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Summary 

 

Objectives 

The aim of the study was to obtain comprehensive knowledge of the regeneration ecology of 

the pioneer tree species silver birch (Betula pendula Roth), goat willow (Salix caprea L.) and 

rowan (Sorbus aucuparia L.). The findings should contribute to better management of the 

natural regeneration of disturbed sites (e.g., windthrown sites) by pioneer tree species. Insuf-

ficient knowledge of the regeneration ecology of pioneer tree species renders forest managers’ 

abilities to assess the success of regeneration of windthrown sites uncertain. The focus of the 

study was on the seed dispersal of silver birch, goat willow and rowan on windthrown sites. 

The ability of pioneer tree species to form a soil seed bank in closed forest areas was also 

studied. 

 

Materials and methods 

The study took place in the years 2015 and 2016. The study sites were located on the slopes 

and mountain tops (plateaus) of the Thuringian Forest (715-900 m a.s.l.), on five windthrown 

open areas (4-13 ha) created by the storm ‘Kyrill’ in January 2007. All seed trees of pioneer 

tree species were mapped within the forested search zone around each site. This zone extend-

ed 200 m for silver birch and rowan and 500 m for goat willow. Following the mapping of 

these seed trees and an analysis of their spatial distribution, seed traps were placed along two 

or four crossing line transects, with intervals of 20 m between traps. The traps were funnel 

shaped net seed traps for silver birch (0.2 m²), seed traps with a sticky, non-drying glue for 

goat willow (0.043 m²) and dropping traps for seeds dispersed endozoochorously by frugivor-

ous birds (0.25 m²). A phenomenological model and model-based geostatistics were used to 

investigate silver birch and goat willow seed dispersal. For goat willow a parentage analysis 

was performed at one of the study sites using nuclear-DNA-primers. 

The soil seed bank study was carried out in three birch stands, spruce stands with admixed 

birch, spruce stands with one isolated birch tree and pure spruce stands in the Tharandter For-

est and in the Thuringian Forest. Soil core samples with a diameter of 10.2 cm were taken 

from the litter layer and the mineral soil to a depth of 10 cm. The soil samples were placed in 

a greenhouse and seed germination was checked every 14 days. An artificial seed burial ex-

periment was also carried out. Silver birch seeds, rowan seeds and rowan fruits were buried in 

mineral soil at depths of 2 cm, 5 cm and 10 cm. At intervals of 6 months sample sets were 
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removed from the soil and the germination capacity checked. The analysis of the soil seed 

banks was based on generalized linear mixed models (GLMM) and generalized linear models 

(GLM). 

 

Results 

 The 2-year study of the temporal and spatial dispersal of seeds of Salix caprea on five 

Kyrill-felled areas involved one year with lower seed production and one with more 

bountiful seed production. The duration of the spring seed rain was about 12 weeks in 

2015, and only 6 weeks in 2016 because of contrasting weather conditions. The highest 

seed numbers of 23-156 n per trap occurred close to the base of the seed trees. Beyond 

350 m from the seed trees, up to the maximum distance in the study of 870 m, the aver-

age numbers of seeds per trap (0.6-2.1 seeds) were independent of the dispersal distance, 

inclination, the number of seed sources and the dispersal direction (anisotropy). 

Parentage analyses showed that 29 % of the saplings stemmed from one of the 20 parent 

trees within the 500 m search zone extending from the edge of the open area. The seed 

dispersal distances of the most successful seed parents were between 550-800 m. The 

saplings revealed a higher allelic variation than the 20 parent trees, indicating external 

gene flow and long seed and pollen dispersal distances. 

 During the 2-year study of Betula pendula seed dispersal on two Kyrill-felled areas 

there was a mast year and a non-mast year. Independent of the site, the seed production 

rate of a silver birch seed tree with a mean diameter at breast height (dbh) of 20 cm pre-

dicted by isotropic inverse models was approximately 300,000-366,000 seeds in 2015 and 

1,430,000-1,530,000 seeds per tree in the mast year 2016. Directionality (anisotropic in-

verse modelling) of seed dispersal around an individual seed tree could not be confirmed. 

The model results revealed the isotropic model (no directionality) to be an appropriate 

approach for all sites and years. The mean dispersal distances (MDD) were 86 m and 

97 m (uphill) and 367 m and 380 m (downhill). The maximum seed numbers occurred 

within 40-50 m of a seed tree, amounting to 2,015 n m-² in the non-mast year and 

9,557 n m-² in the mast year. 

 The study of endozoochorous seed dispersal on the five sites felled by the storm Kyrill 

showed a preference of frugivorous birds for perches and resting places (structural ele-

ments) from which to defecate onto open areas (2.7 droppings per m²). On completely 

open areas – with no structural elements – an average of 0.4 droppings per m² was rec-

orded. The highest mean bird dropping density was observed under towering dead 



Summary 

 

- VI - 

branches (20 n m-²), upturned root plates (4.6 n m-²) and high stumps (3.9 n m-²). Young, 

small diameter silver birch, rowan and spruce trees, and structural elements less than 1 m 

in height generally, were avoided by frugivorous birds as a place from which to defecate. 

 The abilities of Betula pendula and Sorbus aucuparia to form a soil seed bank differed. 

Between 56-100 % of the buried silver birch seeds were still viable after 2.5 years, 

whereas only 3-16 % of the rowan seeds buried without pulp and 0-19 % of the rowan 

seeds within pulp were viable. The maximum durations of storage in the soil predicted for 

silver birch seeds and rowan seeds with and without pulp by GLM were 12 years, 4.5 

years and 3 years. An influence of the storage depth was found for silver birch seeds on-

ly. 

The investigation of the soil seed banks of birch in three birch stands and nine spruce for-

ests with different numbers of admixed birch seed trees showed a strong correlation be-

tween the number of seed sources and the seed density in the soil. The birch stands con-

tained the highest mean densities of viable birch seeds in soil, between 489-1,142 n m-². 

The analysis of the different soil layers showed significantly declining birch seed densi-

ties with increasing soil depth across all sites. 

 

Conclusions and implications for silviculture 

The results of the study showed that the fructification of Betula pendula, Salix caprea and 

Sorbus aucuparia is influenced by weather conditions, with the three pioneer tree species fail-

ing to produce high numbers of seeds every year (mast and non-mast years). The three species 

differed in their strategies to compensate for low seed production in non-mast years. This 

must be considered when implementing a concept for the reforestation of disturbed sites based 

on natural regeneration by pioneer tree species. 

Goat willow was the only one of the three specie studied with characteristics corresponding to 

the general assumptions made about pioneer tree species. The regeneration success of goat 

willow is dependent upon the variable but generally high annual seed production and long 

seed dispersal distances (> 800 m). The azimuth direction, position and number of seed trees 

have no meaningful influence on seed numbers at a distance of more than 50 m from the seed 

source. 

The limited mean seed dispersal distances of 86-380 m determined for silver birch were influ-

enced by site inclination, the seed tree location (valley, slope or plateau) and the distance be-

tween the seed tree and the windthrown site. Silver birch seed shadow is also influenced by 

the number of seed sources. To compensate for the limited dispersal distances and the signifi-
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cantly lower seed production in non-mast years, silver birch is able to build up a short-term 

persistent soil seed bank. 

The regeneration cycle of rowan is more reminiscent of that of a shade-tolerant tree species. 

Unfavorable weather conditions often result in a complete failure to produce seeds. The 

enormous regeneration potential of rowan on disturbed sites stems primarily from a seedling 

bank, which is built up over years. The seed rain in any given year and its short-term persis-

tent soil seed bank are of secondary importance. 

Forest management targeting a ‘spatial optimization’ of silver birch and rowan seed trees is 

necessary to ensure successful natural regeneration given the limited seed dispersal. The om-

nipresence of goat willow seeds renders specific spatial management measures for its estab-

lishment unnecessary. Detailed knowledge of the regeneration ecology of the studied pioneer 

tree species makes possible an approach to silviculture that is targeted to the conservation and 

revitalization of pioneer tree species in managed forests. The expected increase in the fre-

quency of disturbances, and their unpredictability, means that the ability of forests to naturally 

regenerate using pioneer tree species is likely to grow in importance. 
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Zusammenfassung 

 

Zielstellung 

Ziel des Forschungsprojektes war der Gewinn umfassender verjüngungsökologischer Kennt-

nisse zu den Pionierbaumarten Sandbirke (Betula pendula Roth), Salweide (Salix caprea L.) 

und Eberesche (Sorbus aucuparia L.) im Hinblick auf eine natürliche, eingriffsfreie Wieder-

bewaldung von Schadflächen (z.B. nach Sturmwurf). Die Abschätzung des Besiedlungserfol-

ges von Schadflächen durch Pionierbaumarten ist aufgrund unzureichender verjüngungsöko-

logischer Kenntnisse gegenwärtig noch mit großen Unsicherheiten verbunden. Daher befasst 

sich die vorliegende Untersuchung mit der Samenausbreitung von Sandbirke, Salweide und 

Eberesche auf Sturmwurfflächen. Ferner wurde das Vermögen der Pionierbaumarten zum 

Aufbau einer Bodensamenbank in geschlossenen Waldflächen studiert.  

 

Material und Methodik 

Die Untersuchungen fanden auf fünf 4-12 ha großen Kyrill-Sturmwurfflächen (Januar 2007) 

in den Hoch- und Kammlagen (750-900 m ü. NN) des Thüringer Waldes in den Jahren 2015 

und 2016 statt. Alle potenziellen Samenbäume der Pionierbaumarten wurden in den angren-

zenden, geschlossenen Fichtenbeständen lokalisiert. Dabei wurde eine Suchzone von einer 

Distanz von 200 m zu den Sturmwurfflächen für Sandbirke und Eberesche und eine Distanz 

von 500 m für Salweide festgelegt. Als Versuchsdesign wurde in Abhängigkeit der vorgefun-

denen Samenbaumdichten und -verteilungen ein Kreuz- bzw. Sterntransekt auf den 

Sturmwurfflächen etabliert. Entlang der Transektlinien wurden alle 20 m Samenfallen instal-

liert. Als Samenfallen kamen für die Sandbirke Netztrichterfallen (0,2 m²), für die Salweide 

Klebfallen (0,043 m²) und für die endozoochore Ausbreitung durch frugivore Vogelarten Kot-

fallen (0,25 m²) zum Einsatz. Für die Modellierung der Samenausbreitung von Sandbirke und 

Salweide wurden inverse Modelle bzw. geostatistische Modelle erstellt. Zudem wurden auf 

einer der Sturmwurfflächen genetische Nachkommenschaftsanalysen bei Salweide mittels 

Kern-DNA-Primer durchgeführt. 

Die Bodensamenbankuntersuchungen fanden in jeweils drei geschlossenen Birkenbeständen, 

Fichten-Birken-Beständen, Fichtenbeständen mit einer einzeln eingemischten Birke und rei-

nen Fichtenbeständen im Tharandter Wald und Thüringer Wald statt. Mittels eines 10,2 cm 

breiten Stechzylinders wurden 10 cm tiefe Bodenproben gewonnen. Die Lagerung der Proben 

fand im Kaltgewächshaus statt, wo alle 14 d die gekeimten Samen erfasst wurden. Weiterhin 
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wurde ein Eingrabungsexperiment installiert. Dafür wurden Sandbirkensamen, Ebereschen-

samen und Ebereschenfrüchte in 2 cm, 5 cm und 10 cm tiefen Mineralboden vergraben und in 

sechsmonatigen Intervallen jeweils eine Keimprobe zum Test der verbliebenen Keimfähigkeit 

entnommen. Die Auswertung der Bodensamenbankuntersuchungen erfolgte mittels generali-

zed linear models (GLM) und generalized linear mixed models (GLMM). 

 

Ergebnisse  

 Während der zweijährigen Untersuchung zur zeitlichen und räumlichen Samenausbrei-

tung von Salix caprea auf fünf Kyrill-Sturmwurfflächen konnten ein schwächeres und 

ein stärkeres Samenjahr nachgewiesen werden. Des Weiteren erstreckte sich der Samen-

flugzeitraum im Frühjahr in Abhängigkeit von den klimatischen Bedingungen über 12 

Wochen in 2015 und 6 Wochen in 2016. Die höchsten Samenmengen von 23-156 Samen 

je Falle wurden jeweils unter den Kronen von Salweiden-Samenbäumen nachgewiesen. 

Ab einer Entfernung von 350 m zum Samenbaum bis zur untersuchten Distanz von 

870 m wurden, unabhängig von der Distanz, der Hangneigung, der Anzahl der Samen-

bäume und der Windrichtung (Anisotropie), im Durchschnitt 0,6-2,1 Samen je Falle er-

fasst.  

Die genetischen Analysen zur Nachkommenschaft ergaben, dass 29 % der untersuch-

ten Verjüngungspflanzen von einem der 20 lokalisierten Elternbäume in der bewaldeten, 

500 m breiten Suchzone abstammten. Die Ausbreitungsdistanzen der nachweislich am er-

folgreichsten verjüngten Samenbäume betrugen dabei 550-800 m. Insgesamt zeigte die 

Salweidenverjüngung eine höhere Allel-Variation, als die 20 Elternbäume, was auf einen 

externen Genfluss und lange Samen- und Pollenausbreitungsdistanzen hinweist.  

 Im Zuge des zweijährigen Untersuchungszeitraums zur Samenausbreitung von Betula 

pendula auf zwei Kyrill-Sturmwurfflächen konnten ein Mastjahr und ein Zwischenjahr 

nachgewiesen werden. Die Ergebnisse der inversen Modellierung mittels isotroper Mo-

delle ergaben dabei flächenunabhängig Produktionsmengen für einen Samenbaum von 

20 cm im Brusthöhendurchmesser (Bhd) von 300.000-366.000 Samen je Baum im Zwi-

schenjahr 2015 und 1.430.000-1.530.000 Samen je Baum im Mastjahr 2016. Mittels 

räumlicher Modellierung der Samenausbreitung konnte keine Anisotropie (richtungsge-

bundene Ausbreitung) belegt werden. Unabhängig von den beprobten Flächen und Unter-

suchungsjahren, belegen die Modellschätzungen allesamt eine isotrope (richtungsunge-

bundene) Ausbreitung der Samen. Die mittleren Ausbreitungsdistanzen (MDD) beliefen 

sich dabei hangaufwärts auf 86-97 m und hangabwärts auf 367-380 m. Maximal abgela-
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gerte Samendichten von 2.015 n m-² im Zwischenjahr und 9.557 n m-² im Mastjahr fan-

den sich bis 40-50 m Entfernung zum Samenbaum.  

 Die Untersuchungen der endozoochoren Samenausbreitung auf fünf Kyrill-

Sturmwurfflächen weisen auf eine bevorzuge Nutzung der Vogelarten von Rast- und 

Sitzgelegenheiten (Strukturelemente) auf Freiflächen zum Absetzen von Kot hin (2,7 

Kothaufen je m²). Unter Freiflächenbedingungen - ohne Strukturelemente - ergaben sich 

im Mittel 0,4 Kothaufen je m². Die höchsten mittleren Kotdichten wurden unter aufra-

genden Totästen (20 n m-²), umgeklappten Wurzeltellern (4,6 n m-²) und Hochstubben 

(3,9 n m-²) nachgewiesen. Schwach dimensionierte Verjüngungspflanzen der Sandbirke, 

Eberesche und Fichte, und Strukturelemente unter einem Meter Höhe wurden dagegen 

weitgehend für das Absetzen von Kot gemieden.  

 Das Vermögen zum Aufbau einer Bodensamenbank durch Betula pendula und Sorbus 

aucuparia unterschied sich deutlich. 56-100 % der eingegrabenen Sandbirkensamen wa-

ren auch nach 2,5 Jahren keimfähig, wohingegen lediglich 3-16 % der eingegrabenen 

Ebereschensamen ohne Fruchthülle und 0-19 % der eingegrabenen Ebereschensamen mit 

Fruchthülle vital waren. Die Auswertung mittels GLM prognostizierte einen kompletten 

Verlust der Keimfähigkeit nach 12 Jahren, 4,5 Jahren und 3 Jahren der Sandbirkensamen, 

sowie der Ebereschensamen mit und ohne Fruchthülle. Ein Einfluss der Lagerungstiefe 

war nur für Sandbirke nachweisbar. 

Die Untersuchungen der Bodensamenbank von Birke in Fichtenbeständen mit unter-

schiedlichen Birkensamenbaumanteilen ergab einen straffen Zusammenhang zwischen 

der Anzahl von Samenquellen und den nachgewiesenen Samendichten im Boden. In den 

Birkenbeständen fanden sich stets die höchsten Dichten von 489-1.142 Birkensamen 

je m². Die Analyse unterschiedlicher Bodenschichten zeigte zudem signifikant abneh-

mende Birkensamendichten mit zunehmender Bodentiefe.  

 

Schlussfolgerungen und waldbauliche Handlungsempfehlungen 

Die Ergebnisse der Untersuchungen zeigen, dass die Fruktifikation von Betula pendula, Salix 

caprea und Sorbus aucuparia durch klimatische Verhältnisse beeinflusst wird, weshalb die 

drei Pionierbaumarten nicht alljährlich hohe Samenmengen produzieren (Mastjahre und Zwi-

schenjahre). Zum Ausgleich von Produktionsdefiziten in den Zwischenjahren unterscheiden 

sich die Pionierbaumarten in ihrer Strategie. Dies gilt es bei der Umsetzung des Konzeptes 

einer natürlichen, eingriffsfreien Wiederbewaldung von Schadflächen nach Sturmwurf durch 

die Naturverjüngung von Pionierbaumarten zu beachten.  
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Die einzige der drei Pionierbaumarten, die dem allgemeinen Bild einer Pionierbaumart ent-

spricht, ist die Salweide. Ihr Besiedlungserfolg ist allein von den aktuellen, alljährlich variie-

renden, aber dennoch stets hohen Samenproduktionsmengen und den enorm weiten Ausbrei-

tungsdistanzen (> 800 m) abhängig. Hinsichtlich der Samenausbreitung haben die Himmels-

richtung, die Position der Samenbäume und die Anzahl vorhandener Samenquellen ab einer 

Distanz von 50 m zur Schadfläche keinen bedeutenden Einfluss auf die abgelagerten Samen-

mengen mehr.  

Die auf 86-380 m limitierte Samenausbreitung von Sandbirke wurde dagegen stark vom Ge-

länderelief (Hangneigung), der Position der Samenbäume (Tal, Kuppe, Hanglage) und der 

Distanz der Samenbäume zur Sturmwurffläche beeinflusst. Zum Ausgleich der limitierten 

Samenausbreitung und deutlich reduzierten Samenmengen im Zwischenjahr ist Sandbirke 

jedoch zum Aufbau einer short-term persistenten Bodensamenbank befähigt.  

Den gesamten Verjüngungszyklus betrachtend entspricht die Eberesche eher einer Schluss-

waldbaumart. Unter ungünstigen klimatischen Bedingungen kommt es häufig zum kompletten 

Ausfall der Samenproduktion. Ihr enormes Wiederbewaldungspotential von Sturmwurfflä-

chen speist sich hauptsächlich aus dem Aufbau einer Sämlingsbank und weniger durch den 

aktuellen Samenregen oder der short-term persistenten Bodensamenbank.  

Die limitierte Samenausbreitung von Sandbirke und Eberesche macht eine „räumliche Opti-

mierung“ der Samenbaumpositionen durch die Forstwirtschaft erforderlich. Aufgrund der 

allgegenwärtigen Omnipräsenz von Weidensamen ist dies für Salweide nicht zwingend not-

wendig. Das detailreiche Wissen zur Verjüngungsökologie der untersuchten Pionierbaumarten 

ermöglicht eine gezielte waldbauliche Steuerung im Sinne des Vorhalts und der Pflege von 

Pionierbaumarten im Wirtschaftswald. Dies ist gegenwärtig und zukünftig vor allem von be-

sonderer Bedeutung, da aufgrund der zu erwartenden Zunahme von Schadereignissen und 

deren Unvorhersehbarkeit die Fähigkeit der Wälder zur natürlichen Wiederbewaldung von 

Schadflächen durch Pionierbaumarten zunehmend an Interesse gewinnen wird.  
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1.1 Introduction 

1.1.1 Importance and relevance of the study 

Since the 19th century, single-layered conifer forests, such as Norway spruce (Picea abies L.) 

and Scots pine (Pinus sylvestris L.) forests, have been established outside of their natural 

range, due to the need for fast and high-volume timber production. Once these forest sites 

were dominated by beech and oak (Weber & Jenssen 2006, Zerbe 2009, Löf et al. 2010). Dur-

ing the 20th century large open sites, the result of storms, fires, insect calamities and repara-

tion fellings after the world wars, were reforested mainly with conifers. These forests are 

characterized by low species richness and homogenous structures (Profft 2013). The signifi-

cant discrepancies between the tree species native and adapted to specific sites and the mono-

cultural forests that actually inhabit them, unsuited to the conditions in which they are found, 

are revealed by the frequent occurrence of large-scale abiotic (snow damage, drought, storm 

and fire) and biotic (insect calamities) disturbances (Löf et al. 2010, Profft 2013). As climate 

change proceeds, the abiotic and biotic risks will intensify and the problems associated with 

the selection of inappropriate, conifer tree species will grow. Monocultural forests are also 

vulnerable to factors caused by anthropogenic activities, such as air pollution, acid rain and 

soil acidification. These anthropogenic threats led, for example, to the phenomenon of forest 

dieback in the 1980s (Krause et al. 1986, Schulze 1989). The wide range of potential disturb-

ances are ultimately the result of the low resilience and adaptability of the current conifer 

stands, often leading to damage to huge areas when disturbances strike (Klimo et al. 2000, 

Weber & Jenssen 2006, Keidel et al. 2008, Knocke et al. 2008, Löf et al. 2010). 

The consequences of rapid large-scale deforestation are the destruction of timber, the econom-

ic basis of forestry, and of habitats for numerous species. But much worse are the impacts on 

the complex ecosystem services forests provide for society and on the role forests play in in-

fluencing the climate. Large-scale disruption to forest ecosystems can lead to the decoupling 

of nutrient cycles, the modification of water regimes, the increased release of carbon dioxide 

and nutrients through accelerated decomposition and recomposition processes of organic mat-

ter in and on the soil, wash out, soil erosion, partial water eutrophication and the creation of 

opportunities for further damage by subsequent disturbances (Wohlgemuth et al. 1995, Dale 

et al. 2001, Seidl et al. 2014, Vilhar et al. 2014, Muscolo et al. 2017). A compensation of nu-

trient losses on disturbed sites may fail until the regeneration of sites occurs and a renewal of 

above ground litter is restored (Wohlgemuth et al. 1995, Röhrig et al. 2006). The earliest pos-

sible regeneration of disturbed areas and their ecosystem functions is vitally important, as 
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identified in BWaldG §11 paragraph 1 and in state forest laws (e.g., SächsWaldG §20 and 

ThüringerWaldG §23). 

Forestry has tried to counter new disturbances using proven silvicultural concepts, such as 

adaptation of the spatial structure of forest (e.g., series of cuts) or targeted stand development 

(Edelhoff 1992, Dale et al. 2001). In keeping with the goal of sustainable, multifunctional 

forest management, for the last 30 years a process of restoring unstable conifer forests to natu-

ral, uneven-aged, mixed broadleaf forests suited to local site conditions has been underway 

(Zerbe & Kreyer 2007, Ammer et al. 2008, Knocke et al. 2008, Huth et al. 2017). Knocke et 

al. (2008) wrote that information on the impact of the proportions of admixed tree species in 

coniferous forests varies between studies. It has been proven, however, that the presence of 

deciduous trees in coniferous forests significantly reduces the extent of the disturbances 

caused by storm (see Ammer et al. 2008, Clasen et al. 2008, Frischbier 2011). In mixed 

stands, the fact that spruce can assimilate after the deciduous trees have lost their leaves, until 

late autumn or winter, means the trees can develop longer crowns, which enhances their phys-

ical stability (Schütz et al. 2006, Knocke et al. 2008).  

Recent extreme weather events have shown that the forestry sector must assume the inevita-

bility of severe storms (DMG 2007, Fröhlich 2011, IPCC 2012, Kaulfuß 2012) and that these 

will have stark consequences in spite of the forest restoration measures that have taken place. 

Over the last 30 years there has been a tendency towards more frequent storm events (Rudolf 

& Simmer 2002, Majunke et al. 2008, Becker et al. 2016, Gregow et al. 2017), and with cli-

mate change it is to be expected that their frequency and intensity will only grow (Dale et al. 

2001, Fröhlich 2011, IPCC 2012, Mölter et al. 2016). Large-scale disturbances to forests in 

Germany occurring since the 1990s have generated salvage wood volumes ranging from 11.0-

73.7 million m³ (Majunke et al. 2008). This indicates that, in spite of all of the preventive 

measures undertaken by foresters, storm events will inevitably continue to cause disturbances 

in the future. In 2007 the storm Kyrill generated 37 million m³ of salvage wood in Germany 

(Majunke et al. 2008), and 30,500 ha of open forest in the federal state North Rhine-

Westphalia [Nordrhein-Westfalen] and 11,000 ha in the federal state Thuringia [Thüringen]. 

The disturbed areas of forest were similar in size to clear-cuts (Leder et al. 2007, Thüringen 

Forst-AöR 2017). 

Due to the increasing frequency of severe storms and their negative consequences for forest 

ecosystems (damage, expansion of already disturbed sites, later bark beetle attack), sustaina-

ble ecological silviculture and forest management strategies aim to achieve prompt reforesta-

tion or regeneration of disturbed sites with fast-growing tree species (Leder 2003, Brang 
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2005, Zerbe & Kreyer 2007, Keidel et al. 2008, Knocke et al. 2008, Löf et al. 2010, Aldinger 

& Kenk 2000, Unseld & Bauhus 2012, ThüringenForst 2013). For the purposes of restoration 

or regeneration, foresters can avail of trees already established on the site (seedling banks, 

trees planted under the previous canopy), soil seed banks or naturally regenerated pioneer 

trees. Shade-tolerant and intermediate tree species can also be planted on open sites (Röhrig et 

al. 2006, Ammer et al. 2008, Löf et al. 2010). 

Since the observed increase in the frequency of large-scale disturbances, the integration of 

natural regeneration of pioneer tree species, such as Betula spp., Populus tremula L., Salix 

caprea L. and Sorbus aucuparia L., has been more widely incorporated in recommendations 

for the reforestation of open sites. The artificial reforestation (planting or seeding) of open 

sites is time-consuming and cost-intensive. Forestry companies rarely possess the financial 

and human resources necessary to ensure the clearance of all disturbed sites within a short 

timeframe, nor for the subsequent artificial reforestation. A cost-saving approach to reforesta-

tion is to make use of the pioneer tree species occurring naturally. A pioneer forests arises 

from the natural regeneration of pioneer tree species (Aldinger & Kenk 2000, Dale et al. 

2001, Lässig & Motschalow 2002, Leder 2003, Brang 2005, Leder et al. 2007, Keidel et al. 

2008, Löf et al. 2010, Unseld & Bauhus 2012, ThüringenForst 2013) in the course of succes-

sion, provided there are sufficient seed trees in the vicinity. Pioneer tree species are, therefore, 

becoming more and more important as key species in the context of forest management (Le-

der 2003, Leder et al. 2007, ThüringenForst 2013). 

Compared to shade-tolerant climax tree species (e.g., beech and silver fir), which are less tol-

erant of extreme weather conditions, pioneer tree species are characterized by regular fructifi-

cation, long seed dispersal distances (Perala & Alm 1990, Atkinson 1992, Zerbe 2001, Ku-

zovkina & Quigley 2005, Argus 2006, Hynynen et al. 2010, Żywiec et al. 2013, Fischer et al. 

2016, Huth et al. 2017) and the ability to grow on open sites (Schmidt-Schütz & Huss 1998) 

under unfavorable weather conditions (see Renaud et al. 2010). Pioneer tree species can colo-

nize large areas in the first year after a disturbance, thereby mitigating many of the negative 

consequences associated with disturbed (open) areas (Leder et al. 2007). The very fast juve-

nile growth of pioneer tree species compared to other species means that the sequestration of 

CO2 released during and after the disturbance resumes more quickly (see Post & Kwon 2000, 

Aguilos et al. 2014). Climax species can naturally migrate or be planted under the protective 

shelter of pioneer stands (reduction of open-site climate conditions, deflection of browsing 

pressure, stem quality-enhancing effect for target tree species). This shelter (= forest climate) 

is required by climax tree species for successful establishment (Schmidt-Schütz & Huss 1998, 
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Aldinger & Kenk 2000, Leder et al. 2007). To create the conditions of a forest climate, these 

pioneer tree forests must have high stocking densities of 1,600-3,300 n ha-1 (Schmidt-Schütz 

& Huss 1998, Aldinger & Kenk 2000, Leder et al. 2007, TMLNU 2009, Hynynen et al. 2010). 

Forest management exploiting succession and integrating pioneer tree species facilitates a 

rapid regeneration of disturbed areas but can also lead to improved functioning of forest eco-

systems (Knocke et al. 2008, Zerbe 2009). Pioneer tree species have a high degree of ecologi-

cal importance for all forest ecosystems in terms of the diversity of species, structures and 

habitats (Perala & Alm 1990, Leder 1992, Raspé et al. 2000, Argus 2006, Zerbe 2009, 

Hynynen et al. 2010). Pioneer tree species provide habitats and food for many organisms (in-

sects, birds, small mammals) (Kay 1985, Patterson 1993, Leder 1995, Humphrey et al. 1998, 

Schmidt 1998, 1999, Hacker 1999, Priha 1999, Regvar et al. 2010) and enhance soil and for-

est climate conditions (Horvat-Marolt 1974, Schiechtl 1992, Prien 1995, Kuzovkina & 

Quigley 2005, Baum et al. 2009). In this way the functional and ecological deficits (e.g., soil 

acidification) associated with traditional forestry (i.e., management of monocultural conifer 

forests) can be compensated. An increasing number and spread of pioneer tree species in for-

ests is, therefore, both desirable and necessary (see TMLFUN 2011). 

 

1.1.2 Research interest - regeneration ecology 

The most important deciduous pioneer tree species of European temperate forests are silver 

and downy birch (Betula pendula Roth and B. pubescens Ehrh.), common alder (Alnus gluti-

nosa (L.) Gaertn.), common aspen (Populus tremula L.), goat willow (Salix caprea L.) and 

rowan (Sorbus aucuparia L.). These species have always regenerated successfully and, as a 

consequence, managed to persist in Europe’s managed forests even though they have not been 

actively cultivated. 

Throughout the history of forestry there have been periods during which various target tree 

species have been promoted, such as spruce, pine, oaks or beech. There has never been any 

such promotion of deciduous pioneer tree species. Up to now in Germany, the pioneer tree 

species have been left to regenerate by themselves (Mantel 1990, Lang 1996, Lässig & 

Motschalow 2002, Röhrig et al. 2006). These species have received no attention from forest-

ers and have always been considered secondary tree species. They occupy only very small 

proportions of the total forest area (Mantel 1990). In the 20th century these species were even 

considered weeds and removed from young stands in favor of the main tree species. Their 

only purpose, if indeed they had one, was to promote high quality stems amongst the target 
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tree species during the early stages of stand development (Röhrig & Gusson 1990, Lässig & 

Motschalow 2002, Koski & Rousi 2005). 

In the past silver fir (Abies alba Mill.) and common yew (Taxus baccata L.) were unremit-

tingly overused by foresters but the tending and promotion measures for these species were 

inadequate. As a consequence, a continuous reduction of their numbers took place until they 

disappeared from many parts of Germany (see Pietzarka 2005, Huth et al. 2017). Today silver 

fir is being re-introduced on many suitable sites through seeding and planting, at considerable 

expense in terms of the time and financial costs involved (Kenk & Guehne 2001, Ammer et 

al. 2002). This example of the use and restoration of shade-tolerant tree species contrasts with 

that of pioneer species. Despite the difficult circumstances facing pioneer tree species over 

centuries, surprisingly, the species were able to survive and maintain their place in the forests, 

albeit with only small proportions compared to the managed target tree species (e.g., Baden 

Wuerttemberg [Baden Württemberg] 5.2 %, Hessen 7.2 %, Thuringia [Thüringen] 7.4 %, Ba-

varia [Bayern] 7.7 %; BMEL 2012). Clearly these light-demanding pioneer tree species have 

special ecological strategies that they employ within the regeneration cycle to ensure their 

survival under all circumstances. 

However, the survival of the pioneer tree species up until today does not guarantee their con-

tinued existence in the future. The small proportions of pioneer trees still found in forests are 

mainly attributed to clear cutting in the past and, more recently, to disturbance events result-

ing in large-scale disturbed areas. Pioneer tree species are able to establish and survive on 

these large open sites. The question that arises, however, is how will it be possible to maintain 

pioneer tree species under a continuous cover forest with significantly lower numbers of large 

disturbed areas? To address this, it is important to understand the ecological strategies of pio-

neer tree species; i.e., their requirements for the successful regeneration and establishment of 

young trees. Only then might foresters be able to produce stand conditions suitable for the 

persistence of these species (= management of habitat structure for pioneer tree species). 

To assess the likelihood of the natural regeneration of windthrown sites by pioneer tree spe-

cies, their regeneration strategies must be understood in all aspects and for all stages of the 

regeneration cycle, from flowering to the established seedling (Fig. 1.1 - see Fischer et al. 

2016). Empirical information about the frequency of fructification, seed quantities and the 

spatial and temporal distribution of seeds are central parameters in regeneration ecology. Soil 

seed banks and seedling banks may also be important for successful regeneration (Skoglund 

& Verwijst 1989, Thompson et al. 1997, Wagner & Müller-Using 1997, Raspé et al. 2000, 

Stancioiu & O’Hara 2006). 
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Fig. 1.1 Stages of the regeneration cycle and the main aspects for assessment of regeneration patterns and poten-

tial (based on Harper 1977).  

 

Some information about the ecology of pioneer tree species is known from prior research, but 

many gaps remain and much of the information that does exist in relation to the regeneration 

ecology of pioneer species is contradictory. For example, it is widely held and has been 

shown that seed production by birch (downy and silver birch), willow (willow species) and 

rowan can vary between years, such as between mast and non-mast years (Sarvas 1948, 1952, 

Bjorkbom 1971, Houle & Payette 1990, Sperens 1997, Huth 2009, Żywiec et al. 2012), yet 

Cameron (1996) and Argus (2006) observed high seed production numbers annually. If pio-

neer tree species do not have high seed crops each year, do they employ other strategies for 

successful regeneration, such as by establishing a soil seed bank and seedling bank? Or are 

the long seed dispersal distances characteristic of pioneer tree species sufficient to compen-

sate for low levels of seed production locally? 

The ability of temperate pioneer tree species to form a soil seed bank and to regenerate from 

this seed reserve is discussed controversially in the literature. It has been claimed that birch 

seeds regenerate primarily from the annual seed rain and not from seed reserves in the soil 

(Hill 1979, Heinrichs 2010), yet birch seeds have also been classed as belonging to the short-

term persistent soil seed bank type (viable 1-5 years) (Thompson et al. 1997). Willow seeds 
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are short-lived and under natural conditions remain viable for only a few weeks after matura-

tion (Lautenschlager 1994, Barsoum 2002), so that the seeds can persist in the soil for only a 

short period. However, this reported high rate of viability loss is contradicted by findings pub-

lished by Brown & Oosterhuis (1981), Staaf et al. (1987), Bakker et al. (1996a), Bekker et al. 

(2000), Berger et al. (2004) and Dölle & Schmidt (2009), who recorded willow seeds in min-

eral soil samples. Due to embryo and seed coat dormancy, and sometimes secondary dorman-

cy, buried rowan seeds can remain viable in soil for up to 5 years according to Erlbeck (1998). 

But Grime et al. 1988 (cited by Raspé et al. 2000) and Dölle & Schmidt (2009) determined 

that rowan seeds persist for less than a year. While rowan can build up a seedling bank under 

shelter (Granström 1982, Holeksa & Żywiec 2005, Żywiec & Ledwoń 2008, Heinrichs 2010), 

light-demanding birches and willows generally cannot (Atkinson 1992, Mihók et al. 2005). 

Nevertheless, goat willow and birch have also been found to grow under shelter in the under-

story (Skvortsov 1999, Perdereau et al. 2014, Bartsch & Rörig 2016). 

The results of previous studies about the seed dispersal distribution of pioneer tree species 

have also revealed a high degree of variation, and occasional contradictions. Ryvarden (1971) 

found that about 90 % of willow seeds were deposited within 5 m of a seed tree, Gage & 

Cooper (2005) within 200 m, whereas Schirmer (2006) mentioned seed dispersal distances of 

2-3 km. The reported maximum seed dispersal distances of birch vary between 192 m (Sarvas 

1948) and 550-800 m (McEuen & Curran 2004, Huth 2009). The endozoochorous dispersal of 

rowan seeds by birds – the main vector for dispersal over long distances (Bakker et al. 1996b) 

– occurred mainly within 40 m of the seed tree (Żywiec et al. 2013). However, Leder (1992) 

found high rowan regeneration densities at distances of 50 m, 300-350 m and 550 m from 

seed trees. It should be noted here that most results pertaining to seed dispersal distances in 

pioneer tree species were obtained from closed forests or small gaps. Few studies have con-

sidered seed dispersal from closed forests to areas of large-scale disturbance, resulting in a 

corresponding lack of knowledge.  

Many studies revealed the regeneration of disturbed sites by pioneer tree species to be insuffi-

cient (e.g., Lässig et al. 1995, Schmidt-Schütz & Huss 1998, Wolgemuth et al. 2002, Heurich 

2009, Went 2011, Brang et al. 2015). The assessment of the natural establishment of seedlings 

on windthrown areas by pioneer tree species faces uncertainties due to insufficient knowledge 

of the different regeneration stages. Given the wide extent of the open questions identified 

above, it was not possible to address all of the relevant aspects of the regeneration ecology of 

deciduous pioneer tree species as part of this study. To fill some critical gaps in the 

knowledge of the regeneration cycle of pioneer tree species, an emphasis here was placed on 
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addressing the issue of seed dispersal over large distances into disturbed sites and on the abil-

ity to build up a soil seed bank. These aspects were chosen to facilitate better decision-making 

processes concerning the urgency of reforestation measures (planting, seeding) and the natural 

regeneration of disturbed sites as part of forest management. 

For the purposes of the study, the pioneer tree species occurring most frequently in Germany 

were chosen, namely goat willow (Salix caprea L.), silver birch (Betula pendula Roth) and 

rowan (Sorbus aucuparia L.). Between 2014 and 2017, seed dispersal studies took place on 

windthrown sites (storm Kyrill in 2007) on the slopes and mountain tops of the Thuringian 

Forest (Appendix 1, p. ii). The soil seed bank studies were located in the Tharandter Forest 

and Thuringian Forest (Appendix 1 and 2, p. ii). Information about the distribution and num-

bers of pioneer seed trees in the stands around the windthrown sites was also deemed to be of 

high importance (Appendix 3, p. iii). The results of the study should contribute to better re-

generation scenarios for disturbed sites (success or failure) by pioneer tree species, especially 

following storms. Adopting a pro-active approach, the regeneration scenarios should allow for 

the introduction of pioneer trees to stands as an advance mitigation measure before disturb-

ances occur. 

