TECHNISCHE
@ UNIVERSITAT
DRESDEN

Graph Pattern Matching on
Symmetric Multiprocessor Systems

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universitét Dresden
Fakultat Informatik

eingereicht von
Dipl.-Inf. Alexander Krause
geboren am 17. August 1988 in Dresden

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universitét Dresden
Fakultdt Informatik
Institut fUr Systemarchitektur
Lehrstuhl fur Datenbanken
01062 Dresden, Deutschland

Prof. George Fletcher

Eindhoven University of Technology

Department of Mathematics and Computer Science
Database Group

Groene Loper 5

5612 AP Eindhoven, The Netherlands

Tag der Verteidigung: 29. Juni 2020

Dresden im Juni 2020

ABSTRACT

Graph-structured data can be found in nearly every aspect of today’s world, be it road
networks, social networks or the internet itself. From a processing perspective, find-
ing comprehensive patterns in graph-structured data is a core processing primitive in a
variety of applications, such as fraud detection, biological engineering or social graph
analytics. On the hardware side, multiprocessor systems, that consist of multiple proces-
sors in a single scale-up server, are the next important wave on top of multi-core systems.
In particular, symmetric multiprocessor systems (SMP) are characterized by the fact, that
each processor has the same architecture, e.g. every processor is a multi-core and all mul-
tiprocessors share a common and huge main memory space. Moreover, large SMPs will
feature a non-uniform memory access (NUMA), whose impact on the design of efficient
data processing concepts should not be neglected. The efficient usage of SMP systems,
that still increase in size, is an interesting and ongoing research topic. Current state-of-
the-art architectural design principles provide different and in parts disjoint suggestions
on which data should be partitioned and or how intra-process communication should
be realized. In this thesis, we propose a new synthesis of four of the most well-known
principles Shared Everything, Partition Serial Execution, Data Oriented Architecture and
Delegation, to create the NORAD architecture, which stands for NUMA-aware DORA
with Delegation.

We built our research prototype called NEMESYS on top of the NORAD architecture to
fully exploit the prov1ded hardware capacities of SMPs for graph pattern matching. Being
an in-memory engine, NEMESYS allows for online data ingestion as well as online query
generation and processing through a terminal based user interface. Storing a graph on a
NUMA system inherently requires data partitioning to cope with the mentioned NUMA
effect. Hence, we need to dissect the graph into a disjoint set of partitions, which can then
be stored on the individual memory domains.

This thesis analyzes the capabilites of the NORAD architecture, to perform scalable graph
pattern matching on SMP systems. To increase the systems performance, we further
develop, integrate and evaluate suitable optimization techniques. That is, we inves-
tigate the influence of the inherent data partitioning, the interplay of messaging with
and without sufficient locality information and the actual partition placement on any
NUMA socket in the system. To underline the applicability of our approach, we evaluate
NEMESYS against synthetic datasets and perform an end-to-end evaluation of the whole
system stack on the real world knowledge graph of Wikidata.

CONTENTS

1 INTRODUCTION 9
1.1 Mofivation 10
1.2 Summary of Confributions 12
1.3 Outline 12

2 FOUNDATIONS FOR GRAPH PROCESSING 15
2.1 Graph Definitionsand DataModels 16

2.1.1 Property Graphs 18
2.1.2 Labeled Graphs. 19
2.2 Graph PafternMatching o L. 20
2.3 ProcessingModels 22
2.3.1 Bulk SynchronousProcessing 22
2.3.2 AsynchronousProcessing 23
2.4 Wikidata-AReallifeUse Case 24
2.5 SUMMAIY . . . o e 26

3 NEAR-MEMORY COMPUTING PRINCIPLES AND CHALLENGES 27

3.1 Hardware Conscious System Design 28
3.1.1 NUMA-Affected Symmetric Multiprocessor Server Class Systems 28
3.1.2 Database System Architectures for Parallel Systems 30

3.2 ERIS - A NUMA-Aware Data Management System 32
3.2.1 Architecture 32
3.2.2 Memory Management Lo 34
323 Message Passing 35
3.2.4 The Energy ControlLoop (ECL) 37

3.3 NEMESYS - Allowing NUMA-Aware Graph Pattern Matching on ERIS . 38
3.3.1 DatasStorage 39
3.3.2 Query Generation 41
3.3.3 ProcessingModel 43

3.4 Challenges of Graph Pattern Matching on NORAD 46
3.4.1 Holistic but compact locality metadata for scalable GPM . . . 46
3.4.2 Proper data placement and data allocation 49

4 NEAR-MEMORY GRAPH PROCESSING ON SYMMETRIC MULTIPROCESSOR

SYSTEMS 53
4.1 Query Execution Plan Optimization 54
4.2 Topology-based optimization 56
4.2.1 Workload Dependent Graph Partitioning 57

4.2.2 Graph-Aware Infrastructure L. 66

423 Lessonslearned 71

4.3 Infrastructure-based optimization. 71
4.3.1 Adaptive Message Filtering Mechanisms 72

4.3.2 Communication Driven Data Placement 84

433 Lessonslearned e 92

5 EVALUATING NEMESYS AGAINST WIKIDATAS REAL WORLD DATA 95
5.1 Wikidata as In-Memory Scenario 96
5.2 Applying ERISECL Featureson NEMESYS 103
5.3 Lessonslearned 106

6 CONCLUSION 107
6.1 SUMMOAIY . . 108
6.2 Future Research Directions 109
BIBLIOGRAPHY 111
LisT OF FIGURES 119
LisT OF TABLES 125

6 CONTENTS

AKNOWLEDGMENTS

During my time with the chair, I was concerned about me being able to finish this thesis.
However, Professor Lehner encouraged me to stay on track and helped me to pursue this
goal. Thus I want to thank you, Wolfgang, for being a great supervisor and for having my
back, whenever it was necessary. Dirk Habich aided me with his tremendous knowledge
and diligence, to make our papers and general work the best it could be. To all of my
former and newly joined colleagues, who made the daily routine feel less like work but
like being part of a family: Annett, Johannes ‘Jay’ P., Claudio, Eric, Johannes L., Michael,
Mikhail, Patrick, Robert, Lucas and everybody who I have forgotten — thank you for all
the enjoyable moments, the laughter, the banter and the coffee-kitchen debates.

I'do also want to express my gratitude to my friends Martin, Robert, Alex and Kenny. The
occasional beers, Doppelkopf evenings and gaming sessions lead to great memories and
were a great way to relax after a long day of PC work. Frank, your critical voice helped
me a lot to find the right balance between formaly expressing a context and its ease of
understanding. My sincere gratitude goes towards Benjamin. You are the definition of a
true friend and a great inspiration, you kept me going when it was the hardest.

Without any doubt, I could continue this list for pages, but I do not want to forget the
most important person, my beautiful Evelyn. You cared for me, you kept me healthy
and our relationship grew even stronger over these years. Your unconditional love and
support allowed me to stay focused on my work and to finish this thesis eventually.
Without you, I would not have been as successful. Last but not least, I do also want to
express my gratitude towards my parents and my brother, Astrid, Roland and Tilo. All
of you placed your trust and believes in me and encouraged me to pursue this endeavor.
Without you, all of this would not have been possible. Thank you for everything.

Alexander Krause
Dresden, June, 2020

8 CONTENTS

INTRODUCTION

1.1 Motivation
1.2 Summary of Contributions

1.3 Outline

1.1 MOTIVATION

The relational data model was first introduced in 1970 [Cod70] and its prominence lead
to the trend, that traditional data processing often and heavily relied on it. As a conse-
quence, many data domains were mapped to fit this model, e.g. temporal data [DDL02],
XML documents [ACL*07] or provenance data [CLFF10]. However, graphs experience
continuously increasing more interest as a general data structure, due to their expressive-
ness for semantic relations. Representative examples are manifold, e.g. traffic analysis in
road networks, heritage analysis for anthropologists or recommender systems in video
streaming platforms or online marketplaces.

“Graphs are omnipresent in our lives
and have been increasingly used in a variety of application domains.”
— George H. L. Fletcher [FHL18]

The most commonly known example is the internet web graph itself. A web crawl from
2012 contained already 3.5B pages and 128.7 B hyperlinks [MVLB15], newer datasets
from April 2020 feature 2.8 B unique pages with more than 280 TiB of uncompressed
datal. Today’s most prominent social network Facebook reported 1.39B active users
with more than 400 B edges in their social graph as of December 2014 [CEK'15]. Even
the research for medicine is based on graph data. Here graphs are used e.g. for modeling
and discovering polypharmacy side effects, where a drug-to-drug interaction network
can contain 645 distinct drug and 19k protein vertices, but 964 different types of edges,
resulting in a total of 5.3 M interaction edges [ZAL18].

Efficiently storing and processing graphs is not trivial. Their sheer size requires suitable
data models to handle this amount of data and moreover, completely or partially travers-
ing such large graphs is also a complex task itself. These facts have thus created the ne-
cessity for specialized languages and systems, that treat graphs as first class citizens, like
Ligra [SB13], Galois [NLP13], Green-Marl [HCSO12], Virtuoso [Erl12], Pregel+ [YCLN15]
or Turbograph++ [KH18]; only to name a very few. Neo4j? is one of the most prominent
graph processing systems, with both a commercial and a freely available product, that
also satisfies the needs for large companies®. Efficient graph processing does also re-
quire an expressive query language to formulate graph specific algorithms and queries.
Among others, Cypher4, Gremlin®, GrathL(’, SPARQL? or G-Core [AAB*18] are de-
signed to serve exactly this requirement. All these examples underline the importance
of graphs and graph processing as a generally accepted and required data structure and
application.

The tool box of graph algorithms contains a similar amount of examples. We have cho-
sen graph pattern matching out of that plethora as a generally applied class of algorithms,
due to its widespread applicability and relevance. Common use cases involve fraud de-
tection [PCWEFOQ7], biomolecular engineering [OFGKO00], scientific computing [TKS17], or
social network analytics [OR02]. Generally, the pattern matching process receives a pat-
tern, i.e. a set of vertices, that are connected through a specific set of edges, where both

"https://commoncrawl . org/2020/04/ [Last Accessed: 18.04.2020]
“https://neo4j.com/ [Last Accessed: 18.04.2020]

*https://neo4j.com/customers/ [Last Accessed: 18.04.2020]
*https://neo4j.com/developer/cypher-query-language/ [Last Accessed: 18.04.2020]
*https://tinkerpop.apache.org/ [Last Accessed: 18.04.2020]

https://graphql.org/ [Last Accessed: 18.04.2020]
"https://wuw.w3.org/TR/sparqlil-overview/ [Last Accessed: 18.04.2020]

10 Chapter 1 Introduction

https://commoncrawl.org/2020/04/
https://neo4j.com/
https://neo4j.com/customers/
https://neo4j.com/developer/cypher-query-language/
https://tinkerpop.apache.org/
https://graphql.org/
https://www.w3.org/TR/sparql11-overview/

vertices and edges can be enriched with additional information. It then tries to find all
vertices in the data graph, that can be mapped to the query vertices, such that all query
vertices are bound to a concrete data vertex. This process requires a graph traversal with
one or multiple root vertices to start off. The efficient execution and optimization of
multiple or parallel graph pattern matching instances is thus an interesting and relevant
problem, that is not yet fully solved and still researched.

Solving such problems as fast as possible requires powerful hardware. To accommo-
date the ever-growing demand for sufficiently strong servers, hardware vendors first
increased the core frequency of available processors. In addition to this, the continuously
shrinking size of semiconductors lead to the development of multiprocessor systems.
Both trends provide more compute power in one system, but with dark silicon as a major
counterpart for increasing single core frequency, hardware vendors are putting increas-
ingly more multiprocessors into single server machines.

A prime example for this category of servers are symmetric multiprocessor (SMP) sys-
tems. SMP systems are characterized by the fact, that each processor has the same ar-
chitecture, e.g. every processor is a multi-core and all of these multiprocessors share a
common and huge main memory space. Every processor is connected to its own, lo-
cal main memory domain. However, any processor in an SMP system is able to access
the memory domains of other processors, as if the system has one huge coherent ad-
dress space. This allows us to store and process increasingly large graphs completely in-
memory, while also keeping intermediate results inside the RAM. However, SMPs exhibit
a Non-Uniform Memory Access (NUMA), where the memory access latency can vary signif-
icantly between different memory addresses. The TU Dresden just installed a new high
performance compute server, which features a total of 1792 logical cores, which are pro-
vided by 32 sockets in total. Every socket provides approximately 1500 GB of main mem-
ory, totaling in almost 48 TB of shared main memory in just one system. Considering the
NUMA effect is crucial for competitive performance, especially in such large systems,
which has been proven by several previous works [ZCC15, PTHA10, LBKN14, KKS*14].

Current SMP systems do in fact provide sufficient compute power and main memory
capacities to accommodate large graphs and perform online processing. Parallel graph
traversal could be performed for either a single query and multiple root vertices or multi-
ple queries can be processed concurrently. However, such approaches require algorithms,
that are tailor-made for the underlying hardware. From a relational perspective, this has
been investigated by ERIS, which was developed by the Chair of Databases with the TU
Dresden. ERIS is a NUMA-aware database prototype, that is built to follow the near-
memory processing paradigm, i.e. data is processed by cores, that reside on the same
socket as the data. Adapting these database principles for hardware oriented graph pro-
cessing, especially graph pattern matching, is yet to be investigated.

The goal of this thesis is to thoroughly examine the implications of SMP systems for near-
memory graph pattern matching. Therefore, we leverage the ERIS prototype, to start
off with an established database architecture and implement our graph pattern match-
ing engine called NEMESYS on top. We integrate graph specific extensions for storing
and processing graphs into ERIS and thoroughly evaluate them. We will furthermore
demonstrate the interplay and applicability of all presented optimization techniques and
provide an outlook for promising future research directions towards extending the graph
pattern matching capabilities of NEMESYS on SMP systems.

1.1 Motivation 11

1.2 SUMMARY OF CONTRIBUTIONS

This thesis analyzes concepts and best practices for processing GPM on NUMA -affected
SMP systems. In addition, we use our proof-of-concept prototype NEMESYS to evaluate
our assumptions. Our contributions can be summarized as follows:

(1) We detail on the foundations of both graph processing and current hardware trends.
Based on our observations, we formulate our core idea of how to exploit the highly
parallel target hardware through an asynchronous processing model. The ultimate
goal is the proof-of-concept prototype NEMESYS, which allows for near-memory
GPM on SMP systems.

(2) Processing GPM with an asynchronous processing model requires sophisticated data
exchange or messaging techniques. We provide detailed insights on how the em-
ployed metadata for the graph’s topology influences the system performance. Fur-
thermore, we provide reasonable optimization measures to reduce the memory con-
sumption while retaining already achieved performance gains.

(3) Parallel, asynchronous computations inherently require data partitioning or lock-
ing mechanisms. We categorize current graph partitioning approaches and provide
heuristic implementations for them. Based on these categories, we analyze the influ-
ence of each approach and determine a guideline, how to fine tune the core-to-data
partition ratio.

(4) The placement of data partitions in the system and their content directly influences
the communication behavior. Because of the NUMA effect, socket-local communica-
tion will always be faster, than data exchange with any remote socket. We provide
an optimizer, which is based on a communication cost model, that outputs partition
reorganization proposals. The goal of these proposals is to maximize socket-local
communication and minimizes remote messaging.

(5) We evaluate our prototype NEMESYS against Wikidata as a real world example. Our
experiments are based on Wikidatas actual query logs, which allows us to evaluate
our proof-of-concept on both real world data and queries. We detail on the influence
of our system design aspects and how to overcome arising limitations.

1.3 OUTLINE

Figure 1.1 presents an abstract outline of this thesis, which matches in part with the previ-
ously presented summary of contributions. Introduction aside, the remaining structure
is as follows. Chapter 2 provides the necessary information about graphs and graph
processing. First, we present our applied data model, the edge-labeled multigraph and
reason about graph pattern matching as go-to use case. Second, state-of-the-art process-
ing models are presented and we explain our choice for asynchronous processing. The
chapter is concluded with an introduction to the core concepts of Wikidata.

Chapter 3 is our second foundation chapter, which introduces the targeted hardware.
Furthermore, we elaborate on the foundations of NEMESYS and the underlying ERIS im-
plementation, which was developed earlier with the Chair of Databases at TU Dresden.
Last, we formulate and provide evidences for three main challenges for GPM on SMP
systems, that are solved with this thesis.

12 Chapter 1 Introduction

Chapter 6: Summary and Future Work

Chapter 5: Evaluating NeMeSys Against Real World Data

(Workload Analysis W (Energy Control Mechanisms J

e
-

~
J

Chapter 4: Near-Memory Graph Processing on Symmetric Multiprocessor Systems

(Query Execution Plan Topology Based Infrastructure Based
Optimization Optimizations Optimizations

/ Chapter 2: Foundations of Graph \ /Chupter 3: Near-Memaory Computing\
Processing Principles and Challenges

L Data Model][Processing } [Target M NeMeSys]

Model Hardware

Wikidata Real
Life Use Case

[Challenges]

SAN DA

Chapter 1: Introduction

U

Figure 1.1: Thesis structure and outline.

Chapter 4 contains our optimization techniques. These are divided into three categories.
Query execution plan optimization details about GPM statement reordering with and
without information about the underlying data graph. Topology-based optimizations
consider the actual data graph and leverage different graph partitioning techniques in
combination with system resource allocation to improve the systems” performance. The
infrastructure-based optimizations target system components like the messaging inter-
face or the routing table, which holds vertex locality information.

Chapter 5 performs an end-to-end evaluation of the optimization techniques from Chap-
ter 4 on Wikidata. This is done with parts of the original query logs from September 2016.
To account for adaptivity, we apply existing energy-control techniques on NEMESYS.
Thus we demonstrate the cooperation of the underlying ERIS implementation with our
NEMESYS engine. We also present newly discovered limitations of our current imple-
mentation.

Chapter 6 concludes this thesis with a summary of this document. Ultimately, we pro-

vide an outlook for the most promising future research projects, that arose during the
preparation of this thesis.

