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Chapter 1

Introduction

1.1 Preface

The concept of vacuum energy (also referred as the zero-point energy or

energy of the vacuum fluctuation) is one of the most fundamental and

counter-intuitive predictions of quantum mechanics and quantum field

theory. What is even more fascinating - this energy manifests itself in a

number of various measurable phenomena, so it astonishes physicists since

early days of the quantum theory. Arguably, one of the most profound and

well-known of these phenomena is the so-called Casimir effect [1]. Casimir

in his original work showed that an attractive force between two separated

uncharged metallic objects arises as a consequence of local change of the

vacuum energy. Besides the Casimir effect, there are other predicted and

observed vacuum energy manifestations, such as the van der Waals forces

[2]. The Lamb shift (found experimentally in [3] and explained theoret-

ically in [4, 5]) is also among them - the effect of displacement of the



Chapter 1. Introduction

2s energy level of hydrogen due to interaction of the electron with the

zero mode of the electromagnetic field. Other benchmark examples are

anomalous magnetic moment of electron [6] and spontaneous emissions [5,

7].

The concept of vacuum energy can be illustrated by the following con-

sideration. Let us take the Hamiltonian of a harmonic oscillator:

H0 = 1
2
∑

k
~ωk

(
a†kak + aka

†
k

)
(1.1)

a†k and ak are bosonic creation and annihilation operators in momen-

tum space, ωk is its frequency (dispersion). With the commutation rule

[ak, a
†
k′ ] = δk,k′ and the particle number operator nk = a†kak, the energy

vacuum expectation value for the Hamiltonian (1.1) is

〈0|H0|0〉 =
∑

k
~ωk 〈0|nk + 1

2 |0〉 = 1
2
∑

k
~ωk. (1.2)

Therefore, even the vacuum state, though there are no particles (quasipar-

ticles), is characterized by non-zero energy. Presence of external objects in

the system leads to a change of this energy, which can be an experimentally

measurable quantity. In particular, it may lead to an effective interaction

between this objects. A majority of the effects mentioned above arises

due to coupling of a particle (e.g. an electron) to a fluctuating Goldstone

mode. The Casimir effect stands unique even among the vacuum energy

related phenomena - unlike others of them, it appears due to a direct local

shift of the vacuum energy (1.2) as a consequence of the imposed bound-

aries or due to the non-Euclidean topology [8].

2



1.2 Casimir effect

In this thesis I focus on phenomena arising due to the vacuum fluctua-

tions in condensed matter systems. The subject of our prime interest is the

Casimir interaction between impurities mediated by phonons (Chapters 2-

4). In Chapter 5 we consider an itinerant electron in a two-dimensional

anisotropic ferromagnet in an eternal magnetic field. The particle distorts

magnetic order of the system creating virtual magnons. These magnons

significantly change mobility of the quasiparticle. We show that in this

situation the spectral weight is not described by a pole structure anymore.

1.2 Casimir effect

1.2.1 Original Casimir approach

To understand the difference between the origins of the Casimir interaction

in electrodynamics and in condensed matter physics, it is worth to consider

the original derivation of the vacuum fluctuation induced interaction made

by H. Casimir in his milestone paper [1]. We consider a simplified system

consisting of two parallel large conducting plates with sides L placed close

to each other and depicted in Fig. 1.1. The plates are separated by

distance which can vary from some very small value a up to a large d

(but d � L). The spectrum of fluctuating photons between the plates

is quantized and changes depending on the separation between the plates

due to the boundary conditions imposed by the plates. Following the

Casimir’s arguments, we calculate a difference in energy of the vacuum

fluctuations within the plates and without. The zero-point energy Eq.

(1.2) given by the sum over all possible zero-point frequencies between

the plates is divergent, but the difference of the zero-point energies for

3
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different separations between the plates is well-defined and finite. This

energy difference is interpreted as the interaction between the plates and

referred as the Casimir energy.

We choose z-axis perpendicular to the plates. The plates are separated

by distance a, so the coordinates inside the area of interest are in the range

0 ≤ z ≤ a, momentum of the zero-point field is quantized in this direction

and reads

kz = π

a
nz

with positive integer nz.

The total zero-point energy Eq. (1.2) for the linear spectrum ωk =

c
√
k2
x + k2

y + k2
z (c is the speed of light here) is given then as

1
2
∑

k
~ωk = ~c

L2

(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

1
2
√
k2
x + k2

y +
∞∑
n=1

√
k2
x + k2

y + π2

a2 n
2

 .
(1.3)

The electromagnetic field has two polatizations, i.e. two standing

waves for each mode, except n = 0. For a massless scalar field the second

term in Eq.(1.3) would have the 1
2 prefactor.

It is easier to treat the integrals over kx and ky in polar coordinates,

with the polar angle θ ∈ [0, π2 ] and radius κ =
√
k2
x + k2

y ∈ [0,∞). We are

interested in the difference of energy δE for two configurations: when a is

small and when a is very large. In the second case the summation can be

changed to integration, the same way as previously for kx and ky:

δE = ~c
L2

π2
π

2

∫ ∞
0

dκ

1
2κ

2 +
∞∑
n=1

κ

√
κ2 + π2

a2 n
2 − a

π

∫ ∞
0

dkzκ
√
κ2 + k2

z

 .
4



1.2 Casimir effect

Figure 1.1. Principal set-up for the Casimir effect as formulated in [1]. Quan-
tization of the electromagnetic waves between the plates leads to the attractive
force between the plates (depicted as brown arrows).

(1.4)

To evaluate the expression above, we introduce the cut-off function f( k
km

) =

e−
k
km , km ' ωp

c , ωp the plasma frequency for the metal. The physical

meaning of this cut-off is that there are no ideally conducting plates and

high frequency waves leak out of region confined by the metal plate. In

principle, there are other ways to renormalize Eq. (1.4), for instance, the

so-called dimensional regularization method is discussed in [9].

After substitution of a new variable u = a2κ2

π2 into Eq.(1.4), the energy

5
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difference becomes

δE = ~c
L2π2

4a3

[
1
2F (0) +

∞∑
n=1

F (n)−
∫ ∞

0
dnF (n)

]
,

with F (n) =
∫∞

0 du
√
u+ n2f

(
π
√
u+n2

akm

)
.

The Euler–Maclaurin formula, which reads as

∞∑
n=1

F (n)−
∫ ∞

0
dnF (n) = −1

2F (0)− 1
12F

′(0) + 1
720F

′′′(0) + ... ,

can be applied here. Differentiation of this function gives

F
′(0) = 0,

F
′′(0) = 0,

F
′′′(0) = −4.

Higher order derivatives contain derivatives of the f(n)|n=0 function, which

are small, and powers of the small parameter π
akm

, so the resulting energy

difference per unit of square, which is usually referred as the Casimir en-

ergy, is E(3D)
Cas (a) = δE

L2 = −~c π2

720
1
a3 . As a consequence, the attractive

force between the plates is

FCas(a) = π2

240
~c
a4 . (1.5)

The finite temperature corrections for the Casimir force between con-

ducting plates were calculated by Mehra [10]. The free energy of the

6
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system is defined as

F = − 1
kBT

log
[
Tr

(
e
− H
kBT

)]
, H =

∑
k

~ωk

(
nk + 1

2

)
.

It gives the Casimir force

FCas(a, T ) = 1
L2

∂F

∂a
, F =

∑
k

[~ωk
2 + kBT log

(
1− e−

~ωk
kBT

)]
. (1.6)

For high temperatures 4πakBT
~c ≡ t� 1, Eq.(1.6) yields

FCas(a) = kBT

4πa3 ζ(3) + kBT

2πa3

[
1 + t+ 1

2 t
2
]
e−t,

where ζ(3) ' 1.2 is the Riemann zeta-function.

At low temperatures t� 1, the solution of Eq.(1.6) is

FCas(a) = π2

240
~c
a4

[
1 + t4

48π4 −
60t
π2 e

− 4π2
t

]
.

In the limit of zero temperature, this expression is the same as Eq. (1.5).

This force between metallic plates is proportional to ~, which illustrates

the fact that it is purely quantum and disappears in the classical limit.

1.2.2 Experimental realizations and further extensions of

the Casimir effect

The Casimir effect was measured experimentally for the first time in 1956

[11, 12] in insulating systems (the theory for the Casimir effect in such

system was developed by Lifschitz, Dzyaloshinskii and Schwinger [13, 14,

15]). In metallic systems, the Casimir effect was measured for the first

7
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time in 1958 [16]. Later on, several observations of the Casimir effect were

reported in [17, 18, 19, 20]. In the high precision experimental measure-

ments, the agreement with theory was achieved with a margin of error 5%

and then 1% [21, 22]. Improvement of the measuring devises and develop-

ment of nanoscale electromechanical devices surged a new wave of interest

towards the experimental manifestations of the Casimir effect in systems

with nontrivial geometries and in gases or liquids (e.g. [23, 24, 25, 26, 27,

28] ).

Beside the experimental studies, there are novel theoretical works

which extend the Casimir effect on unusual systems and interactions. A

lot of attention is paid recently to the Casimir effect in systems with non-

trivial geometry or topology [8, 29, 30, 31, 32, 33], to the Casimir effect

mediated by massive bosonic fields [34, 35, 36, 37] and by fermions [38,

39]. Furhermore, repulsive Casimir forces were predicted theoretically and

found experimentally [40, 41, 42, 43, 44, 45, 46].

Varieties of the Casimir interaction can have significant manifestations

in other broad classes of problems. It is found that under certain condi-

tions the Casimir effect is important in helium films [47, 48, 49], quantum

fluids [50, 51, 52, 53, 54, 55], graphene [56, 57], optical systems [58, 59,

60]), high energy physics and cosmology [61, 62, 63, 64, 65, 66].

Due to the development of nanoscale devices, the Casimir effect be-

came important not only from a point of fundamental science, but for ap-

plications as well, as it was argued for the first time in [67]. Applications

of the Casimir effect were proposed for advanced nanomechanical devices,

such as microelectromechanical systems in the production of sensors and

actuators. As it was shown in [68], the Casimir effect indeed influences

8



1.2 Casimir effect

devices containing a micromachined cantilever beam with a size of a few

µm. The cantilever is placed above a substrate and moves in response

to applied voltages on the substrate, or in response to incoming radio-

frequency signals [69]. The Casimir forces make the cantiliver move as

well, which must be taken into account for the correct interpretation of

the resulting cantilever movement and optimizing of the devices’ perfor-

mance. This principle was used for an actuator based on the Casimir force

developed at Bell labs [70].

1.2.3 Casimir effect in condensed matter physics

In condenced matter physics, a broken continuous symmetry in media gen-

erates Goldstone modes, so the media can exhibit long-range interactions

[71]. The quantum fluctuations of the Goldstone modes are crucial in a

number of the condensed matter systems, for instance, they are present in

superfluids [72], e.g. superfluid 4He [73] and superfluid systems of bosonic

or fermionic cold atoms. Another example is liquid crystals [74], their ex-

istence is possible due to these fluctuations. In both cases, the arising

Goldstone modes are phonons. The long-range interactions appear when

perturbing objects or impurities are introduced into a medium with long-

range fluctuations. Bosons corresponding to the given Goldstone mode

scatter on the perturbing objects creating effective interaction between

them.

In this thesis I concentrate on the phonon-induced Casimir effect in con-

densed matter physics. Recently substantial interest in the Casimir effect

in one-dimensional systems has appeared due to new opportunities for

experimental realizations as a result of the significant progress in the ex-

9
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perimental techniques in cold atoms [75, 76, 77, 78, 79, 80, 81]. Several

set-ups were proposed for studying the Casimir interaction in cold atoms.

[82, 83, 84, 85, 86, 87, 88, 89]. Among them is the Luttinger liquid in

1D atomic gases, in which phonons may mediate the Casimir interaction

between the impurity atoms.

It was shown by Recati et al. [50] that the phonon-mediated Casimir

attraction between two static impurities can be observed experimentally

in a Luttinger liquid, in the setup of Moritz et at. [76]. In this experi-

ment, an atomic 1D gas of fermions in two hyperfine states was created

by use of a two-dimensional optical lattice. The two internal states play

a role of spin−1/2 states. It was proposed to introduce in this gas atomic

quantum dots (AQD) as impurities (AQD’s coupled to quantum liquid

were studied in [90, 91, 92]). AQD consists of a single atom confined in

a tight trap created either magnetically or optically, this confining poten-

tial is assumed to be adjusted so that it does not affect the atoms of the

bath. The impurity atom, which is trapped in a certain internal state |a〉,

interacts with the atoms of the bath through s−wave collisions. In the

case where two such AQD’s are embedded in the bath and both impurity

atoms are in state |a〉, the system precisely realizes the situation of two

localized impurities interacting via a 1D quantum liquid. The scheme of

the proposed experiment is given in Fig. 1.2. A possible way to detect

the interaction energy UCas(r) is to do spectroscopy of a single trapped

atom as a function of the distance r to a neighboring trapped atom. In

addition to the mean-field line shifts modifying the internal levels of the

impurity atom, the Casimir interaction produces a line shift depending on

distance as 1/r. In the experiment of [76] N ∼ 400 40K atoms were used.

10



1.2 Casimir effect

Figure 1.2. Schematic set-up of two AQD’s coupled to a 1D atomic reservoir.
The impurity atoms in a tightly confining potential interact with the bath when
their internal level is |a〉. Here ∆ is the renormalized detuning and Ω is the Rabi
frequency coming from a laser-induced coupling. The figure is reprinted with
permission from[50]. Copyright 2005 by the American Physical Society.

They form an atomic wire of length L ∼ 10µm, the inter-particle distance

is estimated as 0.1µm, the speed of sound c ∼ 4cm/s, temperature correc-

tions are neglected, since T ∼ 50nK is smaller than other energy scales of

the systems. Recati et al. estimated the Casimir energy (and the related

shift between two levels) for two AQD’s separated by the inter-impurity

distance r ∼ 1µm for this system as ECas(r) ∼ 1kHz, which is in an

experimentally accessible range.

The authors of [51] estimated applicability of the considered model

for experimentally realized Luttinger liquid, using a set-up provided in

[79], a 1D system of 87Rb atoms with 40K impurities (Fig. 1.3). With

density of the system n ' 7(µm)−1 and a speed of sound c ' 1cm/s, T '

300nK, the magnitude of the potential at the closest applicable separation

r = 1/n ' 0.14µm is UCas(r) ' 1kHz, while for r = 5LT ' 0.39µm

11
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Figure 1.3. Ultracold Rb atoms with K impurities are loaded into an array of
1D systems, “tubes” (left). The species selective dipole potential (SSDP) light
blade [93] spatially localizes the impurities into the center of the Rb tubes. The
figure is reprinted with permission from [79]. Copyright 2012 by the American
Physical Society.

(LT = 2πc
T ) one finds UCas(5LT ) ' 1Hz, indicating 3 orders of magnitude

variation over a ' 0.25µm range of separations. The magnitude of the

effect ∼ 1kHz is thus within an experimentally accessible range, with

the scale of applicable separations increasing as one goes deeper into the

quantum degenerate regime, T � mc2.

1.3 Outline of the chapters

Bellow I briefly highlight the main results presented in the thesis.

1.3.1 Chapter 2

In this chapter we consider how the Casimir interaction is generated be-

tween the impurities due to changes in the spectrum of phonons of the

lattice induced by these impurities. We use the exact diagonalization

method for this study. We analyze two different types of impurities that

perturb the kinetic and potential terms of the Hamiltonian correspond-

12
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ingly. The first one corresponds to heavy or light impurities in atomic

chains with periodic boundary conditions, the second one - an external

potential applied to two given sites of the lattice. We show that these two

different mechanisms for the phonon-induced Casimir interaction lead to

different spacial laws.

1.3.2 Chapter 3

We find the Casimir interaction in the one-dimensional atomic chain with

impurities from Chapter 2 using the perturbation theory approach. We

expand obtained solution on a continuum case and, after a short intro-

duction to Luttinger liquids, discuss the mapping of a Luttinger liquid

with impurities to our continuum model. The main result of this chapter

is the exact solution of the considered model. We consider two types of

impurities introduced in the previous chapter and show that their asymp-

totical spacial dependence differs and exhibits two universal power laws.

At shorter distances the spacial behavior of the Casimir interaction is

non-universal. The characteristic scaling for the universal spacial laws is

defined by the relation between masses of the impurities and particles of

the medium. The temperature corrections for the effects are found for the

cases of low and high temperatures.

1.3.3 Chapter 4

In this chapter, we generalize the results obtained in the previous chapter

in the framework of the T -matrix approach. It allows us to connect the

experimentally measurable single-particle scattering amplitude with the

Casimir interaction. Our consideration applies to the cases of dynamical

13
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and static impurities discussed in previous chapters. This approach is

especially important for the external potential case, since the problem is

non-perturbative. The corresponding Casimir interactions are found in

dimensions D = 1..3. In addition, we consider the Casimir interaction

at finite temperatures and show that at finite temperatures the Casimir

interaction becomes exponential at large distances with two characteristic

distances defining scaling crossovers in the system.

1.3.4 Chapter 5

We move from the Casimir interaction and discuss another effect involv-

ing the Goldstone mode properties. We study analytically and numeri-

cally how an itinerant hole propagates in a two-dimensional ferromagnetic

system with spin-flip processes. This spin-flip processes create virtual

magnons that strongly couple to the hole changing its properties. Ap-

plying an external magnetic field to the ferromagnet, one can achieve the

regime where the quasiparticle description of the system is no longer valid.

We demonstrate that the van der Waals crystals with antiferromagnetic in-

terlayer and ferromagnetic intralayer alignments can realize the proposed

mechanism of the spin-flip hopping.

14



Chapter 2

Origin of the

phonon-mediated Casimir

interaction

2.1 Lattice model for phonon-mediated Casimir

interaction

In this chapter, we show that the Casimir effect between impurities medi-

ated by phonons is different to the one mediated by photons. The crucial

difference comes from the fact that in the system considered originally by

Casimir the plates imposing boundary conditions are static. In contract,

the impurities on a lattice (or in a medium) move coherently with atoms
Parts of this chapter have been published in A. I. Pavlov, J. van den Brink, D. V.

Efremov, Phys. Rev. B 98, 161410(R) (2018).

https://doi.org/10.1103/PhysRevB.98.161410
https://doi.org/10.1103/PhysRevB.98.161410


Chapter 2. Origin of the phonon-mediated Casimir interaction

of the lattice. The dynamic nature of the impurities reflects itself in the

power law of the Casimir interaction.

We start from the most simple physical system where excitations are

described by phonons - a harmonical oscillator, which describes atoms in

an ideal lattice, and study how perturbation of the phonon’s spectrum

created by two separated impurities generates the Casimir interaction be-

tween them. The calculation of the Casimir interaction will be done nu-

merically by means of the exact diagonalization method. We examine the

properties of the system for different relative positions of the impurities.

We analyze an ideal harmonic cubic lattice, described by the Hamil-

tonian

H0 =
∑
i

p2
i

2m + mω2
0

2
∑
<i,j>

(ui − uj)2, (2.1)

with two embedded impurity atoms, which have their mass different from

the mass of the atoms of the lattice. In Eq.(2.1) pi and ui are the momen-

tum and coordinate operators, m is the mass of the atoms of the cubic

lattice and mω2
0 is the harmonic potential of the lattice. Introduction of

the impurity atoms creates an additional term V in the full Hamiltonian

of the system H = H0 + V . The structure of this term depends on the

considered problems and is discussed in next sections. We consider only

the longitudinal mode here and below. The extension to the transverse

modes is trivial and leads to D factor, which we neglect for simplicity.

