number of
negative samples randomly drawn for each center word, and the training batch size.
Performance is measured in terms of average Spearman value on five STS tasks of
SentEval. Additional tests regarding the smoothing parameter for drawing negative
samples (α=0.5 for COSMo-sym and α=0.25 for COSMo-asym), learning rate (0.003
for all COSMo models), and different optimizers (gradient descent for all models) were
performed.



5.3 Experiments 117

Past approaches on vector- and matrix-space models have shown the central importance
of embedding sizes (see Section 5.1). Fig. 5.5 showcases the different performances of
our models with different embedding matrix sizes. Starting from 15 × 15 size matrices
we experimented up to size 34 × 34, with a clear peak performance of size 20 × 20 for
symmetric and asymmetric COSMo models as well as the PMI-based CMSM. For these
tests, we utilized a context window size of two for the symmetric model (COSMo-2sym)
and of three for the asymmetric model (COSMo-3asym). While the performance of the
asymmetric model seems comparatively stable across embedding sizes with a marginal
improvement on of size of 20 × 20, the symmetric COSMo model shows a clear preference
for this size and a more considerable drop in performance with higher dimensionalities.
To compare across models, the reported tests kept all other hyperparameters than the
one tested fixed and identical for all COSMo models; that is, the same batch size (1024
sentences), number of negative samples (20), epochs (5), number of center words (30),
learning rate (0.003). The only variation is the smoothing parameter α with a value of
0.50 for COSMo-2sym and 0.25 as a more successful value for COSMo-3asym.
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Figure 5.5: Performance comparison of embedding size in the COSMo-2sym and COSMo-
3asym models as the most successful ones and the PMI-based CMSM. Hy-
perparameters: number of center words = 30, number of negative samples =
20, batch size = 1024 sentences, learning rate = 0.003, optimizer = gradient
descent, number of epochs = 5.

A second high-impact hyperparameter in the COSMo learning method is the decision
on how often a randomly selected center word is drawn from a given sentence in the
training process, called the number of skips. Fig. 5.6 shows the results of our tests,
where we compared three COSMo models and no PMI-based CMSM model since this
is not a hyperparameter of the PMI-based CMSM method. For symmetric versions of
the COSMo model, the number of skips should not be set any lower than 30. For the
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asymmetric model already a number of skips of 25 starts to perform well.
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Figure 5.6: Performance comparison of the number of skips (center words) in the COSMo-
2sym, COSMo-3sym, and COSMo-3asym models. Hyperparameters: embed-
ding size = 20, number of negative samples = 20, batch size = 1024 sentences,
learning rate = 0.003, optimizer = Gradient descent, number of epochs = 5.

COSMo models also require negative samples drawn from a uniform probability distri-
bution, the number of which needs to be determined before training. We experimented
with both variations in the multiplication of center words with negative samples. As
we did not observe a significant difference in their performance, we report on the first
variation computed as in Equation 5.5. Fig. 5.7 shows that the impact of this hyper-
parameter is relatively low with a rather flat curve for all three tested models. Only
for COSMo-2sym, 20 negative samples seems better than a higher number, while for
the other models the performance is almost the same across different settings of these
hyperparameters. Again, all other hyperparameters have been fixed and identical with a
difference of α = 0.50 for symmetric and α = 0.25 for asymmetric context models.

One hyperparameter that strongly depends on the training corpus for its fine-tuning
is that of the batch size (i.e., the number of input sentences), and there seems to be a
correlation between batch size and context window configuration. Table 5.2 shows a
tendency for the symmetric COSMo model of window size of two (COSMo-2sym) to
perform best with a lower dimensionality (dim = 20) and a larger batch size of 1024. For
the asymmetric window size of three (COSMo-3asym), a smaller batch size of around
256 or 384 depending on the dimensionality seems to work better. We experimentally
tested the learning rate and optimizers and concluded that 0.003 with gradient descent
performed best in all experiments. The best overall performance in these hyperparameter
tests could be achieved with COSMo-2sym of matrix size 20 × 20 and a batch size of
1024.



5.3 Experiments 119

Number of negative samples
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Figure 5.7: Performance comparison of the number of negative samples utilized to train
the COSMo-2sym, COSMo-3sym, and COSMo-3asym models. Hyperpara-
meters: embedding size = 20, number of skips = 30, batch size = 1024
sentences, learning rate = 0.003, optimizer = gradient descent, number of
epochs = 5.