 

1.3 Aims, scope and hypotheses 

The investigations of the regeneration ecology of pioneer tree species undertaken as part of 

this study focused on (i) spatial and temporal seed distribution patterns of Salix caprea, Betula 

pendula and Sorbus aucuparia on windthrown sites, and (ii) seed storability of Salix caprea, 

Betula pendula and Sorbus aucuparia in the soil of closed coniferous forests. In order to de-

termine the link between deposited seed densities on the ground and seed dispersal distances, 

it was necessary to consider the influence of the number of seed trees, their spatial distribution 

and the relief of the sites (valley, slope, plateau). To analyze seed densities in soil seed banks, 

the storage duration of seeds in the soil was tested and the dependence of seed densities in the 

soil on seed tree numbers studied. To limit the broad scope of the work, investigations of es-

tablished young trees on disturbed sites (= seedling banks) was not part of the research. 

The overarching aim was to obtain knowledge of the relevant aspects of regeneration ecology. 

The findings should allow for the determination of a theoretical minimum seed tree density 

required in forests to ensure silvicultural sufficient seed input and subsequent successful re-

generation in the event of a disturbance. This requires information about the spatial distribu-

tion patterns of seeds around seed trees. From the results general silvicultural recommenda-

tions shall be derived for the inclusion (conservation and promotion) of seed trees of pioneer 
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species in managed forests. Where there is no integration of pioneer tree species in managed 

stands, or this integration fails, the sites of large-scale disturbances will in future have to be 

artificially reforested (with high resource inputs). 

There were four hypotheses guiding the study objectives and the research questions: 

 

1) Due to varying annual weather conditions, pioneer tree species do not produce high seed 

numbers every year (Sarvas 1948, Kelly & Sork 2002, Gage & Cooper 2005, Żywiec et 

al. 2012). It is assumed that in some years seed production may be too low to ensure suc-

cessful regeneration. 

The fructification process of pioneer tree species is influenced by site and climate 

conditions, individual vitality and tree dimensions. These factors influence the 

frequency of and the intervals between good seed crops, as well as the amount of 

seed produced (Kullmann 1993, Sperens 1997, Kelly & Sork 2002, Żywiec et al. 

2012). Unfavorable weather conditions have negative effects on fructification, 

similar to the effect on heavy-seeded tree species (Wohlgemuth et al. 2016). 

2)  Seeds of pioneer tree species are not omnipresent on all sites, independent of the pres-

ence of seed trees. The seed numbers deposited on disturbed sites vary considerably due 

to limited seed dispersal (= distance to seed tree) and environmental conditions (= relief, 

wind and vegetation cover) (Hill & Stevens 1981, Leder 1992, Stoyan & Wagner 2001). 

2a)  The numbers of seeds of pioneer tree species deposited on windthrown sites depend on 

the distances to seed trees. The species-specific seed numbers decrease rapidly with in-

creasing distance (Leder 1992, Huth 2009). It is assumed that sufficient and dense regen-

eration cannot be expected on open sites located far from seed sources. Considering the 

high seedling mortality rates, the seed numbers necessary for successful regeneration 

(see Sarvas 1948) are found only in the vicinity of Salix caprea, Betula pendula and Sor-

bus aucuparia seed trees (Ryvarden 1971, Huth 2009, Żywiec et al. 2013). 

Although seeds of pioneer tree species are dispersed over large distances, all anem-

ochorously dispersed seeds (birches and willows) have a species-specific sinking 

rate (see Kohlermann 1950). Endozoochorously distributed seeds (rowan) are sub-

ject to the action range of the dispersal vector (e.g., small mammals and frugivorous 

birds) (Bakker et al. 1996b, Kollmann 2000). Therefore, pioneer tree species have 

long but not unlimited dispersal distances (Huth 2009, Żywiec et al. 2013). 
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2b) The spatial patterns of anemochorously distributed seeds are influenced by wind (direc-

tion, speed and turbulence) and the relief (Hill & Stevens 1981, Daniels 2001, Wagner et 

al. 2004, Moon et al. 2013). It is assumed that seeds are dispersed over longer distances 

in the main wind direction than against the main direction. Therefore, higher seed densi-

ties must be found at greater distances from seed trees in the main wind direction than in 

the opposite direction (Stoyan & Wagner 2001, Wagner et al. 2004, Wright et al. 2008). 

Relief-induced downhill seed dispersal should also lead to longer seed dispersal distanc-

es (Hill & Stevens 1981). 

The very light and small seeds are non-randomly dispersed by wind (Greene & 

Johnson 1996), with the result that seed densities are not equal in all azimuth 

directions around a seed tree (= isotropy). The seed shadow should reflect the main 

wind direction, which is shown by directionality (= anisotropy). However, seed 

dispersal on disturbed sites is also influenced by lateral winds and wind turbulence, 

normal features of open sites (Kohlermann 1950, Moon et al. 2013). Turbulence 

may affect the main wind direction and the directionality of seed dispersal observed 

in closed forests (Stoyan & Wagner 2001, Wagner et al. 2004, Wright et al. 2008, 

Huth 2009). 

It is assumed that the relief-induced lengthening (downhill) or shortening (uphill) of 

seed dispersal distances are caused by slope inclination in combination with the 

sinking rate of the seeds. 

3) Seeds of Betula pendula and Sorbus aucuparia are storable in the soil, enabling these 

species to build up a soil seed bank (Granström & Fries 1985, Erlbeck 1998). Therefore, 

these pioneer tree species should be able to regenerate from their seed reserves in the 

soil. The short-lived goat willow seeds (Lautenschlager 1994), on the other hand, are not 

capable of establishing a soil seed bank. 

Temperate tree species lack the ability to form a long-term persistent soil seed bank 

(Donelan & Thompson 1980, Bossuyt & Hermy 2001), but birch and rowan should 

be able to form a short-term persistent soil seed bank (Thompson et al. 1997). This 

seed reserve in the soil could facilitate the regeneration of disturbed sites even if 

there is no birch or rowan seed rain (i.e., pioneer seed trees were also felled by 

storm). 
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1.4 Study outline  

The study entitled ‘The ability of pioneer tree species to mitigate the effects of site disturb-

ance by fast and effective natural regeneration’ comprises seven chapters, including this gen-

eral introduction to the study and the topic (chapter 1). 

In the following chapters, the most important aspects of the regeneration ecology studied in 

relation to the pioneer tree species silver birch, goat willow and rowan are presented. Howev-

er, as it was not possible to present all of the results obtained over the course of the study in 

the research papers making up chapters 2-6, in the following short chapter summaries the ma-

jor aspects excluded from the papers and the corresponding results are also briefly presented 

(in italics). 

In chapter 2 the results of the study of Salix caprea seed dispersal from spruce forests onto 

five windthrown forest sites in the Thuringian Forest, Germany, are presented. The study took 

place in 2015 and 2016 using sticky, non-drying seed traps. The influence of seed tree num-

ber, relief and directionality on seed shadow were considered in this study. A parentage anal-

ysis of the saplings established on a windthrown site was performed to substantiate the seed 

trap data. 

In chapter 3 the results of uphill and downhill Betula pendula seed dispersal on two wind-

thrown forest sites in the Thuringian Forest, Germany, are presented. The study took place in 

2015 and 2016 using funnel shaped seed traps. Inverse modelling of isotropic and anisotropic 

seed dispersal were used to analyze the influence of seed crop, relief, seed tree numbers and 

the position of the seed trees (valley, slope or plateau). 

Chapter 4 contains the analysis from 2015 of the impact of structural elements at five wind-

thrown forest sites in the Thuringian Forest, Germany, on endozoochorous seed dispersal by 

birds. Combined knowledge of the behavior of frugivorous bird species and plant characteris-

tics is necessary to predict the effectiveness of endozoochorous seed dispersal; for example, 

of rowan.  

Data on Sorbus aucuparia seed dispersal by birds could not be presented as it was originally 

intended. The fructification of rowan seed trees in the Thuringian Forest was very low in the 

study years 2014 to 2016. As a consequence, rowan seeds were not found in the bird drop-

pings collected on the dropping traps on all study sites. Only the spatial patterns of bird 

droppings on windthrown forest sites were analyzed. 

Chapter 5 contains a review of soil seed banks of deciduous pioneer tree species (Betula spp., 

Alnus glutinosa, Salix spp., Populus tremula and Sorbus aucuparia) in European temperate 
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forests. The review summarizes general findings on the ability of pioneer tree species to form 

a soil seed bank and highlights gaps in the knowledge. 

Chapter 6 is based on the conclusions of the soil seed bank review presented in chapter 5. The 

chapter contains the details of an artificial seed burial experiment for seeds of Betula pendula 

and Sorbus aucuparia established in a conifer forest in the Tharandter Forest, Germany, and a 

soil seed bank investigation for silver birch in spruce forests in the Thuringian Forest and 

Tharandter Forest, Germany. The burial experiment focused on the seed storability of silver 

birch and rowan in soil, and their ability to regenerate from a soil seed bank in a temperate 

forest. The soil seed bank investigation looked at seed densities in the soil with regard to a 

variation in the number of seed sources. 

The results obtained for the artificially buried seeds of Salix caprea were not presented in the 

chapter, because no seeds remained viable after the first storage period of six months. The 

results of the soil seed bank investigation for rowan seeds in the soil around individual seed 

trees in a spruce forest were also omitted due to a lack of viable rowan seeds in the soil. 

Finally, chapter 7 features a general discussion of all of the findings of the study and the de-

rived recommendations for silvicultural practice to ensure the conservation and revitalization 

of seed trees of pioneer tree species and to promote the regeneration of disturbed forest sites 

using pioneer tree species. 
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2.1 Abstract 

The natural regeneration of Salix caprea L. in disturbed forest areas is an important ecological 

phenomenon occurring during succession in temperate and boreal forests. Knowledge of the 

timing and extent of seed dispersal in goat willow is still rudimentary. We studied seed dis-

persal and genetic offspring relationships on five storm-disturbed forest sites (4-13 ha) at 715-

900 m a.s.l. in the spruce-dominated Thuringian Forest over a 2-year period. The duration of 

the seed rain was 3 months in 2015, and only 6 weeks in spring 2016. The seed dispersal 

curve resembled a negative exponential function with a steep slope. The highest seed numbers 

of 23-156 n per trap occurred close to the base of the seed trees. Farther than 350 m from the 

seed trees, average numbers of 0.6-2.1 seeds per trap were recorded independent of dispersal 

distance, inclination, the number of seed sources and the dispersal direction. Trapped seed 

numbers at the study sites were quite similar within a given year, but differed significantly 

between years. Parentage analyses were carried out at one of the five study sites. One hundred 

saplings and all of the 20 potential parent trees located within a search zone distance of 500 m 

from the edge of the open area were analysed. Twenty-nine per cent of the saplings were as-

signed to one of the 20 parent trees. The longest confirmed seed dispersal distance was up to 

800 m. Saplings showed a higher allelic variation than the 20 parent trees, therefore indicating 

external gene flow as well as long seed and pollen dispersal distances. 

 

Keywords  

Seed rain, Goat willow, Genetic diversity, Pioneer trees, Natural regeneration, Disturbances 

 

2.2 Introduction 

Salix ssp. is a large genus with approximately 330-500 species worldwide (Argus 2006; 

Dickmann and Kuzovkina 2014), and a high ecological relevance within forest ecosystems 

(Barnes et al. 1998; Richardson et al. 2014). Willows are known to enhance the soil nutrient 

status, to decontaminate soils via phytoextraction, to rapidly regenerate and colonize damaged 

forest areas, to prevent erosion of exposed soil, e.g., on disturbed forest sites, to act as struc-

tural elements with a long-term stabilizing effect, and to provide habitats and food for many 

organisms (see Horvat-Marolt 1974; Kay 1985; Kuzovkina and Quigley 2005; Argus 2006; 

Baum et al. 2009; Regvar et al. 2010). 

Among the most important physiological and autoecological characteristics of willow species 

are drought tolerance, adaptation to open-site light regimes, and high tolerance to low nutrient 
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availability, which enable willows to colonize and restore disturbed sites. Together with other 

pioneer tree species, the genus is able to initiate pioneer communities on disturbed sites and to 

thus re-establish a forest ecosystem (Argus 2006; Kuzovkina and Quigley 2005). At disturbed 

sites, the surface shading provided by pioneer trees recreates forest climate conditions for 

subsequent climax tree species which require shelter for successful establishment (Kuzovkina 

and Quigley 2005; Zerbe 2009). Due to their low site requirements and their ability to with-

stand extreme climatic conditions, willow species are also important colonists in forest areas 

with altered disturbance regimes due to climate change. 

Willow species may be also cultivated in plantations to produce biomass for bioenergy pro-

duction (Kuzovkina and Quigley 2005), and some species like Salix alba are even used for 

timber and veneer production (Schirmer 2006). Goat willow (Salix caprea) is the most im-

portant willow species in European temperate and boreal forests, due to its moderate drought 

tolerance and its ability to persist to some degree in the forest understory (Skvortsov 1999; 

Dörken 2011; Perdereau et al. 2014). S. caprea is one of the few admixed tree species found 

within managed spruce forests at high altitudes (Schütt 2006; Perdereau et al. 2014). Early 

flowering, dioecious S. caprea is pollinated by wind and insects, with wind accounting for up 

to 50 % of pollination (Vroege and Stelleman 1990; Füssel 2007; Dötterl et al. 2014). The 

small seeds (1-1.5 mm) with cotton hairs (i.e., ‘plumed’) are wind dispersed (i.e., ‘anemocho-

rous’) over long distances in May and June (Brouwer and Stählin 1975; Chmelar and Meusel 

1986; Skvortsov 1999). 

The seed dispersal of anemochorous and zoochorous tree species has been investigated in 

numerous studies (see McVean 1953, 1956; Matlack 1989; Wagner 1997; Houle 1998; Karls-

son 2001; Wagner et al. 2004; Gage and Cooper 2005; Żywiec and Ledwoń 2008; Huth 2009; 

Schmiedel et al. 2013; Żywiec et al. 2013). However, ‘despite their worldwide distribution 

and ecological importance, very little research has been conducted on the seed and seedbed 

ecology of the willow species’ (Young and Clements 2003). Zasada and Densmore (1979), 

Niiyama (1990), Leder (1992), Sacchi and Price (1992), van Splunder et al. (1995), Küßner 

(1997) and Chantal and Granström (2007) studied patterns in established seedlings of willow 

species. However, such studies of established young trees are limited in terms of the precise 

information they can provide about seed dispersal distances. This lack of information about 

seed dispersal distances in regeneration studies can be overcome by using methods like seed 

trapping and distance to seed source or parentage analyses (Nathan and Muller-Landau 2000). 

Numerous studies have highlighted the enormous dispersal potential of willow seeds (see 

Ryvarden 1971; Brouwer and Stählin 1975; Lautenschlager 1994; Barsoum 2002; Gage and 



Chapter 2 

 

- 28 - 

Cooper 2005; Kuzovkina and Quigley 2005; Argus 2006; Seiwa et al. 2008). However, there 

is only very little specific information on the dispersal distances of willow species. Gage and 

Cooper (2005) reported that more than 90 % of the seeds of a willow community were depos-

ited within 200 m of the seed trees. But at a distance of 1500 m from the seed trees, the au-

thors still recorded a seed density of 20-30 n m-². Ryvarden (1971) assumed shorter dispersal 

distances for willow, as 93 % of all seeds were caught within 5 m of the seed source. 

Generally, dispersal distance is influenced by many factors, such as seed morphology and 

weight, vertical and horizontal wind direction, wind speed, turbulence, release height and ve-

locity, as well as relief and vegetation cover (Okubo and Levin 1989; Skarpaas et al. 2006; 

Seiwa et al. 2008). Secondary dispersal by wind and water is likely also important for the 

transport of willow seeds (Gage and Cooper 2005; Seiwa et al. 2008; Boland 2014). More 

than 50 % of willow seeds deposited on dry sand were transported a second time by wind 

(Gage and Cooper 2005). To date, there is insufficient empirical information on seed dispersal 

distances and the seed tree densities required for the successful regeneration of S. caprea on 

disturbed forest sites. 

Genetic parentage analyses provide insights into gene flow via pollen or seeds of a specific 

parent tree population (Cortés et al. 2014). Perdereau et al. (2014) recorded seed and pollen 

dispersal over more than 200 km between S. caprea populations in Ireland by applying geno-

typing, which suggested no barriers to gene flow as a consequence of human landscape frag-

mentation at this scale. A study of chloroplast DNA variation by Palmé et al. (2003) also re-

ported no significant genetic diversity for S. caprea populations in Europe because of high 

willow seed and pollen dispersal distances. 

In order to assess the natural regeneration potential of S. caprea seedlings on windthrown 

forest sites, information about the temporal and spatial patterns of seed rain is needed. Up to 

now, it has been assumed that the abundance and the spatial pattern of parent trees in the area 

surrounding a particular disturbed site are important determinants upon which forest managers 

could base silvicultural decisions in relation to the desired natural regeneration concept. To 

confirm or reject this assumption, we therefore studied seed dispersal of S. caprea in 2015 and 

2016 using seed traps and performed parentage analyses of established saplings on wind-

thrown sites in Thuringia, Germany. There were four hypotheses guiding the study. (1) Wil-

lows do not have a high seed crop every year. We assume that willow seed production has an 

interannual variability similar to mass-seeding trees. (2) The start of the seed rain is influ-

enced by weather conditions, whereas the length of the seed rain period shows interannual 

variations. (3) Willow seeds are dispersed by wind over long distances, but the seed density 



Chapter 2 

 

- 29 - 

depends on the distance to the seed source, decreasing rapidly with increasing distance. (4) 

However, the number of deposited willow seeds is also influenced by the number of present 

seed trees, relief inclination and directionality. We assume that a group of seed trees may pro-

duce overlapping seed shadows, resulting in higher seed numbers than in the vicinity of a sin-

gle seed tree. Downhill seed dispersal by wind will increase dispersal distance, while uphill 

dispersal will decrease distances. Therefore, a directionality of the seed shadows due to wind 

should be obvious in the studied species (see Huth 2009; Stoyan and Wagner 2001). 

 

2.3 Materials and methods 

2.3.1 Study area 

The study area is located at high elevations and along the ridges of the Thuringian Forest, a 

mountain range in the federal state of Thuringia, Germany (50°40′N and 10°45′E). It is situat-

ed between 400 and 982 m above sea level (a.s.l.), with a prevailing south-westerly exposi-

tion. The area is characterized by many slopes and an almost total absence of plateaus (Burse 

et al. 1997; Waesch 2003; Gauer and Aldinger 2005). The mean annual precipitation ranges 

from 800 mm in the south-west to 1200 mm along the ridges and falls to a level of 700 mm in 

the north-east (Burse et al. 1997; Gauer and Aldinger 2005; Bushart and Suck 2008). The an-

nual average temperature in the region varies between 4 and 6 °C (Burse et al. 1997; Bushart 

and Suck 2008). The area is influenced by an Atlantic, moderately cool and moist central 

mountain climate (Burse et al. 1997; Gauer and Aldinger 2005). The prevailing winds are 

from the southwest, with a secondary wind maximum originating from the north-east. The 

average annual wind speed in the study area is 3.5-4.5 m s-1 (Bürger 2003). The dominant soil 

types of the forest sites are low-base cambisols with low to medium nutrient contents (Gauer 

and Aldinger 2005). The landscape features a largely contiguous forest system, with ~ 90 % 

forest cover, some small upland meadows in stream valleys and occasional small raised bogs. 

The study area is dominated by single-layered, even-aged Norway spruce forests (Picea abies 

(L.) Karst.), although Luzulo-Fagetum and Asperulo-Fagetum beech forests are the predomi-

nant potential natural vegetation types (Frischbier et al. 2014). 

We selected five study sites (A-E) located on slopes and mountain tops (plateaus) at higher 

elevations and near the ridges of the Thuringian Forest (715-900 m a.s.l.). The choice of sites 

made it possible to investigate uphill, downhill and level seed dispersal. Each site consisted of 

an open area surrounded by a forested search zone of 500 m. The open areas were wind-

thrown by the cyclone ‘Kyrill’ in January 2007 (Fink et al. 2009). Before the storm, the sites 

were dominated by 68-100-year-old spruce stands. After the storm, the damaged areas were 
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completely cleared, and no willow seed trees were present in the open areas. The size of the 

open areas ranged from 4-12.7 ha (Table 2.1), and no closed regeneration layer had yet estab-

lished at any of the study sites. The open areas were surrounded by 59-122-year-old spruce 

forests admixed with a small number of isolated Betula pendula Roth, Salix caprea L. and 

Sorbus aucuparia L. The meteorological data for the seed trapping periods are listed in Table 

2.2. 

 

Table 2.1 Study site data (DBH diameter at breast high, parent trees female and male willow trees, seed trees 

only female willow trees, SD standard deviation, relief-induced dispersal classifications of further investigated 

study sites by geostatistical models). 

Open area at study site A B C D E 

Relief-induced dispersal - ‘Uphill’ - ‘Level’ ‘Downhill’ 

Elevation above sea level (m) 845-900 735-765 840-880 865-895 715-775 

Topography 
Mountain peak 

with one slope 

Mountain 

peak with 

slopes 

Flat area 
Mountain peak 

with slopes 
Slopes 

Size of open area (ha) 5.98 4.03 7.46 5.59 12.70 

Seed traps (n) 27 26 38 34 41 

Female/male trees within 500 m 

forested search zone around the 

open area (n) 

2/4 15/7 0 11/9 126/130 

Minimum distance between seed 

tree and seed trap (m) 
385 504 - 289 76 

Dbh ± SD of parent trees (cm) 16.2 ± 4.6 19.8 ± 9.8 - 16.5 ± 6.4 16.5 ± 4.3 

Dbh ± SD of seed trees (cm) 13.5 ± 3.5 16.1 ± 6.3 - 17.5 ±7.5 17.4 ± 4.6 

 

Table 2.2 Meteorological data (half-hourly values; climate station ‘Grosser Eisenberg’ - 50° 37′ 24″ N and 10° 

46′ 59″ O) of the seed trapping periods in 2015 (3 months) and 2016 (1.5 months) in the study area (SD standard 

deviation). 

 
2015 2016 

 
From mid-

Apr 
May Jun 

Until mid-

Jul 

From mid-

May 
Jun 

Wind spead (m/s) 
      

Minimum 0.9 0 0 0 0 0.5 

Maximum 7.2 7.6 9.2 7.2 5.0 5.3 

Mean 3.3 3.2 3.3 3.1 2.2 2.2 

SD 1.2 1.5 1.4 1.2 0.7 0.9 

Wind direction (°) 
      

Mean 161 208 185 234 189 190 

Median 217 236 234 252 223 237 

SD 109.6 95.6 102.6 71.2 95.2 92.6 

Mean temperature (°C) 7.5 10,1 13.4 18.5 11.6 14.6 

Precipitation (mm/month) 19.9 35.1 96.0 68.9 58.5 129.0 
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2.3.2 Experimental design 

Within the 500-m forested search zone at each study site, we mapped all S. caprea trees that 

were expected to potentially produce seeds (≥ 5 cm diameter at breast high [dbh]), using a 

blumax Bluetooth GPS-4013 Receiver. For each S. caprea tree, we recorded the dbh and de-

termined its gender during flowering season. The search zone distance of 500 m was chosen 

as a compromise between feasibility and prior knowledge of goat willow seed dispersal (Gage 

and Cooper 2005). Except for site C, 2-126 female (i.e., seed) trees were identified at each 

study site, mostly located along forest edges or roadsides. At site C, no seed trees were found 

within the 500 m search zone. Although the search distance was expanded to 900 m at this 

site, no seed trees were identified. 

At all study sites, 26-41 seed traps were placed within the open areas. Due to their vast areal 

extent, seed traps were placed along two crossing line transects with intervals of 20 m be-

tween the traps, rather than along a regular grid (Fig. 2.1a - see also Bjorkbom 1971; Greene 

and Johnson 1996). The orientation and length of the line transects were not uniform, due to 

the differences in the size and shape of the open areas. The line transects extended over the 

entire open area of each study site and into the surrounding spruce forests. The minimum dis-

tances between the seed trees and the nearest seed trap ranged between 76 and 504 m (Table 

2.1). 

In order to gain knowledge about seed dispersal close to seed trees in the forest, a total of 63 

additional seed traps were placed around three selected individual goat willow seed trees (b, 

d, and e) located along forest roads in or near the search zone at study sites B, D and E, re-

spectively (504, 554 and 276 m). The selected trees b, d, and e had a height of 13.5, 8.7 and 

13.7 m, and a dbh of 22.1, 27.9 and 25.9 cm, respectively. Seed traps were place along two or 

three line transects extending along forest roads for up to 50 m away from these trees (Fig. 

2.1b). 

The deployed seed traps featured a sticky, non-drying substance (glue product: ‘Raupenleim’, 

© 2017 F. Schacht GmbH & Co. KG) covering a surface area of 0.043 m² (see also Gage and 

Cooper 2005; Kollmann and Goetze 1998; Werner 1975). The glue was painted onto stand-

ardized transparent foils, which were wrapped around vertical cylinders to allow for analysis 

of both seed shadow and dispersal direction (Fig. 2.1c). The cylinders were fixed onto a bar 

1.5 m above the ground. The traps were checked every 3 or 4 weeks, when the foils were re-

placed. The seeds on the foils were then counted in the laboratory. Seed dispersal in the open 

areas was studied in 2015 and 2016 for 3 months (mid-April to mid-July) and 1.5 months 

(mid-May to end of June), respectively. Seed dispersal around the single trees in the forested 
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zone was only studied in 2016 (mid-May to end of June). In 2015, the seed rain produced by 

goat willow seed trees located in the lowlands (at approximately 450 m a.s.l.), well outside the 

study area, started a month earlier than at the high-altitude study sites. In 2016, the seed rain 

took place simultaneously at all altitudes. 

 

 

Fig. 2.1 a Example of the experimental study design in the open areas, e.g., study site B. b Example of the ex-

perimental study design around individual Salix caprea seed trees located in the forested search zone, e.g., seed 

tree b. c Technical specifications of the sticky seed traps. 

 

2.3.3 Genetic analysis 

At the study site D, the gene flow was estimated using genetic markers. Genetic analyses of 

established saplings provided supporting information relating to seed dispersal. All potential 

parent trees within the 500 m forested search zone around the open area at study site D were 
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identified and genotyped. Twigs were sampled from 100 S. caprea saplings chosen randomly 

within the open area and from all 20 parent trees (9 males and 11 females) during the spring 

of 2016. Sapling positions were recorded using GPS. Their age was determined by counting 

the growth rings at the stem base. Sapling ages varied between 2 and 9 years, with a mean age 

of 5 years. All analysed willow saplings had established after the cyclone Kyrill (2007). The 

age of the parent trees was unknown. 

DNA was extracted from frozen bud tissue using DNeasy96-Kit (Qiagen, Hilden). Different 

nuclear-DNAprimers were tested (Barker et al. 2003; Hanley et al. 2006), and finally, seven 

nuclear loci were genotyped: SB880, SB24, SB38, SB49, SB80, Sa54B and Cha475. The 

fragment lengths were analysed with an ABI-3110-capillary sequencer. The number of differ-

ent alleles (Na) and the genetic diversity (Ne, Eq. 2.1) were calculated per locus and sample 

size (n) of the parent tree and offspring population using GenAlEx 6.5 (Peakall and Smouse 

2012). The formula used to determine the genetic diversity was: 

 

𝑁𝑒 =
1

∑ 𝑝𝑖
2𝑘

𝑖=1

 (2.1) 

 

with pi being the frequency of the i = 1,… k alleles at a locus in a population (Nei 1978). In 

the sapling population, Na and Ne of one individual could not be determined in almost all loci 

(see Table 2.5). The genetic distance (D, Eq. 2.2) of the accumulated allele differences per 

locus between the two populations was calculated as follows: 

 

𝐷 = −𝑙𝑜𝑔𝑒𝐼 (2.2) 

 

with I being the normalized gene identity between the populations (Nei 1972, 1978). Parent-

age was assessed by simple exclusion based on multilocus genotypes. Exclusion was calculat-

ed using the program ‘Genfluss’ (Leinemann not publ.). This technique uses differences be-

tween potential parents and offspring to reject parentage for a specific sapling. Trees lacking a 

given allele can readily be excluded as potential parents. Whenever a sapling was identified as 

offspring of a particular female goat willow tree, the distance between the parent tree and the 

sapling was measured and recorded as the respective seed dispersal distance. 

 

2.3.4 Seed trap data analysis 

As seed count data were non-normally distributed but approximately negative-binomially 

distributed, differences in seed numbers among the different study sites and between the two 

study years were analysed using the Kruskal–Wallis H-test. Where significant differences 
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were ascertained (p < 0.05), the Mann–Whitney U-test was applied with a Bonferroni correc-

tion as an adjustment method to obtain additional information about the groups of differences 

(Zar 2010). Significant differences were accepted at p < 0.05. Statistical analyses were con-

ducted using the statistics software R (version 3.3.2). Quantum GIS (QGIS 2.4.0 Chugiak) 

was used to create maps of all study sites based on original forest maps and aerial orthophoto-

graphs. These maps were used to outline the boundaries of the open areas at each study site, to 

determine the surrounding 500 m forested search zone, and to mark the positions of parent 

trees, sampled willow saplings, and seed traps. 

 

2.3.5 Geostatistical models 

Model-based geostatistics were applied to test for the effects of distance to goat willow seed 

trees on trapped seed numbers. Inverse models are well-developed tools for the analysis of 

horizontally oriented seed traps (Clark et al. 1999; Ribbens et al. 1994; Stoyan and Wagner 

2001). However, inverse models cannot be applied to data obtained from seed traps with a 

vertically oriented trap surface. Thus, we chose a flexible geostatistical approach which al-

lows handling spatially auto-correlated data. Regrettably, geostatistical models do not provide 

the seed dispersal kernel of a single seed tree, because these models can only consider the 

nearest seed tree as influential to data from individual seed traps. Like also reported by Gage 

and Cooper (2005), Leder (1992) and Ryvarden (1971), our model does not explicitly account 

for overlapping seed shadows of multiple seed trees in an area. 

Within R (R Core Team 2014), we used the ‘geostatsp’ package (version 1.7.4; Brown 2015) 

to fit non-Gaussian models using the INLA procedure (version 1.7.4). INLA performs a wide 

range of Bayesian statistical analyses by applying sophisticated approximations for handling 

the numerical difficulties that commonly arise in this context (Rue et al. 2009). Details of the 

statistical models are given in Table 2.3. 

Starting from suitable prior distributions, we obtained approximate posterior distributions and 

credible intervals (Robert 2007, Sect. 5.5). In analogy to confidence intervals, a parameter is 

considered significant if the 0.95-credible interval with endpoints defined by the 0.025th and 

0.975th quantiles of the posterior distribution does not include 0. However, the interpretation 

differs from confidence intervals: it does not refer to the hypothetical distribution assuming 

the parameter is exactly 0, which typically has zero probability under the prior; rather, the 

deviations manifesting themselves in the data are significant enough to state that there is at 

least a 97.5 % chance of drawing the correct conclusion about whether the parameter is great-

er or less than 0. 
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Table 2.3 Specification of the Bayesian geostatistical model: assumptions regarding prior distributions and the 

distribution of the data. 

 

A general question in the Bayesian context is the robustness of the results against possible 

misspecifications of the priors (Berger 1985, Sect. 4.7), particularly if there is little advance 

knowledge. In our case, the distribution of the range parameter follows typical distances ex-

pected from experience in the field, while the priors for the fixed effects are rather flat and are 

not expected to dominate the results. The size parameter, which controls overdispersion, has a 

distribution chosen in order to favour values representing a small overdispersion, and in any 

case can be seen as part of the spatial random field. The remaining parameter is the standard 

deviation σ (or the precision 1/σ2), which appears to be the most critical one. We therefore 

repeated our computations with a broad range of other plausible priors for σ. While the gen-

eral patterns remain qualitatively similar, the choice is clearly visible in the corresponding 

posterior distributions. Sufficient caution is therefore needed when interpreting the statistical 

results, and, in particular, one should avoid attaching too much meaning to precise numerical 

values. 

The estimation of the range and standard deviation of the random part of the model is also 

performed during the fitting procedure. Here, the range ϕ gives an exact sense to the conven-

tional concept of the area of influence of a sample (Chilès and Delfiner 1999). It is derived 

from a variogram and quantifies the distance between two points on a plane beyond which the 

correlation of values measured at these points, e.g., the number of seeds in a trap, becomes 

small. The standard deviation σ measures the strength of the spatial random effects. 

 Parameter/data Distribution 

Hyperparameters Range ϕ Gamma with 0.025th and 0.975th quantiles at 20 and 100 

 

Precision 1/σ² Gamma such that σ has a distribution with 0.025th and 0.975th 

quantiles at 0.1 and 3.0 

 

Size (shape) r ‘PC prior’ such that the square root of 2 times the KL divergence 

of a mean 1 gamma distribution with shape r from one with shape 

approaching ∞, with suitable asymptotic scaling, has an exponen-

tial distribution with rate parameter 7 (Simpson et al. 2017) 

Fixed effects Intercept a Normal with mean 0 and variance approaching ∞ 

 
Slope b Normal with mean 0 and variance 1000 

Random effects Spatial field U (s) 

(where 𝑠 are the 

points in the plane) 

Joint normal with mean zero and covariances 𝜎²
√8𝑑

𝜙
𝐾1(

√8𝑑

𝜙
) for 

points with distance d, where K1 is a modified Bessel function 

(Matérn correlation structure) 

Observed numbers 

of seeds 

ni at point si for 

traps i=1, …, m 

Independent negative binomial with mean 𝑒𝑎+𝑏 distminlgi+𝑈(𝑠𝑖) and 

size parameter r; equivalently, Poisson with mean 

𝑒𝑎+𝑏 distminlg𝑖+𝑈(𝑠𝑖)+𝑉(𝑠𝑖), where V(si) are additional independent 

noise terms such that 𝑒𝑉(𝑠𝑖) has a mean 1 gamma distribution with 

shape r (NB2 regression model) 
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To create geostatistical models of seed rain, the data sets obtained in 2016 from the open area 

at study sites B, D and E were combined with the 2016 data sets of the respective individual 

willow trees b, d and e in the forested zone as site-specific data sets B (= B+b), D (= D+d) 

and E (= E+e). The data sets were split into the categories ‘uphill’ (B), ‘level’ (D) and ‘down-

hill’ (E) on the basis of the relief-related seed dispersal. 

 

2.4 Results 

The numbers of trapped seeds at open areas A-E were significantly higher in 2016 than in 

2015 (Mann–Whitney U-test: p = 0.003). Average seed numbers at the five open areas ranged 

between 0.6 and 1.8 n per trap in 2015 and 1.1-2.1 n per trap in 2016 (Fig. 2.2). 

 

 

Fig. 2.2 Salix caprea seed numbers [n per trap] collected in 2015 and 2016 in the open areas. Lower and upper 

case letters indicate significant differences among study sites (A-E) in 2015 and 2016, respectively (KruskalWal-

lis H-test: p < 0.05). White circles show outliers and black circles inside the boxes are mean values. 

 

In both years, the highest mean seed numbers occurred at open area E, next to a stand consist-

ing of S. caprea, Sorbus aucuparia and Betula pendula, as well as at open area C, where no 

seed trees were found within the extended 900 m forested search zone. The lowest seed rain 

over the 2-year study period was observed for the open area at study site B, located more than 

504 m from the nearest seed source (Table 2.1). The comparison of all open areas showed no 

significant differences of deposited seed numbers in 2016 (Kruskal-Wallis H-test: p > 0.05). 

In 2015, open area B differed significantly from open area A and E (pairwise Mann–Whitney 

U-test: p < 0.05). 

 



Chapter 2 

 

- 37 - 

2.4.1 Temporal patterns of seed dispersal 

In 2015, seeds were trapped for a period of three months, from mid-April to mid-July. In the 

first month, only goat willow seeds produced by seed trees in lowland areas outside the study 

area were caught. On-site observation revealed that catkins at the high-altitude sites and on 

the ridges were still closed at this time. One month later, the goat willow seed rain had also 

started at the higher altitudes, including the seed trees at the study sites. With the exception of 

site E, the highest percentage of seeds were deposited in the seed traps (65-97 %) during the 

first month of the 2015 collection period (early = mid-April to mid-May). The seed rain con-

tinued from mid-May until the end of the collection period in mid-July, but the relative pro-

portion of deposited seeds decreased to 0-35 % (Fig. 2.3). 

In 2016, the seed rain took place simultaneously at all altitudes over a period of 6 weeks from 

mid-May to the end of June. The vast majority of all seeds (92-100 %) was trapped in the first 

part of this period (early = mid-May to early-June). At open areas A and E, there was no 

measurable seed rain in the remainder of the collection period (late = early-June to the end of 

June). 

 

 

Fig. 2.3 Percentage of Salix caprea seeds collected in the open areas at study sites A-E in 2015 (left) and 2016 

(right) during each 4-weekly collection period (2015 = early: mid-April to mid-May, mid: mid-May to mid-June, 

late: mid-June to mid-July; 2016 = early: mid-May to early-June, late: early-June to end of June). 

 

2.4.2 Dispersal distance and spatial patterns of seed dispersal 

In this section, trapped seed numbers are presented by distance to the nearest seed tree, and 

overlapping seed shadows may occur in all traps. For the individual willow seed trees located 

in the forested search zone, maximum seed numbers of 23 (tree e), 106 (tree b) and 156 n per 

trap (tree d) were recorded in 2016 close to the stem base and underneath the tree crowns 
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(Fig. 2.4b-d). No visibly differing trends were observed for transects oriented in different di-

rections. Seed rain distribution and trapped seed numbers differed among individual willow 

trees, with seed numbers generally decreasing rapidly with increasing distance from the re-

spective seed source. On average, 2.3 seeds per trap were caught at 40-50 m distance from the 

seed source in the forested zone. At the open area of site B, which featured the largest dis-

tances between seed source and traps, 0-4 seeds per trap (average of 1.1 seeds per trap) were 

recorded 700-870 m from the seed sources. The seed rain around the individual goat willow 

trees in the forest and in the open areas resembles a graph of a negative exponential function 

with a steep slope (Fig. 2.4a). 

 

 

Fig. 2.4 a Combined 2016 dataset of trapped Salix caprea seed numbers [n] around individual seed trees b, d and 

e in the forested search zone and in the open areas at study sites B, D and E plotted against distance to seed 

source [m]. b-d S. caprea seed numbers per trap [n] around the individual seed trees b, d and e in the forested 

search zone in 2016 depending on seed dispersal direction and plotted against distance to seed source [m]. Note 

the different y-axis scales for all plots and the x-axis in Fig. 2.4a. 

