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Abstract 

Enormous demands for fast and low-power computing and memory building blocks for consumer 

electronics, such as smartphones or tablets, have led to the emergence of silicon nanowire 

transistors a decade ago. Along with the Si-based nanotechnology, the silicon compatible optical 

and chemical sensing applications have boosted the research on hybrid devices that combine the 

organic and inorganic materials. Apart from the revolution in the device dimensions, the rapid 

growth of artificial intelligence in the software industry brunch requires the next generation’s 

computers with the revolutionized hybrid device architecture. Implementing such new devices can 

effectively perform machine learning tasks without the massive consumption of energy. The 

hybrid Si nanowire devices have an excellent capability to replace the conventional computing 

element by providing new functionalities of combined materials to the traditional transistor 

devices preserving the advantage of CMOS technology. 

A goal of this thesis is to develop functional hybrid Si nanowire-based transistors 

modulated by the stimuli-dependent gate to go beyond the current digital building blocks. The 

hybrid devices converge semiconductor channel and various materials from organic molecules to 

silicate composite as a gate of the transistor. External stimuli change the electronic state of the 

gate materials which is transformed to the gate potential of the transistors.   

First, this thesis studies the electronic characteristics of the Si nanowire FETs under the optical 

stimulus. Optical stimulus induces the strong conductance change on bare Si nanowire FETs. 

Under the light with low power intensity, the transistor shows an unconventional negative 

photoconductance (NPC) which is dependent on the doping concentration of the nanowire and the 

wavelength of the incident light. The dopants ions and surface states cause photo-generated hot 

electrons trapping which restricts conventional photoconductance in the semiconductor.  

In the hybrid device, however, the gate material on the Si dioxide layer plays a significant role 

in the optoelectronic modulation of the FET device. This thesis demonstrates that an organic 

photochromic material, porphyrin, wrapping around the nanowire channel acts as an optical gate 

of the Si nanowire transistor. The diffusive property of electrons in the molecular film decides the 

optical switching dynamics and efficiency.   

Further, this thesis introduces new functional gate material, sol-gel derived ion-doped silicate 

film, based on the availability of stimulus-dependent gate modulation. This amorphous and 

transparent silicate film shows memristive property due to the ionic redistribution in the film under 

bias condition. Interestingly, the sol-gel film-coated Si nanowire FETs the devices show a double 

gate effect cooperating with a back gate under light illumination which is due to the channel 

separation in the fin structure of the nanowire. 



In addition, the sol-gel silicate film-coated Si nanowire transistor emulates the neuronal 

plasticity with pulsed gate stimulation, namely “neurotransistor.” Because of the mobile ions in 

the silicate film, the transistor has a short-term memory and mimics membrane potential change 

of the neuron cell. The neurotransistor could be used as a computing node in the physical neural 

network for hardware machine learning. 

This work demonstrates that the physical properties of the gate material decide the transfer 

characteristics and time-dependent dynamics of the hybrid Si nanowire transistors. The optical 

and neuromorphic gate features of the hybrid transistors would accelerate the advancement of an 

optical or brain-like computing machine. 

 

  



 
 

Kurzfassung 

Enorme Anforderungen an schnelle und stromsparende Rechen- und Speicherbausteine für die 

Unterhaltungselektronik, wie Smartphones oder Tablets, haben vor einem Jahrzehnt zur 

Entstehung von Silizium-Nanodraht-Transistoren geführt. Zusammen mit der Si-basierten 

Nanotechnologie haben die siliziumkompatiblen optischen und chemischen Sensoranwendungen 

die Forschung an hybriden Bauelementen, die organische und anorganische Materialien 

kombinieren, vorangetrieben. Neben der Revolution in den Geräteabmessungen erfordert das 

rasante Wachstum der künstlichen Intelligenz im Software-Branchenbrunch die Computer der 

nächsten Generation mit der revolutionierten hybriden Gerätearchitektur. Durch den Einsatz 

solcher neuen Geräte können maschinelle Lernaufgaben ohne massiven Energieverbrauch effektiv 

durchgeführt werden. Die hybriden Si-Nanodraht-Bauelemente haben eine ausgezeichnete 

Fähigkeit, das herkömmliche Rechenelement zu ersetzen, indem sie den traditionellen 

Transistorbauelementen neue Funktionalitäten aus kombinierten Materialien bieten und den 

Vorteil der CMOS-Technologie bewahren. 

Ein Ziel dieser Arbeit ist es, funktionelle hybride Si-Nanodraht-basierte Transistoren zu 

entwickeln, die durch das stimuli-abhängige Gate moduliert werden, um über die aktuellen 

digitalen Bausteine hinauszugehen. Die hybriden Bauelemente konvergieren Halbleiterkanal und 

verschiedene Materialien von organischen Molekülen zu Silikatverbundwerkstoffen als Gate des 

Transistors. Externe Reize verändern den elektronischen Zustand der Gate-Materialien, der in das 

Gate-Potential der Transistoren umgewandelt wird.   

Erstens, diese These untersucht die elektronischen Eigenschaften der Si-Nanodraht-FETs unter 

dem optischen Reiz. Der optische Reiz induziert die starke Leitwertänderung bei blanken Si-

Nanodraht-FETs. Unter dem Licht mit geringer Leistungsintensität zeigt der Transistor eine 

unkonventionelle negative Photoleitfähigkeit (NPC), die von der Dotierungskonzentration des 

Nanodrahtes und der Wellenlänge des einfallenden Lichts abhängig ist. Die Dotierstoffe Ionen 

und Oberflächenzustände verursachen photogenerierte heiße Elektronen, die die konventionelle 

Photoleitfähigkeit im Halbleiter einschränken.  

Im Hybridbauteil spielt jedoch das Gatematerial auf der Si-Dioxid-Schicht eine wesentliche 

Rolle bei der optoelektronischen Modulation des FET-Bauteils. Diese Arbeit zeigt, dass ein 

organisches photochromes Material, Porphyrin, das sich um den Nanodrahtkanal wickelt, als 

optisches Gate des Si-Nanodrahttransistors wirkt. Die Diffusionseigenschaft der Elektronen im 

Molekularfilm entscheidet über die optische Schaltdynamik und Effizienz.   

In dieser Arbeit wird außerdem ein neues funktionelles Gate-Material vorgestellt, ein Sol-Gel-

dotierter Silikatfilm, der auf der Verfügbarkeit von stimulierungsabhängiger Gate-Modulation 



basiert. Diese amorphe und transparente Silikat-Film zeigt memristive Eigenschaft durch die 

ionische Umverteilung in den Film unter Bias-Bedingung. Interessanterweise zeigen die mit Sol-

Gel beschichteten Si-Nanodraht-FETs einen Doppelgate-Effekt, der durch die Kanaltrennung in 

der Lamellenstruktur des Nanodrahtes mit einem Hintertor unter Beleuchtung zusammenwirkt. 

Darüber hinaus emuliert der mit Sol-Gel-Silikat beschichtete Si-Nanodrahttransistor die 

neuronale Plastizität mit gepulster Gatestimulation, dem "Neurotransistor". Durch die 

beweglichen Ionen im Silikatfilm hat der Transistor ein Kurzzeitgedächtnis und imitiert die 

Membranpotentialänderung der Neuronenzelle. Der Neurotransistor könnte als Rechenknoten im 

physikalischen neuronalen Netz für das maschinelle Lernen eingesetzt werden. 

Diese Arbeit zeigt, dass die physikalischen Eigenschaften des Gatematerials die 

Übertragungseigenschaften und die zeitabhängige Dynamik der hybriden Si-

Nanodrahttransistoren bestimmen. Die optischen und neuromorphen Gate-Eigenschaften der 

Hybridtransistoren würden die Weiterentwicklung einer optischen oder hirnähnlichen 

Rechenmaschine beschleunigen. 
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CHAPTER 1 

INTRODUCTION 
 

 

 

Last 50 years, silicon industry has been dramatically grown based on the needs for metal-

oxide-semiconductor (MOS) transistor which is a fundamental element of CPU and 

memory. Thanks to the development of nanotechnology including lithography and 

epitaxy, scaling down of the transistors opened the era of 10-nm processing (100 million 

of transistors per 1 mm2 of a chip)1. The remarkably high integration density allows 

electronic devices to process a massive amount of data with high speed. The integration 

technology promoted the invention of smart devices (e.g., smartphones or tablets) which 

can interact with users and other devices. The smart devices are changing our lifestyle 

and culture to more mobile and connecting. This trend has been expanded to smart system 

ems such as smart home, smart healthcare or smart grid.  

In this circumstances, the Si-based transistors are not only used as a computing element 

but also operated as detecting elements interacting with the environment, for instance, 

chemical (bio2,3 and gas4), light5,6 or thermoelectric7 sensors. The transistor-based sensors 

can be directly adaptable to electronic circuits with a wireless connection, so that detected 

signal could be processed ubiquitously. In the transistors, gate modulation “switches” 

(digital) or “amplifies” (analog) the channel current. This intrinsic property enables the 

various sensor applications requiring signal amplification combining with the digital 

process. A transistor can detect analytes using gate potential fluctuation induced by the 

charge of target elements. Sensor application was the evolution of transistors that 

converge various fields across the boundaries of biology, chemistry, and physics beyond 

the conventional transistor electronics.  
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Si nanowire, one-dimensional Si-based nanostructured material, is verified as an 

attractive detector which has high sensitivity based on the large surface area-to-volume 

ratio and compatible diameter with nanoscale sensing targets like proteins or molecules8. 

Therefore, the Si nanowire field-effect transistor (FET) has emerged as a powerful sensor 

platform where a small amount of external electrical stimuli like charged bio- or gas 

molecules around the nanowires causes meaningful conductance change in the nanowire 

channel. To increase the sensitivity, researchers have developed molecular 

immobilization technique on the nanowire surface as well.  

Interestingly those sensor studies involving the surface technology encouraged the 

birth of hybrid nanowire transistors that combine nanowire with organic materials to 

carry out distinct functionality which depends on the stimuli (e.g., photodetectors). While 

the Si nanowire sensors treat the external molecules as a passive material which should 

be detected, the hybrid transistors exploit the organic molecules as an active material by 

forming a heterojunction which controls the gate potential of the transistor device.  

The transistors as computing elements have targeted extremely high integration 

density by continuous downscale by Moore’s law. The integration technology using 

conventional transistor structure has successfully improved the computing performance 

such as speed or memory storage using. However, the smart computing processing 

various environmental input signals or complex human brain tasks require a new and 

different paradigm of device architecture. Thus, the hybrid device system has an excellent 

capability to go beyond the conventional computing based on a functional variety of the 

organic materials. By combining with various functional organic/inorganic materials on 

the gate of a transistor, it can modulate the transistors using environmental stimuli which 

generates particular electric reactivity in gate material, also preserving the technological 

advantage of Si-based transistors. 

Another important aspect is that nature inspires the stimuli-dependent hybrid system. 

All living creatures in nature are analog machines that actively interact with their 

environment based on sensing and reacting which are controlled by ionic movement at a 

cellular level. Regarding computing, the binary calculation of the conventional computers 

is different with nature. Although it would be not simple to mimic the sophistication and 

elegance of nature, if we need robots or computers that can substitute advanced human 
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tasks in the near future, the machine that can emulate the natural computer, the brain, 

would be the best candidate which can understand our nature. 

In this thesis, various gate materials from organic molecules, polymers to silicate 

composite and their systemic functions regarding field-effect affecting the Si nanowire 

transistor have been studied. In the following of introduction, Chapter 2 discusses the 

basic theory of Si nanowire FET. In particular, this chapter describes how gate potential 

is modulating the channel conductivity using the energy band and potential diagrams, that 

would be the starting point to develop applications by gate engineering. Chapter 3 covers 

the experimental method to fabricate the Si nanowire FETs. Also, film formation as a 

functional gate material is introduced. The electrical and optical characterization and 

spectroscopic procedure for the material analysis are followed.  

Chapter 4 investigates the optoelectronic modulation of Si nanowire FETs including 

unconventional negative photoconductivity (NPC). This chapter shows that the light-

induced trapped electron causes unconventional conductance change by threshold voltage 

change. Since photoconductance is the intrinsic effect of the nanowire channel and 

interface area, it is fundamental to understand the conductivity change of nanowire by 

external stimuli (cf. light) to take a step forward towards the external gate effect.    

Chapter 5 to Chapter 8 show various types of the external gate using the hybrid 

material system. In Chapter 5, the well-known organic material, porphyrin, is used as 

the outer shell of the nanowire transistor, acting as an optical gate. This chapter shows 

not only the optical current switching but also the possibility of optical gate modulation 

using pure field-effect.  

Chapter 6 introduces the sol-gel derived composite materials for gate area. The sol-

gel silicate film is used as a gate platform which can be doped with various small elements 

like ions or molecules. Chapter 7 shows optical gate property of the sol-gel film-coated 

Si nanowire FETs under illumination. Interestingly, the devices show a double gate effect 

with a back gate which is typically shown in the FinFET. In Chapter 8, the sol-gel coated 

Si nanowire transistor shows new hardware opportunities that combine learning and 

memory functions within one unit cell, similar to a neuron. The device emulates the 

intrinsic neuronal plasticity and can perform as a computing node in a complex neural 

network.  

Chapter 9 summarizes the thesis with the outlook for future applications. 
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CHAPTER 2 

THEORETICAL BACKGROUND:  

Hybrid gate Si nanowire field-effect transistors 
 

 

 

Si nanowire field effect transistors (FETs) have been demonstrated as powerful building 

blocks for digital computing and sensing applications. Thus, the history and the current 

definition of Si nanowire FETs are introduced in this chapter. The analytical models of 

multiple gate transistors are fundamental to develop hybrid gate transistors. Therefore, 

the distribution of the potential in the Si nanowire, and threshold and subthreshold 

models in double gate transistor are presented. Finally, the physical concept of a hybrid 

gate induced by external stimuli is sketched for actual applications in next chapters. 

 

 

 

2.1 Si nanowire field-effect transistors  

To understand the birth and current state of Si nanowire field-effect transistors (FETs), it 

is worth noting the history of CMOS technology, since MOSFET (metal-oxide-

semiconductor FET) is a building block of the CMOS, the backbone of the semiconductor 

industry. In 1965 Gordon Moore predicted the evolution of the transistor density in a chip, 

which is known as Moore’s law. Remarkably, the semiconductor industry has faithfully 

followed the law for the last 40 years, that the number of transistors on integrated circuits 

has doubled every two years (Figure 2.1). The semiconductor devices have been evolved 

to achieve a fast circuit operation by reducing clock speed and parallel processing which 

can be obtained by reduced gate oxide capacitance and increased number of transistors 
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on a chip. In addition, smaller transistors guarantee lower leakage current by reducing the 

space charge region in bulk and lower power consumption. These advantages have leaded 

aggressive scaling down of semiconductor device components.  

The integrated circuits in the initial period were built on a Si wafer. At the end of 1990, 

the invention of SOI (silicon-on-insulator) wafers boosted circuit performance by 

reducing the parasitic capacitances and enhancing charge transport. Major semiconductor 

companies like IBM or AMD have manufactured the memory and processor using SOI 

wafer. In 2010, semiconductor companies began to produce 20 nm gate length transistors, 

and 10 nm CMOS technology is established in 20171.  

As the dimension of the devices is reduced to sub-100nm gate length scale, the close 

distance between the source and the drain generates a number of parasitic effects such as 

short channel effects2 that reduce the ability of the gate to control the channel current or 

random dopants fluctuation3 from the enhanced atomistic effect in nanoscale devices. To 

overcome the short channel effect and recover the gate controllability, MOSFETs have 

evolved from a single planar gate to the multiple-gate structure on the SOI substrate 

(Figure 2.2). In 1984 the first theoretical paper of double gate (DG) MOSFET was 

published and showed that SCE is significantly reduced by fully depleted condition 

obtained by two gate electrodes4. The advantage of DG MOSFET was experimentally 

proven in 1989 using Delta (fully depleted lean-channel transistor) structure5 which was 

Figure 2.1 Moore’s law: The number of transistors on integrated circuit chips. (Data source: 

http://en.wikipedia.org/wiki/transistor_count) 
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an initial model of fin-based FET (FinFET) which became main interest in transistor 

industry after 20006. Further, an advanced structure like multiple independent gate FETs 

(MIGFET) with non-connected gates were developed7. Triple gate MOSFET has an 

island-like Si channel which is modulated by three sides8,9. The theoretically ideal 

structure is surrounding gate or gate-all-around MOSFET where the gate electrode wraps 

around all side of the nanowire so that dramatically suppresses short channel effect and 

its unit channel area is controlled by large gate electrode surface that extensively enhances 

gate controllability10. In the silicon industrial sector, surrounded cylindrical structure, in 

which diameter of Si channel is below 10 nm, is called Si nanowire MOSFET. The 

downscaling of the transistor enables to fabricate a MOSFET without forming p-n 

junctions at source/drain and the channel region, so-called ‘junctionless’ nanowire 

transistor that is turned off by full depletion of nanowire originating from the work 

function difference between the channel material and the gate electrode11. The main 

purpose of the Si nanowire FET in the industry is to suppress the parasitic effect induced 

by downscaling, and to enhance the functionality and convenience in the manufacturing 

of integrated circuits.  

In most fields, however, it is called Si nanowire FETs, when the nanowire diameter is 

in the nanoscale (< 100 or 1000 nm). Bottom-up synthesized nanostructures have been 

separately studied in the field of physics and material science. Their interest is to 

Figure 2.2 Various gate structures. 
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understand the physics in the nano-

sized materials and to search for 

novel functionalities using the 

distinct low dimensional 

characteristics like quantum effects 

or ballistic transport. In 2000, 

Charles M. Lieber published the 

transistor characteristics of the 

synthesized p- and n-type Si 

nanowire using chemical vapor 

deposition (CVD) method with 70-

150 nm-thick diameter12. Further, 

his group fabricated n+-p-n bipolar transistor and CMOS inverter which is modulated by 

back gate13. The nanowire diameter was reduced to 20-50 nm range. In 2001, his group 

presented a historic result, the first Si nanowire biosensor detecting pH and protein14 

(Figure 2.3). This study has brought up explosive stream of the Si nanowire-based ion-

sensitive sensor researches15 which are still ongoing process16–18. For ion detection, the 

solid metal back gate can be substituted with a liquid gate connected to the metal reference 

electrode, namely ion sensitive FET (ISFET). Most of Si nanowire FET sensors follow 

the universal principle that channel current is fluctuated by dielectric capacitance change 

induced from electric charge of detection targets.  

It is notable that there are several essential aspects of previous studies about Si 

nanowire FETs; 

(i) Although bottom-up transistors have the potential to reduce the cost of fabrication, 

top-down devices are more reliable in electrical performance based on the well-

established CMOS process steps on an SOI substrate. However, bottom-up grown 

nanowires are easily printable on any substrate from SiO2 to flexible organic films or 

grids, which is not easy to be performed using the top-down way. Therefore, both 

regimes are used these days depending on the target application and spec.    

(ii) The surface effect becomes critical in the nanowire FETs. The nano-sized material 

has more surface per unit volume that generate parasitic effects like interfacial 

trapping or scattering which should be overcome to obtain the best transistor 

Figure 2.3 The conversion of the Si nanowire FETs to 

Si nanowire sensor. Figure is adopted from the ref.14. 
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operation. On the other hand, people exploit the surface effect to enhance the 

performance of the transistor, for instance, gate all around structure or surface 

functionalization for sensing applications.     

 

2.2 The field-effect – gate-induced potential distribution 

In the field effect transistor, the variable voltage applied to the gate controls the effective 

cross-sectional area (e.g., depletion or inversion region) of the conducting channel in the 

nanowire. Because of junctions between channel and source/drain, the current flow is 

generally blocked in an equilibrium state (Vg = 0). However, gate potential (Vg) changes 

conduction- and valence band bending which modulate the charge carrier distribution on 

each band. Enough voltage induces the mobile charge carriers which can flow between 

source and drain. Therefore, the surface potential modulation of the Si channel 

determines the current flows and the switching functionality (strong inversion) decided 

by the threshold voltage (Vth).  

In the CMOS industry, the back (substrate) gate is not used as a primary gate 

controller. However, using back gate has an advantage when one creates a ‘manual’ front 

gate to obtain complex gate controllability keeping the typical transistor behavior. Figure 

2.4 shows several variations of the back-gate FETs. Opened front channel area can be 

combined with any material from the metal, organic to liquid. For instance, the ISFET for 

ion sensing is the liquid gate combination and double or tri-gate FinFET structure is one 

of the combined structure. If functional materials which have particular characteristics 

Figure 2.4 Structural evolution of functional gate field-effect transistors. 
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with additional stimuli, are combined with the nanowire, functional hybrid FET can be 

created for tailored applications. Figure 2.5 shows the band bending of Si nanowire can 

be modulated by the internal electrical dynamics of the functional material which is a 

result of the external stimuli like voltage, temperature, light or chemical reactions etc.  

Although the gate materials could be varied, the surface potential on the oxide 

interfacing the nanowire determines the transistor behavior in the devices using the field-

effect scheme. The surface potential is induced from Poisson’s equation: 

𝑑2𝜑

𝑑𝑥2
=

𝑞

𝜀𝑠𝑖
𝑛𝑖𝑒

𝑞𝜑/𝑘𝑇                                                 (2.1) 

where q is electric charge, 𝜀𝑠𝑖 is permittivity of silicon, 𝑛𝑖 is intrinsic carrier density and 

𝜑 is the potential at any point x in the Si nanowire relative to  Ei. The boundary condition 

at –W/2 and W/2 are different;  

𝜀𝑜𝑥

𝑉𝑔 − 𝛷𝑚𝑠1 − 𝜑𝑠1

𝑡𝑜𝑥1
= 𝜀𝑆𝑖

𝑑𝜑

𝑑𝑥
| 𝑥=𝑊/2 = −𝜀𝑆𝑖�⃑� 1                      (2.2) 

𝜀𝑜𝑥

𝑉𝑔 − 𝛷𝑚𝑠2 − 𝜑𝑠2

𝑡𝑜𝑥2
= 𝜀𝑆𝑖

𝑑𝜑

𝑑𝑥
| 𝑥=−𝑊/2 = −𝜀𝑆𝑖�⃑� 2                     (2.3) 

where 𝛷𝑚𝑠1 and 𝛷𝑚𝑠2 are work function difference between the gates and Si nanowire 

(here the functional material is not considered), 𝜑𝑠1  and 𝜑𝑠2  are left and right oxide 

Figure 2.5 Energy band diagram of hybrid Si nanowire FETs with double gate (left: front gate, 

right: back gate). (M: metal, O: oxide layer, tox: thickness of the oxide layer, W: thickness of the 

Si nanowire, Ef: Fermi energy, Ei: intrinsic Fermi energy) 
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interfacial potential respectively,  �⃑� 1 and �⃑� 2 are the electric field at the left and the right 

boundary. 

