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Abstract
Background: Patients suffering from panic disorder and ag-
oraphobia are significantly impaired in daily life due to anxi-
ety about getting into a situation due to apprehension about 
experiencing a panic attack, especially if escape may be dif-
ficult. Dysfunctional beliefs and behavior can be changed 
with cognitive behavioral therapy; however, the neurobio-
logical effects of such an intervention on the anticipation 
and observation of agoraphobia-specific stimuli are un-
known. Methods: We compared changes in neural activa-
tion by measuring the blood oxygen level-dependent signal 
of 51 patients and 51 healthy controls between scans before 
and those after treatment (group by time interaction) during 

anticipation and observation of agoraphobia-specific com-
pared to neutral pictures using 3-T fMRI. Results: A signifi-
cant group by time interaction was observed in the ventral 
striatum during anticipation and in the right amygdala dur-
ing observation of agoraphobia-specific pictures; the pa-
tients displayed a decrease in ventral striatal activation dur-
ing anticipation from pre- to posttreatment scans, which 
correlated with clinical improvement measured with the 
Mobility Inventory. During observation, the patients dis-
played decreased activation in the amygdala. These activa-
tional changes were not observed in the matched healthy 

A. Wittmann and F. Schlagenhauf contributed equally to this work. 
International Standard Randomised Controlled Trials Number  
(ISRCTN): Improving cognitive behavioural therapy for panic by  
identifying the active ingredients and understanding the mech-
anisms of action: a multicentre study (http://www.controlled-trials.
com/ISRCTN80046034).
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controls. Conclusions: For the first time, neural effects of 
cognitive behavioral therapy were shown in patients suffer-
ing from panic disorder and agoraphobia using disorder-
specific stimuli. The decrease in activation in the ventral stri-
atum indicates that cognitive behavioral therapy modifies 
anticipatory anxiety and may ameliorate abnormally height-
ened salience attribution to expected threatening stimuli. 
The decreased amygdala activation in response to agora-
phobia-specific stimuli indicates that cognitive behavioral 
therapy can alter the basal processing of agoraphobia-spe-
cific stimuli in a core region of the fear network.

© 2018 S. Karger AG, Basel

Introduction

Individuals suffering from panic disorder and agora-
phobia experience panic symptoms such as accelerated 
heart rate, shortness of breath, and dizziness. These symp-
toms can come about when it is difficult or embarrassing 
to escape a situation, when the person believes they can-
not receive help, or where they perceive they have little 
control over the situation. Furthermore, panic symptoms 
can be evoked simply by being afraid of experiencing a 
panic attack in the future; as a consequence, those who 
suffer from panic attacks avoid situations such as open 
spaces, crowded places, public transport, and/or simply 
being outside of their home. During anticipatory anxiety, 
bodily symptoms and cognitive processes that estimate 
the potential threats of an upcoming situation become 
prominent. The development of avoidance behavior in 
relation to such situations may result in the manifestation 
of agoraphobia [1], from which more than one-third of 
persons afflicted by panic disorder suffer as well [2]. De-
spite the fact that panic disorder and agoraphobia have a 
high 12-month prevalence (1.8 and 2%, respectively) [3], 
little is known about the neural mechanisms behind these 
disorders.

Research on the neurocircuitry in both animals and 
healthy humans has been important for defining neural 
mechanisms in anxiety disorders. Anxiety can be defined 
as a persistent and general emotional state. Fear, on the 
other hand, is a reaction to an explicit threatening stimu-
lus which results in escape or avoidance behaviors [4–7]. 
Consequently, the processing of threats has been associ-
ated with activations in fear-related brain structures such 
as the amygdala, insula, or cingulate cortex [8]. These 
brain areas have been subsequently shown to be activated 
during symptom provocation in anxiety disorders such as 
panic disorder and agoraphobia [9–11] and specific pho-

bia [12]. Anticipation of aversive and anxiety-related 
stimuli has also been associated with increased activation 
in the amygdala [13] and insula [11, 14]. Research into 
animal models [15, 16], healthy subjects [17], and pa-
tients with anxiety disorders [18, 19] has underlined the 
role of the ventral striatum in anticipatory processes rel-
evant to the identification and evaluation of stimuli with 
emotional significance [20, 21]. The ventral striatum and 
its neuroanatomical connections (e.g., to the insula and 
amygdala) have been found to be involved in psychomo-
tor processes [22, 23] such as action planning [24]. In pa-
tients with panic disorder and agoraphobia, hyperactiva-
tion in the ventral striatum might be related to a more 
intense exploration of potentially threatening situations 
and evaluation of their individual salience. Assessing an 
environment as dangerous might result in increased ac-
tion planning and faster motor responses. Furthermore, 
processes of avoidance learning following agoraphobic 
situations seem to be affected by those alterations [15, 25].

Currently, cognitive behavioral therapy (CBT) can be 
seen as the first-line treatment. The combination of psy-
choeducation and exposure-based therapy can lead to 
improvements in patients’ mobility and reduce overall 
panic attacks, resulting in long-lasting effects [26]. Until 
now, studies on the neural effects of treatment on neuro-
functional alterations have been sparse [27–29] and the 
findings have been inconsistent [30–33]. The findings in-
clude decreases in activation of the inferior, medial, and 
superior frontal gyrus and the hippocampus, and increas-
es in activation of the insula, the inferior and medial fron-
tal gyrus, and the middle and superior temporal gyrus. 
One study reported no change in activation over time 
[32]. This inconsistency may be related to the heterogene-
ity of the studies (Table 1).

