
Graph Pattern Matching on
Symmetric Multiprocessor Systems

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Alexander Krause

geboren am 17. August 1988 in Dresden

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden, Deutschland

Prof. George Fletcher
Eindhoven University of Technology
Department of Mathematics and Computer Science
Database Group
Groene Loper 5
5612 AP Eindhoven, The Netherlands

Tag der Verteidigung: 29. Juni 2020

Dresden im Juni 2020

2

ABSTRACT

Graph-structured data can be found in nearly every aspect of today’s world, be it road
networks, social networks or the internet itself. From a processing perspective, find-
ing comprehensive patterns in graph-structured data is a core processing primitive in a
variety of applications, such as fraud detection, biological engineering or social graph
analytics. On the hardware side, multiprocessor systems, that consist of multiple proces-
sors in a single scale-up server, are the next important wave on top of multi-core systems.
In particular, symmetric multiprocessor systems (SMP) are characterized by the fact, that
each processor has the same architecture, e.g. every processor is a multi-core and all mul-
tiprocessors share a common and huge main memory space. Moreover, large SMPs will
feature a non-uniform memory access (NUMA), whose impact on the design of efficient
data processing concepts should not be neglected. The efficient usage of SMP systems,
that still increase in size, is an interesting and ongoing research topic. Current state-of-
the-art architectural design principles provide different and in parts disjoint suggestions
on which data should be partitioned and or how intra-process communication should
be realized. In this thesis, we propose a new synthesis of four of the most well-known
principles Shared Everything, Partition Serial Execution, Data Oriented Architecture and
Delegation, to create the NORAD architecture, which stands for NUMA-aware DORA
with Delegation.

We built our research prototype called NEMESYS on top of the NORAD architecture to
fully exploit the provided hardware capacities of SMPs for graph pattern matching. Being
an in-memory engine, NEMESYS allows for online data ingestion as well as online query
generation and processing through a terminal based user interface. Storing a graph on a
NUMA system inherently requires data partitioning to cope with the mentioned NUMA
effect. Hence, we need to dissect the graph into a disjoint set of partitions, which can then
be stored on the individual memory domains.

This thesis analyzes the capabilites of the NORAD architecture, to perform scalable graph
pattern matching on SMP systems. To increase the systems performance, we further
develop, integrate and evaluate suitable optimization techniques. That is, we inves-
tigate the influence of the inherent data partitioning, the interplay of messaging with
and without sufficient locality information and the actual partition placement on any
NUMA socket in the system. To underline the applicability of our approach, we evaluate
NEMESYS against synthetic datasets and perform an end-to-end evaluation of the whole
system stack on the real world knowledge graph of Wikidata.

3

4

CONTENTS

1 INTRODUCTION 9

1.1 Motivation . 10

1.2 Summary of Contributions . 12

1.3 Outline . 12

2 FOUNDATIONS FOR GRAPH PROCESSING 15

2.1 Graph Definitions and Data Models . 16
2.1.1 Property Graphs . 18

2.1.2 Labeled Graphs . 19

2.2 Graph Pattern Matching . 20

2.3 Processing Models . 22
2.3.1 Bulk Synchronous Processing . 22

2.3.2 Asynchronous Processing . 23

2.4 Wikidata - A Real Life Use Case . 24

2.5 Summary . 26

3 NEAR-MEMORY COMPUTING PRINCIPLES AND CHALLENGES 27

3.1 Hardware Conscious System Design . 28
3.1.1 NUMA-Affected Symmetric Multiprocessor Server Class Systems 28

3.1.2 Database System Architectures for Parallel Systems 30

3.2 ERIS - A NUMA-Aware Data Management System 32
3.2.1 Architecture . 32

3.2.2 Memory Management . 34

3.2.3 Message Passing . 35

3.2.4 The Energy Control Loop (ECL) . 37

3.3 NEMESYS - Allowing NUMA-Aware Graph Pattern Matching on ERIS . 38
3.3.1 Data Storage . 39

3.3.2 Query Generation . 41

3.3.3 Processing Model . 43

3.4 Challenges of Graph Pattern Matching on NORAD 46
3.4.1 Holistic but compact locality metadata for scalable GPM . . . 46

3.4.2 Proper data placement and data allocation 49

5

4 NEAR-MEMORY GRAPH PROCESSING ON SYMMETRIC MULTIPROCESSOR
SYSTEMS 53

4.1 Query Execution Plan Optimization . 54

4.2 Topology-based optimization . 56
4.2.1 Workload Dependent Graph Partitioning 57

4.2.2 Graph-Aware Infrastructure . 66

4.2.3 Lessons learned . 71

4.3 Infrastructure-based optimization . 71
4.3.1 Adaptive Message Filtering Mechanisms 72

4.3.2 Communication Driven Data Placement 84

4.3.3 Lessons learned . 92

5 EVALUATING NEMESYS AGAINST WIKIDATAS REAL WORLD DATA 95

5.1 Wikidata as In-Memory Scenario . 96

5.2 Applying ERIS ECL Features on NEMESYS 103

5.3 Lessons Learned . 106

6 CONCLUSION 107

6.1 Summary . 108

6.2 Future Research Directions . 109

BIBLIOGRAPHY 111

LIST OF FIGURES 119

LIST OF TABLES 125

6 CONTENTS

AKNOWLEDGMENTS

During my time with the chair, I was concerned about me being able to finish this thesis.
However, Professor Lehner encouraged me to stay on track and helped me to pursue this
goal. Thus I want to thank you, Wolfgang, for being a great supervisor and for having my
back, whenever it was necessary. Dirk Habich aided me with his tremendous knowledge
and diligence, to make our papers and general work the best it could be. To all of my
former and newly joined colleagues, who made the daily routine feel less like work but
like being part of a family: Annett, Johannes ’Jay’ P., Claudio, Eric, Johannes L., Michael,
Mikhail, Patrick, Robert, Lucas and everybody who I have forgotten – thank you for all
the enjoyable moments, the laughter, the banter and the coffee-kitchen debates.

I do also want to express my gratitude to my friends Martin, Robert, Alex and Kenny. The
occasional beers, Doppelkopf evenings and gaming sessions lead to great memories and
were a great way to relax after a long day of PC work. Frank, your critical voice helped
me a lot to find the right balance between formaly expressing a context and its ease of
understanding. My sincere gratitude goes towards Benjamin. You are the definition of a
true friend and a great inspiration, you kept me going when it was the hardest.

Without any doubt, I could continue this list for pages, but I do not want to forget the
most important person, my beautiful Evelyn. You cared for me, you kept me healthy
and our relationship grew even stronger over these years. Your unconditional love and
support allowed me to stay focused on my work and to finish this thesis eventually.
Without you, I would not have been as successful. Last but not least, I do also want to
express my gratitude towards my parents and my brother, Astrid, Roland and Tilo. All
of you placed your trust and believes in me and encouraged me to pursue this endeavor.
Without you, all of this would not have been possible. Thank you for everything.

Alexander Krause
Dresden, June, 2020

7

8 CONTENTS

1
INTRODUCTION

1.1 Motivation

1.2 Summary of Contributions

1.3 Outline

1.1 MOTIVATION

The relational data model was first introduced in 1970 [Cod70] and its prominence lead
to the trend, that traditional data processing often and heavily relied on it. As a conse-
quence, many data domains were mapped to fit this model, e.g. temporal data [DDL02],
XML documents [ACL+07] or provenance data [CLFF10]. However, graphs experience
continuously increasing more interest as a general data structure, due to their expressive-
ness for semantic relations. Representative examples are manifold, e.g. traffic analysis in
road networks, heritage analysis for anthropologists or recommender systems in video
streaming platforms or online marketplaces.

“Graphs are omnipresent in our lives
and have been increasingly used in a variety of application domains.”

– George H. L. Fletcher [FHL18]

The most commonly known example is the internet web graph itself. A web crawl from
2012 contained already 3.5 B pages and 128.7 B hyperlinks [MVLB15], newer datasets
from April 2020 feature 2.8 B unique pages with more than 280 TiB of uncompressed
data1. Today’s most prominent social network Facebook reported 1.39 B active users
with more than 400 B edges in their social graph as of December 2014 [CEK+15]. Even
the research for medicine is based on graph data. Here graphs are used e.g. for modeling
and discovering polypharmacy side effects, where a drug-to-drug interaction network
can contain 645 distinct drug and 19 k protein vertices, but 964 different types of edges,
resulting in a total of 5.3 M interaction edges [ZAL18].

Efficiently storing and processing graphs is not trivial. Their sheer size requires suitable
data models to handle this amount of data and moreover, completely or partially travers-
ing such large graphs is also a complex task itself. These facts have thus created the ne-
cessity for specialized languages and systems, that treat graphs as first class citizens, like
Ligra [SB13], Galois [NLP13], Green-Marl [HCSO12], Virtuoso [Erl12], Pregel+ [YCLN15]
or Turbograph++ [KH18]; only to name a very few. Neo4j2 is one of the most prominent
graph processing systems, with both a commercial and a freely available product, that
also satisfies the needs for large companies3. Efficient graph processing does also re-
quire an expressive query language to formulate graph specific algorithms and queries.
Among others, Cypher4, Gremlin5, GraphQL6, SPARQL7 or G-Core [AAB+18] are de-
signed to serve exactly this requirement. All these examples underline the importance
of graphs and graph processing as a generally accepted and required data structure and
application.

The tool box of graph algorithms contains a similar amount of examples. We have cho-
sen graph pattern matching out of that plethora as a generally applied class of algorithms,
due to its widespread applicability and relevance. Common use cases involve fraud de-
tection [PCWF07], biomolecular engineering [OFGK00], scientific computing [TKS17], or
social network analytics [OR02]. Generally, the pattern matching process receives a pat-
tern, i.e. a set of vertices, that are connected through a specific set of edges, where both

1https://commoncrawl.org/2020/04/ [Last Accessed: 18.04.2020]
2https://neo4j.com/ [Last Accessed: 18.04.2020]
3https://neo4j.com/customers/ [Last Accessed: 18.04.2020]
4https://neo4j.com/developer/cypher-query-language/ [Last Accessed: 18.04.2020]
5https://tinkerpop.apache.org/ [Last Accessed: 18.04.2020]
6https://graphql.org/ [Last Accessed: 18.04.2020]
7https://www.w3.org/TR/sparql11-overview/ [Last Accessed: 18.04.2020]

10 Chapter 1 Introduction

https://commoncrawl.org/2020/04/
https://neo4j.com/
https://neo4j.com/customers/
https://neo4j.com/developer/cypher-query-language/
https://tinkerpop.apache.org/
https://graphql.org/
https://www.w3.org/TR/sparql11-overview/

vertices and edges can be enriched with additional information. It then tries to find all
vertices in the data graph, that can be mapped to the query vertices, such that all query
vertices are bound to a concrete data vertex. This process requires a graph traversal with
one or multiple root vertices to start off. The efficient execution and optimization of
multiple or parallel graph pattern matching instances is thus an interesting and relevant
problem, that is not yet fully solved and still researched.

Solving such problems as fast as possible requires powerful hardware. To accommo-
date the ever-growing demand for sufficiently strong servers, hardware vendors first
increased the core frequency of available processors. In addition to this, the continuously
shrinking size of semiconductors lead to the development of multiprocessor systems.
Both trends provide more compute power in one system, but with dark silicon as a major
counterpart for increasing single core frequency, hardware vendors are putting increas-
ingly more multiprocessors into single server machines.

A prime example for this category of servers are symmetric multiprocessor (SMP) sys-
tems. SMP systems are characterized by the fact, that each processor has the same ar-
chitecture, e.g. every processor is a multi-core and all of these multiprocessors share a
common and huge main memory space. Every processor is connected to its own, lo-
cal main memory domain. However, any processor in an SMP system is able to access
the memory domains of other processors, as if the system has one huge coherent ad-
dress space. This allows us to store and process increasingly large graphs completely in-
memory, while also keeping intermediate results inside the RAM. However, SMPs exhibit
a Non-Uniform Memory Access (NUMA), where the memory access latency can vary signif-
icantly between different memory addresses. The TU Dresden just installed a new high
performance compute server, which features a total of 1792 logical cores, which are pro-
vided by 32 sockets in total. Every socket provides approximately 1500 GB of main mem-
ory, totaling in almost 48 TB of shared main memory in just one system. Considering the
NUMA effect is crucial for competitive performance, especially in such large systems,
which has been proven by several previous works [ZCC15, PJHA10, LBKN14, KKS+14].

Current SMP systems do in fact provide sufficient compute power and main memory
capacities to accommodate large graphs and perform online processing. Parallel graph
traversal could be performed for either a single query and multiple root vertices or multi-
ple queries can be processed concurrently. However, such approaches require algorithms,
that are tailor-made for the underlying hardware. From a relational perspective, this has
been investigated by ERIS, which was developed by the Chair of Databases with the TU
Dresden. ERIS is a NUMA-aware database prototype, that is built to follow the near-
memory processing paradigm, i.e. data is processed by cores, that reside on the same
socket as the data. Adapting these database principles for hardware oriented graph pro-
cessing, especially graph pattern matching, is yet to be investigated.

The goal of this thesis is to thoroughly examine the implications of SMP systems for near-
memory graph pattern matching. Therefore, we leverage the ERIS prototype, to start
off with an established database architecture and implement our graph pattern match-
ing engine called NEMESYS on top. We integrate graph specific extensions for storing
and processing graphs into ERIS and thoroughly evaluate them. We will furthermore
demonstrate the interplay and applicability of all presented optimization techniques and
provide an outlook for promising future research directions towards extending the graph
pattern matching capabilities of NEMESYS on SMP systems.

1.1 Motivation 11

1.2 SUMMARY OF CONTRIBUTIONS

This thesis analyzes concepts and best practices for processing GPM on NUMA-affected
SMP systems. In addition, we use our proof-of-concept prototype NEMESYS to evaluate
our assumptions. Our contributions can be summarized as follows:

(1) We detail on the foundations of both graph processing and current hardware trends.
Based on our observations, we formulate our core idea of how to exploit the highly
parallel target hardware through an asynchronous processing model. The ultimate
goal is the proof-of-concept prototype NEMESYS, which allows for near-memory
GPM on SMP systems.

(2) Processing GPM with an asynchronous processing model requires sophisticated data
exchange or messaging techniques. We provide detailed insights on how the em-
ployed metadata for the graph’s topology influences the system performance. Fur-
thermore, we provide reasonable optimization measures to reduce the memory con-
sumption while retaining already achieved performance gains.

(3) Parallel, asynchronous computations inherently require data partitioning or lock-
ing mechanisms. We categorize current graph partitioning approaches and provide
heuristic implementations for them. Based on these categories, we analyze the influ-
ence of each approach and determine a guideline, how to fine tune the core-to-data
partition ratio.

(4) The placement of data partitions in the system and their content directly influences
the communication behavior. Because of the NUMA effect, socket-local communica-
tion will always be faster, than data exchange with any remote socket. We provide
an optimizer, which is based on a communication cost model, that outputs partition
reorganization proposals. The goal of these proposals is to maximize socket-local
communication and minimizes remote messaging.

(5) We evaluate our prototype NEMESYS against Wikidata as a real world example. Our
experiments are based on Wikidatas actual query logs, which allows us to evaluate
our proof-of-concept on both real world data and queries. We detail on the influence
of our system design aspects and how to overcome arising limitations.

1.3 OUTLINE

Figure 1.1 presents an abstract outline of this thesis, which matches in part with the previ-
ously presented summary of contributions. Introduction aside, the remaining structure
is as follows. Chapter 2 provides the necessary information about graphs and graph
processing. First, we present our applied data model, the edge-labeled multigraph and
reason about graph pattern matching as go-to use case. Second, state-of-the-art process-
ing models are presented and we explain our choice for asynchronous processing. The
chapter is concluded with an introduction to the core concepts of Wikidata.

Chapter 3 is our second foundation chapter, which introduces the targeted hardware.
Furthermore, we elaborate on the foundations of NEMESYS and the underlying ERIS im-
plementation, which was developed earlier with the Chair of Databases at TU Dresden.
Last, we formulate and provide evidences for three main challenges for GPM on SMP
systems, that are solved with this thesis.

12 Chapter 1 Introduction

Figure 1.1: Thesis structure and outline.

Chapter 4 contains our optimization techniques. These are divided into three categories.
Query execution plan optimization details about GPM statement reordering with and
without information about the underlying data graph. Topology-based optimizations
consider the actual data graph and leverage different graph partitioning techniques in
combination with system resource allocation to improve the systems’ performance. The
infrastructure-based optimizations target system components like the messaging inter-
face or the routing table, which holds vertex locality information.

Chapter 5 performs an end-to-end evaluation of the optimization techniques from Chap-
ter 4 on Wikidata. This is done with parts of the original query logs from September 2016.
To account for adaptivity, we apply existing energy-control techniques on NEMESYS.
Thus we demonstrate the cooperation of the underlying ERIS implementation with our
NEMESYS engine. We also present newly discovered limitations of our current imple-
mentation.

Chapter 6 concludes this thesis with a summary of this document. Ultimately, we pro-
vide an outlook for the most promising future research projects, that arose during the
preparation of this thesis.

1.3 Outline 13

14 Chapter 1 Introduction

2
FOUNDATIONS FOR GRAPH PROCESSING

2.1 Graph Definitions and Data Models

2.2 Graph Pattern Matching

2.3 Processing Models

2.4 Wikidata - A Real Life Use Case

2.5 Summary

The last decades have seen a resurgence of interest in graph data management [Ang12].
With the network data model in the 1970s [TF76] and object-oriented database systems
in the early 1990s, graph-based data models and graph query languages got consider-
able attention in research already [AG08]. However, the traction of today’s graph data
management efforts is unequally higher with many major IT companies and DBMS ven-
dors on the band wagon [RKB04, FCP+11]. Among others, one major driver behind the
graph concept’s revival is a shift in the interest of analytics from merely reporting to-
wards data-intensive science and discovery [HTT09]. Graph data can easily range in the
size of billions of vertices and edges.

Prominent examples of large graphs are the Facebook friendship graph, the Twitter fol-
lower graph, citation networks, web link networks, road networks, supply chains, etc.
(cf. [Les]). The areas of interest for the usage of graphs can further be extended to
biology [SSV+17], chemistry [ITDK16], psychology [SC15], fraud detection [PCWF07],
biomolecular engineering [OFGK00, TU10], scientific computing [TKS17], or social net-
work analytics [OR02]. Fundamentally, the meaning of graphs as data structure is in-
creasing in a wide and heterogeneous spectrum of domains, ranging from recommenda-
tions in social media platforms to analyzing protein interactions in bioinformatics [PV17].

In 2017, Sahu, et al. [SMS+17] conducted a survey among researchers and practitioners
to assess the ubiquity of graphs. The participant’s fields of interest are wide spread and
– besides Research in Academia – range from Finance over Defence & Space to Telecommuni-
cations. Mainly, the employed graph datasets were categorized into Humans, Non-Human
entities, RDF or Semantic Web data and Scientific data, where everything which did not fit
into the Human category was even further classified. The questionnaire showed, that the
size of real world graphs ranges from less than 10 k edges to more than 10 B edges with
raw sizes between a couple of megabytes and more than 1 TB. Furthermore, the authors
show that graph data is used by companies with more than 10 000 employees, which are
not Google, Facebook or Twitter. These statements lead us to the conclusion, that the
graph data format is a valid form of representation, widely used and accepted among
industrial companies and research facilities.

In this chapter, we investigate the currently employed graph data models in Section 2.1
and highlight our targeted use case scenario from this domain in Section 2.2. After defin-
ing the general foundations of graphs for this thesis, we will further discuss state-of-
the-art processing models in Section 2.3. Section 2.4 concludes this chapter, where we
present Wikidata1 - the knowledge graph behind Wikipedia. Inspired by the previously
presented survey, we want to use this prominent real world example for graph process-
ing as proof-of-concept for our graph processing engine, which is later introduced and
extended in Chapters 3 and 4.

2.1 GRAPH DEFINITIONS AND DATA MODELS

The term graph has been firstly used by Sylvester in the 19th century [Syl78]. As today
commonly known, the easiest graph definition is G = (V,E), where V represents a set
of vertices and E denotes a set of edges, which are connecting elements of V . Every
vertex v ∈ V usually represents some kind of entity, be it a person or a building and an
edge e ∈ E represents a relationship between two vertices vi, vj ∈ V ; specifically every
edge e is a pair of vertices. The neighborhood neigh of a vertex vi contains every vertex
vj , that is reachable from a vertex vi through an edge e and the degree of a vertex vi is
defined as deg(vi) = |neigh(vi)|. This definition does not state, that the vertices in every

1https://www.wikidata.org/ [Last Accessed: 30.01.2020]

16 Chapter 2 Foundations for Graph Processing

https://www.wikidata.org/

A

type: author
name: Peter

B

type: author
name: Olaf

E

type: paper
name: Parallel Processing

C

type: paper
name: A Paper About Papers

D

type: paper
name: Our Thoughts

F

type: conference
name: Best Venue

G

type: city
name: Dresden

authors

heldIn

cites

Figure 2.3: A bibliographical network using the property graph model.

Among others, the most important graph models for this thesis are the labeled graph and
the property graph. As their names suggest, the graph is enriched with a variety of infor-
mation, so-called properties, which are allocated with the vertices or the edges. A natural
way of adding information to an entity, be it a vertex or an edge, is to add attributes or
properties to them.

2.1.1 Property Graphs

In Figure 2.3, we show a bibliographical network using the property graph model, with
properties attached to vertices. In such graphs, the vertices represent authors, papers,
conferences and cities, where they have been held, etc. Edges of such a graph could be
labeled with wrote, heldIn or cited. Through traversal operations, we could then create,
e.g. a citation network and identify, which papers have been mostly cited.

According to Green et al., a property graph can be defined as G = 〈N,R, src, tgt, ι, λ, τ〉,
where N =̂ V and R =̂ E of our previous definitions [GGL+19]. Additionally, src and
tgt are sets of functions R→ N , that map each relationship (edge) to its respective source
and target vertices. ι maps all vertices and edges to a set of key-value pairs, i.e. their
properties. λ is a function that maps each vertex to a set of labels, which can also be
empty and τ maps each edge to its actual type. In our example bibliographical network,
vertex ι(B) would return {(type:author), (name:Olaf)} and τ((B,D)) returns the label
authors. Well known systems, that leverage this model, are Neo4j, ApacheSpark through
GraphFrames [DJL+16], Oracle PGX [HDM+15] or Gradoop [JKA+17] only to name a
few. One of the advantages of this graph model is, that almost all information of a certain
vertex are held in one place and are directly accessible. However, storing them in an
easily extensible way is not trivial, which is also shown by Green et al. [GGL+19].

18 Chapter 2 Foundations for Graph Processing

A

B E

C

D

F

G

authors

heldIn

type

author

Olaf

Peter

name

name

paper

type

type

type

publishedIn

Parallel
Processing

A Paper
About
Papers

Our
Thoughts

title

title

title

type

conference

Best
Venue

name

Dresden

city

cites

Figure 2.4: A network using the labeled graph model.

2.1.2 Labeled Graphs

A simpler representation is the labeled graph model. Labels are the easiest form of a prop-
erty, e.g. as in the center of Figure 2.2, where the edge-label knows is shown. Such labels
are usually used in directed graphs to enhance the semantic of a relation, as commonly
used in social networks. Despite using less sophisticated data structures to store infor-
mation, this model can hold the same level of detail as a property graph. In Figure 2.4,
we transformed the property graph of Figure 2.3 to a labeled graph. This can be easily
achieved by introducing proxy-vertices for each constant like names or types and adding
the corresponding edges accordingly. At first glance, the graph looks more complicated,
since its visual representation is more convoluted. However, we only store a single infor-
mation per edge or vertex, which requires less effort to store or update data accordingly.
Updating the type of vertexAwould only need an update of the target vertex of one edge,
in contrast to the property graph model, where we would have to look up all key-value
pairs for A, find the appropriate entry and finally alter it.

Another advantage of the labeled graph model is, that it can be represented solely by
writing triples, as they are used in the Resource Description Framework (RDF)2. That
said, a graphs topology would be written down on a per-edge basis using triples of the
form 〈src, tgt, label〉, where src, tgt ∈ V and (src, tgt) ∈ E.

Within this thesis, we focus on edge-labeled multigraphs as a general and widely employed
graph data model [OFGK00, OR02, PCWF07]. We define an edge-labeled multigraph as
G = 〈V,E, ρ,Σ, λ〉, which consists of a set of vertices V , a set of edges E, an incidence
function ρ : E → V × V , a set of labels Σ and a labeling function λ : E → Σ that as-
signs a label to each edge. Hence, edge-labeled multigraphs allow any number of labeled
edges between a pair of vertices. This is especially important to represent graphs like
social networks, where vertices can have multiple relationships with one specific target
vertex. As briefly mentioned earlier, a prominent example for this graph data model is
RDF [DMvH+00].

