A Retrospective Analysis of Psychosocial Risk Factors Modulating Adolescent Alcohol Binge Drinking

Erstveröffentlichung in / First published in:
DOI: https://doi.org/10.1159/000362410
A Retrospective Analysis of Psychosocial Risk Factors Modulating Adolescent Alcohol Binge Drinking

Cornelius Groß a, Maike Neumann a, Manja Kalkbrenner a, Inge Mick a, f, Andreas Lachnit a, c, Jörg Reichert b, Jens Klotsche d, e, Ulrich S. Zimmermann a

a Department of Psychiatry and Psychotherapy, and b Child and Adolescent Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, and c Department of Child and Adolescent Medicine, Municipal Hospital Dresden-Neustadt, Dresden, and d German Rheumatism Research Center, Epidemiology Unit, Leibniz Institute, and e Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Berlin, Germany; f Centre for Neuropsychopharmacology, Division of Brain Science, Faculty of Medicine, Imperial College London, London, UK

Key Words
Alcohol · Intoxication · Binge drinking · Adolescents · Coping · Unemployment

Abstract
Background/Aims: Adolescent alcohol binge-induced hospital admissions (BIHAs) are an increasing problem in Europe. We investigated whether psychosocial factors (e.g., drinking situations, drinking occasions and neighborhood unemployment) are associated with particularly risky patterns of alcohol or substance use. Method: We performed a systematic retrospective chart review of all the respective cases in 2003–2008 (n = 586; age range: 12–17 years) from both pediatric hospitals in the city of Dresden, Germany. Results: The vast majority of adolescent BIHAs were associated with drinking together with peers at weekend parties. Compared to this ‘typical’ drinking pattern, adolescents drinking ‘atypically’ (i.e., drinking either alone, to cope or despite the fact that the next day was a school/work day) more often had already used alcohol and illegal substances before and were more often diagnosed with substance use disorders and other mental disorders prior to BIHA. The unemployment rate in the patients’ neighborhood was positively related to the incidence proportion of adolescent BIHAs in the respective subdistricts (rs = 0.61). Conclusion: Adolescent atypical drinking may indicate an increased risk for the development of alcohol and substance use disorders. This information is quickly accessible and can alert clinicians to initiate psychosocial aftercare; their infrastructure should address the strong relation between BIHA probability and neighborhood unemployment rates.

Introduction
The frequency of adolescent alcohol binge-induced hospital admissions (BIHAs) for pediatric inpatient treatment remarkably increased over the last years in many Western countries [1–4]. In the year 2000, 9,500 such admissions occurred in Germany. Since then the numbers have kept rising each year, amounting to 26,700 in 2012 [5]. Excessive alcohol consumption has detrimental ef-
fects on health and well-being [6]. Already in adolescents, it is modulated by complex interactions between genetic factors, the environment and psychiatric comorbidity [7] and is associated with alcohol use disorders (AUDs [8]), injuries and death [9] as well as cognitive and emotional impairments [10–12]. Ongoing development of higher brain structures and psychosocial functions in adolescents may be specifically disrupted by alcohol intoxication, as evidenced by long-lasting changes in the prefrontal cortex [13, 14]. Such changes are accompanied by impaired cognitive abilities and impaired decision making, which enhance reward-seeking behavior and risky choices. These, in turn, promote the development of AUDs [15–19].

While excessive alcohol consumption in adolescence, especially binge drinking, has been comprehensively investigated (for a review, see Courtney and Polich [20]), acute alcohol intoxication with subsequent hospital admission (i.e., BIHA) as an extreme form of bingeing has gained scientific attention only during the last years [3, 4, 21–27]. An important question concerning the significance of extreme bingeing remains open: does a single BIHA indicate that psychosocial development is at risk, e.g., by the development of AUDs? Alternatively, may it merely represent a by-product of adolescent experimenting in the process of learning low-risk, culturally accepted drinking behavior? Or can both be true in different patients? In longitudinal studies on alcohol consumption during the transition from adolescence to early adulthood, the observed trajectories vary significantly, some leading to severe AUDs, while others indicate maturing out [28–31]. Hence, to discern BIHA patients with a high versus moderate risk for the later development of AUDs, we analyzed social and environmental contexts possibly modulating this risk based on information which is readily accessible in the emergency room.

We based our analysis on several assumptions concerning the psychosocial context of normative versus atypical drinking in adolescents. Moderate drinking that does not affect social functioning is culturally accepted in Western societies and is, by definition, normative [32]. Although violating the law, most adolescents start experimenting with alcohol at about the age of 15 years [33], almost exclusively when having fun together with friends at weekend parties [34], which can be described as a 'typical' drinking pattern for adolescents based on a statistical norm. In contrast, drinking alone, drinking to cope with conflicts, drinking in the daytime or drinking although the next day is a school or work day appears to be 'atypical' behavior in adolescents.