These inconsistent findings led us to establish an fMRI 
paradigm containing disorder-specific stimuli that allows 
the delineation of anticipation and observation effects in 
pre-/posttreatment approaches (“Westphal-Paradigm” 
[11]). We administered the paradigm to a large homoge-
neous sample of patients with panic disorder and agora-
phobia during 3-T fMRI before and after performing 
standardized CBT [26]. Previous data had displayed 
heightened neural activation in the amygdala and insula 
during observation and in the ventral striatum during an-
ticipation of agoraphobia-specific stimuli in patients suf-
fering from panic disorder with agoraphobia [11, 25]. It 
was hypothesized that during observation and anticipa-
tion of agoraphobia-specific stimuli, patients would show 
a decrease in blood oxygen level-dependent response in 
areas of the “classic” fear network including the amyg-
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dala and insula [9–11, 34]. In addition, a decrease in the 
ventral striatum during anticipation would be seen [35, 
36]. Secondly, it was hypothesized that a positive relation-
ship would be seen between subjective reports of anxiety 
induced by the presented stimuli and the Mobility Inven-
tory [37] as a clinical measure of agoraphobia and neural 
activation. Lastly, it was expected that altered activations 
in these regions would be able to predict the outcome (as 
measured by the clinical values of the Hamilton Anxiety 
Rating Scale [HAM-A] [38]) of the disorder-specific psy-
chotherapy.

Subjects and Methods

Participants
The fMRI centers in Aachen, Berlin (Charité and Adlershof), 

Dresden, and Münster obtained 72 data sets from 369 patients who 
met the diagnostic criteria for panic disorder with agoraphobia 
(DSM-IV-TR). Patients were recruited by 8 German centers par-
ticipating in the German multicenter trial Mechanisms of Action 
in CBT (MAC) [39] (Aachen, Berlin-Adlershof, Berlin-Charité, 
Bremen, Dresden, Greifswald, Münster, and Würzburg). The re-
sults of this pretreatment comparison have been reported in a for-
mer publication [25].

In order to minimize dropouts due to scanning anxiety, we 
aimed to establish a comfortable atmosphere where the partici-
pants had maximum control over their insertion into the MRI 
scanner and knew that they could interrupt the scanning proce-
dure in the case of an emergency. Fifty-one of the 72 patients also 
participated in the second scanning session and provided data for 
the pre-/posttreatment analysis. Although the fMRI-specific envi-
ronment can be quite taxing and anxiety inducing for patients with 
panic disorder, none of the 51 patients ceased participation (either 

because of anxiety or panic or exhaustion before or during the pre- 
or posttreatment scanning sessions). Only in the former study [25] 
did 5 patients refuse to undergo fMRI scanning because of too 
much anxiety (compare Fig. 1) and therefore did not provide any 
data for the pre-/posttreatment analysis. However, also the addi-
tional 11 patients who were excluded because of bad data quality 
could have been in an anxious or exhausted state which could have 
contributed to the bad data quality. Ten further patients were ran-
domized to a waitlist patient group. To increase the sample size of 
the waitlist patient group, 5 additional patients were independent-
ly recruited from the overarching German multicenter CBT trial. 
These patients met the same diagnostic criteria (see Table 2).

As expected, no significant changes in activation in our pre-
defined volumes of interest (amygdala and ventral striatum) were 
found between pre- and posttreatment scans in this group. 

Diagnostic Procedure
All patients met the DSM-IV-TR diagnostic criteria for pri-

mary panic disorder with agoraphobia. The assessment was car-
ried out by trained professionals using a standardized computer-
administered personal Composite International Diagnostic Inter-
view (CAPI-WHO-CIDI; DIAX-CIDI version [40]). Patients who 
were diagnosed with having panic disorder, agoraphobia, or panic 
attacks exclusively were excluded.

The patients had to have a clinical interview score ≥18 on the 
structured interview guide for the HAM-A [38] and a score ≥4 on 
the Clinical Global Impression (CGI [41]) rating scale. They were 
aged between 18 and 65 years and were free of any psychopharma-
cological treatment for at least 4 weeks prior to participation. They 
did not undergo any other psychotherapeutic treatment. Patients 
who suffered from comorbid psychotic or bipolar I disorder, cur-
rent alcohol dependence/current abuse of or dependence on psy-
choactive substances, current suicidal ideations, borderline per-
sonality disorder, or significant abnormalities in routine clinical 
chemistry or hematology, EEG or ECG were excluded from the 
study.

Table 1. Former treatment studies on panic disorder and agoraphobia using an imaging technique

Diagnosis for 
inclusion

Sample size per group, n Treatment setting Imaging technique Experimental design

PD±A PD+A CBT PD SSRI/
SNRI

controls individ-
ual

group PET fMRI 
1.5 T

fMRI 
3 T

resting 
state

linguis-
tic1

fear 
cond.2

Prasko et al. [30], 
2004

● 6 6 0 ● ● ●

Sakai et al. [31], 
2006

● 12 0 ● ● ●

Beutel et al. [32], 
2010

● 9 18 ● ● ●

Kircher et al. [33], 
2013

● 42   42 ● ● ●

●, study meets feature; PD+A, panic disorder with agoraphobia; PD±A, panic disorder with or without agoraphobia; CBT, cognitive behavioral therapy; 
PD, short-term psychodynamic inpatient treatment; SSRI/SNRI, psychopharmacological treatment with selective serotonin reuptake inhibitors (SSRI) or 
selective serotonin-noradrenalin reuptake-inhibitors (SNRI); PET, 18F-2-fluoro-deoxyglucose positron emission tomography. 1 Linguistic go/no-go task. 
2 Fear conditioning.
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The Edinburgh Inventory [42] was used to measure handed-
ness. Color vision was assessed with Ishihara’s test for color 
blindness [43]. Healthy volunteers were recruited by the partici-
pating fMRI centers using advertisements on their respective 
websites. Those healthy volunteers who fulfilled the individual 
matching criteria (age, gender, handedness, smoking status, and 
education) of the respective patients were invited. The healthy 
volunteers underwent a similar DIAX-CIDI interview as the pa-
tients and would have been excluded if currently they met, or in 
the past had met, any criteria for mental disorder. None of the 
healthy volunteers who participated in the diagnostic procedure 
had to be excluded.