2https://www.w3.org/RDF/ [Last Accessed: 30.01.2020]

2.1 Graph Definitions and Data Models 19

https://www.w3.org/RDF/

2.2 GRAPH PATTERN MATCHING

The previous section showed, that graphs can contain a plethora of information and ex-
tracting it can be done manifold. The analysis of even the biggest graphs is often done
with recursive algorithms [SPSL13], whereas the Breadth First Search (BFS) has proven
to be one of the most fundamental building blocks for many popular graph analysis al-
gorithms. Such algorithms are used to determine reachability, connected components or
betweenness centrality [Kin08, JRDY12, BKM+00].

In many cases, users are interested in identifying logical connections between vertices of
their data graph. Thus, recognizing comprehensive patterns on large graph-structured
data is a common use case and a prerequisite for a variety of application domains such
as fraud detection [PCWF07], biomolecular engineering [OFGK00], scientific comput-
ing [TKS17], or social network analytics [OR02], only to name a few. Graph Pattern
Matching (GPM) can therefore be considered as a crucial procedure and serves as the
targeted use case for this thesis.

Over the time, a couple of graph query languages have emerged, such as Cypher, Grem-
lin, GraphQL, SPARQL or G-Core [AAB+18], to name the most well-known. Formulating
GPM queries can be done in many of them. SPARQL is a query language for the triple
oriented RDF data format and thus naturally aligns with our choice for labeled graphs
and their representation as triples. Therefore we selected SPARQL for the visual repre-
sentation of our example queries.

GPM queries are usually given as a subgraph of the queried data graph, which consists
of vertices and edges with labels, that may occur in the original graph. Figure 2.5a shows
a simple example of a GPM query. This query requests all two-sets of entities, who know
each other and both supervised two distinct other entities. Considering the data graph
from Figure 2.5b, the query would get only one distinct result, namely 〈A, B, D, C〉which
match to the query vertices 〈K, Y, X, Z〉 respectively.

A simple form of GPM queries are the well studied conjunctive queries (CQs) [Woo12].
CQs consist of a set of statements, where all statements are connected with the logical
and operator, thus requiring every statement to be true. For edge-labeled multigraphs, a

(a) A graph pattern query. (b) A simple data graph.

Figure 2.5: A Graph Pattern Matching example.

20 Chapter 2 Foundations for Graph Processing

statement would represent any edge from E and considering the previously mentioned
triple-notation, we could write down the query from Figure 2.5a as: (〈 Y, K, supervises〉∧
〈X, K, supervises〉∧〈Y, Z, supervises〉∧〈X, Z, supervises〉∧〈Y, X, knows〉∧〈X, Y, knows〉).
A greedy algorithm for GPM is to search the graph for every edge, in the order given by
the user, and try to expand the found intermediate state by the following edges of the
query. In addition, edges can also be expressed in an inverted form. This indicates,
that instead of outgoing edges an incoming edge is desired and that this edge is to be
traversed backwards. Such two-way queries are called 2CQs.

Another possibility of expressing GPM queries are regular path queries (RPQs). RPQs
are based on regular expressions and thus allow the user to express queries, which can
e.g. form a path of arbitrary length. This is especially useful, when searching in a tax-
onomy or when traversing social networks for e.g. n-hop friendship queries. Both ap-
proaches can be combined into CRPQs, where multiple RPQ statements are concate-
nated. C2RPQs are a form of CRPQs, where also inverted labels are allowed in the RPQ
part. Processing RPQs of any kind is often done with a deterministic finite automaton
(DFA) in the background, where the system traverses the data graph and the automa-
ton in parallel. The DFA from Figure 2.6 shows the derived automaton for the expres-
sion knows*/(repliedTo/hasCreator)+ of an RPQ targeting a social graph, that contains
users and forum postings, with the / symbol being a concatenation of path labels. While
evaluating the query, a system would try to find all qualifying vertices for state s, i.e.
vertices with outgoing knows or repliedTo edges. Upon following any of these edges and
storing visited vertices, the automatons current state would then be updated to q1 or f
respectively. The result set would then be the current set of vertices, through whose edge
traversals we can reach the state f.

sstart q1 f

knows

repliedTo

hasCreator

repliedTo

Figure 2.6: Derived automaton for the expression knows*/(repliedTo/hasCreator)+.

Processing both CQ or RPQ queries imposes a set of general challenges, which have to
be thoroughly considered during query execution. A major issue is the number potential
intermediate results during the evaluation of each query edge. Listing 2.1 visualizes the
query from Figure 2.5a in SPARQL. For the edge predicate evaluation on line 5, we would
retrieve all uni:supervises labeled edges from the graph of Figure 2.5b, which account for
54.5 % of all edges in the graph. Depending on the order and selectivity of edge pred-
icates, intermediate results can easily grow beyond the size of the original data graph
and thus an intelligent processing of the query is fundamental. For RPQ evaluation,
the complexity is further increased with the inherent recursive matching of edges, while
maintaining a list of visited vertices per state. Furthermore, the plentiful occurrence of
the edge label uni:supervises generates a lot of potential vertices, from which we can start
the actual graph traversal to complete the requested pattern. This allows for high paral-
lelism, as each pattern could be processed individually. Handling both parallelism and a
potentially high amount of intermediates is therefore a non-trivial task and needs to be
covered by intelligent processing models.

2.2 Graph Pattern Matching 21

Listing 2.1: SPARQL example for Fig. 2.5a.
1 PREFIX uni: <http :// random . example .edu/>
2 SELECT ?X ?Y ?Z ?K
3 WHERE
4 {
5 ?Y uni: supervises ?K .
6 ?X uni: supervises ?K .
7 ?Y uni:knows ?X .
8 ?X uni:knows ?Y .
9 ?Y uni: supervises ?Z .

10 ?X uni: supervises ?Z
11 }

2.3 PROCESSING MODELS

Graph processing can require a high amount of compute resources, depending on the
size of the graph and the issued queries. To satisfy this demand and enabling the inher-
ent parallelism of GPM queries, modern servers with a high amount of multiprocessors
are used, whose overall hardware aspects are further discussed in Chapter 3. This is a
generally different hardware approach than before, because former systems sped up al-
gorithms by increasing the processors core frequency, leading to a higher performance at
a free lunch [BC11, Sut05]. However, because of power and thermal constraints, this free
lunch is over and speedups will be only achieved by adding more parallel units [BC11],
yet these parallel units have to be utilized in an appropriate way [BC11, Sut05].

The availability of different hardware settings with multiprocessors provides the general
foundation for parallel GPM processing, as requested at the end of Section 2.2. However,
proper utilization of the underlying hardware requires the implementation of an appro-
priate processing model. Today’s state-of-the-art graph processing systems are usually
built upon a vertex-centric programming model and are often referred to as "think like a
vertex" (TLAV) systems [MWM15]. Such systems encourage the user to program from a
vertex point of view. This forces the scope of an algorithm to a single vertex and a gen-
eral communication pattern, since intermediate results have to be sent along the edges
to neighboring vertices. Another approach are "think like a graph" systems [TBC+13].
Tian et al. argue, that providing users with more information, e.g. data partitioning and
locality, leads to more overall performance and yields better optimization possibilities,
including algorithm specific tuning.

2.3.1 Bulk Synchronous Processing

A traditional and widely used processing model is the Bulk Synchronous Processing
(BSP) model [Val90], on which many vertex-centric systems are based [MWM15]. The
overall workflow is depicted in Figure 2.7. In general, the BSP model consists of two dis-
junct phases. The first phase performs all processing steps and the second phase is solely
reserved for communication. Both phases are then combined to global supersteps.

From the viewpoint of a GPM query, lines 5 through 10 from Listing 2.1 would each
represent a global superstep. The processing phase would consist of several steps: (1) the
vertex-local lookup, if an edge in the right direction with the appropriate label exists (2)
the creation of a new intermediate matching state with the newly found target vertex (3)
enqueuing the previously created intermediate matchings to be sent to their individual

22 Chapter 2 Foundations for Graph Processing

Figure 2.7: BSP execution diagram, cf. Fig. 1 from [MWM15].

target vertices. Vertices which do not produce any intermediate states during a superstep
mark themselves as inactive. During the communication phase, the queues of all active
vertices are checked and if not empty, the contents are moved to the respective target
vertices. At the end of the communication phase, each vertex which receives any amount
of intermediate states is marked as active and thus scheduled for execution in the next
superstep. The procedure halts, when all vertices mark themselves as inactive.

The definition of parallel tasks could be either one task per individual vertex, i.e. one
worker per vertex, since vertices are considered as first-class citizens in TLAV systems.
This approach is generally not feasible, since real graphs consist of millions of vertices
and even modern compute clusters do not yet features millions of processors. A more
applicable approach is to partition the data into disjunct sets of vertices, where the num-
ber of such data partitions equals the number of compute resources. A widely known,
BSP based, vertex-oriented system is Pregel [MAB+10].

Generally, such systems suffer from synchronization barriers, because of potential work-
load skew. A superstep will always only terminate, after all active vertices have con-
cluded both of the phases. If the vertices in the individual sets are unevenly distributed
in terms of total number of edges, then a few workers could concentrate the vast majority
of the actual work. This can especially happen in so-called scale-free graphs, i.e. the dis-
tribution of neighboring vertices or edges per vertex follows a power law distribution. If
only a few vertices contain a huge amount of edges, but they are additionally paired with
more vertices from the graph to achieve an evenly distributed amount of vertices among
all partitions, these overloaded partitions can become major bottlenecks.

2.3.2 Asynchronous Processing

Asynchronous processing models have been developed to overcome workload imbal-
ances of any kind. Furthermore, asynchronicity allows to hide communication or disk
access overhead via layering these operations with leftover computations. In their work,
Han and Daudjee [HD15] have abstracted the BSP model to the Barrierless Asynchronous
Parallel (BAP) model. Compared to the BSP model, BAP drastically reduces the amount
of global synchronization barriers by introducing local barriers. These serve as break-
points, where tasks can determine the next steps, i.e. mutating the graph or agreeing on
a global synchronization barrier. However, the model still exhibits the processing and
communication phases for individual tasks. Compared to BSP, individual tasks can have
a different amount of local supersteps in BAP and since faster tasks are not as excessively
stalled, the overall query response time decreases.

According to [MWM15], asynchronous computation can usually outperform syn-
chronous approaches on CPU-bound problems, while the opposite is true for memory-
bound problems. That is, since the flexibility of asynchronous computations allows to

2.3 Processing Models 23

adapt or reschedule the execution of vertex programs, according to arising workload
skew. However, the authors state, that due to the asynchronous execution, the inherent
messaging is unable to exploit optimization techniques like batching. This is an opti-
mization technique, where multiple messages with the same target are combined into
one large message, to better utilize the memory bandwidth by copying one large chunk
of memory instead of many small chunks.

The BSP model does not naturally align with pattern matching algorithms [FNR+13].
This is caused by the usually high number of intermediate results, which is generated
during the evaluation of edge predicates with low selectivity. Such intermediates have
to be materialized as a potential result and transferred, which applies a lot of pressure
on the communication layer of the system. This is also a major problem for power law
graphs like social networks, when vertices with the highest degrees are generating plenty
of intermediates. When the straggler problem, as defined by [MWM15], overlaps with
a high amount of intermediates, we can expect a significant performance drop and thus
anticipate any asynchronous processing model to be more suitable for GPM. That said,
optimizing the communication issues would then be a high priority task, to enable this
processing model not only for compute bound but also memory bound tasks.

2.4 WIKIDATA - A REAL LIFE USE CASE

Wikidata [VK14] is a free and collaborative open data platform, that has been founded in
October 2012. Today, Wikidata is also known as the knowledge graph beneath Wikipedia.
Like its sister project, Wikidata heavily relies on voluntary community work to create,
integrate and maintain useful and relevant data. As of December 2019, Wikidata con-
tains 890 M statements, which are equivalent to our definition of edges, and 56 M ref-
erenced items, which correspond to our vertex definition, forming one of the biggest
openly available data graphs world wide featuring a plethora of languages. Wikidata is
also used as a data plane for different science directions, such as life science and social
studies [BWM+16, WGGM16].

The linked information is internally stored in JSON, but globally shared in RDF
dumps [MKG+18]. A small excerpt of Wikidata in an RDF representation is shown in
Figure 2.8 and represents a statement about the speed limit on roads in Germany outside
of villages. Items, prefixed with a Q, are connected to other items via properties, which
are prefixed with a P. Commonly with RDF, items and properties can be further prefixed
with namespaces.

Wikidata features a globally accessible SPARQL endpoint3. The website provides an API,
where users can post queries in the SPARQL query language, to extract any data of inter-
est. Listing 2.2 shows an example query of the previously mentioned SPARQL endpoint.

Figure 2.8: An RDF graph sample for a Wikidata statement, cf. Fig. 2 from [MKG+18].

3https://query.wikidata.org/ [Last Accessed: 30.01.2020]

24 Chapter 2 Foundations for Graph Processing

https://query.wikidata.org/

https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

and its openly available query logs with a tremendous amount of real life queries, we
decided to use Wikidata as qualifying example for this thesis. In Chapter 5, we will
evaluate our proposed query engine from Chapter 3 against this dataset and apply our
optimization techniques from Chapter 4 to allow for scalable processing of graph pattern
matching.

2.5 SUMMARY

Graph processing is a broad research field, which is widely studied. Representing graphs
can be done in a variety of different data models, each having their individual advantages
amenities and drawbacks. In this thesis, we focus on edge-labeled multigraphs, which rep-
resent edges of vertices as triples consisting of a source and a target vertex, enriched with
a label. Despite introducing additional storage overhead for adding more structured in-
formation like properties to vertices, this graph data model excels at the ease of storing
individual edges. From a data storage perspective, the triple representation allows for
both row and column storage methods, where either triples are stored undissected or
each source, target and label are placed in individual data columns.

The applied use case of this thesis is the processing of Graph Pattern Matching (GPM).
This algorithm has a variety of application domains and thus plays a key role in analyt-
ical graph processing. Expressing query patterns can be done manifold, with conjunc-
tive queries (CQs) and regular path queries (RPQs). Evaluating either of the two query
types can lead to considerably large intermediate result sets, depending on the size of the
underlying data graph, the selectivity of the pattern or possibilities to prune irrelevant
vertices or edges during the graph traversal.

Graphs can contain a variety of patterns at many different locations. Searching for one
specific pattern can thus yield many occurrences, where different data vertices match the
given query variables. Hence we can employ parallel processing paradigms to speedup
the discovery of all applicable matchings. Over the time, the Bulk Synchronous Process-
ing (BSP) and Asynchronous Processing (AP) models arose to steer parallel computa-
tions. Synchronous approaches suffer from synchronization overhead and thus we se-
lected asynchronous processing as the go-to approach for this thesis, since it also allows
for maximum parallelism and flexibility during the query processing.

A prominent example for graph processing is given by the Wikidata knowledge graph
and its publicly available SPARQL endpoint. Humans and robots can use this API to
post queries, which are then processed concurrently. Parallel processing allows to spread
out the computation of incoming queries among as many processors as necessary, to
evenly distribute the load within the system. However, the whole data graph can not
always fit into the main memory of a computer, while it additionally accommodates all
intermediate results of all incoming queries. Thus, parts of the data remain on disk,
which leads to slow access times, whenever these are needed.

Combining the potentially huge intermediate result space of GPM and the highly concur-
rent query processing of real world applications such as Wikidata leads to the conclusion,
that highly parallel hardware with sufficient main memory is a desirable hardware plat-
form. A huge and coherent main memory would allow, to keep both the data graph and
intermediate results permanently inside the fast accessible main memory. In addition,
many processors allow for either more intra- or inter-query parallelism. Providing more
compute resources to an asynchronous processing model can further increase the ability
for load balancing and timely query answers. Furthermore, the resources inside one large
system can be more easily adapted than individual machines in a compute cluster, when
the overall number of arriving queries increases. As long as sufficient compute power
is available to overcome the largest anticipated workload spikes, we can always turn off
overprovisioned processors, e.g. to save energy.

26 Chapter 2 Foundations for Graph Processing

3
NEAR-MEMORY COMPUTING PRINCIPLES

AND CHALLENGES

3.1 Hardware Conscious System Design

3.2 ERIS - A NUMA-Aware Data
Management System

3.3 NEMESYS - Allowing NUMA-Aware
Graph Pattern Matching on ERIS

3.4 Challenges of Graph Pattern
Matching on NORAD

Today, building a new system requires thorough planning and the correct architecture
for optimal or scalable performance. Within this chapter, we want to outline current
state-of-the-art system architecture designs as well as the target hardware for our envi-
sioned system. Section 3.1 gives an overview about the currently employed hardware
for server class systems and discusses the pros and cons of standard architectures. Fur-
thermore, we will present ERIS, which is a related research prototype, that leverages a
Data-Oriented Architecture (DORA)-like architecture to allow for highly scalable pro-
cessing of relational data in Section 3.2. After laying out the foundations of the target
hard- and software, we will explain the principles of processing graph pattern matching
on a system like ERIS in Section 3.3 That includes storing the data, query generation and
processing as well as the crucial communication paths. The chapter will be concluded
by a thorough analysis of arising challenges when combining the previously mentioned
stack to process graph pattern matching.

3.1 HARDWARE CONSCIOUS SYSTEM DESIGN

When building a modern database system or even for data processing engines, consider-
ing the underlying hardware is a crucial aspect of the system design process. This section
covers a definition of our targeted hardware, as well as state-of-the-art architectural ap-
proaches for current systems. In Section 3.2, we will present ERIS, which is a research pro-
totype that leverages Data-Oriented Architecture (DORA) principles (cf. Section 3.1.2), to
achieve high scalability. In this thesis, the term scalability refers to a proportional increase
of performance, i.e. work done in a specific amount of time, proportional to the invested
hardware resources. ERIS will serve as the foundation for our graph processing engine
called NEMESYS, which is described in Section 3.3. Thus, parts of this section, especially
the targeted hardware, share definitions and content with [Kis17].

3.1.1 NUMA-Affected Symmetric Multiprocessor Server Class Systems

Within this thesis, we are solely focusing on symmetric multiprocessor (SMP) server sys-
tems, also known as scale-up systems. That said, scale-out architectures, which consist of

Core Core

Core Core

Socket

Local Main Memory

Data

D.
D
a
t
aData

Global Main Memory

Local Main Memory

Data

DataData

Core Core

Core Core

Socket

Multi-Socket System

….

Single Box Symmetric Multiprocessor System

(a) Schema of our target hardware.

local
1 hop

2 hop

Socket

Socket

Socket

Socket

(b) Illustration of the NUMA property.

Figure 3.1: Illustration of an SMP server system with the NUMA property.

28 Chapter 3 Near-Memory Computing Principles and Challenges

Table 3.1: Experimental server setup.

Physical Cores Total Cores Sockets RAM
Small 32 64 4 128 GB

Medium 64 128 4 384 GB
Large 384 768 64 8 TB

multiple standalone servers, connected through any form of interconnect, are not consid-
ered. SMPs are characterized by the fact, that each processor has the same architecture,
e.g. every processor is a multi-core and all multiprocessors share a common and huge
main memory space. The amount of multiprocessors within one server can vary and an
individual processor inside an SMP system is also usually called node or socket. In ad-
dition, every multiprocessor is composed of a number of similar CPUs, which we call
cores henceforth. Furthermore, modern multiprocessors employ the simultaneous mul-
tithreading (SMT) technology, where every physical core provides multiple logical cores.
The set of all logical cores of a physical core is called siblings and the term hyperthread
(HT) is used to address all siblings of a core, except the actual physical core itself. Every
socket is connected to its own, local main memory domain. However, any processor in
an SMP system is able to access the memory domains of other processors, as if the system
has one coherent address space.

This leads to one crucial aspect of such systems, the memory access model. Modern sys-
tems distinguish between Uniform Memory Access (UMA) and Non-Uniform Memory Ac-
cess (NUMA). UMA defines, that the access of any memory address in the whole address
space is performed with equal latencies. In contrast, NUMA means, that the memory
access latency can vary significantly between different addresses. UMA yields limited
system scalability. Since latencies are also influenced by e.g. circuit length, current SMP
systems employ a NUMA model. Figure 3.1b illustrates basic NUMA access patterns.
Considering a mesh-connected four-socket system, we can face up to two NUMA hops,
before the actual memory access can happen. With every hop, the resulting memory ac-
cess latency increases, but also the effective memory bandwidth decreases, as illustrated
in Figure 3.2.

Several previous works prove, that considering the NUMA effect is crucial for compet-
itive performance [ZCC15, PJHA10, LBKN14, KKS+14]. This underlines our hardware

0

100

200

300

400

500

600

700

800

900

1000

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

nsG
B

/s

NUMA hop

Bandwidth Latency

Figure 3.2: Bandwidth and latency effects per NUMA hop, sampled from Table 3.2 - SGI
UV 2000/3000 of [Kis17].

3.1 Hardware Conscious System Design 29

focus, since handling a single box NUMA machine well will also result in higher per-
formance, when a compute cluster consists of multiple of such machines. Therefore, we
perform our experiments on the full spectrum of NUMA systems, ranging from a smaller
to a larger machine. The experiments in this thesis were performed on differently sized
servers, with their details being given in Table 3.1.

3.1.2 Database System Architectures for Parallel Systems

This section gives an overview about design principles for database architectures, espe-
cially those focusing the hardware of the previous Section 3.1.1. Deploying a database
system on such scale-out hardware demands for good parallelization and synchroniza-
tion mechanisms for optimal and scalable performance. There are two prominent usage
scenarios, namely Online Transaction Processing (OLTP) and Online Analytical Process-
ing (OLAP). OLTP refers to a high throughput scenario, where the database is required
to process and complete the maximum amount of queries in the fastest possible time,
whereas OLAP queries usually take a considerable amount of time to compute e.g. sta-
tistical overviews for sales purposes.

For OLTP optimized systems, Appuswamy et al. did a thorough analysis of state-of-the-
art database architectures. Figure 3.3 displays an illustration of transactional processing
on the four most popular designs, which are namely Shared everything, Partition Serial
Execution, Delegation and the Data-Oriented [AAP+17]. More details about these four pre-
viously mentioned architectures can be found in their work.

Shared Everything (SE)

SE is an architecture which is employed by systems like Silo [TZK+13] or Heka-
ton [DFI+13]. Systems with this model employ a globally shared memory, where all data
is stored and accessible by every database worker. Because of the general accessibility
of the whole dataset to all database workers, their access must be synchronized by any
form of concurrency control (CC) and/or locks and latches. These can be applied with
any granularity, be it per record, table or whole databases. The SE concept discussed in
[AAP+17] uses record-level locks, as depicted in Figure 3.3.

Figure 3.3: Transaction execution in different architectures (cf. Figure 1 from [AAP+17])
and our new synthesis: NUMA-aware DORA with Delegation (NORAD).

30 Chapter 3 Near-Memory Computing Principles and Challenges

Partition Serial Execution (PSE)

Systems like H-store [KKN+08] or HyPer [KN11] use PSE. In contrast to SE, this model
assumes a shared nothing situation, where workers can only exclusively access their re-
spective datasets. This implies the necessity of data partitioning, where each database
worker or site is provided with an exclusive data partition. According to [AAP+17],
transactions are usually scheduled in a way that they are "single site in nature". A site is
"the basic operational entity in the system", of which "a single physical computersystem
[can] host one or more" entities [KKN+08]. Thus, that the systems tries to maximize local
data access in terms of a single partition. In the case of a remote site access, transaction
execution is serialized by locking all necessary partitions upfront and therefore guaran-
teeing that only one transaction or thread accesses a partition at the same time.

Delegation

Caldera [AKPA17] and Orthrus [RFA16] are examples for Delegation-based systems. This
model assumes a distributed setting, even for single box SMP systems. In general, Dele-
gation follows the same principles as PSE. However, when transactions need data from
multiple partitions, the responsible worker sends an explicit message to the worker, which
is responsible for the partition in question. Thus, a thread will always only process its
own partition but needs to communicate, in order to receive all the necessary data.

Data-Oriented

The data-oriented transaction execution (i.e. DORA) approach [PTB+11] leverages the
eponymous Data-Oriented architecture, so does the system PLP [PTJA11]. This approach
is inspired by improving the performance of disk centric database systems. The core con-
cept is a logical partitioning in contrast to physical partitioning. Here, worker access
rights are stored in a global access table. This makes e.g. repartitioning of the data ex-
tremely easy, as only the entry for the to-be-moved records needs to be updated. In
addition, DORA changes the usual thread-to-transaction assignment to a thread-to-data
assignment. This means, that one thread is always responsible for a portion of the dataset
and transactions need to switch between threads to access all necessary data.