We express Eq.(2.1) in terms of bosonic operators bk, b
†
k. Quantized

operators pi and ui read as pi = −i
√

mω0
2
∫ dk

(2π)D e
irik

(
b†k − bk

)
and ui =

16



2.2 Exact diagonalization

√
1

2mω0

∫ dk
2π)D e

irik
(
b†k + bk

)
, where D is dimensionality, we obtain H0 as

H0 =
∑

k
ωk

(
b†kbk + 1

2

)
(2.2)

with the phonon spectrum: ωk = ω0
√
Z(1− γk). Here γk = 1

Z

∑
δ e

ikδ

with summation over the nearest neighbours and Z is the number of

the nearest neighbors. In one-dimensional case it reduces to: ωk =

2ω0 |sin(kδ/2)|, where δ is the lattice constant. In the low energy limit

ωk = c|k| with the phonon’s speed (speed of sound) c = ω0δ. Further for

simplicity we put δ = 1.

2.2 Exact diagonalization

2.2.1 Two impurity atoms with different masses

At first, we consider two impurity atoms with masses M located at sites

a and b. The resulting Hamiltonian of the system is H = H0 +V with the

perturbation term of the kinetic energy:

V = − g

2m(p2
a + p2

b) (2.3)

where the effective coupling constant g = (1−m/M).

The Hamiltonian with two embedded impurity of the masses M can

not be reduced to the Hamiltonian of free phonons. However, one can

find the Casimir interaction, i.e the dependence of the total energy of zero

point motion E = 1
2
∑
ka ω̃k of the all atoms of the lattice on the distance

between the impurity atoms.

17



Chapter 2. Origin of the phonon-mediated Casimir interaction

We employ the exact diagonalization method by considering atomic

chains with periodic boundary conditions of various sizes with two impu-

rities put at some fixed positions a and b. The energy of the system is

a function of distance between the impurities U(ra − rb). The detailed

explanation of the employed method is given in Section 2.4.

The result of the exact diagonalization for a 200 atoms chain for various

masses of impurity atoms is shown in Fig. 2.1. The Casimir interaction

U(r) between finite mass impurities does not follow U(r) ∼ 1/r3 in the

whole range of distances. Rather the interaction is non-universal. One

can note that the normalized Casimir interaction for heavy impurities

(M > m) scales in the range 1/r3 < U < 1/r, and for light impurities

(M < m) it is U < 1/r3. For impurity masses close to m, the Casimir

interaction tends to 1/r3 law and in the limit M → ∞ (infinitely heavy

impurities) one observes the 1/r law. Impurity with large but finite masses

demonstrate behavior close to 1/r at short distances with the crossover to

the 1/r3 law at large distances. The scale of these crossover depends on

the M/m relation.

2.2.2 External potential

Now we consider a lattice with periodic boundary conditions where two

atoms are placed in an external harmonic potential which is defined by

the following Hamiltonian:

V = gmω2
0(u2

a + u2
b), (2.4)
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Figure 2.1. Normalized by U(1)r3 Casimir interaction U(r) calculated for a
chain of 200 atoms with two impurity atoms with various masses (to check the
finite size effects we examined various sizes of the chain, up to a 800 atoms chain,
and found no difference at such distances): Red dots - g = 0.1 (M/m = 1.1),
purple - g = 0.6 (M/m = 2.5), green - g = 0.875 (M/m = 8), brown - g = 0.95
(M/m = 20), orange - g = 0.99 (M/m = 100), blue - g = 0.998 (M/m = 500),
turquoise - g = −0.5 (M/m = 0.5). The red line shows 1/r3 law, the blue line -
1/r.

with the interaction constant g ≥ 0.

This term is quantized in terms of the phonon operators and the whole

system is diagonalized in the same fashion as in the previous case (see Sec-

tion 2.4).

The spacial dependence of the resulting energy is non-universal as well.

It behaves as U(r) < 1
r , as it is shown in Fig.2.2. The Casimir interaction

in this case demonstrated the non-universal spacial behavior at short dis-

tances a falls off slower than for the impurities considered in Section.2.2.1,
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Chapter 2. Origin of the phonon-mediated Casimir interaction

reaching the 1/r at large distance. In the limit of infinitely strong con-

fining potential g → ∞, the interaction becomes universal and falls off

exactly as ∼ 1
r , as the boundary conditions imposed by the impurities in

this case are identical to the ones created by metallic plates in vacuum for

photons in the original paper of Casimir.

Figure 2.2. Casimir interaction U(r) calculated for a chain of 200 atoms with an
external potential applied to two sites separated by the distance r. The potential
strength from Eq.(2.4) is chosen as g = 0.5

2.2.3 Multidimensional lattice

The exact diagonalization procedure discussed in this chapter can be di-

rectly applied to harmonic lattices in dimensions D > 1. Due to the re-
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2.2 Exact diagonalization

source consumption, the computed cluster sizes are considerably smaller.

We considered here the case of heavy impurities in a 20x20 square (2D)

or a cubic 8x8x8 (3D) lattice. The behavior of the Casimir interaction

between them demonstrates the same features in these dimensions as in

1D - its behaviour is non-universal, but at sufficiently large distances its

asymptotic behavior is ∼ 1
r2D+1 , as illustrated in Fig.2.3. With increase

of dimensionality, this spacial law is reached much faster than in 1D. The

characteristic distance where the crossover between different scalings hap-

pens, as well as the spacial behavior in the M →∞ limit will be discussed

further in this thesis during the analytical study of the Casimir interaction

in dimensions D > 1.

(a) (b)

Figure 2.3. Exact diagonalization of the Casimir interaction between heavy
impurities (M/m = 2) in higher dimensions in a cubic lattice, ω̃ = ω

ω0
(a) D = 2,

20x20 lattice, blue line ∼ 1/r5 (b) D = 3, 8x8x8 lattice, blue line ∼ 1/r7
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Chapter 2. Origin of the phonon-mediated Casimir interaction

2.3 Physical origin of the Casimir interaction be-

tween impurities on a lattice

Now we show where the principal difference between the two considered

cases comes from. Dispersion of phonons of the lattice is given in Fig.2.4.

Fig.2.4a illustrates an ideal lattice composed of 12 identical atoms with

periodical boundary conditions. Now let us add a small perturbation to

the lattice. Depending on which term from Eq.(2.1) we perturb, we get

drastically different results. If we perturb the kinetic term, as is the case

in the Section 2.2.1, a small perturbation leads to considerable change of

the phonon dispersion at high energy, but without serious influence on

the lowest ones (Fig.2.4b). While perturbing the potential term, as it

is done in Section 2.2.2, we see that the lowest mode instantly becomes

gapped (Fig.2.4c), so the linear gapless spectrum is no longer here. These

two cases converge only in the limiting case then the bands become com-

pletely flat (which corresponds to infinite mass of the impurities or infinite

confining potential)

In this chapter, we have analyzed numerically the evolution of the

phonon induced Casimir interaction between two impurity atoms embed-

ded in an ideal lattice. This interaction at small distances differs from the

power law 1/r(2D+1) realized at large separations between the impurities.

For static impurities the interaction tends to the 1/r law. The reasons

for such behavior and crossover between them is demonstrated in next

chapters.
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2.4 Appendix: Exact diagonalization method

(a) (b)

(c)

Figure 2.4. Phonon dispersion for a chain of 12 atoms with periodic boundary
conditions. (a) An ideal lattice withut impurities. (b) A lattice with two heavy
impurities M = 1.1m. (c) a lattice with external potential applied to two sites,
g = 1.1

2.4 Appendix: Exact diagonalization method

Here we describe the technical details of the exact diagonalization method

with respect to our model.

We start from the harmonical oscillator Hamiltonian which includes im-

purities. Let us consider an ideal lattice with two impurities at sites a and
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Chapter 2. Origin of the phonon-mediated Casimir interaction

b of masses M 6= m.

H =
∑
i

p2
i

2mi
+
∑
<i,j>

mω2
0

2 (ui − uj)2,

where

mi =


m, if i 6= a, b

M, if i = a, b.

The sum is taken over all positions, so mi is either m or M . We stay in r-

space, so this Hamiltonian is represented through the second quantization

operators of the real space

pi = −i
√
mω0

2 (b†i − bi),

ui =
√

1
2mω0

(b†i + bi).

This leads us to the expression

H = 1
2ω0

N∑
i=1

[
− m
mi

(b†i − bi)2

2 + (b†i + bi)2

− (b†i−1 + bi−1)(b†i + bi)− (b†i + bi)(b†i+1 + bi+1)
]
. (2.5)

N is the number of atoms in the considered chain, ω0 is the characteristic

energy of phonons. This energy depends on a particular system under

consideration. In a system of solid hydrogen with deuterium impurities,

which is naturally well suited for testing the Casimir forces discussed in

this thesis due to high Debye frequency of phonons and relatively large

mass ratio of hydrogen and deuterium, this energy is ω0 ∼ 10meV [94].
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2.4 Appendix: Exact diagonalization method

And for hydrates, e.g. H3S compound, this value can be as high as ω0 ∼

100meV [95].

We apply the Fourier transform to this Hamiltonian and diagonalize it

numerically. It means that we have to diagonalize the following matrix

for all possible values of k



m
2M +D − m

2M +D 1 1 0 0 · · · · · · eik eik

m
2M −D − m

2M −D −1 −1 0 0 · · · · · · −eik −eik

1 1 1
2 +D −1

2 +D 1 1 0 · · · 0 0

−1 −1 1
2 −D −1

2 −D −1 −1 0 · · · 0 0

0 0 1 1 m
2M +D − m

2M +D 1 1 0 · · ·

0 0 −1 −1 m
2M −D − m

2M −D −1 −1 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

e−ik e−ik 0 0 · · · · · · 1 1 1
2 +D −1

2 +D

−e−ik −e−ik 0 0 · · · · · · −1 −1 1
2 −D −1

2 −D



.

Here D is dimensionality of the problem (the consideration is correct for

a cubic lattice). In this example, impurities are located at a = 1, b = 3.

Even lines of the matrix are taken with the ” - ” sign to satisfy the bosonic

commutation rules.

The diagonalization leads to the Hamiltonian of a diagonal form (αk
is some operator which diagonalizes the Hamiltonian, ω′k is the energy

corresponding to eigenstates of this operator):

Ĥ =
∑
k

ω′k

(
α†kαk + 1

2

)
.

Integration over k gives us energy Ũ(ra− rb) = UCas(ra− rb) +U∞, which

is a sum of the Casimir interaction energy and some constant part coming

from renormalization of the phonons spectra. By consideration of various
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Chapter 2. Origin of the phonon-mediated Casimir interaction

ra and rb, the U∞-term is eliminated, so we get the Casimir interaction

energy UCas(ra − rb).

In the case of applied potential, the approach is identical with the only

difference that the matrix for diagonalization is now



1
2 + gD −1

2 + gD 1 1 0 0 · · · · · · eik eik

1
2 − gD −1

2 − gD −1 −1 0 0 · · · · · · −eik −eik

1 1 1
2 +D −1

2 +D 1 1 0 · · · 0 0

−1 −1 1
2 −D −1

2 −D −1 −1 0 · · · 0 0

0 0 1 1 1
2 + gD −1

2 + gD 1 1 0 · · ·

0 0 −1 −1 1
2 − gD −1

2 − gD −1 −1 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

e−ik e−ik 0 0 · · · · · · 1 1 1
2 +D −1

2 +D

−e−ik −e−ik 0 0 · · · · · · −1 −1 1
2 −D −1

2 −D



.
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Chapter 3

Exact solution for the

phonon-mediated Casimir

effect in 1D

3.1 Introduction

In this chapter we consider the phonon-mediated Casimir interaction in

one dimension. Using the diagrammatic technique, we evaluate this inter-

action analytically. The series of the diagrams contributing to this inter-

action can be summed up, so we obtain the exact solution of the model.

Phonons of the system couple to separated impurities. This coupling leads

to an effective exchange of the virtual phonons between impurities that it

Parts of this chapter have been published in A. I. Pavlov, J. van den Brink, D. V.
Efremov, Phys. Rev. B 98, 161410(R) (2018).

https://doi.org/10.1103/PhysRevB.98.161410
https://doi.org/10.1103/PhysRevB.98.161410


Chapter 3. Exact solution for the phonon-mediated Casimir effect in 1D

turn creates an attractive force between them. We consider the solution

both for a lattice and continuum models. The latter situation has a di-

rect relation to the Casimir effect arising between impurities in Luttinger

liquids. It is worth to discuss the phonon-impurity coupling in the Lut-

tinger liquid in greater details to see how the Casimir interaction arises

there, which is done in next sections. After that, we move directly to

consideration of our model and its relation to experimentally achievable

systems.

3.2 Phonon-mediated Casimir effect in

one-dimensional quantum liquids

3.2.1 Littinger liquid

The Tomonaga-Luttinger model, formulated initially by Tomonaga [96]

and Luttinger [97] for one-dimensional spinless fermions, has been ex-

plicitly solved by Mattis and Lieb [98]. This model was generalized for

the so-called Luttinger liquids by Haldane [99]. The excitations in the

model can be represented as non-interacting bosons (namely, phonons).

As argued by Haldane, the Luttinger liquid description is valid for con-

ducting spinless fermion systems in one dimension as the effective low

energy model, it also can be generalized to spin−1
2 fermions. Since then,

the realization of the Luttinger liquids and their bosonic analogues (the

Luttinger liquid model can be applied as an effective low-energy theory

of one-dimensional bosons) in cold atoms have been extensively discussed

[85, 86, 87, 88, 89].
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3.2 Phonon-mediated Casimir effect in
one-dimensional quantum liquids

Haldane developed the Luttinger liquid approach to one-dimensional

interacting systems in [99, 100] for both fermionic and bosonic systems.

The general form of the Hamiltonian employed for the description of this

system is

H = 1
2m

∫
dx|∇ψ(x)|2 + 1

2

∫
dxdyρ(x)V (x− y)ρ(y). (3.1)

The operator ψ(x) can obey either Fermi or Bose statistics. For now, we

choose a system of fermions. This system can be bosonized in multiple

ways (see [101] for a review). Details of this procedure are given in Section

3.6.1.

Using the so-called phenomenological bosonization [100, 102], one can

rewrite the Luttunger liquid Hamiltonian in the following form [102]

HLL = c

2π

∫
dx

[
K (∇θ(x))2 + 1

K
(∇φ(x))2

]
. (3.2)

Fields θ(x) and φ(x) describe the phase and the density of the wave-

function ψ(x) corresponding to operators from Eq.(3.1), ψ(x) ' |ρ0 +
∇φ(x)
π |

1
2 eiθ(x) (see Section 3.6.1 for details). K is the Luttinger liquid pa-

rameter, K < 1 for repulsive fermions or attractive bosons, K > 1 for at-

tractive fermions or repulsive bosons, K = 1 for non-interacting fermions

and K → ∞ for non-interacting bosons. In the approach of the phe-

nomenological bosonization, this Hamiltonian is obtained by substituting

the fields ψF (x) or ψB(x) into Eq.(3.1) and retaining only the leading or-

ders of θ(x) and φ(x) (fluctuations over the ground state are assumed to

be small).

Let us perform this procedure for bosonic fields. Choosing the interac-
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tion between bosonic particles as V (x − y) = c
mδ(x − y), we come to the

Lieb-Liniger model [103]. The Hamiltonian for this model reads [104]

H = 1
2m

∫
dx

[(
ρ0 + ∇φ(x)

π

)
(∇θ(x))2 + (∇2φ(x))2

4ρ0

]
+ c

2m

∫
dx (∇φ(x))2 .

Retaining the operators of scaling dimension two, we come at low energies

to the Luttinger liquid Hamiltonian Eq.(3.2).

3.2.2 Mapping between a Luttinger liquid and a harmoni-

cal oscillator

The Luttinger liquid Hamiltonian Eq. (3.2) can be rewritten in the form

identical to the Hamiltonian of the harmonical oscillator [102]. Expressing

the operators θ(x) and φ(x) explicitly via phonon operators b, b† as

∂xθ(x) = −i
∑
q

√
πK|q|

2L sgn(q)
(
bq + b†−q

)
e−iqx, (3.3)

∂xφ(x) = i
∑
q

√
π|q|
2KL

(
bq − b†−q

)
e−iqx, (3.4)

one can rewrite Eq. (3.2) as HLL = c
∑
q |q|b†qbq.

Now we move to the Casimir interaction realized between two impurities

embedded in the Luttinger liquid. The impurities under consideration are

electrically neutral and spinless, separated by distances much larger then

their size. The elementary Goldstone excitations in the Luttinger liquids

are phonons [102], so the Casimir interaction between impurities in these

systems is realized foremost via exchange of virtual phonons. We consider

impurities of two different types. The static impurities in the Luttinger
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one-dimensional quantum liquids

liquid do not posses kinetic energy and perturb the potential term in Eq.

(3.2). They correspond to atoms in an applied external potential in the

lattice. In contrary, the dynamic impurities can move coherently with the

medium, they perturb the kinetic term in Eq. (3.2) and correspond to

heavy/light impurities in a lattice. In both cases a bare impurity-phonon

coupling is strongly renormalized in the Luttinger liquid at small energies

[105, 106, 107], so we take the interaction constant g as a phenomenolog-

ical phonon scattering amplitude for a single impurity. As we explicitly

show in the further, a system with these types of impurities can be de-

scribed as a harmonical oscillator with perturbed kinetic and potential

energy correspondingly.

Static impurities in a Luttinger liquid

If the impurities are located at fixed positions and create perfectly re-

flecting barriers for phonons, the Casimir interaction between them is

completely analogous to the one originally obtained by Casimir [1]. These

impurities in one dimension impose the same boundary conditions for

phonons as the conducting walls for photons in the original Casimir prob-

lem. The only difference in the result is the “1
2” coefficient for phonons,

since they are scalar particles, while photons are summed over two spin

polarizations [108, 109]

UCas(r) = −~cπ
24r . (3.5)

The mechanism of the Casimir interaction in Luttinger liquids between

static impurities when the phonon reflection is not perfect was studied in
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[54, 50, 53]. The authors of [50], considered a one-dimensional quantum

liquid with two static impurities. Each impurity couples to the parti-

cles of the liquid with the given coupling strength g. This value is taken

phenomenologically as the phonon-impurity scattering amplitude. They

found that for a non-interacting Fermi gas (K = 1), the Casimir inter-

action is strongly affected by the Friedel oscillations [110]. This type

of oscillations is typical for fermionic systems with impurities (an impu-

rity creates oscillations of density with period π/kF , the other impurity

senses them). Away from the point of non-interacting fermions (K � 1),

these oscillations quickly vanish and the interaction between two impu-

rities becomes smooth. Each impurity in the Luttinger liquid creates a

local perturbaton of density, for two impurities it gives us the additional

term for the Luttinger liquid Hamiltonian:

Hint = g
∑
i=1,2

ψ†(x)ψ(x)
∣∣∣
x=xi

.

