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Abstract 

Data-driven maintenance bears the potential to realize various benefits based on multifaceted data 

assets generated in increasingly digitized industrial environments. By taking advantage of modern 

methods and technologies from the field of data science and analytics (DSA), it is possible, for 

example, to gain a better understanding of complex technical processes and to anticipate 

impending machine faults and failures at an early stage. However, successful implementation of 

DSA projects requires multidisciplinary expertise, which can rarely be covered by individual 

employees or single units within an organization. This expertise covers, for example, a solid 

understanding of the domain, analytical method and modeling skills, experience in dealing with 

different source systems and data structures, and the ability to transfer suitable solution 

approaches into information systems. Against this background, various approaches have emerged 

in recent years to make the implementation of DSA projects more accessible to broader user 

groups. These include structured procedure models, systematization and modeling frameworks, 

domain-specific benchmark studies to illustrate best practices, standardized DSA software 

solutions, and intelligent assistance systems. 

The present thesis ties in with previous efforts and provides further contributions for their 

continuation. More specifically, it aims to create supportive artifacts for the selection, evaluation, 

and application of data-driven methods in the field of industrial maintenance. For this purpose, 

the thesis covers four artifacts, which were developed in several publications. These artifacts 

include (i) a comprehensive systematization framework for the description of central properties 

of recurring data analysis problems in the field of industrial maintenance, (ii) a text-based 

assistance system that offers advice regarding the most suitable class of analysis methods based 

on natural language and domain-specific problem descriptions, (iii) a taxonomic evaluation 

framework for the systematic assessment of data-driven methods under varying conditions, and 

(iv) a novel solution approach for the development of prognostic decision models in cases of 

missing label information. 

Individual research objectives guide the construction of the artifacts as part of a systematic 

research design. The findings are presented in a structured manner by summarizing the results of 

the corresponding publications. Moreover, the connections between the developed artifacts as 

well as related work are discussed. Subsequently, a critical reflection is offered concerning the 

generalization and transferability of the achieved results. Thus, the thesis not only provides a 

contribution based on the proposed artifacts; it also paves the way for future opportunities, for 

which a detailed research agenda is outlined.  



 

 

Zusammenfassung 

Datengetriebene Instandhaltung birgt das Potential, aus den in Industrieumgebungen vielfältig 

anfallenden Datensammlungen unterschiedliche Nutzeneffekte zu erzielen. Unter Verwendung 

von modernen Methoden und Technologien aus dem Bereich Data Science und Analytics (DSA) 

ist es beispielsweise möglich, das Verhalten komplexer technischer Prozesse besser 

nachzuvollziehen oder bevorstehende Maschinenausfälle und Fehler frühzeitig zu erkennen. Eine 

erfolgreiche Umsetzung von DSA-Projekten erfordert jedoch multidisziplinäres Expertenwissen, 

welches sich nur selten von einzelnen Personen bzw. Einheiten innerhalb einer Organisation 

abdecken lässt. Dies umfasst beispielsweise ein fundiertes Domänenverständnis, Kenntnisse über 

zahlreiche Analysemethoden, Erfahrungen im Umgang mit verschiedenen Quellsystemen und 

Datenstrukturen sowie die Fähigkeit, geeignete Lösungsansätze in Informationssysteme zu 

überführen. Vor diesem Hintergrund haben sich in den letzten Jahren verschiedene Ansätze 

herausgebildet, um die Durchführung von DSA-Projekten für breitere Anwendergruppen 

zugänglich zu machen. Dazu gehören strukturierte Vorgehensmodelle, Systematisierungs- und 

Modellierungsframeworks, domänenspezifische Benchmark-Studien zur Veranschaulichung von 

Best Practices, Standardlösungen für DSA-Software und intelligente Assistenzsysteme. 

An diese Arbeiten knüpft die vorliegende Dissertation an und liefert weitere Artefakte, um 

insbesondere die Selektion, Evaluation und Anwendung datengetriebener Methoden im Bereich 

der industriellen Instandhaltung zu unterstützen. Insgesamt erstreckt sich die Abhandlung auf vier 

Artefakte, die in einzelnen Publikationen erarbeitet wurden. Dies umfasst (i) ein umfangreiches 

Systematisierungsframework zur Beschreibung zentraler Ausprägungen wiederkehrender 

Datenanalyseprobleme im Bereich der industriellen Instandhaltung, (ii) ein textbasiertes 

Assistenzsystem, welches ausgehend von natürlichsprachlichen und domänenspezifischen 

Problembeschreibungen eine geeignete Klasse von Analysemethoden vorschlägt, (iii) ein 

taxonomisches Evaluationsframework zur systematischen Bewertung von datengetriebenen 

Methoden unter verschiedenen Rahmenbedingungen sowie (iv) einen neuartigen Lösungsansatz 

zur Entwicklung von prognostischen Entscheidungsmodellen im Fall von eingeschränkter 

Informationslage. 

Die Konstruktion der Artefakte wird durch einzelne Forschungsziele im Rahmen eines 

systematischen Forschungsdesigns angeleitet. Neben der Darstellung der einzelnen 

Forschungsbeiträge unter Bezugnahme auf die erzielten Ergebnisse der dazugehörigen 

Publikationen werden auch die Verbindungen zwischen den entwickelten Artefakten beleuchtet 

und Zusammenhänge zu angrenzenden Arbeiten hergestellt. Zudem erfolgt eine kritische 

Reflektion der Ergebnisse hinsichtlich ihrer Verallgemeinerung und Übertragung auf andere 

Rahmenbedingungen. Dadurch liefert die vorliegende Abhandlung nicht nur einen Beitrag 

anhand der erzeugten Artefakte, sondern ebnet auch den Weg für fortführende 

Forschungsarbeiten, wofür eine detaillierte Forschungsagenda erarbeitet wird.  
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1 Introduction 

“Data are becoming the new raw material of business.”  

Craig Mundie, Senior Advisor to CEO at Microsoft. 

1.1 Motivation 

The rapid advancements in computing power, sensors, storage engines, and internet technologies 

have a massive impact on our society and revolutionize the way we live, act, and work together. 

Business environments become increasingly digitized, and the ubiquitous use of IT has become 

an indispensable anchor for many organizations (Bley et al. 2016; Fichman et al. 2014). This 

situation favors the collection of vast amounts of data that can be generated with high frequency 

from multiple sources and heterogeneous systems (Chen et al. 2012; Constantiou and Kallinikos 

2015). Within an organizational context, this kind of ubiquitously generated data can be seen as 

a valuable asset to establish data-driven business processes and fact-based decision making 

(Abbasi et al. 2016; Zschech et al. 2017). Empirical value propositions of data utilization include, 

for example, higher transparency, improved performance measurement, and the support and 

replacement of human decision making with automated algorithms (Wamba et al. 2015). 

To exploit such potential and turn data into value, methods and tools of modern data analysis are 

required that are often subsumed under the collective term data science and analytics (DSA). In 

this thesis, DSA is defined as an analytical approach combining expertise from multiple 

disciplines, such as information systems (IS), computer science, statistics, and corresponding 

application domains, in order to discover meaningful relationships and hidden patterns from 

heterogeneous, multi-sourced data that can be converted into actionable insights (Agarwal and 

Dhar 2014; Ayankoya et al. 2014; Ramannavar and Sidnal 2016). Closely related to this approach 

is the term data-driven methods. Hereinafter, this term is defined as any systematic procedure that 

serves the purpose of processing data in order to achieve a certain analytical goal. This may range 

from simple techniques for calculating and visualizing descriptive indicators to more advanced 

algorithms from the field of machine learning (ML) that can automatically identify non-linear and 

complex relationships in high-dimensional data collections (Stefani and Zschech 2018). 

A promising area for the application of DSA is the manufacturing sector. A decade ago, Manyika 

et al. (2011) had already estimated an amount of about two exabytes of newly generated data for 

just a single year. This provides a fundamental basis for improving various areas of interest such 

as quality control, process performance, production scheduling, and industrial maintenance 

(Brodsky et al. 2015; Flath and Stein 2018; Manyika et al. 2011). The area of maintenance is of 

particular interest since today’s industry is characterized by increasingly complex production 

systems and machinery that require sophisticated maintenance systems to guarantee low 

environmental risks, high reliability, and human safety. Simultaneously, it is crucial to employ 

system functionalities and methods that allow efficient use of given resources and avoid 

unnecessary expenditures (Elattar et al. 2016; Peng et al. 2010). For this concern, the amount and 

the variety of data is vital, ranging from condition monitoring data and machine configurations to 

transactional records and event logs reflecting process executions. Such multifaceted data provide 
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an ideal starting point for improved decision support and the discovery of unknown potentials. 

For example, technical processes can be better understood during health assessment; anomalous 

signs of degradation can be traced back to their root causes, and faults and failures can be 

anticipated at an early stage (Accorsi et al. 2017; Manyika et al. 2011). Thus, it is reasonable to 

assume that DSA applications in industrial maintenance offer excellent opportunities to extract 

hidden knowledge and make better use of given resources. 

However, applying DSA in industrial settings is not a trivial task. Especially for technology users 

who might have rich domain expertise but lack sufficient DSA qualification, there are several 

hurdles to overcome. Often, there is no “silver bullet” approach that addresses a particular 

decision support task with a universal solution. Instead, DSA projects are usually iterative and 

time-consuming endeavors, and profound knowledge is required (i) to identify a suitable set of 

data-driven methods, (ii) to assess the methods’ results in a comprehensive manner, and (iii) to 

implement the chosen methods in practical settings under real conditions. 

Against this background, this thesis aims to contribute several artifacts that mainly support the 

steps of selecting, evaluating, and applying data-driven methods in the field of industrial 

maintenance for the overall purpose of better decision support. The intended target groups of 

these artifacts are both practitioners and researchers working in manufacturing-related domains 

who require support and guidance for diving into the field of data science and analytics. 

1.2 Conceptual Background 

The maintenance function plays a fundamental role in today’s industrial value creation. It is 

concerned with all technical and administrative activities necessary to keep physical assets in their 

desired operating condition and to conduct countermeasures in case of deviations (Muchiri et al. 

2011). Closely related to this fundamental principle, a variety of objectives can be pursued. These 

objectives include, for example, to ensure a system’s reliability and high product quality, to 

minimize machine downtime and risk of failure or damage, and to preserve plant safety, 

environmental protection, and resource efficiency (Horn and Zschech 2019). 

In order to adequately meet such superior objectives, the central decision-making task of 

maintenance is determining the appropriate time at which necessary maintenance actions should 

be carried out. If actions are performed too late, i.e., after a fault or failure has occurred (also 

known as corrective maintenance), the result may include environmental risks, safety issues, 

machinery breakdowns, and impaired product quality. If, by contrast, actions are carried out too 

early, for example, due to fixed periodic intervals (also known as preventive or time-based 

maintenance), high expenses may arise as a result of regular interventions or unused service 

lifetime (Peng et al. 2010; Veldman et al. 2011). 

To address this crucial trade-off, a more proactive decision-making strategy has emerged, called 

condition-based maintenance (CBM). In this strategy, comprehensive data are gathered and 

processed by a condition monitoring system to assess the current state of the equipment and derive 

recommendations for the optimal time and type of intervention (Jardine et al. 2006). Figure 1 

illustrates the relationship between maintenance costs, reliability, and the remaining useful life 
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(RUL) of a system, and it assigns all three maintenance strategies. Following the CBM approach, 

divergent machine behavior can be detected and classified at an early stage through diagnostic 

techniques in order to reduce the uncertainty of maintenance actions and avoid unnecessary work 

by taking actions only when there is evidence of anomalous behavior. Furthermore, by using 

suitable indicators and prognostic techniques, it is possible to determine the machine’s future state 

or its RUL, which is often also referred to as predictive maintenance (PdM) (Elattar et al. 2016; 

Ran et al. 2019). 

 

Figure 1: Relationship between maintenance costs, reliability, and RUL (adapted from Peng et al. 2010) 

For the development of diagnostic and prognostic maintenance models, three basic types of 

approaches are applicable. The first type is composed of physical model-based approaches. Here, 

mathematical models of physical processes are developed by experts in the field, and large sets 

of data observations validate the parameters of the model. Such models generally have the 

advantage of being very accurate since they are based on natural laws (e.g., specific degradation 

laws). However, their development can be considered as costly and time-consuming because it 

requires a thorough understanding of the physical mechanisms of the system under consideration.  

The second type includes knowledge-based approaches that try to simulate human thinking. A 

representative example is that of expert systems in which domain knowledge from human 

specialists is formalized in terms of rules in order to allow automated reasoning. While such 

systems provide a useful form of encapsulating human expertise, it is challenging to obtain such 

knowledge and convert it into adequate rules (Elattar et al. 2016; Peng et al. 2010). 

The third type comprises purely data-driven approaches. In this category, extensive data 

collection is exploited using techniques from disciplines like statistics or ML in order to 

automatically extract patterns and relationships of interest. In contrast to physical models and 

knowledge-based approaches, data-driven methods have the advantages that (i) they do not 

require comprehensive system knowledge, (ii) they are relatively fast to implement, (iii) they can 

be tuned for similar systems, and (iv) they can exploit hidden relations and nuances within the 

data records (Elattar et al. 2016; Peng et al. 2010). 