By integrating eqs. (2.1) with the symmetry boundary condition 
𝑑𝜑

𝑑𝑥
|𝑥=0 = 0, we can 

obtain 

𝑑𝜑

𝑑𝑥
= −√

2𝑘𝑇𝑛𝑖

𝜀𝑠𝑖
(𝑒

𝑞𝜑
𝑘𝑇 − 𝑒

𝑞𝜑0
𝑘𝑇 )                                         (2.4) 

where 𝜑0 is potential when 𝑑𝜑/𝑑𝑥 = 0. 

Integrating (2.4) we can obtain the potential distribution as a function of x19 

𝜑(𝑥) − 𝜑0 = −
2𝑘𝑇

𝑞
∙ 𝑙𝑛 [𝑐𝑜𝑠 (√

𝑞2𝑛𝑖

2𝜀𝑠𝑖𝑘𝑇
𝑒

𝑞𝜑0
2𝑘𝑇 ∙ 𝑥)].                      (2.5) 

Similarly, in asymmetric boundary condition the symmetry point is moved to x0 (cf. 

𝑑𝜑

𝑑𝑥
|𝑥=𝑥0

= 0). The potential can be obtained from eqs. (2.5) 

𝜑(𝑥) − 𝜑0 = −
2𝑘𝑇

𝑞
∙ 𝑙𝑛 [𝑐𝑜𝑠 (√

𝑞2𝑛𝑖

2𝜀𝑠𝑖𝑘𝑇
𝑒

𝑞𝜑0
2𝑘𝑇 ∙ (𝑥 − 𝑥0))]               (2.6) 

where 𝜑0 ≡ 𝜑(𝑥 = 𝑥0). 

With very low gate voltages are applied, then it can be approximated as 
𝑑𝜑

𝑑𝑥
≈ −�⃑� 0 which 

is constant field when the charge inversion (𝑒
𝑞𝜑

𝑘𝑇) is negligibly small. In this case the 

internal field is directly calculated by 𝜑𝑠1 − 𝜑𝑠2 ≈ −𝑊�⃑� 0. Appling these into eqs (2.2) 

and (2.3), one obtains 

�⃑� 0 =
𝛷𝑚𝑠1 − 𝛷𝑚𝑠2

𝑊 +
𝜀𝑠𝑖

𝜀𝑜𝑥
(𝑡𝑜𝑥1 + 𝑡𝑜𝑥2)

                                              (2.7) 

and  

𝜑(𝑥) =
2𝑘𝑇

𝑞
∙ 𝑙𝑛

[
 
 
 
 √

𝜀𝑠𝑖

2𝑘𝑇 ∙ 𝑛𝑖
�⃑� 0

𝑠𝑖𝑛ℎ (
𝑞�⃑� 0(𝑥 − 𝑥0)

2𝑘𝑇
)
]
 
 
 
 

.                                    (2.8) 
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Based on the equations above, the potential 

distribution of the nanowire with the same Vg 

applied on two different gate electrodes, is shown 

in Figure 2.6 which is adapted from the analytic 

study of double gate MOSFET20. When the gate 

bias is big enough, the potential in nanowire has 

distinct distribution and comparably uniform 

potential is applied overall nanowire channel which 

is not shown in the planar MOSFETs. If the gate 

bias is small, the potential is more affected by work 

function differences between the gate and the Si 

channel that makes a linear distribution. This 

information gives a hint of understanding the 

charge distribution in the nanowire which is 

dependent on potential, when multiple gate structure is formed.  

One of the important parameters that characterize a switching performance of the 

transistors is the threshold voltage (Vth). The threshold voltage is classically defined by 

𝑉𝑡ℎ = 𝛷𝑚𝑠 + 2𝜑𝑓 −
𝑄𝑑

𝐶𝑜𝑥
−

𝑄𝑖

𝐶𝑜𝑥
                                       (2.9) 

where 𝜑𝑓 is the difference between the Fermi level and the intrinsic Fermi level of Si, Qd 

is the depletion region charge, Qi is the oxide and interfacial charge and Cox is gate 

capacitance. In nanowire devices. However, with low doped ultra-thin nanowire structure, 

inversion in the channel could be limited when the surface potential is at  2𝜑𝑓. Therefore, 

eqs (2.9) should be modified to  

𝑉𝑡ℎ = 𝛷𝑚𝑠 + 2𝜑𝑓 −
𝑄𝑑

𝐶𝑜𝑥
−

𝑄𝑖

𝐶𝑜𝑥
+ 𝑉𝑖𝑛𝑣                             (2.10) 

where Vinv is the additional surface potential needed to induce the inversion charge in the 

nanowire channel. Vinv increases with narrower channel width and lower doping 

concentration21. Similarly, the surface charge in the hybrid devices strongly affects the 

threshold voltage. Any surface charge change, e.g. surface functionalization or stimuli-

Figure 2.6 Electric potential φ as a 

function of position in silicon. Vg1-Vg3 

are equally applied on each gate. Left 

and right gates are n+ and p+ 

polysilicon respectively.20  
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induced charge generation in the hybrid gate materials, enhance or suppress Vth depending 

on the sign of the charge. Therefore, eqs (2.9) could be modified with surface charge Qs:   

𝑉𝑡ℎ = 𝛷𝑚𝑠 + 2𝜑𝑓 −
𝑄𝑑

𝐶𝑜𝑥
−

𝑄𝑖

𝐶𝑜𝑥
−

𝑄𝑠

𝐶𝑜𝑥
.                               (2.11) 

Most of the sensor applications using the Si nanowire transistor use Vth shift by ionic 

charge change on the Si nanowire surface. The dynamics of charge formulation on the Si 

nanowire surface is directly applied as the surface potential of the nanowire, which must 

be considered to design hybrid gate devices. In addition, distinct fin-nanostructure and 

multiple gate modulation are able to generate a channel separation that two separated 

inversion charge is formed in a nanowire, which will be discussed in Chapter 7.  

 

2.3 Subthreshold region: a fingerprint of the gate signal change 

Many studies have demonstrated the important role of the subthreshold region of the 

transfer characteristic, specifically for the detection of the surface charge fluctuation with 

the highest percentage of conductance change22,23. The reason is the subthreshold region 

current changed exponentially by gate potential change. The exponential increase of 

current allows the transistor to have (i) switching functionality from off to on current with 

low power consumption and (ii) amplification of current in this range. Therefore, this 

sensitive region shows the various information of electric properties of gate area through 

the slop, the shape (e.g. hump), or the off current level etc. 

In the classical MOSFET, the subthreshold slop (SS) is represented by 

SS = ln10 ∙
∂𝑉𝑔

∂ ln𝐼𝑑
≅

𝑘𝑇

𝑞
∙ ln10 ∙ (1 +

𝐶𝑑 + 𝐶𝑖𝑡

𝐶𝑜𝑥
)                        (2.12) 

where Cd is depletion capacitance and Cit is interface trap capacitance. With normal 

MOSFET with fully depleted thin channel structure with a top gate, the variation of 

depletion charge by voltage fluctuation is zero, so that Cd = 0. If the interfacial trapped 

charge is zero with a perfect process step,  

SS →
𝑘𝑇

𝑞
∙ ln10 = 60 mV/dec.                                           (2.13) 

However, with multiple gate modulation, the back interfacial trap density is not negligible 

and all capacitance values at front and back should be considered. Figure 2.7 shows a 
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capacitance model of back gate control with fixed front 

gate potential. In this case, SS is induced from the eqs. 

(2.14) 24: 

∂ ln𝐼𝑑
∂𝑉𝑔,𝑏𝑎𝑐𝑘

=
1

𝐼𝑑
∙

∂𝐼𝑑
∂𝜑𝑠2

∙
∂𝜑𝑠2

∂𝑉𝑔,𝑏𝑎𝑐𝑘
                 (2.14) 

∂𝜑𝑠2

∂𝑉𝑔,𝑏𝑎𝑐𝑘
=

𝐶𝑜𝑥

𝐶𝑜𝑥2 + 𝐶𝑖𝑡2 +
𝐶𝑑 ∙ (𝐶𝑖𝑡1 + 𝐶𝑜𝑥1)

𝐶𝑖𝑡,𝑓𝑟𝑜𝑛𝑡 + 𝐶𝑜𝑥1 + 𝐶𝑑

 (2.15) 

1

𝐼𝑑
∙

∂𝐼𝑑
∂𝜑𝑠2

=
𝑘𝑇

𝑞
−

1
𝑡𝑠𝑖

[1 −
𝐶𝑑

𝐶𝑑 + 𝐶𝑖𝑡1 + 𝐶𝑜𝑥1
]

(
𝜑𝑠2 − 𝜑𝑠1

𝑊 +
𝑞𝑁𝑑𝑊
2𝜀𝑠𝑖

)
   (2.16) 

where 𝜑𝑠1 and 𝜑𝑠2 are front and back surface potential of the nanowire channel, W is the 

thickness of the nanowire channel εsi is the dielectric constanct of the Si and Nd is the 

doping concentration. Eqs. (2.16) shows that SS is related to the back and front gate 

potential difference (𝜑𝑠2 − 𝜑𝑠1). The simplest front and back gate potential distribution 

is shown in Figure 2.8 which is redrawn from the previous study24. For back gate 

modulated devices, the subthreshold current is strongly affected by front gate potential. 

As front gate potential increases, SS and off current level also increases because high 

Figure 2.7 Capacitance model 

of MOSFET structure with back 

gate control. 

Figure 2.8 Variation of front and back gate potential distribution (1-4, left) and their 

corresponding transfer characteristics (right). 
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front gate potential can generate weak inversion in all over the nanowire channel. 

Therefore, from the subthreshold characteristics, an unknown surface potential could be 

estimated. This technique is very useful especially for stimulus-induced potential 

variation in hybrid gate. 

 

2.4 Hybrid electronic elements with the stimuli-induced gate 

Previous sections show how the surface potential applied from multiple(double) gates 

affects the potential distribution in the nanowire, threshold voltage and subthreshold 

slope. Metal gate without any potential loss was a good starting point to understand the 

double or multiple gate system in previous sections. The purpose of hybrid electronic 

devices study is to generate distinct functionality which is induced by both internal 

electronic property and external stimuli, keeping the transistor characteristics. Since a lot 

of functional materials are available for the hybrid gate, it is convenient to classify the 

functional materials as circuit elements. Figure 2.9 shows the simplified transistor circuit 

with various hybrid gates. Insulators have been used to form a high-κ stack on a transistor 

to guarantee enough capacitance level even in the strong downscaling. However, using 

semiconducting or memristive materials for gate modulation would be a new approach to 

build a single electronic circuit element. Apart from the work function difference between 

the gate material and the Si nanowire, external stimuli like light or voltage pulses would 

generate front gate potential and unique dynamics with specific time span in the 

functional materials. Many existing memory devices are using additional material (e.g. 

high-κ to ferroelectric) on the top of the MOSFET performing 0 or 1 states. However, 

unique dynamics of various functional materials have the capability to be applied for 

analog circuits or unconventional application beyond CMOS. In this system, Si nanowire 

is modulated by physics in the gate materials whether the front gate bias is applied or not.  

Figure 2.9 Various circuit elements for the hybrid gate. 
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CHAPTER 3  

EXPERIMENTAL METHODS 
 

 

 

In this chapter, the experimental methods will be discussed. Two main device fabrication 

scheme, bottom-up and top-down, will be introduced with details. Also, the hybrid gate 

formation by various film coating method depending on the device functionality and the 

material characteristics will be shown. Finally, procedure of electrical and film analysis 

will be described.  

 

 

 

3.1 Fabrication of Si nanowire field-effect transistors  

3.1.1 Bottom-up scheme: Schottky-junction Si nanowire FETs 1  

The content of this part is mainly based upon my published article1. 

(i) Si wafer preparation with gold catalysts: A clean Si (100) wafer was prepared using 

piranha and organic cleaning using acetone and isopropanol, and hydroxyl groups on the 

surface were activated using air plasma for 20 sec. Poly (diallyl dimethylammonium) 

chloride (PDDA) was used as stabilizing agent of gold nanoparticles (GNPs) that acts as 

a catalyst of nanowire growth. PDDA solution (0.5 vol% PDDA and 5 mM NaCl in 

distilled water) was treated on the Si wafer and 19 nm GNPs were attached to PDDA. O2 

plasma removed PDDA linking that makes equivalent distribution of Au NPs and 

prevents aggregation of Au NPs.  
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(ii) Growth of Si nanowire: Si nanowires were synthesized in chemical vapor deposition 

(CVD) chamber heated at 400°C using silane (SiH4) gas and hydrogen (H2) gas as 

precursors with an inner  pressure of 65 mbar for 45 min2. The length of grown Si 

nanowires was around 20-40 μm and the diameter was around 20 nm depending on the 

size of Au nanoparticles.  

(iii) Fabrication of the transistor chip: The contact printing method was used to align 

the synthesized nanowires in a common direction3. The nanowire-growth wafer was put 

on a SiO2 wafer for Schottky-barrier FETs with vertical pressure of 100-200 N/cm2 and 

moved with constant velocity that provides friction force between nanowires and the SiO2 

wafer. Nanowires are covalently bonded on the interface (Figure 3.1(b)). Dry thermal 

oxidation was employed to form a thermal oxide layer of 5 nm (Figure 3.1(d)). For the 

fabrication of Schottky barrier FETs, metal source and drain pads were patterned on the 

Si nanowires embedded SiO2 wafer using photolithography process (Figure 3.1(a)). 

Finally, the sample was annealed at 450 °C in a H2/N2 atmosphere for 1 min. Thus nickel 

diffused along Si nanowires and nickel silicide was formed. Figure 3.1(c) shows well-

defined phases of nickel silicide fractions within the single nanowire produced by means 

of axial diffusion of nickel into the nanowire body4,5. The FET devices, consisting of 

arrays of parallel nanowires, provide reduced device-to-device variability and high 

source-drain current level as well as high transconductance5.  

This work was conducted by Dr. S. Pregl at NamLab, Dresden. This scheme is used for 

the organic molecular coated Si nanowire FETs described in Chapter 5. 

Figure 3.1 Microscopic images of Schottky-barrier Si nanowire FETs. (a) The conformation of 

the Ni electrode on high density nanowires. (b) Inter- electrode spacing of devices are varied 

from 6 to 12 μm. (c) NiSi2 formation as Schottky barrier of a nanowire. The brighter part 

indicates N–Si phases and the dark part of the nanowire is the Si channel. (d) The thickness of 

the thermally grown oxide wrapping nanowires is around 5 nm. 
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3.1.2 Top-down scheme: n- and p-doped Si nanowire FETs 6  

The content of this part is mainly based upon my published article6. 

Si nanowire FETs were fabricated on three 8-inch SOI wafers that consist of a 40 nm-

thick top-Si layer (Boron, 1016 cm-3), a 400 nm-thick buried oxide layer and the 725 μm-

thick p-type Si substrate (Figure 3.2(i)). To implant phosphorus ions in the top Si layer, 

the 20 nm SiO2 buffer layer was deposited using plasma enhanced CVD (PECVD) at 300 

℃. After that, phosphorus ions are implanted with an energy of 15 kEV and the 

concentrations of dopants were 1013 cm-2 for 1018 cm-3 and 1014 cm-2 for 1019 cm-3 samples 

(Figure 3.2(ii)). Rapid thermal annealing followed, at 1,000 ℃ for 20s in N2 atmosphere 

to activate dopants. Finally, the buffer oxide layer was stripped in 1:100 dHF for 2~3 min.  

Consequently, one of the wafers has a boron concentration of 1016 cm-3 and the other two 

wafers have phosphorus concentration of 1018 cm-3 and 1019 cm-3, respectively.  

An active area including the channel, the source and the drain region was defined for 

electrical isolation of devices using photolithography and inductively coupled plasma 

reactive ion etching (ICP-RIE) (Figure 3.2(iii)). The source and the drain region were 

Figure 3.2 The steps of the top-down nanowire device fabrication. A doped SOI wafer (i, ii 

and iv) is patterned using (iii) photolithography and (v) electron beam lithography depending 

on the pattern size. After (vi) thermal oxide formation and (vii) metal deposition for the 

electrodes, (viii)the devices are passivated except nanowire and electrode contact area. 
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formed using phosphorus ion implantation with a concentration of 5×1020 cm-3, and 

dopant activation followed, using the same recipe above (Figure 3.2(iv)). )). The source 

and drain area was heavily doped to form ohmic contact (See Appendix I). A honeycomb 

nanowire was patterned on the channel region using electron beam lithography and etched 

with ICP-RIE (Figure 3.2(v)). The pattern width of the nanowire was 50 nm and the length 

of the nanowire was 8 μm. (Figure 3.3 (b) and (c)) The final height of nanowire was 30 

nm. (Figure 3.3(d)) A 5-nm thick gate oxide layer was grown on the nanowire using a 

wet oxidation furnace at 850 °C for passivation and post-processing (Figure 3.2(vi) and 

3.3(d)). To form the source and the drain electrodes, a 500 nm Ag layer on 50 nm Ti 

adhesion layer was deposited using an electron-beam evaporator, and liftoff process has 

followed the deposition steps (Figure 3.2(vii), 3.3(a) and (b)). Finally, the whole wafer 

area except the nanowire channel region and metal contact pad was passivated with 2 μm 

thick SU-8 epoxy-based photoresist to protect the long transmission line from undesired 

contamination (Figure 3.2(viii)). 

Figure 3.3 shows the fabricated honeycomb Si nanowire FETs. The Si channel area 

was heavily doped (1018 and 1019 cm-3) with phosphorus to modify the channel 

conduction properties from normal inversion mode n-type FETs to accumulation mode 

n-type FETs. Therefore, device is normally in an on-state at gate bias Vg = 0 V, which is 

advantageous for low power sensor applications. As a nanowire channel region, a 

honeycomb structure was designed (see Figure 3.3(c)) in order to obtain higher signal to 

noise ratio and higher current stability at the subthreshold voltage regime 7,8. The source 

and drain area was heavily doped (1020 cm-3) to form ohmic contact with the metal 

transmission line (Figure 3.3(a)). 

Figure 3.3 Structure of honeycomb Si nanowire FETs. (b)  Microscopic image of Si nanowire 

devices with source and drain transmission line. Scanning electron microscopy (SEM) image of 

(c) Si nanowire channel area and (d) honeycomb structure of nanowires. (e) Transmission 

electron microscopy (TEM) image of cross-section of nanowire and thermal SiO2 layer. 
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The fabrication process of honeycomb structured Si nanowire FET is done by Dr. T. Rim 

and Dr. K.Kim at NINT of POSTECH in Republic of Korea. This scheme is used for the 

photoconductance of Si nanowire FETs in Chapter 4 and for the ion-doped sol-gel film 

coated Si nanowire FETs in Chapter 7 and 8.  

3.1.3 Top-down scheme: Top gate fabrication 6 

 

Figure 3.4 SEM images of the top electrode configuration on a honeycomb nanowire device. (a) 

Top view of the gate electrode on the nanowire FET device with source and drain electrodes. (b) 

Top gate electrode covers the part of nanowire area. (c) The transparent gate electrode on the 

honeycomb nanowire structure.  

The content of this part is mainly based upon my published article6. 

Top gate electrodes were fabricated by patterning Poly(methyl methacrylate) (PMMA) 

950k using electron beam lithography, followed by a lift-off process with sputtered 

platinum (Figure 3.4). The resist was spin-coated on the honeycomb nanowire devices at 

a speed of 1000 rpm for 60 s, resulting in a 120 nm thick PMMA film. The top electrode 

pattern was written by electron beam. Then, the samples were immersed into the 

H2O:IPA(isopropanol) (1:3) development solution for 3 min and cleaned in isopropanol. 

After, a thin chromium adhesion layer (3 nm) was thermally evaporated and a 30 nm 

platinum layer was sputtered on it. The chip was immersed into acetone for 3 min and 

treated in ultrasonication for 1-2 min to remove the residual PMMA layer. This protocol 

allowed connection of the gate electrode to the honeycomb nanowires with a thin Pt 

electrode with a width of 650 nm which covers approx. 8% of the nanowire area (Figure 

3.4(b)). Finally, the sample was annealed in 200 ℃ to reduce the contact resistance. 

This scheme is used for the photoconductance of Si nanowire FETs in Chapter 4. 
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3.2 Functional hybrid gate film formation  

3.2.1 Organic film formation  

Photochromic molecular film 1 

The content of this part is mainly based upon my published article1. 

Nanowire FET chip (in the section 3.1.1) is cleaned first with acetone, and then with 

isopropanol for 5 min respectively to remove organic contaminant. As a final cleaning 

step, ethanol is used for 5 min. This step helps to regularly spread the ethanol based 

solution over the chip.  

45 μl of 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (Sigma Aldrich) 

solution based on ethanol and distilled water (95:5) was dropped on a chip with constant 

area with 1x2 cm2. The concentration is changed from 10 to 500 µM. Solvent was 

evaporated overnight (~12 hrs) with high humidity that promotes the formation of a 

conformal porphyrin layer on all over the surface. Therefore, the porphyrin layer is 

formed on the 5 nm of thermal oxide on the Si nanowire. Depending on the concentration, 

the thickness of the porphyrin layer is varied from 2 nm to 12 nm that is discussed in 

Chapter 5.  

Organic semiconductor film 

The nanowire chips (in the section 3.1.2) was cleaned with acetone, isopropanol and 

ethanol around 5 minutes respectively to remove the organic contaminations on the chips. 

After this process, the sample was rinsed with the deionized water. The chip was dried 

using nitrogen gas and baked in vacuum oven at 100°C for 15 minutes to remove the 

water completely.  

Electron transporting copolymer, Poly-{[N,N′-bis(2-octyldodecyl)-naphthalene-

1,4,5,8-bis-(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2), 

synthesized by IPF Dresden) was dissolved in trichloroethylene (TCE) solvent with a 

concentration of 7g/L. The mixture was stirred using magnetic hot plate stirrer at 50°C 

for 1 hour, then the solution was kept in ultrasonic bath for 15 minutes and shaken by 

vortex mixer for 15 minutes. Well mixed solution was filtered using 400 nm pore size 

filter. The resulting solution was spin-coated with an angular speed of 2000 rpm during 

60 seconds. The polymer coated sample was annealed using 110 °C hot plate for 1 hour 
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to eliminate any remaining solvent and to produce a uniform film.  

The film formation method in this section is used for the organic molecular coated Si 

nanowire FETs described in Chapter 5 and Appendix A.3.  

3.2.2 Hybrid silicate sol-gel film formation 

Firstly, 2.0 x 2.0 cm2-size nanowire FET chip (in the section 3.1.2) was cleaned with 

acetone, isopropanol and deionized water for 3 minutes to remove existing organic 

contaminants. Air plasma cleansing was applied to the cleaned chip for 5 seconds to form 

ultra-hydrophilic surface which guarantees a better adhesion with sol-gel derived film.  

