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Chapter 1

Introduction

1.1 Context

Microprocessor developments In their 47 years of existence, microprocessors have transformed the

way we deal with information. Thanks to exponential growth in the number of transistors that can

be integrated per square area, caused by shrinking feature sizes of the respective transistors (observed

and postulated by Gordon Moore from Intel and dubbed “Moore’s law”), and related switching speed

increases, the resulting performance (executed instructions per unit time) also increased exponentially.

As a result, complex, large applications run on many layers of abstraction to provide computation power

for business and recreational use; while at the same time, simpler micro-controllers power the logic in

embedded devices, such as white goods. The exponential performance growth basically causes a price

reduction per unit of embedded “intelligence”.

Initially, the shrinking feature sizes also allowed faster switching of the transistor elements and re-

duced transmission times (thanks to reduced RC effects) on wires between them. Eventually, wire scaling
stopped, and microprocessor designs turned to shallower logic trees through the use of pipelining to

increase overall clock speed and instruction throughput.

Clock speed was the main driver for performance, especially in the PC market, with a fierce marketing

battle for reaching specific frequency targets–causing the design of longer pipelines with fewer work

being done per pipeline stage. Eventually in the early 2000s, however, voltage scaling stopped and with

it the property that power per chip area remained constant (by reducing power per transistor, known as

Dennard scaling). While transistors were still getting more plentiful, and switched faster, their overall

power consumption did not reduce exponentially anymore. Microprocessors hit the TDP wall, because

their thermal design power reached the levels that could be dissipated economically.

Instead of relying solely on increasing throughput by increasing clock frequency and pipeline depth,

new designs would execute more instructions in parallel; using parallelism in the instruction stream (ILP)

and the memory system (MLP) through sophisticated use of transistors for speculation logic (branch pre-

diction), multiple execution units (super-scalar execution, vector execution), and instruction scheduling

(out-of-order execution)–relying on parallelism in a single stream of instructions to provide higher per-

formance with more transistors.

Eventually, however, these techniques became more expensive for the performance they were unlock-

ing (due to parallelism becoming harder and harder to extract); instead, commercial microprocessors

switched to multi-core solutions, where increasing transistor count is predominantly used for replicating

the core so that application, thread, and task level parallelism are used to increase overall performance

per microprocessor chip.
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Figure 1.1: Microprocessor trends since 1971 showing transistor growth, levelling single-thread perfor-
mance, frequency, and TDP; and recent increases in the number of logical cores per chip. From [381].

Figure 1.1 shows the overall trends for performance, frequency, core count, and TDP for microproces-

sors of the last decades; while Figure 1.2 provides a more detailed look into the (normalised) SPECint

and SPECfp performance of all systems listed on the SPEC web page since 1995.

Application impact As a result of these changes, applications need to adapt to new constructs exposing

parallelism: wider vector extensions for data-level parallelism in numerical computations, and splitting

of applications into multiple tasks / threads / processes to make use of modern multi-core CPUs.

Parallelising applications is often challenging; with a key part of that being coordinating the access to

shared state, in particular memory that is being shared between tasks or threads. While it is possible to

completely partition the application logic and state in some cases, many other cases benefit from shared

data between concurrently executing instruction streams. Sharing reduces data duplication and transfer;

if data is shared read-only, no coordination is necessary. In many cases, however, data is only mostly
read-shared and sometimes manipulated. In those cases, coordination among the concurrent threads is

important.

1.2 Transactional Memory

Transactional memory (TM) is a mechanism that controls access to shared memory by concurrently exe-

cuting threads, and provides other desirable properties, such as failure atomicity. This dissertation will,

however, focus on the usage of TM as a method for concurrency control.

There are effectively two ways of controlling access to shared resources: pessimistic concurrency con-

trol ensures that concurrent threads that could potentially conflict will coordinate among one another.

For that, locks are frequently used and they often (safely) approximate the area they protect and the op-

erations performed; causing more complicated use and higher overhead when more fine-grained tracking

is required. As a result, locks often overly limit the amount of parallelism in an application; while that

may not be a problem for small core / thread counts, this will limit the amount of speed-up enjoyed on

future systems with more available cores (Amdahl’s law).

Optimistic concurrency control, on the other hand, structures applications so that they assume free-
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Figure 1.2: Historical adjusted SPECint (top) and SPECfp (bottom) trends for various microprocessors.
Updated from [277].



4 CHAPTER 1. INTRODUCTION

dom of interference and have a backup mechanism in case that assumption did not hold. Because of the

intricate reasoning and the low-level of abstraction provided by ISAs in general (single location load /

store instructions, single location atomic read-modify-write), mechanisms such as lock-free programming

are, however, extremely complicated to devise (top-tier conference paper for lock-free algorithm for a

single data structure) and thus not scalable for wide deployment by programmers.

Transactional memory raises the level of programmer abstraction and simplifies optimistic control.

It allows multiple instructions (especially memory accesses) to execute as one isolated unit; similar to

database transactions. Devised in the mid-1990s, transactional memory was only looked at more closely

in the early 2000s when it became clear that multi-core systems would become mainstream and thus

concurrency control would, too. By reasoning about the atomicity and isolation on a block granularity,

transactional memory allows programmers to write complex concurrent algorithms with optimistic con-

currency control easily. Subsequently, from 2004 to 2010, academic and industry interest in TM rose

significantly (more details in Chapter 2).

Using TM for concurrency control exhibits higher performance than pessimistic locking if actual data

conflicts are rare; furthermore, programming with TM gives several benefits of lock-free data structures

(for HTMs and lock-free STMs); and provides failure atomicity by allowing roll-back to a known good

state. This was the outset for my Master’s thesis [159] at AMD in 2006–2007, where I evaluated a very

simplified version of a hardware TM proposal.

While the ASF 1 proposal that I investigated was rather simplistic, its evaluation in a full-system,

detailed CPU simulator, and level of detail in the ISA description were not. Many pieces of academic work

studied feature-rich extensions to the original HTM proposals, with deep changes to core and memory

system architecture; yet evaluated those in simplistic (simple in-order core model, fixed one instruction

per cycle, lack of OS interactions) simulation environments. Furthermore, due to having to change

applications for HTM, many available applications were only small micro-benchmarks.

In that context, several partners with diverse backgrounds and AMD started the EU-funded FP7 VELOX

project to study the full stack from application to core micro-architecture for transactional memory.

Within that project, AMD’s work was to provide a realistic ISA extension for HTM, and a performance

model to evaluate it. Together with my colleague Michael Hohmuth and Dave Christie, we translated

our experience from the ASF 1 work and built a new ASF 2 HTM ISA spec. I extended the PTLsim

(and later Marss86) simulator to model ASF 2’s performance realistically. Later, with colleagues Martin

Pohlack, Luke Yen, and Jae Woong Chung, we looked at further microarchitecture implementations and

extensions, and extensions to the ISA of HTM. Together with colleagues from TU Dresden Torvald Riegel,

Martin Nowack, Diogo Becker, Jons Wamhoff, and Christof Fetzer, we refined the low-level application /

compiler and ISA interface. Finally, Anurag Negi from Chalmers worked with us on simulator integration

and advanced cache design and microarchitecture.

1.3 Thesis

The central thesis of my work is that detailed analysis and ISA modelling of HTM is necessary to un-

derstand actual implementation and usage challenges, and get more realistic results. Instead of overly

complicating the design of HTM with features that would be extremely hard to implement right in a

more detailed microarchitecture and ISA proposal, I suggest that getting a base-line HTM specification

and micro-architecture right is a challenge in itself. Yet, despite the complexity, there are interesting

implementation options and extensions that can provide benefits to applications using HTM–but they are

not on the trajectory taken by most papers published between 2004 and 2010.
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1.4 Contributions

When I started my work on transactional memory (starting with my initial investigations during my

Master’s thesis [159]) in 2006, interest in transactional memory was rising; see Figure 2.2. Reviewing

the timeline of my contributions, most of them were made in 2009 / 2010, coinciding with the peak of

TM publications. This was largely driven by the time needed to bring up the necessary infrastructure,

both in AMD, but also in the VELOX project. In the project, the compiler and TM library work needed time

to ripen; whereas in AMD, we carefully designed the ISA structure, and I spent a significant amount of

time on a very detailed simulator implementation including a lot of time spent on repairing and extending

baseline simulator functionality.

In a second wave, in around 2012, we investigated several higher-level concerns, such as observ-

ing passage of time from inside transactions, and communicating from inside transactions with parallel

nesting.

Finally, the AMD Research office closed by the end of 2012, and I ported our transactional memory

framework to a more advanced simulator at TU Dresden, which ultimately culminated in our publication

on resurrecting aborted transactions in 2013 (brief announcement) and 2015 (full paper).

In comparison to the field (more detail in Chapter 2), I believe that my work was starting a bit later,

and I missed some of the early wild invention phase, especially on the hardware side. In hindsight, how-

ever, this allowed us to put together a much more realistic baseline TM architecture, both for hardware

and compiler quality; a less feature-loaded TM specification, which we subsequently extended to support

more advanced use cases; and observe other challenges when using TM.

My contributions to the state-of-the-art summarised in this thesis report are the following:

Simulation and micro-architecture To get accurate results for HTM evaluation, a good baseline simu-

lation platform is important. I have improved the stability and increased the functionality of the

PTLsim and Marss86 simulators: adding coherence, repairing core timing models, bank conflicts,

general crashes, deadlocks in the coherence protocol [135, 253, 262, 304]. I have served as the

maintainer for PTLsim, after the original maintainer stepped down.

HTM baseline ISA The ASF ISA is an HTM proposal that is different from other HTM proposals: it offers

non-transactional memory accesses, does not snapshot registers at transaction entry, exposes ex-

ceptions from inside the transactions, and provides a minimal capacity / obstruction-free progress

guarantee [186] (attached in Appendix A). Because of its different features, we had to define new

interactions (ordering of transactional and non-transactional memory accesses, exception mod-

els, overlaps between transactional and non-transactional accesses); and because of the industrial

background, the specification has to deal with all use cases (usage inside the OS) and real-world

deployment constraints (no additional register footprint for compatibility).

Microarchitecture for HTM In conjunction with defining the ISA, I implemented the ASF specification

in a detailed, full-system, out-of-order CPU core model and detailed cache model. From that imple-

mentation experience, I was able to not just evaluate performance characteristics, but also under-

stand feature complexities and derive understanding for handling undefined ISA corner cases such

that the hardware would not get too complex. In comparison, most related works use simplified

in-order, one instruction-per-cycle models.

Application work While most application, compiler, and library development work in the VELOX project

was performed outside of AMD (mainly at TU Dresden and University of Neuchatel), I helped debug

low-level correctness issues, and helped translate software requirements back into ISA and microar-

chitecture changes (overlapping non-transactional / transactional accesses, ordering of aborts and
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non-transactional atomic read-modify-write instructions). Furthermore, I added support for ASF to

the Oracle Hotspot Java just-in-time compiler / virtual machine to execute synchronized blocks

with transactions [290]. Hotspot is a production-level commercial JIT / JVM and integrating ASF

required extensive modifications to highly optimised, multi-path locking code.

Extensions and challenges In addition to the definition and evaluation of an industry-grade HTM, we

investigated extensions to the ISA and microarchitecture of HTM, and identified challenges when

using HTM for transparently eliding locks. Annotating memory accesses to hint cyclical value be-

haviour and lazy versioning, and transactional “resurrection” are an example of the former, while

dealing with timestamp anomalies when eliding is an example of the latter [221, 263, 289, 337].

Thanks to the great collaboration inside of AMD, inside the VELOX project (especially with TU Dresden

and University of Neuchatel), and other researchers (Michael Spear, Lehigh University), a significant

amount of my work has been reflected in publications. Those publications are:

• Hardware Acceleration for Lock-Free Data Structures and Software-Transactional Memory (EPHAM

2008 [158], Appendix B.1)

• ASF: AMD64 Extension for Lock-free Data Structures and Transactional Memory (MICRO 2010 [214])

• Evaluation of AMD’s Advanced Synchronization Facility Within a Complete Transactional Memory

Stack (EuroSys 2010 [213])

• The Velox Transactional Memory Stack (IEEE Micro Journal [210])

• Implementing AMD’s Advanced Synchronization Facility in an Out-of-Order x86 Core (TRANSACT

2010 [220], Appendix B.2)

• Compilation of Thoughts about AMD Advanced Synchronization Facility and First-Generation Hard-

ware Transactional Memory Support (TRANSACT 2010 [215], Appendix B.3)

• Sane Semantics of Best-effort Hardware Transactional Memory (WTTM 2010 [221], Appendix B.5)

• From Lightweight Hardware Transactional Memory to Lightweight Lock Elision (TRANSACT 2011 [254],

Appendix B.4)

• Delegation and Nesting in Best Effort Hardware Transactional Memory (SPAA 2012 [274])

• Safely Accessing Time Stamps in Transactions (WTTM 2012 [263], Appendix B.6)

• Between All and Nothing–Versatile Aborts in Hardware Transactional Memory (SPAA 2013 and

TRANSACT 2015 [289, 337], Appendix B.7)

Although I am not the first author of some of these publications, I have been significantly contributing

to the microarchitectural implementation ideas, ISA design decisions and evaluations of AMD’s Advanced

Synchronization Facility feature. Beside the attached publications, my contributions are available in

source code form in the two (public) prototype implementations: PTLsim/ASF and Marss86/ASF, and

the extension to the Oracle Hotspot JVM [262, 290, 304]. I have undertaken additional implementation

and analysis work, but was unable to publish that before AMD decided to close the Dresden office and let

go all employees, including myself, by the end of 2012.

The vast amount of granted patents and patent applications (19 granted patents and 27 applications to

date) relating to ASF and extensions to it under my name gives an insight into additional topics analysed

in a proprietary setting.
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1.5 Terminology

During the course of the creation, the terminology in the research area and in my various technical groups

at both universities and microprocessor vendors has changed. Some terms are thus used differently both

spatially and temporally, a quick map highlighting synonyms is as follows:

“Snoop”, “probe” . . . messages in a coherent system to notify participants of reads, writes and other

operations;

“Speculative region”, “transaction” . . . unit of work that needs to be executed atomically wrt. code

running on other CPU cores / thread. “Speculative region” is the more AMD ASF-specific term and

“transaction” the standard academic term; “speculative” and “transactional” memory access are

derived where the context of speculative is usually clear.

“Barrier”, “(memory) fence” . . . instruction or compiler directive to ensure ordering between memory

accesses; not to be confused with thread barriers (waiting for all threads to arrive at a specific point

in the code flow before continuing), or read / write barriers in Software Transactional Memory and

Garbage Collection, where single read / write operations are augmented with additional logic for

locking / marking.

“ASF”, “BeHTM” . . . AMD’s Advanced Synchronization Facility (ASF) is an industry instruction set exten-

sion proposal for an extended transactional memory primitive. ASF offers a limited set of guaran-

tees regarding the size and progress of transactions, and also provides additional non-transactional

operations (see Chapter 3). Best-effort Hardware Transactional Memory (BeHTM) describes trans-

actional memory implementations with few or no assertions regarding supported transaction sizes

and types; thus lending to simpler hardware implementations. As such, ASF is in instance of a

BeHTM with additional guarantees.

“Protected”, “transactional” . . . Memory accesses that are treated specially in the transaction / spec-

ulative region, i.e., providing both conflict detection and data versioning. In simple BeHTMs, all

accesses are of this kind; ASF allows marking of transactional / non-transactional accesses.

“in-tx”, “non-tx”, “out-tx” memory accesses . . . Memory accesses can bei either inside a transaction

(in-tx), or outside of a transaction (out-tx). For those that are inside a transaction, in most BeHTMs

accesses are transactional (tx); they participate in conflict detection and versioning. In some Be-

HTMs (such as ASF), one can disable the transactional properties of in-tx accesses and make them

non-transactional (non-tx).

1.6 Outline

The rest of the thesis is organised as follows: Chapter 2 will present an overview of related work in

the areas of transactional memory and simulation, and provide a background for microprocessor design.

Chapter 3 will show architectural features of hardware transactional memory and present our proposal

ASF; and Chapter 4 will show various implementation options and trade-offs between them. Chapter 5

focusses on the application and evaluation of ASF; with performance results, software usage options, and

a detailed walk-through through the simulator implementations of ASF. Chapter 6 will extend use cases

of ASF by implementing communication channels between transactions and a mechanism to resurrect

aborted transactions; while Chapter 7 will provide further challenges, and implementation sketches for
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HTM, together with some HTM product experiences. Finally, Chapter 8 will summarise my work, my ex-

periences, and conclude the thesis. Appendix A contains a copy of the ASF specification, and Appendix B

papers that are not in formal proceedings.

The goal is to provide a single, self-contained collection of the work that is encompassed by this

dissertation. Several of these documents have moved since their creation, and websites have stopped

being available. I think it is therefore valid and useful to provide these copies verbatim. Of course,

copyrights apply: where applicable, these are author’s copies of the papers and should be treated as such.

The remainder of this thesis will, however, focus on providing a structured presentation of the pub-

lished work in conferences, journals and high-impact, refereed workshops. I will provide additions and

clarifications, and also provide background and identify common themes to allow proper placement of

the respective publications.



Chapter 2

Overview and Related-Work

2.1 Introduction

Many facets of transactional memory have been researched and published about. In this chapter, I will

present an overview of relevant transactional memory research work, and also provide background ma-

terial that underpins the hardware aspects (modern microprocessor basics, simulation methodology) of

my thesis.

Of course, transactional memory does not exist in a vacuum; instead, it is a step in a series of synchro-

nisation techniques which interestingly dates back many decades; and its key components (as speculative
synchronisation) have been proposed about thirty years ago.

The development of TM did, however, get a significant boost with changes in microprocessor perfor-

mance scaling in the early 2000s.

The remainder of this section will provide more background for each of these aspects; before diving

into the review of the many related pieces of research in following sections. While structuring that review,

I have found that putting all these papers into a single ontology is not easy; many papers combine aspects

from across the stack: microarchitecture, ISA, application behaviour and support, and conceptual points.

In some cases, I separate aspects of a single paper under multiple headlines, yet I mostly aim to group

papers around their key contributions.

2.1.1 Basics and Beginnings

Atomic operations for synchronisation date back to the early 1960s (with the Burroughs B5000 RDLK

instruction [9]) and as early as 1978 in the x86 ISA (with the Intel LOCK prefix being introduced with the

8086 [6]). These come in different varieties and strengths, and it can be shown that the strongest ones

(such as compare-and-swap) are generic in that every concurrent algorithm can be mapped to them [19].

Typical examples are single instructions, such as compare-and-swap, load-op-store, and multi-instruction

sequences modelled after load-linked / store-conditional [18]. All these instructions operate on a single

word in memory, but as shown above, this is not limiting in the algorithmic sense. The key insight for all

of them is that one can perform a load-op-store sequence without any intervening stores from other cores.

Practically, however, multiple ISAs [257, 258] have provided additional primitives, for example double-

wide compare-and-swap which enables operation on pointer with added timestamps, or full double CAS

operating on two distnct addresses (DCAS) [24].

9
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Figure 2.1: Scaling of CPU clock frequency showing a clear stall from around 2002. Data from CPU
DB. [283]

2.1.2 Speculative Synchronisation

Knight proposed in 1986 a programming model and hardware architecture [16] that breaks code into

transactional blocks which are comprised of a side-effect-free prefix (loads, computation), and end with

a single store to memory. In the proposed hardware, the CPU executes these concurrently, tracks de-

pendencies between the prefixes and stores, detects conflicts, and re-executes those prefixes that have

executed but were invalidated due to stores overwriting the data read. A block counter is used to sched-

ule the execution and completion of the blocks, and a special cache is used to buffer side-effecting stores

speculatively so that they can be executed before the block is scheduled – a first example for speculative

synchronisation, conflict detection, and atomic blocks.

In 1993, two groups experimented with extending the number of memory locations that can be op-

erated on in with atomic instructions: the Oklahoma Update protocol [35] from IBM, and Transactional

Memory (TM) [34] proposed by DEC / University of Massachusetts provide multi-word atomic primi-

tives. Both add a special buffer (reservation buffer / transactional cache) that is used for both conflict

detection and to buffer / make visible the multiple stores. Furthermore, both proposals require special

instructions to mark the special accesses, and by default convey failure to hold on to the reservation at

the end of the sequence when changes are to be committed. The Oklahoma Update paper adds on top

a per-location immediate abort specifier which lets the CPU jump to a specific handler if that memory

location was conflicted upon. The proposal also guarantees progress (and deadlock-freedom) by sorting

written-to locations and locking them. Transactional Memory, on the other hand contains ingenious re-

use of the transactional cache after the instruction sequence is completed; which allows very fast aborts

and commits without having to write data back to the memory hierarchy.

A few years later, the first proof-of-concept showed a software solution – Software Transactional Mem-

ory (STM) – that provided a similar abstraction on top of normal single-address atomic instructions [39].

It took, however, until the obvious “death” of CPU frequency scaling in 2002 (quite dramatically visible

in Figure 2.1) and the associated stagnation of single threaded performance, to spark renewed interest

in techniques to accelerate and simplify concurrent programming. Transactional memory was seen as a

possible, mechanical way to convert sequential data structures and algorithms into parallel versions that

could side-step stalling single thread performance and instead make use of the rising number of cores in
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Figure 2.2: Citation count of seminal transactional memory papers [34, 39, 68]. Marked start of my work
on the subject. Data from Google Scholar.

commodity SMP (Symmetric Multi-Processor) systems.

2.1.3 Creative Explosion

Academic interest in transactional memory (and other technologies that exploit the growing number of

CPU cores) rose almost proportionally to the growing disparity between previous frequency scaling and

the significant stall of actual CPU frequencies. Figure 2.2 shows the academic interest by virtue of citation

count of three early and seminal publications of transactional memory [34, 39, 68].

Despite all early papers suggesting hardware changes to enable transactional memory, Shavit, Touitou,

and Moir showed early on (1995, 1997) that software solutions were possible, as well [39, 44]. Both

solutions are similar in that they provide / utilise an n-CAS operation and provide non-blocking progress

guarantees. While an improvement over earlier universal constructions [28], the former solution only

permits concurrency when accesses do not overlap, requires a static working set, and requires unrealistic

low-level instruction primitives (nested LL/SC); while the latter employs indirections to support dynamic

discovery (with bounded transaction sizes) and concurrent read-sharing.

In the early 2000s, both hardware and software solutions for transactional memory (HTM / STM),

received renewed interest due to the rise of the multi-core CPUs (in turn fuelled by the lack of single-

core frequency scaling). In the following sections, I will present in broad strokes the key developments;

focussing in more detail on hardware. A much more complete summary is available elsewhere [224].

2.1.4 Organisation

The remainder of this chapter is organised as follows: Section 2.2 will highlight research work for Soft-

ware, Hardware, and Hybrid Transactional Memory proposals respectively which were part of the “cre-

ative explosion”. Section 2.3 will contrast this with actual industry specifications and showcase available

chips that implement TM. Section 2.4 will show use cases for TM and how the existing software stack

is modified to accommodate them. Section 2.5 will will explain the background and key developments

in CPU microarchitecture in Subsection 2.5.1, and Subsection 2.5.2 will highlight tools that are used to

simulate computer systems.
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2.2 Transactional Memory Research

2.2.1 Software Transactional Memory

Weakened guarantees and dynamic data layouts The “creative explosion” of software transactional

memory papers starts in 2003 with Herlihy, Luchangco, Moir, and Scherer’s STM for Dynamically-Sized

Data Structures [68]. The authors weaken the progress guarantees from wait-free / lock-free to obstruction-
free, eliminating helping altogether and in turn allowing fully dynamic discovery of the working sets of

the transaction. They also add contention managers which decide which transaction to abort and when

to retry them. The usage of contention managers provides practical progress, as obstruction-freedom in

itself is prone to livelock. Another novelty of DSTM is the usage of object-granularity at tracking conflicts;

objects can be opened for reading or writing, and also upgraded later on. Furthermore, transactions may

remove entries from their read sets. Finally, DSTM uses validation to make sure that all transactions

observe a consistent view. Using a double indirection in transactional objects, transactions can create a

new tentative object and switch versions instantly with a single atomic change of the writing transactions

status register. The results, however, of this paper seem mostly negative: none of the proposed algorithms

scale, and they have a significant overhead (about a factor of 10x) compared to simple locking for a single

thread. On closer inspection, however, this is partially caused by performing 100% updates on a small

data structure.

Harris and Fraser are the first to implement a dynamic STM on memory word granularity, rather

than objects [66]. They introduce the concept of ownership records (orecs) that allows tracking status of

the words on the heap. In addition, both reads and writes are added to the local transaction descriptor

(a read and write log). Writes will acquire ownership at the time of commit, at which conflicts between

transactions will be detected. They provide non-blocking progress by implementing helping in the commit

phase. One interesting addition is the notion of a wait primitive which aborts the transaction, but will

only allow restart once entries of the working set are changed.

In 2005, Marathe, et al, categorise, analyse, and formalise the timing of conflict detection, versioning,

progress guarantees (obstruction / lock freedom), direct / indirect access and per-object / per-transaction

meta-data placement [89]. Versioning defines where transactional stores live while the transaction is still

ongoing. Eager versioning stores the speculative copy in the location of the actual data as soon as the write

happens; lazy versioning keeps the store in a separate location until the transaction commits. Similarly,

eager conflict detection checks for conflicts as soon as transactional loads and stores happen; lazy conflict

detection defers such checks until the transaction is about to commit.

Weaker progress and removed overheads Weakening the progress guarantees from wait-free, to lock-

free, and obstruction-free allows for reduced levels of indirection, greater algorithmic flexibility, and

ultimately higher performance. Consequently, in 2006, in a controversial publication [117], Robert En-

nals proposed to drop the non-blocking progress guarantees altogether, and proposes a fast, object-based

STM that removes indirections and subsequently achieves higher performance.

Saha, et al, also publish about their non-blocking STM, and show the cost of different STM design

decisions in McRT-STM [114]. They argue for careful transaction scheduling rather than non-blocking

design, show the cost of visible reads to be high (10x), and also show that undo logging outperforms

write buffering significantly.

Indeed, the introduction of time-based STMs with invisible readers, such as TL2 [116], LSA-TM [103],

and TinySTM [160], showed significant performance improvements due to reduced numbers of valida-
tion operations and reduced work for transactional reads. These time-based STMs use a logical (commit

count) clock which can be a point of significant contention in itself. Ruan, et al, show benefits when



2.2. TRANSACTIONAL MEMORY RESEARCH 13

1 void privatise (..) {
2 node *my_node = NULL;
3 // Dequeue from shared list
4 tx {
5 my_node = root;
6 root = my_node−>next;
7 }
8 // Work outside of TX
9 my_node−>data += 42;

10 }
11

12 void publish(..) {
13 // Create a new node
14 node *my_node = malloc(..);
15 my_node−>data = 0xCAFFE;
16 // Publish node
17 tx {
18 my_node−>next = root;
19 root = my_node;
20 }
21 }

25 void inplace_upd(..) {
26 tx {
27 // Process list in TX
28 node *c = root;
29 while (c != NULL) {
30 c−>data += 17;
31 c = c−>next;
32 }
33 }
34 }

Figure 2.3: Examples of privatisation and publication of memory showing both accesses from inside
and outside of a transaction to the same data. In this example, the non-transactional access in line 9
could observe clean-up activity of an aborting, concurrent tread executing the transaction in lines 2 – 9
(privatisation safety failure). The failure mode of publication safety is more subtle.

using the hardware time-stamp counter (TSC) instead and show good benefits especially for small trans-

actions [294].

Finally, a significant shift in STM occurred with STMs that abolish the orecs, and instead use value-
based validation and serialise the commit phase of writing transactions. Notable examples of such designs

are the aptly named NOrec [217], and transactional mutex locks [218].

Coordinating transactions and non-transactional accesses One complexity of STMs is the interac-

tion with code that accesses the same data both inside and outside of transactions. The STM relies on

instrumenting all reads / writes inside a transaction with code that performs the checking, versioning,

etc. (also, somewhat confusingly, called read / write barriers); sometimes accesses inside transactions

are not instrumented (especially when performing manual instrumentation) if they are to thread-local

data, thus reducing the significant overhead of STMs. Clearly, concurrently accessing objects both from

inside and outside of a transaction is a sign of an improperly synchronised application. However, careful

hand-off can allow such accesses between non-transactional code and a running, but doomed transac-

tion or post-abort clean-up code: privatisation and publication transactions control the global visibility,

Figure 2.3 shows some example code. In privatisation, a transaction is used to remove an object from

a global data structure and thus allow the removing thread to operate on the object without additional

synchronisation. Publication reverses the process: a private object is added to a globally visible data

structure through a transaction, for example, enqueuing a locally created node to a linked list.

Despite these idioms looking well formed, they are not properly supported in some STMs. The prob-

lem is caused by the delays between logical commits / aborts and the data being updated in the ac-

tual location referenced directly by the non-transactional access. Spear, et al, provide a comprehensive

treatment of the subject and analyse the performance impacts of the different techniques [147], further

refined by Marathe, et al [164]. Generally, STMs that provide privatisation safety need to make sure that

all transactions that could still access a privatised object have completed (committed or aborted), before
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the privatised object can be accessed without transactional mechanisms. A similar problem exists in the

read-copy-update (RCU) mechanism in the Linux kernel [47].

Underlying the privatisation problem is the incomplete conflict detection and versioning between

STM accesses and accesses outside of transactions. This characteristic is referenced as weak isolation, and

systems that provide proper isolation between transactions and non-transactional accesses are strongly
isolating [82]. With strong isolation, privatisation is not a problem as the non-transactional accesses to

the privatised object will properly interact with any transactions that might still have a reference to that

object.

In a similar vein, there has been discussion about how transactions should actually synchronise the

application around them. Among transactions, linearisability or the equivalent strict serialisability remain

the obvious correctness criteria. With respect to other code, however, various semantics exist. Arguably

the most intuitive model, single lock atomicity (SLA), is not easy to provide: (1) it enforces publication

and privatisation safety, and (2) enforces certain order with empty / non-overlapping transactions. Both

Spear, et al, and Menon, et al, discuss possible semantics and their trade-offs [165, 182].

Tuning and managing contention The different described STM implementation ideas each work well

for specific transaction sizes, scalability levels, and expected contention. Depending on the actual char-

acteristics of the application, selecting the right algorithm can have significant performance impact. Even

with algorithms from a single family, the placement and number of orecs for the used transactional data

can have a huge impact on performance. Felber, et al, present an analysis for run-time tuning of the used

hash functions and aggregation of orecs for less memory traffic [160]. Marathe, et al propose partially

invisibility tuning to adjust the cost / benefits of visible and invisible reads according to the transactional

workloads [164]. Wamhoff, et all, generate several possible code paths to dynamically deal with varying

contention levels: for low thread counts they use a very lightly instrumented master thread that is assisted

by asymmetrically instrumented helpers [300]. Further tuning options are explored in [170, 232].

When two transactions conflict, only one of them can continue to make progress. The other one either

has to wait, or abort and retry. The contention manager and contention policy are responsible for deciding

which of the two conflicting transactions perform which operation in case of conflict and when and how

often to retry after an abort. Contention management policies can be simple, for example requester-
wins where the transaction accessing the conflicting entry wins, or complex, for example Eruption which

transitively tracks progress of transactions and gives higher priority to those transactions that are stalling

a larger number of dependent transactions [87].

Further tuning happened with the release of HTM implemented in silicon; more detail for those can

be found in Section 2.4.5.

2.2.2 Lock Elision and Thread-Level Speculation

Following the proposal from Herlihy and Moss [34] in 1993, academic computer architecture research

focussed on enabling thread-level speculation, a technique that extracts parallelism from sequential pro-

grams, especially through parallelising the execution of multiple loop iterations in parallel [48, 49, 51,

52, 54, 55].

Eventually, instead of extracting parallelism from sequential applications, multiple researchers con-

currently investigated the usage of speculation hardware for executing lock-based critical sections con-

currently, and converting them into (non-blocking) transactions. Rajwar and Goodman propose to detect

lock acquisition and release operations in the hardware, without changing the ISA of the underlying

CPU [58]. They use prediction logic to learn if a specific atomic operation (they use load-linked / store-

conditional) is in fact a lock acquire operation, and if so, whether the lock acquisition operation can be
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elided–in turn coining the term lock elision. Instead of acquiring the lock, the CPU switches into trans-

actional execution and only adds the lock variable to its read set; that way, multiple critical sections

can execute concurrently if there is no data conflict. The transaction ends if the CPU detects a silent
store that will return the lock into the free state. The invisible approach of Rajwar and Goodman has

complications: in my experience, several types of locks will be rather elusive to such an approach. Ticket

spin-locks, for example do not return to the original state, but instead both acquire and release operations

involve an increment operation. Another issue is self-inspecting code where a critical section inspects (for

example in an assertion) whether the lock has been properly acquired. Finally, more elaborate locking

algorithms have symmetric acquire / release operations, making it hard to distinguish between “inside”

and “outside”, i.e., may be prone to elision of the wrong part of the application. On a microarchitectural

level, Rajwar and Goodman’s proposal extends that of Herlihy and Moss and makes it more practical:

transactional conflicts are detected by adding mark bits to the L1 data cache, whereas data versioning is

performed in the store queue that sits between the core and the L1 data cache. They however oversim-

plify the commit logic, by allowing the cache to point to said buffer to make all content of that buffer

visible in one atomic operation.

Martinez and Torrellas propose a different, ISA-visible approach with significant benefits and addi-

tional use cases [64]. They approach from a TLS perspective and declare one thread as being safe– not

prone to aborts or stalls. In the example, this thread is the one that would follow the correctly synchro-

nised execution, for example the thread that actually acquires the lock. Because of the safe thread, their

scheme guarantees progress, but also needs cooperation from the application: adding the lock variable

to the read set of every transaction would not suffice as threads will acquire the lock and thus cause con-

flicts with other speculative transactions. Instead, Martinez and Torrellas propose a special component,

the speculative synchronisation unit, which understands the logic behind the lock implementation and

will perform operations such as wait for remote lock release, and delayed (non-spinning) lock acquisition.

In their proposal, the speculative threads will execute the critical section without acquiring the lock, but

can only commit once they themselves either managed to acquire the lock, or if the critical section com-

pletes, if they see the lock becoming free. During the waiting, the authors propose several novel ideas,

such as continuing the execution past the actual critical section instead of aborting / stalling to wait for

the lock to become free; also, they propose elision of thread synchronisation barriers, and producer /

consumer constructions.

Rundberg and Stenstrom evaluate a similar approach, and recognise the issue of conflicts between

transactions and how they can cause cascaded restarts and aborts [65]. They propose a mechanism for

lazily ordering (and lazily versioning) transactions only once they have completed execution. By carefully

tracking the overlaps and data (anti-)dependencies between transactions, the authors show that they can

abort and re-execute a minimal set of transactions and order the remaining transactions logically without

conflicts.

In a follow-on publication, Rajwar and Goodman also improve the progress of their lock elision solu-

tion [62]. They propose a time-stamp based priority mechanism (and perform eager conflict detection

and resolution) that allows the oldest transactions to win conflicts and thus eventually succeed execu-

tion. They use the locally committed transaction count as logical clock and add a Lamport-like scheme for

keeping these counts loosely synchronised. The net result is a system with strong progress guarantees;

stronger than the original lock-based code.

2.2.3 Hardware Transactional Memory

The initial transactional memory proposals were hardware based; an unsurprising choice–the cache co-

herency mechanisms employed in all main multi-core / SMP systems provide most of the functionality to
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track conflicting concurrent memory accesses. Similar to STMs, the development of Hardware Transac-

tional Memory (HTM) accelerated only during the 2000s, coinciding (again) with the limited progress of

single-core performance. Herlihy and Moss, and Stone, et al, laid out the basics [34, 35].

Basic Differences Broadly speaking, HTM proposals differ on two levels: the instruction-set architecture
(ISA) defines the set of application / programmer visible behaviours and mechanisms to perform transac-

tional operations such as instructions, visibility of aborts, progress guarantees, etc. The micro-architecture
(uarch) of the core / CPU / SoC / system describes how pipelines, caches, interconnects etc. interact to

provide the ISA-level features. In many HTM publications, there is not a clean distinction between the

two; instead, they will often be presented hand-in-hand. HTM proposals rarely exist in a vacuum (partic-

ularly true for commercial proposals / implementations), but rather will work with the existing substrate

of both ISA and uarch.

2.2.4 Transactions as Standard Synchronisation Primitive

Instead of transactionally executing serial / parallel lock-based programs transactionally, Hammond, et

al, propose Transactional Coherence and Consistency (TCC) – transactions as the main synchronisation

and execution primitive, and as a replacement for complex coherency and memory consistency models

in CMPs [74]. They collect the transactions’ write sets and broadcast those at the end of the transactions.

