
Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles

Erstveröffentlichung in / First published in:

DOI: https://doi.org/10.1039/c5nr01483b

Diese Version ist verfügbar / This version is available on:
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-363316

„Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFGgeförderten) Allianz- bzw. Nationallizenz frei zugänglich.“

This publication is openly accessible with the permission of the copyright owner. The permission is granted within a nationwide license, supported by the German Research Foundation (abbr. in German DFG).
www.nationallizenzen.de/
Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles†

M. M. Mkandawire,*a,b,c M. Lakatos,c A. Springer,c A. Clemens,b D. Appelhans,d U. Krause-Buchholz,b W. Pompe,b G. Rödelb and M. Mkandawire*c,e

A major challenge in designing cancer therapies is the induction of cancer cell apoptosis, although activation of intrinsic apoptotic pathways by targeting gold nanoparticles to mitochondria is promising. We report an in vitro procedure targeting mitochondria with conjugated gold nanoparticles and investigating effects on apoptosis induction in the human breast cancer cell line Jmtr-1. Gold nanoparticles were conjugated to a variant of turbo green fluorescent protein (mitoTGFP) harbouring an amino-terminal mitochondrial localization signal. Au nanoparticle conjugates were further complexed with cationic maltotriose-modified poly(propylene imine) third generation dendrimers. Fluorescence and transmission electron microscopy revealed that Au nanoparticle conjugates were directed to mitochondria upon transfection, causing partial rupture of the outer mitochondrial membrane, triggering cell death. The ability to target Au nanoparticles into mitochondria of breast cancer cells and induce apoptosis reveals an alternative application of Au nanoparticles in photothermal therapy of cancer.

Introduction

One of the mechanisms for therapeutic destruction of cancer cells is to induce apoptosis either extrinsically by targeting cell surface receptors, or intrinsically via mitochondria. In the extrinsic route, activated cell death receptors lead to activation of caspase 8, which results in a caspase-signalling cascade. In the mitochondria-mediated pathway, the formation of a multi-meric Apaf-1/cytochrome c complex initiates activation of pro-caspase 9, which cleaves and triggers downstream caspases 3, 6, and 7. Consequently, mitochondria are an attractive target for the design of effective, and specific cancer therapeutic resulting in less collateral damage to the surrounding non-cancerous cells. A current strategy being investigated is exploiting the photothermal effect of gold nanoparticles (AuNPs) in the presence of low energy sources to induce extrinsic or mitochondrial-mediated apoptosis.

AuNPs have shown immense potential for cancer diagnosis and therapy based on their surface plasmon resonance (SPR) enhanced light scattering and absorption. AuNPs efficiently convert the absorbed light into localized heat, which can be exploited for selective laser photothermal therapies for cancer. Additionally, conjugation of AuNPs to ligands specifically targeting biomarkers on cancer cells allows imaging and detection as well as photothermal treatment. Several studies have documented intracellular delivery and internalization of AuNPs including their incorporation into mitochondria to induce apoptosis. However, targeting intracellular organelles in living cells remains a challenge due to the aggregation behaviour of AuNPs and their inefficient release from endosomes.

To circumvent this problem, we explored the use of cationic maltotriose-modified poly(propylene imine) (PPI) dendrimers as transfection reagents of AuNPs into Jmtr-1 cells. The resulting AuNP–protein and dendrimer complexes are considered dendriplexes. Glycosylated dendrimers and hyper-branched polymers possess high transfection efficiency and biocompatible properties. For efficient delivery to the target organelles, escape of polyplexes (complexes between oligo/polynucleic acids and cationic polymeric materials) from the endosomes is a prerequisite. The polyplexes are known to exit endosomes via the “proton-sponge” mechanism. Furthermore, cationic open shell and neutral dense shell PPI glycodendrimers can be used as transfection and stabilization
agents for various particles17–19 and as biological agents to interfere with fibril assemblies of prion peptides20 and proteins.21 Other well-established cationic carrier systems such as liposomes and the cell penetrating peptide protamines have been shown to be unsuitable for transfection of green diamond–antibody conjugates to the cytoplasm.16 However, open and dense maltotriose shell PPI glycodendrimers possess promisingly low or no toxicity under in vivo conditions.12 Motivated by the fact that this glycodendrimer has some advantages for stabilizing and internalizing anionic hybrid conjugates in comparison with other carrier systems, in this study we also used the cationic 3rd generation PPI glycodendrimer with an open maltotriose shell (PPI-Mal-III G3)18 for transfection of AuNP conjugates.