We contrasted these atypical drinking patterns to widely acknowledged risk factors promoting AUD development such as a history of previous drinking [35, 36], previous alcohol-related treatments [29, 37, 38], multiple drug use [39] as well as the presence of attention deficit hyperactivity disorder (ADHD) and other mental disorders [38, 40, 41].

Socioeconomic status is often positively correlated with alcohol use [42, 43], but underprivileged neighborhoods can be a chronic stressor influencing the prevalence of alcohol problems in adolescence. However, the overall influence is still unclear in both adults [44] and children [45]. Therefore, we tested the association between neighborhood unemployment and BIHA incidence. To answer these questions, we performed a local in-depth analysis of adolescent BIHAs by identifying and analyzing all the respective cases occurring in the city of Dresden, Germany, over a 6-year period.

Subjects and Methods

Patient Sample
Cases were recruited from both pediatric inpatient treatment units in Dresden, i.e., from the University Hospital Carl Gustav Carus and the Municipal Hospital Dresden-Neustadt. Since these two hospitals together cover pediatric inpatient care of all the Dresden inhabitants below the age of 18 years (n = approx. 66,000), we are confident that we missed only few cases. Using the electronic patient administration system, we identified all patients admitted between January 1, 2003, and December 31, 2008, whose ICD-10 diagnoses included F10.0 (acute alcohol intoxication) or T51.0 (external cause of morbidity and mortality: toxic effects of ethyl alcohol). No other inclusion criteria were applied. The only exclusion criterion was lacking documentation of the blood alcohol concentration (BAC) on admission. Five patients celebrating their 18th birthday (i.e., reaching the age of consent and legal drinking age in Germany) were included and counted as aged 17 years, although they were one day past their 18th birthday.

Acquisition of Patient Data
We conducted a systematic retrospective chart review of all cases and extracted data on patient characteristics (e.g., sex and age), prior admissions for alcohol intoxication (defined as the number of past documented alcohol-related hospital admissions), prior drinking (defined as having ever used alcohol before the current intoxication event), substance use (defined as having ever used illegal substances before the current intoxication event) as well as the social context of drinking and drinking patterns (described below). This information was not completely documented for all patients. If available, narrative free-text notes by clinical staff in the medical records were coded by a trained rater. For the analysis of local unemployment rates and the occurrence of previous alcohol-related admissions, only data on Dresden inhabitants (89.6% of all cases) were included. Therefore, the sample sizes for the analyses differ according to the variable.
Classification of Drinking Measures and Patterns

Blood alcohol levels were determined from venous blood samples on admission and are expressed in milligrams percent of full blood (e.g., 80 mg% is equivalent to 0.08% or 0.8‰). Clinical signs of alcohol intoxication were documented by the emergency physician using the Glasgow Coma Scale, which can vary between a maximum score of 15 (unimpaired eye opening, verbal and motor reaction) and a minimum score of 3 (deeply comatose).

Regarding drinking patterns, narrative information was coded grouping subjects deductively into clusters of patterns based on patients’ assertions recorded by clinical staff. For drinking situations, the following clusters were derived: drinking in private premises together with adolescent friends (named by 60.4% of the patients), drinking in private premises together with adult family members (1.2%), drinking in public places including clubs or bars (14.8%) and drinking alone (8.7%). The remaining 14.9% were categorized as ‘other’ or ‘unknown’. We contrasted drinking alone (‘alone’ pattern) with all other categories. As for drinking occasions, the following clusters were derived: partying with friends (named by 55.6% of the patients), drinking at a public event (31%), partying with family (1.2%), drinking at a school party or on a school trip (2.4%), drinking out of boredom (2.4%) and drinking associated with social conflicts (9.9%); 23.2% were categorized as ‘other’ or ‘unknown’. We contrasted drinking associated with social conflicts with all other categories, assuming that it was intended to cope with conflicts (‘cope’ pattern). Concerning drinking despite the fact that the next day was a school or work day, we contrasted cases in which patients were admitted the night before a school or work day – implying that they very likely missed these obligations (‘absenteeism’ pattern; true for 16.7% of the patients) – with cases in which the next day was a Saturday, Sunday, public holiday or school holiday (83.3%). Individual vacations from work could not be accounted for. Concerning drinking during daytime (‘daytime’ pattern), any time of admission between noon and 7 p.m. was considered to represent drinking early during the day (true for 13.9% of the patients).