1.7 mg of Nikel(II) choloride hexahydrate (Cl2Ni·6H2O) (Sigma Aldrich) and 2.4 mg 

of Copper(II) chloride dehydrate (Cl2Cu·2H2O) (Sigma Aldrich) were mixed in 467 µl 

deionized water. 900 µl of Tetramethyl orthosilicate (TMOS) (Sigma Aldrich), 600 µl of 

Trimethoxymethylsilane (MTMS) (Sigma Aldrich) and 33 µl of 0.1 M HCl were added 

to metal salt solution. The total concentration of metal ions ([M]tot) indicates the sum of 

equal concentration of two metal salts in the final mixed solvent. ([M]tot = [Cu2+] + [Ni2+] 

= 10 mM, [Cu2+] = [Ni2+] = 5 mM). Final solvent is filtered by 200 nm pore-size filter to 

remove unwanted huge particles. 400 μl of the metal ion-sol was spin-coated on the 

cleaned FET chip with 7000 rpm in 60 sec. The sol-coated chip was dried in a vacuum 

oven under various temperature from 25℃ to 100℃ (depending on applications) for 24 

hours to get a uniform gel-formation.  

This scheme is used for the ion-doped sol-gel film coated Si nanowire FETs described in 

Chapter 6, 7 and 8.  

 

3.3 Electrical characterization of FETs 

3.3.1 Photocurrent measurement  

A 4-channel light emitting diode (LED) driver (DC-4100, Thorlabs) which includes 4 

visible LEDs (λ = 405 nm, 470 nm, 530 nm and 625 nm) was used as a visible light 

source. The controller of DC-4100 controlled the power intensity of light illumination 

and selected the wavelength. The LED driver was connected to the collimator through 

liquid waveguide to illuminate the target device area with equivalent light power. The 

collimator was installed on the hand-made metal dark box with 5 cm-height. Therefore, 
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the distance between the light source and the FET sample was fixed as 5 cm. (see Figure 

3.5) The bias generation and current measurement of FET devices were performed using 

Keithley 2600B (source meter in Figure 3.5) at room temperature. The source meter was 

controlled by manually programed LabView program. This measurement setup is used in 

Chapter 4, 5 and 7. 

 

3.3.2 Electrical measurement 

I-V measurement  

The electrodes of the devices including field effect transistors or any patterned film are 

connected to tungsten needles of the micro-manipulators. The voltage and current supply 

and the current flowing through the devices were measured with Keithley 2604B 

controlled by Labview program (see the Keithely 2600B connection setup of Figure 

3.5(b)). This measurement scheme is used for Chapter 4, 5, 7 and 8.  

Figure 3.5 (a) Photocurrent measurement setup. (b) block diagram of the measurement setup.  
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Pulse measurement  

In order to characterize the plasticity behavior of the devices, Keysight B2902A was used 

as source meter to read the output currents under the modulation of the input pulses 

generated by the pulse generator, Rigol DG1062Z (Figure 3.6). The current from multiple 

devices was measured using Labview program. Square pulses are used as input signal 

with various pulse width and period. This pulse measurement is used in Chapter 8. 

 

3.4 Film analysis 

In this section, the methods used for the analysis of hybrid sol-gel derived film (described 

in section 3.2.2) and film preparation steps for analysis will be introduced. The tailored 

modulation of hybrid functional devices relies on the physical and chemical properties of 

the film. Since the sol-gel film doped with metal ions is an uncommon material for present 

electronic applications, the careful analysis from various angles were essential to verify 

the quality of film formation on the surface and to determine the functional purpose of 

the hybrid devices. The result of the analysis in this section will be discussed in Chapter 

6. 

 

3.4.1 Capacitance analysis  

To measure the capacitance of the sol-gel film, the gold electrode was formed using 

thermal evaporation. Using a metal shadow mask, patterns with large area (0.5×1.0 mm2) 

Figure 3.6 Block diagram of pulse measurement setup. 
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of electrodes were deposited on the 

cleaned SiO2 wafer with 50 nm 

thickness (Figure 3.7). The large 

electrodes are necessary to increase the 

capacitive signal which has to be 

measurable by commercial LCR 

meters. The patterned wafer is cleaned 

with isopropanol and activated with 

ozone generator. Then, the sol-gel 

derived film was coated on the wafer in 

accordance with the section 3.2.2. 

Second one, top electrode was 

deposited on the film following same method above.  

The bottom and top electrode were connected to LCR meter (Agilent E4980A) which 

is shown in the schematic diagram in Figure 3.6 and the capacitance of the film between 

two electrodes was measured at various frequencies. 

 

3.4.2 Spectroscopic analysis  

To verify the chemical structure including crystallinity and composition of the hybrid sol-

gel film in the section 3.2.2, X-ray diffraction (XRD) and X-ray photoelectron 

spectroscopy (XPS) analysis were performed. The film is formed on the SiO2 wafer 

surface (see the section 3.2.2) dried in different temperature such as 25 °C and 100 °C 

with and without the present of metal salts. To obtain the absorption spectra of the film, 

UV-Vis spectroscopy was used. The absorption spectra of the film is distinct from the 

solution state, because the degree of freedom of molecules is reduced by interference 

from neighboring molecules in solid state. For UV-vis spectroscopy which exploits 

transmission of the light through the sample, the transparent glass substrate is used instead 

of the SiO2 wafer. The film formation was following the section 3.2.2. The sol-gel film 

samples with and without metal salts were compared.  

XRD and UV-Vis spectroscopy were performed in POSTECH, Korea and XPS is 

analyzed at IFW Dresden, Germany.  

Figure 3.7 Microscopic image of the patterned 

gold electrodes for capacitance measurement. 

Overlapped area is used to extract capacitance. 
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CHAPTER 4  

INTRINSIC OPTICAL GATE: 

Negative Photoconductance in Si nanowire FETs 
 

 

 

In this chapter, negative photoconductance (NPC) in n- and p-doped Si nanowire field-

effect transistors (FETs) will be described. In particular, the strong influence of doping 

concentrations and the energy of visible light are major sources of NPC in the nanowire 

FETs. The photo-generated hot electrons trapping by dopants ions and interfacial states 

induces threshold voltage change in the nanowire devices. The transition between 

negative and positive conventional photoconductance regimes in the nanowire FETs is 

caused by the competition between the light-induced interfacial trapping and the 

recombination of carriers. The contents of this chapter is largely based upon my 

published article1. 

 

 

 

4.1 Photoconductance of Si nanowire 

Investigations of the photoconductivity in silicon have a long history2,3 since optical 

characteristics of the material is adequate for practical optical and optoelectronic 

applications. For example, the band gap energy of silicon (1.1 eV) allows Si to be a good 

photoconductive material under visible to UV illumination. During the last decade, Si and 

Si nanostructures, especially nanowires, have been studied for various optical 

applications such as photodetectors4,5, photovoltaics6,7 and solar cells8-9, using advantages 

from 1-dimensinal structure and relying mostly on the phonon-assisted photoexcitation 
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due to its indirect bandgap and therefore generating the conventional “positive” 

photocurrent. Also, stable electrical performance of Si (e.g., high speed and efficient 

signal processing) causes numerous industrial realizations10 with mature integration 

technique.  

In 2005, photocurrent in an individual Si nanowire field effect transistor (FET) was 

investigated using optical scanning measurements11 thanks to the development of 

nanowire synthesis technique with controllable diameter12. This study shows that 

photocurrent of FETs is depending on gate bias as well as light power intensity. The 

number of photo-excited mobile carriers in the Si nanowire is varied by the local energy 

band bending which is modulated by gate bias. Currently, in 2016, the highly doped 

junctionless Si nanowire phototransistor has been investigated13. This study shows that 

the highly doped Si nanowire has high sensitivity of infrared light, which is dependent on 

the light power. The observed area is mainly off-current region in the transfer curve of 

the transistors where the effect of the gate bias is minimum.  

Photoconductive characteristics of Si nanowire FETs 

For our investigations, Si nanowire FETs doped with 1015 cm3 of boron (fabrication 

method is shown in the Section 3.1.2) shows conventional positive photoconductivity 

(Figure 4.1). Light illumination with the light of 405 nm wavelength induces not only the 

strong transfer curve shift (threshold voltage (Vth) shift) towards the direction of current 

increasing at the same gate bias, but also increase of subthreshold slope (Figure 4.1(a)). 

The off current (Id,OFF) in the dark condition is set as 100 nA with fixed drain and gate 

bias, which is highly sensitive subthreshold area in various sensing applications14–16. 

Under illumination, drain current (Id) increases in highly sensitive way to reach a new 

stable level, Id,ON, depending on the light power intensity which is growing from 12.4 to 

142 µW/cm2 in Figure 4.1(c). The photocurrent of the nanowire device is, in turn, 

enhanced by the increase of light power intensity (Figure 4.1(d)). Figure 4.1(b) illustrates 

the photocurrent generation in the nanowire transistors: (1) The light illumination leads 

the photoexcitation of electrons (2) which leaves electron/hole pairs and (3) the electrons 

are transferred to electrodes and holes are recombined with other excited electrons in the  

middle of the nanowire. It has been shown that the strong photocurrent generation in the 

junction area near electrode due to the energy band bending near electrode11.  
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In general, nanowires show light-induced current growing. However, the nanowire 

transistors show the additional featured characteristics which is the light induced 

degradation (increase) of subthreshold slop (SS). Since the visible light photons has much 

higher energy (1.9 eV < Eph < 3.06 eV) than the band gap energy of Si (Eg = 1.1 eV), 

photoexcited electrons become hot electrons in the Si nanowires. In general, hot electrons 

can create trap states in the oxide layer17 and these additional trap states increase SS by 

the following equation, 

∆𝑁𝑖𝑡 = (
𝐶𝑜𝑥

𝑞
) [

𝑞log(𝑒)∆𝑆𝑆

𝐾𝑇
− 1]                                           (4.1) 

where Cox is oxide capacitance,  q is elementary charge, K is Boltzmann constant, T is 

temperature(℃), ∆Nit is density change of interface state by light illumination and ∆SS is 

subthreshold slope change18. The subthreshold slope degradation is observed in FET 

devices by the interface trap creation under light stress18,19. This property must be 

considered in photodetector development using transistors.  

Figure 4.1 Photoconductance of a boron-doped (p-type) Si nanowire FET. (a) Transfer 

characteristics (Id-Vg curve) of device under LED illumination. (Vd = 0.5 V) (b) Illustration of 

photo-dinduced electron transition and transfer in the band diagram of Si nanowire device with 

applied drain potential. (c) Light-induced current switching. The stage i-v indicates the increasing 

light power density ((i) 12.4, (ii) 41.6, (iii) 73.5, (iv) 105, (v) 142 µW/cm2 respectively). (d) 

Enhancement of photocurrent switching ratio by increasing light power intensity. (Vd = 0.5 V, Vg 

= 10 V for (c) and (d). The wavelength of applied LED source is 405 nm.) 



34        Chapter 4. Intrinsic Optical Gate   

 

4.2 Negative photoconductance in nanostructures  

Negative photoconductance (NPC) is a unusual phenomenon since the photoexcitation of 

charge carriers in materials normally enhances channel conductivity.29 In order to reach 

the opposite situation (NPC), one requires a cooperation with additional electrical states 

that can compensate a generation of photoelectrons. Recently, some of the members in 

the family of the low dimensional materials (e.g., nanoparticles, nanowires and thin film 

etc.) revealed a reduced photoconductance, due to the surface effects originating from the 

high surface-to-volume ratio20,26. Thus, the large surface area in the nanostructured 

materials can potentially generate high density of localized energy states acting as traps 

for the charge carriers, sufficient to reverse the mode of channel conductivity. For 

instance, conductive array of metal nanoparticles, which is capable of surface plasmon 

excitations upon light illumination, can reveal NPC, due to the present interfacial 

charges20. On the other hand, NPC in semiconductors has different nature, linked to 

energy band gap structure. In many cases, the NPC has been observed in large band gap 

semiconductors such as AlN,21 p-ZnSe22 or Ga2O3
23, with sub-band gap excitation where 

photoexcited electrons can be captured by extrinsic (e.g. surface oxygen) and intrinsic 

(e.g. defects) trap states in the middle of the band gap. Moreover, since super-band gap 

excitation mostly generates the photoexcited electrons, it requires additional phenomena 

material dim. excitation NPC mechanism year ref. 

metal Au nanoparticle 0D - 
plasmonic change by 

charged SAMs 
2009 20 

direct 

semicond. 

AlN nanowire 1D 
sub-

bandgap 

hole trapping by surface 

oxygen 

2010 21 

ZnSe nanowire 1D 2011 22 

Ga2O3 nanobelt 1D 2011 23 

InN thin film  2D 

super-

bandgap 

scattering by recombination 

centers 
2010 24 

MoS2 monolayer 2D 
increasing effective mass by 

trion 
2014 25 

InAs nanowire 1D 
hot-carrier trapping by 

surface states 
2015 26 

indirect 

semicond. 

Au-doped Ge Bulk 
sub-

bandgap 

recombination by positive 

donor ions 

1960 27 

Co-doped Si Bulk 
1966 

1971 

2 

28 

P-doped Si 

nanowire 
1D 

super-

bandgap 

gating effect by hot electron 

trapping in dopants and 

interface states 

2016 
this 

work 

Table 4.1 Negative photoconductance observed in different systems and its mechanism 
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like scattering by recombination center in InN24 or hot carrier trapping by surface states 

in InAs26 to induce the NPC and its optoelectronic nature should be discussed for clear 

understanding. NPC of bulk Si was observed for the first time from cobalt doped Si under 

infrared light illumination2,28. The localized energy states of dopants in the band gap of 

Si act as a powerful recombination center, which is typical sub-band gap NPC 

phenomena. The NPC of various materials in terms of band-gap is listed on Table 4.1. 

The well-developed Si photodetectors present at the market and the enormous research 

and industrial demands of Si nanowires for various optical applications. In particular, 

modern Si nanowire field effect transistors (FETs) need proper doping in the conduction 

channel for effective gate modulation and should include insulating layers in contact with 

the channel area for field effect or surface functionalization for bio-30-31 or optical32,33 

sensor application. In this situation, the devices are working in more complex electrical 

systems including the charge transfer via defects and the interfaces. Therefore, NPC 

studies of Si nanowire devices would be a critical issue, not only for a deeper 

understanding of the optoelectronic properties of 1-dimensional Si systems, but also for 

realizing Si-based optical processors which have bilateral switching functionality, 

preserving the speed of Si in the CMOS technology. 

 

4.3 Negative photoconductance in Si nanowire FETs  

Si nanowire FETs with a honeycomb nanowire network were fabricated on an 8-inch SOI 

wafer using conventional CMOS fabrication technique described in the Section 3.1.2 

(Figure 4.2(a)). The Si channel area was heavily doped with phosphorus to modify the 

channel conduction properties from normal inversion mode n-type FETs to accumulation 

mode n-type FETs. Therefore, device is normally in an on-state at gate bias Vg = 0 V, 

which is advantageous for low power sensor applications. As a result, the variations of 

doping concentration were 1018 cm-3 and 1019 cm-3 of phosphorus and 1016 cm-3 of boron 

respectively. Hereafter, I will use the terms of ‘n+’, ‘n++’ and ‘p’-doped device, to 

designate the abovementioned doping concentrations, respectively. For light illumination, 

4 visible light-emitting diodes (LEDs) (wavelengths, λ = 405 nm, 470 nm, 530 nm and 

625 nm) were used. By transmission line method (TLM) measurement, it was verified 

that there is no plasmonic effect by Ag contact under-illumination. 
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In the following, the influence of the light illumination on the conductivity of Si 

nanowire FET devices is demonstrated. Figure 4.2(b) and (c) show the transfer and output 

characteristics of the n+-doped (Nd = 1018 cm-3) device under illumination of λ = 625 nm 

with various light power intensities. Interestingly, Vth of the device increases under 

illumination condition which causes a distinct decrease of photocurrent as the illuminated 

light intensity increases (see inset, Figure 4.2(b)). The output characteristics of the device 

also supports the clear NPC behavior of Si nanowire FETs (Figure 4.2(c)). Figure 4.2(d) 

shows reverse switching of Id under light illumination. The magnitude of light-induced 

reversed current switching increases (see stages i-v) as the light intensity increases in the 

time domain, which also shows the dependence of light intensity in reversed way. 

Contrary to intuitive expectations that the current should increase due to increasing 

number of mobile channel carriers by photoexcitation11, Id is decreasing when the gate 

bias and light intensity satisfy certain conditions.   

The condition of gate potential that leads to NPC in Si nanowire FETs is shown in 

Figure 4.3. Figure 4.3(a) shows that the subthreshold slope of devices increases as the 

light intensity increases. The reason of SS degradation is described in the Section 4.1. 

Therefore, NPC is not able to be observed at very low Vg close to off current level, because 

Figure 4.2 Structure and electrical characteristics of honeycomb Si nanowire FETs under 

illumination. (a) Schematic diagram of the Si nanowire FETs under light illumination. (b) 

Transfer (Id-Vg) and (c) output (Id-Vd) characteristics of an n+-doped nanowire device under 

illumination ((b) Vd = 0.5 V, (c) Vg = 2.3 V) (d) Photo-induced current switching characteristics 

on the time domain with increasing light intensity, (i) 0.022, (ii) 0.089, (iii) 0.442, (iv) 1.8, (v) 

8.9 mW/cm2 respectively. (Vd = 0.5 V, Vg = 2 V) λ = 625 nm for (b)-(d). 
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the increased SS by photo-induced hot 

electrons raises the current at low Vg. For 

this reason, the NPC is only observed at 

high enough Vg to cause channel depletion. 

In order to determine the dependence 

between the NPC and the gate bias, current 

change ratio (∆Id (%)) in the light 

condition from Id in the dark is extracted 

from the transfer curve (see Figure 4.3(b)). 

Under light illumination with very low 

power intensity (< 400 μW/cm2), the 

overall subthreshold area shows strong 

reduction of current. After the nanowire 

channel is fully formed (Vg >> Vth), the 

NPC is still observed but weaker. As the 

light power intensity is increasing (> 400 

μW/cm2), the effect of off current 

increasing in the transfer curve become 

stronger due to photoexcitation. This 

raises ∆Id (%) at low Vg (below Vth) and NPC is switched to conventional positive 

photoconductance (PPC). Therefore, the best area to observe the NPC in FET devices 

covering wide range of light intensities is the subthreshold area near Vg = Vth,dark.  

 

4.4 Light-induced threshold voltage shift and substrate effect  

Since strong NPC was observed near Vth, the light-induced threshold voltage shift 

( ∆𝑉th = 𝑉th,light − 𝑉th,dark ) from the Id-Vg curve for various doping concentration of 

nanowires is analyzed (Figure 4.4(a)). Using the constant current method, Vg at Id = 200 

nA was defined as Vth. Since Vth was changed by illumination, the photoconductance in 

the FET devices are mainly leaded by Vth shift. In Figure 4.4 (b), under low intensity light 

(< 200 μW/cm2), all devices show positive ∆Vth leading NPC regardless of the doping 

types. However, the variation of ∆Vth with light intensity change is totally different with 

doping type and concentration. The heavily n-doped devices behave with much stronger 

Figure 4.3 The current change depending on 

gate bias under light illumination (a) Transfer 

characteristics (log scale) of the n+-doped Si 

nanowire FETs upon illumination. (b) The 

current change (∆𝐼d(%) =
𝐼d൫𝑉g൯−𝐼d,dark൫𝑉g൯

𝐼d,dark൫𝑉g൯
) in 

light condition (λ = 625nm) as a function of Vg. 
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NPC than the lightly p-doped 

devices do. For n+-doped devices, 

Vth increases depending on light 

intensity, which is a standard NPC 

behavior. Contrarily, although the 

n++-doped device shows similar 

amplitude of NPC with the n+-

doped device at the beginning at 

lower light intensities illuminating 

devices, the amplitude of ∆Vth 

decreases with higher light 

intensities. Finally, weakly p-doped 

devices reveal relatively weak NPC 

effect at lower intensities of 

illumination. As light intensity 

increases, however, PPC behavior, 

such as the fast decrease of Vth, was 

observed.  

In order to demonstrate the main 

source to lead NPC and PPC by Vth 

shift, a simple equation of Vth in FET devices is derived as  

                               𝑉th = Фconst. −
𝑄i

𝐶ox
−

𝑄d

𝐶ox
                                                 (4.2)  

where Фconst., Qi, Qd and Cox imply required potential compensating the working function 

difference and the channel formation, oxide and interface charge, channel charge in the 

depletion region and the oxide capacitance respectively. Eq. 2 can be modified to include 

electrical changes induced by light illumination: 

                                        𝑉th = Фconst.− ∆𝑉sub −
(𝑄i+𝑄it)

𝐶ox
−

(𝑄d+𝑄dt)

𝐶ox
                                  (4.3)  

where ∆Vsub is substrate potential change by illumination, Qit is light-induced interfacial 

trapped charge and Qdt is light-induced dopant-trapped charge. Since the substrate is p-

type Si, the photogenerated mobile charge can change the interfacial potential. Therefore, 

Figure 4.4 (a) Transfer curve shift under illumination 

of the Si nanowire devices with various doping 

concentration. (b) Threshold voltage shift (∆Vth) of 

the devices depending on the light power intensity, 

which is compared with the substrate potential change 

(∆Vsub) by illumination (blue dashed line). 
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the substrate potential change is measured, which is shown in Figure 4.4 (blue dot line) 

and the detailed data and method are shown in Appendix A.3. Since the amount of ∆Vsub 

is comparable with the amount of ∆Vth, the shift of Vth in the devices can be leaded by 

∆Vsub when the light intensity is low. However, still extra ∆Vth that is exceeding ∆Vsub in 

the heavily n-doped devices could be induced by Qit and Qdt. 

For NPC analysis, ∆Vth with very low light intensity (< 500 μW/cm2) that exceeds 

∆Vsub is considered to be discussed in this section. In order to induce the positive change 

of Vth, (Qit + Qdt) should be negative value. Firstly, Qdt can compensate or strengthen 

depletion charge (cf. Qd < 0 in the n-type devices) depending on the dopants type. In n-

doped devices, positive donor ions capture electrons (Qdt < 0) to increase Vth. On the other 

hand, p-doped devices have negative acceptor ions, which capture holes (Qdt > 0) to 

decrease Vth.  Therefore, n-doped devices show an extra increase in Vth. Also, Qit would 

be a negative value since the photoexcited electrons are filled in the defect states, thereby 

raising the Vth. As light intensity gradually increases, Qit and Qdt are strongly affected by 

recombination rate (discussed later). Therefore, the photoexcited electrons captured by 

interfacial states and donor ions are the main driving force of NPC in heavily n-doped 

nanowires. 

