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ABSTRACT 

 This doctoral thesis aims to demonstrate the relevance of resting-state functional 

connectivity (RSFC) for the study of brain function. RSFC refers to the spontaneous brain 

activity structured in intrinsic connectivity networks. These networks mirror task-based 

activations and show significant variations across several behavioral domains and phenotypical 

traits. Furthermore, changes in these networks after, for instance, pharmacological 

manipulations, may disentangle the specific role of several neurotransmitters systems in 

normal and pathological functional connectivity. While various neuroimaging techniques enable 

the detection of intrinsic connectivity networks, data-driven methods, such as independent 

component analysis, provide a robust spatial representation of brain networks that are 

distinguishable from physiological signals and scanner noise.  

Within the above-mentioned framework, this thesis presents data from two studies 

designed to better understand 1) individual differences in decision making reflected in intrinsic 

network connectivity and 2) variations in intrinsic network connectivity following serotonergic 

manipulations. The first part is the general introduction where I present the theoretical 

background, the methodology used in both experiments and an overview of the current 

research related to the studies of this thesis. The second chapter presents the first study, which 

examined the relationship between a set of value-based decision-making parameters with 

large-scale intrinsic connectivity networks. Findings of this study revealed that individuals who 

prefer to gamble in order to avoid a sure loss, exhibit stronger connectivity between the default 

mode and left frontoparietal systems to their adjacent brain regions, especially to those involved 

in prospective thinking, affective decision making and visual processing. The third chapter 

presents the second experimental study, which examined changes in default mode network 

connectivity after two tryptophan interventions to increase and decrease brain serotonin 

synthesis, and a control condition. Results of this study showed decreased functional 

connectivity between the default mode network and emotion-related regions associated with 

higher serotonin brain levels. Finally, the fourth chapter includes a general discussion that 

integrates the significance of the findings from both studies. In this section, limitations and 

recommendations for future research are also considered before presenting the conclusion that 

highlights the contribution of this work for unraveling the continuous activity of the resting brain.  

  



 

8 
 

  



 

9 
 

 

 

 

 

CHAPTER 1 

1. GENERAL INTRODUCTION 
 

“The fact that the body is lying down is no reason for supposing that the mind is at peace. Rest 

is sometimes far from restful” 

  Seneca the younger, “On Noise”, ~65 AD 

 

 

1.1. Resting-state functional connectivity: the silent work of the resting brain 

 Since ancient times, humans have wondered what the mind (therefore the brain as well) 

does when it is not involved in an active and conscious task. Is the brain still working, or does 

it simply “shut down”? In 1979, the accidental discovery of higher frontal blood flow during 

resting wakefulness was interpreted as an anticipatory response to “simulate behavior” (Ingvar, 

1979), but it was not until 1995 when modern neuroscience revealed what really happens when 

we ”are not using” our brain. In 1995, Dr. Bharat Biswal and colleagues mapped, for the first 

time using functional magnetic resonance imaging (fMRI), spontaneous brain signals in the 

human sensorimotor cortex in absence of a task or stimulus (Biswal et al., 1995). This 

investigation undoubtedly demonstrated that the awake brain remains active under resting 

conditions and introduced the concept of Resting-State Functional-Connectivity (RSFC), a 

technique that uncovers spontaneous brain fluctuations in the fMRI signal. These fluctuations 

are temporally correlated across functionally related areas, building detailed maps of complex 

neural systems which constitute what researchers nowadays call an individual's "functional 

connectome” (Biswal et al., 2010). 
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 Since the publication of this seminal work, RSFC studies have significantly increased, 

mainly due to their relatively easy acquisition procedure and the possibility of their use with 

sensitive population (i.e. psychiatric patients (Woodward & Cascio, 2015), children and elderly 

(Wang et al., 2012), sedated (Kirsch et al., 2017) and sleeping individuals (Altmann et al., 

2016)). Moreover, the use of RSFC is not limited to the neuroimaging domain but it also extends 

to other forms of brain exploration (e.g. EEG, MEG (Muthuraman et al., 2015), fNIRS (Niu & 

He, 2014)), allowing the detection of functional connectivity measures and other forms of 

spontaneous brain activity
1
. To show the increasing popularity of RSFC, a manual search of 

English-language peer-reviewed RSFC studies was conducted on PubMed
2
 and showed a total 

of 22,855 studies published between 2008 and May 2018 which contained the keywords 

“Resting-state”, “Brain networks” and “Default mode network”. 

 A crucial aspect of RSFC is to understand the kind of brain activity that can be detected 

under resting conditions. In other words, how are resting-state signals produced? The use of 

fMRI to monitor regional brain activity was proposed by Ogawa et al. (1990) after his 

observation of the so-called Blood Oxygen Level Dependent (BOLD) response, which was 

sensitive to the local concentrations of paramagnetic deoxyhemoglobin (i.e., form of 

hemoglobin without the bound oxygen) in the brain. Cognitive and behavioral tasks increase 

metabolic demands in the brain and produce changes in blood flow, resulting in decreases of 

deoxyhemoglobin and thus increases in the BOLD signal (Hillman, 2014). The current 

consensus is that BOLD signals are more related to postsynaptic neural activity, reflecting the 

input to a neuronal population as well as its intrinsic processing (Lauritzen, 2005). In the 

absence of an overt task, the synchronous resting-state fluctuations are thought to represent 

changes in blood flow and oxygenation due to spontaneous neuronal activity (Craddock et al., 

2009) and still, very little active metabolism (Ekstrom, 2010). A recent computational model 

suggests that resting-state signals arise from dynamic infra-slow fluctuations of the sodium 

(Na+) and potassium (K+) ion concentrations in the brain (Krishnan et al., 2018). Consequently, 

these signals are present in low frequencies (0.01 – 0.2 Hz) and are, therefore, highly 

susceptible to the influence of other fluctuations in the MRI signal.    

 Perhaps this last situation and the possibility that RSFC might not represent the 

underlying neural activity in the same way as task-based fMRI, have triggered an intense 

                                                             
1 Regional Homogeneity (ReHo) and (fractional) Amplitude of Low Frequency Fluctuations (fALFF, ALFF) are also 

neuroimaging methods to detect and quantify spontaneous activity in the resting brain. However, this work is 

completely focused on functional connectivity measured in the BOLD signal. 
2 https://www.ncbi.nlm.nih.gov/pubmed/  retrieved in 30.05.2018. 



 

11 
 

debate that goes back to the beginnings of the technique. A primary criticism is the 

contamination of resting-state frequencies by physiological noise, such as respiratory and 

cardiac fluctuations (Birn, 2012) and signals coming from head motion (aperiodic or usually 

respiratory-rate related; (Power et al., 2012)). Additionally, there might be other sources of 

noise that need to be carefully controlled, such as equipment generated artifacts and signals 

from white matter (WM) and cerebrospinal fluid (CSF). In an attempt to overcome these 

limitations and provide a clear and clean characterization of the organized brain activity under 

rest, the so-called denoising procedures have emerged in the last years (Pruim et al., 2015a; 

Salimi-Khorshidi et al., 2014). After denoising, measures of functional connectivity can be 

detected in the resting-state data. To achieve this, several methodologies are available, each 

one with advantages and pitfalls that we will discuss next. Model-driven approaches, for 

instance, allow the detection of correlations between the timecourse
3
 in a certain seed region 

(i.e., brain regions, structures) with the timecourses of all other brain voxels. Seed definition is 

typically based on strong hypotheses regarding the functional connectivity of a small number 

of brain regions of interest (ROI) or individual voxel locations of interest (Cole et al., 2010). The 

obvious disadvantage of this method is the need for strong a priori assumptions on the 

expected connectivity patterns. Moreover, anatomical variations and heterogeneity of brain 

regions can lead to selection bias (Sohn et al., 2015). Similarly, proximity to pulsating vessels, 

motion, susceptibility and registration artifacts can reduce signal to noise ratio and thus affect 

the detection of significant differences within individuals and between groups. In contrast, data-

driven analyses permit the exploration of organized brain activity without specific prior model 

definition, but some of them demand a meticulous visual inspection in order to distinguish noise 

from resting-state signals. Various other methods are currently available for the detection of 

RSFC (see Lee et al. (2013) for a review). Most of them intend to present resting-state signals 

in a coherent way, unravelling spatially consistent patterns across multiple brain regions, which 

are known as “large-scale brain networks”, “resting-state networks” or “intrinsic connectivity 

networks” and are the primary focus of this doctoral thesis. To provide a complete picture of 

the methodology and theoretical models used in this work, I present core concepts in the 

following sections.   

 

                                                             
3 The evolution of a measurement – in this case, the BOLD signal – over the course of the scanning time. 
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1.2. Intrinsic connectivity networks 

 Leading researchers in the resting-state field identified coherent slow fluctuations in the 

BOLD signal grouped in separate anatomically and functionally plausible networks, which are 

highly consistent across individuals (Damoiseaux et al., 2006; Fox et al., 2005; Smith et al., 

2009a; Yeo et al., 2011) and can be also found in other species (Ortiz et al., 2018). These 

intrinsic connectivity networks (ICN) comprise specific neuro-anatomical systems involved in 

motor function, visual and auditory processing, executive functioning and self-oriented 

cognition. Furthermore, these ICN as well as their subnetworks, exhibit close correspondence 

with task performance activity (Laird et al., 2011), thus confirming that regions similarly 

modulated by tasks tend to present correlated spontaneous fluctuations even in the absence 

of stimuli (Fox et al., 2005). In addition, some studies have demonstrated that the anti-

correlation between task-negative and task-positive networks exists in both task-based and 

RSFC, although this dichotomy remains a matter of debate (see Spreng (2012) for a 

discussion). After the initial identification of a large set of ICN, additional improvements in 

modelling and/or data acquisition yielded a more fine-grained network characterization across 

ages and genders, revealing up to 28 ICN in the human brain (Allen et al., 2011). Fig. 1 displays 

the most used templates of the existing ICN.   

 Among all the ICN, the default mode network (DMN) is of particular interest. Raichle 

and colleagues accidentally discovered this network using positron emission tomography 

(PET), describing it as a group of regions with decreased metabolic activity during attention-

demanding cognitive tasks but increased blood flow while participants rest awake with eyes 

closed (Raichle et al., 2001). It was therefore, considered a “baseline state of the brain”. The 

DMN is present across different species (Ortiz et al., 2018). In humans, it encompasses the 

ventromedial prefrontal cortex, the posterior cingulate/retrosplenial cortex, the inferior parietal 

lobule, the lateral temporal cortex, the dorsal medial prefrontal cortex and the hippocampal 

formation (which includes entorhinal cortex and parahippocampal cortex) (Buckner et al., 

2008b)). The DMN is easily detected in the human brain across different developmental stages, 

although its regions are only sparsely connected between the ages of seven and nine years 

(Fair et al., 2008) and the undergoing developmental changes are not uniform across all DMN 

regions (Supekar et al., 2010). The DMN activity is linked to autobiographical memory, mind-

wandering, prospective memory, theory of mind, moral decision making and other forms of self-

relevant mental exploration (Andrews-Hanna et al., 2010; Buckner et al., 2008b). Recent 

research described the pivotal role of the DMN in cognitive processes, suggesting that its level 
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of activation can be associated with successful performance across goal-directed behaviors 

(Anticevic et al., 2012; Crittenden et al., 2015). 

 Overall, the study of RSFC organized into dynamic and anticorrelated ICN, has 

demonstrated high sensitivity and specificity for detecting individual differences associated with 

a wide range of domains (e.g., cognitive, perceptual, motoric and linguistic) as well as 

behavioral traits (e.g., empathy, impulsiveness, risky decision making), and states (e.g., anxiety 

and psychiatric symptoms). Furthermore, ICN show relevant changes in response to new 

experiences and pharmacological treatments (for a review see Vaidya and Gordon (2013)) and 

recently, more sophisticated techniques have demonstrated that brain functional connections 

can be used as a biomarker of diseases and predictors of treatment outcome (Craddock et al., 

2009; Drysdale et al., 2017; Emerson et al., 2017). To expand on the above-mentioned body 

of information, the current thesis investigated changes of ICN associated with 1) phenotypic 

traits and 2) pharmacological manipulations. 
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Figure 1. Spatial maps of 28 intrinsic connectivity networks detected in a sample of 603 

subjects using Independent Component Analysis (ICA). Basal ganglia network = 1, auditory 

network = 2, sensorimotor networks = 3, visual networks = 4, default-mode networks = 5, 

attentional networks = 6 and frontal networks = 7. Adapted from Allen et al. (2011). 

 

1.2.1. ICN and phenotypic variability 

 The application of noninvasive techniques for examining brain function helps to 

investigate the in vivo neural correlates of both normal and pathological behaviors. In this 

specific case, RSFC consistently described distributed networks across different 

behavioral domains, which might be partially or completely disturbed under pathological 

conditions (Siegel et al., 2016).  
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 One of the most stable findings is the association between higher executive 

functions and stronger within-network connectivity in frontoparietal, cognitive control and 

default mode systems (Hearne et al., 2016). This link supports the idea of interplay 

between cortical systems involved in top-down control underlying the deployment of 

cognitive resources in a goal-directed manner. Conversely, the disruption of this apparent 

harmonic configuration is associated with aberrant decision making such as pathological 

impulsivity (Shannon et al., 2011), addictions (Ding et al., 2013; Zhu et al., 2015) and 

risk-seeking behaviors (DeWitt et al., 2014). The disruption of default mode systems is 

a common finding in these disorders, perhaps characterizing a cognitive style with 

predominant self-referential thoughts and therefore less participation of networks 

associated with cognitive control processes (Greicius et al., 2003). Furthermore, a 

failure in the suppression of default modes of cognition might result in less goal-directed 

behavior and illustrate the momentary lapses in attention observed, for example, in 

ADHD and related disorders (Castellanos et al., 2008; Han et al., 2016). 

 Other phenotypic traits have been associated with the interplay between various 

ICN. For instance, stronger interactions between DMN, cognitive control and attentional 

brain systems were described in more creative individuals (Beaty et al., 2015; Beaty et al., 

2018; Shi et al., 2018). In a similar manner, personality domains associated with emotional 

reactivity can be predicted by the interconnectivity between frontal hubs and limbic regions 

(Adelstein et al., 2011; Hsu et al., 2018), suggesting that vulnerability traits respond to a 

distinct involvement of emotion-related structures. 

 Although we remain cautious in deducing causality between brain connectivity and 

the observed behavior, disentangling how the variability of ICN relates to phenotypic traits 

may in the first place, help elucidate the functional significance of these networks and in 

the second place, help us to understand how brain networks integrate information through 

the complex pattern of neural connections (Smith et al., 2015), and how these connections 

are associated with normal and disruptive behaviors. In this sense, the relationship 

between intrinsic brain connectivity and decision-making profiles is of particular relevance, 

since it may contribute to the prompt implementation of prevention strategies, especially in 

young and vulnerable populations.  
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1.2.2. ICN and pharmacological manipulations 
Traditionally, the effects of pharmacological interventions in the brain were 

assessed with positron emission tomography (PET). However, the dose-radiation 

restriction makes this technique unsuitable for repeated crossover studies in humans. 

Similarly, task-based pharma-fMRI is valuable for hypothesis testing, but it is virtually 

impossible to standardize in translational or large-scale clinical studies. These facts among 

others (see Khalili-Mahani et al. (2017) for a review) encouraged the use of pharma-RSFC
4
 

as a noninvasive technique to examine the neural fluctuations caused by pharmacological 

interventions. In addition, recent studies highlight the importance of pharma-RSFC as a 

translational tool, suggesting that it can be used as a potential biomarker for drug 

development (Smucny et al., 2014). 

Pharma-RSFC was used for the first time by Kiviniemi et al. (2000) who showed 

the effects of thiopental in the spontaneous fluctuations of sensory cortices in anesthetized 

children. Subsequent studies demonstrated that other anesthetic agents such as propofol 

(Monti et al., 2013) and chloral hydrate (Wei et al., 2013) affect the overall ICN’s activity, 

indicating that the global state of consciousness and brain metabolism can be detected 

through pharma-RSFC. This technique was also extended to the investigation of aberrant 

connectivity among drug addictions (Moeller et al., 2016), suggesting that chronic drug use 

alters excitatory and inhibitory processes and consequently, modifies the connectivity of 

networks subserving attentional, emotional, and inhibitory functions (Goldstein & Volkow, 

2011). This is particularly important in understanding the behavioral manifestations that 

might maintain and promote addictive behaviors. 

Likewise, modulation of ICN in patients and healthy individuals has been described 

after dopaminergic (Carbonell et al., 2014; Cole et al., 2013; Esposito et al., 2013; Flodin 

et al., 2012; Kelly et al., 2009; Vytlacil et al., 2014) and serotonergic agents (Klaassens et 

al., 2016; Klaassens et al., 2015; McCabe et al., 2011; van de Ven et al., 2013; Zanchi et 

al., 2016), among others. Changes in brain networks associated with the symptomatic 

manifestations of several neuropsychiatric disorders are of particular relevance to pharma-

RSFC, since they might help to explain the mechanism of action of certain pharmacological 

interventions. For example, connectivity changes in brain regions with dense serotonergic 

innervation (i.e. hippocampus, cingulate cortex, precuneus) that belong to the DMN, have 

                                                             
4 Since it is acquired under resting conditions, cerebral blood flow (CBF) is also considered a measure in pharma-

RSFC. However, this work is only focused on BOLD activity, measured with RSFC. 



 

17 
 

been described in mood disorders (Posner et al., 2013; Wang et al., 2015). This may reflect 

depressive biases toward internal thoughts at the cost of engaging with the external world 

(Kaiser et al., 2015). Given the implication of the serotonergic system in the regulation of 

emotion and cognition (Cowen & Browning, 2015; Jenkins et al., 2016), connectivity 

changes that arise after challenging this system may represent a potential biomarker for 

the understanding of depressive symptomatology.  

In conclusion, pharma-RSFC is still a growing field that should advance with 

caution. In this vein, the use of robust and unbiased ICN maps is particularly relevant. 

Different methods for the identification of ICN from resting-state data were already 

mentioned in the first part of this introduction. However, due to their robustness and 

interpretability, the neuroimaging community has repeatedly endorsed the application of a 

computational and statistical technique known as Independent Component Analysis. 