The sum is taken over two positions of the impurities. We supposed here

that the coupling constant g is identical for both impurities. Using the

density-phase representation (see Section 3.6.1) and assuming K � 1, so

the stationary phase approximation can be used, one gets the interaction

term as

Hint =
∑
i=1,2

4gρ0φ
2(xi), (3.6)

ρ0 is the average density of the system, the field φ is taken from Eq. (3.2)

and corresponds to fluctuations of the density. Eq. (3.6) reads in terms
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one-dimensional quantum liquids

of the phonon operators as

Hint = 4gρ0
∑
i=1,2

∑
q,q′

sign(q)sign(q′)√
|q||q′ |

(
b†qe
−iqxi + bqe

iqxi
) (
b†q′e

−iq′xi + bq′e
iq′xi

)
.

As we show further in this chapter, this expression exactly matches the

expression for a perturbation of the potential term of the harmonical os-

cillator. One should note here, that the sign functions in this expression

can be omitted as both of them always appear in even powers for all

non-vanishing contributions to the interaction given by this Hamiltonian.

Though this term does not contain any direct coupling between impu-

rities, it generates an effective attraction between them due to exchange

of virtual phonons, as it will be discussed in details later. This interaction

falls off as 1
r at large distances.

Dynamic impurities in a Luttinger liquid

Castro Neto and Fisher showed in [107] that the bare coupling between

dynamic impurities and phonons in Luttinger liquids is effectively renor-

malized towards zero. The long-range Casimir force is still present be-

cause it comes not from the ultimate low-energy impurity-phonon cou-

pling strength, but rather relies on the participation of an energy band

of quantum fluctuations, with width ~c/r [51]. This argument is valid for

both fermionic and bosonic systems.

It is shown in [51] that the Casimir interaction in this case arises due

to a local change of the kinetic energy and even in the limit of very slow

impurities (V/c → 0, V is the speed of the impurities, c is the speed of

sound), the interaction can not be reduced to the case of static impurities
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and scales differently. The interaction term Hint, arising in addition to the

non-interacting part Eq.(3.2) of the full Hamiltonian, is expressed through

gradients of the fields θ(x), φ(x). Introducing the chiral basis

χ+(x) = θ√
πK

+
√
K

π
φ(x),

χ−(x) = θ√
πK
−

√
K

π
φ(x),

and restricting their consideration analysis to the lowest orders of the

perturbation theory, Schecter and Kamenev obtained the interaction term

responsible for the Casimir force as

g∂xχ+(x)∂xχ−(x). (3.7)

Terms proportional to (∂xχ+(x))2 + (∂xχ−(x))2 are neglected since they

do not contribute to the impurity equations of motion because they do

not change a relative number of left- and right-moving particles in the

Luttinger liquid. The physically relevant processes are those in which this

number changes. Therefore, these terms do not affect physically relevant

processes [51]. The interaction term Eq.(3.7) contains not fluctuations of

density, but rather their derivative, so this term corresponds to a local

perturbation on the kinetic energy in Eq. (3.2). In the explicit form, the

phonon-impurity interaction Eq. (3.7) is written as

gc
∑
i=1,2

∑
q,q′

√
|q||q′|

(
b†qe
−iqxi − bqeiqxi

) (
b†q′e

−iq′xi − bq′eiq′xi
)
.

This term describes the perturbed kinetic energy of the harmonical oscil-
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lator.

Considering this term in the second order of the perturbation theory,

one obtains the Casimir interaction between two dynamic impurities as

U(r) = −mc2 Γ1Γ2
32π

ξ3

r3 ,

where m is the mass of background particles, c is the speed of sound, ξ =

1/mc and the dimensionless parameters Γ1,2 is impurity-phonon scattering

amplitudes.

3.3 Phonon-induced Casimir interaction between

impurity atoms in a lattice. Perturbation

theory

In the previous chapter, we have discussed the origin of the Casimir inter-

action between impurities in a lattice. If is found there that neither the 1
r3

spatial law for dynamic impurities nor the 1
r for static ones are universal,

but represent rather asymptotic behavior of the Casimir energy between

impurities in the corresponding cases. Now we use the perturbation the-

ory approach to evaluate the Casimir interaction between two impurities.

This approach will allow us to see how the change in the phonon spec-

trum discussed in Chapter 2 is translated to impurity-phonon scattering

processes and where the short distance corrections to the interaction come

from. The aim of this approach is to see what defines the crossover be-

tween two regimes of the Casimir interaction and whether the 1
r scaling

law is restored for dynamic impurities on the limit of infinitely large im-
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purity mass M → ∞, where impurities become static. After explanation

of the mechanisms behind the results obtained in the previous chapter for

impurities in a lattice, we apply our results to impurities in continuum

medium, i.e. to the Luttinger liquids discussed above.

Casimir interaction in the second order of perturbation theory

We consider an ideal harmonic cubic lattice with impurities described in

Chapter 2 by Eqs.(2.1) and (2.3).

To find the reason of the drastic deviation of the r-dependence of the

Casimir interaction from the 1/r3-law seen in Fig. 2.1, we employ the

perturbation theory. For our calculations, we express Eq. (2.3) via the

phonon operators (see Section 3.6.2 for details):

V (r) =
∑
q,q′

(V (1)
q,q′(r)b

†
qbq′ + V

(2)
q,q′(r)

bqbq′

2 + h.c.). (3.8)

Here the vertices are:

V
(1)
q,q′(r) = −V (0)

q,q′ cos (q − q′)r
2 ,

V
(2)
q,q′ = V

(0)
q,q′ cos (q + q′)r

2 ,

with r = ra − rb (ra and rb are positions of the impurities). V
(0)
q,q′ =

g
√
ωq
√
ωq′ , where ωq, ωq′ are free phonon spectra in the lattice ωq =

ω0
√

2− 2 cos q, ω0 = c/δ is the relation between the speed of sound c

and the interatomic distance δ. We put δ = 1 and choose ra + rb = 0 for

simplicity.

The first order term of the perturbation theory is r-independent and
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therefore does not contribute to the Casimir interaction. The lowest con-

tributing order is the second order of the perturbation theory

U
(2)
eff(r)=−2T

∑
n,k,q

|V (2)
k,k+q|2ωkωk+q

(ω2
n+ω2

k)(ω2
n+ω2

k+q)
. (3.9)

Here ωn = 2πTn is the Matsubara frequency.

At large distances r � 1 the leading contribution comes from the

small momenta. At zero temperature the integration in Eq.(3.9) can be

performed analytically for the linearized spectrum ωk = ck with use of

the substitution T ∑n →
∫
dωn/2π. The result is the 1/r3-law:

U
(2)
eff (r) = −g

2ω0
32π

1
r3 . (3.10)

This dependence agrees with that previously found in [51], but disagrees

with the results of the exact diagonalization.

Higher orders of perturbation theory

To understand the origin of the deviation from 1/r3 law, we explore

higher order phonon processes, which correspond to multiple scattering

of phonons on the impurities.

• Second order – We now write the second order perturbation term

integrated over frequency ωn in the following form:

U
(2)
eff (r) = −

∫
dkdq

(2π)2
|V (0)
k,k+q|2

ωk + ωk+q
cos2

(
qr

2

)
= −

∫
dkdq

(2π)2
g2ωkωk+q
ωk + ωk+q

cos2
(
qr

2

)
.
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1 2 3 4 5
10-6

10-5

10-4

r

exact diagonalization
2nd order
2nd+3rd orders
2nd+3rd+4th orders
 ~1/r3

E(
r)/

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0
2nd+3rd+4th 

        orders
2nd+3rd 

        orders
2nd order

E(
r)/

E
ex

ac
t(r

)

r

Figure 3.1. Casimir interaction in the perturbation theory: gray dots - sec-
ond order; brown dots - diagrams up to the third order; red dots - up to the
forth order; blue dots - energies obtained by the exact diagonalization. Inset:
Contribution of different orders of the perturbation theory to the total result.

• Third order reads:

U
(3)
eff (r) = −1

4~ω0

∫
dq1dq2dq3

(2π)3
|V (0)
q1,q2V

(0)
q2,q3V

(0)
q1,q3 |

(ω1 + ω2)(ω2 + ω3)
∗(cos r(q1 + q2) + cos r(q2 + q3) + cos r(q1 − q3)).

• Forth order reads
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U
(4,a)
eff (r) = −1

8~ω0

∫
dq1dq2dq3dq4

(2π)4
|V (0)
q1,q2V

(0)
q3,q4V

(0)
q1,q3V

(0)
q2,q4 |

(ωq1 + ωq2 + ωq3 + ωq4)

× 1
(ωq1 + ωq2)(ωq3 + ωq4) [cos r(q1 + q2)

+ cos r(q3 + q4) + cos r(q1 + q3) + cos r(q2 + q4)

+ cos r(q1 + q4) + cos r(q2 + q3) + cos r(q1 + q2 + q3 + q4)],

U
(4,b)
eff (r) = −1

8~ω0

∫
dq1dq2dq3dq4

(2π)4
|V (0)
q1,q2V

(0)
q1,q3V

(0)
q2,q4V

(0)
q3,q4 |

(ωq1 + ωq2)(ωq2 + ωq3)(ωq3 + ωq4)
× [cos r(q1 + q2) + cos r(q3 + q4) + cos r(q2 + q3)

+ cos r(q1 + q4) + cos r(q1 − q3) + cos r(q2 − q4)

+ cos r(q1 + q2 − q3 − q4)],

U
(4,c)
eff (r) = −1

8~ω0

∫
dq1dq2dq3dq4

(2π)4
|V (0)
q1,q2V

(0)
q2,q3V

(0)
q3,q4V

(0)
q1,q4 |

(ωq1 + ωq2)(ωq1 + ωq3)(ωq1 + ωq4)
× [cos r(q1 + q2) + cos r(q1 + q3) + cos r(q1 + q4)

+ cos r(q2 − q3) + cos r(q2 − q4) + cos r(q3 − q4)

+ cos r(q1 + q2 + q3 − q4)].

The result of the perturbation theory up to four-phonon processes for

g = 0.5 is presented in Fig.3.1. Here we keep only r-dependent terms. One

immediately notes that the third and fourth orders of the perturbation

theory significantly change the Casimir interaction. Plotting the sum of

all terms up to the fourth order, one can see a good match with the results

of the exact diagonalization.
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+ + + 1

Figure 3.2. The diagrammatic representation of the thermodynamic potential.

One can find exactly the thermodynamic potential in this model. It is

given by diagrams shown in Fig.3.2. Following Abrikosov et al. [111], we

define the phonon field ϕ as

ϕ(r, t) = 1√
V

∑
q

√
ωk
[
bqe

iqr−iωqt + b+q e
−iqr+iωqt

]

The phonon Green’s function in Matsubara formalism reads:

D(q, ωn) = ωq

(
1

iωn + ωq
+ 1
−iωn + ωq

)
.

It’s worth to introduce Green’s functions in the coordinate space:

G0(ωn)−G(r, ωn) =
∫ π

−π

dk

2π cos2
(
kr

2

) 2ω2
k

ω2
n + ω2

k

G0(ωn) +G(r, ωn) =
∫ π

−π

dk

2π sin2
(
kr

2

) 2ω2
k

ω2
n + ω2

k

Then the loop of the nth order can be expressed in the compact form:

U
(n)
eff = −1

2
gn

n

∫ ∞
−∞

dωn
2π ((G0(ωn) +G(r, ωn))n + (G0(ωn)−G(r, ωn))n) ,

(3.11)
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where:

G(ωn, r) =
∫ π

−π

dk

2π cos(kr) ω2
k

ω2
n + ω2

k

=
∫ π

−π

dk

2π cos(kr)
4ω2

0 sin2(k2 )
ω2
n + 4ω2

0 sin2(k2 )

= δr,0 − f
(
ωn
2ω0

, r

)
'

ωn
ω0
�1

δr,0 −
|ωn|
2ω0

e
− |ωn|

ω0
r
, (3.12)

G0(ωn) = G(0, ωn) =
∫ π

−π

dk

2π
ω2
k

ω2
n + ω2

k

= 1− f
(
ωn
2ω0

, 0
)
'

ωn
ω0
�1

1− |ωn|2ω0
,

(3.13)

f(x, r) = x√
1 + x2

(x+
√

1 + x2)−2r. (3.14)

One can note that the Green’s function for r � 1 falls off exponentially ∼

e−2rωn/ω0 . It means that the main contribution to the Casimir interaction

comes from the low energy acoustic phonons.

The thermodynamic potential at T = 0 is

Φtotal(r) = −
∫ ∞

0

dωn
2π

∞∑
l=2

[
gl

l
((G0(ωn) +G(r, ωn))l

+
(
G0(ωn)−G(r, ωn))l

)]
=
∫ ∞

0

dωn
2π

[
ln
(

1− g2G2(r, ωn)
(1− gG0(ωn))2

)
+ 2 ln (1− gG0(ωn)) + 2gG0(ωn)] .

The obtained thermodynamic potential Φ(r) contains an r-independent

term, which is related to perturbation of the zero point motion by un-

correlated impurity atoms (r → ∞). The effective Casimir energy goes

to 0 when r → ∞ and should not contain a constant part. Defining

41



Chapter 3. Exact solution for the phonon-mediated Casimir effect in 1D

Ueff(r) = Φ(r)− Φ(∞) we arrive to the following expression:

Ueff (r) = Φtotal(r)− Φtotal(∞) =
∫ ∞

0

dωn
2π

[
ln
(

1− g2G2(r, ωn)
(1− gG0(ωn))2

)]

=
∫ ∞

0

dωn
2π ln

1−

(
gωn
2c e

−ωn
c
r
)2

(1− g + gωn
2c )2

 . (3.15)

Ueff(r) = 1
2T

∑
n

ln
[
1−

(
gG(ωn, r)

1− gG0(ωn)

)2]
, (3.16)

where G(ωn, r) are the phonon Green’s functions in the coordinate space.

Let us discuss this derivation in more details.

3.4 Results in continuum limit

3.4.1 Casimir interaction

The low energy Hamiltonian can be obtained from Eqs.(2.2, 3.8) by lin-

earization of the spectrum for small momenta ωk = c|k|. The correspond-

ing Hamiltonian is

H =
∑
k

c|k|b†kbk

+ gc
∑
k,k′

√
|k||k′|cos

[(k + k′)r
2

](
b†kbk′+

bkbk′ + b†kb
†
k′

2

)
. (3.17)

This expression is similar to that used in [51]. To calculate the thermody-

namic potential in the continuum limit we use the results of the previous
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3.4 Results in continuum limit

section, changing the limits of the integration from the Brillouin zone to

infinity. Note, that the integral in Eq.(3.13) becomes formally divergent

and has to be renormalized. For this we use the mapping to the lattice

model of the previous section (this procedure is discussed in next chapter).

The Green’s functions in the continuum limit can be obtained as

G(r, ωn) '
∫ ∞
−∞

dk

2π cos kr k2

(ωnc )2 + k2 = −|ωn|2c e
− |ωn|

c
r

G0(ωn) = 1−
∫ π

−π

dk

2π
4ω2

0 sin2 k
2

(ωnc )2 + 4ω2
0 sin2 k

2

' 1−
∫ ∞
−∞

dk

2π
(ωnc )2

(ωnc )2 + k2 = 1− |ωn|2c

In the second order of the perturbation theory we restore the results

of [51]:

U
(2)
eff (r) = −g

2

2

∫ ∞
−∞

dω

(2π)
ω2e−2 |ω|r

c

4ω2
0

= − g2ω0
32πr3 .

In this approach, at T = 0 the Casimir interaction reads:

Ueff(r) =
∫ ∞

0

dωn
2π ln

1−
(

gωn
2c e

−ωr
c

1− g + gωn
2c

)2 . (3.18)

To trace the dependence of the Casimir interaction on the coupling

constant g < 1 and distance r at T = 0 we introduce the logarithmic

derivative ν = −d ln(E(r))
d ln(r) . For power law functions 1/rν it gives the power

ν. The results are summarized in the Fig. 3.3. The interval 0 < g ≤ 1

describes the impurity masses m < M ≤ ∞. The line g = 0 is the singular

line where Ueff = 0. And the interval −∞ < g < 0 corresponds toM < m.
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Figure 3.3. Logarithmic derivative ν = −d lnUeff(r)
d ln r as the function of r and g

of the Casimir interaction between two impurity atoms having different masses.

One can see from the figure that although for small distances the Casimir

interaction cannot be described as a function 1/rν , at large distances the

dependence tends to 1/r3. The characteristic distance of the crossover to

the 1/r3-law is rg = g
1−g (see 3.4.2). Finally, in the limit g → 1 the Casimir

interaction depends as 1/r from the distance between the impurity atoms

and coincides with Eq. (3.5).
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3.4.2 Casimir force

The Casimir force reads:

F (r) = −∂Ueff
∂r

= −
∫ ∞

0

dω

2π

g̃2ω3

2c3 e
−2ωr

c

(1 + g̃ ω2c)2 − (g̃ ω2ce
−ωr

c )2
, (3.19)

where we use a new constant g̃ = g
1−g for convenience. For heavy impuri-

ties (g̃ > 0), one can approximate Eq. (3.19) omitting the exponentially

small term from the denominator. It reads then as

F (r) ' −
∫ ∞

0

dω

2π

g̃2ω3

2c3 e
−2ωr

c

(1 + g̃ w2c)2 = c

g̃2π

( 1
4x2 −

2
x
− 4 + (12 + 16x)I(4x)

)
,

(3.20)

where x = r/g̃. Here I(x) =
∫∞

0 dt e
−t

x+t . The integral I(x) can be

expressed through the incomplete gamma function: I(x) = exΓ[0, x],

Γ[α, x] =
∫∞
x tα−1e−tdt.

Integration over r with condition Ueff(r →∞) = 0 gives

Ueff(x) ' c

g̃π

(
− 1

4x + 2(1 + 2x)I(4x)− 1
)
. (3.21)

Expression (3.21) works excellently for small masses, but for infinite masses

it gives 1
4π numerical coefficient instead of π

24 provided by (3.15) and ex-

pected for the Casimir law (Fig. 3.4). Asymptotically, Eq. (3.21) for mass

ratio m/M → 1 (g → 0) is:

Ueff(x) '
x→∞

c

g̃

(
− 1

32πx3 + 1
16πx4 −

9
128πx5 + ...

)
.

The space dependence for this expression is shown at Fig. 3.5 with three
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Figure 3.4. Comparison of exact result, result for the linearized vertices and
approximate analytical formula. Red color - g = 0.9, blue - g = 0.99, brown
- g = 0.999, green - g = 1. Circles - exact result, lines - linearized vertices,
diamonds - approximate formula.

different values of g.

3.4.3 External potential

Now we consider two atoms in an external harmonic potential which is

defined by the following Hamiltonian

V = gmω2
0(u2

a + u2
b), (3.22)
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Figure 3.5. Dependence of the logarithmic derivative ν(r) on distance for vari-
ous fixed g.

with the interaction constant g ≥ 0.

It is more convenient to define a free phonon field in this case as

ϕ̃(r, t) = 1√
V

∑
q

ω0

√
1
ωk

[
bqe

iqr−iωqt + b+q e
−iqr+iωqt

]
.