 

4.5 Doping concentration and light intensity dependence 

Figure 4.5 shows the light intensity dependence of the light-induced current change with 

fixed Id,OFF ≈ 100 nA, which is chosen to be near to the Vth of devices based on the result 

of Figure 4.3(b). The photocurrent switching with respect to doping concentration and 

extraction of ∆Id are shown in Figure 4.5(a). Id near Vth decreases upon the illumination, 

so that ∆Id < 0, i.e., NPC, where ∆𝐼𝑑 =
𝐼𝑑,𝑂𝑁−𝐼𝑑,𝑂𝐹𝐹

𝐼𝑑,𝑂𝐹𝐹
 x 100 (%). It is notable that the heavily 

n-doped devices show reverse change of the photocurrent, mainly from the Vth change as 

discussed before. In Figure 4.5(b), ∆Id gradually increases with increasing light intensity 

because of the photoexcitation of electrons in the nanowires. With equal change of light 

intensity, however, the lightly p-doped devices show strong PPC behavior. This figure 

clearly shows the main differences between doping types. The PPC is strongly disturbed 

in the heavily n-doped devices. The inset of Figure 4.5(b) shows a detail variation of the 

current with light intensity in a logarithmic scale. In the heavily n-doped devices, ∆Id 
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decreases exponentially with light intensity and at some point, ∆Id begins to increase, 

even though ∆Id is still a negative value. It implies that net ∆Id is a sum of exponential 

decay and growth of current with light intensity change.  

NPC without substrate effect 

In order to verify the NPC in the nanowires without substrate effect, a top gate 

electrode is fabricated on the nanowires, shown in Figure 4.6 (a). The thin platinum 

electrode was formed on the middle of the honeycomb nanowire array covered with oxide 

gate dielectric. Pt is chosen to protect the nanowire from any additional optical effects 

like surface plasmonic effects in the range of visible light. The back gate was floating in 

order to electrically isolate the nanowire from the substrate. The fabrication steps are 

shown in Method. 

Figure 4.6(b) shows the photo-induced current change with various light intensities. 

Even when the substrate effect is eliminated, the photocurrent is reduced with low light 

intensity. The current change ratio in the top-gate device is much smaller than that in the 

back gate devices due to the absence of the strong potential drop. Like the inset of Figure 

 Figure 4.5 Photocurrent change of the devices with various doping concentration. (a) Current 

change (∆Id) upon illumination for various doping concentration. The illuminated light power 

density in the shaded area was increasing with time with the order of  21, 54, 86, 116, 153 μW/cm2 

respectively. The current drift factor was removed by current normalization. (b) Photocurrent 

change depending on light power intensity. The data points of (b) is extracted from the average 

current level in the light and dark condition of (a). The inset graph is photocurrent change vs. 

light power intensity in a logarithmic scale, which shows exponential reduction of current at low 

light intensity (< 1 mW/cm2). The grey lines are fitted curves. (λ = 625 nm) 
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4.5(b), ∆Id of the top-gate device also decreases in low intensity light and increases as the 

light intensity increases. ∆Id is attributed to the combination of two major phenomena 

such as carrier trapping and photogeneration that are inducing NPC and PPC respectively.  

Figure 4.6(c) shows the energy band diagram of Si and SiO2 interface that describes 

the physical origin of the NPC and PPC. When photons are absorbed by Si, electron-hole 

pairs are created with optical generation rate g. Due to the high energy of visible photons, 

hot electrons are generated in the conduction band with a density of nhot, remaining hot 

holes, phot in the valence band. Mobile hot electrons can thermally transit to interface 

states, Eit and conduction band edge with transit time constant τit and τ' respectively.  The 

density change of electrons at the conduction band edge, ∆n, is combining the thermally 

relaxed hot electrons and the detrapped electrons from interface states with the detrapping 

time constant, τdit. The electrons in the conduction band edge are recombined with the 

holes in the valence band edge, ∆p. Since Si is an indirect band gap semiconductor, the 

recombination process must involve the defect states transition in the band gap with the 

recombination time constant τr.  

In order to understand the effect of interfacial trapping on the photoconductance 

change of the devices, the differential equations of dynamics of the photoexcited carrier 

density change is developed: 

Figure 4.6 Negative photoconductivity of the Si nanowire device without substrate effect. (a) 

Schematic diagram of Si nanowire FETs with top platinum electrode. (b) Photocurrent change 

of the n+-doped top gate devices depending on light power intensity. The dark current level was 

100 nA. (λ = 625 nm) The dashed lines are fitted curves. (c) The schematic energy band diagram 

of Si and SiO2 interface explaining the hot carrier generation by light illumination, interfacial 

trapping and release of excess electrons and recombination process via defect states. 
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𝑑𝑛ℎ𝑜𝑡

𝑑𝑡
= 𝑔 −

𝑛ℎ𝑜𝑡

𝜏𝑖𝑡
[1 −

𝑛𝑖𝑡

𝑁𝑖𝑡
] −

𝑛ℎ𝑜𝑡

𝜏′
                                          (4.4)  

                                                   
𝑑𝑛𝑖𝑡

𝑑𝑡
=

𝑛ℎ𝑜𝑡

𝜏𝑖𝑡
[1 −

𝑛𝑖𝑡

𝑁𝑖𝑡
] −

𝑛𝑖𝑡

𝜏𝑑𝑖𝑡
                                                  (4.5) 

                                                      
𝑑∆𝑛

𝑑𝑡
=

𝑛ℎ𝑜𝑡

𝜏𝑖𝑡
+

𝑛𝑖𝑡

𝜏𝑑𝑖𝑡
−

∆𝑝

𝜏𝑟
                                                 (4.6) 

                                                          
𝑑∆𝑝

𝑑𝑡
=

𝑝ℎ𝑜𝑡

𝜏′
−

∆𝑝

𝜏𝑟
                                                      (4.7) 

                                                          
𝑑𝑝ℎ𝑜𝑡

𝑑𝑡
= 𝑔 −

𝑝ℎ𝑜𝑡

𝜏′
                                                     (4.8) 

where nit is interface trapped electrons and Nit is interface state density. The 

photoconductivity change can be expressed with excess mobile carriers under 

illumination:  

                                          ∆𝜎 = 𝑞𝜇n(𝑛hot + ∆𝑛) + 𝑞𝜇p(𝑝hot + ∆𝑝)                                  (4.9)   

where μn and μp are the mobility of electrons and holes respectively26.  

In the steady state, the solutions of the Eqs (4)-(8) depending on the interface trapped 

electrons are obtained and applied to eqs (9). If light intensity is very low, then most 

interface trap states are empty (nit << Nit). Therefore, ∆σ is expressed as, 

                                          ∆𝜎 ≈ 𝑞𝜇n𝑔 [𝜏r −
𝜏′𝜏dit

𝜏it
] = 𝑞𝜇n𝑔[𝜏r − 𝜏b]                                 (4.10) 

where 𝜏b =
𝜏′𝜏dit

𝜏it
 26. Since electrons are majority carriers in n-type FETs and the mobility 

of electrons is much higher than that of holes, the excess electron density in the 

conduction band is the critical component contributing to the light-induced conductivity 

change in the nanowire. 

If  𝜏r < 𝜏b, then ∆σ < 0 under illumination, which implies the NPC. From Table 4.2, 

estimated τb is in a range of 

10 μs to 10 ms. Therefore, τr 

of each heavily n-doped 

devices (both n+ and n++) (≤ 

1 μs) is much less than τb, 

which agrees with the NPC 

behavior of heavily n-doped 

devices in our results in 

parameter life time ref. 

𝜏𝑑𝑖𝑡  0.01 - 1 s 
34 

𝜏𝑖𝑡 0.1 - 1 ns 

𝜏′ 1 ps (at R.T.) 35 

𝜏𝑟 

Nd = 1019 cm-3 0.1 μs 
36 

Nd = 1018 cm-3 1 μs 

Na = 1016 cm-3 100 μs 37 

Table 4.2 Experimental values of carrier life time in doped Si  
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Figure 4.5(b) and 4.6(b). It implies that the electron trapping by the oxide interfacial layer 

is more preferable than electrons staying at the conduction band edge, and that it limits 

the mobile carrier density. On the other hand, ∆σ of the p-doped device could be a weak 

negative or a positive value depending on the interface trapping and detrapping time 

constants, which could possibly induce the weak NPC or the PPC in the nanowire device. 

This estimation agrees with the strong increase of ∆Id and opposite trend of ∆Vth of the p-

doped device under weak light illumination in Figure 4.5. 

On the other hand, if the light intensity is increasing, then the interface states are fully 

filled with photoexcited electrons, i.e., nit ≈ Nit. From this, the channel conductivity is 

approximated as, 

                                                     ∆𝜎 ≈ 𝑞𝜇n(𝑔𝜏r − 𝑁it)                                                (4.11) 

The derivation of all formulas is described in the previous study for hot carrier trapping 

induced NPC26. Firstly, ∆σ could positively increase proportional to g and τr when the 

product overcomes the constant negative component, Nit, inducing PPC component. As a 

result, NPC is limited and the current is growing with high light intensity, which agrees 

with the tendency of current growth as increasing intensity. Secondly, there is a 

competition between g and τr depending on doping concentration. As doping 

concentration increases, g increases and τr decreases. Therefore, the strong PPC in the p-

doped device is obvious because of the large τr. Meanwhile, the PPC of in the heavily n-

doped devices is not straightforward with doping concentration, due to the larger 

generation rate of heavier n++-doped device in spite of shorter τr. Consequently, the n++-

doped device shows stronger PPC component than the n+-doped device does in Figure 

4.5(b).  

 

4.6 Wavelength dependence 

Figure 4.7(a) shows wavelength dependence of NPC in the n+-doped device upon visible 

light illumination. With low light intensity (0.1 mW/cm2), the NPC is linearly dependent 

on the wavelength. It follows the generation rate, which is an inverse function of the 

energy of a photon (𝑔 = α𝐼ph/𝐸ph, where Iph and Eph are light intensity and photon energy 

respectively). However, with strong light intensity (10 mW/cm2), only red light (λ = 625 

nm) keeps ∆Id decreasing, whereas the other spectra cause ∆Id to increase. It implies that 
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the interface states are seldom filled with red light absorption. That is because the 

excitation probability is comparably small due to the low photon energy of red light as 

shown in Figure 4.7(b). Since the photon energy of the red light (1.96 eV) is lower than 

the energy band gap on the L-valley in the Si, the excited electrons are directly injected 

into the Γ-X band. However, hot electrons generated by the photon energy above the 2.2 

eV can enter both X- or L-valleys with phonon assisted transition38,39. The absorption of 

the red light leads two effects; (i) no photoconduction in the L-band and (ii) quasi sub-

bandgap excitation. By (i), excess mobile carriers are generated only in the X-valley, 

strongly limiting carrier generation, unlike other visible light-induced excitation, which 

allows both valleys conduction. For (ii), though the visible light absorption induces super-

bandgap excitation (i.e., Eph > Eg), excited electrons could be captured by defect states 

(Ed) in the band gap between the L-band minimum and the X-band minimum during the 

momentum change by phonon absorption or emission, like sub-bandgap trapping in 

previous studies21–23. This phenomenon is expected only in the indirect band gap 

semiconductor. Thus, quasi sub-bandgap trapping would be highly probable with the red 

light absorption, which could normally enhance the NPC. 

 

 

Figure 4.7 (a) Wavelength dependence of photocurrent change of the n+-doped back gate device 

with weak and strong light power intensity. (b) The schematic energy band diagram of Si under 

visible light illumination. The energy band gap of Γ- and L- valley of Si and the energy of red (λ 

= 625 nm) and violet (λ = 405 nm) light are shown in the diagram.   



      Negative Photoconductance in Si nanowire FETs        45 

 

4.7 Conclusion 

Negative photoconductance of Si nanowire FETs with different doping concentrations 

and light wavelengths and intensities is demonstrated in this chapter. This is the first 

observation of the NPC, induced by the hot trapped carriers in the nano-scaled 

semiconductors with indirect gap. The main sources of the NPC are the light induced Vth 

shift by photoexcited electrons trapping in the interface (outside of nanowire) and dopants 

ions (inside of nanowire). This characteristic behavior is considered as the intrinsic field 

effect induced by light. The interfacial trap state explains the doping concentration 

dependence, but the dopants ion trapping becomes important for the doping types (n- or 

p-type). Since the NPC of nanowire devices depends on doping concentration, heavily n-

doped devices show strong NPC behavior due to its longer interfacial trapping time. Also, 

the NPC and PPC occurs by means of light intensity which decides the carrier generation 

rate competing with the carrier recombination life time. NPC appears differently with 

wavelength in visible light area due to the phonon assisted excitation to multi-conduction 

bands in the indirect band gap Si. 

Finally, analysis of the obtained results for heavily doped Si nanowires and 

comparison with NPC in various nano-structures from available literatures, allows us to 

make an interesting observation that the NPC could be considered as a universal 

phenomenon for low-dimensional systems, due to the stronger influence of the 

surface/interface states. This work could provide fascinating insight into the 

photoconductivity in nano-systems influenced by unavoidable defects. The controllable 

bipolar optical current switching may open novel possibilities in Si nanostructure-based 

electronic applications like optical integrated logic circuits or photonic function 

generators. 
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CHAPTER 5  

EXTERNAL OPTICAL GATE: 

Si nanowire FETs coated by organic molecules 
 

 

 

In this chapter, photosensitive hybrid field-effect transistor (FET) consisting of the 

multiple-shell organic molecular film/oxide/silicon nanowires. The photo-induced 

current switching in the hybrid devices originates from the electric field effect by charge 

redistribution within the organic film. The switching dynamics and efficiency of the 

hybrid devices is strongly dependent on the thickness of the organic film wrapping the 

nanowires. The field effect in organic film/oxide/semiconductor junctions will be shown 

using a photo-induced charging model in the organic film. The contents of this chapter is 

mainly based upon my published article1. 

 

 

 

5.1 Why organic materials for hybrid applications? 

Smart hybrid nano-devices2–4 integrating inorganic electronic components and organic 

materials is leading to various fascinating applications, such as organic transistors5,6, 

organic solar cells7,8 and artificial photosynthetic systems9–11. The organic materials have 

interesting and material-specific properties, such as the change of conformation or 

electronic structure resulted as a reaction to external stimuli, e.g. light, temperature, ionic 

strength of a solution. Therefore, the key advantage of combining organic materials and 

conventional electronic platforms is that the interesting properties of organic molecules 

can be directly converted into an electrical response of the electronic device. The 
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functionality of conventional electronics can be, therefore, dramatically broadened 

towards novel fields of biomolecular nanomachines and sensors12 or energy harvesting 

systems13,14 while maintaining the excellent performance and cost benefits of silicon-

based electronic devices. Based on the stably settled CMOS process, the hybrid-based 

applications involving switchable or changeable organic materials from molecules to 

polymers, could be tailored to new technological needs beyond conventional electronics. 

Porphyrin and its applications 

In the realm of organic molecules, porphyrin has attracted significant attention for its 

important role in the metabolism of living organisms15 and in the electron transfer as well 

as the photochemical catalysis in chlorophyll16. Porphyrin’s unique aromatic structure 

allows a conjugated system (cf. Figure 5.1(a, b)) which causes the light absorption 

spectrum of the molecule overlaps with the solar emission spectrum (cf. Figure 5.1(c, d)). 

Therefore, this property makes the porphyrin an ideal candidate as an efficient light-

harvesting center for organic photovoltaics17. For this purpose, porphyrin/metal and 

porphyrin/semiconductor interfaces for developing hybrid charge transfer systems have 

Figure 5.1 The physical characteristics of 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-

porphine (TPPOH). (a) The chemical structure of TPPOH. (Black : C, Cobalt blue : O, Cyan : H, 

Green : N) (b) Simulated highest energy occupied molecular orbital (HOMO) and lowest energy 

occupied molecular orbital (LUMO) of TPPOH. (simulated by Lokamani, TU Dresden) (c) 

Photo-excited states and corresponding energy band structure of TPPOH. (d) UV/visbible 

absorption spectrum of 100μM TPPOH in methanol. 
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been at the center of intense investigation18–25. These systems exploit direct electron 

transport from photo-excited porphyrin molecules to inorganic electron carrier templates, 

which have been implemented for e.g. hybrid transistor memory applications19–24 

enabling charge storage in porphyrin molecules induced by light illumination. 

Photo-induced charge transfer induced via interfacing the porphyrin and the 1D 

nanodevices, (i.e. carbon nanotubes26 or nanowires27) was demonstrated by a number of 

groups19,21–27 initiating a new direction in the field of hybrid nanoelectronics. Particular 

attention was given to silicon nanowire-based field-effect transistor (FET) devices 

functionalized by porphyrin molecules. In this system, Si nanowires are employed as 

building blocks of porphyrin hybrid devices, i.e. bio-inspired CMOS23 or charge-coupled 

devices24,25. Si nanowire has strong advantages such as molecular compatible size and 

guaranteed sensitivity caused by the high surface-to-volume ratio. Current modulation 

upon light illumination of the devices can be mostly attributed to a direct photo-induced 

charge transfer of electrons into Si nanowire core23,25. 

Although porphyrin/inorganic hybrid systems have been considerably investigated, 

there are still practical challenges to realize and commercialize such hybrid devices 

combining silicon technology with chemical functionalization. The main shortcomings 

are due to a strong influence of the interface quality on the device switching efficiency 

caused by significant contaminations during clean room fabrication procedures. This 

requires a fundamentally novel and distinct way with respect to the existing hybrid 

devices relying on organic-semiconductor contacts.  

 

5.2 Hybrid organic/oxide/semiconductor (OOS) nanowire FETs 

A photosensitive hybrid organic/oxide/semiconductor (OOS) Si nanowire-based FET 

device is fabricated, which contains intruded Schottky nano-junctions, coupled to an 

amorphous organic film of porphyrin molecules via thermally grown oxide layer shown 

in Figure 5.2. In this configuration, 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H, 23H-

porphine (TPPOH) molecules are attached onto the 5 nm thermally grown oxide layer 

surrounding Si nanowire, in contrast with typical coating of direct metal or semiconductor 

surfaces in previous studies (cf. Figure 5.1(a)). Different concentrations of TPPOH 

dissolved in a 5% aqueous ethanol solution were applied onto the devices by drop casting 

technique (see Section 3.1). Porphyrin forms the outer shell of the nanowires acting as 
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the ‘OOS capacitor’. According to the location of Soret band (Figure 5.1(d)), excitation 

of porphyrin TPPOH is performed by violet light using LED source (405 nm, Thorlabs) 

with the optical power density of approximately 1.1 mW/cm2. Therefore, photo-induced 

charges of porphyrin is able to tune the Schottky barriers within the Si nanowire channel 

(Figure 5.2(b,c)) and influences the threshold voltage (Vg) of the devices.  

The hybrid OOS FETs consists of multiple bottom-up grown intrinsic Si nanowires 

aligned between nickel electrodes as parallel arrays28. Figure 5.2(b) shows well-defined 

phases of nickel silicide fractions within the single nanowire produced by means of axial 

diffusion of nickel into the nanowire body28. The FET devices, consisting of arrays of 

parallel nanowires, provide reduced device-to-device variability and high source-drain 

current level as well as high transconductance28. The structure of the devices is described 

in Section 3.1.1 (see Figure 3.1). The current flowing through Si nanowire FETs is 

controlled by the Schottky barriers formed between metallic (NiSi2) and Si segments of 

nanowires (see Figure 5.2 (b,c)) in the saturation regime, and by the nanowire channel 

charge in the sub-threshold regime29–31. Depending on Vg, the transport channel is opened 

for electrons (Figure 5.2(c), blue dashed line) or for holes (Figure 5.2(c), black solid line). 

Figure 5.2 (a) Schematic diagram of a hybrid light sensitive Si nanwoire FET. The Si nanowire 

device is optically sensitive due to covered TPPOH molecules. The system consists of 

TPPOH/oxide/Si nanowire shells. (b) SEM image of NiSi2 electrode to a Si nanowire. Brighter 

area indicates NiSi2 phases and the dark part of the nanowire shows the Si channel. (c) Energy 

band diagram of a Schottky barrier FET. Depending on the gate voltage (Vg), the device can be 

switched into n-type (blue dashed lines) or p-type (black solid lines) conductance regimes by the 

conduction band (Ec) and the valence band (EV) bending. ΦBe and ΦBh are the Shottky barrier 

height for electrons and holes, respectively. 
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If Vg makes the Si nanowire Fermi level to position in the middle of the Si bandgap, the 

both electron- and hole current are minimized and the conductance of the transistor is 

very small. Due to (i) the charges in the oxide layer, (ii) electron-hole asymmetry in real 

devices and (iii) difference in Schottky barrier heights for electrons and holes, the 

minimum of source-drain current (Id) as a function of Vg typically does not coincide with 

Vg = 0 V.  

On the device, the porphyrin film 

covers whole device, including nickel 

electrodes and forming organic shell 

around nanowires. Therefore, Figure 5.3 

characterizes the porphyrin coverage on 

nanowires and surface roughness 

depending on the concentration of 

molecules dissolved in the solution. Low 

concentrations of TPPOH in solutions 

(around 10μM) resulted into an 

inhomogeneous coverage of the 

nanowires by molecules and their 

aggregation into separated spots (~100 

nm diameter) (see red circles in Figure 

5.3(a)). Increase of the TPPOH 

concentration leads to the full coverage 

of the nanowires with molecules (see 

Figure 5.3(b), at 100μM). The TPPOH-covered surface has non-regular morphology with 

high roughness shown in Figure. 5.3(c,d). Porphyrin tends to aggregate together as the 

concentration increases. 

The formed organic film of TPPOH on top of nanowires has preferably amorphous 

structure, as proven by high resolution transmission electron microscopy (HR-TEM) 

analysis (see insets in Figure 5.4). The integrity and the thickness of the porphyrin film 

plays a significant role in switching behavior of the OOS hybrid devices and electrical 

charge distribution within the molecular shell, as will be discussed below. For this reason, 

the quantitative analysis of the resulting thickness of organic shell around the nanowires 

Figure 5.3 Surface functionalization of Si oxide 

surface with porphyrin film. Porphyrin coverage 

of nanowires depends on its concentration. 

Scanning electron microscopy (SEM) images of 

sprayed Si nanowires covered by (a) 10 µM and 

(b) 100 µM of the TPPOH solution. Atomic 

force microscope (AFM) images of porphyrin-

coated SiO2 surface with (c) 10 µM and (d) 100 

µM of TPPOH solution 
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in dependence of the TPPOH concentration is demonstrated in Figure 5.4. Here, grown 

Si nanowires covered by native oxide shell were used for test purposes, without electrode 

formation. In order to determine the shell thickness as a function of TPPOH 

concentration, HR-TEM investigations were conducted with nanowires incubated in 

solutions with different concentrations of TPPOH. Even though amorphous porphyrin 

and SiO2 layer are not visibly distinguished, the thickness of TPPOH shell can be derived 

based on the constant oxide layer thickness (~3.2 nm), which also appears in TEM as 

amorphous material. Gradual increase of the amorphous fraction on the surface of the 

nanowires was investigated in order to quantify the thickness of the porphyrin. For better 

comparison, all the images were taken at the same magnification. Considering the 

thickness of native oxide shell around an individual Si nanowire, and the amorphous layer 

of TPPOH in HR-TEM, the mean thicknesses of porphyrin dpor were estimated as 1.6, 

3.7, 6.5 and 11.2 nm for TPPOH concentrations of 50, 100, 200 and 500 μM, respectively.  

