

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (postprint):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-384516

Michael Günther

FREDDY: Fast Word Embeddings in Database Systems

Erstveröffentlichung in / First published in:

SIGMOD’18: 2018 International Conference on Management of Data, Houston, 2014. ACM
Digital Library, S. 1817–1819. ISBN 978-1-4503-4703-7

DOI: https://doi.org/10.1145/3183713.3183717

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-384516
https://doi.org/10.1145/3183713.3183717

FREDDY: Fast Word Embeddings in Database Systems
Michael Günther

Database Systems Group
Technische Universität Dresden
Michael.Guenther@tu-dresden.de

ACM Reference Format:
Michael Günther. 2018. FREDDY: Fast Word Embeddings in Database Sys-
tems. In SIGMOD’18: 2018 International Conference on Management of Data,
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3183713.3183717

1 INTRODUCTION
Word embeddings are useful in many tasks in Natural Language
Processing and Information Retrieval, such as text mining and clas-
sification, sentiment analysis, sentence completion, or dictionary
construction. Word2vec [8] and its predecessor fastText [1], both
well known models to produce word embeddings, are powerful
techniques to study the syntactic and semantic relations between
words by representing them in a low-dimensional vector. By apply-
ing algebraic operations on these vectors semantic relationships
such as word analogies, gender-inflections, or geographical rela-
tionships can be easily recovered [7].
The aim of this work is to investigate how word embeddings could
be utilized to augment and enrich queries in DBMSs, e.g. to compare
text values according to their semantic relation or to group rows
according to the similarity of their text values. For this purpose, we
use pre-trained word embedding models of large text corpora such
as Wikipedia. By exploiting this external knowledge during query
processing we are able to apply inductive reasoning on text values.
Thereby, we reduce the demand for explicit knowledge in database
systems. In the context of the IMDB database schema, this allows
for example to query movies that are semantically close to genres
such as historical fiction or road movie without maintaining this
information. Another example query is sketched in Listing 1, that
returns the top-3 nearest neighbors (NN) of each movie in IMDB.
Given the movie “Godfather” as input this results in “Scarface”,
“Goodfellas” and “Untouchables”.

Contribution:We developed a system called FREDDY (Fast woRd
EmbedDings Database sYstems) based on PostgreSQL to exhibit
the rich information encoded in word embeddings. This includes a
wide range of UDFs forming the base for novel query types, sup-
ported by different index structures and approximation techniques
to accelerate the operations on high-dimensional vector spaces. Ex-
perimental results on IMDB together with large word2vec models
show, that our approach is able to efficiently process these new
query types.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4703-7/18/06.
https://doi.org/10.1145/3183713.3183717

SELECT m.title, t.term, t.score
FROM movies AS m, kNN(m.title, 3) AS t
ORDER BY m.title ASC, t.score DESC
Listing 1: Simplified IMDB Query Example (joins removed)

2 FREDDY: SYSTEM OVERVIEW
We built a prototype1 based on a PostgreSQL database system
sketched in Figure 1. A script creates new relations for the dif-
ferent index structures proposed in Section 3. There is a product
quantization for fast approximated exhaustive distance calculation
and a non-exhaustive index for operations with no specific output
word set. For exact distance computations an additional relation is
created storing terms and the respective word2vec vector. If two
terms are similar, the corresponding vectors have a low Euclidean
distance and high cosine similarity. UDFs are implemented which
operate on the index relations to make use of the word embed-
dings. We developed UDFs for calculating the cosine similarity of
two vectors (cos_sim(input1, input2)), kNN search on a selection
of tokens (kNN (input ,k,output_set)) or the whole set of tokens
for which word embeddings are provided (kNN (input ,k)), analogy
queries (analoдy (input1, input2, input3), equivalent to 3CosAdd in
[7]) and grouping by clustering word vectors (cluster (k, terms)).
The UDFs accept terms, i.e. text values, or vectors as input and
are implemented in C using the PostgreSQL Server Programming
Interface (SPI) to run SQL commands inside the functions. All UDFs
are bundled into a PostgreSQL extension. Benefits of implementing
these operations as UDFs are that they could be used in SQL queries
and query optimization is still active.