 

In 2016, S. caprea seeds were dispersed at the study sites in a pattern shown in Fig. 2.5a. Far-

ther than 350 m from the respective seed source, no differences in deposited seed numbers 

with respect to the number of seed sources (isolated seed trees at study sites B and D vs. stand 

of seed trees near study site E), relief inclination (study site B-‘uphill’, study site D-‘level’ 

and study site E-‘downhill’) or directionality (east, south and west) were observed (Fig. 2.4 

and 2.5). The associated maps of the seed shadows estimated using geostatistical models are 

shown in Fig. 2.5b. The geostatistical model predictions for the three data sets were signifi-
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cant for the expected values of logarithmic distance to the nearest seed trap and trapped wil-

low seed numbers (see Table 2.4). Models revealed only slightly differing spatial patterns for 

estimated uphill (site B), level (site D) and downhill (site E) dispersal (Fig. 2.5). The good-

ness of fit of the models can be assessed by the correlation of the measured data and the graph 

of the negative exponential function which was used for geostatistical modelling in Fig. 2.4a. 

While Fig. 2.5b shows modelled maximal goat willow seed dispersal distances of 500-800 m, 

the measured data sets featured no dispersal limit up to 870 m from the seed source (Fig. 

2.5a). 

 

 
Fig. 2.5 a Interpolated distribution of Salix caprea seeds [n] trapped in 2016 for the site-specific data sets B + b, 

D + d and E + e. b Salix caprea seeds per trap [n] predicted by geostatistical models for the site-specific data sets 

B + b, D + d and E + e. The isolines in a and b represent smoothed values from 53 (B + b), 52 (D + d) and 59 (E 

+ e) trap positions. Note the different site-specific scales of distance (x-axis) and seed numbers (y-axis). 
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Table 2.4 Results of geostatistical negative exponential dispersal model of Salix caprea seeds for 2016: charac-

teristics of the posterior distributions (SD standard deviation). 

Data set of study site Mean SD 0.025th quantile 0.975th quantile 

B Intercept 𝑎 3.67 0.96 1.75 5.59 

 
Slope 𝑏 -0.58 0.17 -0.92 -0.24 

 
Range 𝜙 44.02 15.59 20.82 81.40 

 
Standard deviation σ 0.92 - 0.55 1.52 

 
Size 𝑟 3.57 1.59 1.43 7.54 

D Intercept 𝑎 5.57 0.93 3.76 7.48 

 
Slope 𝑏 -0.91 0.17 -1.27 -0.58 

 
Range 𝜙 41.86 15.46 18.52 78.41 

 
Standard deviation σ 0.63 - 0.35  1.06 

 
Size 𝑟 5.63 2.56 2.16 12.03 

E Intercept 𝑎 2.66 0.74 1.16 4.10 

 
Slope 𝑏 -0.39 0.14 -0.67 -0.11 

 
Range 𝜙 49.39 15.89 25.14 87.02 

 
Standard deviation σ 0.75 - 0.47 1.20 

 
Size 𝑟 35.48 62.82 3.85 174.73 

 

2.4.3 Genetic parentage analysis 

For 29 of the 100 goat willow saplings analysed at study site D, a specific parent tree was 

successfully assigned from the group of potential parent trees. It was possible to identify 3 of 

the 11 female and 8 of the 9 male goat willow trees as parents. The assigned offspring sam-

ples were evenly distributed, without detectable spatial-genetic variations (Fig. 2.6). A mini-

mum of 71 % of the sapling population originated from parent trees located outside of the 

500 m search zone. Only 4 of the aforementioned 29 saplings originated from a pairing of a 

seed and pollen parent located within the study site and the corresponding search zone. An 

additional 10 saplings were assigned to a seed parent and 15 saplings to a pollen parent, sug-

gesting an external gene flow via seed for 86 % of the sampled saplings and via pollen for 

81 %. The closest female and male parents were located 240 m and 280 m from the nearest 

edge of site D, respectively. The seed dispersal distance of the most successful seed parent 

(with 8 offspring identified) was between 550 and 800 m. The age of the offspring ranged 

between 2 and 9 years, with a large number of 4-6-year-old saplings. 

All 100 + 20 sampled individuals had a unique multilocus genotype. The estimated genetic 

variation of the parent tree and sapling populations revealed a higher allelic variation in the 

regenerated population (average 16 alleles per locus). The markers exhibited a range of 9 al-

leles per locus of parent population. The variation was particularly high in the locus SB349, 

where 11 alleles were observed for parent trees and 25 alleles for saplings. Altogether 63 % of 

the sampled saplings had so-called private-alleles, which occurred only in the offspring popu-
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lation. Upon comparison of the genetic diversity values of the populations, the locus SB349 

revealed quite similar values for both parents and offspring. The genetic distance was 3.8 %. 

Overall, genetic diversity within the sapling population was higher than in the parent popula-

tion (Table 2.5). 

 

 

Fig. 2.6 Offspring of the localized Salix caprea parent tree population within the 500 m forested search zone at 

the study site D. Only saplings that were assigned to a specific seed parent are connected to the corresponding 

parent by an arrow. 

 

Table 2.5 Number of different alleles (Na), genetic diversity (Ne = 1/Ʃpi
2) per locus, and sample size (n) of the 

parent tree and offspring population at study site D. 

Loci Parent trees Offspring 

 n Na Ne n Na Ne 

SB880 20 3 1.054 99 4 1.489 

SB24 20 10 3.980 100 17 4.373 

SB38 20 13 8.889 99 19 9.479 

SB349 20 11 5.128 99 25 5.064 

SB80 20 12 8.511 99 17 8.751 

Sa458 20 13 8.247 99 21 7.675 

Cha475 20 4 2.524 99 7 2.625 
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2.5 Discussion 

2.5.1 Seed production and temporal patterns of seed dispersal 

The results revealed a high variability in seed production between the two studied years, as 

assumed in the first hypothesis. Herrera et al. (1998) described that intermittent large and 

small seed crops are highly frequent in woody species. Pioneer tree species should therefore 

also be considered mast species like classically known mast-fruiting trees such as beech or 

oak. The phenomenon of mast-fruiting in tree species is predominantly observed in wind-

pollinated species, in environments with changing resource availability, variable weather con-

ditions, and a high density of seed predators (Kelly 1994; Herrera et al. 1998; Kelly and Sork 

2002). In many cases, it is difficult to determine a single factor responsible for triggering a 

mast year, but Kelly et al. (2002) mentioned weather as the most frequent and important fac-

tor. Bastide and van Vredenburch (1970) and Gage and Cooper (2005) also recorded differ-

ences in trapped willow seed numbers of up to 50 % between seed years due to weather con-

ditions. Frost events in spring may lead to reduced seed production and germination capacity 

of willow seeds (Young and Clements 2003; Gage and Cooper 2005). 

At the level of the individual tree, seed production is also generally influenced by the vitality 

and dimension of the seed tree; for example, by its crown radius (Fischer et al. 2016). In a 

variety of willow species (S. alba, S. daphnoides, S. elaeagnos, S. triandra and S. purpurea), 

even small individuals of only 2-3 m height may produce 22,000-740,000 seeds in a particular 

year (Karrenberg et al. 2002; Karrenberg and Suter 2003). The measured data and the geosta-

tistical models in this study also showed a high variability of the number of seeds deposited 

close to the individual willow seed trees, likely owing to tree-related variation in seed produc-

tion. 

The differences observed in 2015 between goat willows located in lowland areas (450 m 

a.s.l.) and at high altitudes (> 715 m a.s.l.) with respect to the start and duration of the seed 

rain (see hypothesis 2) may result from altitudeinduced climatic variability (Kolodziej and 

Frühauf 2008; Scheffler and Frühauf 2011). Densmore and Zasada (1983) found the phenom-

enon of altitude-induced variation of the period of seed maturation to be common in Alaskan 

willow species. In the case of S. caprea, the onset of the seed rain is delayed by 2.51 ± 0.16 

days per 100 m altitude (Ziello et al. 2009). The seed trees at the study sites would hence have 

been expected to fructify already 10-13 days after the goat willows located in lowland areas. 

However, temperature also exerts a strong influence on flowering time in willow species, with 

cold temperatures delaying flowering. An early warm period in spring (as was the case at the 

Thuringian sites in 2015) may thus lead to an earlier onset of flowering in willow species 
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compared to years with a long winter and a cold spring (as recorded for the study sites in 

2016) (Mosseler and Papadopol 1989). Willow populations being late to release seeds in a 

particular year do not necessarily also release seeds late in succeeding years (Densmore and 

Zasada 1983). Mosseler and Papadopol (1989) also observed an influence of spring tempera-

ture on the length of the flowering period in Canadian willows. Warmer temperatures resulted 

in extended flowering duration, as we also observed in our study. 

Air humidity and the extent of wind turbulence are other important factors in the seed release 

process. In willows, mature capsules will only open during periods of low air humidity 

(Kohlermann 1950). Strong wind turbulence will increase the amount of seed released from 

capsules compared to high wind velocities without turbulence (Skarpaas et al. 2006). The en-

vironmental conditions air humidity, wind turbulence, temperature, wind speed and wind di-

rection, which influence seed release (Kohlermann 1950; Sarvas 1952; Skarpaas et al. 2006; 

Huth 2009), are subject to an extreme temporal variability. Therefore, seeds which are re-

leased over longer periods may be subjected to a greater variation in environmental conditions 

than seeds released over shorter periods. Huth (2009), for example, found significant month-

specific differences in wind direction and speed, which were reflected in the seed shadow of 

B. pendula. Thus, the interannual variability of the start and duration of willow seed rain may 

lead to varying spatial patterns of the seed shadow (Houle 1998; Nathan and Muller-Landau 

2000). Local spatial patterns of seed rain can also differ between mast and non-mast years 

(Houle 1998). 

 

2.5.2 Dispersal distance and spatial patterns of seed dispersal 

Dispersal distances appear to be greater for wind-dispersed willow seeds featuring a pappus 

than for species with winged seeds or seeds dispersed by birds (see McVean, 1953, 1956; Per-

ala and Alm, 1990; Karlsson, 2001; Huth 2009). The spatial pattern of the goat willow seed 

rain in this study exhibited a negative exponential distribution in relation to dispersal distance, 

as previously described by Greene and Johnson (1996) and Hughes and Fahey (1988) for tree 

seeds with anemochorous dispersal. Small peaks of more than 25 seeds per trap were ob-

served within 10 m of individual seed trees (see Fig. 2.4b-d), and the highest seed numbers of 

up to 156 n per trap were observed underneath the tree crowns. A distance frequency distribu-

tion resembling a leptokurtic pattern was also observed by Gage and Cooper (2005), who re-

ported seed numbers of 200-10,000 n m-2 close to American willow species. The same pattern 

was found by Ryvarden (1971), who trapped 1,600 seeds m-2 around alpine willow species. 
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Like in all aforementioned studies, overlapping seed shadows were also a problem in our 

study. 

Seed bulks and ripe catkins are likely the reasons for the significant fit of the negative expo-

nential function of our geostatistical model and for the recorded seed number peaks close to 

seed trees. Our observations revealed large numbers of fallen catkins under tree crowns, with 

capsules either open or still closed. Ryvarden (1971) also observed large numbers of catkins 

directly beneath trees, with only 7 % of all trapped seeds dispersed more than 5 m from the 

seed source due to their occurrence as seed bulks. The fine hairs of willow seeds cause seeds 

to intertwine in the capsules, which are then mostly released as ‘seed bulks’. Once in the air, 

the seed bulks may disintegrate into smaller units or single seeds, unless the seeds are previ-

ously deposited on the ground or caught up in vegetation (Kohlermann 1950; Ryvarden 1971; 

Karrenberg and Suter 2003). The sinking rate of S. viminalis seed bulks is 3.8 s m-1, which is 

significantly faster than the 9.3 s m-1 of single seeds (Kohlermann 1950). This difference in 

sinking rates explains why many of the willow seed bulks were deposited near seed trees. 

Nevertheless, the geostatistical models in the presented study confirmed long dispersal dis-

tances of 500-800 m for individual goat willows, which confirms hypothesis 3. In our study, 

0-6 seeds per trap were recorded at 50 m, and 1-4 seeds per trap at 250 m. Gage and Cooper 

(2005) measured seed densities of 0-200 n m-2 and 0-100 n m-2 within 50 m and 200 m of a 

seed source, respectively. Therefore, the dispersal distances of S. caprea do not differ from 

other willow species. The large seed numbers of 0-9 n per trap measured at open area C, de-

spite an absence of seed trees within the 900 m search zone, give testimony to the huge seed 

dispersal capacity of goat willow. The assumption of a very large seed dispersal capacity is 

supported by the fact that lowland goat willow seeds were trapped at the high-altitude study 

sites in spring 2015, while the seed rain of local seed trees had not yet started. Kohlermann 

(1950) reported a sinking rate of 7.2 s m-1 for S. caprea; based on which Schirmer (2006) cal-

culated seed dispersal distances of 2-3 km, even at low wind speeds. Imbert and Lefèvre 

(2003) reported maximum seed dispersal distances of 1-3 km for a black poplar population 

whose seeds are morphologically similar to willow. 

Secondary drift likely also contributes to such long dispersal distances (Matlack 1989; Gage 

and Cooper 2005). Depending on soil texture und moisture, up to 50 % of the willow seeds 

initially deposited on the ground may drift away afterwards due to wind (Gage and Cooper 

2005; Seiwa et al. 2008), thus leading to longer dispersal distances. The enormous distances 

that individual tiny seeds may spread can also be explained by the drift to higher altitudes 

brought about by convective air currents, as observed, e.g., at the study site B (Lautenschlager 
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1994; Karrenberg et al. 2002; Karrenberg and Suter 2003). Gage and Cooper (2005) reported 

a small but constant and, therefore, distance- and direction-independent seed rain, i.e., ‘noise’, 

of approximately 10-30 seeds m-2, which reached all of their study sites. Based on our results, 

we assume a seed source-independent background level of 1.2 goat willow seeds per trap, 

even if there is only a very small ‘background presence’ of the species in an area. 

The absence of any clear directionality in the seed rain patterns observed around individual 

seed trees but also in the open areas in relation to seed tree position is unexpected in an anem-

ochorous species (see hypothesis 4). This absence of directionality may be caused by turbu-

lence, secondary drift or seed flow from seed trees located outside the study sites. 

Kohlermann (1950) referred to lower level, lateral winds of a main wind direction, which can 

influence dispersal distance and direction regardless of seed mass and sinking rate, even close 

to seed trees. In open areas, wind profiles have a logarithmic shape with an increase in wind 

speed with height above ground. Even solitary trees in open areas, and their vertical and hori-

zontal arrangement within the site, may interrupt this logarithmic profile. In addition to tem-

poral effects on wind speed and direction within the observation period, wind profiles thus 

become more complex because turbulence and variable wind speeds at all heights above 

ground disturb simple patterns (see Moon et al. 2013). 

 

2.5.3 Genetic parentage analysis 

Seed dispersal affects the gene flow, gene structure and diversity of populations and collec-

tives (Barnes et al. 1998; Nathan and Muller-Landau 2000). The low allele coincidences be-

tween the parent and the regeneration population as well as the higher number of additional 

alleles of saplings suggest a significantly larger S. caprea parent population than the mapped 

trees. Goat willow seed trees within and beyond the study site may have contributed to the 

regeneration. The natural regeneration at study site D took place in the years 2011-2013; the 

cyclone Kyrill cleared the site in 2007. It is possible that certain parent goat willow trees con-

tributed to the natural regeneration during this time period and then died before our study 

started in 2015. However, the removal of willow seed trees was prohibited by the public forest 

owner after the storm event in 2007, and multiple deaths of goat willows due to natural dis-

turbance after the storm seem unlikely. Saplings cannot have originated from the seed bank, 

as willow seeds remain viable on and in the soil only for short time periods (Junttila 1976; 

Niiyama 1990; Worrell 1995; Karrenberg and Suter 2003). Taking into account the large dis-

persal distances of the goat willow pollen and seeds, it thus seems likely that the high number 

of alleles in the sapling population is due to external gene flow. 



Chapter 2 

 

- 46 - 

A high level of gene flow into willow populations was also reported by Kikuchi et al. (2011), 

Trybush et al. (2012) and Perdereau et al. (2014). Due to seed dispersal by convective air, the 

parent trees of saplings at higher elevations may also be located in lowlands in our study. 

However, Imbert and Lefèvre (2003), Petit et al. (2005), Hoshikawa et al. (2012) and Perde-

reau et al. (2014) agree on the comparatively minor role of gene flow through seed compared 

to gene flow via pollen. Perdereau et al. (2014) found the gene flow rate for S. caprea by pol-

len to be seven times higher than by seed. In their study, seed dispersal comprised about 13 % 

of the total gene flow, but the authors observed gene flow via goat willow seeds and pollen of 

more than 200 km, which corresponds to an unimpeded gene flow. Gene flow via seed is 

characterized by non-random spatial patterns due to the influence exerted by wind or water 

(Imbert and Lefèvre 2003; Wagner et al. 2004). However, gene flow can also result in a rather 

random pattern in case of strong microsite influence and seedling mortality (Cortés et al. 

2014; Nathan and Muller-Landau 2000). Thus, the results of our study reflected a rather ran-

dom pattern. 

The high allele diversity and the richness of the studied sapling population argue against the 

genetic isolation of the small parent population within the study site, although there is a gen-

eral lack of S. caprea trees in the Thuringian Forest Mountains overall. The high genetic vari-

ation within the population, influenced by external gene flow, cross breeding and admixture 

(Ojango et al. 2011), complies with the findings of Imbert and Lefèvre (2003), Palmé et al. 

(2003), Kikuchi et al. (2011), Trybush et al. (2012) and Perdereau et al. (2014), all of whom 

found only slight or no genetic differences within European willow populations. The findings 

of these studies therefore support the results of our parentage analysis and the assumption of 

external gene flow. 

Results from parentage analysis, seed trapping and geostatistical modelling all suggested that 

S. caprea seeds may disperse as far as 800 m from their seed source. However, as the search 

zone for potential parent trees was limited to 500 m around the open areas at our study sites, 

we were unable to detect dispersal distances longer exceeding 800 m due to the limitations of 

our study design, even though goat willow seeds are likely dispersed over considerably longer 

distances. 

 

2.6 Conclusions for silvicultural practice 

Often, a rapid natural or manual reforestation after disturbance is required by law. In the con-

text of climate change, the reforestation of disturbed sites becomes even more important. Up 
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until now, too little was known about the seed dispersal distances of S. caprea in order to be 

able to estimate the inexpensive natural regeneration capacity of the species. 

Assuming comparable wind patterns, the measured S. caprea seed numbers of 1-4 n per trap 

at distances far from seed trees (≥ 350 m) demonstrate in a central European context that (1) 

the azimuth direction has no significant influence on the seed dispersal direction of individual 

trees, (2) the relative position (direction) of seed trees is not important for the number of de-

posited seeds on disturbed sites, and (3) the number of seed trees has no meaningful influence 

on seed numbers at a distance of more than 50 m from seed sources, which refute hypothesis 

4. Parentage analyses confirmed the (4) important role of an external gene flow for the regen-

eration observed at study site D; this parent population comprised more goat willow trees than 

were locally mapped within the 500 m forested search zone. The study of seed dispersal and 

the genetic analyses revealed a previously underestimated dispersal potential of S. caprea. 

In the context of the reforestation of disturbed sites by S. caprea, the measured seed numbers 

should be sufficient to establish a natural regeneration layer (independent of mast and non-

mast years), if appropriate consideration is given to browsing (Chantal and Granström 2007) 

and herb competition pressure (= sapling mortality), a sufficient number of microsites (‘safe 

sites’) exists for successful germination (Harper 1977), and optimal site and climatic condi-

tions prevail during the germination and establishment phase (see Junttila 1976; Densmore 

and Zasada 1983; Sacchi and Price 1992; Young and Clements 2003). 

Ecological research on germination and sapling development has shown that goat willows 

germinate immediately after being deposited on bare mineral soil without a humus and litter 

layer, with good water availability and open-area radiation levels of more than 20 % (Gage 

and Cooper 2005; Mihók et al. 2005). If conditions are unfavourable, seeds either fail to ger-

minate or seedling mortality may reach 100 % (Densmore and Zasada 1983; Sacchi and Price 

1992; Seiwa et al. 2008). Therefore, seed dispersal distance (i.e., seed availability) is not the 

factor limiting the natural regeneration of goat willow on regeneration sites; rather, unfavour-

able germination conditions and sapling mortality may be restricting factors. 

Any ‘spatial optimization’ with respect to the position of parent trees by means of forest man-

agement is unnecessary due to the omnipresence of willow seeds at the study sites. However, 

silvicultural practice could integrate measures for conservation, vitalization and propagation 

of willow seed trees at or near storm-exposed sites in spruce forests at higher altitudes, in or-

der to improve the self-regulation potential of these forests and the natural regeneration of 

future disturbed areas. 
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3.1 Abstract 

Particularly after disturbance events, the early successional colonist Betula pendula is experi-

encing renewed silvicultural interest with respect to the natural regeneration of large disturbed 

forest areas. To ensure successful regeneration, reliable empirical information concerning 

seed production and seed dispersal distances are necessary. In a case study, we therefore stud-

ied the seed dispersal of B. pendula from two adjacent spruce stands to large storm-felled sites 

at high altitudes in the Thuringian Forest (Germany) over a 2-year period. We applied inverse 

modelling to describe the distance-dependent seed distribution using a negative exponential 

kernel. Maximum seed numbers of 2,015 n m-² (non-mast year) and 9,557 n m-² (mast year) 

occurred within 40-50 m distance to a seed tree. The predicted seed production rate of a birch 

seed tree (20 cm in dbh) was approximately 350,000 n tree-1 (non-mast year) and 

1,500,000 n tree-1 (mast year). Regardless of the seed crop, the dispersal distances were simi-

lar in both years. The isotropic model showed mean dispersal distances of 86 and 97 m (up-

hill) and 367 and 380 m (downhill) for the two years. No directionality in seed dispersal was 

found. The findings showed birch seed dispersal to be strongly influenced by site inclination, 

seed tree position (valley, slope or plateau) and distance to the storm-felled site. Furthermore, 

the seed shadow is influenced by the number of seed sources. Therefore, risk-adapted forest 

management should include the ‘spatial optimization’ of birch seed trees, ideally creating a 

network of small seed tree groups scattered more or less regularly within pure conifer forests. 

 

Keywords 

Silver birch, Seed rain, Pioneer trees, Disturbances, Forest restoration, Inverse modelling 

 

3.2 Introduction 

As an anemochorously dispersed pioneer tree species with a wide natural range over Eurasia, 

silver birch (Betula pendula Roth) has a high ecological value within temperate and boreal 

forest ecosystems (Atkinson 1992; Hynynen et al. 2010). Silver birches enhance soil nutrition 

and soil stability, provide watershed protection, act as structural elements with a long-term 

stabilizing effect, and provide habitats and food for many organisms (see Patterson 1993; 

Humphrey et al. 1998; Ferris and Humphrey 1999; Priha 1999; Beck et al. 2016). In some 

European countries, like England, Sweden, Finland and Latvia, silver birch is the most im-

portant broadleaved tree species for timber production, plywood or veneer production (Cam-

eron 1996; Luostarinen and Verkasalo 2000; Hynynen et al. 2010). Within their natural geo-
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graphical range in Europe, birch species were often considered as a forest weed and, there-

fore, rigorously thinned out of forest stands during the last century (Röhrig and Gussone 

1990; Koski and Rousi 2005). However, silver birch recently received renewed interest with 

respect to forest management at higher altitudes. The importance of silver birch in forest man-

agement has recently been increasing because of (a) the species’ ability to promptly and ex-

tensively recolonize disturbed sites due to its high annual seed production and its fast juvenile 

growth, even in open areas with extreme climatic conditions (Perala and Alm 1990; Atkinson 

1992; Zerbe 2001; Hynynen et al. 2010), and (b) the heightened risk of catastrophic events in 

central European spruce forests. Pioneer forests composed of birches are able to quickly close 

water and nutrient cycles and thus soon create a forest climate appropriate for the establish-

ment of climax tree species (Zerbe 2009). 

Therefore, empirical information about the seed production, seed dispersal distances, and de-

posited seed numbers of silver birch is required to establish ‘precautionary’ forest manage-

ment systems that anticipate the high risk of catastrophic events, particularly in mountain 

spruce forests, and to ensure successful birch regeneration on disturbed sites. The seed pro-

duction of a mature single silver birch tree can range between 30,000 and 10 million seeds per 

year (Arnborg 1948 cited in Perala and Alm 1990; Popadyuk et al. 1995; Huth 2009). The 

small winged nuts (1.5-2.0 mm) are mainly dispersed by wind between June and November 

(Brouwer and Stählin 1975; Huth 2009). 

Above all, seed dispersal is an important driver for species movement, site colonization and 

the restoration of treeless or disturbed areas (Skarpaas et al. 2006). Huth (2009) reported 

mean seed dispersal distances of 37 to 90 m for admixed silver birch trees within closed Nor-

way spruce forests. Different studies determined the highest birch seed densities within dis-

tances of 25 to 50 m around the source trees (Sarvas 1948; Fries 1984). The phenomenon of 

secondary seed dispersal by wind after a transitory deposition is important, in particular for 

the transport of birch seeds in large restoration areas (Matlack 1989; Bakker et al. 1996). For 

B. lenta, the secondary seed dispersal distance across snow was three times longer than the 

measured primary seed dispersal (Matlack 1989), but secondary seed dispersal distance 

reached only 15 m when the snow was melting (Greene and Johnson 1997). However, most 

studies on aspects of birch seed distribution have been conducted within closed forest stands 

(e.g., Skoglund and Verwijst 1989; Houle and Payette 1990; Graber and Leak 1992; Leder 

1992; Houle 1998; Wagner et al. 2004; Huth 2009). Only few studies focused on the seed 

dispersal of birch in open areas or large gaps (Bjorkbom 1971; Hughes and Fahey 1988; 

Greene and Johnson 1996; Karlsson 2001), although knowledge about the seed dispersal dis-
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tance from surrounding forest stands and seed distribution limits is necessary key information 

to develop recolonization and restoration management strategies (see Zhao et al. 2016; 

Holmström et al. 2017). 

As shown in different wind tunnel experiments, experimental results under controlled condi-

tions cannot easily be transferred to real field conditions (Augspurger and Franson 1987; 

Johnson and West 1988, cited in Bakker et al. 1996; Kadereit and Leins 1988; van Dorp et al. 

1996; Greene and Johnson 1997). This lack of transferability is caused by highly complex and 

variable environmental factors related to field conditions (e.g., wind conditions, site surface 

relief and ground vegetation cover or seed characteristics) (Fenner 1985; Okubo and Levin 

1989; Skarpaas et al. 2006). Therefore, reliable information about the temporal and spatial 

patterns of seed rain in open areas is needed to assess the natural regeneration potential of B. 

pendula seedlings. This applies particularly to the large windthrown forest areas in central 

Europe, which were created by the storm events of the last decades (Gregow et al. 2017) and 

will probably become more and more frequent with progressing climate change (Mölter et al. 

2016). 

In this case study, we observed the seed dispersal of B. pendula in 2015 and 2016 at two 

windthrown forest sites in Thuringia, Germany. The aim of the study was to investigate the 

amounts, densities and spatial distribution of silver birch seeds in storm-felled, treeless areas 

at high altitudes (715-775 m a.s.l.) originating from adjacent closed mountain forests. Initial-

ly, the temporal and spatial patterns of silver birch seeds were empirically recorded, with sub-

sequent calculation of mean dispersal distances (MDD) by means of inverse modelling. We 

assume that models showed directionality (anisotropy) for birch seed dispersal. Furthermore, 

the influence of seed crop, relief inclination and seed tree numbers around the studied storm-

felled sites as well as the position of the seed trees (valley, slope or plateau) were included in 

the analyses. Finally, we used simulations to spatially optimize the positioning of the seed 

trees in relation to the studied sites with regard to optimal seed distribution in the open areas. 

 

3.3 Materials and methods 

3.3.1 Study area 

The study area is located at high elevations and along the ridges of the Thuringian Forest, a 

mountain range in the federal state of Thuringia, Germany (50°40’N and 10°45’E). The area 

is situated between 400-982 m above sea level (a.s.l.), with a prevailing south-westerly 

exposition. The area is characterized by many slopes and an almost total absence of plateaus 

(Burse et al. 1997; Waesch 2003; Gauer and Aldinger 2005). The mean annual precipitation 
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ranges from 800 mm in the south-west to 1,200 mm along the ridges and falls to a level of 

700 mm in the north-east (Burse et al. 1997; Gauer and Aldinger 2005; Bushart and Suck 

2008). The annual average temperature in the region varies between 4-6 °C (Burse et al. 1997; 

Bushart and Suck 2008). The area is influenced by an Atlantic, moderately cool and moist 

central mountain climate (Burse et al. 1997; Gauer and Aldinger 2005). The prevailing winds 

are from the south-west, with a secondary wind maximum originating from the north-east. 

The average annual wind speed in the study area is 3.5-4.5 m s-1 (Bürger 2003). The averaged 

meteorological data (based on half-hourly values) for the seed trapping periods of the 

presented study (2015 and 2016) are listed in Table 3.1. While no extreme events in wind 

speed were observed, the wind direction showed a high variability during the study periods. 

 

Table 3.1 Aggregated meteorological data (based on half-hourly values; climate station ‘Grosser Eisenberg’; 50° 

37′ 24″ N and 10° 46′ 59″ O) of the four-month seed-trapping periods in 2015 and 2016 in the study area. Please 

note that the data of July and November covers only studied days and not the entire month (NA - data not availa-

ble due to measurement failures, SD - standard deviation). 

 
  

2015 
    

2016 
  

  
from 

mid-Jul 
Aug Sep Oct 

until ear-

ly-Nov 

from 

mid-Jul 
Aug Sep Oct 

until early-

Nov 

Wind spead (m/s) 
          

Minimum 1.0 0 0 0 0.7 0 0.6 0 0 1.2 

Maximum 7.2 8.3 9.9 4.6 4.4 4.7 5.2 6.4 6.5 3.5 

Mean 3.6 2.9 1.8 2.0 2.4 1.8 2.2 2.1 2.3 2.5 

SD 1.42 1.22 0.92 0.88 0.78 0.75 0.87 1.06 1.11 0.62 

Wind direction (°) 
          

Mean 228 159 204 180 237 184 218 178 176 273 

Median 253 181 235 214 233 226 250 206 222 283 

SD 86.7 98.5 122.2 100.8 24.7 105.2 89.6 102.2 106.2 53.3 

Mean tempera-

ture (°C) 
11.1 18.2 9.8 6.0 9.9 17.7 14.9 14.4 5.1 3.8 

Precipitation 

(mm/month) 
0.6 65.2 74.3 NA 0.4 70.6 69.6 74.8 127.9 4.5 

 

The dominant soil types of the forest sites are low-base cambisols with low to medium nutri-

ent contents (Gauer and Aldinger 2005). The regional landscape features a largely contiguous 

forest system with ~90 % forest cover, some small upland meadows in stream valleys and 

occasional small raised bogs. The study area is dominated by single-layered, even-aged Nor-

way spruce forests (Picea abies (L.) Karst.). Without anthropogenic influence, the potential 

natural vegetation would be dominated by Luzulo-Fagetum and Asperulo-Fagetum beech for-

ests (Frischbier et al. 2014). 

We selected two study sites (B and E) 6 km apart from each other, located on slopes at higher 

elevations of the Thuringian Forest (715-775 m a.s.l.). Each site consisted of an open area 
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surrounded by a forested search zone of 200 m (see chapter 3.3.2, p. 63). The open areas were 

windthrown by the storm ‘Kyrill’ in January 2007 (Fink et al. 2009). Representative for the 

region, the stand conditions before the storm were dominated by 68-100 year-old Norway 

spruce. After the storm, the damaged areas were completely cleared, and no birch seed trees 

were present in the open areas. The size of the open areas was 4.0 ha and 12.7 ha, respectively 

(Table 3.2), and no closed regeneration layer had yet established at any of the study sites. The 

open areas were surrounded by 59-105 year-old Norway spruce forests admixed with a small 

number of adult isolated Betula pendula Roth, Salix caprea L. and Sorbus aucuparia L. trees. 

 

Table 3.2 Descriptive study site and birch seed tree data (Dbh - diameter at breast high, SD - standard 

deviation). 

Open area at study sites B E 

Relief-induced dispersal ‘uphill’ ‘downhill’ 

Elevation above sea level [m] 735 - 765 715 - 775 

Topography mountain peak with slopes slopes 

Size of open area [ha] 4.0 12.7 

Number of seed traps [n] 54 41 
Number of seed trees [n] within the 200 m 

forested search-zone around the open area [n] 
16 83 

Minimum distance between seed tree and seed 

trap [m] 
12 74 

Average Dbh of seed trees ± SD [cm] 31.1 ± 4.7 20.7 ± 4.4 

 

Located along slopes, the choice of study sites allowed us to separately investigate uphill (site 

B) and downhill (site E) seed dispersal. The seed trees at site B were located in the valley at 

approximately 710-730 m a.s.l., and they were equipped with seed traps from the seed sources 

all the way to the uphill plateau at 760 m a.s.l. (Fig. 3.1). At site E, seed trees were mainly 

found on a plateau (785-805 m a.s.l.) within a stand consisting of Salix caprea, Sorbus 

aucuparia and B. pendula, and seed traps were placed close to the seed sources on the upper 

slope (775 m a.s.l.) and downhill along the slope to the valley (675 m a.s.l.). 
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Fig. 3.1 Maps of the experimental study design at sites B (top) and E (bottom). 

 

3.3.2 Experimental design 

Within the 200 m forested search zone at each study site, we mapped all B. pendula trees that 

were expected to potentially produce seeds (≥ 12 cm diameter at breast high [dbh]; see Po-

padyuk et al. 1995; Roloff and Pietzarka 2010) using a blumax Bluetooth GPS-4013 Receiver. 

For each B. pendula tree, we recorded the dbh and observed flowering in both years. The 

search zone distance of 200 m was chosen as a compromise between feasibility and prior 

knowledge of suggested effective birch seed dispersal distance in open and forested sites 

(Sarvas 1948; Karlsson 2001; Huth 2009). Sixteen and 83 seed trees with 24-42 cm and 13-

37 cm in dbh were identified at sites B and E, respectively (Table 3.2). 

At the study sites, we placed 54 (site B) and 41 seed traps (site E). Due to the vast areal extent 

of the open areas, seed traps were placed along two crossing line transects (site E) and four 
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crossing line transects (site B), with intervals of 20 m between the traps, rather than along a 

regular grid (Fig. 3.1 - see also Bjorkbom 1971; Greene and Johnson 1996). The orientation 

and length of the line transects were not uniform, due to the differences in the size and shape 

of the two open areas. The line transects extended over the entire open area of each study site 

and into the surrounding Norway spruce forests. The minimum distances between the seed 

trees and the nearest seed trap were 12 and 74 m (Table 3.2).  

The funnel-shaped seed traps had a diameter of 0.5 m and surface area of 0.196 m². To ensure 

the functioning of the seed traps despite strong winds, a perforated plastic cup weighted with 

a stone was placed into each funnel-shaped net. The percolated plastic cups allowed rain wa-

ter to runoff. The net funnels were fixed onto a bar 1 m above the ground. The traps were 

emptied periodically every 3 to 4 weeks and the number of seeds per trap was counted. The 

seed dispersal sampling periods each lasted 4 months from mid-July to early November in 

2015 and 2016. 

 

3.3.3 Data analysis 

Mean seed densities per m² were calculated for each seed trap across both study sites and 

years. Differences between seed densities at the two sites and between the two sampling years 

were analysed using the Mann-Whitney U-test, because the data were not normally distributed 

(Zar 2010). Significant differences were accepted at a p-value of < 0.05. Furthermore, Quan-

tum GIS (QGIS 2.4.0 Chugiak) was used to create maps of both study sites based on original 

forest maps and aerial orthophotographs. These maps were used to outline the boundaries of 

the open areas at each study site, to determine the surrounding 200 m forested search zone, 

and to mark the positions of seed trees and seed traps (Fig. 3.1). 

 

3.3.4 Seed dispersal model 

A phenomenological model (provided as R-script) developed by van Putten et al. (2012) was 

used to investigate birch seed dispersal, including the effect of wind direction, the probability 

of seed deposition at certain distances from the seed source and a dbh-related prediction of 

seeds per tree and per year. The applied model is capable of accounting for the direction of 

seed dispersal, thus differentiating between isotropic and anisotropic dispersal. ‘Isotropic’ 

means that seed densities are equally dispersed in all azimuth directions, whereas ‘aniso-

tropic’ dispersal accounts for a directional effect (e.g., due to wind) on seed density distribu-

tions (Wagner et al. 2004; Wälder et al. 2009). We fitted seed shadows using the isotropic 

model and the anisotropic no-shift elliptic distorted-distance model with the free parameters β, 
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ψ and γ. The parameter β (coherency) determines the flattening of the elliptic contour lines, ψ 

(rotation) describes the rotation of the elliptic contour lines around a seed tree along the com-

mon axis, and γ (drift) moves the centre of elliptic contour lines into a positive direction along 

the common axis (van Putten et al. 2012). The most important algorithms were described by 

van Putten et al. (2012). To model the distance-dependent seed distribution, i.e. the ‘kernel’ of 

the model in the Cartesian coordinate system (x, y), we used the negative exponential distribu-

tion as a density function (d(r(x,y)), Eq. 3.1): 

 

𝑑(𝑟(𝑥,𝑦)) =
𝑒

[−
𝑟(𝑥,𝑦)

𝜆
]

𝑟(𝑥,𝑦)∗2𝜋𝜆
 (3.1) 

 

The dispersal distance within the negative exponential function is described by the parameter 

λ. The value r(x,y) describes the distance between the position of the seed trees and seed traps 

using the Cartesian coordinates x and y, where seed density is known. Other models, e.g. 

lognormal, have been tested without improving the results. The fecundity of a seed tree φ was 

calculated using the following equation (Eq. 3.2): 

 

𝜑 = 𝑒𝛼 ∗ 𝑑𝑏ℎ2 (3.2) 

 

with α as a fecundity parameter defining the allometric relationship between the dbh (mm) 

and the seed production of a tree. Isotropic and anisotropic seed dispersal was modelled sepa-

rately for each study site (B and E) and year (2015 and 2016). The two study sites were split 

into the categories ‘uphill’ (B) and ‘downhill’ (E) on the basis of the relief-related seed dis-

persal. Inverse modelling was applied to fit the observed seed densities. The seed number 

modelled for each seed trap was calculated by summing the seed rain at a specific location 

relative to all seed trees. The mean dispersal distance (MDD) in the negative exponential ker-

nel equals λ. In the case of isotropic modelling, the parameter equals MDDiso. Spearmann´s 

correlation coefficient including p-value was used to test the relation between observed and 

predicted seed densities. Additionally, Akaike’s information criterion (AIC) was used to 

check the goodness-of-fit of the statistical models. General references to isotropic and aniso-

tropic inverse modelling can be found in Okubo and Levin (1989), Ribbens et al. (1994), 

Clark et al. (1999), Skarpaas et al. (2004), Wagner et al. (2004), Soubeyrand et al. (2007), 

Wälder et al. (2009) and van Putten et al. (2012). 
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The parametric bootstrap approach, described by Faraway (2006) and Tekle et al. (2016), was 

used to compare isotropic and anisotropic inverse model fits and to make a decision on the 

significance level (i.e. which model showed a better fit to the empirical data). The likelihood 

ratio test (LRT) allows comparing models with different numbers of parameters by means of 

differences in log likelihood between them. Bootstrap samples (data sets) were generated un-

der a ‘null model’ (isotropic model) using the estimated parameters. Then ‘null’ and ‘alterna-

tive models’ (anisotropic model) were then fitted based on these data sets and the likelihood 

ratio statistic was computed. This procedure was repeated 99 times for each study site and 

year. The differences in log likelihood between the isotropic and anisotropic models were 

used to derive an empirical distribution of LRT, where the null-hypothesis was true. The p-

value was estimated by comparing the empirical distribution of LRT to the observed values of 

LRT output (Faraway 2006; Tekle et al. 2016). All computations were performed using the R 

software version 3.3.2 (package: boot; R Core Team 2014). 