The patients were screened for contraindications to MRI, in-
cluding ferromagnetic material or cardiac pacemakers, and were 
asked not to smoke for at least 4 h prior to the fMRI sessions. A 

more detailed description of data inclusion can be found in the 
study by Wittmann et al. [25], and an overview in Figure 1.

A total of 51 healthy controls without any mental disorders or 
psychotherapeutic or psychopharmacological treatment were in-
dividually matched according to gender, age, handedness, smok-
ing status, and education (Table 2).

Data Inclusion
Of the 72 data sets, 11 were discarded due to intense head 

movements (n = 2: movement of more than twice the voxel size 
along the z axis and pitching the head > 3°; n = 1: pitching the head 
> 3°) or intense artifacts in the MRI raw data (n = 1) or because they 
did not meet the joint multicenter quality criteria (n = 6: > 2.5 SDs) 
on the point spread function [44] or signal-to-fluctuation noise 
ratio (SFNR) [45]. One patient dropped out during CBT treat-

Excluded patients (n = 280)
• re-randomized from waiting list (n = 19)
• from centers without fMRI (n = 117)
• met exclusion criteria and/or declined to participate (n = 144)

Excluded patients (n = 12) from pretreatment
analysis because of bad data quality
• head movements (n = 4)
• multicenter quality criteria (n = 8)

Excluded patients (n = 5)
• refused to participate in the pretreatment scan
 because of too much anxiety 

Excluded patients (n = 11) from pre- vs. posttreatment 
analysis
• bad data quality (head movements n = 3, 
 artifacts in raw data n = 1, multicenter quality criteria n = 6)
• dropped out during treatment (n = 1)

Gave their informed consent for
participation in the fMRI trial

(n = 89)

Participated in pretreatment
fMRI scan
(n = 84)

Valid data sets for 
pre- vs. posttreatment analysis

(n = 72)

Valid data sets for
pre- vs. posttreatment analysis

(n = 61)

Patients treated with CBT
(n = 51)

(distribution to sites: Aachen: 1,
Berlin: 14, Dresden: 21, Münster: 15)

Patients not treated with CBT
(n = 10)

• randomized to the waitlist patient
group after informed consent 
(distribution to sites: Aachen: 0,
Berlin: 2, Dresden: 6, Münster: 2)

Patients not treated with CBT
(n = 5)

• additionally recruited to enlarge
the waitlist sample
(recruited in Berlin)

+

Patients out of clinical trial
(n = 369)

Fig. 1. Flow of participants’ inclusion.
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Table 2. Sociodemographic and clinical data

Patients with panic 
disorder and agora-
phobia (n = 51)

Healthy controls
(n = 51)

Patients in waitlist 
group (n = 15)

Female, n 34 34 7
Age, years 36.4±11.1 36.0±11.1 36.3±10.8
Left-handed, n 4 5 2
Smokers, n 25 19 7
Education, n

13 years 26 36 5
10 years 21 13 9
9–10 years 4 2 1

HAM-A score
T1 23.7±5.4 1.9±1.7 23.5±4.0
T2 12.2±6.6 1.5±1.5 20.0±7.7
T1–T2 11.5±6.7 0.5±2.1 3.4±6.1
t/p/d 12.35/<0.001/1.4 1.51/0.14/0.2 2.16/0.05/0.1

Mobility Inventory score
T1 2.7±0.8 na 2.6±0.9
T2 1.8±0.7 na 2.6±0.9
T1–T2 1.0±0.7 na 0.1±0.6
t/p/d 10.04/<0.001/1.6 0.44/0.66/0.1

Patients with panic 
disorder and agora-
phobia vs. healthy 
controls

Patients with panic 
disorder and agora-
phobia vs. waitlist 
group patients

Healthy controls vs. 
waitlist group patients

Group differences

χ2/p
Female 2.27/0.32
Age 85.34/0.27
Left-handed 0.43/0.81
Smokers 1.5/0.47

χ2/p χ2/p χ2/p χ2/p
Education

13 years 4.11/0.04 1.45/0.23 6.84/0.009 8.03/0.02
10 years 3.63/0.06 1.66/0.2 7.12/0.008 7.8/0.02
9–10 years 1.9/0.39

t/p/d t/p/d t/p/d F/p
HAM-A

T1 27.61/<0.001/1.1 0.16/0.87/– 4.48/<0.001/1.8 426.5/<0.001
T2 11.35/<0.001/0.4 –3.9/<0.001/0.1 –16.42/<0.001/0.4 95.45/<0.001
T1–T2 11.3/<0.001/0.4 4.21/<0.001/0.2 –2.95/<0.004/0.1 61.51/<0.001