Eq.(3.22) takes then the same form as Eq.(3.8), but the vertices now are

V
(1)

q,q′ = V
(0)

q,q′ cos[(q − q′)r
2],

V
(2)

q,q′ = −V (0)
q,q′ cos[(q + q′)r

2],
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with V (0)
q,q′ :

V
(0)

q,q′ = − gω2
0√

ωq
√
ωq′

, (3.23)

The Green’s functions G(ωn, r), G0(ωn) take form

G(ωn, r) =
∫ π

−π

dk

2π cos(kr) ω2
0

ω2
n + ω2

k

=
∫ π

−π

dk

2π cos(kr) ω2
0

ω2
n + 4ω2

0 sin2(k2 )

=
ω2

0
2|ωn|c√

1 + ( ωn2ω0
)2

 ωn
2ω0

+
√

1 +
(
ωn
2ω0

)2
−2r

G0(ωn) = G(0, ωn) =
∫ π

−π

dk

2π
ω2

0
ω2
n + ω2

k

=
ω2

0
2|ωn|c√

1 + ( ωn2ω0
)2
.

So they can be written as

G(ωn, r) = ω0
c

ω2
0
ω2
n

f(|ωn|/2ω0, r) (3.24)

G0(ωn) = ω0
c

ω2
0
ω2
n

f(|ωn|/2ω0, 0), (3.25)

where the f(x, r) function is the same as before in (3.14). To analyze

the Casimir energy, we use the linearized spectrum. The correspondent

continuum model is different from Eq. (3.17) and is given by

H =
∑
k

c|k|b†kbk (3.26)

+ g
∑
k,k′

ω2
0

c
√
|kk′|

cos
[(k + k′)r

2

](
b†kbk′+

bkbk′ + b†kb
†
k′

2

)
.
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Figure 3.6. Logarithmic derivative ν = −d lnUeff(r)
d ln r as the function of r and g

for the Casimir interaction between two masses in an external potential.

The Green’s functions read in this case as

G(ωn, r) = ω2
0

2c|ωn|
e−
|ωn|
c
r,

G0(ωn) = ω2
0

2c|ωn|
.

It’s worth to consider the second order term of the perturbation theory

for the Casimir interaction:

U (2)(r) = −g
2

2

∫ ∞
−∞

dωn
2π

ω4
0

4c2ω2
n

e−2 |ωn|
c
r.
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This expression diverges at small frequencies, as illustrated in Fig.2.4c.

Direct calculations analogous to the previous case give us that all orders

of the perturbation theory are divergent at the low energy limit. But the

summation of whole series of the diagrams Fig.3.2 leads to cancellation

of the singularities and finite expression for the thermodynamic potential

Eq.(3.16) is obtained. With the phonon Green’s functions given by Eqs.

(3.24,3.25), the whole sum of the perturbation theory series remains finite

and gives us

Ueff (r) = −
∫ ∞

0

dωn
2π ln

1−

g ω2
0

2cωn e
−ωn

c
r

1 + gω2
0

2cωn

2 . (3.27)

The distance dependence for various given values of g is shown at Fig.

3.7.

At g = ∞, from Eq.(3.27) follows Ueff (r) = ω2
0π

24cr . To investigate the

finite g case, we use the same approach as before, finding an approximate

expression for the Casimir force and integrating it:

F (x) =
∫ ∞

0

dωn
2π

g2 ω4
0

2c3ω2
n
e−2ωn

c
r

(1 + gω2
0

2cωn )2 − g2ω4
0

4c2ω2
n
e−2ω

2
n
c
r

' g2ω4
0

4πc3 (−1 + (x+ 1)I(x)) , (3.28)

where x = grω2
0

c2 .

ECas(r) '
gω2

0
4πc (1− xI(x)) . (3.29)

Logarithmic derivative ν extracted from Eq.(3.29) is shown in Fig.3.6 in
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Figure 3.7. Dependence of the logarithmic derivative ν(r) on distance for vari-
ous fixed g. Potential energy case.

relation to r and g. The r-dependence for various given values of g is also

depicted at Fig. 3.7.

For gr � 1, the expression for the Casimir force reads

F (r) = ω2
0

cr2

 π

24 −
c2π

6grω2
0

+ π2 + 3ζ(3)
2π

(
c2

grω2
0

)2

+ ...

 .
Similar to Eq.(3.27) expression was obtained in [50]. To understand

the scaling behavior at T = 0 we plot the logarithmic derivative ν of the

Casimir interaction Ueff given by Eq. (3.27) as a function of r and g in

Fig. 3.6. For small values gr the law is not universal, but Ueff tends to 1/r
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as soon as gr � 1. The integral Eq. (3.27) in the limit gr � 1 matches

the previously found expression for M →∞ in Eq.(3.5).

3.5 Estimation of the Casimir interaction for ex-

perimental setups

The obtained long-ranged interaction can be observed experimentally in

ultra cold atomic gases in the experimental setup of Catani et al. [79]

described in Chapter 1. As it follows from this chapter, we argue that the

Casimir interaction for dynamic impurities measured in this setup should

be stronger than predicted by Schecter and Kamenev [51]. Their estima-

tion is based on the second order of the perturbation theory. As shown

in Fig. 3.1, the total Casimir interaction in this case will be approxi-

mately three times stronger at large separations between impurities (for

this setup, g ∼ 1
2 , based in the relative masses of the considered atoms).

The characteristic length for the saturation of the 1/r3 law in this case

is ∼ 0.1µm, which is comparable to the closes interatomic separation for

the setup.

In principle, the competing photon-induced Casimir-Polder interaction is

also present for the system mentioned above. But since the Casimir-Polder

interaction falls off much faster, namely as 1/r6, the phonon induced

Casimir interaction should dominate. At the minimal possible distance

between the impurity atoms in the setup, the phonon-induced Casimir

interaction between two static impurities for this set-up is 1kHz. At the

minimal possible distance between the impurity atoms in the setup of 40K

atoms and 87Rb atoms, the Casimir-Polder interaction gives 10−6Hz [112],
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which is at least three orders of magnitude smaller than the contribution

from the phonon-mediated Casimir interaction.

3.6 Appendices for the main text

3.6.1 Appendix A: Phenomenological bosonization

The density operator of a one-dimensional system with particles located

at points xi is written as

ρ(x) =
∑
i

δ(x− xi). (3.30)

Now, following [102] closely, we introduce a labeling field φl(x) such that

φl(xi) = 2πi. This field shifts at 2π each time it passes a particle (Fig.3.8).

Figure 3.8. Labelling field φl(x) in units of 2π. Choosing a proper function,
one can describe any configuration of the particles in space via this field. The
figure is reprinted with permission from [102]. Copyright 2003 by the American
Physical Society.

The advantage of using this field is that it is unique, since the ordering

of the particles is fixed starting from x = −∞ and moving to x = ∞ for
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any given configuration.

Using the properties of the δ-function from Eq.(3.30), we can write

ρ(x) =
∑
n

|∇φl(x)|δ(φl(x)− 2πn). (3.31)

The function φl(x) always can be chosen as non-decreasing, so we drop

the absolute value in this formula. Using the Poisson summation formula,

we can rewrite Eq.(3.31) as

ρ(x) = ∇φl(x)
2π

∑
p∈Z

eipφl(x).

Introducing the average density of the system ρ0, we express the labelling

field through the labelling field for the ideal lattice (left part of Fig.3.8)

and a field φ(x) relative to the perfect crystalline solution

φl(x) = 2πρ0x− 2φ(x). (3.32)

In terms of this new field φ(x), the density now takes form

ρ(x) =
(
ρ0 −

∇φ(x)
π

)∑
p∈Z

e2ip(πρ0x−φ(x)). (3.33)

Averaging density over distances large compared to interparticle distance,

we have only the non-oscillating term (p = 0) contributing to the density.

The smeared density ρ(x) reads then

ρ(x) ' ρ0 −
∇φ(x)
π

. (3.34)
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Now we use the density-phase representation to write the single par-

ticle creation operator ψ†(x) = |ρ 1
2 (x)|exp [−iθ(x)]. θ(x) is some operator

describing the phase. Depending whether we deal with a bosonic or a

fermionic system, the particle creation and annihilation operators ψ†, ψ(x)

obey the commutation/anticommutation relations imposing some commu-

tation relation between the density operators and θ(x).

The bosonic commutation relation for ψB(x) (the label B is introduced to

emphasis that we deal with the bosonic operator) rewritten in terms of

the density and the phase operators is

[
ρ(x), e−iθ(x′)

]
= δ(x− x′)e−iθ(x′).

Using the expression Eq.(3.31) for the smeared density, one gets the fol-

lowing relation: [ 1
π
∇φ(x), θ(x′)

]
= −iδ(x− x′), (3.35)

we used here the relation [A, f(B)] = [A,B] f ′(B). The higher harmonics

from the exact expression for the density contributing to Eq.(3.33) are

highly oscillatory, so they are expected to play no role in the continuum

limit [102].

As follows from Eq.(3.35), θ(x) and 1
π∇φ(x) are canonically conjugate, so

the canonically conjugate momentum to φ(x), denoted as Πφ(x), is

Πφ(x) = 1
π
∇θ(x).

Now we can restore the bosonic single-particle creation operator ψ†B(x)

substituting Eq.(3.33) into the density-phase representation of the single-
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particle operator and noting that the square root of the δ-function is the

δ-function with some normalization coefficient, we write

ψ†B(x) =
(
ρ0 −

1
π
∇φ(x)

)1/2 ∑
p∈Z

ei2p(πρ0x−φ(x))e−iθ(x). (3.36)

Now let us consider the single-particle fermionic creation operator ψ†F (x).

Unlike ψ†B(x), it must satisfy the anticommutation relation. To achieve

that we need to modify this operator so that it gives the minus sigh each

time the fermionic operators are commuted. In general, this can be done

by performing the Jordan-Wigner transformation over the ψ†B(x) operator.

In our case, we can simply note that the labelling field φl(x) in Eq.(3.32)

is constructed to be a multiple of 2π at each particle, so the operator

ei 1
2φl(x) changes the sign at the location of consecutive particle. It allow

us to construct the fermionic single-particle creation operator as ψ†F (x) =

ψ†B(x)ei 1
2φl(x). It the explicit form of the θ(x), φ(x) representation, we

have

ψ†F (x) =
(
ρ0 −

1
π
∇φ(x)

)1/2 ∑
p∈Z

ei(2p+1)(πρ0x−φ(x))e−iθ(x). (3.37)

The fields θ and φ can have topological excitations in addition to the small

oscillations [100]. This excitations can appear since if one imposes peri-

odic boundary conditions ψ(x + L) = ψ(x), where L is the length of the

system, on a system, it gives θ(x+L) = θ(x)+πJ , φ(x+L) = φ(x)+πN ,

where numbers N and J are some integers. In a bosonic system, J is an

even integer, while in a fermionic system the sum N + J must be even.

The fields Π(x) and φ(x) are canonically conjugate, so they can be ex-
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pressed in terms of bosonic operators bp, b†p for any Hamiltonian. The

field φ(x) is real, so it contains both b and b†. Substituting operators

ψB(x) or ψF (x) into Eq.(3.1), one gets the Luttinger liquid Hamiltonian

written in terms of the θ(x), φ(x) fields [100]. By the inversion symmetry

requirements, the energy of the system is invariant under x → −x trans-

formation and therefore θ(x) = θ̃(−x)φ(x) = −φ̃(−x), the the effective

low energy Hamiltonian contains only (∇φ(x))2 (from the potential en-

ergy) and (∇θ(x))2 (from the kinetic energy) terms without the cross-term

(∇θ(x)(∇φ(x)).

3.6.2 Appendix B: Phonon-impurity scattering on the lat-

tice Effective interaction between two impurities

In this section we derive the effective interaction given by Eq. (3.8). Let

us start by considering an ideal cubic lattice in D dimensions with δn

inter-atomic distance in each dimension. The Hamiltonian, quantized by

bosonic operators αk, α
†
k, reads

H =
∑
i

p2

2m + mω2
0

2
∑
|i−j|=1

(ui − uj)2 =
∑
i

p2

2m

+ mω2
0
∑
i

(2Du2
i − 2Duiui+1 − 2Dri−1ri)

= ω0
2

[∑
k

(
1
2 + 2D − 2

D∑
n=1

cos(knδn)
)

(b†kαk + αkα
†
k)

+
(
−1

2 + 2D − 2
D∑
n=1

cos(knδn)
)

(α†kα
†
−k + αkα−k)

]
=

∑
k

[
Ak(α†kαk + αkα

†
k) +Bk(α†kα

†
−k + αkα−k)

]
, (3.38)
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δn are the lattice constants. We introduced coefficients Ak, Bk as

Ak = ω0

(
D + 1

4 −
D∑
n=1

cos(knδn)
)
,

Bk = ω0

(
D − 1

4 −
D∑
n=1

cos(knδn)
)
.

The Hamiltonian Eq.(3.38) can be diagonalized by the Bogolubov trans-

formation [113]

αk = Ukbk + V ∗−kb
†
−k

α†k = U∗kb
†
k + V−kb−k,

with bk, b
†
k - phonon operators.

The Bogolubov coefficients satisfy the equation

(Ak − ωk)Uk +BkVk = 0,

with the condition

U2
k − V 2

k = 1.

Uk =
√

1
2 + Ak

2ωk
; Vk = − Bk

Ak + ωk
Uk, (3.39)

ωk = ω0
√

2νk; νk = D −
D∑
i=1

cos(qiδi)

Now we can return to our system with impurities and the emerging in-

teraction given by Eq.(2.3). Here and below we first consider the one
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dimensional case.

V̂ (i, j) = g
p2
i

2m + g
p2
j

2m = g

4ω0
(
(α†i − αi)2 + (α†j − αj)2

)

We apply the Fourier transform and than the Bogolubov transformation

using coefficients (3.39), so the interaction, expressed via phonon operators

turns into

Vkin = g

4ω0
∑
q,q′

[(
b†qb
†
q′ + bqbq′ − bqb

†
q′ − b

†
qbq′

)
(UqUq′ + VqVq′

− UqVq′ − VqUq′)
(
ei(q+q′)ri + ei(q+q′)rj

)
] .

He we used the fact that U∗q = Uq, V
∗

q = Vq.

This expression immediately leads to Eq.(3.8).

In the case of static impurities, the interaction term reads

g
mω2

0
2 x2

i + g
mω2

0
2 x2

j .

Expressing it via the phonon operators b, b†, we obtain

Vpot = g

4ω0
∑
q,q′

[(
b†qb
†
q′ + bqbq′ + bqb

†
q′ + b†qbq′

)
(UqUq′ + VqVq′

+ UqVq′ + VqUq′)
(
ei(q+q′)ri + ei(q+q′)rj

)
] .
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Chapter 4

General T-matrix approach

to the phonon-mediated

Casimir interaction in

D = 1, 2, 3 dimensions

4.1 Introduction

It it shown in Chapters 2, 3, that the Casimir interaction in 1D falls off

asymptotically with the distance r between the impurities as r−1 in the

static limit, while as r−3 in the dynamic one. The Casimir interaction

evolves with increase of the mass of the impurities It is also shown that

Parts of this chapter have been published in A. I. Pavlov, J. van den Brink, D. V.
Efremov, Phys. Rev. B 100, 014205, (2019).

https://doi.org/10.1103/PhysRevB.100.014205
https://doi.org/10.1103/PhysRevB.100.014205


Chapter 4. General T-matrix approach to the phonon-mediated Casimir
interaction in D = 1, 2, 3 dimensions

the scaling of the Casimir interaction continuously changes from r−3 to

r−1 for dynamic impurities if the mass of the impurities becomes infinitely

large.

In the present Chapter, we generalize the theory of the phonon me-

diated Casimir interaction [114], on two and three dimensional cases and

finite temperatures. We investigate the evolution of the Casimir interac-

tion in the full range of the scattering amplitude starting from the weak

phonon-impurity scattering till the unitary limit. The impurity scattering

T -matrix approach is used, in order to regularize the intrinsic infra-red

and ultraviolet divergences [115, 116, 117, 118, 119, 120]. Similar ap-

proach was used in earlier works in different contexts [37, 121, 122, 56,

46].

We start this Chapter explaining the T -matrix formalism. The rest of

the paper is organized as follows. We describe the model for dynamical

impurities. Then we derive the Casimir interaction in terms of the single

impurity T -matrix for the considered system. Using the general properties

of the T -matrix, we consider the Casimir interaction in dimensions D =

1..3. Then, we evaluate the effect of temperature. Finally, we consider a

model for static impurities in an external potential. We conclude with a

discussion of the obtained results.

4.2 T-matrix formalism

The T -matrix arises in the scattering theory [123]. The operator corre-

sponding to the T -matrix can be obtained from the Lippmann-Schwinger

equation [124]. It establishes the relation between the wave function ψ of
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a particle in presence of the scattering potential V and the free particle

wave function ψ0. These wave functions satisfy the equations

(
E − Ĥ0

)
|ψ0〉 = 0,

(
E − Ĥ0 − V̂

)
|ψ〉 = 0,

where E is the energy of the free particle. The relation between these

functions reads [125] as

|ψ〉 = |ψ0〉+ V̂ G0(E) |ψ〉 ,

G0(E) = (E−H0)−1. This equation can be solved by iterations. Expand-

ing it into the Born series [123], we obtain

|ψ〉 =
(
1 + V̂ G0 + V̂ G0V̂ G0 + ...

)
|ψ0〉 . (4.1)

We introduce the operator T through this series, so that Eq.(4.1) is rewrit-

ten as

|ψ〉 =
(
1 + T̂G0(E)

)
|ψ0〉 .

The Lippman-Schwinger equation in the operator representation is

T̂ = V̂ + V̂ G0(E)T̂ . (4.2)

In general form, Eq.(4.2) is an integral equation. For instance, it yields in

the momentum representation

〈k| T̂ (E) |k′〉 ≡ T (k,k′, E) = V (k,k′) +
∫ dDq

(2π)DV (k,q)G0(q, E)T (q,k′, E).
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This expression can be simplified if certain restrictions are applied to the

scattering potential. If the potential is local, i.e. 〈x| V̂ |y〉 = V (x)δ(x −

y) in the coordinate representation, it depends on the the difference of

momenta - V (k,k′) = V (k− k′). Furthermore, if the scattering potential

is point-like, i.e. V (x) = V δ(x), Eq.(4.2) becomes algebraic. In this case,

the T -matrix is simply [126]

T (E) =
(

1 + V

∫
dDq

(2π)DG0(q, E)
)−1

V. (4.3)

The solution of Eq.(4.3) can be found explicitly, so this kind of poten-

tial allows the exact solution of the scattering problem. The T -matrix is

directly related to the scattering amplitude [123], and the latter can be

extracted in numerous experiments for various physical set-ups [127, 128,

129, 130, 131, 132, 133], including experiments on phonon scattering on

impurities [134, 135, 136]. This fact allows to treat some low-energy effec-

tive theories containing ultraviolet divergences renormalizing them using

the T -matrix.

4.3 Dynamical impurities

Let us now consider free scalar bosons with linear energy dispersion (phonons)

which are described by a standard Hamiltonian (e.g. [137])

Ĥ0 =
∑

k

(
π(k)π̄(k) + ω2

kϕ(k)ϕ̄(k)
)
, (4.4)
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where the bosonic fields are:

π(x) = i√
V

∑
k

√
ωk
2
[
bke

ikx − b†−ke
−ikx

]
,

ϕ(x) = 1√
V

∑
k

√
1

2ωk

[
bke

ikx + b†−ke
−ikx

]
,

with linear dispersion ωk = c|k|. Here bk, b
†
k are phonon annihilation and

creation operators, V - the volume of the system, c is the sound velocity.