 

3.3.5 Simulations for practical management decisions 

To apply our findings of seed dispersal in a practical context and to support silvicultural 

management decisions in the context of reforesting disturbed sites, two alternative scenarios 

of seedtree distribution were designed for study sites B and E, based on the area-specific seed 

dispersal model results with MDDs of 100 and 350 m, respectively. A regular distribution of 

seed trees on a 100 m grid surrounding the open areas (i.e. 30 trees) was compared with an 

aggregated seed tree distribution of the same tree numbers. The simulation was done for two 

conceptual forested sites with a size of 42 ha (700 m x 600 m) in which the two differently 

sized and shaped open areas from study sites B and E were integrated. All birch seed trees 

were assumed to have a dbh of 20 cm and to produce 1.5 million seeds as fitted by inverse 

modelling in 2016.  

 

3.4 Results 

3.4.1 Seed production 

The densities of the deposited seeds in both open areas and surrounding forests were signifi-

cantly higher in 2016 than in 2015 (Mann-Whitney U-test: p < 0.001). Average seed densities 

ranged between 93 and 23 n m-² in 2015 and 445 and 86 n m-² in 2016 at sites B and E, re-

spectively (Fig. 3.2). Overall, the recorded birch seed densities in traps were at least four 

times higher in 2016 than in 2015, with a maximum of 9,557 (site B) and 311 n m-² (site E). 
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In both years, birch seed numbers tended to be higher at site B, but this difference was not 

significant (Mann-Whitney U-test: p > 0.05). 

 

 

Fig. 3.2 Betula pendula seed densities [n m-²] collected in 2015 and 2016 at study sites B and E. Lower and up-

per case letters indicate significant differences between study sites in 2015 and 2016, respectively. Stars mark 

significant differences between years at each study site (Mann-Whitney U-test: p < 0.05). White circles show 

outliers and black circles inside the boxes are mean values. 

 

The allometric relationships between tree dbh and seed production for isotropic models were 

very tight. The fecundity levels (i.e. ‘α’ in Eq. 3.2) for the years 2015 (2.0-2.2) or 2016 (3.6) 

were relatively similar, indicating a slightly lower fecundity of seed trees in 2015. The ex-

pected seed production rate of the isotropic inverse model for a birch seed tree with a mean 

dbh of 20 cm was approximately 300,000-366,000 (2015) and 1,430,000-1,530,000 seeds per 

tree (2016) (Table 3.3). Birch seed trees with 13-42 cm in dbh produced 0.14-1.5 million and 

0.62-6.5 million seeds per tree in 2015 and 2016, respectively (Fig. 3.3). 

 

 

Fig. 3.3 Isotropic inverse model predictions of seed production per seed tree depending on dbh (diameter at 

breast height) in 2015 and 2016. 
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3.4.2 Seed dispersal and spatial patterns 

The source tree-related pattern of cumulated trapped seed numbers followed a negative expo-

nential function (Fig. 3.4). The highest seed densities at the study sites were found close to the 

seed sources, e.g., at the northern edge of the open area at site B or close to a stand of Salix 

caprea, Sorbus aucuparia and B. pendula within a spruce forest neighbours adjacent to the 

open area at site E (see Fig. 3.1). Seed densities decreased rapidly with increasing distance 

from the seed source. At a distance of 100 m from the seed sources, mean seed densities of 

only 24 and 41 n m-² were observed at site B (uphill dispersal) and E (downhill dispersal) in 

2015, respectively, compared to 114 and 181 n m-² in 2016. During the same period, seed 

densities of only 15-25 n m-² were recorded downhill at a distance of 300 m from the seed 

sources at site E. In both years, the number of seeds trapped at the same distance from the 

seed source was slightly higher at site E compared to site B (Fig. 3.4).  

 

 

Fig. 3.4 Complete set of measured Betula pendula seed densities [n m-²] at study sites B and E in 2015 and 2016 

related to the distance from the seed source [m]. Note the different scales of the y-axes. 
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The probability distribution of the seed dispersal distance of a single tree in the anisotropic 

models was quite similar to that of the isotropic models, although the predicted seed shadows 

clearly showed directional variation (Table 3.3 and Fig. 3.5). Values of β, γ, ψ, which charac-

terize the spatial distribution of the anisotropic seed shadows, are listed in Table 3.3. Alt-

hough the anisotropic models featured higher AIC values (with the exception of study site B 

in 2016), the bootstrap results indicated that the anisotropic model was over-parameterized 

and that the isotropic model was an appropriate approach for all sites and years (bootstrap: p > 

0.22). According to the isotropic model, the estimated uphill and downhill mean dispersal 

distances at site B and E were 97 m (2015) and 86 m (2016) and 367 m (2015) and 380 m 

(2016), respectively (Table 3.3 and see left of Fig. 3.5).  

 

Table 3.3 Inverse modelling results of isotropic and anisotropic dispersal (exponential function) of Betula pen-

dula seeds for 2015 and 2016 (α - fecundity, λ - distance, β - coherency, ψ - rotation angle, γ - drift, rho - Spear-

man’s correlation coefficient, p - p-value, φ - seed production of a single seed tree with a dbh of 20 cm). 

Site Year Model α λ β ψ γ AIC loglike rho p φ 

B 

2
0

1
5
 

Isotropic 2.02 96.73 - - - 509.92 -252.96 0.522 0.0001 301,169 

 Anisotropic 2.15 430.60 0.065 -0.791 2.334 511.07 -250.54 0.602 0.0000 343,746 

 

2
0

1
6
 

Isotropic 3.64 85.80 - - - 675.87 -335.93 0.636 0.0000 1,526,309 

 Anisotropic 3.71 136.37 0.791 0.490 1.029 667.18 -328.59 0.804 0.0000 1,641,351 

E 

2
0

1
5
 

Isotropic 2.21 367.08 - - - 329.37 -162.68 0.463 0.0023 366,028 

 Anisotropic 1.30 234.89 0.005 0.888 185.673 337.16 -163.58 0.473 0.0018 146,696 

 

2
0

1
6
 

Isotropic 3.57 379.77 - - - 413.72 -204.86 0.716 0.0000 1,427,139 

 Anisotropic 2.14 124.03 0.839 0.600 2.143 420.50 -205.25 0.812 0.0000 339,410 
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Fig. 3.5 Inverse model predictions of seed shadows [n m-²] simulated for a theoretical single Betula pendula seed 

tree with a dbh of 20 cm, given isotropic (left) and anisotropic (right) seed dispersal for study sites B and E in 

2015 and 2016. 
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3.5 Discussion 

3.5.1 Seed production 

Rough knowledge about the number of seeds per seed tree and the quality of the seed crop in 

a particular year is important to forecast the probability of natural regeneration in disturbed 

areas. The amount of seeds produced by an individual tree is influenced by e.g. tree stem and 

crown dimension, vitality and age (Sarvas 1948, 1952; Moles et al. 2004) as well as by 

weather-dependent pollination and flowering success (Sarvas 1952).  

The fecundity parameter α of the isotropic models was almost constant, which indicates a 

strong correlation between tree dbh and seed production, as previously assumed and 

confirmed for birch by Sato and Hiura (1998), Wagner et al. (2004) and Huth (2009). There is 

solid evidence for strict allometric relationships between growth parameters, such as dbh, 

crown radius or basal area of a tree, and the individual seed crop of a tree (Grisez 1975; 

Greene et al. 2004; Huth 2009; DaPonte Canova 2018). Therefore, the seed crop of birch trees 

of variable size can be easily estimated based on their dbh, if the seed production is not 

hampered by low viability or unfavourable weather conditions (see Grisez 1975). Birches 

with limited growing space, small crown projected areas and crown volumes have lower seed 

crops than large solitary individuals (Sarvas 1948). Nevertheless, Huth (2009) noted a 

restriction of these relationships. With the on setting senescence of a tree, its seed crop 

progressively decreases while its diameter and crown dimension generally continue to 

increase. The strength of the relationship therefore decreases with increasing tree age.  

The predicted seed production of a single birch seed tree in 2016 was four times higher than 

in 2015. According to the findings of Sarvas (1948), 2016 can be described as good seed year. 

Birch is known for a large interannual variability in seed production (Sarvas 1948; Houle and 

Payette 1990; Kullman 1993; Huth 2009), which is mainly a response to the climatic 

conditions of the previous year (Kullman 1993; Holmström et al. 2017). On average, good 

seed years (i.e. so-called mast years) occur every three years (Sarvas 1948), during which the 

percentage of seed germination is significantly higher than in intervening (non-mast) years 

(Sarvas 1952; Bjorkbom 1971; Houle and Payette 1990). For a single silver birch, Denisow 

(2007, cited in Huth 2009) reported a seed production of 40,000-50,000 seeds in intervening 

years and 3.7-4.9 million seeds in a mast year. Compared to our study, significantly higher 

seed crops of individual trees with up to 7.3-10.0 million seeds (dbh of 24-80 cm) were 

reported by e.g., Arnborg (1948, cited in Perala and Alm 1990), Popadyuk et al. (1995), 

Wagner et al. (2004) and Huth (2009). In the present study, the slightly lower seed production 

of 0.6-6.5 million seeds per single seed tree (dbh of 13-42 cm) in a mast year might have 
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resulted from smaller birch tree crowns due to strong spruce competition and a lack of release 

thinning in the past. 

 

3.5.2 Directionality 

Due to non-random anemochorous seed dispersal, previous studies often showed 

directionality for birch seed dispersal (Wagner et al. 2004; Wright et al. 2008; Huth 2009). 

However, this was not clearly confirmed by results of the present study. An explanation for 

the surprising isotropy of seed dispersal in this study might be the relatively long seed 

collection periods (four month). The variability of wind directions and wind speeds occurring 

during a period of four months – boosted and modified by turbulence and varying wind 

speeds in the open areas due to vegetation cover and structure (see Moon et al. 2013) – may 

explain the lack of observed anisotropy. While the half-hourly meteorological data (Table 3.1) 

showed no extreme wind events during the two study periods, with a maximum wind speed of 

9.9 m s-1, the monthly mean wind direction featured high standard deviations of ±25 to ±122°. 

On some days during the study periods, the variability of the wind direction was as high as 

±206°. The observed isotropic distributions are thus plausible, because no prevailing wind 

direction was identified for both study periods and birch seeds were dispersed in a variety of 

directions. The assumption that the anisotropic models reveal a better fit to the empirical four-

month data was therefore rejected. Houle and Payette (1990) found anisotropic spatial 

patterns of the seed shadows of B. alleghaniensis after subdividing the seed rain period into 

shorter study periods. Had we chosen shorter periods for emptying the seed traps in this study 

(e.g. 14 day periods), we might have also been able to detect anisotropy by inverse modelling 

(Wagner et al. 2004). 

However, short-term analyses of 14 day periods would not be useful for deriving silvicultural 

recommendations, because in this context the entire period of seed rain, i.e. 3-4 months in 

summer and autumn, has to be considered. For silvicultural practice it is important to know 

that equally distributed seed rain can be expected around seed trees if strong wind regimes 

with variable wind directions prevail at a specific site. 

 

3.5.3 Spatial patterns and seed dispersal distances 

As expected, the highest seed densities where observed close to the seed trees. At study site B, 

where birch seed trees were positioned at the edge of the open area, higher densities were 

observed up to distances of 40-50 m. Similar results were reported by Sarvas (1948), Fries 

(1984), Skoglund and Verwijst (1989) and Cameron (1996). In our study, the trapped seed 
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numbers at site B decreased rapidly at distances exceeding 50 m (see Fig. 3.4). The seed 

distribution thus showed a negative exponential seed dispersal kernel, as Bjorkbom (1971), 

Hughes and Fahey (1988), Greene and Johnson (1996) and Karlsson (2001) previously 

reported for B. alleghaniensis, B. pendula, B. pubescence and B. papyrifera. In theory, one 

may expect a log-normal distribution of the distances that the tiny and lightweight wind-

dispersed seeds travel (Stoyan and Wagner 2001; Huth 2009), but the majority of records in 

this study showed no peaks at certain distances from seed trees (as in Greene and Johnson 

1996; Stoyan and Wagner 2001; Huth 2009). A feasible explanation for this observation was 

given by Marquise (1969), who reported that primarily the heaviest and viable birch seeds 

were deposited close to the seed trees. 

In the present study, seed dispersal distances within the sites were similar for both years 

regardless of extent of seed production. Large differences of dispersal distances only occurred 

between the study sites. The modelled mean isotropic dispersal distances (MDDiso) of birch 

seeds distributed from the forest edge into the open area at site B were 86 and 97 m, as 

detected by Wagner et al. (2004) and Huth (2009) for birch in level closed forest stands. In 

contrast, the MDDiso of 367 and 380 m modelled for seed dispersal from within the adjacen 

spruce forest stands into the larger open area E indicated dispersal distances that were four 

times larger. Hughes and Fahey (1988), Daniels (2001) and Karlsson (2001) recorded lower 

dispersal distances of 30-125 m for B. alleghaniensis, B. pendula and B. pubescens in open 

areas than observed in the present study. 

Our very contradictory results of MDD are only comparable with studies from McEuen and 

Curran (2004), who found seed dispersal distances of B. papyrifera of 700 m between 

landscape fragments. The long distances were explained by an enormous seed tree presence 

(see also Zhao et al. 2016) and their extremely high seed production numbers. Similarly, we 

also had a huge seed source presence in the form of a mixed willow-rowan-birch stand at a 

distance of 74 m from the open area at site E. This potential explanation is further be 

confirmed by Greene and Johnson (1996), Zhao et al. (2016) and Holmström et al. (2017) 

who mentioned that seeds are dispersed over larger distances if the size of the canopy 

openings increases, if seed source densities are located close to forest edges or if seed tree 

density is high. Therefore, to increase the probability of getting birch seeds onto storm-felled 

sites, an increasing number of seed sources would be needed with longer distances to the 

respective sites. Nevertheless, the few birch seed trees around the open area at site B were 

standing at the forest edge, making it actually more likely that seeds would disperse over 

larger distances than in closed forests (Holmström et al. 2017). 
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Thus, another effect should be considered: the relief, although this effect has not often been 

mentioned in previous studies. In this study, it seems that the dispersal distances of birch 

seeds decreased uphill (site B) or increased downhill (site E) depending on the inclination and 

seed tree position (valley, slope or plateau) relative to the storm-felled site. Hill and Stevens 

(1981), who studied soil seed banks, found a 30 m shorter distance for uphill deposition of 

birch seeds than for downhill deposition. Based on the estimated MDDiso, we may therefore 

assume a strong effect of inclination on the dispersal distance of birch seeds. However, the 

two study sites were not selected rigorously enough to test for inclination effects. Some of the 

other aforementioned factors, e.g. differently sized open areas, seed tree densities and 

distances between seed sources and forest edges, may also have influenced the dispersal 

distances. 

The distance of long dispersal is particularly determined by secondary dispersal (Matlack 

1989; Greene and Johnsons 1997), but this factor can be neglected in the present study due to 

similar ground vegetation cover and thus likely similar secondary dispersal in both open 

areas. Based on our data, we have no chance to check for secondary seed dispersal in any 

way.  

 

3.6 Seed dispersal scenarios for silvicultural management decisions 

3.6.1 Seed dispersal scenarios 

The abundance and the spatial pattern of potential seed trees near a particular disturbed site 

are important determinants upon which forest managers could base silvicultural decisions 

about a risk-adapted reforestation concept and a preventative risk-adapted seed tree manage-

ment.  

Based on these results, scenarios of regular and aggregated seed tree distributions around the 

studied open areas were created to show that the distribution, the distance between seed trees 

and the disturbed sites, and the inclination have varying effects on the deposited seed 

densities. For analysing the scenarios, we could only consider the open areas, because the 

open area at site B represents a hilltop with only uphill seed dispersal (not the forested areas), 

and the sloped open area at site E forms a relief funnel which only represents downhill seed 

dispersal.  

For an even, systematic seed tree distribution, the comparison of seed shadows between both 

sites showed higher deposited seed densities in the vicinity of trees at site B (Fig. 3.6a and c), 

because the same number of produced seeds are distributed uphill over smaller distances than 

downhill (see Fig. 3.5). However, in an undisturbed forest with a systematic seed tree 
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distribution, there would be no parts without seed rain as the seed shadows of single seed trees 

would overlap at both sites. If disturbances interrupted the systematic seed tree grids – like 

observed at the studied storm-felled areas – and no seed trees were left in the disturbed area, 

approximately 20-25 n m-² birch seeds would still reach the hilltop (site B) and the valley (site 

E), independent of the inclination. It seems like there are no differences between sites, but the 

different sizes of the open areas must be considered when interpreting the scenarios. If the 

open area at site B were to exceed the size of the open area at site E, the seed densities 

deposited in the open area would be considerably lower, which illustrates the aggregated 

distribution of the same numbers of seed trees (Fig. 3.6b and d). At distances of 5-250 m 

between the seed trees and the forest edges, the seeds dispersed uphill with the shorter MDD 

are not able to reach the entire open area at site B, only the southern part. In contrast, the seed 

shadow of the seeds dispersed downhill from the aggregated seed trees at site E does not 

really differ from the spatial pattern of systematically distributed seed trees. At least 20 n m-² 

seeds are reaching almost all parts of the storm-felled area at site E with the exception of one 

small spot in the north.  

 

 
Fig. 3.6 Isotropic seed shadow scenarios [n m-²] of simulated systematic (left) and aggregated (right) seed tree 

distributions of Betula pendula around the studied open areas at sites B (top) and E (bottom), illustrated as bold 

lines. Note the different seed density scales for colour illustration in the figure panels. 
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The seed dispersal scenarios showed that in case of an even, systematic seed tree distribution, 

inclination differences are not clearly affecting the seed shadow, and known limits of birch 

dispersal distances (MDD) can generally be compensated, especially for uphill seed dispersal. 

However, if seed trees are aggregated and unevenly distributed, the effect of the inclination is 

clearly visible in the resulting seed shadow. In the latter case, the inclination has an important 

influence on regeneration success of storm-felled sites in addition to the distance between the 

seed sources and the open area as well as the number of seed trees or tree groups. 

 

3.6.2 Conclusions for silvicultural management decisions 

The findings of our case study indicated a strong influence of (i) site inclination and (ii) seed 

tree position (valley, slope or plateau) and distance to a storm-felled site on the seed dispersal 

of B. pendula. The birch seed shadow is also influenced by (iii) the number of seed sources. 

In the context of the natural regeneration of disturbed sites by B. pendula, it must be noted 

that seed dispersal is restricted compared e.g., to anemochorously dispersed Salix ssp. (Gage 

and Cooper 2005; Tiebel et al. 2019).  

Willis et al. (2016) hence highlighted the importance of local seed source availability for 

successful birch regeneration. Sarvas (1948) mentioned that at least 100 to 200 n m-2 of viable 

seeds are necessary for successful regeneration and recommends a density of 4 to 8 n ha-1 of 

B. pendula seed trees, while Safford and Jacobs (1983) advocate a seed tree number of 7 to 

12 n ha-1 for B. papyrifera. Although the relation between the seed numbers deposited on the 

ground and the actual number of established seedlings was not subject of the present study, it 

can be concluded from our results and model fits in combination with previously published 

studies that certain seed densities are not sufficient for successful regeneration. Regeneration 

success depends on many unpredictable conditions, which were not investigated in this study, 

and the mortality rate of birch seedlings can reach up to 99 % if germination conditions are 

unfavourable (Kinnaird 1974). For successful regeneration, birch seeds need microsites like 

bare ground with optimal moisture and light conditions (see Marquis 1966; Kinnaird 1974; 

Skoglund and Verwijst 1989; Karlsson 2001; Jonášová and Matějková 2007; Huth 2009; 

Willis et al. 2016).  

However, based on Sarva's (1948) minimum recommendation of 100 seeds m-2, we can give 

recommendations on the required seed tree numbers in forests. Derived from the uphill and 

downhill mean dispersal distances and the deposited seed numbers at study sites B and E (cf. 

Fig. 3.4 and 3.6), 4 and 16 n ha-1 seed trees are needed under unfavourable conditions, e.g. 

non-mast years, respectively. This corresponds to seed tree grid intervals of 60 and 30 m, 
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respectively. For small groups of trees, the distance can be slightly larger, as illustrated in Fig. 

3.6. Higher source numbers are needed for ensuring the natural regeneration of disturbed sites 

if the present seed trees produce insufficient seed crops as a result of lacking tending 

measures. Thus, the aforementioned seed tree numbers should be considered as minimum 

numbers. 

For the practical management of regenerating disturbed sites, it can be concluded that seed 

dispersal is very sensitive to the distribution, the number and loss of seed trees in nearby 

forests as well as the size and inclination of disturbed areas. With respect to uphill dispersal, 

we assume that areas with insufficient numbers of deposited seeds will probably always occur 

in disturbed sites, unless the area is completely surrounded by seed trees. In case of disturbed 

sites of more than 4 ha, it is thus impossible to ensure a full cover of natural birch 

regeneration due to the limited seed dispersal distances. The natural regeneration of such large 

areas therefore should be supported by additional reforestation measures. In addition, seed 

trees surviving after a disturbance event must not be removed from the disturbed sites and 

seed trees in the vicinity of the sites should be promoted and vitalized wherever possible. 

Advance regeneration, which established underneath the canopy prior to the disturbance 

event, can also provide valuable benefits for regenerating disturbed sites. For the regeneration 

of small disturbed areas, which usually occur more frequently (Brang et al. 2015), a risk-

adapted forest management should include the ‘spatial optimization’ of birch seed trees within 

conifer forests, due to the limited dispersal distance of birch seeds in general. A few groups of 

aggregated seed trees within a forest stand or some seed trees along the forest edge and forest 

roads in otherwise pure conifer forests are not sufficient for regenerating disturbed areas, but 

can be a good initial for the integration of birch trees in conifer forests. Along forest roads, 

paths or trails, birch trees have the possibility of unrestricted crown growth on one side and 

thus more proliferous seed production. However, a network of more or less regularly 

distributed individual birches is needed within conifer forests, preferably even of small groups 

of seed trees, because silvicultural measures are easier to implement (see Cameron 1996; 

Hynynen et al. 2010) and the chances of successfully regenerating more distant sites is higher. 

For birches, Cameron (1996) mentioned required thinning intervals of 5-7 years for ensuring a 

good crown growth. Conservation, vitalization and propagation are important factors for 

annual birch seed crop quality and quantity, which makes more sense for tree groups than for 

single trees due to costs and the regulation of interspecific competition.  
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4.1 Abstract 

The role and mechanisms of endozoochorous seed dispersal in the natural regeneration of 

disturbed forest areas are still poorly understood. In central European forests endozoochorous 

seed dispersal is carried out by birds and mammals. Birds have the largest impact in terms of 

the dispersal distance. Combined knowledge of the behaviour of frugivorous bird species and 

of plant characteristics is necessary to predict the effectiveness of seed dispersal. We studied 

the spatial patterns of bird droppings under different structural elements such as stumps, up-

turned root plates and young tress on five windthrown forest sites (4-13 ha) at higher eleva-

tions and near the ridges (715-900 m a.s.l.) in the spruce-dominated Thuringian Forest in 

Germany. The average density of bird droppings differed significantly between dropping traps 

on unobstructed open areas (0.4 n m-²) and on dropping traps under structural elements on 

open areas (2.7 n m-²). The highest bird dropping densities occurred under towering dead 

branches (20 n m-²), upturned root plates (4.6 n m-²) and high stumps (3.9 n m-²). Dropping 

densities of 1-2 n m-² were recorded under young spruce trees on disturbed sites and under 

neighbouring old spruce forests. Dropping traps under artificial elements such as fences, un-

der low sawn stumps and under young birch and rowan trees captured almost no droppings. 

The results showed that birds mostly defecated from structural elements greater than 1 m in 

height. This essentially means that birds most often rested on dead parts of trees with a perch 

height of at least 1 m and with horizontal structures. The spatial distribution patterns of bird-

dispersed seeds on open areas depend, therefore, on the presence of such structural elements. 

 

Keywords 

Bird droppings, Dropping traps, Structural elements, Fruiting trees, Succession 

 

4.2 Introduction 

Monospecific, even-aged and large scale Norway spruce forests at moderately high elevations 

in central Europe are prone to severe disturbances brought about, for example, by snow, storm 

and bark beetles (Löf et al. 2010, Profft 2013). As a consequence, artificial reforestation is a 

seemingly unavoidable, and costly, implication of this kind of forest management. Often, 

however, forest companies lack the financial and human resources required to ensure the 

timely clearance from sites of damaged timber and the reforestation of the disturbed areas. A 

cheaper alternative is natural succession by pioneer tree species. 
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Pioneer forests in central Europe consist of tree species like Betula ssp., Salix ssp., Populus 

ssp. and Sorbus aucuparia L., which can colonise damaged areas rapidly after disturbance due 

to their regular fructification and capacity for large seed dispersal distances. Pioneer trees are 

able to mitigate the negative consequences associated with these open areas quickly, provided 

there are sources of pioneer seed trees in the vicinity of disturbed areas. Over time, pioneer 

tree species may also compensate the negative ecological effects caused by homogenous 

Norway spruce and Scots pine forests and act as lasting stabilising structural elements. These 

species generally also enhance forest biodiversity. Therefore, pioneer tree species have a high 

ecological relevance within the aforementioned ecosystems (see Kay 1985, Perala & Alm 

1990, Leder 1992, Schmidt 1998, 1999, Hacker 1999, Raspé et al. 2000, Kuzovkina & 

Quigley 2005, Argus 2006, Hynynen et al. 2010, Zerbe 2009). 

Pioneer tree species differ in relation to their seed distribution mechanisms. Seeds can be dis-

persed by wind (‘anemochorous’), water (‘hydrochorous’) or animals (‘zoochorous’) (see 

McVean 1956, Perala & Alm 1990, Worrell 1995, Raspé et al. 2000). The seed dispersal of 

anemochorous pioneer tree species has been investigated in numerous studies (see Leder 

1992, Karlsson 2001, Wagner et al. 2004, Huth 2009). The mechanisms of zoochorous – and 

especially of endozoochorous – dispersal and its ecological and economic contribution to the 

regeneration of disturbed forest areas are still poorly understood (cf. McDonnell & Stiles 

1983, McDonnell 1986, Hoppes 1987, Jordano & Schupp 2000, Stiebel 2003, Albrecht et al. 

2012). 

Endozoochorous seed dispersal, or dispersal after the passage of seed through the animal di-

gestive tract, is carried out mainly by birds (e.g., blackbird, starling and thrush) and small 

mammals (e.g., dormouse, bank vole, brown vole and squirrel) (Erlbeck 1998, Schmidt 1998, 

Paulsen & Högstedt 2002). After consumption of the seed-bearing fruit, the undamaged seeds 

are deposited elsewhere by the animals (Bakker et al. 1996, Paulsen & Högstedt 2002). As 

small mammals often have a small dispersal range, the distribution capability is limited (Bak-

ker et al. 1996, Kollmann 2000). Birds provide for the largest seed dispersal distance in endo-

zoochory, for example, of rowan seed (Sorbus aucuparia L.). 

An important aspect in the dispersal behaviour of birds is that the perches or habitats where 

defecation takes place are not chosen randomly (Obeso et al. 2011). Birds generally prefer to 

rest within protective forest edges or in more or less closed forest (Gregor & Seidling 1997, 

Jordano & Schupp 2000, Stiebel 2003, Żywiec & Ledwoń 2008, Żywiec 2014), although bird 

species differ in their habitat requirements (Stiebel 2003, Albrecht et al. 2012). Open areas 

without structural elements such as young trees, root plates, standing deadwood and stumps 



Chapter 4 

 

- 88 - 

are largely avoided by birds, as these bare sites offer no perches and resting places or protec-

tion against predators (McDonnell & Stiles 1983, Stimm & Böswald 1994, Stiebel 2003, 

Żywiec & Ledwoń 2008). However, local fruit availability in open areas attracts many bird 

species (McDonnell & Stiles 1983, Albrecht et al. 2012). The distribution of the seed of endo-

zoochorously dispersed tree species by frugivorous birds may, therefore, be hampered by 

structural limitations on disturbed forest sites. 

To predict endozoochorous seed dispersal on open areas, knowledge of the post-foraging be-

haviour of bird species and of the characteristics of the open area is necessary. By using rec-

ords of deposited droppings one can obtain knowledge of the behaviour of fruit-consuming 

bird species (McDonnell & Stiles 1983, García et al. 2007, Guitian & Munilla 2010). In 2015 

we studied the spatial patterns of bird droppings on windthrown forest sites in Thuringia, 

Germany. We adopted a case study approach as this represents a good means of studying 

complex phenomena in ecology and so enhancing understanding of and underpinning existing 

general ecological theory (Baxter & Jack 2008). The aim of the case study presented herein 

was to answer the following three questions: 

i) Are there more bird droppings in dropping traps under structural elements on windthrown 

sites than in dropping traps on open areas without these elements? 

ii)  Are certain structural elements preferred by frugivorous birds on open areas? 

iii) Is the height of a structural element an important factor that can serve to determine the 

relevance of an element as a dropping site? 

 

4.3 Materials and methods 

4.3.1 Study area 

The chosen study area is located at high elevations and along the ridges of the Thuringian 

Forest region, which is a mountain range in the German federal state Thuringia (50°40’N and 

10°45’E). It is situated between 400-982 m above sea level (a.s.l.), with a prevailing south-

westerly exposition. The region is characterised by many slopes and a near absence of 

plateaus (Burse et al. 1997, Waesch 2003, Gauer & Aldinger 2005). The mean annual 

precipitation ranges from 800 mm in the southwest to 1,200 mm along the ridges and falls to 

700 mm in the northeast (Burse et al. 1997, Gauer & Aldinger 2005, Bushart & Suck 2008). 

The annual average temperature in the region varies between 4-6 °C (Burse et al. 1997, 

Bushart & Suck 2008). The area is influenced by an Atlantic, moderately cool and moist 

central mountain climate (Burse et al. 1997, Gauer & Aldinger 2005). The dominant soil types 

of the forest sites are cambisols with low levels of base saturation and low to medium nutrient 
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contents (Gauer & Aldinger 2005). The landscape features a largely contiguous forest system 

of approximately 100,000 ha, with ~90 % forest cover, some small upland meadows in stream 

valleys and occasional small raised bogs. The study area is dominated by single-layered, 

even-aged Norway spruce forests (Picea abies (L.) Karst.), whereas the predominant potential 

natural vegetation types would be dominated by Luzulo-Fagetum and Asperulo-Fagetum 

beech forests (Frischbier et al. 2014). 

We selected five study sites (A-E) located on slopes and mountain tops (plateaus) at higher 

elevations and near the ridges of the Thuringian Forest (715-900 m a.s.l.). Each site consisted 

of an open area surrounded by Norway spruce forest stands. All open areas originated with 

the storm ‘Kyrill’ in January 2007 (Fink et al. 2009). Before the storm, the sites were 

dominated by 68-100 year-old Norway spruce stands. After the storm, the damaged areas 

were completely cleared, and no rowan seed trees were present in the open areas. The size of 

the open areas on these study sites ranged from 4.0-12.7 ha (Table 4.1), and only limited tree 

regeneration had occurred. The surrounding forest stands were also dominated by 59-

122 year-old Norway spruce forests, admixed with a small number of isolated birch (Betula 

pendula Roth), willow (Salix caprea L.) and rowan (Sorbus aucuparia L.) trees of a 

comparable age. 

 

Table 4.1 Characteristics of the study sites and the experimental design. 

Study sites A B C D E 

Elevation above sea 

level [m] 
845–900 735–765 840–880 865–895 715–775 

Topography 
mountain peak 

with one slope 

mountain peak 

with slopes 
flat area 

mountain peak 

with slopes 
slopes 

Size of open area [ha] 5.98 4.03 7.46 5.59 12.70 

Experimental design of 

dropping trap positions 

2 crossing line 

transects 

4 crossing line 

transects 

2 crossing line 

transects 

4 crossing line 

transects 

2 crossing line 

transects 

Number of dropping 

traps in neighbouring 

spruce forests [n] 

5 13 6 7 7 

Number of dropping 

traps located near struc-

tural elements [n] 

23 43 32 51 34 

Number of dropping 

traps without connection 

to structural elements [n] 

23 43 32 48 33 
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4.3.2 Experimental design 

Dropping traps were used to catch bird droppings on the windthrown sites. The traps were 

placed in 2015, along either two or four crossing line transects with intervals of 20 m between 

the traps, covering the open areas on each study site. The number, orientation and length of 

the line transects were individually adapted to the expanse and shape of each study site. The 

line transects were extended over the entire open area of each study site and into the surround-

ing spruce forests (Fig. 4.1). 

 

 

Fig. 4.1 Example of the experimental study design on study site C with two crossing line transects. 

 

The dropping traps consisted of textile pieces covering a surface area of 0.25 m² and affixed 

to the soil surface with hooks. Rainwater could percolate through the textile while bird drop-

pings remained on the textile surface. For each marked point along the line transects (see Fig. 

4.1), one trap was placed on the ground in a location without a structural element within 2 m 

of the marked point (category: ‘without structural element’), and a second trap was placed 

directly next to a structural element located within a maximum radius of 10 m from the 

marked point (category: ‘with structural element’) (see Fig. 4.1). The total of 179 traps with-

out structural elements on open sites was lower than the 183 traps on open sites with structur-

al elements. The reason for this was the high number of structural elements present on the 

study sites. The 38 additional dropping traps located in the neighbouring spruce forests (cate-

gory: ‘forest’) were placed close to the base of the stems of old spruce trees. 

The four main categories of structural element with the potential to serve as resting places for 

birds on open areas were as follows: (i) deadwood (dead Fagus sylvatica saplings, towering 

dead branches, upturned root plates, low and high stumps), (ii) established young trees of the 

species Norway spruce, silver birch, rowan and European beech, (iii) artificially introduced 

elements (game fencing and individual tree protectors), and (iv) old spruces on forest edges 

(Fig. 4.2). The heights of the selected structural elements ranged between 0.35 m and 25 m. 
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This variety of available structural elements allowed for study of the endozoochorous disper-

sal of seed by frugivorous birds on the five storm-felled study sites. The variation in the types, 

heights and numbers of the chosen structural elements is presented in Fig. 4.2 and Table 4.2. 

All dropping traps were mapped using a blumax Bluetooth GPS-4013 receiver. The traps 

were checked and cleaned every 3 or 4 weeks from July to November 2015, and only drop-

pings of frugivorous birds were counted.  

 

 

Fig. 4.2 The categories of structural element considered in the study differentiated by type, height (in brackets) 

and number (n). 

 

4.3.3 Data analysis 

The mean bird dropping density per m² was calculated for each dropping trap. Differences 

between the bird dropping densities between the study sites and the structural elements were 

analysed using the Kruskal-Wallis H-test as the data were not normally distributed. Where 

significant differences were ascertained (p < 0.05), the Mann-Whitney U-test was applied 

with a Bonferroni correction as an adjustment method to obtain additional information about 

the groups of differences. The Spearman and Pearson correlation coefficient (rho) was used to 

test association between area sizes or trap numbers with recorded bird dropping densities (Zar 

2010). The statistical analyses were conducted using the R software version 3.3.2 (R Core 

Team 2014). 
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4.4 Results 

The dropping traps situated within the categories ‘without structural element’, ‘with structural 

element’ and ‘forest’ represented 45 % (179 traps), 46 % (183 traps) and 9 % (38 traps) of all 

400 traps installed, respectively. 

The numbers of each the various types of structural element occurring within plots of the cat-

egory ‘with structural element’ differed quite strongly for the 183 dropping trap locations sit-

uated on open areas (Table 4.2). The most frequently used structural element on open sites 

was young spruce trees, accounting for 50 % of all 183 samples. The frequencies of the drop-

ping traps connected to young trees of other species as the corresponding structural elements 

were 5 % rowan, 2 % birch and 1 % beech. Dropping traps next to old spruce trees on forest 

edges accounted for 6 % of the 183 dropping trap locations situated in open areas under struc-

tural elements. The deadwood elements category accounted for 34 % of all 183 traps with 

structural elements in open areas, including 17 % high stumps, 8 % upturned root plates, 5 % 

towering dead branches, 4 % low stumps and 1 % dead beech. 

 

Table 4.2 Characterisation of recorded structural element heights and nearby bird droppings [n m-²] on all study 

sites A-E (Nd - number of recorded droppings, Nst - number of studied structural elements, max - maximum, min 

- minimum, sd - standard deviation). 

Structural element cate-

gory 
Nst Frequency 

Element height 

[m] 
Nd 

Bird droppings  

[n m-²]  

 
∑ [%] min mean max ∑ min mean max ± sd 

With structural element 183 100      
 

 
 

Deadwood 
 

      
 

 
 

Dead beech 2 1.1 2.0 5.0 8.0 24 4 12.0 20 ± 11.3 

Towering dead 

branch 
9 4.9 1.4 1.7 2.2 180 0 20.0 84 ± 30.8 

Root plate 14 7.7 1.2 1.7 2.5 64 0 4.6 48 ± 12.6 

High stump 31 16.9 1.1 3.5 20.0 120 0 3.9 56 ± 10.6 

Low stump 7 3.8 0.4 0.7 1.0 4 0 0.6 4 ± 2.9 

Young trees 
 

      
 

 
 

Spruce 92 50.3 0.7 2.8 12 96 0 1.1 16 ± 2.9 

Birch 4 2.2 1.2 2.0 2.8 0 0 0 0 - 

Rowan 9 4.9 1.3 1.8 2.5 0 0 0 0 - 

Beech 2 1.1 1.5 1.8 2.0 12 0 6.0 12 ± 8.5 

Artificial elements 3 1.6 1.8 1.9 2.0 0 0 0 0 - 

Old spruce trees 

(forest edge) 
10 5.5 > 20 > 20 > 20 17  0 1.7 12 ± 3.6 
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Fig. 4.3 Aggregate bird droppings [n m-²] for each dropping trap position, including all study sites. 