 

5.3 Optoelectronic switching of hybrid nanowire FETs 

Figure 5.5 presents the photo-induced current switching behavior (i.e. dynamics and 

efficiency) of the hybrid FETs depending on the concentration of TPPOH and thus, on 

Figure 5.4 Plot of the thickness of porphyrin layer covering nanowires as a function of 

concentration. The thickness of porphyrin is investigated based on TEM images with different 

concentrations. The yellow area is the SiO2 and the violet area is the covering porphyrin (Scale 

bar: 2nm). TEM analysis is conducted by Dr. Rafael Mendes, IFW Dresden. 
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the thickness of organic film. Figure 5.5(a) compares the transfer characteristics (Id vs Vg) 

of the nanowire device before (Bare) and after (Hybrid) TPPOH coverage and 

demonstrates the effect of light illumination (OFF and ON) on the device. The transfer 

curve of the hybrid device is shifted towards positive gate voltages by approximately 1 V 

from the curve of the bare device. Under the light illumination (ON), the threshold voltage 

(Vth) of the hybrid device is further shifted towards positive direction with increasing 

light-exposure time. On the other hand, no significant curve shift is observed from the 

bare devices. Further electric characteristics of hybrid devices are lower saturation current 

and increased subthreshold slopes compared to the bare devices, which will be discussed 

in the Section 5.4.  

The photo-induced current switching is demonstrated in Figure 5.5(b) for the bare 

device and the hybrid device covered with 200 μM of TPPOH (dpor = 6.5 nm). The gate 

bias values were chosen to be close to the threshold condition in the bare device, where 

the current level is near 100 nA. Once the device is exposed to the light (ON), Id increases 

and reached the steady state level (Id,ON) after approximately 40 s. After the light is turned 

off, the current relaxes to its level before illumination (Id,OFF). Multiple switching cycles 

of the device were recorded upon repeatedly turning illumination ON and OFF. Absence 

of switching was observed from the bare nanowire devices (see black curve in Figure 

5.5(b)).  

Figure 5.5 Light-induced current switching characteristics of hybrid Si nanowire FETs. (a) 

Transfer characteristics (Id-Vg) of the bare device and the hybrid device covered with 200 μM of 

TPPOH film in the dark condition (OFF) and under light illumination (ON) (Vd = 0.1 V) (b) 

Current switching induced by light for bare and 200 μM porphyrin covered hybrid devices as a 

function of time. Shaded area indicates light irradiation. (Vd = 0.1 V and Vg = 1 V.) 
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This result is pleasantly comparable with the photoconductance of p-doped nanowire 

devices (Figure 4.1(d) of Section 4.1). p-doped nanowire device shows around 200% 

immediate increase of current upon same wavelength and light power intensity. The low 

photoconductance of undoped device is caused by (i) the low photo-excited electron 

generation rate (only intrinsic carriers) and (ii) long interfacial trapping time. Therefore, 

the porphyrin coating significantly reinforces the photoconductance of poor 

photodetecting device. 

Switching dynamics and efficiency  

In contrast to the previous reports23,25, the switching mechanism in hybrid OOS nanowire 

device is different, since direct charge transfer between the organic film and the 

conduction channel is effectively suppressed by the high quality thermally grown SiO2 

shell. The photo-induced current switching of the hybrid device is dramatically depending 

on the thickness of the organic porphyrin film. Thus, (i) switching dynamics (time to reach 

the steady state Id,OFF or Id,ON) and (ii) switching efficiency ((Id,ON-Id,OFF)/Id,OFF) are 

analyzed.  

The switching dynamics of hybrid OOS device is demonstrated in Figure 5.6(a) and is 

found to be strongly dependent on the layer thickness of the porphyrin. Remarkably, the 

switching time drastically decreases, if the concentration of TPPOH in applied solution 

and, corresponding thickness of the organic film are increased. Obtained channel current 

was fitted by exponential functions in order to derive the characteristics time constants 

for increasing Id upon light exposure, τ1, and decreasing Id in the dark condition, τ2, 

respectively according to 

𝑦 = 𝑦1 + 𝐴1 ∗ (1 − exp (−
𝑡

𝜏1
))                                     (5.1)  

 𝑦 = 𝑦2 + 𝐴2exp (−
𝑡

𝜏2
)                                           (5.2) 

where y1 and y2 are offset current levels before stimuli, and A1 and A2 are starting values 

of exponential growing and decaying respectively. 

Figure 5.6(a) demonstrates the exponential decrease of the time constants τ1 and τ2 as 

a function of the film thickness. τ2 is always longer than τ1, since current decaying 

processe in the dark depends on the thermal relaxation of electrons in the porphyrin layer. 

This process is known to be slower compared to the photoexcitation of electrons32.  
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The switching efficiency of the hybrid nanowire OOSFETs, defined here as ratio of 

currents under light illumination (ON) and in dark conditions (OFF), is shown in Figure 

5.6(b) as the function of the porphyrin film thickness. Interestingly, the switching ratio 

reveals a non-monotonous dependence on the organic film thickness correlated with the 

concentration of porphyrin. With a thin film below 2 nm, the current ratio gradually 

increases up to a value of 1.2 (120 %) at 4 nm film thickness. For the film thickness above 

4 nm, the switching ratio decreases exponentially. Improvement of the switching 

efficiency under 4 nm is due to the formation of the porphyrin shell which has a more 

regular amorphous structure from the islands as the concentration increases (see Figure 

5.3(a,b)). A 4-5 nm layer of TPPOH would be the optimal thickness of the porphyrin shell 

to get the highest switching ratio. Further decrease of the switching efficiency is 

apparently due to thick organic film. Such behavior will be discussed in details in the 

Section 5.5.  

 

5.4 Optical gating mechanism of hybrid FETs 

In the following, the shift of the surface potential due to the processes inside of the organic 

film, so called the optical gating will be discussed. When the porphyrin covers the devices 

without light (Figure 5.7(a)), two effects on the transfer curve are observed: (i) curve shift 

Figure 5.6 (a) Switching dynamics. Extracted time constant (τ) of the light-induced current 

increasing (Id,OFF → Id,ON) and current decreasing in dark (Id,ON → Id,OFF) as a function of the  

porphyrin film thickness. The solid lines are exponential decaying fitted curves. (b) Switching 

efficiency. Current ratio (Id,ON-Id,OFF)/Id,OFF of the transistors under illumination as a function of 

the film thickness. 
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along the Vg axis and (ii) saturation current reduction and subthreshold slopes degradation 

(Figure 5.7(d)). In the dark condition (OFF), the Vth shift (i) is influenced by the charge 

distribution in the system, the difference in the work functions of the porphyrin and Si 

nanowire or Si substrate (Figure 5.7(b)). 

The experimental curves in Figure 5.5(a) clearly demonstrate that the shift is relatively 

small in the dark state (Figure 5.7(d)), indicating weak charging of the porphyrin film. 

Such behavior can be attributed to the fact that the TPPOH film is an intrinsic 

semiconductor with large energy gap, and has low conductivity. Once the TPPOH film is 

placed in contact with electrodes, their Fermi levels (EF,TPPOH) tend to equilibrate. The 

number of free carriers in porphyrin is very low and only weakly charged dipole layer is 

formed between the p-Si substrate and the organic porphyrin film, resulting in the 

negligibly small band bending effect. Figure 5.7(c) reflects this situation, showing the 

band structure of Si nanowire near the minimum current of Id-Vg curve. The effect (ii) 

could be interpreted by the reduced dielectric capacitance between nanowire channel and 

back gate, due to the serial connection of oxide capacitance and comparably lower 

porphyrin capacitance.  

The shift of the transfer characteristics becomes much more pronounced under the 

light illumination (ON) (Figure 5.5(a), 5.7(h)). Potential explanation of this effect is that 

porphyrin film acquires a higher conductance as a result of light exposure. The photo 

induced excited electrons and holes can diffuse from the source and drain electrodes and 

create the double charge layer equilibrating the Fermi levels of porphyrin and the p-Si 

(Figure 5.7(f)), thus generating a large additional negative electrical potential to TPPOH. 

The additional potential in TPPOH can be regarded as an additional gate voltage, shifting 

Id-Vg curve (see Figure 5.7(g,h)). Previous experimental and theoretical studies33–35 

demonstrate that the molecular levels of isolated TPPOH have energies of about -6.3 eV 

(HOMO) and -4.3 eV (LUMO) (see Figure 5.1(b)). Thus, the chemical potential (“Fermi 

level”) of porphyrin can be estimated to be in the range of -5.5~-6 eV. Furthermore, the 

chemical potential of porphyrin lies lower in energy than the Fermi level of metal 

electrodes and p-Si substrate (around -5 eV) (Figure 5.7(b)). Based on the Fermi levels 

studies, the additional electrical potential in the porphyrin is estimated to be around -0.5 

~ -1 V which is caused by the Fermi level alignment under light exposure. However, this 

additional potential from the EF alignment is significantly smaller than the Vth shift by 
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Figure 5.7 Current switching mechanism of porphyrin coated hybrid nanowire FETs. In the dark 

(OFF) state (left panel, a-d), the porphyrin film is ground state and insulating. When the light is 

turned on (right panel, e-h), the porphyrin behaves like a semiconductor inducing a negative 

charge close to the interface. (a,e) Schematic diagram of  cross section of the hybrid nanowire 

FETs with induced charge. (b, f) Energy band diagrams for porphyrin and the p-Si substrate 

before and after light irradiation. (c ,g) Energy band diagrams for Si nanowire FET near the off 

current state (minimum current level). (d, h) Comparisons of transfer curves. 



60        Chapter 5. External Optical Gate   

 

light illumination (~4 V). The larger measured shift is, thus, explained by the screening 

action of the charges over whole chip surface. Note, the capacitance between the back 

substrate and the organic film plays the dominant role in the curve shift, since its area is 

much larger than the areas of contacts of the porphyrin with electrodes and the Si 

nanowires. 

 

5.5 Effect of charge transfer in the organic film 

Switching dynamics depending on the mobility of porphyrin 

In the following, the dependence of the 

switching behavior of OOS device on the 

thickness of porphyrin film will be discussed. 

The experimentally observed switching time 

constants τ1 and τ2 (see Figure 5.6(a)), are 

found to be quite large in the OOS device, 

ranging from ~1 sec for the thick porphyrin 

film to ~103 sec for the thin film. It can be 

explained by a long duration of the electron 

diffusion from the source and drain electrodes 

to the porphyrin shell covering NWs. Ideally, the device and corresponding processes of 

charging organic film is represented by the equivalent RC-circuit in Figure 5.8, where 

time constants can be estimated as the characteristic time;  

τ = RporCeq                                                       (5.3)  

where the equivalent capacitance, Ceq, is the series capacitance of the channel 

capacitance, Cch, and the oxide capacitance, Cox, and Rpor is the resistance of the porphyrin 

film under illumination. It can be estimated that Ceq ≈ Cox, because Cox is much larger 

than Cch. The oxide capacitance between the back gate and the porphyrin film,  

  𝐶𝑜𝑥 =
𝜀𝑆

𝑊
                                                         (5.4) 

where S is the area of the capacitor formed by the back gate and the porphyrin layer, W is 

the thickness of SiO2 layer and ε is a dielectric constant of the oxide. The resistance of 

porphyrin,  

Figure 5.8 Schematic circuit diagram of 

porphyrin (TPPOH) coated hybrid 

nanowire FETs under light illumination. 
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𝑅𝑝𝑜𝑟 =
𝑙

𝑞(𝑛𝑒𝜇𝑒+𝑛ℎ𝜇ℎ)𝐴
                                             (5.5) 

where q is elementary charge, ne and nh are the density of electrons and holes, µe and µh 

are mobility of electron and hole respectively, l is the characteristic length between the 

source and the drain and A is a cross-section area of the porphyrin layer which is the 

product of the electrode length and the porphyrin thickness. In the following, a realistic 

value of the density of free carriers within porphyrin film generated by light is estimated. 

The density of free carriers depends on two subsequent processes: (i) exciton generation 

and (ii) dissociation of excitons into free electrons and holes and their diffusion; From the 

characteristic switching time of 10 sec (approx. 4 nm) and the geometrical sizes of the 

device, we estimate neμe ≈ 1011 (cmVs)-1 for photo-excited electrons (assuming the case 

of heavy holes). Taking the typical value of the light induced electron diffusion 

coefficient in porphyrins (D ≈ 10-7 cm2 s-1 ) 36, one estimates the mobility of carriers inside 

the organic film to be about μe ≈ 10-5 cm2/Vs. The density of the free carriers in the 

porphyrin layer lies in the range from nmax ≈ 1021 cm-3 (the estimation for the 

concentrations of the molecules ~100 µM) to nmin ≈ 108 cm-3 which is the concentration 

required to create the potential shift of the order of several volts. Taking into account the 

obtained value for mobility μe, the density of the free carriers is estimated to be ne ≈ 1016 

cm-3, which lies in the range between nmax and nmin. Therefore, the experimental switching 

time scale is reasonable for our system corresponding to the porphyrin layer density and 

the level of threshold voltage shift. Also, the mobility of free carriers in the organic film 

and thus switching dynamics of the OOS 

device highly depends on integrity of the 

organic molecular film. Therefore, at higher 

concentrations of porphyrin, over 100 μM, 

molecules improve the intermolecular 

percolation paths and increase electron 

hopping probability; this results in relatively 

faster switching time constant (about 1 s). In 

contrast, large switching time constant (up to 

103 s), observed at low concentrations of 

porphyrin (lower than 100 µM) is due to a 

very low mobility, electron density, and 

Figure 5.9 Optical current switching of 

porphyrin layer without nanowires. The 

shaded area indicates the device under 

light illumination. Vg = 0 V, Vd = 20 V were 

applied. 
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conductance of the organic film. The measured current switching characteristics of the 

porphyrin film is shown in Figure 5.9. The resistance of 1 mM of porphyrin thin film is 

10 TΩ in the dark condition with same electrode distance with the nanowire devices. 

From this result, ne ~ 1020 cm3 is calculated which also agrees with the theoretical value.    

Switching efficiency depending on the diffusion  

In order to understand the switching efficiency, the processes of the photo-excitation and 

dissociation of the excitons within the organic layer need to be considered. The typical 

exciton diffusion length in the organic films is about few nanometers depending on the 

molecular structure37,38. Therefore, the thicker layers have a limit to transfer the photo-

energy effectively from the light incident surface to the active interfacial layer. Once the 

organic film of the porphyrin becomes thicker, the diffusion length of excitons becomes 

a crucial parameter for optimal operation of the light-induced hybrid device. Based on the 

previous experimental and theoretical investigations of porphyrin films, the absorption 

length of light is estimated to about 5-10 nm and the exciton diffusion length is about 10-

15 nm38–41. In our case, however, these numbers should be smaller because of amorphous 

structure of the organic film, especially in the case of low porphyrin concentrations, when 

the structure of the film is inhomogeneous. 

Figure 5.6(b) demonstrates that at thin porphyrin layer (< 5 nm, concentration < 100 

μM), the switching ratio is low and tends to increase until the thickness reaches 5 nm. In 

the case of larger thickness of porphyrin (> 

5 nm, concentration > 100 μM), the 

maximum of exciton distribution 

(gaussian)39 is inside the porphyrin film (cf. 

Figure 5.10). Therefore, only a fraction of 

the excitons diffuses towards the 

porphyrin/oxide interfaces where the 

excitons can dissociate. This leads to a 

decrease of the switching efficiency of the 

hybrid device. Thus, the maximum of the 

switching ratio (Figure 5.6(b)) coincides 

with the porphyrin layer thickness of 5 nm. 

Figure 5.10 Expected schematic diagram of 

the exciton model for porphyrin-coated 

surface showing the light intensity as a 

function of the distance from the surface 

(black) and the resulting expected distribution 

of excitons (red). 



      Si nanowire FETs coated by organic molecules        63 

 

5.6 Conclusion 

A hybrid nano-scaled field-effect transistor (OOSFET) consisting of inorganic Si 

nanowires, coupled to a photosensitive organic film of porphyrin molecules on thermally 

grown oxide layer are fabricated and its switching behavior under the light illumination 

is demonstrated. Design of the device offers an alternative switching principle, compared 

to a photo-induced electron injection, valid for devices relying on direct junctions 

between organic molecules and metals or semiconductors. The switching dynamics and 

switching efficiency of the hybrid nano-devices are investigated and its strong 

dependence on thickness of the porphyrin film wrapping the nanowires is shown. In 

particular, a switching of the devices is governed by light generated excitons and further 

charge redistribution within the organic film. Therefore, these charges induce additional 

electrical potential within the TPPOH, which positions the electric field effect as a 

dominant mechanism for OOSFET switching.  

Such hybrid devices are closely related to the fields of hybrid memory applications, 

which is deeply discussed in Chapter 8 and a proof-of-concept optical memory is shown 

in Appendix A.3. 
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CHAPTER 6 

DESIGN OF FUNCTIONAL GATE:  

Ion-doped sol-gel derived silicate film 
 

 

 

In this chapter, the tailored electronic gate platform represented by ion-doped sol-gel 

derived film is introduced. The film provides a huge degree of freedom for designing 

physical and chemical properties of the gate (dielectric) materials by controlling the 

doping concentration or the annealing temperature as a back-end sol-gel process step. 

Various analysis in this chapter verify that this amorphous gel film could be classified as 

a dielectric composite material which shows distinct polarization characteristics. From 

these results, I envision diverse applications performed on transistors in response to 

different stimuli.  

  

 

 

6.1 Composite sol-gel film as a functional gate 

As reported in the previous chapter, the gate material covering the oxide layer of 

conventional MOSFETs can significantly modify the device characteristics. From the 

material point of view, there is a large choice which distinct set of characteristics from 

non-polar/polar dielectric to ferroelectric. However, composite materials which is 

designed by researchers for particular purposes (e.g., programmable materials1–3) can 

extend the range of materials usage. Also, nature inexhaustibly inspires researchers to 

develop artificial smart devices that mimic not only macroscopic structure, but also its 

complex electronic or optical dynamics4 and intelligence5–7 of nature.  



68        Chapter 6. Design of Functional Gate   

 

This current trend requires a stable, but functionally flexible hardware platform where 

multiple reactions or phase (or state) transition are performed by stimuli (energy). Among 

various candidates, solution-gelation (sol-gel) derived material is powerful and versatile 

tool to realize multiple functionalities at relatively low cost8,9. At the stage of ‘sol’ (liquid 

state), various materials can be mixed with sol-gel precursors and after gelation process, 

glass-like sol-gel derived material is obtained with high porosity depending on the choice 

of precursors, encapsulating various dopants such as single molecule, polymer or 

intracellular units10–15 to even ionic liquid16. Thus, tailored materials can be synthesized 

by doping the encapsulated materials. Although many studies have focused on bio-13,17,18 

and optical applications19 using effective entrapment functions of sol-gel derived 

materials, in other words, we can exploit it as an active living platform like cytoplasm 

within a living cell.    

Therefore, a sol-gel derived matrix has several advantages as a gate material:  

(i) dielectric property of silicate based sol-gel is compatible with SiO2 dielectric layer 

in the MOSFET. 

(ii) solution based sol-gel formation is simply implemented in CMOS process step. 

Sol-gel film can be formed as a back-end process using coating method (spin-

coating or drop casting, etc.). Also it is low-temperature process (≤ 100 ℃ in 

general).  

(iii) on-chip multiple functionalities activated by different stimuli can be easily 

realized by various dopants. The silica framework grows around the dopants 

without leaching of the dopants18. This provides huge degree of freedom in 

designing the tailored devices and controlling the gate potential of the device.  

(iv) it is transparent in the UV and visible spectral range. Therefore, optical properties 

like absorption, fluorescence or luminescence of dopants directly affects to the 

devices without any interrupt induced from the sol-gel platform.  

(v) mechanically robust and chemically inert film is can be formed. 

Therefore, the sol-gel derived materials have a great potential to extend the function of 

transistors beyond conventional digital switching or sensing applications, by combining 

with transistors. 
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Overview of sol-gel process  

Solution state before gelation, so-called “sol”, is formed by hydrolysis and condensation 

process steps. Liquid alkoxide precursors such as tetraethoxysilane (TEOS, Si(OC2H5)4,) 

or tetramethoxysilane (TMOS, Si(OCH3)4), are hydrolyzed by mixing with water (see 

Scheme 1). The hydrate silica tetrahedra reacts each other to form SiO2 polymeric 

networks. Since the cross-linking is relying on the pH of the solution, acidic or basic 

solution is added in sol-gel precursor solution. Previous studies show that the acidic 

condition in hydrolysis and condensation process support the linear polymerization20 and 

basic condition grows the size of particles in gel networks21. This basic procedure forms 

inorganic gels which have some drawbacks like low mechanical strength and low 

dimension of pores after densification process22. Therefore, organically modified 

precursors (organosilane), e.g. methyltrimethoxysilane (MTMS, CH3Si(OCH3)3), are 

used to improve mechanical properties. During the hydrolysis process, organic precursors 

are introduced in inorganic one to form organic/inorganic hybrid silica network. For 

example, MTMS has hydrophobic and non-hydrolysable methyl group (CH3), final sol-

gel derived network has higher porosity and network complexity due to the loose 

polymerization11,23,24.  

At this stage, dopants are added to the solution as well and the pH condition of the sol 

or the usage of extra buffer solutions should be optimized depending on the type of the 

dopants. For example, since high acidic condition can deform some kinds of dopants like 

biomolecules, higher pH of the precursor solution without alcohol is required in this case. 

The porosity, polarity and mechanical properties of the sol-gel matrix is decided by the 

Scheme 1 Polymerization reactions (hydrolysis and condensation) of sol-gel precursor  
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processes of the hydrolysis, and condensation as well as type of precursors, water ratio, 

temperature, pressure, drying and curing13.   

Sol-gel derived thin-film is advantageous in many applications, especially when it 

should be implemented with other material platforms. Fast interaction is available due to 

the short diffusion path of the thin film. Thin-films are prepared by various spinning 

method such as spin- or dip coating. The thickness of the film, dependent on the gelation 

process, is strongly affected by the ratio and type of organosilane (e.g. MTMS) and pH 

of buffer solutions that are major factors for viscosity of the solution.  

Under consideration of the key factors that decide the physical properties of sol-gel 

matrix, TMOS and MTMS mixture is chosen as sol-gel precursors (see Section 3.2.2) to 

obtain a high porosity that can provide a net of moving paths for dopants upon various 

stimuli. TMOS/MTMS ratio (3:2) is decided based on a preceding study14 that minimize 

leaching of dopants from the sol-gel matrix. To effectively manipulate the polarization of 

the sol-gel derived gate material under electric or optical stimuli, highly water soluble 

hydrate metal salts (Cl2Ni·6H2O and Cl2Cu·2H2O) are doped into the sol-gel film. In the 

solution, the metal salts are ionized and the cations and anions from the ionic compound 

can be trapped in the solid state to enhance the polarization of the film. The drying process 

is performed in the vacuum condition in order to avoid the unwanted contamination. The 

surface of the SiO2 substrate to be covered with sol-gel film is activated by air plasma 

before spin-coating, to form hydroxyl groups on the surface which enhances the adhesion. 