Reads use the caches for tracking the correctness of the read sets. Programmers start out with large

transactions and subdivide them into smaller blocks, in order to reduce the cost of aborts and reexecu-

tion; there is no separate mechanism for mutual exclusion, instead, not breaking up a critical section into

multiple transactions serves that purpose. In addition, transactions can be ordered to support TLS. In

case of overflow of the transactional resources, the authors suggest an overflow buffer, and eventually

advocate halting execution of the CPU and asking for global commit permissions (effectively serialising

the entire system). One interesting extension that Hammond et al propose is the hardware automatically

breaking up / merging transactions, while not splitting specially marked critical sections. In a second

publication, the authors show the performance impact of different designs for TCC [84]. They find that

double buffering only provides small benefits, mainly because the workloads are not limited in inter-

connect bandwidth. They also show that a small (8 - 32 entries) victim cache is effective in preventing

cache overflows, and that the difference between invalidation and update-based designs is small across

all workloads.

Njorge, et al synthesise a TCC-enabled system (called ATLAS) by adding new caches and interconnects

in FPGAs to PowerPC hard-macro cores running at 100 Mhz [139], depicted in Figure 2.4. They show

results for various L1 data cache sizes and observe that a few workloads scale, but their implementation

does not scale well for a simple hash table micro-benchmark, due to lack of memory bandwidth and

frequent misses. Assuming that TCC will only increase the required snoop bandwidth, this may be an

indication of challenges to TCC’s bulk coherency approach. The authors find that the transactional track-

ing complicates the cache design and adds 14% area overhead to the control logic and a 29% increase

in memory structures needed on the FPGA (the design keeps one additional bit per 32 byte cache line).

Unfortunately, the authors do not present any of the corner cases, state diagrams, etc., that they will

undoubtedly have faced when implementing TCC in a real system. Finally, the system is not compatible

with existing application code and does not support operating system level transactions.

2.2.5 Virtualising Transactional Memory

The argument for making transactional memory working despite capacity limitations stems from the ob-

servation that one cannot rely on the programmer to be able to cut down all transactions. Instead, the



2.2. TRANSACTIONAL MEMORY RESEARCH 17

Figure 2.4: Block diagram of the ATLAS system that implements TCC. From [139].

system should support in some form transactions that exceed the limitations of simple HTM proposals,

such as length (getting hit by scheduling quantum) and space (overflowing versioning and conflict de-

tection structures). Similar to exceeding cache capacity, or size of memory, a fall-back mechanism is in

place so that the application programmer does not have to work against hard limits, or needs to provide

a fallback path; but enjoys good performance in the small common case. A significant body of academic

work on HTM deals with the limited capacity of structures for tracking conflicts and buffering writes, and

how transactions can survive events such as page faults.

Ananian, et al, propose unbounded TM (UTM) and a lightweight version (LTM) thereof [80]. Their

UTM proposal is effectively a first-generation STM cast into silicon: visible readers, transaction state

variables, and undo logging require complex changes to the entire CPU memory system; none of which

are detailed in the paper. Together with physical addresses that remain stable across paging, the au-

thors show a system with arbitrary capacity that can survive context switches, interrupts, etc. The more

lightweight proposal (LTM) drops the requirement to survive interrupts and spills cache content into a

hash table in memory that is consulted if a cache set indicates that it spilled. While closer to reality, the

authors fail to explain the crucial aspect of this design, namely how the commit of a transaction will get

the content of the (redo) hash table written into the proper memory locations without significant changes

to the interconnect. Further, with only light evaluation (application traces and statistical properties), this

approach remains a academic curiosity.

Similarly, Rajwar, et al, propose Virtualized TM (VTM) [86] and use the analogy and mechanism

of virtual memory to present their design. To virtualise in case of context switches, they propose to

dump all transactional content of the cache into virtual memory backed structures, and also use a single

shared overflow table in virtual memory. They use a transaction status word that indicates the logical

state of each transaction, and will have to walk the overflow structures in cases when transactions have

committed. They suggest value-based validation for overflowed read-set entries, and perform filtering

of accesses to the overflow table through bloom filters and remembering overflows per set. Opposed

to UTM, VTM has more detail on how to commit entries from the overflow table into the real memory

location: after having switched the logical state of the transaction, remote accesses to the hash table will

stall the requester and allow write-back of all entries, after which the overflown entries can be reused and

the transactions can be recycled. Unfortunately, the authors only describe a high-level system, without

actually showing any interesting design detail, or present any evaluation.

Chuang, et al, take the concept of virtual memory even further and actually use the virtual memory

mapping mechanism to provide both speculative and non-speculative versions of the data [109]. For

that, they add another remapping structure that provides a physical address with a possible separate

location for the old version of speculatively modified data (undo logging / eager versioning). Due to
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the page-level granularity, the simple mechanism has to copy over a full 4kB page from the old to the

new physical location, which can cause slowdowns; in another option, the authors propose using a finer-

grained remapping sub-table that can distinguish where new and old versions are stored. Overflowed

conflict detection happens through per-cacheline TXR / TXW bits in the new remapping table, and a

linked list structure of transactions accessing a specific page. The authors propose two caches that cache

the required meta-data tables (one for the mapping between non-speculative and speculative data, and

the other holding the transaction access logs). The mechanism is interesting as it splits the meta-data at

page-granularity. However, the changes to the memory hierarchy and especially the timing of all required

memory operations require complex interactions especially at commit and abort. The authors implement

their scheme in Simics [61], and add large, fully associative caches to support it.

2.2.6 Improving Commit Path Performance - Eager Logging Unbounded TM

For safety reasons, many overflowing designs opt for a lazy versioning approach: speculatively written

data will be hidden from other accesses, and only be made visible at commit. Depending on the visibility

mechanism used, this may cause significant slow-down for the common case: a committing transaction.

Moore, et al, propose the opposite in their LogTM proposal [102]: they propose a hardware-filled undo

log in virtual memory, that is used to restore the pre-transaction copy by software in case of transaction

abort. Adding entries to the log is easy: a simple pointer bump, and storing of address and data keeps

a lot of locality and can often be hidden in the existing ILP of the CPU which does not saturate the

write-bandwidth of the caches. Conflict detection is handled through per-cacheline TXR bits and their

intersection with incoming snoop requests. In case of overflow, the authors suggest to either mark the

entire set, or entire cache as TXR–thereby losing conflict detection fidelity. They do, however, assume

presence of a directory that can potentially track more entries than the cache, and will filter unneces-

sary snoops that could cause false transaction aborts. If a conflict is detected, the authors propose a

NACK message that will allow conflict resolution at the requester, which will usually wait and then retry.

Unfortunately, the authors fail to address important complexities of their protocol: while they claim the

design supports strong isolation, there is no detail given for the abort procedure that explains how the

software handler can reinstate the pre-transaction value, if a transaction has to abort. Furthermore, the

design does not investigate the important boundary condition of capacity limitations at the directory. In

further publications, the authors extended LogTM to support closed / open nesting [118], and added

signatures [134].

Signatures provide a compact, constant space, but lossy representation for sets of addresses. They use

bloom-filters [3] (or similar structures) to hash addresses into patterns of set bits that are ORed into the

signature. Lookups check whether all bits of the queried address are set in the signature. In the same

year as LogTM-SE, SigTM [126] advocated signatures; I will discuss that proposal further down.

Proper (as opposed to flat) nesting requires separate tracking of the working set of the nested child

transactions, to allow independent abort and restart. Signatures allow a compact (but lossy) representa-

tion of the working set of transactions, and together with the undo log in virtual memory used by LogTM,

enable the design to not require any modifications to the caches themselves. Due to their compact repre-

sentation of the working set and support for set operations, signatures can easily be used for tracking the

working sets of nested transactions.

2.2.7 Micro-Architecture of Transactional Memory Implementations

Memory System Details One of the obvious bottlenecks of TCC is the single commit lock which forces

serialisation of commits. Chafi, et al, extend the single commit point by allowing commits to happen in
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parallel if they are to different addresses (clearly) and to different directories [138]. Overall, the proto-

col stays pretty true to TCC, by executing transactions to completion and collecting read and write sets,

and sending them to the responsible directories for commit. These in turn use a two phase validation,

then write-back approach. The authors ensure progress with a ticket-lock-like approach where waiters

queue at the end of a logical queue [25]. The proposal is not fully parallel and decentralised, as paral-

lelism is very much limited by the number of directories and the address distribution across them. The

birthday “paradox” will quite likely restrict available parallelism. Finally, the authors have an unrealistic

assumption that the directories can track the entirety of physical memory with tx-read and tx-write bits.

The paper is notable for the level of protocol interleaving that the authors analysed; thanks to a fairly

realistic implementation of the interconnect mesh (yet quite simplistic single-issue cores). Furthermore,

the authors extract useful information about transaction sizes (instructions, number of loads / stores, etc.

for various workloads).

Similar attention to detail is present in Tomic, et al, EazyHTM: they propose eager conflict detection

through coherence messages, yet resolve conflicts only at the end of execution [196]. They also stress

that serialised commit in hardware transactions is a big scalability issue and propose fully parallel commit

by detecting (the absence of) conflicts in a distributed fashion eagerly. They employ two way tracking,

i.e., incoming and outgoing conflicts for additional stability of the algorithm, and add typical tx-write

bits per cache lines for reduced traffic. While commit is parallel between cores, each writing transaction

needs to serially write-back its write set, which reduces local MLP and commit performance. On the core

/ ISA side, this proposal is quite straightforward with simple cores, full register snapshot; the attention

of the proposal is in the memory system interactions.

Another detailed look at TM implementation aspects is Sanchez’, et al, detailed look at signature

implementation options [143]. They show that instead of using a single k-valued Bloom filter, it almost

as good to use k single-valued functions in a split filter; and much easier and smaller to implement. They

also find that degenerate signatures can be especially limiting for larger systems, and note that other

snoop filtering techniques (such as inclusive higher-level caches, snoop filters, or directories) can restore

precision and thus reduce the impact of the Bloom filter.

Yen, et al, also investigate optimisations to Bloom filters for Transactional Memory [178]. They show

that selecting the right subset of bits (lower level) for hashing can improve the Bloom filter degradation,

and filtering thread-local accesses from the TM (and the filter) further leaves valuable room for those

accesses that require synchronisation.

Bobba, et al, lift the concept of token cache coherence [71] to transactions and support arbitrary sized

transactions by tracking tokens for data items in the entire memory hierarchy (using ECC for main mem-

ory) [157]. Readers need to acquire a single token, while writers need to acquire all tokens for a specific

data item. On top of the full credit / token mechanism, the authors implement faster simplifications for

small transactions that fit into the L1. Writes are buffered (again!) in a software-visible log. In their

evaluation, the authors remove the logging problem by actually performing logging in software (with

very little overhead claimed).

Blundell, et al, propose an interesting way to precisely capture a larger working set in their OneTM

extension to LogTM [121]. On overflow, they convert a part of the L2 cache to cache only permissions,

instead of also data for a specific address range. That effectively increases the coverage of a cache-line

to N ∗ 8/2 cache lines (with N being the cache line size in bytes). Similar techniques are being used in

sub-sectored caches [36], and for AMD’s probe filter design that uses part of the LLC capacity to track

only the coherency state of more lines [216]. For full capacity virtualisation, the authors propose a some-

what heavy scheme in the CPU that supports transactional meta-data bits in memory. In comparison to

the heavy proposals in VTM [86], OneTM has a lighter approach, as only a single overflowed transaction



20 CHAPTER 2. OVERVIEW AND RELATED-WORK

can exists (concurrently with non-overflowed transactions) and so only a single copy of dedicated trans-

actional meta-data bits is ever required. OneTM allocates these bits in physical memory and thus reduces

the available memory space.

Blurring the Eager / Lazy Distinction Lupon, et al, revisit the logging TM systems and propose an

eager / lazy hybrid, the fast-path of which turns out to look very similar to what I explore in this work

(and most industry proposals) [205]. Their main contribution is improving the abort speed for logging

TMs and showing that this indeed has a significant impact on overall application throughput. While

they are trying to hang on to the eager / lazy terminology, it becomes apparent that in hardware TM

implementations, these distinctions are not always useful / obvious. They do, however, identify the

technique to eagerly acquire write permissions for transactionally written lines, and lazily hiding their

values in the L1 data cache (plus also putting them in a log for virtualisation). In the fast path (no

overflowing lines), their aborts can execute in hardware, rather than using a software abort handler to

consult the undo log. They also explicitly mention that overflowed lines need to NACK a requesting

sender and require SW involvement before the requester can actually read the value – a property which

is often unacceptable in modern, complex, deadlock-free interconnects and coherence protocols. One

interesting observation, however, of the authors is that transaction write sets very often fit into the L1

cache, and using signatures for tracing the read sets and keeping transactionally written data in the cache

as long as possible often avoids the need for a logging slow path.

In a follow-on publication, Lupon, et al, further dissect the coexistence of eager / lazy transactions

and switching between them with a predictor; they also seem to be the first to realise that with the right

amount of eager / lazy mix, distributed commit seems possible [228]. They show how “eager” (really

fully logging, decoupled from caches) transactions and “lazy” (using the cache hierarchy and coherence

mechanisms) can coexist. Both modes are similar when the working set (the write set) fits into the L1

cache: conflicts are detected eagerly; in the “eager” mode, they abort transactions immediately, in the

“lazy” mode, handling the conflict is postponed until transaction commit time. The authors also propose

several extensions for the coherence protocol, enabling coexistence of eager / lazy transactions, but also

significantly making the design more complex.

Improving Progress One important aspect of flexible eager / lazy switching are the different progress

characteristics. Similar to work in software TM, improving progress of hardware TM implementations

has been looked at in the literature. The challenge is to balance the complexity (resources, changes to

coherence protocol and structures) of the scheme employed and the provided benefits.

Bobba, et al, investigate performance pathologies in HTM, and they find that under low contention

levels, most systems perform similarly [142]. Under high contention, however, they identify several

patterns depending on the different conflict detection / conflict resolution / versioning design points.

In particular, they find that no single outperforms the others for all workload cases. Simple additional

policies, such as exponential back-off, selective early write acquisition, and adding timestamps to memory

requests to abort younger transactions provide significant performance improvement in the pathological

cases.

Ramadan, et al, go further than Bobba, et al: they maximise transactional throughput under con-

tention by tracking dependencies between communicating in-flight transactions, rather than aborting con-

servatively on any communication [167]. For that, they order commits (and subsequent writes) of com-

municating transactions, and only abort in cyclical dependency cases. The authors use a distributed

ordering vector that is read and updated frequently, and extend the cache coherence protocol to eleven

stable states to track all occurring forwarding conditions (typical protocols such as MOESI have five sta-

ble states!), they also show that their mechanism requires sub-cacheline coherence tracking to unlock the
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full performance potential. Extending a MetaTM implementation, they obtain 30% speedups in STAMP.

Similarly, Titos, et al, also track dependencies and use a hybrid eager / lazy mechanism to get trans-

actions committed in conflict cases [203]. Instead of aborting writers in RAW conflict cases, the readers

read the pre-transactional value from where it is stored. In turn, the reader then has to commit before the

writer. Similarly, in WAR cases, aborts are not necessary, if the writer commits after the readers. Exper-

iments on STAMP in a tiled SMP, extending a LogTM-SE protocol in GEMS, the authors show that their

system adapts to the better eager / lazy policy and thus reduces memory traffic and improves throughput.

Typically, it is either caches storing transactional data, or the data is appended to a write log in

most TMs. Yan, et al, identified the required data movement in case of aborts / commits as a major

source of bottleneck [302]. The authors instead propose to store both transactionally produced and

pre-transactional versions of data in the same pseudo-associative cache [32], and flip the N-th bit of the

address to denote the N-th version of the data. Together with tracking the partial order of concurrent

transactions, they can enforce that there are no cycles, by having transactions read the right version

instead of creating a dependency in the wrong direction. In addition to a changed coherence protocol,

the authors use counting bloom filters [45] to track overflowing locations.

Negi, et al, propose a similar design, but keep all the required additional information in a sepa-

rate cache array [293]. Their separate cache tracks the transactional dirty copy, the according pre-

transactional clean copy of the data in the same cache, and also supports clearing of the transactional

dirty bits per way. When the main cache observes multiple tag hits, the separate cache distinguishes

which version of the data to access. Furthermore, the by-way management can allow simple partitioning

of the transactional resources for and simplify conflict detection between multiple threads on a single

core. Similar to Yan, et al, the authors here also find that storing both copies in the same cache can have

a significant benefit for high-contention scenarios, and observe speedups of 30% in STAMP intruder.

2.2.8 Instruction-Set Design for Hardware Transactional Memory

Most previous papers focussed on the microarchitectural design of HTM. Several papers put an emphasis

on the instruction set architecture (ISA) for HTM. McDonald, et al, propose an extensive set of instruc-

tions in [113]. They expose features such as “two phase commit”1, handlers for all transactional state

changes, and support for open and closed nesting. In addition, they argue for allowing in-flight trans-

actions to synchronise through memory without causing aborts, and also propose an escaping (suspend

/ resume) mechanism that allows pausing of transactions. In later chapters of this thesis, I will show

similar extensions, but implemented much more elegantly, without the need for a huge number of new

instructions, memory locations, and other state registers.

With MetaTM, Hofman, et al, introduce various interesting extensions to the vanilla transaction begin

/ end instructions [124]. They argue for simple, yet interesting semantics, and remove complex concepts

such as open nesting in favour for simple practical solutions, such as flat nesting. In addition, they add

support for transactional suspension through xpush / xpop instructions allowing a transaction to perform

non-transactional execution for a while. This can be used to suspend transactions during system calls,

handling page faults, and for communication. The IBM Power HTM ISA extension features a very similar

primitive [353]. Furthermore, MetaTM provides primitives that pause the transaction until a specific

value is seen in a memory location, and optionally can then also CAS a new value into them. That way,

MetaTM can wait (instead of aborting, spinning, and then restarting) for a spin-lock to become free. The

paper shows a lot of detail for ISA design and the authors show how HTM can be extended to make it

useful in a realistic software context without overly complicating the hardware. The ISA extensions in

this thesis follow a very similar trend.

1Their 2PC provides merely validation, without guaranteeing that a transaction cannot be aborted after passing the first phase.
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Zilles, et al, work in the opposite direction: they extend a VTM and synthesise more high-level primi-

tives on the already strong HTM implementation [120]. Similarly to MetaTM, the authors propose paus-

ing / unpausing a transaction, and rely on the virtualisation mechanisms of the underlying strong HTM.

They, too, face challenges with clear semantics around overlapping transactional and non-transactional

accesses and data flow between the transaction and the code running while the transaction is paused.

In addition, Zilles, et al, propose blocking the victim of a transactional conflict until the winner has

completed (similar to enqueueing on a taken lock, rather than spinning on it [191]). Blocking hap-

pens through an exception being raised at the victim which marks the thread as blocked. Wakeup is

more complex and requires an elaborate list of waiters in the winners transactional data structures. That

mechanism is also used to synthesise a retry primitive for HTM.

Swift, et al, show that “unbounded” HTM systems using logs can be problematic in virtualised use

cases, as operating systems do not necessarily know the right physical addresses of objects [173]. They

extend LogTM-SE’s log with tracking of the working set on virtual addresses and therefore can elegantly

allow page remapping, and virtualisation. Context switching the signatures (for conflict detection), they

also provide suspend / resume similar to MetaTM, but instead of only allowing brief interruptions, trans-

actions can survive long context switches.

FlexTM exposes the separate concerns of HTM as separate instructions to an ISA: signatures for track-

ing conflicts, a notification mechanism (alert-on-update) to push / get notifications when the transaction

status changes, memory mapped data structures detailing conflicts (between any two cores), and soft-

ware contention management [171]. On top of that, Shriraman, et al, synthesise TM in both eager and

lazy versions. Eager transactions immediately call the conflict handler on the requester when hitting

transactional remote data. The handler can then either abort the local transaction, or abort the remote

transaction through updating the remote TX status flag and the alert-on-update mechanism. Lazy conflict

detection uses the conflict summary tables to mark conflicts as they happen and are evaluated at the end

of the transaction. Furthermore, the authors describe complex interactions such as paging, page move,

and overflow. Their evaluation finds that exposing the mechanisms independently does not cause signif-

icant performance overheads – the only significant overheads come from checkpointing the register file

manually. While exposing the sub-mechanisms independently clearly seems feasible, the FlexTM proposal

contains a few critical interactions: several memory-mapped data structures need to be updated at the

same time under contention; the commit procedure is effectively a small monolithic mini-transaction and

coordination between committing transactions needs to be carefully coordinated. The overflow mech-

anisms suffer from the typical challenges such as careful memory access coordination, and potential

protocol deadlocks. Overall, however, the proposal appears complex but well thought through.

2.2.9 Other Concerns: Energy and GPUs

Transactional memory can affect the power consumption and energy efficiency of a system in both pos-

itive and negative ways: if conflicts are rare, parallel transactions reduce the application runtime, and

thus energy consumed due to leakage. If the application would have spun on a lock otherwise, transac-

tions will also reduce dynamic energy consumption. If, however, transactions abort frequently, and have

to roll back, they execute more instructions, cause more memory traffic etc. than if execution serialised –

overall causing an increase in dynamic energy consumption. Furthermore, in such cases, transactions can

actually increase the application runtime and thus increase static energy consumption. The transactional

mechanisms (conflict detection, register checkpointing, keeping a copy of the data for versioning) make

CPU design more complex and require additional logic consuming both dynamic and static energy.

Ferri, et al, investigate the effects of TM on energy and performance for an embedded Arm SoC.

They design the HTM with energy efficiency in mind and show that they can reduce EDP by a factor
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of four [223]. Their design has several unique points, such as a small victim buffer for transactionally

written data that helps avoid the pathological cases of transactions exhausting the L1 cache buffering

capacity.

In a follow-on paper, Ferri, et al, further extend their implementation and push it entirely into the

cache (similar to IBM’s BlueGene/Q design [250]) and extend it with mechanisms to avoid performance

(and energy) pathologies of TM: they add ordered commits (guaranteeing progress for at least one

thread), and share expensive logic (bloom filters for conflict detection) between multiple cores [247].

Together with per-core scratchpads and a PGAS-style (for example [133]) programming model, they

show that TM can be very beneficial for application performance and energy-efficiency.

Transactional Memory for GPUs Energy efficiency is also a main concern of another, highly threaded

domain: graphics processing units (GPUs). The original problem of graphics exhibits a lot of data-level

parallelism and therefore GPUs are keeping thousands of threads in flight and often offer vector units

for computations. Recently, GPUs have also been exploited for general purpose computations (GPGPUs);

there and in several graphics algorithms, synchronisation has become an issue. Fung, et al, propose HTM

for GPUs – in a very different base line to what can be found in SMPs / CMPs: 1000s of threads, no or

rudimentary cache coherence, tight execution coupling between threads of a single warp. The resulting

design is thus significantly different from the ones explored for CPUs: their initial design performs value-

based validation at the word level at commit time and performs logging. They perform parallel commit,

and detect hazards with currently committing transactions [248, 265]. At first sight, value-based vali-

dation is prone to the ABA issue [41], but Fung et al show that this is not an issue in HTM [266]: the

key insight is that the ABA problem occurs because only one memory location is used for coordination;

missing an update on that location masks a missed update in another memory location. In VBV, how-

ever, all memory locations are validated; there cannot be a silent change of a memory location that the

transaction may have relied upon.

Fung, et al, also show the benefits of transactional memory on programmer productivity: in Figure 2.5

they show that both single-threaded and transactional code reach correctness / feature completeness

quickly, and both require tuning for highest performance [265]. The TM version of the code, however,

provides for a significant higher performance once fully optimised. The locking version of the code will

eventually be faster, but significant effort is spent by the programmer to ensure correctness and functional

completeness.

Finally, Fung, et al, adapt well-known techniques from other TM implementations in their GPU

HTM [291]. They enable fast read-only transactions through time-based reasoning, hierarchical con-

flict detection that detects conflicts inside a warp first, and prioritises lower lane numbers for conflicts to

ensure progress.

Villegas, et al, in contrast focus on implementing transactional memory in the local memory of GPUs.

That memory is used for synchronisation between threads (work items) of a single work group and does

provide stronger coherence benefits. Consequently, they can perform local, eager conflict detection (per

memory bank with bloom filters) rather than commit-time centralised conflict detection [377].

2.2.10 Enhancing Transactions

Extended Transaction Models and Concepts Conceptually, transactional memory provides a simple

programming model which can improve application performance and simplify programmer reasoning.

It does, however, suffer from several performance pathologies and implementation complexities. There-

fore, several proposals tackle the structure of transactions directly to improve throughput or simplify

implementations.
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Figure 2.5: Comparing development time for functionality and performance for HTM (on CUDA with
KiloTM on a GPU), (a) single-threaded, (b) high performance with fine-grained locks, and (c) transac-
tional memory. From [265].

Felber, et al, propose elastic transactions; a weaker form of transactions that captures the intuition

that in many linked data structures, the consistency of the prefix of a traversal can be modified as long as

an environment of a specific size around the current read location / modification stays intact [207, 380].

For that, Felber, et al, define the concept of a sized cut which corresponds to this notion of “transac-

tional bubble” around the current read / write location. Allowing elements to effectively drop from the

working set permits higher concurrency, yet is a cleaner model than direct early release of memory loca-

tions [68, 106]. Still, defining the right size of the cut depends on the data structure implementation,

and correctness and composition become non-trivial to prove. With an STM implementation, the authors

get speedups sometimes similar to the fine-grained locking versions of the data structures.

Other authors explore the idea of splitting transactions for improved performance. Such concepts are:

consistency-oblivious programming [240, 307, 308], partitioned transactions [346], and transactions with

isolation and cooperation [152]. These works make the programmer manually define the read-only (or

read-mostly) prefix of a data structure operation, and then perform an update in a second part. Often,

the prefix is further split into a non-transactional traversal phase with subsequent validation to ensure

that the found location is still correct. For correctness, the validation is executed in the same transaction

as the actual data structure modification.

Code modification and correctness verification for these techniques remains a challenge, as is compo-

sition. Conceptually, it should be possible to execute the multiple prefixes of the sub-operations, first, and

then have a single transaction that contains the different validation and modification phases. However,

the required code motion is not trivial and compiler support does not exist. In other cases, the traversal

phases are not independent so they cannot be “pulled out” from the composed transaction.

In the cases where composition is not required, splitting transactions into phases can unlock significant

performance gains, authors report gains up to 60% in STAMP applications (and significantly higher for

micro-benchmarks) due to the reduced number of conflicts [346]; often restoring scalability to workloads

levelling off.
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Smaragdakis, et al, propose a way to split the transaction2, while maintaining semantic variants across

the split [152]. Through the type system, they enforce that every caller of a transaction provides a set

of semantic invariants that get checked when the split transaction continues. Composition and nesting

are supported through that, because these invariants are collected from the outermost caller and they are

all run on continuation. Effectively, the authors propose a suspend / resume mechanism with semantic

(rather than by value) revalidation. During the break, the transactions can perform system calls, I/O, and

can also communicate or synchronise with other concurrent threads and transactions.

Lev and Maessen show how to use a typical best-effort HTM to implement any of the described

concepts (and others, such as true closed nesting) [163]. They effectively use the hardware transactions

to ensure the validity of the read set for every sub-transaction (while writes are buffered in a software log)

and as the commit stage of the final transactional part [163]. Similarly to Smaragdakis, et al, these split

hardware transactions need to revalidate the invariants at the beginning of a split. Instead of semantic

handlers, Lev and Maessen use direct validation of the values in the read set which they keep in a separate

software log. Suspend / resume effectively work by committing the current hardware transaction split

(with the only modifications being the changes to the local SW read / write set structures), and resuming

starts a new hardware transaction, and reads again the read set and ensures no values have changed.

If the code that runs during the break checks the SW write set, communication between the phase and

the suspend code is possible. While possible through compiler instrumentation, this may require extra

work for calling unmodified code, such as with libraries or system calls. An instrumented shim layer

could be used that pulls the right values out of the write set, and puts them in a temporary object for

consumption by the binary code.

Finally, Saad, et al, observe that many conflicts at the data value level do not change application

semantics; they propose a higher-abstraction interface to TM that encodes application knowledge and

can reduce aborts [362]. Two key classes of operations are easily offloaded to the TM system: predicates

/ comparisons and associative and commutative operations. The former can stay true / false, despite the

underlying values changing, and the latter can be efficiently grouped and performed concurrently.

Through an extended API, applications can tell the TM system about these operations, and it will

use the higher-level predicates for re-validation (instead of comparing value equality) and keep shadow

copies and reduce the commutative operations in case of overlap. Of course, when an application actually

performs plain reads, full value equality has to be ensured. The authors report significant (4x) speed-ups,

largely due to significantly reduced conflict / abort rates while still providing a composable and abstract

programming interface.

Transactional Memory and Non-volatile Memory Transactional Memory derives its concepts largely

from database transactions and adapts these from a block-based storage medium to byte-accessible main

memory (implemented through caches and DRAM). Recently, non-volatile memory has appeared as a

feasible technology that combines DRAM-like access granularities and performance characteristics, and

furthermore retains state under power loss [169, 192, 195, 198].

Due to the performance and access characteristics, it makes sense to address that memory using loads

and stores. There is, however, one important complication: the CPU registers and caches will lose their

state when power is lost, and usually only the NVM will retain its state. Writes to that memory may be

arbitrarily ordered by the memory system (as they should be cached and only written to the memory on

cache eviction), and power may be lost at any point in time. That latter property can be modelled as

having a concurrent observer (namely the recovery code that inspects the memory state after a power

loss event) that can concurrently observe memory state – turning even single-threaded applications into

concurrent ones. A further complication is that the coordination with that concurrent observer can only

2and eat it, too!
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be performed through the NVM. There is no additional side-channel through the coherence protocol, or

grabbing a lock to protect against power loss.

Transactions are a useful construct to structure applications so that power loss only rolls state back to

a previous completed transaction state, effectively providing atomicity and durability. On top, isolation

properties need to be incorporated for when actual multi-threaded applications need to synchronise.

Several papers propose implementations for transactions (both HTM, and hybrid transactional memory)

in NVM, or use critical sections as a mechanism to provide failure atomicity [309, 334, 354, 372].

Failure atomicity for persistent memories is achieved through logging values to the NVM either

through a redo-log in NVM, and not modifying the values in NVM before the transaction commit, or

though undo-logging, where each in-place modification can be performed eagerly, but the corresponding

undo-log entry needs to be written before. Atomicity is then achieved by either switching the redo-log

to “live”, or “disarming” the undo-log; both can be achieved through a single write which will be the

persistent linearisation point.

2.2.11 Hybrid Transactional Memory

A fairly obvious idea is to combine Hardware and Software Transactional Memory in order to get the

benefits of both: HTM provides a fast common case, while STM handles the complicated cases that for

example overflow the HTM’s limited capacity or run for very long. While straight-forward, the challenges

are in the details: making sure that the HTM and the STM can coordinate among one another without

adding too much meta-data burden to the HTM, e.g., per-access instrumentation also in the HTM path.

Compared to unbounded HTM, HyTMs are simpler in their hardware requirements, because they offload

the hard cases to software with a performance penalty, yet still offering composability and scalability as

opposed to falling back to a single global lock.

Beginnings Moir laid out the general idea in his 2005 technical report [94], and suggests a simplistic

STM design using orecs, word-granularity, and blocking write-backs; similar to the combination of the

proposals of Harris & Fraser, and Ennals [66, 117]. He argues that such a simple STM could easily

interface with an HTM by ensuring that for every access the HTM checks and adds the relevant orec

entries to the HTM read set. One caveat is that reads must be tracked semi-transparently: a reader count

is kept per orec; with invisible readers, the HTM might commit writes without the STM noticing. Moir

also notes that with a simple STM transaction counter, the HTM can also execute without any overhead.

Damron, et al, extend the initial idea in their 2006 paper and present a full HyTM stack, with compelling

initial results for also just the STM part [111].

In the same year, Kumar, et al, approach the problem from an entirely different angle [98]. They

extend the lock-free STM from Herlihy, et al [68] with an HTM. In doing so, they leave in place the

indirections and the object-level granularity of the DSTM design; forcing HTM transactions to walk the

indirections. They provide an interesting ISA extension that allows non-transactional accesses in hard-

ware transactions, both by default and with special markup. Furthermore, they rely on the HTM as

a single location notification mechanism for all software transactions, which is problematic: timer in-

terrupts and cache displacements due to non-transactional accesses will be likely causes of aborts for

those hardware transactions. Together with the excessive usage of indirections, the authors fail to show

compelling performance data.

An interesting solution that side-steps the issue of coordinating between STM and HTM is Phased

TM [151]. There, only one scenario of transaction can be executing at a time, for example, only (full)

hardware transactions in one phase (HARDWARE mode), only software transactions in the next (SOFTWARE

mode), a mix of both in a third (HYBRID mode). In addition, two modes operate in a single-threaded
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way by using a global lock, and, if possible, also do not perform logging. Careful switching of the modes

is necessary; hardware transactions can immediately be aborted, while software transactions are being

waited for to complete / abort (quiescence). The paper does not give definite answers for when to switch

phases. Initial results show, however, significant gains from having an HTM-only phase with reduced

overheads in the hardware transactions. They also show the overheads of the semi-visible tracking of

readers in the software part of the HyTM to be significant in STM-only cases.

Coordination lower bounds Generally, in HyTMs the interaction between fast hardware and slow soft-

ware path depends also heavily on the type of STM that is being used. In the simplest case, the fall-back

path simply grabs a global lock and executes the transaction (the hardware path directly in most cases)

without instrumentation–analogously to (reverse3) lock elision. In these cases, however, the transac-

tion cannot use aborts, for example for failure atomicity, or thread-level speculation; furthermore, the

progress guarantees of the HyTM will be that of the global lock. Somewhat intuitively, there is a trade

off between the intricacy of the instrumentation (and the resulting loss in performance) and the progress

guarantees that can be made (similar to plain STM design trade-offs); HyTM could, in theory help, by

running transactions in a lower progress class with higher performance, and only when progress stalls,

switch to a more complex regime. Interestingly, there is proof by Alistarh, et al, that there is a limit to

this: every strictly serialisable HyTM needs instrumented accesses in the fast path even for weak progress

guarantees. Further, the instrumentation cost will be linear in the working set size [333]. This suggests

that a minimal phased approach might work best: full HTM speed, with maybe limited STM support,

phasing to instrumented HTM with better-progress STM, if necessary.

Privatisation safety In 2008, Vallejo, et al, continue accelerating indirection-based, object granularity

TM [185] using a queued reader-writer-lock mechanism, similar to the semi-visible readers outlined ear-

lier. They note, however, that the visibility of the readers allows their design to be privatisation safe: they

can delay a committing writer until all readers have completed. The authors also suggest optimisations

for the HTM path, in line with earlier work cited here, and claim that the HTM path can offset the higher

cost induced by the heavier locking in the STM. Somewhat surprisingly, the authors perform fine-grained

checks per read / write barrier whether they are in a hardware or software transaction, rather than using

two code paths that perform this check once at transaction start and subsequently diverge. Consequently,

their HyTM has considerable overheads, still, and they do not show a performance comparison to a plain

HTM, sequential version, or a single global lock.

In the same year, Baugh, et al, also present a privatisation-safe (even strongly isolating) hybrid TM

system without overheads for the HTM [183]. For that, they use fine-grained memory protection hard-

ware that protects the STM’s working set from concurrent read / write accesses caused by either HTM

transactions or non-transactional accesses. While the authors argue strongly that hardware should stay

as simple as possible, no such fine-grained memory protection exists up until today. Their proposal shares

some similarities with the Alert-on-Update proposal from [153] and SigTM [126], which I will discuss

further down.

Using non-transactional accesses in hardware transactions The NOrec algorithm introduced by Da-

lessandro, et al, in 2010 [217] contains a sketch for an efficient HyTM. As there are no orecs in the

algorithm, the HTM path does not have to perform per-location checks, but only needs to (1) serialise

with the HTM commit phase, and (2) announce its updates to the software transactions and force re-

validations. Both Riegel, et al, and Dalessandro, et al, extend this basic idea [244, 255] in 2011. Earlier,

3In lock elision, an existing lock in the application is turned into a transaction. This mechanism turns a programmer transaction
into a critical section protected with a lock.
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Felber, et al, showed new techniques for performing the required coordination between the STM and

HTM code path with novel non-transactional idioms [238], both for NOrec and orec-based HyTMs.