 

A total of 166 bird droppings were recorded on the 400 traps, corresponding to an average 

density of 0.42 droppings per m². However, whereas bird droppings were collected from 23 % 

of the 183 dropping traps situated under structural elements on open sites, only 8 % of the 

179 traps ‘without structural elements’ produced droppings. High bird dropping densities 

were found under deadwood elements, but the frequency of droppings varied greatly between 

elements within the deadwood category (Fig. 4.3). The highest mean bird dropping density 

was collected under towering dead branches with 20 n m-², followed by upturned root plates 

(4.6 n m-²), high stumps (3.9 n m-²) and finally low stumps (0.6n m-²). Dropping traps situated 

under artificial elements, and under young birch and rowan trees received no droppings. An 

average of 1.1 droppings per m² were found under young spruce and 1.7 n m-² on traps near 

old spruce trees at forest edges. In the neighbouring spruce stands (category: ‘forest’) the 

mean dropping density was 1.8 n m-² (Table 4.2). The more frequent use of certain structural 

elements (Nst) was not associated with a greater probability of the sampling of bird droppings 

(Nd) on these dropping traps (Pearson correlation: r = 0.44, p = 0.173). 

A comparison of the mean dropping densities in the categories ‘forest’ (1.7 n m-2) and ‘with 

structural elements’ (2.9 n m-²) with the category ‘without structural elements’ (0.4 n m-²) 

revealed significant differences (Kruskal-Wallis H-test: p = 0.0001 - Fig. 4.4). 
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Fig. 4.4 Mean bird droppings [n m-²] recorded for the three categories of dropping trap position, including all 

study sites (Mann-Whitney U-test: p < 0.001). 

 

With the exception of site E, the recorded mean densities of bird droppings on each open area 

were higher on traps under structural elements than on traps ‘without structure elements’, in-

creasing from 0.5 n m-² on site A to 7.9 n m-² on site C (Fig. 4.5). Considerably smaller densi-

ties were found on dropping traps ‘without structural elements’, with the mean droppings 

ranging from 0.3 n m-² (site D) to 0.7 n m-² (site B). On the traps in the neighbouring forests 

an average of 0-2.8 droppings per m² were sampled. Although no faeces were detected on the 

traps on the largest study site (site E, area: 12.7 ha), no negative correlation was found be-

tween the site size and the recorded dropping densities per category (without structural ele-

ment, with structural element, forest) independent of the occurrence of structural elements 

(Spearman correlation: r < -0.17, p > 0.096). 

 

 

Fig. 4.5 Bird droppings [n m-²] for each of the study sites A-E and the three categories of dropping trap position: 

‘forest’ (left), ‘with structural elements’ (middle) and ‘without structural elements’ (right). Letters indicate sig-

nificant differences between the areas A-E (Mann-Whitney U-test: p < 0.05). 

 



Chapter 4 

 

- 95 - 

The preference of frugivorous birds for different heights of the structural elements considered 

was also assessed. Faeces of frugivorous birds were only recorded on dropping traps located 

near structural elements higher than 1 m in height. Further analysis was done for the largest 

and tallest categories of structural element: young trees and deadwood. As can be seen in Fig. 

4.6, birds used all available deadwoods from 1-20 m in height, while droppings in the vicinity 

of young trees were only found under individuals between 1-4 m in height. No bird droppings 

were recorded on traps situated under young trees > 4 m. No correlation between element 

heights and dropping densities was detected for either of the above element categories, or the 

structural elements in general (Spearman correlation: r < 0.1 and p> 0.1 - Fig. 4.6). 

 

 

Fig. 4.6 Measured bird droppings [n m-²] under young trees (left) and deadwoods (right) on all open areas plotted 

against the heights [m] of the structural elements (p - p-value of correlation, r - Spearman correlation coeffi-

cient). 

 

4.5 Discussion  

The recorded densities of frugivorous bird droppings on traps can be used as an indicator of 

the birds’ preferred resting places in disturbed forest areas, for example, areas damaged by 

storm. 

The results of the study revealed that structural elements are a requirement for the input of 

seed by means of endozoochorous seed dispersal by frugivorous birds, as droppings were rec-

orded exclusively in the vicinity of structural elements. Storm-felled areas without structural 

elements have low potential for sufficient natural regeneration of tree species by means of 

endozoochorous seed dispersal by birds (see McDonnell & Stiles 1983, Jordano & Schupp 

2000). Comparable results were documented by Ferguson and Drake (1999) and Żywiec and 

Ledwoń (2008) who found bird droppings mostly under trees of closed forests, and rarely in 

large gaps or open areas without structural complexity. McDonnell and Stiles (1983), Koll-
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mann (2000) and Żywiec and Ledwoń (2008) mentioned that birds prefer perches or resting 

places that protect them against predators and offer a wide field of view during defecation. 

Therefore, structural elements in open areas, which can be used as perches, attract birds and 

increase seed input through bird droppings (McDonnell & Stiles 1983, Ferguson & Drake 

1999, Kollmann 2000). 

Jordano and Schupp (2000), Stiebel (2003), Żywiec et al. (2013) and Żywiec (2014) men-

tioned that birds usually defecate seeds within a radius of 30-40 m around the seed source due 

to the short retention time of the indigestible seeds in the small guts of frugivorous birds of 

30 minutes to a maximum of two hours (Barnea et al. 1992, Bonn & Poschlod 1998). This 

results in so-called seed shadows with high seed densities in the immediate vicinity of seed 

trees and resting places (Stimm & Böswald 1994, Jordano & Schupp 2000). This behaviour of 

frugivorous birds, their movements and their species-specific habitat preferences influence the 

spatial patterns of seed distribution significantly (Hoppes 1987, Jordano & Schupp 2000, Na-

than & Muller-Landau 2000). To facilitate the arrival of seed of endozoochorously dispersed 

tree species on large disturbed forest sites, a complete clearing of ‘key structures’ on storm-

felled areas should be avoided. 

The results of this study showed a preference of frugivorous birds for standing structural ele-

ments and elements at least 1 m high. This was reflected in the findings presented by McDon-

nell and Stiles (1983) and McDonnell (1986). Those authors mentioned that structural ele-

ments with prevailing vertical structures, horizontal branches and a sufficient perch height of 

at least 1.5 m are the resting places most frequently chosen by birds on open areas, independ-

ent of crown cover and the resulting predator protection. In our study, bird droppings were 

only found in the vicinity of young trees where these did not exceed 4 m in height. We as-

sume this upper limit may be a methodical restriction associated with the positioning of the 

dropping traps on the ground. With increasing tree height and increasing branchiness, the 

probability of faeces being caught on the dropping traps decreases. We assume that droppings 

were probably intercepted by one of the many branches above the dropping trap, as droppings 

were recorded on traps under deadwood structures up to 20 m in height. 

The results of this study also revealed that birds rest on dead tree parts more often than on 

other structural elements. Young birch, rowan and spruce trees of low dimensions were 

avoided by frugivorous birds, probably due to the vertically-oriented and flexible branches. 

The highly elastic thin twigs and branches and their propensity to bend under the birds’ 

weight may have rendered them unattractive as resting places. The horizontally-oriented, less 

flexible branches of European beech trees were more frequently used as perches but the num-
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bers of young beech trees on these higher elevation sites in the Thuringian forest is low, espe-

cially after disturbances. Artificial structural elements without horizontal structures, such as 

fences or tree protectors, appeared not to be viable alternatives to deadwood structures or 

young trees (see Stimm & Böswald 1994). 

 

4.6 Conclusions for silvicultural practice 

The best conditions to enhance endozoochorous seed dispersal by frugivorous birds in storm-

felled areas can be created by (i) leaving lying and standing deadwood with larger branches, 

(ii) leaving a sufficient number of tall stumps with branches and (iii) leaving upturned root 

plates. These elements promote post-foraging seed input by frugivorous birds and accelerate 

succession (see Stimm & Böswald 1994, Dale et al. 2001, Stiebel 2003). Structural elements 

are also useful for certain bird species as breeding and nesting places (Hunter 1999, Fuller 

2013). 

Several studies investigating ornithology and regeneration in connection with endozoochorous 

seed dispersal have shown that birds are able to move seeds from source trees over distances 

of 100 m (Leder 1992, Bakker et al. 1996, Stiebel 2003). Where already established, young 

trees of species dispersed by birds should be maintained on storm-felled areas, even though 

they are not often used by birds as resting places. Fruit-bearing tree species, such as rowan, 

produce fruits at an early age and in abundant quantities in the absence of competition pres-

sure (Gockel 2016). The young trees established on disturbed areas contribute to a spatial 

network of seed sources and make open areas more attractive for birds due to the availability 

of fruits (McDonnell & Stiles 1983, Herrera et al. 1994, Albrecht et al. 2012). This will fur-

ther encourage endozoochorous seed flow into open areas. 

In terms of the practical management of the regeneration of storm-felled areas or other dis-

turbed forest areas it can be concluded that complete site clearance, connected with a reduc-

tion of structural diversity, is justified neither from an economic nor an ecological perspec-

tive. The only legitimate reason for partial site clearance might be the removal of operational 

hazards, which may originate from obstacles such as upturned root plates or standing dead-

wood. Retained seed trees of the desired species are a prerequisite to preserve the connectivity 

of species between storm-felled sites and neighbouring forests (Gregor & Seidling 1997, 

Gockel 2016). 

 

 

 



Chapter 4 

 

- 98 - 

Acknowledgements 

This work was supported financially by a scholarship provided by the foundation ‘Deutsche 

Bundesstiftung Umwelt’ (DBU) to promote young scientists and by ThüringenForst, Forestry 

Research and Competence Centre, Gotha, Germany. We would like to thank Sonja Gockel 

(Thuringian forest conversion project) and colleagues from ThüringenForst for providing the 

study sites, Jörg Wollmerstädt for field assistance, Kathrin and Klaus Tiebel for helping to 

produce the traps and David Butler Manning for proofreading the text. 

 

4.7 References 

Albrecht J, Neuschulz EL, Farwig N (2012). Impact of habitat structure and fruit abundance 

on avian seed dispersal and fruit predation. Basic Applied Ecology Journal 13: 347-354. - 

doi: https://doi.org/http://dx.doi.org/10.1016/j.baae.2012.06.005 

Argus GW (2006). Guide to Salix (willow) in the Canadian Maritime Provinces (New Bruns-

wick, Nova Scotia, and Prince Edward Island). Canadian Museum of Nature, Ottawa, 

Canada, pp. 49. [online] URL: 

http://accs.uaa.alaska.edu/files/botany/publications/2006/GuideSalixCanadianAtlanticMa

ritime.pdf 

Bakker JP, Poschlod P, Strykstra RJ, Bekker RM, Thompson K (1996). Seed banks and seed 

dispersal: important topics in restoration ecology. Acta Botanica Neerlandica 45, 461-

490. - doi: https://doi.org/10.1111/j.1438-8677.1996.tb00806.x 

Barnea A, Yom-Tov Y, Friedmann J (1992). Effect of frugivorous birds on seed dispersal and 

germination of multi-seeded fruits. Acta Oecologica 13: 209-219. - doi: 

https://doi.org/10.1023/A:1013282313035 

Baxter P, Jack S (2008). Qualitative case study methodology: study design and implementa-

tion for novice researchers. The Qualitative Report 13: 544-559. - doi: 

https://nsuworks.nova.edu/tqr/vol13/iss4/2. 

Bonn S, Poschlod P (1998). Ausbreitungsbiologie der Pflanzen Mitteleuropas [Biology of 

plant distribution in central Europe]. Quelle & Meyer Verlag, Wiesbaden, Germany, pp. 

404. 

Burse K-D, Schramm H-J, Geiling S, Meinhardt H, Schölch M (1997). Die forstlichen 

Wuchsbezirke Thüringens - Kurzbeschreibung [The forest growth areas of Thuringia - 

short description]. Mitteilungen der Landesanstalt für Wald und Forstwirtschaft, Gotha, 

Germany, pp. 199. 



Chapter 4 

 

- 99 - 

Bushart M, Suck R (2008). Potenzielle natürliche Vegetation Thüringens [Possible natural 

vegetation of Thuringia]. Schriftenreihe der Thüringer Landesanstalt für Umwelt und Ge-

ologie, Jena, Germany, pp. 139. 

Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland 

LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001). 

Climate change and forest disturbances. BioScience 51: 723-734. - doi: 

https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 

Erlbeck R (1998). Die Vogelbeere (Sorbus aucuparia) - ein Porträt des Baumes des Jahres 

1997 [The rowan (Sorbus aucuparia) - a portrait of the tree of the year 1997]. In: “Bei-

träge zur Vogelbeere [Contributions to the rowan]” (Schmidt O ed). LWF-Wissen 17, 

Germany, pp. 2-14. 

Ferguson RN, Drake DR (1999). Influence of vegetation structure on spatial patterns of seed 

deposition by birds. New Zealand Journal of Botany 37: 671-677. - doi: 

https://doi.org/10.1080/0028825X.1999.9512661 

Fink AH, Brücher T, Ermert V, Krüger A, Pinto JG (2009). The European storm Kyrill in 

January 2007: synoptic evolution, meteorological impacts and some considerations with 

respect to climate change. Natural Hazards and Earth System Sciences 9: 405-423. - doi: 

https://doi.org/10.5194/nhess-9-405-2009 

Frischbier N, Profft I, Hagemann U (2014). Potential impacts of climate change on forest hab-

itats in the Biosphere Reserve Vessertal-Thuringian Forest in Germany. In: “Managing 

Protected Areas in Central and Eastern Europe under Climate Change - Advances in 

Global Change Research” (Rannow S, Neubert M eds). Springer Science and Business 

Media, Dordrecht, Germany, pp. 243-257. 

Fuller RJ (2013). Searching for biodiversity gains through woodfuel and forest management. 

Journal of Applied Ecology 50: 1295-1300. - doi: https://doi.org/10.1111/1365-

2664.12152 

García D, Martínez I, Obeso JR (2007). Seed transfer among bird-dispersed trees and its con-

sequences for post-dispersal seed fate. Basic and Applied Ecology 8: 533-543. - doi: 

https://doi.org/doi:10.1016/j.baae.2006.11.002 

Gauer J, Aldinger E (2005). Waldökologische Naturräume Deutschlands: Forstliche Wuchs-

gebiete und Wuchsbezirke - mit Karte 1:1.000.000 [Forest ecological natural areas of 

Germany: forest growth areas and growth districts - with map 1:1,000,000]. Mitteilungen 

des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung, Stuttgart, Germa-

ny, pp. 324. 



Chapter 4 

 

- 100 - 

Gockel S (2016). Wachstumsreaktionen einzeln eingemischter Vogelbeeren (Sorbus aucupa-

ria L.) in Fichtenjungbeständen nach Freistellung [Growth reactions of single mixed ro-

wans (Sorbus aucuparia L.) in young spruce stands after thinning]. PhD thesis, Faculty of 

Environmental Science, Dresden University of Technology, Dresden, Germany, pp. 348. 

Gregor T, Seidling W (1997). 50 Jahre Vegetationsentwicklung auf einer Schlagfläche im 

osthessischen Bergland [50 years’ succession on a woodland clearing in the mountain ar-

ea of eastern Hesse]. Forstwissenschaftliches Centralblatt 116: 218-231. - doi: 

https://doi.org/10.1007/BF02766899 

Guitian J, Munilla I (2010). Responses of mammal dispersers to fruit availability: Rowan 

(Sorbus aucuparia) and carnivores in mountain habitats of northern Spain. Acta Oecolog-

ica 36: 242-247. - doi: https://doi.org/10.1016/j.actao.2010.01.005 

Hacker H (1999). Die Insektenwelt der Weiden [The insects on willows]. In: „Beiträge zur 

Silberweide [Contributions to the white willow]“ (Schmidt O ed.), LWF 24, Germany, 

pp. 25-27. 

Herrera CM, Jordano P, López-Soria L, Amat JA (1994). Recruitment of a mast-fruiting, bird-

dispersed tree: Bridging frugivore activity and seedling establishment. Ecological Mono-

graphs 64: 315-344. - doi: https://doi.org/10.2307/2937165 

Hoppes WG (1987). Pre- and post-foraging movements of frugivorous birds in an eastern 

deciduous forest woodland, USA. Oikos 49: 281-290. - doi: 10.2307/3565762 

Hunter ML (1999). Maintaining biodiversity in forest ecosystems. Cambridge University 

Press, Cambridge, UK, pp. 716.  

Huth F (2009). Untersuchungen zur Verjüngungsökologie der Sand-Birke (Betula pendula 

Roth) [Study of regeneration cycle of sand birch (Betula pendula Roth)]. PhD thesis, 

Faculty of Forest, Geo and Hydro, Dresden University of Technology, Dresden, Germa-

ny, pp. 383. 

Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P (2010). Silviculture 

of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 

83: 103-119. - doi:10.1093/forestry/cpp035 

Jordano P, Schupp EW (2000). Seed disperser effectiveness: The quantity component and 

patterns of seed rain for Prunus mahaleb. Ecological Monographs 70: 591-615. - doi: 

https://doi.org/10.1890/0012-9615(2000)070[0591:SDETQC]2.0.CO;2  

Karlsson M (2001). Natural regeneration of broadleaved tree species in southern Sweden - 

Effects of silvicultural treatments and seed dispersal from surrounding stands. PhD thesis, 



Chapter 4 

 

- 101 - 

Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 

Alnarp, Sweden, pp. 44. 

Kay QON (1985). Nectar from willow catkins as a food source for blue tits. Bird Study 32: 

40-44. - doi: https://doi.org/10.1080/00063658509476853 

Kollmann J (2000). Dispersal of fleshy-fruited species: a matter of spatial scale? Perspectives 

in Plant Ecology, Evolution and Systematics 3: 29-51. - doi: 

https://doi.org/10.1078/1433-8319-00003 

Kuzovkina YA, Quigley MF (2005). Willows beyond wetlands: uses of Salix L. species for 

environmental projects. Water, Air, & Soil Pollution 162: 183-204. - doi: 

https://doi.org/https://doi.org/10.1007/s11270-005-6272-5 

Leder B (1992). Weichlaubhölzer: Verjüngungsökologie, Jugendwachstum und Bedeutung in 

Jungbeständen der Hauptbaumarten Buche und Eiche [Pioneer tree species: Regenerati-

on, youth growth and importance in young stands of the main tree species beech and o-

ak]. Landesanstalt für Forstwirtschaft Nordrhein-Westfalen, Arnsberg, Germany, pp. 416. 

Löf M, Bergquist J, Brunet J, Karlsson M, Welander NT (2010). Conversion of Norway 

spruce stands to broadleaved woodland – regeneration systems, fencing and performance 

of planted seedlings. Ecological Bulletins 53: 165-173.  

McDonnell MJ (1986). Old field vegetation height and the dispersal pattern of bird-

disseminated woody plants. Bulletin of the Torrey Botanical Club 113: 6-11. - doi: 

https://doi.org/10.2307/2996227 

McDonnell MJ, Stiles EW (1983). The structural complexity of old field vegetation and the 

recruitment of bird-dispersed plant species. Oecologia 56: 109-116. - doi: 

10.1007/BF00378225 

McVean DN (1956). Ecology of Alnus glutinosa (L.) Gaertn.: VI. Post-glacial history. Journal 

of Ecology 44: 331-333. - doi: 10.2307/2256825 

Nathan R, Muller-Landau HC (2000). Spatial patterns of seed dispersal, their determinants 

and consequences for recruitment. Tree 15: 278-285. - doi: 

https://doi.org/https://doi.org/10.1016/S0169-5347(00)01874-7 

Obeso JR, Martínez I, García D (2011). Seed size is heterogeneously distributed among desti-

nation habitats in animal dispersed plants. Basic and Applied Ecology 12: 134-140. - doi: 

https://doi.org/10.1016/j.baae.2011.01.003 

Paulsen TR, Högstedt G (2002). Passage through bird guts increases germination rate and 

seedling growth in Sorbus aucuparia. Functional Ecology 16: 608-616. - doi: 

https://doi.org/10.1046/j.1365-2435.2002.00668.x 



Chapter 4 

 

- 102 - 

Perala DA, Alm AA (1990). Reproductive ecology of birch: a review. Forest Ecology and 

Management 32: 1-38. - doi:10.1016/0378-1127(90)90104-J 

Profft I (2013): Waldumbau in den mittleren, Hoch- und Kammlagen des Thüringer Waldes 

[Forest restoration in the middle, high elevations and along the ridges of the Thuringian 

Forest]. Auftaktkolloquium - Waldumbau in den mittleren, Hoch- und Kammlagen des 

Thüringer Waldes. ThüringenForst-Anstalt öffentlichen Rechts, Gotha, Germany, 

28.02.2013. 

Raspé O, Findlay C, Jacquemart A-L (2000). Sorbus aucuparia L. Journal of Ecology 88: 

910-930. - doi: 10.1046/j.1365-2745.2000.00502.x 

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna. Web Site. URL: https://www.R-project.org 

Schmidt O (1999). Vogelwelt und Weiden [Birds and willows]. In: „Beiträge zur Silberweide 

[Contributions to the white willow]“ (Schmidt O ed.), LWF 24, Germany, pp. 21-24. 

Schmidt O (1998). Vogelbeere und Tierwelt [Rowan and animals]. In: “Beiträge zur Vogel-

beere [Contributions to the rowan]” (Schmidt O ed). LWF-Wissen 17, Germany, pp. 59-

64. 

Stiebel H (2003). Frugivorie bei mitteleuropäischen Vögeln [Frugivorie of central European 

birds]. PhD thesis, Faculty of mathematics and natural sciences, Carl-von-Ossietzki-

University of Oldenburg, Wilhelmshaven, Germany, pp. 219. 

Stimm B, Böswald K (1994). Die Häher im Visier. Zur Ökologie und waldbaulichen Bedeu-

tung der Samenausbreitung durch Vögel [The jays in the sights. The ecology and silvicul-

tural importance of seed dispersal by birds]. Forstwissenschaftliches Centralblatt 113: 

204-223. - doi: https://doi.org/10.1007/BF02936698 

Waesch, G., 2003. Montane Graslandvegetationen des Thüringer Waldes: Aktueller Zustand, 

historische Analyse und Entwicklungsmöglichkeiten [Montane grassland vegetation of 

the Thuringian Forest: current state, historical analysis and development opportunities]. 

Cuvillier Verlag, Göttingen, Germany, pp. 219. 

Wagner S, Wälder K, Ribbens E, Zeibig A (2004) Directionality in fruit dispersal models for 

anemochorous forest trees. Ecological Modelling 179: 487-498. - doi: 

https://doi.org/https://doi.org/10.1016/j.ecolmodel.2004.02.020 

Worrell R (1995). European aspen (Populus tremula L.): a review with particular reference to 

Scotland: I. Distribution, ecology and genetic variation. Forestry 68: 93-105. - doi: 

10.1093/forestry/68.2.93 



Chapter 4 

 

- 103 - 

Zar JH (2010). Biostatistical analysis. Prentice Hall, Upper Saddle River, New Jersey, USA, 

pp. 944. 

Zerbe S (2009). Renaturierung von Waldökosystemen [Restoration of forest ecosystems]. In: 

“Renaturierung von Ökosystemen in Mitteleuropa [Restoration ofecosystemsin central 

Europe]“ (Zerbe S, Wiegleb G eds.). Spektrum Akademischer Verlag, Heidelberg, Ger-

many, pp. 153-182. 

Żywiec M (2014). Seedling survival under conspecific and heterospecific trees: the initial 

stages of regeneration of Sorbus aucuparia, a temperate fleshy-fruit pioneer tree. Annales 

Botanici Fennici 50: 361-371. - doi: https://doi.org/10.5735/085.050.0611 

Żywiec M, Holeksa J, Wesołowska M, SzewczykJ, Zwijacz-Kozica T, Kapusta P (2013). 

Sorbus aucuparia regeneration in a coarse-grained spruce forest - a landscape scale. 

Journal of Vegetation Science 24: 735-743. - doi:10.1111/j.1654-1103.2012.01493.x 

Żywiec M, Ledwoń M (2008). Spatial and temporal patterns of rowan (Sorbus aucuparia L.) 

regeneration in West Carpathian subalpine spruce forest. Plant Ecology 194: 283-291. - 

doi: 10.1007/s11258-007-9291-z 



Chapter 5 

 

- 104 - 

Chapter 5 
 

 

 

Soil seed banks of pioneer tree species in European temper-
ate forests: a review 

 

Katharina Tiebel1, Franka Huth1, Sven Wagner1 (2018) 

iForest 11: 48-57. - doi: 10.3832/ifor2400-011 

 

 

 

 

 
 

 

 

 
1TU Dresden, Institute of Silviculture and Forest Protection, Chair of Silviculture, Pienner Str. 8,  

01737 Tharandt, Germany 



Chapter 5 

 

- 105 - 

5.1 Abstract 

The ability of short-lived tree species such as birch, alder, willow, poplar and rowan to form 

even a short-term soil seed bank is discussed controversially in the literature. Soil seed banks 

are an important component of succession and regeneration in ecosystems. Following disturb-

ance, buried viable seeds germinate and the seedlings that establish cover the disturbed, ex-

posed soil surfaces. The objective of this study was to review the literature on soil seed bank 

research carried out in central and north-west European temperate forests to provide an over-

view of the ability of pioneer tree species to form a viable seed bank. The review of 33 publi-

cations revealed that birch is the only pioneer tree species of temperate forests with longer-

lived seeds, persisting in the soil for 1-5 years. Birch seeds remain viable in deeper soil layers 

(5-10 cm), so birch may be assigned to the short-term persistent soil seed bank type. The 

seeds of alder, willow and poplar would appear to be short-lived. Maximum seed densities of 

all tree species were found in the upper soil layers. With increasing soil depth, seed density 

declined. Viable seeds of rowan were not detected in any of the soil seed bank studies, alt-

hough seed trees were present. We found that in spite of the capacity for long seed dispersal 

distances, high densities of birch, alder and willow seeds were only observed in close proxim-

ity to seed trees. The higher the numbers of seed trees, the higher the seed densities in soils. 

Maximum seed densities were recorded during and shortly after seed rains had occurred. Our 

results reveal that a birch seed bank may compensate for years of low seed production levels. 

However, as the seed bank is only short-term persistent, it must be supplemented by fresh 

seeds from surrounding seed trees as often as possible to guarantee a continuous capacity for 

regeneration. 

 

Keywords 

Betula, Buried Seeds, Propagule Bank, Seed Density, Viable Seeds, Germination 

 

5.2 Introduction 

Soil seed banks are an important component in the succession and regeneration of ecosys-

tems. Soil seed banks are buried seed reserves, which are viable and able to germinate under 

changing environmental conditions (Fenner 1985, Thompson et al. 1997, Berger et al. 2004). 

The formation of a soil seed bank is a strategy developed by plants to prevent germination 

under unfavorable soil and climate conditions (Bradbeer 1988, Leck et al. 2008, Saatkamp et 

al. 2014). In disturbed areas of forest, seeds of different species are granted an opportunity to 



Chapter 5 

 

- 106 - 

germinate and cover the open soil surface, even though these species may not have been rep-

resented in this area for long time (Fenner 1985, Bossuyt & Hermy 2001). Soil seed banks 

could contribute significantly to the reforestation of disturbed woodlands. They may also 

compensate for a recent absence of seed sources within or around a damaged area.  

Soil seed banks of forests generally exhibit lower species diversity and seed densities than 

those present in other ecosystems (Kalamees & Zobel 1998, Hopfensperger 2007, Bossuyt & 

Honnay 2008). Deciduous, young or managed forests are characterized by larger seed num-

bers and greater species richness than coniferous, older or unmanaged forests (Donelan & 

Thompson 1980, Bossuyt & Hermy 2001, Godefroid et al. 2006, Ebrecht & Schmidt 2008, 

Plue et al. 2010). The seed bank compositions of northern and western European forests differ 

from those of eastern European forests (Bossuyt et al. 2002). The composition of seed banks 

and ground flora in forests also differ from each other (Bossuyt & Hermy 2001, Bossuyt et al. 

2002, Zobel et al. 2007). In central European temperate forests, soil seed banks predominantly 

contain herbaceous plant species of early or middle successional stages. The seed banks are 

refreshed by seeds of species that emerge in case of disturbance in forest ecosystems. Species 

of early or middle successional stages are light demanding species, adapted to disturbances, 

and able to form a persistent soil seed bank (Donelan & Thompson 1980, Bossuyt et al. 2002, 

Godefroid et al. 2006). Hopfensperger (2007) suggested that pioneer species, present in early 

successional stages, can form a persistent seed bank at the beginning of succession to wood-

land. Seeds of ancient, shade-tolerant forest species, shrubs and tree species in general, are not 

well represented in the soil seed bank, because the seeds of these species do not remain viable 

for long (Donelan & Thompson 1980, Bossuyt & Hermy 2001). However, pioneer tree spe-

cies are also regarded as light demanding species. In Europe, Betula spp., Salix spp., Populus 

spp., Alnus spp. and Sorbus aucuparia L. represent deciduous pioneer tree species. These tree 

species are short-lived species, which produce large quantities of seeds, have long seed dis-

persal distances and exhibit fast juvenile growth (Perala & Alm 1990, Raspé et al. 2000, 

Zerbe 2001). Pioneer tree species are very common in early successional stages and in dis-

turbed woodlands in central Europe (Zerbe 2001). With climate change, and the associated 

increase in the frequency and intensity of disturbances (e.g., storm events – Seidl et al. 2014), 

pioneer tree species are of growing importance for natural reforestation, and consequently 

their soil seed banks too. Pioneer tree species can regenerate rapidly and successfully colonize 

large areas in years of high seed production (Perala & Alm 1990, Leder 1992, Raspé et al. 

2000, Argus 2006). As a consequence, pioneer tree species can mitigate negative consequenc-

es associated with disturbed areas, such as soil erosion and the loss of nutrients (Barnes et al. 



Chapter 5 

 

- 107 - 

1998, Schölch 1998, Argus 2006, Zerbe 2009, Fischer et al. 2016). However, pioneer tree 

species exhibit irregular seed production patterns (mast years – Sarvas 1952, Bjorkbom 1967, 

Holm 1994, Osumi & Sakurai 1997, Sperens 1997, Hynynen et al. 2010). A question that 

arises is whether pioneer tree species have the potential to regenerate from a soil seed bank in 

non-mast years, as shown by Hopfensperger (2007) for pioneer species. Currently little is 

known about the capacity of pioneer tree species in European temperate forests to establish 

seed banks, or how long their seeds persist in soil. Some burial experiments showed that ro-

wan and birch seeds remain viable in soil for more than 5 years (Miles 1974, Granström & 

Fries 1985, Granström 1987, Skoglund & Verwijst 1989) and sometimes viable birch and 

willow seeds were detected in soil samples collected from deeper mineral soil layers (Hill & 

Stevens 1981, Staaf et al. 1987, Bakker et al. 1996a, Kalamees & Zobel 1998, Dölle & 

Schmidt 2009). However, the ability of pioneer tree species to form at least a short-term seed 

bank is controversial in the literature. The short viability period of pioneer tree seeds after 

dispersal is often mentioned and many authors support the hypothesis that pioneer tree species 

do not generally form a seed bank (Hill & Stevens 1981, Amezaga & Onaindia 1997, Buckley 

et al. 1997, Ebrecht & Schmidt 2008, Heinrichs 2010). By contrast, Granström & Fries 

(1985), Osumi & Sakurai (1997), Erlbeck (1998), Rydgren et al. (1998) and Decocq et al. 

(2004) suggested that birch, alder and rowan may make up part of the forest seed bank. If pio-

neer tree species have the capacity to establish a seed bank, years with low levels of fructifica-

tion can be compensated for and the colonization of open areas, for example, would not de-

pend exclusively on annual seed rain (Osumi & Sakurai 1997).  

In this review, available data pertaining to densities of birch, alder, willow, poplar and rowan 

in soil seed banks in central and north-west European temperate forests are documented based 

on a survey of the literature. The aim was to summarize the general findings and to identify 

knowledge gaps concerning the soil seed bank with respect to these short-lived tree species. 

This species-specific information were discussed in the context of the meaning of the soil 

seed bank, and in relation to disturbance regimes, succession and reproductive ecology.  

 

5.3 Methods of literature search 

Our review is based on studies carried out in central and north-west European temperate for-

ests published in the period 1979-2013. The keywords “seed bank”, “propagule bank” and 

“buried seeds” were used in combination with either “forest” or “woodland”. An article was 

selected when the seed density per m² could be calculated in order to make the results compa-

rable with those of other studies. A total of 33 studies from 14 countries matched the criteria 
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(Fig. 5.1). Most of papers were found by searching the “Web of Science” database, meaning 

the papers had to be published in international peer reviewed journals with an impact factor. 

Only 3 papers included in the review were published in non-peer reviewed journals, 2 of 

which were written in English (Ebrecht & Schmidt 2008, Heinrichs 2010, Jedrzejczak 2013). 

These papers were found through citations within other international soil seed bank papers. 

The forests presented in all of the chosen studies were considered to be distinct sample plots 

wherever the authors classified the study sites and their sample plots as independent (e.g., 

Staaf et al. 1987, Dougall & Dodd 1997, Dölle & Schmidt 2009). In this way, 136 sample 

plots were recorded, which differed in their histories, forest types, stand ages, canopy densi-

ties and management strategies (see Table S1 in Supplementary material, p 131). The mean 

seed density per m² of birch (Betula spp.), alder (Alnus glutinosa [L.] Gaertn.), aspen (Popu-

lus tremula L.) and willow (Salix spp.) was calculated for each plot. The soil samples differed 

in their depths and in terms of the soil layers. Authors took samples from humus and mineral 

soil, or only from the mineral soil layer. In some cases no information about whether litter and 

humus were removed prior to sampling was provided (Table 5.1). In this paper the term 

“birch” is used to represent Betula pendula and B. pubescens, with “Salix spp.” used to indi-

cate all willow species detected in soils. This corresponds to the approaches used by the au-

thors of the selected studies.  

 

 

Fig. 5.1 Location of the 33 selected soil seed bank studies in Europe.  
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Table 5.1 Summary of the 33 selected seed bank studies in central and north-west European temperate forests 

and the information about seed densities provided. (‡) Depth of core: (?) not clear whether the humus layer was 

tested or not; (-) humus layer not tested; (+) humus layer tested separately; (++) humus and mineral soil layer 

tested together; (5) soil sample depth of 0-5 cm in the mineral soil. (†) Temperature: (1) cold stratification of soil 

samples before seedling-emergence treatment; (2) cold stratification of soil samples integrated within the seed-

ling-emergence treatment. (§) Species: (?) the species or genus with individually defined small numbers in the 

soil was excluded from the presentation; (+) species or genus detected; (-) species or genus not detected; (-/-) 

tree species excluded, which germinated in sterile control trays. 

Author(s) & Year 

Date of 

soil 

sampling 

Depth of 

core (‡) 

(cm) 

Seedling-emergence method 
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Temperature (†) 
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night) 
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Amrein et al. 2005 Jan (-) 10 16 °C 16/8 h  5 - - - - - 

Augusto et al. 2001 
Feb (-) 5 

nursery and closed 

shade house 
-  7 + - -/- - - 

Bakker et al. 1996a Apr (-) 10 25 - 45/15 °C  + 4.5 + - + - - 

Bekker et al. 2000 Mar (?) 10 25/15 °C 12/12 h + 3 + + + - - 

Berger et al. 2004 Feb, Mar,  

Jun, Sept 
(+) 35 glasshouse 6-9 pm  3-4 + - + - - 

Bossuyt et al. 2002 Mar, Sept (-) 20 14 - 25 °C 16/8 h  5 + - - - - 

Brown & Oosterhuis 1981 Apr (-) 15 glasshouse 1) -  24 + - + - - 

Buckley et al. 1997 
Nov-Feb (?) 10 

unheated polythene 

tunnel 
-  6-9 + - - - - 

Decocq et al. 2004 Jun (-) 20 20/16 °C 12/12 h  6 2) + + - - - 

Dölle & Schmidt 2009 Mar (-) 30 unheated glasshouse   12 + - + - - 

Donelan & Thompson 1980 May (?) 7 unheated glasshouse   3 + - - - - 

Dougall & Dodd 1997 
Apr (-) 10 

polythene tun-

nel/glasshouse 
  4 + - - - - 

Ebrecht & Schmidt 2008 Mar (+) 10 unheated glasshouse   10 + - - - - 

Falińska 1999 Mar/Apr,  

Sep/ Oct 
(?) 3 18 - 22 °C  + 36 + + + - - 

Grandin 2001 Jul (+) 15 22/5 °C 1) 16/8 h  16 2) + ? ? ? ? 

Granström 1982 Jul (+) 5 22/12 °C 1) 18/6 h + 6 + - - - - 

Granström 1988 Apr (+) 6 22/12 °C 1) 18/6 h  63 2) + - + - - 

Heinrichs 2010 Mar (+) 20 unheated glasshouse   12 + ? -/- + ? 

Hester et al. 1991 May (++) 5 glasshouse   12 + - - - - 

Hill & Stevens 1981 Apr (+) 10 unheated glasshouse   8 + - - - - 

Jankowska-Błaszczuk 1998 Mar (?) 5 unheated glasshouse   43 + - - - - 

Jankowska-Błaszczuk et al. 

1998 

early 

spring 
(-) 10 unheated glasshouse   8 + - - - - 

Jaroszewicz 2013 Jun (-) 10 unheated glasshouse   25 + ? ? ? ? 

Jędrzejczak 2013 Oct, Nov (?) 10 18 - 24 °C 12/12 h  5 + - - - - 

Kalamees & Zobel 1998 May (-) 10 unheated glasshouse   > 4 + - - - - 

Kjellsson 1992 Mar, Apr (++) 17.5 22/12 °C 1) 16/8 h  4 + + - - - 

Komulainen et al. 1994 Jun (++) 10 25 °C  + > 10 2) + - - - - 

Milberg 1995 May (?) 8 20/8 °C 1) 16/8 h  12 2) + ? ? ? ? 