Due to the given advantages, data-driven methods have proven to be a promising alternative when 

implementing maintenance decision models, which probably is why they are gaining increasing 

attention in research and industry (Ran et al. 2019). Nevertheless, several aspects are hampering 
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the selection, evaluation, and application of data-driven methods in practical settings. Some of 

the critical factors, as observed by the author of this thesis, are summarized below. 

Heterogeneity of decision support tasks: Although the maintenance function at its core is 

“only” concerned with the central task of determining the appropriate time for intervention, there 

are several different facets related to this task. For example, both diagnostic and predictive issues 

can be further broken down into several sub-aspects, which in turn require different approaches 

and methods for their implementation (Jardine et al. 2006). Additionally, there are descriptive as 

well as prescriptive analytic tasks that further complement the field and thus increase 

heterogeneity (Karim et al. 2016). 

Heterogeneity of data-driven methods: The body of knowledge on data-driven maintenance is 

extensive, as already noted by Jardine et al. (2006). Hundreds of papers are published every year 

by researchers and developers from multiple scientific communities, such as computer science 

and engineering disciplines, bringing forth a variety of analytical methods for diverse contexts. 

Such methods range from statistical analysis and mathematical modeling to algorithms from ML 

and data mining (DM). Each of these allows access to a diversity of data from multiple 

perspectives with individual merits and limitations (Accorsi et al. 2017; Ran et al. 2019). 

Heterogeneity of maintenance-related data: The quantity and variety of data have increased 

considerably due to (i) the growing complexity of machinery consisting of multiple components, 

(ii) the ubiquitous embedding of modern sensor technology, and (iii) the linkage with various 

adjacent application systems (Manyika et al. 2011; Ran et al. 2019). Past decision support was 

mainly based on time-series signals from sensors such as pressure, vibration, and temperature 

(Jardine et al. 2006). In the meantime, however, more data types can be gathered and processed, 

such as demonstrated by Sipos et al. (2014) and Gutschi et al. (2019), where the authors used 

event logs (e.g., process executions, textual error messages) for machine failure prediction. 

Limited availability of representative data: Despite the high availability of multifaceted data 

collection, there is often crucial information lacking in industrial settings that is necessary for 

adequate decision support. Especially, supervised ML methods that learn relationships from many 

historical observations require representative training data reflecting a system’s characteristic 

behavior from normal and faulty operations to degradation patterns under multiple operating 

conditions. Such “run-to-failure” data are often scarce in industry and can only be procured at 

great expense due to zero-downtime policies (Leturiondo et al. 2017; Susto et al. 2015). 

Multidisciplinary skill requirements: For the implementation of data-driven methods, 

multidisciplinary DSA skills covering a joint consideration of the aspects mentioned above are 

required. Hence, this includes a solid understanding of the domain, expertise with numerous 

analytical methods, experience with different data sources, and the ability to transfer results into 

technological solutions based on advanced programming and software engineering skills 

(Schumann et al. 2016; Zschech et al. 2018). However, fully equipped DSA professionals 

covering all these requirements are still a rare species, whereas conducting data-driven projects 

in interdisciplinary teams with multiple experts remains an iterative and time-consuming 

endeavor (Hesenius et al. 2019; Huber et al. 2019). 
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1.3 Related Work 

In order to address the challenges above and provide support for the selection, evaluation, and 

application of data-driven methods in general, and in industrial maintenance in particular, several 

research efforts have been undertaken in recent years, bringing forth a variety of contributions 

related to this thesis. In the following, some of these efforts are briefly outlined. 

Surveys and systematizations: Given the plethora of research on data-driven maintenance, there 

is also a high number of literature surveys. They help to structure the field and provide 

systematizations to classify the broad number of methods from different perspectives. For 

example, Bousdekis et al. (2018) identified several methods for predictive and prescriptive tasks. 

They organized them into a structured framework to guide the selection of suitable method 

combinations by considering the desired output, the given (data) input, and the availability of 

domain knowledge. Other surveys assess the applicability requirements of reviewed methods 

(e.g., Javed et al. 2017) or describe their merits and limitations (e.g., Heng et al. 2009; Ran et al. 

2019) in order to guide the selection of suitable methods in practical settings. 

Models for recurring data analysis problems: Similar to the method selection framework by 

Bousdekis et al. (2018), there are a few more attempts to describe and model recurring problem 

classes for which generic solution templates can be applied. For example, Brodsky et al. (2015) 

developed a software framework for DSA solutions based on a reusable knowledge base for 

solving recurring analytical tasks in production environments. Similarly, Eckert and Ehmke 

(2017) propose the standardization of data analysis tasks in industrial settings by constructing a 

reference model. On a more general level, Russo (2016) introduces the vision of so-called “data 

analysis patterns” as an analogy to design patterns in software engineering. Such patterns could 

be considered as guiding models or templates to instruct users on how to apply an intentional 

solution design for recurring data analysis problems based on accumulated experiences instead of 

rediscovering a problem solution every time from scratch. However, little research has been done 

in this particular context so far. Some inspiring exceptions are the research efforts by Nalchigar 

et al. (e.g., Nalchigar et al. 2019; Nalchigar and Yu 2020). The authors propose a comprehensive 

conceptual modeling framework for DSA solution patterns, which among other elements consists 

of different modeling views (i.e., business questions, analytics design, data preparation), view-

specific design catalogs, a metamodel, and several application examples. 

Structured procedure models: Procedure models organize tasks and activities of design and 

development processes into structured, logically arranged steps in which corresponding methods 

and techniques are applied. In the area of DSA and DM, several such procedure models have been 

developed to provide instructions for all relevant phases from domain and data understanding to 

data preparation, analytical method selection, and evaluation (Mariscal et al. 2010). Prominent 

examples are the CRISP-DM methodology (cross-industry standard process for data mining) 

(Wirth and Hipp 2000) and the KDD (knowledge discovery in databases) process model (Fayyad 

et al. 1996). While such models offer generic guidance across different branches, their 

applicability in concrete cases often suffers from a lack of domain specificity. For this purpose, 

Huber et al. (2019) proposed an extended CRISP-DM version particularly tailored for production 
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domains. The authors integrate additional phases for technical understanding, realization, and 

implementation in order to address specific application scenarios such as predictive maintenance 

and process optimization. 

Standardized DSA software and intelligent assistance systems: In order to make data analysis 

projects more accessible to broader user groups, especially to DSA novices with little background 

knowledge, a variety of software solutions have emerged over the past fifty years such as SAS, 

SPSS, and KNIME. They offer standardized functionalities and therefore require no programming 

skills. Simultaneously, a high diversity of intelligent assistance systems (IAS) have evolved that 

are increasingly integrated into standardized DSA software. Such IAS offer different kinds of 

features to guide users through all stages of the data analysis process and simplify the selection, 

evaluation, and application of analysis operators and their results (Serban et al. 2013). Two 

illustrative examples of such features can be observed in the DSA platform RapidMiner, called 

“Auto Model” and “Wisdom of Crowds” (RapidMiner 2020). The first feature takes a dataset as 

input and then automatically suggests the best performing ML technique for a particular task. The 

second example is built upon a best-practice knowledge base derived from the activities of more 

than 250,000 platform users to recommend suitable analysis operators and parameters within a 

data analysis workflow. 

Public benchmark datasets: Due to the scarce availability of run-to-failure data that constitute 

a prerequisite for many data-driven prognostic methods, there have been several initiatives to 

generate synthetic datasets for research and education purposes. Prominent examples come from 

NASA’s Prognostics Data Repository1 and include datasets from different technical settings such 

as milling machines, bearings, turbofan engines, and battery charging cycles (Eker et al. 2012; 

Lei et al. 2018). Derived from laboratory experiments and advanced simulations, such synthetic 

datasets usually show realistic properties. Therefore, they provide a fundamental basis for the 

development and assessment of data-driven prognostic solutions. Accordingly, they are 

frequently used by researchers and practitioners as objective benchmark settings and for teaching 

purposes to demonstrate the merits and limitations when comparing different methods. 

1.4 Research Design 

Inspired by the potentials of DSA applications in maintenance scenarios and the previous efforts 

in related work, this thesis aims to provide additional contributions to complement the field and 

further promote the use of data-driven methods in industrial environments. For this purpose, a 

systematic research design is proposed that is concerned with the overall research objective, to 

create supportive artifacts for the selection, evaluation, and application of data-driven methods 

in the field of industrial maintenance. As illustrated in Figure 2, the overarching objective is 

expressed through four more specific research objectives (RO1-RO4) that relate to certain focus 

areas. Moreover, they are further refined by individual sub-objectives. In order to achieve these 

objectives, well-established research methods are applied, which in turn are refined by individual 

method components. 

 
1 https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ (last access: 01-06-2020) 
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Figure 2: Summary of the research design 

The first research objective (RO1) aims at a systematization of the field with a particular focus 

on the dimensions and characteristics of recurring data analysis problems in maintenance settings. 

More specifically, it is intended to take into account the findings of related work and extract 

descriptive elements to classify the broad variety of data analysis objectives, data assets, and 

analytical methods (1a). Based on the findings, a structured systematization framework shall be 

developed, which will be further refined by expert knowledge from industry to additionally reflect 

the practitioners’ points of view (1b). An exemplary application of the final systematization 

framework shall subsequently demonstrate the usefulness of the created artifact (1c). In order to 

conduct this type of research, a taxonomy development approach is pursued (Nickerson et al. 

2013), in which a systematic literature review (vom Brocke et al. 2009) and semi-structured expert 

interviews (Myers and Newman 2007) are embedded. 

The second research objective (RO2) is concerned with the particular aspect of method selection. 

While there have been several efforts for guiding the task of method selection, especially in an 

automated manner using different types of IAS, only a few approaches take into account the 

particularities of a problem context expressed in a domain-specific language to select a suitable 

method. Such an approach could help domain experts stay in their familiar surroundings without 

the need to acquire more profound DSA knowledge when starting to implement data-driven 

projects (Eckert and Ehmke 2017; Hogl 2003). For this purpose, the design of a novel IAS shall 

be proposed that takes problem descriptions articulated in natural language as input and offers 

advice regarding the most suitable class of DM methods to address the problem. Following a 

design science research (DSR) methodology for this approach (Peffers et al. 2007), the research 

objective is further divided into three parts: (i) the elicitation of requirements from research and 
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RO4 Application of a prognostic method under industrial conditions

4a Conceptualization of a novel solution to address missing label situation

4b Prototypical implementation and evaluation of the solution approach
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practice (2a), (ii) the proposal of design principles and specified design features (2b), and (iii) the 

evaluation of the system design based on a prototypical instantiation (2c). 

The third research objective (RO3) addresses the development of a new evaluation framework to 

assess data-driven methods and solutions more systematically and comprehensively. Especially 

in the area of prognostic solution development, where a large proportion of studies are based on 

public benchmark datasets, most solutions or method pipelines are evaluated using only a single 

score to assess whether they perform better or worse than existing approaches. While a single 

score proves to be the right choice for a quick and aggregated comparison, there is a lack of 

transparency about which particular components, such as specific pre-processing and modeling 

steps, affect the overall performance. Thus, inspired by the methodical taxonomy approach 

applied for RO2 to create a systematization, the potential could be discovered to modify and re-

apply this approach for the decomposition of data-driven solutions into taxonomic components. 

This helps to reduce their complexity and allows an evaluation on a more fine-grained basis. 

Accordingly, a new method proposal is offered that consists of (i) a literature survey procedure 

to identify prognostic solutions based on public benchmark data (3a), (ii) a refined taxonomy 

development approach to create a framework with modular components of data-driven solutions 

(3b), and (iii) quantitative evaluation studies to reconstruct the identified prognostic solutions and 

apply the framework for a more fine-grained method evaluation (3c). 

The fourth research objective (RO4) deals with the aspect of method application in real-world 

environments. In contrast to synthetical settings, real production environments often lack 

representative training data for the establishment of prognostic decision models. In the case of 

critical machines, for example, the aim is to avoid failures through strictly short maintenance 

intervals. Moreover, it is often not possible to carry out test runs that go beyond the limits of safe 

conditions due to the pressure to use plants efficiently (Leturiondo et al. 2017; Susto et al. 2015). 

This situation results in “missing labels”, which can be seen as a significant hurdle in the 

development of adequate prognostic models (Gouriveau et al. 2013). To address this problem and 

show how it is possible to provide maintenance decision support in this unfortunate situation, a 

novel solution approach shall be developed. For this purpose, a real-world case of a German car 

manufacturer facing an imperfect maintenance situation is taken as an example to conduct a data 

science study for solution development (Mariscal et al. 2010). The challenge of the case is to 

support the decision-making process of a wear-induced tool replacement in a milling machine by 

predicting the tools’ RUL when no labels are present due to individual risk preferences and poor 

information available. To this end, the fourth research objective is structured into two parts. The 

first part includes the conceptualization of a novel solution (4a). The second part covers the 

prototypical implementation and an evaluation to assess the approach’s feasibility (4b). 

1.5 Structure of the Thesis 

In order to address the proposed research objectives, the remaining thesis is organized into four 

main chapters and two additional chapters. Each main chapter is represented by individual 

publications written and published from 2017 to 2020 as part of an accumulative research process. 