t/p/d
Mobility Inventory

T1 0.29//0.78/–
T2 –3.71/<0.001/1.3
T1–T2 4.48/<0.001/2

Values are presented as mean ± SD unless specified otherwise. Bold values denote significance. d, Cohen’s  
d = (mean1 − mean2)/SDpooled; education, reported are years at school; HAM-A, Hamilton Anxiety Rating Scale; 
T1, before CBT/waiting period; T2, after CBT/waiting period; T1–T2, difference in values between before CBT/
waiting period and after; na, value not available; CBT, cognitive behavioral therapy.
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ment. The sociodemographic and clinical data about the patients 
not included in the pre-/posttreatment analysis did not significant-
ly differ from those about the patients who participated in the com-
plete study. The patients who participated in the fMRI experiments 
did not differ from the whole CBT sample regarding symptom 
severity as assessed with the HAM-A and the Mobility Inventory 
(online suppl. Table 1; for all online suppl. material, see www. 
karger.com/doi/10.1159/000493146). This resulted in a sample of 
51 patients (Fig. 1). In order to control for effects of “site,” this was 
included as a covariate into the analyses, since the inclusion as an 
additional between-subject factor did not reveal any significant 
main or interaction effects.

The clinical data (HAM-A [38] and Mobility Inventory scores) 
for the original CBT sample (n = 369) [39] were comparable with 
those for the fMRI subsample (n = 51) (HAM-A fMRI sample, 
mean = 23.7, SD = 0.6, vs. HAM-A CBT sample, mean = 24.1,  
SD = 5.2; Mobility Inventory fMRI sample, mean = 2.7, SD = 0.8, 
vs. Mobility Inventory CBT sample, mean = 3.0, SD = 0.9).

Moreover, we computed the relative SFNR [46] for our vol-
umes of interest (right amygdala and right ventral striatum) using 
a 3 × 2 × 2 (site × time × group) ANOVA to test for differences 
between sites, for potential interactions between site and time, and 
for a three-way interaction between site, time and group in sepa-
rate analyses for the right amygdala and the right ventral striatum 
SFNR values. For both regions there was a main effect of site (right 
amygdala: F(2, 94) = 49.955, p < 0.001; right ventral striatum: F(2, 
94) = 47.616, p < 0.001). Critically, no differences were found be-
tween groups (amygdala: p > 0.8; ventral striatum: p > 0.8) or times 
(amygdala: p > 0.6; ventral striatum: p > 0.1) and there was no time 
by group interaction (amygdala: p > 0.1; ventral striatum: p > 0.9). 
Additionally, we did not observe any significant interactions be-
tween site and time, nor between site, time, and group in the right 
amygdala (time × site: p > 0.5; site × time × group: p > 0.5) or in 
the right ventral striatum (time × site: p > 0.5; site × time × group: 
p > 0.2). This indicated that although there were differences in 
SFNR between scanners, these were stable over time and did not 
show any time by group interaction.

To probe whether the SFNR affected our results, we repeated our 
analyses to test for a significant group by time interaction on BOLD 
response during feedback (panic pictures > neutral pictures) in the 
right amygdala, including the individual SFNR values as a covariate. 
While controlling for individual SFNR values in this region, the 
group by time interaction remained significant (F = 28.593, p < 
0.001). Similarly, the group by time interaction on BOLD activation 
in the right ventral striatum during anticipation (panic cue > neutral 
cue) remained significant (F = 7.078, p = 0.008).

In order to rule out possible effects of the interval between pre- 
and posttreatment scanning, we correlated beta values of the pa-
rameter estimates from each participant for the ventral striatum 
(anticipation) and the amygdala (picture phase) with the number 
of days between the pre- and the posttreatment scan. However, no 
significant correlation was found (ventral striatum (r)T2 vs. inter-
val T2–T1: r = 0.028, p = 0.780; amygdala (r)T2 vs. interval T2–T1: 
r = –0.024, p = 0.814).

The interval between the two fMRI scans for the healthy con-
trols was 8 weeks.

Treatment
The patients underwent standardized and manualized CBT (12 

sessions over 8 weeks) [39]. Treatment included psychoeducation, 

interoceptive and in vivo exposure, and relapse prevention. Be-
tween-therapist variability was minimized by therapist trainings, 
detailed procedural descriptions, and guidance for solutions to an-
ticipated problems. Therapy integrity was assured by reporting all 
treatment procedure deviations to the study coordination center 
and by a selected and randomized analysis of 17.2% of the video-
recorded sessions. More details on the treatment and on treatment 
outcomes are reported elsewhere [26].

Experimental Design
We applied one of two randomly assigned sets of the Westphal-

Paradigm (online suppl. Fig. 1) before and after treatment. The sets 
were previously evaluated in two studies [11, 25]. Each set con-
sisted of 48 agoraphobia-specific pictures (e.g., public transport, 
crowds, automobiles, dense situations) as well as 48 neutral pic-
tures as a control condition. A stimulus signaled the category of 
the upcoming picture (for each half of the 96 pictures, the word 
“Neutral,” “Panic,” or a random combination of characters 
[“DGHNTFJ”] as nonspecific stimulus).

All pictures were presented in a randomized sequence to each 
participant for a duration of 2,000 ms. The duration of presenta-
tion of the anticipatory cue was 250 ms. The presentation of a fix-
ation cross (presented between 2 and 4 s) separated the anticipa-
tory cue and the agoraphobia-specific/neutral stimuli to minimize 
artifacts due to eye movements. The fixation cross was also pre-
sented during the intertrial intervals, with a variable duration of 
between 2 and 6 s. The overall duration of the complete paradigm 
was approximately 15 min. We used Presentation version 11.0 
(Neurobehavioral Systems, Albany, CA, USA) for stimulus pre-
sentation.