Query Execution

index tablesin
it

ia
liz

at
io

n

word
embeddings

data tables
(e.g. IMDB)

PQ idx IVFADC idx Exact idx

retrieve query vectorretrieve index data (via SPI)

Figure 1: FREDDY System Overview

3 INDEX STRUCTURES
Word embeddings usually encompass a few million vectors with
100-300 dimensions. Since for kNN queries it is necessary to cal-
culate the distances from an input vector to every other vector,
the distance computation is getting quite comprehensive. To speed
up kNN queries many approaches hierarchically divide the vec-
tor space, reducing the number of vectors to consider by using
1https://github.com/guenthermi/postgres-word2vec

https://doi.org/10.1145/3183713.3183717
https://doi.org/10.1145/3183713.3183717
https://github.com/guenthermi/postgres-word2vec

implications from the triangle inequality [4]. In a small analysis
using a large word2vec model we found that the average angles
between randomly sampled vectors and there 5 NNs are over 40
degree. Because of this spread distribution of the vector space and
the high dimensionality of the vectors such indexing methods are
not applicable for exact kNN search. Another popular approach
for exact kNN is to use KD-trees [3], but as stated in [10] it is also
not suitable for high dimensional vectors. For this reason, approx-
imated nearest neighbor search (aNN) like LSH [5] and product
quantization (PQ) [6] are widely disseminated. While LSH might
be one of the most popular methods for aNN it is based on hash
functions which can not be adapted to the set of input vectors. Thus
we decided to use product quantization that provides an exhaustive
method for aNN.

Product quantization is a method to decompose a high dimen-
sional vector space into the Cartesian product of subspaces and
then quantize these subspaces separately. Therefore, it divides a
vector y = [y1, . . . ,yn] of dimensionality n intom subvectors ui (y)
with a dimension dim(ui) = d = n/m. On each of these subvec-
tors, a function is applied which is called quantizer. A quantizer
q assigns an arbitrary input vector v to the nearest vector c j out
of a set of vectors C which we call centroids. There arem different
quantizers q1, . . .qm and corresponding centroids sets C1, . . . ,Cm
for the subvectors. The product quantization of y can be defined as
follows:

y1, . . .yd︸ ︷︷ ︸
u1 (y)

, . . . ,y(n−d)+1, . . .yn︸ ︷︷ ︸
um (y)

→ q1 (u1 (y)), . . . ,qm (um (y))

It can be represented by an id sequence s ∈ Seq which consists of
numbers l ∈ {1, . . . , |Ck |} corresponding to centroid vectors c j,k
where k ∈ {1, . . . ,m} represents the quantizer and j ∈ {1, . . . , |Ck |}
refers to one of the centroids inCk . Usually, the number of centroids
in every set Ck is equal.

Seq = {1, . . . , |Ck |}m

The product quantization can be used for the fast computation of
an approximated Eucleadian distance d̂ (x, y) of d (x, y) between a
query vector x and a word vector y from the index.

d̂ (x, y) =
√∑

j
d (uj (x),qj (uj (y)))2

Therefore, all m · |Ck | possible values for the square distances
d (uj (x),qj (uj (y))2 are pre-computed. Thus the calculation of d̂ (x, y)2
is then done by simply summing up such distances. To provide an
index based on product quantization we have to store the centroids
C1, . . . ,Cm called codebook, and the sequences of nearest centroid
identifiers for each vector. The centroids are determined by apply-
ing k-means on the vectors (or a subset of them).