The aim of our study was to investigate selective targeting of AuNPs to mitochondria of Jimt-1 cancer cells to initiate apoptotic pathways. Jimt-1 cells are resistant to trastuzumab, a cancer drug, which targets cell surface receptors to induce apoptosis.23 To target AuNPs to mitochondria and to follow their intracellular delivery, we conjugated AuNPs with a green fluorescent protein harbouring the mitochondrial (mt) localization sequence of the inner membrane protein COX8 at its amino terminus (mitoTGFP). In previous studies, the successful delivery of ultra-small AuNPs (2.7 nm diameter) conjugated to doxorubicin into the cell nuclei with DNA damage is the likely cause of induced apoptosis.8 Another study demonstrated that Au nanorods (length 55.6 ± 7.8 nm, width 13.3 ± 1.8 nm) could be intracellularly directed to mitochondria in cancer cells, but not in mesenchymal cells, although the uptake pathways in both cell types were similar.24

Results and discussion

Characteristics of AuNP conjugates

To explore the cellular uptake and intracellular trafficking of the mitoTGFP–AuNP conjugates stabilized by glycodendrimer PPI-Mal-III G3, we used citrate-stabilized AuNPs (20 nm) for TEM visualization. AuNPs were synthesized according to Frens et al.25 and characterized by TEM (ESI†) and UV-Vis spectroscopy (Fig. 1a). Conjugation of mitoTGFP to AuNPs is by non-covalent binding of the protein to AuNPs at pH values close to the isoelectric point of the protein, in the case of eGFP at pH 5.5 as described previously.7,26 Bioconjugates were analysed by optical changes in UV-Vis absorbance spectra due to the plasmon resonance of AuNPs.7,27 Adsorption of PEG to AuNPs showed a 6 nm red shift of the plasmon peak (Fig. 1). Upon conjugation of AuNPs to mitoTGFP and HAE GFP, a 12 nm red shift was observed, denoting successful conjugation along with the damping of the plasmon resonance band indicating molecule attachment on the particle surface (Fig. 1). Variation in the red shift is dependent on the differences in the dielectric nature of the nanoparticle medium,28 as such, PEG–AuNPs show a much smaller red shift than either mitoTGFP– or HAE GFP–AuNPs.

To confirm the conjugation, 40 µl of mitoTGFP–AuNP and HAE GFP–AuNP conjugates were loaded on a 0.5% agarose gel as described in the Experimental section. Migration towards the cathode confirms the net negative charge of the conjugates in TBE buffer (pH 8.0). The net negative charge originated from the proteins mitoTGFP and HAE GFP with pl values of 5.8 and 5.9, respectively. Previous studies found the red shift of AuNPs conjugated to ribonuclease S was dependent on the size and the amount of adsorbate AuNPs.29

Transfection of AuNP conjugates

Conjugate uptake into cells requires a transfection reagent such as sugar-decorated dendritic glycopolymer.13,14,17,30 In this study, we used cationic PPI-Mal-III G3 to mediate transfection of anionic protein–AuNP complexes into Jimt-1 cells; to demonstrate the effectiveness of PPI-Mal-III G3 as a transfection reagent, mitoTGFP–AuNP conjugates were transfected either in the presence or absence of dendrimers. One hour after stopping transfection, cells were fixed and prepared for TEM. No evidence of mitoTGFP–AuNPs inside the cells was obtained in the absence of PPI-Mal-III G3 (Fig. 2a). In contrast, TEM micrographs of cells transfected with mitoTGFP–AuNP conjugates in the presence of PPI-Mal-III G3 revealed AuNPs as black spots inside cells (Fig. 2b and c), confirming that PPI-Mal-III G3 can mediate transfection of AuNP conjugates. Receptor-mediated endocytosis is the most likely uptake route of the dendrimer-protein–AuNP complex due to oligosaccharide groups on the dendrimer AuNPs.13