In summary, the following techniques are proposed: (1) monitor only meta-data (orecs) and use non-

speculative accesses for the actual data (reduce HTM capacity requirements), (2) use non-transactional

reads of HTM to let an ongoing STM transaction commit, while still receiving all actual data conflicts, (3)

use non-transactional, atomic read-modify-write operations inside the transaction to signal re-validation

to the STM without causing aborts between multiple HTM transactions, (4) using multiple (up to per-

core) HTM-to-STM signalling paths to reduce cache misses and HTM-HTM interference, (5) lazy sub-

scription to STM commit messages, with non-transactional per-access checks in the HTM.

Riegel, et al, also extend their time-based STM to work with HTM, using their proposed optimisation

of monitoring only the orec meta-data, and updating the global time-stamp with an atomic RMW instruc-

tion [255]. Both proposals use ASF (the HTM introduced in this dissertation) and make clever use of

the allowed non-transactional accesses inside transactions. Dalessandro, et al, in addition evaluate their

HyTM also on Rock, but due to the limited hardware implementation (aborts at function calls, aborts at

branch misspeculation), they cannot show compelling results [244].

Matveev and Shavit propose a different type of HyTM and also a way to emulate transactional perfor-

mance on real silicon without simulation [305]. Similar to previous authors, they identify that the loading

of STM meta-data in the HTM part introduces additional memory traffic and conditional branches per

access. They produce reduced hardware transactions that sit between full STM and HTM transactions. The

first level of transaction are full hardware transactions, with additional bumping of the Orec of writes,

and subscription to the global version clock. In the second level, transactions start in software and per-

form lazy writes in software, but the commit path uses a single hardware transaction to (1) validate

the read set and (2) perform the write-back operation. By that, the slow path will still have capacity

limitations (in particular since it also needs to read the read / write log in the hardware transaction),

but mechanisms can allow long-running transactions, and system calls inside transactions. Finally a full

STM will then handle those transactions that cannot be handled in the first fallback path. In another

option, the first slow path does not perform the read set validation in the hardware commit transaction,

but then needs to put additional work to the fast path. Non-transactional accesses would simplify a few

aspects here by allowing to reduce the HTM capacity requirements in the commit HTM path. Finally, the

authors evaluate their system without HTM silicon or a simulator, but instead use dummy accesses and

abort probabilities for timing analysis on existing CPUs.

Using commercial HTMs With the broad availability of actual HTM implementations starting in 2013

(desktop) / 2014 (server), several hybrid TM implementations use the available HTM mechanisms. Sim-

ilar to Matveev and Shavit, Calciu, et al, also propose multiple levels of transactions in their Invyswell

proposal [332]. Their HTM is the actual Intel Haswell RTM [303, 367], and the authors lament the

lack of escape actions / non-transactional accesses. The proposed TM system is designed around visible

readers through per-transaction software signatures. That way, transactions do not need to self-validate.

Instead, all types of transactions can actually perform the write-back in the commit phase and afterwards
check for conflicts. In their hierarchy, the fastest HTM path uses solely uninstrumented hardware trans-

actional accesses, which can only commit if there is no concurrent software transaction. The signature

design allows for a slower hybrid mode that runs transactions in hardware, but also records signatures in

software; allowing full concurrency with software transactions. At commit time, the HTM makes all these

modifications visible (both data and signatures) and then intersects the working set with other software

transactions (the hardware transactions will abort through conflicts on the actual data).

Calciu, et al, also investigate lazy subscription for the global lock in the simplistic single-global-lock

fallback path [331], and show small performance gains in STAMP.



2.2. TRANSACTIONAL MEMORY RESEARCH 29

More recently, Matveev and Shavit revisited their reduced hardware transaction approach and apply

it to the NOrec algorithm [305]. In their design, transactions will perform their read prefix part in

hardware, then read the global clock and commit this read-only hardware transaction whenever they

encounter a write. Writes are then buffered in software, and committed through a write-mostly hardware

transaction at the end of the logical transaction. With this construct, full fast-path hardware transactions

can safely perform lazy subscriptions, without any lack of opacity or privatisation safety. Results show

that these designs can be faster on the limited Intel RTM (no non-transactional accesses) than previous

hybrid NOrec algorithms, especially when hardware capacity is constrained by hardware multi-threading.

Optimising performance and removing lazy subscription As outlined earlier, all the hybrid TMs

shown so far must trade off the instrumentation cost in the fast path, the available concurrency between

fast and slow path, and provide that with a specific progress guarantee. In [333], Alistarh, et al, show

that one cannot build a hybrid TM that is strictly serialisable without any read / write instrumentation in

the fast path; even for very weak progress requirements. Furthermore, the authors show that linear-sized

meta data is required in a HyTM, if progressiveness is required. In summary, that means that one cannot

get concurrent hardware / software transactions with constant (not per-location / no orecs) meta data.

The authors prove their theorem, and also show several new algorithms that are feature-pareto-optimal.

Afek, et al, propose a quite different HyTM design for performing lock elision [349]; in their approach,

the non-concurrent software fallback path uses visible reads, which the hardware fast path will check;

and lazy versioning for writes. These writes will be written back with a hardware transaction at the end

of the slow path ensuring that no fast path transaction can see a partially committed state. As a net effect,

the system permits free overlap of fast / slow transactions, while limiting the number of concurrent slow

path transactions to one. One interesting additional usage of HTM in the slow path is the merging of

multiple metadata updates for the reads. The authors note that the memory fence required between the

lock acquisition and the subsequent data read (even on TSO / x86 memory models) can significantly

reduce performance. Merging multiple instrumented reads allows to remove the intermediate memory

fences. To that effect, the authors propose an adaptive mechanism to set the number of merged read

allocations. The resulting HyTM mechanism is opaque, but performance is close to lazy subscription,

which is not safe.

Similarly, Ruan and Spear show that a HyTM can have performance similar to lazy subscription, but

without the associated safety issues [350]. Their design also uses hardware transactions to perform parts

of the software work. The key insight of this design is the concept of cohorting; a micro-phased approach

that synchronises transactions so that all running slow-path transactions wait to reach the commit phase

at the same time (and no new transactions may start once they do). They then use a hardware transaction

to perform validation and write-back; if that fails, they will try again with a sequential commit. Hardware

transactions can execute during most of the lifetime of the software transactions, but they cannot commit

while software transactions are live; effectively allowing hardware transactions to live longer than soft-

ware transactions and then commit. Ruan and Spear show how to decompose the state (phase selection)

variable such that different transactions do not experience false conflicts when updating / checking the

state. They too argue that with non-transactional operations, the state management could be simpler and

in addition they could implement waiting in the hardware transactions instead of aborting when they try

to commit when there are still software transactions in-flight before their commit phase. Similar to Afek,

et al, the results obtained are close to the lazy subscription performance without the associated safety

issues.
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2.2.12 Composite Transactional Memory

Another form of transactional memory that is hybrid in nature is that of composite / symbiotic transac-

tional memory. Instead of merging a fully functional (extended) HTM, and a fully functional (adapted)

STM, the composite / symbiotic TM systems rely on both software and hardware mechanisms. As reads

usually outnumber writes, the functionality is usually split such that software will perform data versioning

for transactional stores, and the hardware provides conflict detection. In some cases, these mechanisms

are established as “STM accelerators”, in particular, if the HW mechanisms indeed are optional.

SigTM [126] employs bloom-filter [3] based signatures for both read and write sets, while the alert-

on-update (AOU) family of proposals uses the caches similar to HTM [105, 153, 154]. Hardware-assisted

STM (HASTM) [119] provides a similar type of marking memory locations; their proposal marks on

sub-cache-line granularity.

The implementations differ mainly along three dimensions: (1) immediacy of aborts, (2) capacity

overflow behaviour, (3) tracking precision. In total, these three determine the amount of work the STM

still has to perform. The proposals are all similar in that they focus on reducing overheads for the read

path and rely on software to handle transactional stores. With read-heavy transactions (more reads

per transaction than writes) and workloads (more reading transactions than writing ones), results are

usually not much worse than HTM; with additional benefits of simpler hardware and (in the case of lossy

/ compressing tracking) larger capacity.

HASTM has asynchronous aborts (applications need to query if there was a conflict), increments a

counter on overflow, and tracks on the granularity of 16 byte. The authors use the mechanism strictly as

an accelerator; the STM still handles orecs, read logs, and performs versioning. The acceleration results

from the fact that the hardware will detect conflicts cheaper avoiding costly validations and checks for

it, and also avoids redundant checking of the same orec. The benefit of having the full STM is that

the marking mechanism is strictly a performance optimisation. On context switches, the marks may be

cleaned, and the transactions continue fully in software. In a more aggressive mode, the STM can stop

read logging, at the cost of having to abort at such events.

AOU had been concurrently proposed (originally as part of a much more complex HTM system [105]),

and similarly allows marking of cache lines. In contrast to HASTM, however, it is used in a synchronous

fashion as alerts will be forwarded to the application immediately. In [153, 154], the authors use the

mechanism to accelerate a non-blocking STM by removing indirections. They use a single entry AOU

mechanism to implement a revocable lock that makes the write-back code path non-blocking. They also

propose a cache-based multi-location AOU system and similarly use it to remove the validation overhead.

Their basic implementation is very similar to the aggressive HASTM mode; performing only checks and

marking for reads, and relying on locking orecs for writes. They suggest to anticipate the HW capacity

limitations and track the remaining locations through SW validation.

Finally, SigTM [126] occupies another point in the design space: signatures do not have capacity

overflow conditions, but instead become more and more imprecise in tracking. In this publication, the

authors assume immediate / synchronous notifications if specific classes of remote snoops intersect with

the local read / write set signatures. The TM does not require any form of orec, but instead only has

a local write set with redo log in software. Similar to HASTM, read barriers intersect with the write

signatures to reduce lookups into the local write log. Commits are heavily supported by hardware by

acquiring exclusive permissions for all entries of the write set (lazy conflict detection), and then switching

the signatures into a “NACKing” mode which prevents progress of any other access to locations in the

signature from another core.

Casper, et all, prototype a full Transactional Memory accelerator in an FPGA without any changes

to the cores, caches, or coherence protocol [243]. Due to their FPGA implementation, they solve many
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corner cases that were not mentioned or handled by the previous simulator proposals. The most im-

portant observation is that a TM accelerator will have higher latency if it is not tightly integrated into

the system. The authors solve that by an epoch mechanism that allows them to remove round-trips and

synchronous communication with the accelerator. A similar design can be found in IBM’s BlueGene/Q

design ([250], and Section 2.3.3), and I will discuss challenges with such designs more in Chapter 4.

The implementation is a hardware Bloom filter for conflict detection; versioning, register checkpointing,

and abort handling (though polling a mailbox) happen in software. Communication with the accelerator

happens through uncached writes. The resulting mechanism is (again, similar to BG/Q) more useful for

larger transaction where the communication latencies per transaction start / commit matter less.

2.2.13 Concepts and Theory of TM

Various authors have investigated the conceptual interface and semantics of TM; in addition, many others

have worked on proofs and abstract conceptual notions for progress and transaction safety. This thesis

focusses on the former for brevity.

Harris introduced several concepts that go beyond the simple transactional properties of atomicity

and isolation. He explored the interplay of (language) exceptions and side-effects with transactions, and

proposes a type solution to the question of whether exceptions should abort, or commit a transaction

when they leave its scope [91]. He also proposes handlers that get called for transaction abort and

commit to deal with I/O in the transaction: output is buffered until commit, while consumed input in the

case of abort is reconstituted.

Subsequently, Harris implements transactions in Haskell, and extends them with retry and orElse

primitives [90]. These two primitives with transactional memory create a solution that is composable

for both isolation (atomicity) and blocking. The retry is similar to a condition variable, in that it re-

leases the synchronisation mechanism (abort transaction vs free lock) and then waits until a condition

changes (monitor members of the read set changing vs declared variable changes its value and a signal

is received).

Blundell, et al, introduce the concepts of strong and weak isolation (then dubbed “atomicity”), and

show that transactional lock elision and strong isolation can cause deadlocks in specific corner cases

of properly synchronised applications [82]. The cases they propose rely on either code under different

locks executing concurrently and not causing conflicts, for example by adding a synchronisation barrier

between two critical sections protected with different locks; or on a similar concept of a synchronisation

barrier between unprotected code and code inside a critical section that is executed as a strongly isolating

transaction.

Grossman, et al, investigate the interaction of memory consistency models and transactional isolation

semantics [108]. They formalise the notions of isolation and ordering, and find that strong isolation

allows local reasoning per code block, whereas weak isolation can have many surprising interactions.

They also investigate ordering of transactions and look at typical properties such as transitivity, and

coherence ordering of write-conflicting transactions. For these examples, the authors provide litmus tests

that show specific desirable / undesirable interactions.

Contrary to that work, Menon, et al, attempt to formalise weak isolation models, as they can be costly

to implement in STMs [165]. They propose several weaker forms than Single Global Lock Atomicity

(SLA): disjoint lock atomicity, asymmetric lock atomicity, and encounter-time lock atomicity. They further

identify use cases where weak isolation breaks and how to distinguish between the models. In their

evaluation, they compare STM implementations for the different models, and find that strong isolation

can actually scale well, but has significant overheads (their benchmarks had very little non-transactional

code, though), and that the weaker semantics are usually faster than SGLA, but not always; in some cases
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the additional tracking required exceeds the additional performance from less restricted interleaving.

Spear, et al, perform similar work to Menon, et al, but deliberately avoid using semantics based

locks [182]. Instead, they propose ordering-based semantics that relate transaction order, program or-

der, and how non-transactional accesses order with respect to local transactions. Marking only specific

transactions as privatising / publishing (in analogy named acquiring / releasing) reduces the overhead

required in the STM, while still providing privatisation- and publication-safety when needed. In their

results, Spear, et al, show that their Selective Strict Serialisability indeed performs significantly better than

SLA. Similar to Menon, et al, however, they find that additional relaxations (for transactions that are

ordered by anti-dependence) cost most to track precisely and do not offer any additional performance

advantages.

In their analysis, Spear, et al, deliberately restrict the semantics to committing transactions. They

assume that doomed transactions and delayed clean-up effects are not visible to applications, and show

and compare various implementation options. Complimentary, Guerraoui and Kapalka focus on the be-

haviour of transactions while they are actually executing, i.e., are still prone to aborting, and define what

behaviour such transactions should expect [179]. They propose opacity as a correctness criterion that

guarantees for all running transactions that they must observe consistent state during their execution,

even through they are ultimately going to abort.

2.3 Industry Adoption

2.3.1 Early Industry Approaches

Arguably some of the first work on transactional memory started in industry. Herlihy and Moss’ widely

recognised 1993 paper shows Herlihy at DEC [34]; and in parallel, Stone, et al, from IBM worked on the

“Oklahome Update”, and published their work in the same year [35].

Similar to Herlihy and Moss, the Oklahoma Update was an attempt at turning an N-element CAS

operation into a more RISC-like structure. Stone, et al, extend the known LL/SC primitives, by allow-

ing multiple locations to be loaded (and then operated on), and then conditionally stored to. One key

requirement for N-CAS is, however, that either all stores successfully become the next value in the co-

herence order, or none. Therefore, having multiple independent store-conditional operations would not

be correct. Instead, the authors propose essentially a two-phase commit protocol that performs (1) load-

register, (2) store-contingent, and eventually (3) write-if-reserved. The third operation gets all lines in

the exclusive cache state and performs an uninterruptible update. Similar to much later work also from

IBM, Stone, et al, propose an automatic retry and exponential back-off in hardware. One further key

observation of the Oklahoma Update is that when addresses are acquired in sorted order, the algorithm

is deadlock-free, even though other write requests are held off.

2.3.2 First Industrial Silicon: Sun Rock and Azul

With the big wave of transactional memory research starting 2004, two companies published about silicon

with transactional memory: Sun with their SPARC Rock CPU [188, 201], and Azul with their proprietary

CPU used for running Java [199].

Sun Rock Sun’s Rock was a radically redesigned CPU, based on the concepts of scout threading, and

deferred execution of stalled instructions. The later (also dubbed execute-ahead) keeps most of the core

in-order, and on a long latency operation (such as a cache miss), puts the corresponding instruction and
all its dependents into a deferred queue, while continuing to execute (and retire) independent instructions.
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Stores will buffer their data until the long-latency operation has been resolved. Once that is done, the

deferred instructions are executed until they have “caught” up with the independent instructions. In

case of resource depletion of the deferred operation structures, the execute-ahead mechanism becomes

non-architectural and warms caches and branch predictors. When the long-latency operation completes,

architectural execution commences from a checkpoint created then.

Scout threading (or simultaneous speculative threading) uses a separate hardware thread to execute

instructions simultaneously when the long latency operation resolves: one thread executes the indepen-

dent front, while the other executes the instructions from the independent instruction stream.

Rock provides many mechanisms needed for HTM: register checkpoints exist so that execution can

turn non-architectural and be rolled back; stores need buffering until the deferred queue has caught up

because of the strong memory model of SPARC (TSO [40]). Similarly, loads need to mark their cachelines

as speculative so the core gets notified if a concurrent store changes the loaded value. In summary, adding

HTM support to Rock mostly exposes the underlying hardware features to applications directly.

Therein lies, however, the biggest weakness of the Rock TM implementation: while the micro-archi-

tectural mechanisms need to be fast and correct, they are free to fail and abort the speculation in many

cases. Due to the close coupling between the microarchitectural speculation mechanism and transactional

speculation, however, these microarchitectural events cause a high number of transaction failures. For

example, branch mispredictions, TLB misses, register window overflows (for function calls), etc. can

cause transaction aborts. In summary, the programmers have to perform many tweaks to their code to

get reasonable TM performance [201].

Overall, Rock is an impressive design; unfortunately, it was never released commercially; according

to the publications (the technical report has many more details) the biggest challenges were in validating

the design (both the base line and the HTM) due to the many logically parallel instructions executing

from very separate parts in the application instruction stream. For the HTM, the biggest challenge was

actually to define the logical commit point [188].

Looking back at Rock, it becomes clear that (1) decoupling the microarchitectural ILP speculation

method and the transactional speculation is advisable for usability and verification reasons, (2) usability

of transactions is crucial (including meaningful abort codes), and (3) even support for small transactions

(32 stores) can be very useful.

Azul Vega Azul’s Vega system is a specialised system designed to be massively parallel, with custom-

made multi-core CPUs and specialised to run large-scale Java workloads [234]. For scalability, Vega

systems support HTM for Java’s synchronized methods, effectively performing lock (or rather “mon-

itor”) elision; wanting to scale applications that were written for small core counts to their massively

parallel systems. In 2009, Click gave a presentation with Azul’s design of and experience with their HTM

solution [199]. Their cores are simple in-order cores, but up to 54 of them are on a single die. The HTM

is implemented through tx-read, tx-written bits in the L1 data cache, and the memory system including

the L2 and further is unchanged. The ISA offers the usual instructions, all loads / stores inside the trans-

actions are also transactional. One interesting point is that the register checkpoint of the beginning of

the transaction is kept by software, rather than hardware. Click specifically mentions that their deisn is

unaffected by TLB misses or branch mispredictions – a clear side-remark at the Sun Rock design. Several

applications lend themselves well to HTM usage, yet, according to Azul, the heuristics for when to acquire

the lock and when to try the transaction are hard; they resort to profiling at runtime and switching the

mechanism.

An additional complication is typical “anti-patterns” that artificially limit transactional throughput, es-

pecially with binary code that would otherwise lend itself well to transactional execution: single “number

of elements” counters, and centralised performance counters. Often, when the code is rewritten, adding
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fine-grained locking has better performance characteristics and less erratic performance than HTM, ac-

cording to Click’s experience.

2.3.3 IBM’s HTM: A Bouquet of Architectures and Microarchitectures

HTM in the L2 Cache: IBM BlueGene/Q An even more parallel and specialised market is served by

IBM’s BlueGene/Q system and CPU (BGQ): high-performance computing [267]. The main cores are

relatively simple in-order cores, that achieve throughput through being 4-way threaded. The interesting

aspect about BGQ is not only that it is the first commercially available CPU with HTM support, but more

importantly, that transactions are implemented entirely outside of the core: a multi-version L2 cache keeps

track of the read / write sets and speculative writes of all the connected cores. Transactions are started

and committed through a special interface that is hidden behind a system call API and implemented

through memory-mapped I/O to the L2 controller [281].

The implementation of TM in the L2 only simplifies core design, but has several significant conse-

quences: transaction start and end are costly operations, hiding transactional stores from other threads

on the core requires either flushing (and subsequent bypassing) of the L2, or remapping of locations to

different physical addresses per hardware thread. A significant software layer deals with detecting and

handling aborts, register checkpointing with liveness analysis, and other bookkeeping. In a follow-on

publication, Wang, et al, dissect TM performance even further and find that the high overheads (118

clock cycles) of just entering and exiting transactions together with the large L2 capacity (20MB for

transactional data) and its versioning abilities make BGQ useful mainly for larger transactions, and they

advocate the use of STMs for small transactions on this system [345]. Another interesting aspect is that

small transactions cause the L2 to run out of version numbers for newly written data faster than it can

recycle older, aborted / committed version numbers.

Suspend / Resume and Small Transactions: IBM Power 8 In their server-line Power series, IBM

released support for HTM with Power 8 [287, 340, 353]. The ISA extensions are noteworthy for two as-

pects; first, IBM chose to include support for suspending / resuming transactions, for example to support

short switches to the OS kernel during a transaction; and second, for integrating TM as a strong synchro-

nisation primitive in a weak baseline memory model. Because Power is not multi-copy atomic, and also

permits a lot of reordering of memory accesses locally, Cain, et al, needed to specify many behaviours

such as fencing behaviour and transitivity preservation explicitly. Furthermore, Power 8 also specifies

rollback-only transactions which will not check for conflicts, but allow local rollback of all modifications

inside the transaction; this can be useful for trace compilation and optimisation techniques.

In the microarchitecture, Power 8 uses a write-through L1 data cache, with the point-of-coherence

being in the L2 (similar to BGQ). Similarly, most of the tracking and conflict detection happens in the

L2; the L1 caches therefore have to forward transactional read hits, and the LSU is used for tracking

conflicts in in the transit time. For simplicity, Power 8 adds an additional CAM (content addressable

memory) next to the L2 to track the transactional properties of the accessed cache lines, rather than

extending the entire L2 with transactional memory tracking hardware. The size of that CAM limits the

overall transaction footprint to 64 cache lines – which can become a limitation for larger transaction. In

this work, I’ve experimented with similar additional buffers and found that 256 entries can be too small,

particularly for the read set of transactions.

While useful, the suspend / resume feature introduces a significant amount of complexity in the mi-

croarchitecture and nuances in the architecture, as well. One challenge is how to deal with transactions

that abort while they are suspended and which values can be seen by code running while the transaction

is suspended. Similarly, communicating values back into the resuming transaction can be tricky. For ASF,
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similar challenges arise due to the mixing of transactional and non-transactional access; these can be par-

ticularly unexpected when they are to two different words of the same cacheline – a case of transactional

/ non-transactional false sharing.

Configurable and Guaranteed Progress: IBM z-Series Finally, the z-Series marks the third HTM de-

sign and implementation in IBM’s processor families. According to IBM, the zEC12 is the first commer-

cially available CPU with HTM [270, 276].

Again, the z-Series HTM architecture differs from those in BGQ and Power 8: they add constrained

transactions with guaranteed progress, have a configurable policy for register checkpointing (programmer

can decide to not checkpoint), and they offer an instruction that assists with waiting after an abort has

happened using hardware knowledge about the size of the system. Additionally, applications can decide

whether to forward in-transaction exceptions to the operating system, or not.

The constrained transactions provide a limited progress guarantee even under contention, as long as

the transactions observe stringent limitations for size (instructions and memory operations), and struc-

ture (no backward branches). The hardware will try these transactions until they succeed, and can use

heavy hammer mechanisms such as full bus locks which effectively stall all other cores in the system if all

other methods are unsuccessful.

On the microachitectural level, zEC12 also features a write-through L1 and L2 data cache that does not

store dirty lines; instead, there is a store-gathering cache that can sink overlapping stores and feeds data

into both L2 and the L3. Transactions use this buffer as the versioning widget; therefore, transactions are

limited to 64 128 byte cache lines of written data. The L1 also temporarily stores transactionally written

data so that the transaction can observe its own writes from there. That cache is cleared on transaction

aborts; and values have to be fetched from the L2.

Conflicts are avoided with sending a limited number of NACKs per transaction so that the currently

holding transaction has a higher chance to complete. Another interesting detail that Jacobi, et al, mention

is that they mark read set entries speculatively (based on branch prediction), because they do not want to

add a second access to the L1 data cache when the load becomes non-speculative. I will show more detail

for this transactional overmarking later in the thesis. Finally, zEC12 uses a clever trick (first found in

VTM [86]) to extend the reach of the read set tracking in the L1: they mark an entire set as transactional

when a transactional read set entry is evicted and abort the transaction if any remote store hits in this set.

Due to the inclusive L2 cache, however, this only increases transactions to the size of the L2, as entries

evicted from the L2 will back invalidate from the L1 and thus hit the set-matching overflow mechanism.

2.3.4 Intel TSX: (Semi-)Transparent Hardware Lock Elision

Intel also released both ISA extensions and CPUs with support for HTM with their fourth generation

“Haswell” CPU design [303, 367]. Architecturally, Intel implements a typical best-effort transactional

memory system with register checkpoints, transaction start / end primitives, user visible abort, and no

option to poke through the transactions or any for of guarantees in their RTM design. An interesting

addition to that is the hardware lock-elision (HLE) extensions which is undoubtedly informed by Rajwar’s

earlier work on lock elision [58, 62]. The idea there is that the application consists of normal lock

acquire / release operations and the hardware converts them transparently into transactions (with some

additional logic to control the lock variable itself and retry). That way, the same application binary can

run on newer systems using TM speculation, and will fallback to standard locks on older systems without

any additional code paths.

Unfortunately, there is not a single standard locking instruction or code sequence, and it is furthermore

hard to differentiate locks from other uses of similar instructions (such as atomic increment of a ticket
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lock vs a stats value), and in some cases, determining the polarity of the lock is not straightforward (as

the unlock path performs also complex operations). During my work at AMD on ASF, I have found these

issues when attempting fully transparent lock elision on arbitrary binaries. Intel apparently faced similar

issues, and decided to require (backwards compatible) programmer annotation: XACQUIRE and XRELEASE

prefixes in front of the acquiring / releasing instructions are ignored by legacy CPUs and will cause the

switch to transactional execution on newer CPUs.

Intel has not released much detail about their microarchitecture; they do employ the L1 data cache

for transactional read and write set tracking, and also employ a secondary, fuzzy structure to track read

set elements that evicted from the L1 cache. There is also an additional buffer that holds the lock value

during HLE without making it globally visible so that multiple concurrent HLE critical sections on the

same lock can execute, yet, each local thread sees the lock as taken.

Despite the simple implementation and the L1 data cache performing most of the work, transaction

entry / exit latency is higher than that of normal lock acquisitions and single instruction atomics; there-

fore, Intel suggests to batch multiple updates together (lock coarsening), and removing the acquisition

of multiple locks and replacing them with a single transaction (lockset elision). Further performance im-

provements can be achieved by implementing simpler, faster algorithms, or algorithms which are more

clever but did not have a fine-grain locking implementation before.

Unfortunately, Intel had issues in the first three generations of their HTM implementation [365, 366],

and had to switch the feature off. Unfortunately, little is known about the actual detail, but presumably

under specific corner cases, the transactional isolation properties do not hold.

In summary, Intel provides supports for transactional memory in mainstream x86 architectures; and

support for it is being integrated into standard locking libraries such as glibc [273, 317, 318], and runtime

environments, such as Java [315, 324, 330]. Interestingly, all public software changes prefer the explicit

transactional elision mode with RTM, rather than the HLE mode. Reasons cited are better visibility of

aborts, and more careful control over the number of restarts, and the need to patch the code in any case.

Furthermore, it seems that even a straightforward TM system and a commercially very successful CPU

manufacturer struggle to provide a fully correct HTM implementation – this contrasts those academic

publications which add significant complexity in both ISA and microarchitecture very keenly.

2.3.5 Comparison of Commercial HTMs

Given the size of the design space covered by the different HTM implementations both in terms of ISA, but

also microarchitecture, an obvious question is: who has got it right? Qualitatively, the transaction core

functions very similarly between all the designs; however, each implementation adds its own architectural

feature – there, if a feature actually simplifies software development, it is useful. For now, there is no

clear verdict on that, however, first indications suggest that Intel HLE extensions are not that useful in

practice, as their added value is small and they hide useful transactional characteristics [317].

Due to the similar core functionality, yet different implementation choices, an interesting comparison

is also the quantitative one: how do the different design decisions affect which transactions benefit, how

do they limit the overall parallelism that can be extracted in different workloads? Nakaike, et al, compare

all four major (BGQ, zEC12, RTM, POWER8) HTM implementations [343], and also look at some of the

qualitatively different features. In short, they find that there is no clear scalability winner, but HTM as a

feature is overall useful. A summary of the different designs analysed can be found in Figure 2.1.

Comparing the details of the different implementations shows that in particular BGQ has significant

single-threaded overheads, but thanks to its large transactional working sets can support applications

with larger footprint. Furthermore, zEC12 delivers the largest speadups, while the smaller capacity of

POWER8 can sometimes be a limiting factor.
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Processor type Blue Gene/Q zEC12 Intel Core
i7-4770 POWER8

Granularity 8 - 128 bytes 256 bytes 64 bytes 128 bytes

TX load capacity 20 MB (1.25 MB per
core) 1 MB 4 MB 8 KB

TX store capacity 20 MB (1.25 MB per
core) 8 KB 22 KB 8 KB

L1 data cache 16 KB, 8-way 96 KB,
6-way

32 KB,
8-way 64 KB

L2 data cache 32 MB, 16-way,
(shared by 16 cores) 1 MB, 8-way 256 KB 512 KB,

8-way

SMT level 4 None 2 8

#abort reasons - 14 6 11

Table 2.1: Comparison of the characteristics of commercially available HTMs. From [343].

Interesting conclusions are (1) tuning the retry policy is not trivial, and sometimes retrying even

though hardware suggests otherwise is beneficial, (2) microarchitectural interactions can limit perfor-

mance, such as with Intel RTM causing aborts due to the prefetcher pushing out transactional data or

causing additional aborts, (3) high abort rates (80% - 95%) can still produce speedups.

Finally, the additional features can be useful: zEC12 constrained transactions provide similar through-

put without requiring careful tuning of retry policies for small data structures; Intel HLE suffers frm the

non-tunable retry / abort polcies; suspend / resume in POWER8 can give small performance advantages

by allowing transactions to spin on taken locks.

Nakaike, et al, give suggestions for future HTM systems: conflicts should be detected as precisely as

possible, especially the interaction with prefetchers can be crucial; SMT significantly reduces the HTM

resources, and thus needs to be carefully controlled; non-transactional loads / stores can be useful for

debugging, and thread-level speculation; most transactions are small: 10kB fits most transactions with a

few outliers using up to 32kB.

2.4 Transactional Memory Use-Cases

Outside of Lock Elision, transactional memory requires changes to applications: locks and critical sections

need to be converted to use transactions, lock-free algorithms can be simplified also using transactions.

Because of that, the evaluation of transactional memory has a classic chicken-and-egg dilemma: applica-

tions do not exist, because production support for STM and HTM is not available; that support, however,

does not get created, as there is no code-base that could be accelerated.

In the course of the last decade, there was a concerted effort to produce new HW and SW prototype

platforms, and create workloads that showcase the potential of Transactional Memory.

2.4.1 Algorithms and Micro-Benchmarks

A typical starting point for performance analysis are micro-benchmarks implementing a simple data struc-

ture, such as an integer set. Usually, implementations are based on hash tables, linked lists, and RB-trees

and are present in most publications evaluating TM. They are available as part of TinySTM4 [160]. One

key thing to note is that the performance of TM strongly depends on the sizes of the data structures,

and the update rate. While larger structures can permit more parallel updates, they also can cause more

cache misses and thus exceed TM capacities and make transactions longer. With hardware with support

4https://github.com/patrickmarlier/tinystm

https://github.com/patrickmarlier/tinystm
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for HTM becoming widely available, these data structures have been looked at again since; showing in-

teresting performance differences and tuning requirements for different hardware implementations. The

main challenges are: transactional tracking capacity, especially when these resources have to be shared

by multiple concurrent threads, and tuning retry policies [359, 363].

Several algorithms were shown to perform well with TM, well before hardware support was widely

available. Ansari, et al, convert Lee’s circuit routing algorithm [4] into a coarse- and medium-grained

locking version, and add transactional and optimised transactional versions of the algorithm [177]. Con-

flicts in Lee-TM are caused mostly on a 2D spatial grid. Kang and Baader show a minimum spanning

forest algorithm [204] with TM, in which conflicts occur when multiple threads clash on the same graph

nodes. Scott, et al, present a in implementation of Delauney triangulation and show the usability of their

revised library TM interface [141, 383]. They conclude that library TM interfaces are still too clumsy,

despite their improvement; and they argue for non-indirecting STMs to improve performance.

Algorithms on commercial HTMs Karnagel, et al, show how HTM support can significantly simplify

performance of a B+ tree [316]. The authors show that performance with simple elision is good, but can

subsequently be improved by making small adjustments to the critical sections to make them transaction

friendly. Finally, Li, et al, show how transactional memory can accelerate Cuckoo hashtables and can both

be simpler and faster than existing hash data structures [320]. Similar to Karnagel, et al, the authors find

several principles that need to be applied to the algorithm to extract most benefit out of the HTM: remove

unnecessary shared data (statistics, debug); reduce size and length of transactions; and proper tuning.

They also show that custom-made fine-grained locking versions remain viable for maximum performance,

but require significant algorithmic redesign.

Makreshanski, et al, use a combination of HTM, locks, and lock-free techniques on tree data structures

(B trees, and Bw trees) at Microsoft [341]. They find that HTM generally simplifies data structure design

and has good performance, but they find that several performance enhancing techniques when locking

are not possible with HTM and collect a wish list for future hardware designs. They argue for adding

only selective entries and later removing entries from the working set of a HTX, and capacity and liveness

guarantees.

2.4.2 Other Use Cases

Several challenging algorithmic “infrastructure” tasks can be simplified and improved with HTM: Gupta,

et al, propose data race detection with HTM [200], Liu, et al, use HTM’s strong isolation properties to

create consistent snapshots of concurrently running virtual machines [321], and several authors use TM

for memory allocation and garbage collection [180, 245, 269, 306, 325, 339].

Another area with interesting overlap with TM is that of security. Guan, et al, use an HTM to protect

a private key while performing signing and decryption [338]. They use the HTM to ensure that the

decrypted private key does not leave the caches and cannot be read by concurrent attackers or devices.

At rest, they protect the key by encrypting it with another master key that is only accessible to the OS

kernel.

Muench, et al, use hardware transactions around indirect control flow constructs (such as returning

from a function); and use specifics of Intel’s HLE implementation to implement labelling [360]. In their

basic version, transactions protect the return path to the caller, and limit the amount of damage an at-

tacker can do with techniques such as ROP by disallowing any I/O, limiting the length of the intervention,

and rolling back all malicious updates on abort. Furthermore, the authors use the lock value matching

(transition free → taken → free) in HLE to implement labelling so that caller and callee need to agree

on an ID for the call and return points.
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On the side of the attackers, HTM can be used as a fast way to perform side-channel attacks on

address-space-layout randomisation. Jang, et al, present such an attack using the timing of transaction

aborts as a way to distinguish between kernel addresses that are mapped (but illegal to access from user

space), and those that are unmapped [357]. Using HTM, their attack can be executed entirely in user-

space, and is much faster and less noisy than comparable techniques actually causing exceptions in the

OS.

2.4.3 Language Support

Adding transactional memory support to programming languages is a significant research question. The

problem and solution space spans several dimensions:

Programming Language manged languages that are either interpreted or JIT-compiled generally permit

more opportunity for unsound / incomplete optimisations ensuring correctness at runtime; their

de-emphasis or outright lack of pointers makes it possible to perform more operations “under the

hood”; unmanaged languages generally cannot rely on type-safe memory, runtime instrumentation

support, or garbage collection

Language and Compiler Support extending languages and compilers to understand transactions gen-

erally unlocks cleaner semantics and easier code, and can also unlock optimisation options in the

compiler that take into account the specifics of transactions; library-based designs, however, allow

much faster prototyping and do not require detailed knowledge of and modifications to language

semantics and compiler internals

Visility of TM in many cases, especially in interpreted high-level languages, TM can be used in the actual

language implementation itself, without being visible to the programmer

Java With its detailed memory model, built-in supports for concurrency, and a familiar, imperative

syntax, Java has been subject to significant work with respect to transactional memory. Some of the

first software TMs were build in / for Java. Harris and Fraser propose a low-level load / store TM

interface directly to the programmer; while Herlihy, et al, use a TMObject indirection wrapper class

that requires explicit opening of objects for read / write [66, 68]. Later, Herlihy, et al, refine their

model to automatically wrap existing classes / objects into their transactional counterparts through a

transactional factory; similarly, they implement transactions as continuations fed into a transactional
execution core [112] – extending significantly what can be achieved without changes to the compiler /

runtime.