1.3 Outline 13

14 Chapter 1 Introduction

FOUNDATIONS FOR GRAPH PROCESSING

2.1
2.2
2.3
24
2.5

Graph Definitions and Data Models
Graph Pattern Matching
Processing Models

Wikidata - A Real Life Use Case

Summary

The last decades have seen a resurgence of interest in graph data management [Ang12].
With the network data model in the 1970s [TF76] and object-oriented database systems
in the early 1990s, graph-based data models and graph query languages got consider-
able attention in research already [AGO08]. However, the traction of today’s graph data
management efforts is unequally higher with many major IT companies and DBMS ven-
dors on the band wagon [RKB04, FCP*11]. Among others, one major driver behind the
graph concept’s revival is a shift in the interest of analytics from merely reporting to-
wards data-intensive science and discovery [HTT09]. Graph data can easily range in the
size of billions of vertices and edges.

Prominent examples of large graphs are the Facebook friendship graph, the Twitter fol-
lower graph, citation networks, web link networks, road networks, supply chains, etc.
(cf. [Les]). The areas of interest for the usage of graphs can further be extended to
biology [SSV*17], chemistry [ITDK16], psychology [SC15], fraud detection [PCWF07],
biomolecular engineering [OFGKO00, TU10], scientific computing [TKS17], or social net-
work analytics [OR02]. Fundamentally, the meaning of graphs as data structure is in-
creasing in a wide and heterogeneous spectrum of domains, ranging from recommenda-
tions in social media platforms to analyzing protein interactions in bioinformatics [PV17].

In 2017, Sahu, et al. [SMS*17] conducted a survey among researchers and practitioners
to assess the ubiquity of graphs. The participant’s fields of interest are wide spread and
— besides Research in Academia — range from Finance over Defence & Space to Telecommuni-
cations. Mainly, the employed graph datasets were categorized into Humans, Non-Human
entities, RDF or Semantic Web data and Scientific data, where everything which did not fit
into the Human category was even further classified. The questionnaire showed, that the
size of real world graphs ranges from less than 10k edges to more than 10 B edges with
raw sizes between a couple of megabytes and more than 1 TB. Furthermore, the authors
show that graph data is used by companies with more than 10 000 employees, which are
not Google, Facebook or Twitter. These statements lead us to the conclusion, that the
graph data format is a valid form of representation, widely used and accepted among
industrial companies and research facilities.

In this chapter, we investigate the currently employed graph data models in Section 2.1
and highlight our targeted use case scenario from this domain in Section 2.2. After defin-
ing the general foundations of graphs for this thesis, we will further discuss state-of-
the-art processing models in Section 2.3. Section 2.4 concludes this chapter, where we
present Wikidata! - the knowledge graph behind Wikipedia. Inspired by the previously
presented survey, we want to use this prominent real world example for graph process-
ing as proof-of-concept for our graph processing engine, which is later introduced and
extended in Chapters 3 and 4.

2.1 GRAPH DEFINITIONS AND DATA MODELS

The term graph has been firstly used by Sylvester in the 19 century [Syl78]. As today

commonly known, the easiest graph definition is G = (V, E/), where V represents a set
of vertices and E denotes a set of edges, which are connecting elements of V. Every
vertex v € V usually represents some kind of entity, be it a person or a building and an
edge e € F represents a relationship between two vertices v;,v; € V; specifically every
edge e is a pair of vertices. The neighborhood neigh of a vertex v; contains every vertex
vj, that is reachable from a vertex v; through an edge e and the degree of a vertex v; is
defined as deg(v;) = |neigh(v;)|. This definition does not state, that the vertices in every

"https://wuw.wikidata.org/ [Last Accessed: 30.01.2020]

16 Chapter 2 Foundations for Graph Processing

https://www.wikidata.org/

(a) An undirected graph. (b) A directed graph, equiv- (c) A directed graph.
alent to Fig. 2.1a.

Figure 2.1: Schemas for different graph models.

edge need to be distinct and thus already allows the existence of reflexive edges or loops,
i.e. (v,v) can be in E. Such edges occur often in e.g. state machines, where the vertices
are states and the edges represent transitions between them. In such graphs, transitions
from a state to itself, i.e. inner transitions, are often used. A reasonable example for this
process is pressing the reset button of a vending machine, before inserting any money.
This would trigger transition from the current state, which is start, to the start state it-
self. Without further information, such graphs are called undirected graphs, i.e. every edge
is bidirectional. Figure 2.1a illustrates an undirected graph with V' = {A, B,C, D} and
E={(AB),(AC),(AD),(B,C),(B,D),(C,D)}. Such graphs are used to express sym-
metric relationships, such as e.g. marriage, which is generally considered as a symmetric
relationship.

As the model of undirected graphs has a limited expressiveness, an easy extension is
to add directionality to edges, such that (v;,v;) € E # (vj,v;) € E,i,j € NAi # j.
These unidirectional edges are used to express one-sided relations, e.g. a one-way street
connecting two intersections in a road network. However, undirected graphs can still be
represented, as Figure 2.1b shows. In the model of directed graphs, bidirectionality has
to be expressed by an explicit edge per relation. Ultimately, graphs are not limited to just
contain directed or undirected edges. Figure 2.2 shows a compilation of different graph
models and their respective edge types, as outlined by [RN10].

@, O

vertex-labeled

hyper

edge-labeled f
<+— Kknows \

e F

created 2-01-09
modmed 2-11-09

edge-attributed

ha/f-edg »

pseudo

pamej/pun

name=emil
type=person

vertex-attributed resource description framework

http://ex.com/123

Figure 2.2: A collection of edge types, as shown in Figure 2 of [RN10].

2.1 Graph Definitions and Data Models 17

name: A Paper About Papers

type: paper

Q,
U{/)Ors

type: city
name: Dresden

type: paper
name: Our Thoughts

type: author
name: Peter

O\)\.‘(\o(s

type: author
name: Olaf type: conference
name: Best Venue

Figure 2.3: A bibliographical network using the property graph model.

name: Parallel Processing

type: paper

Among others, the most important graph models for this thesis are the labeled graph and
the property graph. As their names suggest, the graph is enriched with a variety of infor-
mation, so-called properties, which are allocated with the vertices or the edges. A natural
way of adding information to an entity, be it a vertex or an edge, is to add attributes or
properties to them.

2.1.1 Property Graphs

In Figure 2.3, we show a bibliographical network using the property graph model, with
properties attached to vertices. In such graphs, the vertices represent authors, papers,
conferences and cities, where they have been held, etc. Edges of such a graph could be
labeled with wrote, heldIn or cited. Through traversal operations, we could then create,
e.g. a citation network and identify, which papers have been mostly cited.

According to Green et al., a property graph can be defined as G = (N, R, src, tgt, ¢, A, 7),
where N = V and R = F of our previous definitions [GGL19]. Additionally, src and
tgt are sets of functions R — NN, that map each relationship (edge) to its respective source
and target vertices. « maps all vertices and edges to a set of key-value pairs, i.e. their
properties. A is a function that maps each vertex to a set of labels, which can also be
empty and 7 maps each edge to its actual type. In our example bibliographical network,
vertex ¢(B) would return {(type:author), (name:Olaf)} and 7((B, D)) returns the label
authors. Well known systems, that leverage this model, are Neo4j, ApacheSpark through
GraphFrames [DJL*16], Oracle PGX [HDM*15] or Gradoop [JKA*17] only to name a
few. One of the advantages of this graph model is, that almost all information of a certain
vertex are held in one place and are directly accessible. However, storing them in an
easily extensible way is not trivial, which is also shown by Green et al. [GGL*19].

18 Chapter2 Foundations for Graph Processing

A Paper
About
Papers

heldIn

authors

conference
Parallel
Processing

Figure 2.4: A network using the labeled graph model.
2.1.2 Labeled Graphs

A simpler representation is the labeled graph model. Labels are the easiest form of a prop-
erty, e.g. as in the center of Figure 2.2, where the edge-label knows is shown. Such labels
are usually used in directed graphs to enhance the semantic of a relation, as commonly
used in social networks. Despite using less sophisticated data structures to store infor-
mation, this model can hold the same level of detail as a property graph. In Figure 2.4,
we transformed the property graph of Figure 2.3 to a labeled graph. This can be easily
achieved by introducing proxy-vertices for each constant like names or types and adding
the corresponding edges accordingly. At first glance, the graph looks more complicated,
since its visual representation is more convoluted. However, we only store a single infor-
mation per edge or vertex, which requires less effort to store or update data accordingly.
Updating the type of vertex A would only need an update of the target vertex of one edge,
in contrast to the property graph model, where we would have to look up all key-value
pairs for A, find the appropriate entry and finally alter it.

Another advantage of the labeled graph model is, that it can be represented solely by
writing triples, as they are used in the Resource Description Framework (RDF)?. That
said, a graphs topology would be written down on a per-edge basis using triples of the
form (src, tgt, label), where src, tgt € V and (src, tgt) € E.

Within this thesis, we focus on edge-labeled multigraphs as a general and widely employed
graph data model [OFGKO00, OR02, PCWF07]. We define an edge-labeled multigraph as
G = (V,E, p, X, \), which consists of a set of vertices V, a set of edges E, an incidence
function p : £ — V x V, a set of labels ¥ and a labeling function A : £ — X that as-
signs a label to each edge. Hence, edge-labeled multigraphs allow any number of labeled
edges between a pair of vertices. This is especially important to represent graphs like
social networks, where vertices can have multiple relationships with one specific target
vertex. As briefly mentioned earlier, a prominent example for this graph data model is
RDF [DMvH*00].

*https://www.w3.org/RDF/ [Last Accessed: 30.01.2020]

2.1 Graph Definitions and Data Models 19

https://www.w3.org/RDF/

2.2 GRAPH PATTERN MATCHING

The previous section showed, that graphs can contain a plethora of information and ex-
tracting it can be done manifold. The analysis of even the biggest graphs is often done
with recursive algorithms [SPSL13], whereas the Breadth First Search (BFS) has proven
to be one of the most fundamental building blocks for many popular graph analysis al-
gorithms. Such algorithms are used to determine reachability, connected components or
betweenness centrality [Kin08, JRDY12, BKM*00].

In many cases, users are interested in identifying logical connections between vertices of
their data graph. Thus, recognizing comprehensive patterns on large graph-structured
data is a common use case and a prerequisite for a variety of application domains such
as fraud detection [PCWF07], biomolecular engineering [OFGKO00], scientific comput-
ing [TKS17], or social network analytics [OR02], only to name a few. Graph Pattern
Matching (GPM) can therefore be considered as a crucial procedure and serves as the
targeted use case for this thesis.

Over the time, a couple of graph query languages have emerged, such as Cypher, Grem-
lin, GraphQL, SPARQL or G-Core [AAB"18], to name the most well-known. Formulating
GPM queries can be done in many of them. SPARQL is a query language for the triple
oriented RDF data format and thus naturally aligns with our choice for labeled graphs
and their representation as triples. Therefore we selected SPARQL for the visual repre-
sentation of our example queries.

GPM queries are usually given as a subgraph of the queried data graph, which consists
of vertices and edges with labels, that may occur in the original graph. Figure 2.5a shows
a simple example of a GPM query. This query requests all two-sets of entities, who know
each other and both supervised two distinct other entities. Considering the data graph
from Figure 2.5b, the query would get only one distinct result, namely (A, B, D, C) which
match to the query vertices (K, Y, X, Z) respectively.

A simple form of GPM queries are the well studied conjunctive queries (CQs) [Woo12].

CQs consist of a set of statements, where all statements are connected with the logical
and operator, thus requiring every statement to be true. For edge-labeled multigraphs, a

supervises

2 supervises
> P

&
>

supervises

supervises

(a) A graph pattern query. (b) A simple data graph.

Figure 2.5: A Graph Pattern Matching example.

20 Chapter 2 Foundations for Graph Processing

statement would represent any edge from E and considering the previously mentioned
triple-notation, we could write down the query from Figure 2.5a as: ('Y, K, supervises) A
(X, K, supervises) \(Y, Z, supervises) \(X, Z, supervises) A(Y, X, knows) A(X, Y, knows)).
A greedy algorithm for GPM is to search the graph for every edge, in the order given by
the user, and try to expand the found intermediate state by the following edges of the
query. In addition, edges can also be expressed in an inverted form. This indicates,
that instead of outgoing edges an incoming edge is desired and that this edge is to be
traversed backwards. Such two-way queries are called 2CQs.

Another possibility of expressing GPM queries are regular path queries (RPQs). RPQs
are based on regular expressions and thus allow the user to express queries, which can
e.g. form a path of arbitrary length. This is especially useful, when searching in a tax-
onomy or when traversing social networks for e.g. n-hop friendship queries. Both ap-
proaches can be combined into CRPQs, where multiple RPQ statements are concate-
nated. C2RPQs are a form of CRPQs, where also inverted labels are allowed in the RPQ
part. Processing RPQs of any kind is often done with a deterministic finite automaton
(DFA) in the background, where the system traverses the data graph and the automa-
ton in parallel. The DFA from Figure 2.6 shows the derived automaton for the expres-
sion knows*/(repliedTo/hasCreator)+ of an RPQ targeting a social graph, that contains
users and forum postings, with the / symbol being a concatenation of path labels. While
evaluating the query, a system would try to find all qualifying vertices for state s, i.e.
vertices with outgoing knows or repliedTo edges. Upon following any of these edges and
storing visited vertices, the automatons current state would then be updated to ¢; or f
respectively. The result set would then be the current set of vertices, through whose edge
traversals we can reach the state f.

knows
repliedTo
repliedTo
start — e
hasCreator

Figure 2.6: Derived automaton for the expression knows*/(repliedTo/hasCreator)+.

Processing both CQ or RPQ queries imposes a set of general challenges, which have to
be thoroughly considered during query execution. A major issue is the number potential
intermediate results during the evaluation of each query edge. Listing 2.1 visualizes the
query from Figure 2.5a in SPARQL. For the edge predicate evaluation on line 5, we would
retrieve all uni:supervises labeled edges from the graph of Figure 2.5b, which account for
54.5% of all edges in the graph. Depending on the order and selectivity of edge pred-
icates, intermediate results can easily grow beyond the size of the original data graph
and thus an intelligent processing of the query is fundamental. For RPQ evaluation,
the complexity is further increased with the inherent recursive matching of edges, while
maintaining a list of visited vertices per state. Furthermore, the plentiful occurrence of
the edge label uni:supervises generates a lot of potential vertices, from which we can start
the actual graph traversal to complete the requested pattern. This allows for high paral-
lelism, as each pattern could be processed individually. Handling both parallelism and a
potentially high amount of intermediates is therefore a non-trivial task and needs to be
covered by intelligent processing models.

2.2 Graph Patftern Matching 21

Listing 2.1: SPARQL example for Fig. 2.5a.

1 PREFIX uni: <http://random.example.edu/>
2 SELECT 7X 7Y 7Z 7K

3 WHERE

4 {

5 ?Y uni:supervises 7K .
6 ?X uni:supervises 7K .
7 ?Y uni:knows 7X .

8 ?X uni:knows 7Y .

9 ?Y uni:supervises 7Z .
10 ?X uni:supervises 7Z
1 3

2.3 PROCESSING MODELS

Graph processing can require a high amount of compute resources, depending on the
size of the graph and the issued queries. To satisfy this demand and enabling the inher-
ent parallelism of GPM queries, modern servers with a high amount of multiprocessors
are used, whose overall hardware aspects are further discussed in Chapter 3. This is a
generally different hardware approach than before, because former systems sped up al-
gorithms by increasing the processors core frequency, leading to a higher performance at
a free lunch [BC11, Sut05]. However, because of power and thermal constraints, this free
lunch is over and speedups will be only achieved by adding more parallel units [BC11],
yet these parallel units have to be utilized in an appropriate way [BC11, Sut05].

The availability of different hardware settings with multiprocessors provides the general
foundation for parallel GPM processing, as requested at the end of Section 2.2. However,
proper utilization of the underlying hardware requires the implementation of an appro-
priate processing model. Today’s state-of-the-art graph processing systems are usually
built upon a vertex-centric programming model and are often referred to as "think like a
vertex" (TLAV) systems [MWM15]. Such systems encourage the user to program from a
vertex point of view. This forces the scope of an algorithm to a single vertex and a gen-
eral communication pattern, since intermediate results have to be sent along the edges
to neighboring vertices. Another approach are "think like a graph” systems [TBC*13].
Tian et al. argue, that providing users with more information, e.g. data partitioning and
locality, leads to more overall performance and yields better optimization possibilities,
including algorithm specific tuning.

2.3.1 Bulk Synchronous Processing

A traditional and widely used processing model is the Bulk Synchronous Processing
(BSP) model [Val90], on which many vertex-centric systems are based [MWM15]. The
overall workflow is depicted in Figure 2.7. In general, the BSP model consists of two dis-
junct phases. The first phase performs all processing steps and the second phase is solely
reserved for communication. Both phases are then combined to global supersteps.

From the viewpoint of a GPM query, lines 5 through 10 from Listing 2.1 would each
represent a global superstep. The processing phase would consist of several steps: (1) the
vertex-local lookup, if an edge in the right direction with the appropriate label exists (2)
the creation of a new intermediate matching state with the newly found target vertex (3)
enqueuing the previously created intermediate matchings to be sent to their individual

22 Chapter 2 Foundations for Graph Processing

Superstep 1 Superstep 2 Superstep 3 Superstep 4

[Fosc |

Barrier 1 Barrier 2 Barrier 3

Time

Figure 2.7: BSP execution diagram, cf. Fig. 1 from [MWM15].

target vertices. Vertices which do not produce any intermediate states during a superstep
mark themselves as inactive. During the communication phase, the queues of all active
vertices are checked and if not empty, the contents are moved to the respective target
vertices. At the end of the communication phase, each vertex which receives any amount
of intermediate states is marked as active and thus scheduled for execution in the next
superstep. The procedure halts, when all vertices mark themselves as inactive.

The definition of parallel tasks could be either one task per individual vertex, i.e. one
worker per vertex, since vertices are considered as first-class citizens in TLAV systems.
This approach is generally not feasible, since real graphs consist of millions of vertices
and even modern compute clusters do not yet features millions of processors. A more
applicable approach is to partition the data into disjunct sets of vertices, where the num-
ber of such data partitions equals the number of compute resources. A widely known,
BSP based, vertex-oriented system is Pregel [MAB*10].