Next, we investigated targeting of AuNP conjugates using cells transfected with PEG–AuNPs, HAE GFP–AuNPs, and mitoTGFP–AuNPs. After transfection, cells were incubated in serum-containing medium for 24 h to permit targeting of AuNP conjugates to intracellular organelles. TEM micrographs of cells transfected with PEG–AuNPs showed AuNPs as black
spots in endosomes (Fig. 3(a)) as they have previously been reported and as we similarly found for HAeGFP–AuNPs (Fig. 3(b)). Several studies have reported the uptake and intracellular trafficking of protein-coated nanoparticles such as ligand-conjugated quantum dots, which generally followed the same uptake pathway as ligands, but with conjugates arrested in endosomes. In our experiments, HAeGFP–AuNPs also accumulated in endosomes and partly in lysosomes (Fig. 3(b)) suggesting an endo/lysosomal pathway. In contrast, transfusions with mitoTGFP–AuNPs demonstrated that nanoparticles are partially targeted to the inner mitochondrial membrane (Fig. 3(c)). Previously, conjugation of organelle-specific targeting sequences to quantum dots resulted in delivery to either the nucleus or mitochondria. The different fates of AuNP conjugates confirm the previous observations that surface ligands play an important role in intracellular trafficking of nanoparticles. We also observed different uptake mechanisms (See ESI Fig. S1), which are known to result in different downstream intracellular trafficking. An obvious explanation would be that the dendrimers target the NPs to mitochondria (the electronegative pole within a eukaryotic cell) due to their cationic nature. However, our data on targeting of HA-eGFP do not support this view. Hence, we assume that the dendrimer coatings of the MitoTGFP–AuNP conjugates are removed during intracellular trafficking, thus exposing the mt targeting sequence of MitoTGFP–AuNPs.

MitoTGFP–AuNPs, transfected by PPI-Mal-III G3, enter the cells, early endosomes, cytosol, and mitochondria, and they are finally localized in the inner mitochondrial membrane (Fig. 4) suggesting that at least some mitoTGFP–AuNPs evade the lysosomal pathway. After uptake, mitoTGFP–AuNPs are enclosed in early endosomes (Fig. 4(a)), which eventually rupture, thereby releasing mitoTGFP–AuNPs to the cytosol (Fig. 4(b)). Due to the mitochondrial-targeting signal, mitoTGFP–AuNPs are directed to mitochondria and pass through the outer mitochondrial membrane (OMM) (Fig. 4(c)). Although how AuNP conjugates target mitochondria is not clear, most likely cytosolic factors such as the mitochondrial import stimulating factor (MSF) play an important role. Mitochondrial membranes could block the entrance of larger nanoparticles although in our case, it is likely AuNP complexes (~20 nm) partially rupture the OMM upon entry (as seen in TEM micrographs), where mitoTGFP–AuNPs co-localize with the inner mt membrane (Fig. 4(c) and 3(c)).

Induction of apoptosis

As the entry of AuNPs into the inner mt membrane partially ruptured the OMM (Fig. 4(c)), we hypothesized that the AuNP-mediated rupture of OMM could trigger apoptosis via release of cytochrome c, a protein resident in the intermembrane space (IMS). Cytochrome c release could trigger a cascade of caspases, eventually inducing cell death without additional external stimuli. To confirm the apoptotic potential of mitoTGFP–AuNPs, cells transfected with PEG–AuNPs, HAeGFP–AuNPs and mitoTGFP–AuNPs were incubated with a cell-permeable fluorogenic substrate for the apoptotic enzyme caspase 3, which converts the substrate into a fluorescent dye.
Caspase activity is a critical step in the onset of apoptosis that can be monitored using this fluorogenic substrate.41,42

Brightfield images documented healthy cells (Fig. 5(a)) with no obvious signs of cell stress (i.e. cell shrinkage). Fluorescence images of cells transfected with only the dendrimers PPI-Mal-III G3 as a control (Fig. 5(a)–(c)) show almost no fluorescence, documenting the absence of caspase 3 activity (Fig. 5(b)). Furthermore, dark spots indicating the presence of nanoparticles were not detectable in brightfield images, as anticipated (Fig. 5(a)) confirming the previous observations that the glycosylated PPI dendrimers are non-cytotoxic.20