These four architectural flavors are also thoroughly evaluated in [AAP+17]. A general
outcome is, that the PSE architecture is the best performing architecture. However, we
see that all four architectures have unique properties, which can and should be combined
to achieve a highly scalable and performant new architecture: NUMA Aware DORA with
Delegation (NORAD), as depicted in Figure 3.3. It combines the shared memory for meta-
data from SE, the physical data partitioning from PSE, the message passing from Delega-
tion and the thread-to-data mapping from DORA to create a highly scalable architecture
for single box SMP servers. We coined the name of this architecture after reviewing the
work of Kissinger [Kis17]. In his thesis, he built the system ERIS based on the aforemen-
tioned principles.

3.1 Hardware Conscious System Design 31

3.2 ERIS - A NUMA-AWARE DATA MANAGEMENT SYSTEM

In this section, we will review ERIS, which is a NUMA-aware data management system.
It was originally developed as a research prototype at TU Dresden, with the Chair of
Databases and is solely written in C++ [Kis17]. The system employs architectural design
aspects, that sum up to the NORAD architecture as coined by us and shown in Figure 3.3.
In his work, Kissinger demonstrates ERIS’ high scalability on modern NUMA-affected
SMP servers and its variety of adaptivity mechanisms directly built-in [Kis17].

Throughout the last years and over the lifetime of its development, this system mani-
fested as chair-internal testbed and collaborative platform. That said, we too took the
chance to assess ERIS’ good results in the relational environment and use it as the foun-
dation for a graph processing engine. As outlined in Chapter 2, graph processing is an
important field just like relational query processing. ERIS was developed to achieve high
scalability, considerable performance and the ability to adapt to workload changes while
running on the same SMP hardware, that we target ourselves. Combining these facts
leads to the conclusion that a NORAD based system like ERIS should not only be able to
efficiently process relational queries, but could also be used for graph processing.

Thus, we review the schematic design of ERIS in Section 3.2.1 and provide a brief set
of details of its C++-programmable query engine. ERIS does also perform self-managed
memory handling, which is discussed in Section 3.2.2. Furthermore, details about the
message passing mechanism like message structuring and messaging infrastructure are
presented in Section 3.2.3. This section is then concluded with an overview of the Energy
Control Loop, which provides ERIS with high flexibility in terms of software-enabled
adaptivity.

3.2.1 Architecture

ERIS is specifically tailored for single box SMP server systems, as depicted in Figure 3.1a,
with its corresponding architecture being shown in Figure 3.4. The system features an

Figure 3.4: Query processing in the Living Partitions architecture, cf. Figure 3.5 of
[Kis17].

32 Chapter 3 Near-Memory Computing Principles and Challenges

Figure 3.5: ERIS processing architecture of a single socket, cf. Figure 3.18 of [Kis17].

asynchronous execution model and can be roughly dissected into three layers: the storage
layer, the processing layer and the message passing layer.

The storage layer holds data partitions, called LivingPartitions (LPs). When data is
loaded into ERIS, it is stored within the RelationalContainer, which resembles a table
of a database. This container is then divided into an arbitrary amount of LPs. Thus,
LPs always contain a unique slice of the stored data and are placed on the local main
memory of a single socket, without the usage of replication techniques. In general, an LP
provides the user with general data access primitives, but allows for different physical
data representations. This representation is exchangeable individually for any LP during
runtime, cf (6) in Figure 3.4.

The processing layer contains the LivingPartitionVitalizers (LPVs) and
NodeCoordinators. LPVs represent software threads, which are pinned to exactly
one logical core of the system and thus ERIS can generally occupy all available compute
resources. Pinning threads to cores is necessary, to avoid costly context switches and
thus improves the overall system performance. The NodeCoordinator (NC) is a role,
which every LPV can obtain while cycling through their event loop, but only exactly one
LPV per socket is allowed to become the local NC at any point in time. In contrast to
the DORA concept, where one worker is only allowed to access an exclusively assigned
dataset, LPVs are free to choose the LP which they want to process, as long as the LP
resides on the same socket as the LPV itself, cf (1) in Figure 3.4. However, under certain
circumstances, an LPV may process the LP of another socket as shown with (2), which is
later discussed in Section 3.2.4.

Figure 3.5 zooms in on the processing architecture of a single node. In ERIS, query pro-
cessing is split into tasks, which are stored in socket-local task queues. Tasks are executed
by LPVs and specify the concrete operators and logic behind a query. Algorithm 2 of
[Kis17] gives a brief usage description of tasks in general. Programming tasks in ERIS is
done with the ERIS/C++ interface. That is an API, which provides classes to handle e.g.
transactions, dataflows or user-programmable operators, that are called MicroOperators.

3.2 ERIS - A NUMA-Aware Data Management System 33

Listing 3.1: GenericMicroOperator example.
1 GenericMicroOperator * gmo = new GenericMicroOperator (container ,
2 [&] (MicroOperator * mo) -> int64_t {
3 MessageBuilder mb(// Instantiate Messaging with ...
4 StorageOperation :: Lookup , // DB Operation
5 container , // Targeted Container
6 mo ->dataFlow , // Attached DataFlow
7 m_successor ->gmo // Succeeding Operator
8);
9

10 // Project these columns
11 mb. setDesiredAttributes (...);
12 // Filter by those columns
13 mb. setTargetAttributes (...);
14
15 /* Some runtime logic */
16
17 mb.add(...); // Create Message
18 deallocate (...); // Free Memory
19 return 0;
20 },
21 nullptr
22);

MicroOperators (MOs) always target exactly one container – like the previously men-
tioned RelationalContainer – specify two C++ callback functions and can have a set
of succeeding MOs. In Listing 3.1, we illustrate a basic implementation of a root opera-
tor, based on the derived class GenericMicroOperator. The gmo specifies only the first
lambda function, as it does an initial lookup operation, see line 4. Then, we need to spec-
ify which columns (i.e. attributes) we want to filter for (line 11) and which columns to
project into our result tuple (line 13). Qualifying tuples are fetched from the storage layer
and are sent to a succeeding operator (line 17). The second function (line 21) is always
called by the predecessor of the current operator, which handles the incoming tuples and
can thus be ignored and set to nullptr for a root operator.

Generally speaking, a query will be composed of a set of MOs, that are encapsulated
within a task. During runtime, an LPV will process tasks and execute the respective
lambda functions together with the required LPs. Since LPs are independent data objects,
each LPV can call the same function of a task on its individual LP without the necessity
of synchronization. Due to this mechanism and the asynchronous nature of ERIS, it can
easily happen that multiple stages of a query are processed at the same point in time. It
is totally possible, that e.g. the root operator is still scanning and producing tuples on
LPV1, while LPV25 runs a function instance of the result collecting operator.

3.2.2 Memory Management

NUMA is a crucial property of our target hardware and thus ERIS implements a self-
made memory management subsystem from scratch. Important aspects are high scala-
bility, low contention risk on key resources and a good compatibility to ERIS’ general ar-
chitectural characteristics [Kis17]. Memory itself is hierarchical by nature, with the cache
hierarchy as a prominent example. In case of a NUMA system, we extend that hierarchy
by global and local memory domains. This lead to the thought of a hierarchical memory
management component, as shown in Figure 3.6.

34 Chapter 3 Near-Memory Computing Principles and Challenges

Figure 3.6: ERIS memory management, cf. Figure 3.19 of [Kis17].

ERIS works with one static global memory manager, which is responsible for allocating
memory from the system and managing chunks of memory, which are allocated on the
local memory areas of a certain socket. For every socket, node local memory managers
are instantiated as the second layer of this hierarchy. These request memory chunks from
the global manager, according to the individual memory demand of the local LPVs. Tasks
and LPs are transient objects by nature, i.e. they can be created and deleted over the life-
time of the system. Thus, the last layer of memory managers consists of individual man-
agers for each task and every LP. The third part of the last layer is a persistent memory
manager, which is responsible for allocating everything related to LPVs internal routines
or shared data structures. The hierarchical memory manager stack minimizes the actual
amount of system calls, which effectively increases the systems performance. Since only
the global manager allocates chunks from the operating system, all other managers can
obtain small slices internally, which is considerably faster.

3.2.3 Message Passing

The message passing layer is a crucial component of ERIS and a key aspect in high system
performance. As pointed out in [AAP+17], message passing alleviates the problem of
synchronizing data access. However, treating a shared memory system as a distributed
system comes at the cost of messaging overhead, which has to be paid off. Thus ERIS
implements a high throughput and hierarchical designed message passing interface.

The previously described messaging process from Listing 3.1 is further illustrated in Fig-
ure 3.7. The shown layout abstracts the messaging infrastructure and is replicated to all
sockets. During query processing, LPVs communicate qualifying tuples, i.e. intermediate
results via messaging through the MessageBuilder class. Every socket has multiple local
and remote outgoing and incoming buffers, where one outgoing buffer is allocated for
each socket in the system. The outgoing buffers are filled by the local LPVs (1). Messages
targeting local LPs are placed in the local outgoing buffer and messages targeting LPs
of other sockets are placed in the according remote outgoing buffer. Whenever an LPV
becomes the NC (2), it distributes the pending messages to the incoming buffers of the
corresponding sockets (3, 4, 5), where the NC of these sockets redistributes them to the
appropriate partition queues. Step (3) shows the creation of local LP assignments, i.e.
messages are placed in incoming message queues on an LP basis, where LPVs can later
pick up the work and process that LP.

3.2 ERIS - A NUMA-Aware Data Management System 35

Figure 3.7: Living partition-enabled message passing layer in ERIS (socket-level),
cf. Figure 3.25 of [Kis17].

The structure of messages is shown in Figure 3.8. For us, the most important parts are
the Target LP, the Micro Operator, and Cmd 1 through Cmd N. The target LP determines,
which socket needs to receive the message. This information is stored by the last and most
crucial component of the messaging passing layer, the routing table. The routing table is
an index and can be considered as metadata of the container data structures. It holds
information about the location of all LPs and the data in them. Designing the routing
table efficiently has a considerable impact on the performance, since every intermediate
result, which ends up in a message, will go through this component.

The lookup of a specific data item in the routing table yields the respective target LP,
iff the routing table contains an index entry for that specific data of interest. If no in-
dex entry could be found, a null pointer is returned. When the routing table returns a
valid pointer to an existing LP, ERIS can create a so-called unicast message. Unicasts are
single messages, which can be directly forwarded to the respective LP. However, upon
returning a null pointer, ERIS forms a broadcast message. The NC will place instances of
that broadcast message into the message queue of every LP of the specified container (cf.
Figure 3.8), thus replicating the message according to the number of LPs in a container.

The MicroOperator part of a message contains a pointer to the lambda function of the
specific MicroOperator, which needs to be executed on the receiving partition. As ex-
plained in Section 3.2.1, MicroOperators will send their messages to successors, and

LP DF TXAP Shared Data Cmd N…

Dataflow
Logical Access Primitive

Target LP

Transaction

Cmd 1

Storage Data User Data

C OP

Micro Operator

Container

Figure 3.8: ERIS message format, cf. Figure 3.24 of [Kis17].

36 Chapter 3 Near-Memory Computing Principles and Challenges

Figure 3.9: ECL hierarchy including the storage ECL per LP, cf. Figure 5.1 of [Kis17].

thus their receiving lambda function pointer will be sent along in the message. Lastly,
the Cmd parts contain the data, which has been fetched by the storage, together with the
user data. User data refers to the actual intermediate results, e.g. if a query builds a result
tuple over multiple operator instances, these partial intermediate results are packed in
the user data area.

3.2.4 The Energy Control Loop (ECL)

The declared goal of ERIS is to be energy proportional, i.e. if there is a decrease in the
system load, the systems energy consumption should decrease proportionally and vice
versa. Controlling the energy consumption is again done via a hierarchicaly organized
Energy Control Loop (ECL), as shown in Figure 3.9. The ECL is responsible to tweak control
knobs on each layer and triggers the respective ECL layers to take measures, based on
internal monitoring values.

For the processing layer, the ECL can apply Dynamic Voltage Frequency Scaling (DVFS)
or even turn off complete cores or sockets, to fine tune the performance and energy con-
sumption of every core in the system. The adjustment of the processor clock rates is
guided by so-called Work-Energy-Profiles (WEP). These show a set of configurations and
their energy efficiency in relation to the performance they provide. A configuration in
the context of a WEP means the number of active cores, their individual clock speed and
which processor they are located on.

The storage layer can be triggered to adapt the underlying physical representation. Here,
the ECL can select from three available formats. One is the generally employed row store
model, the second is a column store and the third format is a hybrid of a column store and
a row store, where only some attributes of a data record are organized in columns and
the rest is stored in a row wise manner. In addition to switching the data layout itself, the
access patterns within a partition are constantly monitored. This allows for triggering a

3.2 ERIS - A NUMA-Aware Data Management System 37

(re-)build of single- or multidimensional index structures on a per-attribute basis. These
operations are steered by the LP-level ECL.

The reduction of the overall energy consumption is rather easily achieved, by simply
turning off all cores except one, which does the whole processing. However, this would
leave the system with insufficient resources and thus, ERIS is guided by the average
query latency with thresholds. Consider a targeted maximum query latency of, e.g.
1 sec. ERIS measures, how many good and bad queries are answered in a certain time
frame, where good queries conform the target latency and bad queries exceed it. The control
loop periodically checks, if the amount of bad queries exceeds a predetermined toleration
threshold. If more than the toleratable amount of bad queries are measured, the ECL pro-
vides gradually more resources to satisfy the demand. On the other hand, if the system
yields a rate of 100 % good queries, it can gradually drain resources, like turning off cores
or reducing their clock or both, while maintaining a sufficient amount of good queries.

3.3 NEMESYS - ALLOWING NUMA-AWARE GRAPH PATTERN
MATCHING ON ERIS

In this section, we want to unite the basics from Chapter 2 and the ERIS system,
as described earlier in Section 3.2. Parts of this section are based on our previous
work [KKH+17, KUK+17]. Following the reasoning from Section 3.1, modern servers
incorporate an increasing amount of cores and sockets. Since current hardware trends
are continuously aiming towards an increasing amount of parallelism and main mem-
ory capacities, a non-uniform memory access becomes more and more prevalent to allow
hardware resources to scale up to dimensions of the likes of thousands of cores.

To address the issue of increasing NUMA effects and to achieve scalability for GPM
algorithms inside of a single machine, we adapt the NORAD architecture and build a
graph pattern matching engine on top of ERIS. By combining the relational foundation
and graph processing principles, we create our new research prototype called NEMESYS,
which is short for Near-Memory Graph Processing System, and present its architectural
overview in Figure 3.10. The term near-memory describes, that the data is processed by
a worker from the same socket, where it is actually located and thus differs from plain
in-memory processing. We will use the term NUMA-aware as a synonym for near-memory
in this thesis, since our system enforces socket-local computation by design. NEMESYS
has been published in our previous work [KKHL19, KUK+19].

Being based on ERIS, NEMESYS shares the same topological structure and thus consists
of a storage layer, a processing layer, a communication layer, which we call infrastructure and
components related to user I/O. In contrast to ERIS, NEMESYS allows for user defined,
i.e. online data ingestion and query generation.

We argue, that a scalable relational engine like ERIS is a perfect starting point for our
endeavor to build a NUMA-aware GPM engine, since basic problems have already been
addressed. That is, parallel workload distribution, general data distribution and worker
allocation is already present and thus we can focus on graph-specific aspects. In the
following sections, we will highlight the general design aspects of NEMESYS and how
we modify the underlying research prototype, to accommodate a GPM engine.

38 Chapter 3 Near-Memory Computing Principles and Challenges

Figure 3.10: Architectural overview of NEMESYS. Here, a part of a graph is shown and
divided into three disjunct partitions, which are distributed among all sock-
ets. Adjacent partitions are not necessarily stored on the same socket.

3.3.1 Data Storage

Storing a graph on a NUMA-affected system inherently requires data partitioning, to
cope with the NUMA effect. Hence, we need to dissect the graph into a disjunct set of
partitions, which can then be stored on the individual sockets, thus leading to the graph
partitioning problem (GPP). We consider every edge between two vertices as a poten-
tial communication path between two partitions, which ultimately result in messages in
NEMESYS. Therefore, it is advisable to reduce the number of edges and consequently
messages, that span across multiple partitions in order to be NUMA-aware. According
to [HR73], partitioning a graph into a balanced and disjoint set of k partitions while min-
imizing the edges, that are cut between partitions, is an NP-complete problem. Thus,
we need to find appropriate heuristics in order to partition our data in a timely manner,
which we present in detail in Section 4.2.1. For now, we assume an appropriate partition-
ing strategy to be applied, regardless of the actual algorithm.

In Section 2.1.2, we presented our data model, which is the edge-labeled multigraph. This
graph format can be easily represented using a triple notation, and thus perfectly fits the
relational storage model of ERIS. By applying some partitioning strategy, we can extract
Table 3.2 from the graph in Figure 3.10.

Table 3.2: Outgoing edge table for the graph in Figure 3.10.

Source Target Label Source Target Label
Partition 1 Partition 2

G C labelGC A B labelAB
G H labelGH A H labelAH

Partition 3 B D labelBD
D E labelDE C A labelCA
E F labelEF C D labelCD
F G labelFG C E labelCE
F C labelFC C H labelCH

3.3 NEMESYS - Allowing NUMA-Aware Graph Pattern Matching on ERIS 39

In general, a vertex is defined by its incoming and outgoing edges. However, to represent
the topology of a graph, it is sufficient to store only the outgoing edges of a vertex, since
we would otherwise duplicate every edge between any source and target vertices. Within
NEMESYS, a vertex is stored as a collection of its outgoing edges and therefore consists
of multiple records. The 11 edges of the example graph are organized within a dedicated
class, the LabeledGraphContainer (LGC). Every LGC is responsible for holding exactly
one instance of a graph, hence storing multiple graphs results in an equal amount of
LGC instances. An LGC in turn holds multiple instances of the previously described
LPs, denoted as Partition in Table 3.2 and colorful highlighted in Figure 3.10, which are
responsible for the actual physical storage of the data records. Considering an edge as a
3-tuple naturally implies storing graphs in a row-wise organization on the physical level.
However, due to GPM being a vertex-lookup heavy use case, we believe that a columnar
representation is a more performant approach. That is, since the lookup of a vertex id in
a specific partition is always the first processing step and applying a columnar storage
layout leads to reduced data transfer during this step. Furthermore, a vertex is stored
as an edge collection, and thus a partition can also contain a virtual vertex, i.e. a vertex,
which does not have any outgoing edges, just like H in Partition 1. If the intermediate
state of a GPM query now binds vertex H, since it has an appropriate incoming edge, the
system would have to scan Partition 1 for its outgoing edges, but to no avail. Analogous
to partitioning the graph, finding a suitable LP-to-socket placement is non-trivial and
therefore it can happen, that adjacent partitions are placed on different sockets.

Loading a graph into NEMESYS can be triggered by issuing a command via the
user interface. Every GPM engine related command is prefixed with the graph key-
word, and thus a graph can be loaded by issuing graph load <graphIdent> <options>
</path/to/GraphFile/>. The options part contains switches for building partition inter-
nal indexes or setting the initial physical representation to row- or column-wise. Graph
data files are expected to be in an N-Triple1 like format, however we dictionary encode
the data with integer values to speed up internal processing. In addition to plain text
files, NEMESYS also supports the ingestion of binary formatted files. The content of an
example binary file with two edges and 8 bit encoded vertices would look like shown in
Figure 3.11.

However, this requires a preceding encoding step, such that an edge consists of 3 con-
secutive integer values of fixed length. On the other hand, NEMESYS is aimed to be an
online processing engine and ingesting binary files is significantly faster than plain text.
Therefore the overhead of previously encoding the data is easily amortized, especially
when a graph is loaded multiple times over several working sessions.

For the numbers shown in Table 3.3, we generated a synthetic graph with different sizes
using gMark [BBC+17]. The table shows the graph sizes in both edge count and approx-
imate data size and the time elapsed for loading graphs of different sizes. The binary

00000010 10000111 11001101 00010010 0101100000100011 00000000

Edge count

Source Vertex ID

Edge Label
Target Vertex ID

Edge Triple Edge Triple

Figure 3.11: Binary graph file format with two stored edges.

1https://www.w3.org/TR/n-triples/

40 Chapter 3 Near-Memory Computing Principles and Challenges

https://www.w3.org/TR/n-triples/

Table 3.3: Loading times in milliseconds for different graph sizes and data formats.

Plain Text Binary
Edge count Size on disk Row Store Column Store Row Store Column Store

56 k 725 kB 18 16 14 19
562 k 8 MB 178 175 114 123
5 M 93 MB 1759 1752 975 1009
56 M 1.1 GB 17920 18081 9580 9574
569 M 12 GB 187649 184868 94164 94108

graph files are in fact larger, since characters in plain text files require only 1 byte per
character, whereas the binary format requires 4 bytes per integer. Consequently, every
integer, whose decimal representation requires less than 4 digits, requires more space in
the binary format than in a plain text file.

The experiment shows three important observations. First, we can observe a linear scal-
ing for ingesting graphs with varying sizes. That is, loading a 10 times bigger graph
yields a 10 times longer loading time, meaning NEMESYS does not incur any overhead
for loading graphs with more edges. Second, reading from the binary format is expect-
edly faster, than reading from plain text files with a speedup of approximately 2X. Third,
there is virtually no overhead in storing a graph in either row or columnar representation.

3.3.2 Query Generation

NEMESYS supports CQs as described in Section 2.2. Forming CQs can be naturally done
following the prevalent triple notation, which is also used in the graph representation
itself. To post a query, users write a triple-based query string to the user interface, which
will then be further processed by the GraphQueryManager class. Queries are posted as
a set of white space delimited triples and are of the form [<source>,<target>,<label>],
where source and target describe vertex ids and label represents the value for an edge
label. NEMESYS accepts fixed values and variables for the vertex part or fixed values
and wildcards for the label. Query strings are dissected into a set of edge predicates
(triples) and for every edge predicate, the required operator is determined.

Operators are defined via the C++ programmable interface provided by ERIS’ underlying
infrastructure and we argue, that only three operators are necessary to process GPM on
our targeted hardware. Reading a query string triple wise from front to back yields an
initial binding order and thus known and unknown bindings at a given processing step.
We identified that, based on the order of variables in a query, we can have 0, 1 or 2 bound
variables for any given edge predicate and thus the following three operators emerged:

Scan Operator. The Scan operator performs a parallel vertex scan over all partitions in
the case that the source as well as the target vertex of a CQ triple are unknown.
By specifying a certain edge label predicate, the operator returns only bindings for
vertices, where the connecting edge is labeled accordingly. The Scan operator is
always the first operator in the pattern matching process. As a straight forward
optimization step, the Scan operator can be fused with the directly following VB or
EB operator to create a processing pipeline.

3.3 NEMESYS - Allowing NUMA-Aware Graph Pattern Matching on ERIS 41

Table 3.4: Operator assignment based on variable bindings in a query triple. A vertex is
considered bound, if it has been matched in a previous edge predicate or if a
constant value has been set accordingly.

No. of Bound No. of Unbound NEMESYS

Vertex Variables Vertex Variables Operator
0 2 Scan
1 1 Vertex-Bound
2 0 Edge-Bound

Vertex-Bound (VB) Operator. The VB operator takes an intermediate pattern matching
result from either the Scan or the EB operator as input and tries to match new ver-
tices in the query pattern according to the following CQ triple. The operator has
to be only applied when either the source vertex or target vertex is known in the
current processing step and thus bound.

Edge-Bound (EB) Operator. The EB operator ensures the existence of additional edge la-
bel predicates between known vertex matching candidates for certain vertices of
the CQ. It performs a data lookup with a given source and target vertex as well as
a given edge label. If the lookup fails, both vertices are eliminated from the match-
ing candidates. Otherwise the matching state is passed to the next operator or is
returned as final result. In this case, both vertex variables are bound.

Considering the GPM query example from Figure 2.5a, we identify five edge predicates,
as shown in Figure 3.12. According to Table 3.4, this sequence results in the operator
chain: Scan→ EB→ VB→ EB→ VB→ EB→ Result. From a relational database point
of view, GPM can be considered as a self join on the triple table. Hence, during query
generation, we require triples to be ordered such that no two subsequent edge predicates
have two unbound vertices. Otherwise the system would perform an unnecessary full
join, with a prohibitively large intermediate result set.