Adl-Tabatabai, et al, however, show that with language and compiler support, the programming model

becomes very easy to use and the awareness of the compiler and JIT can significantly reduce the over-

heads associated with STM [95]. They extend the Java language with a atomic { ...} keyword, add

markers for the transaction boundaries, instrument loads / stores, and perform aggressive optimisations:

hoisting open operations out of loops, subsume read under write opens, and inline the fast-path of the

read / write TM barriers. Furthermore, drop instrumentation for immutable and transaction-local vari-

ables. As a result, they show overheads only in the 20% range even for memory intensive data structure

benchmarks. They perform these operations in their production-level Intel Java environment and the

resulting tools are not available.

With further optimisations, Shpeisman, et al, later even manage to add strong isolation to that system:

they add barriers also for non-transactional accesses and perform extensive hybrid analysis on which

objects remain thread private, and which are never accessed from both transactions and non-transactional
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code [146]. For the much improved stronger behaviour of the resulting system, they manage to keep

overheads below 40%.

Finally, Korland,et al, propose a hybrid that does not require modifications to the compiler or JIT, does

not require programmer annotation of every object / memory access, and allows simple replacement of

the underlying TM implementation [226]. Their tool, called Deuce dynamically instruments Java byte

code at class load time and adds callbacks for transaction start / commit, and for every load / store.

Their flexible approach does, however, cause significantly higher overheads than those reported by Adl-

Tabatabai, Shpeisman, et all. They make their tool available as part of the VELOX TM Stack5.

More recently, Zhang, et al, revisit STMs for Java and propose a strongly isolating with visible readers,

undo logging, and low overheads [347]. With careful tuning of the used locks (using biased locks), the

authors achieve low overheads (30% - 70%), despite also instrumenting non-transactional code; which

is significantly lower than that of Deuce, and comparable to the Intel Java STM. Despite supporting

visible readers (and better progress guarantees), transactions are not opaque because of the lazy read set

validation.

Haskell Given its strong functional, side-effect free properties, Haskell requires annotations for shared

memory accesses already. Harris adds support for STMs to the language and proposes several higher-level

TM language features, such as orElse and retry. Subsequent work by Perfumo, et al, created Haskell

TM benchmarks and characterised their working set sizes and other behaviour [145, 176]; they find that

the serialised commit phases is one of the contributing factors for limited scalability. The authors further

propose an early release primitive for higher performance [144].

C / C++ Dalessandro, et al, use C++’s advanced type and meta-programming mechanisms to provide

a cleaner interface to their library STM [149]. Using a smart pointer pattern, they simplify the interface

significantly, reduce clutter, and make the interface much safer to use. However, after porting a larger

application (Delauny triangulation mentioned earlier), the need for accessors, and lack of optimisation,

they are advocating for for full language and compiler support.

Similarly to their significant efforts in Java, Intel’s Wang, et al, integrate TM into their production-level

icc C / C++ compiler [132]. They observe that adding such support to unmanaged languages is much

harder than their companion effort for Java; mainly because of lack of safety, run-time inspection, and

garbage collection. Their optimisations largely resemble those of Java: redundant barrier elimination,

fast path inlining, and register snapshotting optimisations. For simple data structure tests (the worst

case), they achieve overheads of about 60%, and reduce those in workloads that perform computation,

for example to 6.4% in SPLASH2. Wang, et al, use pragmas for code blocks and functions to mark them as

transactional and subsequently generate two versions that can be called inside and outside of transactions

respectively.

Mirroring the situation in Java, Felber, et al, add a “transactifying” pass to the modular LLVM frame-

work and use that to add transactional memory to C and C++ [150]. They add calls to an STM library

for loads / stores inside transactions as a separate pass after optimisations have already removed redun-

dant accesses; and can also run optimisations again to inline the fast paths of those instrumentations by

performing whole program optimisation across the application and the TM library. Their annotation tools

Tanger and Tarifa are available as open-source as part of the DTMC suite6.

Instead of annotating entire functions, Crowl, et al, argue for a simpler programmer interface: they

suggest simply prefixing a (compound) statement with transaction should turn the entire code trans-

actional, rather than relying on the programmer to provide function annotations which they argue is

5https://github.com/DeuceSTM/DeuceSTM
6https://github.com/basicthinker/PTMC

https://github.com/DeuceSTM/DeuceSTM
https://github.com/basicthinker/PTMC
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too tedious. They also explore the tricky behaviour of exceptions that occur inside of transactions, and

suggest privatisation-safe weak isolation, rather than strong isolation.

Yoo, et al, investigate larger applications on top of STMs and find that especially with STMs, the

overheads of automatic instrumentation (as opposed to manual instrumentation) can be as high as 10x

for some workloads (genome in STAMP) [174]. With careful hash table design (false conflicts are a

significant problem); filtering of thread private data, and local variables; annotating non-privatising

transactions; and even replacing short transactions with a global lock can improve performance of STMs

significantly. They authors also argue for compiler support for these techniques and for mechanically

creating transactional copies of code.

Invisible Usage of TM Instead of explicit language extensions, or a library interface, TM can be used

in the infrastructure of a programming language system. Several publications elide the global interpreter
lock (GIL) in popular interpreted programming languages such as Python and Ruby.

Riley and Zilles modify the PyPy Python interpreter and execute it on a behavioural VTM full-system

model to elide the GIL that synchronises access to the internal structures when multiple threads exist

in the application [110]. They also add higher-level primitives such as pause, compensation callback

hooks, retry, and alert-on-update to the HTM, and use these for example to also elide locks held by the

application. In order to get scalability, the authors need to undo several optimisations that are helpful

when executing with mutual exclusion, but needlessly induce conflicts when used in transactions. Several

fields that are logically per-thread, are held in single global variables and updated on “thread switch”.

Finally, the authors propose an interesting way of dealing with system calls inside transactions: they abort

the transaction, but on the retry, push the system call to the commit hook. If the result of the system call

is needed earlier, the transaction will abort. Due to the behavioural simulator, Riley and Zilles do not

present performance data, but show transaction characteristics for several workloads.

The reference implementation for Python is not PyPy, but instead CPython. Several authors inves-

tigate GIL elision for that interpreter, as well: Blundell, et al, use it as the “poster child” workload for

their Retcon approach that allows transactions to defer arithmetic operations in HW [236]. Instead of

causing WaW conflicts, the authors buffer and subsequently aggregate operations on detected memory

locations, and proxy the information locally. Conditional branches that depend on such proxy data are

predicted and the mathematical relation is added to a log that is checked at transaction commit. In the

analysis, CPython is the workload that benefits the most from this rather invasive technique, because it

heavily relies on reference counting that increments and decrements the reference count of objects also

for readers thereby destroying all parallelism for readers of said object. The authors evaluate their idea

in simulation and after similar code restructuring to Riley and Zilles, and with their technique to permit

concurrent reference counting improve the workload from no scaling to almost linear scaling (25x on 32

cores).

Tabba uses Rock prototype hardware and also attempts to elide the GIL in CPython [233]. In addition

to the code restructurings earlier, he tweaks the lock (elision) granularity: typically, the GIL is held for

multiple consecutive Python instructions (100 by default), but that can cause transactional overflow,

so Tabba conservatively only runs a single instruction per transaction. After essentially switching off

reference counting, he achieves good scalability for a shared-nothing application with multiple threads.

Finally, Odeira, et al, build upon this body of work, but can rely on commercial HTM support (they

evaluate Intel’s Haswell Xeon with TSX, and IBM zEC12 with HTM support). Instead of Python with

reference counting, they elide the GIL in Ruby which has a mark-sweep garbage collector that permits

concurrent readers [322]. Thanks to hardware support, they are also able to run larger workloads in the

improved Ruby interpreter. In addition to the now “typical” code modifications, and similar to Tabba’s

earlier work, the authors perform adaptive transaction size control: when the abort rate of a transaction
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exceeds a specific threshold, it will execute fewer Ruby instructions before committing. Other surprising

sources for aborts are calls into the garbage collector that of course cannot scan large regions of memory

while running inside a transaction, and shared caches that are used for accelerating name lookups, and

then get updated on a miss causing conflicts.

Simple lock elision of application locks is, of course, the other big “invisible” use case of TM. Azul

originally built their own HTM to elide Java’s monitors and synchronized blocks [199]; in the meantime,

Hotspot, Oracle’s default JVM, has acquired support for using Intel TSX to the same effect [315, 324]. In

the C and C++ world, the Pthread Mutex in the standard C library is the synchronisation “staple”; and

also got support for lock elision with Intel TSX [272, 318].

In the course of my thesis, I have added support for ASF to the same code base 7, and my colleague

Martin Pohlack experimented with Python (unpublished). We have also published on semi-transparent
lock elision that replaces the lock implementation at load time (through library preloading), and performs

lock elision with ASF, and in cases of failure, reverts to calling the original locking functions [254]. Finally,

in the VELOX project, we have evaluated the DTMC compiler framework with TinySTM and ASF for HTM

support [210], and added support for transactional memory to GCC.

2.4.4 Benchmark Suites

Several benchmark suites exist that wrap various algorithms and smaller benchmarks into a larger easy

to use set.

Guerraoui, et al, were the first to release STMBench7, a TM benchmark that is derived from a database

benchmark [140].

Arguably the most popular TM benchmark suite is STAMP, released by Minh, et al, in 2008 [166].

STAMP is is used in many transactional memory publications; and contains a variety of applications.

These applications exist both in a hand-instrumented STM version that marks only the critical memory

accesses in each transaction in order to reduce the impact of the overheads of STMs; and a HTM version

that simply demarcates the transactions and has all accesses be hardware transactional.

Ruan, et al, review STAMP and the criticism it has received, and repair and optimise several several

aspects of it [326].

Eigenbench, by Hong, et al, abstracts away the actual algorithmic content of transactions, and instead

measures several orthogonal characteristics of them [225]. These characteristics include transaction

length, frequency, sizes, and concurrency; and are then used to synthesise transactions that are then

replayed into a transactional memory implementation under test. The authors show that they can mea-

sure STAMP transactions and achieve similar resulting performance characteristics as running the full

application.

Finally, RMS-TM is a benchmark suite by Kestor, et al, and focusses on different application classes,

namely recognition, mining, and synthesis [251].

2.4.5 Application Studies

Investigating larger applications is important, because it lifts transactional memory research from the

Petri dish into the realm of real code; with unclean patterns and optimisations, interactions that challenge

TM semantics, and performance characteristics that allow meaningful decision making for the design of

HTM and STM solutions.

Initially, only STM support was available on native machines, HTM was only available in time-

consuming and impractical simulation, and compiler support was lacking; with the recent (since 2014)

7https://bitbucket.org/stephand/hotspot-asfsle

https://bitbucket.org/stephand/hotspot-asfsle
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availability of HTM hardware, compiler toolchains, this area has recently picked up a lot of activity again.

Dice, et al, experiment with an HTM simulator and investigate RB-trees, n-ary CAS, and lock elision in

C++ STL and libc [184]. They find that debugging (for correctness and performance) with HTM is hard,

and several interesting interactions and observations are wiped away in the rollback at transaction abort.

One interesting realisation is that JITting can have interesting interactions: if the code is not JITted, the

interpreter is likely to cause a transaction abort, undoing the statistics counter that tracks how often a

sequence of code is executed.

Click presents on Azul’s experience with Java workloads and finds that especially financial modelling

applications scale well as they are mostly data parallel, while web-tier application servers often require

more tuning to scale to around 50 cores [199]. Click observes that the heuristics for eliding the right locks

are hard, as uncontended locks can have lower overheads than uncontended transactions. He points to

typical TM unfriendly idioms, such as element counters for data structures, and performance counters.

These can be rewritten easily, but have different semantics as a result.

Quake The game Quake has been looked at in various publications: in a first approach, Zyukyarov, et al,

convert a Quake server with fine-grained locks to using transactions [206]. They observe that especially

the hierarchical spatial locking in the BSP tree that contains the level and the entities becomes much

simpler. They also find, however, cases of non-block structured lock usage that require complex code

motion to be transformed into transactions. Finally, they find that several functions need annotations for

being excluded from the TM mechanism, manually delay I/O (often debug print out), and find issues

with the Intel STM C++prototype compiler. In their evaluation, they show that transactions do scale,

but observe a 4x - 5x overhead over locks.

The second paper by the same authors, Gajinov, et al, starts with a sequential Quake game server

and then uses transactions to parallelise it; again using the Intel C++ STM compiler [202]. As a result,

the authors create only eight unique transactions, while the fine-grained version had 58. With ten man-

months of work, they still suffer from overheads of 3x - 6x compared to locks, depending on the player

count; and find that game physics only accounts for a small fraction of the run time and the application

spends about 85% of time inside transactions. This a strong contrast to the overheads observed in [132],

but can be explained by the fact that SPLASH-2 (the application suite used for benchmarking there)

workloads spend significant less time in critical sections (max. radiosity with 22%, geomean 2.6%).

Figure 2.6(top) shows the performance of the different Quake solutions. The authors invent a progress

meter for aborted transactions, called reach points which effectively are breadcrumbs implemented by

non-transactionally incrementing a set of counters corresponding to lines passed in a transaction.

Finally, Lupei, et al, only extract the spatial game tree from Quake and use it to run synthetic game

scenarios with a high number of agents (600 - 2k), and manually instrument the data structure with

their own libTM STM library [227]. Interestingly, in their use case, game physics plays an important

part in the result: with game physics enabled, the STM overheads are amortised by the better scalability

compared to a fine-grained hierarchical approach at two threads; without physics they too incur a roughly

4x overhead over the fine-grained locking scheme; see Figure 2.6(middle, bottom).

Testing GCC TM Support Skyrme and Rodriguez port the Lua interpreter with the luaproc package

from PThread primitives to using GCC’s TM support (with an STM backend)[298]. Luaproc is a differ-

ent case to the programming languages discussed in more detail, below, as it does not share memory

between Lua co-routines, and also does not employ a single interpreter lock. Instead, programmers have

to explicitly send messages between concurrent processes. The authors find that half of the locks convert

easily to transactions along the obvious transformation lock(L); <stmt>; unlock(L);→ tm_atomic {

<stmt>; }. There are, however, significant challenges when converting condition variables, especially
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around the synchronous channels used for communication in the application. Skyrme and Rodriguez use

relaxed transactions that can resort to acquirnig a global lock in case of unsafe transaction content. Their

resulting prototype with STM is about 2x slower than the locking version.

In contrast to that, Vyas, Ruan, et al, experiment with memcached and report their findings of re-

placing PThread-based synchronisation with GCC’s TM support [327]. Similar to Skyrme and Rodriguez,

they find that some locks convert easily, while several patterns require code transformations: conditional

synchronisation, and multiple and non-local unlock operations. In contrast to the Lua work, the authors

here use the stricter atomic mode for their transactions, because they illustrate that the relaxed mode

can easily stumble over an unsafe construct and then acquire the global lock. Very unfortunate examples

of this are for example nested PThread lock acquisitions (even uncontended) that are marked unsafe
and force serialisation of all transactions. With the stricter tm_atomic primitives, the compiler at least

highlights the problem and subsequently forces transitive transactification for those locks as well, even

though they would have not contended. Furthermore, Vyas, Ruan, et al, deal with other unsafe opera-

tions through reimplementation of some functions, marshalling of data to thread private locations and

then marking the original functions as tm_pure, and postponing I/O to onCommit handlers. They finally

remove the GCC-internal reader / writer lock for atomic blocks that is there to guard them against re-

laxed blocks going non-speculative, and show performance very close to that of the original fine-grained

locking memcached.

Early Hardware Applications Dice, et al, use a Sun Rock prototype to explore data structures (double-

ended queues, work-stealing queues, scalable-non-zero indicators) and larger algorithms (memory allo-

cation, simulated annealing) with HTM support [219]. They find that their HTM makes algorithm design

very easy, and generally provides good performance; while STMs perform poorly (8x slow down). They

also find that hybrid approaches can have cascading performance pathologies, either when deciding to

switch entirely back from STM to HTM, or when requiring instrumentation on the HTM fast-path. Dice,

et al, find that transactions are generally short, and they argue against a lock fallback path, because that

would thwart composability – which can clearly be worked around by only acquiring a single global lock

for the outermost transaction. Instead, they encourage hardware providers to an HTM that should have

small transactions commit eventually, yet, admit that such specification and implementation of these

guarantees would be hard – they also ignore that composition may very well be problematic in this case,

too, as that would increase the size of transactions.

Schindewolf, et al, investigate HTM support of IBM BlueGene/Q and find that none of the existing

TM benchmarks are structured similar to other HPC applications [280]. They create a new benchmark,

Clomp-TM, write a new Monte-Carlo simulation application, and convert Parsec’s fluidanimate to run on

BG/Q HTM. Overall, they find that transaction overheads are high; needing at least 10 - 20 memory

accesses per transaction to ammortise. For the applications, they observe that the simple TM scales better

than a coarse lock, while fine-grained locking still remains slightly faster than even a fully tuned HTM

system.

Tuning Diegues and Romano further investigate into the tuning of HTM, and develop an adaptive learn-

ing mechanism that tunes the retry policy for Intel’s RTM [312, 336]. They gain about 60% performance

over the best static policy, especially in cases where the latter fails to observe changes of topology (going

from one thread per core to multi-threading), or workload (different transaction types in the same work-

load). They also observe that more complex fallback backs (SGL vs NORec) often perform worse, but do

offer additional performance when transactions consistently are too large for the HTM.

Dice, et al, observe similar results, and additionally offer a software optimistic (seqlock-based) code

path together with a tuning mechanism [310]. They show that for two workloads (hashmap, and an in-



46 CHAPTER 2. OVERVIEW AND RELATED-WORK

memory database), the adaptive policy can extract more performance than any of the static choices. An

interesting case is when for the same data structure the usage changes so that transactions are too large

to fit into the HTM resources. Their approach quickly reacts and does not perform wasteful transactional

attempts.

Usui, et al, also did similar work but before HTM support was available to the public; instead, they

perform similar statistics collection for locks and switch between acquiring the lock and running the

critical section as a software transaction [235]. They show that their system correctly switches to the

STM when the high overheads are amortised by offering more scalability than than the single coarse

lock.

Didona, et al, merge multiple STM, HyTM, and HTM back-ends behind the same transactional front-

end (for GCC), and implement a recommendation system that learns and predicts the best algorithm to

use [355]. They show that their system learns quickly and with low overhead (3%), and tracks the best

performing solution per workload precisely.

Instead of switching the TM / concurrency control mechanism, another aspect is concurrency con-

trol; in many cases, increasing the number of concurrent threads attempting a transaction can lower the

overall throughput by causing additional contention. While several precise techniques for scheduling

of hardware transactions have been proposed [167, 187], current generation best-effort HTMs do not

employ these techniques and generally give very little information about conflict reasons. Diegues, et al,

show that with a probabilistic approach of announcing transactions before they are started and record-

ing matrices of concurrent transactions when aborting / committing, they can build information about

which transactions to avoid running together [312]. Using a pre-transaction fine-grained lock for these

transactions, they show up to 60% improvement of throughput, especially in high contention scenarios

under SMT.

Brown, et al, use a similar technique of controlling concurrency for systems with multiple sockets; they

find that spreading execution to the other socket can often have a significant performance impact [354].

Instead of controlling transaction pairs, they monitor execution and if necessary, switch through sock-

ets in a round-robin fashion, and let only the designated socket execute transactions (similar to cohort

locks [261]).

Fresh Applications One new class of applications are in-memory databases. These store their data sets

not on disks (either spinning HDDs, or SSDs), but instead in main memory. Interestingly, this means

that techniques for concurrency control such as two phase locking (2PC) do not work as well as before,

because their costs are not hidden behind the media access costs anymore. Therefore, multiple groups

are experimenting with HTM as a concurrency control mechanism for their in-memory DB systems.

Wang, et al, use Intel TSX twice in their system: once in the underlying memory store accelerating a

B+ tree and hash table, and then also as the validation and commit engine for their higher-level transac-

tion layer [329]. They use a technique similar to boosting [181] where the respective data structures are

thread safe, and the higher-level consistency is ensured via proxies. Their high-level transaction system

logs reads (results of data structure query operations) and buffers writes in software, and then uses HTM

to validate the results and perform the write-back of the higher-level transaction. A similar method was

used for Hybrid TMs by Matveev and Shavit in [305]. The authors use higher level sequence numbers at-

tached to the data store as the proxies for conflict detection. The resulting in-memory data base performs

twice as fast as state of the art fine-grained locking versions.

In parallel with Wang, et al, Leis, et al, also rework an existing in-memory database to use transac-

tions [319]. Their approach is very clearly described and very similar to a visible reader version of Riegel,

et al, LSA / TinySTM [103, 160]. Again, they do lift these operations, however, from normal memory to

be performed in the actual memory store. They use HTM to perform the tracking / update of the read
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Figure 2.7: In-memory database performance with scalability of different synchronisation mechanisms
(left) and varying number of partition-crossing transactions (right). From [319].

/ write timestamps per element, and also for concurrency control in the backend of the memory store.

Interestingly, Leis, et al, use the HLE versions of Intel’s TSX, rather than manually controlling retry of

the smaller transactions. They show that their approach scales as well as a static optimal partitioning

approach (and much better than 2PC and a single lock approach), while maintaining performance when

the partitioning scheme does not align well with the access pattern; see Figure 2.7.

Finally, Odaira and Nakaike revisit the earlier research area of thread-level speculation (TLS), and

try to see if current best-effort HTM solutions without dedicated TLS support can be useful [323]. They

manually instrument promising workloads from the SPECCPU 2006 suite, and get a best-case speedup of

11%. In most cases, however, they find that simple best-effort HTM is not suitable for performing TLS.

Their main source of slow-downs is not the lack of ordered transaction commits (they emulate that with

a counter), but instead loop-carried dependencies that can be forwarded in TLS, but cause aborts in the

simple best-effort HTM case. On top of that, they also find that conflict detection granularity on c ache

lines needs careful splitting of the loop iterations in order to not cause false conflicts between parallel

executions of a loop body.

2.4.6 Transactions and Operating Systems

Transactions Inside Operating Systems In two contrasting publications, Rossbach, Hofman, et al,

use the MetaTM hardware transactional memory proposal [124] inside the Linux Kernel: TxLinux is an
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adaptation of Linux 2.6.16 which already employs fine-grained locking as a baseline [168]. The authors

do not just blindly add transactions on some places, but observe and tackle typical deployment challenges
of HTM in complex software code bases. One example is the interaction with spinlocks: they don’t just

need to be adapted for elision, but they also need to be nesting aware: a spinlock inside a transaction

should not actually acquire the lock variable, even if the decision would have been for that lock to

not elide. Otherwise, there will be unnecessary WAW conflicts with other transactions on the writes to

the nested lock location. The authors thus extend all spinlocks to be aware of whether they are being

executed inside a transactional context and if so, they do not perform the lock acquisition.

Rossbach, et al, face several idioms that are very challenging to support on any best-effort HTM

implementation: locks that are acquired on one CPU and then released on another, and flat nesting

which can turn short nested critical sections into much longer ones, as the working set of the nested

transaction is checked for conflicts of the duration of the outer, longer transaction.

Furthermore, the authors use MetaTM’s suspend / resume mechanisms so that applications can per-

form short system calls or exceptions. Also, MetaTM itself is interesting, as it restarts transactions with a

“restart” code and lets applications explicitly abort, rather than making the abort and restart explicit.

The results for the TxLinux work are mixed: spending 5 man-years, the authors converted about 30%

of the locks manually, added 5.5k and modified 2k LoC; and then switched to a mechanised routine. With

various benchmarks, especially stressing the file system, the authors achieve speedups of about 5% on 16

cores, while losing 1% of performance on 32 cores. Reduced lock contention provides the speedup in the

former, while the aborts cause a net slow-down in the latter case.

Overall, due to the fine-grained locking base line, the kernel spends very little time actually inside

critical sections / transactions. The overall speedup is therefore limited. In their own words:

Transactional memory is supposed to make the programmer’s life easier, but by allowing trans-

actions to cooperate with locks, it appears to be making the programmer’s life more difficult.

However, spinlocks can be converted to cx_optimistic with little effort. The resultant code

should be easier to maintain because a cxspinlock can be held for longer code regions than a

spinlock without compromising performance. Cxspinlocks that are rarely held exclusive can

be merged to use smaller numbers of lock variables, further simplifying maintenance. Our

experience with TxLinux has convinced us that some data structures can be greatly simpli-

fied with transactional memory. However, no synchronization primitive is so powerful that it

makes high-performance parallel programming easy.

Contrasting this experience is the retrospective work by Hofmann, et al, where the authors take the

Linux 2.4 kernel which still largely relies on the Big Kernel Lock and use MetaTM to accelerate that much

simpler code base [190]. The authors show that even without expensive virtualized TM support, an

appropriately designed best-effort HTM can accelerate a significant fraction (they report > 99%) of the

critical sections in the Linux 2.4 kernel. Using the lock as a fallback path, and committing a transaction

(or transactional prefix) when they encounter a nested lock that is known to be hard / impossible to

elide, they show speedups of up to 40% for filesystem / compile workloads, bringing the much simpler

Linux 2.4 big kernel lock to similar performance levels as the much more complex8 fine-grained locking

Linux 2.6 (and beyond) designs.

Invoking the OS from application-level transactions In addition to direct usage of TM inside the OS,

another source of TM and OS interactions is applications invoking OS system calls inside of a user-level

transaction. In both STMs, and HTMs, these invocations are problematic. With STM, the instrumentation

with read / write barriers stops at the kernel level, and the kernel might not read the latest values, or
8That can introduce subtle bugs such as https://dirtycow.ninja/.

https://dirtycow.ninja/
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cause silent conflicts. In HTMs, supporting system calls either needs support for cross-protection-level

aborts, or a facility for suspend / resume. Even on a conceptual level, the behaviour of system calls

can be hard to roll back, as they can involve I/O or other non-retractable operations. Baugh and Zilles

investigate system calls in critical sections of Firefox and MySQL and classify their behaviour as proxies

for transactions [137]. They make three important discoveries: (1) many system calls can be easily

compensated for on abort, (2) syscalls often happen in long transactions, (3) in a significant minority of

cases, system calls happen early in transactions. In summary, this suggests that supporting system calls

inside transactions should not need parallelism restraining fallback mechanisms, if possible. However,

they also find that system calls are rare (< 1% of transactions) – unsurprisingly, all but one commercial

HTM proposals today do not support system calls inside transactions.

Continuing from Baugh and Zilles’ experience, Porter, et al, describe how to make the OS system call

interface transactional [194]. Instead of relying on the programmer or library to classify system calls and

provide compensation actions, Porter, et al, create the concept of an OS API transaction: adding sys_-

txbegin, sys_txcommit, and sys_txabort system calls, applications can treat a sequence of syscalls as an

atomic unit. Instead of abstractly performing locking, or plain compensation actions, the authors actually

instrument the write accesses in the kernel and perform lazy versioning. This comes at a significant cost

(the authors report a 4x slowdown for the system calls inside transactions) because it is implemented

through a per-object copy-on-write mechanism. It does, however, simplify application development and

also fundamentally solves cross-system call atomicity issues, especially around file systems.

2.5 Background

In Section 2.5.1, I will describe the related work of modern CPU architecture, and in Section 2.5.2 show

existing work on how current and future CPU designs can be evaluated through simulation.

2.5.1 CPU Architecture and Micro-Architecture

Microprocessors came to light commercially with the Intel 4004 in 1971, with 2300 transistors, manu-

factured in a 10 µm process, running at 740kHz. Today (2017), a typical example CPU such as the AMD

Ryzen 1800X is comprised of 4.8 billion transistors, manufactured in a 14 nm process, and can run at up

to 4.0 GHz, and also can execute 16 threads in parallel.

Generic CPU design Obviously, in 46 years, many advances in CPU design, and manufacturing were

made – many more than there is space for in this section. Standard text books present the key develop-

ment steps and are continuously updated [123]. Key techniques of CPU designs that are optimised for

performance are:

Pipelining splits up the actions of instructions into multiple stages so that each stage becomes shorter,

allowing higher clock speed, and multiple instructions can be executed at different stages [14, 20,

60]

Super-scalar execution can execute more than one instruction at the same time, making use of instruction-

level parallelism (ILP) and is often combined with pipelining [23]

Out-of-order execution furthermore allows instructions to be executed independently of program order,

extracting more ILP and memory-level parallelism (MLP) [1, 10, 38]

Caches store frequently used data and instructions closer to the execution units and reduce access la-

tency and increase bandwidth [12]
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Vector architectures exploit data-level parallelism and perform the same (arithmetic) operations on all

elements of a vector [2, 13, 43, 161, 376]

Multi-core CPUs extract higher-level (task / process) parallelism and allow multiple application pro-

cesses or threads to execute at the same time on their own cores, but inside the same system (disk,

memory, I/O) [42, 75]

Speculation predicts application and CPU behaviour and allows to shorten the critical path and unlock-

ing more parallelism [37, 50, 77]

Branch prediction is a special type of speculation that predicts whether conditional branches are taken

or not, and where indirect branches will point to. That reduces fetch / decode latency, and unlocks

a deeper instruction window for out-of-order execution [26, 56, 63]

In addition to extending the structure of CPUs, the instruction set ISA of CPUs is constantly evolving

to give applications access to performance enhancing features, and also to add other features, such as

security. Currently, two ISAs are dominating the market, Intel and AMD’s x86 ISA and its extensions [257,

367], and the ARM ISA [351].

Synchronisation The most relevant aspect of multi-core CPUs and ISAs is that of synchronisation. Paral-

lelism and the ability to find and exploit it are great as they make things go fast. In some cases, however,

we do want to very carefully control the parallel execution, particularly, when coordinating access to a

single shared resource, such as the screen, disk, or when waiting for several parallel computations to end

so that their results can be combined.

All modern ISAs provide at least one primitive for synchronisation with infinite consensus num-

ber [28]. On x86, compare-and-swap is offered (cmpxchg), and IBM Power and Arm provide equally

strong load-linked / store-conditional instruction pairs ldarx / stdcx and ldrex / strex, accord-

ingly [18, 257, 351, 353, 367]. Further extensions are double-wide CAS (for timestamps and pointers to

avoid the ABA problem [41]) as cmpxchg8b, cmpxchg16b, and many other atomic load-op-store instruc-

tions on x86. The Arm ISA recently also got support for atomic load-op-stores in the Armv8.1-A version

of the ISA [352].

Even through CAS and LL/SC have infinite consensus number and can emulate all other synchroni-

sation primitives, several extensions to it have been proposed: double compare-and-swap instructions

(DCAS) operate on two independent data items. The Motorola 68k processor provided such an instruc-

tion and it has been used in OS kernels [30]. Knight proposes a TM-lite proposal with a load / compute

prefix and a single store to shared memory [16].

A good recent summary article was written by David, et al, evaluating different synchronisation prim-

itives and how they perform [288]. They compare a variety of synchronisation primitives on a variety

of different cache coherent systems. Generally, synchronisation performance in focussed testing depends

very much on system topology decisions and choices made in the cache hierarchy. For example, communi-

cation within the same socket is usually faster, in some systems, however, home nodes are used to provide

a central ordering point. These points can cause unnecessary round-trips for messages despite the data

living on the same socket. Furthermore, simple locks seem to work well in single socket systems, while

more complex locks (hierarchical, MCS, ticket) perform better in systems with more complex topologies.

2.5.2 Simulation

Manufacturing CPUs is expensive, therefore, new features such as Transactional Memory are first im-

plemented in simulators that model key aspects of future CPUs and systems so that performance and

operational studies can be performed ahead of manufacturing time.
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Similar to the complex CPU microarchitectures that are modelled, a wide variety of simulators has

been proposed in academia and commercial offerings. Furthermore, many CPU manufacturers use their

own in-house simulators that are sometimes fully home-grown, and sometimes extend other public sim-

ulators.

Broadly speaking, there are four types of abstractions for simulators exist:

Behavioural or ISA-level simulators execute instructions and ensure that all instructions behave as if

they were executed on a real CPU. They are useful for testing new ISA extensions and usually

are used interactively. They only provide a crude approximation of temporal (IPC) and micro-

architectural behaviour (such as branch predictors, caches, pipelines). They main goal is typically

to provide comprehensive instruction emulation, and high speed. Well-known examples are Sim-

ics [61], and QEMU [81]. Slowdowns typically are on the order of 10x compared to native execu-

tion.

Cycle-level simulators allow performance analysis for new CPU features. As such, they model key

micro-architecture features, such as pipeline structures, branch predictors, caches and memory.

Sometimes, these simulators also provide a behavioural model in execution driven simulation, and in

other cases, they are trace-driven or merged directly into the execution binary for example through

binary translation [162, 295]. Due to the added modelling complexity, cycle-level simulators are

significantly slower than ISA-level simulators, and typical slowdowns are 1000x−100000x. Simula-

tion times can be reduced by limiting focus to the most interesting time periods [69, 361], and the

relevant subsystems [93].

Abstract or analytical simulators do not execute instruction by instruction, but instead abstract away

low-level details. Ranging from models that inspect the instruction dependency graph to estimate

impacts of memory stalls [356], simple stall models [242], parallel phase synchronisation mod-

els [344, 382], all the way to fully analytical regression models [57, 76, 78, 83, 96, 97, 99, 100,

264], all of these can significantly reduce simulation time and allow faster design-space exploration
– sometimes even with mathematical help such as differentiable abstract models and gradient de-

scent.

For my work, behavioural and cycle-level simulators are the most appropriate as we want to study

both the ISA-level behaviour, micro-architectural behaviour, and performance in more detail.

Behavioural Simulators Simics [61] is a flexible, extensible behavioural simulator that simulates mul-

tiple ISAs, including x86-64 and ARM, and executes full system stacks including the kernels of Linux and

Windows. In addition to running applications and operating systems on an ISA level, for example for

software porting, Simics has a big API that can hook timing simulation modules for the CPU and devices

to the behavioural engine. One interesting aspect is that Simics supports out-of-order execution to drive

such timing simulators and can execute instructions with infinite reordering windows and can undo spec-

ulation in case of exceptions. Simics is closed-source software, under a proprietary license. Originally

(with Virtutech), academic free licenses were available, but these seem to not exist anymore. Simics

is often used to drive the behaviour and system IP of academic simulators that focus on the memory

subsystem or add a more detailed timing core model. Simics achieves about 5 - 10 MIPS on a 933 MHz

Pentium-III host; roughly a 100x slow-down, without additional analysis plugins.

QEMU [81] is an open-source simulator that uses binary translation to provide execution of both

full-system and application-only execution of different ISAs on a variety of host systems. In addition to

instruction emulation, QEMU also provides emulation of devices. In that capacity, QEMU is frequently
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used for virtualisation with KVM [125]. Because of the focus on speed, QEMU does not provide explicit

hooks for additional timing simulation simulators.

PIN [92] is a proprietary dynamic-binary translation tool that executes applications and allows “mix-

ing” in instrumentation. Instead of emulating instructions, PIN rewrites the existing instruction binary

stream, while adding code that provides additional (analysis) functionality, such as calls to cache models,

or data flow tracking. PIN executes x86 on x86 only, and depending on the amount of additional instru-

mentation, the overheads can be very small. Other DBT tools are: DynamoRIO [59], Valgrind [128],

fastBT [230], and HDTrans [131].

Several other hardware vendors have provided simulators / emulators similar to QEMU and PIN with

focus of faithfully modelling the ISA and system models. AMD’s SimNow [260] is used for bringing up

new operating system kernels and applications, for example it has been used to port Linux to x86-64

before hardware was available [79].

ARM provides FastModels [369] which similarly is used for platform, OS, and application bring-up.

Cycle-level Simulators Several families of cycle-level simulators exist: gem5 [241] is a combination

of the memory subsystem simulator of the GEMS [93] simulator (Ruby) that provides a detailed, con-

figurable memory hierarchy with a lot of detail for evaluation cache coherence protocols, and the M5

simulator [115] which provides the CPU models, easy composability of models, and event-based timing

simulation. Gem5 is a full-system simulator and most prominently models both x86 and ARM ISAs (fur-

ther ISAs are supported, but deprecated), provides a modular system composition with different types of

cores, system components, and various abstraction / speed levels. The core of gem5 is an event-driven

simulator which fast-forwards simulation models to when events happen.

PTLsim [135], and its descendant Marss86 [253] focus on out-of-order cores and the x86 ISA. Both

provide ways to fast-forward simulation to regions of interest and perform full-system simulation. While

PTLsim uses the Xen hypervisor [72] as a hardware abstraction layer and supports switching between

native execution and simulation, Marss86 relies on QEMU as the fast-forward architectural execution

model and switches between QEMU and the detailed simulation core. Marss86 furthermore adds a much

more detailed cache hierarchy and coherence protocol over the fully-private cache hierarchy in PTLsim.

