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ABSTRACT 

With increasing digitization, models are more important than ever. Especially their use as soft sensors 

during operation offers opportunities in cost saving, easy data acquisition and therefore additional 

functionality of systems. In soft sensor networks there is redundant data acquisition and consequently 

the occurrence of inconsistent values from different soft sensors is encouraged. The resolution of these 

data-induced conflicts allows for the detection of changing components characteristics. Hence soft 

sensor networks can be used to detect wear in system components.  

In this paper this approach is validated on a test rig. It is found, that the soft sensor network is capable 

to determine wear and its extent in eccentric screw pumps and valves via data induced conflicts with 

relatively simple models.  
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1. INTRODUCTION 

Increasing automation and digitization provide 

sensor data in a unified architecture and thus 

encourage the usage of soft sensors. Soft sensors 

are models of components that use easily 

accessible auxiliary quantities to estimate target 

quantities that are difficult to measure. [1] 

Soft sensors are not isolated, however. The 

development of communication standards like 

OPC-UA allow for easy information transfer 

between soft sensors for different components. 

[2] An interconnected soft sensor network is 

formed. In soft sensor networks there is 

redundant data acquisition and consequently the 

occurrence of data-induced conflicts is 

encouraged.  

Different methods have been developed to 

deal with conflicting data sources. On the one 

hand, conflicts can be seen as part of the systems 

normal behavior. Then data from multiple 

sources can be used to reduce uncertainty and to 

improve the overall level of data quality. Simple 

methods for data reconciliation of conflicting 

sensor data are voting systems. [3] More 

elaborate fusion methods are the Bayes method 

[4, 5], Dempster-Shafer method [6, 7], and 

heuristic methods [8, 9]. In the process industry 

for the estimation of process states data 

reconciliation methods are implemented. The 

goal is to fuse the conflicting data, i.e. reconcile 

the state of the system with the conservation laws 

of mass and energy. With a quadratic 

minimization method, the measured system states 

are changed until the values satisfy the 

conservation laws. [10] On the other hand 

conflicts between data sources can be seen as part 

of erroneous system behavior. Thus different 

methods use conflicting data for fault detection 

and fault isolation [10, 11]. Fault diagnosis 

methods generally consist of a dynamic process 

model which is used to generate features. The 

chronological sequence of features and the 

difference of these features to features in normal 

operation lead to symptoms which are used for a 

diagnosis of faults. There is a vast literature on 

fault diagnosis systems and predictive 

maintenance to recognize a changing flow rate. A 

survey of methods for fault diagnosis systems can 

be found in [12].  

In this paper a soft sensor network approach 

for condition monitoring [13–15] is validated 

where data-induced conflicts are used to derive 

additional information about the hydraulic 

system.  
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2. CONDITION MONITORING BASED ON A 
SOFT SENSOR NETWORK 

In this paper a simple soft sensor network for a 

hydraulic system is considered (c.f. Figure 1). 

The hydraulic system consists of a pump and a 

valve where the valve represents any hydraulic 

resistance. This case example considers the 

perspective of a pump manufacturer whose pump 

is used in an unknown fluid system. Regarding 

the pump, the complete environment, e.g. valves, 

filters or similar, can be described as one 

generalized resistance. The pump and the 

resistance are each represented by a soft sensor 

which is subject to uncertainty and lack of 

knowledge e.g. component characteristic changes 

due to wear. Measured quantities in the system 

are the pump speed as well as temperature and 

pressure differences over the components. 

The purpose of the soft sensor network is to 

generate redundant data of the volume flow from 

two different sources, firstly the soft sensor of the 

pump and, secondly, the soft sensor of the 

resistance, i.e. valve. In this way, the soft sensor 

network enables the occurrence of data-induced 

conflicts which are inconsistent values calculated 

by two different sources. The aim is to generate 

additional information about the system based on 

the data-induced conflicts.  