Brightfield images further revealed the presence of imported AuNPs (seen as black spots) inside cells transfected with PEG–AuNPs (Fig. 5(d)–(f)), HAeGFP–AuNPs (Fig. 5(g)–(i)) or mitoTGFP–AuNPs (Fig. 5(j)–(l)) in the presence of the cationic PPI glycodendrimer. Although bright-field images of PEG–AuNP or HAeGFP–AuNP transfected cells appeared healthy (Fig. 5(d) and (g)), fluorescence images reveal some fluorescent spots (Fig. 5(e) and (h)) demonstrating the elevated caspase activity indicative of an early stage of apoptosis.41

Cells transfected with mitoTGFP–AuNPs possess clear signs of apoptosis including cell shrinkage and rounded cells, clearly observable (Fig. 5(j))43,44 with diffuse high intensity fluorescence in the cytoplasm indicating high caspase activity39 and condensed chromatin confirming the progression of cell death (Fig. 5(l)),15 As seen in TEM images, mitochondria of cells transfected with mitoTGFP–AuNP conjugates experienced outer mitochondria membrane rupture, releasing the intermembrane cytochrome c to the cytosol, activating a caspase-signalling cascade, leading to programmed cell death.4,46 Cells transfected with purified proteins did not exhibit apoptotic symptoms (See ESI – Fig. S3†). Therefore, transfection of mitochondrial localizing AuNP conjugates could be regarded as apoptosis-inducing due to the mechanical disruption of mitochondria, which in turn induces mitochondria-dependent apoptosis. The process is summarised and illustrated in Scheme 1.

Experimental

Cell line, cell culture products, chemicals and reagents

Trisodium citrate and tetrachloroauroric acid for synthesis of AuNPs were purchased from Sigma Aldrich GmbH, Germany. Synthesis and characterization of the third generation maltotriose modified poly(propylene imine) (PPI) dendrimer (PPI-Mal-III G3) have been described previously.18 We have used the same charge of PPI-Mal-III G3 as in ref. 18. The structure of PPI-Mal-III G3 is presented in the ESI (Fig. S1†). The plasmids encoding the mt localizing turbo green fluorescent protein (mitoTGFP) and green fluorescent protein (GFP) were purchased from Biocat GmbH, Germany. Cloning vectors pet23b+ and E. coli strains Top 10F’ and BL21 DE3pLys were from Novagen GmbH; restriction enzymes NheI and XhoI were obtained from New England Biolabs GmbH, Germany.
The human cancer line Jm1-1 was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) GmbH, Germany. The cell line, derived from the pleural effusion of a 62-year-old woman with ductal breast cancer after postoperative radiation in 2003, was reported to carry an amplified HER-2 oncogene and to be insensitive to HER-2-inhibiting drugs such as trastuzumab (Herceptin).47,48 Media and reagents for cell culture including Dulbecco Modified Eagles Medium (DMEM) without phenol red, phosphate-buffered saline, trypsin, and penicillin/streptomycin were from PAA Laboratories GmbH, Germany. Microcell culture dishes (35 mm diameter) for transfection were purchased from Ibidi GmbH, Martinsried, Germany. The caspase 3 substrate Phosphilux-G2D2 is a product of Oncoimmune Inc. and was obtained from EMD Millipore, Germany.

Fixation, staining and resin embedding reagents for Transmission Electron Microscopy (TEM) sample preparation including glutaraldehyde, low melting agarose, uranyl acetate, osmium tetroxide, lead citrate, and modified Spurr embedding kit were purchased from Serva Electrophoresis GmbH, Germany, and copper grids from Plano GmbH, Germany.

Gold nanoparticles

Spherical AuNPs were prepared by citrate reduction according to Frens et al.25 For the preparation of AuNPs with 20 nm diameter, 2.5 ml of 1% trisodium citrate solution were added to 10 ml of 0.1% tetrachloroauric acid (HAuCl4·3H2O). The mixture was stirred for 30 min at 70 °C until the colour changed from colourless to ruby red. The resulting AuNPs were characterized using a UV Vis spectrophotometer (Varian Cary 100, Canterbury, Australia) and SEM-EDX (Leo 982 scanning electron microscope, Carl Zeiss GmbH, Germany) (see ESI – Fig. S2). The formation of AuNPs can also be quantitatively verified at the elemental level using XRD.