We put ~ = 1 here.

The simplest form of the interaction of the phonons with an impurity

located at the point x can be written in the bilinear form of the field opera-

tors, i.e. ππ̄ and φφ̄. These two terms have significantly different physical

meaning. The interaction ππ̄ may dominate in the systems in which the

impurities are moving coherently with the moving media e.g. dynamic

impurities in the Luttinger liquid [51], or in atomic chains/lattices (see

Section 4.7.1). The interaction ϕϕ̄ is leading in the case of static impu-

rities, e.g. static impurity atoms in the Luttinger liquid considered in

[50].

In this section, we consider the ππ̄ impurity-phonon interaction for two

impurities, which was previously derived for the Luttinger liquids in [51].

We consider the case when the impurities are much slower then phonons.

In this limit, the interaction of phonons with two impurities located at

the given time at the coordinates −r/2 and r/2 can be written as

Ĥint = −g
(
π
(
x)π̄

(
x
)∣∣

x=− r
2

+ π
(
x)π̄

(
x
)∣∣

x= r
2

)
.

(4.5)
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Here g is the interaction constant. The requirement of the positiveness

of the kinetic energy leads to g ≤ 1. It was shown in [114] that g = 1

corresponds to the limit of infinite mass of impurities in the lattice model

(see Section 4.7.1).

We define the Green’s functions on the Matsubara axis at temperature

T for non-interacting bosons as [111]:

G(0)(x,x′, ωn)=−
∫ 1

T

0
dτe−iωnτ 〈 Tτ

(
π(x, τ)π̄(x′, 0)

)
〉. (4.6)

For the calculations of the Casimir interaction, it is enough to find the

Green’s functions taken at the coordinates of the impurities ±r/2. For

the sake of simplicity, we use the following notation:

G(0)
r (ωn) ≡ G(0)(+ r

2 ,−
r
2 , ωn

)
= G(0)(− r

2 ,+
r
2 , ωn

)
,

G(0)(ωn) ≡ G(0)(+ r
2 ,+

r
2 , ωn

)
= G(0)(− r

2 ,−
r
2 , ωn

)
.

(4.7)

The explicit expressions for these Green’s functions read as [114]:

G
(0)
r (ωn) =

∫
dDk

(2π)D

[
1− ω2

n

ω2
n + ω2

k

]
e−ikr (4.8)

and

G(0)(ωn) =
∫

dDk
(2π)D

[
1− ω2

n

ω2
n + ω2

k

]
, (4.9)

correspondingly. Note, that G(0)(ωn) is formally divergent in the ultra-

violet limit. It can be regularized considering a lattice model.

66



4.4 The Casimir interaction

Figure 4.1. Diagrammatic representation of the derivative of the thermody-
namic potential with respect to distance of the impurities.

4.4 The Casimir interaction

The starting point is the derivation of the thermodynamic potential of

the system of phonons interacting with two impurities located at points

±r/2 correspondingly. We employ the well-known relation between the

derivative of the thermodynamic potential with respect to a parameter

and the derivative of the total Hamiltonian Ĥ = Ĥ0 + Ĥint with respect

to the same parameter [138, 111]. Then one has:

∂Ω(r)
∂r =

〈
∂Ĥint(r)

∂r

〉
. (4.10)

The right side of Eq.(4.10) can be found using the T-matrix approach.

The corresponding diagram is presented in Fig. 4.1. The solid line with a

tick stands for the derivative of the Green’s function ∂G
(0)
r (ωn)
∂r . The circle

is the two-impurity scattering T -matrix T2(− r
2 ,

r
2 , ωn). Then Eq.(4.10)

takes the form:

∂Ω(r)
∂r

= T
∑
n

∂G
(0)
r (ωn)
∂r

T2

(
−r

2 ,
r
2 , ωn

)
.
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T1(ωn)

= + + ...
g gG(0)(ωn)g

Figure 4.2. Definition of the single-particle T-matrix T1(ωn).

T2
(
− r

2 ,
r
2 , ωn

)
can be deduced from the single impurity scattering matrix

T1(ωn). The series for T1(ωn) is shown in Fig.4.2. The explicit form is:

T1(ωn) = g

1− gG(0)(ωn)
. (4.11)

The two-impurity T -matrix, represented in Fig.4.3, is given by the set of

the following equations:

T2

(r
2 ,

r
2 , ωn

)
= T1(ωn) + T1(ωn)G(0)

r (ωn)T2

(
−r

2 ,
r
2 , ωn

)
,

T2

(
−r

2 ,
r
2 , ωn

)
= T1(ωn)G(0)

r (ωn)T2

(r
2 ,

r
2 , ωn

)
. (4.12)

Solving Eqs.(4.12), one gets

∂Ω(r)
∂r = −T

∞∑
n=−∞

(T1(ωn)G(0)
r (ωn))2

1−
(
T1(ωn)G(0)

r (ωn)
)2 ∂rG(0)

r (ωn)
G

(0)
r (ωn)

. (4.13)

The Casimir interaction can be found by integration of Eq. (4.13) with a

condition ∆Ω(r)→ 0 for r →∞:

UCas(r) ≡ ∆Ω(r) = T
∑
ωn>0

log
(
1−

(
T1(ωn)G(0)

r (ωn)
)2)

. (4.14)

Now, as we have established the general expression for the Casimir

energy via the single particle scattering matrix and Green’s functions, it
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T2(ωn)

T2(ωn)

r/2−r/2

r/2r/2

=

= +

T1(ωn)

r/2 r/2

T1(ωn) T2(ωn)G
(0)
r (ωn)

−r/2 −r/2 r/2 r/2

T1(ωn) G
(0)
r (ωn)T2(ωn)

−r/2 r/2r/2 r/2

Figure 4.3. Diagrammatic representation of the two-impurity T -matrix. The
empty circles here correspond to the T1(ωn), light blue and dark blue circles mean
T2
( r

2 ,
r
2 , ωn

)
and T2

(
− r

2 ,
r
2 , ωn

)
correspondingly, the wavy lines are the Green’s

functions G(0)
r (ωn).

is worth to evaluate these Green’s functions in various dimensions. The

Green’s function G
(0)
r (ωn) (r 6= 0) can be explicitly calculated for the

linear boson spectrum ωk = ck from Eq.(4.8). It yields in the dimensions

D = 1..3 (see Section 4.7.2 for details):

G(0)
r (ωn) =


− |ωn|2c e

− |ωn|
c
r, D = 1,

− |ωn|
2

2πc2 K0
(
|ωn|
c r

)
, D = 2,

− |ωn|
2

4πrc2 e
− |ωn|

c
r, D = 3.

(4.15)

where K0(x) is the modified Bessel function of the second kind.

We would like to note that the large distance scaling of G(0)
r (ωn) is uni-

versal and can be expressed in the form

G(0)
r (ωn) ∼

r
|ωn|
c
�1
|ωn|

D+1
2 r−

D−1
2 e−

|ωn|
c
r. (4.16)

Due to the exponential dependence of G(0)
r (ωn) on the energy, the leading

contribution to the Casimir effect comes from low energies ωn � ω∗n = c/r
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−r/2 r/2

Figure 4.4. UCas(r) in the second order of the perturbation theory.

at large distance.

4.4.1 Second order of perturbation theory

The lowest order term in g contributing to the Casimir force is of the sec-

ond order, which is given by the diagram depicted in Fig. 4.4. Integrating

this derivative of the thermodynamic potential, we obtain the Casimir

energy

UCas(r) =
∫ ∞

0

dωn
2π

(
gG(0)

r (ωn)
)2
. (4.17)

Using the expression for G(0)
r (ωn) given by Eq. (4.15) and Eq. (4.16), we

get that the Casimir potential in the second order of the perturbation the-

ory obeys the law UCas(r) ∼ r−(2D+1). In D = 1..3, we get the following

expressions:

UCas(r) =


− g2c

32πr3 , D = 1,

− 27g2c
2048r5 , D = 2,

− 3g2c
64π2r7 , D = 3.

The expression for D = 1 agrees with early obtained in [51, 114].
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4.4.2 T -matrix approximation

Continuum limit. Keeping only the leading terms in the low energy

expansion, one can write down the single impurity T1(ωn)-matrix of the

phonon-impurity scattering in the following form (see for details Section

4.7.2):

T1(ωn) '



1
a−1+A1

|ωn|
c

, D = 1,

1
a−1+A2

|ωn|2
c2 log | ωc

ωn
|
, D = 2,

1
a−1+A3

|ωn|2
c2

, D ≥ 3.

(4.18)

The coefficients a, AD and ωc can be determined in various transport

experiments and can be considered as phenomenological parameters. Then

Eq. (11) directly relates the Casimir interaction to the physical properties

of the phonon - single impurity scattering amplitude. This parameter

cannot be found in the frame of the considered microscopic theory, since

it emerges as a consequence of the linear spectrum possessed by an effective

low-energy theory. For numerical estimations of the Casimir forces we use

further a mapping of the continuum model with linear dispersion on the

lattice model presented in the next paragraph.

For the finite value of a, the T1-matrix can be approximately put

T1 → a at small values of ωn � ω∗n. As one can see from Eq.(4.18), the

characteristic energy ω∗n depends on the dimensionality and for D = 1..3

reads: ω∗n,1D = c/(aA1), ω∗n,2D = c
√

1/(aA2| logωc(
√
aA2/c)|), ω∗n,3D =

c
√

1/(aA3).

Since G(0)
r (ωn) exponentially depends on ωnr, the leading contribu-

tion to the Casimir energy, as seen from Eq.(4.13), comes from the ener-
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gies ωn . c/r. It naturally defines the characteristic length ra ∼ c/ω∗n

of the change of the scaling behavior of the Casimir interaction. At

these energies, the T1(ωn) matrix can be approximated by the constant

a. As a result, at large distances between the impurities r � ra, the

scaling of the Casimir interaction is the same as in the second order of

the perturbation theory with the renormalized phonon-impurity coupling

UCas(r) ∼ T 2
1 (ωn = 0)/r(2D+1).

For g = gcr, a→∞ and ra →∞. Hence, the energy dependence of T1(ωn)

matrix becomes important. The evaluation of Eq. (4.13) with T1(ωn) from

Eq. (4.18) in the unitary limit shows that the Casimir interaction scaling

in the leading order triggers to

UCas(r) ∼



1
r , D = 1,

1
r log2 r

, D = 2,

1
r2D−1 , D ≥ 3.

(4.19)

The analysis of the intermediate case of large but finite ra shows that

at small distances r � ra the scaling in the leading approximation is

described by Eq. (4.19).

Lattice model. Now we map the model on a lattice in order to study

the general properties of the T -matrix. We analyze the ideal harmonic

cubic lattice described discussed earlier and described by H0 = ∑
i
p̂2
i

2m +
mω2

0
2
∑
<i,j>(ûi− ûj)2, with two embedded impurity atoms with their mass

different from the mass of the atoms of the lattice. Here p̂i and ûi are the

momentum and coordinate operators, m is the mass of the atoms of the
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cubic lattice and mω2
0 is the potential term, ω0 = c/δ, δ is the lattice

constant. For simplicity, we put δ = 1.

The harmonic Hamiltonian expressed via bosonic operators readsH0 =∑
k ωk(b†kbk + 1

2). The dispersion of the phonons on a lattice is given as

ωk = c
√

2D − 2∑δ cos (kδ), where the summation is done over the nearest

neighbors. The effect of the introduced impurity atoms can be considered

as a perturbation to the kinetic part of the Hamiltonian: V = g
2m(p̂2

a+ p̂2
b),

a and b are impurity positions. The coupling constant g = (1−m/M) with

m being the mass of atom of the ideal lattice, M the mass of the impurity

atoms, similar to Chapter 2. The momentum operator p̂k is quantized

as p̂k = i
√

mωk
2 (b̂†k − b̂k). This term V is an equivalent of the phonon-

impurity coupling given at Eq.(4.5). In terms of the bosonic operators

b̂k, b̂
†
k, it reads

V (r) = g
∑
k,k′

√
ωk
√
ωk′(−b̂†kb̂k′ cos (k− k′)r

2

+ b̂kb̂k′ cos (k + k′)r
2 + h.c.),

r = rb−ra, according to the previous chapter. Rewriting this expression in

terms of π and π̄, one obtains Eq.(4.5). Then we define the Green’s func-

tions in accord with Eqs.(4.6), (4.8) and (4.9). Integrations in G
(0)
r (ωn)

and G(ωn) are performed over the Brillouin zone, and the integrals in Eqs.

(4.8),(4.9) become finite:

G(0)
r (ωn) = V D

c

∫
BZ

dDk

(2π)D cos kr ω2
k

ω2
n + ω2

k
,

G(0)(ωn) = V D
c

∫
BZ

dDk

(2π)D
ω2

k
ω2
n + ω2

k
, (4.20)
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V D
c is the elementary cell volume in D dimensions.

Now we evaluate G(0)
r (ωn), G(0)(ωn), T1(ωn) and the Casimir interac-

tion for the cubic lattice with the phonon spectrum ωk:

ωk = 2c

√√√√ D∑
i=1

sin2 ki
2 , (4.21)

whereD is the dimensionality. The Green’s functions G(0)
r (ωn) andG(0)(ωn)

are

G(0)
r (ωn) = −fD

( |ωn|
2c

)
,

G(0)(ωn) = 1− fD
( |ωn|

2c

)
,

where the function fD(x, r) does not contain any divergences and falls off

exponentially with energy and distance. It can be analytically calculated

in D = 1 (see [114]) and estimated in the leading approximation for higher

dimensions.

The T1(ωn)-matrix can be found exactly by summation of the con-

tributing diagrams:

T1(ωn) = 1
1−g
g + fD

(
|ωn|
2c , 0

) , (4.22)

The value g = 1 corresponds to the unitary limit a = g/(1 − g) → ∞.

Namely, this limit corresponds to the scattering of bosons on a static

impurity considered in [50]. Far away from this limit, the low energy part

of the T -matrix can be considered as constant.
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The function f1D is diven by Eq.(3.14) and reads

f1D(x) = x√
1 + x2

(x+
√

1 + x2)−2r

This expression in the limit of small ωn gives Eq.(4.18), with a = g
1−g and

A = 1
2c .

For the dimensions D = 2, 3, a and A are evaluated numerically. For

a cubic lattice in 2D and 3D, Gr(ωn) in the leading approximation is

identical to Eq.(4.15) in the limit of small Matsubara frequencies ωn �

c/δ. The coefficients a, AD, ωc in the analytical expressions given above

are fitted to match these numerical results. It gives us: G(0)(ωn) = 1 −
ω2
n

2πc2 log | ωcωn | in 2D. While the coefficient in front of the log is universal

in 2D, the value of ωc depends on the parameters of the lattice. For

the square lattice one can approximate ω2
c ' 28 in units of energy. The

same calculation for the hexagonal lattice leads to the phonon spectrum

ω2
k = 8

3
(

sin2 kx
2 + sin2 kx+

√
3ky

4 + sin2 kx−
√

3ky
4

)
, with ω2

c ≈ 32. In 3D,

G(0)(ωn) = 1− 1
4c2ω

2
n in the leading approximation for low energies.

This allows us to approximate the Casimir interaction for the linearized

spectrum as:

U
(1D)
Cas (r) =

∫ ∞
0

dωn
2π log

1−
( |ωn|

2c e
− |ωn|

c
r

(1− g)/g + |ωn|
2c

)2
 , (4.23)

U
(2D)
Cas (r) =

∫ ∞
0

dωn
2π log

1−
( |ωn|2

2πc2 K0( |ωn|c r)
(1− g)/g + |ωn|2

2πc2 log | ωcωn |

)2
 , (4.24)

U
(3D)
Cas (r) '

∫ ∞
0

dωn
2π log

1−
( |ωn|2

4πrc2 e
− |ωn|

c
r

(1− g)/g + |ωn|2
4c2

)2
 , (4.25)
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The r dependence of the Casimir interaction is given by Eqs.(4.23)-

(4.25) for various g and D = 1..3 is illustrated in Figs.4.5, 4.6. There

are two regions, which are determined by the characteristic distance ra.

For r � ra, one finds the universal scaling UD ∼ 1
r2D+1 . At distances

r . ra this interaction is not universal. But at very short distances,

r � ra = c/ω∗n, the Casimir interaction can be approximated in the lead-

ing order as Eq. (4.19).

In the unitary limit g → 1 (the static limit in terms of the lattice model),

due to the energy dependence of T1(ωn), U1D(r) ∼ 1/r, U2D(r) ∼ 1/(r log2 r)

and UD(r) ∼ 1/r2D−3 for D ≥ 3 at any r, since ra →∞.

4.4.3 Casimir interaction at finite temperatures

Finite temperatures affect the scaling of the Casimir interaction at large

distances since the phonons get damping due to temperature.

The Casimir interaction at finite temperatures is given by Eq.(4.14).

Since G(0)
r (ωn) ∼ e−ωnr/c, there are two limiting cases of r � λT and

r � λT , where λT = c/(2πT ) is the thermal de Broglie wavelength. In

the former case, one restricts the summation by the first term. While

in the latter case, one has to perform the summation over all Matsubara

frequencies.

To illustrate this point, it is worth to consider a 1D system again. In

the explicit form, the thermodynamic potential reads:

U1D
Cas(r) = T

∞∑
n=1

log

1−
(

e−nr/λT

2λT (na)−1 + 1

)2
 ,

where we use a = g/(1 − g). Now there are two characteristic lengths:
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Figure 4.5. Casimir interaction of dynamic impurities at finite temperature and
at T = 0. rT is the effective length of the potential. In the units of energy: (a)
1D system with parameter g = 0.95. Red line: T = 0.002ω0. Blue line: T = 0.
(b) 2D system with g = 0.99. Red line: T = 0.003. Blue line: T = 0. λT ' 53
is the de Broglie wavelength, rT ' 110. (c) 3D system with g = 0.999. Red line:
T = 0.004. Blue line: T = 0.

the characteristic length ra and rT of the order of the thermal de Broglie

length rT ' λT (generally speaking, this parameter has a weak dependence

on g in D > 1 and can differ from λT by a numerical factor of the order

of 1, as illustrated in Fig.4.5b). For r � rT , the sum is dominated by

the first Matsubara term and we get a universal exponential decay of the
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interaction:

U1D
Cas(r) ≈ −T

e−2r/λT

(2λT /a+ 1)2 , (4.26)

For r � ra, rT the Casimir interaction follows r−1 law. For the interme-

diate distances ra � r � rT , the Casimir interaction falls off as r−3. A

special consideration is required when we are exactly in the unitary limit

a→∞. The decay of the Casimir interaction for r � rT in this case is pre-

cisely r−1, and it further transfers to the exponential behavior Eq.(4.26)

for r � λT . These dependencies can be seen at Fig.4.5 and Fig.4.6, in

which the Casimir interaction at finite temperatures and at T = 0 are

presented. As a guideline, we depict approximate borders of the change

of the Casimir law ra and rT . The detailed derivation of various limits is

provided in Section 4.7.3.