Data-induced conflicts may result from, 

firstly, the breakdown or defect of a measuring 

sensor, secondly, model uncertainties of the soft 

sensors and, thirdly, change of component 

characteristics, e.g. due to wear. [15] The 

resolution of these data-induced conflicts either 

leads to greater confidence in the model-based 

system quantities or allows for the detection of 

changing components characteristics.  

Figure 1: Soft sensor network for wear detection in 

hydraulic systems. 

 

In the following data-induced conflicts caused by 

changing component characteristics are 

considered to detect wear in system components. 

To validate this approach three research 

questions need to be answered: 

1. What is the error and uncertainty for the two 

soft sensors? Error is the deviation of the 

computed flow rate from the true value and 

uncertainty describes an interval around the 

computed value which contains estimates that 

can be reasonably attributed to the true value. 

2. Can wear be determined via data-induced 

conflicts? 

3. Is it possible to isolate the worn component? 

In the following these three questions are 

discussed based on an experimental 

investigation. 

3. METHOD 

3.1. Test rig for simulated wear 

Wear in pumps, valves and other components 

leads to a change in the flow characteristics. 

Therefore, at a given pressure, the detection of 

wear with soft sensors requires the detection of 

small changes in the flow rates. This is the 

motivation for an experimental analysis of the 

flow rate variations on redundant soft sensor 

outputs and their use for wear detection. [16] 

Hence a test bench was set up on which a 

leakage of the components can be adjusted 

representing wear.  For this reason, bypasses for 

the positive displacement pump and the valve 

were in integrated into the test bench (c.f. Figure 

2).  

Figure 2: Test rig for simulating wear in a hydraulic 

system. 
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The pump used in the test rig is a progressive 

cavity pump and the valve is represented by a ball 

valve. The eccentric screw drive pump with a 

geometric volume of 𝑉 = 0.0723 l is driven by 

an asynchronous motor with 18 kW. The 

resistance of the system is mainly determined by 

the main ball valve. The bypass flows are 

controlled with electric ball valves. All measured 

points are approached from lower degrees of 

opening to avoid mechanical play in the valves. 

A torque meter with built-in speed sensor 

measures the rotational speed of the pump. The 

volume flow rate 𝑄main after the valve is 

measured with a screw type flow meter. Pressures 

are measured with piezo resistive sensors and 

temperatures are measured with Pt100 resistance 

thermometers.  

The oil is of the type Shell Tellus 10. The 

temperature of the oil during experiments was 

held at 30° ± 1° C. The temperature was 

measured before and after the pump and the 

results were averaged for calculating oil density 

and viscosity. The soft sensor network was tested 

for the rotational speeds 200 rpm, 300 rpm and 

400 rpm of the pump. 

3.2. Soft sensors 

Since the volume flow is a conservation quantity 

it needs to be identical in the considered pump 

and valve. Hence the purpose of both soft sensors, 

the pump and the valve, is to generate redundant 

data of the volume flow rate.  

For the valve the well-known and simple 𝐾v 

model is used. The flow rate is determined by 

𝑄valve = 𝐾v(𝛼)√
∆𝑝valve

∆𝑝0

𝜚0

𝜚
, (1) 

where ∆𝑝0 = 1 bar and 𝜚0 = 1000 kg/m3 and 

the pressure difference over the valve ∆𝑝valve =
𝑝2 − 𝑝4 and 𝜚 is the fluid density. 

For the calibration of 𝐾v as a function of valve 

opening 𝛼 a third degree polynomial was used. 

The parameter identification was done with a 

robust nonlinear least squares method. The 

results for the fit for different rotational speeds 

for the pump can be found in Figure 3.  

Figure 3: Calibration curve for the valve model. 

The soft sensor of the pump is based on a type 

independent efficiency model for positive 

displacement pumps [17]. The flow is determined 

by the geometric volume 𝑉 and the rotational 

speed 𝑛 less the gap losses 𝑄L.  