Method
Batch size 128 256 384 512 640 1024

COSMo-2sym 20 × 20 37.05 35.10 38.69 39.09 38.94 39.61
COSMo-2sym 28 × 28 38.16 37.76 37.53 38.41 38.20 37.88
COSMo-3asym 20 × 20 37.11 38.83 38.73 38.54 38.25 38.03
COSMo-3asym 28 × 28 37.24 37.44 38.15 37.98 37.51 38.04

Table 5.2: Spearman value (times 100) of COSMo method with different batch sizes.
Hyperparameters: α = 0.50, negative samples = 20, learning rate = 0.003,
optimizer= gradient descent, epoch number = 5. Best result among the batch
sizes in each method is in bold.

Matrix Initialization

When training word vectors, the way of initializing the vectors has shown to have a
significant impact on the final result of the trained embeddings. To this end, we have
decided to try several methods for initializing our matrices on the COSMo-2sym model.
Completely random initialization in this model led to disastrous results, which is why
we resorted to testing various approaches of initializations close to the identity matrix.
Each matrix is initialized with the identity matrix with the addition of some noise. The
difference lies in how this noise is drawn from a normal distribution. We tested the
initialization within a range of [−0.5

d ,
0.5
d ], where d represents the matrix dimensionality, as

well as with the normal distribution of N {0, 0.001}, both of which had proven successful
for word embeddings. In comparison, we also report on the initialization with identity
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matrix plus noise from N {0, 0.1}, which we chose as an initialization method in the end.
As can be seen from Table 5.3, the last setting outperforms the other two initialization
methods.

Method
Task STS12 STS13 STS14 STS15 STS16

I + [−0.5
d ,

0.5
d ] 20.96 8.78 13.56 22.96 33.44

I + N {0, 0.001} 19.43 4.84 6.59 13.94 2.52
I + N {0, 0.1} 38.73 29.30 39.80 43.96 46.27

Table 5.3: Spearman value (times 100) of methods on STS tasks with different initializ-
ations of the COSMo-2sym model matrices after five epochs of training.

5.3.3 Results on Semantic Relatedness

A common approach to test representation models on semantic representations is ex-
ploiting their ability to rank pairs of terms (words or phrases) by closeness in meaning.
Semantic relatedness is a measure to compute the meaning closeness of two terms. The
BiRD dataset introduced in Chapter 4 (Asaadi et al., 2019) provides pairs of terms labeled
with semantic relatedness scores. One term in each pair is a bigram and the other term
is either a bigram or a unigram. In this section, we evaluate COSMo models as our most
successful models, and the LMS-treeLSTM (Chung et al., 2018) and skip-gram baseline
models on their ability to semantically represent words as well as phrases with different
composition operations utilizing the BiRD dataset. The composition operation in matrix
space is the standard matrix multiplication, and in the vector space are addition and
element-wise multiplication; these approaches are reported separately. As our trained
vocabulary contains 30, 000 words, some words in the dataset are missing, and therefore,
we evaluate the models on 3,165 pairs from the BiRD. Table 5.4 shows the results
of our introduced embeddings compared with the skip-gram and the LMS-treeLSTM
embeddings.

Method Pearson (r)
COSMo-2sym 0.327
COSMo-3sym 0.306
COSMo-3asym 0.357
skip-gram (Mikolov et al., 2013b) (multiplication) 0.378
skip-gram (Mikolov et al., 2013b) (addition) 0.587
LMS-treeLSTM (Chung et al., 2018) 0.161

Table 5.4: Pearson correlation value of methods on capturing semantic relatedness of
term pairs in BiRD.

The results show that our matrices outperform LMS-treeLSTM, trained on the task
of natural language inference estimation. The results of our individual learning methods
suggest that COSMo-3asym performs the best. It also shows a very close performance
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to the vector multiplication. As reported in the STS task, vector addition outperforms
all other models.