Graphite [229] uses a direct execution mechanism that runs applications through a behavioural sim-

ulator and collects stats about executed code and feeds those asynchronously to a cycle-level timing

model [46]. Over the original work, Graphite focusses on high core counts, user-space only simulation,

and can distribute simulation across many physical host machines with lax timing synchronisation. Dis-

tribution, lax synchronisation, abstraction and the use of analytical models make Graphite a good tool

to inspect large-scale scalability of applications, less so for understanding detailed pipeline and cache

interactions.

Sniper [242] extends the concepts of Graphite, but adds more detailed modelling of stall behaviour

and quickly executes non-stalling instruction windows, and discovers ILP / MLP of independent instruc-

tions if the head instruction is stalled. Sniper is implemented in the Graphite framework, but extends it

in the following areas: overall improved memory hierarchy, MSI cache snooping behaviour, better branch

prediction, and basic cost functions for thread sleep / wakeup.

More recently, ZSim [295] followed similar approaches by accelerating sequential simulation through

the use of binary translation and direct execution, a two-stage parallelisation of the simulation, and finally

a small abstraction layer to isolate the user-space only simulation from system-level specifics.

In recent related work, I have helped improve the field of simulation through: abstraction of the

core pipeline by elastic memory traces [356], providing accurate power estimation capabilities [364,

375, 379], simulating distributed systems on top of distributed systems [368], and using a novel way of

simulator cloning to deterministically model fused heterogeneous cores [378].
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For my thesis, I have extended (and maintained) both PTLsim and Marss86. I have implemented

a detailed hardware transactional memory mechanism with realistic pipeline and memory system inte-

gration, and appropriate instruction mnemonics and extensions to both ISA level and microarchitecture.

Furthermore, I have repaired and enhanced both simulators: PTLsim originally only modelled private

per-core cache hierarchies which I extended with a simple MSI coherence model; both simulators were

not modelling logic for in-order execution of loads which I repaired; finally, Marss86’s memory hierarchy

is very detailed,but suffered from deadlocks (and other smaller bugs) that I repaired in this thesis 9.

2.6 Summary

2.6.1 HTM Summary

In broad strokes, the research and development of hardware transactional memory investigated mostly

the following aspects:

Read Set Tracking, Conflict Detection and Handling Main developments are signatures [126, 134] that

allow infinitely large working sets with reduced precision, eager vs lazy conflict detection, and dif-

ferentiating between conflict detection and handling the conflict [196]. Further, several pieces

of work improve conflict resolution policies to increase throughput in high contention cases [167,

187], and delegate conflict handling to software [105, 171]. Finally, some proposals do not perform

conflict detection based on cache coherence messages, but instead use value-based validation [248,

265]. Generally, transactional conflict detection is piggy-backed on the existing coherence fabric,

especially in eager conflict detection proposals. In cases where the base-line architecture does not

provide coherent memory (e.g., in distributed systems [189, 231] or GPUs [248, 265, 291, 377]),

or when transactional conflict detection actually replaces traditional coherence, a different protocol

for explicit working set intersection between transactions is employed.

Data Versioning / Handling the Write Set Key developments in storing tentative transactional data val-

ues and the pre-transaction values are: storing either value in an out-of-band structure that can

grow in size (SW / HW log) [86] allowing unlimited capacity and context switching of transac-

tions; deciding between which version to store in the “proper” location and resulting faster commit

/ abort times; and proposals that can dynamically tune these locations and policies based on the

workload [196, 228, 282]. Generally, these are more complex as they need to coordinate multi-

step atomic memory operations in the memory system, and hold off concurrent accesses without

inducing protocol deadlocks. Other proposals store both transactional and pre-transactional values

in the same cache [293, 302].

Memory System Architecture and Commit Logic Several proposals optimise the use of directories and

use them to accelerate transaction commit without having to broadcast; especially for lazy proto-

cols that execute transactions in isolation and at the end have to perform address intersection with

other transactions [102, 138, 171, 196]. Many proposals extend the cache coherence protocol, for

example allowing “NACK” messages, timestamps to aid system-wide progress, or new states, state

transitions and request types. In addition to the protocols, conflict detection schemes require addi-

tional look-ups in other structures, and versioning may provide new sources for data and complex

data movement patterns. Effectively all industry proposals [188, 259, 270, 281, 287, 353, 367],

however, aim to keep changes to the existing protocols and structures minimal. Most do not provide

9https://bitbucket.org/stephand/marss86-asf

https://bitbucket.org/stephand/marss86-asf
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progress or capacity guarantees (except IBM z-Series [271, 296]), some provide only small trans-

actions [340], while others do not change the entire core, or L1 data cache, but instead implement

HTM entirely in an advanced L2 cache with assorted benefits and challenges [267, 281, 345]. As a

result, the behaviour of transactions can be erratic and hard to predict [201].

ISA Changes The ISA of baseline HTM looks deceptively simple: a handful of instructions (start, com-

mit, abort) are enough to implement the key features. Some authors analyse the deeper semantics

of these instructions [82, 113, 124, 171, 190], while others offer additional instructions to pause /

resume transactions, and to optimise the interplay of transactions with other synchronisation prim-

itives and system-level behaviours [124, 168]. Some proposals split out the separate mechanisms

of HTM and make them available to software separately, or rely on software to perform some func-

tionality itself [105, 119, 126, 153, 154]. Commercial HTMs offer various additional features: Intel

TSX offers hardware-lock-elision [303], IBM Power supports suspend / resume [340], while IBM

z-Series offers progress guarantees for limited transactions, and partial register checkpoints [271].

Evaluation Depth Most academic proposals evaluate their disruptive changes to the base-line architec-

ture through the use of simulators; further, they often use a very simple core model (in-order, single

IPC), and do not run a full system software stack. As a result, proposed changes are often challeng-

ing to implement under real-world constraints for system software, and CPU / memory hardware

architecture. Notable exceptions are ATLAS implementing TCC [139], parallelised TCC [138], and

EazyHTM [196].

2.6.2 Computer Architecture and Simulation

The field of computer architecture has advanced tremendously in the past four decades. Modern CPUs

provide several orders of magnitude more performance due to advancements across the entire stack from

materials to high-level architecture.

One key concept is parallelism which has been used to improve application performance through:

pipelining – shortening the work per stage, enabling higher clock frequencies,

instruction-level parallelism – executing multiple independent instructions at the same time,

memory-level parallelism – performing multiple memory operations at the same time to overlap their

stall times,

data parallelism – wide vector units performing identical operations on multiple data items in parallel,

thread-level parallelism – executing several threads or programs at the same time on multiple hardware

threads or cores.

Furthermore, speculation is used to reduce the impact of critical paths by speculating they will behave

in a specific way thereby unlocking parallelism, and rectifying the speculation in case it was incorrect. Fi-

nally, using locality, the speed of the compute units increased mostly independently from the much slower

improvements of the memory system: caches provide low-latency, high-bandwidth access to frequently

used data.

The rising complexity in CPU architecture causes rising costs for manufacturing, but at the same time

needs more careful tuning of the separate components to provide a balanced design. Simulation is widely

used in academia and industry to predict performance of specific features in both typical usage and ded-

icated corner conditions (running stress tests, performing big scalability studies). In addition, simulation

(and emulation) allow software and hardware co-design and enable software adaptation before silicon is
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available – enabling shorter time to market. In line with the complexities of the CPUs, simulators have

become more complex too. Depending on the level of detail modelled, they cause significant slow-downs

(10x - 100,000x) for the applications that are being analysed. Several techniques exist to accelerate

simulation by extracting core regions of interest, sampling, or abstracting the actual simulation step.

In this thesis, I use detailed cycle-level simulation of a modern out-of-order CPU architecture with a

realistic memory hierarchy to prototype a realistic HTM mechanism. Basically a mechanism to speculate

through critical sections and executing them in parallel so that application critical paths are reduced. One

key challenge is the coordination between the different existing parallelism and speculation mechanisms

and those that are provided / required by HTM.
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Chapter 3

Instruction-Set Architecture and High-Level
Design of HTM

3.1 Introduction

Making hardware transactional memory available in a microprocessor involves integration of the required

new instructions into the instruction set architecture (ISA) of the system where it is to be used. Before

that, however, the architecture level properties of HTM need to be specified and the required new in-

structions need to be derived. In this chapter, I will describe the key integration points, architectural

mechanisms, and desirable high-level properties of HTM on the example of my work on AMD’s Advanced

Synchronization Facility (ASF).

ASF is an experimental extension to the AMD64 instruction set [257], which in turn is the 64 bit

extension to the widely used x86 ISA. Going from the description of generic HTM primitives and archi-

tectural functionality to detailed real-world challenges when integrating with a naturally grown ISA, this

chapter will provide a summary of the elaborate architectural design process and resulting choices and

implications of the chosen design points for ASF.

ASF is the concrete example, but many trade-offs can be transferred to generally integrating best-

effort HTM (BeHTM) in other ways and in other base-line ISAs. In fact, with the manifestation of several

other industry-grade BeHTM proposals ([281, 284, 340]), the different design choices can be examined

in the “wild”.

In this chapter, I will give as much background as I can for why specific choices for ASF have made in

the way they are and explain reasoning about associated costs and concerns in an industrial setting. The

ASF design effort culminated in an official AMD experimental ISA specification document for ASF with

all instruction encodings and interactions. Since the specification has all the detail, I will only briefly

introduce the instructions and refer the reader to the “Advanced Synchronization Facility – Proposed

Architectural Specification” which I have attached in Appendix A.

In addition to providing context, summary, background, and reasoning, I will focus on changes (bug

fixes, small tweaks and adaptations) and clarifications made after the publication of the specification. I

will present major design reconsiderations and options in Chapter 6. The architectural design aspect of

ASF has also been described in the following publications:

• “Evaluation of AMD’s Advanced Synchronization Facility within a Complete Transactional Memory

Stack” at EuroSys 2010 [213]

• “The Velox Transactional Memory Stack” at IEEE Micro Journal [210]

57



58 CHAPTER 3. ISA AND HIGH-LEVEL DESIGN OF HTM

• “ASF: AMD64 Extension for Lock-free Data Structures and Transactional Memory” - in MICRO

2010 [214]

• “Implementing AMD’s Advanced Synchronization Facility in an Out-of-Order x86 Core” - in TRANS-

ACT 2010 [220]

• “Compilation of Thoughts about AMD Advanced Synchronization Facility and First-Generation Hard-

ware Transactional Memory Support” - in TRANSACT 2010 [215]

• “From Lightweight Hardware Transactional Memory to Lightweight Lock Elision” - in TRANSACT

2011 [254]

The remainder of this chapter is organised as follows: the remainder of this section will summarise

concepts required to integrate BeHTM (Sub-section 3.1.1), Section 3.2 will present the actual ISA exten-

sions, and Section 3.3 will show a simple prototype for integrating the ISA extensions into C / C++. In

Section 3.4, I will highlight incremental changes made to ASF to make it easier to use; and in Section 3.5,

I will discuss ASF’s capacity and progress guarantees. Finally, Section 3.6 will summarise this Chapter

and ISA design for BeHTMs.

3.1.1 Architectural Concepts and Functionality of HTM

Before diving into the selection and design of the actual instructions, it is useful to rehash the key high-

level concepts in transactional memory in this section, because the ISA specification needs to also talk

about properties of the high-level constructions, not just the semantics of the singular instructions.

Transactional memory groups instructions / statements into transactions that operate concurrently

on memory locations. From database transactions, transactional memory employs the atomicity feature:

either all, or no modifications made by a transaction will appear in global memory. In addition, isolation
ensures that despite concurrent execution, multiple transactions appear as if they were operating in serial

order [11]. Most literature on transactional memory merges these two concepts and the fact that trans-

actions order compatibly with their invocation times under linearisability [21] or (strict) serializability.

Due to the isolation property, transactional memory functions as an effective synchronisation mech-

anism and can be used to replace critical sections enforcing mutual exclusion [34, 58]. The atomicity

property in itself can be exploited for failure atomicity [8], and speculative compiler optimisations [127].

In implementations and architectural discussions alike, three concepts are used for efficient execution

of transactions:

Conflict detection tracks the transactional memory accesses and enforces the isolation property so that

two concurrent transactions do not form data-dependency circles;

Speculation will attempt to concurrently execute transactions assuming conflict freedom, removing a

potential sequential bottleneck of parallel code. If conflicts are detected speculation will then rectify

such situations; and finally,

Data versioning provides atomicity, by separating pre-transactional values of transactionally modified

memory locations and the new, transactional value.

One common mechanism to deal with conflicts are transactional aborts that will stop the speculative

execution of a transaction and revert all transactional modifications to their pre-transactional values. A

contention manager with associated policy will make decisions on which transaction is to be aborted and

potentially restarted.
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In transactional memory (as opposed to databases), the accessed and reasoned about objects are

memory locations, it may be possible to access them from both inside and outside transactions. To make

the distinction clear, memory accesses from inside a transaction will be named in-tx and accesses to

memory that are not (dynamically) inside a transaction will be called out-tx. In addition, accesses inside

a transaction may be marked to bypass the transactional mechanisms, a concept explored further on in

this chapter, and then are called non-tx accesses in this work.

Useful idioms for mixing in-tx and out-tx accesses to the same memory locations exist; making it nec-

essary to handle their interleaving on an architectural level: using transactional memory as a mechanism

to privatise / publish data [164], interplay of transactions with classic synchronisation primitives, such

as locks and mutexes; and finally, other unclassified (often benign data races) overlapping access pat-

terns. Strong isolation effectively specifies that memory accesses outside of transactions will be treated

as if they are encapsulated in single instruction transactions and thus participate in conflict detection

and require proper isolation. Weak isolation schemes, on the other hand, avoid the additional handling

of such accesses and thus have more subtle specifications / semantics that are outside the scope of this

thesis [165, 172].

Finally, progress marks an important system-wide architectural level property of transactions. It spec-

ifies under what characteristics of transactions (conflicts, working set sizes, durations) the system can

specify eventual successful execution for some / all transactions. Unbounded wait-free transactional sys-

tems will ensure that all (terminating) transactions will succeed in finite time; whereas at the other end of

the spectrum, best-effort systems do not make any claims about transactional progress at all, but instead

attempt to run transactions that fit into resource constraints and do not conflict as effectively as possible.

3.2 HTM Instruction Set Architecture Design

The previous section described the basic mechanisms used for transactional memory; in this section, I

will introduce the actual instructions and detailed interactions between them on the example of AMD’s

Advanced Synchronization Facility (ASF). This section concentrates on backgrounds and high-level sum-

maries, because the full detail is available in the official, experimental ISA extension spec from AMD

(“Advanced Synchronization Facility – Proposed Architectural Specification”), which is also attached to

this thesis in Appendix A.

3.2.1 ASF 1: A Precursor to Full BeHTM

ASF underwent a transition from two phase transactions to a simple single phase transactional scheme.

ASF 1 has two phases, the first being a discovery phase that loads and loads with write-intent (essentially

locking specific addresses in read / write mode), but cannot modify elements discovered [158, 159]. This

first phase operates a lazy conflict detection scheme where conflicts in the first phase are only detected

when transitioning into the second phase. In the second phase, predeclared locations may be modified

transactionally, and conflicts cause immediate abort and roll-back.

The instructions used to declare memory locations are normal x86 / AMD64 MOV instructions, however

prefixed with LOCK to signal that they perform special operations. The first section is started with the first

declarator instruction and the SPECULATE instruction is used to switch to the second, speculative phase

which is ended by COMMIT. Additional tracking / marking without reading from or writing to the memory

location is available with the LOCK PREFETCH and LOCK PREFETCHW instructions.

In earlier work, I implemented ASF 1 and showed that it was possible to use it not only for small

contained atomic primitives such as DCAS where the working set was known, but also for bigger lock-

free data structures and for accelerating an STM [158, 159].
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1 void f1 (...) {
2 discover_f1();
3 modify_f1();
4 }
5

6 void f2 (...) {
7 discover_f2();
8 modify_f2();
9 }

10

11 void compose_f1_f2(...) {
12 tx { f1(); f2(); }
13 }

14 void compose_f1_f2_ASF1(...) {
15 tx {
16 // Collocated read−only discovery phases
17 discover_f1();
18 discover_f2();
19 // Switch to modify phase
20 tx_switch();
21 // Read−write non−extending parts
22 modify_f1();
23 modify_f2();
24 }
25 }

Figure 3.1: Composition of two-phase transactions into larger transactions. While each transaction can be
easily decomposed into a non-modifying working-set extending part and a non-extending, data-modifying
part, the composition does not have an obvious easy equivalent transformation.

Despite several benefits (the transaction scheduling can easily be centralised due to full working set

knowledge before modifications), the strict requirement to separate transactions into two phases was

perceived as a strong limitation by us and software and library writers such as the TU Dresden group

working on TM. In particular, composability of operations was impossible due to the required code

transformations, as illustrated in Figure 3.1. Additionally, using transactions as a drop in-replacement

for critical sections was not possible due to the tighter structural requirements of ASF 1 over free-form

critical sections.

3.2.2 ASF 2: AMD’s Hardware Transactional Memory Proposal

Because of the perceived weaknesses of ASF 1 identified in the previous section, we designed ASF 2

to allow full dynamic discovery and single-phase transactions with transactional modifications ahead of

further discovery of transactional locations.

ASF 2 re-uses the SPECULATE and COMMIT instructions to start and end a transaction; and keeps the

LOCK MOV and LOCK PREFETCH(W) instructions to perform transactional reads and writes. The concept

of declarators (together with the transactional / non-transactional mixing rules explained below in Sec-

tion 3.2.6) has changed over time. In the original ASF 2 specification, there still was a concept of declaring

first (and potentially reading) with LOCK PREFETCH(W) and LOCK MOV and reading / writing later (using

normal MOV instructions) with allowed working set extensions. Memory accesses to undeclared memory

locations are also possible (non-tx accesses), and will bypass the transactional mechanisms, more on that

in Section 3.2.5. For simplicity, however, this eventually changed to separating transactional and non-

transactional accesses (drop the separate declaration step) and specific rules for mixed-transactionality

accesses to a single location (compare, for example, to [214, 220] ).

ASF makes the granularity of tracking transactional accesses architectural and fixes it at 64 byte. This

means that both conflict detection and versioning happen on a 64 byte granularity. False sharing can

therefore cause additional transactional aborts and data versioning on 64 byte granularity has complica-

tions which will be discussed in Section 3.2.5.

3.2.3 Conflict Detection and Transaction Aborts

In transactional memory, aborts occur if the transactional execution needs to be rolled back and restarted.

One design option for HTM ISA extensions to consider is whether to expose transactional abort and restart

to the applications or not. STMs often do not expose aborts, but instead hide them, rollback, contention
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1 # DCAS Operation:
2 # IF ((mem1 = RAX) && (mem2 = RBX)) {
3 # mem1 = RDI; mem2 = RSI; RCX = 0;
4 # } ELSE {
5 # RAX = mem1; RBX = mem2; RCX = 1;
6 # } // (R8, R9, R10 modified)
7 DCAS:
8 mov %rax, %r8
9 mov %rbx, %r9

10 retry :
11 speculate # Speculative region begins
12 jnz retry # Page fault , interrupt , or contention
13 mov $1, %rcx # Default result , overwritten on success
14 lock mov (mem1), %r10 # Specification begins
15 lock mov (mem2), %rbx
16 cmp %r8,%r10 # DCAS semantics
17 jnz fail
18 cmp %r9,%rbx
19 jnz fail
20 lock mov %rdi, (mem1) # Update protected memory
21 lock mov %rsi, (mem2)
22 xor %rcx,%rcx # Success indication
23 fail :
24 commit
25 mov %rax, %r10

Figure 3.2: ASF example: An implementation of a DCAS primitive using ASF.

policy, and restart behind a library interface [95]. For HTMs, it is desirable to make aborts visible to the

software layer from a hardware / software interaction perspective. Visible aborts allow the application

/ run-time to schedule transactions (for example through randomised exponential back-off), or employ

other modes of concurrency control (such as invoking an STM or global lock layer). Employing these

modes transparently beneath the ISA is costly, as I will explore in Chapter 4. Instead, ASF informs

software-policies with additional information about the abort reason and whether the abort was of a

transient nature (data conflict, interrupt), or will likely occur again in a future reexecution (capacity

exceeded, programming error).

In ASF, aborts are therefore visible to the application. To limit the amount of wasted transactional

execution and non-transactional state modification, ASF aborts the conflicting transaction as soon as the

conflict is detected (eager conflict detection); I will detail challenges in the interaction of both eager

conflict detection and non-transactional accesses in Section 3.2.6. Conceptually, the eager, user-visible

abort is a user-level exception. Since there is no precedent that could hint at the design in x86 / AMD64

for lightweight user-level exceptions, ASF was free to employ its own way to implement them. To avoid

arbitrary control-flow jumps, the SPECULATE instruction functions as an anchor for aborts. Upon an

abort, execution is directed to SPECULATE and the instruction seems to execute but produces an error

signal (rAX ̸= 0, and set FLAG.NZ) as opposed to the clean transaction start signal (rAX = 0, and

FLAG.NZ = 0). This way, the application can employ a conditional branch and go to an abort handler.

A simple example is to directly retry the transaction, as depicted in the DCAS example in Figure 3.2.

Conflict detection deals with at least two participants conflicting; usually classified in a requester /

holder side depending on which transaction adds a specific data item to its working set first (being the

holder) and the transaction causing the conflicting access later (the requester). On an architectural

level, the decision which of the conflicting transactions is aborted can have a significant impact on the

transactional system and its throughput guarantees under contention. Owing to the complexities of the
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mechanisms on which ASF bases its conflict detection capabilities (the cache coherence protocol, more

detail in Chapter 4), ASF employs a simple local scheme that favours the requester (requester-wins) and

always aborts the holder of conflicting transactional data.

ASF detects conflicts between transactions and concurrent overlapping memory accesses not executing

inside a transaction (out-tx accesses); implementing strong isolation. Together with requester-wins, this

gives priority to code not running inside transactions. The combined effect is not accidental, but instead

a design feature. During ASF’s design phase, it was deemed important to not give applications a way to

indefinitely stall (privileged) software when accessing (user) memory. Instead, aborting the transaction

and not stalling the out-tx memory access ensures that out-tx are never unduly delayed and the instruction

stream executes in a wait-free fashion. In hardware implementations which use the cache coherence

protocol, strong isolation is easy to implement (Chapter 4). ASF therefore does not suffer from the issues

associated with weak isolation in STMs, and is inherently publication- and privatisation-safe.

3.2.4 Nesting of Transactions

One desirable feature of transactions is the ability to nest transactions. Various types of nesting exist, and

are evaluated in particular in the world of language semantics and STMs: open nesting (where nested

transactions can commit independently of the parent and use higher-level undo logic in case the parent

aborts) [129], closed nesting (where child transactions can effectively checkpoint the parents transac-

tion’s progress and allow partial aborts of the parent back to the last successful child transaction) [85],

and various forms of parallel nesting (where parent and child transactions can execute concurrently on

different cores) [212]. These elaborate nesting schemes are costly to implement due to the required dif-

ferentiation between working sets of differently nested child transactions. Instead, ASF supports simple

flat nesting that flattens successive starts of transactions through executing SPECULATE when already in

a transaction. These nested SPECULATE and COMMIT instructions will effectively become no-ops (and just

signal successful transaction entry through the supplied register). Architecturally, they will in-/decrement

a nesting counter that is available upon abort. The nesting depth is limited, mainly to provide a limit on

the size of the nesting bit-field and counter implementations and transactions that nest too deeply will

simply abort.

Due to the flattening, aborts will always jump back to the outermost SPECULATE instruction, discarding

always all accumulated transactional state. Furthermore, the transactional state of all child transactions

is live (and checked for conflicts) for the duration of the entire outermost transaction.

This simple nesting regime allows simple composition of small transactions into larger building blocks,

but does not support support some of the more sophisticated nesting uses reported in the literature di-

rectly [156, 197, 211]. The accumulation of working sets also makes this mostly useful for combining

small primitive transactions into somewhat larger primitives, for example combining multiple transac-

tional N-CAS operations, or linked list removal and insertion into an atomic move operation.

I will look at more interesting nesting cases in Chapter 6, which show how ASF can be used to support

various forms of parallel open / closed nesting, to increase performance and to bypass architectural

limitations of ASF.

3.2.5 Non-transactional Memory Accesses

From a bottom-up perspective, the historical requirement in ASF to mark (or rather declare, see Sec-

tion 3.2.1) transactional accesses naturally evokes the question about how unmarked memory accesses

inside a transaction (non-tx) should behave.

Two important cases need consideration, here. First, the non-tx access is disjoint from the trans-
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actional working set; and second, there is an overlap between the non-tx access and the transactional

working set. Historically, ASF separated the declaration (first phase in ASF 1) and actual access / mod-

ification (second phase in ASF 1) and thus treated the overlap case as the access / modification to a

previously marked line.

With the increased flexibility of ASF 2 transactions, the split was eventually not mandated and thus

ahead-of-time marking became a special case. Originally, unmarked accesses that would not intersect

with the working set (marked cache lines), were simply not treated specially by ASF, but instead bypassed

all transactional mechanisms.

Eventually, this implementation-driven feature led us to contemplate whether the feature was actually

useful and not just a byproduct. Examining transactional accesses, we find that they require both conflict

detection and versioning; non-transactional memory operations may weaken either or both properties.

Since loads do not modify global state, they do not require versioning.

Non-transactional loads therefore could be specified to not participate in either or both “ends” of

conflict detection: requester conflict detection where the load will send out conflict messages (coherence

snoops) to other agents in the system; and holder conflict detection, where loads check for incoming

conflict messages and abort the local transaction if a conflict is detected. Due to the strong isolation

property, ASF sends out conflict messages for non-transactional out-tx accesses already (in fact they

are part of the existing coherence protocol, as I will explain in Chapter 4). It seemed only natural

to maintain this property for non-tx loads and so their participation in the requester side of conflict

detection is necessary. This change also coincides with the mapping to the cache coherence protocol,

effectively treating in-transaction non-transactional loads as simple out-of-transaction loads and not have

them participate in the holder-side of conflict detection for them.

As a result, non-transactional loads will not abort the surrounding transaction and can therefore be

used to monitor changing outside data from within a transaction. Interesting idioms are for example in

lock elision, where non-transactional loads can be used to monitor a taken lock and only when the lock

becomes free add it to the transaction’s working set.

Similar reasoning regarding the conflict detection applies also to non-transactional stores; participat-

ing in the requester-side of conflict detection ensures cache coherent operation. Data versioning is specific

to (non-transactional) stores. For ASF 2, the non-transactional operations were largely thought of as a

means to preserve precious transactional tracking resources, thus, employing data versioning for non-tx

stores was not considered. Instead, non-transactional stores will not be rolled back upon transaction

abort, making them immediate non-tx stores. Their visibility therefore depends on the their execution

timing relative to transaction aborts, and on the existing memory ordering model. A specific usage for

such non-transactional states is in debugging, for example in the ReachPoints work [202].

An alternative would be to have non-tx stores perform data versioning, but not participate in conflict

detection. The written data would then only become visible when the enclosing transaction commits

(delayed non-tx stores). This is somewhat similar to lazy conflict detection, where stores are checked for

conflicts only at the end of a transaction; instead they are not checked for conflict at all here. We believe

that the unreleased Sun Rock processor [188] may have supported this type of non-tx stores, but we are

not aware of publicly available documentation to confirm or provide reasoning or use case examples.

3.2.6 Non-transactional Access Challenges

Accessing known thread-local data through non-transactional accesses (for example the stack) removes

resource requirements and leaves more capacity to the critical synchronisation-specific code sequences,

and allows controlled leakage of transactional state for diagnostic purposes. For that reason, the standard

AMD64 stack manipulation instructions PUSH, POP, CALL and RET operate non-transactionally and are not
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1

2

3

void main(..) {
  spec_func();
  /* return point */
  compute();
}

spec_func:
  speculate
  ...
  ret

void compute() {
  int a = 42;
  ...
}

SP

SP

SPreturn point

main(..)
stack &
frame

compute()
stack &
frame

main(..)
stack &
frame

a = 42

Stack Code

Figure 3.3: Non-transactional modifications of the call stack can overwrite call / return chain information
outside of the transaction scope: just after SPECULATE is executed inside of the nested function spec_-
func, the stack looks as in the left picture. Inside the transaction, the spec_func returns using the return
point saved on the stack, and eventually calls the compute function which puts a local variable (a) and
other data on the stack (1). If the transaction is aborted at this point, the instruction and stack pointers
are rolled back to just after the execution of SPECULATE (2). Now, however, the return point is overwritten
on the stack and the spec_func returns to a random, wrong location (3).

(and cannot be) marked. During the ASF design process, this feature was deemed important, since in

particular 32 bit x86 code has only few truly general purpose registers available (six), and therefore has

to spill live registers to the stack frequently. Removing these accesses from the transactional working set

meant conservation of precious transactional resource for the actual transactional functionality.

Two complications, however, arise even in the simple settings. First, non-transactional modifications

of the call-stack could overwrite return addresses non-transactionally, as explained in Figure 3.3. The

problem occurs if the SPECULATE instruction is called from within a function at a deeper call stack than

where the abort occurs, or in general when starting a transaction through a nested function call.

In my transaction integration prototype (introduced in Section 3.3), this is remedied by enforcing

inlining of the transaction start primitive, the TUD-developed code integration solves this in two steps:

in the compiler, the instrumentation logic captures all escapes from a transactional block (similar to

exception and destructor handling in try / catch blocks) and inserts the appropriate calls to the TM

library for transaction entry and exit. The library itself carefully uses techniques similar to setjmp /

longjmp and also copies part of the live stack as a transactional backup copy1

Multi-word non-tx stores The second issue with non-transactional stores is that they essentially race

with a potential transaction abort. Similar to operating system kernel code and interrupts, the abort can

happen at any time and may interrupt multi-instruction non-transactional (store) sequences at any time.

Complications arise when trying to synthesise higher level cross transaction communication primitives,

and I show how to solve these in [274] and Chapter 6.This is one of the benefits of using a suspend /

resume mechanism to escape from transactions: the non-transactional code will run to completion before

transaction aborts are handled after resuming the transaction.

With Michael Hohmuth, I worked on a roll-forward mode of ASF that avoided immediate aborts,

but unfortunately, that work has not been published or fully implemented in the simulation tools. In-

stead, I created an alternative suggestion to briefly continue aborted transactions through the concept

of resurrecting transactions, which has been applied successfully to handle arbitrarily long sequences

of non-transactional code within transactions in the face of immediate aborts. This work is available

as [289, 337], and Appendix B.7, and will be explained further in Chapter 6.

Overlapping accesses The final problem with non-transactional accesses arises from overlapping trans-

actional and non-transactional accesses inside a single transaction as described earlier. Accessing a single
1After personal discussion with Torvald Riegel and Martin Nowack. Thanks!
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data item (or cache line!) both transactionally and non-transactionally has complicated promotion rules.

While a non-transactional access followed by a transactional access always transitions the data item into

transactional (earlier non-transactional stores are made visible, first), the reverse combination is more

complicated. The proper semantics of this mixing were a topic of intense discussion during the ISA design

phase at AMD.

Transactional loads will “flip” the data item to being transactional, enforcing conflict detection from

the point when the data has been loaded transactionally. Subsequent non-transactional loads will not

remove the transactional handling (the RELEASE instruction does that). The high-level reasoning is that

the “do not track” property is a performance optimisation and can thus easily be upgraded (“accidentally”)

by overlapping transactional loads, which need to remain transactional to enforce atomicity / isolation.

Incidentally, this means that the “peek then add to read set” idiom works well with non-transactional

loads.

Handling (later) non-transactional stores that overwrite transactional data (produced by earlier trans-

actional stores) caused discussion and changes during the design process. Clearly, not both immediate

store availability and continued participation in transactional conflict detection and data versioning can

be achieved (while also observing per-location access ordering). Since no clear consensus towards favour-

ing immediate visibility over transactional semantics could be reached, the initial design caused this

overwrite pattern to cause a general protection fault with transaction abort, indicating a programmer er-

ror [186, 214]. For experimentation with compiler integration2, however, I added a mode of transactional

stickiness, where non-transactional stores are also seen as a performance optimisation and can safely

lose their non-transactional status; gracefully handling the case where the non-transactional accesses are

caused by escape analysis identifying thread-local variables rather than a desire to communicate.

This shift in semantics is interesting in particular in light of the history of ASF, and the associated

change in the programming model gives rise to this conflict. Initially, there was the definition of declara-

tors, where one needs to declare data for transactional store and then all stores were transactional au-

tomatically, and transactional stores to undeclared items would constitute a programming error. This

eventually weakened (strict separation in ASF 1, mixed declare-then-use and discover more in initial

ASF 2) with the desire to lose the explicit declaration. Enforcing marking on all transactional stores

to distinguish them from intentionally unmarked immediate non-tx stores then created the conflict of

intention: ephemeral transactional item / cache line vs. later intent to make immediately visible.

The mixing behaviour of transactional and non-transactional accesses is particularly important when

transactifying existing code without detailed control over data layout. In particular with ASF’s architec-

tural tracking size of 64 byte, the “transactionality” is always tracked on a per-block (cache line) basis.

Allowing reasonable promotion rules without inducing additional transaction aborts was therefore cru-

cial for these use cases. For full ISA integration, I can envision a mode switch that enables the strong

separation if desired, or toggles laxer promotion rules for reduced number of aborts, similar to exceptions

tracking mis-aligned memory accesses.

3.2.7 Limited Register Checkpointing

In addition to memory memory modifications, the register state of the CPU is also changed during a

transaction. To allow for rollback / restore of that state in case of an abort, register state versioning

is desirable for example through taking a full register snapshot at the beginning of the transaction. In

ASF, however, we have adopted a limited snapshot approach, where only a small set of registers is being

saved on transaction entry. All other registers are not saved and not rolled back in case of an abort.

The decision was largely made due to the expectation of short transactions and to avoid the overhead

2After discussion with developers from the TUD STM stack, Torvald Riegel and Martin Nowack.
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of taking a full register checkpoint at each transaction start; also reducing implementation cost by not

requiring a separate full register file and register write tracking logic.

In addition, the limited register checkpoint can be used for controlled state export from an aborted

transaction, in a concept similar to ReachPoints. The minimal register checkpoint consists of the in-

struction pointer rIP which is saved at the beginning of a transaction to allow return to the SPECULATE

instruction. To simplify save / restore of data that is live at transaction entry and changed during the

transaction, the stack pointer rSP is also saved and restored. This allows simple stack-based spilling of

registers needing save / restore.

In my prototype integration library (Section 3.3), I will show that the compiler can usually do a very

good job of tracking live registers at the beginning of the transaction and perform save / restore actions

only on them. This is particularly important and applicable for small transactions where the compiler can

inspect all code. In larger environments where the compiler has limited control over / knowledge of the

code running inside a transaction (for example in the TU Dresden DTMC stack), software will create a full

register snapshot at transaction entry and abort (saving only the callee-saved registers when integrating

with a function).

Revisiting a design decision that had largely been driven bottom-up by the urge to simplify hardware

support–if software can easily emulate the required functionality–led to an interesting observation that

having access to the full register state at the transaction abort site opens up for interesting high-level use-

cases, such as introspection, debugging, and transaction resurrection which I will discuss in Chapter 6.

3.2.8 Interactions with the Memory Model

Two transactional memory transactions must appear linearisable with respect to each other’s concurrent

execution (this is the isolation property in the classic ACID transaction model). Thanks to strong isolation,

transactions also linearise with out-of-transaction memory accesses.

For the memory model, this means that all transactional memory operations inside a single transaction

become globally visible at once and all observers agree on the order of transaction commits (multi-copy
atomicity [29]).

In ASF, in-transaction memory accesses are split into two groups, transactional and non-transactional.

ASF’s in-transaction non-transactional accesses do not need to become globally visible at the same lin-

earisation point as the surrounding transaction. In fact, enforcing such ordering would remove a large

number of both architectural and microarchitectural benefits of those instructions: making stores visible

with the linearisation point conflicts with the concept of immediacy of the non-tx stores and also forces

them to become visible at a single point in execution, which breaks any use case where an external ob-

server needs to observe non-tx accesses sequentially (for example in communicating transactions). In the

microarchitecture, the need to buffer non-tx stores will require buffering resources and thus complicate

hardware design.

Transactional accesses follow the linearisation model so they will linearise at a single point dur-

ing the lifetime of the transaction, and non-transactional accesses follow the existing AMD64 memory

model [209]. Non-transactional stores can become visible at any point after their execution and can

reorder with transactional stores, but not with non-transactional stores (AMD64 mandates a TSO-like

memory model [193]). A memory fence before transaction commit can enforce all non-transactional

stores to become visible before the transaction commits.