Analysis of the Relation between Psychosocial Variables and Risks for AUDs

We related the independent variables ‘alone’, ‘cope’, ‘absenteeism’ and ‘daytime’ to factors known to modulate the risk for the later development of AUDs (previous alcohol use, previous BIHAs, comorbid intoxication with illegal substances, a known history of substance use or mental disorders other than AUDs, as well as ADHD), BAC and clinical signs of intoxication as dependent variables.

Analysis of BIHA Incidence Proportion in Relation to Neighborhood Psychosocial Characteristics

The city of Dresden is divided into 14 districts subdivided into 61 subdistricts, the latter being considered to represent neighborhoods. Relevant statistical data were provided by the Statistical Information Service of the city of Dresden at the sub-district level. For all the Dresden inhabitants of our sample (n = 525), we calculated the incidence proportion of BIHAs for every subdistrict by dividing the number of cases by the total number of adolescents aged 10–17 years living in this subdistrict. The unemployment rate for a subdistrict was approximated by calculating the ratio between the total of unemployed persons and the total of persons between the ages of 18 and 65 years having their primary residence in this subdistrict. The percentage of one-parent families in a subdistrict was also provided by the Statistical Information Service and was closely related to the respective unemployment rate (r_s = 0.89, p < 0.001), which is why we did not consider the latter measure as an independent influential factor. Unemployment rates were analyzed for interrelations with BIHA incidence proportions, BAC on admission and clinical signs of intoxication by calculating Pearson’s correlation coefficients. Due to missing data in the chart notes, we were unable to perform a systematic analysis of how unemployment in the individual patients’ families affected the probability of BIHAs.

We also explored whether BIHA incidence proportions were more similar between adolescents living in adjacent subdistricts (despite the fact that these differed in unemployment rates) or between the inhabitants of subdistricts with comparable unemployment rates (which were widely dispersed over the city’s area). For this purpose, we employed a two-level mixed-effects linear regression model [46]. The observations about BIHA incidence and unemployment rates in a subdistrict were clustered within the districts (level two). The within-effect of the unemployment rate is represented by the subdistrict centered rate and the between-effect by the average across a subdistrict. The two-level mixed-effect was estimated by maximum likelihood.

The study protocol was approved by the Ethics Committee of the Technische Universität Dresden.

Results

We identified 586 cases of BIHA in Dresden adolescents within 6 years. Taking into account the number of Dresden adolescents between 10 and 18 years, the overall incidence proportion of adolescent BIHAs amounted to 1.76% in 6 years and ranged between 0 and 4.17% across the city’s subdistricts. Twenty-nine patients (6.4% of the subgroup having their residency in Dresden) experienced more than 1 BIHA but were counted only once when calculating incidence proportions; 8% of the sample had consumed at least 1 illegal substance, namely, cannabinoids (n = 17), amphetamines (n = 6), opiates (n = 4), benzodiazepines (n = 1) or barbiturates (n = 1). A history of substance use disorders prior to BIHA was documented in 3.4%, ADHD in 3.2% and other mental disorders in 4.8% of the subjects. BACs were available in 581 cases and ranged between 16 and 312 mg% with a mean (SD) of 153 (52) mg%. The mean age of the patients was 16.2 (1.2) years and 61.4% were male.

Relation between Atypical Drinking Patterns and Risk Factors for AUDs

The frequencies of atypical drinking patterns in relation to age, gender and risk factors for AUDs are described in table 1. The drinking patterns alone, cope and absenteeism, but not daytime, were significantly associated with several risk factors.
The relation between estimated unemployment rates and Extreme Bingeing

The correlation was statistically significant \(r_s = 0.61, p < 0.001 \), explaining 37% of the variance. BIHA incidence proportions were more similar between subdistricts with the same unemployment rate, even if they lay distantly, than between neighboring subdistricts which tended to have different unemployment rates. The mixed-effects linear regression model employed to test this assumption revealed a considerable association between BIHA incidence and estimated unemployment rate within the subdistricts \(\beta = 0.43; 95\% \text{ CI}: 0.08–0.78; p = 0.016 \), whereas the within-district effect was not significant \(\beta = 0.39; 95\% \text{ CI}: –0.11 \) to 0.89; \(p = 0.126 \). Unlike the BIHA incidence proportion, none of the intoxication severity characteristics was significantly associated with the estimated unemployment rate in the subdistrict of residence (BAC: \(r_s = –0.018, p = 0.711 \); Glasgow Coma Scale: \(r_s = 0.003, p = 0.963 \)).