Miller & Cummins 2003 Jul, Aug (++) 5 6 - 25 °C 1) 12/12 h  12.5 + - - - - 

Mitschell et al. 1998 Feb (?) 6.3 polyethylene tunnel   15 2) + - - - - 

Staaf et al. 1987 
Apr (+) 5 

unheated glasshouse 

(10 - 30 °C) 
  3 + - + - - 

Thompson & Grime 1979 Oct-Oct 

(every 6 

weeks) 

(++) 3 20/15 °C 16/8 h  1.25 - - - - - 

Warr et al. 1994 May, Jun (?) 15 shade tunnel   10-12 + - - - - 
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5.4 Species-specific reproductive ecology determining the potential of soil 

seed banks 

It is often assumed by practitioners that a bountiful fructification of pioneer tree species recurs 

annually. However, like intermediate and climax tree species, short-lived species exhibit ir-

regular seed production patterns, influenced by soil and climate conditions, and the individual 

fitness of seed trees (Sarvas 1952, Bjorkbom 1967, Holm 1994, Osumi & Sakurai 1997, 

Sperens 1997, Hynynen et al. 2010). The germination percentage of the seeds also varies from 

year to year, with mast years usually characterized by the highest germination rates (Sarvas 

1952, Bjorkbom 1967, Holm 1994, Osumi & Sakurai 1997, Sperens 1997, Raspé et al. 2000, 

Hynynen et al. 2010). However, pioneer tree species exhibit seed morphologies, seed disper-

sal distances as well as requirements for germination and seedling establishment that are dif-

ferent from those of intermediate and late-successional species (McVean 1953, Atkinson 

1992, Lautenschlager 1994, Worrell 1995, Raspé et al. 2000). Despite differences between 

their fruits and seeds, birch and alder (winged nuts), willow and poplar (catkins, seeds with 

pappus) and rowan (small seeds within a red fleshy fruit) can be analyzed together as each 

group possesses morphological similarities (McVean 1956, Perala & Alm 1990, Worrell 

1995, Raspé et al. 2000).  

Birches can produce 2-10 million winged seeds per tree (Perala & Alm 1990, Huth 2009), 

which are 1.5-2.0 mm in size without the wings (Brouwer & Stählin 1975). Seed rain takes 

place mainly from June to November (Perala & Alm 1990, Huth 2009). From November until 

the end of the following June, the seed rain falls to less than 100 seeds per m² (Huth 2009). 

Mean dispersal distances by wind vary between 60 and 100 m (Fries 1984 cited in Perala & 

Alm 1990, Karlsson 2001, Huth 2009), but the highest seed densities are deposited within 

distances of 25-50 m (Bjorkbom 1971, Fries 1984 cited in Perala & Alm 1990 - Fig. 5.2). 

Maximum propagation distances amount to 550-800 m (Huth 2009). Most seeds germinate in 

spring after dispersal (Perala & Alm 1990). Alder seed trees generally produce lower seed 

numbers (240,000 seeds per tree) than birch. The diaspores of alder have smaller wings and 

larger seed nuts (2.0-2.5 mm), and their mean and maximum dispersal distances from seed 

trees are 30 m and 60 m, respectively (McVean 1953, Brouwer & Stählin 1975). High seed 

densities were found within distances of less than 10 m (McVean 1953, 1956, Karlsson 2001). 

Seeds of alder trees are mature in November, but most are only released in February and 

March, and, like birch, germinate predominantly after dispersal in spring (Pietzarka & Roloff 

2010). Seeds of birch and alder do not exhibit dormancy (McVean 1953, Atkinson 1992). The 

spatial distribution of deposited seeds on soil depends on the position of the seed trees and on 
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the dispersal agents (Bakker et al. 1996b). The distribution of wind-dispersed seeds tends to 

be non-random (Greene & Johnson 1996). This applies especially to birch and alder but also 

to willow and poplar. Deposited seeds of these species are often spatially aggregated because 

the seeds are brought in dense infructescenses (Hill & Stevens 1981, Kjellsson 1992, Dougall 

& Dodd 1997). 

 

 

Fig. 5.2 Schematic diagram showing the relation between seed production, seed dispersal and seed storage in soil 

of birch, alder, poplar and willow. 

 

Willows and poplars can produce between 45,500 and 740,000 seeds per tree (Karrenberg et 

al. 2002, Karrenberg & Suter 2003). The wind-dispersed (anemochorous) willow and poplar 

seeds possess hairs to facilitate flight and range in size between 0.8-1.5 mm and 1.0-2.5 mm, 

respectively (Brouwer & Stählin 1975). Maximum willow seed dispersal distances of 2-3 km 

are much longer than for birch and alder (Schirmer 2006). For this reason, Gage & Cooper 
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(2005) always adopted a background level (i.e., “noise”) of 10-30 seeds per m². Nevertheless, 

the largest densities of deposited seeds were measured at distances of between 30-50 m from 

willow seed trees (Gage & Cooper 2005 - Fig. 5.2). The small seeds of both genera are 

shortlived (Worrell 1995, Barsoum 2002, Young & Clements 2003). Regarding early flower-

ing (spring) poplars and willow species, like Salix caprea L., seed rain takes place from April 

to June (Chmelar & Meusel 1986). Seeds lying on soil that do not germinate immediately 

after dispersal lose their viability after 1-6 weeks (Junttila 1976, Niiyama 1990, Leder 1992, 

Worrell 1995, Karrenberg & Suter 2003). In contrast, seeds of late flowering (summer and 

autumn) willow species remain viable until the next spring (Chmelar & Meusel 1986), which 

means a lifespan of about half a year.  

The fruits of rowan ripen between August and October (Raspé et al. 2000). Fruits and seeds 

are dispersed endozoochorously, by birds and small mammals. The seeds of rowan exhibit 

embryo and seed coat dormancy. If rowan fruits are not eaten by animals, the seeds germinate 

in the second year after maturation, when embryo and seed coat dormancy is broken under 

natural conditions (Raspé et al. 2000). Sometimes the seeds undergo a second period of dor-

mancy when temperatures rise above 10 °C after winter or cold storage (Spethmann 2000). In 

such cases, seeds can remain viable for up to 5 years in the soil (Erlbeck 1998). Birds, as the 

main consumer of rowan fruits, have a significant influence on the spatial patterns of seed 

distribution. Bird droppings were mostly found under trees in more or less closed forests, and 

only very rarely in large gaps or open areas lacking structural complexity (Żywiec & Ledwoń 

2008). Structural elements are used as perches by birds (McDonnell & Stiles 1983). Most 

frequently, birds drop seeds up to 40 m from seed trees (Żywiec et al. 2013). In the case of 

endozoochory, the density patterns of rowan seeds in the soil are clumped rather than random-

ly distributed (Clark et al. 1998, Żywiec et al. 2013). 

 

5.5 Characterization and classification of soil seed banks  

Simpson et al. (1989) emphasized that, “all viable seeds present on or in soil or associated 

litter constitute the soil seed bank.” Seeds buried in the upper soil layer (litter and humus lay-

er) have in most cases only been part of the seed bank for a short time. These seeds are proba-

bly part of the last seed rain, thus the character of the seed bank in the upper soil is prevailing-

ly transient (Graber & Thompson 1978, Bakker et al. 1996a, 1996b, Osumi & Sakurai 1997, 

Houle 1998, Heinrichs 2010). Given the species-specific timing of seed rain, the time of sam-

pling represents an important piece of information for the interpretation of seed densities in 

transient seed banks. Seeds found in deeper mineral soil layers are older and have persisted in 
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the soil for a longer period (Kjellsson 1992, Bakker et al. 1996b, Thompson et al. 1997). 

Therefore, information on seed depth can be used as an indirect method to determine the seed 

longevity in the soil of a particular tree species. Buried seed experiments have contributed to a 

better understanding of the duration of seed viability in deeper soil layers. The experiments 

demonstrated what might happen to seeds in relation to viability, decomposition and mortality 

over time during storage in soil (Granström 1987, Skoglund & Verwijst 1989).  

Litter cover and litter thickness are also two very important factors. Thick litter protects de-

posited seeds against movement, drought, predation and early germination, and so may help 

to maintain higher viability (Granström & Fries 1985, Egawa & Tsuyuzaki 2013). Almost no 

viable seeds were found on sites without litter protection. Thin litter, including seeds, for ex-

ample, will be carried away by wind and accumulated at other places (Egawa & Tsuyuzaki 

2013). Independent of the species, the number of viable seeds on and in peatland increased 

with litter thickness. The thickness of the humus layer determines the period of time required 

by seeds to penetrate litter and humus. During this time seeds are subject to mortality (Sarvas 

1952, Van Tooren 1988, Holm 1994). Small, light and dry seeds without pulp are less prone 

to predation than larger seeds (Leck et al. 1989). Findings of glass bead experiments (the size 

and weight of the beads corresponded to rowan fruits) revealed that 30-40 % of all glass beads 

moved 1 cm in the soil over a 6-month period, whereas 4 % were transported 2-5 cm (Van 

Tooren 1988, Burmeier et al. 2010). Small seeds pass through litter faster, reaching the humus 

and mineral soil layer in a shorter time than larger seeds or beads (Egawa & Tsuyuzaki 2013). 

This is an advantage for pioneer tree species with regard to their strategy of fast colonization 

of disturbed areas: the small, light and dry seeds without pulp (Leck et al. 1989) achieve 

quicker contact with the mineral soil and can germinate successfully.  

Soil seed banks can generally be classified according to the seed longevity of the species; that 

is, the period of time for which a seed stays viable and capable of germination. The classifica-

tion most widely applied is that described by Thompson et al. (1997, 1998), who differentiat-

ed four types. The first type (I) includes all species with transient seed banks with a persis-

tence in the soil of less than 1 year. Species with short-term persistent seeds (1-5 years) are 

assigned to type II. Type III is as a long-term persistent seed bank and includes species with 

seeds that persist in the soil for at least 4-5 years. Species that cannot be assigned to any seed 

bank type are combined in type IV. 
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5.5.1 Soil seed bank of Betula spp.  

Houle (1998) found that birch seeds are viable for less than 2-3 years under field conditions, 

due to multiple causes of mortality. Mortality rose to 99 % under certain climate conditions 

(Houle 1998). However, 50-80 % of birch seeds buried artificially in soil were still viable 

after 3-5 years of storage (Granström 1987, Skoglund & Verwijst 1989). After 5 years stored 

birch seeds were partly degraded, but 50-60 % remained viable (Granström 1987). It is as-

sumed that birch seeds decompose within a period of 5-7 years (Sarvas 1952). Skoglund & 

Verwijst (1989) concluded that, at a depth of 10 cm, birch seeds buried in the soil have a theo-

retical half-life in forest soil of roughly 13 years, but less than 1 year in the soil of wet mead-

ows. In wet soils, early germination and fungal attacks lead to higher mortality rates (Harper 

1955 cited in Ludwig et al. 1957). Birch seeds sown on bare ground germinated in the first 

year (Miles 1974). Therefore, seeds found in deeper mineral soil probably did not originate 

from the previous seed rain and so were part of the soil seed bank. 

In most of the publications analyzed, birch was the only tree species exhibiting a high degree 

of consistency in soil seed banks in central and north-west European temperate forests (83 % 

of sample plots). Often birch was the second most abundant species of all, including herba-

ceous plant species. However, some authors found the extent of birch seed in the soil to be 

negligible (Hill & Stevens 1981, Staaf et al. 1987, Buckley et al. 1997). Betula species were 

present in all kinds of forest type, but seed densities depended on the presence or absence of 

seed sources. Large numbers of seeds can be found in the soil in the vicinity of seed trees 

(Bossuyt & Hermy 2001 - Fig. 5.2). Birch seed density ranged from 1 to 1100 seeds per m² in 

coniferous stands, mostly spruce and pine forests (Granström 1982, Komulainen et al. 1994, 

Warr et al. 1994, Dougall & Dodd 1997, Augusto et al. 2001, Miller & Cummins 2003, Ber-

ger et al. 2004, Heinrichs 2010, Jaroszewicz 2013). In deciduous forests 7-3850 viable seeds 

per m² were detected (Staaf et al. 1987, Kjellsson 1992, Warr et al. 1994, Dougall & Dodd 

1997, Jankowska-Blaszczuk et al. 1998, Augusto et al. 2001, Bossuyt et al. 2002, Miller & 

Cummins 2003, Decocq et al. 2004, Jedrzejczak 2013). The seed density on succession sites 

ranged from 6 seeds per m² in a 4-year old Norway spruce clear cut (Heinrichs 2010) to a 

maximum of 3120 seeds per m² in a long-term overgrown grassland (Kalamees & Zobel 

1998). Highest densities of 70-3760 seeds per m² were found in pure or birch-dominated 

stands (Hester et al. 1991, Kjellsson 1992, Warr et al. 1994, Jankowska-Blaszczuk 1998, Kal-

amees & Zobel 1998, Mitschell et al. 1998, Falińska 1999, Miller & Cummins 2003, Dölle & 

Schmidt 2009). However, 0 to 144 viable seeds per m² were detected in soils of deciduous and 

coniferous forests without any mature trees or seedlings in the proximity (Granström 1982, 
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Staaf et al. 1987, Amrein et al 2005). Hill & Stevens (1981) detected more viable birch seeds 

in a 4-year-old clear cut of a former Douglas fir plantation than seedlings in the vegetation 

layer, an indication that birch seeds remain viable in the soil for a longer time than is fre-

quently assumed. 

The birch seed density in different soil layers was reported for only a few samples. Various 

authors mentioned that birch seeds are mostly found in the humus or uppermost soil layers 

(Hill 1979, Granström 1988, Houle 1998, Sullivan & Ellison 2006). Houle (1998) concluded 

that less than 2 % of birch seed rain reaches the persistent seed bank. The numbers of birch 

seeds found at different soil depths ranged from 1-188 seeds per m² in the litter and humus 

layer (Granström 1982, Staaf et al. 1987) to 1-80 seeds per m² at a depth of 0-5 cm in mineral 

soil, independent of seed source presence or absence (Granström 1982, Staaf et al. 1987, Au-

gusto et al. 2001, Jaroszewicz 2013). In samples taken at a depth of 5-10 cm in deciduous and 

coniferous forests 3 and 71 birch seeds per m² were detected (Jaroszewicz 2013, Jedrzejczak 

2013). Regardless of the occurrence of seed trees, an average of 33 seeds per m² were present 

in the mineral soil down to a depth of 10-20 cm (Bossuyt et al. 2002), which may lead one to 

assume that birch seeds live longer in the soil than is often assumed (Fig. 5.2). With increas-

ing soil depth, the number of viable birch seeds declined, but remained high enough for refor-

estation. On succession sites, where many seed sources are available for seed supply, 324 

seeds per m² were recorded in the humus and litter layer (Hill & Stevens 1981). At depths of 

0-5 cm and 5-10 cm in the mineral soils of these sites, densities reached 79-2880 seeds per 

m², and 20-880 seeds per m², respectively (Hill & Stevens 1981, Bakker et al. 1996a, Kal-

amees & Zobel 1998). 

Irrespective of the timing during the year of soil sample collection, high densities of viable 

birch seeds could always be found. Highest seed densities of 20-3850 viable birch seeds per 

m² occur in the period from May to June (Warr et al. 1994). The results of the studies showed 

that seed densities were more dependent on the presence or absence of seed sources than on 

the timing of soil sampling or on the forest community of the sampling site (Kjellsson 1992, 

Houle 1998, Bossuyt & Hermy 2001).  

The different studies, and the different assessments of birch seed longevity, explained the var-

ying assignments of birch to the contrasting soil seed bank types, which ranged from purely 

transient (Bekker et al. 2000), through transient/short-term persistent (Thompson et al. 1997) 

to short-term/long-term persistent (Bakker et al. 1996a). The assumption made by Olmsted & 

Curtis (1947), Bakker et al. (1996b) and Graber & Thompson (1978) that seed rain from out-
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side of a stand is necessary for the regeneration of the species where birch seed trees are not 

present on a site, due to an insufficient seed bank, cannot be supported without new research. 

 

5.5.2 Soil seed bank of Alnus glutinosa (L.) GAERTN.  

Viable alder seeds were detected in the soil seed bank less often than birch seeds (10 % of 

sample plots). This is probably due to the lower frequency of alder trees than birch in Europe-

an managed forests. Seeds were only found in soils where there were seed sources close by 

(Kjellsson 1992, Falińska 1999, Decocq et al. 2004 - Fig. 5.2). Alder seeds were mainly de-

tected on meadow and hayfield succession sites aged between 0-25 years. The seed density 

ranged between 8 and 216 seeds per m². The maximum was found in a 20-year-old dry hay-

field. In contrast to this, the maximum number recorded on a wet hayfield succession site was 

only 80 seeds per m² (Bekker et al. 2000). In 40- to 175-year-old deciduous forests, 2-7 alder 

seeds per m² were observed (Kjellsson 1992, Decocq et al. 2004). The highest alder seed den-

sity recorded in humus and mineral soil was 354 seeds per m², which was obtained from a 

mixed lime-alder-birch forest (Kjellsson 1992). No alder seeds were detected in coniferous or 

mixed stands. The studies presenting the findings from such stands provided no information 

about the presence of alder seed trees or woodlands, in contrast to soil seed bank studies un-

dertaken in deciduous stands or on succession sites. Apart from the study by Decocq et al. 

(2004), no viable alder seeds were found in soil samples taken between May and December; 

not even from samples taken next to alder seed trees (Kalamees & Zobel 1998, Warr et al. 

1994). This is a clear indication of a transient seed bank. 

The number of alder seeds transported vertically in the soil, and the depth of transport, could 

not be derived in any detail from the studies evaluated. Kalamees & Zobel (1998), who col-

lected samples without litter from a pioneer forest with alder and birch, detected high numbers 

of viable birch seeds but no viable alder seeds. Only in one case very low densities of 2.4 and 

3.2 viable alder seeds per m² were confirmed in two mineral soil samples taken close to seed 

trees in June (Decocq et al. 2004). However, studies providing the occurrence of alder seeds 

in the soil indicated that they tend to be more prevalent in the upper soil and in the humus 

layer than in the lower soil layers (Fig. 5.2). Kjellsson (1992) concluded, therefore, that alder 

seeds are short-lived and that large seed numbers in the soil were probably due to recent seed 

rain. 

The buried seed experiment by Granström (1987) indicated a shorter lifespan of alder seeds 

than for birch. Early germination in the field before sampling could not be ruled out, but after 

1.5 years of seed storage in soil the proportion of viable seeds was about 60 %, and only 2 % 
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after 5 years. Interestingly, the pericarp and wings of buried alder seeds were still intact, while 

parts of birch seeds had begun to decompose (Granström 1987). It seems unlikely that after a 

long period of vertical drift many alder seeds reach the deeper soil layers in a condition allow-

ing for germination. Decocq et al. (2004) claimed that alder can establish a more persistent 

seed bank, whereas Thompson et al. (1997), Bekker et al. (2000) and Onaindia & Amezaga 

(2000) assigned alder to the transient seed bank type. Considering the lack of available data 

and literature, a reliable statement on the alder soil seed bank type is not possible. Some re-

sults suggested a transient seed bank, but this seems to have been influenced in part by peculi-

arities of the sites in question. In future research, typical alder sites such as floodplains should 

be included in sampling. 

 

5.5.3 Soil seed banks of Salix spp. and Populus tremula L.  

The results provided on Salix spp. were often no more specific than a mere reference to the 

genus “willow”. Therefore, it is not possible to discuss different willow species in detail. De-

spite the common assumption that willows have short-lived seeds (Junttila 1976, Niiyama 

1990, Barsoum 2002, Young & Clements 2003), the genus was the second most abundant 

pioneer tree species in the papers analyzed, occurring in 17 % of all sample plots. Poplar 

seeds, morphologically similar to willow seeds, were almost always absent in soil seed banks 

(1 % of sample plots). Three European aspen seeds per m² were observed only once by Hein-

richs (2010) on a succession site, which indicates a rapid loss of poplar seed viability in soil 

(Worrell 1995, Barsoum 2002).  

Viable willow seeds germinated predominantly in soil samples from succession sites, where 

seed trees were present. The highest recorded number of willow seeds was 350 seeds per m² 

on a 15-year-old meadow succession site dominated by willow (Falińska 1999). Summarizing 

all succession studies, seed density ranged from 6 to 350 seeds per m² (Bakker et al. 1996a, 

Falińska 1999, Bekker et al. 2000, Dölle & Schmidt 2009). A few willow seeds were also 

present in some soil samples from beech forests, with 7 and 28 seeds per m² (Staaf et al. 

1987), in Norway spruce forests with 11 and 104 seeds per m² (Granström 1988, Berger et al. 

2004), and in 65-year old mixed beech-spruce forest with 156 S. caprea seeds per m² (Berger 

et al. 2004). All of these authors studied the humus and mineral soil layers. In one study, S. 

alba L. grew at high frequencies in the vegetation (7-24 %), but no viable seeds were identi-

fied in the soil (Bissels et al. 2005). Gurnell et al. (2006) also detected willow species in the 

vegetation along a newly created riverbank but not in the seed bank. The authors explained 
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the results by assuming transience of the seeds and immediate germination after ground con-

tact.  

Information on willow seed densities in different soil layers and at different depths was rare in 

the evaluated studies. Staaf et al. (1987) observed 7-14 willow seeds per m² in the humus lay-

er and in the mineral soil at a depth of 0-5 cm in a beech forest. Bakker et al. (1996a), by con-

trast, recorded 80 goat willow seeds per m² in some 0-5 cm soil samples taken from 20- to 80-

year old Juniperus shrubland, whereas 80 seeds per m² were detected in a 5-10 cm soil sample 

in annually grazed Juniperus shrubland. Six seeds of S. caprea were present only once in 

mineral soil sampled from a succession site (Dölle & Schmidt 2009). All authors reported the 

absence of willow seed trees, which highlights long willow seed dispersal distances (Schirmer 

2006) and the possibility of formation of a willow soil seed bank (Fig. 5.2). However, viable 

willow and poplar seeds were only derived from samples collected in March and April (Staaf 

et al. 1987, Granström 1988, Bakker et al. 1996a, Falińska 1999, Bekker et al. 2000, Berger et 

al. 2004, Dölle & Schmidt 2009). Samples taken near willow and European aspen seed trees 

in May and June contained no viable seeds of either genus (Falińska 1999, Decocq et al. 

2004) due to a rapid loss of germination ability after deposition on soil (Barsoum 2002). This 

also provides a strong indication of a transient seed bank for both genera.  

Information about willow seeds artificially buried in the soil could not be found in the litera-

ture. Thompson et al. (1998) concluded that willows do not have a persistent seed bank. Cer-

tain aspen and Salix spp., especially S. caprea, an early flowering species, were assigned to 

the transient seed bank type (Thompson et al. 1997, 1998, Bekker et al. 2000), whereas S. 

alba, a late flowering willow species, was assigned to the long-term persistent seed bank cat-

egory (Berger et al. 2004). Perhaps the high numbers of viable willow seeds recorded in the 

soil had all fallen into cracks or were from late-flowering willow species. It also seems possi-

ble that willow seeds protected by soil are viable for a longer time than those on the ground 

surface or humus layer, or that the movement of the smaller and lighter seeds to deeper soil 

layers proceeds rapidly, as documented by van Tooren (1988) and Burmeier et al. (2010). 

 

5.5.4 Soil seed bank of Sorbus aucuparia L.  

In contrast to all the other pioneer tree species mentioned, rowan was not found in any of the 

soil seed bank studies, although seed trees were present in some of the study areas (Granström 

1982, Decocq et al. 2004, Dölle & Schmidt 2009, Heinrichs 2010, Jedrzejczak 2013). Often 

the only indication of successful reproduction was the presence of young rowan trees in the 

herb and shrub layer, for example, in conifer forests (Granström 1982, Heinrichs 2010). With 
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secondary dormancy, the seeds can be part of the soil seed bank for at least 1-2 years (Leder 

1992). However, the findings of this review indicate that rowan seeds are always absent from 

the soil seed bank. Grime et al. (1988 cited in Raspé et al. 2000) and Dölle & Schmidt (2009) 

assigned rowan to the transient seed bank type, because seeds persist in soil for less than 1 

year. In contrast, Hill (1979), Leder (1992) and Erlbeck (1998) agreed that rowan seeds can 

remain viable in the soil for long time, up to 5 years. Based on the above, it would appear 

possible that rowan has a short-term persistent seed bank. This assumption would seem to 

have been confirmed by an experiment with buried pomes, which showed that more than 80- 

90 % of the seeds remain viable after 2 years storage in the soil. During the third year the abil-

ity to germinate decreased to 30-50 %, but some rowan seeds remained viable after 5 years of 

storage (Granström 1987). Up to 9 % of fresh, stratified rowan seeds exposed under field con-

ditions germinated in the second or third year after sowing (Miles 1974). Due to the clumped 

distribution of rowan seeds by birds (McDonnell & Stiles 1983), future studies of the occur-

rence of rowan in soil seed banks should take into consideration the structural elements used 

as perches by birds (Tiebel et al. 2017). 

 

5.6 Conclusions  

Pioneer tree species are short-lived, light demanding species, which are very important for the 

successful colonization and reforestation of large disturbed woodlands in central and north-

west Europe. Soil seed banks can drive reforestation in the absence of seed rain. Soil seed 

banks in woodlands play an important role in succession and in the regeneration of disturbed 

areas in European temperate forests.  

This review showed that pioneer tree species do not possess the kind of long-term seed banks 

that certain herbaceous species can have. The findings suggest that birch is the only pioneer 

tree species of temperate forests in central and northwest Europe with a longer-lived soil seed 

bank. Often birch was the second most abundant species in soil and the only pioneer tree spe-

cies with a high degree of consistency in soil seed banks. In medium to deeper soil layers (5-

10 cm) birch seeds seem to have at least a short-term persistent seed bank. Alder seeds are 

poorly represented in forest soils compared to birch, so a reliable statement on alder soil seed 

bank type is not possible; the few results available suggest a transient seed bank. The studies 

for willow and poplar seeds partly confirmed the assumption of very short-lived seeds, alt-

hough willow was the second most abundant pioneer tree species in soil seed banks and also 

found in mineral soil (0-5 cm). Surprisingly in the case of rowan, the only fleshy-fruited pio-

neer tree species with proven seed dormancy, a transient seed bank must be assumed due to 
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the absence of rowan seeds in the soil. Buried seed experiments showed, however, that rowan 

seeds can build up a short-term persistent seed bank due to dormancy.  

Statements on the seed densities of pioneer tree species in the soils of different coniferous and 

deciduous forest types cannot be given. The reason for this is that these seed densities are 

primarily influenced by the number of and the distance from seed sources, and the seasons of 

seed production and seed dispersal. Our review revealed that the successful regeneration of 

birch, alder and willow depends mainly on the proximity of seed trees. Therefore, the proxim-

ity of trees is important for the regeneration of species with short-lived seeds. The findings of 

the review also indicate a dependence between seed density in the soil and the season in 

which soil sampling occurs. Maximum seed densities of birch, alder and willow were detected 

during and shortly after seed rain. No statement can be made in this regard in relation to ro-

wan and poplar.  

This review revealed a number of open questions concerning the capacity of all European 

pioneer tree species to establish seed banks. These issues are connected to: (a) the seed viabil-

ity under different soil conditions and litter thickness; (b) the speed of seed movement into 

deeper soil layers; and (c) the direct correlation between the proximity of seed trees and the 

resultant number of seeds in the soil. At present, it can be concluded that birch, representative 

of pioneer tree species in temperate forests of central and northwest Europe, has the capacity 

to establish a seed bank of a duration of 1-5 years, sufficient to compensate for years with 

lower levels of seed production and to regenerate successfully after disturbance. However, the 

soil seed bank must be supplemented by fresh seeds from surrounding seed trees as often as 

possible in order to guarantee continuous regeneration. 
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Supplementary material 

 

Table S1 - Summary of the 33 seed bank studies in central and north-west European temperate forests selected. 

 Author(s) Date Country Forest type Age [yr] 
Amrein et al. 2005 Switzerland Deciduous forest ancient 
Augusto et al.  2001 France, northeast Beech forest 57 
   Oak forest 76 & 78 
   Douglas fir plantation 65 
   Pine plantation 43 & 65 
   Spruce plantation 35 & 65 
Bakker et al. 1996a Sweden Juniper shrubland on former grazing land 20 
   Juniper shrubland on former grazing land 55 
   Juniper shrubland on former grazing land 80 
Bekker et al. 2000 Netherlands Succession on dry and wet hayfield 7 
   Succession on dry and wet hayfield 15 
   Succession on dry and wet hayfield 20 
   Succession on dry and wet hayfield 25 
Berger et al.  2004 Austria Secondary Norway spruce stand 53 - 65 
   Mixed beech-spruce stand 89 
Bossuyt et al. 2002 Belgium Mixed beech-oak stand 55 
   Mixed beech-oak stand 97 
   Mixed beech-oak stand 116 
Brown & Oosterhuis 1981 England, east Abandoned coppice wood 30 - 40 
Buckley et al.  1997 England, south Beech plantation 36 
   Beech plantation 52 - 58 
   Oak plantation 40 - 55 
   Corsican pine plantation 27 - 28 
   Hazel coppice with oak standards n.a. 

   Hazel coppice with oak and ash standards n.a. 

   Ash-beech stand mature 

Decocq et al. 2004 France, north 
Deciduous forest of former coppice with 

oak 
ancient 

Dölle & Schmidt 2009 Germany Succession on former arable field 22 
   Succession on former arable field 36 
Donelan & Thompson 1980 England Succession on former grassland 50 
   Succession on former grassland 80 
   Succession on former grassland 100 
   Oak forest 200 

Dougall & Dodd 1997 
England, south-

east 
Conifer plantation 0 - 10 

   Conifer plantation 10 - 20 
   Conifer plantation 21 - 40 
   Conifer plantation > 65 
   Broadleaf plantation ancient 
   Semi-natural broadleaf edge habitats ancient 
Ebrecht & Schmidt 2008 Germany Beech forest ancient 
   Mixed beech forest ancient 
   Norway spruce stand ancient 
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Author(s) Date Country Forest type Age [yr] 
Falińska 1999 Poland, Belarus Succession from meadow  0 
   Succession from meadow  5 
   Succession from meadow  10 
   Succession from meadow  15 
   Succession from meadow 20 

Grandin 2001 Sweden 
Succession from shoreline to mixed spruce-

deciduous forest 
mature 

Granström 1982 Sweden, north Pine stand 16 
   Pine stand 29 
   Pine stand 50 
   Spruce stand with scattered pine 120 
   Spruce stand with scattered pine 169 
Granström 1988 Sweden Norway spruce forest on former heathland 30 
   Norway spruce forest on former heathland 35 
   Norway spruce forest on former heathland 64 
   Norway spruce forest on former heathland 73 
   Clearfelled Norway spruce forest 85 
Heinrichs 2010 Germany Norway spruce forest  ancient 
   Clearfelled Norway spruce forest 4 
Hester et al. 1991 Scotland Succession on heathland 17 
   Succession on heathland 28 
   Succession on heathland 36 - 37 
   Succession on heathland 48 
   Succession on heathland 63 
Hill & Stevens 1981 England Clearfelled Douglas fir plantation 4 
   Sitka spruce plantation on former heathland 5 - 10 
   Sitka spruce plantation on former heathland 17 - 18 
   Sitka spruce plantation on former heathland 29 - 30 
   Sitka spruce plantation on former heathland 30 - 31 
   Sitka spruce plantation on former heathland 36 - 45 

   
Japanese larch plantation on former heath-

land 
37 

   Scots pine plantation on former heathland 37 
   Oak wood n.a. 

Jankowska-Błaszczuk 1998 Poland, Belarus Primary mixed forest ancient 
   Secondary deciduous forest ancient 
Jankowska-Błaszczuk et 

al. 
1998 Poland, Belarus Hornbeam forest ancient 

   Oak forest ancient 
Jaroszewicz 2013 Poland, Belarus Spruce-pine stand ancient 
Jędrzejczak 2013 Poland, south Beech forest n.a. 

Kalamees & Zobel 1998 Estonia Succession on grassland 20 

   Succession on grassland 
long 

term 
Kjellsson 1992 Denmark Maple stand 40 
   Beech forest 62 & 70 
   Deciduous stand 141 & 145 
   Mixed beech-oak stand 175 

   
Oak-ash stand of former hazel coppice 

forest 
180 

Komulainen et al. 1994 Russia, north Pine forest young 
Milberg 1995 Sweden, south Succession on grassland 18 
Miller & Cummins 2003 Scotland Oak-birch woodland n.a. 

   Pine woodland n.a. 
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Author(s) Date Country Forest type Age [yr] 
Mitschell et al. 1998 England Succession on heathland 23 
   Succession on heathland 30 
   Succession on heathland 43 
   Succession on heathland 48 - 49 
Staaf et al. 1987 Sweden, south Beech forest 90 
   Beech forest 95 
   Beech forest 100 
   Beech forest 110 
   Beech forest 140 
   Beech forest 150 
Thompson & Grime 1979 England Deciduous forest ancient 

Warr et al. 1994 
England, south-

west 
Cut oak coppice forest 8 

   Cut oak coppice forest 24 - 25 
   Abandoned hazel coppice forest 74 
   Abandoned oak coppice forest 78 
   Abandoned oak coppice forest 94 
   Felled cherry and ash stand 2 
   Oak stand 45 
   Birch woodland on abandoned fields 80 - 90 
   Oak woodland (abandoned coppice) 140 
   Mixed conifer stand 18 
   Hybrid larch stand 20 
   Douglas fire stand 20 & 24 
   Norway spruce stand 24 
   Sitka spruce stand 28 - 29 
   Sitka spruce stand 42 
   Japanese larch stand 42 
   European larch stand 53 
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6.1 Abstract 

Aims To determine the contribution of buried Betula pendula L. and Sorbus aucuparia L. 

seeds to the regeneration of disturbed forest sites. 

Methods Firstly, an artificial seed burial experiment was initiated with rowan and birch seeds. 

Second, the birch seed reserves in the soil of Norway spruce forests were determined depend-

ent upon varying numbers of seed sources. 

Results The predicted maximum storability periods for buried birch seeds was 12 years, com-

pared to 4.5 years for rowan seeds with pulp and 3 years without pulp. Birch seeds remained 

viable in the soil at a depth of 10 cm significantly longer than at 5 cm and 2 cm. The lower 

storage capacity of rowan seeds was demonstrated by in-soil germinations of 3-22 % of seeds 

without pulps and 4-48 % of seeds with pulps before excavation. The study of birch seed re-

serves revealed a significant link between the quantity of viable birch seeds and the presence 

of seed sources. Seed densities in the different stand categories reached 489-1,142 n m-2 in 

birch stands, 326-979 n m-2 in spruce stands with admixed birch trees, 8-69 n m-2 in a spruce 

stand with a single birch tree and 0-8 n m-2 in pure spruce stands.  

Conclusions Birch and rowan seeds are able to form a short-term persistent soil seed bank, but 

a continuous input of fresh seeds is required. 

 

Keywords 

Betula pendula, Sorbus aucuparia, Propagule bank, Seed burial experiment, Germination, 

Pioneer trees 

 

6.2 Introduction 

Soil seed banks are reservoirs of viable seeds stored in the soil for a period of time (Bossuyt 

and Honnay 2008; Leck et al. 2008). Changing environmental conditions can cause disturb-

ances. These disturbances may in turn be followed by favorable conditions enabling seeds 

stored in the soil seed bank to germinate successfully (Bossuyt and Hermy 2001; Thompson 

et al. 1997). Soil seed banks also serve to preserve population genetics over time (Bossuyt and 

Honnay 2008; Hopfensberger 2007), but the duration of seed viability is species specific 

(Thompson et al. 1997). Whereas the seeds of some herbaceous species can remain viable for 

decades (Kjellsson 1992; Telewski and Zeevaart 2002), the seeds produced by most tree spe-

cies are viable for only a few years. The trees with the longest known seed longevity in the 

soil are Prunus serotina Ehrh. and Prunus pensylvanica L.f., the seeds of which remain viable 
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in the soil for 2-5 years and up to 30 years, respectively (Marquis 1975). Given the compara-

tively short viability of tree seeds, most previous soil seed bank studies have focused on her-

baceous plants (e.g. Bernhardt and Poschlod 1992; Bossuyt and Honnay 2008; Hopfensperger 

2007). Herbaceous plants are usually the largest group of plant species presented in the soil 

seed banks found in all soil types and ecosystems (see Jankowska-Błaszczuk 1998; Landen-

berger and McGraw 2004; Staaf et al. 1987; Zobel et al. 2007). Past studies of soil seed banks 

have also dealt with succession processes and landscape changes (see Granström 1988; 

Hopfensperger 2007; Kjellsson1992; Olmsted and Curtis 1947). Although Bossuyt and Hon-

nay (2008) mentioned that soil seed banks are important sources of seeds and drivers of the 

regeneration of disturbed forest sites, tree species have received only minor consideration in 

previous soil seed bank studies, especially in studies focusing on central Europe. 

The natural regeneration of disturbed sites in the temperate forests of Europe depends mostly 

on widespread early successional tree species, such as genera of Betula spp., Salix spp., Popu-

lus spp., Alnus spp. and Sorbus aucuparia L. (Argus 2006; Atkinson 1992; Zerbe 2001). The 

regeneration of pioneer tree species primarily follows a recent seed rain rather than seedling 

emergence from a soil seed bank (Buckley et al. 1997; Graber and Thompson 1978; Heinrichs 

2010; Hill and Stevens 1981; Olmsted and Curtis 1947). The contribution of seeds of pioneer 

trees buried in the soil to the regeneration of disturbed forest sites has rarely been considered 

(see Tiebel et al. 2018), even though the seed of pioneer tree species may make up part of soil 

seed banks. At different sites Augusto et al. (2001) determined birch seed densities in the soil 

of 45 n m-², Berger et al. (2004) found 1,039 n m-², while Mitchell et al. (1998) observed be-

tween 85-2,534 n m-². The genus Salix is known for its very short-lived seeds (Argus 2006; 

Worrell 1995), yet Staaf et al. (1987) found up to 14 n m-² willow seeds in mineral soil and 

Bakker et al. (1996) 80 n m-². Tiebel et al. (2018) determined that there exists a general lack 

of information about the occurrence of rowan (Sorbus aucuparia) seeds in soil seed banks. 

Erlbeck (1998) and Hill (1979) espoused the opinion that rowan seeds remain viable up to 

five years in the soil due to embryo and seed coat dormancy (Raspé et al. 2000). The pioneer 

tree species most frequently detected in soil seed bank studies is birch (Betula spp.) (see 

Dougall and Dodd 1997; Huopalainen et al. 2001; Kjellsson 1992; Olano et al. 2002; Sullivan 

and Ellison 2006; Tiebel et al. 2018). Assumptions about the duration of storage in the soil of 

birch seeds vary from less than one year to more than 13 years (Buckley et al. 1997; Skoglund 

and Verwijst 1989). The findings in relation to birch seed densities in soil also varied vastly 

between studies depending on the number of seed sources (Tiebel et al. 2018), but this has not 

yet been considered in any study of soil seed banks. As part of the research carried out in the 
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study presented here, therefore, the focus was on the storability in a temperate forest of the 

seed of silver birch compared to that of rowan seed.  

The following five hypotheses were formulated at the outset of the study: 1) The seeds of 

birch and rowan may be part of the short-term persistent soil seed bank (viable 1-5 years), 

with a large proportion of the seeds still viable after one year (Bakker et al. 1996; Erlbeck 

1998; Hill 1979; Skoglund and Verwijst 1989). 2) Rowan seeds remain viable in the soil for 

longer than birch (Raspé et al. 2000). 3) Seed survival rates are higher in deeper soil layers 

than in the upper layers (Granström and Fries 1985; Skoglund and Verwijst 1989) due to bet-

ter protection against drought, light and predation (Grime et al. 1981; Tiebel et al. 2018). 4) A 

higher density of birch seeds in the soil seed bank is due to higher numbers of seed trees, with 

the result that a soil seed bank with a sufficiently high potential for regeneration after disturb-

ance can only develop in pure and mixed birch forests. 5) The number of buried viable birch 

seeds decreases with increasing soil depth, because seed movement into deeper soil layers 

requires time and many seeds lose their viability before this movement occurs (see van Toor-

en 1988). 