The original ASF 2 specification did not fully define other interactions between transactional and

non-transactional accesses. In particular, it did not establish order between non-tx and tx loads; all

existing implementations, however, honour data and control dependencies between transactional and

non-transactional loads (effectively ordering tx and non-tx loads by treating them both as out-tx loads).



3.2. HTM INSTRUCTION SET ARCHITECTURE DESIGN 67

Finally, after discussion with Torvald Riegel, et.al., for their recent hybrid TM publication [255], it

became clear that they needed stronger properties between visibility, abort and state of the transaction

working set for their hybrid TM. The property in particular is that in a program ordered sequence such

as

SPECULATE . . . ldtx; . . . memnontx; . . . COMMIT

conflict detection for a transactional load ldtx detects conflicts before a non-transactional memory instruc-

tion memnontx can make non-transactional changes (and even before its load is globally visible) to mem-

ory. Finally, if memnontx is an atomic RMW instruction (or ordered through a fence), its modifications

will become globally visible before the conflict detection for ldtx is completed and the transaction com-

mits (and all transactional modifications become globally visible). In the proposed HyTM scheme, this

property is required to ensure that a transactions working set and the modification of a non-transactional

synchronisation mechanism (a generation count / lock) occur at overlapping time intervals and thus are

linearisable together.

3.2.9 Instruction Support and Non-Conflict Sources of Aborts

Several instructions and modifications of architectural state may be hard to support in HTM. Three main

causes are responsible for these complications:

Complex state that is hard to save / restore and rarely changed, for example segment registers, execu-

tion state (kernel vs. user-space), page-table modifications, I/O, and device state modifications

Non-transactional modifications in code that is called from a transaction, but is unaware that it might

be aborted and then may leave inconsistent global state behind; I will describe the usage of trans-

actional resurrection to remedy this in Chapter 6

Entangling independent code for example when time-sharing the transactional facility between two

applications on the same core, or between the application and running OS kernel code; this ei-

ther requires additional logic to allow tracking of multiple in-flight transactions, silent aborts, or

entangles the progress of otherwise independent code sequences in unpredictable ways

The complications arise usually at context switch / protection level switches and when executing

specific instructions. As a universal remedy, ASF therefore will abort transactions upon encounter of an

unsupported instruction (including calls to the OS), any interrupt and exception.

One noteworthy special feature in ASF, is, however, that ASF will forward the exception / interrupt to

the OS. This is somewhat expected for interrupts, but for page fault exceptions, this means that a page

fault may propagate out of an aborted transaction and originate not from a memory instruction. We were

careful to reflect the abort in the register state of the process before transferring control to the OS so that

all abort information is already stored in the general purpose registers (rAX, rIP) so that the OS can be

completely unaware of ongoing transactions and their execution state and does not have to save / restore

this information as part of a context switch. This makes ASF essentially backwards compatible with old,

ASF-unaware operating systems.

The strong isolation and immediate asynchronous aborts in case of conflicts reduce the chances for

seeing inconsistent data (as opposed to STMs where issues of late aborts can make transactions temporar-

ily consume inconsistent data and thus more rigorous sandboxing is required), and we therefore think

that avoiding the case where a transaction is repeatedly aborted due to demand paging (and the causing

page fault causing a transaction abort, the restarting transaction running into the same exception) war-

rants such a deviation from non-leaking properties to improve transactional progress. Other practitioners
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were aware of this challenge, but gave higher priority to not changing the “exception signature” of appli-

cations running transactions (causing page faults and other exceptions from an aborted transaction state)

due to compatibility concerns3. Our inspection and experimentation with the Linux kernel showed this to

not be a problem, instead, the kernel resolves the demand paging request and the restarted transaction

will continue successfully.

Exceptions are caused by the application (and the OS software stack) and we therefore expect them

to have a predictable effect on transactions; in particular with demand paging eventually stabilising

(assuming a reasonable OS that maps enough pages for the process). Interrupts, on the other hand, are

usually not controllable from user space processes. (The OS kernel can use the cli / sti instructions

to control interrupts around ASF transactions.) In particular in high-I/O-load scenarios (40GbE network

card, for example), the resulting interrupt frequency may cause long transactions to fail due to the

interrupt-induced abort of the transactions.

One option that we discussed for the ASF design is the option to delay interrupts from user-space
transactions for a specific maximum number of cycles. By limiting the total number of cycles such an

interrupt-disable would be in effect (and potentially adding rate limitations of how often such an instruc-

tion will be honoured), it is possible to reduce the chances of interrupts repeatedly aborting a transaction,

thereby ensuring a minimal transaction length that can be executed without aborts induced by interrupts.

3.3 Language Integration Prototype

Proper language integration of HTM which needs explicit marking for transactional accesses requires inte-

gration into a compiler to catch all accesses to (shared) objects and properly instrument them. Manually

identifying all necessary accesses by the programmer and wrapping them in functions is tedious and error

prone. The concept of atomic regions allows marking larger blocks of code and all called functions, and

the compiler will instrument all memory accesses to shared memory. In our joint publication [213], we

have integrated the transactional compiler stack developed at TU Dresden using LLVM with a separate

pass to identify memory accesses and turn them into inlined calls to the transactional memory barriers

(accessor functions). These are similar to STM barriers (functions that perform fine-grained locking ac-

cording to the STM mechanism) but largely consist only of a single LOCK MOV instruction. The link-time

optimisation and inlining of these functions performed in LLVM thus is crucial for performance.

The DTMC compiler stack allows generic transactions and provides a flexible backend structure to

generate code for multiple TM implementations. The support for ASF is one of these backends. As such,

the ASF integration benefits from the excellent support for transactional language features, but also has

to rely on optimisations to reduce overheads, and still has considerable overheads for transaction entry

due to checkpoint creation.

The ASF backend in DTMC uses hand-crafted assembly and additional LLVM code to: (1) create a

setjmp-like anchor to return to in case of abort and (2) copy all live local variables to a secure location,

because the compiler does not instrument writes to these and they might be captured in registers.

For simple examples and fine-grained control (used for example in the linked list benchmarks), the

transactional primitives can be integrated without full compiler knowledge through a few inline assem-

bly snippets. Figure 3.4 shows the implemented slim wrappers with small overheads and no additional

compiler requirements. Figure 3.5 and 3.6 present a simple application example and the resulting com-

piled code. The idea of wrapping the transactional start and end code into a for-loop originally appeared

in [130], allowing the syntactically clean usage of transactional basic blocks of the following form: asf_-

atomic { int x = asf_load32(&foo); asf_store32(&foo, x + 1); }

3Ravi Rajwar, Intel, personal discussion.
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1 #define asf_speculate(fail , state_save) \
2 asm volatile("mov %%rbp, %1" \
3 ASF_SPECULATE \
4 :"=a"(fail ),"=m"(state_save))
5

6 #define asf_speculate_fail_clobber( fail , state_save) \
7 asm volatile("mov %2, %0 \n\t" \
8 "mov %1, %%rbp" \
9 : "=a"(fail) \

10 :"m"(state_save), "r"(fail )
11 :"memory","rbx","rcx","rdx","rsi", "rdi",
12 \ "r8", "r9","r10","r11","r12","r13", "r14","r15" )
13

14 static inline long asf_commit() {
15 long res;
16 asm volatile(ASF_COMMIT :"=a"(res) : :"memory");
17 return res;
18 }
19

20 static inline uint32_t asf_lock_load32(const volatile uin32_t* m) {
21 uint32_t t ;
22 asm (ASF_LOCK "movl %1,%0"
23 :"=r"(t):"m"(*m));
24 return t;
25 }
26 static inline void asf_lock_store32(volatile uint32_t* m, uint32_t d) {
27 asm (ASF_LOCK "movl %0,%1"
28 ::"r"(d),"m"(*m));
29 }
30

31 static inline int enter_asf() {
32 int fail ;
33 unsigned long clobber;
34 retry :
35 asf_speculate( fail , clobber);
36 if unlikely ( fail ) {
37 asf_speculate_fail_clobber ( fail , clobber);
38 goto retry;
39 }
40 return 0;
41 }
42 static inline void leave_asf() {
43 asf_commit();
44 }
45

46 #define asf_atomic \
47 for (int ___asf___ = enter_asf();\
48 !___asf___ ;\
49 ___asf___=1, leave_asf())

Figure 3.4: Example code for prototyping ASF wrappers without full compiler support.
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1 int DCAS(uint32_t *m1, uint32_t *m2,
2 uint32_t cmp1, uint32_t cmp2,
3 uint32_t new1, uint32_t new2)
4 {
5 int eq = 0;
6 asf_atomic {
7 uint32_t d1, d2;
8 d1 = asf_lock_load32(m1);
9 d2 = asf_lock_load32(m2);

10 if ((d1 == cmp1) && (d2 == cmp2)) {
11 eq = 1;
12 asf_lock_store32(m1, new1);
13 asf_lock_store32(m2, new2);
14 }
15 }
16 return eq;
17 }

Figure 3.5: Using the transactional prototyping extensions from Figure 3.4 with a small application
example of double compare-and-swap.

1 mov %rdi, %rbp
2 push %rbx
3 mov %rsi,−0x28(%rsp)
4 mov %edx,−0x14(%rsp)
5 mov %ecx,−0x18(%rsp)
6 mov %r8d,−0x20(%rsp)
7 mov %r9d,−0x1c(%rsp)
8 mov %rbp,−0x8(%rsp)
9 speculate

10 test %eax, %eax
11 jne abort_handler
12 entry:
13 lock mov 0x0(%rbp),%edx
14 mov −0x28(%rsp),%rax
15 lock mov (%rax),%eax
16 cmp %eax,−0x18(%rsp)
17 jne wrong_compare
18 cmp %edx,−0x14(%rsp)
19 jne wrong_compare
20 mov −0x20(%rsp),%eax
21 lock mov %eax,0x0(%rbp)
22 mov −0x28(%rsp),%rax
23 mov −0x1c(%rsp),%ebx
24 lock mov %ebx,(%rax)
25 mov $0x1,%edx
26 done:
27 commit

28 wrong_compare:
29 xor %edx, %edx
30 jmp done
31 ...
32 abort_handler:
33 mov %eax, %eax
34 mov −0x8(%rsp),%rbp
35 mov %rbp,−0x8(%rsp)
36 speculate
37 test %eax, %eax
38 je entry
39 jmp abort_handler

Figure 3.6: Compiler output of the DCAS example from Figure 3.5 in AMD64 assembly code; compiled
with GCC 4.8 and optimisation level -O3. The transaction code folds the recovery from register modifica-
tions for aborts into the fast-path code. That reduces overall code size at a small overhead in execution
time. Note how the compiler also restores registers / variables that were not written to in the transaction.
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50 mov %rdi,%rbp
51 push %rbx
52 mov %rsi,−0x30(%rsp)
53 mov %edx,−0x28(%rsp)
54 mov %ecx,−0x24(%rsp)
55 mov %r8d,−0x20(%rsp)
56 mov %r9d,−0x1c(%rsp)
57 mov %rbp,−0x18(%rsp)
58 speculate
59 test %eax, %eax
60 jne abort_handler
61 lock mov (%rdi),%eax
62 lock mov (%rsi),%edx
63 cmp %edx,−0x24(%rsp)
64 jne wrong_compare
65 cmp %eax,−0x28(%rsp)
66 jne wrong_compare
67 mov −0x20(%rsp),%eax
68 lock mov %eax,(%rdi)
69 mov −0x1c(%rsp),%eax
70 lock mov %eax,(%rsi)
71 mov $0x1,%edx
72 done:
73 commit

74 abort_handler:
75 mov %eax,%eax
76 mov −0x18(%rsp),%rbp
77 mov %rbp,−0x18(%rsp)
78 speculate
79 test %eax, %eax
80 jne abort_handler
81 lock mov 0x0(%rbp),%eax
82 mov −0x30(%rsp),%rcx
83 lock mov (%rcx),%edx
84 cmp %edx,−0x24(%rsp)
85 jne wrong_compare
86 cmp %eax,−0x28(%rsp)
87 jne wrong_compare
88 mov −0x20(%rsp),%eax
89 lock mov %eax,0x0(%rbp)
90 mov −0x1c(%rsp),%eax
91 lock mov %eax,(%rcx)
92 mov $0x1,%edx
93 jmp done
94 wrong_compare:
95 xor %edx,%edx
96 jmp done

Figure 3.7: Compiler output of the unrolled DCAS example from Figure 3.5 in AMD64 assembly code;
compiled with GCC 4.8 and optimisation level -O3. In this example, the compiler generates a separate
fast-path of the transaction content that has no overhead for superflous register restoration.

The compiler may generate the resulting code in various ways, depending on optimisation targets.

The two examples in Figures 3.6 and 3.7 show two possible outcomes. The second example has the nice

property that there is no restore clobber section in the uncontended case. That means that while the

compiler needs to save the live registers to handle a potential abort (lines 1 – 8, 50 – 57), the compiler

does not have to restore the registers in the fast-path code, as is demonstrated in Figure 3.7, lines 58 –

73, where the live registers are used as is. The cost is a code size increase, as the restore code or a second

version of the entire transaction need to be added (lines 78 – 93).

In Figure 3.6, the compiler was clearly optimising for code size and assumed that multiple retries

would be the common case and collapsed the first fast path and the retry path into a single code path

that restores / uses the live registers from the saved location on the stack (lines 13, 14, 16, 18, 20, 22, and

23). However, thanks to AMD64’s flexible operand specification modes (can directly operate on memory

operands instead of needing a separate load / store), the restore can be interleaved with the actual logic.

In general, the code is very lean and does not induce additional function calls, and also saves /

restores only registers which are actually live. There are limitations with this approach: despite testing

with several transactional payloads and compiler versions, the code is not suitable for production systems,

as the compiler barriers are hand-tuned to deal with saving / restoring rBP, the frame pointer, which can

not be clobbered in an inline assembly clobber list (lines 8, 34, 35). Manual inspection (and many

simulated cycles) of all tests, however, confirms that the compiler properly handles the save and restore.

Testing with multiple versions of GCC (4.6 - 4.8) shows this to be robust accross compiler versions.

Furthermore, the compiler needs to restore all live registers, even those that are never written to

in the transaction (rDI, rSI) because the register clobber statement conservativley discards all register

state at transaction abort. A proper compiler integration that is aware of all writes (and the register

allocation) inside the transaction could identify those live variables (registers) that are never changed in

the transaction and remove the need for saving / restoring them. This could reduce overhead in particular
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of small transactions, but the required compiler changes are outside of the scopeof this thesis. Similarly,

the generated code is not very elegant, the explicit propagation of the abort code is required to ensure

that register rAX is indeed used for the propagation (line 33, 75). Unfortunately, the inline assembler

code has no way of efficiently tying into the control flow, or export the flags register. Therefore, an

additional cmp or test instruction is required to check for an abort condition (lines 10, 37, 59, 79), even

though the SPECULATE instruction already sets the flags properly allowing a conditional branch to follow

directly.

Full compiler support could improve the generation of faster small transactions by steering the opti-

misation towards a non-restore from clobbered uncontended case, as has been done manually, here.

3.4 Incremental Adaptations of ASF

So far, this chapter presented the basic ISA design decisions for ASF, and a small prototypical C language

wrapper that enables small transactions from C. I will now describe two incremental changes that we

made to the design of ASF; I will describe larger repurposing changes in Chapter 6.

3.4.1 Inverted Transactional Semantics

ASF has been designed from the ground up to be an addition to the AMD64 ISA. Therefore, it does

not change the meaning of normal loads and stores, but instead prefixes instructions that should behave

specially with the LOCK prefix. The original idea was that this would simplify the instruction decoder and

followed from the concept of the ASF 1 declarators, because there is no context information required

to understand if a specific memory instruction is transactional or not. Instead, additional work that is

required for the transactional accesses can easily be added in the decoder front-end because instructions

are directly flagged.

Marking transactional accesses relies heavily on a toolchain that detects and converts shared memory

accesses inside language-level transactions into the right LOCKed machine instruction. Since the original

use-cases for ASF were small, contained transactions, such as DCAS, the working set was available in

advance and / or memory accesses were easily marked by the programmer. Early discussions with AMD’s

micro-architects suggested that the marking of transactional instructions would be beneficial for a hard-

ware implementation. As outlined above, the idea is that early detection of transactional accesses in the

decoder would remove the need to track a transactional context to decide whether a load / store was

transactional or not.

Despite explicit marking, ASF needs some context awareness (is a specific memory access inside /

outside of a transaction) in the front-end of the CPU (see Chapter 4), in order to properly track whether

transactional LOCKed instructions are placed inside an ASF transaction (they constitute an illegal instruc-

tion if they are not). Naturally, we looked to exploit the transactional context tracking in hardware, and

into benefits of changing the “polarity” of the LOCK prefix in ASF: unmarked, basic memory instructions

would exhibit transactional semantics, while marked instructions would be non-transactional inside a

transaction. These new inverted transactions are started with the SPECULATE_INV instruction, while the

existing mode is still available through SPECULATE.

This relatively simple change creates significant simplifications for the programming model, and is

therefore the standard mode of operation of all commercially released HTM architectures [353, 367].

Notably, they were all released after our initial ASF design had been published. Most importantly, it is now

possible to use ASF for eliding locks of critical sections and call into binary library code from transactions,

while keeping the critical sections themselves in their original binary form. This is possible, because all

memory modifications made by the called code will be undone on transaction abort, and unsupported
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instructions (that could cause unrecoverable state modifications, such as system calls) would still abort

the transaction. The partial execution of such binary code therefore cannot leave any inconsistent state

behind.

Together with LD_PRELOAD tricks that replace the pthread locking library with one that performs

ASF transactions instead of acquiring / releasing pthread mutexes or locks, we have shown to support

transparent transactional lock elision with normal transactional memory [254]. The paper is attached in

Appendix B.4.

With the described simple compiler wrappers (Section 3.3), the inverted mode integrates ASF almost

fully into the compiler, thanks to the inverted semantics and no need to mark accesses at all. One problem

of the non-inverted ASF was that stack accesses (as being unmarked) would occur in a non-transactional

fashion. It is therefore critical to not overwrite pre-transactional call stack (for example by starting the

transaction and then returning to the transactional code) in normal ASF. Inverted ASF, however, treats all

unmarked memory accesses as transactional and thus call-stack overwrites become speculative and will

be undone upon transaction abort; at the expense of always adding stack accesses to the transactional

working set.

One problem arises with mixing normal and inverted mode transactions: upon a commit, the outer

transaction needs to know how to treat the polarity of the lock prefix. This cannot, however, be solved

with a COMMIT_INV instruction, as that would need knowledge of the outer transaction type and not

the one just being committed. One possible option is to keep a bit-stack in the CPU and memorise the

normal / inverted state whenever a new, nested transaction is started. For simplicity, however, we restrict

nesting to same-type nesting initially (nesting only inverted transactions in inverted transactions, and

non-inverted in non-inverted transactions).

3.4.2 Signalling Transactional Problems

The original ASF 2 specification [186] (Appendix A) was very strict on flagging transactional errors that

indicated a programmer problem. Executing wrong instructions, improper mixing of transactional and

non-transactional accesses (see Section 3.2.6) and other issues would not only cause an abort of the

transaction, but also cause a general protection (#GP) or undefined instruction (#UD) exception. The rea-

soning behind the strong flagging of these errors was the assumption that transactions would be written

for ASF by a programmer and in accordance with ASF rules for illegal instructions and memory accesses.

A large use case for transactional memory, however, is that of replacing critical sections with transac-

tions in existing code–often without recompiling / extensive restructuring of the code in the transaction

/ critical section.

After practical experience with a full runtime and transactional compiler (using the TU Dresden

stack [213], we realised that the generation of exceptions in those cases was rather draconian. In par-

ticular when transactions may call into the OS to allocate memory, a #GP exception is a drastic measure,

as these will usually kill the application straight away. Instead, these issues can be worked around by

following the backup path, which for example uses software transactional memory or a single global lock.

Installing a signal handler for these cases seemed a too heavy-weight solution and would require

careful distinction between in-transaction exceptions caused by the transactional context around legal

code that could be fixed by simple restart and possibly using a different synchronisation mechanism, and

those that are genuine programming errors (for example calling a kernel mode instruction in user mode).

We therefore changed the specification and implementation of ASF such that these events would be

notified to the transaction by aborting and setting a special bit in the abort code and not generate an

exception separately.
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Figure 3.8: Two transactions with overlapping, conflicting access patterns.

3.5 Capacity and Architectural Progress

Transactions may abort in response to various events: contention on shared data (Section 3.2.3), re-

source depletion, unsupported instructions, interrupts and exceptions (Section 3.2.9). If such aborts

occur repeatedly, transactional progress may be reduced to nil. From a programmer perspective, strong

properties (guarantees) about the progress of transactions of varying size, length and composition are

desirable, because they may reduce the need for complex fall-back paths. Fall-back paths can reduce

overall performance since they may be overly serialising (global lock fall-back), be hard to verify due to

subtle interplay between different synchronisation mechanisms, and generally contain more bugs due to

little utilisation. Furthermore, strong progress guarantees in the face of contention can directly improve

performance by limiting the amount of wasted execution in aborted transactions and reduce software

contention management complexity and runtime overheads.

From the hardware, the opposite is true. Making any assertions about the transactional properties

ties very closely into the underlying freedom to change the microarchitecture of the CPU. Instead, trans-

actions should be allowed to abort for any unforeseen interaction that makes it infeasible to continue

transactional execution. As an example, standard (non-real-time4) CPUs do not guarantee a certain size

or replacement policy for their caches and therefore, no guarantee is given for the state or location of

a specific data item in the cache. Instead, CPUs significantly rely on the beneficial effects of caches but

continue to execute instructions if caches are too small (albeit at lower throughput).

In contrast, mechanisms for buffering / tracking transactional data often have limited sizes and thus

cannot support transactions of arbitrary size. No forward progress will be made if an application repeat-

edly executes a transaction that is too large. Specifying a size guarantees for transactions therefore would

unduly restrict the freedom of future microarchitectures that for example wish to employ a smaller, but

faster cache.

In addition, certain progress guarantees require potentially complex system-wide reasoning, for exam-

ple guaranteeing progress for multiple conflicting transactions. Figure 3.8 shows two small transactions.

Two transactions that abort each other after one retries need some form of centralised contention control

to give strong progress properties. On top of that, the order of memory accesses that may be crucial

to determine conflict circles may change due to the processor employing out-of-order execution and

prefetching (see Chapter 4).

In order to not impede progress and to allow simple, localised reasoning, ASF employs a simple

requester-wins conflict resolution policy and does not make any assertions for contending transactions.

Expectations are that non-progressing pathological cases are rare and should be handled with a combi-

nation of (randomised, exponential) back-off in software, and a progress guaranteeing fall-back path.

For lock elision, ASF’s worst case progress properties and performance depend on the algorithm when to

switch to grabbing the global lock.

ASF does not fully refrain from giving progress guarantees; it give a limited guarantee which is close

to obstruction freedom [67]: if transactions have a working set smaller or equal to the architectural

4Hard real-time CPUs such as ARM Cortex R-series CPUs with scratchpads are a notable exception.
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minimal capacity, do not cause exceptions, and do not face contention or interrupts, they will eventually
succeed. The architectural minimal capacity is four 64 byte cache lines, but specific implementations may

specify (for example through a CPUID-field) that they have a larger minimal capacity that gives the same

obstruction-free progress property.

This progress property does not require that all application transactions have to meet these constraints;

instead, larger transactions are executed on a best-effort basis and are expected to succeed often (but no

explicit progress guarantee is given).

Obstruction-freedom under capacity limits is a weaker property than unbounded obstruction freedom,

lock freedom, and wait freedom (bounded / unbounded, but in the face of contention). It is, however, a

stronger assertion than plain best-effort mode: pure best-effort implementations are free to not actually

implement useful transactional memory, but may instead choose to abort every transaction. ASF is not at

liberty to do so.

The benefits for the programmer / software layer of obstruction-freedom have been explained earlier,

also the complications of providing progress guarantees involving contention. The capacity constraint

is derived to the worst-case size of the data structures used for transactional conflict detection and ver-

sioning. While a typical level-one data cache has a larger capacity than the minimal guarantee (several

tens of kB vs.4 × 64 bytes), unfortunate address patterns may cause set collisions: all cache content is

mapped to a single set and the cache capacity is effectively the cache associativity. Further reasons that

complicate specifying the associativity of the cache as the worst case capacity are described in more detail

in Chapter 4.

Even though four cache-lines may not cover big transactions, important data structure operations,

such DCAS, linked list and tree modification can be covered by atomically modifying and monitoring two

to four memory locations. It is these use cases that benefit most from the described guarantee.

3.6 Summary

This chapter introduced the “Advanced Synchronization Facility” (ASF) which is a best-effort HTM and

was the first published industrial HTM ISA extension. Several design decisions in ASF 2 were influenced

by experiences and choices of the preceding design of ASF 1 (that I have worked on for my Diplom

thesis). Several points distinguish ASF from other similar BeHTM proposals: the treatment of exceptions

inside transactions, the ability for the programmer to bypass the transactional mechanisms and specify

non-transactional memory accesses, the lack of a full register checkpoint at transaction entry, and the

specification of a limited guarantee for how transactions must be executed.

In retrospect, several decisions have been revisited in more recent commercial implementations:

• full register checkpointing simplifies compiler integration and reduces software overheads (but also

increases demands on hardware); some proposals provide programmer control over which registers

will be checkpointed [270]

• non-transactional accesses are only available in suspend / resume mode in IBM Power with similar,

unclear semantics of sharing data between transaction and suspended region; and the additional

complication of possible aborts of the “underlying” transaction [287]

• IBM z-Series gives stronger progress guarantees for stricter restrictions on transaction structure and

size that our proposal [270]; all other proposals are strictly best-effort
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Chapter 4

Microarchitectural Implementation Details of
HTM

This chapter presents challenges and solutions for implementations of BeHTM in modern out-of-order

microprocessors. ASF, introduced in the previous chapter, is not only used to illustrate typical critical

elements of any BeHTM implementation, but I will also present the implementation details and cost

of the features specific to ASF and not present in other BeHTMs. This chapter contains material that

originally appeared at the TRANSACT workshop [220], MICRO conference [214] and at a keynote at the

VELOX project meeting in Champery [237]. The material has been extended, rearranged and updated.

In addition to the added material here, the largest change is the added implementation of ASF in

the Marss86 simulator [253]. This simulator is an offspring of the original simulator baseline of PTL-

sim [135], but adds a much more detailed memory subsystem with enhanced modelling of directories,

buses and coherency messages [208]. In Chapter 5, I will discuss detailed trade-offs, challenges and

solutions from the simulator implementation perspective.

Viewed abstractly, Transactional Memory is a simple programming construct and should be easy to

implement, as well [34]. Taking a more detailed look at modern processor pipeline implementations,

however, many real-world challenges and important corner cases are lurking in shadows of reality. To

identify these areas, one must actually go and implement the primitive in a realistic substrate, not just

in a simple, in-order simulator (frequently done in related work such as [102, 126]). To that end, I will

present a selection of concrete examples of challenges and experiences. While they might not apply down

to the last detail to all other microarchitectures, I expect that the areas of impact and general solution

strategies can be adopted widely. Similarly, a large part of the details presented will apply for HTM

implementations other than ASF.

The remainder of this chapter is organised as follows: terminology is discussed in the next paragraph;

Section 4.1 will give a high-level overview of the design and implementation questions, which will be

substantiated in extended copies of our TRANSACT 2010 publication [220] in Section 4.4 and our pub-

lication at MICRO 2010 [214] in Section 4.5. I will briefly mention other implementation variants that

we considered in Section 4.6. In Section 4.7, I will analyse the interactions between the microarchi-

tectural level and programmer visible behaviour, and how the features specific to ASF interact with the

microarchitecture.

77
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4.1 Introduction

To implement the HTM mechanism outlined in Chapter 3, several areas in the microarchitecture of a

modern processor core need to be changed. For the baseline processor microarchitecture, there is a

significant variety in the design space, and a large number of publications exist on the matter; Hennessy

and Patterson provide an extensive overview [123].

This work extends modern high-performance CPUs, which find instruction-level parallelism (ILP)

in sequential instruction sequences. To achieve this unserialisation, they employ out-of-order execution
(OoO) [1, 10], register renaming and branch prediction in addition to pipelining to extract instruction-

level-parallelism (ILP) from sequential execution streams. Together, these techniques will shuffle inde-

pendent instructions and only sequentialise true producer-consumer instruction pairs and hoist execution

past unresolved branches. The next sections will introduce these mechanism in more detail to understand

complexities encountered when implementing BeHTM.

4.1.1 Processor Microarchitecture

Although the exact implementation details of contemporary out-of-order CPUs vary, the generic function-

ality and structure are very similar (see also Figure 4.1): a front end fetches and decodes instructions, the

execution units perform the operations, and finally the back end will remove completed instructions from

the core.

Front End The core fetches instructions in the native AMD64 instruction-set architecture (ISA) from

memory (the instruction cache) and decodes the instructions and operand information. A number of the

instructions are not executed directly in the core, but are split up into multiple smaller instructions, so

called microoperations (uops), instead. These flow through the pipeline independently and also retire in

sequence.

Conditional branches make the code sequence dependent on data, which usually is produced only near

the branch instruction and may be subject to long-latency operations, such as complex arithmetic and

cache misses. To maintain a sufficiently large look-ahead instruction window, modern microprocessors

employ branch prediction to forecast the instruction stream; decoupling code-flow from data and allowing

further look-ahead. If a conditional branch is predicted the wrong way (predicted taken vs. resolved not

taken, and vice versa), instructions on the wrong branch have been executed. These instructions have to

be removed from the core and their effects have to be undone, or annulled, and architectural state needs

to be restored to a previous, known-good configuration.

Other predictions, such as predicting intra-thread data dependencies (or their absence) for pairs of

stores and loads with unresolved addresses (store-load aliases), or optimistic assumptions for scheduling

conflicts and late resource shortages, may also cause re-execution of instructions.

A central data structure called the reorder buffer (ROB) keeps track of in-flight instructions, their

states, and required input operands. Dependencies among instructions are formed through producer-

consumer relationships between instructions: operands required by one instruction are produced as re-

sults by an earlier one and are usually conveyed through registers.

Because architecturally visible registers may be used by multiple independent in-flight instruction

pairs, register renaming is used to separate these aliases. Register renaming happens early in the pipeline

and maps a small set of architectural registers to a larger number of entries in a physical register file.

Mapping happens so that anti-dependencies (write-after-read hazard) and overwrites (write-after-write

hazards) are dealt with by mapping writes to different physical registers than the one currently mapped

to the architectural register they are overwriting.
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Execution Once an instruction has all input dependencies fulfilled, it is considered for execution and is

eventually issued on one of the functional units of the core. Executing these instructions is not dependent

on program order at this point anymore, but can proceed out of order: later instructions with fulfilled

dependencies may execute before earlier instructions with unmet dependencies. Once the instructions

complete execution, they forward the results to dependent in-flight instructions. The final pipeline step

retires instructions from the core. In contrast to previous pipeline stages, this stage processes completed

in-flight instructions strictly in program order and thus maintains the sequential semantics of the code.

One source for long-latency operations are load instructions that access memory: memory latency has

not kept up with CPU clock frequency scaling and so a memory access takes on the order of hundreds

of clock cycles. A hierarchy of caches exploits locality of access patterns and stores parts of the work-

ing set in faster SRAM-memory cells on the CPU die. Generally, caches closer to the CPU core will be

smaller, but offer shorter access latencies (two to twenty clock cycles), while larger last-level caches on

die aim to minimise off-chip traffic and offer several megabytes of capacity at higher access latency (forty

cycles and more). At the closest level to the core (L1), the caches distinguish between instructions (L1i

cache) and data (L1d cache, DC), due to different access patterns and spatial layout. Despite the cache

hierarchy, memory accesses may miss in the data cache(s). OoO execution helps because the core can

issue multiple independent cache-missing loads at once and execute independent other instructions (such

as arithmetic), thereby effectively overlapping the latencies for the loads and the computation. Several

data structures keep track of in-flight memory operations: The load and store queue(s) (LSQ) of the core

handle single load and store instructions before they retire. An additional miss buffer keeps track of the

pending cache-lines, which may be referenced by multiple in-flight memory operations.

Executing memory instructions out of order interferes with the global order of memory accesses in

multiprocessor systems, impacting memory consistency guarantees. To free the application programmer

from reasoning over the actual complex interactions, our baseline core maintains stronger (simpler to

reason about) guarantees by locally checking for consistency violations and selectively replaying mem-

ory instructions [27]. Other commercial implementations take varying positions on whether to employ

these and provide strong [209, 367] memory model with stronger ISA-level rules, or a weak memory

model [351, 353] for performance and / or energy reasons.

Back End In the back end of the core, instructions that executed out of order are serialised again;

mainly by retiring (or committing) them from the ROB in order when they have completed. At this point,

the architectural state of the register file is reconstructed (either by directly updating a separate archi-

tectural register file, or a separate remapping table). Futhermore, completed instructions are checked

for exceptions (such as permission errors or missing mappings for memory instructions, and arithmetic

exceptions); these require a clean architectural state and must not be actioned while they might be hap-

pening on a mis-speculated branch. Because the back end retires instructions in-order, branches must

be fully resolved before subsequent instructions can be retired. That way, checking for exceptions in the

back end is an easy way to ensure they are indeed part of the actual application instruction stream.

Similarly, other instructions that need to wait for preceeding instructions to finish (sometimes called

pipeline serialising) will wait until the retire stage to take effect; fences, CPUID, privilege level changes,

and modifactions to the segment registers. Another class of instructions that typically waits until the back

end are stores. In most ISAs, speculative stores must not be visible to the memory system. Sending them

out only at the retire stage ensures that; often, they are then held in a separate write buffer, or post-retire

store queue; in some designs, a part of the unified LSQ is used for that purpose.

Types of Speculation In total, modern out-of-order microprocessors execute instructions speculatively
and need to have mechanisms to deal with wrong speculation and reset the processor state to a known
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Figure 4.1: Abstract pipeline diagram of an out-of-order microprocessor.

good configuration–a valid architectural state. During speculation, however, speculative state is advanced

and only promoted to architectural state once all predictions have been validated successfully (at an in-

order retirement stage), or remedied.

In this thesis, I will refer to this collection of speculation as employed by current OoO microprocessors

as out-of-order speculation (OoO-spec). In contrast, I will refer to speculation used in the transactional

context (for example when entering an ASF speculative region) as ASF speculation (ASF-spec).

These speculation levels do not have to be distinct, their scope is, however, different. Out-of-order

speculation speculates on the instructions inside the reorder- / instruction-window which contains tens to

hundreds of instructions1, and supports a large number of different speculation mechanisms and failure

scenarios. Transactional speculation is a more high-level concept, conceptually executing local transac-

tions sequentially, but speculating on (lack of) interference from remote memory accesses. The horizon

of transactional speculation is the size of the transactions.

Adding support for transactional memory into an existing microarchitecture needs changes in a large

fraction of the units: clearly, the new instructions required to start and end a transaction necessitate

changes in the decoder; while the actual transactional memory functionality of conflict detection and

versioning require changes to the load-store unit and memory subsystem. The following sections outline

the technical details, looking at the features one by one.

4.1.2 Recovery From Out-Of-Order Misspeculation

Discovering instruction level parallelism gets a boost from OoO speculation due to seeing past unre-

solved (data dependent) branches and scheduling of loads and stores. In many other parts of the mi-

croarchitecture, speculation is employed as well to accelerate the fast path of execution. Examples are

way-prediction, assuming conflict free scheduling of instructions etc.

If these predictions fail, their effects need to be rectified. In some cases, a simple pipeline flush pro-

vides the cleanest restoration of a known good architectural state and is a “heavy hammer”: it discards

accumulated state and instruction progress of the entire instruction window (tens to hundreds of instruc-

tions). Often, selective annulment or squashing of single instructions is better suited to discard badly

speculated paths behind a wrongly predicted branch. The associated tracking logic, however, may make

1Even though proposals exist for larger windows, or run-ahead execution [73, 88].
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fast-path execution slower and may also slow down the selective repair mechanism. Instruction replay
will simply retry an instruction on a local pipeline where it was facing resource issues. Finally, redispatch
will reexecute an instruction as well, but will usually take place after the instruction has already exe-

cuted and had its wrong result forwarded to consuming instructions. Selectively reexecuting the entire

dependency tree of the broken instruction is necessary in those cases. In most designs, redispatch will be

approximated by a full pipeline flush.