After parsing the query, the operators have to be parameterized and instantiated. At this
point, we know how many different variables have to be bound and thus we can pre-
pare intermediate state structs and vertex lookup orders. We explored two different ap-
proaches, one being skeleton based and the other one being based on online instantiation
of C++ class operators. Naturally, we implemented the three operators in C++ with the
appropriate hooks for source and target vertex ids as well as to be matched labels. This
approach leads to a plethora of branches during the execution, since one operator has to
check every possible order and position of a bound vertex in the intermediate matching
state. To overcome the extensive branching, we further implemented C++ skeletons as
template files. When generating the query, we can then analyze and precompute the po-
sitions of the vertices in our intermediate state structs and directly insert them into the

Figure 3.12: Edge predicates for the query from Figure 2.5a.

42 Chapter 3 Near-Memory Computing Principles and Challenges

Infrastructure

Socket 1 Socket N

E2 E2

E2 V2

…

Memory Memory

E2 V2

V2 E2

E2 E1

V2 V1

E2 V2

V2 E1

V2 V1

E2 E2

V2 V1

E1 E2

V1 E1

V1 E2

E2 V2

V2 E2

S

E1 V1 E3

E2 V2

R

Figure 3.13: Operator placement during a GPM process.

skeleton. However, this code has to be explicitly compiled during runtime by calling a
compiler to create a runnable query object, i.e. a shared library, which is then linked into
the address space of NEMESYS and finally executed. Obviously, submitting a system call
to a standard compiler yields too much overhead to be considered a viable option, and
thus Just-in-Time (JIT) compilation could be an option. We tested different variants and
found, that the wall clock time for instantiating the operators with branches and subse-
quently executing the query was consistently faster than reading the operator skeletons
from disk, parameterizing and compiling them and finally executing a branch-free ver-
sion. With the online instantiation of C++ class based operators, we identified further
optimization potential by rewriting the operator code as fully templated C++ classes.
However, this measure is out of scope of this thesis and left for future work, since we
could only optimize parts of the objects, where boolean parameters are used.

3.3.3 Processing Model

As outlined in Section 2.3, we target an asynchronous model to allow for maximum scal-
ability, and thus the Parallel Operator Execution (POE) model emerged. In NEMESYS, we
assign a dedicated worker thread to all logical cores of every socket in the system. Just
like in ERIS, we restrict worker access to the socket local memory domains and thus com-
munication, i.e. exchanging intermediate results, is forced to be messaging based over the
infrastructure layer.

Workers periodically cycle through an event loop, which accounts for sending out pend-
ing messages and processing incoming messages, i.e. grabbing a partition and extracting
the relevant data, according to the operator code, which is sent accompanying interme-
diate data from any previous operator. On a physical level, the messages are structured
according to Figure 3.8. After building up an operator chain, such as the one consisting
of six operator objects for Figure 3.12, processing starts by forking the scan operator code
to all workers in the system. Thus, every worker is executing a private copy of the oper-
ator code, allowing for independent operations. Usually, data partitions contain varying
amounts of relevant data for a given query, which leads to different runtimes for the same
operator, based on the worker or partition it is executed on. The eponymous effect of the
parallel operator execution is shown in Figure 3.13, where we present a possible operator
placement for the operator chain resulting from the edge predicates of Figure 3.12.

3.3 NEMESYS - Allowing NUMA-Aware Graph Pattern Matching on ERIS 43

S E V EE V R

X Y Z K

BD AC

DB

AD

BD
CD

AB

CB

1 2 3 4 5 6

CB

AB

CD

AB

AD

CB

X Y Z K

BD CA

Figure 3.14: Matching sequence for the query and graph from Figure 2.5.

During its execution, an operator matches intermediate results from previous operators
according to the edge predicate, which is assigned to it, and sends out new intermedi-
ate states to the succeeding operator in the chain, until final matching states are formed
to a result. Figure 3.14 illustrates the matching process for the query and graph from
Figure 2.5. First, the Scan operator fetches all edges for the first direction of the knows
relationship and assures the existence of a mutual edge in return during steps (1) and
(2). After that, the engine identifies two different matching possibilities for query vertex
K. Both data graph vertices A and C qualify for that position and thus, a second inter-
mediate matching state is created during step (3). For both states, A and C are matched
to query vertices Z and K respectively, leading to two results during step (6). However,
either state can be regarded as a duplicate of the other, since both results contain the same
vertices and are therefore a candidate for proper duplication handling at the end of the
processing. We exclude the duplication of states for swapping the matchings for query
vertices X and Y for brevity. Semantically, the messages are flowing from one operator
to its successor during steps (1) through (6) but in reality, operators enqueue messages
with partitions, respectively their message buffers. This asynchronicity also allows us, to
return first results even before all operators finished, although this approach inhibits the
process of duplicate elimination or sorted output.

Besides processing CQs, NEMESYS also supports a deviation of RPQs, i.e. Variable Path
Length Queries (VPQs) as a proof of concept implementation for recursive query answer-
ing within the NORAD architecture. Figure 3.15a is a VPQ, which asks for a married
couple and all people who know one of them, if there are any, and their friends or friends
of their friends, if they have any. The resulting operator chain is shown in Figure 3.15b.
The arrows in the operator chain indicate message paths between operators and the cir-
cled numbers represent the messages, which target the accordingly numbered step in
Figure 3.15a. Like in RPQs, our VPQ implementation supports the Kleene star, which re-
quests zero to infinity iterations, as well as the + notation, which requests at least one to
infinity occurrences of the predicate to be present. This query is in fact a hybrid of a CQ
and a VPQ, since step (3) is a basic edge predicate, but we call any query a VPQ, as soon
as it contains a predicate with any recursion indicator. Such statements will be called a
variable path statement (VPS) henceforth.

In contrast to CQ parsing, VPQs lead to more operators than actual edge predicates and
thus VPQ processing yields three major differences when compared to CQ processing.
First, for every VPS, two operators are instantiated. This is a basic runtime optimization
for reducing the branching within the operators. The first VPS step has to consider send-
ing messages according to the actual recursion indicator. For example, the Kleene star
allows, that the predicate does not even have to be present in the final result and thus,
we can skip e.g. from the Scan operator, which is part of the first VPS step of (1), directly
to the first VPS step of (2). We call this measure an early out, since it allows to leave the
operator compound earlier than usual and which is the second difference to CQ operator
chains. An early out is added for every first operator of a VPS. The third difference is the

44 Chapter 3 Near-Memory Computing Principles and Challenges

1 2 3

K XY Z
knows* marriedToisFriend*

(a) VPQ statements.

(b) VPQ Operator chain.

Figure 3.15: A VPQ query visualization.

messaging behavior of the second VPS operator. In contrast to CQs, these operators send
two messages for every matching candidate. That is, since every matched target vertex
of a VPS can be either the starting vertex of the next iteration for the VPS or the start-
ing vertex of the following edge predicate. To avoid branching in every VPS iteration,
we split the responsibility for sending early out messages and recursion messages into
two separate operators. However, this comes with zero overhead, since the total amount
of messages in the system stays constant. That is because the communication between
the two VPS steps can be regarded as one round of recursion. Subsequently, the forked
operator code is called by a worker on a batch of incoming messages and thus nothing
changes for the execution model itself, despite a slightly longer operator chain. The main
challenge in VPQ processing is an efficient state handling within a VPS. An asynchronous
execution model hinders the coordinated access to shared structures. In its current state,
we protect the operator-local shared lookup structures with scoped locks to synchronize
the access from other operator instances. To become fully NUMA-aware, we need to con-
sider replication strategies to make the information equally available for all sockets, but
this is left for future work.

Due to the required data partitioning, we do not always have all the necessary infor-
mation for one query within a single partition and thus it is inevitable to communicate
intermediate results between workers. In general, the message passing is handled by
the infrastructure component (cf. Figure 3.10), which hides the latency of the communi-
cation network. Locally, within a partition, we employ indices to speed up finding the
right vertices. On a global level, NEMESYS relies on a routing table, to keep track of local-
ity information for all vertices. This component is part of the LGC and stores information
about the corresponding NUMA node and data partition for every vertex in the stored
graph. Therefore, the design of the routing table needs to be carefully considered, since
graphs tend to exhibit a high number of vertices and fast, parallel lookups are neces-
sary for high performance. Since the routing table and any employed partitioning strategy
depend on each other, we consider the following two design options:

Compute Design. The compute design is a combination of a hash function as routing
table and a locality-agnostic partitioning strategy. Hash partitioning is easy to com-
pute, because it only needs to consider the id of a vertex to assign it to a partition.
This implementation calculates the target partition on the fly and does not use any
additional data structures. Nevertheless, due to hashing being a trivial approach,
partitioning is performed without any topology-based locality information.

3.3 NEMESYS - Allowing NUMA-Aware Graph Pattern Matching on ERIS 45

Lookup Design. The lookup design is the opposite to the compute design and is a com-
bination of a lookup table – instead of a hash function – as routing table and a locality-
aware partitioning strategy. The routing table is represented as a hash map, that con-
tains a one-to-one mapping of all vertices of the graph to their respective partitions.
Thus, we precompute a graph partitioning, which considers the locality of a ver-
tex’ neighborhood. This approach leads to a routing table, which is as big as the
number of vertices, because we need to store the partition for every single vertex
in the graph. We employ this design for any partitioning strategy, that produces a
per-vertex partition assignment.

Both, the compute and the lookup design face advantages and disadvantages. On the one
hand, the compute design is the fastest implementation for a routing table but lacks the
ability to consider graph properties like locality or semantic relationships between ver-
tices, to create well-balanced and locality-aware partitions. On the other hand, the lookup
design is able to exploit such graph properties, which comes at the price of an additional
storage overhead. Due to the size of the routing table being proportional to the number
of vertices, it can easily exceed the cache size of the sockets. This leads to an increasing
amount of NUMA accesses from many workers, because the routing table itself is stored
on a single socket. The major advantage of the lookup design is its consideration of locality.
As mentioned earlier in Section 3.3.1, edges between partitions create messaging paths
between the two. This fact can become a considerable issue, if the neighborhood of such
a border vertex is spread among partitions, which are placed on distant sockets, since
sending messages between sockets is always slower than keeping the communication
locally on the same physical socket.

3.4 CHALLENGES OF GRAPH PATTERN MATCHING ON NORAD

Employing a system like NEMESYS fundamentally allows for highly scalable process-
ing by design. However, although the baseline implementation exhibits high scalability
for relational workloads, it does not necessarily perform equally well for graph work-
loads. We analyze the general properties of NEMESYS and demonstrate, that graph data
inherits a set of custom properties, which are not fully covered by relational processing
and thus, more sophisticated approaches are necessary. For comparability, we generated
three different synthetic datasets, again leveraging gMark [BBC+17]. These represent a
bibliographical network, a social network and a protein network, which we call Biblio,
Social and Uniprot henceforth for brevity.

3.4.1 Holistic but compact locality metadata for scalable GPM

In this thesis, we refer to scalability as a proportional increase in processing capabilities,
according to the amount of invested resources, i.e. using double the amount of workers
should result in reducing the query runtime by factor two. To test the natural scaling be-
havior of a NORAD system for GPM, we used the Biblio and Social graph. We generated
a set of different queries out of their respective schemes and ran them against the graphs.
In Figure 3.16, we present the results for queries on the Biblio and Social graph. The ex-
periments were run on the Small server from Table 3.1, a 4 socket NUMA server with 8
physical cores per socket, which in turn provide 2 logical cores. Our benchmark server
thus has 64 cores in total and a sufficient amount of main memory to accommodate the
graphs, all indexes and the queries intermediate results all in-memory. We measured the
baseline performance with 2 active workers, increased the worker count to 4 and then

46 Chapter 3 Near-Memory Computing Principles and Challenges

(a) Forward oriented query. (b) Mixed oriented query.

Figure 3.17: Different edge predicate orientations in GPM.

fashion, but without keeping track of the actual data placement. Whenever a lookup
request is posted against an RR-based routing table, it can only be answered by returning
a broadcast indicator. This is even more worse for graph data. In our data model, a
single vertex is composed of a set of edge triples and thus, the adjacency of a single
vertex is always distributed among multiple partitions. The issue of missing locality
information can be mitigated by using our proposed Compute or Lookup design routing
tables. Considering the storage layout from Table 3.2, we can keep track of the location
of every vertex by simply hashing its id or adding it into a lookup table.

Since the topology of a graph is inherently encoded through directed edges, we do only
have to store outgoing edges for every vertex to represent the graph (cf. Section 3.3.1).
Based on this design decision, we can only efficiently process a specific class of GPM
queries, with an example being given in Figure 3.17a. The figures shows an abstract ex-
ample CQ with two edge predicates, searching for all rectangles, which have an outgoing
edge to a circle, which in turn have an edge towards a triangle. The rectangle, circle and
triangle are abstract and thus unbound vertices. Answering such queries can be effort-
lessly done by looking up first all squares in the Scan operator and subsequently looking
up all outgoing edges for every previously matched circle. There is no overhead in this
process, since per default indexing has been done for source vertices and all outgoing
edges of that source vertex within the routing table. However, the queries like the ex-
ample from Figure 3.17b result in the undesired scaling behavior as previously shown.
The query differs from the first example by only inverting the direction of the second
edge predicate, which leads to two follow up issues. First, the outgoing edge table only
indexes source vertices and thus, requesting the source vertex of an edge with a known
target vertex can not be answered. Hence, a broadcast is once again sent out, impair-
ing the systems performance. Second, no single partition can be identified as target for
the next operator. Considering vertex C from the original edge table (c.f. Table 3.2), we
would receive two different partitions. However, sending a multicast message, i.e. a mes-
sage targeting a specific subset of data partitions in the system, is not supported by the
baseline system and thus, a broadcast is again necessary.

Challenge 1: We identify sufficient data locality information as a key aspect for scalable
GPM processing. Being able to directly address the correct target partition drastically
reduces the load on the memory subsystem, since only a small number of messages have
to be sent. Not knowing which data partition should receive a specific message leads to
contention on the memory bus, since broadcasts are multiplied by the number of parti-
tions in the system. For e.g. 64 data partitions, this could already lead to 7.07 M messages
in the system, when a query with three operators creates only three broadcasts per oper-
ator per received message. In addition, messages targeting inappropriate partitions lead
to local workload overhead. That is, since every message has to be processed, it leads to
a local lookup routine in the partition. If there is no local index on the required data, this
lookup deteriorates to an even more expensive scan, which in turn means an even more
severe performance drop, i.e. unnecessary work.

Challenge 2: The routing table is a key component for performance, since both its content
as well as its overall size contribute to efficient query performance. While the content of

48 Chapter 3 Near-Memory Computing Principles and Challenges

the partitions is dominated by the employed partitioning algorithm, the size of the rout-
ing table lookup structure itself can be influenced by the concrete implementation. Since
this data structure is accessed for each and every message, it should be cache resident
and thus rather small. This requirement actually prohibits a direct vertex-to-partition
mapping, since a graph with e.g. 1 M vertices requires at least 8 MB to store only the
64 bit vertex ids, let alone data structures to hold both vertex and partition information.
Considering current server processor L3 cache sizes of approx. 22 MB, the routing ta-
ble would be at least partially evicted during query processing. Thus, a performance
degrade is inevitable when fetching target partitions during the messaging procedure.

3.4.2 Proper data placement and data allocation

Leveraging NUMA systems requires a thoughtful system design to fully exploit hard-
ware capabilities. As outlined in Figure 3.2, such systems yield decreasing bandwidths
and increasing latencies, the farther away a targeted NUMA domain is located. Table 3.5
shows the memory statistics for two of our benchmark servers, with Table 3.5a being
a fully connected four socket server and Table 3.5b being only a mesh connected four
socket server, i.e. communication between distant hops has to be coordinated by a medi-
ator core. Considering the local bandwidth, we see a slowdown of factor 6 in Table 3.5a,
when performing a write access to a remote socket. In NEMESYS, data partitions are
placed on a single socket an can solely be processed by workers, which are pinned to
cores of the very same socket and thus at least remote access of data is avoided.

Figure 3.18 shows an example of a partitioned graph with the dashed lines illustrating
communication paths between the vertices within the partitions. The vertices from the
blue partition are rather tightly connected to the vertices from the grey partition, however
they are placed on different sockets. Consequently, graph patterns, which target vertices
of the blue partition are likely to generate a lot of remote memory accesses. The content
of each data partition is determined by the employed graph partitioning strategy. How-
ever, the actual placement of the data partitions is governed by the system itself. The
NORAD baseline system implements a straight forward linear assignment strategy, i.e.
distributing 64 partitions on a four socket server means partitions 1 through 16 are placed
on the socket with the physical id 0, partitions 17 through 32 on the socket with physi-
cal id 1, etc. This approach is feasible when dealing with relational data, which is range
partitioned and thus evenly distributed among all partitions. However, graph data ex-
hibits semantic connections between vertices and thus, their actual placement in relation
to each other matters for GPM performance.

To highlight the general weakness of this standard range (SR) partitioning baseline, we
ran queries against the Social graph. One instance of the graph was partitioned with

Table 3.5: Server bandwidth matrices for the Medium server (4x Intel Xeon Gold 6130) and
a comparable platform (4x Intel Xeon Gold 5120) with different connections.

(a) Fully connected bandwidths in GB/s.

NUMA Nodes
0 1 2 3

0 108.2 17.2 17.2 17.2
1 17.2 107.5 17.1 17.2
2 17.2 17.2 108.6 17.2
3 17.2 17.2 17.2 108.5

(b) Mesh connected bandwidths in GB/s.

NUMA Nodes
0 1 2 3

0 65.9 17.1 10.6 16.1
1 17.0 67.8 16.4 10.4
2 10.6 16.1 67.4 17.0
3 16.5 10.4 16.9 67.5

3.4 Challenges of Graph Pattern Matching on NORAD 49

Challenge 3: Data partitioning as well as data placement are important to consider for
efficient GPM processing. Whilst the former is a direct result of the employed partition-
ing strategy, the latter can also be adjusted by concrete allocation strategies. Furthermore,
the partitioning algorithm also indirectly influences the communication paths, depend-
ing on the vertex-to-partition assignment. The aforementioned GPP is an NP-complete
problem and thus can not be optimally solved for bigger datasets. Distributing the data
in a generally well performing manner can thus only be solved heuristically but we also
acknowledge that there is no one-size-fits-all strategy. We argue that deciding between a
fast and locality agnostic algorithm like hashing versus any graph-oriented partitioning
algorithm is non-trivial and should be done on a per-graph basis, if not on a per-workload
or even a per-query basis. Furthermore, placing adjacent partitions on the same sockets
is also beneficial for parallel GPM, to fully exploit the bandwidth characteristics of the
system. Identifying communication paths among a set of partitions for a given workload
is thus a considerable problem, which we also tackle in this thesis.

3.4 Challenges of Graph Pattern Matching on NORAD 51

52 Chapter 3 Near-Memory Computing Principles and Challenges

4
NEAR-MEMORY GRAPH PROCESSING ON

SYMMETRIC MULTIPROCESSOR SYSTEMS

4.1 Query Execution Plan Optimization

4.2 Topology-based optimization

4.3 Infrastructure-based optimization

The previous chapter outlined the aspects of our targeted hardware, as well as the prop-
erties and capabilities of the baseline implementation. In this chapter, we will cover
our adjustments to said baseline implementation, to allow NEMESYS becoming a near-
memory graph pattern matching engine, which is based on the novel NORAD archi-
tecture. We will thoroughly explain the missing features, which are required to allow
scalable processing with adequate query response times. Furthermore, we will present
relevant implementation details on the individual components. Since we focus on SMP
server systems, we need to consider several aspects, which we consider to be of funda-
mental importance to efficient graph pattern matching. First, we improve the general
query infrastructure by applying graph-specific query optimizations. Following that, we
investigate the influences of workload dependent system configurations, i.e. the effect
of data partitioning and the number of effective partitions, paired with varying worker
resources. After GPM processing is enabled by well-ordered query triples and adequate
partitioning, we thoroughly investigate measures to improve the overall messaging be-
havior in the system. We then further examine the influence of data locality by not only
managing the data partitioning, but applying different data allocation strategies, based
on the inter-partition communication paths to conclude this chapter.

4.1 QUERY EXECUTION PLAN OPTIMIZATION

Optimizing incoming queries is a well researched field. From a database perspective,
GPM represents a join-ordering problem. The amount of possible intermediate results
per step depends on the order of the subsequently matched statements in the query. Thus,
we can leverage state-of-the-art approaches from the database world, like heuristically
choosing the most promising join tree, which represents the order of the statements in
the query. This ordering is also called query execution plan (QEP). To achieve that, we
need to define a suitable heuristic, which estimates the cost of a given statement order
and thus allows us to rank the QEPs, based on their expected cost.

As outlined in Section 3.3.2, NEMESYS allows querying based on a triple language. Fur-
thermore, within our processing engine we allow a triple sequence only to be in an order,
such that no two unbound variables occur together in another triple than the very first.
Compared to our previous example, statements (4) and (6) from Figure 3.12 being the

Figure 4.1: Query execution plan optimization on a small graph.

54 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

thus, we observe a logarithmic influence of the amount of graph edges for S. For target
vertices, we check for available indices and set θ accordingly.

The result of step (3) from Figure 4.2 is a set of weighted edge predicates, with lower
scores for fast retrievable edge predicates and higher scores for more expensive ones.
The edge predicates are then sorted in an ascending order of their respective scores. This
could lead to the aforementioned invalid query state, when e.g. two statements with
two unbound vertices each are ordered subsequently. Hence, we apply additional sanity
checks to avoid that situation and reorder statements as minimal invasive as possible. As
a general rule of thumb, edge predicates with wildcards at the label position are always
processed last. That is, since they simply return all edges for a given source or target
vertex and thus would unnecessarily inflate the size of the intermediate matching state.

Collecting graph statistics prolongs the graph ingestion procedure as a whole and the
amount of collected statistical information has a an increasing impact, the larger the
stored graphs grow. Therefore we built our optimizer, such that it can also work without
statistics and a reduced rule set. If no statistics are present, our optimizer reorders the
edge predicates solely by their number of constants, i.e. edge predicates with constants
will always be processed before edge predicates with at least one variable. The same rule
is applied to the label part of the edge predicate, with the most weight being put on the
edge label portion. A statement with two variables and a constant label is placed before
a statement with a known source or target vertex but a wildcard for the edge label.

We evaluated the performance of our optimizer with query sizes ranging from 2 to 10
edge predicates. The overall optimization time ranges from 2 µs up to 40 µs for all query
sizes. The variation stems from queries with either more or less complex statements,
e.g. when variable names consisted of longer strings like author than just the single letter
a. Considering that GPM queries usually run longer than a couple of milliseconds, we
consider this overhead to be negligible. However, we do not yet cache optimization
results. Hence, if a user enters a query, which was previously seen and optimized, we
would still run a whole optimization pass again. It is yet to be determined, if cached
results could also be applied to semantically equivalent queries or if testing two queries
for similarity is more expensive than just rerunning the optimization itself. However,
further improvements of the optimizer are deferred to future work.

4.2 TOPOLOGY-BASED OPTIMIZATION

From a software point of view, an SMP system with its globally coherent main memory
is no different to any other computer. Worker threads are executed by any processor with
free capacities and requested main memory is provided through standard malloc calls.
Thus, the parallel processing of graphs can be done with the same software on either a
commodity laptop with a dual core processor or a server with numerous multiprocessors
without the need to adapt the internal software architecture. Such hardware oblivious
approaches can never achieve their best performance on highly parallel SMP systems,
as they completely miss out on NUMA awareness, which we described in Chapter 3.1.
Achieving appropriate performance gains on a system with multiple memory domains
thus requires intelligent data partitioning. The topology of a graph is defined by the di-
rection of the edges between the graph’s vertices. Traversing edges implies a message
being sent from the partition of the source vertex to the partition of the target vertex. If
the source and target partitions are placed on the same socket, this communication is con-
siderable faster due to higher local bandwidth, as shown in Table 3.5a. Thus considering
the topology of the stored data graph is a crucial aspect for efficient graph processing on
an SMP systems.

56 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

In this section, we elaborate on how to optimize NEMESYS, based on said topology, i.e.
the storage layer of our system. Figure 3.19 already showed, that graph agnostic parti-
tioning can not achieve the same performance, as a simple graph partitioning algorithm.
Chapter 2 introduced different types of graphs, like road networks or protein interaction
graphs and each of them exhibits unique topology patterns. Therefore we argue, that
considering different strategies for data partitioning is necessary to achieve optimal re-
sults for different graphs and even different queries. That is, since every query pattern
implies a different set of traversed edges, which may result in different partitions, that
contain the relevant data.