5.4 Discussion and Conclusion

To the best of our knowledge, we are the first to propose a learning method to obtain
word-level matrix embeddings that truly utilizes matrix multiplication (see Section 5.2.5
for a detailed comparison to the most closely related previous approach). In this chapter,
we proposed two methods with several variations to learn word-level matrix embeddings.
The first method is based on the linear regression that utilizes PMI values for bigrams
in training word matrices, and the second method is an adaptation of the skip-gram
method, which leads to a better performance than the first method when evaluated
on the STS tasks. The learned matrix embeddings exhibit slightly different behaviors
than the task-agnostic sentence-level embedding CMOW proposed by Mai et al. (2019)
and the task-specific matrix learning method proposed by Chung et al. (2018). These
differences become evident when comparing matrix dimensionality.

In terms of matrix dimensionality, previous studies (Irsoy and Cardie, 2015; Chung
et al., 2018) observed an improvement of performance with an increase in matrix
dimensionality, which also corresponds to vector space findings. The task-agnostic
sentence-level model CMOW (Mai et al., 2019) equally reported improved results with
an increase in dimensionality, where their final size reported is 28 × 28 matrices. All of
our models, symmetric and asymmetric COSMo, as well as PMI-based CMSM, peaked
in performance at a dimensionality of size 20 × 20, which is lower than CMOW and
still performs competitively. Moreover, our models outperformed LMS-treeLSTM with
the dimensionality of size 18 × 18, which is not significantly smaller than our models’
dimensionality.

In terms of context window, asymmetric context window in our case means contexts to
the right only, since English composes words from left to right rather than from right to
left. However, also for VSMs with bag-of-words contexts (i.e., order-insensitive contexts),
it has been shown (Lison and Kutuzov, 2017) that asymmetric contexts to the right are
on par with symmetric ones, while asymmetric contexts to the left perform worse. Our
findings also confirm that the symmetric and asymmetric (right) models in matrix space
generate matrices that are almost on par in performance on STS tasks.

Since we propose matrix models based on multiplicative composition, one of the most
central aspects is the discussion on additive and multiplicative composition in VSMs in
comparison to matrix models. In the task of compositional semantic similarity, Turney
(2012) showed that addition outperforms multiplication, which could also be confirmed
for later learning methods for embeddings. However, those operations are naive in the
sense that they assign the same representations to phrases containing the same words
irrespective of the word order. Matrix multiplication with its sensitivity to order, and
thus, also sensitivity to word order when trained on natural language, holds the promise
to improve on this naivety and provide a semantic composition method. Our results show
that matrix multiplication outperforms vector multiplication; however, vector addition
performs considerably better than both. The same phenomenon could be observed for the
sentence-level matrix embedding CMOW (Mai et al., 2019), which is also outperformed
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by vector addition.
Having conducted extensive experiments on the proposed learning methods for matrix-

space models, we conclude that their performance is competitive with VSMs. However,
this finding shows that our expectation of a richer semantic composition operation
leading to an improvement of performance on composition tasks could not be met. Our
intuition is that an entirely different learning method for matrix-space models far from
the ideas of VSMs (e.g., skip-gram), may be a viable research path for the future.

The learning technique for PMI-based CMSM utilizes PMI values for training word
matrices, which present global information about the association between words co-
occurring in a given text corpus. The COSMo is trained based on the distributional
hypothesis, which provides local information about the association between words.
A future direction is combining both techniques to propose a joint learning method
employing both local and global information for training word matrices. Note that
the two methods define different objective functions, and therefore, the error values to
minimize have different scales. Thus, suitable methods of rescaling the error values of
the learning techniques are needed for joint training.
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In this dissertation, we investigated CMSMs as alternative word representation models
in NLP. In these models, matrix space, as opposed to vector space, is used to reflect the
meaning of words in real-valued quadratic matrix representations. The compositional
representations of the larger linguistic units, such as phrases, are obtained utilizing
matrix multiplication of word matrices in the same order as they appear in the phrase.
We focused on the two following research directions in this dissertation:

1. Machine learning approaches for learning CMSMs as representation models in
NLP; and

2. Evaluation approaches for examining the capability of the proposed and existing
representation models on meaning composition in NLP.

Chapter 3 presented experimental investigation of CMSMs in sentiment analysis
and compositionality detection tasks in NLP. Focusing on the first research direction,
supervised learning techniques were proposed in both tasks to train word matrices in
CMSMs from available training datasets.

In sentiment analysis, word matrices were trained using linear regression to contain
semantic and sentiment-related information. The novelty of our learning method consists
in a two-step learning procedure, called gradual learning, where the result of the first
step is used as initialization for the second step. We identified gradient descent as the
most efficient optimizer in our learning technique.