The internal structure of the main chapters follows the composition of the sub-objectives from the 
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research design. Thus, after a short recapitulation of the topic and relevant background 

information, the achieved results of the publications are summarized for each research objective. 

Moreover, in some sub-chapters, further elaborations are outlined, which have not yet been 

subject to published work (e.g., the exemplary application of the frameworks). 

Figure 3 summarizes the structure of the thesis and indicates how each publication contributes to 

the achievement of the research objectives. Chapter 2 covers the development of a framework to 

systematize the field (RO1) based on the findings of publication P1 (cf. Appendix II: A). 

Chapter 3 is concerned with the design of the new IAS for automated method selection (RO2) 

as a result of publications P2 and P3 (cf. Appendix II: B and C). Chapter 4 focuses on the creation 

of a novel evaluation framework (RO3) by referring to publication P4 (cf. Appendix II: D), and 

Chapter 5 addresses the topic of prognostic method application under industrial conditions 

(RO4) by reflecting the results of publication P5 (cf. Appendix II: E). 

After the four main chapters, Chapter 6 offers a discussion of the results. First, this includes a 

consideration of connections between the individual artifacts and related work. Subsequently, the 

results are critically reflected concerning their generalization and transferability in order to 

highlight achieved contributions as well as prospects for future work. Finally, some concluding 

remarks are provided in Chapter 7. 
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2 Systematization of the Field 

Research objectives 

RO1 Systematization of recurring data analysis problems in maintenance 

1a Survey of the current state of research in data-driven maintenance 

1b Development of a systematization and refinement with experts from industry 

1c Application of the systematization framework 

Reference to original work 

Zschech (2018) Publication P1 Appendix II: A 

Table 1: Research summary for Chapter 2 

This chapter addresses the first research objective: to create a systematization that organizes 

dimensions and characteristics of recurring data analysis problems in data-driven maintenance 

scenarios within a structured framework (cf. Table 1). For this purpose, a taxonomy development 

approach was chosen. In general, taxonomies serve as viable tools for organizing knowledge in a 

structured manner and manifesting descriptive theories (Gregor 2006). As such, they enable 

researchers to study the relationship among concepts and help to analyze and understand complex 

domains (Nickerson et al. 2013). 

To carry out the taxonomy development, the research method proposed by Nickerson et al. (2013) 

was applied as it provides systematic guidance. It basically consists of three steps: (i) determining 

a meta-characteristic, (ii) specifying ending conditions, and (iii) identifying dimensions and 

characteristics of the taxonomy. The meta-characteristic is the root element and serves as the 

foundation for the choice of all the other characteristics. For this purpose, a tripartite meta-

characteristic was chosen to distinguish between data analysis objectives (describing the output 

of a problem to be solved), data characteristics (describing the input), and analytical techniques 

(describing the actual steps of data processing to achieve the objectives) (Tsai et al. 2014). 

Subsequently, the specification of ending conditions was required due to the iterative method. To 

this end, a variety of criteria can be defined in order to fulfill specific quality properties such as 

robustness and conciseness of the taxonomy (Nickerson et al. 2013). 

The actual step of identifying dimensions and characteristics can then be carried out either with 

an empirical-to-conceptual or a conceptual-to-empirical path, where it is recommended to 

combine both paths for the integration of different perspectives. Accordingly, this procedure was 

organized in multiple iterations. Conceptual knowledge was derived from the vast body of 

research in the academic literature, while empirical knowledge was collected through interviews 

with DSA experts from industry. In the following, the results of the taxonomy development are 

briefly described following the structure of the sub-objectives. Thus, it starts with a reflection of 

the conducted literature review (1a). Then, the taxonomy structure is described using additional 

findings from the expert interviews (1b). Finally, the retrieved framework is applied to two 

distinct cases in order to demonstrate the usefulness of the created framework (1c). 
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2.1 The Current State of Research 

To examine the current state of research in data-driven maintenance, a systematic literature review 

was conducted using multiple digital libraries such as ScienceDirect, ACM, and IEEE Xplore 

(vom Brocke et al. 2009). More specifically, two review cycles were carried out to retrieve 

relevant literature. The first cycle was limited to a search for papers in connection with the concept 

of “maintenance analytics” in order to identify studies that propose similar frameworks for the 

systematization of data analysis problems from a DSA perspective. However, only a few papers 

with a limited scope could be identified (e.g., Famurewa et al. 2017; Karim et al. 2016). 

In the second review cycle, the search procedure considered concepts related to CBM and PdM, 

which generally show a broader coverage in the scientific community of data-driven maintenance. 

In this way, a large body of knowledge could be studied. For example, searching just the digital 

library of ScienceDirect yielded more than 5,000 results (3,063 hits for PdM and 2,103 hits for 

CBM, day of search: 08-08-2017). The results covered different types of literature, ranging from 

context-specific solutions to conceptual discussions of CBM and PdM programs. Moreover, the 

search results included a large number of survey papers, which were of particular importance as 

they summarize the field from multiple perspectives. By taking the results from all digital libraries 

together, a total of 99 survey papers were found with an emphasis on different maintenance 

technologies, models, and algorithms for data processing and decision making. After reviewing 

all the papers, the number of relevant items was reduced by 79, as most of the surveys deal with 

specific aspects such as (i) particular application domains (e.g., railway or wind turbines), (ii) 

specific machine components (e.g., power transformers), and (iii) other individual aspects (e.g., 

cloud-based approaches). The remaining 20 articles2, on the other hand, offer a broad and 

comprehensive summary of the field, including various systematizations of how decision tasks, 

data-driven methods, and data inputs can be classified. However, a more detailed analysis 

revealed a highly diffuse picture, especially as to classifying the extensive amount of available 

methods. For this reason, it was necessary to harmonize the existing systematizations to some 

extent in order to obtain a structured taxonomy framework. 

2.2 Systematization Framework 

By using the identified literature from both review cycles, it was possible to iteratively create a 

first taxonomy draft to distinguish between numerous dimensions and characteristics of data 

analysis problems in maintenance. For example, data analysis objectives could be divided into 

four distinct types (i.e., descriptive, diagnostic, prognostic, and prescriptive), each of them 

consisting of further sub-types. Data assets could be basically grouped into event data and 

condition-monitoring data, from which further properties could be derived (e.g., monitoring 

frequency, event types). For analytical methods and techniques, on the other hand, a more 

 
2  Ahmad and Kamaruddin (2012); Ahmadzadeh and Lundberg (2014); An et al. 2015; Ao (2011); 
Bousdekis et al. (2018); Dragomir et al. (2009); Elattar et al. (2016); Goyal and Pabla (2015); Hashemian 
and Bean (2011); Heng et al. (2009); Jardine et al. (2006); Kothamasu et al. (2006); Lee et al. (2014); Peng 
et al. (2010); Prajapati et al. (2012); Schwabacher (2005); Si et al. (2011); Veldman et al. (2011); Vogl et 
al. (2019); Zhu et al. (2016) 
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versatile picture was observed. This situation was also noted by Elattar et al. (2016) when 

reviewing typologies for prognostic methods: “Sometimes, the classification is based on the type 

of available data and knowledge about the system. Another time prognostics approaches are 

classified according to the type of the used methodology” (p. 132). For the latter part, for example, 

some authors generally distinguish between statistical models and artificial intelligence (AI) (e.g., 

An et al. 2015; Peng et al. 2010). Other authors use a more fine-grained differentiation and group 

methods, for example, into regression-based methods, trend projection methods, reliability-based 

methods, and filtering-based methods (e.g., Heng et al. 2009; Si et al. 2011). 

As a result of merging the heterogeneous classification schemes identified throughout the surveys, 

more than 80 characteristics were identified that could be grouped and organized within more 

than 25 dimensions. Consequently, the taxonomy lacked being sufficiently concise and 

comprehensive because it consisted of too many unstructured, partially overlapping dimensions.  

For this reason, multiple interviews with experts from industry were carried out to additionally 

consider empirical knowledge from practitioners and see how real-world scenarios could be 

mapped onto the taxonomy draft. In particular, seven DSA professionals working for a medium-

sized IT service provider were recruited. To conduct the interviews, a qualitative, semi-structured 

approach was applied (Myers and Newman 2007), addressing the following three aspects: (i) 

introduction to the research project, (ii) identification of contextual information and recurring 

properties of the interviewees’ DSA projects in maintenance, and (iii) discussion and modification 

of the proposed taxonomy draft. 

In this way, the systematization framework could be evaluated and enriched with experiences 

from industrial practice. Furthermore, it was possible to reduce the degree of complexity to make 

the taxonomy more precise. As a result, the final taxonomy covered 67 characteristics organized 

into 21 dimensions. The results are visualized in the next section. For a detailed description of the 

dimensions and characteristics, please refer to the full study (Zschech 2018). 

2.3 Exemplary Framework Application 

With the resulting taxonomy, it is possible to classify data analysis problems by their core 

characteristics in order to identify both commonalities as well as differences between different 

maintenance scenarios. For demonstration purposes, the framework application is illustrated 

below using two example cases, which are also the subject of later studies in this thesis. 

The first case refers to a turbofan engine degradation scenario based on NASA’s C-MAPSS data 

(commercial modular aero-propulsion system simulation) (cf. Chapter 4). This scenario is a 

commonly applied benchmark setting for which a simulation environment was used to generate 

synthetic datasets. Those datasets are made publicly available for the development of new 

prognostic solutions (Ramasso and Saxena 2014). The second case refers to the real-world setting 

of a German car manufacturer, where the step of replacing wear-induced tools in a milling 

machine should be supported through a proactive solution (cf. Chapter 5). More specifically, the 

aim was to predict the milling tools’ RUL, with little information available due to missing quality 

thresholds and individual risk preferences of the machine operators. 
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For both cases, a classification of central characteristics is carried out using the derived 

systematization framework. Table 2 summarizes the results. The green shades indicate the 

turbofan engine degradation scenario, while the blue shades represent the scenario of the milling 

machine. Shared characteristics between the two cases are highlighted in grey. 

Analytical maintenance objectives 

Analytical type Descriptive Diagnostic Predictive/ prognostic Prescriptive 

Descriptive Measures Visualization 

Diagnostic Fault detection Fault isolation Fault identification 

Predictive/ prognostic System health state Remaining useful life 

Prescriptive Optimal time of maintenance Optimal action of maintenance 

Maintenance paradigm Breakdown maintenance Time-based maintenance Condition-based maintenance 

Degree of maintenance Perfect maintenance Imperfect maintenance 

Data characteristics 

Data type 
Condition  

monitoring data 
Event data Metadata Business data 

Cond. monitoring type Single value Time waveform Multidimensional 

Monitoring frequency Continuous records Regular records Irregular records 

Variety of sensors Single sensor Multiple homogeneous sensors Multiple heterogeneous sensors 

Physical relation Direct data Indirect data 

Event type Machine state Operating step Machine configuration Malfunction Maint. Action 

Malfunction type Continuous degradation Sudden change of state Sudden incident 

Data labeling Labeled data Unlabeled data 

Data censoring Censored data Uncensored data 

Analytical technique 

Knowledge integration Empirical observations Physical models Expert knowledge 

Descriptive & 
diagnostic approach 

Summary statistics Hypothesis testing Clustering Classification 

Anomaly detection Frequent pattern mining Process mining 

Predictive/ prognostic 
approach 

Machine 
learning models 

Trend projection 
models 

Reliability & hazard  
rate models 

Stochastic filters Graphical models 

Decision-making appr. Evidence-based Optimization Simulation 

Pre-processing Signal processing Image processing 
Natural language 

processing 
Single value processing 

 

Color scheme: Turbofan engine   Milling machine   Turbofan engine & milling machine   
 

Table 2: Application of the systematization framework using two example cases 

Concerning the characterization of analytical maintenance objectives, the main focus in both 

scenarios is to establish a prognostic decision model. More specifically, the central predictive task 

is concerned with RUL estimation, while some C-MAPSS studies have used the turbofan scenario 

for health state estimation (Ramasso and Saxena 2014). Regarding the observed maintenance 

paradigm and the degree of maintenance, the two cases differ. The milling case is an imperfect 

scenario with smaller corrections made until the milling tools are finally replaced. Due to missing 

condition monitoring thresholds, the tool replacements are performed either too late (i.e., similar 

to “breakdown” paradigm) or at regular intervals (i.e., time-based paradigm) (Zschech, Heinrich, 

Bink, et al. 2019). 
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By contrast, the turbofan scenario simulates an ideal CBM setting with run-to-failure data where 

the end of each cycle represents a critical threshold for RUL estimation. Moreover, the effects of 

between-flight interventions can be neglected as they are already incorporated within the 

simulated sensor measurements in the form of process noise. For this reason, the case can be 

classified as a perfect maintenance scenario (Saxena, Goebel, et al. 2008). 