Generally, such systems suffer from synchronization barriers, because of potential work-
load skew. A superstep will always only terminate, after all active vertices have con-
cluded both of the phases. If the vertices in the individual sets are unevenly distributed
in terms of total number of edges, then a few workers could concentrate the vast majority
of the actual work. This can especially happen in so-called scale-free graphs, i.e. the dis-
tribution of neighboring vertices or edges per vertex follows a power law distribution. If
only a few vertices contain a huge amount of edges, but they are additionally paired with
more vertices from the graph to achieve an evenly distributed amount of vertices among
all partitions, these overloaded partitions can become major bottlenecks.

2.3.2 Asynchronous Processing

Asynchronous processing models have been developed to overcome workload imbal-
ances of any kind. Furthermore, asynchronicity allows to hide communication or disk
access overhead via layering these operations with leftover computations. In their work,
Han and Daudjee [HD15] have abstracted the BSP model to the Barrierless Asynchronous
Parallel (BAP) model. Compared to the BSP model, BAP drastically reduces the amount
of global synchronization barriers by introducing local barriers. These serve as break-
points, where tasks can determine the next steps, i.e. mutating the graph or agreeing on
a global synchronization barrier. However, the model still exhibits the processing and
communication phases for individual tasks. Compared to BSP, individual tasks can have
a different amount of local supersteps in BAP and since faster tasks are not as excessively
stalled, the overall query response time decreases.

According to [MWM15], asynchronous computation can usually outperform syn-

chronous approaches on CPU-bound problems, while the opposite is true for memory-
bound problems. That is, since the flexibility of asynchronous computations allows to

2.3 Processing Models 23

adapt or reschedule the execution of vertex programs, according to arising workload
skew. However, the authors state, that due to the asynchronous execution, the inherent
messaging is unable to exploit optimization techniques like batching. This is an opti-
mization technique, where multiple messages with the same target are combined into
one large message, to better utilize the memory bandwidth by copying one large chunk
of memory instead of many small chunks.

The BSP model does not naturally align with pattern matching algorithms [FNR*13].
This is caused by the usually high number of intermediate results, which is generated
during the evaluation of edge predicates with low selectivity. Such intermediates have
to be materialized as a potential result and transferred, which applies a lot of pressure
on the communication layer of the system. This is also a major problem for power law
graphs like social networks, when vertices with the highest degrees are generating plenty
of intermediates. When the straggler problem, as defined by [MWM15], overlaps with
a high amount of intermediates, we can expect a significant performance drop and thus
anticipate any asynchronous processing model to be more suitable for GPM. That said,
optimizing the communication issues would then be a high priority task, to enable this
processing model not only for compute bound but also memory bound tasks.

2.4 WIKIDATA - A REAL LIFE USE CASE

Wikidata [VK14] is a free and collaborative open data platform, that has been founded in
October 2012. Today, Wikidata is also known as the knowledge graph beneath Wikipedia.
Like its sister project, Wikidata heavily relies on voluntary community work to create,
integrate and maintain useful and relevant data. As of December 2019, Wikidata con-
tains 890 M statements, which are equivalent to our definition of edges, and 56 M ref-
erenced items, which correspond to our vertex definition, forming one of the biggest
openly available data graphs world wide featuring a plethora of languages. Wikidata is
also used as a data plane for different science directions, such as life science and social
studies [BWM ™16, WGGM16].

The linked information is internally stored in JSON, but globally shared in RDF
dumps [MKG™18]. A small excerpt of Wikidata in an RDF representation is shown in
Figure 2.8 and represents a statement about the speed limit on roads in Germany outside
of villages. Items, prefixed with a Q, are connected to other items via properties, which
are prefixed with a P. Commonly with RDF, items and properties can be further prefixed
with namespaces.

Wikidata features a globally accessible SPARQL endpoint®. The website provides an API,
where users can post queries in the SPARQL query language, to extract any data of inter-
est. Listing 2.2 shows an example query of the previously mentioned SPARQL endpoint.

wd:Q183
"Germany"

quantityAmount p:P3086

(P3086 value again,
but converted into I"27.77.,.“’\’\xsd:decimal I
standard unit)

wd:Q182429
"metre per
second"

wdt:P3086

"100"AMxsd:decimal

quantityAmount

wd:Q180154
"kilometre
per hour"

quantityUnit (wdv:cd747... quantityUnit

(value node)

psn:P3086

wdv:f7876...
(value node)

wds:Q183-...
(statement)

psv:P3086

prov:was
DerivedFrom

wdref:30b9...
(reference)

Figure 2.8: An RDF graph sample for a Wikidata statement, cf. Fig. 2 from [MKG'18].

rank

pq:P3005

(normalRank)

. (reference details
* not shown)

wd:Q23011975
'paved road outside of settlements"

*https://query.wikidata.org/ [Last Accessed: 30.01.2020]

24 Chapter 2 Foundations for Graph Processing

https://query.wikidata.org/

The SPARQL query language closely follows a triple notation for every statement, sim-
ilar to our definition of CQs in Section 2.2. The query requests all humans, which have
no children, by combining three statements into one CQ. First, all humans are bound,
followed by retrieving all child statements for every match for the variable human. Last,
the childStatement variable is checked to be of the type "no value".

Previous work has shown, that this endpoint is not only used by humans, but is also
heavily utilized by automated scripts or bots [BGK18]. Over twelve weeks, the authors
parsed over 211 M SPARQL queries and categorized the workload in organic and robotic
queries. We define a workload as the mix of queries, which arrives at the system over a
given amount of time. A major finding was, that the organic workload accounts for only
0.5 % of all queries. Furthermore, the workload does not only consist of plain CQs as the
one from Listing 2.2, but also CRPQs. In [BGK18], the authors show that CRPQs account
for 44.5 % of robotic traffic and 24.4 % of organic queries respectively. The query logs for
the work of [BGK18] have also been made publicly available*.

Listing 2.2: Adjusted SPARQL example from Wikidatas SPARQL endpoint.

1 SELECT 7human

2 WHERE

3 A

4 #find humans

5 ?human wdt:P31 wd:Q5

6 #with at least one P40 (child) statement

7 7human p:P40 ?childStatement

8 #where the P40 (child) statement is defined to be "no value"
9 ?childStatement rdf:type wdno:P40

0

For Figure 2.9, we analyzed the workload logs from September 2016, which are not in-
cluded in the openly available dataset. We divided the workload into four categories,
which cluster queries by their length and assigned them to four quartiles, Very Short,
Short, Medium and Large. The figure illustrates the arriving queries with an hourly resolu-
tion. The most interesting observation is the occurring variance in both query complexity,
i.e. length, and volume over the course of the two weeks. These two workload charac-
teristics imply the necessity for a workload adaptive processing model, which further
underlines our statement from the end of Section 2.3

As previously mentioned, the SPARQL query language forms a natural match for our
targeted use case, the processing of GPM with CQs. Because of Wikidatas prominence

Bmm Very short WM Medium
Short B Large

175000

0
.2 125000
100000

75000

Arriving quers

50000

25000

ol
0l. Sep 02. Sep 03. Sep 04. Sep 05. Sep 06. Sep 07. Sep 08. Sep 09. Sep 10. Sep 11. Sep 12. Sep 13. Sep 14. Sep 15. Sep
Time [hour]

Figure 2.9: Arriving queries per hour, categorized by length in characters (quartiles),
Wikidata workload from September 1 through 14th 2016.

4https://iccl.inf.tu—dresden.de/web/Wikidata_SPARQL_Logs/en[LastAccessed:30.01.2020]

2.4 Wikidata - A Real Life Use Case 25

https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

and its openly available query logs with a tremendous amount of real life queries, we
decided to use Wikidata as qualifying example for this thesis. In Chapter 5, we will
evaluate our proposed query engine from Chapter 3 against this dataset and apply our
optimization techniques from Chapter 4 to allow for scalable processing of graph pattern
matching.

2.5 SUMMARY

Graph processing is a broad research field, which is widely studied. Representing graphs
can be done in a variety of different data models, each having their individual advantages
amenities and drawbacks. In this thesis, we focus on edge-labeled multigraphs, which rep-
resent edges of vertices as triples consisting of a source and a target vertex, enriched with
a label. Despite introducing additional storage overhead for adding more structured in-
formation like properties to vertices, this graph data model excels at the ease of storing
individual edges. From a data storage perspective, the triple representation allows for
both row and column storage methods, where either triples are stored undissected or
each source, target and label are placed in individual data columns.

The applied use case of this thesis is the processing of Graph Pattern Matching (GPM).
This algorithm has a variety of application domains and thus plays a key role in analyt-
ical graph processing. Expressing query patterns can be done manifold, with conjunc-
tive queries (CQs) and regular path queries (RPQs). Evaluating either of the two query
types can lead to considerably large intermediate result sets, depending on the size of the
underlying data graph, the selectivity of the pattern or possibilities to prune irrelevant
vertices or edges during the graph traversal.

Graphs can contain a variety of patterns at many different locations. Searching for one
specific pattern can thus yield many occurrences, where different data vertices match the
given query variables. Hence we can employ parallel processing paradigms to speedup
the discovery of all applicable matchings. Over the time, the Bulk Synchronous Process-
ing (BSP) and Asynchronous Processing (AP) models arose to steer parallel computa-
tions. Synchronous approaches suffer from synchronization overhead and thus we se-
lected asynchronous processing as the go-to approach for this thesis, since it also allows
for maximum parallelism and flexibility during the query processing.

A prominent example for graph processing is given by the Wikidata knowledge graph
and its publicly available SPARQL endpoint. Humans and robots can use this API to
post queries, which are then processed concurrently. Parallel processing allows to spread
out the computation of incoming queries among as many processors as necessary, to
evenly distribute the load within the system. However, the whole data graph can not
always fit into the main memory of a computer, while it additionally accommodates all
intermediate results of all incoming queries. Thus, parts of the data remain on disk,
which leads to slow access times, whenever these are needed.

Combining the potentially huge intermediate result space of GPM and the highly concur-
rent query processing of real world applications such as Wikidata leads to the conclusion,
that highly parallel hardware with sufficient main memory is a desirable hardware plat-
form. A huge and coherent main memory would allow, to keep both the data graph and
intermediate results permanently inside the fast accessible main memory. In addition,
many processors allow for either more intra- or inter-query parallelism. Providing more
compute resources to an asynchronous processing model can further increase the ability
for load balancing and timely query answers. Furthermore, the resources inside one large
system can be more easily adapted than individual machines in a compute cluster, when
the overall number of arriving queries increases. As long as sufficient compute power
is available to overcome the largest anticipated workload spikes, we can always turn off
overprovisioned processors, e.g. to save energy.

26 Chapter 2 Foundations for Graph Processing

NEAR-MEMORY COMPUTING PRINCIPLES

3.1
3.2

3.3

34

AND CHALLENGES

Hardware Conscious System Design

ERIS - A NUMA-Aware Data
Management System

NEMESYS - Allowing NUMA-Aware
Graph Pattern Matching on ERIS

Challenges of Graph Pattern
Matching on NORAD

Today, building a new system requires thorough planning and the correct architecture
for optimal or scalable performance. Within this chapter, we want to outline current
state-of-the-art system architecture designs as well as the target hardware for our envi-
sioned system. Section 3.1 gives an overview about the currently employed hardware
for server class systems and discusses the pros and cons of standard architectures. Fur-
thermore, we will present ERIS, which is a related research prototype, that leverages a
Data-Oriented Architecture (DORA)-like architecture to allow for highly scalable pro-
cessing of relational data in Section 3.2. After laying out the foundations of the target
hard- and software, we will explain the principles of processing graph pattern matching
on a system like ERIS in Section 3.3 That includes storing the data, query generation and
processing as well as the crucial communication paths. The chapter will be concluded
by a thorough analysis of arising challenges when combining the previously mentioned
stack to process graph pattern matching.

3.1 HARDWARE CONSCIOUS SYSTEM DESIGN

When building a modern database system or even for data processing engines, consider-
ing the underlying hardware is a crucial aspect of the system design process. This section
covers a definition of our targeted hardware, as well as state-of-the-art architectural ap-
proaches for current systems. In Section 3.2, we will present ERIS, which is a research pro-
totype that leverages Data-Oriented Architecture (DORA) principles (cf. Section 3.1.2), to
achieve high scalability. In this thesis, the term scalability refers to a proportional increase
of performance, i.e. work done in a specific amount of time, proportional to the invested
hardware resources. ERIS will serve as the foundation for our graph processing engine
called NEMESYS, which is described in Section 3.3. Thus, parts of this section, especially
the targeted hardware, share definitions and content with [Kis17].

3.1.1 NUMA-Affected Symmetric Multiprocessor Server Class Systems

Within this thesis, we are solely focusing on symmetric multiprocessor (SMP) server sys-
tems, also known as scale-up systems. That said, scale-out architectures, which consist of

< Multi-Socket System > 1 hop

Socket Socket

. Socket [socket
Core Core Core
= = o @)

Core H Core O

Local Main Memory Local Main Memory
E Socket Socket
t
¢

local

Core

Core

< Global Main Memory >

Single Box Symmetric Multiprocessor System 2 hOp

(a) Schema of our target hardware. (b) lustration of the NUMA property.

Figure 3.1: Illustration of an SMP server system with the NUMA property.

28 Chapter 3 Near-Memory Computing Principles and Challenges

Table 3.1: Experimental server setup.

| Physical Cores | Total Cores | Sockets | RAM

Small 32 64 4 128 GB
Medium 64 128 4 384 GB
Large 384 768 64 8TB

multiple standalone servers, connected through any form of interconnect, are not consid-
ered. SMPs are characterized by the fact, that each processor has the same architecture,
e.g. every processor is a multi-core and all multiprocessors share a common and huge
main memory space. The amount of multiprocessors within one server can vary and an
individual processor inside an SMP system is also usually called node or socket. In ad-
dition, every multiprocessor is composed of a number of similar CPUs, which we call
cores henceforth. Furthermore, modern multiprocessors employ the simultaneous mul-
tithreading (SMT) technology, where every physical core provides multiple logical cores.
The set of all logical cores of a physical core is called siblings and the term hyperthread
(HT) is used to address all siblings of a core, except the actual physical core itself. Every
socket is connected to its own, local main memory domain. However, any processor in
an SMP system is able to access the memory domains of other processors, as if the system
has one coherent address space.

This leads to one crucial aspect of such systems, the memory access model. Modern sys-
tems distinguish between Uniform Memory Access (UMA) and Non-Uniform Memory Ac-
cess (NUMA). UMA defines, that the access of any memory address in the whole address
space is performed with equal latencies. In contrast, NUMA means, that the memory
access latency can vary significantly between different addresses. UMA yields limited
system scalability. Since latencies are also influenced by e.g. circuit length, current SMP
systems employ a NUMA model. Figure 3.1b illustrates basic NUMA access patterns.
Considering a mesh-connected four-socket system, we can face up to two NUMA hops,
before the actual memory access can happen. With every hop, the resulting memory ac-
cess latency increases, but also the effective memory bandwidth decreases, as illustrated
in Figure 3.2.

Several previous works prove, that considering the NUMA effect is crucial for compet-
itive performance [ZCC15, PJHA10, LBKN14, KKS*14]. This underlines our hardware

mm Bandwidth Latency
40 1000
35 900
800
30
700
25 600
2
o 20 500 ¢
(U]
15 400
300
10
200
: 1 B0 Q-
0 0
1 2 3 4 5 6
NUMA hop

Figure 3.2: Bandwidth and latency effects per NUMA hop, sampled from Table 3.2 - SGI
UV 2000/3000 of [Kis17].

3.1 Hardware Conscious System Design 29

focus, since handling a single box NUMA machine well will also result in higher per-
formance, when a compute cluster consists of multiple of such machines. Therefore, we
perform our experiments on the full spectrum of NUMA systems, ranging from a smaller
to a larger machine. The experiments in this thesis were performed on differently sized
servers, with their details being given in Table 3.1.

3.1.2 Database System Architectures for Parallel Systems

This section gives an overview about design principles for database architectures, espe-
cially those focusing the hardware of the previous Section 3.1.1. Deploying a database
system on such scale-out hardware demands for good parallelization and synchroniza-
tion mechanisms for optimal and scalable performance. There are two prominent usage
scenarios, namely Online Transaction Processing (OLTP) and Online Analytical Process-
ing (OLAP). OLTP refers to a high throughput scenario, where the database is required
to process and complete the maximum amount of queries in the fastest possible time,
whereas OLAP queries usually take a considerable amount of time to compute e.g. sta-
tistical overviews for sales purposes.

For OLTP optimized systems, Appuswamy et al. did a thorough analysis of state-of-the-
art database architectures. Figure 3.3 displays an illustration of transactional processing
on the four most popular designs, which are namely Shared everything, Partition Serial
Execution, Delegation and the Data-Oriented [AAP"17]. More details about these four pre-
viously mentioned architectures can be found in their work.

Shared Everything (SE)

SE is an architecture which is employed by systems like Silo [TZK*13] or Heka-
ton [DFI*13]. Systems with this model employ a globally shared memory, where all data
is stored and accessible by every database worker. Because of the general accessibility
of the whole dataset to all database workers, their access must be synchronized by any
form of concurrency control (CC) and/or locks and latches. These can be applied with
any granularity, be it per record, table or whole databases. The SE concept discussed in
[AAP'17] uses record-level locks, as depicted in Figure 3.3.

7555 L

7333 1300)]
EEEE EEEE ‘ EEEE HEEE

NI = BN

N Y N~
e @

Shared Everything Partition Serial Execution Delegation Data Oriented NUMA Aware DORA
with Delegation (NORAD)

Figure 3.3: Transaction execution in different architectures (cf. Figure 1 from [AAP"17])
and our new synthesis: NUMA-aware DORA with Delegation (NORAD).

30 Chapter 3 Near-Memory Computing Principles and Challenges

Partition Serial Execution (PSE)

Systems like H-store [KKN™08] or HyPer [KN11] use PSE. In contrast to SE, this model
assumes a shared nothing situation, where workers can only exclusively access their re-
spective datasets. This implies the necessity of data partitioning, where each database
worker or site is provided with an exclusive data partition. According to [AAP*17],
transactions are usually scheduled in a way that they are "single site in nature". A site is
"the basic operational entity in the system", of which "a single physical computersystem
[can] host one or more" entities [KKNT08]. Thus, that the systems tries to maximize local
data access in terms of a single partition. In the case of a remote site access, transaction
execution is serialized by locking all necessary partitions upfront and therefore guaran-
teeing that only one transaction or thread accesses a partition at the same time.