 

1.3. Independent Component Analysis 

Independent Component Analysis (ICA) is a highly multivariate method that considers 

the relationships between all voxels simultaneously and offers continuous improvements 

regarding its application in brain exploration (i.e., EEG (Raduntz et al., 2015), fMRI artifact 

removal (Pruim et al., 2015a; Salimi-Khorshidi et al., 2014), brain parcellation (Wu et al., 2015) 

and task-based activity (Gess et al., 2014)). The theoretical framework of ICA is presented 

next. 

ICA is a method originated from signal processing research which relies on the blind 

source separation algorithm (BSS; Jutten and Herault (1991)). This algorithm is used to 

separate simultaneously all the unknown, independent, linear and non-Gaussian sources from 

a mixing matrix. ICA is typically applied to solve the “cocktail party problem”, where this method 

can effectively separate sources from an auditory scene if this scene is recorded with multiple 

microphones positioned at different locations in a room. Each microphone yields a different 

weighted combination of the sources according to their proximity to them and if the number of 

microphones and sources is the same, simple assumptions about the statistical properties of 

sources (e.g. non-Gaussianity) are enough to derive the source signals from the mixtures 

(McDermott, 2009).  
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ICA was introduced in neuroimaging research by McKeown et al. (1998) who concluded 

that this method could successfully distinguish between task-related activity and other 

artifactual components in the fMRI signal based on weak assumptions about their spatial 

distributions and without a priori assumptions about their time courses (McKeown et al., 1998). 

Typically, spatial ICA is performed in neuroimaging and considers the data with 	

# voxels measured at $ different time points as a $	%	# matrix & that can be represented as  

& = () 

where & is the mixture (observed data), ( is the mixing matrix (estimated) and 	

) are the sources (estimated). This implies that the sources are maps that are maximally 

independent, i.e. non-overlapping and the mixing matrix represents activate timecourses of the 

sources. Then, using the infomax algorithm (Bell & Sejnowski, 1995) the sources are estimated 

by optimizing an unmixing matrix  * = (+, so that ) = *	& contains mutually independent 

rows. In this doctoral thesis we used a slightly different ICA approach called Probabilistic ICA 

(PICA; Beckmann and Smith (2004)). PICA assumes that the time courses of the fMRI data 

(i.e., p-dimensional vectors of observations) are generated from a set of q (< p) spatial maps 

(i.e., statistically independent non-Gaussian sources) via a linear and instantaneous mixing 

process corrupted by additive Gaussian noise η(t):  

%1 = (21 +	41 

where %1	are the individual measurements at voxel location 5, 	21 are the non-Gaussian source 

signals contained in the data and 41 is the Gaussian noise. The noise covariance is isotropic at 

every voxel location 	η1	 ∼ 	G(0, σ;Σi). Although the similitude with a standard general linear 

model (GLM) where the matrix is pre-specified prior to model fitting, PICA estimates the mixing 

matrix ( from the data (Beckmann et al., 2005). 

ICA offers several advantages for neuroimaging research. For example, it requires no 

a priori hypothesis or model of brain activity because it is a multivariate, data-driven approach. 

Similarly, when conducted on a group level, ICA facilitates the estimation of robust independent 

components that capture the temporal and spatial patterns at the individual level. Moreover, in 

the specific case of PICA, the general characteristics of the noise present in the fMRI signal 

are considered, yielding more interpretable and robust spatial maps that represent ICN among 

other signals of noninterest (Beckmann et al., 2005).  
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Yet some methodological challenges exist. Since this method is also sensitive to 

detecting structured noise, physiological artifacts and motion can affect the reliability of the 

component detection (Zuo et al., 2010). In addition, the initial ICA estimation may turn into a 

highly exploratory process in which the number of components (i.e. ICN + noise) is not given 

beforehand and should be tested repeatedly, consuming time and computational resources. 

The final model selection should neither under-fit (i.e., too few components that contain merged 

networks and noise) nor over-fit (i.e., too many components that contain fragmented networks 

and noise) the signal. Once the ideal model has been estimated, the data require a fine visual 

inspection to ensure that well-known ICNs are represented in grey matter with minimum overlap 

in white matter (white matter signals should ideally be removed before ICA). To achieve this 

last step, spatial correlations between the resulting components and ICN templates can be 

performed (Reineberg et al., 2015). 

For statistical analyses on a group level, one common approach is to obtain single 

representations of each ICN. The ICN resulting from ICA are then used as templates in 

regressions analysis (e.g. back-projection (Calhoun et al., 2001), dual regression (Beckmann 

et al., 2009)). The work reported in this doctoral thesis used a dual regression approach, which 

is a multivariate regression analysis to identify subject-specific networks and their related time 

courses that capture within or between-group differences. Another proposed approach is to 

use predefined networks as templates (e.g. maps obtained from larger groups and publicly 

available) and directly proceed with the dual regression analysis. This way, higher variability 

which may bias the group ICN, can be avoided at the individual level. 

All in all, ICA has emerged as a powerful tool for investigating organized spontaneous 

brain activity contained in ICN. Based on the notion that RSFC is susceptible to inter-individual 

differences and pharmacological challenges, this work joins a large field of ongoing research 

aiming to demonstrate the validity and robustness of this technique for uncovering the restless 

activity of the brain. 
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1.4. Summary: research objectives and study hypotheses 

1.4.1. Study 1 
Based on the postulated phenotypic variability of RSFC across behavioral domains, 

this study investigated the relationship between large-scale ICN and value-based decision-

making domains (i.e. delay-aversion, risk seeking for losses, risk seeking for gains, risk-

aversion) in a large cohort of young individuals. 

 
Research questions: 

1. Do these ICN have a different connectivity strength in more impulsive and risk-

seeking young individuals? 

 

2. Is the connectivity between the ICN and other brain regions different in more 

impulsive and risk-seeking young individuals, as proposed by Cox et al. (2010) and 

DeWitt et al. (2014)? 

 

3. Are risk seeking for losses and risk averse behaviors associated with different intrinsic 

connectivity patterns in young individuals? 

 

 

1.4.2. Study 2: 
Based on the serotonergic modulation of the default mode network (DMN) and the 

implication of this network in depressive symptomatology, this study examined changes in 

the DMN following two tryptophan interventions and a control condition to manipulate brain 

serotonin synthesis. 

 

Research questions: 

1. How do different brain serotonin levels influence the DMN functional connectivity?  

 

2. Are the DMN changes following serotonergic manipulation, similar to the connectivity 

patterns displayed by depressed patients?   
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3. Are the effects of our pharmacological challenge similar to the effects reported on the 

DMN after other serotonergic agents (i.e. SSRI (Klaassens et al., 2015; van de Ven 

et al., 2013), SNRI (Posner et al., 2013)?  

 

4. Are the DMN connectivity changes following serotonergic manipulations related to 

changes in mood, anxiety, impulsive choice or sleepiness ratings? 
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CHAPTER 2 

2. STUDY I:  Risk seeking for losses modulates the functional connectivity of the default 
mode and left frontoparietal networks in young males 

 

 

Deza Araujo, Y. I., Nebe, S., Neukam, P. T., Pooseh, S., Sebold, M., Garbusow, M., . . . 
Smolka, M. N. (2018). Risk seeking for losses modulates the functional connectivity of the 

default mode and left frontoparietal networks in young males. Cognitive, Affective, & Behavioral 

Neuroscience. doi:10.3758/s13415-018-0586-4 
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2.1. Abstract 

Value-based decision making (VBDM) is a principle that states that humans and other 

species adapt their behavior according to the dynamic subjective values of the chosen or 

unchosen options. The neural bases of this process have been extensively investigated using 

task-based fMRI and lesion studies. However, the growing field of resting-state functional 

connectivity (RSFC) may shed light on the organization and function of brain connections 

across different decision-making domains. With this aim, we used independent component 

analysis to study the brain network dynamics in a large cohort of young males (N = 145) and 

the relationship of these dynamics with VBDM. Participants completed a battery of behavioral 

tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss 

aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks 

and conducted our analysis only on the default mode network (DMN) and networks comprising 

cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for 

losses was associated with increased connectivity between medial temporal regions, frontal 

regions, and the DMN. Higher risk seeking for losses was also associated with increased 

coupling between the left frontoparietal network and occipital cortices. These associations 

illustrate the participation of brain regions involved in prospective thinking, affective decision 

making, and visual processing in participants who are greater risk-seekers, and they 

demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with 

distinct VBDM parameters. 

Keywords:   

Value-based decision making  

Intrinsic connectivity networks  

Probabilistic discounting for losses  

Default mode network  

Frontoparietal network 
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2.2. Introduction 

An extensive body of literature has already investigated the influence of several 

personality traits and psychological constructs on value-based decision-making (VBDM) during 

adolescence and early adulthood (Franken et al., 2008; Romer, 2010; Zermatten et al., 2005). 

However, a limited scope still exists, because the prior research usually focused on single 

constructs at a time. Beyond these earlier behavioral studies, this investigation offers a 

complementary neuroimaging approach for understanding the neural underpinnings of an array 

of VBDM components (i.e., delay aversion, risk seeking/risk aversion, and loss aversion) in 

healthy young males. 

Delay aversion is often taken as an indicator of impulsivity and is usually assessed with 

delay-discounting tasks in experimental environments (Ainslie, 1975). Individuals may benefit 

from impulsive behavior because it allows them to take advantage of unexpected opportunities 

when quickly exploiting their options (Dickman, 1990). However, high degrees of impulsivity 

are related to a broad range of maladaptive behaviors, principally in young individuals (Story 

et al., 2014). In a similar manner, risk seeking has been pointed out as a predisposing factor 

for the development of addictive disorders and delinquent behavior during adolescence (Blum 

& Nelson-Mmari, 2004; Burnett et al., 2010; Steinberg, 2008), especially in male participants 

(Ball et al., 1984). Conversely, high risk aversion (taken as the other extreme of the risk 

spectrum), as well as high loss aversion (Kahneman & Tversky, 1979), might indicate a 

negative learning bias that increases the risk of depression and anxiety disorders (Smoski et 

al., 2008).  

On the neural level, task-based fMRI experiments and lesion studies have shown the 

brain circuitry underlying some of the behaviors mentioned above: Frontostriatal regions (i.e. 

medial prefrontal cortex, ventral striatum) are implicated in valuation processes and 

reinforcement learning (Bartra et al., 2013; Peters & Buchel, 2011; Ripke et al., 2012; 

Rushworth et al., 2011), whereas the so-called cognitive control network (i.e. posterior parietal 

cortex, lateral prefrontal cortex, anterior insula, and anterior cingulate cortex) was associated 

with the decision phase during intertemporal and probabilistic choices (Marco-Pallares et al., 

2010; McClure et al., 2004; Ripke et al., 2015; Ripke et al., 2012; Weber & Huettel, 2008). 

Additionally, developmental neuroimaging studies have postulated that stronger activation of 

regions involved in reward processing (e.g. nucleus accumbens) during adolescence 

encourages sensation seeking and risk taking at these ages (Barkley-Levenson & Galvan, 

2014; Braams et al., 2015; Galvan et al., 2007).  
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A complementary investigation of brain networks can be achieved through resting-state 

functional connectivity (RSFC), a robust technique for exploring low-frequency fluctuations (~ 

0.01 – 0.1 Hz)  in the BOLD signal (Biswal et al., 1995). Resting state fluctuations are coherently 

organized into intrinsic connectivity networks (ICN) that are believed to recapitulate task-

based/stimulus activity (Mennes et al., 2010; Smith et al., 2009b) and exhibit variations 

according to the different phenotypic characteristics of an individual (Vaidya & Gordon, 2013). 

These networks can be investigated using independent component analysis  (ICA; Beckmann 

& Smith, 2004), a reliable method that allows the separation of ICNs from artifactual signals 

(Cole et al., 2010) and thus supports the exploration of organized neural activity. The possibility 

that these ICNs differ across distinct VBDM styles has already promoted study of the 

relationship between various VBDM constructs and RSFC in young and vulnerable populations 

(Cservenka et al., 2014; Weissman et al., 2015; Whelan et al., 2012). However, further 

investigations analyzing several VBDM components in a single study will increase our 

understanding of the neural bases of these behaviors. 

Recent insights into the resting-state circuitries that may characterize impulsive 

decision-making have described weaker connectivity between regulatory (frontal) and 

appetitive- drive (limbic) regions (Davis et al., 2013). Additionally, hyperconnectivity between 

the DMN and motor planning regions was also reported in the same group of participants 

(Shannon et al., 2011), suggesting that higher activity at rest of limbic and motor regions may 

predispose young individuals to impulsive decision-making. Similarly, hyperconnectivity 

between subcortical limbic structures (i.e. nucleus accumbens, amygdala) and middle frontal 

cortices may underlie the expression of risky behaviors in adolescents (DeWitt et al., 2014). On 

the other hand, risk-averse decision-making seems to follow the same activation pattern in both 

task-based and resting-state fMRI, with participation of a brain circuit comprising the right 

inferior frontal gyrus and insular cortex (Christopoulos et al., 2009; Cox et al., 2010; Preuschoff 

et al., 2008). Although these findings indicate that the functional brain architecture may 

accurately reflect individual differences in VBDM, studies with larger samples of healthy 

participants are still necessary in order to observe the neural dynamics that may underlie risky 

and impulsive choices at young ages. Furthermore, the relation between risky behaviors and 

RSFC has only been investigated in the gain domain (i.e., risk seeking/risk aversion for gains), 

but the distinction between gains and losses has not been reported thus far. 

In the present study, we examined RSFC and its relation to VBDM, expressed through 

four constructs (delay aversion, risk aversion for gains, risk seeking for losses and loss 
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aversion) in a large cohort of young males. We hypothesized that the basal ganglia and default 

mode networks would exhibit higher functional connectivity in more delay-averse and risk-

seeking participants, illustrating more reward-driven traits and therefore weaker functional 

connectivity in the cognitive-control and executive networks. Finally, we explored the 

relationship between brain functional networks, risk seeking for losses, and loss aversion, since 

existing studies have described the engagement of single brain structures, but the functional 

dynamics under rest have not yet been studied.  

 

2.3. Materials and Methods  
The study protocol was approved by the local ethics committee of Charité 

Universitätsmedizin Berlin and Technische Universität Dresden and was in accordance with 

national legislation and the Declaration of Helsinki. All participants provided written informed 

consent and received monetary compensation. 

 

2.3.1. Participants  
This study included data from 145, 18-year-old, right-handed, healthy males, 

selected from a total sample of 201 individuals who took part in the ongoing longitudinal 

fMRI study “Learning dysfunctions in young adults as predictors for the development of 

alcohol use disorders” (LeAD, www.lead-studie.de; clinical trial number: NCT01744834) 

within the research group “Learning and habituation as predictors of the development and 

maintenance of alcoholism” funded by the Deutsche Forschungsgemeinschaft (DFG).  In 

this study, we used the sample already reported by Bernhardt et al. (2017) with the addition 

of two participants who were abstinent from alcohol and therefore not included in other 

studies from this research group (for details, see the description in Supplementary Material 

Fig. S1). All participants were recruited in Berlin and Dresden through their respective 

residents’ registration offices and were screened in order to exclude current or previous 

history of neurological or psychiatric diseases, drug abuse or dependence (except for 

nicotine dependence and alcohol abuse) and MRI incompatible conditions. 
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2.3.2. Value-based decision-making assessment 
In the first session, participants completed an extensive behavioral and clinical 

assessment that included the Value-based decision-making battery (VBDM; see Fig. 2). 

This set of tasks employs a Bayesian learning scheme to estimate the delay-discounting 

rate as well as the probability discounting rates for gains and losses, and loss aversion.  

 

 

Figure 2. Value-based decision-making battery with trial examples for each task. During all 
tasks, offers are randomly assigned to presentation on the left or the right side of the screen. 

There was no time limit for the selection in a given trial and no feedback after the choice. The 

selected choices were indicated within a red frame before presenting the next offer. Participants 

were informed that they would be paid based on a randomly selected trial that they chose in 

each task. Crossed out boxes represent the odds against winning or losing in the probabilistic 

tasks. In mixed gambles task the crossed out box represents the option to reject the gamble 

(Pooseh et al., 2017).  
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Delay aversion was assessed with a delay discounting (DD) task with 30 trials, in 

which participants needed to choose between receiving a smaller immediate amount of 

money or a greater delayed one (e.g., €2  now or €8  in one week). Monetary rewards 

ranged from €0.30 to €10. The evaluation of the offers is best described by a hyperbolic 

function (Mazur, 1988; Odum, 2011) 

V = A/(1 + kd), 

where V represents the subjective value of the amount A after a delay D in days (available 

delays: 3, 7, 14, 31, 61, 180 and 365 days) and k is a free parameter representing the 

discount rate. Larger k values represent preference for immediate amounts and therefore 

higher delay aversion.  

The second and third tasks assessed risk aversion for gains and risk seeking for 

losses, using probability discounting for gains and losses, respectively (PDG and PDL; 

both with 30 trials), where participants needed to choose between a sure amount that they 

could win or lose and the probability of winning/losing a larger amount of money (e.g. 75% 

probability of winning €5  or winning €2  for sure, or a 50% probability of losing €8  or losing 

€3  for sure). The probability values were set to 2/3, 1/2, 1/3, 1/4, and 1/5. The amounts 

ranged from €0.30 to €10 for PDG and -0.30 to -10€ in PDL.  Probability discounting can 

also be well described by a hyperbolic function (Green et al., 1999; Rachlin et al., 1991) 

V =
A

1 + kθ
, 

where V is the subjective value of a probabilistic amount A, k is a parameter that reflects 

the individual discounting rate due to the probability of the reward, and θ represents the 

odds against receiving the probabilistic amount (F = [1 − $]/$)	 where p is the probability 

of receipt. In the probability discounting for gains, risk-averse behavior is defined as the 

preference for the certain amount over the probabilistic one, reflected by larger k values. 

On the other hand, probability discounting for losses produces larger k values when 

participants prefer the probabilistic offer over the certain one, therefore, exhibiting a more 

risk-seeking behavior (Shead & Hodgins, 2009). 

The final task measuring loss aversion presented mixed gambles (MG; 40 trials), in which 

participants received a credit of €10 at the beginning of the game and then needed to 
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decide whether to accept or reject an offer with a 50/50 chance of either gaining one 

amount of money or losing another amount (e.g., refusing to gamble or accepting a gamble 

that offered either winning €15  or losing €8). The amounts ranged from €1 to €40 for gains 

and -€5 to -€20 for losses. The value function here was given by 

		V =
1

2(G − λL)
,	 

where V is the expected value of the gamble. The coefficient 1/2 expresses a 50/50 chance 

of gaining or losing, G and L are the amounts of gains and losses, respectively, and λ is a 

measure of behavioral loss aversion that can be computed as the ratio of the contributions 

of loss to gain magnitude in the participant's decisions. Larger λ values indicate higher loss 

aversion and are produced when participants reject the gamble because they perceived 

high differences between gains and losses (Tom et al., 2007). 