From a data perspective, the two cases have in common that they are characterized by event data 

about machine configurations as well as an extensive collection of indirect condition monitoring 

data from multiple heterogeneous sensors reflecting a continuous degradation. However, there 

are also several attributes distinguishing the two cases. More specifically, the C-MAPSS 

collection encompasses five datasets replicating the degradation behavior of turbofan engines 

under a variety of operating conditions and fault modes. Each dataset covers multiple turbofan 

engines and contains single-value snapshots of 21 sensor measurements for each simulated flight 

(i.e., cycles). It is assumed that each measurement is captured in regular intervals, i.e., either 

during or right after a flight. Varying operating conditions are a result of different machine 

configurations represented by three parameters that are individually specified for each flight. 

Furthermore, the last cycle of each engine can be considered as a “malfunction” event marking 

the end of useful life. Therefore, the datasets only contain uncensored run-to-failure samples with 

full label information for training purposes (Saxena, Goebel, et al. 2008). 

By contrast, the milling scenario is subject to missing label information since no malfunction 

events can be obtained, which partly results from censored data records. These circumstances also 

constitute the core challenge to the case for the development of a prognostic model. Nevertheless, 

the case offers broad availability of other event data that can be used for solution development. 

These include event records about (i) machine states (e.g., running, finished) in order to derive 

information about produced units, (ii) operating steps (e.g., milling, cleaning) in order to focus on 

relevant phases, (iii) maintenance actions in order to distinguish between perfect and imperfect 

interventions, and (iv) machine configurations in order to track the changes made by parameter 

corrections. Another vital source of information is provided by the condition monitoring data, 

which, however, also differs from the turbofan engine case. Thus, sensor measurements of 

multiple milling components (e.g., machine axes and spindles) are continuously recorded for each 

operating step, resulting in fine-grained time waveform data. These measurements not only reveal 

a continuous degradation behavior of the milling tools; they also indicate sudden changes in 

machine conditions during material processing (Zschech, Heinrich, Bink, et al. 2019). 

With the last meta-characteristic of the framework, it is possible to characterize different 

analytical techniques and methods applied for solution development. In the turbofan engine 

scenario, only empirical observations are used without additional sources of knowledge. The 

prognostic models of existing C-MAPSS studies are based on a variety of approaches such as 

ML, trend projection, stochastic filters, and graphical models. Additionally, in some studies, 

clustering and classification approaches are used as preparatory steps for health state prediction. 

Moreover, given the nature of the sensor measurements, single-value processing techniques are 

required for pre-processing (Ramasso and Saxena 2014). 
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In the milling scenario, on the other hand, it was possible to derive additional expert knowledge 

to confirm several preliminary findings during exploratory analysis steps. For solution 

development, different clustering approaches are used to discover hidden structures and extract 

useful label information, while ML models are applied for RUL estimation. Moreover, signal 

processing techniques are used to reduce the dimensionality of time waveform data given by the 

fine-grained sensor measurements (Zschech, Heinrich, Bink, et al. 2019). 

In summary, it can be seen that the application of the systematization framework provides a quick 

overview to highlight central commonalities as well as distinctive properties between data 

analysis problems in different maintenance scenarios. This overview can guide various 

stakeholders involved in maintenance-related DSA projects. For example, modeling experts and 

data analysts can gain insights into the particularities of the domain represented by the data 

characteristics and the maintenance objectives. Domain experts, on the other hand, can better 

understand the analytical toolset for the technical implementation, referring to standards and best 

practices. In this way, the systematization framework serves as a viable instrument for 

communication purposes and for bringing together different actors to discuss a multidisciplinary 

problem space collectively.  
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3 Intelligent Assistance System for Automated Method Selection 

Research objectives 

RO2 Design of an intelligent assistance system for automated method selection 

2a Elicitation of requirements from research and practice 

2b Formulation of design principles and specification of design features 

2c Prototypical instantiation and evaluation of the system design 

Reference to original work 

Zschech, Heinrich, Horn, et al. (2019) Publication P2 Appendix II: B 

Zschech et al. (2020) Publication P3 Appendix II: C 

Table 3: Research summary for Chapter 3 

In any DSA project, the task of mapping a domain-specific problem onto an adequate set of DM 

methods by experts in the field is a crucial step. However, these experts may not always be 

available, and DM novices have to perform the task themselves. For this reason, there have been 

several research efforts towards automated method selection as a means of support. Most 

approaches are part of modern IAS (Serban et al. 2013) and can be roughly divided into three 

categories: (i) expert systems (e.g., Dabab et al. 2018; Danubianu 2008), (ii) meta-learning 

systems (e.g., Kerschke et al. 2019; Lemke et al. 2015), and (iii) question answering systems (e.g., 

Hogl 2003). However, none of the existing approaches operates on a suitable level of abstraction, 

and none can consider the particularities of problems expressed in the natural and domain-specific 

language of the novice. Therefore, this chapter is concerned with the second research objective, 

to propose the design of a novel IAS that takes problem descriptions articulated in natural 

language as input and offers advice regarding the most suitable class of DM methods. 

In order to conduct this kind of research, a DSR approach was pursued. Design science is a 

fundamental paradigm in IS research as it is concerned with the construction of socio-technical 

artifacts to solve organizational problems and derive prescriptive design knowledge (Gregor and 

Hevner 2013). More specifically, the DSR procedure model proposed by Peffers et al. (2007) was 

adopted, consisting of six steps: (i) problem identification and motivation, (ii) definition of the 

objectives for a solution, (iii) design and development, (iv) demonstration, (v) evaluation, and 

(vi) communication. Please note, while publication P2 primarily focused on the first two steps 

and the preliminaries for step (iii), publication P3 covers the full DSR procedure and refines some 

of the previous results based on more recent findings. Therefore, the publications differ slightly 

concerning the adoption of the six steps. 

In the following, the results of the general DSR approach are briefly described in order to achieve 

the defined sub-objectives 2a–2c (cf. Table 3). It starts with the elicitation of requirements from 

research and practice, followed by the design proposal in terms of design principles and design 

features. Finally, the system design is evaluated based on a prototypical instantiation. 
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3.1 Elicitation of Requirements 

To obtain initial requirements, the mapping problem was conceptualized with a typical scenario, 

as observed in practice. In this scenario, a domain expert provides a problem description in natural 

language, and a DSA expert is consulted to realize a mapping with a specific class of DM methods 

using his or her knowledge about different methods. To support this task in an automated manner, 

a novel IAS should offer the functionality outlined in Figure 4. It receives a problem description 

and recognizes all relevant entities of interest. Built upon an advanced learning base, the IAS can 

then infer which class of DM methods most likely addresses the problem. On this basis, further 

information about the DM method is provided as guidance for its application. 

 

Figure 4: Intended functionality of an IAS for DM method selection (Zschech et al. 2020) 

The intended functionality above allowed the derivation of several requirements, such as that a 

novel IAS should be able to process text data and that it disregards irrelevant noise. Such specific 

requirements were subsequently related to more generic, theory-driven meta-requirements. In 

particular, the design requirements of generic decision support systems (DSS) were taken from 

Meth et al. (2015) as prior knowledge to inform the design of the intended artifact. Table 4 

summarizes the results, where R1, R2, and R3 denote meta-requirements. 

ID (Meta-) Requirement 

R1 Increase decision quality by providing advice with high advice quality 

R1.1 The system shall select DM methods with higher accuracy than guessing 

R1.2 The system shall be able to remove noise from user inputs 

R2 Reduce the human decision maker’s cognitive effort by providing decision support 

R2.1 
The system shall provide the user with the ability to enter natural-language and domain-
specific text 

R2.2 The system shall be able to extract context and central constructs from user inputs 

R3 Minimize system restrictiveness by allowing users to control the strategy selection 

R3.1 
The system should provide the user with the ability to review transparent assessment scores 
for DM method selection 

R3.2 The system shall be able to operate on small amounts of text 

Table 4: Summary of (meta-) requirements (Zschech et al. 2020) 

Textual Problem Description Expressed in Domain-Specific Language

Domain
Expert

“We have a large number of machines to manufacture
our main product and now we want to find out whether
there are common groups of configuration profiles
based on the many configuration parameters which are
mostly set subjectively by our machine operators. (…)”

Characterization of Cluster Analysis:

“Cluster analysis is the task of grouping objects together
in such a way that objects in the same group are similar
to each other and objects in different groups are
dissimilar to each other. (…)”

Characterization of Classification:

“Classification is the task of identifying to which of a set
of categories a new observation belongs, on the basis of
a training set of data containing observations whose
category membership is known. (…)”

Generic Textual Descriptions of DM Method Classes

…

DSA
Expert

Additional Information for Method Application

Entity X1 X2 … Xn

△1 Low Low … 42

△2 High High … 42

△3 High Low … 42

… … … … …

△n High High … 42

DM Method Advice

Your problem is most likely
to be solved with:

 Cluster Analysis: 83%

 Classification: 45%

 Association Rules: 10%

 … …

X1

X2

High

Low

Low High
Mapping Task

Mapping 

via TbIAS

Expected Outcome

Required Data Input

Application Examples

• Customer Segmentation

• Cyber Profiling

• Document Clustering

• …
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3.2 Design Principles and Design Features 

Based on the derived requirements, suitable methods and technologies were sought that could be 

incorporated into an adequate system design. More specifically, a literature review was carried 

out (Boell and Cecez-Kecmanovic 2014), in which various methodical approaches from the field 

of text mining and natural language processing were identified. The results included, for example, 

text classifiers, embeddings, topic models, keyword extractors, and different kinds of pre-

processing techniques (Aggarwal and Zhai 2012). 

These methodical approaches had to be combined and transferred into multiple processing 

pipelines for testing and evaluating alternative system architectures. In the sense of the DSR 

methodology, the concrete implementations can be understood as design features, upon which the 

system design is instantiated. The generalization of the design is then encapsulated by design 

principles, which allow an abstraction from the technical details of the solution and thus provide 

prescriptive knowledge for the design of a class of systems (Meth et al. 2015; Morana et al. 2019). 

In order to support the mapping task3 in an automated manner, two central aspects had to be 

considered. On the one hand, it had to be ensured that the IAS is capable of automatically 

processing natural language requests in their entirety to assign them to a class of DM methods. 

This step could be technically realized with the help of general text classification methods 

(Kowsari et al. 2019). On the other hand, it had to be ensured that the IAS automatically extracts 

context from the problem descriptions in the form of central constructs (e.g., keywords, phrases) 

that signal a match or at least a similarity between domain-specific problem descriptions and 

generic DM method descriptions. This step could be technically realized by using different 

embedding models from the field of deep learning (e.g., Bojanowski et al. 2017; Iyyer et al. 2015). 

Another central aspect was to construct a suitable learning base upon which the methods above 

could operate to enable the system’s inference. In order to treat the mapping problem as a classical 

supervised learning task, a large amount of training data, ideally in the form of pre-classified 

problem descriptions, is required. However, labeled problem descriptions from practice are only 

sparsely available since companies usually do not store such information in central repositories. 

Therefore, an alternative approach had to be developed by crawling and augmenting texts from 

academic articles that describe the application of DM methods (Vainshtein et al. 2018). In this 

way, a sufficiently large corpus could be created in an economically feasible manner. 

In summary, the design of the IAS was expressed by three design principles that are concretized 

by four design features. In their composition, they contribute to the coverage of all previously 

identified design requirements. Figure 5 summarizes the relationships between the (DSS) design 

requirements, the design principles, and the design features. 

 
3 Please note that, in contrast to the eventually developed artifact, the original draft included an additional 
functionality besides the realization of the mapping task. Thus, the IAS was supposed to extract 
semantically relevant domain entities from the problem descriptions and translate them into the 
corresponding output views (Zschech, Heinrich, Horn, et al. 2019). However, this functionality was 
disregarded in subsequent design cycles to keep the complexity of the study manageable. 
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Figure 5: Relation between design requirements, principles, and features (Zschech et al. 2020) 

3.3 Prototypical Instantiation and Evaluation 

For the evaluation of the system design artifact, an assessment had to be performed as to how well 

the developed IAS is able to establish a correct mapping between real-world problem descriptions 

and a particular selection of DM method classes. For this purpose, the scope was limited to a 

selection of three predominantly employed classes: clustering, prediction, and frequent pattern 

mining (Tsai et al. 2014). This limitation was also applied when constructing the learning base in 

the development step. For each of the three method classes, 20 suitable problem descriptions were 

collected, either from industrial DSA projects or from several DM competition websites. 

This collection was used for two evaluation steps. First, it was applied to determine which of the 

alternative processing pipelines performed best in order to transfer them as a concrete design 

instantiation into a prototypical implementation. Afterwards, the 60 problem descriptions were 

used for an external evaluation to assess the usefulness of the artifact against various reference 

items. These items included (i) random guessing as the lowest performance limit, (ii) a novice 

assessment with 20 DSA students at the beginning of their DM education, and (iii) a baseline 

configuration of the IAS in contrast to a full configuration. Concerning the last item, the idea was 

to incrementally activate individual design principles in order to measure their effects separately 

(Meth et al. 2015). Thus, the baseline configuration consisted only of the learning base and a set 

of standard text classifiers (*). Table 5 summarizes all items as part of the evaluation study. 