 

6.3 Materials and methods 

The study was divided into two sub-studies: A and B. An artificial seed burial experiment 

(study A) was performed to study the germination capacity of Betula pendula L. and Sorbus 

aucuparia L. seeds stored in soil over 2.5 years. Seed burial experiments are a good means of 

testing the remaining viability of seeds stored in soil as the storage time, depth and the initial 

germination capacity of the buried seeds are all known. The aim was to determine which 

seeds remain viable in the soil for longer: birch (according to Tiebel et al. 2018) or rowan 

(according to Hill 1979). The aim of the second investigation (study B) was to determine the 

density of birch seeds in humus and mineral soil layers in temperate woodlands as a function 

of the number of available seed trees. 

 

6.3.1 Study areas 

The studies (A and B) were located at high altitudes and along the ridges of the Thuringian 

Forest (50°40’N and 10°45’E) and at the colline and submontane altitudes of the Tharandter 

Forest (50°57’N and 13°30’E) in the German Federal States Thuringia and Saxony, 

respectively (Burse et al. 1997; Gauer and Aldinger 2005; Fiedler and Hofmann 1978). 

The area in the Thuringian Forest [Thüringer Wald] is situated between 400-982 m above sea 

level (a.s.l.), with a prevailing south-westerly exposition, many slopes and an absence of 
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plateaus (Burse et al. 1997; Gauer and Aldinger 2005; Waesch 2003). The mean annual 

precipitation ranges from 700 mm in the north-east up to 1,200 mm along the ridges. The 

annual average temperature in the region varies between 4-6 °C. The area is influenced by an 

Atlantic, moderately cool and moist central mountain climate (Burse et al. 1997; Bushart and 

Suck 2008; Gauer and Aldinger 2005). The dominant soil types of the forest sites are low-

base cambisols with low to medium nutrient contents (Gauer and Aldinger 2005). 

The study area in Saxony is situated between 200-460 m a.s.l., on the northern edge of the 

eastern Ore Mountains [Erzgebirge], where it forms the transition between hill country and 

low mountain ranges (Fiedler and Hofmann 1978; Nebe 1982). The annual average 

temperature in the region varies between 7.3-7.7 °C and the mean annual precipitation ranges 

from 819-850 mm (Goldberg et al. 2002). The area is located at the transition between the 

oceanic influenced climate of the central German mountain and hill country and the 

continental inland climate (Nebe 1982), quite similar to the Thuringian Forest. The geology of 

the region has given rise to medium to deep brown soils that predominate on the forest sites, 

as well as dry sands and podsols with low nutrient contents and silty brown earths (Nebe 

1982; Schwanecke and Kopp 1996). 

Both landscapes feature a largely contiguous forest system, with ~85 % forest cover in the 

Saxony study area and ~90 % in the Thuringian. These are mainly single-layered, even aged 

Norway spruce forests (Picea abies (L.) Karst.). The predominant potential natural vegetation 

types are Luzulo-Fagetum and Asperulo-Fagetum beech forests in the Thuringian Forest and 

Luzulo-Fagetum and Galio ordorati-Fagetum beech forests in the Tharandter Forest 

(Frischbier et al. 2014; Menzer et al. 2010). 

For study A, the artificial seed burial experiment, an old, pure coniferous forest in the 

Tharandter Forest with a closed canopy and no ground vegetation (only litter) was chosen. 

For study B, soil core sampling in the forest, were taken from four different stand types 

differentiated by the species composition of the canopy (= stand types). Sampling was 

repeated three times on comparable sites (= study sites). The different stand types chosen in 

the Tharandter Forest were pure birch stands (Bi) and spruce stands with a small number of 

admixed birch trees (Bi-Sp). In the latter stand type a birch seed tree was present 

approximately every 50 m, corresponding to a density of 6-9 birch seed trees per hectare. The 

stand types considered in the Thuringian Forest consisted of spruce stands with one isolated 

birch tree within a radius of more than 200 m (Sp(Bi)) and pure spruce stands (Sp) (Table 

6.1). The sampling sites associated with each stand type were characterized by similar soil 
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conditions (moist with low to moderate nutrient contents) and topography to ensure that the 

differences in the birch seed banks in the soil were due to the contrasting stand compositions. 

 

Table 6.1 Forest data for the sites used in the soil seed bank investigation carried out as part of study B (Bi - 

birch stand, Sp-Bi - mixed spruce-birch stand, Sp(Bi) - spruce stand with one birch tree, Sp - spruce stand). 

location Tharandter Forest Thuringian Forest 

 
Bi Sp-Bi Sp(Bi) Sp 

study site no. 1 2 3 4 5 6 7 8 9 10 11 12 

stand type ‘birch’ ‘spruce with ad-

mixed birch’ 

‘single birch tree in 

spruce’ 

‘spruce’ 

tree species Betula pendula Picea abies, 

Betula pendula 

Picea abies, 

Betula pendula 

Picea abies, 

Sorbus aucuparia 

 

age of dominant tree 

species [year] 

25 84 68 106 125 109 74 66 66 74 88 78 

basal area [m²/ha] 15 42 19 37 40 40 24 35 37 21 31 31 

sampling procedure             

date of sampling Mar 2016 Mar 2016 Oct 2015 Oct 2015 

number of samples [n] 9 9 16 16 

 

6.3.2 Data collection 

Study A - Artificial seed burial experiment 

On 25 September 2015 seeds and fruits collected from mature birches (Betula pendula L.) and 

rowans (Sorbus aucuparia L.) (= seed sets) were filled in 10 cm x 20 cm net bags with soil 

and sewn up. Each bag contained either 50 birch seeds, 50 rowan seeds or 18 rowan fruits 

(approx. 50 rowan seeds). While removing rowan seeds from the pulp for the purposes of the 

experiment, it was possible to obtain an average seed number per fruit and so to calculate the 

number of fruits required per bag to give 50 seeds. The bags were buried at depths of 2 cm, 

5 cm and 10 cm in mineral soil at two plots in a coniferous stand located 8 m apart. Two sepa-

rate plots were chosen to spread the risk of loss, for example, due to seed predation or plot 

destruction. After burial of the bags, the original humus and litter layer were restored. 

At intervals of six months between April 2016 and April 2018 sample sets (one bag per seed 

set, layer and plot) were removed from the soil to collect 100 seeds from each seed set and 

layer to test the germination rates of stored seeds. The ‘seedling emergence method’ was used 

in the greenhouse for the rowan seed sets (described in the following section; Falińska 1999). 

The birch seeds were placed in a climate chamber at a constant 25 °C, 80 % relative humidity 

and 16 h lighting per day (ISTA 2012). In addition, 400 fresh birch and rowan seeds were 

used to test the initial germination capacity before burial, according to the methods of the In-

ternational Seed Testing Association (ISTA 2012). 
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Study B - soil core sampling in the forest 

Seed bank sampling took place in either October or March. The samples in the Tharandter 

Forest were collected in March 2016, after snow-melt and before germination (Table 6.1). In 

the Thuringian Forest the soil samples were taken in October 2015 because the area often has 

a high degree of snow cover until spring. On each study site in the Thuringian Forest line 

transects of 150 m were established and 16 soil cores were collected at defined intervals of 1-

30 m (see Huth 2009). In the Sp(Bi) study sites the transects started at the birch seed trees. 

Given the small size of the birch forest area (0.2-0.3 ha) in the Tharandter Forest, on each 

study site nine soil core samples were taken in a regular grid of 5 m x 5 m. 

All cylindrical soil core samples had a diameter of 10.2 cm (81.92 cm²) and reached a depth 

of 10 cm into the mineral soil. The soil core samples were subdivided into three layers (= soil 

samples): (i) humus and litter, (ii) upper mineral soil layer (0-5 cm) and (iii) lower mineral 

soil layer (5-10 cm). The soil samples were stored dry for one week in the laboratory. A sieve 

with a mesh size of 3 mm x 4 mm was used to remove root fragments and stones from the soil 

samples (Gross 1990; Olano et al. 2002). The samples were filled into trays, applied in a layer 

of 3 cm fill height. The trays were placed in a greenhouse exposed to daylight and kept con-

tinuously moist through regular watering. Additional control trays with sterilized sand were 

used to check for subsequent seed input in the greenhouse (contamination) over the duration 

of the study period. Each week the number of successfully germinated seeds was recorded and 

these then removed from the trays. This means of determining the number of viable seeds in 

the soil is referred to as the ‘seedling emergence method’ (Falińska 1999). The genera or spe-

cies of the emerged seedlings were determined only for tree species. If the number of germi-

nating seeds stagnated, the soil samples were allowed to dry, were mixed and watered again. 

The investigation of each sample ended 1.5 years after the date of soil collection. 

 

6.3.3. Statistical analysis 

In study A the relationship between the germination capacity of seed sets buried in soil and 

the factors storage time, burial depth and plot location were analyzed using logistic regres-

sion. The logistic regression represented a special case of generalized linear models (GLM) 

due to the binominal character of the dependent variable (Faraway 2006; Zuur et al. 2009). 

Using the binomial GLM for either the absence or the successful germination of seeds, the 

expected trend towards declining seed viability with increasing storage time was modeled. 

The numbers of emerged seedlings per soil sample of 81.92 cm² in study B were converted to 

density per m² to render the results comparable with the findings of other studies. Differences 
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in the seed densities between study sites and stand types were analyzed using the Kruskal-

Wallis H-test as the data were not normally distributed (Zar 2010). The generalized linear 

mixed models (GLMM) were used to assess the effect of stand type and soil layer (fixed ef-

fects) on germinated birch seeds (dependent variable). We tested whether the number of via-

ble birch seeds in the soil depends on the number of seed tree sources and on the depth of 

storage in the soil. Nested random effects were the locality, study sites and sample numbers. 

To model the GLMM in R software version 3.3.2 (R Core Team 2014), the glmmADMB 

package (version 0.8.3.3.) was applied. glmmADMB used the automatic differentiation model 

builder (ADMB) to fit the parameters (Bolker et al. 2012). The advantages of ADMB are the 

range of distribution families, the range of link functions and the use of the MCMC method 

(Markov chain Monte Carlo) to summarize uncertainties (Bolker et al. 2008, 2012; Zuur et al. 

2009). As the germinated birch seeds exhibited a negative binomial distribution, a logarithmic 

link function was used for modeling (Zuur et al. 2009).  

Significant differences in all models were accepted at a p-value level of < 0.05. The necessary 

homoscedasticity of variance and normality were checked and confirmed with plots of residu-

als and quantiles from fitted models of GLMM and GLM.  

 

6.4 Results 

6.4.1 Study A - Artificial seed burial experiment 

Germination rates  

The initial germination capacity of freshly harvested birch seeds up to October 2015 before 

burial was 32 %, compared to 64 % for rowan. After the first winter period in soil, the total 

germination capacity of buried rowan seeds reached 82-100 %, which clearly exceeded the 

initial germination capacity of fresh seeds and was not observed in any other seed sets over 

the whole observation period. Over the rest of the storage time in soil, the germination capaci-

ty of rowan seeds and the other buried seed sets exhibited a high degree of variation. Fig. 6.1a 

reveals the development of the germination percentages of all seed sets in all soil layers over 

the study period. Rowan seeds with and without pulp had almost lost their viability in all soil 

layers after two years, whereas after 2.5 years the germination capacity of birch seeds was as 

high as at the beginning of the experiment. The germination capacity of birch seeds was al-

ways higher in spring than in autumn. The same trend was not observed for rowan. Neverthe-

less, the logistic regression model results showed a significant negative influence of storage 

time on all soil stored seed sets (Table 6.2 and Fig. 6.1b). The model results predicted that 

http://www.autodiff.org/
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almost all rowan seeds, without and with pulp, and all birch seeds would have completely lost 

viability after 3, 4.5 and 12 years, respectively. 

 

 

Fig. 6.1 a Total germination capacity [%] of birch seeds (top), rowan seeds (middle) and rowan fruits (bottom) 

stored in mineral soil at depths of 2, 5 and 10 cm in a coniferous forest. The germination capacity was tested at 

intervals of 6 months from April 2016 to April 2018. Mature, fleshy seed sets were buried in October 2015 be-

fore testing the initial germination capacity [%]. b GLM predictions of germination capacities for birch seeds 

(top), rowan seeds (middle) and rowan fruits (bottom) in soil over the 2.5-year study period. 



Chapter 6 

 

- 143 - 

Table 6.2 Logistic regression model results (GLM) for total germination capacity of buried seed sets, stored over 

2.5 years in mineral soil at depths of 2, 5 and 10 cm in two study plots in a coniferous forest (n.s. - not signifi-

cant). 

seed sets effects estimate std. error z-value p-value 

birch seeds intercept -0.863 0.135 -6.380 0.000 *** 

 

storage time -0.148 0.033 -4.516 0.000 *** 

 

soil depth: 5 cm  0.097 0.139 0.695 0.487 n.s. 

 

soil depth: 10 cm 0.320 0.136 2.357 0.018 * 

  plot 2 -0.142 0.111 -1.275 0.202 n.s. 

rowan seeds intercept 1.785 0.151 11.822 0.000 *** 

 

storage time -0.916 0.043 -21.139 0.000 *** 

 

soil depth: 5 cm  0.149 0.146 1.021 0.307 n.s. 

 

soil depth: 10 cm 0.032 0.146 0.220 0.826 n.s. 

  plot 2 -0.440 0.120 -3.669 0.000 *** 

rowan fruits intercept 1.113 0.134 8.312 0.000 *** 

 

storage time -0.562 0.035 -15.904 0.000 *** 

 

soil depth: 5 cm  -0.531 0.133 -3.994 0.000 *** 

 

soil depth: 10 cm -0.624 0.134 -4.659 0.000 *** 

  plot 2 -0.239 0.109 -2.181 0.029 * 

 

The effect of storage depth on the seed viability differed between seed sets. While the germi-

nation capacity of rowan fruits decreased significantly with increasing soil depth, the model 

results showed no significant differences in germination capacity for rowan seeds without 

pulp. In contrast, birch seeds showed a significantly better germination capacity at 10 cm soil 

depth than in the upper two soil layers. Table 6.2 illustrates the pronounced effects of storage 

at the different soil depths on germination capacities for all seed sets and shows that the trend 

towards decreasing germination capacity over time mentioned above remains unaffected by 

burial depth. 

The germination capacity of rowan seed sets was found to differ significantly between the two 

plots in the coniferous stand (Table 6.2). There was no significant difference in the case of 

birch. However, over time fewer seeds remained viable in the moister ground of plot two for 

all seed sets than in the drier soil of plot one. 

 

Seed germination in soil 

During the excavations, already germinated seeds in soil were observed for both artificial bur-

ied rowan seed sets, but not for buried birch seeds. Between 3 % and 22 % of all rowan seeds 

in the buried net bags germinated in spring before excavation, whereas none germinated in 

autumn (Fig. 6.2a top). The highest germination frequencies in soil in both plots occurred in 

the first spring after burial and were exhibited by the seeds buried at 2 cm (18 % and 26 %). 

After 2.5 years of storage the germination percentages at 2 cm had decreased to 2-4 %. How-
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ever, the germination percentages at 10 cm soil depth remained similar over time. This con-

trasting seed germination behavior in soil was confirmed by significant differences revealed 

in the GLM results (Table 6.3). Nevertheless, the model results showed a generally negative 

effect of storage time on seed germination in the soil before excavation (Fig. 6.2b top). 

In the case of the rowan fruits germination frequencies in the soil of 4-48 % were observed in 

the second spring. The highest germination percentages always occurred at 2 cm soil depth, 

after the pulp had begun to decompose (Fig. 6.2a bottom). The rowan fruits at depths of 5 cm 

and 10 cm exhibited no morphological changes after the first winter, whereas at 2 cm the pulp 

was soft and had started decomposing. By autumn 2016 no fruits were detected at 2 cm while 

in the lower layer the pericarps were still hard and intact. In the second autumn (2017) no 

fruits were found in any layer. The model results revealed significantly lower seed germina-

tions for rowan fruits in the deeper soil layers during storage, but a significantly increasing 

number of germinated seeds in all layers generally over time (Table 6.3 and Fig. 6.2b bottom). 

The comparison, therefore, revealed that the germination behavior of the two rowan seed sets 

in soil over time was different. 

 

 

Fig. 6.2 a Seed germinations in soil [%] of total seeds buried in mineral soil at depths of 2, 5 and 10 cm for ro-

wan seeds (top) and rowan fruits (bottom) before excavation. The early seed germination in soil was checked at 

intervals of 6 months from April 2016 to April 2018. Mature rowan seeds and fleshy fruits were buried in Octo-

ber 2015. b GLM predictions of seed germinations in soil for rowan seeds (top) and rowan fruits (bottom) over 

2.5 years of storage. 



Chapter 6 

 

- 145 - 

Table 6.3 Logistic regression model results (GLM) for seed germinations in soil of buried rowan seed sets be-

fore excavation, stored over 2.5 years in mineral soil at depths of 2, 5 and 10 cm in two study plots in a conifer-

ous forest (n.s. - not significant). 

seed sets effects estimate std. error z-value p-value 

rowan seeds intercept -0.766 0.215 -3.571 0.000 *** 

 

storage time -0.320 0.060 -5.345 0.000 *** 

 

soil depth: 5 cm  -0.070 0.187 -0.374 0.708 n.s. 

 

soil depth: 10 cm -0.587 0.209 -2.812 0.005 ** 

  plot 2 -0.342 0.163 -2.097 0.036 * 

rowan fruits intercept -2.139 0.267 -8.005 0.000 *** 

 

storage time 0.232 0.068 3.404 0.001 *** 

 

soil depth: 5 cm  -2.260 0.315 -7.183 0.000 *** 

 

soil depth: 10 cm -1.376 0.227 -6.068 0.000 *** 

  plot 2 -0.106 0.188 -0.564 0.573 n.s. 

 

6.4.2 Study B - Soil core sampling in the forest 

Birch seedlings emerged from soil samples taken beneath all stand types, even in one sample 

from a pure spruce study site (Sp) (Fig. 6.3). Over the 18 month study period a total of 

41,114 n m-² viable birch seeds germinated in all trays. 

 

 

Fig. 6.3 Boxplot showing viable birch seed densities [n m-²] in the soil seed banks (litter and mineral soil layers) 

taken from different stand types. Black lines indicate the medians, white circles indicate outliers and black cir-

cles indicate mean values (Bi - birch stand, Sp-Bi - spruce-birch stand, Sp(Bi) - spruce stand with a single birch 

tree, Sp - spruce stand). 

 

Soil cores sampled from a birch stand (Bi) contained the highest mean densities of viable 

birch seeds (489-1,142 n m-²), while samples from a spruce stand (Sp) contained the lowest 

mean seed densities (0-8 n m-²) (Table 6.4). An average of 326-979 n m-² seeds germinated 

from the Sp-Bi soil cores and 8-69 n m-² from the Sp(Bi). The differences in the observed 

seed densities were significant only for Sp, Sp(Bi) and Bi (GLMM: p = 0.000 - Table 6.5), but 

not between Bi and Sp-Bi (GLMM: p-value = 0.270). The birch seed densities revealed no 
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significant differences across the three repetitions of each stand types (Kruskal-Wallis H-test: 

p-value > 0.05). 

 

Table 6.4 Viable birch seeds present in the seed banks of different stand types and soil layers, with median seed 

densities [n m-² - in italics] and mean seed densities [n m-²].  

  
soil layer 

  
stand 

types 

study 

sites 

humus & 

litter 
0-5 cm 5-10 cm ∑ soil layer 

Bi 

birch stand 
1 612 626 367 408 0 109 979 1,142 

2 245 394 245 326 0 68 490 789 

3 367 408 0 82 0 0 367 489 

Sp-Bi  

spruce stand with 

admixed birch 

4 612 653 122 326 0 0 734 979 

5 367 408 0 82 0 0 367 489 

6 122 150 122 136 0 41 244 326 

Sp(Bi) 

spruce stand with 

a single birch tree 

7 0 38 0 23 0 8 0 69 

8 0 0 0 8 0 0 0 8 

9 0 46 0 23 0 0 0 69 

Sp 

spruce stand 
10 0 8 0 0 0 0 0 8 

11 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 

 

Table 6.5 GLMM results for viable birch seeds in the soil samples from the different stand types and for the soil 

layers (f - fixed effects, r - random effects, n.s. - not significant, sd – standard deviation, study site - site number, 

soil core - number of the soil core from a study site). The reference stand type (intercept) is the birch stand Bi. 

factor effects estimate std. error z-value p-value variance sd 

f intercept 1.270 0.273 4.65 0.000 *** 

  f stand type ‘Sp-Bi’ -0.412 0.372 -1.11 0.270 n.s. 

  f stand type ‘Sp(Bi)’ -2.921 0.427 -6.84 0.000 *** 

  f stand type ‘Sp’ -5.825 1.060 -5.49 0.000 *** 

  f soil layer 0-5 cm -0.727 0.161 -4.51 0.000 *** 

  f soil layer 5-10 cm -2.577 0.279 -9.24 0.000 *** 

  r study site 

     

0.120 0.346 

r soil core 

     

0.412 0.642 

 

The density of viable birch seeds decreased with increasing soil depth across all stand types 

(Fig. 6.4); the differences were significant (GLMM: p-value = 0.000 - Table 6.5). Birch seeds 

were always present in high numbers in the litter and humus layers. The density ranged from a 

mean seed number of 8 n m-² in the spruce stand (Sp) to 626 n m-² in the birch stand (Bi) (Ta-

ble 6.4). No, or only very few, viable birch seeds were usually detected in lower mineral soil 

layers, except in the birch stand (Bi), where 68 n m-² and 109 n m-² seeds occurred up to 

10 cm soil depth.  
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Fig. 6.4 Mean densities [n m-²] of viable birch seeds present in the seed bank at different soil depths for the stand 

types (Bi - birch stand, Sp-Bi - spruce-birch stand, Sp(Bi) - spruce stand with a single birch tree, Sp - spruce 

stand). Note the logarithmic scale on the y-axis. 

 

6.5 Discussion 

6.5.1 Study A - Artificial seed burial experiment 

The findings of the artificial buried seed experiment showed the ability of rowan and birch 

seeds to remain viable for more than one year, as assumed in the first hypothesis. However, 

the results also confirmed contrasting storage behavior of the seed sets related to the tree spe-

cies, which is discussed separately below. 

 

Storability of birch seeds in the soil 

The few buried seed experiments that have been carried out for tree species of temperate for-

ests (Granström and Fries 1985; Granström 1987; Skoglund and Verwijst 1989) showed a 

viability of at least three years for B. pendula and B. pubescens seeds under the humus layer 

in a coniferous forest. The germination capacities in the experiments detailed by Granström 

and Fries (1985) and Granström (1987) saw reductions of 45 % and 94 % relative to the origi-

nal germination capacity, respectively. These reductions were higher than the 6 % to 41 % 

observed in this study. The findings presented here correspond to those of Skoglund and Ver-

wijst (1989), who documented 80 % viability for B. pubescens seeds buried in mineral soil at 

a depth of 10 cm in a spruce-pine forest after four years. The aforementioned authors derived 

a theoretical seed half-life of 13 years. Our model predicted for the same soil layer conditions 

a half-life of 12 years. 

Skoglund and Verwijst (1989) also tested the storability of birch seeds at 10 cm soil depth on 

a wet meadow and found that the seeds died within one year. However, comparable with our 
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findings, Granström and Fries (1985) found no significant differences in terms of viability 

loss during storage on moist sites. We assume that rapid viability loss and decomposition of 

birch seeds requires high levels of soil moisture, higher than occurs on moderately moist for-

est sites. 

Tiebel et al. (2018) emphasized the importance of the beneficial effect of litter cover and 

thickness for higher seed storage capacity in soil. Litter protects seeds against, for example, 

predation and drought, and prevents early germination by light-demanding seeds (Atkinson 

1992; Grime et al. 1981; Perala and Alm 1990), as we observed for birch seeds. 

Bekker et al. (2000) classed the persistence of birch seeds in the soil seed bank as transient 

(viable < 1 year) whereas Thompson et al. (1997) classed birch seeds transient to short-term 

persistent (viable 1-5 years). The declining germination capacities of birch seeds observed 

over time in this study illustrated a slower decrease in viability, but differences in the viability 

rates at different soil depths make an assessment of seed persistence difficult. As per the third 

hypothesis, the findings suggested longer storability periods for birch in lower soil layers. 

Depending on the soil layer, we conclude that birch belongs to at least the short-term persis-

tent type. 

 

Storability of rowan seeds in the soil 

Rowan seeds do not remain viable in the soil longer than birch seeds, refuting the second hy-

pothesis. After two years most of the buried rowan seed sets with and without pulp showed 

very low germination capacities (3-13 %), unlike birch. Granström (1987) found 60 % of ro-

wan seeds to be viable after three years, but only one seed germinated after five years. The 

declining germination capacity in Granström’s study largely reflected our findings. Rowan 

seeds also lose their viability faster in a moist storage medium (Holmes and Buszewicz 1958, 

cited in Hong et al. 1996). This too was confirmed by our findings, represented by the differ-

ences in the germination success of rowan seeds between the two plots (Table 6.2 and Fig. 

6.1). However, according to Erlbeck (1998) and Hill (1979), rowan seeds should be able to 

remain viable in the soil for up to five years (Hill 1979; Raspé et al. 2000), which we could 

not confirm.  

The reduced storage capacity of rowan seeds in the artificial burial experiment can be ex-

plained by early seed germinations in soil before excavations (see Bradbeer 1988). The early 

germination in soil of rowan seeds without pulp took place in both springs (2017 and 2018), 

while germination of the rowan seeds with pulp only started after the second winter. 

Granström (1987) observed the same for buried rowan seeds. The chilling of rowan seeds 
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under varying moisture and temperature conditions accelerates the breaking of dormancy and 

increases seedling emergence (Afroze and Reilly 2015; Barclay and Crawford 1984; Devillez 

1979, cited in Raspé et al. 2000). Under natural stratification conditions, the dormancy of ro-

wan seeds without pulp can be broken after 24-28 weeks (Afroze and Reilly 2015; Barclay 

and Crawford 1984). This corresponded to the month of April in our study. A substantial 

germination of rowan seeds can already take place during cold temperatures, from 2 °C (Bar-

clay and Crawford 1984) and 5 °C (Grime et al. 1981). Devillez (1979, cited in Raspé et al. 

2000) demonstrated that germination of rowan seeds not only occurs under bright conditions 

but also in darkness. 

The successful germination of rowan seeds within fruits required longer periods of cold 

treatment (Barclay and Crawford 1984). First the fruit-induced secondary dormancy must be 

broken by decomposition of the pericarp (Bewley 1997; Devillez 1979, cited in Raspé et al. 

2000). Observations made during the excavation of the net bags from the soil revealed that the 

decomposition of the rowan pulp starts later and proceeds more slowly deeper in the soil. 

Sometimes the exocarps were not destroyed in the lower soil layer, with the pulp having be-

come dry and hard, and remaining wrapped around the seeds. This dry pulp prevented water 

intake and respiration by the seeds (see Bewley 1997; Perala and Alm 1990; Raspé et al. 

2000). As a result, germination was inhibited and the seeds lost their viability over time. Usu-

ally, however, rowan seeds in pulp do not drift to these lower soil depths due to fruit size (see 

Burmeier et al. 2010; van Tooren 1988). 

The findings of the artificial seed burial experiment suggest that rowan seed does not store in 

the soil as well as birch. However, the classification of rowan as transient (viable < 1 year) by 

Dölle and Schmidt (2009) and Grime et al. 1988 (cited in Raspe et al. 2000) appears incorrect. 

Rowan seeds should be classed in the short-term persistent soil seed bank type (seeds are via-

ble 1-5 years in soil; Thompson et al. 1997, 1998). Nevertheless, the results indicate that an 

annual supply of rowan seed is required to maintain populations given their short duration in 

the soil seed bank. 

 

6.5.2 Study B - Soil core sampling in the forest 

Effect of forest stand types 

As per the fourth hypothesis, the observed densities of viable birch seeds in the soil of 326-

1,142 n m-² were high in birch stands and in spruce stands with admixed birch. The birch seed 

density in the soil was significantly lower where there were fewer seed trees. A corresponding 

finding was presented by Tiebel et al. (2018). The observed densities of viable birch seed 
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were within the range of the 224-3,760 n m-² recorded in the litter and mineral soil in previous 

studies carried out in birch stands (Hester et al. 1991; Kjellsson1992; Miller and Cummins 

2003). The seed densities of 8-69 n m-² found in the vicinity of the single birch trees in the 

pure spruce sites were relatively low compared to the findings of Decocq et al. (2004), 

Dougall and Dodd (1997), Jankowska-Błaszczuk (1998), Jaroszewicz (2013) and Komulainen 

et al. (1994), who found 13-217 birch seeds per m². It seems probable that the low densities in 

our study arose from the fact that only one single seed tree occurred within a distance of up to 

200 m. According to Ebrecht and Schmidt (2008), continuous replenishment of birch seeds by 

several trees is necessary to compensate the loss of viable seeds in the soil. With one excep-

tion, no birch seeds were detected in the soil beneath pure spruce stands. This absence of 

birch was also observed by Amrein et al. (2005) and Granström (1982).The significant differ-

ences in the numbers of birch seedlings that emerged in the trays confirmed the importance of 

the quantity of seed sources. This suggested birch seeds are not long-term viable, as species 

with long-term persistent seed banks accumulate high seed densities in the soil independent of 

the seed source numbers (Kjellsson 1992). 

Sarvas (1948) stated that 100-200 n m-2 birch seeds are necessary to obtain sufficiently dense 

pioneer trees for the regeneration of disturbed forest sites. This implies that the soil seed 

banks of the spruce-birch mixed stands considered in this study, with 326, 489 and 979 n m-² 

viable birch seeds, are sufficient for regeneration in the event of disturbance. Therefore, if an 

entire soil seed bank is activated after a disturbance on a site that formerly hosted spruce with 

about six or more admixed birch seed trees per hectare (comparable to Bi-Sp), additional 

birch seed rain from outside is probably not necessary for regeneration. Heinrichs (2010) and 

Hill (1979), on the other hand, both determined that the regeneration of birch is mainly 

through seed spread by seed rain and not from soil seed banks. Where there are only single 

seed trees or seed trees are completely absent, for example, in intact, closed spruce forest, 

natural regeneration after disturbance will prove difficult. A sufficient reserve of birch seed in 

the soil cannot be built up without seed trees and, as a consequence, the natural regeneration 

of these sites will depend on seed rain from surrounding forests. 

 

Effect of soil depth 

A significant decrease in the number of viable birch seeds was observed with increasing soil 

depth, as reported in numerous other studies (5th hypothesis; see Bakker et al. 1996; Gode-

froid et al. 2006; Granström 1982, 1988; Hill and Stevens 1981; Jaroszewicz 2013; Kalamees 

and Zobel 1998; Kjellsson 1992; Staaf et al. 1987). Granström (1988), Hill (1979) and Houle 
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(1998) found that the highest birch seed densities were generally in the humus layer and top-

soil, representing the input of the most recent seed rain (Bakker et al. 1996; Heinrichs 2010; 

Houle 1998). The density of birch seeds buried under the litter and humus layers in the miner-

al soil is usually lower and represents an older constituent of the soil seed bank (Kjellsson 

1992; Thompson et al. 1997). 

During vertical drift through the soil, at an average rate of 1 cm per 6 months (Burmeier et al. 

2010; Chambers and MacMahon 1994; Tiebel et al. 2018; van Tooren 1988), seeds are sub-

jected to various causes of mortality (Holm 1994; Sarvas 1952; van Tooren 1988). In spite of 

the losses to mortality, long-term persistent species are known for accumulating large 

amounts of seed in deep mineral soil layers (Kjellsson 1992). Mortality affects the seed re-

serves of short-lived seeds especially severely, rapidly reducing the seed quantities in the 

lower soil layers (Chambers and MacMahon 1994; Kjellsson 1992). This was the case for the 

birch seed in this study. 

 

6.6 Conclusions 

Forest regeneration from soil seed banks can become important in situations where stands are 

destroyed by large scale disturbance events such as strong winds or fire. Where disturbance 

events affect very large areas not only are seed trees missing directly on the site but regenera-

tion purely by means of seed rain may fail.  

The artificial seed burial experiment proved the ability of birch and rowan seeds to form a 

short-term persistent soil seed bank. Buried birch seeds can theoretically persist in the soil 

under optimal storage conditions for a maximum of 12 years. Birch seeds stored better and 

were more tolerant of different site conditions than rowan seeds. Rowan seeds, without and 

with pulp, germinated independent of the soil depth after the first and second winter in the 

soil, which limited seed storability in the soil significantly. Rowan seeds without pulp could 

be stored for a maximum of 3 years, and seeds with pulp 4.5 years. The pulp surrounding ro-

wan seeds offers no benefits in terms of seed storability; rather it would appear to act as a 

physical inhibitor on germination and ultimately leads to reduced seed viability. Therefore, a 

continuous, almost annual input of rowan seeds to the soil seed bank is necessary, while birch 

seed input every few years seems sufficient. 

The results of the soil core sampling in the forest showed a clear relationship between the 

numbers of seed tree sources in the stands and the densities of viable birch seed in the soil. To 

build up a soil seed bank sufficient for the successful regeneration of disturbed forest sites, in 

spruce dominated stands more than six birch seed trees are required per hectare. This corre-



Chapter 6 

 

- 152 - 

sponds to a distance of not more than 50 m between seed trees. Lower seed tree densities per 

hectare lead to low birch seed reserves in the soil and insufficient replenishment of seed banks 

with fresh seed.  
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7.1 Discussion of important aspects of regeneration ability 

Fructification is essential to the successful establishment of young trees, with successful re-

generation the key to safeguarding the survival and conservation of species in forest ecosys-

tems. Successful regeneration requires successful seed germination, seedling establishment 

and ultimately trees maturing to where they too fructify and produce seed.  

Trees need microsites, also called safe sites and regeneration niches, for successful germina-

tion (Harper 1977, Abé 2002, Baier et al. 2007). These regeneration niches must fulfill the 

species’ specific requirements in relation to environmental factors, such as light, humidity, 

temperature, substrate, soil moisture and competition (Röhrig et al. 2006, Bartsch & Röhrig 

2016). Each tree species has different requirements of regeneration niches based on their aut-

ecology. The requirements of regeneration niches can be classified generally and analyzed 

according the ecological groups of tree species: shade-tolerant, intermediate and pioneer tree 

species. 

Shade-tolerant tree species, like Fagus sylvatica L. and Abies alba Mill., need regeneration 

niches with constant humidity, soil moisture, well-drained microsites and low competition 

from herbaceous species, but do not require particularly high light intensity (Harcombe et al. 

1982, Löf 2000, Bucher 2008, Bartsch & Röhrig 2016, Huth et al. 2017). Suitable regenera-

tion niches are mainly found in closed forests and beneath small canopy gaps. Seedlings of 

shade-tolerant tree species can establish under a closed canopy and persist growing very slow-

ly for many years until an opening of the canopy leads to higher light availability and then 

grow more quickly (Abé 2002). Pioneer tree species primarily need moist microsites with 

bare ground and high light intensity for fast germination and establishment (Lautenschlager 

1994, Zerbe 2001, Gage & Cooper 2005, Mihók et al. 2005, Röhrig et al. 2006). Regeneration 

niches of pioneer tree species are limited to large gaps and open sites. Like shade-tolerant tree 

species, intermediate tree species, such as Picea abies L. and Quercus ssp., are vulnerable to 

drought and high competition from herbaceous species. Unlike shade-tolerant species, seed-

lings require light conditions between 20-40 % of open land conditions (Baier et al. 2007, 

Reif & Gärtner 2007, Volkert & Reif 2010, Bartsch & Röhrig 2016), with the result that their 

regeneration niches are found in middle (< 200 m²; Runkle & Yetter 1987) to large gaps 

(> 400 m²; de Lima et al. 2012) and along forest edges. 

The aforementioned regeneration sites – closed forest, gaps, forest edges and open sites – are 

not equally distributed in forest ecosystems. Large gaps, including open sites, are much less 

frequently found in closed forest structures (< 10 % of all gaps) than small gaps. Small gaps 

often account for more than 50 % of all gaps recorded in forests (Runkle & Yetter 1987, 
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Lertzman & Krebs 1991, Liu & Hytteborn 1991, Runkle 1992, Huth & Wagner 2006, de Li-

ma et al. 2012). These small gaps usually arise with the death of one or a small number of 

trees in the dominant stand layer. Less common large-scale disturbance events, like insect 

calamities, storm and fire, result in large gaps up to open sites. The distribution of gap sizes in 

a forest resembles a lognormal function (Liu & Hytteborn 1991, Huth & Wagner 2006, de 

Lima et al. 2012). 

The frequency and distribution of the different regeneration sites in a forest ecosystem re-

quires more or less large investments by the tree species in spatial and temporal seed distribu-

tion. For example, spatial seed distribution over long distance can be done anemochorously 

and zoochorously. To reach a newly created, large gap or open site with low vegetation cover 

by anemochorous seed dispersal requires the production of very small and light seeds without 

a nutrient reserve. Correspondingly, these seeds have greater requirements of their regenera-

tion niches in terms of soil moisture and conditions facilitating fast germination (see Gage & 

Cooper 2005, Mihók et al. 2005, Schütt et al. 2011). If these small, light seeds are deposited 

on unfavorable sites, seedling mortality increases drastically and seedling establishment is 

hindered (Bramlett 1990, Gage & Cooper 2005, Mihók et al. 2005, Röhrig et al. 2006). 

By contrast, zoochorous seed dispersal has the advantage of a more deliberate distribution of 

seeds by the animal vector. There is a higher probability that these seeds can reach appropri-

ate regeneration niches than anemochorously dispersed seeds (Clark et al. 1998, Żywiec et al. 

2013). However, zoochorous tree species must produce attractive, energy-rich fruits or seeds 

that are suitable as food for the consumer (Gautier-Hion et al. 1985, Silveira et al. 2013). The 

production of large fruits or seeds may result in resource depletion in the seed tree (Gurnell 

1993, Sork 1993, Wohlgemuth et al. 2016), with the result that annual production of a large 

amount of fruits/seeds is not possible every year, unlike wind dispersed tree species (Chmelar 

& Meusel 1986, Atkinson 1992, Raspé et al. 2000). In the case of the heavy-seeded tree spe-

cies Fagus sylvatica and Quercus ssp., resource depletion after a mast year regularly results in 

very low seed production in subsequent years (Sork 1993, Hilton & Packham 2003, 

Övergaard et al. 2007, Wohlgemuth et al. 2016). 