4.1.3 Coherency Protocol Basics

Coherency protocols are a vast area of both academic and industrial research [15, 22, 31, 33, 256, 279,

297, 313]. The essential function of a coherency protocol is to provide cache coherence in the system,

ensuring that writes become visible to other cores in the system and reads always see a coherent view of

memory. More formally, coherence ensures that per memory location there is a single global order over

writes that all cores observe the same way. In systems with cache coherence, the programmer does not

have to manually push data from one cache to another, but instead can rely on the fact that data will

eventually become visible at the consumer end.

The coherency protocol works by sending out messages to other cores / caches in the system on reads

and writes. These are often called snoop (or probe) messages due the heritage of having a single shared

bus that connected all caches and cores and the caches could just snoop that bus. In todays complex

memory hierarchies, there is not a single shared bus that can easily be snooped; instead explicit messages

need to be sent.

For the sake of this thesis, we assume a simple coherency protocol that sends out snoop messages on

cache misses to all holders of a cache line. Reads that miss in the cache will send out non-invalidating
snoop messages, while writes that miss in the cache (either the cache line is not present or not in an

exclusive state) will send out invalidating messages.

Holders of a cache line will usually acknowledge non-invalidating snoops (potentially forwarding the

data directly to the requester, and noting the lost exclusivity), and upon receiving an invalidating snoop

message, all caches will invalidate their copy of the cache line so that the requesting core / cache will

subsequently be the sole owner of the cache line and can modify it accordingly.

Again, for simplicity, we assume that the core will send out snoops to all (potential) locations before

completing the memory instruction. For loads this means they will be sent before making the loaded data

available to consuming instructions and retiring the load. Stores we assume will send out invalidating

snoop requests before they actually modify the cache line at the point of coherence, or before they

commit.

4.2 Key Microarchitectural HTM Mechanisms

Transactional memory is a composition of four main mechanisms working together: data versioning,

conflict detection, multi-word atomic stores, and additional transactional state rollback. The following

subsections provide insight into their functionality and interaction with existing processor features.

4.2.1 Data Versioning

Transaction semantics require that transactional stores are made visible to other cores only when the

enclosing transaction commits successfully. In the case that the transaction does not commit successfully,

the transactional stores need to be discarded; that is, locations stored to need to return to the value

they had before the transaction. For the duration of the transaction it is therefore necessary that both
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the pre-transactional version and the speculative, transactional version of the memory location need to

exist in the system. The speculative copy will become the authoritative copy upon commit, while the

pre-transactional version is the fall-back in case of a transaction abort.

Data versioning describes this existence of two versions of the same memory location and usually

buffering is employed to keep one of the two possible versions of the data available in addition to the

other one which is usually stored at the normal place in the memory hierarchy.

The first decision is whether to reuse / augment an existing, similar structure (LSQ, DC) for buffer-

ing, or whether to create a dedicated, new buffering structure. Reusing an existing structure for data

versioning usually restricts flexibility in sizing and organisation, may complicate existing interfaces, and

slow-down timing on critical paths. Furthermore, the extended unit may need a complete re-validation

pass during the design of the CPU, even though transactions are not used. On the positive side, however,

may be the smaller overall cost in silicon real estate due to reuse of similar logic and storage cells; and a

higher performance due to closer proximity of the backup storage to the unit storing the definite copy of

the data / performing the store.

Creating a new buffering structure, on the other hand, may permit better tuning to the needs of

transactional code and leave exiting interfaces and control paths unencumbered. On the negative side,

the new buffer does need to interact with the existing components and thus needs careful integration

into existing flows, and verification effort to ensure that non-transactional operation remains correct. An

additional hurdle may be challenges in placing the new structure in an existing, tight floor plan without

impeding timing and routing of signals. A dedicated structure will therefore be usually smaller and may

have higher latencies to access.

Regardless of the choice, the data versioning mechanism must be able to supply the updated transac-

tional values to loads inside the ongoing transaction, while hiding them from global visibility and allow-

ing to revert to pre-transactional values. Reusing a structure that is queried on local loads (LSQ, DC) has

therefore the advantage of automatically forwarding transactional writes to loads inside the transaction.

Using a new structure to store the transactionally written data, on the other hand, requires additional

checking of upon loads inside the transaction. Together with the idea of optimising for transaction com-

mit, dedicated structures for data versioning should therefore track the old version of the modified data

for restore upon abort.

The concept of eager / lazy versioning [102] (and similarly, undo / redo logging) is a concept from

STM systems, but does not adequately address the different trade-offs and complexities in hardware

systems. In particular, it fails to distinguish between the mechanism of data versioning and the location

of global visibility, and the time when store probes are sent to the system. For a better analysis, three

components need to be considered: (1) is transactional data stored in the local source for loads (i.e. the

local L1 DC, the LSQ); (2) is transactional data stored in (or beyond) the global point of visibility and

finally, (3) is transactional data snooped at the time of the write, or at the end of the transaction.

Eager versioning for stores would likely refer to a system that stored transactional data in the coherent

and globally visible L1 cache, and keep pre-transactional values either in a separate undo log / buffer,

or more easily in lower levels (L2, DRAM) of the memory hierarchy (see below). Lazy versioning, on

the other hand, could be implemented in exactly the same way in a system that had the L2 cache as the

point of visibility and thus would require transactional stores to be pushed out to the L2 at the end of the

transaction. Note that in this lazy versioning scheme the usual cost for transactional loads in STMs does

not occur, there is no additional buffer that the transactional loads need to consider to be able to read

from earlier transactional stores. Instead, the L1 will already provide such functionality.

One particularly light-weight choice for data versioning uses an outer-level cache (e.g. L2 cache)

as a storage for pre-transactional data and holds transactionally modified data in the local L1 cache.
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Upon transaction commit, the copy in the L2 cache is made unauthoritative, either by invalidating /

updating it, or by making sure that the L1 copy (that often is consulted in parallel with the L2) responds

to remote read requests. Transaction aborts will invalidate the transactionally written data in the local

L1 cache and later instructions read the pre-transactional state from the L2. Care has to be taken that the

outer cache / main memory contains the correct pre-transactional copy. For example, in most modern

(MSI, MESI, MOESI) cache coherence protocols [136] the most recent store (non-transactional or from

a committed transaction) may not be present in main memory, but instead live only in a single cache or

cache hierarchy. A transactional store to such a line will require writing-back the pre-transactional data to

the L2 cache. Additionally, exclusive cache hierarchies explicitly forbid duplicate cache lines in different

levels of a single hierarchy. In these cases, a transactional store may still need to write back prior to the

modification of the transactional copy, temporarily bypassing the exclusive regime.

Chosen Implementation For my thesis, I implemented multiple variants of data versioning. The first

uses a special buffer (the locked line buffer) that buffers pre-transactional data next to the L1 data cache;

the second one uses lower levels of the cache hierarchy for storing pre-transactional data as discussed

here; and finally, we also implemented a version that provides additional buffering logic in the LSQ of

the core to work around pathological capacity cases where indexed data structures can exhibit very low

usable capacity due to index trashing.

4.2.2 Conflict Detection

Transactions need to detect conflicts to ensure that they remain linearisable. Conflict detection usually in-

volves monitoring the local transaction’s working set and remote memory operations on addresses in this

set. In cache coherent multiprocessor systems, the coherence protocol is the obvious candidate to exchange

information about local and remote memory operations. Transactional conflict detection therefore ties

in with the specifics of the protocol. Changing the coherence protocol to cater for transactional memory

is challenging, because design and validation of a coherent multi-processor interconnect and associated

message protocol are hard. An easier choice is therefore to implement conflict detection local to a core,

without changes to the interconnect or its protocol. Fortunately, this is possible and is the route we have

taken during our work on ASF and also what I will present in this thesis. Despite the benefits customised

coherency protocols may provide [104], the cost of changing the protocol usually significantly exceeds

the commercial value of the (not yet established) transactional memory programming paradigm whose

value is hard to determine. Therefore, incremental BeHTM implementations will reuse the coherency pro-

tocol. For a fully local implementation that permits concurrent execution of non-conflicting transactions,

the addresses of the transaction’s read and write set need to be intersected with the snoop messages ar-

riving from the interconnect. This requires a tracking structure to keep these addresses available during

execution of the transaction. The fundamental trade-offs are similar to buffering transactional stores for

data versioning, but two things are different: (1) tracking requires only read / written information per

address, and (2) tracking the working set for conflict detection does not need to be precise, since it can be

seen as a mere performance optimisation. Pessimistically aborting too often (for example on any message

from the interconnect) does not break the safety of the mechanism, but may thwart progress / liveness

guarantees and performance!

Chosen Implementation In my work, I have implemented three different options for conflict detection

in ASF. The locked-line buffer (LLB) introduced earlier for data versioning can also be used for conflict

detection. In that case, only an address and read / written information is stored per-LLB entry. The

cost of LLB entries (they need to also function as data versioning containers) does limit the size of the

read set due to the limited conflict detection capacity (I will show analyses for 256 and 8 entry LLBs).
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Transactions tend to read more data than they write [205], so using a dedicated less costly mechanism

for read-set tracking is beneficial. The two other proposed implementations therefore use the L1 data

cache with additional state bits for transactional conflict detection. One implementation uses only the

cache for conflict detection, while the other employs both LLB and cache for conflict detection. Finally

we extended conflict detection to additional structures in the core in Section 4.5.

Air-tight Conflict Detection Regardless of the mechanism used to hold the live addresses for conflict

detection, another complication is the timing between the actual detection of a conflict, its propagation

to the control overseeing the live-cycle of the transaction, the time of the actual abort, and a potential

commit or conflicting access of a concurrent transaction. All ASF implementations maintain conflict

freedom from transaction start / addition of each element in the working set to the end of the transaction

with COMMIT.

For successful commit, the entire transaction must have been conflict-free at least a single point in

time before the commit–the linearisation point. In addition, at this particular point the stores need to

become visible to the system, too.

Due to the complex timing constraints on conflict detection, and the usage of the data versioning

mechanism also for conflict detection, it is often the case that multiple hardware blocks are responsible

for ensuring overall conflict freedom. One such example is using a dedicated buffer for data versioning

and conflict detection of transactional stores, while using the larger data cache for conflict detection of

loads (as they do not require additional buffering).

Similar to the notes on data versioning regarding the notion of eager / lazy versioning, these attributes

do not sufficiently describe the behaviour of a conflict detection mechanism. Instead, the timing of

sending out probes, and how incoming, conflicting probes are handled by the core executing a transaction

require a more detailed specification and can be independent.

Piggy-backing conflict detection on top of normal coherence messages, for example, requires that

loads that miss in the cache need to send out probes eagerly. Stores, however, may wait until the send

out invalidation messages until transaction end. Conversely, transactions receiving a conflicting probe

may decide to abort as soon as possible, abort at commit-time, or may decide to try to fix-up the conflict

instead of aborting altogether.

4.2.3 Multi-Word Atomic Store Visibility

Finally, one issue of transactional memory is often overlooked or (implicitly) conflated in the literature:

making all the transactional stores visible to the entire system atomically when the transaction commits.

The problem arises because complex memory hierarchies have complicated rules for store visibility; there

is usually one point of global visibility in the system meaning that a store reaching this point is visible

to all other cores2 in the system. Multi-copy atomic stores are either only visible to the local core that

executed them, or globally visible to all other agents. Such systems are the typical total store order (TSO)

systems, such as SPARC and x86 / AMD64. Systems do exist that are not multi-copy atomic, the store

may become visible to some cores while not visible to others, yet. Such behaviour can be observed in

non-TSO systems, such as IBM’s Power [353], and in the ARMv7 architecture [351]. Figure 4.2 shows

various points of global visibility of stores.

For a transaction to commit its stores atomically, all its stores need to be “revealed” at the global

visibility point at the same time. Complications arise if this point is not collocated with the structures

used for data versioning and conflict detection. The point of global visibility may, instead, be relatively

far away from the core and be situated deeper in the memory hierarchy. The distance can complicate

2Ignoring other agents, such as GPU and I/O.
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Figure 4.2: Processor cores with multiple options for visibility of stores: close global visibility, distant
global visibility and intermediate visibility points. Top: multi-copy atomic system, all agents see the
updated value at the same time. Middle: non-multi-copy atomic system, Core 0 Thread 1 can see the
update from Thread 0, but other agents still see the old value. Bottom: propagation of updates in a
non-multi-copy atomic system, eventually making the update globally visible.

the handshake between the core sending transactional stores and the memory hierarchy down to that

point. Extending the conflict detection mechanism to also include the point of global visibility may

require consolidated or additional conflict detection logic at the global visibility point, with detrimental

effects on latency to and from the core (for transactional marking of entries, reporting conflicts and

handling aborts). Not collocating the data versioning unit and the point of global visibility requires an

atomic transfer of the transactional stores from the former to the latter at transaction commit. Figure 4.3

pictures the interaction. One example of a transactional memory system with global visibility available

only further away from the core is IBM’s Blue Gene/Q system with PowerPC A2 cores [281], where the

transactional memory functionality resides in the L2 data cache. The resulting trade-offs are analysed

in [345].

As established already for data versioning and conflict detection, simple STM-derived eager / lazy

reasoning does not capture all freedom in hardware design. In software transactional memory, there is

effectively only a single point of visibility per address: that location in the single memory address space.

The two (or more) levels of local vs. global visibility are thus not properly captured in the simple eager

/ lazy characterisation. In addition, the policy for acquiring store permission (see Section 4.1.3, a store

sends snoops to the system before it can commit and become globally visible) to a line has multiple

steps and options on hardware, these may be done eagerly during transaction execution, while the actual

transmission of the values happens at transaction commit.
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Figure 4.3: Transactional stores must move as a unit from the versioning unit to the point of global
visibility.

ASF Design Choices Store visibility varies between the different ASF implementation variants explored

in this thesis. All variants eagerly acquire write permissions for the cache line, but some track stores at

the point of coherence while others will track stores before that point and thus require a mechanism for

transferring stores to the point of coherency atomically after transaction commit.

4.2.4 Rollback of Transactional State

As outlined in Chapter 3, the transactional state that needs to be rolled back may not only comprise

the transactional memory modifications. Transactional stores (to memory) are rolled back through data

versioning, modifications to the register state are not handled by that mechanism, though. ASF does not

require a full register checkpoint and rollback (see Section 3.2.7), instead it only checkpoints the instruc-

tion and stack pointer at the beginning of the transaction. Not rolling back all transactional modifications

opens interesting use-cases which I will explore in Chapter 6.

If register versioning is desired, various options exist to create a register snapshot / rollback mech-

anism. The simplest is an explicit register copy and restore mechanism that copies all registers upon

transaction entry to a scratch-pad memory / shadow register storage. When the transaction needs to

abort, the copies are restored and provide the pre-transactional state. While simple, full snapshot re-

quires time linear in the size of the architectural (integer3) register file (16 64 bit registers on AMD64).

Depending on the speed of the storage (usually one 64 bit store per cycle to the L1 cache), this may slow

down transaction entry (by at least 16 cycles in the example).

In particular for small transactions where overheads matter, only a small subset of the register file is

(1) live and (2) modified in the transaction. Tracking liveness is complicated, but register modifications

are easily detected in the core. An alternative incremental implementation can log the old register value

only on register modifications, adding a total cost only linear in the number of modified registers inside

a transaction. Care has to be taken that every register is only backed up once, possibly complicating the

logic for register overwriting.

Instead of a special memory location, the physical register file itself may hold the checkpointed register

values: either copying explicitly inside the register file, or by incrementally backing up with a modified

register renaming logic. Figure 4.4 shows such a mechanism. At transaction entry, the architectural

register renaming table is checkpointed and the physical registers currently holding architectural state

are marked as not to be recycled during the transaction. The net effect of both variants is a reduction

of the number of physical registers available for hazard avoidance (ultimately limiting discoverable ILP),

3The floating-point and vector registers are usually excluded due to their large footprint.
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Figure 4.4: Using the register renaming logic to create a backup copy of architectural registers to allow
unrolling of register modifications inside a transaction. A starting transaction saves the mapping of
architectural registers (1). Updated registers are allocated a new physical register (2), allowing simple
undo of the transaction by restoring the pre-tx mapping (3).

but no extra effort during the instruction execution inside the critical section is necessary. The copy of

the mapping table itself can be created eagerly, or also only when registers (RAX in the example) are

modified. Some microarchitectures provide a similar mechanism to track committed architectural state

and OoO-spec architectural state register mappings.

Due to the additional overhead, some HTM proposals, such as ASF, do not undo register modifica-

tions inside the transaction. Instead, simple transactions rely on the compiler (or programmer for short

assembly snippets) to recreate overwritten, live values (Section 3.3). In addition, several use-cases exist

for deliberately not restoring the register snapshot, explored in Chapter 6.

Other options IBM z-Series [259, 270] provides fine-grained control over which registers should be

saved and restored on transaction abort and which can be clobbered freely, or even used to transmit

information deliberately from the aborted transaction. As a result, that implementation has depending,

variable latency for transaction entry due to saving the selected, backed-up registers to scratch memory.

4.3 Basic Implementation Variants

We designed ASF such that a CPU design can implement ASF in various ways. The minimal capacity

requirements for an ASF implementation (four transactional cache lines) are deliberately low so existing

CPU designs can support simple ASF applications, such as lock-free algorithms or small transactions,

with very low additional cost. On the other side of the implementation spectrum, an ASF implementation

can support even large transactions efficiently. In this section, we present three basic implementation

variants.

4.3.1 Speculation Mechanism Reuse

Given that many cores already have mechanisms for keeping speculative program state private, such as

the store queue and an OoO-speculation mechanism, it is tempting to reuse these mechanisms for ASF

speculation.

To illustrate, we consider the Rock processor [188], which relies on existing microarchitectural fea-

tures to implement transactions: Rock uses the hardware’s register checkpointing mechanism for keeping

and restoring the register-file contents before starting speculation, and it keeps speculative memory up-

dates in the core’s store queue. Consequently, Rock needs to abort transactions when the capacity of
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either hardware resource is exhausted. Furthermore, Rock employs only a single level of speculation; the

resolution of branch mispredictions, TLB misses, and other exceptional conditions also abort an ongoing

transaction. For these and other reasons, Rock does not give any guarantees on transaction success even

in the absence of contention and interrupts.

In contrast, ASF does give an architectural forward-progress guarantee (in the absence of contention)

and a minimum-capacity guarantee for speculative regions. Microarchitectural conditions such as a TLB

miss or a store-queue overflow must not prevent a speculative region from eventually succeeding. Because

it would be impossible to provide these guarantees (including the weaker guarantee of eventual forward

progress) based on the OoO microarchitecture, we chose to implement the ASF mechanisms separately

from (and complementary to) the OoO mechanisms.

4.3.2 Cache-based Implementation

A first non-core variant is to keep the transactional data in each CPU core’s L1 cache and use the regular

cache-coherence protocol for monitoring the transactional data set. Each cache line needs two additional

bits, a speculative-read and a speculative-write bit, which are used to mark protected cache lines that

have been read or written by a speculative region, respectively. These bits are cleared when the specula-

tive region ends. In case the speculative region is aborted, the cache also invalidates all cache lines that

have the speculative-write bit set. This implementation has the advantage that potentially the complete

L1 cache capacity is at disposal for transactional data. However, the capacity is limited by the cache’s

associativity. Additionally, an implementation that wants to provide the (associativity-independent) min-

imum capacity guarantee of four memory lines using the L1 needs to ensure that each cache index can

hold at least four cache transactional lines that cannot be evicted by nontransactional data refills.

4.3.3 LLB-based Implementation

An alternative ASF implementation variant is to introduce a new CPU data structure called the locked

line buffer (LLB). The LLB holds the addresses of protected memory locations as well as backup copies of

speculatively modified memory lines. It snoops remote memory requests, and if an incompatible probe

request is received, it aborts the speculative region and writes back the backup copies before the probe

is answered. The advantage of an LLB-based implementation is that the cache hierarchy does not have

to be modified. Speculatively modified cache lines can even be evicted to another cache level or to main

memory. (We assume the LLB can snoop probes independently from the caches and is not affected by

cache-line evictions.) Because the LLB is a fully associative structure, it is not bound by the L1 cache’s

associativity and can guarantee a larger number of protected memory locations. However, since fully

associative structures are more costly, the total capacity typically would be much smaller than the L1 size.

4.4 Basic Pipeline and Out-of-Order Core integration

4.4.1 Sequential ASF Semantics

ASF has sequential programming semantics, which a core must preserve whether it employs OoO-

speculative execution or not. For example, a transactional memory access occurring inside a speculative

region must not be reordered to occur before the beginning of a speculative region. In this section, we

discuss two aspects of executing ASF-speculative memory accesses on an OoO core. We begin with issues

raised by executing protected memory accesses out of order in Section 4.4.2. Section 4.4.3 discusses how
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Figure 4.5: Using light-weight fence µops to order ASF instructions at the entry into a transaction.

ASF resources reserved for ASF-speculative data can be managed when the instructions referencing this

data are OoO-speculative and later annulled.

4.4.2 Speculative-region Flow

The execution order of instructions in an OoO core is largely determined4 through data dependencies.

Regular instructions without dependencies can generally execute in arbitrary order. For ASF specula-

tive regions, we need to decide whether particular memory accesses are executed inside or outside a

speculative region to decide whether it should be handled transactionally (flagged access / implicitly

flagged access inside a transaction), constitutes a programming error (flagged transactional access out-

side a transaction) or is a non-transactional access. Hence, these instructions have to be ordered with

respect to the marker instructions that begin / end such a containing region (SPECULATE and COMMIT).

We add special ASF memory-fence µops during decode of the SPECULATE instruction to attain this goal,

as shown in Figure 4.5. These fences operate mostly like normal fences in that they create an artificial

dependency on any later memory instruction that is only resolved once the fence has retired from the

core, and do not require special handling / ordering outside the local core (no special messages on the

bus). Later memory instructions can therefore only issue after the fence has retired. The fences are

ASF-specific in that they only affect ASF-spec memory instructions (LOCK MOVs) and not regular memory

references. Memory instructions (asf.memop) are then ordered by the following ordering rules (with

→ being similar to Lamport’s happened-before relation [5] and S(X) denoting the event of instruction X

being in pipeline stage S):

issue(asf.SPECULATE)→ retire(asf.SPECULATE) (4.1)

retire(asf.SPECULATE)→ retire(asf.mfence) (4.2)

retire(asf.mfence)→ issue(asf.memop) (4.3)

issue(asf.memop)→ retire(asf.memop) (4.4)

retire(asf.memop)→ retire(asf.commit) (4.5)

Ensuring that issue(asf.SPECULATE)→ issue(asf.memop)→ retire(asf.memop)→ retire(asf.commit)
Rules 4.1 and 4.4 trivially follow from the regular pipeline flow; Rules 4.2 and 4.5 are ensured by

retiring all instructions in order. Rule 4.3 is enforced through the functionality of fences: the asf.memop

has an artificial register dependency on the (dummy) result that the asf.mfence1 instruction produces

once it hits the retire stage (as opposed to the out-of-order completion of the execute stage for normal

instructions). This dependency is created in the ROB and dependency tracking data structures.

In Section 4.5, we present another method that moves the tracking of being inside a transactional

context into the core’s front-end decode unit.

4Additional ordering constraints exist through address overlaps, such as store-to-load forwarding.
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Figure 4.6: Short transactions may execute concurrently in the same processor core due to out-of-order
execution and pipelining.

Speculative-region Overlap Short speculative regions that execute neck-to-neck, such as in Figure 4.6,

can be in flight in the core simultaneously because of the reorder window.

Keeping track of the state of multiple simultaneous speculative regions is complicated. Conventional

state containers–registers–are renamed to track simultaneous usage of shared resources, but making all

of ASF’s state renameable is complex, because it is large and distributed: not only the information of the

speculative region state, the abort instruction and stack pointer, but also the entirety of the bits used to

track the read/write sets.

Figure 4.7 shows different options for handling transactions in close proximity in the core.

While there may be safe approximations to full renaming (such as merging read/write sets), we have

chosen a more straightforward approach by serializing the execution of consecutive speculative regions

in the core. Not renaming close overlapping transactions, but instead merging them will lose the tracking

between which transaction had which working set entries forcing group commit / abort. Between the two

transactions might be non-transactional code and that must not be visibly executed if the first transaction

has not yet committed, and must be executed even though the second transaction might abort. The heavy

pipeline-serialization mechanisms, such as flushes and stalls, have a large performance impact because

of the time needed to drain and fill the pipeline, decreasing performance especially for frequent, small

speculative regions that would execute in few cycles.

To avoid this performance decrease, we chose to implement the serialization through the existing

dependency rules, ASF memory barriers, and by not changing the state of the speculative region until

SPECULATE and COMMIT hit the pipeline’s retire stage. The serialization of two consecutive speculative

regions (comprised of asf.spec1, asf.memop1, asf.commit1 and asf.spec2, asf.memop2, asf.commit2

respectively) is then ensured through the following dependency chain:

issue(asf.memop1)→ retire(asf.memop1)→ retire(asf.commit1)

→ retire(asf.spec2)→ retire(asf.mfence2)→ issue(asf.memop2) (4.6)

The worst-case latency due to the additional serialisation is depicted in Figure 4.7. Each mechanism

causes additional cycles spent in the second transaction waiting for successful commit of the first transac-

tion. In practice (see Chapter 5), this is a pathological case, because there are usually non-transactional

instructions around the transactions which can execute in the gap between the consecutive transactions,

thanks to the proposed selective scheme.
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to branch mis-speculation causing traversal of the wrong child pointer. As a result, the conflict surface
with respect to concurrent memory accesses may be increased.

4.4.3 Misspeculation

Section 4.1.1 introduced multiple instances for speculation in the OoO core and how they could fail.

ASF-speculative load and store instructions are also subject to these mechanisms and this has caused

several challenges for our implementation, because of the complex interactions imposed by release and

redistribution of resources due to misspeculation.

Precise ASF working-set tracking Because of OoO speculation, the core may overestimate ASF’s work-

ing set: misspeculated memory instructions can add spurious ASF-spec entries to the LLB or cache before

the misspeculation is detected and the corresponding memory instructions are annulled. Linked tree data

structures (see Figure 4.8) can exhibit this issue, for example. If the branch for the test at each node is

wrongly predicted, speculative execution might traverse the wrong path / multiple wrong paths of the

tree.

The overestimation does not impact correctness of the execution conceptually (all lines that need

protection are protected), but has performance implications, since the additional lines artificially increase

contention and also put additional pressure on the limited capacity.

It is thus desirable to detect and remove spurious entries in ASF’s working sets. However, recomputing

the actual ASF-spec state of a cache line when annulling an ASF-spec memory access is challenging. The

state depends not only on in-flight memory instructions, but also has to take into account retired ASF-spec

memory instructions of the current speculative region that have referenced the cache line.

Our LLB-based ASF design supports reference counting for that particular purpose and thus can track

read/write sets precisely. Adding reference-counting mechanisms to the existing L1 cache would be ex-

pensive; thus, the L1-based ASF implementation currently may overestimate the read set. Another option

to avoid misspeculated entries in the transactional read/write sets is to mark entries in the cache only

after all control flow speculations have been resolved with a mechanism similar to what we describe for

misses in the next section; for example at the retire time of the load. The additional cost of an addi-
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the line with ASF marking (5). Simply resetting the ASF flag of either cache line or miss buffer entry
upon load squash (3) is not correct, because there might exist an aliasing load that requires the ASF-ness
to be preserved (6).

tional access to the data cache may, however, cause additional latency for the instruction, and consume

bandwidth of the cache interface.

Orphan cache entries Not tracking ASF’s working set precisely can lead to orphan ASF-spec entries in

the cache in an L1-based ASF implementation under specific timing conditions; even though it is safe

in principle. These orphan entries remain even though the originating speculative region has already

successfully committed or aborted; see Figure 4.9.

To illustrate, consider the following sequence of events: an ASF-spec load misses in the cache and

sets up an ASF-spec miss-buffer entry to track the cache miss. The load eventually is annulled because it

is on a wrongly predicted branch. The cache-miss handling cannot be aborted at this time. Eventually,

the speculative region commits by successfully retiring the COMMIT instruction (the original dependency

on the cache-missing load is not present anymore, since that load has been annulled). The cache line is

eventually filled into the cache and gets its spec-read bit enabled because the corresponding miss-buffer

entry was tagged as ASF-spec, leading to an orphan spec-read cache line.

Note that simply resetting the cache line’s spec-read bit on annulment of referencing ASF-spec loads

would be incorrect, because multiple in-flight loads (ASF-spec and non-ASF-spec) may still reference the

miss-buffer entry. Similarly, the miss-buffer entry’s ASF-spec state cannot be simply reset because it may

still be referenced by other in-flight ASF-spec loads.

A simplified version of the recomputation introduced previously solves this issue (Figure 4.10): we

reuse the existing reference from a miss-buffer entry to its associated in-flight loads and count the ASF-

spec-load references (or rather track the ASF-ness of each referencing memory instruction referencing

the missbuffer entry). We observe that no retired load can contribute to the ASF-spec state of the miss-

buffer entry because loads can only retire once their cache misses have been resolved. Therefore, the

number of ASF-spec loads referencing the miss-buffer entry can always be computed online by counting

all non-retired (in-flight) loads with such a reference, allowing miss-buffer entries to precisely track their

ASF-spec state and eliminating the need for dedicated reference counting in the L1 cache. In result, no

modification to the L1 cache is necessary, and we readily implemented this mechanism to prevent orphan

spec-read cache entries in our ASF prototype.

In a simpler design, it may be viable to wait for the missbuffers to be completely empty before start

/ commit of the transaction, but doing so increases the entry latency and also commit latency in the

presence of non-transactional accesses inside the transaction.

Flash clearing all ASF-spec bits (of miss-buffer and cache entries) at the end of a speculative region
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Figure 4.10: Recomputation of the ASF-ness of a specific miss buffer entry that is being reused by multiple
in-flight ASF-spec / non-ASF-spec accesses. The mechanism performs reference counting for each of the
two categories in the miss-buffer.

(retirement of the COMMIT instruction) would also work around the orphan-cache-entries issue. However,

our recomputation approach tracks ASF’s working set more closely (for misses) and thus reduces the

likelihood of contention.

4.4.4 Abort Semantics

ASF has eager conflict detection and provides early-abort semantics: it defines that no side effects (e.g.,

memory modifications or page faults) ever become visible caused by ASF misspeculation (i.e., further

execution of a speculative region after is has been aborted)5. The rationale is that no ASF-speculative

state should be able to leak unintentionally from an aborted speculative region. In particular with non-

transactional stores, timely aborts are crucial, because one may want to reason about the conflict freedom

of a speculative region and the non-transactional stores that it managed to make visible up to a specific

point.

This section discusses how our ASF implementation realizes early abort semantics. Section 4.4.5

explains that, to receive timely abort information, cores need to track access conflicts with protected data

in more CPU data structures than just the cache or LLB because of the asynchronous nature of memory

accesses in OoO processors. In Section 4.4.6 we describe how a core recovers when it has received an

abort signal.

4.4.5 Conflict Detection Handshake

The global linearizability of ASF transactions and consistency of the read and write sets is ensured through

eager conflict detection. Conflict detection has to start when or before the value of the load is bound [27]

or the load is performed [17]. Usually, some limited form of conflict detection and additional order-

ing is already employed in current multiprocessor systems with strong memory semantics6 to provide

suitable memory-consistency semantics to the application. To keep changes to this very sensitive area

of microarchitecture small, it is advisable to reuse the existing mechanisms and extend coverage of the

conflict observation until the speculative region commits. However, extending the monitoring period

of the legacy mechanisms is difficult, because it involves touching sensitive hardware and furthermore

may not be possible due to design decisions, such as reliance on bounded delay for certain operations,

or serialization of monitoring requests. Finally, the capacity of the legacy mechanisms is usually small,

because they only need to support a bounded instruction scheduling window instead of a transaction and

increasing their size may carry a prohibitive area, power and timing cost.

Therefore, the responsibility for monitoring ASF-spec data has to transition eventually from the legacy

mechanisms (such as the miss buffer or LDQ) to ASF’s monitoring facility (such as the LLB or the aug-

mented L1 cache). During the transition, it has to be ensured that the data element is never without

5Very related to the “opacity” safety metric for TM discovered later.
6Sometimes referred to as “Frey’s Rule Snooping” [29].
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Figure 4.11: Responsibility of devices for tracking conflicts of transactional memory accesses.
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Figure 4.12: Flow of setting ASF bits for loads hitting / missing in the cache.

conflict observance, necessitating atomic transitions or overlapping intervals of conflict-detection respon-

sibility, as depicted in Figure 4.11.

For our prototype, we reuse the existing miss buffers and flag cache lines as soon as they are initially

probed (for cache hits) or when they are delivered to L1 (for cache misses) with the according ASF-spec

bits. In the case of cache misses, the miss buffer is augmented to know that the cache line it is currently

tracking and requesting from the memory hierarchy will need to be flagged with appropriate ASF state.

In Figure 4.12, the CPU access the cache for a transactional line (1), if the access is a miss, the miss buffer

will be instructed (2) to fetch the cache line from the memory hierarchy (e.g., L2 cache, main memory)

(3). Once the line arrives (4), the miss buffer checks and identifies the line as transactional and adds it

to the cache with the right transactional bits set (5). For hits, the cache flags the line transactionally at

the first access (1), and steps (2) - (5) are not necessary.

Our LLB-based implementation similarly allocates entries as soon as possible, too. This design saves an

additional cache lookup at a later point in time (to set the respective ASF-spec bits) and ensures overlap-

ping contention monitoring. The timing between the hand-over from one conflict detection mechanism

to another (in particular to the enhanced L1 cache) has been a source of a lot of complexity. For exam-

ple, one issue we encountered was caused by store-to-load forwarding, in which a load receives the data

directly from an earlier store to the same address in the same thread. These loads effectively bypass the

caches, circumventing any conflict-detection mechanism implemented in the cache, in particular, when

the store itself did not create a conflict detecting entry. This may happen if the store was placed outside

the transition, or is a non-transactional store inside the transaction, as can be seen in Figure 4.13.

The transactional begin fence does not really help for two reasons: (1) abstractly, because it only

prevents in-TX things to get out, roach motel of older stores applies and the issue of non-tx stores to load

forwarding remains; (2) in the implementation, the issue is that PTLsim / Marss86 assume that stores

are globally visible as soon as they retire; therefore they do not model such a case and even a full fence

would not guarantee that the cache has been queried. This issue was solved by forcing cache access and

creating entries in the L1 cache for transactional loads that would get their data through store-to-load-

forwarding to ensure proper conflict monitoring.
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Figure 4.13: Store-to-load forwarding may cause transactional loads to not access the cache providing
a challenge for transactional conflict detection. Multiple transactional and non-transactional stores may
have an entry in the CPU’s store queue or the post-retire store buffer (1). Loads inside a transaction may
then directly get their value forwarded from such a store (2) without accessing the data cache. The cache
therefore may not detect transactional conflicts (3). The data will eventually leave the store buffer, but
that might be after transaction commit (4).

st X := 5
st Y := 6
st Z := 7

TX
Core 0 Core 1

ld Y

X Y
0 0

Z
0

Y
6

X
5

Cache

TXW
TXWY

X

Z

Cache

A
B
C

123

4

5

67

8

Undo

reqprobeabort

readrestore
abort

restore

Sim
Data

Figure 4.14: Incoming conflicting memory probes abort an ongoing transaction. Their reply, however,
does not need to wait for completion of the abort mechanism. Detail: Core 1 sends a load request (1) that
misses in the local cache and therefore probes other caches and hits on a transactionally written line (2).
This causes an abort signal to be sent to Core 0 (3). The load then checks with the abstract versioning
layer (4) which in turn restores the overlapping access to the single global memory view (5), from which
the requester reads (6). Eventually, Core 0 acts on the abort (7) and in turn triggers the restore of all its
transactionally written locations (8).

4.4.6 Abort Mechanics and Implications

In ASF, speculative regions abort whenever a conflicting concurrent data access is detected (requester-

wins conflict resolution policy), which may happen asynchronously to other core timing. As outlined

previously, we use the existing cache-coherence mechanisms to detect these conflicting memory accesses.

Whenever an ASF-speculatively modified line is read by another core, it must be ensured that the re-

questing core receives the backup copy with the probe answer, and not the updated data. Chapter 6 will

describe techniques around this basic principle, which allow a transaction to continue executing despite

the conflict.

The timing between probes, replies, and the rollback operation is crucial for correct operation. To

reduce the delay between the arrival of the conflicting probe and the final probe answer, we introduce

partial rollbacks. These rollbacks undo modifications only for the requested line, deliver the probe answer,

and then signal the core for further abort handling. This approach decouples the response to a requester

that caused an abort from the actual duration of the abort, reducing risks of deadlocks in the coherency

protocol (due to the removed dependency) and allows non-atomic aborts. Figure 4.14 visualises the flow.