The participants were instructed to imagine themselves being in 
the presented situation. They were also asked to pay attention to the 
anticipatory cue and its predictive content with regard to the pic-
tures. The requirement to push a button during the presentation of 
each picture assured that the participants were paying attention to 
the paradigm. The neutral pictures were taken from the Interna-
tional Affective Picture System [47] (compare online suppl. Fig. 1).

Comparison of Anticipation Conditions and Picture Phase
To compare the results across the anticipation conditions and 

picture phases, the analysis was recalculated. Thus, the picture 
phase was divided by the type of the preceding cue. The contrast 
“uncued panic pictures > uncued neutral pictures” showed a sig-
nificant group by time interaction ([patients > controls] × [T1 > 
T2]) in the right amygdala (27/2/–29, t = 2.52, p = 0.098), whereas 
the contrast “cued panic pictures > cued neutral pictures” showed 
a similar direction but was not significant (24/2/–20, t = 1.74, p = 
0.361). Formally testing a cue by group by time interaction did not 
reveal any significant result in the right amygdala (p > 0.4).

Due to the circumstance that the contrast “panic cue > neutral 
cue” is most appropriate in the fMRI design because uncued neu-
tral or panic conditions do not exist during anticipation, a similar 
factorial design was not established for the anticipation phase. 
However, an examination of the noninformative cue (“uncued 
cue”) showed no significant group by time interaction ([patients > 
controls] × [T1 > T2]) in any predefined region (p > 0.3).

Self-Report Data
After each scanning session, the pictures were rated with regard 

to agoraphobic anxiety using a 5-level Likert-type scale. Four pa-
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tients and 3 control subjects did not complete these ratings due to 
either being too stressed or having to leave immediately after the 
scan (online suppl. Table 2). To analyze the ratings, a 2 × 2 ANO-
VA for repeated measures (group[patients/controls] × time[before 
CBT/after CBT]) with “group” as the between-subject factor and 
“time” as the within-subject factor was used.

The clinical data (HAM-A and Mobility Inventory scores) on 
the patients and controls before and after treatment were analyzed 
using paired t tests. Associations between anxiety ratings and clin-
ical data were calculated using Pearson’s correlations.

Functional Imaging
Functional imaging was performed in Berlin (3T General Elec-

tric Healthcare), Dresden (3T Siemens Trio), and Aachen and 
Münster (3T Philips Achieva). EPI sequences minimized artifacts 
and signal loss (TE = 30 ms, TR = 2 s, flip angle = 90°, matrix = 64 ×  
64, voxel size = 3.6 × 3.6 × 3.8 mm). In each session, 446 volumes 
were acquired, with 30 slices aligned parallel to the AC-PC line. 
Statistical Parametric Mapping (version SPM8; http://www.fil.ion.
ucl.ac.uk/spm) was applied to the data analysis.

Given our a priori hypotheses, correction for multiple com-
parisons was performed using SPM’s small volume correction 
(SVC). Due to results of previous studies, treatment effects were 
expected in the a priori defined volumes of interest – namely, in 
the ventral striatum, the insula, and the amygdala during the an-
ticipation phase and in the insula and the amygdala during the 
picture phase. All reported coordinates are voxelwise-corrected 
MNI (Montreal Neurological Institute) coordinates. The results 
are reported at p < 0.05 (family-wise error corrected) for the vol-
umes of interest and the whole brain levels for future hypotheses 
(online suppl. Table 3). Pearson’s correlations were calculated to 
test associations between picture ratings, clinical data, and neural 
activation patterns in the volumes of interest.

As we hypothesized that the amygdala, insula, and ventral stri-
atum would be involved in anticipating and perceiving anxiety-
related stimuli [9, 10, 24, 34–36, 48], a correction for multiple com-
parisons was carried out using SPM’s SVC at p < 0.05 (family-wise 
error corrected). For the amygdala and insula, masks combining 
all voxels of interest (VOI) were generated using the automated 
anatomical labeling atlas [49] (WFU PickAtlas software toolbox 
[50]). The mask for the ventrostriatal VOI was generated with a 
probabilistic, literature-based SPM tool [51].

During preprocessing, correction for slice-time acquisition de-
lay and movement (by realignment to individual mean EPI), spa-
tial normalization to the standard EPI template, and spatial 
smoothing with 8 mm full width at half maximum were performed. 
To avoid non-steady-state effects caused by T1 saturation, the first 
5 volumes of each time series were discarded. The general linear 
model was used for data analysis with a two-level approach.

On the single-subject level, the three anticipatory stimuli 
(“Panic,” “Neutral,” and “DGHNTFJ”) and the picture onsets of 
the four different trial types were modeled as explanatory condi-
tions after convolution with the hemodynamic response function: 
(1) “expected agoraphobia-specific picture,” (2) “unexpected ago-
raphobia-specific picture,” (3) “expected neutral picture,” and (4) 
“unexpected neutral picture.” Movement parameters were includ-
ed as additional regressors. The computation of contrast images 
was done for the anticipation phase “agoraphobic anticipation mi-
nus neutral anticipation” and for the picture phase “all agorapho-
bia-specific pictures minus all neutral pictures” combining expect-

ed and unexpected pictures ([(1) + (2)] – [(3) + (4)]). On the sec-
ond level (group-level statistics), separate flexible factorial 2 × 2 
(group × time) ANOVAs were utilized to determine interaction 
effects using the appropriate contrast images for the anticipation 
and the picture phase. Post hoc one-sample, two-sample, and 
paired t tests were calculated to detect group differences.