Delegation

Caldera [AKPA17] and Orthrus [RFA16] are examples for Delegation-based systems. This
model assumes a distributed setting, even for single box SMP systems. In general, Dele-
gation follows the same principles as PSE. However, when transactions need data from
multiple partitions, the responsible worker sends an explicit message to the worker, which
is responsible for the partition in question. Thus, a thread will always only process its
own partition but needs to communicate, in order to receive all the necessary data.

Data-Oriented

The data-oriented transaction execution (i.e. DORA) approach [PTB*11] leverages the
eponymous Data-Oriented architecture, so does the system PLP [PTJA11]. This approach
is inspired by improving the performance of disk centric database systems. The core con-
cept is a logical partitioning in contrast to physical partitioning. Here, worker access
rights are stored in a global access table. This makes e.g. repartitioning of the data ex-
tremely easy, as only the entry for the to-be-moved records needs to be updated. In
addition, DORA changes the usual thread-to-transaction assignment to a thread-to-data
assignment. This means, that one thread is always responsible for a portion of the dataset
and transactions need to switch between threads to access all necessary data.

These four architectural flavors are also thoroughly evaluated in [AAP*17]. A general
outcome is, that the PSE architecture is the best performing architecture. However, we
see that all four architectures have unique properties, which can and should be combined
to achieve a highly scalable and performant new architecture: NUMA Aware DORA with
Delegation (NORAD), as depicted in Figure 3.3. It combines the shared memory for meta-
data from SE, the physical data partitioning from PSE, the message passing from Delega-
tion and the thread-to-data mapping from DORA to create a highly scalable architecture
for single box SMP servers. We coined the name of this architecture after reviewing the
work of Kissinger [Kis17]. In his thesis, he built the system ERIS based on the aforemen-
tioned principles.

3.1 Hardware Conscious System Design 3 1

3.2 ERIS - A NUMA-AWARE DATA MANAGEMENT SYSTEM

In this section, we will review ERIS, which is a NUMA-aware data management system.
It was originally developed as a research prototype at TU Dresden, with the Chair of
Databases and is solely written in C++ [Kis17]. The system employs architectural design
aspects, that sum up to the NORAD architecture as coined by us and shown in Figure 3.3.
In his work, Kissinger demonstrates ERIS” high scalability on modern NUMA-affected
SMP servers and its variety of adaptivity mechanisms directly built-in [Kis17].

Throughout the last years and over the lifetime of its development, this system mani-
fested as chair-internal testbed and collaborative platform. That said, we too took the
chance to assess ERIS’ good results in the relational environment and use it as the foun-
dation for a graph processing engine. As outlined in Chapter 2, graph processing is an
important field just like relational query processing. ERIS was developed to achieve high
scalability, considerable performance and the ability to adapt to workload changes while
running on the same SMP hardware, that we target ourselves. Combining these facts
leads to the conclusion that a NORAD based system like ERIS should not only be able to
efficiently process relational queries, but could also be used for graph processing.

Thus, we review the schematic design of ERIS in Section 3.2.1 and provide a brief set
of details of its C++-programmable query engine. ERIS does also perform self-managed
memory handling, which is discussed in Section 3.2.2. Furthermore, details about the
message passing mechanism like message structuring and messaging infrastructure are
presented in Section 3.2.3. This section is then concluded with an overview of the Energy
Control Loop, which provides ERIS with high flexibility in terms of software-enabled
adaptivity.

3.2.1 Architecture

ERIS is specifically tailored for single box SMP server systems, as depicted in Figure 3.1a,
with its corresponding architecture being shown in Figure 3.4. The system features an

ITXIII ITEZI |T>i3l ITXI4|

Message Passing Layer

¥ v
/Sy /5
[t LPV LPV LPV LPV e /i LPV LPV LPV LPV

Socket core core core core Socket core core core core

~pma

i i - ~
H ' - ~
N S - RS
' N - ~
h - N
T Ay - ~
1 h PP 1
3 i 1 \ 3 []
8 ’ 1 -
1 ® @ /@ 1 D@
L i I“'\\ A
L \
e N anN i | R,
l‘ X 1 L Y
) { C O

- Memory

Logical Data Access Primitives
@Adoptive Physical Data Representation
Figure 3.4: Query processing in the Living Partitions architecture, cf. Figure 3.5 of
[Kis17].

32 Chapter 3 Near-Memory Computing Principles and Challenges

!
— -

LP Assignment Queue

A\

Physical Compute Resources

LPV LPV LPV LPV musm LPV LPV LPV

Socket core core core core core core core

.z
1
Node |

LP LP LP LP -

Coordinator

Logical Roles |

Figure 3.5: ERIS processing architecture of a single socket, cf. Figure 3.18 of [Kis17].

asynchronous execution model and can be roughly dissected into three layers: the storage
layer, the processing layer and the message passing layer.

The storage layer holds data partitions, called LivingPartitions (LPs). When data is
loaded into ERIS, it is stored within the RelationalContainer, which resembles a table
of a database. This container is then divided into an arbitrary amount of LPs. Thus,
LPs always contain a unique slice of the stored data and are placed on the local main
memory of a single socket, without the usage of replication techniques. In general, an LP
provides the user with general data access primitives, but allows for different physical
data representations. This representation is exchangeable individually for any LP during
runtime, cf (6) in Figure 3.4.

The processing layer contains the LivingPartitionVitalizers (LPVs) and
NodeCoordinators. LPVs represent software threads, which are pinned to exactly
one logical core of the system and thus ERIS can generally occupy all available compute
resources. Pinning threads to cores is necessary, to avoid costly context switches and
thus improves the overall system performance. The NodeCoordinator (NC) is a role,
which every LPV can obtain while cycling through their event loop, but only exactly one
LPV per socket is allowed to become the local NC at any point in time. In contrast to
the DORA concept, where one worker is only allowed to access an exclusively assigned
dataset, LPVs are free to choose the LP which they want to process, as long as the LP
resides on the same socket as the LPV itself, cf (1) in Figure 3.4. However, under certain
circumstances, an LPV may process the LP of another socket as shown with (2), which is
later discussed in Section 3.2.4.

Figure 3.5 zooms in on the processing architecture of a single node. In ERIS, query pro-
cessing is split into tasks, which are stored in socket-local task queues. Tasks are executed
by LPVs and specify the concrete operators and logic behind a query. Algorithm 2 of
[Kis17] gives a brief usage description of tasks in general. Programming tasks in ERIS is
done with the ERIS/C++ interface. That is an API, which provides classes to handle e.g.
transactions, dataflows or user-programmable operators, that are called MicroOperators.

3.2 ERIS - A NUMA-Aware Data Management System 33

Listing 3.1: GenericMicroOperator example.

1 GenericMicroOperator* gmo = new GenericMicroOperator(container,
2 [&] (MicroOperator* mo) -> int64_t {

3 MessageBuilder mb(

4 StorageOperation::Lookup,

5 container,

6 mo->dataFlow,

7 m_successor —>gmo

8

);

11 mb.setDesiredAttributes(...);

13 mb.setTargetAttributes(...);

17 mb.add(...);

18 deallocate(...);
19 return O;

20 },

21 nullptr

22),

MicroOperators (MOs) always target exactly one container — like the previously men-
tioned RelationalContainer — specify two C++ callback functions and can have a set
of succeeding MOs. In Listing 3.1, we illustrate a basic implementation of a root opera-
tor, based on the derived class GenericMicroOperator. The gmo specifies only the first
lambda function, as it does an initial 1ookup operation, see line 4. Then, we need to spec-
ify which columns (i.e. attributes) we want to filter for (line 11) and which columns to
project into our result tuple (line 13). Qualifying tuples are fetched from the storage layer
and are sent to a succeeding operator (line 17). The second function (line 21) is always
called by the predecessor of the current operator, which handles the incoming tuples and
can thus be ignored and set to nullptr for a root operator.

Generally speaking, a query will be composed of a set of MOs, that are encapsulated
within a task. During runtime, an LPV will process tasks and execute the respective
lambda functions together with the required LPs. Since LPs are independent data objects,
each LPV can call the same function of a task on its individual LP without the necessity
of synchronization. Due to this mechanism and the asynchronous nature of ERIS, it can
easily happen that multiple stages of a query are processed at the same point in time. It
is totally possible, that e.g. the root operator is still scanning and producing tuples on
LPV;, while LPVy5 runs a function instance of the result collecting operator.

3.2.2 Memory Management

NUMA is a crucial property of our target hardware and thus ERIS implements a self-
made memory management subsystem from scratch. Important aspects are high scala-
bility, low contention risk on key resources and a good compatibility to ERIS” general ar-
chitectural characteristics [Kis17]. Memory itself is hierarchical by nature, with the cache
hierarchy as a prominent example. In case of a NUMA system, we extend that hierarchy
by global and local memory domains. This lead to the thought of a hierarchical memory
management component, as shown in Figure 3.6.

34 Chapter 3 Near-Memory Computing Principles and Challenges

Task-lifetime LP-lifetime

Persistent Tasks LP

MM MMs MMs Datgq

Structures
Node Memory Manager

Local Main Memory
Socket 1

Global Memory Manager

Figure 3.6: ERIS memory management, cf. Figure 3.19 of [Kis17].

ERIS works with one static global memory manager, which is responsible for allocating
memory from the system and managing chunks of memory, which are allocated on the
local memory areas of a certain socket. For every socket, node local memory managers
are instantiated as the second layer of this hierarchy. These request memory chunks from
the global manager, according to the individual memory demand of the local LPVs. Tasks
and LPs are transient objects by nature, i.e. they can be created and deleted over the life-
time of the system. Thus, the last layer of memory managers consists of individual man-
agers for each task and every LP. The third part of the last layer is a persistent memory
manager, which is responsible for allocating everything related to LPVs internal routines
or shared data structures. The hierarchical memory manager stack minimizes the actual
amount of system calls, which effectively increases the systems performance. Since only
the global manager allocates chunks from the operating system, all other managers can
obtain small slices internally, which is considerably faster.

3.2.3 Message Passing

The message passing layer is a crucial component of ERIS and a key aspect in high system
performance. As pointed out in [AAP17], message passing alleviates the problem of
synchronizing data access. However, treating a shared memory system as a distributed
system comes at the cost of messaging overhead, which has to be paid off. Thus ERIS
implements a high throughput and hierarchical designed message passing interface.

The previously described messaging process from Listing 3.1 is further illustrated in Fig-
ure 3.7. The shown layout abstracts the messaging infrastructure and is replicated to all
sockets. During query processing, LPVs communicate qualifying tuples, i.e. intermediate
results via messaging through the MessageBuilder class. Every socket has multiple local
and remote outgoing and incoming buffers, where one outgoing buffer is allocated for
each socket in the system. The outgoing buffers are filled by the local LPVs (1). Messages
targeting local LPs are placed in the local outgoing buffer and messages targeting LPs
of other sockets are placed in the according remote outgoing buffer. Whenever an LPV
becomes the NC (2), it distributes the pending messages to the incoming buffers of the
corresponding sockets (3, 4, 5), where the NC of these sockets redistributes them to the
appropriate partition queues. Step (3) shows the creation of local LP assignments, i.e.
messages are placed in incoming message queues on an LP basis, where LPVs can later
pick up the work and process that LP.

3.2 ERIS - A NUMA-Aware Data Management System 35

LP Assignment Queui:| e

@ LPV LPV \
Socket | | ‘ | Node H /
Coordinator
/
I 2

./4‘ ‘ | ‘| ‘ | | e Outgoing
\
.

[— @ Buffers

& Local Incoming Buffer I

\ \ |
A Remote Incoming Buffer

Figure 3.7: Living partition-enabled message passing layer in ERIS (socket-level),
cf. Figure 3.25 of [Kis17].

The structure of messages is shown in Figure 3.8. For us, the most important parts are
the Target LP, the Micro Operator, and Cmd 1 through Cmd N. The target LP determines,
which socket needs to receive the message. This information is stored by the last and most
crucial component of the messaging passing layer, the routing table. The routing table is
an index and can be considered as metadata of the container data structures. It holds
information about the location of all LPs and the data in them. Designing the routing
table efficiently has a considerable impact on the performance, since every intermediate
result, which ends up in a message, will go through this component.

The lookup of a specific data item in the routing table yields the respective target LP,
iff the routing table contains an index entry for that specific data of interest. If no in-
dex entry could be found, a null pointer is returned. When the routing table returns a
valid pointer to an existing LP, ERIS can create a so-called unicast message. Unicasts are
single messages, which can be directly forwarded to the respective LP. However, upon
returning a null pointer, ERIS forms a broadcast message. The NC will place instances of
that broadcast message into the message queue of every LP of the specified container (cf.
Figure 3.8), thus replicating the message according to the number of LPs in a container.

The MicroOperator part of a message contains a pointer to the lambda function of the
specific MicroOperator, which needs to be executed on the receiving partition. As ex-
plained in Section 3.2.1, MicroOperators will send their messages to successors, and

Target LP
Container
Logical Access Primitive

Dataflow
Transaction
Micro Operator

LP C AP DF TX OP Shared Data le:dl === | Cmd N

Storage Data |

T
!
i
i

User Data

Figure 3.8: ERIS message format, cf. Figure 3.24 of [Kis17].

36 Chapter 3 Near-Memory Computing Principles and Challenges

H H H H Energy-Control Loop

Average Latency

Workload m

11 (Mwwm| |

°
= Storage ECL
LP Level
@ 1-Storage
Figure 3.9: ECL hierarchy including the storage ECL per LP, cf. Figure 5.1 of [Kis17].

thus their receiving lambda function pointer will be sent along in the message. Lastly,
the Cmd parts contain the data, which has been fetched by the storage, together with the
user data. User data refers to the actual intermediate results, e.g. if a query builds a result
tuple over multiple operator instances, these partial intermediate results are packed in
the user data area.

3.2.4 The Energy Control Loop (ECL)

The declared goal of ERIS is to be energy proportional, i.e. if there is a decrease in the
system load, the systems energy consumption should decrease proportionally and vice
versa. Controlling the energy consumption is again done via a hierarchicaly organized
Energy Control Loop (ECL), as shown in Figure 3.9. The ECL is responsible to tweak control
knobs on each layer and triggers the respective ECL layers to take measures, based on
internal monitoring values.

For the processing layer, the ECL can apply Dynamic Voltage Frequency Scaling (DVEFS)
or even turn off complete cores or sockets, to fine tune the performance and energy con-
sumption of every core in the system. The adjustment of the processor clock rates is
guided by so-called Work-Energy-Profiles (WEP). These show a set of configurations and
their energy efficiency in relation to the performance they provide. A configuration in
the context of a WEP means the number of active cores, their individual clock speed and
which processor they are located on.

The storage layer can be triggered to adapt the underlying physical representation. Here,
the ECL can select from three available formats. One is the generally employed row store
model, the second is a column store and the third format is a hybrid of a column store and
a row store, where only some attributes of a data record are organized in columns and
the rest is stored in a row wise manner. In addition to switching the data layout itself, the
access patterns within a partition are constantly monitored. This allows for triggering a

3.2 ERIS - A NUMA-Aware Data Management System 37

(re-)build of single- or multidimensional index structures on a per-attribute basis. These
operations are steered by the LP-level ECL.

The reduction of the overall energy consumption is rather easily achieved, by simply
turning off all cores except one, which does the whole processing. However, this would
leave the system with insufficient resources and thus, ERIS is guided by the average
query latency with thresholds. Consider a targeted maximum query latency of, e.g.
1sec. ERIS measures, how many good and bad queries are answered in a certain time
frame, where good queries conform the target latency and bad queries exceed it. The control
loop periodically checks, if the amount of bad queries exceeds a predetermined toleration
threshold. If more than the toleratable amount of bad queries are measured, the ECL pro-
vides gradually more resources to satisfy the demand. On the other hand, if the system
yields a rate of 100 % good queries, it can gradually drain resources, like turning off cores
or reducing their clock or both, while maintaining a sufficient amount of good queries.

3.3 NEMESYS - ALLOWING NUMA-AWARE GRAPH PATTERN
MATCHING ON ERIS

In this section, we want to unite the basics from Chapter 2 and the ERIS system,
as described earlier in Section 3.2. Parts of this section are based on our previous
work [KKH*17, KUK*17]. Following the reasoning from Section 3.1, modern servers
incorporate an increasing amount of cores and sockets. Since current hardware trends
are continuously aiming towards an increasing amount of parallelism and main mem-
ory capacities, a non-uniform memory access becomes more and more prevalent to allow
hardware resources to scale up to dimensions of the likes of thousands of cores.

To address the issue of increasing NUMA effects and to achieve scalability for GPM
algorithms inside of a single machine, we adapt the NORAD architecture and build a
graph pattern matching engine on top of ERIS. By combining the relational foundation
and graph processing principles, we create our new research prototype called NEMESYS,
which is short for Near-Memory Graph Processing System, and present its architectural
overview in Figure 3.10. The term near-memory describes, that the data is processed by
a worker from the same socket, where it is actually located and thus differs from plain
in-memory processing. We will use the term NUMA-aware as a synonym for near-memory
in this thesis, since our system enforces socket-local computation by design. NEMESYS
has been published in our previous work [KKHL19, KUK*19].

Being based on ERIS, NEMESYS shares the same topological structure and thus consists
of a storage layer, a processing layer, a communication layer, which we call infrastructure and
components related to user I/O. In contrast to ERIS, NEMESYs allows for user defined,
i.e. online data ingestion and query generation.

We argue, that a scalable relational engine like ERIS is a perfect starting point for our
endeavor to build a NUMA-aware GPM engine, since basic problems have already been
addressed. That is, parallel workload distribution, general data distribution and worker
allocation is already present and thus we can focus on graph-specific aspects. In the
following sections, we will highlight the general design aspects of NEMESYS and how
we modify the underlying research prototype, to accommodate a GPM engine.

38 Chapter 3 Near-Memory Computing Principles and Challenges

|::>¢ ... Interaction D ... CPU Core Q ... Data Partition D ... Software Component

/ NEMESYs \

Infrastructure

Command:]
Load graph ¥ Messaging Interface «— Partition Manager
I — Query :>
e — i . SO OO, S, 7 SR, S, x
" Compiler l l l l Processing l l l l
1
: Socket 1 |:| |:| Socket N |:| |:|
- R LI
; A
:] Results <: | Storage
° 10 @ ;0 ©
— $ 2 @Q o

o /

Figure 3.10: Architectural overview of NEMESYS. Here, a part of a graph is shown and
divided into three disjunct partitions, which are distributed among all sock-
ets. Adjacent partitions are not necessarily stored on the same socket.