The results of the experiments showed the outperformance of the proposed approach
over existing approaches for learning CMSMs (Yessenalina and Cardie, 2011; Irsoy and
Cardie, 2015) in predicting the sentiment scores of compositional phrases. The results
also demonstrated that the matrix-based compositionality operation shows sensitivity
to word order, arguably reflecting the sentiment scores of phrases better than any
commutative operation could. In general, our findings confirm those of Yessenalina
and Cardie (2011): Adverbs and negators in natural language play an important role
in determining the sentiment scores of phrases. The results in the sentiment analysis
task showed that multiplicative interaction in CMSMs captures the effect of adverbs
and negators on the sentiment score when composed with a phrase. For instance, the
word “very” seems to intensify the sentiment score of the subsequent phrase, while “not”
not only flips the sentiment of the phrase syntactically following it but also gradually
the sentiment of the phrases. In contrast, the scores of phrases containing “not very”
defy the assumption that the described effects of these operators can be combined in a
straightforward way.

The proposed learning technique can also capture the sentiment scores of phrases that
contain words with opposing polarities. For instance, the phrase “happy tears” contains
a positive word (happy) and a negative word (tear), while the overall sentiment of the
whole phrase is positive. We compared the performance of our approach for this type of
phrases with SVR in VSMs. The results showed the outperformance of our model over
SVR with vector averaging as the composition operation in VSMs; however, it could not
outperform SVR with vector concatenation as the composition operation. Overall, our
learning approach for CMSMs achieved competitive performance to the SVR approach
in VSMs.

Since the CMSM optimization problem in matrix space is a non-convex problem,
attention to the starting point to avoid local optima is important. To accomplish this,
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different matrix initialization methods were studied in this chapter, and the results
showed that identity initialization of matrices with noise values on all matrix elements
achieves the best performance.

In the compositionality detection task, we investigated CMSMs’ ability to identify
(non-)compositional short phrases—in this case bigrams, that is, two-word sequences. For
this purpose, we first proposed a learning technique for CMSMs based on linear regression
that was trained to produce compositional representations of bigrams from their words’
representations. Then, we used gold standard evaluation datasets consisting of bigrams
with an associated real-valued compositionality degree, and we investigated whether
CMSMs could detect the compositionality degree of the bigrams. The performance of
CMSMs in compositionality detection was compared with that of various compositional
models in vector space. These models included unsupervised compositional models, that
is, vector addition and element-wise multiplication on word vector embeddings (i.e.,
fastText and word2vec), and supervised models, that is, feedforward neural network,
polynomial regression, and RNN. The results showed an outperformance of CMSM
over vector multiplication and feedforward NN, and competitive performance to vector
addition, polynomial regression, and RNN on the compositionality detection of bigrams.
One of the gold standard evaluation datasets had more fine-grained compositionality
degrees for noun–noun and adjective–noun compounds. We observed that the CMSMs
tend to be more accurate than other models in capturing more fine-grained values and
predicting the compositionality of adjective–noun compounds better than the studied
compositional models.

One immediate advantage of employing CMSMs in the two NLP tasks was that
matrix multiplication is an operation that is natural, plausible on several levels, and
word-order sensitive. Experiments on both tasks showed that there are scalable learning
methods for training CMSMs for downstream NLP tasks that require significantly fewer
training parameters. Thus, CMSMs are capable of embedding relevant information in
considerably fewer dimensions compared with VSMs, which gives a clear advantage in
terms of computational cost, storage, and convergence in learning. Overall, experimental
investigations suggest that CMSMs are a promising framework to model task-specific
semantic compositionality processes, such as compositional sentiment analysis and
compositionality detection of short sequences.

We are aware that experiments have been only done on short length sequences,
and further investigation is needed for examining CMSMs on longer sequences, such
as sentences. Matrix multiplication on long sequences can cause the final matrix to
contain extremely small values, which affects the updating process of word matrices
in the gradient descent; that is, word matrix values may not be updated adequately.
Therefore, mechanisms are needed to avoid this issue when training CMSMs on long
sequences. Moreover, when CMSMs are trained on long sequences in a specific task,
such as, sentiment analysis, not all words contain task-specific information. A method is
needed to pay attention and give more weights to those words that carry the relevant
information, for instance, sentiment-carrying words in sentiment analysis.