The effect of temperature in 2D and 3D systems can be calculated in

the same way. The calculations lead to:

U2D
Cas = T

∞∑
n=1

log

1−
2(K0( nrλT ))2(

4πλ2
T

n2a + log λ2
Tω

2
c+(cn)2

(cn)2

)2


and

U3D
Cas = T

∞∑
n=1

log

1−

 1
πre
− nr
λT

4λ2
T

an2 + 1

2
 .

For r � rT , the leading contribution to the thermodynamic potential
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Figure 4.6. Casimir interaction of dynamic impurities in the unitary limit
(g = 1). (a) 1D system. Red line: T = 0.002. Blue line: T = 0; (b) 2D system.
Red line: T = 0.003. Blue line: T = 0; (c) 3D system. Red line: T = 0.004.
Blue line: T = 0.

comes from the first Matsubara frequency:

U2D
Cas 'r�rT

−
πTλT

4r e
− 2r
λT(

2πλ2
T

a + log |λTωcc |
)2 (4.27)

and

U3D
Cas 'r�rT

g2T

r2π2
e
− 2r
λT

(4λ2
T
a + 1)2

, (4.28)

correspondingly. The typical behavior is demonstrated in Figs. 4.5a and
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4.5b. Note that, the value of rT in 2D and 3D is different from de Broglie

wave length by some factor. This difference can be clearly seen in Fig.

4.5b.

One can see that at large distances r � rT the decay of the Casimir in-

teraction is exponential in all dimensions. For r � rT and g < 1, there

is a crossover from the short distance law to the T = 0 long range law

r−(2D+1).

The Casimir interaction in the unitary limit given in Fig.4.6 demonstrates

the asymptotic behavior Eq.(4.19) with the temperature corrections sim-

ilar to the ones given in Fig.4.5 for the non-unitary case.

4.5 Model for localized impurities in an external

field

Now we consider the ϕϕ̄ interaction. It corresponds to the external po-

tential applied to two given atoms and trapping them at fixed positions.

This situation was studied in [50, 114] for the one dimensional case. This

case may be relevant for an experimental set-up with trapped quantum

gases proposed in [76, 50]. It corresponds to the interaction for the field

ϕ(x) from Eq.(4.4):

Ĥint = gω2
0

(
ϕ
(
x)ϕ̄

(
x
)∣∣

x=− r
2

+ ϕ
(
x)ϕ̄

(
x
)∣∣

x= r
2

)
,

(4.29)

The strength of the external potential is given by value g > 0, ω0 is a unit

of energy.
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The Green’s functions for this case are defined as

G̃(0)(x,x′, ωn) = −
∫ 1

T

0
dτe−iωnτ 〈Tτ

(
ϕ(x, τ)ϕ̄(x′, 0)

)
〉.

For the calculations, we need two Green’s functions at the points − r
2 ,

r
2 ,

which we denote as

G̃(0)
r (ωn) ≡ G̃(0)(+ r

2 ,−
r
2 , ωn

)
= G̃(0)(− r

2 ,+
r
2 , ωn

)
,

G̃(0)(ωn) ≡ G̃(0)(+ r
2 ,+

r
2 , ωn

)
= G̃(0)(− r

2 ,−
r
2 , ωn

)
.

Their explicit expressions are

G̃
(0)
r (ωn) =

∫
dDk

(2π)D
ω2

0
ω2
n + ω2

k
e−ikr,

G̃(0)(ωn) =
∫

dDk
(2π)D

ω2
0

ω2
n + ω2

k
.

The explicit form of G̃(0)
r (ωn) is given by the integration above and

reads

G̃(0)
r (ωn) =



ω2
0

2|ωn|ce
− |ωn|

c
r, D = 1,

ω2
0

2πc2K0( |ωn|c r), D = 2,
ω2

0
4πc2re

− |ωn|
c
r, D = 3.

(4.30)

The second order of the perturbation theory in D = 1 for T = 0 is

given by

Ũ
(2)
Cas(r) =

∫ ∞
0

dωn
2π

g2ω4
0e
−2 |ωn|

c
r

4ω2
nc

2 .

The integral diverges at the lower limit. This divergence can not be elimi-
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Figure 4.7. Casimir interaction for atoms trapped by external potential at a
finite temperature and at T = 0. rT is the effective length of the interaction,
g = 2, ω0 = 1. Blue line: T = 0, red line: T = 0.0002. (a) 1D system. (b) 2D
system.(c) 3D system.

nated by introduction of the lattice model. The same infra-red divergence

emerges in any order of the perturbation theory. However, the single im-

purity matrix T̃1(ωn), which is the sum of the diagrams in Fig.4.2, allows

us to renormalize this divergence.

T̃1(ωn) is defined as

T̃1(ωn) = g

1− gG̃(0)(ωn)
. (4.31)
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The explicit form of Eq.(4.31) is:

T̃1(ωn) '



−g

1+
gω2

0
|ωn|c

, D = 1,

−g

1+
gω2

0
2πc2 log | ω0

ωn
|
, D = 2,

−g

1+
gω2

0
4c2

, D = 3.

(4.32)

Note that the T -matrix vanishes in the limit ωn → 0 in D = 1, 2. It

means that the impurities become essentially transparent for long-range

phonons. The leading contribution comes from phonons of the energy c/r.

Therefore, the Casimir interaction cannot be approximated via scatterings

at zero energy in the contrast to the model of dynamic impurities.

Substituting Eq.(4.30) and Eq.(4.32) into Eq.(4.14), we calculate the

Casimir interaction. It remains finite, since the T̃1(ωn) cancels the diver-

gence of G̃(0)
r (ωn) at ωn → 0.

The results are presented in Fig.4.7. In the long-range limit r � ra, the

Casimir potential scales as

UCas(r) ∼



1
r , D = 1,

1
r log2 r

, D = 2,

1
r3 , D = 3.

(4.33)

The characteristic length ra of the crossover to the long-range limit is

smaller than for the dynamic impurities. The difference stems from the low

energy behavior of the T -matrix. In contrast to the dynamic impurities,

the T-matrix goes quickly to the saturation point. The characteristic
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length ra is fully determined by the saturation energy ω∗n,D of the T -

matrix as ra ∼ c/ω∗n,D. The saturation energies are: ω∗n,1D ∼ gω2
0/c,

ω∗n,2D ∼ ω0e
−
gω2

0
2πc2 . Since T̃1 ' const for D = 3, ra,3 = 0, and the 1

r3 -law is

fulfilled at all distances.

Comparing the long-range behavior with the unitary limit of the dy-

namic impurities, one finds that the scaling is exactly the same. It is

originated from the fact that the both cases describe the same physical

picture of two classical localized impurities of infinite mass. Mathemati-

cally, it follows from the identity (see Section 4.7.4):

T1 (ωn)|g=1G
(0)
r (ωn) = T̃1 (ωn)|g=∞ G̃

(0)
r (ωn). (4.34)

Similar to the model of dynamic impurities, the power law changes to

exponential at finite temperatures at long distances. The characteristic

length rT is determined by the thermal de Broglie length with rT ∼ c/2πT .

The crossover to the thermal regime is demonstrated in Fig. 4.7.

4.6 Discussion

Through the chapter, we considered the Casimir interaction mediated by

acoustic phonons. The phonon-mediated Casimir interaction between the

dynamic impurities scales as r−(2D+1) in D dimensions for large distance

in a continuum model. The result remains the same for large distances in a

lattice model. A small difference can be found only at short distances r �

ra. The Casimir interaction at long distances is universal. The comparison

of the Casimir interaction for the lattice model and the continuum model

is given in Section 4.7.5. The reason for the similarity of the results is the
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dominating contribution of low-energy phonons, for which the spectrum

can be linearized.

It is worth to outline the relation between the considered model and

the phonon mediated Casimir interaction in the Luttinger liquid in 1D.

The model, in contrast to the Luttinger liquid, does not contain vertex

corrections to the phonon-impurity scattering [107, 105, 106, 51]. To map

the Luttinger liquid model to our model, we assume the phonon-impurity

amplitude as a phenomenological parameter. The bare phonon-impurity

interaction element coincides with that derived in the leading order in the

Supplementary material of [51]. For 1D systems, our results for dynamic

impurities in the second order of perturbation theory are identical to the

model of [51]. The results for static impurities are identical to the one

considered in [50]. Further, we demonstrated that the results for the two

models converge in the limit of infinite mass of the impurities.

An impurity in a Luttinger liquid may be dressed by a density depletion

cloud [139]. These depletion clouds are relevant for interactions between

static impurities in a Bose gas [50, 84], but neglectable for dynamic im-

purities [51] and for static impurities in a Fermi gas [50]. Our model

corresponds two latter cases.

The model is restricted only on the phonon mediated interaction. In

real gases of cold atoms in addition to the phonon mediated interaction,

dipole-dipole interactions can arise [112], but the phonon-induced Casimir

interaction falls off much slower and therefore dominates over the dipole-

dipole interactions as estimeted in the previous chapter.

The Casimir interaction for cold atoms in 1D the phonon-induced in-

teraction may be observable. As estimated in [51], for the experimental
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set-up [79] of 40K atoms with 87Rb atoms as impurities, the Casimir in-

teraction is expected to be ∼ 1kHz at 0.14µm separation between the im-

purities. For the parameters of this set-up, we estimate ω0 ' 400kHz and

the red line given in Fig.4.5a corresponds to T = 40nK, with rT ' 6µm

(the interaction parameter g used in our paper is the low-energy scattering

amplitude given in [51]).

An observable phonon induced Casimir interaction may also arise in

two and three dimensional lattices with high Debye frequency. Particularly

interesting material for this is solid hydrogen with deuterium impurities,

since in addition to high Debye frequency, this system has a relatively

large coupling parameter g = 1
2 (due to the mass ratio mD

mH
= 2). With

the phonon energies are the order of 10meV [94], the Casimir energy be-

tween nearest neighbors impurities is expected to be UCas ' 2µeV . Other

promising systems from this point of view are hydrates like H3S [140],

and superhydrides, as LaH10 [141], etc. These materials, synthesized un-

der high pressures, currently attract enormous attention due to unusually

high critical temperatures of superconductivity, which is a consequence of

high Debye frequencies. But consideration of multi-atomic lattices is out

of the scope of the present thesis.

4.7 Appendices

4.7.1 Appendix A. The lattice model

In this section, we derive the effective phonon-impurity interaction for

a cubic harmonic lattice in terms of the field π(x) and φ(x) following
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Chapter 2 closely. The lattice is determined by the following Hamiltonian:

H =
∑
i

p̂2
i

2m + mω2
0

2
∑
|i−j|=1

(ûi − ûj)2,

where m is the mass of the atoms and ω0 is the characteristic energy of

the nearest-neighbors interaction. After quantization and the Bogolubov

transformation the Hamiltonian takes the standard form for free phonons:

H =
∑

k
ωk

(
b†kbk + 1

2

)
,

where b†k, bk are creation and annihilation phonon operators and their

dispersion in D dimensions is

ωk = ω0
√

2Dνk; νk = 1− 1
D

D∑
i=1

cos(qiδ),

with δ being a lattice constant. For qδ � 1 one gets ωk = ck with the

sound velocity cω0δ.

Below, we consider two types of the perturbations at the site i: a) the

mass of the atom at site i is changed to M without modification of the

interaction with the nearest atoms (isotopic substitution). b) a local ex-

ternal harmonic potential is applied to the atom at position i.

a) The perturbation is determined by the difference of the kinetic energy

of the impurity atom at the site i in comparison to the regular atom of
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the lattice:

Ĥint = p̂2
i

2

( 1
M
− 1
m

)
.

Introducing g =
(
1− m

M

)
, one can rewrite the expression in terms of

phonon operators:

Hint = −g
∑
k,k′

√
ωkωk′

(
bkb
†
k′e
−iri(k−k′) + b†kbk′e

iri(k−k′)

− bkbk′e
−iri(k+k′) − b†kb

†
k′e

iri(k+k′)
)
,

which is in the short form:

Hint = −gπ(ri)π̄(ri).

b) The perturbation is

Hint = gmω2
0

(
û2
i

)
,

The expression in terms of phonon operators:

Hint = g
∑
k,k′

1
√
ωkωk′

(
bkb
†
k′e
−iri(k−k′) + b†kbk′e

iri(k−k′)

+ bkbk′e
−iri(k+k′) + b†kb

†
k′e

iri(k+k′)
)
,

which is in the short form:

Hint = gω2
0ϕ(ri)ϕ̄(ri).
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4.7.2 Appendix B. Evaluation of G(0)
r (ωn), G(0)(ωn) and T1(ωn)

Linear spectrum. Here we evaluate Eq.(4.8) for the linear spectrum

ωn = c|k| at large distances. For r 6= 0, it reads

G(0)
r (ωn) = −

∫
dk‖d

D−1k⊥
(2π)D

ω2
n

ω2
n + c2k2

⊥ + c2k2
‖
e−ik‖r,

where D is the number is dimensions. We represented the vector k as

k = k⊥ + k‖ and chose k‖ along r. After integration over k‖, we have

− CD
(
ωn
c

)2 ∫ ∞
0

dk⊥
kD−2
⊥√

(ωnc )2 + k2
⊥

e−
√

(ωn
c

)2+k2
⊥r,

where CD = π
(2π)D

∫
dΩD−1 is a constant containing all angular integra-

tions.

We renomalize the momentum introducing a new dimensionless variable q

defined as: k⊥ → q ωnc . The contribution of large values of the momentum

to the integral is exponentially small, so only small momenta matter here.

It turns the integral into

− CD

( |ωn|
c

)D ∫ ∞
0

dq
qD−2

1 + q2 e
−
√

1+q2 |ωn|
c
r '
r
|ωn|
c
�1

− CD

( |ωn|
c

)D
e−
|ωn|
c
r
∫ ∞

0
qD−2e−

q2
2
ωn
c
rdq.

The remaining integral can be evaluated exactly and gives 2D−3
2 ( |ωn|c r)−D−1

2 Γ(D−1
2 ).

It leads us to Eq.(4.16):

G(0)
r (ωn) ' CD2

D−3
2 Γ

(
D − 1

2

)( |ωn|
c

)D+1
2
r−

D−1
2 e−

|ωn|
c
r.
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G(0)(ωn) diverges on the upper limit. Therefore, a cut-off ωc is introduced.

This cut-off is used here formally, all the divergent terms are included into

the T-matrix. Its value for impurity-phonon scatterings can be measured

experimentally and, therefore, there are no real divergences in this ap-

proach. Then the integration yields:

G(0)(ωn) '



ωc
πc −

|ωn|
2c , D = 1,

ω2
c

4πc2 − |ωn|
2

2πc2 log | ωcωn |, D = 2,
ω3
c

6π2c3 − ωc|ωn|2
2π2c3 , D = 3.

Since the T1(ωn)-matrix is given by the diagrams Fig.4.2, it has the form

T1(ωn) = g

1− gG(0)(ωn)
. (4.35)

Substitution of G(0)(ωn) gives in the low energy limit the form of the

T -matrix given in Eq. (4.18).

Lattice. The integrals (4.8) and (4.9) are convergent on the lattice:

G(0)
x (ωn) = Vc

∫
BZ

dDk

(2π)D
ω2

k
ω2
n + ω2

k
eik·x = Vc

∫
BZ

dDk

(2π)D e
ik·x

−Vc
∫
BZ

dDk

(2π)D
ω2
n

ω2
n + ω2

k
eik·x = δx,0 − fD

( |ωn|
2c , x

)
.

For D = 1, on a square lattice it results into G(0)(ωn) = 1−f1( |ωn|2c , 0),

with f1(x, r) = x√
1+x2 (x+

√
1 + x2)−2r. In the small ωn limit, this function

turns into G(0)(ωn) = 1 − |ωn|2c . For higher dimensions, the structure

1− fD( |ωn|2c , 0), with some finite function fD, remains.
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For D ≥ 3, the Green function G(0)(ωn) can be approximated:

G(0)(ωn) = 1− ω2
nVc

∫
BZ

dDk
(2π)D

1
ω2
n+ω2

k
' 1− ω2

nVc
∫
BZ

dDk
(2π)D

1
ω2

k
.

It means, that G(0)(ωn) ' 1−ADω2
n, with constant AD.

For D = 1, one gets G(0)(ωn)− 1 ∼ ωn.

For D = 2 the integral is G(0)(ωn)− 1 ∼ ω2
n log |ωn|.
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Figure 4.8. The ratio of the 1D Casimir interaction in the continuum limit
Ucont and the lattice model Ulattice. Here T=0, (a) dynamic impurities, red line
– g = 0.01, blue line – g = 0.1, yellow line – g = 0.25, green line – g = 1. (b)
impurities localized in the external potential, red line – g = 0.01, blue line –
g = 1, yellow line – g = 10, green line – g →∞.

4.7.3 Appendix C. Asymptotic behavior of the Casimir in-

teraction at finite temperatures

Low temperature corrections in 1D. At low temperatures and short

distances, when r � λT , we use the Euler-Maclaurin formula up to the
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first term to approximate the sum:

U1D
Cas(r) '

r�λT
c

∫ ∞
0

dx

2πr log

1−
(

gx
2r e
−x

1− g + gx
2r

)2


− 1
12

d

dn
T log

1−

 gπnT
c e

−2π2n r
λT

1− g + gπnT
c

2


2∣∣∣∣∣∣∣
n=1

.

At g = 1 it gives

U1D
Cas(r) '

r�λT
− πc

24r + 2π2rT

λT
,

while for small g it gives

U1D
Cas(r) '

r�λT
− g2c

32πr3 + g2π6rT

λ3
T

.

Low temperature corrections in 2D. In the same way as in the one

dimensional case, there are two limiting cases for r � λT . For g � 1 we

have:

U2D
Cas(r, T ) '

r�λT
− g2c

128πr5 + 4g2

3 π2T 5 log2 ( r
λT

)
At g = 1, the leading terms are:

U2D
Cas(r, T ) '

r�λT
−1

2

( 1
r logωcr

− 1
r log2 ωcr

)

−π6T
log
(
r
λT

)
log2 ω2

c

.
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Low temperature corrections in 3D. For r � λT , we again consider

two cases. At g = 1, we have:

U3D
Cas '

r�λT
− c

8πrLi2
( 1
r2π2

)
+ 2T
πrc

,

where Li2(x) is the polylogarithmic function.

And g � 1 gives us:

U3D
Cas '

r�λT
− g2c

256π3r7 + 2g2π2T 5

r2c4 − 2g2π3T 6

rc5 .

Casimir energy at non-zero temperature in the second order of

the perturbation theory. Here we evaluate the Casimir energy at non-

zero temperature in the second order in relation to the parameter g. The

energy is given by:

U
(2)
Cas(r) = T

∞∑
n=1

(
gG(0)

r (ωn)
)2
,

Gr(ωn) is taken from Eq.(4.15).

In the one-dimensional case, the energy reads as:

U
(2)
1D = Tg2

∞∑
n=1

(
πnT

c

)2
e−

4πnTr
c = g2T 3π2

4c2

cosh
(
r
λT

)
sinh3( r

λT
)
.

This expression is in accordance with the result given in the Supplemental

Material of [51].
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In the three-dimensional case, the energy turns into:

U
(2)
3D = Tg2

∞∑
n=1

(
πn2T 2

rc2

)2

e
−2 r

λT

= g2π2T 5

4r2c4

cosh3( r
λT

) + 2 cosh
(
r
λT

)
sinh5( r

λT
)

.