In all tasks, the likelihood of choosing between the two offers followed a softmax 

probability function M(N1│P, Q) = 1/(1 + R%$	(Q(S2 − S1))),	where V1 and V2 are the 

subjective values of the offers and β > 0 serves as a consistency parameter such that its 

large values correspond to a high probability of taking the most valuable action. The 

algorithm started from liberal prior distributions on the parameters and, after observing a 

choice at each trial, updates the belief about the parameters using the Bayes’s rule 

M(P, Q|UℎW5UR) ∝ M(UℎW5UR|	P, Q)M(P, Q). The procedure continued for 30 (40 in Mixed 

Gambles) trials to reach a stable estimation. The estimates at the final trial were considered 

the best-fitting parameters for a participant. Further information is provided in 

Supplementary Material 2; details regarding the mathematical framework can be found in 

Pooseh et al. (2017); and application of the battery in a clinical cohort is reported in 

Bernhardt et al. (2017). 

Summary statistics and pairwise correlations were calculated using SPSS 22.0 

(IBM-SPSS, Chicago, IL, USA) on the nonlogarithmic VBDM scores. To be used as 

regressors in the resting-state analysis (see the Single Network Analysis section), the 

resulting main discounting parameters (k) were log-transformed in order to approximate 

them to a normal distribution. The mixed gambles parameter (λ) was normally distributed, 

therefore no transformation was necessary. To maximize the availability of the data, 

multiple imputation (MI; (Little & Smith, 1987) was used to complete missing completely at 

random (MCAR) VBDM scores of nine participants who had only one incomplete subtest 
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and Winsorization (Dixon, 1960) was used to change one extreme score (See the Results 

section). These processes did not change the descriptive statistics of the main scores. 

 

2.3.3. MR data acquisition 
The scanning protocols were identical in both study centers. The scanning session 

took place during a second appointment. Six-minute resting state fMRI scans were 

acquired on a 3 T whole-body Magnetom Trio Tim MRI Scanner (Siemens Medical, 

Erlangen, Germany) equipped with a 12-channel head coil using a single-shot 

gradientecho planar imaging (EPI) sequence with a repetition time (TR) of 2.41s, an echo 

time (TE) of 25 ms, a flip angle of 80°, field of view of 192 × 192 mm, matrix size of 64 x 

64 and voxel size of 3 mm x 3 mm x 2 mm. A total of 148 resting-state volumes were 

acquired, each consisting of 42 transversal slices (2 mm thick, 1 mm gap), tilted axially 

parallel to the anterior-posterior commissural line. For registration purposes, a T1-weighted 

high-resolution anatomic scan of the magnetization-prepared rapid gradient echo 

(MPRAGE) was acquired (TR = 1.90 s, TE = of 2.52 ms, TI = 1100 ms, flip angle of 9°, 

FOV = 256 × 224 mm2, 192 slices, 1 mm x 1 mm x 1 mm voxel size, slice thickness of 1 

mm and no gap). Participants were given earplugs to protect hearing and foam pads to 

minimize head movement. They were instructed not to think about anything in particular 

and to lie as still as possible with their eyes closed. 

 

2.3.4. Image preprocessing 
The resting-state fMRI data were preprocessed using the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL Version 5.0.8, 

www.fmrib.ox.ac.uk/fsl; (Jenkinson et al., 2012)). Because movement has a great impact 

on functional connectivity, DVARS (with D referring to temporal derivative of the time 

courses and VARS referring to the RMS variance over voxels) and framewise 

displacement (FD; Power et al. (2012)) were calculated on the resting state data prior to 

any other preprocessing step with the tool fsl_motion_outliers. Participants whose 

sequences showed more than 10% of volumes over the 0.5 % Δ BOLD for DVARS and/or 

over 0.5 mm for FD were excluded from the subsequent analysis (see Supplementary 

Material 1).  
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Preprocessing steps included motion correction with MCFLIRT, brain extraction of 

the EPI data with BET, spatial smoothing with a Gaussian kernel of full width at half 

maximum of 5mm and high-pass temporal filter at 100s. Registration parameters were 

derived from nonsmoothed and nonfiltered data. For registration, the T1-weighted images 

were registered to a common stereotaxic space (MNI152; 2 mm x 2 mm x 2 mm spatial 

resolution) using a 12 degree-of-freedom nonlinear registration implemented in FNIRT 

(warp resolution: 10 mm) and then, each participant’s functional dataset was registered to 

their corresponding T1-weighted image using a 6 degree-of-freedom linear affine 

transformation with FLIRT. After this process, all images were visually inspected to ensure 

the accuracy of the registration. Finally, FD measures were calculated again after 

preprocessing to ensure that the existing volumes with high motion were adequately 

handled by the motion correction algorithm. A more stringent cut-off was used with these 

data (FD ≥ .2 mm). One participant who exhibited more than 10% of volumes over this 

threshold was discarded from the high-level analysis. 

 

2.3.5. Generation of intrinsic connectivity networks 
We used group probabilistic independent component analysis as implemented in 

MELODIC Version 3.14 (Beckmann & Smith, 2004) to generate a set of spatially 

independent components (IC). The first stage of this group process uses principal 

component analysis (PCA) to temporally demean and concatenate all datasets, treating 

them as if they were a huge single dataset. However, this stage becomes excessively 

computationally demanding as the number of time points and participants increases. For 

this reason, we used the recently implemented MIGP algorithm (MELODIC´s Incremental 

Group-PCA; (Smith et al., 2014)) which has been shown to be more accurate than the 

current approaches used for multisubject resting-state studies with the advantage of 

having very low computing memory requirements. Following the process, the data were 

whitened and projected into a 50 dimensional subspace, variance was normalized and 

finally the estimated intensity maps were divided by the standard deviation of the residual 

noise and thresholded by fitting a Gaussian/gamma mixture model to the distribution of 

voxel intensities within spatial maps and controlling the local false-discovery rate (FDR) at 

p < .5. 

  



 

32 
 

2.3.6. Single-network analyses 
It should be noted that there is no current consensus about the ideal number of ICs, 

although the existing literature reports that higher dimensionalities produce a better brain 

parcellation and subdivision of networks, whereas low-order models are useful for 

identifying large-scale brain networks (Ray et al., 2013). Following the suggestion of 

Szewczyk-Krolikowski et al. (2014), a model order of 50 ICs (explaining 65% of the total 

variance) was found optimal to detect the basal ganglia among other 13 large-scale brain 

networks. Higher dimensionalities were also explored, (70 ICs, 89 ICs) without any 

significant improvement. 

To identify participant-specific spatial maps and associated time courses of the 14 

ICNs, we performed a dual regression approach (Beckmann et al., 2009; Filippini et al., 

2009). During the first stage of this regression, the group-level spatial maps representing 

the identified 14 ICNs were linearly regressed against the functional data of each 

participant, resulting in individual time series for every ICN (spatial regression). In the 

second stage, these time series were normalized and regressed against the resting-state 

datasets of the corresponding participant (temporal regression) to estimate subject-specific 

voxel-to-network spatial maps of every network. To remove sources of spurious variance 

that might affect estimation of the participants’ ICNs, the six individual motion parameters 

obtained during motion correction and time courses of white matter and CSF were added 

as nuisance regressors during this stage (Cole et al., 2013; Klumpers et al., 2012). To 

extract these last time courses, individual white matter and CSF masks were generated 

from the structural images and transformed into a participant-specific functional space 

before extracting their corresponding time series (see Supplementary Material 3).  

This dual regression approach differs from other group-ICA methodologies (e.g. 

“back-projection”; Calhoun et al. (2001)) in the way temporal and spatial dynamics at the 

subject level are estimated. In this method, the estimated spatial maps do not depend on 

the initial participant-specific major eigenspaces (PCA) and therefore, may lie outside the 

network’s boundaries (Beckmann et al., 2009). The regression coefficients contained in 

the resulting spatial maps from dual regression represent the weighted voxels associated 

with specific signal variations for a specific network. The strength of the voxel-to-network 

connectivity is given by the value of these coefficients (Cole et al., 2013; Klaassens et al., 

2016).  
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Six ICNs were chosen as networks of interest due to their previously reported 

implication in decision making and related processes (frontal, default mode, left and right 

frontoparietal, cingulo-opercular and basal ganglia networks (Davis et al., 2013; Shannon 

et al., 2011; Tom et al., 2007; Zhou et al., 2014)). The resulting participant-specific maps 

of every network were concatenated across participants and saved in 4D files. The six 

networks of interest were tested voxel-wise for associations with the behavioral scores, 

using a nonparametric test based on criteria of exchangeability (10,000 permutations as 

implemented in FSL–Randomise; (Nichols & Holmes, 2002)) that included one GLM for 

each network with all four VBDM scores (demeaned log k and λ), a dichotomous variable 

to control for scan site and mean DVARS measures to account for BOLD changes 

associated with motion that could not be removed by regression of the motion parameters. 

To assess the potential collinearity between the regressors of the model, we calculated the 

variance inflation factor (VIF). The highest VIF score (1.09) indicated that our model does 

not have a collinearity problem (VIF threshold = 5; (Mumford et al., 2015). A gray-matter 

mask was used during permutation testing. The results were identified using threshold-free 

cluster enhancement (TFCE; (Smith & Nichols, 2009)). A multiple-comparison correction 

was carried out voxel-wise using FDR at a nominal significance level of q < .05 using the 

fdr command in FSL. This procedure yielded an adjusted threshold of p < .0077. Further 

correction was carried out to account for the 24 test performed (four VBDM scores and six 

ICN), setting the significant p < .0003. As we previously mentioned, our results were not 

restricted to the networks’ boundaries, thus brain regions could exhibit significant changes 

in connectivity either inside or outside a given network (Reineberg et al., 2015). After 

permutation testing, the resulting significant regions indicated that the strength of the 

coupling between these regions and the tested network was associated with a given VBDM 

score. 

 

2.4. Results 

2.4.1. Behavioral results  

Summary statistics of the obtained VBDM scores, pairwise correlations, and the 

numbers of imputed and Winsorized scores are presented in Table 1. The resulting 

discounting parameters (k) for Delay Discounting are comparable to those observed 

previously in healthy individuals which are typically lower than in those with substance use 

disorders (Amlung et al., 2017). Further analyses showed that the participants of the 
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present study were more risk-averse for gains (Probability Discounting for Gains), more 

risk-seeking for losses (Probability Discounting for Losses), and more loss-averse (Mixed 

Gambles) than a sample of alcohol-dependent patients (Bernhardt et al., 2017). Negative 

correlations between Probability Discounting for Losses and Delay Discounting denoted 

that more risk- seeking (for losses) participants were more patient. Similarly, a negative 

correlation between Probability Discounting for Losses and Mixed Gambles indicated that 

more risk-seeking (for losses) participants were not influenced by the difference between 

gain and loss in making the gamble.  

We found no significant differences between the VBDM scores from the two 

research sites (see Supplementary material, Table S1). Additionally, we controlled for 

possible associations between VBDM scores and motion parameters, since a positive 

correlation between impulsivity and in-scanner motion has been reported in resting-state 

studies (Kong et al., 2014). The Spearman’s rank correlations resulting from these 

analyses were no higher than .06 (see the supplementary material, Table S2). 
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Table 1. Descriptive statistics and correlations between the VBDM scores  

 

   PDGk PDLk MGλ 

 Median IQR ρ p ρ p ρ p 

DDk 0.01 0.05 – 0.01 0.88 – 0.19 0.01 0.01  0.85 

PDGk 0.72 0.59 - - 0.03 0.68 0.13     0.11 

PDLk 0.55 0.70 - - - -  – 0.23  < 0.01 

MGλ  1.40 1.22 - - - - - - 

N = 145;  

IQR: Interquartile range; ρ: Spearman’s rank correlation coefficient  

DD: Delay Discounting; PDG: Probability Discounting Gains; PDL: Probability Discounting 

Losses; MG: Mixed Gambles 

Imputed and winsorized scores: DD (2), PDG (3), PDL (1/1), MG (3) 

 

 

 

2.4.2. Intrinsic connectivity network selection 

From the 50 initially estimated ICs, nine were identified as large-scale brain 

networks according to the templates from Smith et al. (2009b), using a cross-correlation 

analysis implemented with the fslcc tool (see the supplementary material, Table S3). Five 

other ICs were also considered as plausible ICNs after visual inspection of the peak 

activations, inspection of plots of the time series obtained from the first stage of the dual 

regression and comparison with other existing templates (Laird et al., 2011; Ray et al., 

2013). The remaining 36 components were deemed movement artifacts, scanner drifts, 

and other activations of noninterest (i.e., white matter, CSF). Spatial maps of the 14 ICNs 

are described in Table 2 and presented in Fig. 3. 
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Table 2: Intrinsic connectivity networks (ICN) identified in a sample of N = 145 participants.  
 

 % 
Explained 
variance 

ICN name Regions 

N
et
w
or
ks
 o
f i
nt
er
es
t  

1.89 Basal ganglia  Thalamus, putamen and pallidum. 

2.01 Left fronto-parietal  Left middle frontal gyrus, right and left inferior frontal 

gyrus, left inferior parietal lobule, left middle temporal 

gyrus and left angular gyrus. 

2.10 Right fronto-parietal Right IFG, right MFG, right inferior parietal lobule, 

right middle temporal gyrus, right and left angular 

gyrus. 

2.13 Frontal  Frontal pole, paracingulate gyrus. 

2.20 Cingulo-opercular  Anterior insula, dorsal anterior cingular cortex, 

supramarginal gyrus, dorsolateral prefrontal cortex 

and thalamus. 

2.22 Default mode  Ventromedial PFC, precuneus, posterior cingulate 

cortex (PCC) and angular gyrus.  

O
th
er
 n
et
w
or
ks
 

2.10 Fronto-temporal  Inferior frontal gyrus, superior temporal gyrus.  

2.13 Cerebellar  Cerebellum. 

2.22        Medial visual  Occipital pole, lingual gyrus. 

2.33 Lateral visual  Lateral occipital cortex and temporo-occipital cortex. 

2.35        High visual  Cuneal cortex. 

2.36 Dorsal attention  Lateral occipital cortex, superior parietal lobule and 

frontal eye fields (FEF). 

2.48 Lateral sensorimotor  Post-central gyrus, supplementary motor area. 

2.54 Sensorimotor  Supplementary motor area, sensorimotor cortex and 

secondary sensorimotor cortex. 

Networks are listed according to the percentage of explained variance. Regions forming a given 

ICN were identified using the Probabilistic Harvard-Oxford Cortical and Subcortical Structural 

Atlases. 
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Figure 3. Spatial maps of the 14 ICNs listed in Table 2, displayed in neurological orientation 
(right = right) and thresholded at z ≥ 4. The z-scoring was carried out on the group ICs by 

dividing the voxel-wise estimated spatial maps by the standard deviation of the residual noise 

(Beckmann & Smith, 2004). The networks of interest are depicted at the top of the image. Brain 

areas were identified using the Harvard-Oxford Cortical and Subcortical Structural Atlases. 
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2.4.3. VBDM scores and single network variations  

We found that increased connectivity between the DMN and the bilateral 

parahippocampal gyri was associated with higher risk seeking for losses, as measured 

with the Probability Discounting for Losses task. The same scores were associated with 

higher connectivity between the DMN and both the right frontal pole and small clusters in 

the right inferior temporal gyrus and left orbitofrontal cortex (Fig. 4A, all ps < .0003, FDR-

corrected). Moreover, increased connectivity between the left frontoparietal network and 

clusters located in the left occipital pole/cuneus and left lateral occipital cortex was also 

associated with higher Probability Discounting for Losses scores (Fig. 4B, all ps < .0003, 

FDR-corrected). The complete results are presented in Table 3.  
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Figure 4. Higher risk seeking for losses (measured with the probability discounting for losses 
task) was associated with increased functional connectivity between (A) the default mode 

network (DMN) and bilateral parahippocampal gyri (PHG), right frontal pole (FP), right inferior 

temporal gyrus (ITG), and left orbitofrontal cortex (OFC); and (B) the left frontoparietal network 

(FPN) and left occipital pole/cuneus, and lateral occipital cortex (LOC). In all brain figures, the 

DMN and the left FPN regions are displayed in orange in the online version of the figure, and 

the significant clusters are shown in red. The scatter plots below the brain figures show the 

PDL scores (in a logarithmic scale on the x-axis) and the parameter estimates (“P.E”) of the 

significant clusters extracted from the participant-specific DMN and left FPN (in arbitrary units 

on the y-axis). The brain figures are displayed from anterior to posterior coronal plane in 

neurological orientation, with MNI coordinates (Y) next to each brain figure. Significant clusters 

are displayed at p < .0003, false discovery rate (FDR) corrected at q < .05 and adjusted for 24 

tests. Brain areas were identified using the Harvard-Oxford Cortical and Subcortical Structural 

Atlases.  

 

Table 3: Higher risk seeking for losses (Probability Discounting for Losses task) was associated 
with increased functional connectivity between two ICN and the following brain regions:  

 

ICN Region N° voxels MNI coordinates 
(COG) 

*t 
   

X Y Z 
 

Default mode  Right PHG 148 20 4 -32 3.99 

Left PHG 98 -18 2 -32 4.20 

Right FP 36 40 52 -14 5.14 

Right ITG 9 60 -8 -38 3.54 

Left OFC 7 -20 34 -22 3.80 

Left OFC 6 -14 34 -22 4.03 

Left  

fronto-parietal  

Left OP/cuneus  46 -8 -90 28 5.27 

Left LOC 16 -38 -78 -20 4.95 

Left LOC 9 -48 -80 -14 3.63 

PHG, parahippocampal gyrus; FP, frontal pole; ITG, inferior temporal gyrus; OFC, orbitofrontal 

cortex; OP, occipital pole; LOC, lateral occipital cortex; COG, center of gravity. MNI coordinates 

and regions were identified using the Probabilistic Harvard Oxford Cortical and Subcortical 

Structural Atlases. *Uncorrected t statistics within regions. All significant clusters correspond to 
an adjusted p-value of p < .0003, computed using thr false discovery rate (FDR) at q < .05 and 
corrected for 24 tests (six networks and four VBDM scores; original threshold: p < .0077). 
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No significant associations were found neither for the remaining VBDM scores 

(delay discounting, probability discounting for gains, and mixed gambles) nor for the other 

selected ICN (frontal, basal ganglia, cingulo-opercular, or right frontoparietal). 