Furthermore, storing only outgoing edges may be appropriate to mirror the graph’s
topology, yet this hinders the communication, since edges can thus only be traversed
in their actual direction. This leads to the necessity of broadcasts, whenever a backwards
traversal is necessary. The negative impact of broadcasts with an increasing amount of
worker threads was already shown in Figure 3.16. We overcome this limitation by intro-
ducing redundancy in terms of additionally storing incoming edges. These additional
edges increase the locality information for backwards traversals and therefore eliminate
broadcasting completely by trading a higher memory consumption for less messages in
the system.

4.2.1 Workload Dependent Graph Partitioning

Section 4.1 discussed how the order of query triples could impact the query runtime,
based on the resulting messaging scheme. This impact is further influenced by the con-
tent of the targeted data partitions and the socket on which a partition is located in the
system. In this section, we tackle the required data partitioning by generally classifying
graph partitioning algorithms. We will then discuss our approach on graph partitioning
for a NORAD based system like NEMESYS. Parts of this section have been considered in
our previous work from [KKH+17].

Partitioning a graph is inevitable when processing it in-memory on a NUMA system, if
system scalability is a desired goal. However, the GPP is NP complete, as mentioned in
Section 3.3.1. Thus, a general default is to rely on hash partitioning and replication, which
is also discussed in [Pot17]. Although their work on cluster-based query processing is or-
thogonal to our in-memory solution, the GPP arises for both systems. Hashing is usually
done on either source or target vertices. For RDF representations, which can be also used
for Wikidata (cf. Section 2.4), the subject or object part of the RDF triple are usually used
as input for the hash algorithm. NEMESYS already allows the implementation of hash
based partitioning by providing the compute design routing table from Section 3.3.3. The
major advantage of hash based partitioning is its low overhead for generating the actual
partitioning. The same hash function can be used both for storing the data during the
ingestion phase and for the lookup procedure during GPM processing. However, the
main drawback is the lack of locality aware partitioning or the amount of cut edges be-
tween partitions. Vertex locality, i.e. placing a vertex and its neighborhood on the same
partition or socket, leads to more local than remote messages. Considering that the local
bandwidth of a NUMA node is always higher than towards a remote node, it is advis-
able to facilitate more locality aware strategies. The amount of cut edges does not directly
contribute to this statement. In NEMESYS, traversing any edge leads to a message. Thus,
even inner-partition edges will create forced communication, although these messages
are guaranteed to reside on the same socket and leverage maximum bandwidth. Any
inter-partition edge is therefore a potential remote communication.

Achieving an appropriate graph partitioning is thus non-trivial and should be carefully
considered. The field of graph partitioning is well researched and an ongoing topic. A

4.2 Topology-based optimization 57

well known partitioning algorithm is the multilevel k-Way partitioning, which was orig-
inally introduced by [KK98]. It addresses the problem of minimizing the edge cut, thus
creating self-contained data partitions. However, for our use case, we do not desire com-
pletely self-contained partitions. The fewer edges span between multiple partitions, the
more we limit our potential parallel computation. Reasoned by the NORAD architecture,
only one worker is allowed to process one specific partition at any point in time, which
limits the systems scalability in the case of completely self contained partitions. Thus,
we need to define heuristical graph partitioning algorithms, which achieve a balanced
partitioning. Generally, balanced can mean to achieve either equal vertex or edge count
per partition or both, which defaults back to the original GPP. Therefore we first need
to classify potential partitioning strategies, which is shown in Figure 4.3. We split our
classification in two dimensions:

(1) The partitioning criterion represents the basic unit of a graph, that is supplied to the
partitioning strategy and on which the actual partitioning is applied.

(2) The balancing criterion describing the unit of the graph that is subject to be balanced
out between data partitions. In this thesis, balancing is restricted to only one criterion.

Both dimensions can be either fine- or coarse-grained. Edges (E) are the smallest achiev-
able granularity, as they are the basic building blocks of a graph’s topology. Vertices (V),
as a set of edges, are the next larger category, followed by components (C) as the coars-
est. We define a component as a set of vertices, which are more tightly connected to
each other, than to most vertices of the graph. An obvious example for a component in
a social network are groups of friends in the university. Usually, people inside of such
a group know each other well, but they often do not know much about other students,
thus there would exist much more edges between student vertices of the same group,
than to students of other friend groups. Hence, a partitioning strategy is a combination of
a partitioning criterion and a balancing criterion. Partitioning a graph at a specific granular-
ity limits the balancing to the same level of granularity, or below. For example balancing
components is not possible, when the partitioning is based on edges. For this thesis, we
designed four different heuristic approaches, following the classification table. However,
to the best of our knowledge, there are no known viable representatives for the C/E and
C/C strategy.

In the following, we detail on the feasible strategies and describe our heuristic imple-
mentations that we use for our evaluation. We restrict our considerations to one repre-
sentative algorithm per partitioning strategy. Furthermore, we only allow the generation
of a disjoint set of graph partitions and consider the replication of individual parts of the
graph as out-of-scope for this thesis.

Edges (E) Vertices (V) Components (C)

Edges (E)
E/E Strategy

RR
E/V

not possible
E/C

not possible

Vertices (V)
V/E Strategy

BE/DS
V/V Strategy

RRV
V/C

not possible

Components (C) C/E
unknown

C/V Strategy
k-Way

C/C
unknown

Balancing Criterion

P
ar

tit
io

n
C

rit
er

io
n

G
ra

nu
la

rit
y

Figure 4.3: Classification of graph partitioning strategies and representative algorithms.

58 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

E/E Strategy. This partitioning strategy works on the most fine-grained level and con-
siders each edge triple individually. It is trivially implemented using a round-robin
(RR) approach, which evenly distributes edges to partitions in a lightweight fash-
ion. This strategy will distribute all edges of one vertex with more than one edge
to multiple partitions. Applying the E/E strategy disables the use of any of our
previously described routing table designs, since no hash function could project the
same source vertex id to a set of target partitions, which are selected during runtime.
Thus, processing an E/E partitioned graph can only use broadcasts. This design is
only viable, if most of the data partitions hold any relevant data for the processed
edge predicate of a GPM query.

V/V Strategy. This strategy partitions a graph by its vertices and balances the amount of
vertices per partition. Hence, our round-robin vertices (RRV) algorithm is a specific
implementation of this strategy, that too leverages an RR approach. When triples
are read during the ingestion phase, we keep track of assigned vertices and assign
the next not-yet-assigned vertex id to the next partition. If a vertex id has already
been assigned, every future edge will be stored in the same partition and therefore
we have a guaranteed disjunctive partitions, based on the source vertex.

V/E Strategy. Similar to the RRV strategy, the graph is partitioned by its vertices. How-
ever, this partitioning strategy balances the number of edges. We consider two spe-
cific algorithms as implementation of this strategy: balanced edges (BE) and distributed
skew (DS). Both algorithms sort the vertices by the number of edges in a descend-
ing order. The BE algorithm iterates over this sorted list and assigns each vertex
and all of its edges to the currently smallest partition to greedily balance the edges
across the partitions. The DS algorithm is a state-of-the-art approximation for han-
dling skewed data in distributed joins [CKWT14] and extends the BE algorithm. To
diminish the influence of vertices with high degrees, DS considers the degrees of
all vertices and divides them into two sets. One set contains all vertices up to a
given threshold degree and distributes them according to the BE strategy. The sec-
ond set contains all vertices, whose degree surpasses the threshold. Such vertices
are more likely to create skewed load on the one partition, which they are assigned
to. This is remedied by evenly distributing all edges of this vertex among all parti-
tions, i.e. following the E/E strategy for only those vertices. Therefore, performing
GPM processing on a DS partitioned graph leads to a mix of unicast and broadcast
messages, even for solely forward-oriented queries like shown in Figure 3.17a. Be-
cause most real world graphs exhibit a non-uniform edge per vertex distribution,
all vertex-oriented partitioning strategies (RRV, BE and DS) lead to different parti-
tioning results.

C/V Strategy. The goal of a component-oriented strategy is to achieve a maximum of lo-
cal communication, by storing naturally connected groups of vertices together in a
partition. Identifying such groups can be either done by well-known graph traver-
sal algorithms to identify strongly or weakly connected components or by lever-
aging traditional graph partitioning, which minimizes edge-cut between partitions.
The previously mentioned multilevel k-Way algorithm can be regarded as state-of-
the-art to achieve that goal. This algorithm creates partitions, which are generally
self-contained and exhibit only few inter-partition edges, compared to the other par-
titioning strategies. Thus, we select the k-Way algorithm as representative for the
C/V category. In this thesis, we use the k-Way implementation from the METIS li-
brary 5.1 [KK13]. Similar to the V/* strategies, we store all edges of a vertex in the
same partition to avoid broadcasts during the pattern matching process.

4.2 Topology-based optimization 59

(a) V Query. (b) Quad Query.

Figure 4.4: Evaluated query patterns.

A straight forward partitioning approach is simply hashing a vertex by its id. Assuming
vertex ids to be equally distributed, we could fit hashing into a V/V strategy, however
hashing is agnostic to the graph topology and is thus omitted in this section. Besides
using a single strategy, we see the potential of hierarchical graph partitioning, i.e. a com-
bination of a C/* strategy together with the others. A possible combination would be
to leverage k-Way partitioning to dissect the graph into as many partitions as the server
provides sockets and then further process these resulting super-partitions with any other
strategy. However, the synthesis of partitioning strategies is out of scope for this the-
sis and left for future work, as we want to examine the individual properties for each
category.

To investigate how a partitioning strategy influences the GPM performance, we con-
ducted an exhaustive evaluation on a small and large-scale multiprocessor system, which
are listed as Small and Large in Table 3.1. We use four test data graphs, each representing
an individual application domain, that are again generated with the graph benchmark
framework gMark [BBC+17]. Additionally, we defined two CQs as depicted in Figure 4.4:
(1) the V query shapes a V with five vertices and four edges and (2) the Quad query is a
rectangle, which consists of four vertices and four edges. Both queries require four edge
predicate evaluations, however the Quad query leads to an EB operator, which the V query
does not. We generate these two query types individually per graph and only assign a
value to the edge label part of the query, such that all query vertices are variables. Since
the label value will be different for each graph, we omit its value in the figure. Based on
the query semantics, the evaluation of the edge predicates is performed as follows:

V Query. The first edge predicate evaluation is broadcasted to all partitions, because
only the edge label is known and not the source vertex. Since edge labels are not
unique within any partition, an initial broadcast is inevitable to start off the GPM
processing. The target vertices from this intermediate result set are then used as
source vertices for the second edge predicate evaluation. Depending on the parti-
tioning strategy, the second edge request is evaluated using either unicast or broad-
cast messages, e.g. if DS was used. The target vertices of the resulting matching
candidates are now utilized as target vertices for edge predicate 3.

Quad Query. The edge predicate evaluation of the Quad query is mostly similar to the
one of the V query. An initial broadcast is required, because only an edge label is
given in the pattern. Edge predicate 3 is the only backward oriented edge in the
pattern and thus necessitates a broadcast. The fourth edge predicate can again be
processed with solely using unicasts, if DS is not used.

60 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

(a) Vertex distribution. (b) Edge distribution.

Figure 4.5: Partitioning results for 64 partitions.

For all of our experiments, we loaded the graph-under-test into the main memory, par-
titioned it, and evenly distributed the partitions across the sockets and executed both
pattern queries for all partitioning strategies and all possible system configurations (SCs).
In this thesis, a system configuration denominates a combination of the active workers
and the total number of partitions. We repeated each experiment 20 times and calculated
the average over all runs.

Figure 4.5 shows an overview of the partitioning results for the different strategies on our
test graphs. Since the Small server exhibits 64 hardware threads, we split the graphs into
64 partitions. The boxplots show the deviation of vertex and edge distribution among the
64 available partitions. Narrow lines for some strategies represent the median, as no real
deviation could be observed. From these plots, we can derive the following observations:

(1) The partitioning and balancing criteria of the respective strategies are fulfilled inde-
pendently of the graphs. For instance, our RRV algorithm from the V/V strategy par-
titions the graphs by vertices and ideally balances the vertices among all partitions,
i.e., the vertices are evenly distributed over the partitions as depicted in Figure 4.5a.
The same applies for BE and DS of the V/E category, which perfectly balance the
edges among the partitions.

(2) Depending on the strategy, balancing is done either by vertices or edges. This can lead
to an imbalance on the non-balancing criterion depending on the underlying graph.
For instance, BE and DS balance edges among partitions. However, there are few
partitions with a much higher number of vertices than the others, which lead to the
outliers in Figure 4.5a. The V/E strategies create vertex imbalances on all partitions,
whereas the V/V strategy leads to slight edge imbalances across the datasets.

(3) The k-Way algorithm partitions graphs by components and balances the vertices. On
the one hand, this leads to an even distribution of the vertices over the partitions for
our test graphs as shown in Figure 4.5a. However, this algorithm produces highly
skewed edge distributions among all partitions. That is due to the reduction of edge
cut being an optimization goal.

The E/E strategy defaults to permanent broadcasts for all edge predicate requests and
thus marks the worst case, as outliend in Challenge 1 from Section 3.4. Because of its poor
performance, we will omit this strategy from further consideration. To summarize, each
partitioning strategy is able to successfully maintain its respective balancing criterion
while partitioning the graph into the considered number of partitions. However, the
quality of the result is different for each case. Depending on the graph, there are partitions
that vary greatly from the majority.

4.2 Topology-based optimization 61

Figure 4.6: System configuration heat map for RRV, V query on Biblio graph, Small server.

If we compare the partitioning results of Figure 4.5 for the Biblio graph, we find that
the RRV algorithm of the V/V strategy achieves the best partitioning result in terms of
balanced partitions for both vertices and edges. Generally, such a balaced partitioning
is beneficial for GPM, as it limits potential workload skew upfront. In the first set of ex-
periments, we use that setting to investigate the influence of the system configuration on
the pattern matching performance for the V query. Thus, we varied the number of active
workers between 8 and 64 and used 8 to 256 partitions. The heat map from Figure 4.6
shows the slowdown factors compared to the heatmap-local optimal configuration. For
the V query on an RRV partitioned Biblio graph, we found the optimal SC to be using 32
partitions and 32 workers. Generally, the pattern matching scales well for physical hard-
ware threads, which is indicated by the coloring trend from orange to green between
the columns for 8 and 32 workers. In this case, 64 workers are not beneficial, because
the V query employs two broadcasting requests at the end and the hyper-threads do not
provide as much performance as their physical siblings.

After examining the query performance for a single partitioning strategy, we conducted
the same experiments with the remaining strategies on the same graph to show the influ-
ence of the different partitioning strategies in detail. The resulting heat maps are depicted
in Figure 4.7 and show the relative performance, compared to the global optimum, which
is found in Figure 4.7a at 64 workers with 64 partitions. From these heat maps, we derive
the following facts:

(a) C/V: k-Way (b) V/V: RRV

(c) V/E: BE (d) V/E: DS

Figure 4.7: System configuration heat map, V query on Biblio graph, color shadings rela-
tive to the global optimum (k-Way 64/64), Small server.

62 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

Figure 4.8: Messages per partitioning algorithm, V query on Biblio graph. Small server.

First, the V/E strategy, represented by the BE and DS algorithms, performs compara-
tively bad. This happens because the generated query massively hits the vertex outlier
partition, which is also visibile in Figure 4.5a. Hence, this partition becomes a bottleneck
for the third and fourth edge predicate of the V query. A partition can be processed, as
soon as it receives messages. However, a worker snapshots the current message queue,
when it start processing and thus can not work on messages, which arive after it started
the operator logic. Thus, when a single partition receives a lot of messages, which are at
least slightly delayed, this can cause noticeable overhead.

Second, the k-Way partitioning results in a better query performance and utilizes the
whole system with its optimal system configuration being 64 partitions by 64 workers.
For the Biblio graph, this strategy results in evenly distributed vertices and an almost
even distribution of edges among the partitions. Furthermore, connected vertices are
partitioned together, which is not necessarily the case for RRV. For the k-Way partitioning,
the system creates mostly socket local messages and only a few remote messages whereas
the V/V strategy results in many remote messages. This effect is illustrated in Figure 4.8.

For the experiments on a single graph, we can conclude, that the C/V strategy is able
to utilize all hardware threads. However, we can also deduct limited scalability behav-
ior from the slowdown factors, which are shown within Figure 4.7a. The V/V strategy
exhibits comparable performance, but leads to a smaller area with similar performance,
which means less possibilites to adapt either worker or partition count, if a budget on
either resource would be given.

After thoroughly examining the influences of different partitioning strategies on one
graph, we conducted the same experiments for the previously introduced Social and
Uniprot graph and added a webshop grpah, called Shop, for more variety. Figure 4.9a
presents the best system configurations per partitioning strategy and highlights the over-
all optimum. We showed that the C/V strategy performs best for the V query on the
Biblio graph by utilizing the whole system and therefore should be used as the best strat-
egy. However, when querying the Shop graph with a k-Way partitioning, the optimal
SC changes to 32/32 and yields a slowdown of factor 2.3, compared to the optimal SC
of the V/V strategy. The slowdown can be explained by the massive imbalance of edges
within the partitions of k-Way as shown in Figure 4.5b. Yet, the other strategies show

(a) V query. (b) Quad query.

Figure 4.9: Optimal system configurations per graph and partitioning strategy for both
query patterns on four different graph types, Small server.

4.2 Topology-based optimization 63

Messages per
Edge Request Biblio Uniprot

1 299,488 971

2 117 970

3 267 294,932

4 837 10.320

Unicast Broadcast Final result

Figure 4.10: Intermediate results for each edge predicate of the V query.

well-balanced edges per partition, therefore the merely equal query performance is not
surprising. The same holds true for the Social graph. The Uniprot graph is special in
terms of the intermediate results, which are shown in Figure 4.10. Compared to the Bib-
lio graph, the V query produces almost all messages as broadcasts for the Uniprot graph
in the third edge predicate. Broadcasts are known to inhibit scalability and thus, less
partitions mean less total messages, which results in less runtime.

The previous paragraph concluded our test series for the V query. Now we want to
show the performance implications of all considered influence factors for a second query
type, namely the Quad query from Figure 4.4b. The results for all system configurations,
graphs and partitioning strategies are shown in Figure 4.9b and the respective heat maps
are presented in Figure 4.11. The optimal configurations are now always tied to 32 Work-
ers with a varying number of partitions. We see the same runtime behavior as for the V
query, except for the V/E strategy. The Quad query does not hit the vertex outlier parti-
tions (c.f. Figure 4.5a), which enables the BE and DS partitionings to compete with RRV
and k-Way. The Shop and Social graphs show an equal slowdown for C/V, compared
to the other strategies. However, the Uniprot graph now scales well with the hardware
threads, since there are more intermediate results in the Unicast edge predicate. From
these experiments we can already conclude, that there is no single best partitioning strat-
egy. To achieve the best performance results for GPM, we need to consider the underlying

(a) C/V: k-Way (b) V/V: RRV

(c) V/E: BE (d) V/E: DS

Figure 4.11: System configuration heat map, Quad query on Biblio graph, color shadings
relative to the global optimum (k-Way 32/32), Small server.

64 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

(a) C/V: k-Way (b) V/V: RRV (c) V/E: BE (d) V/E: DS

Figure 4.12: System configuration heat maps, Quad query on Social graph, color shadings
relative to the local optimum, Large Server.

(a) C/V: k-Way (b) V/V: RRV (c) V/E: BE (d) V/E: DS

Figure 4.13: System configuration heat maps, V query on Biblio graph, color shadings
relative to the local optimum, Large server.

data graph, the partitioning strategy and the currently selected SC. Furthermore, results
vary on a per-query basis.

First, we have shown the effect of partitioning and SCs on the Small NUMA server. Now
we want to study their impact on a large-scale NUMA system, which is an SGI UV 3000
and is called the Large server in Table 3.1. Therefore we repeated the previous exper-
iments and used gMark to scale up all graphs accordingly, while preserving all other
graph properties. Generally, we found that the entirety of our experiments on the large-
scale system confirmed our observations from the experiments on the Small server. Fig-
ure 4.12 illustrates the heat maps for the Quad query on the Social graph and Figure 4.13
shows the results for the V query on the Biblio graph for the Large server. We observe,
that the HT column (768 workers) never holds the highest performing configuration, with
the general performance being even worse for the V query. For the Quad query, utiliz-
ing all physical cores leads to optimal performance in many cases, which underlines that
our processing model scales well with the employed hardware. In contrast to the Small
server, we see more variations in the heat maps, which is explained by the bigger num-
ber of sockets and the increasing influence of the NUMA effect on query performance.
Furthermore, due to the larger well-performing areas, i.e. regions in the heat map with
green shaded colors, we could better follow resource budgets, like limited workers or
partitions. The V query heat maps show comparable results for both C/V compared to
V/V and between the both V/E strategies. Contrary to the previous results, employing
the maximum thread count generally inhibits the performance, which is again explained
by the increased amount of broadcasts during query processing. Performance wise, V/V
and C/V strategies yield similar query runtimes, even with greatly varying SCs. The
V/E strategies may exhibit local optima, however their overall query performance is on
average almost ten times slower, compared to the C/V and V/V strategies. This fur-
ther underlines our claim, that query performance is greatly dependent on the graph, the
employed partitioning strategy and the available resources.

Employing an optimal partitioning strategy is crucial for query performance. We argue,
that weighing the amount of broadcasts against unicasts, that result from the query pat-
tern, is important to find the best SC and partitioning strategy. For dominant unicasts, it
is desirable to partition the graph using a strategy, that balances both edges and vertices.

4.2 Topology-based optimization 65

We found, that employing the C/V strategy is beneficial for the selected experiments,
even if there is a minor edge imbalance, since the unicast part of the query will benefit
from the locality property of adjacent graph partitions. However, if the edge imbalance
exceeds a certain limit, we suggest switching to the V/V strategy. When the broadcasts
become dominant, each partitioning strategy performs reasonably even, whereas it is de-
sirable to achieve a balanced amount of edges between the partitions, as edges represent
the amount of data records per partition. Balancing them will thus result in an apriori
avoidance of workload skew and thus more evenly distributed work in the system. The
challenge is to adequately estimate the influences of broadcasts and unicasts due to their
dependency on the underlying graph. Our experiments showed, that the optimal system
configuration varies among the different workloads. As a rule of thumb, we conclude
that it is mostly beneficial to not use hyper threads in most cases and directly map the
number of graph partitions to the number of workers. To conclude, the employment of
suitable partitioning strategeis can therefore be considered as an answer to Challenge 3
from Section 3.4.

4.2.2 Graph-Aware Infrastructure

After identifying optimal SCs for a given graph, we can now focus on the infrastruc-
ture layer and reduce unnecessary messages in the system. The main antagonist for scal-
able performance is represented by broadcasts as a result of one-directional edge storage.
Thus, we identify sufficient locality information as a crucial component, to eliminate the
need for broadcasts, since efficient messaging is a key component for Delegation-based
systems like NEMESYS. Answering mixed oriented queries like shown in Figure 3.17b
is often required. The inherent broadcasting hinders the systems scalability and thus we
investigate, how the amount of messages can be reduced. Parts of this section are based
on our previous work from [KUK+17].

Implementing redundancy

The target partitions of a message are always identified by the source vertex of an edge
and as described, we require disjunct partitions on our graphs. However, when storing
triples, the disjunction can only be ensured for either the source, or the target column.
Thus, indexing both columns to lookup target vertex ids inside a partition will not alle-
viate the broadcast problem. The straight forward solution to this problem is to not only
store outgoing edges, as the prototype requires, but also all incoming edges for every ver-
tex, separately. This can be done simultaneously, while loading the graph and creating

Table 4.1: NEMESYS incoming edge table for the graph in Figure 3.10.

Source Target Label Source Target Label
Partition 1 Partition 3

G F labelGF D B labelDB
H A labelHA D C labelDC
H C labelHC E C labelEC

Partition 2 E D labelED
A C labelAC F E labelFE
B A labelBA
C F labelCF
C G labelCG

66 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

(a) Cores natural, sockets natural (b) Cores natural, sockets interleaved.

Figure 4.14: Different allocation strategies for 7 workers on a 4 socket system with two
logical cores per physical core.

the outgoing edge table. Naturally, every parsed edge [<source>,<target>,<label>] is re-
versed, such that it becomes [<target>,<source>,<label>]. This triple is then inserted into
a second table, the incoming edge table, which is shown in Table 4.1. As for the outgoing
edge storage, we again create three partitions, which have to be distributed among all
sockets as well.