4.7.4 Appendix D. Infinitely heavy dynamical impurities

vs impurities in an external potential

In this subsection, we demonstrate the identity Eq.(4.34). For the system

with dynamical impurities, it means that their masses M → ∞. For the

system of impurities in external potential, it means gω0 →∞, so in both

cases the impurities are completely static. We consider our systems on a

lattice with a general spectrum and dimensionality.

For the ππ̄ interaction, the Green’s functions are given by Eq.(4.20). For

the ϕϕ̄ interaction, the corresponding Green’s functions are

G̃
(0)
r (ωn) = V D

c

∫
BZ

dDk
(2π)D cos kr ω2

0
ω2
n + ω2

k
,

G̃(0)(ωn) = V D
c

∫
BZ

dDk
(2π)D

ω2
0

ω2
n + ω2

k
.

94



4.7 Appendices

The T1- and T̃1-matrices are defined by Eq.(4.35) and Eq.(4.31) corre-

spondingly. In the limit of static impurities they take form

T1 (ωn)|g=1 = 1

1− V D
c

∫
BZ

dDk
(2π)D

(
1− ω2

n

ω2
n+ω2

k

)
= 1

V D
c

∫
BZ

dDk
(2π)D

ω2
n

ω2
n+ω2

k

,

T̃1 (ωn)|g=∞ = − 1
V D
c

∫
BZ

dDk
(2π)D

ω2
0

ω2
n+ω2

k

.

Multiplying them by G(0)
r (ωn) and G̃(0)

r (ωn) correspondingly, we have

T1 (ωn)|g=1G
(0)
r (ωn) = −

∫
BZ d

Dk cos kr
ω2
n+ω2

k∫
BZ d

Dk 1
ω2
n+ω2

k

,

T̃1 (ωn)|g=∞ G̃
(0)
r (ωn) = −

∫
BZ d

Dk cos kr
ω2
n+ω2

k∫
BZ d

Dk 1
ω2
n+ω2

k

.

Therefore, these two expressions are identical.

4.7.5 Appendix E. Proof of Eq.(4.34)

In this section, we consider effects of the weak non-linearities in the spec-

trum of phonons.

For this reason, we compare the 1D lattice model with continuum limit

at T = 0. The spectrum in the lattice model is ωk = 2c| sin k
2 |. We put

the lattice constant δ = 1 further.

Considering dynamical impurities (ππ̄-interaction), we need the Green’s
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functions for this spectrum. These Green’s functions were found in [114]:

G(0)
r (ωn) = −

ωn
2c√

1 +
(ωn

2c
)2
ωn

2c +
√

1 +
(
ωn
2c

)2
−2r

,

G(0)(ωn) = 1−
ωn
2c√

1 +
(ωn

2c
)2 .

In the low energy limit, these expressions can be simplified as

G(0)
r (ωn) ' −ωn2c e

−ωn
c
r,

G(0)(ωn) ' 1− ωn
2c ,

giving us the Green’s function for the linear spectrum.

For localized impurities (ϕϕ̄-interaction), the corresponding Green’s func-

tions read

G̃(0)
r (ωn) =

ω2
0

2ωnc√
1 +

(ωn
2c
)2
ωn

2c +
√

1 +
(
ωn
2c

)2
−2r

,

G̃(0)(ωn) =
ω2

0
2ωnc√

1 +
(ωn

2c
)2 .

The low energy limit Green’s functions (corresponding to the case of linear

spectrum) are

G̃(0)
r (ωn) ' ω2

0
2ωnc

e−
ωn
c
r,

G̃(0)(ωn) ' ω2
0

2ωnc
.
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The ratios between the potentials for continuous (Ucont(r)) and lattice

(Ulattice(r)) spectra are given in Fig.4.8. It demonstrates that small cor-

rections to the result (∼ 1% of potential for the linear spectrum), appear

at r ∼ δ and quickly vanish.
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Chapter 5

Single hole propagation in a

two dimensional

ferromagnet

5.1 Ferromagnetism in two dimensional systems

Nowadays, two-dimensional (quasi-two-dimensional) magnets attract a lot

of attention due to a variety of novel physical phenomena [142, 143]. It

has been known for quite long that two-dimensional antiferromagnets pos-

sess rich families of transitions between classical, quantum and quantum

critical phases [144, 145, 146, 147, 148].

Recent years, two-dimensional ferromagnetic atomic crystals were pre-

dicted [149, 150, 151, 152, 153, 154] and observed experimentally [155]. It

has led to a surge of interest to these structures due to their potential in

device applications [156].
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The ferromagnetic order is reported in thin layers, up to a single layer,

in such transition metal-based compounds as CrBr3 [157], CrI3 [158],

K2CuF4 [150], Cr2Ge2Te6 [159, 155]. They exists because the Mermin-

Wagner theorem’s restriction on the stability of ferromagnetism [160] is

lifted in these compounds by their quasi-two-dimensionality and strong

magnetocrystalline anisotropy [161]. A recent study [157] of heterostruc-

tures based on CrBr3 shows magnon-assisted tunnelling in this system,

which gives an opportunity for creation of new spintronics devices, such

as spin-filtering tunneling of the tunnel current.

In this chapter, we consider how a charged quasiparticle propagates

in ferromagnetic material if the propagation process is accompanied by

the spin-flip processes. We discuss the physical relevance of such models

with two systems. The first one is a quasiparticle in a system of two

ferromagnetic layers coupled antiferromagnetically (this configuration is

reported for CrCl3 [149, 162]). The second is a model of a hole in a

ferromagnetic monolayer with strong spin-orbit coupling. Then we develop

a theory for the single-hole propagation within such a two-dimensional

ferromagnet considering as well a finite magnetic field and analyze the

spectral function of the hole. We show that for certain magnetic fields the

hole quasiparticle spectral weight vanishes.

The problem of hole propagation was studied in detail in the con-

text of the metal-insulator transitions in two-dimensional antiferromag-

nets close to half-filling [163]. Numerous studies show that the system

can be described in the polaronic quasiparticle formalism [164, 165, 163,

166, 167, 168, 169]. A single hole propagating in the system changes
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the local spin configuration and creates magnetic excitations. This cloud

of magnons strongly renormalizes the hole, resulting into the so-called

spin polaron. The same mechanism is applicable for the so-called orbital

polarons appearing as a consequence of the orbital order distortion by

the hole [170, 171, 172]. The existence of such polarons in the system

means that the renormalized holes propagate through the material, giving

it metallic properties. In contrast, if too many magnons are created by a

hole, they can effectively prevent propagation, lead to localization of the

charges and thus render the material insulating. In contrast to isotropic

antiferromagnets where the Goldstone mode is linear ω ∝ k, the Gold-

stone mode in isotropic ferrmagnets is quadratic, ω ∝ k2. One expects

that the effects of the magnon excitations can be more pronounced in the

ferromagnets. Such ferromagnetic systems were not investigated so far

and is the main topic of the consideration below.

5.2 Hole propagation in two ferromagnetic layers

In this section we consider two ferromagnetic layers of localized spins

which are ordered antiferromagnetically between the layers. For the quasi-

two-dimensional van der Waals crystals, the interlayer magnetic coupling

is much weaker than the intralayer coupling and the hopping matrix ele-

ments of the electron [155], therefore we neglect the interlayer interaction,

even if this coupling will affect the spectrum of magnons as very low en-

ergies. A single electron introduced into this system can then propagate

due to either intralayer or interlayer hopping. At the same time, the elec-
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tron interacts with the localized spins. The full Hamiltonian includes the

spin-spin intra- and interlayer interaction part

HS =
∑
<i,j>

[
J~Sai~Saj + J~Sbi~Sbj + Jab~Sai~Sbj

]
.

It defines the spectra of magnons in layers a and b. We assume that J is

the same in both layers, Jab � J, t, t0.

The interaction is described by the ferromagnetic Kondo model. The

Hamiltonian for this model reads

Hsd = −
∑
k,α

[
εk
(
c†kaαckaα + c†kbαckbα

)
+ t

(
c†kaαckbα + c†kbαckaα

)]
+ JK

∑
k,q,α,β

(
c†kaα~σαβck−qaβ~Sqa + c†kbα~σαβck−qbβ

~̃Sqb

)
, (5.1)

where c†kaα (ckaα) are creation (annihilation) operators of electron, α, β

are spin indexes, a, b are layer indexes, ~S are operators of the localized

spins.

Couplings JK between the localized spin and spin of itinerant electron at

each site of both layers are assumed to be identical. εk = 2t0 (cos kx + cos ky)

(at the square lattice), t and t0 are interlayer and intralayer hopping pa-

rameters respectively.

Let us start with the case when there are no spin-spin interactions, so we

have only hopping terms in Eq. (5.1):

Hhopping = −
∑
k,α

(
c†kaα c†kbα

)εk t

t εk


ckaα

ckbα


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Introducing symmetric and antisymmetric operators

dk,α = 1√
2
(
ck,b,α + ck,a,α

)
, d̃k,α = 1√

2
(
ck,b,α − ck,a,α

)
, we bring the hop-

ping Hamiltonian to the form

Hhopping = −
∑

k

[
(εk + t)d†kαdkα + (εk − t)d̃†kαd̃kα

]
. (5.2)

For simplicity, we assume t� t0, so the anti-symmetric state d̃ has much

higher energy than the symmetric one and can be neglected. In general,

most of the results remain the same for the full model Eq. (5.2).

We choose a laboratory system of coordinates along the localized spins

in the layer a. To describe the spins of the layer b in this system, we rotate

the local coordinates of this layer along x-axis. Thus, the spins in the layer

b are transformed as S̃zb → −Szb , S̃xb → Sxb , S̃
y
b → −S

y
b . Expressing the

Kondo part of the full Hamiltonian via the operators d, d̃ and retaining

only the leading (quadratic) terms in the symmetric operator d, we obtain

HK = JK
(
saSa + sbS̃b

)
= JK

[
Sza − Szb

2
(
d†↑d↑ − d

†
↓d↓
)

+ Sxb + Sxa
2

(
d†↑d↓ + d†↓d↑

)
+ Syb − Sya

2i
(
d†↑d↓ − d

†
↓d↑
)]
.

Using the Holstein-Primakoff transformation and restricting our-self

by the one-magnon processes, we get

HK = JK
2

√
S

2 d
†
k↑dk−q↓

(
a†−q + bq

)
+H.c. (5.3)

Here the sum over k and q is omitted for simplicity of notations. It is

important to note that the vertex of the hole-magnon coupling is constant
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in Eq. (5.3).

Combining the hopping Hamiltonian Eq. (5.2) and the Kondo Hamil-

tonian Eq. (5.3), we get the full Hamiltonian describing propagation of

the hole in the two-layered quasi-two-dimensional system

H = −
∑

k
(εk + t)(d†k,↑dk,↑) + JK

2

√
S

2
∑
k,q

d†k,↑dk−q,↓
(
a†−q + bq

)
+H.c.

(5.4)

Similar effective models can also emerge in different physical context, for

instance, a single hole propagating in a two-dimensional ferromagnet when

spin-flip processes are present in the system. We show below that both

models can be reduced to Eq. (5.4) in a one-magnon approximation.

5.3 Hole propagation in a two-dimensional ferro-

magnet

In this section we develop a theory of a single hole propagating in a two

dimensional ferromagnetic system S = 1
2 accompanied by the spin-flip pro-

cesses. The propagating hole can be accompanied by spin flip processes if

the hopping in the system occur via ligands possesing the spin-orbit cou-

pling in a ferromagnet due to different kinds of interactions [173, 174, 175,

176]. It is shown by Jackeli and Khaliullin [177, 178] that d5-systems with

strong spin orbital coupling can be effective described by pseudospin- 1
2 ,

since the system retains SU(2) symmetry. The treatment of pseudospins

as spins remains correct even in presence of an external magnetic field

[179].

We consider a ferromagnetic t − J model. The Hamiltonian of this
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5.4 Two-dimensional ferromagnet in external magnetic field at half-filling

model reads

HtJ = −
∑
<i,j>

∑
σ,σ′

tσσ′ c
†
iσcjσ′ +H.c.+

∑
α

JαSαi S
α
j

 ,
(5.5)

where the hopping part has the general form

tσσ′ = t1δσ,σ′ + t2δσ,−σ′ .

c†σ, cσ′ are the hole creation and annihilation operators, Jα are coefficients

of the (anisotropic) exchange interaction, t1, t2 are hopping parameters,

σ, σ
′ are spin indexes. Two types of hopping are possible - the hole hopping

can either conserve its spin or the spin is flipped in this process due to

strong spin-orbit interaction in the strong spin-orbit limit.

5.4 Two-dimensional ferromagnet in external mag-

netic field at half-filling

Let us consider the spin-spin interaction ∑<i,j> J
αSαi S

α
j in Eq. (5.5) in

presence of magnetic hield. We assume XXZ ferromagnetic interaction,

the Hamiltonian of the system reduces to

H = −
∑
<i,j>

(
(J +K)Szi Szj + J(Sxi Sxj + Syi S

y
j )
)
− h � Si, (5.6)
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Chapter 5. Single hole propagation in a two dimensional ferromagnet

J > 0, |K| � J, S = 1
2 . The effective g-factor is absorbed in |h|.

If K > 0, the system is an easy axis ferromagnet, while for K < 0 it is an

easy plane ferromagnet. Variation of the external magnetic field allows

us to manipulate the system and change its ground state and excitation

spectrum of magnons.

5.4.1 Ground state and excitations of the ferromagnet in

a magnetic field along z-axis

Let us suppose that the magnetic field is applied along z-axis, i.e. h =

(0, 0, h), and find the classical ground state of the system. The energy of

the classical spins of Eq. (5.6) is

H = −JS2 −KS2 cos2 θ − hS cos θ, (5.7)

where θ is the angle between the z-axis and the orientation of spins in

the classical ground state, 0 ≤ cos θ ≤ 1. Minimization of the energy by

the angle θ gives us the classical ground state. There are two extrema

solutions for Eq.(5.7):

cos θ = − h

2KS (5.8)

or

cos θ = 1. (5.9)

For K < 0 and the magnetic field along the z-axis h < hsat, the minimum

of the energy is given by Eq. (5.8). The system in this case is tilted in

a weak magnetic field of strength h < hsat on the angle θ. If h > hsat or

K > 0 (easy axis ferromagnet) the mininum of the energy corresponds to
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5.4 Two-dimensional ferromagnet in external magnetic field at half-filling

Eq. (5.9) with spins aligned along the magnetic field.

We use the Holstein-Primakoff transformation, where we keep the lead-

ing terms in the 1/S expansion:

Sxi '
√

2S bi + b†i
2 , S−i '

√
2S bi − b

†
i

2i , Szi = S − b†ibi. (5.10)

When K > 0 or the magnetic field is stronger than the saturation field

(h ≥ hsat), spins are aligned along z-axis, so the Hamiltonian (5.6) reads

in momentum space

H =
∑

q

[
JzS(1− γq) + zKS + h

2

] (
bqb
†
q + b†qbq

)
. (5.11)

The spectrum of the spin-wave excitations in this case is

Eq = 2zJS(1− γq) + 2zKS + h, (5.12)

where γq = 1
z

∑
δ e

iqδ, the sum is taken over the nearest neighbors, the

coordination number z = 4 for a square lattice, we absorb it into J and

K further from now on and put the lattice constant δ = 1. This spectrum

is gapped. At small |q| it takes the form Eq = (h + 2KS) + JSq2, with

h ≥ 0 if K > 0, and Eq = (h− 2KS) + JSq2 if h ≥ hsat and K < 0.

Let us now consider a situation when K < 0 and the value of the

magnetic field does not exceed hsat. We rotate the coordinate system,

choosing a new z̃-axis along the classical spin alignment given by Eq.(5.8).
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Chapter 5. Single hole propagation in a two dimensional ferromagnet

It requires the following transformation:

Sy −→ S̃y,

Sz −→ S̃z cos θ − S̃x sin θ,

Sx −→ S̃x cos θ + S̃z sin θ.

(5.13)

Thus, the Hamiltonian takes form:

H =
∑

q

[(
JS(1− γq) + 1

2 |K|Sγq −
h2

8|K|Sγq

)(
bqb
†
q + b†qbq

)
+(

1
2 |K|Sγq −

h2

8|K|Sγq

)(
bqb−q + b†qb

†
−q

)]
. (5.14)

This Hamiltonian is diagonalized by appying the Bogolibov transfor-

mation which introduces operators of magnons βq = uqbq − vqb
†
−q, β

†
q =

uqb
†
q−vqb−q, where uq and vq satisfy the equation u2

q−v2
q = 1. For a non-

diagonal Hamiltonian of the form H = ∑
q[Aq(b†qbq + bqb

†
q) +Bq(b†qb†−q +

bqb−q)], where Aq and Bq are some coefficients, Eq =
√
A2

q −B2
q is

the energy of the system, the Bogolubov coefficients are expressed as

uq =
√

Aq
2Eq

+ 1
2 , vq = − Bq√

2Eq(Aq+Eq)
.

After the Bogolubov transformation, the Hamiltonian (5.14) acquires

the diagonal form

H =
∑

q
Eq(βqβ

†
q + β†qβq),

so the spectrum of magnons in this case is

Eq = 2
√
JS
[
(1− γq)

][
JS(1− γq) + |K|Sγq −

h2

4|K|Sγq
]
. (5.15)

It’s gapless. At small q dispersion of the excitations is linear Eq ∼ c|q|.
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5.4 Two-dimensional ferromagnet in external magnetic field at half-filling

At hsat the spins in the ground state become aligned along the z axis

(cos θ = 1). As a consequence, the dispersion is the one of the isotropic

ferromagnetic Heisenberg model with the quadratic spectrum Eq ' JSq2.

For h > hsat, the energy is given by Eq. (5.12)

Note that the Hamiltonian in Eq. (5.11) is already diagonal and does not

require a Bogolubov transform, so there magnon operators βk ≡ bk.

5.4.2 Ground state and excitations of the system with mag-

netic field along x-axis

The similar approach is used to find the ground state of the Hamiltonian

(5.6) if the magnetic field is applied along the x-axis, h = (h, 0, 0). The

classical Hamiltonian becomes

H = −JS2 −KS2 cos2 θ − hS sin θ. (5.16)

Minimizing it with regard to the angle θ, we obtain two solutions:

cos θ = 0. (5.17)

if K < 0 or h > hsat, or

sin θ = h

2KS (5.18)

if K > 0 and h < hsat.

Eq.(5.17) means that spins are aligned along x-axis and corresponds to a

system with the excitation spectrum

Eq = 2
√[

JS(1− γq) + h

2

] [
JS(1− γq) + |K|Sγq + h

2

]
. (5.19)
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Chapter 5. Single hole propagation in a two dimensional ferromagnet

At h = 0 and small |q|, the spectrum becomes linear, Eq '
√

2J |K|S|q|.

Eq.(5.18) corresponds to the ground state with spins tilted on angle θ with

respect to z-axis. The energy of magnons

Eq = 2

√[
JS(1− γq) +KS

][
JS(1− γq) +KS − h2

4KSγq
]

(5.20)

is again gapped with the gap ∆ = 2
√
KS

(
KS − h2

4KS

)
but the gap van-

ishes at h = hsat, the energy of magnons read in this case

Eq '
√

2K(J +K)S|q| .