3.3.1 Data Storage

Storing a graph on a NUMA-affected system inherently requires data partitioning, to
cope with the NUMA effect. Hence, we need to dissect the graph into a disjunct set of
partitions, which can then be stored on the individual sockets, thus leading to the graph
partitioning problem (GPP). We consider every edge between two vertices as a poten-
tial communication path between two partitions, which ultimately result in messages in
NEMESYs. Therefore, it is advisable to reduce the number of edges and consequently
messages, that span across multiple partitions in order to be NUMA-aware. According
to [HR73], partitioning a graph into a balanced and disjoint set of k partitions while min-
imizing the edges, that are cut between partitions, is an NP-complete problem. Thus,
we need to find appropriate heuristics in order to partition our data in a timely manner,
which we present in detail in Section 4.2.1. For now, we assume an appropriate partition-
ing strategy to be applied, regardless of the actual algorithm.

In Section 2.1.2, we presented our data model, which is the edge-labeled multigraph. This
graph format can be easily represented using a triple notation, and thus perfectly fits the
relational storage model of ERIS. By applying some partitioning strategy, we can extract
Table 3.2 from the graph in Figure 3.10.

Table 3.2: Outgoing edge table for the graph in Figure 3.10.

Source | Target | Label Source | Target | Label

Partition 1 Partition 2
G C labelgc A B label g
G labeIGH A H labelAH

Partition 3 B D labelgp
D E labelDE C A labelc A
E F labelgg C D labelcp
F G labelgg C E labelcg
F C labelpc C H labeICH

3.3 NEMESYs - Allowing NUMA-Aware Graph Pattern Matching on ERIS 39

In general, a vertex is defined by its incoming and outgoing edges. However, to represent
the topology of a graph, it is sufficient to store only the outgoing edges of a vertex, since
we would otherwise duplicate every edge between any source and target vertices. Within
NEMESYS, a vertex is stored as a collection of its outgoing edges and therefore consists
of multiple records. The 11 edges of the example graph are organized within a dedicated
class, the LabeledGraphContainer (LGC). Every LGC is responsible for holding exactly
one instance of a graph, hence storing multiple graphs results in an equal amount of
LGC instances. An LGC in turn holds multiple instances of the previously described
LPs, denoted as Partition in Table 3.2 and colorful highlighted in Figure 3.10, which are
responsible for the actual physical storage of the data records. Considering an edge as a
3-tuple naturally implies storing graphs in a row-wise organization on the physical level.
However, due to GPM being a vertex-lookup heavy use case, we believe that a columnar
representation is a more performant approach. That is, since the lookup of a vertex id in
a specific partition is always the first processing step and applying a columnar storage
layout leads to reduced data transfer during this step. Furthermore, a vertex is stored
as an edge collection, and thus a partition can also contain a virtual vertex, i.e. a vertex,
which does not have any outgoing edges, just like H in Partition 1. If the intermediate
state of a GPM query now binds vertex H, since it has an appropriate incoming edge, the
system would have to scan Partition 1 for its outgoing edges, but to no avail. Analogous
to partitioning the graph, finding a suitable LP-to-socket placement is non-trivial and
therefore it can happen, that adjacent partitions are placed on different sockets.

Loading a graph into NEMESYS can be triggered by issuing a command via the
user interface. Every GPM engine related command is prefixed with the graph key-
word, and thus a graph can be loaded by issuing graph load <graphIdent> <options>
</path/to/GraphFile/>. The options part contains switches for building partition inter-
nal indexes or setting the initial physical representation to row- or column-wise. Graph
data files are expected to be in an N-Triple! like format, however we dictionary encode
the data with integer values to speed up internal processing. In addition to plain text
files, NEMESYS also supports the ingestion of binary formatted files. The content of an
example binary file with two edges and 8 bit encoded vertices would look like shown in
Figure 3.11.

However, this requires a preceding encoding step, such that an edge consists of 3 con-
secutive integer values of fixed length. On the other hand, NEMESYS is aimed to be an
online processing engine and ingesting binary files is significantly faster than plain text.
Therefore the overhead of previously encoding the data is easily amortized, especially
when a graph is loaded multiple times over several working sessions.

For the numbers shown in Table 3.3, we generated a synthetic graph with different sizes
using gMark [BBC*17]. The table shows the graph sizes in both edge count and approx-
imate data size and the time elapsed for loading graphs of different sizes. The binary

Edge Triple Edge Triple
A ~ N

00000010 10000111 11001101 00010010 00100011 01011000 00000000
Edge count :

mo-oe- » Edge Label
--» Target Vertex ID

---» Source Vertex ID

Figure 3.11: Binary graph file format with two stored edges.

"https://www.w3.org/TR/n-triples/

40 Chapter 3 Near-Memory Computing Principles and Challenges

https://www.w3.org/TR/n-triples/

Table 3.3: Loading times in milliseconds for different graph sizes and data formats.

Plain Text Binary
Edge count| Size on disk| | Row Store | Column Store || Row Store | Column Store
56 k 725kB 18 16 14 19
562k 8MB 178 175 114 123
5M 93 MB 1759 1752 975 1009
56 M 1.1GB 17920 18081 9580 9574
569 M 12GB 187649 184868 94164 94108

graph files are in fact larger, since characters in plain text files require only 1byte per
character, whereas the binary format requires 4 bytes per integer. Consequently, every
integer, whose decimal representation requires less than 4 digits, requires more space in
the binary format than in a plain text file.

The experiment shows three important observations. First, we can observe a linear scal-
ing for ingesting graphs with varying sizes. That is, loading a 10 times bigger graph
yields a 10 times longer loading time, meaning NEMESYS does not incur any overhead
for loading graphs with more edges. Second, reading from the binary format is expect-
edly faster, than reading from plain text files with a speedup of approximately 2X. Third,
there is virtually no overhead in storing a graph in either row or columnar representation.

3.3.2 Query Generation

NEMESYS supports CQs as described in Section 2.2. Forming CQs can be naturally done
following the prevalent triple notation, which is also used in the graph representation
itself. To post a query, users write a triple-based query string to the user interface, which
will then be further processed by the GraphQueryManager class. Queries are posted as
a set of white space delimited triples and are of the form [<source>,<target>,<label>],
where source and target describe vertex ids and label represents the value for an edge
label. NEMESYS accepts fixed values and variables for the vertex part or fixed values
and wildcards for the label. Query strings are dissected into a set of edge predicates
(triples) and for every edge predicate, the required operator is determined.

Operators are defined via the C++ programmable interface provided by ERIS” underlying
infrastructure and we argue, that only three operators are necessary to process GPM on
our targeted hardware. Reading a query string triple wise from front to back yields an
initial binding order and thus known and unknown bindings at a given processing step.
We identified that, based on the order of variables in a query, we can have 0, 1 or 2 bound
variables for any given edge predicate and thus the following three operators emerged:

Scan Operator. The Scan operator performs a parallel vertex scan over all partitions in
the case that the source as well as the target vertex of a CQ triple are unknown.
By specifying a certain edge label predicate, the operator returns only bindings for
vertices, where the connecting edge is labeled accordingly. The Scan operator is
always the first operator in the pattern matching process. As a straight forward
optimization step, the Scan operator can be fused with the directly following VB or
EB operator to create a processing pipeline.

3.3 NEMESYs - Allowing NUMA-Aware Graph Pattern Matching on ERIS 41

Table 3.4: Operator assignment based on variable bindings in a query triple. A vertex is
considered bound, if it has been matched in a previous edge predicate or if a
constant value has been set accordingly.

No. of Bound | No. of Unbound | NEMESYS
Vertex Variables | Vertex Variables Operator
0 2 Scan
1 1 Vertex-Bound
2 0 Edge-Bound

Vertex-Bound (VB) Operator. The VB operator takes an intermediate pattern matching
result from either the Scan or the EB operator as input and tries to match new ver-
tices in the query pattern according to the following CQ triple. The operator has
to be only applied when either the source vertex or target vertex is known in the
current processing step and thus bound.

Edge-Bound (EB) Operator. The EB operator ensures the existence of additional edge la-
bel predicates between known vertex matching candidates for certain vertices of
the CQ. It performs a data lookup with a given source and target vertex as well as
a given edge label. If the lookup fails, both vertices are eliminated from the match-
ing candidates. Otherwise the matching state is passed to the next operator or is
returned as final result. In this case, both vertex variables are bound.

Considering the GPM query example from Figure 2.5a, we identify five edge predicates,
as shown in Figure 3.12. According to Table 3.4, this sequence results in the operator
chain: Scan — EB — VB — EB — VB — EB — Result. From a relational database point
of view, GPM can be considered as a self join on the triple table. Hence, during query
generation, we require triples to be ordered such that no two subsequent edge predicates
have two unbound vertices. Otherwise the system would perform an unnecessary full
join, with a prohibitively large intermediate result set.

After parsing the query, the operators have to be parameterized and instantiated. At this
point, we know how many different variables have to be bound and thus we can pre-
pare intermediate state structs and vertex lookup orders. We explored two different ap-
proaches, one being skeleton based and the other one being based on online instantiation
of C++ class operators. Naturally, we implemented the three operators in C++ with the
appropriate hooks for source and target vertex ids as well as to be matched labels. This
approach leads to a plethora of branches during the execution, since one operator has to
check every possible order and position of a bound vertex in the intermediate matching
state. To overcome the extensive branching, we further implemented C++ skeletons as
template files. When generating the query, we can then analyze and precompute the po-
sitions of the vertices in our intermediate state structs and directly insert them into the

< : superwses (> @
4;‘0 supervises
9
~§ supervises
superwses

Figure 3.12: Edge predicates for the query from Figure 2.5a.

42 Chapter 3 Near-Memory Computing Principles and Challenges

| Infrastructure |

N I

Socket 1 Socket N
E, — V, E, E, E, A v, V, v, \A
E, V, V, E, E; E; E, E;
E, 1 Vu E;
| E, E, E, v, A E, E, v,
R
V, Vi V, E, V, E, V, E,
Memory Memory

Figure 3.13: Operator placement during a GPM process.

skeleton. However, this code has to be explicitly compiled during runtime by calling a
compiler to create a runnable query object, i.e. a shared library, which is then linked into
the address space of NEMESYS and finally executed. Obviously, submitting a system call
to a standard compiler yields too much overhead to be considered a viable option, and
thus Just-in-Time (JIT) compilation could be an option. We tested different variants and
found, that the wall clock time for instantiating the operators with branches and subse-
quently executing the query was consistently faster than reading the operator skeletons
from disk, parameterizing and compiling them and finally executing a branch-free ver-
sion. With the online instantiation of C++ class based operators, we identified further
optimization potential by rewriting the operator code as fully templated C++ classes.
However, this measure is out of scope of this thesis and left for future work, since we
could only optimize parts of the objects, where boolean parameters are used.

3.3.3 Processing Model

As outlined in Section 2.3, we target an asynchronous model to allow for maximum scal-
ability, and thus the Parallel Operator Execution (POE) model emerged. In NEMESYS, we
assign a dedicated worker thread to all logical cores of every socket in the system. Just
like in ERIS, we restrict worker access to the socket local memory domains and thus com-
munication, i.e. exchanging intermediate results, is forced to be messaging based over the
infrastructure layer.

Workers periodically cycle through an event loop, which accounts for sending out pend-
ing messages and processing incoming messages, i.e. grabbing a partition and extracting
the relevant data, according to the operator code, which is sent accompanying interme-
diate data from any previous operator. On a physical level, the messages are structured
according to Figure 3.8. After building up an operator chain, such as the one consisting
of six operator objects for Figure 3.12, processing starts by forking the scan operator code
to all workers in the system. Thus, every worker is executing a private copy of the oper-
ator code, allowing for independent operations. Usually, data partitions contain varying
amounts of relevant data for a given query, which leads to different runtimes for the same
operator, based on the worker or partition it is executed on. The eponymous effect of the
parallel operator execution is shown in Figure 3.13, where we present a possible operator
placement for the operator chain resulting from the edge predicates of Figure 3.12.

3.3 NEMESYs - Allowing NUMA-Aware Graph Pattern Matching on ERIS 43

@e

4

T e®
10
®e

Lle®

®
®
®
®
610
D6
®loe
@0
Oloe

OO OO IOMNOMNOCMHT,

X Y z K X Y z K

Figure 3.14: Matching sequence for the query and graph from Figure 2.5.

During its execution, an operator matches intermediate results from previous operators
according to the edge predicate, which is assigned to it, and sends out new intermedi-
ate states to the succeeding operator in the chain, until final matching states are formed
to a result. Figure 3.14 illustrates the matching process for the query and graph from
Figure 2.5. First, the Scan operator fetches all edges for the first direction of the knows
relationship and assures the existence of a mutual edge in return during steps (1) and
(2). After that, the engine identifies two different matching possibilities for query vertex
K. Both data graph vertices A and C qualify for that position and thus, a second inter-
mediate matching state is created during step (3). For both states, A and C are matched
to query vertices Z and K respectively, leading to two results during step (6). However,
either state can be regarded as a duplicate of the other, since both results contain the same
vertices and are therefore a candidate for proper duplication handling at the end of the
processing. We exclude the duplication of states for swapping the matchings for query
vertices X and Y for brevity. Semantically, the messages are flowing from one operator
to its successor during steps (1) through (6) but in reality, operators enqueue messages
with partitions, respectively their message buffers. This asynchronicity also allows us, to
return first results even before all operators finished, although this approach inhibits the
process of duplicate elimination or sorted output.

Besides processing CQs, NEMESYS also supports a deviation of RPQs, i.e. Variable Path
Length Queries (VPQs) as a proof of concept implementation for recursive query answer-
ing within the NORAD architecture. Figure 3.15a is a VPQ, which asks for a married
couple and all people who know one of them, if there are any, and their friends or friends
of their friends, if they have any. The resulting operator chain is shown in Figure 3.15b.
The arrows in the operator chain indicate message paths between operators and the cir-
cled numbers represent the messages, which target the accordingly numbered step in
Figure 3.15a. Like in RPQs, our VPQ implementation supports the Kleene star, which re-
quests zero to infinity iterations, as well as the + notation, which requests at least one to
infinity occurrences of the predicate to be present. This query is in fact a hybrid of a CQ
and a VPQ), since step (3) is a basic edge predicate, but we call any query a VPQ, as soon
as it contains a predicate with any recursion indicator. Such statements will be called a
variable path statement (VPS) henceforth.

In contrast to CQ parsing, VPQs lead to more operators than actual edge predicates and
thus VPQ processing yields three major differences when compared to CQ processing.
First, for every VPS, two operators are instantiated. This is a basic runtime optimization
for reducing the branching within the operators. The first VPS step has to consider send-
ing messages according to the actual recursion indicator. For example, the Kleene star
allows, that the predicate does not even have to be present in the final result and thus,
we can skip e.g. from the Scan operator, which is part of the first VPS step of (1), directly
to the first VPS step of (2). We call this measure an early out, since it allows to leave the
operator compound earlier than usual and which is the second difference to CQ operator
chains. An early out is added for every first operator of a VPS. The third difference is the

44 Chapter 3 Near-Memory Computing Principles and Challenges

®

@@ O—@
isFriend* knows* marriedTo

(a) VPQ statements.

@ Early Out i :
1

T
Input @ Recursion : @ Recursion i

Equalization
) I]
1
S V \" bV V LV R
@) @ @, @ @, ®
| i v

@ Early Out | O@ :
1st VPS Step 2nd VPS Step 3rd + Nth VPS Step | Lst VPS Step 2nd + NthVPS Step |
1 1

(b) VPQ Operator chain.

Figure 3.15: A VPQ query visualization.

messaging behavior of the second VPS operator. In contrast to CQs, these operators send
two messages for every matching candidate. That is, since every matched target vertex
of a VPS can be either the starting vertex of the next iteration for the VPS or the start-
ing vertex of the following edge predicate. To avoid branching in every VPS iteration,
we split the responsibility for sending early out messages and recursion messages into
two separate operators. However, this comes with zero overhead, since the total amount
of messages in the system stays constant. That is because the communication between
the two VPS steps can be regarded as one round of recursion. Subsequently, the forked
operator code is called by a worker on a batch of incoming messages and thus nothing
changes for the execution model itself, despite a slightly longer operator chain. The main
challenge in VPQ processing is an efficient state handling within a VPS. An asynchronous
execution model hinders the coordinated access to shared structures. In its current state,
we protect the operator-local shared lookup structures with scoped locks to synchronize
the access from other operator instances. To become fully NUMA-aware, we need to con-
sider replication strategies to make the information equally available for all sockets, but
this is left for future work.

Due to the required data partitioning, we do not always have all the necessary infor-
mation for one query within a single partition and thus it is inevitable to communicate
intermediate results between workers. In general, the message passing is handled by
the infrastructure component (cf. Figure 3.10), which hides the latency of the communi-
cation network. Locally, within a partition, we employ indices to speed up finding the
right vertices. On a global level, NEMESYS relies on a routing table, to keep track of local-
ity information for all vertices. This component is part of the LGC and stores information
about the corresponding NUMA node and data partition for every vertex in the stored
graph. Therefore, the design of the routing table needs to be carefully considered, since
graphs tend to exhibit a high number of vertices and fast, parallel lookups are neces-
sary for high performance. Since the routing table and any employed partitioning strategy
depend on each other, we consider the following two design options:

Compute Design. The compute design is a combination of a hash function as routing
table and a locality-agnostic partitioning strategy. Hash partitioning is easy to com-
pute, because it only needs to consider the id of a vertex to assign it to a partition.
This implementation calculates the target partition on the fly and does not use any
additional data structures. Nevertheless, due to hashing being a trivial approach,
partitioning is performed without any topology-based locality information.

3.3 NEMESYs - Allowing NUMA-Aware Graph Pattern Matching on ERIS 45

Lookup Design. The lookup design is the opposite to the compute design and is a com-
bination of a lookup table —instead of a hash function —as routing table and a locality-
aware partitioning strategy. The routing table is represented as a hash map, that con-
tains a one-to-one mapping of all vertices of the graph to their respective partitions.
Thus, we precompute a graph partitioning, which considers the locality of a ver-
tex” neighborhood. This approach leads to a routing table, which is as big as the
number of vertices, because we need to store the partition for every single vertex
in the graph. We employ this design for any partitioning strategy, that produces a
per-vertex partition assignment.