Expression of fluorescent proteins

The AuNPs used in the experiments were conjugated to mitoTGFP or HAeGFP (haemagglutinin-tagged green fluorescent protein). The genes encoding mitoTGFP and HAeGFP were cloned, expressed and the respective proteins were purified. MitoTGFP was amplified by Polymerase Chain Reaction (PCR) from a plasmid bearing the mitoTGFP gene using gene specific primers with additional NheI/XhoI restriction sites. Upon treatment with the respective enzymes, the PCR product was cloned into the pET23b+ vector with an inherent histidine tag and transformed into competent cells of Escherichia coli strain TOP10F′. Plasmids isolated from positive clones were confirmed by DNA sequencing and transformed into Escherichia coli strain BL21 (DE3) plysS for expression of mitoTGFP. Transformants were grown at 30 °C in LB medium with ampicillin and chloramphenicol to an absorbance OD600 of 0.5 followed by a 4 hour induction with 0.5 mM IPTG. MitoTGFP was purified under native conditions using nickel beads as described previously.24 To check the mt targeting specificity of mitoTGFP, an eGFP variant containing the viral haemagglutinin tag instead of the mt targeting signal at its N terminus was cloned, expressed and purified using the same procedure.

Conjugation of AuNPs to proteins

The concentration of AuNPs was calculated by Beer’s law using the known molar extinction coefficient of 20 nm AuNPs in water (1.6 M⁻¹ cm⁻¹)25 with AuNP solution; the optical density was measured by UV-Vis-spectroscopy. To conjugate AuNPs to mitoTGFP, 100 µl of 0.1 nM AuNPs (20 nm diameter) were incubated with 100 µl of mitoTGFP (0.05 µg µl⁻¹ in PBS pH 5.5) for 15 min in the dark at room temperature. After incubation, the samples were centrifuged at 7000g for 15 min. The resulting conjugates were re-suspended in 100 µl PBS (pH 7.4).

Conjugation of AuNPs (0.1 nM) with HAeGFP was conducted in an identical manner. To conjugate AuNPs to polyethylene glycol, 100 µl AuNPs (0.1 nM) were mixed with 100 µl of 20% (w/v) freshly prepared polyethylene glycol (PEG 3350 dissolved in water and incubated as per the protein–AuNP conjugates with 100 µl of the conjugates pipetted into 96-well plates. The localized surface Plasmon resonance (LSPR) shift in the absorbance spectrum was used to analyse AuNP conjugates with confirmation by electrophoretic migration of 40 µl of AuNP conjugate suspension in 0.5% agarose gel at 10 kV per cm in TBE buffer (Tris-Borate-Ethylene diamine Tetra acetic Acid (EDTA)) at pH 8.0.

Transfection and targeting AuNPs to mitochondria

Jm1-1 cells were grown in DMEM with 4500 g l⁻¹ glucose, 10% (v/v) fetal calf serum and 2 mM l-glutamine (PAA Laboratories GmbH) without phenol red at 37 °C and 5% CO₂. Cells were routinely sub-cultured three times a week by enzymatic detachment using trypsin.

For apoptosis assays, 3 × 105 cells were seeded in 35 mm microcell culture dishes one day before transfection. Transfection complexes with mitoTGFP-AuNPs were constituted by adding 100 µl of AuNP–protein conjugate suspension to 100 µl HEPES buffer (pH 7.4). To this mixture, 100 µg of PPI-Mal-III G3 were added and mixed thoroughly. Transfection complex mixtures were incubated for 15 min at room temperature before being transferred to the cell suspension. After incubation for 4 h at 37 °C and 5% CO₂ in the absence of serum, transfection was stopped by washing the cells twice with PBS. Thereafter, the incubation was continued for a further 24 h with serum to allow targeting of AuNP conjugates to mitochondria. Control treatments included mock transfection (incubation with PPI-Mal-III G3 only) and non-transfected cells to assess autofluorescence. Cells were analysed using fluorescence and transmission electron microscopy to verify the efficacy of PPI-Mal-III G3 as a transfection reagent. To verify apoptosis, transfected cells were incubated with 200 µl PhosphiluxG2D2 for 1 h followed by washing with 2 ml PBS.26,27