Discussion

The main results of this study are that (1) adolescents drinking 'atypically' showed more risk factors for the later development of AUDs than subjects who followed the typical adolescent behavior of drinking at weekend parties and that (2) unemployment rates in the subdistricts of residence were positively related to BIHA incidence proportion but not to measures of intoxication severity.

<table>
<thead>
<tr>
<th>Table 1. Relation between atypical drinking patterns and known risk factors for alcohol problems based on 581 cases of BIHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alone</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>51 (10.2%)</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>51 (10.2%)</td>
</tr>
<tr>
<td>BAC on admission</td>
</tr>
<tr>
<td>51 (10.3%)</td>
</tr>
<tr>
<td>Glasgow Coma Scale score on admission</td>
</tr>
<tr>
<td>51 (10.8%)</td>
</tr>
<tr>
<td>One or more previous BIHAb</td>
</tr>
<tr>
<td>47 (10.5%)</td>
</tr>
<tr>
<td>Used alcohol prior to BIHA</td>
</tr>
<tr>
<td>18 (13.0%)</td>
</tr>
<tr>
<td>Used illegal substances of abuse</td>
</tr>
<tr>
<td>51 (10.2%)</td>
</tr>
<tr>
<td>Documented diagnosis of SUDs other than alcohol</td>
</tr>
<tr>
<td>51 (10.2%)</td>
</tr>
<tr>
<td>Documented ADHD</td>
</tr>
<tr>
<td>51 (10.2%)</td>
</tr>
<tr>
<td>Documented diagnosis of mental disorders other than SUDs or ADHD</td>
</tr>
<tr>
<td>51 (10.2%)</td>
</tr>
</tbody>
</table>

SUD = Substance use disorder. a Number of subjects (with percentages in parentheses) to whom this drinking pattern applied and for whom information concerning the respective column and row was at all available. Due to incomplete documentation, the same number of cases can result in slightly different percentages. b Included are only subjects having their place of residence in Dresden. c Higher or more often. d Lower or less often. e More females.
orders and other mental disorders. Other researchers also reported that drinking to cope represents an unusual drinking motif for adolescents and is connected to problematic drinking in adolescents and college students [34]. Our results confirm previous findings on gender aspects regarding drinking to cope. We found that more girls reported coping motives than boys. In a study examining motives for first-time alcohol consumption, Kuntsche and Müller [47] found that girls more often reported that they used alcohol because they were depressed or to cheer up when they had problems. Coping motives were also associated with binge drinking. Concerning drinking alone, Bourgault and Demers [48] found that adults drinking alone were at increased risk for alcohol-related problems only if large quantities were consumed. González et al. [49] simultaneously studied these two aspects in a sample of young adults (aged 18–20 years), showing that drinking to cope was associated with drinking heavily while being alone.

Contrary to our expectations, we found no difference in the frequencies of alone, cope and absenteeism patterns between the subjects with and those without previous episodes of BIHA. Possible interpretations are that this is a false-negative finding due to insufficient test power, since only 29 patients experienced 1 or more previous BIHAs, or that we missed recurrent BIHAs because they occurred outside the city of Dresden. A third possible reason relates to the mean age at first diagnosis of AUDs, which is 17.6 years in Germany according to Wittchen et al. [50]. Therefore, many subjects in our study might simply have been too young to accumulate more than 1 BIHA within the 6-year observation period.

Not all deviations from the adolescent majority’s drinking behavior appear to be relevant, as, in our sample, drinking during school/working hours (daytime) was not significantly correlated to any of the above risk factors. This is in line with a recent international study reporting that drinking frequency, but not the time of day, was related to alcohol problems [51]. We conclude that the ‘atypical’ drinking patterns of drinking alone or to cope as well as absenteeism represent relevant early markers for the risk for developing an AUD, possibly not only in
the context of BIHAs but also during any adolescent alcohol consumption.

Such individual psychological determinants of drinking habits cannot, however, explain why the BIHA incidence proportion varied considerably between the subdistricts, ranging between 0 and more than 4% of the adolescent population. Therefore, we were also interested in the effect of environmental influences. We were able to analyze unemployment rates on the city’s subdistrict level, which were highly correlated to BIHA incidence proportion but not to BAC or clinical signs of intoxication.

To analyze the relation between BIHAs and unemployment more in depth, we employed multilevel analyses and found that the BIHA incidence proportion in a subdistrict was more strongly associated with its unemployment rate than with the BIHA incidence proportion of the neighboring subdistricts. This observation suggests that unemployment in the immediate neighborhood might be a more important determinant of bingeing than drinking behavior of peers living in a different region of the same district, although they putatively attend the same schools, public services and regional shops. We also tried to analyze the effect of unemployment in the individual patients’ families, but these efforts were thwarted by incomplete documentation of parents’ employment status.