 

2.5. Discussion 

To our knowledge, this is the first study to investigate resting-state functional 

connectivity and its relation to a set of different value-based decision-making parameters. Our 

findings show that individuals who were more risk seeking for losses—that is, who prefer a 

larger but only probable loss to a smaller but certain loss (as measured with the probability 

discounting for losses task)— exhibited increased connectivity between the DMN and bilateral 

hippocampal gyri and frontal regions. Higher risk seeking for losses was also associated with 

greater connectivity between the left frontoparietal network, the occipital pole, and lateral 

occipital regions. 

The “medial temporal lobe subsystem” of the DMN has been implicated in mnemonic 

scene construction (Andrews-Hanna et al., 2010), as well as in the integration of 

autobiographical memories into current processing (Buckner et al., 2008b). Along this line, 

research in economic decision-making has already delineated a model involving the 

frontotemporal axis of the DMN as a binding neural pathway that connects internal memories 

with prospective actions (Buckner et al., 2008b) and that might subserve self-related 

simulations of future scenarios in which, for example, potential losses did not occur. Although 

the notion is speculative, the participation of mnemonic processes in risk-seeking (for losses) 

individuals may also be supported by increased connectivity between the DMN and the bilateral 

parahippocampal gyri (PHG), brain structures that are highly involved in contextual 

associations and episodic memory. In addition, the PHG shows several anatomical and 

functional connections with anterior and posterior hubs of the DMN (Aminoff et al., 2013). Even 

when memory and decision making are studied independently, there is unquestionable 

integration of both functions for decomposing the representations of past experiences and 

integrating them to future events, aiming to produce adaptive behaviors (Murty et al., 2016). 

Given the complexity of these functions, our findings do not allow us to draw strong conclusions 

about their association, but they encourage future research to study the interplay between 

memory and risk-seeking choices.   
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Higher risk seeking for losses is also associated with increased coupling between the 

DMN, the frontopolar cortex and small clusters located in left orbitofrontal regions. In this 

regard, neuroeconomic research has described specialized neurons within the OFC that 

appear to code the value of an expected reward and in this way, guide  behavior toward more 

advantageous options (Schoenbaum et al., 2011). Similarly, task-based fMRI has shown that 

the coupling between frontal DMN areas and the frontal pole provides information about the 

value of unchosen options and represents the value that these options might have in the near 

future (Rushworth et al., 2011).  

Finally, our findings showed that higher risk seeking for losses modulated the coupling 

between the left frontoparietal network and occipital regions. This network has typically been 

associated with risk taking and impulsiveness in both task-based and resting-state studies 

(Vaidya & Gordon, 2013; Weber & Huettel, 2008), as well as with adaptive control and flexibility 

(Dosenbach et al., 2007). In the present study, the biggest cortical area connected with the 

frontoparietal network was the left occipital pole/cuneus, which is mainly involved in basic visual 

processing (Grill-Spector & Malach, 2004). Further studies have related the activity of this area 

with behavioral engagement (Zhang & Li, 2012) and risk-taking reactivity, especially in 

adolescents (Tamura et al., 2012) and in pathologies with aberrant decision making (Crockford 

et al., 2005). Similar to our findings, Tamura et al. (2012) reported greater activation of the 

cuneus in response to the observation of high risk-taking actions in late adolescents. Despite 

their existing methodological differences (i.e., resting-state, task-based fMRI), these studies 

suggest potential implications of the visual system in the expression of more risk-seeking 

behaviors in young individuals.  

Prior research has investigated the relation between RSFC and risky behaviors only in 

the gain domain (i.e., risky choices to obtain higher gains). However, our study presents a 

different approach in which risk seeking for gains and losses was assessed separately 

according to the well-grounded prospect theory (Kahneman & Tversky, 1979). This theory 

describes how risk is evaluated when potential gains or losses are involved. In the gain domain, 

the observation that the value of a gain is discounted (i.e., less attractive) due to the risk of not 

receiving it has been termed risk seeking for gains. In the loss domain, the value of a loss is 

similarly discounted when a probability is added. However, due to the prospect of losing nothing 

at all, the discounted offer is perceived as the most attractive one and has a higher likelihood 

to be chosen. Therefore, this behavior has been termed risk seeking for losses. Usually, risk 

seeking for gains is interpreted as a facet of impulsivity and has been associated with mental 
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disorders. Risk seeking for losses, on the other hand, indicates instead how susceptible 

individuals are to certain negative outcomes and how eager they are to avoid them. Increased 

risk seeking for losses therefore presents a more anxious decision-making style that may be 

understood as being opposite to an impulsive style. Data from our lab support this reasoning 

by showing that patients who suffer from alcohol use disorder exhibit increased risk seeking for 

gains and reduced risk seeking for losses (Bernhardt et al., 2017). In summary, we believe that 

impulsive choices in the gain and loss domain are characterized by increased risk seeking for 

gains but reduced risk seeking for losses. 

Perhaps the above-mentioned differences between gains and losses played a role in 

the lack of connectivity changes in the networks comprising the cortico-striatal and 

dopaminergic circuits, which are generally involved in impulsivity and reward-related behaviors 

(Baik, 2013; Weiland et al., 2014). For instance, connectivity changes in key regions of the 

basal ganglia and the cingulo-opercular network have previously been reported in both risk-

taking and risk-averse behaviors (Cox et al., 2010; DeWitt et al., 2014), but changes in these 

networks were not evident in our study. Likewise, the relation between delay discounting, 

probability discounting for gains, and RSFC seems to be stronger in conduct and addiction 

disorders (Wei et al., 2016; Zhu et al., 2015), but more sensitive techniques seem to be 

necessary for the detection of such differences in healthy samples. Nevertheless, our results 

provide, for the first time, insight into the brain’s functional architecture that may underlie risk 

seeking with respect to losses in healthy young males. 

 

2.5.1. Limitations 
Our results must be viewed in light of several limitations. Our group-level analysis was 

carried out using nonparametric permutation testing, a method that provides an effective 

control for Type I error rates (Eklund et al., 2016), while requiring  minimal assumptions 

about the data for valid statistical inference (Nichols & Holmes, 2002). Even when these 

facts favored the use of permutation tests with our data (Beckmann et al., 2009), we are 

aware that the biggest  disadvantage of this method is weak control of outlying data points, 

as was recently shown by Mumford (2017). Another factor to consider is that the cluster 

sizes reported for three brain regions were smaller than the recommended k = 10 

(Lieberman & Cunningham, 2009), as a result of the conservative statistical threshold 

applied. Therefore, for completeness, we reported all clusters that passed correction for 

multiple testing, but refrained from deep discussion of the results were the clusters contain 

fewer than ten voxels. Finally, our sample was restricted to a population of healthy, 18-
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year-old participants. Thus, it remains unclear whether our results can be generalized to 

older or younger individuals. Moreover, our sample was restricted to male participants. 

Existing studies have described remarkable gender differences in risk-seeking behaviors 

(Ball et al., 1984) and associated negative consequences (Turner & McClure, 2003), but, 

to date, only the study of Zhou et al. (2014) has addressed gender functional connectivity 

differences linked to risk-seeking behavior. Therefore, we believe that future decision-

making research will benefit from the inclusion of both genders and different age ranges. 

 

2.5.2. Conclusion 
In summary, delay-averse, risk-averse for gains and loss-averse behaviors did not 

influence the functional connectivity of large-scale brain networks in our sample, whereas 

risk seeking (as measured by probability discounting for losses), modulated the expansion 

of the default mode and left frontoparietal network to their adjacent areas, particularly those 

areas relevant for self-oriented prospective thinking, affective decision-making and visual 

processing. These findings suggest that distinct connectivity patterns of large-scale brain 

networks may underlie individual differences in decision making in healthy populations, 

and they strengthen the role of RSFC as a potential biomarker of different VBDM facets. 
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2.7. Supplemental Material Study I 

2.7.1. Fig. S1. Process of including and excluding participants for analyses 
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2.7.2. Value-based decision-making battery 
The VBDM battery (Pooseh et al., 2017) is a set of four computerized tasks which 

use a Bayesian adaptive approach for the presentation of binary choices.  

Besides collecting samples of data from real participants, simulations were 

performed in order to justify the algorithm in terms of reproducibility of the parameters for 

individual assessments and to test the reliability of the estimation procedure in a group-

level analysis. Predefined values of the discounting and loss aversion parameters were 

reliably recovered.  

Finally, comparison with standard methods showed that our algorithm outperforms 

an amount adjusting procedure in finding the indifference point for combinations of given 

immediate amounts, discounting rates and delays. It also performs better in terms of 

estimating preset discounting rates. Furthermore, we were able to adjust both the amount 

and delay/risk at the same time. This gives more flexibility in providing new offers. 

The VBDM battery, including instructions, binary choices, and outcomes, is 

implemented using MATLAB, Release 2010a (The MathWorks, Inc., Natick, MA, USA) and 

Psychtoolbox 3.0.10, based on the Psychophysics Toolbox extensions (Brainard, 1997; 

Pelli, 1997), and is also available under GNU Octave. The settings of the tasks, including 

reward types and ranges, temporal delays, probabilities for gains and losses, and 

gambling, together with the instructions and payment schemes, are easily accessible 

through the source code provided upon request. 

 

 

2.7.3. Generation of masks and regressors of noninterest 
Segmentation of white matter and CSF from the brain-extracted structural images 

was carried out with FAST (Zhang et al., 2001) and thresholded with fslmaths (80% of 

tissue-type likelihood; (Biswal et al., 2010)). FLIRT (Jenkinson et al., 2002) was used for 

transforming the white matter and CSF masks from the subjects’ structural space to their 

corresponding functional space. Fslmaths was used again for re-binarise the masks after 

transformation. Preprocessing of the resting state data was carried out a second time, only 

with motion correction and without temporal and spatial filtering. The white matter and CSF 

time courses were then extracted with fslmeants from this set of non-filtered data and 

merged with the individual motion parameters obtained with MCFLIRT during motion 

correction. Finally, this set of regressors was used during the second stage of dual 

regression.  
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Table S1. Differences in VBDM scores between the groups from Berlin and Dresden (N =145) 
were analyzed using a Mann-Whitney U test for asymmetrically distributed variables. Values 

are displayed as median and Interquartile range (IQR).  

 

*Significance was considered at p < 0.0125, corrected for multiple comparisons. 

DD: Delay discounting 

PDG: Probability discounting gains 

PDL: Probability discounting losses 

MG: Mixed gambles 

 

 

 

Table S2. Spearman’s rank correlation between the VBDM scores and motion parameters. 
This analysis was performed in order to control for individual differences in decision-making 

traits that may influence movement inside the scanner, as postulated by Kong et al. (2014). 

 
 Spearman’s rho 

DDk PDGk PDLk MGλ 
 ρ p ρ p ρ p ρ p 

DVARS – 0.07 0.41 – 0.12 0.14 0.06 0.42 – 0.02 0.76 

FD – 0.08 0.30 – 0.17 0.03 – 0.03 0.76   0.00 0.91 

DVARS: Temporal derivative of time courses (D) root-mean-squared of the variance over 

voxels (VARS) 

FD: Framewise displacement 

DD: Delay discounting  

PDG: Probability discounting gains 

PDL: Probability discounting losses  

MG: Mixed gambles 

 

  

VBDM scores Dresden (75) Berlin (70)  

 Median IQR Median IQR p-value 
DDk 0.01 0.05 0.01 0.06 0.44 

PDGk 0.68 0.69 0.76 0.53 0.35 

PDLk 0.48 0.76 0.58 0.67 0.04 

MGλ 1.53 1.35 1.15 1.24 0.07 
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Table S3. Cross-correlation results between the 10 ICN from Smith et al., (2009) and IC of our 
study in order of appearance during their initial projection. 

 
ICN from Smith et al. (2009b) IC number Cross-correlation coefficient: r 

Medial visual IC 12 0.71 
Lateral visual IC 7 0.66 
Dorsal attention IC 4 0.33 
Default mode IC 13 0.80 
Cerebellum IC 18 0.45 
Sensorimotor IC 0 0.41 
Cingulo-opercular IC 14 0.41 
Right frontoparietal IC 22 0.60 
Left frontoparietal IC 25 0.69 
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CHAPTER 3 

3. STUDY II: Acute Tryptophan Loading Decreases Functional Connectivity between 
the Default Mode Network and Emotion-Related Brain Regions 

 

 

Deza Araujo, Y.I., Neukam, P.T., Marxen, M., Müller, D. K., Henle, T., Smolka, M.N. (2018). 
Acute Tryptophan Loading Decreases Functional Connectivity between the Default Mode 

Network and Emotion-Related Brain Regions. Human Brain Mapping. doi: 10.1002/hbm.24494 
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3.1. Abstract 

It has been shown that the functional architecture of the default mode network (DMN) 

can be affected by serotonergic challenges and these effects may provide insights on the 

neurobiological bases of depressive symptomatology. To deepen our understanding of this 

possible interplay, we used a double-blind, randomized, cross-over design, with a control 

condition and two interventions to decrease (tryptophan depletion) and increase (tryptophan 

loading) brain serotonin synthesis. Resting-state fMRI from 85 healthy subjects was acquired 

for all conditions three hours after the ingestion of an amino acid mixture containing different 

amounts of tryptophan, the dietary precursor of serotonin. The DMN was derived for each 

participant and session. Permutation testing was performed to detect connectivity changes 

within the DMN as well as between the DMN and other brain regions elicited by the 

interventions. We found that tryptophan loading increased tryptophan plasma levels and 

decreased DMN connectivity with visual cortices and several brain regions involved in emotion 

and affect regulation (i.e. putamen, subcallosal cortex, thalamus, frontal cortex). Tryptophan 

depletion significantly reduced tryptophan levels but did not affect brain connectivity. Subjective 

ratings of mood, anxiety, sleepiness and impulsive choice were not strongly affected by any 

intervention. Our data indicate that connectivity between the DMN and emotion-related brain 

regions might be modulated by changes in the serotonergic system. These results suggest that 

functional changes in the brain associated with different brain serotonin levels may be relevant 

to understand the neural bases of depressive symptoms.  

 

Keywords:  
 
Serotonin 

Tryptophan 

Resting-state fMRI  

DMN connectivity  
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3.2. Introduction  

The brain’s default mode network (DMN) has emerged as a landmark in cognitive and 

affective neuroscience since its first description in 2001 (Raichle et al., 2001). It is now generally 

accepted that the synchronized activity between its regions might play a critical role for 

integrating representational information across the cortex (Margulies et al., 2016). Recently, it 

has been shown that pharmacological challenges may impact the functional architecture of the 

DMN, especially in regions with elevated receptor density for particular neurotransmitters (e.g. 

cingulate cortex; Klaassens et al. (2015)).  

Specifically, DMN regions receive dense serotonin (5-hydroxytryptamine, 5-HT) 

innervations (Saulin et al., 2012). Serotonergic ascending fibers from the dorsal raphe nucleus 

project onto the lateral cerebral cortex and the hypothalamus, the basal forebrain, and the 

amygdala. Further projections from the latter regions continue to the cingulate cortex, the 

medial cerebral cortex and the hippocampus (Hornung, 2003), which are parts of the DMN 

(Buckner et al., 2008a). Presumably as a result of this innervation, changes in the functional 

coherence of the DMN following serotonergic medication were observed, especially in brain 

regions involved in mood and attention regulation (Klaassens et al., 2016; Klaassens et al., 

2015; Posner et al., 2013; van de Ven et al., 2013).  

Among serotonergic interventions, acute tryptophan challenges are well-established 

techniques to manipulate the synthesis of 5-HT in the central nervous system in a transitory 

and marginally invasive manner. Although direct measures of tryptophan influx into the human 

brain are currently not possible, the effectiveness of these challenges has been demonstrated 

by several animal studies (Biskup et al., 2012; Grimes et al., 2000; Lieben et al., 2004) and 

indirect measures of 5-HT levels in humans (e.g. CSF, (Williams et al., 1999; Young & Gauthier, 

1981)). These interventions reduce or enhance the availability of the essential amino acid 

tryptophan, the dietary precursor of 5-HT in the brain, and thus help to investigate the role of 

the serotonergic system in the modulation of cognitive functions and mood among others 

(Lindseth et al., 2015; Silber & Schmitt, 2010).  

Although simplistic and refined through the years, the hypothesis of a dysfunction in the 

serotonergic system as a primary factor in the aetiology of affective disorders (Cowen & 

Browning, 2015) has promoted the use of tryptophan challenges in the study of depressive 

symptomatology (Lindseth et al., 2015). In addition, an aberrant DMN connectivity was found 

in depressed individuals, establishing a neural model that helps to explain the states of 
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excessive rumination, i.e. DMN hyperconnectivity, and deficits in goal-directed behavior, i.e. 

hypoconnectivity between DMN and cognitive control systems, that characterize this disorder 

(Kaiser et al., 2015). Consequently, DMN changes following tryptophan manipulations might 

provide relevant clues regarding the origin of depressive symptomatology. 

Existing studies investigating the effects of tryptophan depletion on DMN connectivity 

describe reduced functional connectivity of the precuneus and enhanced functional connectivity 

of the frontal cortex in healthy (Helmbold et al., 2016; Kunisato et al., 2011) and psychiatric 

(Biskup et al., 2016) populations. In contrast, tryptophan loading, a less-used intervention, led 

to greater connectivity between frontal DMN regions and the lateral PFC (Kroes et al., 2014). 

However, the use of relatively small samples and a single tryptophan condition limits the 

conclusions that can be drawn from these investigations.  