Furthermore, the prediction of outcome was analyzed by cor-
relating the neural activation in our hypothesized volumes of in-
terest at pretreatment scanning with the difference scores of clini-
cal values (HAM-A and Mobility Inventory) between pre- and 
posttreatment scanning.

Results

Self-Report Data
Clinical Data
The patients showed a significant decrease in symp-

tom severity from pre- to posttreatment as assessed by the 
HAM-A (t(50) = 12.35, p < 0.001, d = 1.4) and Mobility 
Inventory (t(48) = 10.04, p < 0.001, d = 1.6), whereas the 
controls did not (HAM-A: t(50) = 1.51, p = 0.137, d = 0.2; 
Mobility Inventory scores not available) (Table 2).

Picture Rating
Before treatment, the patients rated the agoraphobia-

specific pictures as more anxiety inducing than did the 
controls, while neutral pictures were rated similarly. The 
patients rated the induced anxiety as higher before than 
after treatment (indicated by a main effect of group [F(1, 
93) = 94.72, p < 0.001; ηp

2 = 0.5], time [F(1, 93) = 46.70,  
p < 0.001; ηp

2 = 0.3], and group by time interaction [F(1, 
93) = 53.99, p < 0.001; ηp

2 = 0.4]) for agoraphobia-specif-
ic but not for neutral pictures (online suppl. Table 2).

Correlation between Picture Rating and Clinical Data
A correlation was found between anxiety ratings for 

the agoraphobia-specific pictures and symptom severity 
in the patient group (HAM-A score: before CBT, r = 0.78, 

Fig. 2. Neural activations of patients compared with controls be-
fore versus after treatment. a Group by time interaction in the right 
ventral striatum (displayed at p < 0.001 [uncorrected], k > 10, MNI 
slice y = 5). b Parameter estimates at MNIx/y/z: 18/5/–5, t = 3.56,  
p = 0.004 (small volume corrected for ventral striatal volume of 
interest). c Correlation of differences in Mobility Inventory scores 
with differences in activation of the ventral striatum of patients 
before versus after cognitive behavioral therapy (CBT) (r = 0.31,  
p = 0.028). d Group by time interaction in the right amygdala (dis-
played at p < 0.001 [uncorrected], k > 10, MNI slice y = 2). e Pa-
rameter estimates at MNIx/y/z: 27/2/–26, t = 4.11, p = 0.002 (small 
volume corrected for amygdala volume of interest).

(For figure see next page.)
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p < 0.001, and after CBT, r = 0.56, p < 0.001; Mobility In-
ventory score: before CBT, r = 0.55, p < 0.001, and after 
CBT, r = 0.47, p = 0.001). The decrease in anxiety ratings 
from pre- to posttreatment correlated with clinical out-
come (decrease in Mobility Inventory score during treat-
ment) (r = 0.45, p = 0.001).

Functional Imaging
Prefixed Analyses
Due to therapy dropout, poor data quality, and being 

randomized to a waitlist patient group (see patient flow 
for detailed information; Fig.  1), 21 of the 72 patients 
from our previous study [25] could not be included  
in the assessment of the treatment effect. Indeed, we  
did not observe a significant group difference in amyg-
dala activation during the picture phase in the larger 
sample (patients vs. healthy controls: right amygdala,  
pSVC amygdala VOI = 0.2, and left amygdala, pSVC amygdala VOI =  
0.4). In the current subsample (n = 51), we observed a 
significant interaction and a trendwise group difference 
at T1 (p = 0.074). Therefore, we controlled for potential 
group differences between the included patients and the 
21 patients who were not part of the pre-/posttreatment 
analysis. We found that the data quality at T1, although 
passing the necessary quality criteria of the consortium 
[33], differed significantly (QA n = 21: 2.75 ± 0.74; QA  
n = 51: 2.24 ± 0.55; t = 3.202, p = 0.002). This might have 
led to the reduced sensitivity to detected group differenc-
es in the larger sample at T1.

Furthermore, in the present paper we only observed a 
trendwise group difference between healthy controls and 
patients at T1 in the amygdala, contributing to the sig-
nificant group by time interaction. The interaction was 
further driven by a deactivation in the patient group at T2 
(t = 4.11; MNIx,y,z: 27, 2, –26; p = 0.002), which was not 
found in the larger sample at T1. Further, we conducted 
post hoc volume of interest analyses of the group by time 
interaction effects. This still revealed a significant group 
by time effect in the amygdala and a stronger activation 
of the amygdala in patients compared to healthy controls 
at T1, and contrariwise a lower activation at T2. The ac-
tivation of the amygdala was significantly reduced in the 
patients from pre- to posttreatment, but this was not the 
case in the healthy controls.

To avoid the possibility that BOLD effects during the 
anticipation and observation phases are only particular 
peak voxel activations, we extracted clusters for our main 
findings. The data thus obtained still showed a significant 
group by time effect (F = 4.367, p = 0.039) in the ventral 
striatum during the anticipation phase. This effect is ex-

plainable by a higher activation in patients compared to 
healthy controls at T1 (t = –4.211, p < 0.001) and a non-
significant difference in activation between these groups 
at T2 (t = –0.871, p > 0.3). The activation of the ventral 
striatum was significantly reduced in the patient group 
from pre- to posttreatment (t = 2.293, p = 0.026) but not 
in the healthy control group (t = –0.453, p > 0.6).

For the observation phase, a significant group by time 
effect was found in the amygdala after cluster extraction 
(F = 13.806, p < 0.001). The higher BOLD response for the 
observation phase is also a result of higher activations in 
the patient group compared to the healthy control group 
at T1 (t = –2.604, p = 0.011) and lower activation in T2  
(t = 2.264, p = 0.015). The activation of the amygdala was 
significantly reduced in the patient group when compar-
ing pre- to posttreatment activations (t = 4.009, p < 0.001) 
but not in the healthy control group (t = –1.163, p > 0.2).