Chapter 4 focused on the second research direction, which involved evaluating semantic
composition methods. A common evaluation approach exploits the ability of these
methods to rank pairs of terms (e.g., phrases) by their relatedness in meaning. Two terms
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are semantically related if they belong to any classical or non-classical lexical–semantic
relations. Gold standard semantic relatedness datasets are useful for evaluating semantic
composition. Existing semantic relatedness datasets focus on single words, and therefore,
they cannot be used to evaluate semantic composition. Moreover, existing datasets suffer
from shortcomings due to the annotation techniques employed. To address these issues,
this chapter introduced BiRD, a new gold standard bigram semantic relatedness dataset.
BiRD consists of pairs of terms (i.e., bigram–bigram and bigram–unigrams) with an
associated semantic relatedness score obtained from human annotations. Each bigram
occurs in about eight distinct pairs in BiRD. This is yet another aspect that makes
BiRD unique, as existing datasets were not designed to include terms in multiple pairs.

A comparative annotation technique, BWS (Louviere, 1991; Cohen, 2003; Louviere
et al., 2015; Kiritchenko and Mohammad, 2017), was employed. This approach addresses
common issues of previous annotation techniques, such as inconsistencies in annotations
by different annotators, inconsistencies in annotations by the same annotator at different
times, bias in the scale region (annotators often have a bias toward a portion of the
scale, usually toward the middle), and problems associated with a fixed granularity (an
annotator may want to assign 1.5 to an item instead of 1 or 2; Presser and Schuman,
1996). We then assessed the reproducibility and quality of the annotations using the
SHR technique (Cronbach, 1951), which showed high reliability of the annotations.

Benchmark experiments were done on using BiRD for evaluating various composition
methods used to obtain meaning composition from different distributional word repres-
entation models. The underlying assumption was that the more accurately a method of
semantic composition can determine the representation of a bigram, the more accurately
it can determine the relatedness of that bigram with other terms. Results on different
composition methods in vector space showed that vector addition performs best among
different composition methods when tested using different representation models. Among
the different representation models, ELMo and fastText competitively outperformed the
other models. That is, ELMo (Peters et al., 2018) and fastText (Bojanowski et al., 2017),
with addition as the composition operation, performed better than other representation
models in capturing the meaning composition, and consequently, the semantic relatedness
of term pairs in BiRD.

Since the dataset was created using crowdsourcing, we also studied how humans
perceive the relatedness between terms with different types of lexical–semantic relations.
We analyzed the dataset to obtain insights into the distributions of semantic relatedness
scores for pairs associated through various relations. These included pairs with lexical–
semantic relations (e.g., hyponyms, meronyms, and synonyms), transposed bigram pairs
(AB–BA, e.g., traffic light–light traffic), and co-aligned term pairs extracted from phrase
tables in statistical machine translation. We observed that co-aligned terms from phrase
tables can be related to varying degrees (from unrelated to synonymous), making them
a useful source of term pairs to include in semantic relatedness datasets. Moreover,
the semantic relatedness scores of AB–BA pairs varied from 0.25 to 0.90. Those pairs
with low relatedness scores, such as law school–school law and traffic light–light traffic,
were especially useful in testing whether compositional representation models generate
suitably different representations for the terms in such pairs.

The introduced dataset provides a quantification of semantic relatedness, and its
applicability is broader than what we investigated in this chapter. It can be used for the
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following purposes: (1) evaluating the large number of proposed supervised methods of
semantic composition, such as LSTM-based methods (Zhu et al., 2016); (2) evaluating
the different measures of semantic relatedness, such as those introduced by Budanitsky
and Hirst (2006); and (3) for evaluations in real-word spelling correction (Hirst and
Budanitsky, 2005) and textual entailment (Mirkin et al., 2006) tasks, which often require
judgments of the form ‘is AB–X1 more related or less related than AB–X2’.

Finally, Chapter 5 introduced CMSMs as generic word representation models in matrix
space (also called word matrix embeddings). The introduced models were task-agnostic
representation models as they were not trained on any task to capture task-specific
information. Word matrices were trained using distributional information of words based
on the distributional hypothesis (Harris, 1954) and PMI between words in a given text
corpus. The embeddings provide continuous word representations in natural language
and reflect the semantic relationships between words.