We found only few previous studies describing the relation between unemployment and binge drinking. These are highly heterogeneous regarding the general design, setting and measures of drinking and unemployment and do not agree with our results. In a cross-sectional survey, Svensson and Hagquist [42] analyzed neighborhood unemployment rates and found that high unemployment was related to less frequent drinking and less frequent binge drinking among adolescents aged 15–16 years. Humensky [43] found that individual (not neighborhood) high parental education and income were significantly associated with higher rates of binge drinking among the parents’ adolescent/young-adult offspring in a national longitudinal survey. While these two observational studies rather suggest a protective role of unemployment, Costello et al. [52] found that the intervention of giving financial support to disadvantaged Native American families protected these families’ children from the development of AUDs 13 years later. A recent review paper on the relation between general measures of low childhood socioeconomic status and later drinking concluded that there is little evidence supporting such an association [45]. A major difference between this literature and our study refers to the measure of drinking, since we investigated an extreme form of bingeing which was not specifically considered in previous studies. When discussing these mixed results, it is also important to bear in mind that low socioeconomic status is not the same as unemployment. Our overall conclusion is that neighborhood unemployment may be associated with adolescent drinking in a way that cannot be described by unidimensional models.

Such an assumption brings up the question of causality, which is notoriously difficult to answer by epidemiological research methods. In our study, we found that unemployment rates and the percentage of one-parent families in the subdistricts were closely related to each other, which is why the latter parameter showed the same significant correlation with BIHAs as did the unemployment rate. This makes us believe that neighborhood unemployment itself is not the active factor increasing the risk for adolescent bingeing, but is merely a marker indicating the presence of a yet unknown causal factor.

Obvious limitations of this study include, first, the design as a retrospective chart review, which constrained our search for putative risk markers to what was routinely documented in standard pediatric care. Therefore, we cannot exclude that we underestimated the incidence of risk factors. Second, we have no information about the distribution of the observed risk factors in other patient populations; a comparison with patients admitted to hospital due to other reasons than alcohol intoxication would allow estimations about the relative risk of intoxicated patients. Third, we do not know how closely adolescent extreme bingeing is reflected by the number of BIHAs, since many confounding factors may influence whether or not rescue services are at all called if a drunken adolescent passes out or needs help for other reasons. Fourth, this is a retrospective, cross-sectional study. Its preliminary results are derived from exploratory analyses without correcting for multiple testing and therefore ask for confirmation by longitudinal follow-up studies to find out whether atypical drinking actually predicts later development of AUDs in the same individuals.

These results bear implications for pediatric health care and addiction prevention strategies. Since brief emergency room interventions in adults are effective to reduce future drinking [53], BIHAs might just as well be a chance for secondary prevention. Given the limited resources in prevention services, our data give a first suggestion on how to identify adolescents who are at an especially high risk for AUDs. While taking the patients’ history, pediatricians should focus on the respective information on why, together with whom and when adoles-
cents drank to intoxication. Despite the special situation of being admitted to hospital and potential social desirability biases, this information is quickly accessible. It can alert clinicians to intensify addiction-specific diagnostic efforts and recommend psychosocial aftercare for adolescents drinking atypically. The remarkably tight relation between neighborhood unemployment rates and BIHA incidence proportion is one of the few empirical findings supporting the often suspected link between low socioeconomic status and alcohol problems. Living in an underprivileged neighborhood may represent, or indicate, a chronic stressor. Neurobiological research suggests that childhood environmental stress exposure can foster a process increasing the vulnerability to later alcohol problems, which takes place years before adolescents actually have their first drink [7]. Together these findings strengthen the cause for early preventive efforts in at-risk adolescents and suggest markers to identify them.

Acknowledgements
We gratefully acknowledge help by the city of Dresden’s Statistical Information Service, which provided the demographic data, and by Linda Hoppe with analyzing the charts.

This work was partly supported by grant No. U01 AA017900 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and grant No. IAAS-2511DSM220 from the German Federal Ministry of Health (Bundesministerium für Gesundheit). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the NIAAA, NIH or German Federal Ministry of Health.

References

29 Pitkanen T, Kokko K, Lyra AL, Pulkkinnen L: A developmental approach to alcohol drinking behaviour in adulthood: a follow-up study from age 8 to age 42. Addiction 2008;103(suppl 1):48–68.

49 Gonzalez VM, Collins RL, Bradizza CM: Solitary and social heavy drinking, suicidal ideation, and drinking motives in undergraduate college drinkers. Addict Behav 2009;34:993–999.