The sample preparation detail is shown in the Section 3.2.2 and 3.4. The physical property 

of the film depending on ionic concentration and drying temperatures will be discussed 

in the following.  

 

6.2 Morphology of sol-gel derived film 

Figure 6.1 shows the morphology of the sol-gel derived film coated on the SiO2 substrate. 

The film is formed with the 7000 rpm of spin coating speed and 100℃  of drying 

temperature. On the film surface, few tens of micro-meter flakes are observed which is 

not completely separated from the film (Figure 6.1(a)). This can be because of the long 

spin-coating time which increases surface roughness25. In the nano-scale, however, the 

film-roughness is not so critical (Figure 6.1(b)). The thickness of the film is around 2 μm 

as shown in the Figure 6.1(c). With lower coating speed, the significant variation in the 
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film thickness was not observed. To get a thinner film, therefore, the volume and the type 

of the various buffer solutions (e. g. ethanol or water) need to be analyzed.  

To understand the chemical bonding in the film affected by metal salts, X-ray 

photoelectron spectroscopy (XPS) analysis was conducted (Figure 6.2(a)). The clear 

changes after adding metal salts in the film are the broadening of carbon peak (C 1s) and 

slight oxygen peak (O 1s) shift. In general, this result is interpreted as increased C=O 

bonds. Also, Cu 2p3 and small Ni 2p3 peaks are shown after doping with 100℃ of drying 

temperature. Although the new peaks of Cu 2p3 at 931 eV and Ni 2p3 at 852-853 eV (blue) 

might imply the formation of CuO or NiO, those peaks are also shown in the cases of 

metal ions or pure solid metal and oxide peaks tend to be shifted to have higher binding 

energy26,27. Cu and Ni peaks are not shown in the sample with 25℃ of drying temperature. 

When the drying temperature is high, shrinkage of the film is expected. Therefore, inner 

bonding or component inside of the film is more likely to reveal on the data with higher 

temperature. Cl peaks are not observable in several analyses. Therefore, there is no clear 

evidence that Cu and Ni or Cl have formed covalent bond with sol-gel matrix. No 

remarkable change of Si 2p peak implies more or less the metal doping does not affect 

Si-O bonding. The limitation of the XPS measurement is that the even though X-ray can 

penetrate few micrometers, only electrons near the surface can be emitted without losing 

energy. Therefore, this analysis is close to surface analysis of the film.   

Figure 6.2(b) shows X-ray diffraction (XRD) analysis to verify the crystallinity of the 

sol-gel film. In the bare SiO2 data, strong peak observed near 32 deg. is from Si crystal 

under the SiO2 substrate. This peak is also shown in all other samples using same 

substrate. The film has just very broad spectra depending on 2θ without any kind of peaks. 

This broad band is normally observed in amorphous structure like glass. Regardless the 

Figure 6.1 SEM image of (a,b) the surface and (c) the cross section morphology of the sol-gel 

derived film on the SiO2 substrate.  
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Figure 6.2 (a) X-ray photoelectron spectroscopy (XPS) of the film with various drying 

temperature (10 mM of ion concentration). (b) X-ray diffraction (XRD) analysis with various 

doping concentration of the film (drying at 100 ℃). 

Figure 6.3 Chemical structure of the sol-gel derived film 
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concentration of doped metal ions, the film forms an amorphous silicate polymeric 

matrix. Based on above microscopic and spectroscopic analyses, metal ion doped sol-gel 

derived silicate film is non-crystalline amorphous film with little or no metallic bonding.  

Based on the X-ray analyses and the established sol-gel derived matrix structure from 

preceding studies, the chemical bonding structure is illustrated in Figure 6.3. The film 

forms polymeric organo-silicate matrix including methyl ending groups which gives high 

polarizable property to the film. The doped ions are mostly weekly bound to the matrix, 

and hence, have a mobility in the case of the stimuli. 

 

6.3 Dielectric properties  

Dielectric property of the film plays 

a decisive role in the field-effect 

transistor devices. Critical 

functionalities of the transistors like 

memory, stimuli- or time dependent 

modulation, are determined by gate 

dielectric materials. Figure 6.4 

shows dielectric constant which is 

extracted from the measured 

capacitance value depending on the 

frequency. In this section, film was 

dried at room temperature. The ion doping concentrations in the film samples are varied 

from 100 pM to 10 mM. In high frequency range (1 kHz – 1 MHz), the dielectric constant 

is around 20 to 30 regardless of doping concentration. With lower signal frequency under 

100 Hz, evident concentration dependency is observed. High ionic concentration causes 

higher dielectric constant of the film up to 120 in the case of 10 mM of ion concentration. 

In general, net polarization decreases as frequency increases, and therefore, dielectric 

constant drops. Compared to the dielectric constant of SiO2 (3.9) or Silicon (11.68), the 

sol-gel derived film is highly polarizable material. The dielectric constant of the film is 

in the similar range with some solutions such as methanol (30) or water (30-80). The 

mixing of MTMS precursor and the metal ions in the film contribute to increase the 

polarizability.  

Figure 6.4 Extracted dielectric constant of the metal 

ion doped sol-gel derived film with various doping 

concentration versus frequency.  
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 Figure 6.5(a) shows a key dynamic characteristics of the metal ion-doped sol-gel 

derived film: time dependent polarization change. The capacitance of the film is analyzed 

under voltage sweep in various range. The concentration of metal salts is fixed as 10 mM. 

The maximum value of applied voltage increases for each curve which is measured at 20 

seconds interval in numerical order. The first curve (navy) shows clear butterfly shaped 

two capacitance peaks during voltage sweep, as if it has ferroelectric property28,29. 

Normally this type of curve is observed when the transition of polarization direction 

occurs. As applied voltage range is larger, the capacitance peak at positive voltage is 

reduced and the peak at negative voltage is shifted to 0 V and becomes broadened and 

larger (orange). Also, as time passes by, initial capacitance level (V = 0 V) also increases. 

After considering all these changes, the charge accumulation capacity is increasing by 

voltage and time as well. That could be not only from (i) the increase of dipolar and ionic 

polarization, but also (ii) active movement of ions in the film by applied field which can 

trap electrons near the electrodes. Figure 6.5(b) supports this explanation. Although 

polarization curve (green) resembles the non-linear lossy dielectric material in this 

measurement, the corresponding current measurement (pink) for polarization shows that 

the current level, in other words, the flow of electrons, is continuously reduced by time 

(following the loop from the top at 0 kV/cm). This result also underpins the charge 

trapping by the film. 

 

 

Figure 6.5 Polarization characteristics. (a) C-V characteristics of a sol-gel derived film by time. 

#1 - 4 indicate the order of the measurement at 20 sec interval. (b) P-E hysterisis loop and 

corresponding current measurement. (a) and (b) are measured with 1 kHz frequency.   
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6.4 Electrical properties  

Direct current I-V curve of the ion doped silicate film is analyzed to figure out the 

electrical characteristics such as a hysteresis of conductance which is typically shown in 

memristors (Figure 6.6). The film shows noisy current characteristics on the repeat of the 

measurements. Low mobility of electrons during hopping process in the amorphous film, 

large number of trap states (i.e. ions), and rough surface disturb stable current flow. Even 

though strong noise is consistently observed, hysteresis loops and the pinched property 

(at -10 V to 5 V) are observed. Without sweep (navy), a diode behavior occurs with abrupt 

current increase in the positive voltage range. This diode behavior is asymmetric, so that 

the current enhancement in negative branch is weak and requires higher potential (~ -12 

V). The butterfly like loops (inset of Figure 6.6) imply that the film has resistive switching 

(also called “memristive”) characteristics 30–33. In addition, this curve has similarity with 

nanoionics devices where ions are moving through the oxide layer and forming the ionic 

charge transport path depending on the applied voltage condition34. This also shows that 

the ions movement plays an important role in the ion-doped sol-gel derived silicate film. 

Compared to typical resistively switching nanodevices constructed with crystalline oxide 

film, the sol-gel derived silicate sample has poor reproducibility and high noise which are 

caused by irregular film morphology. 

Therefore, the film itself would not be an ideal candidate for electronic devices that 

requires stable charge carrier transport. However, such material has a great potential to 

be applied to transistor devices with the silicon channel used for the conductance. The 

film is able to supply evident memory characteristics on the basis of the stable channel 

Figure 6.6 Electrical characteristics of the ion doped sol-gel derived silicate film. 
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current of Si nanowire. The reason is that, as a gate dielectric material, the dielectric 

characteristics that can modulate the field propagation is most critical, and charge transfer 

characteristics is normally negligible or unwanted. However, if an oxide layer which 

blocks direct charge transport from gate to semiconductor channel is present on the 

transistor, one can exploit this distinct conduction property of the sol-gel derived film as 

a gate function. 

 

6.5 Optical properties  

In order to design the viable 

applications of the designed sol-gel 

films, the optical properties should be 

probed as well. The absorbance and 

transmittance in UV/visible light range 

of the film is analyzed in the Figure 6.7. 

The film is fabricated at the glass 

substrate to facilitate the light 

penetration. The film reveals the strong 

absorption in the UV range, and a low 

level of signal absorbance in the visible 

and near infrared part of the spectrum. Consequently, the transmittance in visible light 

range is more than 92 %. With various doping concentration, the optical characteristics 

stays consistent. The oscilation-like perturbation of the spectroscopic data is typical 

property of the thin-film. This spectrum shows that most of light will directly penetrate 

the film without significant absorption and reach the substrate (or nanowire device in the 

case of hybrid device). However, important coupling between photon and components of 

the film (apart from absorbance) or photoelectron transport cannot be identified with this 

analysis. A close look at optoelectronic coupling could be determined by electrical 

analyses. 

  

Figure 6.7 Absorbance and transmittance of the 

sol-gel derived film with various doping 

concentrations. 
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6.6 Conclusion 

Metal ion-doped sol-gel derived silicate thin film is synthesized and analyzed using 

various spectroscopic and electrical methods. The advantage of organosilane-mixed sol-

gel derived matrix such as high porosity or encapsulating capacity, can be actively 

implemented to design the gate functionality. To obtain the flexible polarization property, 

metal salts are added in the sol-gel precursor solution. Although the film shows high 

roughness, spectroscopic results support that the free metal ions are mobile in the film. 

Due to the ions mobility and the highly polarizable sol-gel matrix, the film shows large 

dielectric constant and voltage- and time dependent capacitance change. Also, resistive 

switching behaviors of the film implies that the memory applications would be available 

combining with transistors. Finally, the film is optically transparent in visible light range. 

The applications using those properties will be discussed further in Chapter 7 and 8.    
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CHAPTER 7 

OPTOELECTRONIC DOUBLE-GATE:  

Ion-doped silicate film-coated Si nanowire FETs  
 

 

 

In this chapter, the ion-doped sol-gel derived silicate film discussed in the previous 

chapter is implemented on the Si nanowire transistor devices. Because of the in-plane 

front gate structure on a transistor chip and fin-structure of the nanowire, film-coated 

hybrid devices show various coupling effects such as enhanced subthreshold slope and 

optical double-gate effect caused by channel separation in the nanowire. Since the doped 

metal cations capture optically generated electrons, the negative photo-induced current 

switching is observed. This study demonstrates the clear evidence of the optical gate 

which is able to generate the electric channel in the nanowire. 

 

 

 

7.1 Si nanowire hybrid photodetectors 

Si nanowire-based photodetectors have been dramatically developed by forming hetero-

structure combining the excellent electric properties of one-dimensional platforms with 

the optically distinctive feature of various materials from metal or quantum dot (QD) to 

organic materials (see Figure 7.1). Au nanoparticles decorated Si nanowire shows 

enhanced optical properties thanks to the coupling of surface plasmonic effect1 or optical 

modes tuning by controlling absorption and scattering in gold and Si nanostructure2. Also, 

the more complex structure has been developed to detect NIR light, consisting of Si 

nanowire array which is covered with Au nanoparticle-decorated graphene that can 
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exploit the surface plasmon of Au and enhanced detection of NIR range by graphene1. 

Similarly, the Si nanowire device with CdTe QDs showed an improvement of 

photocurrent in UV range2. These heterostructure studies support that we can tune and 

broaden the detecting spectra of light by decorating Si nanowire with optically 

characterized nanomaterials which can overcome the limitation of the band gap of Si 

nanowire. Meanwhile, some groups have been exploring a different approach which was 

an organic and inorganic hybrid photodetector. They have used direct charge-transfer 

characteristics from porphyrin to Si nanowire using a covalent bonding of porphyrin3,4.   

The conventional approach of photodetectors is to gain the photocurrent by exciton 

generation and precise bandgap engineering of the channel material to get the mobile 

charge from the junction material. In this case, however, a large number of photoexcited 

electrons is required to get enough photoresponsivity, since the photoexcited electrons 

are directly participating into the current flow, shown in Figure 7.1(a). Regarding that, 

field-effect transistors (FETs) has a great advantage for photodetection like the capability 

of complementary optical logic using n- or p-type transistors5 or optical gate where the 

photo-induced charge generates additional gate bias6 which is discussed in Chapter 5 

(see Figure 7.1(b)). In this case, the charge in the optically functional layer induces the 

opposite charge in the nanowire, and the charging dynamics also influences the induced 

channel current.  

In this circumstances, to develop alternative photodetecting devices using optically 

gated Si nanowire FETs which meets the tailored requirement, sol-gel derived silicate 

material could be a powerful gate platform because of its advantages such as (i) flexible 

functionality by encapsulating various functional molecules in porous silicate matrix, (ii) 

Figure 7.1 Various structures of the hybrid photodetectors such as (a) a heterojunction and (b) 

an optical gate. 
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simple processing step and (iii) optical transparency discussed in Chapter 6. The 

optically functional material can be easily doped in the silicate matrix during solution 

preparation step. Since metal ions are excellent photoreduction agent absorbing electrons7 

, metal ion doping is a promising way to enhance the optical characteristics of the silica 

gels8 or the transition metal oxide such as TiO2
9. Up to now, however, the electrical and 

optical characteristics of a hybrid system combining metal ion-doped silicate film and Si-

based devices have not investigated yet.  

 

7.2 Double-gate transistors 

Conventional double-gate (DG) MOSFETs, where the channel current is modulated by 

two separated top and bottom gates, have devised to enhance the performance of the 

transistors, such as improved subthreshold swing, a high transconductance and reduced 

short channel effect which are arisen issues from scaling down of CMOS devices10–12. 

Thanks to the excellent performances of the DG device compared to a single-gate device 

in the initial stage, advanced structures like FinFETs13 or gate-all-around nanowire 

transistors12,14 have been successfully developed. However, the structure of the multi-gate 

FET, in which the gate covers different sides (top and two lateral or bottom sides) of the 

channel, generates the coupling effect between front and back gate (or front and lateral 

gate) that influences the channel formation and also induces channel separation15,16. 

Those effects are frequently observed in the fin structure where multiple active channels 

formed in the nanowires are modulated by another gate and cause threshold voltage (Vth) 

and transconductance (gm) change. A clear hump on gm appears due to the gradual 

activation of the back gate. In general, the lateral coupling appears earlier (at smaller Vg) 

because the interfaces are close to each other, and later the front and back gate coupling 

become stronger16. 

DG can also be applied to optical hybrid memory devices to program and erase the 

stored charge in the dielectric by second metal gate-control17. However, until now, DG 

modulation by the quantitative potential change of optically sensitive functional gate has 

not reported yet, and the physical phenomena in the nanowire channel with the 

optoelectrical DG is also not clearly explained. The optical DG study will provide strong 

evidence of the feasible controllability of the optical gate and how it modulates the 

electric field coupled with other electrical gates.   
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7.3 Front and back gate coupling  

To analyze the electrical and optical influences of the sol-gel derived film on the nanowire 

devices, the metal ion-doped silicate film is coated on the Si nanowire FETs by sol-gel 

derived method (see Figure 7.2). The general fabrication method is discussed in Chapter 

3, and the characteristics of the film is introduced in Chapter 6. The honeycomb 

structured Si nanowire FETs are used as an electrical detecting platform because of its 

excellent noise characteristics in the subthreshold area18,19. The Si nanowire channel area 

is formed by electron beam lithography on an 8-inch SOI wafer and strongly doped with 

phosphorus (5×1018 cm-3) to obtain junctionless-like channel operating on zero gate bias 

with low channel resistivity, low hysteresis, and low noise level, which is also discussed 

in Chapter 4. The platinum was deposited as source, drain and front gate electrodes to 

prevent oxidation. Only nanowire area is exposed to the air to contact the spin-coated sol-

gel film. The film is dried at room temperature for 24 hours.    

Figure 7.2(b) shows the configuration of the 1.5×1.5 cm2 chip including 16 transistor 

devices that are sharing an in-plane central front gate electrode. The front gate electrode 

Figure 7.2 Structure of the hybrid Si nanowire FET devices. (a) Illustration of the sol-gel film 

coated Si nanowire FETs with front and back gate electrodes. Microscopic image of (b) the Si 

nanowire FET chip with a central front gate (red square) and (c) the Si nanowire active region. 

(d) TEM image of the cross section of the nanowire with thermally grown oxide layer. 
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does not affect the transistor behavior in the bare device without film. The orange area of 

Figure 7.2 (c) shows the nanowire channel region and the active Si area under the source 

and the drain electrode is heavily doped with phosphorus. The Si nanowire has 25 nm 

width (top), and 75 nm height which is more than twice of the width and the three faces 

of the nanowire have thermally grown 5 nm SiO2 layer (see Figure 7.2(d)). Therefore, the 

cross-section of the nanowire structure is similar to the tri-gate FinFET.  

Since the film is rigidly separated from the Si nanowire by a thermally grown oxide 

layer, the film can functionally replace the conventional metal front gate of the 

MOSFETs.  

Figure 7.3 shows dramatically enhanced gate modulation induced by the nonlinear 

dielectric property of the metal ion-doped silicate film and the front-gate structure. Figure 

7.3(a) shows the transfer characteristics of the bare and film-coated hybrid devices. 

Interestingly, the coated film enhances the subthreshold slope (SS) of the devices 

significantly. Bare devices have a high value of SS around 1800 mV/dec (also see the 

average value in Figure 7.3(b)), due to the large capacitance of buried oxide (BOX) and 

the Si substrate. High SS is a general drawback of using the back-gated devices and 

requires higher power consumption. On the other hand, film-coated devices have much 

smaller value, such as 180 mV/dec, which is comparable with front gated (liquid gate) 

devices. The inset of Figure 7.3(a) shows direct DC coupling between the back gate and 

the front gate. The back gate bias is linearly transformed to the front gate bias. Therefore, 

coupled front gate potential directly modulates the nanowire current via coated sol-gel  

Figure 7.3 (a) Enhanced transfer characteristics of the sol-gel film-coated hybrid device (red) 

compared to the bare nanowire device (black). (Vd = 0.5 V) (b) Variation of subthreshold slope 

(SS) depending on the metal ion concentration.  
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derived silicate film.  

The enhanced SS characteristics is dependent on the presence and the concentration of 

the doped ions in the film (Figure 7.3(b)). The doped ions increase the dielectric constant 

(see Chapter 6) of the film that provides better propagation of the electric field through 

the film. Therefore, higher ion concentration in the film causes lower SS in the Id-Vg 

curve.  

The SS depends on 
𝑑𝑉𝑔

𝑑𝜑𝑆𝑖
 20 defined as, 

SSBare ∝
𝑑𝑉g

𝑑𝜑Si
= 1 + 𝐶Si ∙ (

1

𝐶substrate
+

1

𝐶BOX
)                        (7.1) 

SSHybrid ∝
𝑑𝑉g

𝑑𝜑Si
= 1 + 𝐶Si ∙ (

1

𝐶film
+

1

𝐶ox
)                           (7.2) 

where φSi is a distinct potential applied to the Si nanowire channel, Csubstrate and CBOX is 

the bottom capacitances of the p-Si substrate and buried silicon dioxide (BOX), CSi is the 

Si nanowire channel capacitance, Cox is the thermally grown SiO2 capacitance around the 

nanowire and Cfilm is the sol-gel film capacitance (cf. Figure. 7.4). Because of the high 

dielectric constant of the ion-doped sol-gel silicate film (cf. 𝜀SiO2
= 3.9, 𝜀Si = 11.7,

𝜀film ≈ 20~120, also see the Chapter 6), and the thickness of the each capacitor (cf. 

𝑑substrate = 400 μm, 𝑑BOX = 400 nm, 𝑑film = 180 μm), Cfilm reduces the SS of the 

film-coated device which is modulated by coupled frothe nt gate. In the electric field, the 

doped ions are redistributed to form strong displacement between anions and cations. As 

a result, strongly polarizable ions in the film dramatically reduces SS.  

In various sensor applications, the back gate is frequently chosen to use the area on the 

top of the devices for detection. The conventional wafers having thick substrate and the 

BOX causes large SS in the transistor devices with back gate modulation, which requires 

high power consumption of the transistor. In this sense, ion-doped film coating can be a 

good suggestion for any practical sensor platform with low power consumption. 

Figure 7.4 Capacitive models of bare (left) and hybrid (right) devices. 
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7.4 Optical gate coupling effects 

The light-induced electrical characteristics of the sol-gel film-coated hybrid device is 

demonstrated in this section. Transfer characteristics in the dark and the light illumination 

with violet (405 nm) and red (625 nm) range were measured (Figure 7.5). Under the light 

illumination, several distinct transients in the Id-Vg curve are observed: (i) the increase of 

off current (Figure 7.5(a)), (ii) the threshold voltage shift and (iii) the current hump 

(Figure 7.5(b)). In addition, transconductance (gm) is calculated from the linear Id-Vg 

curve, and interestingly, light illumination generates an additional clear peak in gm apart 

from the general curve shift by surface charge. Using the extrapolation in the linear region 

method21, shifted Vth can be extracted as Vth2 (Figure 7.5(b)). The additional gm peak and 

hump in the Id-Vg curve imply that another threshold point (Vth1). The two threshold 

voltages indicate the channel separation in the nanowire (see the inset of Figure 7.5(a)) 

due to the coupling effect between the back gate and optical front gate. Figure 7.6 (a) 

illustrates major causes to change the Id-Vg curve shape. Due to the optical transparency 

of the film, light can reach the nanowire by penetrating the film and generate photocurrent 

in the nanowire which is the dominant source of the off current increase. The stronger 

Figure 7.5 Optical gate coupling effect of the ion-doped silicate film-coated devices. (a) Transfer 

characteristics of the hybrid device under light illumination. Inset figure shows possible channel 

formations in the nanowire by optical (ch1)- and back gate (ch2). (b) Linear transfer 

characteristics (left black-axis) and transconductance (right blue-axis) of the film-coated hybrid 

device. Two different threshold voltages (Vth1 and Vth2) are extracted from the Id-Vg curve. Black 

lines show the electrical characteristics in the dark condition and colored lines show light 

responses of different wavelengths with the constant light intensity of 18.3 mW/cm2 (Vd = 0.5 V). 
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current growth under violet light (405 nm) shows the photoconductance property of the 

Si nanowire. The overall curve shift originated from photo-induced electron trapping by 

metal cations that provide additional negative bias around the nanowire. The metal 

cations acting as electron acceptors restrict the recombination of the electron-hole pair 

near the electrodes and retain the negative potential, namely optical gate bias.  