We proposed two learning techniques to obtain word matrix embeddings in this chapter.
The first technique, called PMI-based CMSM, was a supervised learning technique based
on linear regression. The second technique, called COSMo, was a self-supervised method
of training a feedforward two-layer neural network.

To investigate the proposed embeddings on semantic representation and composi-
tionality, we evaluated them using the two following evaluation tasks: (1) STS and (2)
semantic relatedness. The performance of the proposed matrix embeddings was then
compared with that of two existing word matrix representation models, LMS-treeLSTM
(Chung et al., 2018) and CMOW (Mai et al., 2019), which showed outperformance over
the first and competitive performance with the second model.

In terms of matrix dimensionality, our matrix embedding size in all the experiments
was set to 20 × 20 as the best configuration, which was lower than that of CMOW
(28 × 28) and still performed competitively. Moreover, our models outperformed LMS-
treeLSTM with dimensionality of 18 × 18, which is not significantly smaller than our
models’ dimensionality. Furthermore, we compared the performance of our matrix
embeddings with skip-gram word vector embeddings (Mikolov et al., 2013b), using an
embedding size of 300. The composition operations in VSMs were based on the addition
and element-wise multiplication reported separately. Vector multiplication on skip-gram
embeddings demonstrated poor performance and did not outperform our models in
capturing meaning composition, while vector addition outperformed all models. Since
COSMo was an adaptation of the skip-gram from vector space to matrix space, our
intuition is that an entirely different training method for matrix-space models, far from
the ideas of VSMs, may be a viable path for the future.

The learning technique for PMI-based CMSM utilized PMI values for training word
matrices, which present global information about the association between words co-
occurring in a given text corpus. COSMo was trained based on the distributional
hypothesis, which provides local information about the association between words. The
experiments suggested that COSMo performs better than PMI-based CMSMs do overall
in capturing semantic representations. However, to take both local and global information
into account when training word matrix representation models, a future direction is
combining the two learning techniques to propose a joint method employing all the
information. The two techniques define different objective functions, and therefore, the



128 Chapter 6. Conclusions and Outlook

error values to minimize have different scales. Thus, suitable methods of rescaling the
error values of the learning techniques are needed for joint training.

A shortcoming of the proposed matrix embeddings is that one representation is assigned
to each word. However, a word may have different meanings based on the context it
occurs in. Recent approaches, such as BERT (Devlin et al., 2019) and ELMo (Peters
et al., 2018), train distinct representations for different meanings of the words based on
the context; these are called contextualized embeddings (or context-aware embeddings).
Learning context-aware word matrix embeddings is an interesting research direction in
this area.

The extensive experiments on vector- and matrix-space models conducted in this
dissertation have shown the superiority of matrix multiplication as an order-sensitive
composition operation over vector addition or element-wise multiplication in NLP tasks.
Moreover, CMSMs do not rely on parse trees, and therefore, preprocessing of texts in the
training datasets is not required. Each word is represented only with matrices, where the
composition function is the standard matrix multiplication that replaces the recursive
computations in parse trees with a sequential computation.

As discussed in Chapter 2.3, matrix multiplication is an associative linear operation
which is generally unable to disambiguate the different meanings of a sentence. CMSMs
assign the same representation to several interpretations of a sentence. An approach
to addressing the ambiguity issue is establishing methods that help the NLP systems
to understand the correct meaning of a sentence based on its context. These methods
train distinct representations for different meanings of the words based on the context,
which are called contextualized embeddings (or context-aware embeddings). Therefore,
learning approaches to train the context-aware matrix representation models can be a
potential solution to this problem.

A central question related to CMSMs is how the linearity of matrix multiplications
limits their applicability. In Chapter 2.3, we studied how Rudolph and Giesbrecht
(2010) justified CMSMs by showing that matrix multiplication can realize mental state
transitions triggered by the sequence of input signals. Using linear mappings to represent
those functions introduces limitations that need to be further investigated. Therefore,
we must equip the CMSMs with nonlinear functions to resolve the problems caused by
linearity. Thus, a line of further research is proposing deep learning approaches to obtain
CMSMs, or augmenting CMSMs with the existing deep neural network architectures.
Nonlinear approaches to CMSMs can also solve the problems caused by the associativity
property, such as word sense disambiguation in natural language.