Evaluation item Description Design principles Role within hypotheses 

Random guessing Discrete uniform distribution No DP Reference item for H1 

Novice assessment DSA student survey No DP Reference item for H2 

IAS baseline 
configuration 

Learning base 
+ standard text classifiers 

DP3 + DP1(*) Reference item for H3 

IAS full  
configuration 

Learning base + embeddings 
+ advanced text classifiers 

DP3 + DP1 + DP2 Test item for H1, H2, H3 

Table 5: Reference and test items of the evaluation study (Zschech et al. 2020) 

DR1: Increase advice 
quality

DR3: Increase flexibility 
for domain-specific 

input

DR4: Limit manual 
modeling effort

DP1: Automated NL 
request processing

DP2: Automated 
context extraction

DP3: Automated 
learning base 
construction

DF3: Use crawling 
and syntactic/ semantic 

cleaning

DF4: Use data 
augmentation

DF2: Use (word 
and paragraph) 

embeddings

DF1: Use mixed 
text classifiers and 
ensemble models

DSSDR1: Increase 
decision quality

DSSDR2: Reduce 
cognitive effort

DSSDR3: Minimize 
system restrictiveness

DR2: Decrease 
knowledge 

prerequisites

DSS design 
requirements

Design requirements Design principles Design features
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Corresponding to the different reference items, three design hypotheses were proposed to assess 

the design artifact’s usefulness. In summary, the hypotheses covered the assumptions that a 

method selection based on a full IAS design configuration achieves higher advice quality than (i) 

a selection based on random guessing (H1), (ii) a selection based on the judgment capacity of DM 

novices (H2), and (iii) a selection based on a baseline configuration (H3). 

For performance comparison, the 60 problem descriptions were classified by each evaluation item 

while calculating different quality metrics. When measuring overall accuracy as the proportion of 

correctly classified cases among the total number of cases, it was revealed that the full IAS design 

configuration based on all three design principles dominates all three reference items. In detail, 

54 problem descriptions were assigned correctly to one of the three DM method classes, reaching 

an accuracy of 90%. In comparison, the baseline configuration only achieved 58%, which was 

still slightly higher than the mean accuracy obtained by the novices’ judgment (55%). Given the 

setting of three DM method classes, random guessing was set to a score of 33%, constituting the 

lowest limit of desired advice quality. 

Moreover, for hypothesis testing and to provide more stable statements about inter-group 

differences, confidence scores were calculated for each decision. These scores express how “sure” 

an algorithm is about a decision. In this way, a two-stage analysis could be conducted, including 

a robust version of ANOVA (Wilcox 1989) and a post hoc independent t-test with Bonferroni 

adjustment. While the ANOVA returned a significant result for the overall test that at least two 

evaluation items were different, the t-tests returned significant results on H1 and H2 at the 0.01 

level, and on H3 at the 0.05 level. These results support the three hypotheses and confirm that an 

IAS based on all design principles indeed increases the advice quality using natural language 

problem descriptions. Table 6 summarizes the results of the t-tests. 

Hypothesis Level versus Level Difference p-value 

H1 Full configuration Random guessing 0.369 < .0001* 

 Baseline configuration Random guessing 0.264 < .0001* 

 Novice assessment Random guessing 0.219 < .0001* 

H2 Full configuration Novice assessment 0.147 0.0006* 

H3 Full configuration Baseline configuration 0.102 0.0165* 

 Baseline configuration Novice assessment 0.044 0.2968 

Table 6: Post hoc t-test results for hypotheses H1–H3 (Zschech et al. 2020) 
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4 Taxonomic Framework for Method Evaluation 

Research objectives 

RO3 Development of a taxonomic framework for method evaluation 

3a Survey of prognostic solutions using public benchmark data 

3b Development of a taxonomic evaluation framework 

3c Reconstruction of methods and application of the evaluation framework 

Reference to original work 

Zschech, Bernien, et al. (2019) Publication P4 Appendix II: D 

Table 7: Research summary for Chapter 4 

This chapter is concerned with the development of a taxonomic evaluation framework for the 

systematic assessment of data-driven methods. Inspired by the research approach conducted in 

Chapter 2, it was observed that taxonomies serve as a viable tool to decompose multi-layered 

objects or entities into their inherent parts and facets. Concerning the decomposition of data 

analysis problems, the distinction between analysis objectives, data properties, and analysis 

methods proved to be an adequate way to develop a comprehensive systematization framework. 

Beyond that scope, however, discussions with experts from research and industry revealed the 

potential to expand such a framework to include further dimensions. Taking the structure of 

classical DM procedure models, such as CRISP-DM (Mariscal et al. 2010), conceivable 

extensions covered dimensions related to data pre-processing and evaluation. In return, however, 

a smaller focus had to be set to keep the variability of such additional dimensions manageable. 

These steps led to the creation of a new method proposal for the development of taxonomic 

evaluation frameworks. While the overall composition can be considered an innovative 

contribution, the core components consist of methodological steps derived from well-established 

research approaches. The general procedure of the method proposal, as well as an instantiated 

example, are summarized in Figure 6. 

 

Figure 6: Method proposal for the development of taxonomic evaluation frameworks 

In the first step, the domain and the decision support task have to be specified. The task must be 

sufficiently well delimited and needs to allow for support from data-driven methods that can be 

evaluated using quantitative evaluation metrics such as diagnostic or predictive decision tasks. 

Taxonomy development
(Nickerson et al. 2013)

CRISP-DM structure
(Wirth and Hipp 2000)
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(Ramasso and Saxena 2014)
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Optionally, the scope of the overall study can then be further refined to focus on particular settings 

or circumstances. For the exemplary instantiation, the field of maintenance is chosen as the 

domain, focusing on the task of prognostic decision support. Moreover, the scope is refined by 

considering a turbofan engine degradation setting based on NASA’s C-MAPSS scenario 

(Ramasso and Saxena 2014) to keep the study’s complexity manageable. 

In the second step, existing solution approaches based on data-driven methods have to be 

collected that address the specified decision support task. In this way, an overview can be obtained 

about the alternative design options for building data-driven solutions. For the realization of this 

step, it is advisable to draw on established research methods for conducting a systematic literature 

review (Webster and Watson 2002). In the demonstration example, the guidelines proposed by 

vom Brocke et al. (2009) were adopted. 

In the third step, the identified solutions have to be decomposed into modular components to 

obtain the taxonomic structure of the evaluation framework. For this step, it is advisable to adopt 

the guidelines proposed by Nickerson et al. (2013), as already introduced in Chapter 2. However, 

as mentioned above, the extraction of dimensions and characteristics is supposed to follow the 

general structure of DM procedure models, which are basically organized into the steps of domain 

understanding, data understanding, data pre-processing, modeling, and evaluation (Mariscal et 

al. 2010; Wirth and Hipp 2000). 

In the fourth step, the evaluation framework is applied, and quantitative studies are conducted 

by reconstructing the identified solution components for different contexts. In this way, the 

extracted framework elements serve as evaluation options that are iteratively modified under 

ceteris paribus conditions. Thus, by using a “pipes and filters” architecture (Buschmann 1996), 

all conceivable combinations of pre-processing and prognostic modeling methods can be studied 

based on different data properties concerning their impact on multiple evaluation criteria. 

However, instead of using the entire evaluation framework, the option should be considered to 

refine the scope of the study design to focus on specific aspects. Such an option is also chosen in 

the demonstration example by focusing on 64 evaluation combinations. 

In the next sections, the application of the proposed method is demonstrated in further detail. 

Thus, by focusing on prognostic maintenance solutions, the remaining structure follows the 

composition of the sub-objectives 3a–3c (cf. Table 7). Please note that the results of 3a and 3b 

are already covered in full detail by publication P4. By contrast, the quantitative evaluation results 

of 3c have not yet been part of any publication. 

4.1 Survey of Prognostic Solutions 

Due to the scarce availability of run-to-failure data in industrial environments, the development 

of prognostic maintenance solutions is primarily based on synthetic data collections. For this 

purpose, there have been several initiatives to generate public benchmark datasets based on 

laboratory experiments and advanced simulations. Such initiatives cover a variety of technical 

settings including milling machines, bearings, turbofan engines, and battery charging cycles (Eker 

et al. 2012; Lei et al. 2018). Among these examples, the turbofan scenario based on NASA’s 
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C-MAPSS data is one of the most dominating benchmark scenarios in the prognostics community. 

Due to their realistic properties in terms of high-dimensional sensor measurements and masked 

fault effects (cf. Chapter 2.3), the C-MAPSS data have already been used by hundreds of 

researchers from various disciplines, bringing forth a wide variety of prognostic solution 

approaches (Ramasso and Saxena 2014). For this reason, the study’s scope was explicitly limited 

to this specific scenario as it provides an extensive knowledge base while being sufficiently 

manageable when assessing individual solution approaches in more detail. 

To identify the large amount of studies developing C-MAPSS-based prognostic solutions, the 

review guidelines proposed by vom Brocke et al. (2009) were followed. More specifically, this 

included (i) a conceptualization of the topic to retrieve appropriate search terms, (ii) a database 

search using several digital libraries, (iii) a forward and a backward search based on relevant key 

contributions, and (iv) a specification and application of filter criteria to remove irrelevant 

literature from further analysis. In this way, it was possible to obtain 227 unique hits before 

applying filter criteria (day of search: 24-09-2018). After filtering, the number of items was 

reduced to 106 relevant studies4. 

4.2 Taxonomic Evaluation Framework 

In the next step, the vast corpus of C-MAPSS studies was used to develop the structure of the 

evaluation framework. Following the guidelines proposed by Nickerson et al. (2013), the 

development process was structured into several steps and iterations, similar to the procedure in 

Chapter 2. The meta-characteristic was defined as characteristic components of data-driven 

prognostic solutions. Concerning the ending conditions, most suggestions from the authors could 

be adopted without significant changes as they provide a solid basis to determine the end of the 

iterative process. After specifying those properties, the actual step of extracting dimensions and 

characteristics was carried out. At this stage, the procedure proposed by Nickerson et al. (2013) 

was refined by additionally taking into account the general structure of the CRISP-DM procedure 

model (Wirth and Hipp 2000) to distinguish between characteristic components of data-driven 

solutions. As a result, it was possible to identify (i) two dimensions related to domain and data 

understanding, (ii) four dimensions related to pre-processing, (iii) one top-dimension and several 

intangible sub-dimensions related to modeling, and (iv) one dimension related to evaluation. 

Moreover, as specified by Nickerson et al. (2013), the extraction process covered both empirical 

as well as conceptual knowledge. Empirical knowledge was directly obtained when analyzing 

each individual study in the corpus and extracting elemental parts of prognostic solutions. 

Conceptual knowledge, on the other hand, was derived from existing survey papers and 

systematizations that were identified during the literature review above (e.g., Ramasso and 

Saxena 2014; Saxena, Celaya, et al. 2008). In this way, it was possible to use prior expert 

knowledge and organize empirical observations into pre-defined categories. 

The results of the taxonomy development are summarized in Table 8. The derived elements can 

be considered as design options when implementing data-driven prognostic solutions in similar 

 
4 Full list of references: https://www.researchgate.net/publication/335611604 (last access: 01-06-2020) 
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settings. While the first two dimensions specify the context in which different data-driven 

methods based on various pre-processing and modeling components can be tested, the evaluation 

dimension covers multiple options for assessing the quality of the results. For a more detailed 

description of the dimensions and characteristics, please refer to the full study (Zschech, Bernien, 

and Heinrich 2019). 

CRISP-DM Dimensions Characteristics 

Domain & data 
understanding 

Fault modes Single fault mode Multiple fault modes 

Operational conditions Single condition Multiple conditions 

Pre-processing 

Normalization Standardization Rescaling 

Noise reduction Moving average Exponential smoothing Polynomial smoothing 

Feature selection Manual selection Filter Wrapper 

Dimensionality reduction Hierarchical Non-hierarchical 

Modeling Prognostic approach Direct RUL-mapping Indirect RUL-mapping via HI Similarity-based matching 

Evaluation Performance metric Accuracy-based Precision-based Prognostic-specific metric 

Table 8: Taxonomic evaluation framework based on C-MAPSS studies  

4.3 Exemplary Framework Application 

After the extraction of the framework structure, the derived elements can be used to create a study 

design for different evaluation purposes. This step is demonstrated below by taking selected 

characteristics for each framework dimension and implementing them with concrete approaches. 

Figure 7 summarizes the selected elements of the exemplary study design. Please note that in the 

given scenario, some dimensions can be skipped, which is possible, for example, for all four pre-

processing dimensions. 

 

Figure 7: Exemplary study design derived from the evaluation framework 

In order to consider different complexity levels of the domain, four alternative datasets of the 

C-MAPSS collection are chosen. In particular, FD001 and FD002 are used as they represent 

scenarios with a single fault mode while differing in the number of operational conditions. 

Likewise, FD003 and FD004 are used to consider multiple faults combined with different 

operational conditions. 

Concerning the construction of the pre-processing pipeline, a normalization step is realized by 

using a rescaling approach through a min-max transformation (Tao et al. 2016). Subsequently, in 
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a first variant, noise reduction is implemented via locally weighted scatterplot smoothing 

(LOWESS) as a concrete approach for polynomial smoothing (Khelif et al. 2017). In a second 

variant, the step of noise reduction is skipped to examine the particular impact on the overall 

performance. A similar approach is carried out for the step of feature selection. In a first path, all 

input features are used without any selection procedure. In a second path, a filter method is applied 

based on a weighted combination of the metrics “monotonicity”, “prognosability”, and 

“trendability” (Coble 2010). The next step of dimensionality reduction is skipped without any 

particular implementation. 