Both, the compute and the lookup design face advantages and disadvantages. On the one
hand, the compute design is the fastest implementation for a routing table but lacks the
ability to consider graph properties like locality or semantic relationships between ver-
tices, to create well-balanced and locality-aware partitions. On the other hand, the lookup
design is able to exploit such graph properties, which comes at the price of an additional
storage overhead. Due to the size of the routing table being proportional to the number
of vertices, it can easily exceed the cache size of the sockets. This leads to an increasing
amount of NUMA accesses from many workers, because the routing table itself is stored
on a single socket. The major advantage of the lookup design is its consideration of locality.
As mentioned earlier in Section 3.3.1, edges between partitions create messaging paths
between the two. This fact can become a considerable issue, if the neighborhood of such
a border vertex is spread among partitions, which are placed on distant sockets, since
sending messages between sockets is always slower than keeping the communication
locally on the same physical socket.

3.4 CHALLENGES OF GRAPH PATTERN MATCHING ON NORAD

Employing a system like NEMESYS fundamentally allows for highly scalable process-
ing by design. However, although the baseline implementation exhibits high scalability
for relational workloads, it does not necessarily perform equally well for graph work-
loads. We analyze the general properties of NEMESYS and demonstrate, that graph data
inherits a set of custom properties, which are not fully covered by relational processing
and thus, more sophisticated approaches are necessary. For comparability, we generated
three different synthetic datasets, again leveraging gMark [BBC17]. These represent a
bibliographical network, a social network and a protein network, which we call Biblio,
Social and Uniprot henceforth for brevity.

3.4.1 Holistic but compact locality metadata for scalable GPM

In this thesis, we refer to scalability as a proportional increase in processing capabilities,
according to the amount of invested resources, i.e. using double the amount of workers
should result in reducing the query runtime by factor two. To test the natural scaling be-
havior of a NORAD system for GPM, we used the Biblio and Social graph. We generated
a set of different queries out of their respective schemes and ran them against the graphs.
In Figure 3.16, we present the results for queries on the Biblio and Social graph. The ex-
periments were run on the Small server from Table 3.1, a 4 socket NUMA server with 8
physical cores per socket, which in turn provide 2 logical cores. Our benchmark server
thus has 64 cores in total and a sufficient amount of main memory to accommodate the
graphs, all indexes and the queries intermediate results all in-memory. We measured the
baseline performance with 2 active workers, increased the worker count to 4 and then

46 Chapter 3 Near-Memory Computing Principles and Challenges

—— NORAD Baseline Optimal Scaling —— NORAD Baseline Optimal Scaling

14000 8001
700

12000+
g 10000 g 6901
- > 500
2 80004 £ 400-
< 6000 1 < 300
% 4000 ® 5001
20001 1001

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Used cores [#] Used cores [#]
(a) Biblio, Compute Routing Table. (b) Social, Lookup Routing Table.

Figure 3.16: Runtime scalings with increasing worker count on different graphs.

subsequently added 4 more workers, i.e. 1 per socket, per measurement. The optimal
scaling was calculated based on the baseline performance, divided by the amount of ad-
ditional cores.

Although exact runtimes differ for distinct queries, we observe the shown general trends
and thus report two representative examples. Figure 3.16a shows a completely non-
proportional trend, where adding cores first yields a general performance improvement.
Increasing the invested resources leads to at least stable performance, but also can cause
a general slowdown. In contrast, Figure 3.16b we can observe a trend towards the de-
sired behavior. Whilst the first example should not be considered for scaling factors, we
observe a speedup of factor approx. 3.7 x for the second one. In an ideal case, scaling the
resources by a factor of 32 should result in a somehow similar speedup. We identify mul-
tiple reasons for the hindered scalability, which can be tracked down to both hardware
and the NORAD architecture. First, from a systems point of view, we acknowledge the
negative impact of hyperthreads (HTs), i.e. scheduling two workers on both logical cores
of the same physical core. The general idea of HTs is to provide excess resources when
using I/O heavy applications and thus outsourcing these operations with usually long
latencies to the HTs instead. However, scheduling two compute intensive tasks on the
same physical core leads to worker starvation and often eventually to an overall perfor-
mance degrade, since both logical cores have to share resources, e.g. local registers. This
issue can be easily mitigated by simply not instantiating more workers, than there are
physical cores on a socket.

On the NORAD system architecture side, we identify the infrastructure layer as a key
component in scalable GPM processing. The messaging procedure heavily relies on ex-
act information about where to send specific requests. If this information is not available,
the system defaults to broadcast messages. In contrast to computer networks, where all
devices listen on a certain broadcast address and feel responsible, whenever a broadcast
is sent to that specific address, we need to perform some additional steps when creating a
broadcast. As outlined in Section 3.2.3, messages are queued with their respective target
partition. Whenever a broadcast is sent, the NodeCoordinators are responsible for dupli-
cating the received broadcast and placing a copy in the queue of every partition on their
socket. Thus, sending a broadcast is always as expensive as the number of data partitions
in the system.

The broadcast problem has two root causes. First, the baseline prototype implements

only basic data partitioning primitives. To optimally balance the data among partitions,
the original routing table defaults to distributing incoming tuples in a round robin (RR)

3.4 Challenges of Graph Pattern Matching on NORAD 47

edge predicate 1 edge predicate 2 edge predicate 1/\ edge predicate 2
I

Y Y

Scan Vertex-Bound Scan Vertex-Bound

(a) Forward oriented query. (b) Mixed oriented query.

Figure 3.17: Different edge predicate orientations in GPM.

fashion, but without keeping track of the actual data placement. Whenever a lookup
request is posted against an RR-based routing table, it can only be answered by returning
a broadcast indicator. This is even more worse for graph data. In our data model, a
single vertex is composed of a set of edge triples and thus, the adjacency of a single
vertex is always distributed among multiple partitions. The issue of missing locality
information can be mitigated by using our proposed Compute or Lookup design routing
tables. Considering the storage layout from Table 3.2, we can keep track of the location
of every vertex by simply hashing its id or adding it into a lookup table.

Since the topology of a graph is inherently encoded through directed edges, we do only
have to store outgoing edges for every vertex to represent the graph (cf. Section 3.3.1).
Based on this design decision, we can only efficiently process a specific class of GPM
queries, with an example being given in Figure 3.17a. The figures shows an abstract ex-
ample CQ with two edge predicates, searching for all rectangles, which have an outgoing
edge to a circle, which in turn have an edge towards a triangle. The rectangle, circle and
triangle are abstract and thus unbound vertices. Answering such queries can be effort-
lessly done by looking up first all squares in the Scan operator and subsequently looking
up all outgoing edges for every previously matched circle. There is no overhead in this
process, since per default indexing has been done for source vertices and all outgoing
edges of that source vertex within the routing table. However, the queries like the ex-
ample from Figure 3.17b result in the undesired scaling behavior as previously shown.
The query differs from the first example by only inverting the direction of the second
edge predicate, which leads to two follow up issues. First, the outgoing edge table only
indexes source vertices and thus, requesting the source vertex of an edge with a known
target vertex can not be answered. Hence, a broadcast is once again sent out, impair-
ing the systems performance. Second, no single partition can be identified as target for
the next operator. Considering vertex C from the original edge table (c.f. Table 3.2), we
would receive two different partitions. However, sending a multicast message, i.e. a mes-
sage targeting a specific subset of data partitions in the system, is not supported by the
baseline system and thus, a broadcast is again necessary.

Challenge 1: We identify sufficient data locality information as a key aspect for scalable
GPM processing. Being able to directly address the correct target partition drastically
reduces the load on the memory subsystem, since only a small number of messages have
to be sent. Not knowing which data partition should receive a specific message leads to
contention on the memory bus, since broadcasts are multiplied by the number of parti-
tions in the system. For e.g. 64 data partitions, this could already lead to 7.07 M messages
in the system, when a query with three operators creates only three broadcasts per oper-
ator per received message. In addition, messages targeting inappropriate partitions lead
to local workload overhead. That is, since every message has to be processed, it leads to
a local lookup routine in the partition. If there is no local index on the required data, this
lookup deteriorates to an even more expensive scan, which in turn means an even more
severe performance drop, i.e. unnecessary work.

Challenge 2: The routing table is a key component for performance, since both its content
as well as its overall size contribute to efficient query performance. While the content of

48 Chapter 3 Near-Memory Computing Principles and Challenges

the partitions is dominated by the employed partitioning algorithm, the size of the rout-
ing table lookup structure itself can be influenced by the concrete implementation. Since
this data structure is accessed for each and every message, it should be cache resident
and thus rather small. This requirement actually prohibits a direct vertex-to-partition
mapping, since a graph with e.g. 1M vertices requires at least 8 MB to store only the
64 bit vertex ids, let alone data structures to hold both vertex and partition information.
Considering current server processor L3 cache sizes of approx. 22 MB, the routing ta-
ble would be at least partially evicted during query processing. Thus, a performance
degrade is inevitable when fetching target partitions during the messaging procedure.

3.4.2 Proper data placement and data allocation

Leveraging NUMA systems requires a thoughtful system design to fully exploit hard-
ware capabilities. As outlined in Figure 3.2, such systems yield decreasing bandwidths
and increasing latencies, the farther away a targeted NUMA domain is located. Table 3.5
shows the memory statistics for two of our benchmark servers, with Table 3.5a being
a fully connected four socket server and Table 3.5b being only a mesh connected four
socket server, i.e. communication between distant hops has to be coordinated by a medi-
ator core. Considering the local bandwidth, we see a slowdown of factor 6 in Table 3.5a,
when performing a write access to a remote socket. In NEMESYS, data partitions are
placed on a single socket an can solely be processed by workers, which are pinned to
cores of the very same socket and thus at least remote access of data is avoided.

Figure 3.18 shows an example of a partitioned graph with the dashed lines illustrating
communication paths between the vertices within the partitions. The vertices from the
blue partition are rather tightly connected to the vertices from the grey partition, however
they are placed on different sockets. Consequently, graph patterns, which target vertices
of the blue partition are likely to generate a lot of remote memory accesses. The content
of each data partition is determined by the employed graph partitioning strategy. How-
ever, the actual placement of the data partitions is governed by the system itself. The
NORAD baseline system implements a straight forward linear assignment strategy, i.e.
distributing 64 partitions on a four socket server means partitions 1 through 16 are placed
on the socket with the physical id 0, partitions 17 through 32 on the socket with physi-
cal id 1, etc. This approach is feasible when dealing with relational data, which is range
partitioned and thus evenly distributed among all partitions. However, graph data ex-
hibits semantic connections between vertices and thus, their actual placement in relation
to each other matters for GPM performance.

To highlight the general weakness of this standard range (SR) partitioning baseline, we
ran queries against the Social graph. One instance of the graph was partitioned with

Table 3.5: Server bandwidth matrices for the Medium server (4x Intel Xeon Gold 6130) and
a comparable platform (4x Intel Xeon Gold 5120) with different connections.

(a) Fully connected bandwidths in GB/s. (b) Mesh connected bandwidths in GB/s.
NUMA Nodes NUMA Nodes
0 1 2 3 0 1 2 3
0| 108.2 | 17.2 17.2 17.2 0]659)|17.1] 10.6 | 16.1
1| 17.2 | 107.5 | 17.1 17.2 1170|678 | 164 | 104
2| 172 17.2 | 108.6 | 17.2 21 10.6 | 16.1 | 67.4 | 17.0
3| 172 17.2 17.2 | 108.5 3| 16.5 | 10.4 | 16.9 | 67.5

3.4 Challenges of Graph Pattern Matching on NORAD 49

Processing Processing
Threads Threads

e ——

Socket O Socket N

Figure 3.18: Graph partitions with communication paths.

the SR algorithm, and a second instance was partitioned with a more graph oriented ap-
proach, which we call Balanced Edges (BE). During the graph ingestion period, the BE
algorithm counts the amount of edges stored per socket and places the next vertex on
the socket with the currently lowest amount of edges. We ran the same queries against
both instances and present the results in Figure 3.19. Because of the deviation of the run-
times between individual queries, the figure shows relative performance, with SR being
the baseline of 1 We observe a considerable performance gain in the upper part of the
tigure, just by applying a partitioning algorithm, which heuristically evens the amount
of edges stored per socket. With the SR algorithm, every socket receives exactly the same
number of vertices, but the number of edges per socket differs. Balanced Edges may lead
to unevenly distributed vertices among all sockets, but the number of edges is approxi-
mately the same. This is especially reasoned and mirrored by the amount of messages,
which are processed per socket and which is shown for each query in the corresponding
lower part of the figure. Such imbalances can happen, when the graph has been encoded
on an entity level, e.g. first all human vertices are numbered, then all city vertices, etc. As
presented in Table 3.5, local communication has the highest possible bandwidth and thus,
having a maximum of local communication is a desirable optimization goal. However,
using only one socket greatly limits the systems parallelism, since in the given example
only a maximum of 25 % of all available compute resources could then be utilized.

B Standard Ranged Partitioning Balanced Edge Partitioning

0 1 2 3 4

Query

Relative Query Performance
e © o o &
N 2 @ ® o

o
o

-
o

1.0 1.0 1.0 1.0

4
®

0.8 0.8 0.8 0.8

o
o

0.6 0.6 0.6 1 0.6 1

0.4 0.4+ 0.4+ 0.4+

02 0.2 I I I 0.2 0.2
0.0 0018 0.0 0.0
S \:\’ K:I/ \,’h S \,N \.’L K:)’ S > \,’I/ &/5 S e \.’1/ ‘&6’

5 5 s D8
2 e 2 2 2 2 2 2 2 2 2 2 2 2 2 2
& 55 S & ¢ 5 P A

Relative Messages per Socket

Figure 3.19: Comparing a relational partitioning approach against a graph partitioning
algorithm by relative query performance and messages processed per socket.

50 Chapter 3 Near-Memory Computing Principles and Challenges

Challenge 3: Data partitioning as well as data placement are important to consider for
efficient GPM processing. Whilst the former is a direct result of the employed partition-
ing strategy, the latter can also be adjusted by concrete allocation strategies. Furthermore,
the partitioning algorithm also indirectly influences the communication paths, depend-
ing on the vertex-to-partition assignment. The aforementioned GPP is an NP-complete
problem and thus can not be optimally solved for bigger datasets. Distributing the data
in a generally well performing manner can thus only be solved heuristically but we also
acknowledge that there is no one-size-fits-all strategy. We argue that deciding between a
fast and locality agnostic algorithm like hashing versus any graph-oriented partitioning
algorithm is non-trivial and should be done on a per-graph basis, if not on a per-workload
or even a per-query basis. Furthermore, placing adjacent partitions on the same sockets
is also beneficial for parallel GPM, to fully exploit the bandwidth characteristics of the
system. Identifying communication paths among a set of partitions for a given workload
is thus a considerable problem, which we also tackle in this thesis.

3.4 Challenges of Graph Pattern Matching on NORAD 51

52 Chapter 3 Near-Memory Computing Principles and Challenges

4

NEAR-MEMORY GRAPH PROCESSING ON
SYMMETRIC MULTIPROCESSOR SYSTEMS

4.1 Query Execution Plan Optimization
4.2 Topology-based optimization

4.3 Infrastructure-based optimization

The previous chapter outlined the aspects of our targeted hardware, as well as the prop-
erties and capabilities of the baseline implementation. In this chapter, we will cover
our adjustments to said baseline implementation, to allow NEMESYS becoming a near-
memory graph pattern matching engine, which is based on the novel NORAD archi-
tecture. We will thoroughly explain the missing features, which are required to allow
scalable processing with adequate query response times. Furthermore, we will present
relevant implementation details on the individual components. Since we focus on SMP
server systems, we need to consider several aspects, which we consider to be of funda-
mental importance to efficient graph pattern matching. First, we improve the general
query infrastructure by applying graph-specific query optimizations. Following that, we
investigate the influences of workload dependent system configurations, i.e. the effect
of data partitioning and the number of effective partitions, paired with varying worker
resources. After GPM processing is enabled by well-ordered query triples and adequate
partitioning, we thoroughly investigate measures to improve the overall messaging be-
havior in the system. We then further examine the influence of data locality by not only
managing the data partitioning, but applying different data allocation strategies, based
on the inter-partition communication paths to conclude this chapter.

4.1 QUERY EXECUTION PLAN OPTIMIZATION

Optimizing incoming queries is a well researched field. From a database perspective,
GPM represents a join-ordering problem. The amount of possible intermediate results
per step depends on the order of the subsequently matched statements in the query. Thus,
we can leverage state-of-the-art approaches from the database world, like heuristically
choosing the most promising join tree, which represents the order of the statements in
the query. This ordering is also called query execution plan (QEP). To achieve that, we
need to define a suitable heuristic, which estimates the cost of a given statement order
and thus allows us to rank the QEPs, based on their expected cost.

As outlined in Section 3.3.2, NEMESYS allows querying based on a triple language. Fur-
thermore, within our processing engine we allow a triple sequence only to be in an order,
such that no two unbound variables occur together in another triple than the very first.
Compared to our previous example, statements (4) and (6) from Figure 3.12 being the

Gra Qh uer
likes m loves Q
A B C
OO
QEP 1 QEP 2
likes loves
Ain’ E?'Jim AKui’ Bjuy AKui’ BJoe Bjdy,CKim
loves loves loves likes
@ CKim @ Ain

Figure 4.1: Query execution plan optimization on a small graph.

54 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

@ Optimized

Query request Query
Query \
Optimizer
Feedback
optimize()
® ®
@
loadGraph(...) Statistics @ Heuristic
Request meta information

Figure 4.2: Workflow for CQ optimization.

first and second statement in a query would be an invalid query. This measure prevents
the matching of any unconnected edge of the graph to an intermediate state of a graph
pattern, but it seriously limits the possibility of exploding intermediates.

The general problem is illustrated in Figure 4.1, with a trivial query asking for someone
who likes any other person, but in addition loves a distinct person. For the graph given
on the left-hand side of the figure, we can create exactly two different QEPs, which are
shown on the bottom right part of the figure. In the worst case, the system creates three
intermediate results for the first evaluated edge predicate. Thus the system is forced to
check all of them, but only one participates in a final result. The best case QEP allows for
only one intermediate result after the first evaluation step, which is a third of the worst
case plan for this example. Rearranging triples in a way that they produce the fewest
amount of intermediates possible is therefore a crucial requirement for scalable GPM.
The cost of evaluating an edge predicate can be heuristically determined by the amount
of variables in it and whether an edge label or a wildcard is given.