Overall, this thesis has demonstrated that CMSMs offer attractive theoretical features
and practical behavior. This strongly suggests CMSMs can be used as a suitable
framework of semantic compositionality in NLP downstream applications.

We hope that the investigations in this thesis help to extend CMSMs to address the
mentioned shortcomings and allow the proposed word matrix representation models to
be further improved and used extensively in NLP applications. In addition, we hope
that the introduced gold standard bigram semantic relatedness dataset will foster further
research in this area.
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BiRD Questionnaire
Instructions on “Judgment of Closeness In Meaning (or Relatedness) of Pairs of

Common

English Words and Phrases”

A.1 General Instructions

• Attempt these questions only if you are fluent in English.

• Your responses are confidential. Any publications based on these responses will
not include your specific responses, but rather aggregate information from many
individuals. We will not ask any information that can be used to identify who you
are.

A.2 The Task
Your task is to judge the degree of closeness in meaning (or amount of relatedness) of

pairs of English terms (words or phrases). Since it is difficult to give numerical scores of
closeness, we ask you to judge which pair of terms is considered closer in meaning by
most people. For example, most people will agree that:

• doctor and physician are closer in meaning (or more related to each other) than
fish and table

• student and tutor are closer in meaning than student and mother

• piano player and pianist are closer in meaning than piano player and piano

• piano player and pianist are closer in meaning than air show and system

In each instance, you will be given four pairs at a time. Think about the meanings of
each of the pairs and answer these questions:

1. Which pair is most close in meaning (or most related)?

2. Which pair is least close in meaning (or least related)?

Notes:
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• If in the given set of four pairs, two term pairs are equally close to each other
and they are also the most close pairs, then select either one of them as the most
related. Similarly, if two equally related pairs are also the least related pairs, then
select either one of them as the least related.

• Synonyms (words with identical meanings) are maximally close to each other (or
most related).

• Terms that are not synonymous may be close in meaning to different degrees. For
example, bank and money are highly related to each other, whereas bank and
peace are not very related. Non-synonymous terms that are close in meaning tend
to be used together in sentences more often than random chance.

• If a term has more than one meaning, consider that meaning which is closest to
the meaning of the other term in the pair. If both terms have multiple meanings,
then consider those meanings that are closest to each other.

• The word order in phrases matters. Two phrases with the same words but in
different order can be very close in meaning, somewhat related, or unrelated. Thus,
judge the relatedness for such phrases after careful consideration of the meanings.

• If you do not know the meaning of a term, check the
– English Wikipedia

(https://en.wikipedia.org/wiki/MainPage),
– Merriam-Webster Dictionary

(https://www.merriam-webster.com/),
– or Cambridge dictionary

(https://dictionary.cambridge.org/).

A.3 Examples

Example 1:

Q1: Which pair is most close in meaning (or most related)?

• (building block, unit)

• (traffic light, intersection)

• (water quality, health)

• (fantasy world, system)

Answer: (building block, unit)

Q2: Which pair is least close in meaning (or least related)?

• (building block, unit)

• (traffic light, intersection)

• (water quality, health)

https://en.wikipedia.org/wiki/MainPage
https://www.merriam-webster.com/
https://dictionary.cambridge.org/
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• (fantasy world, system)

Answer: (fantasy world, system)

Example 2:

Q1: Which pair is most close in meaning (or most related)?

• (school council, student)

• (west coast, mountain)

• (relevant information, historical data)

• (blue light, light blue)

Answer: (school council, student)

Q2: Which pair is least close in meaning (or least related)?

• (school council, student)

• (west coast, mountain)

• (relevant information, historical data)

• (blue light, light blue)

Answer: (blue light, light blue)

Example 3:

Q1: Which pair is most close in meaning (or most related)?

• (house dog, animal)

• (data processing, execution)

• (jazz band, dance)

• (recording studio, art school)

Answer: (house dog, animal)

Q2: Which pair is least close in meaning (or least related)?

• (house dog, animal)

• (data processing, execution)

• (jazz band, dance)

• (recording studio, art school)

Answer: (recording studio, art school)
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Purpose

Your responses will be used to study how people perceive closeness in meaning (or
relatedness). Our eventual goal is to build computer systems that automatically predict
the relatedness of words and phrases. The data is collected only for research purposes.
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