For the prognostic modeling step, the two categories of direct RUL-mapping and similarity-based 

matching are chosen. The direct RUL-mapping is realized with two different kinds of deep neural 

networks. More specifically, a long short-term memory (LSTM) network (Zheng et al. 2017) and 

a convolutional neural network (CNN) (Babu et al. 2016) are implemented. The similarity-based 

approach is also realized through two specific implementations. While both of them share the 

same procedure for constructing health index (HI) curves (Khelif et al. 2017), they differ in the 

applied approach for curve fitting and the type of similarity score (Malhotra et al. 2016; Wang et 

al. 2017). Finally, for performance evaluation, the root mean square error (RMSE) is used as a 

standard accuracy-based metric to assess the quality of the RUL estimation task (Lim et al. 2016). 

The implementation5 of the individual approaches described above is organized in modules using 

the programming language Python. The general structure of the taxonomic evaluation framework 

allows modules from different framework dimensions to be stacked in sequential processing steps 

using a “pipes and filters” architecture (Buschmann 1996). In this way, modular pipelines can be 

constructed in which the output of one module represents the input of the subsequent one. For 

this purpose, a dictionary is created to check the combinability of different modules with each 

other. In the present example of the C-MAPSS scenario, the developed framework allows the 

combination of all dimensions without any restrictions, so that a fully populated evaluation matrix 

can be obtained. However, it is also conceivable that some cells of the matrix remain unoccupied 

in the case of limited combinability. To automatically generate the evaluation results, conditional 

statements are used to execute those modules that correspond to a particular combination, while 

all predefined combinations are executed using loop constructs. 

For demonstration purposes, the resulting evaluation matrix is illustrated in Table 9. The 

framework dimensions and the implemented approaches cover row and column elements, while 

the cells of the matrix reflect the results of the chosen evaluation metric. For better readability, 

the evaluation matrix is organized into four quadrants according to the datasets FD001–FD004 

covering the different complexity levels of the scenario. Pre-processing alternatives are reflected 

by columns, while alternative prognostic models are organized in rows. An additional color 

scheme, adjusted for each quadrant, highlights the differences in performance. The lower the 

RMSE values, the stronger the color intensity, indicating that an individual evaluation pipeline 

performs better than another. 

 
5 Further details on each implemented approach, such as the choice of hyperparameters, can be found in 
Appendix I: Implementation Details. 
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Metric: RMSE 

  Single operational condition  
 Multiple operational conditions  

  No noise reduction  Polynom. smoothing    No noise reduction Polynom. smoothing  

  No select. Filter No select. Filter   No select. Filter No select. Filter 

                        

Single 
fault  
mode 

LSTM   15.19 16.02 13.85 15.40   32.15 32.40 30.68 31.68 

CNN   15.23 17.77 14.86 17.31   30.67 30.64 30.67 30.58 

Similarity1   18.37 19.21 19.85 19.95   29.55 29.84 28.77 28.56 

Similarity2   14.42 16.31 16.03 18.37   23.88 24.44 24.32 24.38 

                      

Multiple 
fault 

modes 

LSTM   18.84 18.59 17.81 32.47   34.56 38.41 33.59 39.52 

CNN   18.20 22.83 15.83 25.32   31.79 32.49 32.36 32.72 

Similarity1   28.57 27.89 29.90 30.22   32.55 33.41 33.42 33.93 

Similarity2   20.31 22.25 22.52 22.74   27.24 27.36 27.18 27.94 

Table 9: Evaluation results for selected framework elements 

By using the resulting evaluation matrix, it is possible to draw several conclusions about the 

suitability of alternative data-driven methods in different settings. For example, it can be observed 

that direct prognostic models based on deep neural networks (i.e., LSTM and CNN) tend to 

perform slightly better than similarity-based approaches in settings with single operational 

conditions, especially when multiple fault modes are present. By contrast, similarity-based 

models tend to perform better than direct approaches in scenarios with multiple operational 

conditions. This observation is particularly true for the second similarity approach (Similarity2), 

which, however, generally shows high accuracies across all settings. 

Simultaneously, it is possible to assess the adequacy of combining particular method components. 

For example, it can be noted that neural networks without explicit feature selection, in most cases, 

achieve much better results compared to their variants with feature selection using the filter 

approach. This observation confirms the assumption that deep neural networks are generally 

capable of automatically extracting relevant features without the need for additional feature 

engineering (LeCun et al. 2015). Similarly, it can be noted that polynomial smoothing, except in 

the case of FD002 (i.e., single fault, multiple operational conditions), generally reduces the 

performance of similarity-based approaches. One explanation could be that noise reduction 

removes essential information from the signals that would have been relevant for matching similar 

curve segments. Therefore, such method combinations should be avoided in comparable settings. 

Overall, the few analysis examples illustrate which useful insights can be gained by applying such 

a taxonomic evaluation framework. For demonstration purposes, the scope has been kept 

deliberately small, so even more dimensions, characteristics, and concrete implementations are 

conceivable to expand the scope and conduct more in-depth analyses. Furthermore, neither the 

developed framework derived from the C-MAPSS studies nor the overall method proposal for 

constructing the framework is restricted to the specific case at hand. Instead, it is feasible to apply 

both approaches to other settings, which will be further discussed in Chapter 6. 
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5 Method Application Under Industrial Conditions 

Research objectives 

RO4 Application of a prognostic method under industrial conditions 

4a Conceptualization of a novel solution to address missing label situation 

4b Prototypical implementation and evaluation of the solution approach 

Reference to original work 

Zschech, Heinrich, Bink, et al. (2019) Publication P5 Appendix II: E 

Table 10: Research summary for Chapter 5 

In contrast to laboratory settings and simulations, as in the case of the C-MAPSS scenario, it is a 

considerable challenge in real production environments to detect and anticipate critical machine 

behavior in a proactive manner. Often there is a lack of knowledge about thresholds and tolerance 

limits that mark necessary points of intervention. Moreover, in many cases, machines are operated 

and maintained with great caution, so that actions are taken long before necessary interventions 

are required. From a prognostic point of view, this situation is often referred to as a “missing 

label” problem, which can be seen as a significant hurdle in the development of predictive 

decision models (Gouriveau et al. 2013). 

Against this background, the present chapter deals with the fourth research objective and 

addresses the application of a prognostic method under industrial conditions. For this purpose, a 

maintenance scenario of a German car manufacturer is considered as an exemplary case. More 

specifically, the scenario refers to a milling machine with replaceable milling tools that are subject 

to natural wear and tear. In order to reduce the wear effect, imperfect corrections have to be carried 

out by machine operators until the milling tools finally have to be replaced. Although extensive 

sensor data are captured during the production process, there are no thresholds specified 

indicating when a tool replacement should ideally be carried out. Instead, the operators’ decisions 

regarding tool replacements are exclusively based on (i) their perception during visual tool 

inspections, (ii) their empirical knowledge, and (iii) their individual risk preferences. Thus, less 

experienced machine operators with more risk-averse attitudes tend to replace tools well before 

the actual end of useful life. In contrast, risk-taking machine operators tend to carry out late 

replacements, risking impaired product quality. Overall, this leads to inefficient use of resources, 

which is why a proactive solution approach for better decision support is required. 

In order to carry out this kind of research and develop a novel solution approach, a data science 

study was conducted by following the general steps of DM procedure models (Mariscal et al. 

2010). More specifically, concerning the sub-objectives in Table 10, the solution approach was 

first conceptualized on an abstract level (4a). Subsequently, the solution was prototypically 

implemented and evaluated using real data collections provided by the case study partner (4b). In 

the following sections, the results of both sub-objectives are briefly described. 
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5.1 Conceptualization of a Solution Approach 

Due to a lack of objective information on when a tool replacement should be carried out, machine 

operators' decisions are made on a subjective basis taking into account individual risk preferences. 

To address this problem, a prognostic decision model had to be created that provides a reference 

point by predicting the milling tools’ RUL in order to reduce subjectivity in the decision process. 

However, the lack of objective information also implied the absence of adequate labels, which 

were required for learning a suitable prognostic model. In other words, if a prognostic model had 

been trained based on all previous observations, the model would have only reflected the decisions 

of the machine operators and not the technically possible RUL of the milling tools. 

In response, the core idea of a novel solution approach was to separate “good decisions” from 

“bad decisions” based on latently available information hidden in historical data records about 

executed tool replacements. For this purpose, the problem space was conceptualized using two 

orthogonally related dimensions. The first dimension refers to the time when a tool replacement 

was carried out, distinguishing between early and late replacements. The second dimension refers 

to the condition of a milling tool, distinguishing between damaged and undamaged tools. Even if 

this information was not directly available in the data, it was reasonable to assume that a critical 

damage pattern must also be reflected in the recorded sensor values of the milling machine. By 

separating the two levels in both dimensions, a four-field matrix can be set up as illustrated in 

Table 11. On this basis, it is possible to differentiate between four types of tool replacements due 

to subjective decisions: 

 Type 1 represents undamaged tools that have been replaced correctly at a late time, implying 

an efficient use of resources. 

 Type 2 represents damaged tools that have not been replaced in time, leading to impaired 

product quality. 

 Type 3 represents undamaged tools that have been replaced too early, resulting in high tool 

costs and truncated data for model training. 

 Type 4 represents damaged tools that have been replaced correctly at an early time, also 

corresponding to efficient use of resources. 

  
Condition  

Tool undamaged Tool damaged 

Time 

Replacement late 
Type 1 – GOOD  

(efficient tool usage,  
type 3 prevented) 

Type 2 – AVOID 
(impaired product quality) 

Replacement early 
Type 3 – AVOID 
(high tool costs) 

Type 4 – GOOD  
(efficient tool usage, 

type 2 prevented) 

Table 11: Four-field matrix for the distinction of tool replacements (Zschech, Heinrich, Bink, et al. 2019) 
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In order to ensure resource-efficient replacements in productive use as illustrated by types 1 and 

4, a maintenance system had to be established consisting of two analytical components. The first 

component is a diagnostic decision model that continuously checks whether a milling tool shows 

any signs of imminent damage. If this is the case, it has to be replaced. If this is not the case, a 

prognostic decision model trained on type 1 observations is used to determine the RUL of the 

tool, since type 1 observations represent tools that have been correctly replaced at a late stage. 

This procedure is associated with the assumption that those replacements are close to the actual 

end of useful life based on the empirical knowledge of more experienced machine operators. 

5.2 Prototypical Implementation and Evaluation 

For the implementation of the solution approach, a systematic data science study was conducted, 

following the steps of domain and data understanding, data preparation, modeling, evaluation, 

and deployment (Mariscal et al. 2010). More specifically, the scope of the implementation was 

primarily limited to the distinction of tool replacements into the four types described above and 

the development of a prognostic model. The development of a diagnostic model, on the other 

hand, was only partially addressed as it required more profound system knowledge, which was 

not attainable at the time of the implementation. Figure 8 summarizes the implemented solution 

approach and highlights relevant case characteristics and applied methods. 

 

Figure 8: Implemented solution approach (Zschech, Heinrich, Bink, et al. 2019) 

After establishing a domain understanding, as already illustrated during the conceptualization of 

the solution approach, the step of data understanding was carried out. For this purpose, the case 

study partner provided a representative dataset containing information on an output volume of 

88,125 processed parts. During the processing of these parts, a total of 67 tool replacements were 

recorded. More specifically, the dataset contained information about (i) recorded events such as 
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processed units or cycle times, (ii) applied parameter corrections representing imperfect 

maintenance actions, and (iii) condition monitoring data reflecting measurable machine behavior 

at a certain point in time (cf. Chapter 2.3). 

In the next step, the data collections were processed in order to use them for subsequent modeling 

tasks. Thus, following the structure of the four-field matrix described above, characteristic 

features for both dimensions had to be selected and prepared accordingly. In particular, event 

records and parameter corrections served to derive features for the time dimension. The time-

series signals from condition monitoring, on the other hand, were used for the condition dimension 

by extracting time-domain features (TDF) and time-frequency domain features (TFDF) (Goyal 

and Pabla 2015). 

After that, the actual modeling step was carried out. This step included the two successive tasks 

of (i) detecting structural patterns in all recorded observations to assign them to the four-field 

matrix, and (ii) developing a prognostic model based on representative observations. For the first 

task, methods from the field of unsupervised ML were applied (Everitt et al. 2011). More 

specifically, an agglomerative hierarchical clustering approach (Sneath and Sokal 1973) was 

implemented to separate observations of the time dimension into early and late replacements, 

while a time series clustering approach was used to distinguish between observations of damaged 

and undamaged tools. By using the derived clusters of both dimensions, it was possible to relate 

them orthogonally to each other and assign the resulting four subsets to the respective quadrants 

of the four-field matrix. Subsequently, the prognostic task was treated as a supervised learning 

problem for RUL estimation (cf. Chapter 4). For this purpose, two variants of recurrent neural 

networks (RNN) (Williams 1995) with alternative feature sets were implemented using type 1 

observations as training instances to develop a prognostic model. Moreover, three different 

prediction horizons were chosen in order to estimate the RUL of the milling tools in the short, 

medium, and long term. 