The coupling effect between the optical front gate and the back gate shows the clear 

evidence that the optically sensitive film can generate a strong electrical field enabling 

the device modulation. In the fin-structure of the nanowire with double gates, the electric 

field at the corner and edge region is stronger than the body and bottom region, and the 

higher doping concentration also enhances channel separation22. Our devices have a fin-

structure, and the back gate bias is coupled to the front gate via sol-gel film. In this 

circumstances, the light-illumination increases the number of mobile carriers in the 

nanowire and strengthens the electric field applied to the front edge of the nanowire. 

Therefore, the front channel is formed with smaller back gate bias (Vth1). The body 

channel is subsequently opened by the back gate with Vth2. Also, the stronger current 

hump is observed with 405 nm of the light compared to 625 nm. The channel separation 

and its conductivity are also dependent on the wavelength of the light by generating 

different front gate biases.  

Figure 7.6 Optoelectronic double-gate effect. (a) Schematic diagram of the light-induced 

charging mechanism in the optical gate of the hybrid device. (b) Equivalent circuit model of the 

optoelectronic double gating system. (Vopt: optical gate bias, Vg: back gate bias, Vd: drain bias, R1 

and R2: series resistances of the optically and electrically induced channels in the nanowire 

respectively, Rph: photo-resistance modulated by different wavelengths, Rch: other channel 

resistances (e.g. contact resistance etc.)) 
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The equivalent circuit model summarizes the channel separation in the optoelectronic 

double-gate device (Figure 7.6(b)). The optical front gate (Vopt) and the back gate (Vg) 

separately modulate the channel conduction where Vopt is the coupling bias induced by Vg 

and photo-induced charge in the film. Resulting Id can be presented as a sum of optically 

gated edge channel current (I1), back (front-coupled) gated body channel current (I2) and 

photocurrent (Iph) which is given by,  

𝐼𝑑 = 𝐼1 + 𝐼2 + 𝐼𝑝ℎ                                                 (7.3) 

In the dark condition, the component of Id is only induced by back gate without any optical 

coupling effect.  

 

7.5 Optical current switching characteristics 

The film-coated hybrid device shows negative current switching behavior under light 

illumination. Figure 7.7 (a) shows the Id-Vg curve shift under illumination. The trend of 

the current change has a strong similarity with the negative photoresponse of bare n-doped 

devices (Figure 4.3 and 4.5 in Chapter 4) such as the increase of threshold voltage and 

degradation of subthreshold slop6. Because of the high transparency of the sol-gel film 

(cf. Figure 6.7), the hybrid devices also shows the similar photoconductive behavior of 

highly n-doped nanowire FETs. However, the threshold voltage shift is stronger with the 

Figure 7.7 Optical current switching characteristics. (a) Transfer characteristics of the hybrid 

device under light illumination with various light power intensity. (b) The current switching 

ratio (∆𝐼𝑑 =
𝐼𝑑,𝑂𝑁−𝐼𝑑,𝑂𝐹𝐹

𝐼𝑑,𝑂𝐹𝐹
× 100 (%)) as a function of light power intensity where Vg = 1V. (Vd 

= 0.5 V, λ = 625 nm) 
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sol-gel film coated device compared to the bare devices. The electron entrapment of metal 

cations provide the consistent negative potential to the device, which increases the 

threshold voltage of the devices. The photocurrent change by light power intensity is 

shown in Figure 7.7(b). Although it is difficult to directly compare the exact number of 

current change ratio (ΔId (%)) with the bare devices in Figure 4.3 because of the different 

Id,OFF level, the increasing tendency and amount of ΔId in the same range of light intensity 

(0 - 20 mW/cm2) are comparable with the photocurrent change of bare heavily n-doped 

device. Therefore, this switching current increasing originates from the photoexcited 

electron generation in the nanowire (Iph). On the other hand, the current switching 

dynamics is strongly affected by the film 

(see the inset of Figure 7.7(b). The longer 

switching time constant is from the high 

capacitance of sol-gel film (cf. Figure 6.4). 

Figure 7.8 shows the wavelength 

dependency of the hybrid device, which is 

almost identical with the optical property of 

bare heavily n-doped devices. Since the sol-

gel derived film has no distinct absorption 

characteristics with the visible range of the 

light, the hybrid devices show bare device 

characteristics.   

 

7.6 Conclusion 

The optical double-gate effect of ion-doped silicate film-coated Si nanowire FETs has 

been experimentally demonstrated. The back and front optical gate coupling of the 

specific fin-architecture of nanowire induces the channel separation. This chapter has 

directly shown the formed of the channel in the nanowire induced by the optical gate. 

  

 

 

Figure 7.8 Wavelength dependence of light 

induced current change of the hybrid device. 

(Vg = 1 V, Vd = 0.5 V, light intensity is 18.3 

mW/cm2) 
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CHAPTER 8 

HISTORY-DEPENDENT PSEUDO GATE:  

Neurotransistors for memory and learning 
 

 

 

Neuromorphic architectures are envisioned to merge learning and memorizing functions 

within one unit-cell like a neuron. In this chapter, a neurotransistor is designed using a 

silicon nanowire device coated by an ion doped sol-gel silicate film, possessing an ability 

to emulate the neuronal intrinsic plasticity. The use of mobile ions enables the silicate 

film to act as a pseudo gate that generates plasticity and allows a short-term memory of 

neurotransistors. A pulsed input signal of the neurotransistor is transformed into a 

sigmoidal weighting of the output current resembling functionality of a neuron cell, where 

a membrane potential induces a sigmoidal change of ionic current. The output response 

is governed by the history of the input signal, stored as ionic states within the silicate film 

and thereby enabling the learning capability of the neurotransistor. Finally, the 

neurotransistor having intrinsically multiple outputs represents a building block for a 

fully-on-chip physical neural network system. This work is prepared to be published. 

 

 

 

8.1 Human-made machine to mimic the human brain  

The human brain has singular characteristics; it is a computing machine where both 

memory and processing of information are contextually performed in the same and unique 

active matter framework. In contrast to contemporary computers, learning and 

memorizing information in the brain occur simultaneously and in parallel across multiple 
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neurons, which are the basic unit of computing in the brain active matter. The complex 

parallel computing is accomplished by 1000 synaptic connections on a single neuron up 

to a hundred of trillion connections spanning the whole brain. The brain functionality and 

computation emerge as a result of collective electrical and chemical operations passing 

by synaptic interactions through cell-networks including neurons. The complexity of this 

refine machinery is far to be understood completely, and the brain research has been lively 

ongoing in various fields from neuroscience1, molecular biology2,3, medicine4 to network 

science5,6 or psychology/psychiatry7.  

The brain is fundamentally different from standard von Neumann machines, which 

split memory and processing of information into separated units. Conventional von 

Neumann architecture is restricted to solve extremely complex problems. The extra bus 

connections between split-ups restrict solving complex problems (like recognition, 

prediction or judgment of the brain), which require a huge amount of energy and materials 

consumption8,9. Going beyond the von Neumann computer, neuromorphic 

architectures10 have been proposed borrowing the elegance of brain. They perform both 

learning and memorizing of information at the same time within the same functional unit, 

and can realize powerful brain-inspired algorithms such as deep learning11 or 

memcomputing12 at a hardware level.  

Artificial neurons and synapses13–31 are functional building blocks of neuromorphic 

architecture, although each of them plays fundamentally different roles (See Table 8.1). 

Their primary task is to mimic the temporal or permanent reinforcement (or attenuation) 

of synaptic connections, i.e., short-32,33 and long-term synaptic plasticity34,35. While the 

main function of a synapse is to assure the information flow with synaptic weighting (cf. 

the role of edges in the artificial neural networks), a neuron is in charge of the information 

processing, i.e., learning and information storage. In this respect, most memristor-based 

synapses are exploiting localized conducting filaments formed with injected ions or 

nanoparticles by an applied voltage in pre-synaptic electrode13–22. Also, memristor-

crossbar networks are successfully applied to design circuits for training and pattern 

recognition16,18,21,22. On the other hand, spintronic nanodevices have been launched for 

brain-inspired computing, such as racetrack memory to fulfill the huge memory storage 

of brain23, spintronic oscillators to imitate rhythmic activity of brain26 and memristors24,36 

as well that tunes the dynamics of resistance using spin torques25. Recently, synaptic  
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Table 8.1 Comparison between the nanoelectronic candidates for neuromorphic computing 

machine 

transistors using either memristive channel-28,29,31 or dielectric materials17,27,30 have been 

reported. Very prominently, these transistors reveal synaptic plasticity and do resemble the 

functionality of synapses rather than neurons. 

Intrinsic plasticity of neurons and neurotransistors 

Although a synapse is a well-known element for storing memory and transmitting 

neuronal signals, numerous observations have proven that a critical player for learning 

and memorizing is a neuron59–61. The neuron can store information by modulating its 

intrinsic excitability, which is initiated by the change of a membrane (gate) voltage and 

to process information through the summation of presynaptic signals and generating new 

postsynaptic signals. This neuronal activity is known as intrinsic plasticity47,62. In contrast 

to synapses that can be considered as two-terminal devices, the structure of a neuron has 

a striking similarity to a transistor31,63, which has the potential to emulate the intrinsic 
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plasticity of the neuron. Like a gate of transistors, membrane potential gated ionic 

channels in the neuron41 modulate the intrinsic excitability depending on a number and 

activity of K+, Na2+ and Ca2+ ion channels. Also, a neuron requires threshold voltage 

achieved by ionic current injection for generating a spike. Similarly, the threshold 

modulation is one of the key properties of transistors. The intracellular plasticity could be 

realized by verifying the dielectric and the channel materials of the transistors, that is 

relatively difficult to be considered in the two-terminal devices. If realized, this 

architecture would act as a neurotransistor, which is crucial to perform as a computing 

node in a complex neural network, and which is out of reach by now. 

 

8.2 Neurotransistors with tunable memory  

A brain-inspired memory functionality is realized based on Si nanowire-based 

neurotransistors (see Figure 8.1(a)). The metal ion-doped silicate film covering both a 

gate electrode and a Si nanowire network (cf. Chapter 7) enables the emulation of 

neuronal intrinsic plasticity in a conventional transistor (see Chapter 3 for device 

fabrication. Drying temperature for the film is 100 ℃.). Ionic sol-gel film is aimed at 

mimicking the local or global ionic movement through Na2+, Ca2+ and K+ ion channels in 

Figure 8.1 Structure of a Si nanowire neurotransistor. (a) Schematic diagram of scalable 

neurotransistors with pre- and post-synaptic signal transmission.  (b) Chemical structure of the 

ion-doped sol-gel derived silicate film coated on the transistors. (c) Illustration of a biological 

neuron with synaptic input and output. SEM images of (d) the neurotransistor (top view) and (e) 

the nanowire network with honeycomb structure. (f) TEM image of cross section of nanowire. 
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a neuron, by means of metal cations (Cu2+ and Ni2+) and Cl- anions that are loosely 

captured in a polymeric silicate structure (Figure 8.1(b)). Because of doped ions, the film 

mimics the properties of a high-κ dielectric material that enables the device to preserve 

good gate coupling at a long distance between the gate and the nanowire channel (180 

µm). Moreover, the ions stay mobile in the sol-gel film without chemical bonding (shown 

in Chapter 6). Figure 8.1(c) shows a biological neuron transforming pre-synaptic input 

signal to post-synaptic output signal by complex ionic channel activity. Similarly, a pre-

synaptic input is applied to the gate (like action potential) to modulate the conductivity 

of nanowires, which is transferred to the post-synaptic output (Figure 8.1(d)). Thanks to 

a simple solution-based film-coating process, a neurotransistor with planar gate 

modulation could be obtained on an 8 inch SOI wafer with honeycomb-structured 

nanowires (Figure 8.1(d-f)). 

 

Tunable memory 

The transfer- and the output characteristics of the neurotransistor resembles the 

functionality of dynamic random-access memory without extra-capacitor (1T-DRAM)64 

(Figure 8.2(a)). A feature of Id-Vg curve of the neurotransistor is a “tunable memory 

window,” which is varying up to around 10 V depending on Vg sweep speed (Figure 

8.2(a), inset). In comparison to 1T-DRAM cells featuring fixed memory windows64–66, 

the neurotransistor can vary its charging capacity using mobile ions in the dielectric layer. 

Figure 8.2 Tunable memory of the neurotransistors. (a) Transfer characteristics (Id-Vg) of the 

neurotransistor with various Vg sweep speed. The memory window is shown in the inset as a 

function of the Vg sweep speed. (SS = 99.1±19.3 mV/dec) (b) Transfer characteristics of Si 

nanowire devices wrapped by sol-gel derived layers with various drying temperature. Vd = 0.5 V 

is applied for (a,b). 
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This allows the transistor to have short-term plasticity so that Id is modulated by a 

frequency and width of Vg pulses, corresponding to the speed of the electric-field change 

around the nanowire. The average subthreshold slop (SS) of the Id-Vg curve is 99.1±19.3 

mV/dec implying that the gate coupling is comparable with ion-sensitive FETs using ion-

contained liquid gate67–69. These results demonstrate the memory functionality of the sol-

gel derived film-coated nanowire FETs.  

Also, the memory capacity is tuned at the fabrication step, such as the drying 

temperature (Tdry) of the film (Figure 8.2(b) and Figure 8.3). Higher drying temperature 

induces a larger memory window with constant voltage sweep speed. To demonstrate the 

origin of the hysteresis (memory window) Id-Vd curves are measured to analyze the 

current level change after the set and reset by Vg (Figure 8.3). Based on the current 

saturation level of the transfer characteristics, the set voltage and reset voltage are chosen 

as 8V and -8 V respectively. Vg in the graphs is applied to the devices right after (< 1 s) 

the sweeping of gate voltage from 0 V to 8 or -8 V (set or reset).  With Tdry = 50 ℃, Id-

Vd curves are modulated by Vg even after the set and reset, like conventional output 

characteristics of the transistor (Figure 8.3(a)). When the higher drying temperature (70 

℃) is employed, Id-Vg curves do not follow the conventional output characteristics 

(Figure 8.3(b)). After set, the current level is not reduced even when Vg = 0 V, but he 

curve shape is distorted due to the relaxation during measurement. When Vg = 0.2 and 0.5 

V are applied, current levels do not follow the conventional rule (cf. Figure 8.3(a)) but 

still keep higher value. After reset, although Id-Vd curves tend to increase as Vg increases, 

the growth of current level requires higher drain voltage. Finally, Figure 8.3(c) with Tdry 

= 100 ℃ shows that after the device is set, the output characteristics is maintained clear 

Figure 8.3 1-transistor (1T) memory functionality of the sol-gel film coated Si nanowire 

transistors with various drying temperature: (a) 50, (b) 70 and (c) 100 ℃. (Vg,set = 8V, Vg,reset = -

8V)   
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high current at the level of about 10-5 A, even when 0 V is applied on the gate. After reset, 

Id keeps off current level. Figure 8.3(c) verifies clear memory behavior of the sol-gel film-

coated FET device with Tdry = 100 ℃. Drying temperature dependence is due to the 

shrinkage of the sol-gel derived matrix during the annealing process which reduces the 

porosity, so that ionic mobility is enhanced and more ions can be accumulated on the 

electrode area. In the following sections, the film dried at 100 ℃ is used for the 

neurotransistor. 

The dynamics for the set and reset for memory is shown in Figure. 8.4(a). The 

neurotransistor requires τset = 15.9 s and τseset = 45.25 s (time constant for memory set and 

reset) for fully turning on and off the devices with Vg = 8 V and Vg = -8 V respectively. 

The extracted time constant is too slow for conventional reading and writing of digital 

memory. However, analog reading and writing (i.e., programming) are available where 

the current level is gradually increased or decreased by Vg pulses. Figure 8.4 (b) shows 

the retention time of the Id-Vg curve. In the logarithmic scale of the Id, it takes around 150 

s for fully turning-off of the device.  

 

8.3 Intrinsic plasticity in neurotransistors  

As a consequence of long reading and writing time of the neurotransistor, the Id response 

(post-synaptic output) to Vg pulses (pre-synaptic input) with high pulse-amplitude (VA = 

6 V and -6 V) shows clear short-term potentiation (STP) (temporal neuronal signal 

Figure 8.4 Set and reset time of memory. (a) The drain current saturation dynamics. The time 

constant to reach the current saturation level (Vg = 8 V, set) is 15.89 sec. The relaxation time 

constant (Vg = 0 V, reset) is 45.25 sec. (b) Id-Vd curves depending on memory retention time with 

Vg = 0 V. The film drying temperature is 100 ℃ for (a) and (b). 
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enhancement remained milliseconds to few minutes which is induced by the diffusion 

driven redistribution of ions within a membrane) and short-term depression (STD) 

behavior (represented as an output signal reduction, and remained milliseconds to few 

minutes in the absence of the input pulses) respectively, as the dramatic nonlinear increase 

of post-synaptic current ΔId (Figure 8.5).  

To investigate the intrinsic plasticity of the neurotransistors, we analyzed the output 

current (Id) as a function of the input pulse amplitude (VA) with fixed pulse period (T = 

500 ms) and pulse width (W = 100 ms) (Figure 8.6(a)). The tendency of input signal 

variation is dependent on the VA. When the weak input pulses (VA = 1-3 V) are applied 

on the gate, no distinct change of ΔId along the input pulses is observed, but the current 

only shows direct pulse response by the input pulses like conventional transistor behavior. 

When VA is over 4 V, the ΔId increases linearly as pulse number increases. This 

strengthening of the output signal is a signature of the STP by intrinsic neuromorphic 

excitability. Moreover, higher VA (> 7 V) leads to the nonlinear growth of ΔId along the 

pulse number. Also, the nonlinear increasing of Id0 is observed as pulse number increases. 

This current weight by repeated input pulses implies that the transistor has a feature of 

synaptic potentiation. Similarly, the input pulse period (T) also modulates the plasticity 

including STP in the synaptic transistors (Figure 8.6(b)). A shorter period of the pulses 

leads to stronger STP and increase of ΔId. In conclusion, strong and frequent stimulations 

entering input dramatically raise output signal in the synaptic transistor. 

Figure 8.5 The post-synaptic output current (Id) responding to pre-synaptic pulse-train (Vg) in 

the neurotransistor. T is a period of the pulses and W is a pulse width. Potentiation (increasing 

red line) is leaded by positive pre-synaptic pulses (VA = 6 V, T = 500 ms and W = 200 ms) and 

depression (decreasing red line) is leaded by negative pre-synaptic pulses (VA = 6 V, T = 500 ms 

and W = 300 ms). Vd = 0.5 V is applied. 
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This resulting plasticity is mainly due to the ionic polarization in the sol-gel film 

(Figure 8.7). The diffusivity of ions decreases when the porosity of the medium 

increases70. Therefore, the mobility of metal cations and Cl- anions is limited in the sol-

gel processed silicate polymer that has higher porosity than the conventional dielectric 

material does71. If the input pulse amplitude VA is too small to exceed ionic potential 

energy barrier (Ebarrier), the applied pulses cannot induce a meaningful movement of ions, 

and the gate potential is only transferred by dielectric polarization. (Figure 8.7(i)) With 

this condition, the potentiation is not able to occur. On the other hand, a strong VA can tilt 

the energy barrier of ions causing easier ion drift. (Figure 8.7(ii)) This gradual ionic 

migration generates strong ionic polarization between cations and anions. Even when the 

input signal is turned off (Vg = 0 V), ionic polarization is maintained because of the high 

diffusivity leading long relaxation time to come back to an equilibrium state. This ionic 

polarization keeps a certain amount of interface potential on the nanowires like a pseudo 

gate, causing short-term (pre-synaptic) potentiation. Also, if the next input pulses are 

applied before the ions return to equilibrium state (pulse duration < relaxation time), the 

output current continuously increases by the weighting of ionic polarization. Therefore, 

the strong potentiation is observed when the period of pulses is shorter. This pulse-

induced ionic migration and its diffusion and polarization properties generate non-linear 

Figure 8.6 Neuroplasticity of neurotransistors. (a) Post-synaptic responses as a function of pre-

synaptic pulse amplitude (VA). Applied pre-synaptic pulse duration and width are fixed as T = 

500 ms and W = 100 ms.  (b) Post-synaptic potentiation depending on the presynaptic pulse 

duration (T). Applied pre-synaptic pulse amplitude and pulse width are fixed as VA = 6 V and W 

= 100 ms. Vd = 0.5 V is applied for (a, b). 
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current operation by pulses on the 

transistor device. In addition, small 

polarity change in the film induces 

the strong plasticity by field-effect 

when combined with a transistor. 

This is obvious because the 

memristive behavior of the ion-

doped film itself is not critical to 

induce strong potentiation, i.e., 

memory behavior, under the same 

amount of electric potential (shown 

in Figure 6.6 of Chapter 6). When 

combined with transistors, the 

impact of the electrically induced 

response of the film is more 

obvious. Slight change of the 

polarization in the film is able to 

induce strong intrinsic plasticity in the transistors by the electrical field-effect.  

Interestingly, the time evolution of the output potentiation (Id0) and output peak (Id,peak) 

can be perfectly fitted with a sigmoidal curve (Figure 8.8(b) and Appendix A.4). This is 

in agreement with a sigmoidal increase of the ionic current in a neuron cell72, caused by 

the membrane potential (Vmemb) (cf. Figure 8.8(a)) and which has been also well described 

by Hodgkin-Huxley model73. Here, the curve is fitted to the following sigmoidal equation:  

𝐼d0(d,peak) = 𝐼d0(d,peak),max −
𝐼d0(d,peak),max−𝐼d0(d,peak),min

1+(𝑡 𝑡0.5)⁄ 𝑛                                (1) 

where Id0(d,peak),max and Id0(d,peak),min are extrapolated maximum and minimum value of the 

entire curve respectively, and t0.5 and n are the time constant to reach the half of Id0/peak,max 

and power coefficient (cf. Hill coefficient) respectively. This result implies that the time-

dependent output signal (O(t) = Id) is a nonlinear sigmoidal function of the pulsed input 

signal (I(t) = Vg) which decides all coefficients of the sigmoidal function (i.e. O(t) = 

σ(I(t)) where σ(x): sigmoidal growth function). Figure 8.4(a) shows Id reaching the 

saturation with constant high gate bias. It means that consistently repeated pulses with 

Figure 8.7 A schematic diagram showing the various 

polarization occured in the ion-doped sol-gel silicate 

film through potential energy barrier when Vg is 

applied. The ionic migration and energy states are 

shown when the pulse amplitude is (i) small and (ii) 

large to induce ion drift. 
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high amplitude would induce the output saturation. In this case, there is an increase in the 

residual value of the ionic polarization and the actual electric potential affected on the 

nanowire channel increase.  