𝑄 = 𝑛𝑉 − 𝑄L = 𝑛𝑉 − 𝑄L+𝜈𝑉
1

3 (2) 

The gap losses are modelled by  

𝑄L+ = 𝐿∆𝑝+ ∙ ∆𝑝+
𝑚, (3) 

where 𝐿∆𝑝+ and 𝑚 are model parameters that 

need to be calibrated. ∆𝑝+ is the dimensionless 

pressure difference given by 

∆𝑝+ =
∆𝑝 𝑉2/3

𝜈2𝜚
. (4) 

Measured quantities are the rotational speed 𝑛 

and pressure difference Δ𝑝. The fluid density 𝜚 

and kinematic viscosity 𝜈 are derived from a 

calibration curve via temperature measurements. 

The results for the fit for the pump model can 

be found in Figure 4. 

 

Figure 4: Calibration curve for the pump model.  
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3.3. Propagation of Uncertainty 

Soft sensors should be considered as sensors. 

Uncertainties should therefore be included in 

their calculated values. In the following two 

sources of uncertainty in soft sensors are 

considered: the systematic and stochastic 

uncertainty from the measurements e.g. pressure 

measurement as well as the systematic 

uncertainty from the calibration procedure (c.f. 

Figure 5). 

Figure 5: a) Calibration and b) soft sensor measurement 

with propagation of uncertainty. 

The uncertainty from the calibration and from the 

measurement is propagated through the model to 

yield the soft sensor uncertainty. Stochastic and 

systematic uncertainty is propagated 

independently.  

4. RESULTS 

In the following the results for closed bypass 

valves (i.e. no wear), wear in one component and 

simultaneous wear in both components are 

discussed.  

4.1. Function of the soft sensors 

To check whether the soft sensors reflect the 

volume flow in the hydraulic system, soft sensor 

outputs and flow rate measurements for closed 

bypass valves are compared. It is found that the 

relative deviation from the true value (relative 

error) for the valve soft sensor is < 2 % and < 0.5 

% for the pump soft sensor. However, in an 

application the true flow rate is not known and 

therefore the relative error is not relevant. To 

assess whether the soft sensors are useful for 

determining the true flow rate and detecting wear, 

the uncertainty of the soft sensors has to be 

determined. The relative uncertainty for the valve 

soft sensor is < 5 % and < 1 % for the pump soft 

sensor. 

4.2. Wear in one component 

To check how the soft sensors react to wear and 

whether a data-induced conflict can be 

determined the bypass is opened during 

measurement. For pump wear the volume flow is 

plotted above the opening degree of the pump 

bypass represented in Figure 6. The speed and 

pressure difference were kept constant at all 

operating points by controlling the main valve 

opening (pressure controlled system). 

The measurement point with a nearly closed 

bypass resembles the results from section 4.1. 

The two soft sensors calculate the actual volume 

flow within their uncertainties 

With increasing wear (i.e. with increasing 

opening degree of the pump bypass), the actual 

volume flow decreases. Since the valve is not 

exposed to wear, the valve soft sensor shows the 

actual flow rate. Only the pump soft sensor 

deviates from the actually volume flow with 

increasing wear. This is because the volume flow 

of the pump soft sensor is determined by the 

speed and the pressure difference. Since these 

two variables are kept constant, a constant 

volume flow is calculated despite wear. The 

actual volume flow is not constant due to a 

backflow through the bypass.  

The valve soft sensor, in turn, calculates the 

reduced volume flow, since the valve soft sensor 

takes the pressure difference and the valve 

opening degree of the main ball valve into 

account. 

Figure 6: Soft sensor outputs for wear in pump. 
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The soft sensor network shows data induced 

conflicts between the calculated flow rates of the 

two soft sensors. Where the errors of the two soft 

sensor outputs do not overlap (c.f. Figure 5) a 

data induced conflict of type (iii) occurs. 

The data induced conflict is the result of pump 

characteristics changes. In the results, the size of 

the data induced conflict increases with 

increasing bypass flow, i.e. the simulated wear. 

The same was found for wear in the valve. 