Anticipation Phase
Treatment effects on functional activation during the 

anticipation phase were assessed using a group by time 
interaction, which was found to be significant in the right 
ventral striatum (F = 10.04; MNIx,y,z: 18, 5, –5; p = 0.026; 
ηp

2 = 0.053 for peak voxel and ηp
2 = 0.025 for mean VOI 

values) (Fig. 2). This was due to a decrease in activation 
in the patients from pre- to posttreatment (t = 3.56; 
MNIx,y,z: 18, 5, –5; p = 0.004), while the healthy controls 
did not show any change (p > 0.05). Before treatment, the 
patients showed more activation than the controls (t = 
4.42; MNIx,y,z: 15, 8, –8; p < 0.001). After treatment, the 
patients no longer displayed any difference in activation 
in the right ventral striatum compared to the controls  
(p > 0.1). No other significant group by time interaction 
was found in any other region (Table 3).

Extracting the mean parameter estimates from the 
right ventral striatum of the scans before and after treat-
ment, their differences showed positive correlations with 
differences in Mobility Inventory scores (reported for the 
previous 7 days on the first and last days of CBT) for the 
patient group (r = 0.31, p = 0.028). This means that the 
reduction in ventral striatal activation correlated with 
clinical improvement as measured using the Mobility  
Inventory.

Picture Phase
The effect of treatment on functional activation during 

the observation phase was tested using group by time in-
teraction, which was found to be significant for the right 
amygdala (F = 12.99; MNIx,y,z: 27, 2, –20; p = 0.015; ηp

2 = 
0.113 for peak voxel and ηp

2 = 0.054 for mean amygdala 
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VOI values) (Fig. 2). This was due to decreased activation 
in the patient group from pre- to posttreatment (t = 4.11; 
MNIx,y,z: 27, 2, –26; p = 0.002), while the controls did not 
show any changes between the scans (p > 0.7). Before 
treatment, the patients showed a trendwise increased ac-
tivation in the right amygdala compared to the controls  
(t = 2.66; MNIx,y,z: 24, 2, –23; p = 0.074). After treatment, 
the patients’ activation in the right amygdala did not differ 
from that of the controls (p > 0.7). No other region showed 
a significant group by time interaction (Table 3). Differ-
ences in mean parameter estimates from the amygdala be-
tween pre- and posttreatment scans did not correlate with 
the improvement measured with the Mobility Inventory.

Prediction of Outcome
For the anticipation phase, we found positive correla-

tions between the difference in HAM-A scores and neural 
activation in the left insula (t = 3.94; MNIx,y,z: –36, –16, 
19; p = 0.028) and the left ventral striatum (t = 2.79; 
MNIx,y,z: –18, 5, –5; p = 0.039) (Table 4), which is to say 
that patients with a stronger reduction in HAM-A scores 
(from pre- to posttreatment) had higher neurofunctional 
activations before treatment in these regions.

Response Prediction
For the anticipation phase, we also found that re-

sponders to CBT (patients with at least a reduction of 50% 
in HAM-A score or an Mobility Inventory score < 1.5) 
had a trendwise stronger activation in the left ventral stri-
atum (t = 2.48; MNIx,y,z: –18, 5, –5; p = 0.072), i.e., patients 
who responded to treatment had a higher neurofunction-
al activation before treatment in the left ventral striatum.

No effects were found for the observation phase or us-
ing the Mobility Inventory as an outcome or response 
criterion.

Discussion

This is the first study to report neural effects of stan-
dardized CBT on anticipation and observation of agora-
phobia-specific stimuli in patients suffering from panic 
disorder with agoraphobia. The main findings are a de-
crease in activation from pre- to posttreatment in the 
right ventral striatum of patients during anticipation and 
in the right amygdala during observation of agoraphobia-
specific stimuli, whereas a waitlist group did not show 
changes over time.

The ventral striatum is involved in salience evaluation 
and action planning when confronted with relevant and 

potentially threatening stimuli, and is also associated with 
avoidance learning [36, 52, 53]. Previous studies have 
shown decreased activation to aversive stimuli after treat-
ment with selective serotonin reuptake inhibitors [54, 55] 
and increased activation after tryptophan depletion [56]. 
Complementing these preliminary pharmacotherapy-re-
lated results, we found a normalization of ventral striatal 
hyperactivation after CBT, which points towards a nor-
malized processing of disorder-specific stimuli after suc-
cessful CBT. The activational decrease in the ventral stri-
atum indicates that CBT leads to a reduction in the patho-
logically heightened anticipation of potentially threatening 
situations, which may in turn prevent a flight reaction. 
Indeed, this notion is supported by the significant corre-
lation between reduced ventral striatal activation and the 
decrease in clinical symptoms (Mobility Inventory score 
before treatment vs. Mobility Inventory score after treat-
ment).