Most importantly, the partitions of both tables do not necessarily exhibit the same cardi-
nalities or content, which already happened in this simple example for Partition 1. Here,
vertex H is now also stored in this partition, which it was not for the outgoing edge table.
This leads to the effect, which we call vertex schizophrenia. Performing a lookup operation
on either the outgoing or incoming edge table for a specific vertex leads to answers with
different semantics. Topology-wise, we do not add any further information. However,
the employed redundancy consolidates all incoming edges of a vertex into one partition,
which again creates a disjunct set of partitions for all target vertices of any edge.

To check the effect of redundancy, we repeated the experiments from Figure 3.16a on the
Small server (cf. Table 3.1). When scaling up the available compute resources, we have
multiple schemes to choose from. As each physical core of the underlying multiproces-
sor usually provides two or more logical cores, we can decide if we want to first allocate
all workers for one physical core (siblings first), or if we first allocate one worker per
physical core and fill up the remaining logical cores afterwards (naturals first). Further-
more, worker allocation can choose to place consecutive resources on one socket, until all
cores of that socket are used and then move on to the next (sockets natural) or interleaving
worker allocation on all sockets (sockets interleaved). The individual effects are illustrated
in Figure 4.14. We define the short handles for core allocation as nat/sib and for socket
allocation as nat/int. Obviously, these two versions of each core and socket allocation
can be combined to get a total of four worker allocation strategies being nat/nat, nat/int,
sib/nat and sib/int.

The results for Figure 4.15a are tested using nat/nat and for Figure 4.15b we changed al-
location scheme to nat/int. Figure 4.15a shows the direct impact of redundancy on the
systems scalability, compared to Figure 3.16a. The NORAD baseline achieves a speedup
of factor 1.7 x using 64 cores with no redundancy, which increases to a speedup of 5.4 x,
when redundancy is employed. The dents in the runtime curves are explained by the
worker allocation strategy. Every socket has 8 physical cores and 8 HTs, thus the perfor-
mance drops with the first cores being allocated on the next socket. In this experiment,

4.2 Topology-based optimization 67

To confirm the general scalability behavior, we repeated the above experiments on the
Medium server (cf. Table 3.1). In contrast to the Small server, the sockets are fully con-
nected, which reduces the maximum NUMA hops to one. As anticipated, the increasing
NUMA distance explains the increasing dents in the performance for the baseline imple-
mentation with regards to Figures 4.15a and 4.16a. For the nat/int configuration, the same
behavior as for Figure 4.15b. The generally higher performance of Figure 4.16 is easily
explained by the newer hardware of the Medium server. Most importantly, employing
redundancy helps to alleviate both the severity broadcasts, by completely eliminating
them and in addition it improves the overall system performance. The introduction of
redundancy can therefore be considered as an answer to Challenge 1 from Section 3.4.

Improving the routing table design

Implementing redundancy effectively doubles the infrastructure cost and storing addi-
tional locality information applies pressure on the partition manager (cf. Figure 3.10).
Keeping this information in the processor cache can be substantial for scalable process-
ing, since it is required for every single message, that is sent during the GPM process.
With the information being stored directly within two routing tables, we reviewed their
designs to improve their memory footprint. We found, that both the compute design and
the lookup design have advantages, that can be combined to remedy their individual dis-
advantages. Thus, we propose a hybrid design that combines the low memory footprint of
the compute design and the locality awareness of the lookup design.

To enable this design, we borrow the idea from a standard range-based routing table,
which only contains as much entries, as there are partitions in the system. The hybrid de-
sign is therefore combination of a range-based routing table and any locality-aware parti-
tioning strategy, which were described in Section 3.3.3. Creating this design is performed
in three steps, that are illustrated in Figure 4.17. First, we partition the data using any
suitable partitioning strategy. The outcome of this step is a vertex-partition assignment
table. Storing this assignment in a lookup design would need 8 entries, since we would
have to store the partition locality information per vertex. We now apply a technique
which is commonly known as vertex reordering, to ultimately reduce the amount of en-
tries in the routing table. As shown in Figure 4.17c, every vertex in every partition will
thus be assigned a new id in an ascending order, such that every partition contains only
dense id ranges without gaps.

The concept of a range-based routing table requires to only store upper bounds for the
stored data. Figure 4.17d shows the resulting hybrid routing table for the graph from Fig-
ure 4.17a. In contrast to the lookup design, we only need to store 3 entries, i.e. the in-
dividually highest vertex ids, that are stored in the partition. Hence we can state, that

(a) Data graph. (b) Initial partitioning. (c) Vertex reordered.

Max ID Partition
2 yellow
5 orange
8 green

(d) Hybrid table.

Figure 4.17: Generating a hybrid table.

4.2 Topology-based optimization 69

a reversed version between the respective source and target vertices. Despite easing the
traversal in both edge directions, this also adds a significant storage or memory over-
head. Storing all incoming edges furthermore implies the necessity of a second routing
table, which was defined in Section 3.3.3, i.e. in addition to the raw data, we also need
twice the amount of metadata.

This section therefore aims to alleviate the storage overhead of the changes made by Sec-
tion 4.2.2 while still maintaining the achieved performance gains. We investigate mea-
sures on how to provide sufficient locality information without requiring as much main
memory as fully redundant storage. We will show, why HashSets are not applicable and
introduce Bloom filters as an alternative. Reducing the number of messages, that are
exchanged between a source and a target partition does increase the performance, as pre-
viously shown in Section 4.2.2. The size of Bloom filters can be tuned, according to the
desired false positive probability. This allows us to trade memory for accuracy, but much
more fine grained, than full redundancy.

Besides reducing the number of exchanged messages, it is also important on which phys-
ical sockets the communicating partitions reside. Exchanging messages with one remote
partition can have a significant runtime impact, as shown with the peaks in Figures 4.15a
and 4.16a. In addition to the data placement, which is predetermined by the partitioning,
we want to further increase the data locality and change the data placement, i.e. placing
partitions on the same socket, if they have a high message flow between them.

4.3.1 Adaptive Message Filtering Mechanisms

In the previous sections, we examined the interplay of partitioning strategies and system
configurations. Ultimately, avoiding broadcasts was found to be of fundamental impor-
tance for scalable GPM processing on a NORAD system and thus our main goal is to
avoid said costly broadcasts, when searching for a target vertex with unknown source.
While this can easily be addressed by just redundantly storing the inverse direction as
shown with Tables 3.2 and 4.1, this doubles the overall memory requirement of the stor-
age layer and the infrastructure layer. Since we work on a system with 64 bit vertex and
label ids, that means adding 192 bit per edge: ({target, label} → source).

Fully redundant storage, as proposed in Section 4.2.2, creates the necessity to double not
only the base data, but all secondary data structures as well. This includes indexes or
routing tables. We have already explained, that fully redundant storage can be unfa-
vorable, e.g. if the routing table exceeds the processor cache. Thus, we want to avoid
broadcasts, but still keep the memory footprint as low as possible. To achieve that, we
envision a secondary data structure for tracking all target vertices within a partition. This
index-like structure is then used to quickly exclude a whole partition, if a requested target
vertex does not exist in it.

HashSet principles

One of the most common data structures to quickly answer such requests is the Hash-
Set. A typical architecture for this data structure is depicted in Figure 4.20. The name is
derived from a hash function H(x), which converts all bits xi ∈ {0, 1} of a to-be-stored
element to a fixed size integer:

H(x) = y, x = (x1, . . . , xn), xi ∈ {0, 1},
y ∈ N, y ∼ U(0, . . .) .

(4.3)

72 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

One candidate of a probabilistic data structure, suited for those requirements, is the well-
researched Bloom filter. Compared to HashSets it is much more space and time efficient,
as both, insert and retrieval are alwaysO(1), at the cost of correctness. Here, the vertex id
itself is not stored within the data structure, obsoleting the equality check during lookups
and thus reducing the memory footprint. Instead of linked lists, only a single bit is stored
within the slot, that is indicated by a hash function, which is applied to the vertex id. Slots
thus are implemented using a bitfield. To check whether a vertex id is present, its hash
is calculated and the bitfield is checked, whether it contains a 1 – item is present – or
0 – item is not present – at the index given by the hash. Due to hash collisions, using
just one bit per vertex usually yields false positive rates above an acceptable level. State-
of-the-art implementations thus use more than one hash function per element, where
H ′i(x)6=!H ′j(x) ∀x and i 6= j.

For each hash, a 1 is stored within the corresponding bit. When querying the Bloom filter,
an element might exist, if all bitfield indices, denoted by the results of the hash functions,
contain a 1. The false positive rate p is thus directly affected by the number K of hash
functions used per vertex, and the total number of bits M within the bitfield. Previous
work about Bloom filters [Blo70, BM03] has shown, that the approximate number of bits
required for storing N vertices at a desired false positive rate, can be estimated by:

M ≈ −1.44N log2(p) . (4.6)

(4.6) yields a space requirement of only≈10 bits per vertex for a false positive rate of 1 %.
With an overall memory overhead of roughly 15 %, this is much less than a HashSet or
fully redundant storage would need. As shown in [BM03], similar rules hold true for the
optimal number of hashes, and thus bits, that should be calculated for each single vertex:

K = M

N
ln 2 ≈ −1.44 ln(2) log2(p) . (4.7)

We can trivially deduce, that the computational cost of the Bloom filter is mainly deter-
mined by the performance of the chosen hash algorithms. Applicable and fast candidates
for these algorithms are chosen based on the type of to-be-stored elements. Key task is the
conversion of some arbitrary data into a numeric value, uniformly distributed through-
out the whole range, i.e. the size of the bitfield. While 64 bit unsigned integer vertex
ids already are numeric values, these ids can not be used as-are, since the Bloom filters
bitfield will be much smaller than all potential 2× 1064 candidates.

Residual class ring benefits

Yet, a hash function for this kind of input data is much simpler, as it just needs to dis-
tribute all potential vertex ids uniformly among the available bitfield slots. This can be
achieved by e.g. multiplying the vertex id x with some number ai, and limiting the result
to the number of slots using the modulo operator:

H ′i(x) = y = ai · x (mod M), x ∈ N, ai ∈ N \ {0} . (4.8)

While omitting ai via ai = 1 is valid, the resulting y is distributed similarly to the original
input x, which could potentially lead to an increased number of collisions. Best results
can usually be expected when both, ai and M are prime numbers [HD62]. Compared
to the multiplication of ai, the modulo operator is mandatory and very costly [Gra17].
However, for all M that satisfy M = 2k, the modulo operator can be replaced by a bitwise

74 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

1) Source known? 2) Source unknown!

3a) Multicast as n-Unicast

a –[:knows]->8

Pt 0

Bloom Filter Message Queue

Pt 1

Bloom Filter Message Queue

Pt 2

Bloom Filter Message Queue

Pt 3

Bloom Filter Message Queue

3b) Local Partition FilterPt 0

Message Queue

Pt 1

Message Queue

Pt 2

Message Queue

Pt 3

Message Queue

Partition Manager

Bloom Filter

Messaging Interface

Figure 4.23: System integration opportunities for our Bloom filter approach.

are processed at the same point in time, we envision to exploit the inherent parallelism
and filter out unnecessary messages at partition level, which allows us to exploit the full
parallelism of the hardware.

The first approach is called partition based workload reduction with its process being illus-
trated on the right hand side of Figure 4.23. In this scenario, the edge a→knows 8, with 8
being an encoded vertex id, is evaluated. The source vertex of the edge is unknown, but
both the edge label knows and the target vertex with id 8 are known. Within NEMESYS,
the workers will use the messaging interface to fetch the partition information from the par-
tition manager (cf. Figure 3.10). As previously explained, only the source vertex is indexed
and thus we have to send a broadcast. This means, the global coordinator will insert a
new message into the message queues of all data partitions within the storage layer.

When any worker finishes its current task and selects a new data partition to process all
of its messages, we can now employ the Bloom filter to check, whether there is any edge
with this known target vertex stored inside the partition. Instead of directly scanning the
data partition, the Bloom filter will be probed for the known target vertex. If the result
is negative, we can safely discard the message, since our Bloom filter guarantees the
absence of false negatives. On the other hand, a false positive can always occur and still
force an unnecessary access to the data partition. The advantage of this method is, that
we can concurrently filter messages, within all data partitions at once. A major drawback
of this method is however, 1that the system will still produce too many messages.

The second approach is called messaging based workload reduction and its essence is de-
picted on the left hand side of Figure 4.23. Instead of implementing one Bloom filter per
data partition, we embed a set of Bloom filters inside the infrastructure layer, i.e. we gen-
erate one Bloom filter for every data partition and store them inside the partition manager.
These Bloom filters will also be filled during the graph loading phase.

NEMESYS will then load a graph edgewise using multiple steps. First, for every edge,
the source vertex will be inserted into the partition manager, according to the partitioning
strategy. This information is later used to fetch the data partition for the adjacency of a
vertex. Second, the target vertex of an edge is added to the Bloom filter of the partition,
where the source vertex is stored. Instead of creating a memory intensive and slow index,
we get a tunable but blurry picture of the adjacency of all source vertices inside every
partition. For every triggered broadcast, the messaging interface linearly probes all Bloom
filters for the target vertex in question. Instead of sending the original broadcast to all
partitions, the message will only be forwarded to those partitions, where the Bloom filter
returned a positive result, thus resulting in a multicast message.

We envision a performance boost from this approach, since it will dramatically reduce
the number of messages in the system, as well as the unnecessary data partition accesses.

4.3 Infrastructure-based optimization 77

Since the amount of false positives is directly dependent on the employed hash function
and the used memory, we can fine-tune the Bloom filter to reduce the amount of unde-
sired work, based on a given workload or graph. On the other hand, the probing will
be handled inside the infrastructure layer. Since sending a message is inherently serial,
we are possibly generating a new performance bottleneck, as the amount of to be probed
Bloom filters scales linearly with the number of data partitions.

Evaluating the Bloom Filter quality

We will now provide experiments to prove the applicability and the suitability of our
Bloom filter approach. After that, we discuss the benefits and drawbacks of implement-
ing a Bloom filter either within the data partitions or in the partition manager, as shown
in Figure 4.23. We have conducted all of our experiments on the Medium server (cf. Ta-
ble 3.1) and all experiments were performed using 64 cores with the nat/int allocation pol-
icy, if not stated otherwise. Our experiments were run on the four different and already
introduced graph datasets: a bibliographical network, a social network, a webshop and
a protein network. We have selected these graphs because of their individual topologies,
as they impose different characteristics, e.g. such as average vertex degree or connected
components, which will most likely lead to different runtime behavior of NEMESYS in
terms of necessary messages. To evaluate the impact on the runtime characteristics, we
will again use the two queries Quad and V as depicted in Figure 4.4. If the introduced full
redundancy from Section 4.2.2 is not used, both queries produce broadcast messages, ac-
cording to their edge predicates. We disabled query optimization measures to ensure the
edge directions and triple ordering within the queries. In case of fully redundant storage,
both queries generate only unicasts.

In Section 4.2.1, we have shown the influence of the graph partitioning algorithm on the
query performance. Since the V/V and C/V strategies performed well, we will now use
the RRV and k-Way partitioning algorithms and extend this strategy set by a simple hash
partitioning, such that we can use both a compute and lookup design routing table for
these experiments. We execute all queries on all graphs, after they have been partitioned
according to the respective strategy and only present the figures containing the best over-
all query runtime, given a certain partitioning. This will lead to different baselines within
the figures, where applicable.

As a basis for our experiments, we have chosen PrimeHash (cf. Equation (4.12)) for our
Bloom filter, called PrimeBloom, since it provides sufficient randomness as known algo-
rithms like Googles HighwayHash [ACW16] or MurMur3. Additionally, because of the
limited input and output data, PrimeHash is also faster, than the contestants, shown in
Figure 4.24. We compare the two aforementioned algorithms against two versions of our
PrimeHash: (1) as the original version with setting ai to a prime number and (2) with set-
ting ai to a random integer for comparison of the applicability of using prime numbers in
general. Figure 4.24 shows, that PrimeHash yields a reasonable false positive probability
per element for all datasets as the competitors and is also faster. The performance advan-
tage of PrimeBloom originates from the residue class ring optimization using a bitwise
AND instead of the modulo operator, together with an appropriate storage of the bits
inside the Bloom filter.

After distributing all bits uniformly among the number of available slots, they need to
be stored in memory. Depending on the underlying architecture and available assembly
instructions, two major options exist. The first one stores each entry as actual bit within
a larger data type, like an 8, 32 or 64 bit wide integer, packing the data as densely as pos-
sible. Therefore, this approach requires efficient bit-masking instructions. The other one

78 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

In another experiment, we compared the performance of inserting and querying vertex
ids from a Bloom filter using several prime-based hash functions and a bitfield against
a standard HashSet, using the std::unordered_set<uint64_t> from C++ where vertex ids
were inserted directly. The corresponding results are depicted in Figure 4.27. One million
entries were added to each data structure and hereafter queried again. The Bloom filter
was initialized with 10 bits per entry, which were stored packed within uint8_t.

The HashSet’s query time is slightly increased, whenever elements are not within the
HashSet. This is due to the requirement of performing equality checks on all elements
that belong to the slot’s bucket, as described earlier in this section. For PrimeBloom, the
opposite holds true. For an element to be possibly contained, all of the used K hash
functions have to be true. This increases the time for both, insert and retrieval, whenever
K is increased. Checking for non-contained elements, however, is faster, as it can be
stopped, as soon as the first 0 is detected at a requested index. We also examined results
for a pre-allocated HashSet, which were slightly faster than for the dynamic one, but at
the expense of even further increased memory requirements.

Partition based workload reduction

For the experiments in Figures 4.28 and 4.29, we examined both testing queries on all
mentioned datasets. We have tested the impact of a different number of hash functions
against the baseline, where no Bloom filter was used and thus broadcasts have to be pro-
cessed by all partitions. Figures 4.28a to 4.28d show the results for using a Bloom filter on
baseline NORAD, i.e. broadcasts are used and Figures 4.29a to 4.29d apply PrimeBloom
on top of full redundancy.

All experiments from Figures 4.28 and 4.29, except Figure 4.29a, clearly show the desired
results. That is, the more bits we spend on the Bloom filter, the bigger is the performance
benefit within NEMESYS. Increasing the Bloom filter size is indirectly proportional to the
expected false positive rate, thus leading to less unnecessary work.

In detail, Figures 4.28b and 4.28d behave like anticipated. Adding a Bloom filter will in-
crease the performance to allow query runtimes somewhere between standard NEMESYS
and the fully redundant storage. On top of that, Figures 4.28a and 4.28c show an im-
proved performance even beyond the fully redundant storage. The reason is, that the
Bloom filter can speed up the EB operator by eliminating edge requests for target ver-
tices, that are not stored in the partition. This is not covered by fully redundant storage.

The same holds true for Figures 4.29b to 4.29d. Applying our Bloom filter technique on
top of the fully redundant storage leads to an additional performance boost, since the
Bloom filter acts as a target vertex index structure.

Figure 4.29a is a special case. For smaller Bloom filters, the systems’ performance is
slower than standard NEMESYS. Although the query runtime is consistently decreasing,
it barely reaches the baseline performance, where no Bloom filter is used. This behavior
can be explained with the amount of broadcasts in the system, when only a small number
of partitions contains actual data. Since the Bloom filter is only active, after the messages
have been sent, we still see the same amount of messages in the system and the overhead
of checking the Bloom filter is added on top of it.

4.3 Infrastructure-based optimization 81

 1

 10

 100

 1000

 10000

 100000

 1×106

 1×107

 1×108

210 212 214 216 218 220

U
nn

ec
es

sa
ry

 M
es

sa
ge

s
[#

]

Bloom filter size (bits)

Biblio
Uniprot

Social

Figure 4.32: Reduction of unnecessary messages for Quad with Broadcasts, based on
Bloom filter size.

Identifying Locality Hotspots

Before altering their placement, we need to identify the most tightly connected partitions.
This can be done either offline, based on the partitioning results or online, on a per-query
or per-workload basis. For the offline approach, we iterate over all partitions and count
all edges towards all other partitions. The result is a set containing the number of inter-
partition edges and their target partition. This set can then be sorted descendingly by
the interpartition-edge count for every partition, to allow for fetching any Top-n locality
demands per partition. The Top-3 connected partitions for the Hash and k-Way parti-
tioning on the Social graph are depicted in Figure 4.33. Nodes represent partitions, same
color means they are placed on the same socket and the lines between them visualize
inter-partition edges. The linewidths indicate stronger bonds, i.e. more edges between
these partitions and nodes with the same color indicate, that these partitions are placed
on the same socket. The figure underlines our assumption, that a hash based partition-
ing is unable to preserve the locality, which stems from the graph’s topology. That is,
since more arrows are connecting partitions across all sockets, than locally. In contrast,
the k-Way partitioning shows the anticipated self-contained partitions, indicated by the

(a) Social, Hash partitioning, 64 Partitions (b) Social, k-Way partitioning, 64 Partitions

Figure 4.33: Partitioning strategy based Top-3 locality needs per partition, Social graph,
64 partitions.

4.3 Infrastructure-based optimization 85

(a) Biblio, BE partitioning, 64 Partitions (b) Social, BE partitioning, 64 Partitions

Figure 4.34: Comparing Top-3 locality needs per partition for BE, 64 partitions.

looping arrows on the sides of the partitions. From these schemas, we can draw several
conclusions. First, the hash partitioning distributes the data fairly even among sockets
and partitions, as almost all of the partitions are targeted by arrows of any width. Such a
schema generally allows for higher degrees of parallelism, due to the broad data distribu-
tion. Second, both strategies create local hotspots, which are targeted by a vast majority
of other partitions. Especially the single partitions on the red and green socket being
potential bottlenecks for the hash partitioning and on the yellow and red socket for the
k-Way partitioning. However, how well data is distributed is always dependent on the
underlying graph, as shown in Figure 4.34, which shows locality demands for the BE
algorithm on the Biblio and the Social graph. This observation further underlines the im-
portance of graph-dependent partitioning strategy selection to provide the best possible
baseline, as we have outlined in Section 4.2.1.

The online approach is to perform message tracing during the GPM processing and ana-

(a) No redundancy, no Bloom filter (b) With redundancy, with Bloom filter

Figure 4.35: Comparing actual messaging behavior for the Quad query on the Hash par-
titioned Biblio graph.

86 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

lyze the actual dataflow between the partitions. Figure 4.35 shows the Top-3 actual mes-
sage paths for the Quad query on the hash partitioned Biblio graph both with and without
our optimizations from Sections 4.2.2 and 4.3.1. Most interestingly, the connectedness of
the partitions is different from the partitioning and thus, the online approach is more
promising for performing actual data placement optimizations. Comparing Figure 4.35a
with Figure 4.35b, we can clearly see the influence of the redundancy and Bloom filter
optimizations, as the messaging becomes more balanced and therefore allows for easier
data placement optimization.

Both the offline and online approach have applicable scenarios. The offline optimization
can always be applied to create a more socket-local communication, without the need
to process any GPM query or workload beforehand. The online approach yields an ac-
tual image of the systems messaging behavior and can thus create a well tailored data
placement optimization. However, the online approach is only applicable for the spe-
cific query or workload, which was monitored to create it and thus offers most likely less
global value.

Gradient descent based optimization

Optimizing the data placement can only be solved heuristically and not fully enumer-
ative. Calculating all partition placement combinations is prohibitively expensive. The
amount of possible, equally distributed combinations ζ for placing n partitions on an s
socket system, assuming n is integer divisible by s, can be calculated with the binomial
coefficient:

ζ =
s−1∏
i=0

(
n− τ ∗ i

τ

)
, τ = n

s
(4.13)

For 64 partitions on a 4 socket system, this yields:

ζ =
(

64− 0
16

)
·
(

64− 16
16

)
·
(

64− 32
16

)
·
(

64− 48
16

)

=
(

64
16

)
·
(

48
16

)
·
(

32
16

)
·
(

16
16

)

≈ 6.6× 1035

different combinations. Thus, to reduce the search space, we leverage the well known
gradient descent optimization technique (GDO) [Bis06]. The GDO is an iterative algo-
rithm, which requires us to assess all trivial neighborhoods of a given allocation scheme
and use the best scoring allocation schema as baseline for the next iteration, until no better
scoring solution can be found. Within this thesis, best scoring refers to the lowest com-
munication cost. In NEMESYS, we can represent an allocation schema using a binary
s × n matrix A, where a 1 denotes, that the partition with id i at column ni, 0 ≤ i < n is
located on socket sj , 0 ≤ j < s. By default, partitions are allocated to iteratively fill the
available sockets and match the worker count on this socket. For s = 4 sockets and n = 8
partitions, the default allocation for A looks like:

A =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 (4.14)

4.3 Infrastructure-based optimization 87

A neighbor is called trivial, if it is created through an atomar change in the original ma-
trix. For our partition allocation scenario, this would mean to move exactly one partition
to another socket. However, the goal of the optimizer is to reduce communication cost
and thus, all partitions would be moved to one single socket eventually. Therefore we
require two partitions to be swapped between sockets, to enforce parity and to keep all
sockets utilized. Since a partition can only be placed on a single socket at a time, the triv-
ial neighborhoods of A can be easily generated. That is, by identifying any 1 entry in two
different rows, i.e. sockets, and moving them to the row of the other entry, respectively.
We extend the optimization process by a set of targeted restarts to overcome local optima.
That is, we calculate promising configurations A′ and use them as baseline for a new op-
timization pass. Swapping entire rows would exchange the whole partition set of two
sockets, but this has no effect on a fully connected SMP system, since the amount NUMA
hops would not be affected. If the processors are e.g. mesh connected, the swapped par-
titions could change their NUMA distance and thus different communication costs could
arise. However, we found that heuristically co-locating Top-n locality demanding parti-
tions (cf. Figure 4.33) serves as fast and reliable option for A′ configurations.