Hence the proposed soft sensor network can be 

used to detect wear in the pump. However, due to 

the uncertainty of the two soft sensors, a 

difference of 6 % between the two soft sensor 

outputs indicates wear. Thus, wear in early stages 

cannot be identified. 

4.3. Combined wear in pump and valve 

In fluid systems wear is caused by particles and 

is consequently propagated through the system. 

This leads to combined wear. [18] To investigate 

this the flow rates for pump and valve bypasses 

are varied simultaneously. 

Figure 7: Characteristic curves for pump and valve 

with varying opening degree for bypass.  

In Figure 7, the pressure is plotted above the 

volume flow at different bypass openings for 

valve and pump. For each bypass flow the pump- 

and valve characteristics are shown as lines. As 

soon as the pump wears out, its characteristic 

curve shifts to lower flow rates. With the same 

pressure difference at the pump, less volume can 

be pumped due to internal leakage. When the 

valve is worn, the characteristic curve shifts to 

lower pressures so that at the same pressure 

difference, more volume flow can flow through 

the valve due to the enlarged valve cross-section. 

The characteristics intersect at the respective 

operating point. 

To investigate combined wear further, different 

bypass openings are set for the pump. In this 

series of measurements, the speed and pressure 

difference and the opening of the valve bypass 

remains constant at 16 % (c.f. Figure 8 left). The 

volume flow trend of flow meter and valve soft 

sensor is the same. The absolute values have a 

relatively constant difference which corresponds 

to the constant bypass opening degree of 16 %. 

At 0 % bypass opening degree, the pump soft 

sensor initially outputs the actual volume flow. 

Only with increasing wear a larger deviation 

occurs. 

For valve wear, conversely, the opening 

degree of the pump bypass remains constant at 16 

% and the opening degree of the valve bypass 

varies from 0 to 18 %. (c.f. Figure 8 right). The 

pump soft sensor outputs a constant deviation 

from the actual volume flow, since the pump 

bypass opening degree is constant at 16 %. The 

volume flow of the valve soft sensor deviates 

from the actual volume flow after initial 

overlapping with increasing wear. 

It still remains to be clarified whether the 

defective component can be determined using the 

two soft sensors. For this purpose, we consider 

the same graphs of combined wear and tear, 

which corresponds most closely to the real, 

unknown system state. 

Comparing both soft sensor outputs in Figure 

8 we find that the characteristics of the two wear 

patterns are very similar and regardless of the 

wear condition in the system, the volume flow 

from the valve soft sensor is always smaller than 

that of the pump soft sensor. Hence, without 

further information we are not able to determine 

which component is defective. 

5. CONCLUSION 

It is found, that the soft sensors, despite being 

relatively simple can predict the systems flow 

rate with a relative error lower than 2 % and an 

uncertainty lower than 5 %. Consequently, the 

soft sensor network consisting of the soft sensors 

for the pump and the valve can reliably detect 

differences of 6 % in flow rate between two soft 

sensor outputs. Thus, the network is capable to 

determine wear and its extent in eccentric screw 

pumps via data induced conflicts. To isolate the 
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worn component additional information (e.g. 

temperature) is necessary. 

Furthermore, the application of the proposed 

method shows, that the determination of the 

uncertainty of soft sensors is inevitable to reliably 

classify unavoidable data-induced conflicts in 

redundant data acquisition. 

In future studies the concept should be tested 

with more complex systems. In addition to that, 

the transient behavior of the soft sensor network 

should be investigated. 
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NOMENCLATURE 

α valve opening in % 

𝐾v valve parameter 

𝐿∆p+ pump parameter 

𝑚 pump parameter 

𝑛 rotational speed 

𝛥𝑝 pressure difference 

∆𝑝+ dimensionless pressure 

∆𝑝valve valve pressure difference 

∆𝑝0 atmospheric pressure 

𝑝2 pressure sensor 2 

𝑝4 pressure sensor 4 

𝑄 volume flow rate 

𝑄main main volume flow rate 

ϱ fluid density 

ϱ0 density of water 

𝑉 geometric volume 

ν kinematic viscosity 
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