The amygdala, conceptualized as the switching point 
in the neural network relevant to fear processing, modu-
lates physiological responses to threat [57, 58] and is 
more likely involved in the observation and evaluation 
than the anticipation of anxiety-related events [8, 34, 
59]. The significant decrease in activation from pre- to 
posttreatment in the right amygdala of patients (com-
pared to healthy controls) during observation of agora-
phobia-specific stimuli supports this notion. Our find-
ing indicates that amygdala activation is sensitive to cog-
nitive-behavioral interventions as shown for social 
phobia and specific phobia [27, 28, 60], an effect also 
found for pharmacological interventions in social pho-
bia and depression [28, 61, 62]. Following Etkin and 
Wager [59], our finding of increased amygdala activa-
tion in patients with panic disorder and agoraphobia 
suggests a neurofunctional overlap with social phobia 
and specific phobia and altered fear-regulatory process-
es. Arguably, the latter are most important in panic dis-
order with agoraphobia when considering the increased 
evaluation of the environment regarding potentially ag-
oraphobic situations. Our finding of a marginally sig-
nificantly heightened activation of the amygdala in pa-
tients with panic disorder and agoraphobia in response 
to agoraphobia-specific pictures before CBT may be a 
correlate of this pathological process. Furthermore, 
heightened amygdala activation might be a common 
factor for stimulus processing in patients suffering from 
phobias, indicating common alterations at a basic and 
implicit processing level. The reduced activation could 
indicate changes in anxiety-specific experience and be-
havior due to treatment.
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In contrast to our hypothesis, we could not find con-
sistent differences regarding insula activation when com-
paring patients and controls over time. Indeed, we found 
a stronger activation during the anticipation phase in pa-
tients before treatment, indicating altered anticipatory 
and introspective processes. However, the insula does not 
seem to be as responsive to our therapeutic intervention 
as the ventral striatum.

In the prediction outcome analysis, activation of the 
ventral striatum and insula was correlated with a reduc-
tion in clinical symptoms (HAM-A). This illustrates the 
fact that patients with higher activations in these regions 
benefit more from CBT. Successful CBT reduces avoid-
ance behavior, which contributes to a meaningful benefit 
to patients’ daily lives as measured by the HAM-A. In-
creased anticipation-related striatal activation might in-
dicate pronounced planning and execution of flight reac-
tions and avoidance behavior, which are approachable by 
CBT. No prediction effects were observed for amygdala 
activation, potentially due to the less specific neuronal 
function of this region. Future studies need to clarify this 
assumption by directly comparing different treatment 
strategies.

Taken together, studies on depression and anxiety dis-
orders have reported that the ventral striatum and amyg-
dala are sensitive to treatment. In contrast to former stud-
ies on panic disorder and agoraphobia [30–33], in this 
study we for the first time demonstrated decreased activa-
tions after CBT in patients compared to controls in the 
ventral striatum during anticipation and in the amygdala 
during observation of agoraphobia-specific stimuli (com-
pared to neutral stimuli). We did not observe any treat-
ment-related increase in prefrontal activations, suggest-
ing that the neurofunctional mechanisms related to the 
reported subcortical activation reduction did not involve 
prefrontal downregulations [8]. Another reason might be 
that our paradigm involves passive viewing and does not 
include any instructions regarding active suppression or 
reappraisal of emotions, as reported for paradigms show-
ing such prefrontal activations [27]. 

The self-report data support the validity of the stimu-
lus material. Agoraphobia-specific pictures were rated to 
be more anxiety inducing than neutral pictures, and the 
ratings were correlated with the magnitude of clinical im-
pairment, assessed by HAM-A and Mobility Inventory 
scores and their reduction after CBT.

This study has several limitations. The agoraphobia-
specific and neutral pictures were not specifically tailored 
to each individual, and thus the anxiety-inducing effect 
may have varied interindividually. This concern is miti-

gated by the individual picture ratings, which clearly in-
dicated that agoraphobia-specific pictures were rated to 
be more anxiety inducing than neutral pictures by the pa-
tients but not the controls. We did not include any group 
of patients with other mental disorders, for example, spe-
cific phobias [59], social phobia [63], or panic disorder 
without agoraphobia, which may be a target for future 
investigations. Analyzing changes in neuronal activation 
patterns needs a standardized treatment strategy. How-
ever, the multifactorial mechanisms of treatment and dif-
ferent combined treatment strategies – as may usually be 
found in representative and realistic clinical practice – 
should be targeted by future investigations [64]. In line 
with the sample characteristics, our healthy participants 
never fulfilled the criteria for any mental disorder, there-
by probably representing an artificial group. This was 
necessary to clearly dissociate neural activation patterns 
of pathological fear processes from those of normal fear 
processes in this early stage of proving and establishing a 
disorder-specific paradigm. Although we included data 
from different sites, we accounted for this possible con-
founder using a joint multicenter quality control [33], 
since criteria for data inclusion and differences between 
study sites were not found. The variance of each site was 
controlled for in all analyses. Neural activity might be af-
fected by the anxiety-inducing environment of the MRI 
scanner itself; however, this should be the case during the 
entire scanning session and ought to primarily affect 
baseline activation.

To summarize, we found altered neural processing of 
disorder-specific stimuli during anticipation in the ven-
tral striatum and during observation in the amygdala in 
response to CBT. As reported previously [25], the antici-
patory anxiety before being confronted with an agora-
phobic situation is a greater burden to affected persons 
than being in the situation itself [65]. Such heightened 
neurofunctional processes during anticipation and ob-
servation of agoraphobia-specific stimuli followed by al-
tered action planning and avoidance behavior might be a 
specific characteristic of panic disorder with agorapho-
bia. Our findings provide evidence that exposure-based 
CBT modifies neural processing as a neural correlate of 
clinical improvement in CBT-treated patients. After cog-
nitive preparation, encouraging patients to try exposure 
therapy is often challenging, but arguably one of the most 
efficient active ingredients of CBT [26, 66]. In the future, 
further specifying the mechanisms of action of CBT and 
its ability to change neurofunctional brain activity will be 
essential for better understanding and improving treat-
ment. 
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