Tree species with regeneration niches widely distributed throughout forests, for example, 

shade-tolerant tree species, do not need to produce small, light seeds with a high investment in 

their spatial distribution. These tree species can produce big and heavy seeds with a food re-

serve. 

Temporal seed distribution can take place through either a soil seed bank or seedling bank. 

Tree species obtain a temporal lead, if they have seeds distributed in the soil or seedlings es-
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tablished under a closed canopy. The seeds or seedlings wait for improved environmental 

conditions, like increased irradiation following gap formation (Thompson et al. 1997, Abé 

2002). Only shade-tolerant or climax tree species can build up a seedling bank, whereas a soil 

seed bank requires that seeds be storable, a characteristic of the seeds of pioneer species (see 

Brokaw 1986, Abé 2002, Hopfensperger 2007). 

The various possible means of spatial and temporal seed dispersal by trees of various species 

begs the question whether the ecological groups of tree species (shade-tolerant, intermediate 

and pioneer tree species) have uniform regeneration strategies or not. The assumption of uni-

form strategies seems possible given the aforementioned general explanations of the regenera-

tion niches. However, looking at the spatial distribution of seeds, the question of uniform re-

generation strategies must already be answered with no. Each ecological group includes tree 

species with seed distributed by wind and by fauna. Shade-tolerant tree species do not exclu-

sively produce the kind of large and heavy seeds that are supposed to be beneficial to them 

(e.g., Fagus sylvatica), but also light and small wind-dispersed seeds (e.g., Abies alba) 

(Bucher 2008, Huth et al. 2017). Examples of wind-dispersed intermediate tree species are 

Tilia ssp. and Ulmus ssp., while zoochorously dispersed intermediate tree species are Quercus 

ssp. and Malus sylvestris (Burschel & Huss 1997). The pioneer tree species include zoocho-

rously-dispersed tree species such as Sorbus aucuparia in temperate forests and Miconia ar-

gentea and Cecropia insignis in tropical forests, as well as the wind-dispersed species Salix 

ssp., Populus ssp. and Betula ssp. (Brokaw 1987, Burschel & Huss 1997). Interestingly, the 

seeds of the wind-dispersed tree species Pinus sylvestris are also consumed and dispersed by 

28 bird species (Schütt & Stimm 2006). 

Seed morphology also differs within the ecological groups of tree species, and the corre-

sponding possibilities for spatial seed dispersal. The shade-tolerant zoochorously-dispersed 

Taxus baccata produces small seeds of 6-7 mm x 3-5 mm in size (Schütt 2008) with a thou-

sand-seed weight of 7-70 g (MacCarthaigh & Spethmann 2000), while Fagus sylvatica pro-

duces 15-20 mm x 10 mm seeds (Hecker 1998, Kandemir & Kaya 2009, Kremer 2010) with a 

thousand-seed weight of 220-250 g (MacCarthaigh & Spethmann 2000). Zoochorously-

dispersed pioneer tree species with very small seeds and fruits are Miconia argentea (fruit 

size of 0.5-3.5 cm in diameter, Silveira et al. 2013) and Sorbus aucuparia (fruit size of 1.0-

1.4 cm, Raspé et al. 2000). Brokaw (1987) mentioned that the tropical pioneer species Cecro-

pia insignis also has very small seeds, but the fruits are many times larger (15 cm long and 

1.3 cm in diameter, Smithsonian undated). In comparison to the wind-dispersed pioneer spe-

cies Salix caprea (thousand-seed weight: < 0.1 g, Schütt & Stimm 2001), Pinus sylvestris – 
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also a pioneer species with wind-dispersed seeds – forms quite large and heavy winged seeds 

(thousand-seed weight: 7-17 g, MacCarthaigh & Spethmann 2000). The sinking rate of Pinus 

sylvestris seed is 1.45 sec m-1, which is similar to that of the seed of the intermediate tree spe-

cies Acer platanoides (sinking rate of 1.13 sec m-1) (Kohlermann 1950). 

Temporal seed distribution also differs within the ecological groups of tree species. Tropical 

pioneer tree species are known for their potential to build up long-term persistent soil seed 

banks (Dalling et al. 1998), unlike temperate pioneer tree species. However, whereas the trop-

ical pioneer tree Cecropia insignis forms only a transient soil seed bank (Dalling et al. 1998), 

the seeds of the temperate Pinus sylvestris are able to remain viable for 4-5 years after ripen-

ing (Schütt & Stimm 2006, Baumann 2007). The most shade-tolerant tree species of temper-

ate forests should in theory only be able to establish a seedling bank (Brokaw 1986, Abé 

2002, Stancioiu & O’Hara 2006). Taxus baccata forms both a seedling bank and a seed bank 

(Iszkuło et al. 2005), however, and the intermediate tree species Quercus robur and Q. ses-

sisiliflora may form a seedling bank under certain light conditions (e.g., in pine stands) (Reif 

& Gärtner 2007, Volkert & Reif 2010). 

Ultimately it would appear that all of the described possibilities for the distribution of seed 

can occur in different and varied combinations (spatial and temporal). No clear regeneration 

strategy based on the ecological groups prevails. It may also be that not all distribution possi-

bilities are combinable. It is necessary to have a look at each tree species, to analyze their in-

dividual regeneration strategy and to clarify their specific characteristics. Only then might it 

be possible to arrive at conclusions in relation to their regeneration ecology and to design cor-

responding silvicultural measures to promote their establishment. 

As was described in chapter 1, the main goal of the study was to obtain comprehensive 

knowledge of the ecological aspects of the regeneration cycles of the temperate pioneer tree 

species Salix caprea, Betula pendula and Sorbus aucuparia to close existing gaps in the 

knowledge. However, not all aspects of the ecology and of the processes occurring within the 

regeneration cycle of these species (see Fig. 1.1, p. 7) could be studied (Fischer et al. 2016). 

The focus of the study was on fructification, seed dispersal and seed storage in soil seed banks 

(see chapter 1.3 and chapter 1.4, pp. 9-13). To obtain a comprehensive overview and to dis-

cuss the whole regeneration cycles of the pioneer tree species investigated, information relat-

ing to aspects of the regeneration cycle not researched has been supplemented by information 

drawn from the relevant literature. The objective was to provide a full picture of the possibili-

ties and limits of the natural regeneration of disturbed sites in spruce-dominated forests at 

high elevations and along ridges by goat willow, silver birch and rowan. 
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7.1.1 Fructification and seed production in Salix caprea, Betula pendula and Sorbus 

aucuparia 

The results showed a strong influence of weather conditions on the fructification of and seed 

production by the pioneer tree species studied, as assumed in the first hypothesis (p. 10). This 

finding was independent of the other impacting factors, namely vitality, age and tree dimen-

sions (Moles et al. 2004, Żywiec et al. 2012, Fischer et al. 2016). The study revealed that the 

seed numbers produced by silver birch were four times lower under suboptimal weather con-

ditions, and one and a half times lower in the case of goat willow. As was described and dis-

cussed in chapters 2.5.1, p. 42 ff. and chapter 3.5.1, p. 71 ff., these observations were con-

firmed by numerous other studies (Sarvas 1948, Bastide & van Vredenburch 1970, Elmqvist 

et al 1988, Houle & Payette 1990, Kullmann 1993, Holm 1994, Gage & Cooper 2005, Huth 

2009). Varying seed production numbers were also observed for rowan in different studies 

(Prien 1964, Sperens 1997a, b, Raspé et al. 2000, Satake et al. 2004, Żywiec et al. 2012). 

Żywiec et al. (2012) reported that mast years in rowan are mainly influenced by weather con-

ditions and not by predation pressure as is often assumed (Sperens 1997a). Seed production 

by rowan seed trees at high altitudes in the Thuringian Forest was either insufficient or failed 

entirely in 2015 and 2016, whereas the rowans in the lowlands were fruit bearing. The reasons 

for the seed crop failures were probably the dry autumns, winters and springs in both years, 

and the hot summer in 2015 (Thüringer Klimaagentur 2015a, b). Normally at these high alti-

tudes precipitation is plentiful (e.g., chapter 4.3, p. 88 ff. - Burse et al. 1997, Gauer & Alding-

er 2005, Bushart & Suck 2008). This stressed the individuals, reduced their fitness and im-

pacted negatively on seed production by rowan trees (see Sperens 1997b). 

Although the investigation of seed production by individual pioneer seed trees was not the 

main focus of this study, the quantities of seeds collected in the traps and the model results 

provide good indications of the differences between the pioneer tree species, supplemented by 

helpful information from other studies. The predicted level of seed production by a silver 

birch seed tree with 20 cm dbh was 1.5 million seeds in the non-mast year and 3.5 million 

seeds in the mast year. In mast years a single tree can produce seed crops as high as 7.3-10.0 

million seeds (dbh of 24-80 cm - Arnbourg 1948, cited in Perala & Alm 1990, Popadyuk et al. 

1995, Wagner et al. 2004, Huth 2009). In non-mast years birch seed production can fall to 

30,000-40,000 seeds per tree (Denisow 2007, cited in Huth 2009). Adult goat willow seed 

trees of low to medium vitality may produce 1.0-22 million seeds (dbh of 11-37 cm) in a par-

ticular year according to Tiebel et al. (2019). The same authors found that better weather con-

ditions and more vital individuals result in higher seed numbers. The assumption was con-
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firmed by the finding of seed crops of 740,000 seeds produced by willow seed trees of 3 m in 

height (Karrenberg & Suter 2003). Rowan seed trees less than 10 m in height may produce 

between 1-4,322 fruits per tree in mast and non-mast years, with a recorded maximum of 

22,542 fruits per tree (Sperens 1997b, Żywiec et al. 2012). Rowan seed production is very 

low, more comparable with fruit production amongst heavy-seeded tree species, like beech or 

oak (Francis 1983, Mosandl & Abt 2016, Gavranović et al. 2018) than silver birch or goat 

willow. This study revealed that a rowan fruit contains an average of 1.5-3.0 seeds (see also 

Sperens 1997a, Maier 2010). This means that a rowan seed tree can produce 2-67,626 seeds 

per year. The successful maintenance of rowan in forest ecosystems in spite of the low seed 

numbers may owe to directional seed dispersal by birds (Clark et al. 1998, Żywiec et al. 2013) 

(see chapter 7.1, p. 162). It would appear, therefore, that in the case of tree species with seed 

dispersed via zoochory the same high seed numbers produced by wind-dispersed trees are not 

required to achieve the same regeneration success. The reason for the high variation in seed 

production between mast and non-mast years maybe the result of resource depletion after fruit 

production (Gurnell 1993), as is the case in heavy-seeded tree species. Due to the generally 

low level of seed production, and the high annual variations of seed crops, rowan corresponds 

more closely to the heavy-seeded trees than to wind-dispersed pioneer tree species.  
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This begs the question of how pioneer tree species compensate low levels of seed production 

in non-mast years, for example, through soil seed banks or seedling banks, to the extent that 

the general impression of high annual seed production and regeneration success could become 

so widely established. 

Due to the differences between the pioneer tree species, the questions regarding the effective-

ness of the ecological processes occurring within the individual regeneration cycles are dis-

cussed separately for the tree species in the following sections. 

 

7.1.2 Ecological processes within the regeneration cycle of Salix caprea 

Goat willow is not able to build up a soil seed bank, which confirms the third hypothesis (p. 

11) underlying this study. This was shown by the results of the seed burial experiment, where 

no goat willow seeds were viable after 6 months storage in soil, although the initial germina-

tion capacity was 100 %. Numerous other studies found high germination capacities of 85-

100 % for willow seeds and recorded short viability periods of 7-21 days after seed matura-

tion and dispersal, because goat willow seeds have no food reserve (Juntilla 1976, Densmore 

& Zasada 1983, Lautenschlager 1994, Douglas 1995, Thompson et al. 1997, 1998, Skvortsov 

Pioneer trees do not generally exhibit high levels of seed production annually as is often 

assumed. There are large annual variations in seed production, similar to heavy-seeded 

tree species (Fischer et al. 2016). The variations are influenced by weather conditions. 

Low tree vitality, small dimensions and high competition pressure can also lead to low 

levels of seed production in pioneer tree species (Sarvas 1948, Maier 2010). Good seed 

years (mast years) occur in birch every 2-3 years on average (Sarvas 1948, Zerbe 2001) 

and every 2-5 years in rowan (Sperens 1997b, Zerbe 2001, Satake et al. 2004). The avail-

able findings for goat willow indicate that this may one species that does achieve high 

levels of seed production annually (see Ryvarden 1971, Brouwer & Stählin 1975, Lauten-

schlager 1994, Barsoum 2002, Gage & Cooper 2005, Kuzovkina & Quigley 2005, Argus 

2006, Seiwa et al. 2008). This was also observed in this study. It is not only the frequency 

of masts, but also the seed quantities produced that differ between the three pioneer tree 

species. A goat willow seed tree produces 5-10 times more seeds than birches in mast 

years. In non-mast years the difference may be even greater, because goat willow is not as 

susceptible to the prevailing weather conditions as birch. The seed crops produced by ro-

wan are always significantly lower and more strongly influenced by weather conditions 

than those of the wind-dispersed pioneer tree species. 
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1999, Bekker et al. 2000, Maroder et al. 2000, Barsoum 2002, Karrenberg & Suter 2003, 

Gage & Cooper 2005, Argus 2006, Schütt et al. 2011). To establish, goat willow seed must 

germinate and develop rapidly. 

Investigations of the seedling banks of pioneer trees exceeded the scope of this study, but Jun-

tilla (1976), Niiyama (1990), Lautenschlager (1994), Mihók et al. (2005), Schütt et al. (2011) 

and Richardson et al. (2014) mentioned the very low shade tolerance of willow seedlings and 

saplings, which require an irradiation level of more than 40 % of open land conditions. Pre-

vailing light conditions in a closed forest are mostly between 1-20 % of above canopy light 

(Gralla et al. 1997, Wagner & Müller-Using 1997, Mihók et al. 2005, Huth 2009), which is 

not sufficient for willow seedlings to survive. Goat willow seedlings cannot grow or form a 

seedling bank under canopy cover and wait for favorable conditions to emerge; for example, 

after a windthrow event (Gralla et al. 1997, Wagner & Müller-Using 1997, Stancioiu & 

O’Hara 2006). 

The annual regeneration success of goat willow depends solely on the quantity of the annual 

seed rain. This seed rain, therefore, would appear to represent a vital component of silvicul-

tural measures targeting forest regeneration with goat willow given the following: (i) the 

comparatively minor reduction of seed numbers in non-mast years (seed crops are similarly 

high every year) compared to silver birch and rowan; (ii) the very high germination capaci-

ties; (iii) the long seed dispersal distances of more than 800 m, as described in chapter 2.4.2, 

p. 37 ff.; and (iv) the source-independent omnipresence of at least 20-45 seeds per m² (= no 

directionality) – which refutes hypothesis 2 (p. 10). Disturbed areas far from the nearest goat 

willows, or close to trees with low seed production, might still be regenerated by seed flow 

from goat willow at a considerable remove (Kikuchi et al. 2011, Trybush et al. 2012, Perde-

reau et al. 2014). 

 

7.1.3 Ecological processes within the regeneration cycle of Betula pendula 

The annual variability in silver birch seed production is significantly greater than in goat wil-

low. In non-mast years the initial germination capacity of birch seeds is in most cases also 

significantly lower (Sarvas 1952, Bjorkbom 1967, Marquise 1969, Holm 1994). The initial 

percentage of birch seed germination has been found to range between 10-93 % (Sarvas 1952, 

Black & Wareing 1954, Holm 1994, Huth 2009). Given the limited and relief-induced mean 

dispersal distances of 80-380 m at high elevations and along the ridges in the Thuringian For-

est (hypothesis 2a and 2b, p. 10), the findings of this study indicate that here non-mast years 

cannot be compensated by seed flow from other silver birch populations. The data from this 
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study revealed no directionality to birch seed dispersal, and longer seed dispersal distances in 

the main wind direction. Holm (1994) found that groups of silver birch in proximity to one 

another usually exhibited synchronous behavior in seed production. Often there may not be 

close silver birch populations, however, as pioneer tree species are rarely found in managed 

conifer forests (Keidel et al. 2008, Heurich 2009, Brang et al. 2015). Therefore, silver birch 

seed rain cannot guarantee the successful natural regeneration of disturbed sites in non-mast 

years (Marquise 1969, Holm 1994). 

Silver birch is able to build a short-term persistent soil seed bank (up to a maximum of 

12 years), as assumed in the third hypothesis (p. 11, see also chapter 6.4.1, p. 141 ff. - 

Skoglund &Verwijst 1989, Thompson et al. 1997). Short-term persistent means that the soil 

seed bank needs a continuous seed rain input every few years. Given that good seed years 

occur every 2-3 years on average (Sarvas 1948, Zerbe 2001), silver birch seeds do not need to 

be able to persist in the soil for longer periods. The necessary replenishment of the silver birch 

soil seed bank with fresh seeds at an interval of at least every 5 years is well matched by the 

frequency of mast years in the species, as the results of this study (see chapter 3.5.1, p. 77 ff. 

and chapter 6.4.1, p. 141 ff.) and the findings presented by Granström (1987) and Skoglund & 

Verwijst (1989) showed. If seed trees are available but fructification fails in a particular year, 

the soil seed bank can still ensure successful regeneration. 

Silver birch, like goat willow, cannot establish a seedling bank under the canopy due to its 

requirement for light exceeding 40 % of open-area irradiation (Marquise 1969, Gilbert et al. 

2001, Portsmuth & Niinemets 2006, Huth 2009, 2015). Kobe et al. (1995) found that young 

yellow birch trees died within 2.5 years under light conditions below 9 %. 

Although in a non-mast year silver birch can regenerate by virtue of the seed reserve in soil, 

germination of these buried seeds will not happen if there is no change to the prevailing envi-

ronmental conditions (= disturbance). The seeds will not germinate in undisturbed soil 

(Granström 1987, Perala & Alm 1990). Under the right conditions, however, and contrary to 

the conclusions drawn by Hill (1979) and Heinrichs (2010), the regeneration of silver birch on 

disturbed sites depends not only on annual seed rain, but is also possible from the soil seed 

bank. 

 

7.1.4 Ecological processes within the regeneration cycle of Sorbus aucuparia 

Rowan trees must rely on a number of different strategies for successful regeneration. Rowan 

reacts much more sensitively to unfavorable weather conditions than silver birch and goat 

willow, resulting in an extreme reduction and sometimes failure of fruit production (Sperens 
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1997b, Satake et al. 2004, Żywiec et al. 2012). The 2-5 year intervals between good seed 

years (Sperens 1997b, Zerbe 2001, Satake et al. 2004) are also longer, and the seed dispersal 

distances significantly shorter, than for silver birch because of the reliance on endozoochorous 

dispersal. The reduced distances birds usually fly after eating limit effective seed dispersal to 

30-100 m, which confirmed hypothesis 2a (p. 10, see also chapter 4.5, p. 95 ff. - Bakker et al. 

1996, Jordano & Schupp 2000, Stiebel 2003, Holeksa & Żywiec 2005, Żywiec et al. 2013, 

Żywiec 2014).  

Surprisingly, the proven ability of rowan to form a soil seed bank (see Raspé et al. 2000) was 

limited to a maximum of 3-4.5 years (hypothesis 3, p.11, see also chapter 6.4.1, p. 141 ff.). 

Rowan seeds without and with pulp stored in the soil for an average of 1-1.5 years, during 

which time embryo and seed coat dormancy are broken. After overcoming dormancy, the 

seeds usually germinate in the soil even without the occurrence of a disturbance (Granström 

1987). As a consequence, the seed reserve in the soil needs constant replenishment, unlike 

silver birch. The presence of a sufficient accumulation of rowan seeds in the soil to serve as a 

seed reserve for the successful regeneration of disturbed sites cannot be assumed. In actual 

fact the ‘seed bank’ established by rowan seeds does not meet the definition of a soil seed 

bank (= seed reserve) (Fenner1985, Thompson et al. 1997, Berger et al. 2004, Bossuyt & 

Honnay 2008, Leck et al. 2008). Both the soil seed bank and seed rain are, therefore, not a 

reliable basis for the successful regeneration of disturbed sites with rowan. 

Rowan can, however, build up a seedling bank under canopy cover (Holeksa & Żywiec 2005, 

Żywiec & Holeksa 2012). Rowan seedlings and saplings can survive under shelter at between 

20-30 % of open-area irradiation levels (Prien 1964, Bartsch & Röhrig 2016). These seedlings 

can respond to the creation of better light conditions (e.g., through thinning or disturbances) 

with better growth up to a duration of 30 years (Gockel 2016). This ability to establish a seed-

ling bank might be explained as an evolutionary adaptation to the dispersal vector ‘frugivor-

ous birds’ and their behavior. Birds prefer protected, shaded forest edges and closed forests 

for defecation and avoid bright open areas lacking structural elements (McDonnell & Stiles 

1983, Stimm & Böswald 1994, Gregor & Seidling 1997, Jordano & Schupp 2000, Stiebel 

2003, Żywiec & Ledwoń 2008, Żywiec 2014). If the seedlings and saplings needed high light 

conditions to grow, the young trees would die under the shelter of the canopy and birds would 

not contribute to the successful regeneration of rowan. The germination of rowan seeds in 

undisturbed soil also makes sense in the context of its ability to create a seedling bank. 

In summary, rowan regeneration depends on seed dispersal by birds, its ability to form a 

short-term soil seed bank but, above all, on its ability to establish a seedling bank under shel-
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ter, similar to the shade-tolerant climax species beech and silver fir (Szwagrzyk et al. 2001, 

Szymura 2005, Stancioiu & O’Hara 2006). 

 

 

The results of the study showed that goat willow is the only one of the three pioneer tree 

species studied that meets the general assumptions made about the characteristics of pio-

neer tree species. The regeneration success of goat willow depends solely on the high an-

nual seed production and long seed dispersal distances. Goat willow possesses no other 

regeneration abilities, such as the ability to establish a soil seed bank or a seedling bank. 

Silver birch deviates from the general assumptions made about pioneer tree species and 

exhibits the characteristics of a hybrid. The high regeneration success of birch derives not 

only from the seed rain, which varies considerably between years and is dispersed shorter 

distances than goat willow seeds. This regeneration success stems also from a short-term 

persistent soil seed bank. 

The properties exhibited by rowan during the regeneration cycle correspond more to 

shade-tolerant tree species than to the general assumptions made about light-demanding 

pioneer tree species. Compared to silver birch and goat willow, the rowan seed crop is 

significantly lower and the dispersal distances much shorter. Although rowan is able to 

build up a short-term soil seed bank, its strength as a species to quickly regenerate a dis-

turbed site lies in its great ability to form a seedling bank. In general, however, the ecolo-

gy of rowan (short-lived, low resistance to competition pressure, higher light requirement 

with increasing age, low site requirements during regeneration) corresponds to the charac-

teristics of pioneer tree species (Raspé et al. 2000, Zerbe 2001, Gockel 2016). 

All relevant aspects and stages of the regeneration cycles of the pioneer tree species are 

summarized in Appendix 4, p. iv. 

In summary, the pioneer tree species studied have each adopted different regeneration 

mechanisms during evolution depending on the seed morphology and the dispersal vector 

characteristics. Every aspect within the regeneration cycle of each pioneer tree species is 

precisely coordinated, which has served to create the impression that their successful re-

generation is the result of an abundant annual seed rain. In reality this applies only for 

goat willow. The perfect cooperation between all aspects of the regeneration mechanisms 

has ensured the successful regeneration and survival of the pioneer tree species studied up 

to now in spite of their removal from the forests in the past as part of forest management 

activities. 
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7.2. Conclusions for silviculture and management recommendations 

The results of the study showed the great importance of the integration and tending of pioneer 

seed trees in managed forests, if natural regeneration is to be applied effectively as a man-

agement approach for disturbed sites. Since the storms Vivian and Wiebke in 1990, Lothar in 

1999 and Kyrill in 2007, each of which resulted in extensive damage to forests in Germany, 

the exploitation of trees of pioneer species as pioneer forest or as filling-in material has be-

come more widely practiced (Leder 2003, Leder et al. 2007, ThüringenForst 2013). To ensure 

the continued survival and establishment of seed-producing pioneer tree species in Germany’s 

forests (in sufficient numbers and at appropriate spatial distributions) appropriate measures 

must be incorporate into silviculture. Silvicultural recommendations on the integration of pio-

neer species in stands through thinning and other measures are indispensable. 

Management concepts targeting the natural regeneration of disturbed sites first necessitate 

knowledge of the seed tree numbers needed per hectare. To determine this number, the dis-

persal distances of seeds and the seed numbers deposited on the ground are crucial. It was 

shown in chapters 3.6, p. 74 ff. and chapter 2.6, p. 47 ff. that a minimum of 4-16 seed trees 

are needed per hectare in the case of silver birch and rowan, and 1-2 goat willow trees. The 

omnipresence of goat willow seeds makes a ‘spatial optimisation’ of seed trees unnecessary 

for the species. Although it would in theory be sufficient to have only one female and one 

male goat willow individual within an area 3-8 ha, 1-2 seed trees per hectare are recommend-

ed to account for any unforeseen losses to seed trees. Silver birch and rowan seed trees do 

require spatial optimization. Distances of 30-60 m between individuals are recommended to 

guarantee a homogeneous distribution of seeds. 

However, the mere presence of a sufficient number of pioneer seed trees in managed forests 

does not guarantee successful seed dispersal to disturbed sites. Fructification and the success-

ful production of large seed crops are necessary to ensure adequate seed rain for the regenera-

tion of disturbed sites. On open areas, rowan and goat willow plants from seeding begin re-

production at 4-5 years (Zerbe 2001, Maier 2010, Roloff & Pietzarka 2010) and birch at 5-10 

years (Atkinson 1992, Zerbe 2001). In forest areas birch reproduces for first time after 20-30 

years (Zerbe 2001), rowan after 8-20 years (Prien 1964, Raspé et al. 2000, Zerbe 2001) and 

goat willow from the tenth year (Schirmer 2006). The contrasting onsets of fructification in 

forests and on open sites are indicative of the low competitiveness of pioneer tree species.  

The strict allometric relationships between growth parameters and the individual seed crop of 

a tree described here are already established (Grisez 1975, Sato & Hiura 1998, Greene et al. 

2004, Wagner et al. 2004, Huth 2009, Gockel 2016, DaPonte Canova 2018). Growth subject 
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to high competition pressure and low light results in poor crown development, small dimen-

sions (Hynynen et al. 2010), little to no fructification (Gockel 2016) and, in the worst cases, to 

the death of pioneer trees (Prien 1964, Maier 2010). For example, at high elevations and along 

ridges, birches with small crowns and low stability have to endure snow damage and often die 

after 30-50 years (Cameron 1996, Hering et al. 1999, Hynynen et al. 2010, Noack oral com-

munication in 2015). Under such conditions, goat willow may already disappear from stands 

at the pole wood stage (Neumann 1981). Therefore, the control of space and interspecific 

competition to favor stem and crown dimensioning in pioneer seed trees is important. 

Żywiec et al. (2012) observed that very favorable conditions for individual rowan seed trees 

can lead to local, spatially delineated and unsynchronized mast years. This means that silvi-

cultural measures to limit competition may lead to higher seed production even in non-mast 

years (Huth 2009, Gockel 2016, Tiebel et al. 2019). 

Pioneer tree species are short-lived tree species and do not usually exceed lifespans of 60-150 

years (Atkinson 1992, Raspé et al. 2000, Schütt 2006). With the onset of senescence – age 40-

60 years for birch, 30-50 years for goat willow – the aforementioned allometric relationship 

loses its tight correlation (Atkinson 1992, Schirmer 2006, Huth 2009, Hynynen et al. 2010). 

Therefore, individual pioneer trees are only a temporary presence in stands (Hering et al. 

1999) and continuous promotion becomes necessary to ensure the recruitment of sufficient 

new flowering individuals. 

Silvicultural measures to recruit new light-demanding seed trees of pioneer species involve 

the creation of gaps in otherwise closed (conifer) stands. The active promotion of existing 

seed trees is also recommended and measures to protect against browsing must be considered. 

Young pioneer trees are very often browsed and the bark of older individuals stripped (Prien 

1964, Chantal & Granström 2007, Keidel et al. 2008, Gockel 2016). Around established seed 

trees regular regulation of the available space and pre-commercial thinning (= competitor re-

moval) is necessary to increase crown development and individual tree stability. Pre-

commercial thinnings should start in the thicket stage at the latest, independent of the pioneer 

tree species in question. Measures for the promotion of these trees should be implemented 

consistently until maturation (Prien 1964, Cameron 1996, Huth 2009, Gockel 2016). The ear-

lier thinning occurs, the more pioneer tree species can respond (Cameron 1996, Schütt 2006, 

Gockel 2016). Rowan is the only one of these species that may still be able to respond to a 

first thinning measure at the age of 30 years (Gockel 2016), given its juvenile shade-tolerance. 

Prien (1964) found, however, that the demand for light already increases in rowan individuals 

of 8-10 years (= 3-4 m in height). Therefore, even for rowan, the first thinning should not 
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happen too late. It should also be noted that for older trees a sudden release may also have 

negative effects where the trees can no longer adapt to the new conditions and die (Prien 

1964, Cameron 1996). 

Measures should generally only be carried out to promote dominant seed trees, to ensure that 

these selected individuals can persist in the sub-dominant or dominant stand layer (Prien 

1964, Huth 2009). Where light-demanding pioneer seed tree species form the canopy along-

side the target crop tree species, Hynynen et al. (2010) recommended space control and thin-

ning at short intervals to maintain a crown ratio of 50 %, an indicator of vitality. To ensure 

good and vigorous crown development, thinning intervals for dominant birch trees should be 

carried out at intervals of 5-7 years (Cameron 1996). Prien (1964) and Gockel (2016) con-

cluded that rowan requires relatively intense promotion with measures for space control to be 

implemented at intervals of 3-5 years. To correspond with cultivation intervals in regular for-

estry, a 5 year control interval is suggested for rowan, with the removal of stronger competi-

tors recommended wherever necessary and possible. There are no existing thinning guidelines 

for goat willow growing in managed temporal forests. As a high light-demanding and fast-

growing species with a high space requirement (Lautenschlager 1994, Argus 2006, Schirmer 

2006, Schütt 2006, Gockel 2016), a control interval of 5 years is also suggested. 

To ensure the efficiency and lower the intensity of silvicultural measures, it is recommended 

that treatment concepts be developed for groups of seed trees rather than for individual ad-

mixed seed trees in stands (Prien 1964, Cameron 1996, Hillebrand 1998, Huth 2009, Hynynen 

et al. 2010). Groups of seed trees reduce the pressure of interspecific competition and the 

number of thinning required. The adoption of seed tree groups also allows for larger distances 

between groups than is the case for individual seed trees. The seed shadows cast by seed trees 

in groups overlap, resulting in higher seed densities per square meter. Seed tree groups also 

guarantee a minimization of the risk of the loss of seed sources through mortality, for exam-

ple, as a result of snow damage, insect calamity or senescence. The maintenance of sufficient 

numbers of fructifying seed trees of pioneer tree species in managed forests ensures that there 

is potentially sufficient seed rain to cater for disturbed sites. 

The subsequent successful germination of seeds and establishment of seedlings required to 

ensure the reforestation of disturbed sites is tied to the availability of a sufficient number of 

microsites, optimal weather and soil conditions, and tolerable browsing pressure and herb 

competition (Marquise 1969, Junttila 1976, Densmore & Zasada 1983, Sacchi & Price 1992, 

Guthörl 1994, Cameron 1996, Young & Clements 2003, Schütt 2006, Huth 2009). 
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The scope for the natural regeneration of windthrown sites by pioneer tree species also has 

limits. The extent of seed dispersal, whether silver birch seeds dispersed on the wind or rowan 

dispersed by birds, is specific to the species. Endozoochorous dispersal of seeds further de-

pends on the availability of structural elements on open sites (see chapter 4.4, p. 92 ff.). It is 

not possible to guarantee comprehensive natural regeneration of all pioneer tree species solely 

by seed rain across the whole extent of disturbed sites greater than 4 ha in size (see chapter 

3.6, p. 74 ff. and chapter 4.5, p. 95 ff.). The following should, therefore, be observed: (i) pio-

neer seedlings already established on disturbed areas must be maintained; (ii) seed trees that 

survive disturbance events must be left on site; (iii) silver birch and rowan soil seed banks and 

(iv) rowan seedling banks should be exploited, if possible. On very large open areas of several 

hundred square meters or more, (v) natural regeneration must be supported by additional 

planting or seeding measures. 
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Appendix 1 Locations of the sites of the seed dispersal and soil seed bank investigations in the Thuringian For-

est (Reference: modified from original forest map provided by ThüringenForst-AÖR 2014). 

 

 

Appendix 2 Location of the sites of the soil seed bank investigation in the Tharandter Forest (Reference: Google 

2019).  
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Appendix 3 Experimental study designs for the seed traps on the windthrown sites A-E in the Thuringian Forest 

with crossing line transects. 
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Appendix 4 Overview of the life histories and regeneration strategies (seed production, soil seed bank, seedling bank) of silver birch (Betula pendula Roth), goat willow (Salix 

caprea and rowan (Sorbus aucuparia L.) (References can be found in reference list in chapter 7 ‘General discussion’). 

 Silver birch Goat willow Rowan References 

Longevity (maximum) [years] 90–120 (180) 60 80–150 
Atkinson 1992, Raspé et al. 2000, Zerbe 2001, Schütt 2006, Maier 2010, 

Roloff & Pietzarka 2010 

Maximal tree height [m]  25–30 12–15 15–20 
Atkinson 1992, Schiechtl 1992, Raspé et al. 2000, Zerbe 2001, Schütt 

2006, Hynynen et al. 2010, Roloff & Pietzarka 2010 

End of height growth of mature 

trees [years] 
60 20–25 25–30 Prien 1964, Schütt 2006 

Plant/flower monoecious dioecious monoecious Atkinson 1992, Raspé et al. 2000, Argus 2006, Schütt 2006 

Pollination wind wind and insects insects Atkinson 1992, Raspé et al. 2000, Argus 2006 

Vector of seed dispersal anemochore anemochore zoochore Atkinson 1992, Zerbe 2001, Argus 2006, Schütt 2006 

Frequency of high seed produc-

tion - 'mast years' [years] 
2–3 unknown 2–5 Sarvas 1948, Sperens 1997b, Zerbe 2001, Satake et al. 2004 

First flowering [years] 
    

Open sites (2) 5–10 4–5 4–5 
Atkinson 1992, Leder 1992, Raspé et al. 2000, Zerbe 2001, Schirmer 

2006, Maier 2010, Roloff &Pietzarka 2010 

Within forest 30 10 8–20 
Prien 1964, Raspé et al. 2000, Zerbe 2001, Schirmer 2006, Maier 2010, 

Roloff & Pietzarka 2010 

Seed production per tree [num-

ber] 
- 1.2–22.3 million - Tiebel et al. 2019 

Mast year 3.7–10 million unknown 12,900–67,600 
Perala &Alm 1990, Popadyuk et al. 1995, Sperens 1997b, Wagner et al. 

2004, Huth 2009, Żywiec et al. 2012, Żywiec 2014  

Non-mast year 
40,000–1.5 mil-

lion 
unknown 3–7,900 

this study, Sperens 1997b, Denisow 2007 (cited inHuth 2009), Żywiec et 

al. 2012, Żywiec 2014  

Seed dispersal distance [m]   

Dispersal distances (maximum) 
37–125 (192) 

 

200–1,500 (3,000) 30–100 (550) 

this study, Sarvas 1948, Hughes & Fahey 1988, Leder 1992, Bakker et 

al. 1996, Jordano &Schupp 2000, Daniels 2001, Karlsson 2001, Stiebel 

2003, Wagner et al. 2004, Gage & Cooper 2005, Holeksa & Żywiec 

2005, Schirmer 2006, Huth 2009, Żywiec et al. 2013, Żywiec 2014 

Mean dispersal distance-uphill (30) 87–96 
no differences 

unknown this study, Hill et al. 1981 

Mean dispersal distance-downhill 367–380 unknown this study 
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Areas of deposited high seed 

numbers to seed tree [m] 
25–50 up to 25 up to 40 

this study, Sarvas 1948, Fries 1984, Skoglund & Verwijst 1989, Ryvar-

den 1971, Cameron 1996, Gage & Cooper 2005, Żywiec & Ledwoń 

2008, Żywiec et al. 2013 

Possibility of secondary seed 

dispersal  
yes yes  no Matlack 1989, Greene & Johnson 1997, Gage & Cooper 2005 

Influence of seed dispersal dis-

tance by following factors 
  

Azimuth direction (for entire  

dispersal period) 
yes (no) - by wind yes (no) - by wind 

yes - by prefer-

ence of birds 

this study, Wagner et al. 2004, Gage & Cooper 2005, Wright et al. 2008, 

Huth 2009 

Relief inclination yes no unknown this study 

Position of seed tree (slope, valley, 

open area, edge, forest) 
yes no yes 

this study, McDonnel & Stiles 1983, Jordano & Schupp 2000, Stiebel 

2003 

Distance between seed tree  

and disturbed area 
yes 

yes (< 50 m) 

no (> 50 m) 
yes 

this study, Jordano & Schupp 2000, Stiebel 2003, Holeksa & Żywiec 

2005, Żywiec et al. 2013, Żywiec 2014  

Structural elements on  

disturbed area 
- - yes this study, McDonell & Stiles 1983, Kollmann 2000 

Minimal number of necessary  

seed trees (n/ha) 
4–16 

1–2 (+1 male 

individual) 
4–16 this study, Sarvas 1948, Safford & Jacobs 1983 

Soil seed bank yes no yes 
 

type 

short-term to 

long-term persis-

tent 

transient 
transient-short 

term persistent 

this study, Bakker et al. 1996, Thompson et al. 1997, Bekker et al. 2000, 

Raspé et al. 2000, Dölle & Schmidt 2009 

storage capacity (maximum) 

[years] 
2–7 (13) 1 1–2 (5) 

this study, Sarvas 1952, Hill 1979, Granström 1987, Skoglund & Ver-

wijst 1989, Leder 1992, Thompson et al. 1997, Erlbeck 1998 

Seedling bank no no yes Holeksa & Żywiec 2005, Żywiec & Holeksa 2012 

Maximum height growth of  

saplings [m/year] 
0.6–1 0.7–1 0.6–0.8 

Prien 1964, Leder 1992, Hecker 1998, Zerbe 2001, Schütt 2006, Chantal 

& Granström 2007 

Light requirement of seedlings 

(minimum) [open-area radiation 

level] 

(> 30 %) > 40 % (> 10 %) > 40 % 
(< 20 %)  

> 20–30 % 

Prien 1964, Marquise 1969, Juntilla 1976, Niiyama 1990, Kobe et al. 

1995, Gilbert et al. 2001, Mihók et al. 2005, Portsmuth & Niinemets 

2006, Richardson et al. 2014, Bartsch & Röhrig 2016 

Thinning intervals of treatments 

for optimal growth 
5–7 5 5 (3) this study, Prien 1964, Cameron 1996, Gockel 2016 
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