Validation of mitochondrial targeted AuNPs

Transmission Electron Microscopy (TEM) was used to assess if AuNPs successfully targeted mitochondria. For TEM investigations, 1 × 106 Jm1-1 cells were grown in 100 mm sterile Petri
dishes. After transfection, the cells were detached using trypsin and fixed with 2.5% glutaraldehyde in DMEM buffer at 37 °C and 5% CO₂ for 24 h. The samples were then encapsulated in 2% low melting agarose gel for 30 min at 4 °C. The gel-encapsulated cells were sliced (about 1.5 × 1 mm) and fixed with 1% osmium tetroxide for 24 h, and then washed three times for 15 min with distilled water. A series of 25%, 50%, 75%, 96% and 100% acetone/water mixtures (v/v) were used to dehydrate samples over 4 h and then stained by 1% uranylacetate in acetone. The gel slices were stepwise embedded in epoxy resin (30% for 4 h; 50% for 12 h; 70% for 4 h; 100% for 4 h; 100% for 12 h, and lastly 100% for 4 h). The resin was stepwise polymerized at 50 °C for 3 h, and then at 55 °C–60 °C over 72 h. Ultra-thin sections (50 nm) were prepared on a Leica Electron M Ultracut ultramicrotome, mounted on pioform-coated copper grids and post-stained with uranylacetate and lead citrate. Electron micrographs were obtained with a scanning TEM at 30 kV or a Zeiss 912 Omega (Carl Zeiss GmbH, Germany) at 120 kV. Furthermore, verification of cellular uptake can be done with complementary ICP-MS analysis. The mitochondria are extracted from the whole cancer cells and then the amount of Au is measured by ICP-MS analysis.

Apoptosis verification
To confirm the apoptotic potential of mitoTGFP–AuNPs, cells transfected with PEG–AuNPs, HAeGFP–AuNPs and mitoTGFP–AuNPs were incubated with a cell-permeable fluorogenic substrate for the apoptotic enzyme caspase 3, which converts the substrate into a fluorescent dye. The CaspGLOW™ Fluorescein Active Caspase-3 Staining Kit was used and the cells were observed under a fluorescence microscope using an FITC filter. Caspase positive cells appeared to have brighter green signals, whereas caspase negative control cells show a much weaker signal.

Conclusions
In this work, we successfully transfected AuNP conjugates inside cells using cationic PPI glycodendrimers with open maltotriose shells by targeting AuNPs conjugated to mitoTGFP. Furthermore, the entry of AuNPs into mitochondria ruptured the outer mitochondrial membrane, triggering apoptosis. Transfection of mitochondrial localizing AuNP conjugates induces apoptosis due to the mechanical disruption of mitochondria, which in turn induces mitochondria-dependent apoptosis. This study provides a step towards development of controlled and targeted induction of apoptosis in cancer cells, which could provide an important tool in cancer therapy.

Acknowledgements
We thank Kai Ostermann (TU Dresden, Institute of Genetics) and Jörg Opitz (Fraunhofer Institute of Non-destructive Testing) for their helpful comments on the manuscript, Hartmut Komber (Leibniz-Institut für Polymerforschung Dresden e.V.) for NMR experiments, Nora Haufe (TU Dresden, Institute for Physical Chemistry) for assistance with the ultramicrotome and Axel Mensch (TU Dresden, Institute of Materials Science) for support in TEM. This work was partially funded by the BMBF Competence Centre ‘Ultradünne funktionielle Schichten’ Dresden, and the joint BMBF-funded project (no. 13140845) of the Friedrich-Schiller Universität Jena and the Technische Universität Dresden in conjunction with the DFG research training group “Nano- und Biotechniken für das Packaging elektronischer Systeme” (DFG 140/1), Germany. Finalization of the work has been made possible through funding from the Enterprise Cape Breton Corporation (ECBC) to the Industrial Research Chair for Mine Water Management at Cape Breton University, Nova Scotia, Canada.

Notes and references