5.5 Self-energy of the hole

Now, when we have established the properties of the system at exact half-

filling, we can consider the limit of a single hole in the system.

The full Hamiltonian of the system takes hopping processes into account.

Since the hopping processes with and without flips of the spin are possible

in the system, the configuration space of the 1
2 -spin system consists of

three elements: |↑〉, |↓〉, |0〉. We use the axis along the direction of the

spins in the t− J model. There are four types of hopping possible in the

system and depicted by Eqs. (5.21-5.24).

|0〉i |↑〉j −→ |↑〉i |0〉j , (5.21)

|0〉i |↓〉j −→ |↓〉i |0〉j , (5.22)

|0〉i |↑〉j −→ |↓〉i |0〉j , (5.23)

|0〉i |↓〉j −→ |↑〉i |0〉j . (5.24)
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5.5 Self-energy of the hole

We introduce an operator f †i that creates a hole at site i from the spin-

up state: fi |↑〉 = |0〉. The process given by Eq.(5.21) does not change the

spin configuration of the system, so the spin-up state is annihilated at

the site j and created at the site i, fif †j |0〉i |↑〉j = |↑〉i |0〉j . We restrict

our consideration to the one-magnon processes. The hopping shown in

Eq. (5.22) corresponds to the hopping of the hole in a perturbed state

|↓〉. It involves two-magnon processes and can be neglected [163]. Eqs.

(5.23, 5.24) describe the spin-slip process involving the one-magnon pro-

cesses. The change of the spin is described by the ladder operators S±:

S−i fif
†
j |0〉i |↑〉j = |↓〉i |0〉j , fif

†
j S

+
j |0〉i |↓〉j = |↑〉i |0〉j .

Summing all hopping terms and using the Holstein-Primakoff trans-

formation, we obtain the hopping Hamiltonian

Ht = −
∑
<i,j>

fif
†
j

[
2St1 +

√
2St2

(
b†i + bj

)]
+H.c. (5.25)

The part corresponding to the hopping without the spin flips does not

perturb the magnetic structure of the system, so we consider it as a shift

of the hole spectrum. With the effective Hamiltonian (5.25), we can calcu-

late the self-energy of a single hole hopping with spin flips. We do it in the

framework of the non-crossing diagrams approximation. The correspond-

ing self-energy is depicted diagrammatically in Fig. 5.1. Only the spin-flip

hopping involves interaction with magnons. It corresponds to the second

part of Eq. (5.25) proportional to t2, where Bose operators b†, b has to

be expressed via operators of magnons that diagonalize the Hamiltonian

in Eq. (5.6). This is done via the Bogolubov transform described in the

previous section. The magnon-involving hopping Hamiltonian is written
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Chapter 5. Single hole propagation in a two dimensional ferromagnet

G(k− q, ω − Eq)

Figure 5.1. The self energy of the hole in the self-consistent non-crossing dia-
grams approximation. G(k− q, ω −Eq) is the renormalized Green’s of the hole,
Eq - energy of a magnon.

then as

H̃t = −
∑
<i,j>

√
2St2fif †j

(
b†i + bj

)
+H.c. (5.26)

The Green’s function of the hole can be reduced to the Green’s function

of the "slave"-fermions, as we replace Bose operators by
√

2S values.

G(i, j, ω) =
∫ ∞
−∞

dteiωt〈T [fi(t)fj(0)+]〉 (5.27)

With this Green’s function, the self-consistent perturbation theory can be

constructed. The self-energy can be written in the frame of this approach

as

Σ(k, ω) =
∑

q
f(k,q)G(k− q, ω − Eq) (5.28)

f(k,q) contains information about the coupling of the hole to magnons.

It is obtained from Eq. (5.26) as f(k,q) = 2St22|γk−quq + γkvq|2. If the

spins in the ground state are aligned along z-axis (it corresponds to the

energy of magnons defined by Eq. (5.12) for an arbitrary magnetic field

along z-axis or by Eq. (5.15) for h = hsat), f(k,q) = 2St22γ2
k−q (the

Bogolubov coefficient are trivial in this case: uq = 1, vq = 0). For the

low energy of magnons which give the main contribution to Eq. (5.28),
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5.5 Self-energy of the hole

this function is in leading order constant: f(k,q) ' 2St22. While for the

tilted ground state of spins f(k,q) ∼ |q| at the bottom of the band if

the excitation spectrum is linear and f(k,q) is constant if the excitation

spectrum is gapped, which is defined by Eqs. (5.15), (5.20), (5.19). The

explicit form of the Green’s function for our problem reads

G(k, ω) = 1
ω + 2St1γk −

∑
q f(k,q)G(k− q, ω − Eq) , (5.29)

Eq is the spectrum of magnons provided in the previous section for various

cases by Eqs. (5.12), (5.15), (5.19), (5.20).

For the multi-layered system discussed above, Eq. (5.29) retains its form.

But the hole-magnon interaction in this model is unrelated to hopping

and occurs at the same site, therefore the only difference for this case is

that the coupling function f(k,q) does not contain the γk−q-factor, and

it is exactly constant if spins are aligned along z-axis.

As it follows from the analysis of f(k,q), if the spectrum of magnons

is gapless and linear, the problem of a propagating single hole in an easy

plane ferromagnet is identical to the problem of a propagating single hole

in an isotropic two-dimensional antiferromagnet studied in details by Kane

et al. in [163]. They showed that the spectral function of the hole in this

system contains a quasiparticle peak at the bottom of the spectrum. If the

system is gapped, the quasiparticle peak is separated from the incoherent

part of the spectrum since for the hole there are no states with lower

energy to scatter during creating of the spin excitation.
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Chapter 5. Single hole propagation in a two dimensional ferromagnet

5.6 Spectral function of the hole coupled to magnons

with quadratic dispersion

Let us estimate the analytical behavior of the self-energy of the hole when

the low-energy magnons in the system have quadratic dispersion Eq =

∆+JSq2. This situation can be realized by a manipulation of the external

magnetic field applied along z axis. The gap ∆ = 2KS + h is given by

Eq.(5.12) for h ≥ 0, ∆ = 0 when we consider an easy plane ferromagnet

in the saturation field h = hsat described by Eq.(5.15). The self-energy

of the hole is given by Eq. (5.28). For analysis of the lowest energy

excitations, we stay at the bottom of the band, so we consider k = 0.

For the considered ferromagnetic alignment of the spins along z axis, the

leading term of the hole-magnon vertex is constant: f(0,q) ' 2t22S2, the

next term is proportional to ∼ q2 and can be neglected in the low-energy

limit. Let us for a moment assume that the hole-magnon coupling is

small, so we may treat the self-energy of the hole near the quasiparticle

pole perturbatively. In the lowest order of the perturbation theory, the

self-energy is defined by the single loop contribution depicted in Fig. 5.2a

and reads

Σ(1)(ω) = t2S

2π

∫
qdq

ω −∆− JSq2 + t1(1− q2

2 )− iδ

' −κ ln
∣∣∣∣∆− ω̃Λ

∣∣∣∣ ,
where κ = t22S

π(JS+ t1
2 )

is the effective coupling constant, ω̃ = ω + t1 (ω̃ =

0 at the position of the quasiparticle hole), Λ is the ultraviolet cut-off,

δ → 0+. The second order of the perturbation theory in the non-crossing
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dispersion

approximation is shown in Fig. 5.2b and the sum of the single loop and

the two loop contributions reads

Σ(2)(ω) = Σ(1)
(
ω − κ ln

∣∣∣∣∆− ω̃Λ

∣∣∣∣)
' Σ(1)(ω) + κ2

∆− ω̃ ln
∣∣∣∣∆− ω̃Λ

∣∣∣∣ . (5.30)

The perturbative approach is justified as long as κ
∆−ω̃ � 1, but this anal-

ysis is no longer valid when κ
∆−ω̃ & 1. Since the gap ∆ vanishes in the

easy-plane ferromagnet inside the saturation field, the perturbation the-

ory breaks down even for an arbitrary small hole-magnon coupling. It is

necessary to use a nonperturbative approach in this case.

(a) (b)

Figure 5.2. (a) Single loop contribution to the hole self-energy. (b) Two loop
contribution to the impurity sef-energy. The solid line corresponds to the hole,
the curved line corresponds to the magnon.

When the gap ∆ = 0, the self-energy is given by

Σ(ω) = 2S2t2

π

∫
qdq

ω − JzSq2 − Σ(ω − JzSq2) . (5.31)

For simplicity, we can assume that t1 = 0. We use an ansatz for the spec-

tral function in the form Σ(ω) = ωc+A (ω − ωc)α. ωc is the characteristic

frequency where the spectral weight appears, A is some constant. Putting

this form of Σ in Eq.(5.31), we have

ωc +A(ω − ωc)α = t2

πJ

∫ Λ

0

dx

ω − ωc − x−A (ω − ωc − x)α , (5.32)
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Chapter 5. Single hole propagation in a two dimensional ferromagnet

Λ is some cut-off value for the energy. Eq.(5.32) is satisfied for |ω−ωc| �

ωc if α = 1
2 , and the spectral function reads

Σ(ω) '
ω→ωc

ωc +A(ω − ωc)
1
2 ,

with constant A =
√

2t2
Jπ .

This self-energy gives us the Green’s function

G(ω) = 1
ω − ωc −A(ω − ωc)

1
2
. (5.33)

It diverges at the threshold ωc of the band as G(ω − ωc) ∼ ω−
1
2 . Due to

this scaling, there is no quasiparticle pole in this case.

5.7 Numerical evaluation of the spectral function

Now we solve the equation (5.29) numerically and compare it with the

qualitative results from the previous section.

The case of t2 = 0 is trivial. The hole hops through the ferromagnetic

background without flips, so there are no magnons in the system. The

spectral function in this case is simply a δ-function peak at the bottom of

the band.

The case of t1 = t2 for an isotropic ferromagnet is shown in Fig. 5.3.

There is no quasiparticle hole in this case, the self-energy at the bottom

of the band is rather obey Σ(ω) =
√
ω − ωc (depicted by the dotted line

for k = (0, 0)). The hopping processes without flip of the spin causes shift

of the relative spectral weight from the bottom of the band to the position

the δ-peak for t2=0 used to be.
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Figure 5.3. Spectral function of the hole at the bottom of the band with the
spin-flip processes. Only processes involving spin flips are allowed: t1 = t2.
h = hsat, J = 0.5t2. Thick blue line: spectral function for gapless magnons,
k = (0, 0), ∆ = 0. Dashed black line ∼ 1

π Im[(ω − ωc)− 1
2 ]. Red line: k = (π5 ,

π
5 ),

brown line: k = ( 2π
5 ,

2π
5 ), gray line: k = ( 3π

5 ,
3π
5 ), orange line: k = (4π5 ,

4π
5 ).

In Fig.5.4a we show the spectral function A(ω) = − 1
π ImG(ω) for the

itinerant electron in the two-layered system with a gapless spectrum of

ferromagnetic magnons. The coupling of the itinerant electron to magnons

is given for this case by Eq. (5.3), t0 is put to zero for the simplicity, e.g.

only the interlayer hopping is present in the system. This spectral function

does not depend on the wave-vector k. At the bottom of the band, this

spectral function behaves as Aω ∝ (ω − ωc)−
1
2 in accordance with our

ansatz solution Eq. (5.33). If the spectrum of magnons is gapped, there is

a distinctive quasiparticle pole in the system separated from the incoherent

part of the band, as shown in Fig. 5.4b.
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Figure 5.4. Spectral function of the itinerant electron in the two layered van
der Waals crystal. (a) Isotropic case ∆ = 0. Only processes involving spin flip
are allowed - t1 = 0, J = 0.1t2. Dashed black line ∼ 1

π Im[(ω − ωc)− 1
2 ]. (b)

Anisotropic (easy axis) case ∆ = 0.6J .

5.8 Comparison to the two-dimensional antifer-

romagnet

Our results of two previous sections clearly demonstrate that a hole in

a two-dimensional ferromagnet has a special regime, shown in Table 5.1

(K < 0, h = hsat and K = 0, h − 0) where the quasiparticle weight Z =(
1− ∂Σ(ω)

∂ω |ω=ωc

)−1
vanishes and the Green’s function scales as G(ω) ∝

√
ω − ωc−1. It is caused by the magnon spectrum Eq ∼ q2. If the spec-

trum of magnons is gapped or linear, one obtains again coherent polarons.

This situation is contrasted to a two-dimensional antiferromagnet, which

always can be described by coherent quasiparticles [163]. We have shown

that this non-quasiparticle regime can be achieved in anisotropic ferromag-

nets by manipulation of an external magnetic field applied to the system.

If this behavior survives at finite charge densities, manipulation of the
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5.8 Comparison to the two-dimensional antiferromagnet

magnetic field allows experimental control of the Fermi liquid-non-Fermi

liquid properties.

∆ Eq Z(ω)
K > 0, hz ≥ 0 h+ 2KS ∆ + cq2 finite
K > 0, hx < hsat 2

√
KS(KS − h2

4KS ) ∆ + cq2 finite
K > 0, hx ≥ hsat

√
h(h+ 2KS) ∆ + cq2 finite

K < 0, hz > hsat h− 2KS ∆ + cq2 finite
K < 0, hx > 0

√
h(h+ 2KS) ∆ + cq2 finite

K < 0, hz < hsat 0 c|q| finite
K < 0, hz = hsat 0 cq2 0, G(ω) ∝ (ω − ωc)−

1
2

K = 0, hz = hx = 0 0 cq2 0, G(ω) ∝ (ω − ωc)−
1
2

Table 5.1. Gap ∆, spectrum of magnons Eq and quasiparticle spectral weight
Z(ω) for different values of anisotropy K and magnetic field h. c is a function of
S, J,K, h
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Chapter 6

Conclusions of the thesis

In this thesis we studied several aspects of the manifestation of the fluc-

tuating Goldstone modes in condensed matter physics. For the large part

of the thesis, we focused on the phonon-mediated Casimir interaction be-

tween impurities in lattice and continuum systems both numerically and

analytically. The obtained exact solution of the considered model for the

phonon-induced Casimir interaction brings together the results of earlier

studies in the field and explains discrepancy between them. In particular,

we demonstrated that the model of Schecter and Kamenev [51] in the limit

of the infinite impurity masses is equivalent to the model of Recati et al.

[50].

As we found in our research, heavy or light impurities in atomic chains

with periodic boundary conditions create weak perturbing potential inter-

action between the impurity atoms. The low-energy phonons are weakly

affected by this change, while higher-energy phonons become gapped, i.e.

optical branches appear in the spectrum. The Casimir interaction stems
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from the low-energy part of the spectrum, so the resulting attractive inter-

action can be treated perturbatively. That kind of interaction immediately

makes phonon spectrum gapped and eliminates an acoustic branch from

the spectrum, but does not substantially affect higher energy modes.

In Chapter 2, we analyzed numerically the evolution of the phonon-

induced Casimir interaction between two impurity atoms embedded in an

ideal atomic lattice. We showed the mapping of the Luttinger liquid with

impurities to the continuum limit of the introduced lattice model. As we

found, this interaction in one dimension at small distances differs from the

power law 1/r(3) predicted by Schecter and Kamenev for large separations

between the impurities. For static impurities without kinetic energy the

interaction asymptotically tends to the 1/r law, restoring the results of

Recati et al. We found that the latter spacial law is the short-distance

limit of the interaction between the dynamic impurities. At intermedi-

ate distance the Casimir interaction is nonuniversal and has a crossover

between these two limits of 1
r and 1

r3 .

The reasons for such behavior and the characteristic scale of the crossover

are found in the Chapter 3. In this Chapter we developed the model for

the phonon-mediated Casimir interaction. We showed that this model

can be solved exactly by the full summation of the infinite series given

by the perturbation theory. The characteristic distance of the system is

defined by the coupling constant of the phonon-impurity interaction. For

the lattice case, this constant depends only on the ratio between masses

of the impurities and atoms of the ideal lattice.

The obtained long-ranged interaction can be observed experimentally

in ultra cold atomic gases in the experimental setup of Catani et al. [79]
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described in Chapter 1. As it follows from this chapter, we show that the

real Casimir interaction for dynamic impurities is stronger than it is given

by the second order of the perturbation theory, which was available in the

literature so far. In particular, our results based on the exact solution for

the setup considered in [51] give the value of the Casimir interaction three

times larger than the second order of the perturbation theory and increases

even further in systems with large phonon-impurity scattering amplitudes

close to the unitary limit. It gives hope that the Casimir interaction can

can be found experimentally in atomic gases in optical traps.

In Chapter 4, we formulated the theory of the phonon-mediated Casimir

interaction via the T -matrix formalism for the phonon-impurity scatter-

ing. This allowed us to express all microscopical parameters of the model

via the phenomenological experimentally observable constants and gen-

eralize the model for two- and three-dimensional systems. Our results

demonstrate that the multiple phonon scattering processes occurring at

each impurity are crucial for the correct evaluation of the Casimir inter-

action. We show that the energy dependence of the T -matrix determines

the power law decrease of the Casimir interaction at short distances and

at large distances in the unitary limit at T = 0. For the weak impu-

rity scatterings, the Casimir interaction is universal at large distances.

This T -matrix method is especially important for the consideration of

the Casimir forces between two atoms in external potential and allows to

obtain the non-perturbative results. At finite temperatures, a new char-

acteristic scale of the order of the thermal de Broglie wavelength appears.

For distances much larger the de Broglie wave length, the Casimir in-

teraction decays exponentially with the distance between the impurities.
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Chapter 6. Conclusions of the thesis

The obtained temperature corrections may be relevant to the proposed

experimental set-ups of [76, 79].

In Chapter 5 we developed the theoretical description of a singe hole

propagating in the two-dimensional ferromagnet in external magnetic field

with spin-flips. We found that interaction of the itinerant quasiparticle

with magnons leads to the strong renormalization of the spectral weight

of quasiparticles. We showed that an external magnetic field can be used

to manipulate the properties of this system. At the saturation value of the

magnetic field applied to an easy plane ferromagnet, the Green’s function

demonstrates G(ω) ∝ ω−
1
2 behavior. It is contrasted to the systems of

an itinerant quasiparticle in the antiferromagnetic background where the

the quasiparticle retains the finite quasiparticle weight. We showed that

the anisotropic system with a gapped spectrum of magnons demonstrates

clear quasiparticle poles separated from the incoherent part of the band.

The obtained results for the effective renormalization of a single hole by

magnons in ferromagnets open possibility to develop a theory for the

magnon-mediated Casimir interaction between two impurities in a two-

dimensional ferromagnet in addition to the existent descriptions of the

magnon-mediated Casimir forces in to dimensional antiferromagnets [180].

As the conclusion of this thesis, we developed the description of the

phonon-mediated Casimir interaction taking into account multiple phonon-

impurity scatterings, that strongly renormalize the resulting interaction

between the impurities. Our results generalize previous studies of the

Casimir interaction between different kind of impurities. We developed

the theory for magnon scattering processes on a single itinerant impurity

in a two-dimensional ferromagnet that can be used further for study of
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the magnon-mediated Casimir interaction in quasi-two-dimensional ferro-

magnets.
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