While the effects on 5-HT synthesis obtained after tryptophan challenges seem to be 

rapid (Biskup et al., 2012; Dingerkus et al., 2012), animal models have shown that low or single 

doses of SSRIs increase 5-HT concentrations to a level that floods somatodendritic 5-HT1A 

autoreceptors, which in turn may cause a subsequent 5-HT depletion-like state with its 

corresponding behavioral manifestations (Cools et al., 2008) instead of an expected increase 

in 5-HT levels. This mechanism of action might explain why DMN changes in healthy subjects 

after single doses of SSRIs mirror those obtained after tryptophan depletion in posterior parts 

of the DMN (Helmbold et al., 2016; Klaassens et al., 2015; Kunisato et al., 2011; van de Ven 

et al., 2013). On the other hand, the action of serotonergic manipulations on frontal DMN 

regions seems to be less clear, showing both increases and decreases in connectivity after 

either SSRIs (Klaassens et al., 2016; Klaassens et al., 2015) or tryptophan manipulations 

(Helmbold et al., 2016; Kunisato et al., 2011). Hence, further investigations are still necessary 

in order to understand how different brain 5-HT levels affect the functional coherence of the 

DMN.  

The aim of our study was to investigate the effects of serotonergic manipulations on the 

functional architecture of the DMN in healthy subjects following two tryptophan interventions, 

namely: acute tryptophan depletion (ATD) and acute tryptophan loading (ATL). Both 

interventions were tested against a balanced condition (BAL), which provided the 

recommended daily intake of tryptophan for adults (see Experimental procedure). To observe 

how different brain 5-HT levels may affect the DMN connectivity, we also investigated possible 

linear relationships between both interventions (ATD – ATL). Based on previous findings and 
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the existing literature, we hypothesized that ATD would decrease the functional connectivity of 

posterior parts of the DMN (i.e precuneus and PCC) but increase the connectivity of frontal and 

medial parts of the DMN (i.e. vmPFC, retrosplenial cortex, angular gyrus) whereas ATL would 

have opposite effects. The methodology used in this study also allowed us to investigate 

connectivity changes between the DMN and other brain regions following each tryptophan 

manipulation (i.e. voxel-to-network connectivity). Additionally, we used similar behavioral 

measures as previous studies that reported more impulsive choices as well as higher anxiety 

and depression levels after ATD, and increasing sleepiness after ATL (Dougherty et al., 2010; 

Lindseth et al., 2015; Silber & Schmitt, 2010). Finally, we investigated possible associations 

between functional connectivity changes and these behavioral measures.  

 

3.3. Materials and Methods  

3.3.1. Participants 
One hundred and twelve healthy participants completed the three sessions of the 

study. Of these, we discarded five participants who received accidentally the same mixture 

in all sessions, four participants with excessive movement during the resting-state scan 

(see Image preprocessing), four participants with structural brain anomalies (e.g. cysts, 

enlarged ventricles) detected by a neuroradiologist, two participants who did not complete 

one resting state scan and 12 participants with limited brain coverage or scanner artifacts 

in one or all resting-state sessions. Therefore, data from 85 participants (41 females; Mage 

= 32.68 years, SDage ±5.81, range = 21-42) were analyzed in this study. These participants 

form part of the sample already reported by Neukam et al. (2018). The detailed recruitment 

process is described in the Supplementary Material 1. 

Participants gave written informed consent and received monetary compensation 

for their participation. The study protocol was approved by the local ethics committee of 

the Technische Universität Dresden and was in accordance with national legislation and 

the Declaration of Helsinki. 

 

3.3.2. Experimental procedure 
Participants took part in three sessions and received one of the following drinks: 

acute tryptophan depletion (ATD), balanced (BAL) or acute tryptophan loading (ATL) in a 

randomized, double-blind, placebo-controlled (BAL), crossover study, with at least one 
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week between sessions (elapsed days between sessions: M = 23, SD = 25). The dose of 

amino acids in the mixtures was adjusted to participant’s body weight (Dingerkus et al., 

2012; Moja et al., 1988) and contained the same amount of large neutral amino acids 

(LNAA) but differed in the amount of tryptophan. In the ATD condition, tryptophan was 

completely absent, the BAL condition contained 7 mg/kg body weight (equivalent to the 

recommended daily allowance for adults (Richard et al., 2009)) and the ATL condition 

contained 70 mg/kg body weight. The dose of large neutral amino acids (LNAA) was 

constant for every participant across sessions: L-phenylalanine (132 mg/kg), L-leucine 

(132 mg/kg), L-isoleucine (84 mg/kg), L-methionine (50 mg/kg), L-valine (96 mg/kg), L-

threonine (60 mg/kg) and L-lysine (96 mg/kg). To maximize the effects of the intervention, 

we provided a list of low-protein food that the participants were allowed to have for dinner 

and told them to fast overnight before each experimental day. Participants arrived either at 

8.30 a. m or 10.30 a.m., received instructions about the study procedure and the possible 

side-effects of the intervention (e.g. sleepiness, drowsiness, nausea, vomiting) and drank 

the assigned mixture prepared by an independent experimenter who did not conduct the 

session. Additional details about the experimental procedure are provided in 

Supplementary Material 2. 

 

3.3.3. Biochemical measures 
A venous catheter (Braunüle®) was inserted in the participant’s arm at the 

beginning of each session in order to draw blood samples in tubes (Sarstedt, Germany) 

with ethylenediaminetetraacetic acid (EDTA) at four time points (T0 = baseline, T1 = one 

hour, T2 = three hours and T3 = six hours after ingestion of the mixture) to measure the 

concentrations of tryptophan and LNAA in blood plasma. Blood samples were immediately 

centrifuged at 4000g and 4°C for 10 minutes and 1 ml plasma was stored in two Eppendorf 

capsules in a -81°C fridge. Plasma analyses for the concentrations of tryptophan and LNAA 

were conducted at the Department of Chemistry and Food Chemistry of the Technische 

Universität Dresden as described in Henle et al. (1991). Complete blood samples from 71 

participants were available for analysis. 

The ratio of tryptophan to the sum of the other LNAA (TRP/∑LNAA) in the peripheral 

blood at each time point was calculated as the best estimate of the intervention effects in 

each session (Dingerkus et al., 2012). For statistical analyses, the area under the curve 

(AUC) was computed using the 4 time points. Before calculating the AUC, all four time 
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points were normalized by subtracting the values of T0 from all time points, thereby 

accounting for inter-individual differences in baseline blood levels. These AUC scores were 

entered into a repeated-measures ANOVA. 

 

3.3.4. Behavioral assessment  
Statistical analyses were conducted using SPSS for Windows (release 22.0, IBM 

Corp., Armonk, IL, USA). Participants completed an extensive behavioral assessment and 

several self-report questionnaires. The questionnaires reported in this manuscript are the 

State-Trait Anxiety Inventory (STAI-State, (Spielberger, 1983)), the Karolinska Sleepiness 

Scale (KSS, (Akerstedt & Gillberg, 1990)) and a 9-item Visual Analogue Scale (VAS: 

heightened, excited, balanced, depressed, lethargic, activated, sad, relaxed, stressed (In-

house assessment, ZI, Mannheim, Germany)). These questionnaires were applied in the 

order mentioned above at the four time points of the session. Additionally, we assessed 

impulsive choice using three tasks of the Value-Based Decision-Making battery (see 

Pooseh et al. (2017) for a complete description). Briefly, risk aversion for gains and risk 

seeking for losses were assessed using probability discounting for gains and losses 

respectively. In these tasks, participants needed to choose between a sure amount that 

they could win or lose and the probability of winning/losing a larger amount of money (e.g., 

75% probability of winning €5 or winning €2 for sure, or a 50% probability of losing €8 or 

losing €3 for sure). The resulting main discounting parameters from these tasks (k) were 

log-transformed in order to approximate them to a normal distribution. Finally, loss aversion 

was assessed with a mixed gambles task. In this task, participants received a credit of €10 

at the beginning of the game and then needed to decide whether to accept or reject an 

offer with a 50/50 chance of either gaining one amount of money or losing another amount 

(e.g., refusing to gamble or accepting a gamble that offered either winning €15 or losing 

€8). These three tasks were administered at a single time point after the fMRI session. Due 

to missing data the number of complete behavioral datasets ranged from 82 to 85. Other 

behavioral and cognitive measures as well as demographic information were acquired (see 

Neukam et al. (2018) and Supplementary Material 3). The study design including the 

number of participants in each session and condition and a schematic overview of one 

study session are depicted in Fig. 5.  

In order to test intervention effects (ATD and ATL vs. BAL) and effects between 

interventions (ATD vs. ATL) on the three behavioral ratings, we subtracted the scores 
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obtained at baseline (T0) from the scores obtained before the scan session (T2) and 

performed a repeated-measures ANOVA with the resulting scores. Results were 

Bonferroni-corrected for 14 comparisons. If the F-test indicated significant differences, 

post-hoc paired t-tests were performed to determine directionality of the effects.  

 

 

Figure 5. Study design. Part A shows the study design with the cross-over randomization of 
the tryptophan interventions (ATD = acute tryptophan depletion, BAL = balanced, ATL = acute 

tryptophan loading), the final number of participants for each intervention and session (N = 85) 

and the number of participants in each possible order of interventions. Part B shows the timeline 

of a study session. The mixture was prepared one hour before the participant arrived. At T0, 

the first blood sample was taken as a baseline measure of tryptophan plasma concentrations, 

followed by the ingestion of the mixture and mood and behavioral assessments. Additional 

blood samples were taken one, three and six hours after the ingestion of the mixture. The fMRI 

session was carried out three hours after the drink.  
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3.3.5. MR data acquisition 
All fMRI sessions were carried out three hours after  the ingestion of the mixtures 

because previous research (Dingerkus et al., 2012) and our pilot tests showed after this 

time, the lowest and highest tryptophan peaks in ATD and ATL respectively. The resting-

state fMRI sequence was performed after a decision-making task and a short break. fMRI 

data were collected on a 3 Tesla whole-body MRI Scanner Magnetom Trio Tim (Siemens 

Healthcare GmbH, Erlangen, Germany) equipped with a 32 channel head coil using a 

single-shot gradient echo-planar imaging (EPI) sequence with repetition time (TR) of 2.41s, 

an echo time (TE) of 25 ms, a flip angle of 81°, 42 2 mm-thick slices and 1 mm slice gap, 

field of view of 192 × 192 mm2 with a matrix size of 64 x 64, 3 mm isotropic resolution and 

a bandwidth of 2112 Hz/Px. A total of 150 resting-state volumes were acquired, tilted 

slightly from axially to coronal to be parallel to the anterior/posterior commissural line. For 

registration purposes, a T1-weighted high-resolution anatomical scan was acquired with a 

3D magnetization prepared - rapid gradient echo (MP-RAGE) sequence (TR = 1.90 s, TE 

= of 2.26 ms, TI = 900 ms, flip angle of 9°, FOV = 256 x 256 mm2, 176 slices, 1 mm x 1 

mm x 1 mm voxel size with slice thickness of 1 mm and 200 Hz/Px bandwidth). Participants 

were given earplugs for noise protection and foam pads to minimize head movement. They 

were instructed not to think about anything in particular and to lie as still as possible while 

fixating on a black crosshair presented on the center of a white screen. An eye-tracking 

camera was used to monitor the participants and to ensure that they remained awake 

during the whole resting-state session. 

 
3.3.6. Image preprocessing 

For each participant, framewise displacement (FD: a sum of the absolute values of 

the temporal derivatives of the volume-by-volume changes in the translational and 

rotational realignment estimates (Power et al., 2012)), was calculated on the raw data prior 

to any preprocessing step using the tool fsl_motion_outliers. Four participants with more 

than 10% of volumes over a FD of 0.5 mm were excluded from the analysis (Deza Araujo 

et al., 2018). The resting-state fMRI data were preprocessed using the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL Version 5.0.9, 

www.fmrib.ox.ac.uk/fsl; (Jenkinson et al., 2012)). The first four volumes of each functional 

scan were discarded to allow for magnetic equilibration, resulting in 146 volumes per 

subject and intervention. Preprocessing steps included motion correction with MCFLIRT, 

brain extraction of the EPI data with BET, spatial smoothing with a 5mm Gaussian kernel 
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of full-width at half maximum, ICA-based denoising using ICA-AROMA (Pruim et al., 2015) 

and high-pass temporal filtering of 0.01 Hz. Registration was applied on the denoised 

functional data using the registration parameters derived from non-smoothed and non-

filtered data. For registration, individual resting-state images were aligned to their 

corresponding T1-weighted image using a boundary-based registration algorithm (BBR 

(Greve & Fischl, 2009)). The T1-weighted images were registered to MNI space (MNI152; 

2 mm x 2 mm x 2 mm spatial resolution) using a nonlinear registration implemented in 

FNIRT (warp resolution: 10 mm). The same transformation was applied to the filtered EPI 

images. After this process, all images were visually inspected in order to ensure accuracy 

of the registration.  

 

3.3.7. Generation and analysis of the default-mode network  
We used a template-based approach, which has been validated by previous studies 

(Klaassens et al., 2016; Klaassens et al., 2015) and reliably provides spatial maps of 

established large-scale brain networks. Briefly, we used the 10 templates from Smith et al. 

(2009b) to derived the networks identified in more than 1600 studies. These templates 

included: high, medial and lateral visual networks, default-mode network, cerebellar 

network, sensorimotor network, auditory network, cingulo-opercular network, right and left 

frontoparietal networks (See Supplementary Material Fig S3 (Smith et al., 2009b)). To 

obtain an individual representation of each network, we used a dual regression analysis 

(Beckmann et al., 2009). Here the templates were linearly regressed against the functional 

data of each subject, resulting in individual time courses (spatial regression) for each one 

of the 10 networks. These time courses were normalized and then regressed against the 

corresponding functional datasets (temporal regression) to estimate 10 subject-specific 

voxel-to-network spatial maps for each subject and pharmacological condition. Additional 

individual mean time courses from white matter, cerebrospinal fluid and the six subject-

specific motion parameters were added during the last stage of the dual regression to 

remove sources of spurious variance and residual motion (see Supplementary Material 4). 

As a multivariate approach, this dual regression procedure allowed the estimation of a 

“clean” representation of the DMN in which temporal and spatial signals that this network 

shares with other networks, were removed. In the dual regression approach, the estimated 

maps do not depend on the initial subject-specific major eigenspaces (PCA) and therefore, 

may lie outside the network’s boundaries (Beckmann et al., 2009). The voxel-wise 

regression coefficients contained in the resulting spatial maps represent the 
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synchronization between BOLD temporal dynamics at a given voxel and the mean BOLD 

time courses of a specific network. The strength of the voxel-to-network connectivity is 

given by the value of these coefficients (Klaassens et al., 2016; Klaassens et al., 2015). 

Only the spatial maps representing the DMN were used in the higher-level analysis (85 

subjects x 3 interventions = 255 DMN maps).  

Due to the unknown distribution of the data, non-parametric testing was used for 

group-level analyses. To delineate the effects of intervention on the DMN, a repeated-

measures ANOVA was performed, with “intervention” (ATD, BAL, ATL) as a within-subject 

factor. We used Faster Permutation Inference as implemented in Permutation Analysis of 

Linear Models – PALM version 99a  (Winkler et al., 2015), with 500 permutations and a tail 

approximation procedure which fits a Pareto distribution to the tail of the distribution used 

for correction of the p-values (Winkler et al., 2016a). Exchangeability blocks were specified 

in the model for allowing permutations to happen within subjects (Winkler et al., 2015). We 

implemented directional contrasts to compare if the within DMN connectivity and the voxel-

to-network connectivity were stronger or weaker after a given intervention with respect to 

baseline levels (ATD > BAL, BAL > ATL, ATD < BAL, BAL < ATL) and between both 

interventions (ATD < ATL, ATD > ATL). Results were family-wise error (FWE) corrected at 

.05 using Threshold-Free Cluster Enhancement – TFCE, a method that generates a voxel-

wise output image in which the values represent the amount of cluster-like local spatial 

support (Smith & Nichols, 2009). Further FWE correction over the six tested contrasts was 

performed, using the option “corrcon” implemented in PALM (Winkler et al., 2016b), which 

takes into account the dependencies that might exist between contrasts. These 

comparisons of subject-specific maps indicated which brain areas (within or outside the 

DMN map) are stronger connected to the DMN under one condition with respect to the 

other.  

Additionally, we tested potential repetition effects. To this aim, a repeated 

measures ANOVA with “intervention” (ATD, BAL, ATL) as a within-subjects factor and 

“intervention order” (i.e. the six possible order combinations of the interventions. See Fig. 

5) as between-subject factor, was used. A significant interaction between these two factors 

would indicate that the observed effects on DMN connectivity are driven by the repetition 

of the resting-state scan and not solely by a given intervention.  
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Due to postulated gender differences in brain 5-HT metabolism (Nishizawa et al., 

1997), we explored whether gender moderates the effects of the tryptophan interventions. 

To this end, a third repeated-measures ANOVA was included, with “intervention” as a 

within-subject factor and “gender” (males, females) as a between-subject factor. These 

additional models were also tested using 500 permutations, with a tail approximation as 

implemented in PALM, yielding voxel-wise maps identified with TFCE and corrected at .05.  

We compared the mean FD measures in a repeated measures model to test 

whether in-scanner motion differed between interventions or sessions. 

 

3.3.8. Analyses of brain-behavior associations 
To determine potential brain-behavior associations, we performed Pearson 

correlations between the behavioral scores and the brain regions with significant 

intervention effects on DMN connectivity. Specifically, the difference of regional parameter 

estimates between two interventions (e.g. BAL – ATL) was correlated with their 

corresponding difference in behavioral scores (e.g. KSSBAL – KSSATL).  
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3.4. Results 

3.4.1. Effects of intervention on blood plasma levels of tryptophan and ∑LNAA 
To test the effects of our interventions in the peripheral blood, TRP/∑LNAA AUC 

scores and free tryptophan measures were calculated. Significant main intervention effects 

were found in the measures of free tryptophan in peripheral blood (F2,142 =235.52; p = 1.76 

x 10
−28
) and in the TRP/∑LNAA AUC scores (F2,142 = 334.30; p = 1.15 x 10

−33
). Contrast 

analyses revealed significant increases for free tryptophan from ATD to BAL (F1,70= 65.44; 

p = 1.13 x 10
−11
) and from BAL to ATL (F1,70 = 174.55; p = 8.23 x 10

−21
). In the same 

manner, contrasts analysis for TRP/∑LNAA AUC scores revealed significant increases 

from ATD to BAL (F1,70 = 67.40; p = 7.5 x 10
−12
) and from BAL to ATL (F1,70= 250.28; p = 

8.2 x 10
−25
). Graphic representations of these effects are displayed in Fig. 6. Detailed 

results of this analysis as well as other measures (free tryptophan and TRP/∑LNAA) are 

provided in Supplementary Table S4.  