For the communication cost we extract an n×n matrix K, which holds either the amount
of edges spanning between two partitions, or the actual messages being exchanged dur-
ing GPM processing. For n = 8 partitions, K could be set as follows:

K =



0 3 9 6 5 7 0 0
0 0 2 1 9 4 6 9
9 5 0 7 0 2 6 0
1 6 0 0 1 8 4 4
5 9 3 3 0 0 5 1
3 9 0 0 2 0 3 2
9 5 4 8 0 5 0 0
1 8 0 9 7 2 6 0


(4.15)

Every row vector ki of K represents the respective traffic, originating from the ith par-
tition towards all other partitions, including itself. We model only outgoing messages,
since sending a message is performed by a source socket, where the NodeCoordinator
actively copies messages towards a target socket. Thus, the cost is only determined by
the target sockets. To calculate the communication cost, we need to estimate the actual
cost for exchanging messages between sockets. In this thesis, we leverage the ratio of the
actual memory bandwidths, as shown in Table 3.5. For the bandwidths from Table 3.5a,
we can derive the s× s cost matrix C:

C =


1.00 6.29 6.29 6.29
6.25 1.00 6.29 6.25
6.31 6.31 1.00 6.31
6.31 6.31 6.31 1.00

 (4.16)

With the three matrices A,K and C, we can now calculate the communication cost per
socket i. First, we calculate the communication, that originates from socket ci with the ith
row vector ai of A:

aiK (4.17)

This resets to cost of all partitions, which are not located on socket i, to 0. Then we weight
the communication of all partitions, with the cost vector of socket ci:

ciA (4.18)

By multiplying (4.17) with the transposed result of (4.18) we receive the total communi-
cation cost of socket ci:

(aiK)(ciA)T (4.19)

88 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

key role for good performance, as outlined in Section 2.3.2. The baseline NORAD im-
plementation relied on broadcasts, whenever the required locality information was not
available. This is not feasible during GPM processing, since the potentially large interme-
diate result space floods the infrastructure layer with broadcasts and thus slows the whole
system down. Our first approach was to add full redundancy, to completely eliminate
broadcasts, at the expense of higher main memory consumption. However, this over-
head could become unbearable, since everything, including metadata and indexes, has
to be held twice. With the Bloom filter implementation, we enabled GPM processing to
achieve competitive performance to redundancy, while maintaining a low memory foot-
print. The scalable nature of the Bloom filter further allows us, to set its size according
to any memory budget, if necessary. The location of the Bloom filter inside the system
can have varying impacts on the performance. Both presented implementation variants
can lead to a speedup, where the other does not. Thus, the employed variant should be
decided on a per-workload basis, if possible.

The locality of the data is originally only determined by the employed partitioning al-
gorithm and the default partition allocation scheme in the system. This can lead to the
problem, where highly communicating partitions are placed on two distinct sockets and
thus inter-socket communication occurs. We introduced a method to monitor and up-
date the partition placement. Depending on the desired output quality, our optimizer
can work on either a given partitioning and its edge cut or on a full message trace of a
query or workload. We showed, that adapting the partition placement to achieve more
local or more clustered communication can have a positive impact on the GPM perfor-
mance. For now, our optimization model does only consider parity for partition distri-
bution. We envision better placement results, when the optimizer considers unevenly
distributed partitions, but with penalties for the resulting lack of available parallelism.

Combining the optimal SC with Bloom filter support and a slim routing table design does
significantly improve the NORAD baseline. However, the nature of an asynchronous sys-
tem in combination with indirection layers can lead to unforeseeable runtime behavior.
We consider the varying query runtime to be an artifact of the interplay of asynchronic-
ity, indirections and adaptivity knobs, since we observe these variations for every ex-
periment and every distinct start of the system. However, this problem is rooted deep
inside the kernel of the baseline implementation and does not hinder the execution of
GPM itself. Our optimizations could improve the systems’ performance, even under the
presence of these phenomena, which underlines their applicability. Identifying the actual
reason for varying query latencies is indeed an important part of a final software product,
yet it does not prevent the system from functioning. Therefore we leave further tracing
of the root cause within the systems internals for future work.

4.3 Infrastructure-based optimization 93

94 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

5
EVALUATING NEMESYS AGAINST WIKIDATAS

REAL WORLD DATA

5.1 Wikidata as In-Memory Scenario

5.2 Applying ERIS ECL Features on
NEMESYS

5.3 Lessons Learned

Processing real world graphs is a different challenge than processing synthetic datasets,
as their unique characteristics are often not reflected in data generators. We declared
Wikidata as the target use case for this thesis in Section 2.4 and thus, we evaluate the
capabilites of NEMESYS for processing a real world data graph in this chapter. Therefore,
we divide this chapter into two parts. First, we analyze NEMESYS general behavior
when processing Wikidata query logs. After the workload analysis, we enable the Energy
Control Loop (ECL) features of the underlying ERIS implementation and investigate, if
the energy saving principles can be seamlessly integrated for graph processing.

5.1 WIKIDATA AS IN-MEMORY SCENARIO

The knowledge graph of Wikidata is freely available as regularly appearing database
dumps1. These dumps are provided in different formats, e.g. JSON or RDF. Furthermore,
differently sliced versions are available, such as the full graph with all entities and la-
bels in all languages or reduced versions, which only contain truthy statements and no
qualifiers or other metadata. These do only represent direct statements, which are true
themselves and not inferred from other statements of the knowledge base.

As of April 2020, the most recent compressed archive of the full dump exhibits a file
size of approximately 127 GB. Thus, the whole, uncompressed dump could hardly be
stored completely in-memory and NEMESYS could not process the graph on a single
SMP system, which is currently available to us. Therefore, we limit the usage of Wikidata
to a truthy statement dump in this thesis. The dataset is already provided in the N-Triples
format, which we introduced in Section 3.3.1. We prepared the dataset according to the
steps explained in the same section, i.e. the triples have been dictionary encoded and we
created a re-encoded version of the dataset, to speed up the graph ingestion time between
the experiments. The final data graph contains a total of 223 M edges, which corresponds
to a 3.8 GB data file on disk.

The experiments of this section were performed on the Medium server from Table 3.1.
Since we are working on a 64 bit platform, we also use 64 bit integers to represent our
data. Thus, a triple requires 24 Byte of raw memory to be stored. The raw in-memory size
of the whole data graph is therefore expected to be at least 5.3 GB, when stored without
redundancy and twice the size, if stored redundantly, without the containers holding
the data. However, after ingesting the graph, our system reports a total of 21.24 GB for
outgoing edge storage and 44.5 GB for fully redundant storage with a compute design
routing table, including data containers but without any meta or index data. If we use a
lookup routing table without Bloom filters, the memory consumption climbs to 57.6 GB
for fully redundant storage (cf. Table 5.1). Due to this overhead, we are unable to build
partition-internal indexes to further accelerate GPM for the Wikidata use case, as this
ultimately leads to an out-of-memory error. We found the reason to be hidden deep inside
the storage layer of the ERIS prototype code. The system was intended for a maximum
of flexibility and to enable adaptivity, like data format changes. Thus, a single record
is stored in a wide table approach, where every record requires additional metadata to

Table 5.1: Wikidata in-memory size for a lookup routing table with 256 Partitions.

Redundancy Off Redundancy On
BloomFilter Off 29.30 GB 57.61 GB
BloomFilter On 33.62 GB 66.89 GB

1https://www.wikidata.org/wiki/Wikidata:Database_download/en [Last Accessed: 02.04.2020]

96 Chapter 5 Evaluating NeMeSys Against Wikidatas Real World Data

https://www.wikidata.org/wiki/Wikidata:Database_download/en

As mentioned in Section 4.2.2, the routing table is not explicitly replicated among the
sockets. Thus, accessing uncached parts of the routing table requires a remote memory
access, which suffers the NUMA penalty, that depends on the amount of required hops.
We can therefore conclude, that the additional routing table for the redundant storage be-
comes a major bottleneck on servers with more than just one NUMA hop. Furthermore,
we see that NEMESYS is able to perform on SMP systems of any size. However it is not
trivial to deploy the system on a large scale SMP system and expect linear speedups. We
believe, that adjustments in the caching of the routing table could lead to better perfor-
mance, but our access was very limited in its duration and thus more experiments could
not be realized.

5.2 APPLYING ERIS ECL FEATURES ON NEMESYS

Section 3.2.4 introduced the basic concept of the ECL. This self-optimizing loop performs
system internal monitoring and manages the platform resources, such as CPU or memory
clocks or storage formats. In this section, we analyze the possibilities of applying the
energy controlling facilities of the underlying ERIS implementation to NEMESYS. The
experiments could not be extended to the previously introduced HPE Superdome Flex,
since our energy controlling facilities require root privileges. These could, however, not
be granted, due to security constraints.

One of the possible measures of the ECL is the adaption of the data representation. From
a relational point of view, we could switch between the row- and column-store represen-
tations for our triple store. However, dissecting the row-wise stored edge triples would
introduce even more indirections and metadata, as there are already in the system. Stor-
ing edges column wise, with three columns each for source vertex, target vertex and edge
labels would require further linkage information, how the values have to be recombined
to reconstruct the original edge tuple. Another possibility would be the switch between
different graph data formats, e.g. from a triple store to another graph format, such as
an adjacency list or the compressed sparse row (CSR) format. However, these variants
would require the implementation of a dedicated graph storage module. Changing the
underlying storage representation can have both a positive or negative impact on the
query performance, since every format is always more tailored towards a specific use
case. In addition, changing the format for larger partitions also requires additional work,
energy and locking of that partition over the reconstruction period. Thus, this optimiza-
tion is more a long term investment, which also has to be amortized over a longer time
span. How the transition between graph data formats for larger partitions can be effi-
ciently achieved is a research topic of its own and thus we defer these experiments to
future work.

With storage adaption being discarded, we will now focus on energy savings through
adapting the CPU and memory clocks, depending on the current workload situation.
Parts of this section have been demonstrated in our earlier work [KKHL19, KUK+19].
The driving idea is, that depending on a given workload, the system should not perma-
nently require all of its resources. Considering the possible fluctuations of a workload,
like shown earlier in Figure 2.9, we need to provide sufficient compute resources, to over-
come high workload peaks. However, most of the time these resources would be idle due
to underutilization. For cluster based solutions, we can simply turn additional machines
on and off. However, NEMESYS works on single box SMP systems and thus needs suf-
ficient resources inside one machine. When enough processors are available, we can
always reduce the frequency of currently unused CPUs. This is especially the case, when
many simple queries arrive, such as single-statement lookups. Aside the core frequency,
we can also manipulate the uncore frequency, e.g. the clock for memory buses. When two

5.2 Applying ERIS ECL Features on NEMESYS 103

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

6
CONCLUSION

6.1 Summary

6.2 Future Research Directions

In our increasingly digitalized world, data is generated in large amounts and numerous
data formats. One of these formats is the graph data format, which is a common data
model to express relationships between entities. Due to its expressiveness, processing of
graphs became a prominent use case in modern data analytics and is widely used among
researches and practitioners alike. Real world data graphs can easily grow into the size
of millions of edges and beyond, like the Wikidata knowledge graph. Processing larger
graphs is usually performed on a cluster of compute nodes. However, we also observe a
hardware trend towards more parallel compute resources, i.e. more processors and more
main memory, within one single machine. The research of how to utilize such highly
parallel machines is plentiful and proposes best practices in terms of system architecture
or communication interfaces.

6.1 SUMMARY

This thesis investigated the opportunities of our newly proposed NORAD architecture
and its implications for graph processing, based on an in-house developed data pro-
cessing engine prototype. Therefore, we provided the required foundations for graph
processing in Chapter 2. We outlined the applicability of the edge-labeled multigraph data
model and presented our evaluated example, the graph pattern matching, as a promi-
nent use case. The most used processing models were described and we concluded, that
asynchronous processing allows for the maximum possible utilization of parallel com-
pute resources. We motivated our demand for highly parallel, yet adaptive graph pattern
matching processing with the generally increasing size of graphs and proved it with the
publicly available knowledge graph of Wikidata and its query logs.

In Chapter 3, we thoroughly reviewed and presented the related work for our targeted
hardware, which is a NUMA affected symmetric multiprocessor system. Based on the
four most popular architectural design principles, we coined the name for a synthesis
of these, which we call NORAD, with stands for NUMA-aware DORA with Delegation.
The first system to unknowingly use this architecture was ERIS, a data processing engine
prototype, which was developed with the chair of databases at TU Dresden. ERIS serves
as the foundation for our graph processing engine NEMESYS and thus, we presented its
internal structure and how ERIS has to be extended to allow graph processing on SMP
systems. As a result, we formulated three main challenges, which explicitly focus on
data exchange during query processing, efficient routing information provision and data
placement and allocation.

Chapter 4 tackled these challenges by systematically elaborating optimization measures
from a data and a systems point-of-view, which result in graph topology-based and sys-
tem infrastructure-based optimization techniques. We presented our concepts for graph-
agnostic and graph-aware query optimization, followed by an analysis of the influence
of the data partitioning strategies, based on available system resources. Aside from find-
ing suitable system configurations, we improved the messaging architecture to be more
graph-friendly and enable the efficient processing of more diverse query patterns by sup-
porting not only outgoing but also incoming edge traversal through more redundancy.
The additional memory usage of redundant data storage can have a significant mem-
ory overhead, depending on the size of the stored graph. Thus, we investigated further
messaging optimization techniques by applying the well known Bloom filter approach.
To achieve maximum throughput, our hand-crafted hashing method PrimeHash was de-
veloped and has proven to be of higher performance than well-known hashing meth-
ods like MurMur3 or Googles HighwayHash. The chapter was then concluded with a
thorough analysis of inter-partition communication and how co-locating partitions with
higher message exchange can influence the query performance. The result is a gradient

108 Chapter 6 Conclusion

descent-based optimizer, that leverages a hardware-based cost model. This optimizer
provides a partition placement, that tries to minimize remote communication and max-
imize socket-local messaging by using either anticipated or measured communication
paths.

To this point, we evaluated NEMESYS against individually generated synthetic datasets.
The general applicability of our GPM engine had thus to be evaluated against real
world graphs. Its prominence and public availability lead to Wikidata to serve as a
proof-of-concept for NEMESYS and thus we have selected the knowledge graph and its
anonymized query logs for this purpose. Chapter 5 presents a detailed analysis, how the
infrastructure and storage layers influence the query throughput. We could show, that both
of our earlier introduced topology and infrastructure based optimization techniques im-
prove the performance of the NORAD baseline, not only for synthetic but also real world
scenarios. Finally, we could demonstrate, that graph pattern matching does also allow
for energy-adaptivity within the bounds of a query latency budget.

6.2 FUTURE RESEARCH DIRECTIONS

Within this thesis, we developed several optimization measures to allow graph pattern
matching on NUMA-affected SMP systems. However, our scope was limited to enabling
GPM on a NORAD based system and on investigating the possibilities of this architec-
ture. In the following, we present the four most promising research topics, that arose dur-
ing the preparation of this thesis. The named features would not only further improve
the power of NEMESYS, but also allow for higher query throughput or lower energy
consumption.

RPQ support

Section 3.3.3 introduced a subclass of Regular Path Queries, which we called VPQs.
This general proof-of-concept has proven, that recursive query answering is possible
on NEMESYS’ asynchronous processing model. The processing of RPQs however is a
research field of its own. Performant processing of RPQs is dependent on numerous
factors, e.g. like an efficient representation of visited vertices among path traversal or the
actual traversing algorithm. Yet RPQs are in fact a relevant problem, since they also occur
in the Wikidata SPARQL query logs.

Metadata replication

Our experiment with the Wikidata graph have shown, that lookup design routing tables
can grow to dramatic sizes, which eliminates the benefit of suitable graph partitioning
algorithms. Even our hybrid design routing table had to be retrieved from the socket,
on which NEMESYS was originally launched. Efficiently sharing metadata for the in-
frastructure layer touches multiple research topics, like cache coherency protocols and
distributed data updates, e.g. for dynamic graphs.

6.2 Future Research Directions 109

Graph Storage

Chapter 5 emphasized the structural overhead of a system, which was designed for high
adaptivity. A raw storage overhead of 4 x simply does not scale to larger datasets. Triple
stores are commonly used, e.g. within RDF databases and thus served as foundation for
this thesis. However, we anticipate substantial performance gains from enriching the
storage layer with a dedicated graph storage backend. To retain the adaptivity thought,
it is possible to incorporate multiple graph data formats, such as adjacency or incidence
lists, compressed sparse row or column (CSR, CSC) representations or other state-of-the-
art formats. Developing a dedicated cost model, that decides when to switch between any
of these formats is a research topic on its own. Such a project needs to weigh numerous
factors, such as transformation and amortization times, invested memory and potential
speedup gains. Even holding multiple representations at once to mediate an incoming
query to the most beneficial storage backend could be an option, yet these questions are
to be evaluated separately.

Partitioning transitions

Aside from the data representation, we evaluated the impact of altering the data place-
ment in the system in Section 4.3.2. We showed, that not only the content of data parti-
tions influences the query processing performance, but also where they are placed within
the system. These results are the first step towards a new research topic, which is con-
cerned with transforming a given data partitioning to another. It is yet to be determined,
if the overhead of converting the content even of a subset of the partitions can lead to
performance gains or if the total overhead could not be amortized anyhow.

110 Chapter 6 Conclusion

BIBLIOGRAPHY

[AAB+18] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George
H. L. Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan
Plantikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. G-CORE:
A core for future graph query languages. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 1421–1432, 2018.

[AAP+17] Raja Appuswamy, Angelos Anadiotis, Danica Porobic, Mustafa Iman, and
Anastasia Ailamaki. Analyzing the impact of system architecture on
the scalability of OLTP engines for high-contention workloads. PVLDB,
11(2):121–134, 2017.

[ABPH07] Paulo Sérgio Almeida, Carlos Baquero, Nuno M. Preguiça, and David
Hutchison. Scalable bloom filters. Inf. Process. Lett., 101(6):255–261, 2007.

[ACL+07] Mustafa Atay, Artem Chebotko, Dapeng Liu, Shiyong Lu, and Farshad Fo-
touhi. Efficient schema-based xml-to-relational data mapping. Inf. Syst.,
32(3):458–476, 2007.

[ACW16] Jyrki Alakuijala, Bill Cox, and Jan Wassenberg. Fast keyed hash/pseudo-
random function using SIMD multiply and permute. CoRR,
abs/1612.06257, 2016.

[AG08] Renzo Angles and Claudio Gutiérrez. Survey of graph database models.
ACM Comput. Surv., 40(1):1:1–1:39, 2008.

[AKPA17] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia
Ailamaki. The case for heterogeneous HTAP. In CIDR 2017, 8th Biennial
Conference on Innovative Data Systems Research, Chaminade, CA, USA, January
8-11, 2017, Online Proceedings, 2017.

[Ang12] Renzo Angles. A comparison of current graph database models. In Work-
shops Proceedings of the IEEE 28th International Conference on Data Engineering,
ICDE 2012, Arlington, VA, USA, April 1-5, 2012, pages 171–177, 2012.

[BBC+17] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher,
Aurélien Lemay, and Nicky Advokaat. gmark: Schema-driven generation
of graphs and queries. IEEE Trans. Knowl. Data Eng., 29(4):856–869, 2017.

[BC11] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Com-
mun. ACM, 54(5):67–77, 2011.

[BGK18] Adrian Bielefeldt, Julius Gonsior, and Markus Krötzsch. Practical linked
data access via SPARQL: the case of wikidata. In Workshop on Linked Data on
the Web co-located with The Web Conference 2018, LDOW@WWW 2018, Lyon,
France April 23rd, 2018, 2018.

111

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.

[BKM+00] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Srid-
har Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener.
Graph structure in the web. Computer Networks, 33(1-6):309–320, 2000.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Commun. ACM, 13(7):422–426, 1970.

[BM03] Andrei Z. Broder and Michael Mitzenmacher. Survey: Network applica-
tions of bloom filters: A survey. Internet Mathematics, 1(4):485–509, 2003.

[BWM+16] Sebastian Burgstaller-Muehlbacher, Andra Waagmeester, Elvira Mitraka,
Julia Turner, Tim E. Putman, Justin Leong, Chinmay Naik, Paul Pavlidis,
Lynn M. Schriml, Benjamin M. Good, and Andrew I. Su. Wikidata as a
semantic framework for the gene wiki initiative. Database, 2016, 2016.

[CEK+15] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sam-
bavi Muthukrishnan. One trillion edges: Graph processing at facebook-
scale. PVLDB, 8(12):1804–1815, 2015.

[CKWT14] Long Cheng, Spyros Kotoulas, Tomas E. Ward, and Georgios Theodoropou-
los. Efficiently handling skew in outer joins on distributed systems. In
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, pages 295–304, 2014.

[CLFF10] Artem Chebotko, Shiyong Lu, Xubo Fei, and Farshad Fotouhi. Rdfprov: A
relational RDF store for querying and managing scientific workflow prove-
nance. Data Knowl. Eng., 69(8):836–865, 2010.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[DDL02] C. J. Date, Hugh Darwen, and Nikos A. Lorentzos. Temporal data and the
relational model. Elsevier, 2002.

[DFI+13] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL
server’s memory-optimized OLTP engine. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013, pages 1243–1254, 2013.

[DJL+16] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and
Matei Zaharia. Graphframes: An integrated api for mixing graph and re-
lational queries. In Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems, GRADES ’16, pages 2:1–2:8, New
York, NY, USA, 2016. ACM.

[DMvH+00] Stefan Decker, Sergey Melnik, Frank van Harmelen, Dieter Fensel, Michel
C. A. Klein, Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The Se-
mantic Web: The Roles of XML and RDF. IEEE Internet Computing, 4(5),
2000.

[Erl12] Orri Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng.
Bull., 35(1):3–8, 2012.

[FCP+11] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan
Sigg, and Wolfgang Lehner. SAP HANA database: data management for
modern business applications. SIGMOD Record, 40(4):45–51, 2011.

112 BIBLIOGRAPHY

[FHL18] George H. L. Fletcher, Jan Hidders, and Josep-Lluís Larriba-Pey, editors.
Graph Data Management, Fundamental Issues and Recent Developments. Data-
Centric Systems and Applications. Springer, 2018.

[FNR+13] Arash Fard, M. Usman Nisar, Lakshmish Ramaswamy, John A. Miller, and
Matthew Saltz. A distributed vertex-centric approach for pattern matching
in massive graphs. In Proceedings of the 2013 IEEE International Conference on
Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages 403–411, 2013.

[GGL+19] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Vic-
tor Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, and Hannes
Voigt. Updating graph databases with cypher. PVLDB, 12(12):2242–2253,
2019.

[Gra17] Torbjörn Granlund. Instruction latencies and throughput for AMD and Intel
x86 processors, 2017. https://gmplib.org/~tege/x86-timing.pdf.

[HCSO12] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-
marl: a DSL for easy and efficient graph analysis. In Proceedings of the 17th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012, pages
349–362, 2012.

[HD62] T. E. Hull and A. R. Dobell. Random Number Generators. SIAM Review,
4:230–254, 1962.

[HD15] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless
asynchronous parallel execution in pregel-like graph processing systems.
PVLDB, 8(9):950–961, 2015.

[HDM+15] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt,
Merijn Verstraaten, and Hassan Chafi. PGX.D: a fast distributed graph pro-
cessing engine. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2015, Austin, TX,
USA, November 15-20, 2015, pages 58:1–58:12, 2015.

[HR73] Laurent Hyafil and Ronald L Rivest. Graph partitioning and constructing
optimal decision trees are polynomial complete problems. IRIA. Laboratoire de
Recherche en Informatique et Automatique, 1973.