The critical result of this study is that the stronger ionic polarization in the film acts 

similar to the increase of the membrane potential in a neuron cell, and induces a sigmoidal 

increase of the output current of neurotransistors. Interestingly, the neurotransistor 

follows such nonlinear functions depending on amplitude and frequency of the pulsed 

input voltage. This is the key aspect to build a controllable neurocomputing architecture 

which is defined by sigmoid formulas. At the same time, the sigmodal behavior of the 

signal is an important feature to keep the homeostatic intrinsic plasticity, which regulates 

ongoing ionic activities or synaptic potentiation in neurons74. Moreover, in models of the 

artificial neural network with deep learning architecture11, the sigmoidal function is 

frequently used as an activation function between the input and output due to its 

differentiability to minimize errors75 (Figure 8.8(a), bottom). Therefore, considering the 

tunable sigmoidal output response, the proposed neurotransistor is a good candidate to be 

employed for hardware implementation of artificial neural networks.   

 

 

Figure 8.8 Sigmoid weight of neuron cell and neurotransistor. (a) Illustration of the ionic current 

modulated by membrane potential (Vmemb.) change in the case of action potential (AP) spiked in 

a biological neuron (top) and the perceptron model of a single neuron (bottom). (b) Sigmoid 

function fitted output corresponding to the pulse input as a function of time.  
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8.4 Emulation of memory and learning of neurons  

Inspired by the process of information retaining in neuronal cells76, we emulate the 

memory storage process of neurons on the neurotransistor modulated by a pulsed learning 

signal. A neurotransistor is a computing device that transforms an input signal (I) to 

output signal (O) depending on memory (Figure 8.9(a)). Figure 8.9(b) and Figure 8.10(b) 

show the time dependence of the pulsed input signal. In Figure 8.9(b), after the 

modulation of the numbers of pulses for learning as N = 840, 480 and 240, respectively, 

zero input (VA = 0 V) is applied as a present input signal (I1). Figure 8.9(c) shows 

spontaneous thermal relaxation of the output current (O1) caused by ionic diffusion 

processes in the film. When the pulsed input signal is off, the spontaneous relaxation 

process is dependent on the stored (accumulated) memory, which is proportional to the 

number N of the input pulses (i.e., learning times). This implies that the longer learning 

time leads to “better memorizing” and longer relaxation processes (Figure 8.9(c), inset). 

The relaxation time constant (τrelax.) is more than 100 s when the current level is close to 

the saturation level of the transistor (~24 μA). This time constant is comparable to the 

time scale of STP in biological neurons, that is around a few milliseconds to minutes32. 

Figure 8.9 History-dependent memory in the neurotransistor. (a) A block diagram of memory 

dependent output corresponding to the current input in the neurotransistor. (b) The input history 

of the transistors over time. I (t < 0) implies past input before measurement. Input pulse number 

is varied as N = 840, 480 or 240, with VA = 10 V, T = 500 ms and W = 200 ms in past (t < 0) and 

zero input signal is applied as a current signal (t > 0). (c) The output responding to the current 

input signals. The output signal of zero input after pulse length modulation. The inset shows the 

relaxation time constant depending on the past input pulse number. 
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The relaxation is emulating the spontaneous “forgetting” process (memory loss) in a 

neuron (Figure 8.10(a)).  

In Figure 8.10(b), responses of two devices with different input histories (indicated 

with navy and pink symbols) are compared. After a series of input pulses of constant 

amplitude (Phase I), we applied VA = 0 V and VA = -6 V as the input pulses on each device 

(phase I2). Figure 8.10(c) shows the corresponding output currents (O2). Negative input 

pulses induce STD (pink curve in the inset of Figure 8.10(c)). The depression process can 

be used to “erase” information in computing (Figure 8.10(a)) which leads to a much faster 

Figure 8.10 Metaplasticity of the neurotransistors. (a) Memory storage model in a neurotransistor 

performing the neuronal computing. The functional terms, “learning”, “forgetting” and “erasing”, 

are corresponding to potentiation, thermal relaxation and depression of neurotransistors. (b) The 

input amplitude is varied between zero and negative values as a current input (t > 0) and the past 

input (t < 0). (c) The comparison between the output current responses of zero input (relaxation) 

and negative pulsed input with VA = -6 V, T = 500 ms and W = 300 ms (depression). (d) 

Comparison between output current responses of pulsed input signal with VA = 10 V, T = 500 ms 

and W = 200 ms, depending on the history of inputs.  
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current drop than the forgetting process since the negative pulses change the direction of 

the ionic polarization that turns off the transistor quickly.  

When the current decreases to the low level (~1 nA), equal input pulses are applied to 

the gate of each neurotransistor (phase I3) (Figure 8.10(b)). Interestingly, Figure 8.10(d) 

shows that the input history of the neurotransistor (I (t < 0) + I2) decides the forthcoming 

output (O3) apart from the present input signal (I3). The much stronger current increase is 

observed after the relaxation process (navy curve) than after the depression process (pink 

curve). Precisely, the history-dependent information is stored as ionic states, such as the 

position and mobility of ions or ionic dipole moment, in the sol-gel derived film of the 

neurotransistor. The thermal relaxation of the ions in the film tends to return the ions to 

the equilibrium state conserving the direction of polarization that guarantees normal (or 

faster when the current level is high) initial learning speed. However, the depression 

process induces opposite ionic polarization in the film, which requires more energy to 

compensate for the reversed ion migration. Therefore, it requires longer learning time 

(i.e., more pulses applied) to reach the same current level. This result demonstrates that 

the ionic polarization plays the key role in the unique memory and learning functionality 

of the neurotransistors. The stored information is hidden as ionic states in the film and 

not visible as the output current, but as soon as the input signal is present, different 

consequences are revealed depending on the accumulated input history. This behavior 

shows a strong similarity to the activity-dependent metaplasticity of biological neurons: 

it is not visible but remains in a cell long time as ionic or protein states and generates 

consequences such as synaptic plasticity77.  

Finally, using this plastic property of the neurotransistor, we form the probable 

memory storage model (Figure 8.10(a)). Since the neurotransistor is an analog device, the 

information is stored or erased as the continuous current level change by input pulses. 

The continuous input pulses increase the level of information storage in the transistor in 

the “learning” phase. The learning speed and the amount of stored memory are controlled 

by the number of input pulses. If the input pulses are stopped, the neurotransistor starts 

to lose the information in the “forgetting” phase. Also, the “erasing” phase can actively 

manipulate the reduction speed of the information storage level. Therefore, not only the 

number of pulses but also the history of information affects the learning speed. 
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8.5 Intrinsically multiple output transistor 

 In a biological neuronal network, extensive axon terminals of a pre-synaptic neuron 

transfer the neuronal signal to multiple post-synaptic neurons. This is a fundamental 

requirement to build a networked circuit of neurons. Using an array of neurotransistors 

prepared on an 8-inch wafer, we successfully emulate the multiple axon terminals for 

multi-neuron interconnection (Figure 8.11(a)). We designed a single pre-synaptic 

neurotransistor system using multiple Si nanowire channel outputs, can perform 

transmission to multiple post-synaptic devices (Figure 8.11(b)). On a single chip, multiple 

nanowire channels and central gate electrodes are connected through ionic silicate film. 

Therefore, multiple nanowire devices (similar to multiple axons terminals) are modulated 

by one pre-synaptic gate potential keeping homeostasis.  

Figure 8.11(c) shows the output current values (Id) of two separate transistors which 

are simultaneously measured. Since the distance between the gate and a nanowire channel 

is constant for all post-synaptic transistors, the potentiation (Id0) of multiple devices 

increases with the input pulses at the same measurement time. Any inhomogeneity of the 

microenvironment around each device induces a slight difference in ΔId. This result 

shows a simple scheme of multiple axon terminals possibly contacting various post-

Figure 8.11 Multiple outputs of the neurotransistor.  (a) Illustration of a neuron with 

multiple axon terminals that connects to other post synaptic neurons. (b) The actual chip 

design of the multiple (16) transistor outputs (Id) with a single gate (pre-synaptic Vg on a 

single chip, which represents the equivalent of 16 axon terminals. This design can be 

extensible to N axon terminals. (c) The simultaneously measured current response (∆Id) 

and the potentiation (Id0) of transistor 1 and 2. VA = 6 V with T = 500 ms and W = 100 ms 

is applied as the pre-synaptic gate pulses. 
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synaptic neurons which are bound by covered sol-gel film and which could be extended 

to a complex network using transistor-based logic and analog circuits. Furthermore, this 

design could be conveniently adapted to a conventional CMOS process for 3D 

integration.  

 

8.6 Conclusion  

Si nanowire based neurotransistors with sol-gel derived ion-doped silicate film are 

demonstrated. The film works as a pseudo-gate of the transistors under the modulation of 

a pre-synaptic gate input. Remarkably, the film doped by mobile ions enables the 

functionality of intrinsic plasticity and memory in neurotransistor devices. Therefore, the 

dielectric engineering (e.g., ion doping) in neurotransistors could complement and 

intensify the function of memristive materials for the next-generation neuromorphic 

computing devices. The short-term potentiation of neurotransistors is dependent on the 

amplitude and period of pre-synaptic pulses. Due to the ionic polarization and diffusion 

in the film, the device shows a non-linear (sigmoidal) potentiation behavior, which 

emulates the membrane function of real neurons. 

A device architecture performs the global multi-output neurotransmission, similar to a 

true neuron. This peculiar structure is fundamental to enable network-based connectivity 

in real neuronal circuits. Those can be emulated by building a network of neurotransistors.   

This work represents a major step towards the interconnection between neuromorphic 

nanoelectronic devices and conventional Si-based CMOS systems. The developed 

architectures could act as a neurotransistor performing as a computing node in complex 

neural networks, which is out of reach by now. When combining it with memristor 

devices as synaptic edges, the realization of the entirely brain-inspired hardware based 

neuronal network becomes possible. Furthermore, the non-linear operation of the 

neurotransistor paves the way towards functional hardware machine learning, where the 

sigmoid function is self-tuned by the time-dependent input signals. 
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CHAPTER 9 

CONCLUSION AND OUTLOOK 
 

 

 

9.1 Conclusion 

The previous chapters have introduced the-state-of-the-art hybrid applications to enhance 

the functional capability of Si nanowire FETs which are governed by the environmental 

stimuli like light irradiation and, are eventually able to emulate biological phenomena 

such as neuronal plasticity. The physical properties of the gate material (e.g., capacitance, 

conductance or nonlinear memristive characteristics) decide the transfer characteristics 

and time-dependent dynamics of the devices which can generate memory property.  

Chapter 2 introduced the working principle of Si nanowire FETs with various 

structures which can be extended to the hybrid structure. Chapter 3 explained the 

experimental method including fabrication of the transistor device, synthesis of the hybrid 

films and electrical measurements. 

Chapter 4 showed how photo-induced hot electron trapping by the interface and the 

dopants ions in the nanowire could modulate the threshold voltage of the Si nanowire 

FETs. Unlike well-known semiconductor optoelectronics, the conductivity of the 

nanowire FETs does not always increase. Especially in the subthreshold condition, the 

number of mobile carriers is small, so that the electron trapping strongly reduces the 

conductivity of the nanowire. Chapter 5 demonstrated the photo-induced electron 

generation and diffusion in the organic molecular gate layer that modulates the dynamics 

and efficiency of the light-induced current switching. The important message of this 

chapter is that an activated organic layer by external stimuli is able to act as a gate of the 

transistor with MOSFET structure when an electric potential is changed at the gate area.  
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In Chapter 6, the new gate stack material, the ion-doped sol-gel derived silicate matrix, 

was introduced. Although these material has used as a biosensor platform with a chemical 

and optical way of detection, this is the first time to analyze its electrical properties like 

capacitance or conductance to exploit those for the electric device applications. Chapter 

7 demonstrated that the optical double gate effect from the sol-gel film gate devices which 

have FinFET structure. The double gate effect which appeared only under the optical 

stimulus expands the role of the hybrid gate from the supportive field effect (cf. extra 

voltage fluctuation of the DC (back) gate bias) shown in chapter 5 to the additional 

channel opening in the nanowire by light illumination. 

Finally, Chapter 8 the ion-doped sol-gel film combining with the transistor emulated 

the memory and processing of a neuron cell. The redistribution of mobile ions in the film 

controlled by gate voltage allows the transistor to capacitor-less resistance switching 

memory device. Also, because of the comparably slow process of ionic movement 

(milliseconds range), the information storage was changed continuously depending on 

the timing properties of gate input signal (e.g., frequency or pulse width of the on-voltage) 

apart from the signal amplitude (cf. set/reset voltage at conventional memory device). 

Therefore, the hybrid transistor could have the ability to mimic the neuroplasticity of a 

neuron cell which follows the sigmoid function of gate potential change.  

Within this work, hybrid structured gates led to novel and diverse transistor 

functionalities which cannot be achieved by conventional FET devices. This work 

demonstrates that various physical elements like photons or ions could induce the electric 

charge on the gate that modulated the gate potential of the transistor. In other words, 

hybrid gate transistors obeying the original rule can replace existing conventional 

transistor applications like memory or logical operation. Hybrid devices showed the 

possibility to realize the next computing machine operated by new algorithms using 

physical phenomena (e. g., ionic diffusion or coupling with photons, etc.)  following 

mathematically nonlinear functions, which could help to solve very challenging 

computing problems requiring intelligence1. Also, the further study including 

mathematical modeling of the physical system in the hybrid layer will be required to build 

a stable system that can step forward into the future computing machine. 

 

 



      Conclusion and outlook        117 

9.2 Outlook 

Sensor applications using sol-gel derived matrix 

The sol-gel-derived matrix can be used as efficient detecting platform thanks to its porous 

structure and the simple solution based procedure to synthesize, as discussed in Chapter 

6. Also, Si nanowire FETs has been used as an effective ion-sensitive-biosensors in many 

previous studies. Therefore, the hybrid device using sol-gel derived gate material is 

expected to provide a new detecting platform that can include various types of 

biomolecules from RNA, protein to cell or even longer polymer chains.  

However, the major challenge of the Si nanowire-based sensor is that this structure 

requires to form proper chemical linkages (usually covalent bonding) on the Si nanowire 

or oxide surface, which strictly decides the detection limit. Also, the analytes should be 

positioned in the electric double layer to be detected by nanowire, so that the detecting 

length is also limited.  

The sol-gel based approach has the potential to solve the issues in Si nanowire ISFETs. 

The film can entrap many different types of detecting molecules without forming covalent 

bonding as well as buffer solutions. We can easily control the concentration of the 

detecting molecules at the solution preparation step which is not decided by the number 

of chemical links on the nanowires. Also, since the dielectric constant, which is changed 

by applied analytes or inner ionic or molecular mobility in the sol-gel derived matrix, can 

govern the conductivity change of the nanowires, the more volume of analytes can be 

applicable. Various detecting molecules in the sol-gel derived matrix could enable 

sensing of multiple molecules on a single nanowire device which is not yet performed 

from previous studies. 

Neural network for neurocomputing  

The most significant step using neurotransistor discussed in Chapter 8 is to build a neural 

network system. Unlike von Neumann computing which is fundamentally based on the 

simple summation of the performance of each logic cell, the memory, and processing in 

the brain are performed in the more collective way. Although it has been reported that a 

single unit cell (cf. neuron) participates to memorize and to learn, the memory and 

learning are the final results of the plasticity of many neuron cells that forms new 

connections, intensifies (or suppresses) the existing connections or changes intrinsic 
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excitabilities. Therefore, human brain using complex cell networks outperforms the 

power efficiency and computing performance (e.g., flops) of existing supercomputers.   

Recently, the memristor-based neural network is intensively studied, and its objective is 

to form a network of synapses that performs supervised or unsupervised learning 2–4. 

However, apart from the hardware related issues arose from the memristor devices 

themselves3, the architecture is still far from the real neuron models and even from the 

perceptron model, because of the lack of the stable sigmoid (logistic) activation function 

(σ in Figure 9.1). Current memristive crossbar network generates an output signal which 

is a simple summation of weighted signals of memristor synapses.  

The neurotransistor is an excellent solution that derives the activation function by 

mimicking the intrinsic plasticity (cf. the membrane potential change) which is 

represented by the sigmoid function. Up to now, the activation function is implemented 

by an additional circuit involving more than 20 transistors2. Therefore, the neurotransistor 

can dramatically reduce the number of transistors and their power consumption. To build 

a neural network involving the neurotransistors, the input gate area of neurotransistor 

needs to be connected to the multiple weighting elements (wi in Figure 9.1, e.g., resistive 

switching (memristive) layers) that mimic the biological synapses. The overall system is 

indicated by Eq. 9.1: 

𝐼 = σ ∑ (𝑤𝑗 ∙ 𝑣𝑗)𝑖
𝑗=1                                                   (9.1)  

where vj is input voltage of presynaptic neurons and I is output current. 

The mentioned system would be a single neuronal building block that is connected with 

multiple presynaptic neuronal inputs. Further step should be the forming the multi-layer 

network. Although there are various neural network topologies of brain which is not 

clearly investigated5, we can start to build the hardware using the simplest neural network 

model with two or theree hidden layers. The mentioned design will bring forward a full-

functioning neurocomputing chip with complete CMOS process compatibility. 

Figure 9.1 The schemetic diagram of perceptron: the simplest model of a neuron cell. 
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APPENDIX 

A.1 Ohmic contacts between Si nanowire and electrodes 

 

Figure A.1 The ohmic contact between metal electrode pad and the highly doped Si active 

area. (a) Doping concentration of phosphorus (P) in Silicon (Si) vs. depth profile by secondary 

ion mass spectrometry (SIMS). (b) I-V curves of heavily P-doped Si transmission lines with 

Ag/Ti metal electrode.  

Phosphorus was implanted in Si wafer with a concentration of 8x1015 cm-2 with 50 

keV for verifiyng the doping distribution (Figure A.1(a)). The black line shows that 

the concentration of phosphorus the ions is around 5x1020 cm-3 in 120 nm thick from 

the surface. The blue line shows that the intensity from Si is constant in measured 

area. This thickness of super-highly doped area fully covers the thickness of active 

area (see in Figure 3.2 (iii))  

Based on this concentration (5x1020 cm-3), the thickness of depletion layer between 

Ti adhesion layer and the highly P-doped Si is calculated. The barrier height between 

Ti and Si is considered as 0.8 eV and the fermi level of the doped Si is positioned in 

the conduction band. Consequently, the barrier thickness (depletion width) is 

obtained as 1.4 nm. With this thickness and the fermi energy condition, we believe 

that the tunneling is a dominant charge transport mechanism in this contact. 

Therefore, this contact is considered as a tunneling “ohmic” contact1.  
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500 nm-thick Ag on 50 nm-thick Ti adhesion layer were deposited on source and 

drain area of the highly P-doped (5x1020 cm-3) Si transmission line with 70 µm-width 

and various lengths such as 100, 800 and 2000 µm (Figure A.1(b)). The current and 

the voltage is in a perfect linear relationship i.e., ohmic behavior. Using the 

transmission line method (TLM) measurement, we extracted the contact resistivity as 

9.15x10-5 Ω/cm2. Even though this value is comparably higher than the theoretical 

value of ohmic contacts (< 10-6 Ω/cm2), the contact between the tungsten probe and 

the Ag/Ti electrode can increase the contact resistivity and also the high barrier height 

between Ti and highly doped Si (0.8 eV) also can contribute to increase the value. 

This data is provided by T. Rim at POSTECH. 

 

A.2 Substrate potential measurement 

 

Figure A.2 Substrate potential change upon light illumination. (λ = 625 nm) (a) Schematic circuit 

diagram of the substrate potential measurement. The electric potential difference between the 

silver electrode on the SOI substrate and the aluminum chuck is measured. Applied current level 

(Iin) was 1 pA and Vmax is voltage compliance limit which is varied. (b) Measured substrate 

potential on the time domain. The light is illuminated in the shaded area. Because of continuous 
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charging in the SOI capacitor, Vsub is maintained as Vmax except the case in the illumination. (c) 

The substrate potential change depending on the light power intensity. The Vmax value does not 

affect the Vsub change. The values of light intensities in (b) are gradually increasing by time that 

are exactly same as the data points of light intensities in (c).   

A.3 Optical memory  

 

The organic n-type semiconductor polymer-coated devices (see Chapter 3) show huge 

hysteresis under light illumination. The time domain measurement in Figure A.4(b) 

shows that the light illumination causes strong current increase that agrees the transfer 

characteristics. The increased current reached the saturation current level keeps its level 

even after the light illumination is shut down. The Naphtalenediimide-based polymer has 

strong absorption peak in the range of violet light (λ = 390 nm)2. The photo-generation 

and dissociation of electron-hole pair in the amorphous semiconductor film produces the 

hysteresis in the transfer curve because of the limited recombination of the electron-hole 

pairs. The hysteresis implies that the device behaves like a memory device and the current 

saturation without illumination verify the memorization capability. The current is 

maintained around 800 seconds without light illumination.  

Even though further investigation is required, the devices could be used as optical volatile 

or nonvolatile memory devices depending on the retention time. 

1.0E-12

1.0E-10

1.0E-08

1.0E-06

-20 -15 -10 -5 0 5 10 15 20

I d
(A

)

Vg (V)

a

Under Violet Under dark

1.00E-07

5.10E-06

1.01E-05

1.51E-05

0 1000 2000 3000 4000

I d
(A

)

t (s)

OFFON

b

Figure A.3 (a) Transfer characteristics of Naphthalenediimide-based polymer coated Si nanowire 

FET under the light illumination (wavelength: 405 nm) with 10 mW of light intensity (red) and 

in the dark condition (black). (Vg = 5 V) (b) Id vs time curve of the polymer coated device with 

(ON) and without (OFF) illumination. The shaded area indicates the condition of the light 

illumination. (Vd = 0.1 V for (a) and (b)) 
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A.4 Sigmoid fitting 

Model Fitted curves Equation R-squre 

Exponential 

 

y = a exp(x/x0)+b 0.992 

Boltzmann 

 

y = b+(a-b)/[1+exp((x-

x0)/c)] 

 
a = initial value, b = final 

value, x0 = center, c = time 

constant 

0.998 

Logistic 

(Hill 

function) 

 

y = b+(a-b)/[1+(x/x0)p] 

 
a = initial value, b = final 

value, x0 = center, p = power 

 

(red: a=9.47E-9, b=6.55e-6, 

x0=163.4, p=3.045, 

blue: a=2.99E-8, b=1.14E-5, 

x0=145.9, p=2.48)  

0.999 

Neuronal 

ionic current 

(I/Imax) vs. 

membrane 

potential (V)  

(case of 

activation, 

right curve)  

 y = 1/[1+exp((x-x0)/c)]p 

 

 
[ref.3] 

 

Exponential growth curve does not fit our curve well, which means the curve will not 

diverge. Sigmoid functions such as Boltzmann and Hill function are comparably well-

fitted to the measured curve. Both equations can explain thermodynamic phenomena of 

ions. From the similarity with the experimental and fitted curve (based on Hodgkin-
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Huxley’s model) of neuronal membrane, we can expect that our curve is comparable to 

the sigmoid-like real model. This fitted result implies that the current growth of 

neurotransistors follows ionic dynamic of cell membrane.   
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