Finally, neither gender nor intervention order had any effect on tryptophan plasma 

measures (all ps > .2).  
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Figure 6. Pharmacokinetics of the acute tryptophan intervention: In both graphs, the x axis 
displays the four time points of blood sampling. On the left graph, the y axis displays the plasma 

levels of free tryptophan. On the right graph, the ratio of tryptophan to the sum of the other 

large neutral amino acids (TRP/∑LNAA) is shown. The resting-state scan was carried out after 

a decision-making task, 3.5 hours after the ingestion of the mixture. The abbreviations are acute 

tryptophan depletion (ATD), balanced (BAL) and acute tryptophan loading (ATL). The shaded 

areas indicate bias-corrected and accelerated (BCa) 95% confidence intervals. The graph 

includes complete data from 71 participants. ** P < .0001. 

 

3.4.2. Effects of intervention on mood, vigilance and impulsive choice 
None of the behavioral scores survived Bonferroni correction for 14 comparisons. 

For completeness, we reported uncorrected p-values (main effects of intervention and pair-

wise comparisons) in Table 4. 
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Table 4. Summary statistics of the difference between T2 (before the scan session) and T0 (baseline) for the behavioral assessment 
in each tryptophan intervention. None of the comparisons survived Bonferroni correction for 14 tests. Asterisks indicate ps < .05, 

uncorrected for multiple comparisons 

 
Test 

ATD ATD - BAL BAL BAL-ATL ATL ATD-ATL Main effects 
Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value p-value 

STAI-G X1-state 1.12 (5.00) 0.85 1.36 (5.40) 0.80 1.61 (4.11) 0.62 0.88 
KSS 1.41 (2.08) 0.27 1.17 (1.96) 0.006* 1.86 (2.13) 0.19  0.04* 
VAS-heightened (mm) -6.83 (24.83) 0.94 -7.03 (24.56) 0.31 -3.64 (17.56) 0.35 0.52 
VAS-excited (mm) -9.32 (28.92) 0.23 -5.01 (19.41) 0.43 -8.03 (23.52) 0.68 0.49 
VAS-balanced (mm) -0.44 (28.33) 0.74 -1.80 (24.25) 0.40 -5.69 (30.81) 0.25 0.49 
VAS-depressed (mm) 2.04 (16.63) 0.06 7.05 (21.80) 0.32 4.07 (16.36) 0.28 0.14 
VAS-lethargic (mm) 14.02 (28.41) 0.52 11.15 (27.61) 0.28 16.04 (29.43) 0.65 0.55 
VAS-activated (mm) -10.68 (22.15) 0.70 -9.38 (19.06) 0.63 -11.08 (24.43) 0.91 0.87 
VAS-sad (mm) 3.55 (13.52) 0.30 1.41 (13.30) 0.62 2.68 (18.31) 0.55 0.55 
VAS-relaxed (mm) -6.20 (21.79) 0.37 -3.79 (24.80)  0.02* -12.74 (26.46) 0.12 0.06 
VAS-stressed (mm) -1.80 (13.54)  0.03* 5.52 (24.12) 0.48 3.73 (15.83)  0.01*  0.04* 
PDGlogk 0.37 (0.85) 1.00 0.31 (1.04) 1.00 0.23 (0.82) 0.51 0.38 
PDLlogk -0.15 (0.99) 0.28 -0.38 (1.25) 0.35 -0.33 (1.52) 0.63 0.34 
MGλ 143 (0.98) 1.00 1.48 (1.13) 1.00 1.44 (1.13) 1.00 0.89 

N = 82-85 

STAI-G X1= State-Trait Anxiety Inventory – state, scale X1  

KSS = Karolinska Sleepiness Scale 

VAS = Visual Analogue Scale, mm = millimeters 

PDG = Probability discounting gains (k on log scale) 

PDL = Probability discounting losses (k on log scale)  

MG = Mixed gambles (lambda)  
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3.4.3. Effects of intervention on DMN connectivity  

Compared to the control condition (BAL), acute tryptophan loading (ATL) reduced 

significantly the DMN functional connectivity in bilateral medial prefrontal regions (pFWE = 

.03). The same intervention reduced the functional connectivity between the DMN and 

clusters located in the putamen (pFWE = .02), subcallosal cortex (pFWE = .03), left thalamus 

(pFWE = .03) and bilateral occipital regions (pFWE = .02 and .04). All these connectivity 

changes were unrelated to variations in behavioral scores (all ps > .20). Cluster sizes and 

summary statistics for the significant results are presented in Table 5. A graphical 

representation of all intervention effects on the significant regions is presented in Fig. 7.  

Compared to the control condition (BAL), acute tryptophan depletion (ATD) 

numerically decreased the DMN connectivity with small clusters in the left middle temporal 

gyrus (k = 42) and the right orbitofrontal cortex (k = 7). Importantly, these marginal effects 

did not survive correction for the six contrasts of interest (pFWE = .30. Supplementary Table 

S5). 

No significant differences in DMN connectivity were found between both 

interventions (ATD vs. ATL).  

Regarding possible confounders or moderators, framewise displacement analyses 

revealed no differences in-scanner motion between interventions or session (all ps > .10). 

Moreover, no interaction between intervention order and interventions were found, 

indicating that the repetition of the resting-state scan did not affect DMN connectivity. No 

significant gender-by-intervention interaction on DMN connectivity could be found, 

indication that interventions had comparable effects for males and females.  
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Table 5. Brain regions that showed significant decreases in functional connectivity to the DMN 

under ATL compared to BAL. 

    
MNI coordinates (COG) 

      X             Y              Z Brain regions 
Cluster size 
(voxels) t-values p-values 

Right Putamen 1058 4.41 0.02 20 10 -2 

Left frontal orbital cortex 349 4.69 0.02 -30 18 -14 

Left subcallosal cortex 153 4.09 0.03 -2 28 -26 

Left frontal medial cortex 118 4.29 0.03 -12 44 -10 

Right frontal orbital cortex 108 4.29 0.03 38 34 0 

Left thalamus 96 4.53 0.03 -10 -2 4 

Left occipital pole 80 5.54 0.02 -2 -92 4 

Right frontal medial cortex 49 4.42 0.03 14 44 -10 

Left frontal pole 41 3.83 0.04 -36 44 -8 

Left frontal pole 16 4.14 0.04 -14 44 -24 

Right middle frontal gyrus 14 4.13 0.04 36 32 26 

Right middle frontal gyrus 11 4.02 0.04 34 24 22 

Right occipital pole  10 4.34 0.04 14 -90 10 

Left thalamus 10 3.73 0.04 -10 -12 -2 

Voxel dimensions = 2x2x2 mm. Peak t values within cluster are uncorrected. P-values are 

FWE-corrected and adjusted for the six comparisons performed. MNI coordinates represent 

the center of gravity (COG). Brain areas were identified using the Harvard-Oxford Cortical and 

Subcortical Structural Atlases. 
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Figure 7. Changes in DMN functional connectivity following tryptophan manipulations. The 

image slices on the left side show the spatial map of the DMN (precuneus, PCC, mPFC, 

retrosplenial cortex, hippocampus) as identified by Smith et al. (2009) displayed in red-orange. 

The clusters with decreased functional connectivity to the DMN after acute tryptophan loading 

(ATL) are displayed in green colors. MNI coordinates are presented below each image. Images 

are displayed in radiological orientation (left = right). The plots represent the distribution of the 

parameter estimates (in arbitrary units) of the brain regions that were affected by the tryptophan 

manipulations (as shown in Table 5. Horizontal lines on the plots represent means and 95 % 

confidence intervals. *P < .05, FWE corrected and adjusted for six comparisons performed. 
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3.5. Discussion 

This study is the first to use both, tryptophan depletion and loading, together with a 

control condition to manipulate brain 5-HT levels and investigate related changes in DMN 

functional connectivity in a large cohort of healthy adults. We found that, compared to the 

control condition (BAL), higher brain 5-HT levels (ATL) decreased the functional connectivity 

within the DMN and between this network and other brain regions. Contrary to previous 

findings, lower brain 5-HT levels (ATD) did not yield any significant changes on DMN 

connectivity. Finally, behavioral measures of mood, sleepiness, vigilance and impulsive choice 

were neither strongly affected by our interventions nor related to any DMN connectivity change.  

In partial agreement with our hypotheses, higher brain 5-HT levels (ATL) resulted in 

lower functional connectivity within anterior regions of the DMN (i.e. bilateral medial frontal 

cortex) but did not increase the functional connectivity of posterior DMN regions. Moreover, the 

same intervention decreased the functional connectivity between the DMN and the middle 

frontal gyrus, left frontal pole and bilateral orbitofrontal cortex. Frontal DMN regions are involved 

in emotion regulation, introspection and future thinking (Buckner et al., 2008a), processes that 

have a close relationship with serotonergic function and are generally affected in mood 

disorders (Dainer-Best et al., 2018; Meneses & Liy-Salmeron, 2012). Similarly, the dense 

serotonergic innervation of the orbitofrontal cortex indicates that an adequate 5-HT modulation 

of this area is crucial for behavioral flexibility and regulation of emotional responses (Roberts, 

2011). Given the anatomical proximity and the existing connections between the orbitofrontal 

cortex and the frontal hub of the DMN (i.e. medial prefrontal cortex); (Kahnt et al., 2012)), 

serotonergic-induced changes in the functional connectivity of these regions may be relevant 

to understand, for example, mood improvements observed after the administration of 

serotonergic medications.  

In the same way, higher brain 5-HT levels (ATL) reduced the connectivity between the 

DMN and the thalamus and putamen. These structures form part of the limbic-cortical-striatal-

pallidal-thalamic circuits (LCSPT), which are primarily involved in emotional processing, affect 

regulation and are also implicated in the pathophysiology of mood disorders (Drevets et al., 

2008a; Greicius et al., 2007). Moreover, PET studies have revealed high serotonin synthesis 

capacity rates in these areas (Okazawa et al., 2000; Saulin et al., 2012), indicating their 

susceptibility to different 5-HT levels. 
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The decreased connectivity between the DMN and a cluster located in the subcallosal 

cortex following ATL deserves special attention. The subcallosal cortex comprises the adjacent 

ventromedial PFC and Brodmann areas 24 and 25 (Vogt et al., 1995) and plays a fundamental 

role in affective valuation of stimuli and expression of negative emotions (Drevets et al., 2008b). 

Functional and structural changes in the subcallosal cortex and its adjacent areas are observed 

in mood and depressive disorders (Drevets et al., 2008b). Furthermore, this area exhibits high 

densities of 5-HT transporters and 5-HT1A receptors (Varnas et al., 2004), which may enhance 

its susceptibility to serotonergic manipulations (Talbot & Cooper, 2006). An increased 

functional connectivity between the DMN and the subgenual prefrontal cortex (sgPFC), the 

caudal portion of the subcallosal area, is a common finding in depressive disorders (Berman et 

al., 2011; Greicius et al., 2007). In addition, a recent model proposed that this hyperconnectivity 

may explain depressive rumination by means of a two-system interaction: the DMN that brings 

in self-referential processes and the sgPFC that provides emotional loading to these processes 

(Hamilton et al., 2015).  

An elevated connectivity of the DMN is consistently reported in depression (Berman et 

al., 2011; Greicius et al., 2007; Hamilton et al., 2011; Lois & Wessa, 2016; Sheline et al., 2009; 

Ye et al., 2015) and individuals at high risk for depression (Posner et al., 2016), illustrating 

potential neural signatures of disrupted self-referential processing and poor impulse control 

(Kaiser et al., 2015), functions that are closely related to serotonergic activity (Cha et al., 2018; 

Dainer-Best et al., 2018). In this light, serotonergic manipulations such as antidepressant 

agents, were found to normalize the elevated DMN connectivity in depressed patients (Posner 

et al., 2013) and, similar to our findings, decrease the connectivity between DMN regions and 

subcortical regions in healthy individuals (McCabe & Mishor, 2011), pointing to a plausible 

neural substrate of depressive symptoms that can be targeted by medication.  

In contrast to the effects of ATL on DMN connectivity and previous studies (Biskup et 

al., 2016; Helmbold et al., 2016; Kunisato et al., 2011), depleting tryptophan yielded only small 

effects that failed to reach statistical significance. Furthermore, these effects were numerically 

in the same direction as ATL i.e., if anything ATD slightly decreased connectivity to the DMN.  

While our blood measures indicated that ATD significantly lowered plasma tryptophan 

levels, the lack of robust neural effects may arise from differences in 5-HT stores among our 

participants or the presence of adaptive brain processes (Young, 2007) that might prevent 

significant decreases of brain 5-HT in our healthy individuals compared to psychiatric 
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populations (Biskup et al., 2016). Furthermore, methodological differences may also explain 

why others have reported ATD effects. For example, seed-based approaches provide more 

power due to strong a priori hypotheses regarding the functional connectivity of the seed region 

and, therefore, capture more subtle connectivity changes (Eisner et al., 2017). Similarly, other 

ATD studies use resting-state data but analyze measures, like fractional amplitude of low-

frequency fluctuation (ALFF; (Kunisato et al., 2011)), that do not quantify functional connectivity 

(Di et al., 2013). In addition, we suspect that ATD might have smaller effects than found by 

previous small studies, which leads to an overestimations of effect sizes (Fanelli et al., 2017). 

In contrast, our study was performed in a larger sample (n = 85), which provided sufficient 

power (1 − β = .80) to detect small- to medium- sized effects at the behavioral and network level 

(α = .05; dz  = .34) and medium-sized effects at the voxel level (α = .001; dz  = .50) (Faul et al., 

2007), but still ATD effects were not evident. Lastly, we acknowledge that all these 

interpretations are speculative and certainly merit future in-depth investigation. 

At the behavioral level, none of our measures showed significant changes after 

correction for multiple testing. Regarding the effects of ATD on mood and anxiety, decreases 

in these scores are mostly reported in depressed or recovered depressed patients, perhaps 

reflecting a selective vulnerability of the serotonergic system (Fusar-Poli et al., 2006). In 

addition, depressed patients might also exhibit associations between mood scores and 

functional connectivity strengths (Posner et al., 2013; Wang et al., 2015; Zhu et al., 2012), in 

which symptomatic improvements are correlated with reductions in functional connectivity 

(Wang et al., 2015). In a similar manner, the effects of ATL on these measures may depend on 

the initial state of the serotonergic system of the individuals. For example, large doses of 

tryptophan during the daytime may have calming effects in healthy adults but reduce sleep 

latency and increase subjective ratings of sleepiness in individuals with sleep disturbances 

(Hartmann, 1982; Silber & Schmitt, 2010). Since we investigated healthy volunteers, it is not 

surprising that these changes and associations were not statistically reliable in our study. 

Lastly, although the serotonergic system is involved in the expression of impulsive behaviors 

(Miyazaki et al., 2012), our measures of impulsive choice were neither affected by any 

intervention nor related to functional connectivity changes. Behavioral analyses of this lab 

support these observations, showing that impulsive choice is not affected by transient changes 

of tonic 5-HT, but modulated by individual differences in the serotonergic system (Neukam et 

al., 2018). Nevertheless, our results highlight the role of higher 5-HT brain synthesis as a 

modulator of the connectivity between the DMN and brain regions involved in emotion 

processing. One might speculate that diminished serotonergic function in these areas leads to 
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a hyperconnectivity with the DMN and therefore, promotes depressogenic cognition, but 

caution is warranted due to the known neurobiological differences between depressed patients 

and healthy individuals and the distributed nature of depression (Pandya et al., 2012). 

 

3.5.1. Limitations 

Our study has some limitations. First, it has been shown that short scan lengths 

impact the reliability of the resting-state data across sessions (Birn et al., 2013), which at 

the same time, reduces the statistical power and allows the detection of only large effect 

sizes. Future studies might use improved scanning protocols including longer scanning 

times (e.g. 9-12 minutes; (Birn et al., 2013)) and accelerated EPI sequences with much 

shorter TRs (i.e. multiband) which may yield more stable estimates of connectivity 

strengths, allowing the detection of smaller effects that were not evident in our study (e.g. 

ATD). In addition, study designs with pre- and post-intervention scans would provide a 

more stable baseline against which the conditions of interest can be compared. Second, 

the resting state scan was performed after a decision-making task and a short break (about 

2 minutes). Therefore, possible carry-over effects from the previous task cannot be ruled 

out. To discard these potential confounds, well-tailored studies entirely dedicate to 

investigate resting-state activity are encouraged. Finally, despite the extended use of 

tryptophan challenges for more than forty years up to now, the specificity of their action on 

the serotonergic system remains a matter of debate (Crockett et al., 2012; van Donkelaar 

et al., 2011). Therefore, further animal and human research is still needed to draw stronger 

conclusions about the impact of tryptophan challenges on brain 5-HT levels. 

 

3.5.2. Conclusion  

To sum up, our study is the first to use both ATD and ATL, together with a baseline 

condition in the same subjects to shed light on acute connectivity changes of the DMN 

following serotonergic manipulations. Our results expand a large body of ongoing research 

regarding the serotonergic modulation of the DMN (Biskup et al., 2016; Helmbold et al., 

2016; Klaassens et al., 2015; Kunisato et al., 2011; Posner et al., 2013; van de Ven et al., 

2013). More specifically, our data support the notion of decreased connectivity between 

the DMN and emotion-related regions after increasing brain 5-HT levels and suggest that 

these functional changes represent a key feature for the understanding of the neural basis 

of depressive symptomatology.  
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3.7. Supplemental Material Study II 

3.7.1. Recruitment process 

For the first phase of the recruitment process, 15750 letters were sent to randomly 

selected addresses provided by the registration office of Dresden, Germany. These 

addresses included an equal number of males and females stratified by age (between 20 

and 40 years old). Of those, 1382 individuals answered to our invitation and were 

telephonically screened by trained psychologists. Exclusion criteria included pregnancy, 

corrected binocular visus below 0.8, current somatic disease requiring medical treatment, 

any psychiatric disorders that required pharmacological treatment within the last year, a 

lifetime history of organic psychiatric disorders (for ICD-10: organic psychiatric disorders 

(F0), opiate, cocaine, stimulants, hallucinogens, inhalants, or poly-substance dependence, 

schizophrenia or related personality disorders (F2), affective disorders (F3)) and MRI 

incompatible conditions. After the telephone screening, 611 participants were invited to a 

baseline session which included IQ and behavioral assessment as well as weight, height, 

visus test and blood taking. Four blood samples (36 ml) were collected by venepuncture 

in 9 ml ethylenediaminetetraacetic acid (EDTA) tubes (Sarstedt, Germany). Three tubes 

were sent to a collaborating laboratory for genotyping analysis. Results of these analyses 

are reported elsewhere (Neukam et al., 2018). The blood of the fourth tube was 

immediately processed by adding 81 μl Aprotinin and centrifuged at 3500 rpm for 8 minutes 

at 4°C. After this process, the plasma was stored in a fridge at -81°C for the posterior 

analysis of hormones. All participants were informed about the second phase of the study, 

provided written informed consent and received monetary compensation at the end of the 

baseline session.  