[HTT09] Tony Hey, Stewart Tansley, and Kristin M. Tolle, editors. The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, 2009.

[ITDK16] Kengo Ito, Yu Tsutsumi, Yasuhiro Date, and Jun Kikuchi. Fragment Assem-
bly Approach Based on Graph/Network Theory with Quantum Chemistry
Verifications for Assigning Multidimensional NMR Signals in Metabolite
Mixtures. ACS chemical biology, 11(4):1030–1038, 2016.

[JKA+17] Martin Junghanns, Max Kießling, Alex Averbuch, André Petermann, and
Erhard Rahm. Cypher-based graph pattern matching in gradoop. In Pro-
ceedings of the Fifth International Workshop on Graph Data-management Experi-
ences & Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, May 14
- 19, 2017, pages 3:1–3:8, 2017.

[JRDY12] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. SCARAB: scaling
reachability computation on large graphs. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2012, Scotts-
dale, AZ, USA, May 20-24, 2012, pages 169–180, 2012.

BIBLIOGRAPHY 113

[KH18] Seongyun Ko and Wook-Shin Han. Turbograph++: A scalable and fast
graph analytics system. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 395–410, 2018.

[Kin08] Shiva Kintali. Betweenness centrality : Algorithms and lower bounds.
CoRR, abs/0809.1906, 2008.

[Kis17] Thomas Kissinger. Energy-Aware Data Management on NUMA Architectures.
PhD thesis, Dresden University of Technology, Germany, 2017.

[KK98] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme
for irregular graphs. J. Parallel Distributed Comput., 48(1):96–129, 1998.

[KK13] George Karypis and Vipin Kumar. MeTis: Unstructured Graph
Partitioning and Sparse Matrix Ordering System, Version 5.1.
http://www.cs.umn.edu/∼metis [last accessed 28-02-2020], 2013.

[KKH+17] Alexander Krause, Thomas Kissinger, Dirk Habich, Hannes Voigt, and
Wolfgang Lehner. Partitioning Strategy Selection for In-Memory Graph Pat-
tern Matching on Multiprocessor Systems. In 23rd International Conference
on Parallel and Distributed Computing (Euro-Par), pages 149–163, 2017.

[KKHL19] Alexander Krause, Thomas Kissinger, Dirk Habich, and Wolfgang Lehner.
Nemesys - A showcase of data oriented near memory graph processing. In
Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 1945–1948, 2019.

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex
Rasin, Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael
Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-store: a
high-performance, distributed main memory transaction processing sys-
tem. PVLDB, 1(2):1496–1499, 2008.

[KKS+14] Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich, Daniel
Molka, and Wolfgang Lehner. ERIS: A numa-aware in-memory storage
engine for analytical workload. In International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures
- ADMS 2014, Hangzhou, China, September 1, 2014, pages 74–85, 2014.

[KN11] Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots. In Proceed-
ings of the 27th International Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pages 195–206, 2011.

[KUK+17] Alexander Krause, Annett Ungethüm, Thomas Kissinger, Dirk Habich, and
Wolfgang Lehner. Asynchronous graph pattern matching on multiproces-
sor systems. In New Trends in Databases and Information Systems - ADBIS 2017
Short Papers and Workshops, AMSD, BigNovelTI, DAS, SW4CH, DC, Nicosia,
Cyprus, September 24-27, 2017, Proceedings, pages 45–53, 2017.

[KUK+19] Alexander Krause, Annett Ungethüm, Thomas Kissinger, Dirk Habich, and
Wolfgang Lehner. Nemesys - energy adaptive graph pattern matching on
numa-based multiprocessor systems. In Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2019), 18. Fachtagung des GI-Fachbereichs „Datenbanken
und Informationssysteme" (DBIS), 4.-8. März 2019, Rostock, Germany, Proceed-
ings, pages 537–541, 2019.

114 BIBLIOGRAPHY

[LBKN14] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
Morsel-driven parallelism: a numa-aware query evaluation framework for
the many-core age. In International Conference on Management of Data, SIG-
MOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 743–754, 2014.

[Les] Jure Leskovec. Snap – stanford network analysis platform.
http://snap.stanford.edu/snap/ [Online, last acessed 10-12-2019].

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010, pages 135–146, 2010.

[MKG+18] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and
Adrian Bielefeldt. Getting the most out of wikidata: Semantic technology
usage in wikipedia’s knowledge graph. In The Semantic Web - ISWC 2018 -
17th International Semantic Web Conference, Monterey, CA, USA, October 8-12,
2018, Proceedings, Part II, pages 376–394, 2018.

[MVLB15] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer.
The graph structure in the web - analyzed on different aggregation levels.
J. Web Science, 1(1):33–47, 2015.

[MWM15] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Comput. Surv., 48(2):25:1–25:39, 2015.

[NLP13] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight in-
frastructure for graph analytics. In ACM SIGOPS 24th Symposium on Oper-
ating Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013,
pages 456–471, 2013.

[OFGK00] Hiroyuki Ogata, Wataru Fujibuchi, Susumu Goto, and Minoru Kanehisa. A
heuristic graph comparison algorithm and its application to detect function-
ally related enzyme clusters. Nucleic acids research, 28(20):4021–4028, 2000.

[OR02] Evelien Otte and Ronald Rousseau. Social Network Analysis: a powerful
strategy, also for the information sciences. J. Information Science, 28(6):441–
453, 2002.

[PCWF07] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Falout-
sos. NetProbe: A Fast and Scalable System for Fraud Detection in Online
Auction Networks. In Proceedings of the 16th International Conference on World
Wide Web (WWW), pages 201–210, 2007.

[PJHA10] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Aila-
maki. Data-oriented transaction execution. PVLDB, 3(1):928–939, 2010.

[Pot17] Anthony Potter. Query answering in distributed RDF databases. PhD thesis,
University of Oxford, UK, 2017.

[PTB+11] Ippokratis Pandis, Pinar Tözün, Miguel Branco, Dimitris Karampinas, Dan-
ica Porobic, Ryan Johnson, and Anastasia Ailamaki. A data-oriented trans-
action execution engine and supporting tools. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2011, Athens,
Greece, June 12-16, 2011, pages 1237–1240, 2011.

BIBLIOGRAPHY 115

[PTJA11] Ippokratis Pandis, Pinar Tözün, Ryan Johnson, and Anastasia Ailamaki.
PLP: page latch-free shared-everything OLTP. PVLDB, 4(10):610–621, 2011.

[PV17] Marcus Paradies and Hannes Voigt. Big graph data analytics on single ma-
chines - an overview. Datenbank-Spektrum, 17(2):101–112, 2017.

[RFA16] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. Design principles for scal-
ing multi-core OLTP under high contention. In Proceedings of the 2016 In-
ternational Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 1583–1598, 2016.

[RKB04] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. "grabcut": inter-
active foreground extraction using iterated graph cuts. ACM Trans. Graph.,
23(3):309–314, 2004.

[RN10] Marko A. Rodriguez and Peter Neubauer. Constructions from dots and
lines. Bulletin of the American Society for Information Science and Technology,
36(6):35–41, 2010.

[SB13] Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, February 23-
27, 2013, pages 135–146, 2013.

[SC15] Elliot Saltzman and David Caplan. A Graph-Dynamic Perspective on Co-
ordinative Structures, the Role of Affordance-Effectivity Relations in Action
Selection, and the Self-Organization of Complex Activities. Ecological Psy-
chology, 27(4):300–309, 2015.

[SMS+17] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M. Tamer Özsu. The ubiquity of large graphs and surprising challenges
of graph processing. PVLDB, 11(4):420–431, 2017.

[SPSL13] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed so-
cialite: A datalog-based language for large-scale graph analysis. PVLDB,
6(14):1906–1917, 2013.

[SSV+17] Zsuzsika Sjoerds, Steven M Stufflebeam, Dick J Veltman, Wim Van den
Brink, Brenda WJH Penninx, and Linda Douw. Loss of brain graph network
efficiency in alcohol dependence. Addiction biology, 22(2):523–534, 2017.

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s journal, 30(3):202–210, 2005.

[Syl78] J. J. Sylvester. Chemistry and algebra. Nature, 17(432):284, Feb 1878.

[TBC+13] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish
Tatikonda, and John McPherson. From "think like a vertex" to "think like
a graph". PVLDB, 7(3):193–204, 2013.

[TF76] Robert W. Taylor and Randall L. Frank. CODASYL data-base management
systems. ACM Comput. Surv., 8(1):67–103, 1976.

[TKS17] Mustafa Kemal Tas, Kamer Kaya, and Erik Saule. Greed is good: Optimistic
algorithms for bipartite-graph partial coloring on multicore architectures.
CoRR, abs/1701.02628, 2017.

[TU10] Mirco S Till and G Matthias Ullmann. Mcvol-a program for calculating
protein volumes and identifying cavities by a monte carlo algorithm. Journal
of molecular modeling, 16(3):419–429, 2010.

116 BIBLIOGRAPHY

[TZK+13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farming-
ton, PA, USA, November 3-6, 2013, pages 18–32, 2013.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.

[VK14] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Commun. ACM, 57(10):78–85, 2014.

[WGGM16] Claudia Wagner, Eduardo Graells-Garrido, David García, and Filippo
Menczer. Women through the glass ceiling: gender asymmetries in
wikipedia. EPJ Data Sci., 5(1):5, 2016.

[Woo12] Peter T. Wood. Query Languages for Graph Databases. SIGMOD Record,
41(1):50–60, 2012.

[YCLN15] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective techniques for
message reduction and load balancing in distributed graph computation.
In Proceedings of the 24th International Conference on World Wide Web, WWW
2015, Florence, Italy, May 18-22, 2015, pages 1307–1317, 2015.

[ZAL18] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinform.,
34(13):i457–i466, 2018.

[ZCC15] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-
structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco,
CA, USA, February 7-11, 2015, pages 183–193, 2015.

BIBLIOGRAPHY 117

118 BIBLIOGRAPHY

LIST OF FIGURES

1.1 Thesis structure and outline. 13

2.1 Schemas for different graph models. 17
(a) An undirected graph. 17
(b) A directed graph, equivalent to Fig. 2.1a. 17
(c) A directed graph. 17

2.2 A collection of edge types, as shown in Figure 2 of [RN10]. 17
2.3 A bibliographical network using the property graph model. 18
2.4 A network using the labeled graph model. 19
2.5 A Graph Pattern Matching example. 20

(a) A graph pattern query. 20
(b) A simple data graph. 20

2.6 Derived automaton for the expression knows*/(repliedTo/hasCreator)+. . 21
2.7 BSP execution diagram, cf. Fig. 1 from [MWM15]. 23
2.8 An RDF graph sample for a Wikidata statement, cf. Fig. 2 from [MKG+18]. 24
2.9 Arriving queries per hour, categorized by length in characters (quartiles),

Wikidata workload from September 1st through 14th, 2016. 25

3.1 Illustration of an SMP server system with the NUMA property. 28
(a) Schema of our target hardware. 28
(b) Illustration of the NUMA property. 28

3.2 Bandwidth and latency effects per NUMA hop, sampled from Table 3.2 -
SGI UV 2000/3000 of [Kis17]. 29

3.3 Transaction execution in different architectures (cf. Figure 1
from [AAP+17]) and our new synthesis: NUMA-aware DORA with
Delegation (NORAD). 30

3.4 Query processing in the Living Partitions architecture, cf. Figure 3.5 of
[Kis17]. 32

3.5 ERIS processing architecture of a single socket, cf. Figure 3.18 of [Kis17]. . 33
3.6 ERIS memory management, cf. Figure 3.19 of [Kis17]. 35
3.7 Living partition-enabled message passing layer in ERIS (socket-level), cf.

Figure 3.25 of [Kis17]. 36
3.8 ERIS message format, cf. Figure 3.24 of [Kis17]. 36
3.9 ECL hierarchy including the storage ECL per LP, cf. Figure 5.1 of [Kis17]. . 37
3.10 Architectural overview of NEMESYS. Here, a part of a graph is shown and

divided into three disjunct partitions, which are distributed among all sock-
ets. Adjacent partitions are not necessarily stored on the same socket. . . . 39

3.11 Binary graph file format with two stored edges. 40
3.12 Edge predicates for the query from Figure 2.5a. 42
3.13 Operator placement during a GPM process. 43
3.14 Matching sequence for the query and graph from Figure 2.5. 44
3.15 A VPQ query visualization. 45

(a) VPQ statements. 45
(b) VPQ Operator chain. 45

3.16 Runtime scalings with increasing worker count on different graphs. 47
(a) Biblio, Compute Routing Table. 47

119

(b) Social, Lookup Routing Table. 47
3.17 Different edge predicate orientations in GPM. 48

(a) Forward oriented query. 48
(b) Mixed oriented query. 48

3.18 Graph partitions with communication paths. 50
3.19 Comparing a relational partitioning approach against a graph partitioning

algorithm by relative query performance and messages processed per socket. 50

4.1 Query execution plan optimization on a small graph. 54
4.2 Workflow for CQ optimization. 55
4.3 Classification of graph partitioning strategies and representative algorithms. 58
4.4 Evaluated query patterns. 60

(a) V Query. 60
(b) Quad Query. 60

4.5 Partitioning results for 64 partitions. 61
(a) Vertex distribution. 61
(b) Edge distribution. 61

4.6 System configuration heat map for RRV, V query on Biblio graph, Small
server. 62

4.7 System configuration heat map, V query on Biblio graph, color shadings
relative to the global optimum (k-Way 64/64), Small server. 62
(a) C/V: k-Way . 62
(b) V/V: RRV . 62
(c) V/E: BE . 62
(d) V/E: DS . 62

4.8 Messages per partitioning algorithm, V query on Biblio graph. Small server. 63
4.9 Optimal system configurations per graph and partitioning strategy for both

query patterns on four different graph types, Small server. 63
(a) V query. 63
(b) Quad query. 63

4.10 Intermediate results for each edge predicate of the V query. 64
4.11 System configuration heat map, Quad query on Biblio graph, color shadings

relative to the global optimum (k-Way 32/32), Small server. 64
(a) C/V: k-Way . 64
(b) V/V: RRV . 64
(c) V/E: BE . 64
(d) V/E: DS . 64

4.12 System configuration heat maps, Quad query on Social graph, color shad-
ings relative to the local optimum, Large Server. 65
(a) C/V: k-Way . 65
(b) V/V: RRV . 65
(c) V/E: BE . 65
(d) V/E: DS . 65

4.13 System configuration heat maps, V query on Biblio graph, color shadings
relative to the local optimum, Large server. 65
(a) C/V: k-Way . 65
(b) V/V: RRV . 65
(c) V/E: BE . 65
(d) V/E: DS . 65

4.14 Different allocation strategies for 7 workers on a 4 socket system with two
logical cores per physical core. 67
(a) Cores natural, sockets natural . 67
(b) Cores natural, sockets interleaved. 67

4.15 Runtime scalings for increasing worker count on the Biblio graph, Quad
query, Small server. 68
(a) Biblio, Compute Routing Table, nat/nat. 68

120 LIST OF FIGURES

(b) Biblio, Compute Routing Table, nat/int. 68
4.16 Runtime scalings for increasing worker count on the Biblio graph, Quad

query, Medium server. 68
(a) Biblio, Compute Routing Table, nat/nat. 68
(b) Biblio, Compute Routing Table, nat/int. 68

4.17 Generating a hybrid table. 69
(a) Data graph. 69
(b) Initial partitioning. 69
(c) Vertex reordered. 69
(d) Hybrid table. 69

4.18 Comparing the scalability behavior of the lookup design and the hybrid design
routing table for the Biblio graph, Quad query, Medium server. 70
(a) Biblio, Lookup Routing Table (RRV), Order nat/int. 70
(b) Biblio, Hybrid Routing Table (RRV), Order nat/int 70

4.19 Comparing the scalability behavior of the lookup design and the hybrid design
routing table for the Social graph, V query, Medium server. 71
(a) Social, Lookup Routing Table (k-Way), Order nat/int. 71
(b) Social, Hybrid Routing Table (k-Way), Order nat/int. 71

4.20 Internal architecture of a HashSet. Each vertex id is hashed to derive an
index to a slot, where it is added to a Bucket using a list of entries. 73

4.21 Internal architecture of a Bloom filter. Every vertex id is hashed by K al-
gorithms, each providing an index to a bitfield, where a 1 is stored accord-
ingly. 75

4.22 Internal architecture of a scalable Bloom filter. As soon as the current bit-
field reaches a certain fill level, it is locked and new entries are added to a
new, often larger bitfield. 76

4.23 System integration opportunities for our Bloom filter approach. 77
4.24 Hashing quality (left) and average time spent per item while hashing the

corresponding dataset (right) using a random integer, HighwayHash, Mur-
Mur3 and our prime based approach, single threaded execution. 79

4.25 Time to insert 5 million entries into a bitset, less is better, depending on its
size and the used storing strategy, single threaded execution. 79

4.26 Time to query 1 million items, Bloom filter using AND or MOD operator,
single threaded execution. 80

4.27 Comparison of insert and retrieval times for 1 million values between a
HashSet and a prime-based Bloom filter using different numbers of hash
functions K, single threaded execution. 80

4.28 Query Performance with varying Bloom filter parameters, Bloom filter im-
plemented in the partition message queue. Redundancy disabled. 82
(a) Biblio, Quad, Broadcasts . 82
(b) Biblio, V, Broadcasts . 82
(c) Social, Quad, Broadcasts . 82
(d) Social V, Broadcasts . 82

4.29 Query Performance with varying Bloom filter parameters, Bloom filter im-
plemented in the partition message queue. Redundancy enabled. 82
(a) Biblio, V, Unicasts . 82
(b) Uniprot, V, Unicasts . 82
(c) Social, Quad, Unicasts . 82
(d) Social, V, Unicasts . 82

4.30 Query Performance with varying Bloom filter parameters, Bloom filter im-
plemented in the partition manager. Redundancy disabled. 83
(a) Biblio, Quad, Broadcasts . 83
(b) Biblio, V, Broadcasts . 83
(c) Social, Quad, Broadcasts . 83
(d) Social V, Broadcasts . 83

LIST OF FIGURES 121

4.31 Query Performance with varying Bloom filter parameters, Bloom filter im-
plemented in the partition manager. Redundancy enabled. 84
(a) Biblio, V, Unicasts . 84
(b) Uniprot, V, Unicasts . 84
(c) Social, Quad, Unicasts . 84
(d) Social, V, Unicasts . 84

4.32 Reduction of unnecessary messages for Quad with Broadcasts, based on
Bloom filter size. 85

4.33 Partitioning strategy based Top-3 locality needs per partition, Social graph,
64 partitions. 85
(a) Social, Hash partitioning, 64 Partitions 85
(b) Social, k-Way partitioning, 64 Partitions 85

4.34 Comparing Top-3 locality needs per partition for BE, 64 partitions. 86
(a) Biblio, BE partitioning, 64 Partitions . 86
(b) Social, BE partitioning, 64 Partitions . 86

4.35 Comparing actual messaging behavior for the Quad query on the Hash par-
titioned Biblio graph. 86
(a) No redundancy, no Bloom filter . 86
(b) With redundancy, with Bloom filter . 86

4.36 Relative query runtimes for Quad and V with adapted partition placement.
Biblio graph, 64 partitions, Bloom Filter disabled, redundancy disabled,
Medium server. 89
(a) BE partitioning . 89
(b) HV partitioning . 89
(c) RRV partitioning . 89

4.37 Relative query runtimes for Quad and V with adapted partition placement.
Biblio graph, 64 partitions, Bloom filter enabled, redundancy disabled,
Medium server. 90
(a) BE partitioning . 90
(b) HV partitioning . 90
(c) RRV partitioning . 90

4.38 Speedup variances for scenario dependent partition movement. BE parti-
tioning, Biblio graph, 64 partitions. Bloom filter active, redundancy used,
Medium server. 91

4.39 Speedup variances for different NEMESYS configurations. Biblio graph, 64
partitions. Medium server. 92
(a) BE, no Bloom, no Red. 92
(b) BE, no Bloom, Red. 92
(c) BE, Bloom, Red. 92
(d) RRV, Bloom, no Red. 92

5.1 Wikidata workload, VPQ mix, redundancy enabled, Hash Partitioning,
Medium server. 97

5.2 Wikidata workload, VPQ mix, redundancy enabled, lookup vs. hybrid design
routing table, Medium server. 98
(a) Round-Robin Vertices / Lookup design. 98
(b) Ranged Vertices / Hybrid design. 98

5.3 Wikidata workload over 300 s, different partitioning strategies, standard
mix, Medium server. 99
(a) Hash Partitioning / Compute design. 99
(b) Balanced Edge Partitioning / Lookup design. 99
(c) Round-Robin Vertices Partitioning / Lookup design. 99
(d) Ranged Vertices Partitioning / Hybrid design. 99

5.4 Total completed queries over 300 s for Figures 5.3a to 5.3d, standard mix,
Medium server. 100
(a) Hash Partitioning. 100

122 LIST OF FIGURES

(b) Balanced Edge Partitioning. 100
(c) Round-Robin Vertices Partitioning. 100
(d) Ranged Vertices Partitioning. 100

5.5 Wikidata workload over 300 s, different partitioning strategies, standard
mix, HPE Superdome Flex. 101
(a) Hash Partitioning / Compute design. 101
(b) Balanced Edge Partitioning / Lookup design. 101

5.6 Total completed queries over 300 s for Figure 5.5, standard mix, HPE Super-
dome Flex. 102
(a) Hash Partitioning / Compute design. 102
(b) Balanced Edge Partitioning / Lookup design. 102

5.7 Completed queries over 300 s vs. energy consumed, standard mix, Bal-
anced Edges, Medium server. 104
(a) Workload Profile, Redundancy disabled. 104
(b) Workload Profile, Redundancy enabled. 104

5.8 Completed queries over 300 s vs. energy consumed, standard mix, Ranged
Vertices, Medium server. 105
(a) Workload Profile, Redundancy disabled. 105
(b) Workload Profile, Redundancy enabled. 105

5.9 Total completed queries and total energy consumed, standard mix,
Medium server. 106
(a) Balanced Edges, Redundancy disabled. 106
(b) Balanced Edges, Redundancy enabled. 106
(c) Ranged Vertices, Redundancy disabled. 106
(d) Ranged Vertices, Redundancy enabled. 106

LIST OF FIGURES 123

124 LIST OF FIGURES

LIST OF TABLES

3.1 Experimental server setup. 29
3.2 Outgoing edge table for the graph in Figure 3.10. 39
3.3 Loading times in milliseconds for different graph sizes and data formats. . 41
3.4 Operator assignment based on variable bindings in a query triple. A vertex

is considered bound, if it has been matched in a previous edge predicate or
if a constant value has been set accordingly. 42

3.5 Server bandwidth matrices for the Medium server (4x Intel Xeon Gold 6130)
and a comparable platform (4x Intel Xeon Gold 5120) with different con-
nections. 49

4.1 NEMESYS incoming edge table for the graph in Figure 3.10. 66

5.1 Wikidata in-memory size for a lookup routing table with 256 Partitions. . . 96

125

126 LIST OF TABLES

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, July 1, 2020

127

	Introduction
	Motivation
	Summary of Contributions
	Outline

	Foundations for Graph Processing
	Graph Definitions and Data Models
	Property Graphs
	Labeled Graphs

	Graph Pattern Matching
	Processing Models
	Bulk Synchronous Processing
	Asynchronous Processing

	Wikidata - A Real Life Use Case
	Summary

	Near-Memory Computing Principles and Challenges
	Hardware Conscious System Design
	NUMA-Affected Symmetric Multiprocessor Server Class Systems
	Database System Architectures for Parallel Systems

	ERIS - A NUMA-Aware Data Management System
	Architecture
	Memory Management
	Message Passing
	The Energy Control Loop (ECL)

	NeMeSys - Allowing NUMA-Aware Graph Pattern Matching on ERIS
	Data Storage
	Query Generation
	Processing Model

	Challenges of Graph Pattern Matching on NORAD
	Holistic but compact locality metadata for scalable GPM
	Proper data placement and data allocation

	Near-Memory Graph Processing on Symmetric Multiprocessor Systems
	Query Execution Plan Optimization
	Topology-based optimization
	Workload Dependent Graph Partitioning
	Graph-Aware Infrastructure
	Lessons learned

	Infrastructure-based optimization
	Adaptive Message Filtering Mechanisms
	Communication Driven Data Placement
	Lessons learned

	Evaluating NeMeSys Against Wikidatas Real World Data
	Wikidata as In-Memory Scenario
	Applying ERIS ECL Features on NeMeSys
	Lessons Learned

	Conclusion
	Summary
	Future Research Directions

	Bibliography
	List of Figures
	List of Tables