A heuristically optimal triple ordering is produced by our query optimizer, as shown
in Figure 4.2. First, during the graph loading procedure (1), NEMESYS collects general
graph statistics, like the degrees of the vertices or label frequencies (cf. Section 2.1), for
every graph that is stored in the system. Whenever a query is posted (2.1), the query
optimizer applies our heuristic to the collected statistics (2.2) and uses the result (3) to
reorder the query triples. Our empirically determined heuristic is calculated on a per-
edge basis and takes a query triple as input:

h((source, taret, label)) = log(|E|) * S + 0 x T + |E|*L 4.1)

First, we need to precalculate the intermediate results for Source, Target and Label ac-
cordingly (cf. Section 2.1):

g {degout(source), source is constant {log(IE), targetisindexed

V1, source is a variable |E|, target has no index

(4.2)

T_ deg, (target), targetis constant I count(label), label is constant
|E|, target is a variable 00, label is a wildcard

After the appropriate substitutions, the influence of source and target vertices is further
multiplied with the general complexity to find the necessary information within the par-
titions. We always build tree based indexes on at least the source vertex information and

4.1 Query Execution Plan Optimization 55

thus, we observe a logarithmic influence of the amount of graph edges for S. For target
vertices, we check for available indices and set § accordingly.

The result of step (3) from Figure 4.2 is a set of weighted edge predicates, with lower
scores for fast retrievable edge predicates and higher scores for more expensive ones.
The edge predicates are then sorted in an ascending order of their respective scores. This
could lead to the aforementioned invalid query state, when e.g. two statements with
two unbound vertices each are ordered subsequently. Hence, we apply additional sanity
checks to avoid that situation and reorder statements as minimal invasive as possible. As
a general rule of thumb, edge predicates with wildcards at the label position are always
processed last. That is, since they simply return all edges for a given source or target
vertex and thus would unnecessarily inflate the size of the intermediate matching state.

Collecting graph statistics prolongs the graph ingestion procedure as a whole and the
amount of collected statistical information has a an increasing impact, the larger the
stored graphs grow. Therefore we built our optimizer, such that it can also work without
statistics and a reduced rule set. If no statistics are present, our optimizer reorders the
edge predicates solely by their number of constants, i.e. edge predicates with constants
will always be processed before edge predicates with at least one variable. The same rule
is applied to the label part of the edge predicate, with the most weight being put on the
edge label portion. A statement with two variables and a constant label is placed before
a statement with a known source or target vertex but a wildcard for the edge label.

We evaluated the performance of our optimizer with query sizes ranging from 2 to 10
edge predicates. The overall optimization time ranges from 2 s up to 40 ps for all query
sizes. The variation stems from queries with either more or less complex statements,
e.g. when variable names consisted of longer strings like author than just the single letter
a. Considering that GPM queries usually run longer than a couple of milliseconds, we
consider this overhead to be negligible. However, we do not yet cache optimization
results. Hence, if a user enters a query, which was previously seen and optimized, we
would still run a whole optimization pass again. It is yet to be determined, if cached
results could also be applied to semantically equivalent queries or if testing two queries
for similarity is more expensive than just rerunning the optimization itself. However,
further improvements of the optimizer are deferred to future work.

4.2 TOPOLOGY-BASED OPTIMIZATION

From a software point of view, an SMP system with its globally coherent main memory
is no different to any other computer. Worker threads are executed by any processor with
free capacities and requested main memory is provided through standard malloc calls.
Thus, the parallel processing of graphs can be done with the same software on either a
commodity laptop with a dual core processor or a server with numerous multiprocessors
without the need to adapt the internal software architecture. Such hardware oblivious
approaches can never achieve their best performance on highly parallel SMP systems,
as they completely miss out on NUMA awareness, which we described in Chapter 3.1.
Achieving appropriate performance gains on a system with multiple memory domains
thus requires intelligent data partitioning. The topology of a graph is defined by the di-
rection of the edges between the graph’s vertices. Traversing edges implies a message
being sent from the partition of the source vertex to the partition of the target vertex. If
the source and target partitions are placed on the same socket, this communication is con-
siderable faster due to higher local bandwidth, as shown in Table 3.5a. Thus considering
the topology of the stored data graph is a crucial aspect for efficient graph processing on
an SMP systems.

56 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

In this section, we elaborate on how to optimize NEMESYS, based on said topology, i.e.
the storage layer of our system. Figure 3.19 already showed, that graph agnostic parti-
tioning can not achieve the same performance, as a simple graph partitioning algorithm.
Chapter 2 introduced different types of graphs, like road networks or protein interaction
graphs and each of them exhibits unique topology patterns. Therefore we argue, that
considering different strategies for data partitioning is necessary to achieve optimal re-
sults for different graphs and even different queries. That is, since every query pattern
implies a different set of traversed edges, which may result in different partitions, that
contain the relevant data.

Furthermore, storing only outgoing edges may be appropriate to mirror the graph’s
topology, yet this hinders the communication, since edges can thus only be traversed
in their actual direction. This leads to the necessity of broadcasts, whenever a backwards
traversal is necessary. The negative impact of broadcasts with an increasing amount of
worker threads was already shown in Figure 3.16. We overcome this limitation by intro-
ducing redundancy in terms of additionally storing incoming edges. These additional
edges increase the locality information for backwards traversals and therefore eliminate
broadcasting completely by trading a higher memory consumption for less messages in
the system.

4.2.1 Workload Dependent Graph Partitioning

Section 4.1 discussed how the order of query triples could impact the query runtime,
based on the resulting messaging scheme. This impact is further influenced by the con-
tent of the targeted data partitions and the socket on which a partition is located in the
system. In this section, we tackle the required data partitioning by generally classifying
graph partitioning algorithms. We will then discuss our approach on graph partitioning
for a NORAD based system like NEMESYS. Parts of this section have been considered in
our previous work from [KKH*17].

Partitioning a graph is inevitable when processing it in-memory on a NUMA system, if
system scalability is a desired goal. However, the GPP is NP complete, as mentioned in
Section 3.3.1. Thus, a general default is to rely on hash partitioning and replication, which
is also discussed in [Pot17]. Although their work on cluster-based query processing is or-
thogonal to our in-memory solution, the GPP arises for both systems. Hashing is usually
done on either source or target vertices. For RDF representations, which can be also used
for Wikidata (cf. Section 2.4), the subject or object part of the RDF triple are usually used
as input for the hash algorithm. NEMESYS already allows the implementation of hash
based partitioning by providing the compute design routing table from Section 3.3.3. The
major advantage of hash based partitioning is its low overhead for generating the actual
partitioning. The same hash function can be used both for storing the data during the
ingestion phase and for the lookup procedure during GPM processing. However, the
main drawback is the lack of locality aware partitioning or the amount of cut edges be-
tween partitions. Vertex locality, i.e. placing a vertex and its neighborhood on the same
partition or socket, leads to more local than remote messages. Considering that the local
bandwidth of a NUMA node is always higher than towards a remote node, it is advis-
able to facilitate more locality aware strategies. The amount of cut edges does not directly
contribute to this statement. In NEMESYS, traversing any edge leads to a message. Thus,
even inner-partition edges will create forced communication, although these messages
are guaranteed to reside on the same socket and leverage maximum bandwidth. Any
inter-partition edge is therefore a potential remote communication.

Achieving an appropriate graph partitioning is thus non-trivial and should be carefully
considered. The field of graph partitioning is well researched and an ongoing topic. A

4.2 Topology-based optimization 57

well known partitioning algorithm is the multilevel k-Way partitioning, which was orig-
inally introduced by [KK98]. It addresses the problem of minimizing the edge cut, thus
creating self-contained data partitions. However, for our use case, we do not desire com-
pletely self-contained partitions. The fewer edges span between multiple partitions, the
more we limit our potential parallel computation. Reasoned by the NORAD architecture,
only one worker is allowed to process one specific partition at any point in time, which
limits the systems scalability in the case of completely self contained partitions. Thus,
we need to define heuristical graph partitioning algorithms, which achieve a balanced
partitioning. Generally, balanced can mean to achieve either equal vertex or edge count
per partition or both, which defaults back to the original GPP. Therefore we first need
to classify potential partitioning strategies, which is shown in Figure 4.3. We split our
classification in two dimensions:

(1) The partitioning criterion represents the basic unit of a graph, that is supplied to the
partitioning strategy and on which the actual partitioning is applied.

(2) The balancing criterion describing the unit of the graph that is subject to be balanced
out between data partitions. In this thesis, balancing is restricted to only one criterion.

Both dimensions can be either fine- or coarse-grained. Edges (E) are the smallest achiev-
able granularity, as they are the basic building blocks of a graph’s topology. Vertices (V),
as a set of edges, are the next larger category, followed by components (C) as the coars-
est. We define a component as a set of vertices, which are more tightly connected to
each other, than to most vertices of the graph. An obvious example for a component in
a social network are groups of friends in the university. Usually, people inside of such
a group know each other well, but they often do not know much about other students,
thus there would exist much more edges between student vertices of the same group,
than to students of other friend groups. Hence, a partitioning strategy is a combination of
a partitioning criterion and a balancing criterion. Partitioning a graph at a specific granular-
ity limits the balancing to the same level of granularity, or below. For example balancing
components is not possible, when the partitioning is based on edges. For this thesis, we
designed four different heuristic approaches, following the classification table. However,
to the best of our knowledge, there are no known viable representatives for the C/E and
C/C strategy.

In the following, we detail on the feasible strategies and describe our heuristic imple-
mentations that we use for our evaluation. We restrict our considerations to one repre-
sentative algorithm per partitioning strategy. Furthermore, we only allow the generation
of a disjoint set of graph partitions and consider the replication of individual parts of the
graph as out-of-scope for this thesis.

Balancing Criterion

Figure 4.3: Classification of graph partitioning strategies and representative algorithms.

Edges (E) Vertices (V) Components (C)
c
'% *E\ Edges (E) . s:zr;tegy not pEé\slsible not pEc/>§sible
=
ié :_53 Vertices (V) V/EBSI;;S;egy W gge/tegy not ;;/(fsible
E © Components (C) unkcn/gwn C/\/I(_S\;\l;z;egy unli:n/c(z:wn

58 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

E/E Strategy. This partitioning strategy works on the most fine-grained level and con-
siders each edge triple individually. It is trivially implemented using a round-robin
(RR) approach, which evenly distributes edges to partitions in a lightweight fash-
ion. This strategy will distribute all edges of one vertex with more than one edge
to multiple partitions. Applying the E/E strategy disables the use of any of our
previously described routing table designs, since no hash function could project the
same source vertex id to a set of target partitions, which are selected during runtime.
Thus, processing an E/E partitioned graph can only use broadcasts. This design is
only viable, if most of the data partitions hold any relevant data for the processed
edge predicate of a GPM query.

V/V Strategy. This strategy partitions a graph by its vertices and balances the amount of
vertices per partition. Hence, our round-robin vertices (RRV) algorithm is a specific
implementation of this strategy, that too leverages an RR approach. When triples
are read during the ingestion phase, we keep track of assigned vertices and assign
the next not-yet-assigned vertex id to the next partition. If a vertex id has already
been assigned, every future edge will be stored in the same partition and therefore
we have a guaranteed disjunctive partitions, based on the source vertex.

V/E Strategy. Similar to the RRV strategy, the graph is partitioned by its vertices. How-
ever, this partitioning strategy balances the number of edges. We consider two spe-
cific algorithms as implementation of this strategy: balanced edges (BE) and distributed
skew (DS). Both algorithms sort the vertices by the number of edges in a descend-
ing order. The BE algorithm iterates over this sorted list and assigns each vertex
and all of its edges to the currently smallest partition to greedily balance the edges
across the partitions. The DS algorithm is a state-of-the-art approximation for han-
dling skewed data in distributed joins [CKWT14] and extends the BE algorithm. To
diminish the influence of vertices with high degrees, DS considers the degrees of
all vertices and divides them into two sets. One set contains all vertices up to a
given threshold degree and distributes them according to the BE strategy. The sec-
ond set contains all vertices, whose degree surpasses the threshold. Such vertices
are more likely to create skewed load on the one partition, which they are assigned
to. This is remedied by evenly distributing all edges of this vertex among all parti-
tions, i.e. following the E/E strategy for only those vertices. Therefore, performing
GPM processing on a DS partitioned graph leads to a mix of unicast and broadcast
messages, even for solely forward-oriented queries like shown in Figure 3.17a. Be-
cause most real world graphs exhibit a non-uniform edge per vertex distribution,
all vertex-oriented partitioning strategies (RRV, BE and DS) lead to different parti-
tioning results.

C/V Strategy. The goal of a component-oriented strategy is to achieve a maximum of lo-
cal communication, by storing naturally connected groups of vertices together in a
partition. Identifying such groups can be either done by well-known graph traver-
sal algorithms to identify strongly or weakly connected components or by lever-
aging traditional graph partitioning, which minimizes edge-cut between partitions.
The previously mentioned multilevel k-Way algorithm can be regarded as state-of-
the-art to achieve that goal. This algorithm creates partitions, which are generally
self-contained and exhibit only few inter-partition edges, compared to the other par-
titioning strategies. Thus, we select the k-Way algorithm as representative for the
C/V category. In this thesis, we use the k-Way implementation from the METIS li-
brary 5.1 [KK13]. Similar to the V/* strategies, we store all edges of a vertex in the
same partition to avoid broadcasts during the pattern matching process.

4.2 Topology-based optimization 59

Predicate 1 2,

"eqy;)
(Broadcast) . _ w “cay, Predicate 1
e P Uy €2 d
/ - CGS[/ (Broadcast):
A — B
______________ S . N ~ 2 v o
s c) 2% 1 4 cg
> g8 | | 25
; < TS5 X ! 25
£ — & /”"(:\eg ‘l & B ¢ =
\ o \\
L ;\,_:,=_:_19(e‘5 6@‘:‘\
Predicate 4 -~ \%(oa Predicate 3
(Broadcast) {Broadcast)
(a) V Query. (b) Quad Query.

Figure 4.4: Evaluated query patterns.

A straight forward partitioning approach is simply hashing a vertex by its id. Assuming
vertex ids to be equally distributed, we could fit hashing into a V/V strategy, however
hashing is agnostic to the graph topology and is thus omitted in this section. Besides
using a single strategy, we see the potential of hierarchical graph partitioning, i.e. a com-
bination of a C/* strategy together with the others. A possible combination would be
to leverage k-Way partitioning to dissect the graph into as many partitions as the server
provides sockets and then further process these resulting super-partitions with any other
strategy. However, the synthesis of partitioning strategies is out of scope for this the-
sis and left for future work, as we want to examine the individual properties for each
category.

To investigate how a partitioning strategy influences the GPM performance, we con-
ducted an exhaustive evaluation on a small and large-scale multiprocessor system, which
are listed as Small and Large in Table 3.1. We use four test data graphs, each representing
an individual application domain, that are again generated with the graph benchmark
framework gMark [BBC*17]. Additionally, we defined two CQs as depicted in Figure 4.4:
(1) the V query shapes a V with five vertices and four edges and (2) the Quad query is a
rectangle, which consists of four vertices and four edges. Both queries require four edge
predicate evaluations, however the Quad query leads to an EB operator, which the V query
does not. We generate these two query types individually per graph and only assign a
value to the edge label part of the query, such that all query vertices are variables. Since
the label value will be different for each graph, we omit its value in the figure. Based on
the query semantics, the evaluation of the edge predicates is performed as follows:

V Query. The first edge predicate evaluation is broadcasted to all partitions, because
only the edge label is known and not the source vertex. Since edge labels are not
unique within any partition, an initial broadcast is inevitable to start off the GPM
processing. The target vertices from this intermediate result set are then used as
source vertices for the second edge predicate evaluation. Depending on the parti-
tioning strategy, the second edge request is evaluated using either unicast or broad-
cast messages, e.g. if DS was used. The target vertices of the resulting matching
candidates are now utilized as target vertices for edge predicate 3.

Quad Query. The edge predicate evaluation of the Quad query is mostly similar to the
one of the V query. An initial broadcast is required, because only an edge label is
given in the pattern. Edge predicate 3 is the only backward oriented edge in the
pattern and thus necessitates a broadcast. The fourth edge predicate can again be
processed with solely using unicasts, if DS is not used.

60 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

25 Biblio . . 6 ; B Biblio
g [Shop ¢ ° <5 [Shop
EZO I Social F; I Social
F=] I Uniprot 24 I Uniprot
S 15 H
g o .

(=% [
g1 g 2 H i T
£ 5"~ . ———
25 W o .
0 —_,———— — e 0
CNV VIV V/E: BE V/E: DS CNV VIV VIE: BE V/E: DS
Partitioning strategy Partitioning strategy
(a) Vertex distribution. (b) Edge distribution.

Figure 4.5: Partitioning results for 64 partitions.

For all of our experiments, we loaded the graph-under-test into the main memory, par-
titioned it, and evenly distributed the partitions across the sockets and executed both
pattern queries for all partitioning strategies and all possible system configurations (SCs).
In this thesis, a system configuration denominates a combination of the active workers
and the total number of partitions. We repeated each experiment 20 times and calculated
the average over all runs.

Figure 4.5 shows an overview of the partitioning results for the different strategies on our
test graphs. Since the Small server exhibits 64 hardware threads, we split the graphs into
64 partitions. The boxplots show the deviation of vertex and edge distribution among the
64 available partitions. Narrow lines for some strategies represent the median, as no real
deviation could be observed. From these plots, we can derive the following observations:

(1) The partitioning and balancing criteria of the respective strategies are fulfilled inde-
pendently of the graphs. For instance, our RRV algorithm from the V/V strategy par-
titions the graphs by vertices and ideally balances the vertices among all partitions,
i.e., the vertices are evenly distributed over the partitions as depicted in Figure 4.5a.
The same applies for BE and DS of the V/E category, which perfectly balance the
edges among the partitions.