One hundred and seventy participants were reinvited for the main study. Of those, 

we excluded: 21 participants due to nausea or vomiting during the first visit, 12 during the 

second visit and two during the third visit. Additionally, 23 participants could not or refuse 

to participate after the first or second session. Therefore, one hundred and twelve 

participants successfully completed all three sessions. Further analysis-specific criteria 

were applied, resulting in 85 eligible participants for the analyses. The recruitment workflow 

is depicted in Fig. S2. 
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Fig. S2. Recruiting and exclusion procedure leading to the final behavioral and imaging 

datasets. 
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3.7.2. Experimental procedure 

In order to minimize negative side effects, the mixtures were prepared in 

accordance with the participants’ body weight (Dingerkus et al., 2012; Moja et al., 1988; 

Zepf & Poustka, 2008). The mixtures were prepared by a commercial manufacturer 

(Amino-Factory, Lindenberg, Germany) and mixed about 1 hour before ingestion with 100 

ml of warm water and 200 ml of a citric soft drink, resulting in identical tasting drinks for all 

conditions. Sugar-free candies and extra water were offered ad libitum to minimize the 

unpleasant taste of the drink. All participants had a urine drug screen at the first visit only 

(Kombi/DOA10-Schnelltest, MAHSAN Diagnostika GmbH, Reinbek, Germany) and tests 

for breath alcohol (Alcotest 6810, Drägerwerk AG & Co. KGaA, Lübeck, Germany) and 

breath carbon monoxide concentration (CO Monitor, Bedfont Scientific Ltd, ME1 3QX, 

England) at the beginning of each session.    

 

 

3.7.3. Behavioral and mood assessment 

An extensive behavioral and mood assessment was conducted during the following 

three hours after the ingestion of the mixture and before and after the fMRI scan. In addition 

to the questionnaires reported in the main section of the study, in each session and 

immediately after the ingestion of the mixture, we evaluated physical activity with the 

German version of the International Physical Activity Questionnaire (Booth, 2000)). State-

related questionnaires acquired for a single time, one hour after the ingestion of the mixture 

in all sessions included the Beck Depression Inventory (Beck et al., 1961), the Perceived 

Stress Scale (Cohen et al., 1983) and the State Trait Anxiety Inventory (STAI; (Spielberger, 

1983). Demographic and trait-related information were acquired only during the first 

session and included the German versions of the Snaith-Hamilton Pleasure Scale (Snaith 

et al., 1995), the Buss-Perry Aggression Questionnaire (Buss & Perry, 1992) and the 

Melbourne Decision Making Questionnaire (Mann et al., 1997). Finally, other behavioral 

and cognitive functions related to serotonergic functions were also evaluated during all 

study sessions. They go beyond the scope of this manuscript and are reported elsewhere 

(Neukam et al., 2018). 
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3.7.4. Generation of nuisance regressor for Dual regression:

Segmentation of white matter and CSF from the brain-extracted structural images 

was carried out with FAST ((Zhang et al., 2001) and thresholded with fslmaths (80% of 

tissue-type likelihood; (Biswal et al., 2010)). FLIRT (Jenkinson et al., 2002) was used for 

transforming the white matter and CSF masks from the subjects’ structural space to their 

corresponding functional space. Fslmaths was used again to re-binarise the masks after 

transformation. Preprocessing of the resting state data was carried out a second time, only 

with motion correction and without temporal and spatial filtering. The white matter and CSF 

mean time courses were then extracted with fslmeants from this set of non-filtered data and 

merged with the individual motion parameters obtained with MCFLIRT (the estimated 

translation along and rotation around the x, y and z axes) during motion correction. Finally, 

this set of regressors was used during the second stage of dual regression. 

 

 

 

 

 

 

Fig. S3. Large-scale brain networks identified in more than 1600 studies by (Smith et al., 

2009b). From left to right: high, medial and lateral visual networks, default-mode network, 

cerebellar network, sensorimotor network, auditory network, cingulo-opercular network, right 

and left fronto-parietal networks  
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3.7.5. Supplemental results  

Table S4 

TRP/∑LNAA peripheral blood plasma levels 

 

Time points ATD BAL ATL 

 Free tryptophan [µmol/L] 

 Mean (SD) Mean (SD) Mean (SD) 

T0 31.90 (7.55) 33.36 (7.88) 32.31 (7.12) 

T1 29.13 (10.21) 48.05 (22.41) 121.98 (41.59) 

T2 21.52 (9.60) 42.50 (19.72) 145.64 (52.72) 

T3 21.87 (9.08) 33.00 (10.85) 80.38 (38.01) 

 TRP/∑LNAA  (%) 

 Mean (SD) Mean (SD) Mean (SD) 

T0 3.79 (0.64) 3.89 (0.75) 3.84 (0.60) 

T1 1.54 (0.52) 2.32 (0.73) 7.30 (1.80) 

T2 1.13 (0.60) 2.02 (0.64) 8.41 (2.29) 

T3 1.70 (0.76) 2.53 (0.82) 6.70 (2.71) 

 AUC: TRP/∑LNAA (%): Normalized with respect to T0 

 Mean (SD) Mean (SD) Mean (SD) 

 -13.14 (2.42) -9.01 (3.24) 20.80 (11.57) 

N = 71  

TRP/∑LNAA (%) = Ratio of tryptophan to the sum of large neutral amino acids, in per cent. 
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Table S2 

Additional DMN connectivity results in the contrast ATD < BAL 

 

Brain region N° voxels MNI coordinates 

(X, Y, Z) 

Peak t-value p-value 

Middle temporal gyrus 42 -50, -58, 8 4.27 0.068 

Frontal orbital cortex 7 24, 14, -16 3.94 0.077 

 

P-values; uncorrected for the six contrasts tested   

MNI coordinates correspond to the center of gravity 
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CHAPTER 4 

4. GENERAL DISCUSSION 
 

“They who dream by day are cognizant of many things which escape those who dream only 

by night”. 

  Edgar Allan Poe 

 

 

 

 

 

4.1. Research objectives and summary of results 

The aim of my doctoral thesis was to examine the importance of RSFC to detect 

significant functional brain activity associated with both value-based decision-making profiles 

and after serotonergic challenges. Briefly, in the first study, we presented a well-powered 

investigation from a large cohort of young adult males (N = 145), comparing a set of value-

based decision-making (VBDM) parameters with large-scale ICN, as characterized by an 

independent component analysis (ICA) and a dual regression approach. Our findings showed 

that individuals who prefer to gamble in order to avoid a sure loss, exhibited stronger 

connectivity between the default mode and left frontoparietal systems to their adjacent brain 

regions, especially to those regions involved in prospective thinking, affective decision-making 

and visual processing. Although our results are presented as exploratory and follow a 

somewhat conservative statistical correction procedure, they represent an important 

contribution for cognitive neuroscience and lay the groundwork for a deeper understanding of 

the neurobiological bases of impulsive and risk-seeking behaviors. The second study sought 

to investigate how different brain serotonin (5-HT) levels modulate the connectivity of one of 
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the most important ICN in the brain, i.e. the default mode network (DMN). Results showed that 

higher brain 5-HT levels decrease the functional connectivity between the DMN and brain 

regions involved in emotion regulation. Although in a healthy sample (N = 85), these results 

mirror the connectivity changes obtained after serotonergic medication in depressed patients 

and, therefore, suggest a potential link between aberrant DMN connectivity and serotonin levels 

underlying mood disorders. Both studies are well-powered and present novel methodologies 

for disentangling the contribution of the ICN to observable human behaviors. Next, I will present 

a discussion of both studies followed by an integrative approach. 

 

4.2. Risk seeking for losses is associated with changes in default mode and 
frontoparietal systems   

As argued in the introduction, one main advantage of the ICA algorithm is that it provides 

an optimal partition of the fMRI signal into a set of spatio-temporal components, which are 

thought to represent discrete networks in the brain. In the first study, the ICA algorithm was 

able to identify 14 ICN in our sample, corresponding to default-mode, frontal, cingulo-opercular, 

two frontoparietal, basal ganglia, cerebellar, dorsal attention, frontotemporal, three visual and 

two sensorimotor networks (Fig. 3). Even if this is not the main finding of the study, the 

identification of ICN in the data have two important methodological implications. First, it 

confirms the existence of large-scale ICN described in prior work (Damoiseaux et al., 2006; 

Laird et al., 2011; Smith et al., 2009a). Second, it validates visual inspection as a robust 

technique for the distinction between noise and ICN, following existing guidelines of 

neuroimaging research (Griffanti et al., 2017; Kelly et al., 2010).  

The main findings confirm the implication of default mode and cognitive control systems 

in the expression of risky behaviors, although following a different approach in which risk 

seeking for gains and losses were evaluated separately. This different approach provides 

novelty to our work, and for the first time, characterized the connectivity profile of risk-seeking 

(for losses) individuals. Interestingly, the DMN was found to have a regulatory function, 

especially during young ages when cognitive control and inhibitory networks are still under 

development (Fair et al., 2008; Uddin et al., 2011). Similarly, frontoparietal networks are 

dynamic and flexible control systems capable of interacting with other major networks and 

providing effective top-down control of behavior (Zanto & Gazzaley, 2013). There was no 

difference in within network connectivity, namely, the strength of both networks did not vary 
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across decision-making profiles. However, we did observe that individuals who prefer to 

gamble in order to avoid a sure loss exhibited stronger coupling between the DMN, 

parahippocampi, OFC and frontopolar regions. The same scores were associated with stronger 

coupling between the left frontoparietal network and visual areas. Given the implication of both 

networks in cognitive processes (although the specific role of the DMN in cognition is not fully 

understood (Margulies et al., 2016)), one might speculate that our findings support the notion 

of higher activity of these networks associated with a more cautious cognitive style (i.e. prefer 

the higher but probabilistic loss). Contrary to other studies (Li et al., 2013; S. Wang et al., 2017), 

we did not observe functional changes associated with delay discounting, loss aversion and 

risk seeking for gains. While several methodological differences might have caused these 

results (e.g. bigger sample size, different techniques for resting-state analyses), we needed to 

consider the complexity of the VBDM constructs assessed in this study (which are tightly 

mathematically and cognitively defined). Hence, replication of these findings is encouraged. 

Nonetheless, our results show how the conceptualization of ICN have advanced our 

understanding beyond a modular view of the brain. We believe that these findings will be of 

broad interest to researchers keen on integrative approaches to personality research, 

neuroimaging and decision-making. 

 

4.3. Higher serotonin brain synthesis decreases DMN connectivity 

The main finding of this study is the decreased DMN connectivity following higher brain 

5-HT synthesis. These connectivity changes involved visual cortices, suggesting the 

contribution of 5-HT circuits to the regulation of posterior attentional and visuospatial systems 

(Talbot & Cooper, 2006). Most of these connectivity changes were located in brain regions 

implicated in emotion expression and affect regulation, resembling those changes observed in 

mood disorders after antidepressant medication (Posner et al., 2013). The serotonergic system 

plays a significant role in the regulation of mood states (Cowen & Browning, 2015). 

Consequently, our results can be viewed as evidence of the postulated relationship between 

DMN hyperconnectivity and depressive symptomatology (Berman et al., 2011; Hamilton et al., 

2015).  

Changes in the synchronized activity of the DMN indicate differences in phenotypical 

characteristics (De Pisapia et al., 2016), genetic variations (Glahn et al., 2010) and might be 

relevant for understanding several neuropsychiatric conditions (for a review see Buckner et al. 
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(2008a). In more recent days, fMRI experiments have also shown that the DMN is highly 

susceptible to pharmacological challenges (Biskup et al., 2016; Helmbold et al., 2016; 

Klaassens et al., 2016; Klaassens et al., 2015; Kunisato et al., 2011; Lehmann et al., 2016; 

Scheidegger et al., 2012; van de Ven et al., 2013; Zanchi et al., 2016). This is, perhaps, due to 

the rich innervation of neurotransmitters among its regions (Nagano-Saito et al., 2009; Northoff 

et al., 2007) and its pivotal role in internal modes of cognition (Buckner et al., 2008a) and 

emotion processing (Spies et al., 2017). In our study, brain 5-HT synthesis was manipulated 

using tryptophan, the essential amino acid precursor of 5-HT. One clear advantage of 

tryptophan challenges is their almost exclusive impact on 5-HT levels (Moja et al., 1988), 

whereas other serotonergic interventions rarely act just on one neurotransmitter and often 

produce overlapping side effects (Khalili-Mahani et al., 2017). On the other hand, the major 

disadvantage of tryptophan manipulations (and other pharmacological interventions in humans) 

is the impossibility of measuring the real influx of 5-HT into the human brain (van Donkelaar et 

al., 2011). Since this study used a healthy sample, changes in mood or anxiety scores were 

neither evident nor related to DMN variations. However, changes in these scores after 

tryptophan interventions in relation to functional connectivity may be regarded as sensitive 

biomarkers in depressive patients (Gaffrey et al., 2012; Posner et al., 2013; Wang et al., 2015). 

Considering the advantages and disadvantages of our design, our findings provide compelling 

evidence for the role of the serotonergic system in the modulation of the DMN and suggest that 

similar changes may underlie the improvement of depressive symptomatology, after the 

administration of serotonergic agents. 

 

4.4. Integration of findings  

In chapters 2-3, we have shown that resting-state functional connectivity is a valuable 

neuroimaging tool for the examination of spontaneous brain signals under resting conditions. 

Specifically, we were able to identify connectivity differences across decision-making profiles 

and in response to serotonergic manipulations.  

Perhaps more interesting is the fact that the DMN was present in both studies. Recent 

research has expanded our knowledge about the function of this large-scale associative brain 

network, suggesting that its work is not limited to resting conditions, as it also plays a pivotal 

role during automated decision-making under predictable behavioral contexts (Vatansever et 

al., 2017). Moreover, Margulies et al. (2016) have proposed that the role of the DMN in 

cognition arises from its position at the top of a representational hierarchy, which acts as a hub 
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of integration across multiple sensory modalities. These observations, together with our 

findings, point towards an enhanced connectivity between the DMN and other brain systems 

supporting higher cognitive functions. The role of the DMN in emotion is perhaps more relevant 

to understand the findings of our second study. As displayed in Fig. 8, normal processes carried 

out by the DMN (i.e. self-directed cognition and self-referential mnemonic processes) may be 

abnormally laden with emotional content from the subgenual PFC (sgPFC). This interplay 

yields higher functional connectivity between these two systems at the neural level, and 

ruminative thoughts at the cognitive level (Hamilton et al., 2015). Although this model has 

received some support from experimental research (Berman et al., 2011; Drevets et al., 1997; 

Greicius et al., 2007), neuroanatomical studies have failed to find a direct link between these 

two systems (Johansen-Berg et al., 2008), proposing the role of the medial-dorsal thalamus as 

a functional mediator (Alexander et al., 1986). Overall, the results from both studies presented 

in this thesis corroborated the raison d’être of the DMN in the emergence of healthy and 

pathological conditions. In light of the current crisis of reproducibility in neuroimaging research, 

we believe that the large body of existing literature has already laid a solid groundwork for more 

hypothesis-driven and less exploratory DMN research.  

A more recent application field of RSFC is the predictive value of this technique. For 

instance, several studies described how ICN’s function can predict cognitive or clinical scores 

(Meskaldji et al., 2016), task-activity (Sala-Llonch et al., 2012), disease evolution (Emerson et 

al., 2017) and treatment outcomes (Drysdale et al., 2017). Although some similarities between 

this literature and our work exist, methodological differences prevent us from extrapolating our 

inferences to the predictive domain. Instead, results from our first study might expand the 

existing body of literature on normal ICN patterns among decision-making profiles. This would 

allow comparative analyses with pathological samples in which the activity of default-mode and 

frontoparietal networks is associated with aberrant decision-making (e.g. addictions 

(Costumero et al., 2017; Dalwani et al., 2014; Ding et al., 2013; Han et al., 2016; Wang et al., 

2017)). In a similar manner, results from our second study may be relevant for the 

characterization of the intrinsic modulation of the DMN and its implication in the onset of 

psychopathological conditions (Whitfield-Gabrieli & Ford, 2012). 
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Figure 8. Schema of the model proposed by Hamilton et al. (2015) in which depressive 

rumination is the result of the excessive integration of DMN and sgPFC functions. These is also 

expressed in a hyperconnectivity between these two systems (adapted from Hamilton et al. 

(2015)). 

 

 

4.5. Limitations and future directions 

Besides the inherent limitations of the studies presented in this thesis, more general 

controversies merit comment. As an emerging and not fully consolidated research field, RSFC 

faces several threats -mostly methodological- that should be carefully considered by current 

and future research. First, no consensus regarding preprocessing pipelines or statistical 

guidelines for RSFC analyses exist. However, comparative studies favored some 

methodological approaches over others (Dipasquale et al., 2017; Preibisch et al., 2015; Pruim 

et al., 2015b), providing a starting point for the implementation of more sophisticated 

analyses. Furthermore, due to the concerns about the replicability in neuroimaging research, 
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a dynamic community of neuroscientists has joined efforts and stablished guidelines for 

analyses, report of results and data sharing, with especial emphasis on resting-state data 

(e.g. COBIDAS, (Nichols et al., 2017), Consortium for Reliability and Reproducibility - CoRR5). 

These promising initiatives sought to systematically establish gold standards for data 

processing and for a successful open science tool for RSFC research. This is particularly 

important for the development of multimodal neuroimaging biomarkers (Drysdale et al., 2017; 

Emerson et al., 2017) in which resting-state datasets play a key role.   