For the evaluation of the prognostic models, two performance metrics were applied: RMSE and 

mean absolute error (MAE) (Pan et al. 2014). The results showed that the RNNs were able to 

adequately learn the regularities of the time series, as they achieved small estimation errors for 

all three forecasting horizons. For example, having an average lifetime of 1,315.3 processed units 

per milling tool, the best performing model under- or over-estimated tool lifetime by an average 

of 82, 80, and 77 units for the prediction horizons t+35, t+175, and t+350, respectively. 

Finally, in a simulated deployment step, it was further examined which advantage the prognostic 

model would provide if it were applied in operational processes. For this purpose, the model was 

used to estimate the RUL for type 3 observations in which tool replacements were performed too 

early. By comparing the actual tool lifetime with the models’ RUL estimates, it was possible to 

quantify the unused service life. As a result, it could be observed that it would have been possible 

to save about 4–5 milling tools within the period under consideration. Having a total number of 

67 tools, this corresponds to cost savings of approximately 6–7%.  
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6 Discussion of the Results 

This chapter offers a discussion of the achieved results. To this end, all individual artifacts have 

been critically reflected in the respective publications, P1–P5, concerning (i) merits and 

limitations as well as (ii) implications for further research and practical applications. In the 

following discussion, several of these aspects are taken up again and considered at a more 

cohesive level. More specifically, this involves a consideration of connections between the 

developed artifacts and related work, as well as the generalization and transferability of the 

achieved results. The findings of the chapter can be regarded as a research agenda and outlook 

for subsequent work. 

6.1 Connections Between Developed Artifacts and Related Work 

From a joint consideration of all four focus areas of this thesis, there are several connections 

between the individual artefacts as well as relations to related work. Figure 9 provides a summary 

of relevant connections, which are briefly discussed below. Continuous arrows represent 

connections that have been explicitly considered in this work, while dashed arrows indicate 

research opportunities for future projects. 

 

Figure 9: Connections between developed artifacts and related work 

The systematization framework from Chapter 2 is the result of consolidating different 

classification schemes derived from academic surveys, as well as expert knowledge from 

industry, into a structured framework. The framework provides a viable instrument to decompose 

complex data analysis problems into single dimensions and corresponding characteristics. 

Therefore, it can serve as a tool for communication purposes to create a shared understanding 

between different stakeholders involved in multidisciplinary DSA projects, such as domain 

experts, analysts, and IT professionals. In this context, the exemplary application of the 

framework in Chapter 2.3 has demonstrated how data analysis scenarios with their central 

properties can be described systematically to provide an orientation for method application and 
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solution development in similar settings as that one described in Chapter 5. As a result, the 

solution space can be limited to the essential properties, and a reusable template can be defined 

instead of rediscovering a problem solution every time from scratch. 

At this point, some open connections to related work can be identified (cf. Chapter 1.3). Initially, 

the author of this thesis pursued the goal of using the systematization framework to create a 

reusable knowledge base in the sense of reference models and composite solution models, 

following the examples of Eckert and Ehmke (2017) and Brodsky et al. (2015). Therefore, a new 

modeling approach should be developed that allows the creation of predefined solution templates 

analogous to design patterns. In other words, the dimensions and characteristics of the framework 

should be related to each other within concrete maintenance solutions that describe standard 

templates to address recurring DSA tasks. Nevertheless, due to further feedback cycles with 

practitioners, this modelling approach was discarded during the dissertation project. Thus, it was 

not possible, for example, to agree on a suitable level of abstraction that ensures a sufficient 

degree of problem specificity while allowing a high degree of generalizability and reusability. 

However, only recently the work by Nalchigar et al. was discovered in this context. The authors 

pursue a very similar idea and propose a comprehensive conceptual modeling framework for the 

development of DSA solution patterns (e.g., Nalchigar et al. 2019; Nalchigar and Yu 2020). Thus, 

the authors’ extensive modeling efforts could be applied in combination with the derived elements 

of the systematization framework to continue to idea of creating standardized solution templates 

for the domain of data-driven maintenance. Although no concrete cooperation with the authors 

has yet been established, this attempt will be taken up again in future projects. 

A similar connection is also conceivable to DM procedure models, which could be enriched with 

more domain specificity by integrating the dimensions and characteristics of the systematization 

framework. For this purpose, initial exchanges with the authors of the DMME model (data mining 

methodology for engineering applications) (Huber et al. 2019) have already taken place to 

enhance their industry-tailored procedure model with maintenance-related specifications. 

Beyond the potential to develop DSA solution patterns and refine DM procedure models, the 

systematization framework served as a basis for a new method proposal towards the development 

of taxonomic evaluation frameworks, as demonstrated in Chapter 4. This approach required 

placing a smaller focus on specific decision support tasks, while the dimensionality of the 

framework was extended by considering the general structure of DM procedure models. 

Throughout an exemplary instantiation of the method proposal in Chapter 4.3, it has been 

demonstrated how prognostic maintenance solutions can be decomposed into modular parts to 

retrieve a variety of alternative design options. On this basis, more fine-grained evaluation studies 

were possible in order (i) to assess the suitability of alternative design options for different 

contexts, and (ii) to verify the adequacy of combining particular solution components. 

For demonstration purposes, the exemplary instantiation was based on NASA’s turbofan engine 

degradation scenario, which is known as a common benchmark setting in the prognostics 

community. However, it is also possible to apply such a taxonomic evaluation methodology to 

completely new scenarios from industrial practice that have not emerged as typical benchmark 
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settings based on ideal run-to-failure records. Instead, other challenges could be of particular 

interest, such as those posed by the central properties of the milling scenario from Chapter 5 (e.g., 

missing labels, imperfect maintenance). Conversely, the results of the evaluation methodology 

can then offer guidance for the application of suitable data-driven methods under similar 

circumstances in order to support the systematic development of prognostic solutions instead of 

going through many trial-and-error cycles. 

While the type of guidance provided by the evaluation framework from Chapter 4 is primarily 

directed at target groups with more advanced DSA experience (e.g., programmers, researchers), 

DSA novices require guidance at a more abstract level. For this purpose, the developed artifact 

described in Chapter 3 provides a novel IAS that takes problem descriptions expressed in natural 

domain-specific language as input and offers advice regarding the most suitable class of methods 

to address the problem. In this way, the artifact can assist novices at the beginning of their DSA 

projects as an entry point to obtain a better understanding of possible solution directions as well 

as necessary foundations for the application of the recommended class of methods. 

Concerning possible connections to related work, the proposed IAS can either be used as a 

standalone application or as a novel add-on embedded into existing DSA platforms such as 

RapidMiner or KNIME (cf. Chapter 1.3). To this end, it is also conceivable to combine it with 

other types of assistance systems in order to provide further guidance to novice users as soon as 

an adequate class of methods is determined. 

Moreover, in the current version, the proposed IAS works on a general level without any particular 

domain focus. As such, it remains an open research topic to use the findings of the systematization 

framework from Chapter 2 to focus on recurring data analysis problems in industrial maintenance 

and evaluate the usefulness of the IAS in that specific domain. This point is further discussed in 

the following section when considering the transferability of the achieved results. 

6.2 Generalization and Transferability of the Results 

The developed artifacts differ to some extent in their scope, and therefore the resulting 

contributions and achieved results can be positioned at different levels of applicability. 

Correspondingly, it is possible to identify several limitations of the thesis as well as associated 

prospects for future research. 

For this purpose, the following discussion distinguishes between four levels of applicability. The 

lowest level refers to a specific case with a corresponding problem space for which an artifact 

was applied or explicitly developed. The second level covers a more general class of problems by 

focusing on several properties of interest while abstracting from too specific conditions at the case 

level. Following this line, the third level represents the application domain with its characteristic 

peculiarities, whereby the current work mainly focuses on the domain of industrial maintenance. 

Finally, the highest level refers to the general applicability of the achieved results independent of 

any domain properties, problem classes, or particular case characteristics. 

Table 12 summarizes the different levels of applicability for the four focus areas of this thesis. 

On this basis, it is possible to illustrate and discuss the generalization and transferability of the 
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achieved results. The green cells symbolize the current focus of this thesis, while the white cells 

highlight prospects for future work. Additionally, the grey arrows indicate which primary research 

direction should be prioritized in subsequent work, i.e., whether the artifacts in question require 

more generalization or more specialization to achieve a higher level of maturity. 

 

Table 12: Levels of applicability of the achieved results and prospects for future work 

Systematization Framework 

The systematization framework from Chapter 2 generally covers a large number of problem 

classes, as derived from academic literature and expert interviews, and consolidates them within 

a structured taxonomy. In this way, the framework has been implicitly applied to an extensive 

number of cases. In contrast, the explicit demonstration of the framework’s applicability on the 

case level only covered the two cases of the milling machine (cf. Chapter 5) and the C-MAPSS 

setting (cf. Chapter 4). Therefore, further examples of industrial cases as well as additional 

sources (e.g., feedback from more experts) are required to verify the robustness of the framework 

and examine how well the current dimensions and characteristics cover central properties of 

additional maintenance scenarios. 

As to the broader applicability of the framework results, it can be stated that the applied procedure 

is not strictly limited to the domain of industrial maintenance. By following the guidelines of 

Nickerson et al. (2013), a sufficiently generic approach was pursued, which was only modified 

by choosing a tripartite meta-characteristic that reflected the general structure of recurring data 

analysis problems. Accordingly, this procedure can also be applied to broader contexts, such as 

manufacturing in general (e.g., Brodsky et al. 2015), or in completely different domains, such as 

social media (e.g., Kleindienst et al. 2015) and health care (e.g., Hogl 2003). Nevertheless, when 

discussing the results with other DSA researchers, some criticism arose that the tripartite meta-
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characteristic is not yet sufficient to capture the core of some data analysis problems in more 

complex settings. As such, it was argued, for example, that it currently lacks a more fine-grained 

consideration of further pre-processing dimensions. Thus, a primary research direction should be 

to strive for a further generalization of the approach by taking into account other potential 

dimensions or meta-characteristics. A conceivable extension for this purpose has already been 

considered when creating the taxonomic evaluation framework for the C-MAPSS scenario in 

Chapter 4. 

Intelligent Assistance System for Method Selection 

The artifact developed in Chapter 3 shows a high level of universal applicability. By abstracting 

from the technical details of a concrete implementation and formulating generic design principles, 

it was possible to derive prescriptive knowledge for the design of a class of systems that assist 

DSA novices in method selection. In this respect, no concrete restrictions have been made, neither 

at the domain level nor at the specific case level. The only restrictions can be found at the problem 

class level for demonstration purposes, where the selection of suitable method classes was limited 

to three predominantly applied DM method classes. However, due to the generic system design, 

an extension to further method classes is conceivable without any significant changes. 

Nevertheless, the lack of specialization also entails some limitations. As such, a robustness 

analysis revealed that the current learning base of the proposed IAS, with mixed and unbalanced 

entries from multiple domains, leads to several distortions in the recommendation step. Therefore, 

it is planned in subsequent work to obtain a learning base that focuses on one particular domain 

in order to keep the domain-specific vocabulary more manageable. For this purpose, the 

systematization framework from Chapter 2 provides a valuable tool to specify the relevant 

surrounding of recurring data analysis problems in the domain of industrial maintenance. 

However, it is also conceivable to consider other domains such as those mentioned above. At the 

same time, it is intended to evaluate the artifact’s usefulness by conducting field studies in 

cooperation with partners of a specific domain and associated validation datasets. In this way, a 

more realistic evaluation can be carried out since the current assessment is based on limited 

validation data and the judgment capacity of DSA students under laboratory conditions. 

In addition to the prioritized research direction of further specialization, there is also the 

alternative approach of integrating additional system functionalities into the proposed IAS to 

guarantee a higher degree of domain independence. Particularly, an explainable AI component 

shall be introduced in the next design cycle to better trace and comprehend which keywords are 

responsible for determining a particular method class (Mathews 2019). In this way, it is expected 

that an increasingly robust learning base will be constructed by incrementally reducing domain-

related biases when working with learning instances from multiple domains. 

Taxonomic Framework for Method Evaluation 

In contrast to the proposed IAS, the results of the taxonomic evaluation framework in Chapter 4 

mainly concentrate on the domain of industrial maintenance. As derived from the systematization 

framework, the problem class was explicitly set to a prognostic decision support task and, more 

specifically, to run-to-failure scenarios, which are frequently applied for prognostic solution 
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development. Furthermore, NASA’s widely used C-MAPSS case was chosen on the case level, 

which also represents a broader class of technical settings. Thus, by applying the evaluation 

framework, useful insights were derived that provide not only a valuable contribution to the 

specific C-MAPSS case but also to the more general class of degrading turbofan engines. These 

insights can be further extended in future work by conducting more evaluation studies with 

additional framework dimensions, characteristics, and implementation variants. 