(2) Depending on the strategy, balancing is done either by vertices or edges. This can lead
to an imbalance on the non-balancing criterion depending on the underlying graph.
For instance, BE and DS balance edges among partitions. However, there are few
partitions with a much higher number of vertices than the others, which lead to the
outliers in Figure 4.5a. The V/E strategies create vertex imbalances on all partitions,
whereas the V/V strategy leads to slight edge imbalances across the datasets.

(3) The k-Way algorithm partitions graphs by components and balances the vertices. On
the one hand, this leads to an even distribution of the vertices over the partitions for
our test graphs as shown in Figure 4.5a. However, this algorithm produces highly
skewed edge distributions among all partitions. That is due to the reduction of edge
cut being an optimization goal.

The E/E strategy defaults to permanent broadcasts for all edge predicate requests and
thus marks the worst case, as outliend in Challenge 1 from Section 3.4. Because of its poor
performance, we will omit this strategy from further consideration. To summarize, each
partitioning strategy is able to successfully maintain its respective balancing criterion
while partitioning the graph into the considered number of partitions. However, the
quality of the result is different for each case. Depending on the graph, there are partitions
that vary greatly from the majority.

4.2 Topology-based optimization 61

Worker
8 16 32 64
8 2.46 2.11 2.04

2 16 231 138
2 321 230 1.46
£ 64| 236 1.23
L 128] 259 1.40

256 1.72

Figure 4.6: System configuration heat map for RRV, V query on Biblio graph, Small server.

If we compare the partitioning results of Figure 4.5 for the Biblio graph, we find that
the RRV algorithm of the V/V strategy achieves the best partitioning result in terms of
balanced partitions for both vertices and edges. Generally, such a balaced partitioning
is beneficial for GPM, as it limits potential workload skew upfront. In the first set of ex-
periments, we use that setting to investigate the influence of the system configuration on
the pattern matching performance for the V query. Thus, we varied the number of active
workers between 8 and 64 and used 8 to 256 partitions. The heat map from Figure 4.6
shows the slowdown factors compared to the heatmap-local optimal configuration. For
the V query on an RRV partitioned Biblio graph, we found the optimal SC to be using 32
partitions and 32 workers. Generally, the pattern matching scales well for physical hard-
ware threads, which is indicated by the coloring trend from orange to green between
the columns for 8 and 32 workers. In this case, 64 workers are not beneficial, because
the V query employs two broadcasting requests at the end and the hyper-threads do not
provide as much performance as their physical siblings.

After examining the query performance for a single partitioning strategy, we conducted
the same experiments with the remaining strategies on the same graph to show the influ-
ence of the different partitioning strategies in detail. The resulting heat maps are depicted
in Figure 4.7 and show the relative performance, compared to the global optimum, which
is found in Figure 4.7a at 64 workers with 64 partitions. From these heat maps, we derive
the following facts:

Worker Worker
8 16 32 64 16 32 64
g 339 3.36 3.36 3.56 3.44
2 18] 3M 1.98 1.68 2 2.33
o o
2 32| 348 1.95 2 2.46
£ 64| 334 2.02 £ 2.08
& 128] 354 1.98 & 2.35 1.96
256] 391 2.18 1.20 2.90 2.13 2.56
(a) C/V: k-Way (b) V/V: RRV
Worker Worker
8 16 32 64 8 16 32 64
8 8
§ 16 § 16
2 2 2 32
£ 64 £ 64
(]]
o [=1%
(c) V/E: BE (d) V/E: DS

Figure 4.7: System configuration heat map, V query on Biblio graph, color shadings rela-
tive to the global optimum (k-Way 64/64), Small server.

62 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

B |ocal Remote I Broadcast

=
o
o

w
o

Relative Messages [%]

)

k-Way 32/32 RRV 32/32

Figure 4.8: Messages per partitioning algorithm, V query on Biblio graph. Small server.

First, the V/E strategy, represented by the BE and DS algorithms, performs compara-
tively bad. This happens because the generated query massively hits the vertex outlier
partition, which is also visibile in Figure 4.5a. Hence, this partition becomes a bottleneck
for the third and fourth edge predicate of the V query. A partition can be processed, as
soon as it receives messages. However, a worker snapshots the current message queue,
when it start processing and thus can not work on messages, which arive after it started
the operator logic. Thus, when a single partition receives a lot of messages, which are at
least slightly delayed, this can cause noticeable overhead.

Second, the k-Way partitioning results in a better query performance and utilizes the
whole system with its optimal system configuration being 64 partitions by 64 workers.
For the Biblio graph, this strategy results in evenly distributed vertices and an almost
even distribution of edges among the partitions. Furthermore, connected vertices are
partitioned together, which is not necessarily the case for RRV. For the k-Way partitioning,
the system creates mostly socket local messages and only a few remote messages whereas
the V/V strategy results in many remote messages. This effect is illustrated in Figure 4.8.

For the experiments on a single graph, we can conclude, that the C/V strategy is able
to utilize all hardware threads. However, we can also deduct limited scalability behav-
ior from the slowdown factors, which are shown within Figure 4.7a. The V/V strategy
exhibits comparable performance, but leads to a smaller area with similar performance,
which means less possibilites to adapt either worker or partition count, if a budget on
either resource would be given.

After thoroughly examining the influences of different partitioning strategies on one
graph, we conducted the same experiments for the previously introduced Social and
Uniprot graph and added a webshop grpah, called Shop, for more variety. Figure 4.9a
presents the best system configurations per partitioning strategy and highlights the over-
all optimum. We showed that the C/V strategy performs best for the V query on the
Biblio graph by utilizing the whole system and therefore should be used as the best strat-
egy. However, when querying the Shop graph with a k-Way partitioning, the optimal
SC changes to 32/32 and yields a slowdown of factor 2.3, compared to the optimal SC
of the V/V strategy. The slowdown can be explained by the massive imbalance of edges
within the partitions of k-Way as shown in Figure 4.5b. Yet, the other strategies show

Biblio Shop Social Uniprot Biblio Shop Social Uniprot

Strategy e ms sc ms SC [ms SC | Ms Strategy sc ms sc ms sC | ms sc Ms
VIV:RRV 32/32 | 65 32/32 | 11790 32/32 | 665 8/8 | 884 V/V: RRV 32/32 | 2663 32/64 | 5773 32/32 | 102 3232 | 22
V/E: BE 32/128 | 838 32/32 | 12387 16/16 | 666 8/8 | 878 V/E: BE 3232 | 2617 32/64 | 5850 16/16 | 132 32/32 | 21
V/E: DS 8/16 | 849 32/32 | 11964 32/32 | 673 8/8 | 890 V/E: DS 32/32 | 2682 32/64 | 5982 32/32 | 94 32/32 | 22
CN:k-Way | e4/64 | 48 32/32 | 27376 32/32 | 864 8/8 | 885 CN:k-Way | 32/32 | 2254 64/128 | 15217 32/64 | 304 3232 | 24

(a) V query. (b) Quad query.

Figure 4.9: Optimal system configurations per graph and partitioning strategy for both
query patterns on four different graph types, Small server.

4.2 Topology-based optimization 63

E‘ié:‘k‘-’;fu’;‘ii Biblio Uniprot
g 299,488 971
2 117 970
3 267 294,932
4 837 10.320
| Unicast | Broadcast | Finalresult |

Figure 4.10: Intermediate results for each edge predicate of the V query.

well-balanced edges per partition, therefore the merely equal query performance is not
surprising. The same holds true for the Social graph. The Uniprot graph is special in
terms of the intermediate results, which are shown in Figure 4.10. Compared to the Bib-
lio graph, the V query produces almost all messages as broadcasts for the Uniprot graph
in the third edge predicate. Broadcasts are known to inhibit scalability and thus, less
partitions mean less total messages, which results in less runtime.

The previous paragraph concluded our test series for the V query. Now we want to
show the performance implications of all considered influence factors for a second query
type, namely the Quad query from Figure 4.4b. The results for all system configurations,
graphs and partitioning strategies are shown in Figure 4.9b and the respective heat maps
are presented in Figure 4.11. The optimal configurations are now always tied to 32 Work-
ers with a varying number of partitions. We see the same runtime behavior as for the V
query, except for the V/E strategy. The Quad query does not hit the vertex outlier parti-
tions (c.f. Figure 4.5a), which enables the BE and DS partitionings to compete with RRV
and k-Way. The Shop and Social graphs show an equal slowdown for C/V, compared
to the other strategies. However, the Uniprot graph now scales well with the hardware
threads, since there are more intermediate results in the Unicast edge predicate. From
these experiments we can already conclude, that there is no single best partitioning strat-
egy. To achieve the best performance results for GPM, we need to consider the underlying

Worker Worker
8 16 32 64 8 16 32 64
8| 161 1.64 1.67 2.56 8| 167 1.67 1.69 2.48
o 1] 215 1.32 136 2.12 2 16|l 225 1.22 133 1.87
.g 32| 3.27 1.78 1.00 1.70 2 32| 339 1.78 1.18 1.66
£ 64| 575 3.16 2.09 231 T 64| 5.80 328 2.03 230
& 128] 10.00 5.88 3.89 4.06 & 128| 10.00 5.86 3.85 428
256] 10.00 10.00 7.81 7.93 256] 10.00 10.00 7.75 8.41

(a) C/V: k-Way (b) V/V: RRV

Worker Worker
8 16 32 64 8 16 32 64
8| 169 1.68 1.70 2.51 8l 174 174 1.77 2.52
2 16| 226 1.23 1.33 1.87 2 16| 221 1.25 1.40 1.91
2 32| 332 1.78 1.16 1.68 2 32| 33 1.82 1.19 171
Y 64| 5.8 3.25 1.92 2.34 T 64| 5.79 3.32 2.07 2.35
& 128] 10.00 5.87 3.88 4.31 & 128| 10.00 6.03 3.93 434
256] 10.00 10.00 7.79 8.36 256] 10.00 10.00 8.09 8.52

(c) V/E: BE (d) V/E: DS

Figure 4.11: System configuration heat map, Quad query on Biblio graph, color shadings
relative to the global optimum (k-Way 32/32), Small server.

64 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

Workers Workers Workers Workers
64 128 192 256 320 384 768 64 128 192 256 320 384 768 64 128 192 256 320 384 768 64 128 192 256 320 384 768

128 128 128] 128
192) 192) 192 192
256 256 256
320) 320 x 320) 320
384 384] 384 384 X
768 768 768 x 768
1536 X 1536 1536 1536

(a) C/V: k-Way (b) V/V: RRV (c) V/E: BE (d) V/E: DS

256|

Partitions
Partitions
Partitions
Partitions

Figure 4.12: System configuration heat maps, Quad query on Social graph, color shadings
relative to the local optimum, Large Server.

Workers Workers Workers Workers
64 128 192 256 320 384 768 64 128 192 256 320 384 768 64 128 192 256 320 384 768 64 128 192 256 320 384 768

128 128 x 128 128
192 192) 192) 192)
256 256 256 x 256
320} 320 320| 320| X
384 x 384 384 384
768 768 768 768
1536 1536 1536 153§

(@) C/V: k-Way (b) V/V: RRV (c) V/E: BE (d) V/E: DS

Partitions
Partitions
Partitions
Partitions

Figure 4.13: System configuration heat maps, V query on Biblio graph, color shadings
relative to the local optimum, Large server.

data graph, the partitioning strategy and the currently selected SC. Furthermore, results
vary on a per-query basis.

First, we have shown the effect of partitioning and SCs on the Small NUMA server. Now
we want to study their impact on a large-scale NUMA system, which is an SGI UV 3000
and is called the Large server in Table 3.1. Therefore we repeated the previous exper-
iments and used gMark to scale up all graphs accordingly, while preserving all other
graph properties. Generally, we found that the entirety of our experiments on the large-
scale system confirmed our observations from the experiments on the Small server. Fig-
ure 4.12 illustrates the heat maps for the Quad query on the Social graph and Figure 4.13
shows the results for the V query on the Biblio graph for the Large server. We observe,
that the HT column (768 workers) never holds the highest performing configuration, with
the general performance being even worse for the V query. For the Quad query, utiliz-
ing all physical cores leads to optimal performance in many cases, which underlines that
our processing model scales well with the employed hardware. In contrast to the Small
server, we see more variations in the heat maps, which is explained by the bigger num-
ber of sockets and the increasing influence of the NUMA effect on query performance.
Furthermore, due to the larger well-performing areas, i.e. regions in the heat map with
green shaded colors, we could better follow resource budgets, like limited workers or
partitions. The V query heat maps show comparable results for both C/V compared to
V/V and between the both V/E strategies. Contrary to the previous results, employing
the maximum thread count generally inhibits the performance, which is again explained
by the increased amount of broadcasts during query processing. Performance wise, V/V
and C/V strategies yield similar query runtimes, even with greatly varying SCs. The
V/E strategies may exhibit local optima, however their overall query performance is on
average almost ten times slower, compared to the C/V and V/V strategies. This fur-
ther underlines our claim, that query performance is greatly dependent on the graph, the
employed partitioning strategy and the available resources.

Employing an optimal partitioning strategy is crucial for query performance. We argue,
that weighing the amount of broadcasts against unicasts, that result from the query pat-
tern, is important to find the best SC and partitioning strategy. For dominant unicasts, it
is desirable to partition the graph using a strategy, that balances both edges and vertices.

4.2 Topology-based optimization 65

We found, that employing the C/V strategy is beneficial for the selected experiments,
even if there is a minor edge imbalance, since the unicast part of the query will benefit
from the locality property of adjacent graph partitions. However, if the edge imbalance
exceeds a certain limit, we suggest switching to the V/V strategy. When the broadcasts
become dominant, each partitioning strategy performs reasonably even, whereas it is de-
sirable to achieve a balanced amount of edges between the partitions, as edges represent
the amount of data records per partition. Balancing them will thus result in an apriori
avoidance of workload skew and thus more evenly distributed work in the system. The
challenge is to adequately estimate the influences of broadcasts and unicasts due to their
dependency on the underlying graph. Our experiments showed, that the optimal system
configuration varies among the different workloads. As a rule of thumb, we conclude
that it is mostly beneficial to not use hyper threads in most cases and directly map the
number of graph partitions to the number of workers. To conclude, the employment of
suitable partitioning strategeis can therefore be considered as an answer to Challenge 3
from Section 3.4.

4.2.2 Graph-Aware Infrastructure

After identifying optimal SCs for a given graph, we can now focus on the infrastruc-
ture layer and reduce unnecessary messages in the system. The main antagonist for scal-
able performance is represented by broadcasts as a result of one-directional edge storage.
Thus, we identify sufficient locality information as a crucial component, to eliminate the
need for broadcasts, since efficient messaging is a key component for Delegation-based
systems like NEMESYS. Answering mixed oriented queries like shown in Figure 3.17b
is often required. The inherent broadcasting hinders the systems scalability and thus we
investigate, how the amount of messages can be reduced. Parts of this section are based
on our previous work from [KUK*17].

Implementing redundancy

The target partitions of a message are always identified by the source vertex of an edge
and as described, we require disjunct partitions on our graphs. However, when storing
triples, the disjunction can only be ensured for either the source, or the target column.
Thus, indexing both columns to lookup target vertex ids inside a partition will not alle-
viate the broadcast problem. The straight forward solution to this problem is to not only
store outgoing edges, as the prototype requires, but also all incoming edges for every ver-
tex, separately. This can be done simultaneously, while loading the graph and creating

Table 4.1: NEMESYS incoming edge table for the graph in Figure 3.10.

Source | Target [Label Source | Target [Label
Partition 1 Partition 3
G F labelgr D B labelpg
H A labelga D C labelpc
H C labelHC E C labeIEC
Partition 2 E D labelgp
A C labelAC F E labeIFE
B A labelBA
C F labelcr
C G labelcc

66 Chapter 4 Near-Memory Graph Processing on Symmetric Multiprocessor Systems

Socket 0 Socket 1 Socket 0 Socket 1

c1 HT1 c1 HT1 c1 HT1 a1 HT1
c2 HT2 c2 HT2 (o7) HT2 c2 HT2
Socket 2 Socket 3 Socket 2 Socket 3
c1 HT1 C1 HT1 C1 HT1 Cc1 HT1
c2 HT2 (o) HT2 c2 HT2 c2 HT2
l:‘ Active l:‘ Inactive l:‘ Active D Inactive
(a) Cores natural, sockets natural (b) Cores natural, sockets interleaved.

Figure 4.14: Different allocation strategies for 7 workers on a 4 socket system with two
logical cores per physical core.

the outgoing edge table. Naturally, every parsed edge [<source>,<target>,<label>] is re-
versed, such that it becomes [<target>,<source>,<label>]. This triple is then inserted into
a second table, the incoming edge table, which is shown in Table 4.1. As for the outgoing
edge storage, we again create three partitions, which have to be distributed among all
sockets as well.

Most importantly, the partitions of both tables do not necessarily exhibit the same cardi-
nalities or content, which already happened in this simple example for Partition 1. Here,
vertex H is now also stored in this partition, which it was not for the outgoing edge table.
This leads to the effect, which we call vertex schizophrenia. Performing a lookup operation
on either the outgoing or incoming edge table for a specific vertex leads to answers with
different semantics. Topology-wise, we do not add any further information. However,
the employed redundancy consolidates all incoming edges of a vertex into one partition,
which again creates a disjunct set of partitions for all target vertices of any edge.

To check the effect of redundancy, we repeated the experiments from Figure 3.16a on the
Small server (cf. Table 3.1). When scaling up the available compute resources, we have
multiple schemes to choose from. As each physical core of the underlying multiproces-
sor usually provides two or more logical cores, we can decide if we want to first allocate
all workers for one physical core (siblings first), or if we first allocate one worker per
physical core and fill up the remaining logical cores afterwards (naturals first). Further-
more, worker allocation can choose to place consecutive resources on one socket, until all
cores of that socket are used and then move on to the next (sockets natural) or interleaving
worker allocation on all sockets (sockets interleaved). The individual effects are illustrated
in Figure 4.14. We define the short handles for core allocation as nat/sib and for socket
allocation as nat/int. Obviously, these two versions of each core and socket allocation
can be combined to get a total of four worker allocation strategies being nat/nat, nat/int,
sib/nat and sib/int.

The results for Figure 4.15a are tested using nat/nat and for Figure 4.15b we changed al-
location scheme to nat/int. Figure 4.15a shows the direct impact of redundancy on the
systems scalability, compared to Figure 3.16a. The NORAD baseline achieves a speedup
of factor 1.7 x using 64 cores with no