IVFADC. To speed up the search, even more, a non-exhaus-tive
index based on product quantization called IVFADC [6] could be
used. IVFADC is build up by applying a coarse quantizer qc on the
vectors which should be indexed. For each vector v the residual
r(v) = v − qc (v) is calculated and stored in a list with every other
residual of vectors v′ with the same quantization qc (v′) = qc (v).
For aNN search on the query vector x first the quantization qc (x)

and the residual r(x) is calculated. Then the nearest neighbors are
determined by determining the vectors according to the nearest
residuals of the list for the respective quantization qc (x).

4 EVALUATION
We used the popular free available word2vec dataset generated by
[8] that contains 3M 300-dimensional vectors. For PQ and IVFADC
we set the number of subvectors to m = 12 and the number of
centroids for the fine quantizer to 1024. For IVFADC the number of
centroids for the coarse quantizer is set to 1,000. For the evaluation
of the index structures, we executed 100 kNN queries that find
the 5 most similar words to a randomly chosen word out of all
3M entries. As shown in Table 1 product quantization is about 9
times and IVFADC about 300 times faster than the exact search
at the expense of precision which drops down to about 35%. An
batchwise execution of queries can speed up the computation even
more. While the precision measurements are quite low they can be
improved using postverification and a manual investigation showed
that the terms in the result set are still very useful. Since IVFADC is
a non-exhaustive search method it is not applicable to all types of
word embedding operations. For example, for kNN queries which
consider just a subset of word vectors and kNN queries with a high
k a simple PQ index should be used.

Index Structure �Resp. Time �Precision
Exact Search 8.79s 1.00
Product Quantization 1.06s 0.38
IVFADC 0.03s 0.35
IVFADC (batchwise) 0.01s 0.35
Product Quantization (postverif.) 1.29s 0.87
IVFADC (postverif.) 0.26s 0.65

Table 1: Time and Precision Measurement of Index Struc-
tures

5 RELATEDWORK
There are many methods for generating word embeddings like [1],
[8] and [9]. An integration of word embeddings into an Apache
Spark system was proposed by [2]. Product quantization was in-
troduced by [6] for approximated kNN search on SIFT and GIST
image descriptors which are datasets with vectors of similar dimen-
sionality.

6 CONCLUSIONS
In this paper, we propose FREDDY, a system based on PostgreSQL,
to exploit the expressive power of word embeddings. UDFs have
been shown to be an elegant way to integrate operations like dis-
tance calculation, kNN search, grouping, etc. into a database system.
We tackled the performance problems regarding word embedding
operations by using product quantization and IVFADC [6].
Currently, we are improving our tokenization techniques and work-
ing on two other types of analogies (PairDirection and 3CosMul) [7],
for which we are not able to use PQ or related data structures. Fi-
nally, we are looking into real-world application domains that can
draw benefit from our system.

2

REFERENCES
[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-

riching word vectors with subword information. arXiv preprint arXiv:1607.04606
(2016).

[2] Rajesh Bordawekar and Oded Shmueli. 2016. Enabling cognitive intelligence
queries in relational databases using low-dimensional word embeddings. arXiv
preprint arXiv:1603.07185 (2016).

[3] JeromeH Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 209–226.

[4] Keinosuke Fukunaga and Patrenahalli M. Narendra. 1975. A branch and bound
algorithm for computing k-nearest neighbors. IEEE transactions on computers
100, 7 (1975), 750–753.

[5] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[6] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2011), 117–128.

[7] Omer Levy and Yoav Goldberg. 2014. Linguistic Regularities in Sparse and
Explicit Word Representations. (2014), 171–180 pages. https://doi.org/10.3115/
v1/W14-1618

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[9] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[10] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image
descriptor matching. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on. IEEE, 1–8.

3

https://doi.org/10.3115/v1/W14-1618
https://doi.org/10.3115/v1/W14-1618

	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (postprint):
	Michael Günther
	FREDDY: Fast Word Embeddings in Database Systems
	Günther_Postprint.pdf
	1 Introduction
	2 FREDDY: System Overview
	3 Index Structures
	4 Evaluation
	5 Related Work
	6 Conclusions
	References