Second, the brain is a network itself subject to considerable individual differences 

shaped by anatomical, genetic and epigenetic factors. In RSFC research, such variability 

encourages the use of larger samples, taking into account the ongoing developmental 

trajectories of brain connections (Song et al., 2012; Supekar et al., 2010). An outstanding 

initiative to show the evolution of ICN’s properties across the lifespan includes the Human 

Connectome Project and, more recently, the Baby Connectome project6. Despite the inherent 

challenges of participant recruitment and scanning, structural and functional imaging datasets 

of healthy adults and children between cero and five years old are being collected. More 

ambitious attempts to model network properties of the infant brain are in utero RSFC studies 

(Schopf et al., 2012), which have already provided evidence of altered RSFC in the preterm 

brain (see van den Heuvel and Thomason (2016) for a discussion). These studies will allow 

to separate intrauterine from extrauterine influences in the configuration of ICN, and thus 

establish a more comprehensive model of how emerging connectivity patterns shape 

pathological and normal behavior. 

Finally, we need to mention that for a long time RSFC was assumed to be stationary, 

but recent work has revealed its dynamic nature (Preti et al., 2017). According to this 

postulate, RSFC has significant temporal variability that can be detected using “sliding 

window” procedures for example. These windows move across the timecourses, can be of 

fixed or varying length, and are analyzed at several time-frequency decompositions (Chang 

& Glover, 2010). Dynamic patterns of RSFC have been already investigated in depression 

(Kaiser et al., 2016), schizophrenia (Ma et al., 2014) and Alzheimer disease (Jones et al., 

2012) among others. Differences between clinical populations and healthy samples are, 

presumably, due to neurometabolic changes (Thompson, 2017), but further work is necessary 

to confirm this postulate. To address this and other questions, the scan length is of particular 

                                                             
5 COBIDAS: https://www.humanbrainmapping.org/i4a/pages/index.cfm?pageID=3728  and  CoRR:  
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html  respectively  
6 http://www.humanconnectomeproject.org/  and  http://babyconnectomeproject.org/ respectively 
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relevance. Most dynamic RSFC studies focus on time ranges from around 30 seconds to two 

minutes (Hutchison et al., 2013) and stable estimations of static connectivity strengths are 

visible only around six minutes (Birn et al., 2013).  

All these facts advocate for the design of longer and well-tailored resting-state studies, 

preferably entirely dedicated to the investigation of RSFC, without the influence of other tasks 

within the scanner. Ideally, the scan length should be longer than nine minutes to obtain 

reliable measures of connectivity (Birn, 2012). 

 

4.6. General conclusion 

This doctoral thesis has provided significant evidence of 1) individual differences in 

intrinsic network connectivity associated with decision-making profiles and 2) serotonergic 

modulation of the default mode network. Together, these results added to the existing 

literature highlighting the use of RSFC as a powerful tool for the noninvasive investigation of 

the human brain. Specifically, study 1 revealed the participation of default mode and 

frontoparietal systems in individuals who prefer to avoid sure losses. Interestingly, networks 

comprising appetite and reward-driven areas did not show any variation, pointing to a novel 

connectivity finding underlying a decision-making style never explored before. Study 2 

revealed that higher serotonin brain synthesis is associated with decreased functional 

connectivity between the default mode network and emotion-related brain regions, which in 

turn, provides partial support to the connectivity model underlying depressive rumination. 

Critically, independent component analysis and dual regression methods were used to 

identify the networks of interest, lending credence to model-free techniques for the 

investigation of functional brain connectivity. Different analytical approaches and less-

exploratory work is encouraged to yield myriad of functional measures, able to capture more 

subtle changes in the resting brain. Our work demonstrated that RSFC provides crucial 

information regarding spontaneous intrinsic brain activity, which may be diagnostically or 

therapeutically relevant for the understanding of the neurobiological foundations of normal 

and disruptive behaviors. 
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5. ZUSAMMENFASSUNG 

Hintergrund 

Im Jahre 1985 bildeten Dr. Bharat Biswal und Kollegen zum ersten Mal, mithilfe der 

funktionellen Magnetresonanztomographie (fMRT), spontan entstehende Gehirnsignale im 

sensorisch-motororischen Kortex in Abwesenheit eines Stimulus oder einer Aufgabe ab. 

Diese Untersuchung zeigte zweifellos, dass das Gehirn im Wachzustand unter 

Ruhebedingungen weiterhin arbeitet, was das Konzept der Messung von funktionellen 

Konnektivitäten im Ruhezustand (RSFC) begründete; eine Technik, die spontane 

Gehirnfluktuationen im fMRT-Signal aufdeckt. Später begünstigte die dringende Nachfrage 

Ruhezustandssignale in einer kohärenten Weise darzustellen die Identifikation räumlich 

konsistenter Muster über mehrere Gehirnregionen hinweg, welche heute als „intrinsische 

Konnektivitätsnetzwerke“ (ICN) bekannt sind. Unter diesen ICN ist das „default mode“ 

Netzwerk (DMN) von besonderer Bedeutung, da es in höhere kognitive Funktionen, 

selbstbezogene Kognition und psychiatrische Symptomatologie involviert ist. 

Insgesamt zeigt das Studium von RSFC, aufgegliedert in unterscheidbare und anti-

korrelierte ICN, eine hohe Sensitivität und Spezifizität bei der Entdeckung individueller 

Unterschiede, die mit einer großen Spanne an Verhaltensmerkmalen und Zuständen 

assoziiert sind. Weiterhin zeigen die ICN wesentliche Änderungen als Reaktion auf 

kurzfristig vorangegangene Erfahrungen und pharmakologische Behandlungen; und 

kürzlich wurde gezeigt, dass diese Netzwerke als Biomarker für Erkrankungen benutzt 

werden können, sowie auch als Prädiktor für den Ausgang einer Behandlung. Um die oben 

genannte Informationsmenge zu erweitern, befasst sich diese Doktorarbeit mit der 

Untersuchung von Änderungen der ICN, die mit 1) phänotypischen Merkmalen und 2) 

pharmakologischen Manipulationen assoziiert sind. Zur Erreichung dieses Ziels 

verwendeten wir das Verfahren der Analyse unabhängiger Komponenten (ICA), ein 

multivariater und datengetriebener Ansatz, der keine a priori Hypothesen oder ein Modell 

der Gehirnaktivität benötigt. 

 

Fragestellung 

Die zentrale Fragestellung dieser Doktorarbeit war es den Nutzen von RSFC als ein 

mächtiges Werkzeug zur Untersuchung spontaner Fluktuationen im neuronalen Signal, 

welches kohärent in ICN strukturiert ist, zu demonstrieren. Im Detail, basierend auf einer 
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postulierten phänotypischen Variabilität der ICN über mehrere Verhaltensdomänen, 

untersuchte Studie 1 den Zusammenhang zwischen einer Menge von Parametern zu 

wertebasiertem Entscheidungsverhalten (VBDM) und die ICN in einer großen Kohorte 

junger männlicher Erwachsener. Basierend auf einer serotonergen Manipulation des DMN 

und seiner potentiellen Implikation in der Pathogenese depressiven Grübelns, verwendete 

Studie 2 eine große Stichprobe gesunder Erwachsener, um zu untersuchen, wie 

unterschiedliche zentralnervöse Serotoninspiegel die DMN-Konnektivität beeinflussen, als 

auch ob es potentielle Zusammenhänge zwischen diesen neuronalen Effekten und 

Stimmungs-, Ängstlichkeits- und Schläfrigkeitsbewertungen gibt. 

 

Material und Methoden 

Für Studie 1 wurden 145 18-jährige, rechtshändige Männer aus Dresden und Berlin 

rekrutiert, die Teil der andauernden fMRT-Studie „Learning dysfunctions in young adults as 

predictors for the development of alcohol use disorders“ innerhalb des DFG geförderten 

Forschungsprojektes „Learning and habituation as predictors of the development and 

maintenance of alcoholism” sind. Am ersten Termin wurde an den Probanden eine 

ausführliche Erhebung klinischer Merkmale und des Verhaltens durchgeführt, welche auch 

die Batterie zum Entscheidungsverhalten (VBDM) beinhaltete. Die einzelnen Aufgaben der 

VBDM verwenden ein Lernschema basierend auf dem Theorem von Bayes, um 

Diskontierungsraten von Wartezeiten, Wahrscheinlichkeiten bei Gewinnen und Verlusten 

sowie das Ausmaß von Verlustaversion zu schätzen. Am zweiten Termin führten wir eine 

sechsminütige Messung der Gehirnaktivität im Ruhezustand, nachfolgend einer Aufgabe 

zum Entscheidungsverhalten, durch. Vierzehn ICN wurden in den Daten identifiziert; jedoch 

wurden die Gruppenanalysen unter Verwendung eines nicht-parametrischen Ansatzes 

ausschließlich mit den Netzwerken durchgeführt, von denen bereits bekannt war, dass sie 

eine Rolle bei Entscheidungsverhaltensprozessen spielen. Die signifikanten Regionen 

zeigen, dass die Stärke der Kopplung zwischen diesen Regionen und bestimmten 

Netzwerken mit einem gegebenen VBDM-Wert assoziiert war. 

Für Studie 2 verwendeten wir ein randomisiertes Cross-Over-Design, mit einer 

Kontrollbedingung und zwei Interventionen, um die Serotoninsynthese im Gehirn mithilfe 

von Tryptophan, dem diätischen Vorgänger von Serotonin, zu erhöhen oder abzusenken. 

Fünfundachtzig gesunde Erwachsene nahmen an drei Erhebungen teil, in denen sie eines 
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der folgenden Getränke erhielten: eines zur akuten Absenkungen von Tryptophan (ATD), 

ein balanciertes (BAL) oder eines zur akuten Anreicherung von Tryptophan (ATL). Eine 

sechsminütige Messung der Gehirnaktivität im Ruhezustand wurde 3,5 Stunden nach der 

Einnahme des Getränkes durchgeführt. Für die fMRT-Analysen wurde das DMN für jeden 

Probanden zu jeder Sitzung bestimmt. Permutationstests wurden ausgeführt, um Voxel-zu-

Netzwerk-Unterschiede zwischen allen Bedingungen zu vergleichen. Zusätzlich wurden 

Verhaltensmaße bezüglich Ängstlichkeit, Depression und Schläfrigkeit in jeder Sitzung 

erhoben, um den Einfluss von Tryptophan auf diese Maße zu beobachten, sowie deren 

mögliche Assoziation mit Veränderungen der Konnektivität des DMN. 

Alle fMRT-Analysen dieser Studien wurden mit der Software Library FSL aus dem 

Softwarepaket Functional Magnetic Resonance Imaging of the Brain (FMRIB) durchgeführt. 

 

Ergebnisse 

Die Befunde der ersten Studie zeigten, dass höhere Risikobereitschaft für Verluste mit einer 

stärkeren Konnektivität zwischen dem „default-mode“ und linksseitigen frontoparietalen 

Systemen und benachbarten Gehirnregionen assoziiert waren, besonders zu denen, die 

an prospektivem Denken, affektivem Entscheidungsverhalten und visueller Verarbeitung 

beteiligt sind. Obwohl unsere Ergebnisse als explorativ präsentiert werden und einer recht 

konservativen statistischen Korrektur folgen, leisten sie einen wichtigen Beitrag zur 

kognitiven Neurowissenschaft und legen den Grundstein für ein tieferes Verständnis der 

neurobiologischen Grundlagen impulsiver und risikofreudiger Verhaltensweisen. 

Die zweite Studie offenbarte, dass angereicherte Tryptophanspiegel die Konnektivität 

zwischen dem DMN und emotionsbezogenen Gehirnregionen verringerten. Dies legt nahe, 

dass diese funktionalen Änderungen ein Hauptmerkmal für das Verständnis der neuralen 

Basis depressiver Symptomatologie sind. Reduzierte Tryptophanspiegel beeinflussten 

nicht die Konnektivität. Verhaltensänderungen standen nicht im Zusammenhang mit DMN-

Konnektivitätsveränderungen. 
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Schlussfolgerungen 

Zusammengefasst leisten diese Ergebnisse einen Betrag zur existierenden Literatur, die 

den Nutzen von RSFC als mächtiges Werkzeug für die nicht-invasive Untersuchung des 

menschlichen Gehirns hervorhebt. Im Detail offenbarte Studie 1 die Teilnahme von „default-

mode“ und frontoparietaler Systemen in Individuen mit höherer Risikobereitschaft (für 

Verluste). Interessanterweise zeigten Netzwerke, die aus appetits- und 

belohnungsgetriebenen Arealen bestehen, keine Variation. Dies deutet auf eine neuartige 

Konnektivität hin, die einem noch nie zuvor erforschten Entscheidungsstil zugrunde liegt. 

Studie 2 offenbarte, dass eine höhere Serotoninsynthese im Gehirn mit einer reduzierten 

funktionalen Konnektivität zwischen dem DMN und emotionsbezogenen Gehirnregionen 

einhergeht, was wiederum anteilig das Konnektivitätsmodell bestärkt, dem depressives 

Grübeln zugrunde liegt. Entscheidend ist, dass Methoden der unabhängigen 

Komponentenanalyse und dualen Regression angewandt worden sind, um die 

interessierenden Netzwerke zu identifizieren, was die Verwendung modellfreier Techniken 

für die Untersuchung intrinsischer Gehirnkonnektivitäten unterstützt. 
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6.  SUMMARY 

Background  

In 1985 Dr. Bharat Biswal and colleagues mapped spontaneous brain signals in the human 

sensorimotor cortex in absence of a task or stimulus for the first time using functional 

magnetic resonance imaging (fMRI). This investigation undoubtedly demonstrated that the 

awake brain remains working under resting conditions and introduced the concept of 

Resting-State Functional-Connectivity (RSFC), a technique that uncovers spontaneous 

brain fluctuations in the fMRI signal. Later, the urgent demand for presenting resting-state 

signals in a coherent way promoted the identification of spatially consistent patterns across 

multiple brain regions, which are known as “intrinsic connectivity networks” (ICN). Among 

all the ICN, the default mode network (DMN) is of particular interest due to its involvement 

in higher cognitive functions, self-related cognition and psychiatric symptomatology.  

Overall, the study of RSFC organized into consistent and anticorrelated ICN has 

demonstrated high sensitivity and specificity for detecting individual differences associated 

with a wide range of behavioral traits and states. Furthermore, ICN show relevant changes 

in response to recent experiences and pharmacological treatments. And it has been 

recently demonstrated that these networks can be used as a biomarker of diseases and 

predictor of treatment outcome. To expand on the above-mentioned body of information, 

this doctoral thesis investigated changes of ICN associated with 1) phenotypic traits and 2) 

pharmacological manipulations. For this objective we used Independent Component 

Analysis (ICA), a multivariate and data-driven approach that requires no a priori hypothesis 

or model of brain activity. 

 

Research question 

The central question of this doctoral thesis was to demonstrate the utility of RSFC as a 

powerful tool to investigate spontaneous brain functions, which are coherently structured in 

ICN. Specifically, based on the postulated phenotypic variability of ICN across several 

behavioral domains, study 1 investigated the relationship between a set of value-based 

decision-making (VBDM) scores and ICN in a large cohort of young adult males. Based on 

the serotonergic modulation of the DMN and its potential implication in the pathogenesis of 

depressive rumination, study 2 used a large sample of healthy adults to investigate how 
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different brain serotonin levels affect the DMN connectivity as well as potential relationships 

between these neural effects with mood, anxiety, impulsive choice and sleepiness ratings. 

 

Material and Methods 

For study 1, 145 18-year-old, right-handed males were recruited from Dresden and Berlin 

as part of the ongoing longitudinal fMRI study “Learning dysfunctions in young adults as 

predictors for the development of alcohol use disorders”. In the first session, participants 

completed an extensive behavioral and clinical assessment, which included the Value-

Based Decision-Making battery (VBDM). This set of tasks employs a Bayesian learning 

scheme to estimate delay discounting rate as well as probability discounting rates for gains 

and losses, and loss aversion. During the second appointment, participants completed a 

six-minute resting-state scan after a decision-making task. Fourteen ICN were detected in 

the data, but the higher-level analyses were performed only in the networks previously 

implicated in decision-making processes using a non-parametric approach. The significant 

regions resulting from the analyses indicated that the strength of the coupling between 

these regions and a certain network was associated with a given VBDM score. 

For study 2, we used a double-blind, randomized, cross-over design, with a control 

condition and two interventions to decrease and increase brain serotonin synthesis using 

tryptophan, the dietary precursor of serotonin. Eighty-five healthy adults took part in three 

assessments where they received one of the following drinks: acute tryptophan depletion 

(ATD), balanced (BAL) or acute tryptophan loading (ATL). A six-minute resting-state scan 

was performed 3.5 hours after the ingestion of the drink. For the fMRI analyses, the DMN 

was derived for each participant and session. Permutation testing was performed to 

compare voxel-to-network differences between all conditions. Additionally, behavioral 

measures of mood, anxiety, impulsive choice and sleepiness were acquired in each session 

to observe the influence of tryptophan on these measures and their possible association 

with DMN connectivity changes. 

All the fMRI analyses of these studies were performed using the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL). 
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Results 

Findings of the first study showed that individuals who preferred to gamble in order to avoid 

a sure loss, exhibited stronger connectivity between the default mode and left frontoparietal 

systems to their adjacent brain regions, specially to those involved in prospective thinking, 

affective decision making and visual processing. Although our findings are presented as 

exploratory and follow a somewhat conservative statistical correction procedure, they 

represent an important contribution for cognitive neuroscience and lay the groundwork for 

a deeper understanding of the neurobiological bases of impulsive and risk-seeking 

behaviors. 

The second study revealed that increased tryptophan levels decreased the connectivity 

between the DMN and emotion-related brain regions, suggesting that these functional 

changes represent a key feature for the understanding of the neural basis of depressive 

symptomatology. Decreased tryptophan levels did not affect brain connectivity. Behavioral 

scores were neither affected by any intervention nor associated with connectivity changes. 

 

Conclusion 

Together, these results add to the existing literature highlighting the use of RSFC as a 

powerful tool for the noninvasive investigation of the human brain. Specifically, study 1 

revealed the participation of default mode and frontoparietal systems in more risk-seeking 

(for losses) individuals. Interestingly, networks comprising appetite and reward-driven 

areas did not show any variation, pointing to a novel connectivity finding underlying a 

decision-making style never explored before. Study 2 revealed that higher serotonin brain 

synthesis is associated with decreased functional connectivity between the default mode 

network and emotion-related brain regions, which, in turn, provides partial support to the 

connectivity model underlying depressive rumination. Critically, independent component 

analysis and dual regression methods were used to identify the networks of interest, lending 

support to model-free techniques for the investigation of intrinsic brain connectivity. 
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