Nevertheless, the specifications made at the individual levels can also be replaced by other 

conditions as desired. For this purpose, an attempt was made to introduce a sufficiently generic 

method proposal that can be applied to any kind of (i) domain, (ii) (DSA) problem class, and (iii) 

specific case. For example, instead of focusing on the C-MAPSS collection, similar benchmark 

datasets can be used for the technical setting of degrading turbofan engines. Likewise, the 

consideration can be extended to other technical problem classes with corresponding datasets, 

such as bearings and battery charging cycles (Eker et al. 2012), in order to generate more 

significant evaluation results for the domain of maintenance. Moreover, the prognostic decision 

support task can be replaced by other DSA problem classes such as diagnostic or prescriptive 

tasks. Finally, the domain itself is also interchangeable. To this end, some first examinations have 

already been carried out to apply the general procedure to entirely different settings and verify 

the transferability of results. These examinations cover, for example, the field of computer vision 

and, more specifically, the problem class of 3D object detection (Friederich and Zschech 2020) 

as well as the field of business process management with a focus on next-step prediction (Heinrich 

et al. 2020). In subsequent research, the findings from these transfer studies will be used to 

improve the initial method proposal and provide a stronger formalization for better applicability. 

Method Application for Solution Development 

Finally, the applicability of the last artifact is exclusively limited to the domain of industrial 

maintenance and, more particularly, the problem class of prognostic maintenance when facing 

missing label information. Thus, by taking into account the concrete circumstances of a milling 

scenario at a German car manufacturer, a novel solution approach was developed to overcome 

the situation of inefficient maintenance strategy. Nevertheless, the conceptualization of the 

solution approach, as well as the technical realization, were outlined at a sufficiently generic level. 

In this way, the proposed solution can be transferred to similar problem classes where machine 

tools are subject to continuous wear and tear. Thus, instead of focusing on milling scenarios, the 

application could be extended to other settings such as those involving cutting, grinding, drilling, 

polishing, or similar operations, since only data collections were used that were expected to be 

recorded by default in industry. 

On the downside, however, the proposed solution approach still lacks an in-depth evaluation as it 

could not yet be tested in real process executions. Although the findings were discussed with 

responsible machine operators in each development step, the overall approach has not yet been 

fully applied under proper conditions. Thus, future research should consider both a generalization 

of the solution approach by considering additional settings as well as a verification at the case 

level to evaluate the approach’s feasibility in operational use.  
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7 Concluding Remarks 

Over the last decades, efforts in research and practice have resulted in a variety of approaches that 

aim to facilitate the implementation of DSA projects so that broader user groups can conduct them 

more independently instead of permanently relying on fully equipped DSA professionals. For 

example, structured procedure models offer stepwise instructions for all relevant phases; DSA 

software solutions provide standardized functionalities, and intelligent assistants guide users in 

specific tasks such as choosing suitable analysis operators and parameters. All these approaches 

have in common that they encapsulate required multidisciplinary knowledge and codify best 

practices in the form of tools and methods in order to be reusable for a large group of users. 

Nevertheless, the crucial challenge remains to reconcile the specificity of a domain with the 

possibilities of data-driven, analytical methods. To this end, this thesis provided several 

complementary artifacts to bridge the gap between the DSA world and the specific circumstances 

of a data-intensive domain. Each proposed artifact contributes differently to this goal. For 

example, (i) the systematization framework serves as a tool for communication purposes between 

different stakeholders such as domain experts and modeling specialists; (ii) the text-based IAS 

supports novice users to select a suitable class of analysis methods while expressing their problem 

space with domain-specific terms; and (iii) the taxonomic evaluation framework reveals which 

data-driven methods are adequate under certain domain-related conditions. 

The particular domain focus of this thesis was primarily on the field of industrial maintenance. 

Nevertheless, an attempt was made to keep the artifacts sufficiently generic in order to ensure a 

high level of general applicability. Likewise, the achieved contributions show a high degree of 

novelty as there are currently only a limited number of initiatives dealing with similar research 

topics. On this note, possible connections to adjacent initiatives have been highlighted where the 

author of this thesis expects valuable synergies. 

On the downside, it has to be acknowledged that some results have not yet reached full maturity. 

First and foremost, this requires verification of several artifacts in other contexts and conducting 

additional evaluation studies under more realistic conditions. Therefore, a critical reflection on 

open issues has been carried out in the previous chapter. However, despite facing several 

limitations, the derived findings are not less valuable. Instead, they fruitfully complement the field 

by providing new stimuli for other researchers and practitioners and by constituting the basis for 

subsequent work. The corresponding prospects for future efforts have been outlined in a detailed 

research agenda, which the author of this thesis is willing to tackle in upcoming research projects 

together with inspired collaborators. 
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Appendix I: Implementation Details 

In this appendix, further information is provided on the technical realization of the implemented 

approaches in Chapter 4.3. The choice of the methods and parameters is based on findings derived 

from the examined C-MAPSS studies as well as experiments using five-fold cross-validation to 

select the best performing approaches. Furthermore, for the development of all pipelines, the 

training samples of the C-MAPSS collection are used. By contrast, the evaluation is performed 

on out-of-sample data using the corresponding test samples (Ramasso and Saxena 2014). 

Employing the min-max transformation (Tao et al. 2016), all sensor measurements are transferred 

into a value range [0,1]. For datasets with multiple operational conditions (i.e., FD002, FD004), 

the rescaling approach is performed separately for each cluster of operational conditions. The 

identification of the clusters is performed using a k-means approach from the Python module 

sklearn.cluster (Pedregosa et al. 2011). 

For the implementation of the locally weighted scatterplot smoothing as a variant of polynomial 

smoothing (Khelif et al. 2017), the lowess function of the Python library statsmodels (Seabold 

and Perktold 2010) is used. For the calculation of the parameter f as the quotient of the time 

window and the total length of a unit, the window size is set to 15 (N. Li et al. 2018). 

To realize the filter approach for feature selection, the metrics monotonicity, prognosability and 

trendability are calculated for each feature (Coble 2010). Subsequently, all features are ranked 

based on an equally weighted score (w = 1/3), whereby the best eight are selected; the number 

eight is determined by conducting several cross-validation experiments in which the performance 

considerably drops using fewer features. 

The two deep neural networks are implemented using the Python library Keras in combination 

with TensorFlow as a backend (Chollet 2018). The architecture of the LSTM network is adapted 

with slight modifications from Zheng et al. (2017), while the CNN is reconstructed following the 

example of Babu et al. (2016). The implemented architectures and the chosen parameters are 

summarized in Table 13 and Table 14. For compiling both networks, the Adadelta optimizer is 

chosen, and callback early stopping is used to terminate the training if the validation loss does 

not improve over several epochs. The mean squared error specifies the loss function. 

Additionally, following X. Li et al. (2018), a maximum value for RUL estimates is set to 125, and 

different time window sizes are chosen for each dataset ( ������� =  30, ������� =  20, 

������� = 30, ������� = 15). 

For the implementation of the two similarity-based approaches, the first step of HI construction 

is performed using linear regression and a binary objective function. For this purpose, sensor 

measurements covering the first 10% of a cycle are assigned to 1, whereas the last 10% are 

assigned to 0. The regression parameters are then determined exclusively in this sample (Khelif 

et al. 2017). After that, a curve fitting approach is performed for Similarity1, following the 

examples of Wang (2010) and Wang et al. (2017). To this end, a second-order polynomial is used 

whose parameters are determined using least square fitting via the Python function numpy.polyfit. 

To assess the similarity between training and test units, an information fusion approach is 
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implemented (Wang et al. 2017). In equivalence to the direct methods, a maximum value for the 

RUL estimates is set to 125. For Similarity2, a different approach for similarity matching is used, 

following the example of Malhotra et al. (2016). Instead of fitting a curve function, the HI created 

with the linear regression is smoothed. For this purpose, the lowess method described above is 

used again, whereby the time window is set to 15. Table 15 provides an overview of the 

implementations for both similarity-based approaches. 

Layer ID Layer Parameters 

1 
LSTM units = 64, return_sequences = true 

Dropout rate = 0.2 

2 
LSTM units = 64, return_sequences = true 

Dropout rate = 0.2 

3 
LSTM units = 8 

Dropout rate = 0.2 

4 
LSTM units = 8 

Dropout rate = 0.2 

5 Dense units = 1 

Table 13: Summary of the implemented LSTM architecture (adapted from Zheng et al. 2017) 

Layer ID Layer Parameters 

1 2D-Convolution filters = 8, kernel_size = (features_length, 4), activation = ‘relu’ 

2 2D-Average Pooling pool_size = (1, 2), strides = 2 

3 2D-Convolution filters = 14, kernel_size = (1, 3), activation = ’relu’ 

4 2D-Average Pooling pool_size = (1, 2), strides = 2 

5 Dense layer_size = 1 

Table 14: Summary of the implemented CNN architecture (adapted from Babu et al. 2016) 

Parameter Similarity1 Similarity2 

HI construction Linear regression Linear regression 

Objective function Binary Binary 

Curve matching Second-order polynomial None 

Time lag Considered Considered 

Similarity score Information fusion Euclidian distance 

Range of RUL [0, 125] [0, 125] 

Table 15: Summary of the implemented similarity-based approaches 
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Ranking VBH-Jourqual 3:   B 
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Abstract Modern maintenance strategies increasingly focus on vast amounts of diverse data and 

multi-faceted analytical approaches in order to make efficient use of given resources and 

unveil hidden potentials. While there is often no universal solution approach to a specific 

case at hand, it is still possible to observe recurring problem classes for which generic 

solution templates can be applied and thus the establishment of a reusable knowledge 

base appears beneficial. To this end, we apply a taxonomy development approach to 

identify and systematize dimensions and characteristics of recurring data analysis 

problems in data-driven maintenance scenarios. Our research method integrates findings 

from a systematic literature review and expert interviews with data scientists from 

industry. Thus, we add descriptive theory to the field of maintenance analytics and 

propose a taxonomy that distinguishes between analytical maintenance objectives, data 

characteristics and analytical techniques. 
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propose the concept of a text-based recommender system (TBRS) which takes problem 

descriptions articulated in domain language as inputs and then recommends the best 

suitable class of DM methods. Following a design science research methodology, the 

current focus is on the initial steps of motivating the problem and conducting a 

requirements analysis. In particular, we outline the problem setting using an exemplary 

scenario from industrial practice and derive requirements towards an adequate solution 

artifact. Subsequently, we discuss potential TBRS methods with regard to requirement 

fulfillment while organizing both methods and requirements in a structured framework. 

Finally, we conclude the paper, discuss limitations and draw an outlook. 
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to an adequate set of data mining methods by experts of the field is a crucial step. 

However, these experts are not always available and data mining novices may be required 

to perform the task. While there are several research efforts for automated method 

selection as a means of support, only a few approaches consider the particularities of 

problems expressed in the natural and domain-specific language of the novice. The study 

proposes the design of an intelligent assistance system that takes problem descriptions 

articulated in natural language as an input and offers advice regarding the most suitable 

class of data mining methods. Following a design science research approach, the paper 

(i) outlines the problem setting with an exemplary scenario from industrial practice, (ii) 

derives design requirements, (iii) develops design principles and proposes design 

features, (iv) develops and implements the IT artifact using several methods such as 

embeddings, keyword extractions, topic models, and text classifiers, (v) demonstrates 

and evaluates the implemented prototype based on different classification pipelines, and 

(vi) discusses the results’ practical and theoretical contributions. The best performing 

classification pipelines show high accuracies when applied to validation data and are 

capable of creating a suitable mapping that exceeds the performance of joint novice 

assessments and simpler means of text mining. The research provides a promising 

foundation for further enhancements, either as a stand-alone intelligent assistance system 

or as an add-on to already existing data science and analytics platforms. 
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synthetic benchmarking examples, such as NASA’s C-MAPSS datasets, where 

researchers from various disciplines like artificial intelligence and statistics apply and 

test their methodical approaches. The majority of studies, however, only evaluate the 

overall solution against a final prediction score, where we argue that a more fine-grained 

consideration is required distinguishing between detailed method components to measure 

their particular impact along the prognostic development process. To address this issue, 

we first conduct a literature review resulting in more than one hundred studies using the 

C-MAPSS datasets. Subsequently, we apply a taxonomy approach to receive dimensions 

and characteristics that decompose complex analytical solutions into more manageable 

components. The result is a first draft of a systematic benchmarking framework as a more 

comparable basis for future development and evaluation purposes. 
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determining the best time for maintenance activities. In this paper, a case of a milling 

process with imperfect maintenance at a German automotive manufacturer is considered. 

Its major challenge is that only data with missing labels are available, which does not 

provide a sufficient basis for classical prognostic maintenance models. To overcome this 

shortcoming, a data science study is carried out that combines several analytical methods, 

especially from the field of machine learning (ML). These include time-domain and 

time–frequency domain techniques for feature extraction, agglomerative hierarchical 

clustering and time series clustering for unsupervised pattern detection, as well as a 

recurrent neural network for prognostic model training. With the approach developed, it 

is possible to replace decisions that were made based on subjective criteria with data 

driven decisions to increase the tool life of the milling machines. The solution can be 

employed beyond the presented case to similar maintenance scenarios as the basis for 

decision support and prognostic model development. Moreover, it helps to further close 

the gap between ML research and the practical implementation of CBM. 
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