Aborting the core (Figure 4.15) can then proceed independently of probe handling, at the core’s

discretion. The core checks for detected conflicts every cycle. If found, the core triggers the full rollback,
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Figure 4.15: The processor core handles transaction aborts like branch mispredictions: by squashing in-
flight instructions (1), filling the abort information for the application (2), and resetting execution to a
specified anchor (just behind SPECULATE in the case of ASF) (3). Eventually, the core will start fetching
and executing instructions from the application’s abort handler (4,5). In addition, transactional stores
are rolled back through the transactional versioning mechanisms (not shown).

encodes the abort reason into the rAX register, sets the flags register accordingly, and resets the instruction

and stack pointer to the values right after transaction entry (SPECULATE, see Chapter 3). Finally, a pipeline

flush and reset of the instruction fetcher (similar to the resolution of a mispredicted conditional branch)

completes the abort.

Although checking for abort conditions every cycle seems sufficient on the surface, we had to address

two subtleties of modern cores, which we describe in the remainder of this section.

Intra-cycle parallelism It is possible for a specifically timed in-flight in-tx store operation to the already

rolled-back line to retire in the same cycle in which the abort condition was detected, but before the

pipeline flush, essentially proceeding in parallel to the ongoing abort. If the speculative tracking bits

of the cache line have been already reset by the abort (due to self-abort / rollback in the cache), and

the retirement logic does not reset them, the store would be able to make ASF-speculative modifications

permanent (despite the abort of the enclosing speculative region). Proposals with decoupled versioning

and conflict detection mechanisms are particularly prone to this and similar errors. Therefore, it is

important to avoid disabling write-set tracking too early.

Mop splitting As described in Section 4.1, native-ISA (AMD64) instructions do not have to proceed

atomically through the core. Instead, they may be split up into smaller µops. These µops flow through

the pipeline independently and also retire in sequence, which creates another subtlety with respect to

the asynchronous nature of aborts: an abort may trigger when only a subset of the µops comprising an

instruction have retired and updated the architectural state. Together with non-transactional memory

accesses, and only partial register snapshots, the resulting register / memory state after a transaction

abort may be inconsistent and not correspond to any execution of single instructions and aborts between
them.

The most critical instructions regarding this are CALL and RET (in Figure 4.16), because they both

access the stack pointer, the instruction pointer and memory non-transactionally. Their partial retirement

is, however, contained by ASF, because the abort resets both registers to a consistent value (and no

guarantees for stack values below the stack pointer are given). Chapter 6 describes extensions that

require consistent register snapshots at abort. We therefore add additional logic that will delay abort

handling to between AMD64 / x86 instructions, carefully making sure that the post-abort-retired µops

do not expose state (register state or non-transactional memory accesses) after the abort.
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SPECULATE
asf.spec
mfence.asf

COMMIT
asf.com
mfence.asf

CALL <dest>
add tr
st  [rsp]:=tr
sub rsp
col flags
bru <dest>

RET
ld  tr=[rsp]
add rsp
jmp tr

Figure 4.16: AMD64 (and other ISAs) may split instructions into simpler µops in the processor pipeline.
Aborts that occur when only a fraction of these µops is retired can be challenging, because the instruction
may have taken effect, partially.

1 SPECULATE
2 JNZ abort_handler
3 traverse :
4 LOCK MOV rdx, [rsi + val] ; Load val
5 CMP rdx, rdi ; Element found?
6 JE found
7 LOCK MOV rsi, [rsi + next] ; Load next pointer
8 TEST rsi, rsi ; End of list?
9 JNZ traverse

10 COMMIT ; Element not found
11 ...
12 found:
13 COMMIT ; Element found

Figure 4.17: A small linked-list traversal loop searching for a particular element, illustrating potential
inflation of speculative working set because of mispredicted branches: The loop continuing JNZ traverse
instruction may be mispredicted and subsequent iterations use up ASF resources needed for maintaining
the capacity guarantee of ASF.

4.4.7 Capacity Guarantees

The ASF specification mandates that implementations support a minimal number of read/write set entries

(four cache lines), regardless of address layout and other aspects (such as TLB misses, branch mispredic-

tion, etc.).

Supporting such a guarantee under the OoO execution regime is complicated by several interactions.

As described previously (Section 4.4.3), ASF-speculative memory instructions may flag cache lines as

speculative optimistically, and they can artificially increase the speculative region’s working set and re-

duce the number of available cache entries / tracking capacity that an application can really use. In

particular, ASF loads behind unresolved and mispredicted branches, such as mispredicted pointer traver-

sal loops (linked-list traversal in Figure 4.17, tree structures in Figure 4.8), can cause this behavior.

Furthermore, loads may be issued out of order and may also fill missing cache lines in arbitrary order,

depending on their residence in the underlying memory hierarchy (e.g., line present in L2 cache vs. line

fetched from remote main memory). Therefore, even determining precisely if and when the capacity

limit is reached is complex, if execution is not to be overly serialised in the common case.

Non-ASF-spec memory instructions may also compete for space in the employed conflict detection

device, in particular if an existing structure, such as the L1 cache, is reused for that purpose. It may be

possible that non-ASF-spec entries displace ASF-spec entries, thwarting any possible capacity guarantee.

Finally, the organization of the speculative storage and tracking device heavily impacts the feasible

minimal guarantee. Set-associative caches have a small worst-case minimal capacity (their associativity)

because all requested addresses may alias into the same cache index. Other devices such as Bloom

filters [3] may allow tracking of an arbitrary number of elements (with decreasing precision), but do not

provide space for backup copies to support ASF-spec stores.
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In summary, a naive implementation does not even guarantee the worst-case capacity of the storage

container (i.e., the associativity of the L1 cache for a cache-based implementation). Additional ordering

and priority mechanisms are necessary to give such a guarantee, for example by carefully ordering ac-

cesses to capacity-critical parts of the storage device. However, strictly serializing all memory accesses

would reduce overall performance and complicate core design.

For our LLB-based implementation, we have therefore crafted a staged buffer (see Figure 4.18) that

has a (small) first stage where cache lines are held as long as they are only referenced by OoO-speculative,

in-tx, in-flight memory instructions. Whenever one of these instructions retires, the line in the LLB

transitions to the non-OoO-spec second buffer stage. The minimal guarantee is then provided predictably

by the non-OoO-spec second buffer stage, while the first OoO-spec stage basically controls how much

(OoO-)speculation can go on. This design allows us to carefully trade performance (through higher

discoverable ILP) for additional buffer space (for the additional first stage buffer). Memory instructions

have to wait until a free entry in the first stage is available before they can issue. To avoid deadlocks

through OoO fill-up of the speculative buffer stage, we carefully replay later memory instructions (further

down in the program flow) that have already been granted an entry to make room for the earlier ones

waiting for a free entry. In the right part of Figure 4.18, LD4 tries to allocate an entry in the OoO-

spec part of the buffer, but cannot do so, because the buffer is filled up with older (ST3) and younger

(LD5, LD9) memory accesses (1). In order to avoid deadlocks when allocating into the buffer, if such a

condition is detected by the core, either of LD5 or LD9, or both, need to replay and free their entry to

make room for LD4 (2).

Transitioning a memory instruction to the non-OoO-spec side requires an additional access from the

core to the buffer at the instruction retire stage. As such, the split dedicated buffer is similar to (or the

generic concept of) an implementation that uses both the LSQ and the data-cache after for tracking : the

LSQ will perform OoO-spec conflict detection / versioning, and the data-cache is accessed (again) after

the memory instruction has become non-OoO-speculative (for example at retire). In the next section, I

will outline such a design.

Our simple cache-based implementation currently lacks these features, because it aims at reusing

most of the existing cache implementation. Hence, it does not yet meet ASF’s required minimal capacity

guarantee under certain circumstances. In the next chapter, we will look at ways to remedy the situation

with cache-based implementations.

4.5 Enhanced Pipeline Integration

In the previous section, a simple baseline processor microarchitecture was used and extended mainly on

the memory subsystem facing part of the processor core. In this section, we propose changes that target

the core of the instruction flow by modifying the instruction decoder and the reorder buffer, and also

extensions that address shortcomings of the purely cache-based implementation of Section 4.4 and focus

more closely on optimising the pipeline integration. This section has previously appeared in our MICRO

2010 publication [214] and has been edited and extended.

4.5.1 Overview

While the main design challenges to the ASF implementation come from putting the long-lived ASF

speculative hardware context and the short-lived out-of-order execution context together, at a high level,

our extended design in Figure 4.19 is close to a cache-based HTM design [74, 102]. In addition to the

L1 cache, it buffers speculative data in the load/store queues. The L1 cache supports relatively large

speculative regions for transactional programming. The load/store queues are used to provide a higher
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Figure 4.18: Split buffer allowing discrimination between in-flight and retired memory instructions. Left:
Logical buffer split with parts for OoO-spec memory accesses that alow ILP, whereas retired transactional
accesses are tracked in the TX-spec part of the buffer, which provides the effective (minimal) transactional
capacity. Right: Allocation of memory instructions into the OoO-spec buffer part when an earlier LD4
cannot find space (1), and will displace younger accesses LD5, and LD9 (2), but not abort the transaction.

minimum capacity guarantee for lock-free programming since the minimum capacity guarantee with a

4-way set-associative L1 cache is limited to only four distinct memory words.

The design adds one bit per load/store queue entry and two bits per cache line to mark speculative

data. During a transaction, the AMD Coherent HyperTransport (cHT) protocol [122] is used to detect

conflicting speculative/non-speculative memory accesses from other cores by checking incoming cache

coherence messages against the additional bits. If a conflict is detected, the conflicted speculative region

is aborted by discarding the speculatively modified data and resetting the bits. If COMMIT is reached

without conflicts, the buffered speculative data are committed by gang-clearing the bits and sending the

stores buffered in the store queue to the L1 cache. Figure 4.19 shows the hardware structures for the ASF

implementation. In the figure, the components changed or added for ASF are shown in grey. The rest of

the section explains the ASF implementation details.

4.5.2 Extended Transactional Instruction Implementation

Beginning a Speculative Region The SPECULATE instruction starts a speculative region and is mi-

crocoded in the microcode ROM. On detecting a SPECULATE, the extended instruction decoder sets the

InSP (in speculation)7 bit to remember the beginning of a speculative region. Making the decoder aware

of the boundaries of the speculative region allows earlier marking of speculative accesses at a point where

the instruction stream is still processed in-order, see the complications described in Section 4.4.3. Similar

to the baseline proposal, the decoder signals the instruction dispatcher to read the SPECULATE microcode.

The microcode (1) computes the next rIP so that rIP is restored to point to the instruction following the

SPECULATE at an abort, (2) saves the next rIP and the current rSP in the shadow register file, and (3)

executes an mfence (memory fence) micro-op. The mfence generates a dependency between SPECULATE

7More precisely a nesting depth counter to support nested transactions.
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Figure 4.19: Extending an out-of-order core for transactional memory with focus on changing the flow of
instructions.

and later LOCK MOVs, which prevents the LOCK MOVs from being executed ahead of the SPECULATE in

the out-of-order execution stage (Section 4.4.2). The shadow register file is carved out of the existing

micro-architectural register file used only by micro-ops.

Speculative Accesses To track speculative accesses, two bits are added per cache line: the SW (spec-

ulative write) bit for speculative stores and the SR (speculative read) bit for speculative loads as shown

in Figure 4.19. The SW bit is also added per store queue entry, and the SR bit per load queue entry. A

transactional access is issued to the LS (load/store) unit and sets the SW bit of the store queue entry for

a store operation and the SR bit of the load queue entry for a load operation. The data movement opera-

tion executes in the same way as a normal access. The AMD64 TLB refill hardware allows a speculative

region to survive a possible TLB miss during address translation by handling the miss in hardware. When

the speculative access retires, the SR bit of the load queue entry is cleared, and the corresponding SR bit

in the L1 cache is set, carefully observing the handover principles established in Section 4.4.5. Although

sending another access to the L1 data cache at retire time can cause additional delay, it reduces transac-

tional overmarking and allows for less complicated logic in the miss-buffer handling logic. The SW bit of

the store queue entry is cleared when the speculative data are transferred from the store queue to the L1

cache along with setting the SW bit in the L1 cache. If speculative data are written to a cache line that

contains non-speculative dirty data (i.e., the D (Dirty) bit is set, but the SW bit is not set), the cache line

is written back first to make sure that the last committed data are preserved in the L2/L3 caches or the

main memory.

Increased Worst-Case Capacity As a fall-back, the LS unit can assist buffering speculative data post-

retire, if the L1 cache is out of capacity (for this particular index). More precisely, the transfer of the

SW/SR bits from the load/store queues to the L1 cache needs to meet two conditions: (1) the access

misses in the cache (i.e., no cache line to retain the bits) and (2) all cache lines of the indexed cache

set have their SW and/or SR bits set (i.e., no cache line to evict without triggering a capacity overflow).

In this case, the entry in the load/store queue is not deallocated, even though the associated instruction

has retired. While the total capacity increase is small, this scheme helps to handle unfavourable access

patterns that exceed the capacity of a few cache indices. Figure 4.20 depicts such an interaction.

If a non-speculative access meets the two conditions above, the L1 cache handles it as if the access

is of uncacheable type (through a dedicated buffer outside the L1) to avoid a capacity overflow, and the

L2 cache handles it directly. In order to hold as much speculative data as possible, the L1 cache eviction
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Figure 4.20: The load/store queue can be used as an additional storage container when a cache index is
filled with transactional tracking data. If a request accesses the cache (1) and the corresponding set is
full with transactional data (2), the LSQ will use the uncacheable path for getting the data (3) and (4),
and keep the access present for conflict detection if it was transactional (5).

policy evicts cache lines without the speculative bits set first. Similarly, a cache line prefetched by a

hardware prefetcher is inserted into the L1 cache only when it does not cause eviction of transactional

data.

Extending Data Versioning Capacity Using the store queue to buffer speculative stores instead of the

L1 cache needs careful integration with the logic for store visibility. Stores in the store queue are only

locally visible in the AMD64 memory model [209]. Therefore, a store is visible to the rest of the system

only after it is transferred to the L1 cache. To broadcast the existence of the buffered speculative store

that cannot be transferred to the L1 cache without triggering a capacity overflow, an exclusive permission

request for the store is sent directly to the coherent interconnect when the store retires in the store queue.

This enables the other cores to detect a conflict against the store.

Once the exclusive permission is acquired, the store queue entry remembers the acquisition through

an exclusive permission (EP) bit. The COMMIT instruction later checks the EP bit to make sure that the

store has been seen by the rest of the system for conflict detection before starting the commit procedure.

This is an example of the complication introduced in Section 4.2.3, and we will investigate details in the

following Section 4.5.3.

Capacity Overflow An overflow exception is triggered when the load/store queues do not have an

available entry for an incoming transactional memory instruction (i.e., the SW/SR bits of all entries

are set in the queue the instruction needs to go to). A tricky problem is that non-speculative accesses

should always make forward progress regardless of the number of the speculative accesses executed in a

speculative region. Our design reserves one entry per queue for the non-speculative accesses to be able

to execute them even when the rest of the load/store queue entries are filled with speculative data. As

outlined earlier, OoO misspeculation may trigger a false overflow exception. To address this problem, we

add an additional tracking bit per ROB entry: the overflow (OV) bit is set for an speculate access when it

would cause a capacity overflow. If the speculative access is on a mis-speculative path, the ROB entry and

the hardware resources associated with the entry will be discarded by the existing branch misprediction

recovery mechanism. A true capacity overflow at that time will be serviced when the instruction becomes

the oldest in the reorder buffer (the ROB entry reaches the head of the ROB) and triggers an overflow

exception (assuming no other abort conditions exist before the speculative access). One last chance is

given to such an instruction and it tries to allocate again in the load/store queue. The reasoning is that

previous, OoO-speculative entries could have used up a slot that was later freed due to the instructions

being on a wrongly speculated branch, and thus impacted an instruction on the correct path. Such

misspeculation will be rectified once the OV-marked instruction has reached the head the ROB.

The combination of marking transactional lines in the cache only at the instruction’s retire time (which

is bound to have resolved all earlier misspeculations) and the freeing of load/store queue entries of in-

structions on any misspeculated branch allows for precise capacity tracking at the expense of an addi-

tional round-trip to the cache and additional logic in the OoO execution supporting structures (ROB and
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LSQ, here). The solution outlined in the previous section is, in contrast, designed to minimise changes to

the processor’s core mechanisms.

4.5.3 Enhanced Transactional Flows

Conflict Detection A conflict with another core is detected by checking the SW/SR bits in the LS unit

and the L1 cache against incoming cache coherence messages. An invalidating message (for stores)

conflicts with entries of the same address and set SW or SR bit. A non-invalidating message (for loads)

conflicts only with entries with set SW bit. The baseline AMD processor already has the necessary content-

addressable-memory (CAM) logic in the LS unit and the L1 cache for conflict detection. The LS unit has

the CAM logic to check the address tags of all loads and retired stores for different purposes. The L1

cache has the CAM logic for address tags. These CAM logics are extended to read out the SW/SR bits for

conflict detection.

Unlike a store, a load is problematic for conflict detection since a conflict against the load has to

be detected from the moment the loaded value is bound to a register. Since the value is bound before

the load retires, there can be a false conflict due to in-flight speculative loads (i.e., those that have not

retired yet) on a mispredicted execution path. Similar to the handling of the speculative overflows, we

add a conflict (CF) bit per ROB entry, to circumvent false conflicts. A conflict with a SR bit in the load

queue sets the CF bit of the ROB entry of the conflicted load if the load is in-flight. If the conflicted load

is on a mispredicted execution path, its ROB entry with the false conflict information will be discarded

before reaching the head of the ROB. If not, the ROB invokes the abort procedure when the ROB entry of

the conflicted load reaches the head of the ROB. A conflict with other speculative accesses (i.e., retired

loads and stores either in the LS unit or in the L1 cache) is immediately reported to the ROB as a new

interrupt, ASF Conflict, since the retired accesses are free of branch misprediction. On detecting the

ASF Conflict interrupt, the ROB invokes the abort procedure for the conflict. The conflicted core replies

to the conflicting core pretending that it could not find a matching cache line for the cHT protocol.

Since the backup copy of the data is held in the L2 cache or main memory, requesters will access the

pre-transactional version of the data.

In addition to maintaining precise tracking of the working set’s size, delaying conflict detection (or

rather acting upon observed conflicts) to after a speculative memory instruction is guaranteed to be off a

mispredicted path avoids the problem of increased conflict surface due to transactional overmarking.

Aborting a Speculative Region As explained previously, a speculative region can be aborted for various

reasons. An abort is triggered when the ROB detects any of the overflow, or conflict bits set for the retiring

instruction, or the instruction is an abort or prohibited instruction and is the oldest ROB entry, or when

the core receives an ASF Conflict interrupt (from the cache tracking the working set). By checking for

abort / prohibited instructions only as oldest entries in the ROB, our design eliminates false aborts on a

mispredicted execution path. The abort procedure shown in Figure 4.21(a) is very similar to the normal

interrupt handling procedure and is used in all abort cases. The ROB first (1) initiates the pipeline flush

that invalidates all ROB entries and load/store queue entries and (2) signals the microcode ROM with one

of the ASF abort status codes. Then, the uninterruptable abort handler in the microcode ROM conducts

the following procedure. It (3) invalidates the L1 cache lines with the SW bits, (4) clears the SW/SR bits

in the L1 cache, (5) sets rAX with the signaled abort code, (6) updates the flags register, and (7) reads

the saved rIP and rSP values from the shadow register file. At this point, the abort procedure bifurcates.

If the abort is due to exceptions or interrupts, the microcode (8) sets the register ASF Exception IP with

the current rIP (i.e., the one that triggered the exception), (9) sets rIP and rSP with the saved rIP and rSP

values, and (10) jumps to the existing exception handler in the microcode ROM. The exception handler
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Figure 4.21: Aborting and committing speculative regions, showing interaction between functional units.

Figure 4.22: Illustrating non-atomic commits when tracking transactional stores not at the point of global
visibility.

thus perceives the exception as being caused by the instruction following the SPECULATE, but can still

access the original abort site.

All other abort reasons do not update the ASF Exception IP register, but instead directly update rIP

and rSP (9), and then execute a jump micro-op to redirect the instruction fetcher (10) to the saved rIP

(typically JNZ as explained in Section 3.2.2).

Committing a Speculative Region As outlined earlier in Section 4.2.3, the main challenge to com-

mitting a speculative region is that the simple gang-clear of the SW/SR bits in the LS unit and the L1

cache does not guarantee the atomicity of a committing speculative region under the AMD64 memory

model [209]. The problem is that the LS unit is not usually the point of global visibility, and thus the

transactional stores buffered in it need to traverse to the visibility point at commit atomically, together

with exposing the contents buffered in the L1 cache8. Section 4.2.3 introduced the issue in general terms.

This problem is illustrated in Figure 4.22(a). In the figure, Core 1 ran a speculative region that wrote

to X, Y, and other variables speculatively. The new X value (X = 1) happened to be buffered in the L1

cache, and the new Y value (Y=1) in the store queue. Now, Core 1 is about to commit the speculative

region. If Core 1 just gang-clears the SW/SR bits to commit the speculative region, the new Y value will

stay in the store queue. The problem is that if Core 2 reads X and Y at this point, it will read the new X

value (X = 1) in the L1 cache and the old Y value (Y = 0) in the main memory.

This is because any value in the store queue of Core 1 cannot be read by Core 2 according to the

AMD64 memory model (because the store queue is considered as the local write buffer of Core 1). This

breaks the atomicity of the speculative region because Core 2 reads the mix of the new value (X = 1)

8We assume the L1 cache is the point of global visibility.
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and the old value (Y = 0). To eliminate this problem, our design uses a nacking9 mechanism that detects

a conflicting cache coherence message from another core and nacks the message during the commit

procedure. The core receiving the nack message retries the nacked cache coherence operation later.

In Figure 4.22(b), the commit procedure starts the nacking mechanism first and then gang-clears the

SW/SR bits in the load queue and the L1 cache. Such behaviour is similar to commit-time locking in

STM implementations. At this point, Core 2 can read the new X value (X = 1) in the L1 cache but

cannot read any Y value since Core 1 detects the conflicting read from Core 2 by checking the SW bit

set for Y in the store queue and nacks the read operation. On receiving the nack message, Core 2 retries

the read operation and obtains the new Y value (Y = 1) after Core 1 completes transferring the new

Y value to the L1 cache. In this way, the nacking-based commit procedure guarantees the atomicity of

the committing speculative region by preventing the other cores from reading the old values of memory

addresses (e.g., Y = 0 in this example) if the store queue of the committing core has new values to

commit to the memory addresses (e.g., Y = 1). It is impossible for these cores to read the old value from

their own caches, because those entries have been invalidated eagerly through invalidating snoops sent

before the store updated the cache line.

Figure 4.21(b) shows the overall commit procedure based on the nacking mechanism. The COMMIT

instruction is microcoded. On detecting a COMMIT, the instruction decoder resets the InSP bit and signals

the dispatcher to read the COMMIT microcode. The microcode ROM has a feature to stall dispatching

micro-ops until a wait condition specified in the microcode is satisfied. A new wait condition is added

for COMMIT that checks (1) if all instructions in the ROB are ready to retire without exceptions and (2)

if all retired stores in the store queue have obtained exclusive permissions (i.e., their EP bits are set).

Once the condition is satisfied, the COMMIT microcode (3) signals the L1 cache and the LS unit to set their

NACK bits. Once the bits are set, conflicting cache coherence messages are nacked instead of aborting the

current speculative region. There is no deadlock due to the nacking mechanism because the committing

speculative region holds all necessary exclusive permissions to complete the COMMIT. Then, the commit

handler (4) clears the SW/SR bits in the L1 cache and the load queue to first commit the speculative data

in them. This (5) naturally enables the store queue to resume transferring the speculative data to the L1

cache since the SW/SR bits in the L1 cache are now cleared. Pushing the data out from the store queue

into the L1 will displace other lines that were transactionally accessed during this transaction. The data

transferred from the store queue do not set the SW bits in the L1 cache (done by checking the NACK

bit) since the completion of the data transfer at this point means that the data are committed and made

visible to the rest of the system. Due to the eager snooping, the sequentially published transactional

stores will logically still become visible at one point in time (compare that with the sequential unlocking

of commit locks in STM), and all pending loads that observe them occur after transaction commit. The

microcode ROM stalls on another wait condition that (6) checks if no store queue entry has the SW bit

set. By the time this condition is met, all new values in the store queue are transferred to the L1 cache.

Finally, the commit logic (7) signals the L1 cache and the LS unit to reset their NACK bits, and the commit

procedure completes here. Nothing is done to the shadow register file since it will be overwritten by the

next SPECULATE . Since the ASF hardware context in this design can support a single speculative region,

a speculative region should not enter the out-of-order execution stage before the previous speculative

region commits. This case is naturally handled in our design since the microcode ROM prevents the

instructions behind a COMMIT in the program order from being dispatched until the COMMIT completes.

Reliance on Eager Coherence This commit procedure relies on eager acquisition of write permissions

for stores, and adds a NACK message to the protocol. Eager store acquisition is often found in most

coherency protocols, but may be weakened in particular for systems with weaker memory consistency

9from NACK; negative acknowledgement
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semantics (non-multi-copy atomic systems, IBM and ARM systems, for example). In non-eager systems,

writes may not send out snoops to all (potential) shares before writing, or may decide not to wait for all

acknowledgements. Instead, writes could “diffuse” through the system or be grouped and made visible

to nearby cores, first.

Alternatives to “NACK” Messages Together with the early write permission acquisition for transac-

tional stores buffered in the store queue, and depending on the exact details of the coherence probing

mechanisms, it might be sufficient to delay sending an acknowledgment message in response to the read

probe (for Core 2’s initial read of Y) in the example, instead of explicitly sending a “NACK”. We observe

that the read must check core 1, at least up to the point of global visibility, and usually such a probe

message is answered with either an empty acknowledgement, or a reply with the updated data, and

ultimately, Core 2 needs to wait for all such replies (we are considering only eager / strong memory

subsystems here). If the interface from the L1 cache to the store queue (1) sends probes arriving in the

L1 cache to the store queue and (2) has a return channel, no new “NACK” messages may be required,

stalling on ACK reply suffices instead. Deadlock needs to be considered, but again due to the early write

permission acquisition for transactional entries in the store queue and tracking of remote write permis-

sion acquisitions during the transactions life time, write permissions do not need to be reacquired for the

transactional stores in Core 1’s store queue. These can therefore be propagated to the L1 cache without

causing deadlock-inducing waits for responses.

Handling Branch Misprediction Mispredicted branches before or in the middle of a speculative region

are troublesome since the speculative region can be fetched and executed along a mispredicted execu-

tion path. Our design uses the existing branch misprediction recovery mechanism to restore the ASF

hardware resources occupied by the mispredicted ASF instructions of the speculative region. When the

misprediction is detected, the recovery mechanism naturally discards the ROB entries and the load/store

queue entries occupied by the mispredicted instructions. Nothing is to be done to the L1 cache since the

SW/SR bits are transferred to the L1 cache only for retired instructions, and the mispredicted instructions

never retire. The NACK bits in the L1 cache and the LS unit are not set at this point since a mispredicted

COMMIT instruction will never start the commit procedure. This condition is true because the mispredicted

branch will flush all younger instructions (including the COMMIT) when the branch resolves. This means

that the COMMIT instruction needs to become the oldest in the ROB first and then transaction commit can

commence:

execute(branch)→ mispred(branch)→ retire(asf.commit) (4.7)

retire(asf.commit)→ enable(NACK) (4.8)

The InSP bit is requires careful handling since it has to be restored to the value at the moment the

mispredicted branch was decoded. To restore the InSP bit properly, the instruction decoder tags the

up-to-date InSP bit values along with the decoded instructions. The InSP bit is added per ROB entry to

record the tagged InSP bit value of each instruction (similar to Power [340]). When a branch is found to

be mispredicted, the SP bit of the branch’s ROB entry is used to restore the InSP bit. If the mispredicted

branch is before the speculative region, its SP bit is 0 and the InSP bit is reset. If it is in the middle of the

speculative region, its SP bit is 1 and the InSP bit is set. Simple flat nesting of transactions replaces the

simple InSP bit with a counter that tracks transactional depth per in-flight speculative instruction and in

the core’s front-end.
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Exceptions, Interrupts and Prohibited Instructions Exceptions and interrupts in a speculative region

are handled first by the ASF abort handler to abort the speculative region and then by the existing

exception handler in the same way as they are handled without speculative regions. If an instruction

before a SPECULATE in the program order triggers an exception after the SPECULATE has entered the

execution stage, the ASF hardware context is restored in the same way as a mispredicted branch before

a SPECULATE is handled.

Since the prohibited instructions should not be allowed to enter the execution stage and modify non-

speculative resources such as segment registers, our design detects them early at the decoding stage when

the InSP bit is set. On detecting the instructions, the instruction decoder signals the microcode ROM to

jump to the prohibited op handler. The handler (1) executes a micro-op that sets the PB (prohibited)

bit of its own ROB entry, and (2) waits for the entry to reach the head of the ROB. Then, the ROB picks

up the exception and initiates the abort procedure. This way, the prohibited instructions in a speculative

region never enter the execution stage.

4.5.4 Early Release of Transactional Data

The RELEASE instruction is complicated to implement since it builds dependencies with LOCK MOVs around

it. The problem is that the core will attempt to coalesce multiple memory accesses in an instruction

window to a single cache line. The RELEASE instruction must not release the cache line too early, that is

before all preceding accesses to the same cache line have completed, and also not too late, not after a

later memory instruction has re-added the memory location to the transactions working set.

A simple implementation might want to add memory fences before and after the RELEASE instruction,

but we have opted for an implementation with less constraints on ordering: We use the head execution

feature of the ROB to implement RELEASE. Once dispatched, a RELEASE does nothing until its ROB entry

reaches the head of the ROB. When the entry reaches the head, the ROB signals the RELEASE execution

logic to search for the SR bit to be reset by the RELEASE only in the L1 cache and in the portion of the

load queue that contains retired loads. After resetting the matching SR bit, the RELEASE logic signals the

ROB for its completion. This way, our design abides by the dependency among the RELEASE and the LOCK

MOVs around it since the loads behind the RELEASE have not retired yet and their SR bits are not examined

by the RELEASE logic. These loads will then reset the SR bin the cache once they retire.

4.6 Alternative Microarchitectural Implementation Variants

In addition to the two implementation variants presented in detail in the previous sections, several other

variants may be appropriate for specific system structures. The following two implementation sketches

show how the structure of the cache hierarchy and a desire to target a small set of changes can be realised.

4.6.1 AMD Bulldozer Microarchitecture Integration Sketch

AMD’s “Bulldozer” (BD) microarchitecture [136] has been developed as a revolutionary deviation from

the previous succession of K7 / K8 / Greyhound (sometimes referred to as “K10” in non-AMD material)

microarchitectures and therefore also provides a new design concept with cores sharing FPUs, front-ends

and more importantly, a new memory hierarchy. I will briefly highlight how this affects the implementa-

tion of ASF and complications and extensions for such a design.

Aside from changes to the core microarchitecture, the most significant changes to the Bulldozer ar-

chitecture are changes to the cache hierarchy: BD employs write-through L1 data caches, inclusive with
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the L2. Writes update the L1 upon retire and proceed to write-through to the L2. The core-side write-

port of the L2 has a write coalescing cache (WCC) which is a specially organized sub-cache inside the L2

that allows high sustained write-bandwidth to sink the traffic caused by the write-through organisation.

While the L1 data caches are dedicated per core, the L2 is shared between two cores / L1 data caches

(sometimes called a “module” or “compute unit”).

In BD, stores are only visible globally once they are written-through to the L2. This means that trans-

actional memory implementations that use the L1 data cache for conflict detection and data versioning

will need to take the distance between the versioning mechanism and point of global visibility into ac-

count (Section 4.2.3). In essence, the implementation will need to send the transactional updates from

the L1 / core to the L2 upon transaction commit, without allowing interference from other cores, and

without re-requesting written cache lines from the system; similar to the mechanism used for versioning

in the LSQ in Section 4.5.3. One positive side-effect of the inclusive, write-through nature of the L1 /

L2 cache arrangement is that the L2 can easily hold the pre-transactional copy to roll back transactional

stores. However, the L1 data cache is not designed to perform write-back operations, and thus the trans-

actional commit cannot perform the delayed write-through from the L1 data cache into the L2. If the L2

will not be involved in the versioning of transactional data, a separate mechanism needs to be used to

buffer the transactional writes between the core and the L2 cache. The size of that component will dictate

the maximum write set size of the transaction. One option is to use the WCC as such a component.

Another option would be to perform data versioning (and conflict detection) in the L2, but the higher

latency from the core to the mechanism used for data versioning / conflict detection is known to nega-

tively affect performance [270]. In addition, the L2 is shared by two cores, requiring dedicated tracking

bits for each of the cores.

4.6.2 Pipeline-only Implementation

Given the speculative substrate of an out-of-order microprocessor, a low-cost implementation alternative

may be to reuse those mechanisms for implementing transactional memory. Transaction begin is essen-

tially handled as an unresolved branch that will only be resolved once the entire transaction is ready

to commit. The existing snooping logic is repurposed as conflict detection logic with the addition of

detecting remote reads to entries in the store queue and the store queue buffers transactional stores.

One consequence of such a design is that the size of transactions is limited by the size of the buffers

used for out-of-order speculation. Those buffers are usually sized as small as possible (due to area and

energy constraints) and hence will allow only small transactions. The reorder buffer (50 – 200 entries)

limits the number of total instructions per transaction; and the load / store queue will constrain the

number of memory operations per transaction.

A second consequence is that events disrupting the base speculation mechanism (such as branch

mispredicts) will cause aborts of the transactions, too. Finally, while the reuse of the OoO speculation

mechanisms may save total area (transistors, wires), the mixing of the components and deep integration

has significant impact on complexity, and may negatively impact timing. We therefore chose not pursue

this path in our work at AMD, instead we point to the challenges the Sun Rock processor with a similar

approach was facing and its ultimate failure [188].

4.7 High-level Interaction Between Microarchitecture and HTM

After looking at several microarchitectural implementation options, I will summarise the effect of uarch

features on high-level properties of the implemented HTM.
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4.7.1 Visible Microarchitecture Artifacts

Several aspects of the microarchitecture will be visible to the programmer using the HTM functionality:

Capacity Constraints Most, if not all BeHTMs provide no, or only a soft, perspective on the size of

the transactions they support. That size will be determined by the read / write set sizes and how well

they fit into the chosen tracking structures for conflict detection and versioning. There is unfortunately a

performance cliff that applications will observe. Transactions either fit into the cache (or other tracking

structure), or they don’t. Some transient aspects and bin-packing variations exist, but for the largest

part, applications will experience significant slowdowns immediately when they exceed the provided

structures. Imprecise structures that trade large / infinite capacity for tracking precision loss will generally

degrade more gracefully; yet do not offer versioning, and can complicate progress analysis.

Transactional Overmarking As a result of the interplay between OoO-speculation and transactional

implementation choices, the resulting capacity available / used can be larger than what a stepwise execu-

tion of the program would have required. As a net result, capacity constraints become harder to predict

and also progress can be affected (due to additional conflict “surface”).

Performance Depending on the implementation choices of the HTM, transactions can affect the per-

formance of the code they are running; in addition to the concern of transaction aborts and progress.

Several implementation choices require work at the entry and exit of the transaction (to stash away reg-

isters) and may serialise the instruction stream around them (implicit barriers / fences). Furthermore,

some variants can reduce ILP inside the transaction by reducing the number of OoO speculation resources

available (by reserving physical registers, LSQ entries). Finally, if transactional accesses need to perform

additional work in the memory hierarchy (multiple trips to the cache for conflict detection, writing back

a pre-transactional copy), that work can either take longer, or the additional bandwidth requirements

can slow down overall execution (such as reducing effective cache interface bandwidth).

4.7.2 Progress

Overall, guaranteeing progress in hardware transactions is complex, for three main reasons: (1) spurious

aborts, even without contention, (2) resource depletion of transactional resources, and (3) guaranteeing

global progress with local policy.

In the first category fall all the transaction aborts that are caused by imperfections of the underly-

ing microarchitecture. Speculation itself is a best-effort feature and microprocessors will fall-back to

non-speculative execution in extraordinary (and hopefully non-performance critical) circumstances. De-

pending on the coupling between OoO speculation and TX speculation, failure in OoO speculation may

cause failure of TX speculation. The Sun Rock processor [188], for example, will abort transactions on

branch mispredicts and TLB misses. Notably, these events are not visible at the architectural level, i.e.,

applications cannot directly observe them happening.

Even on microarchitectures that decouple OoO and HTM mechanisms, for example the ones described

previously in this chapter, architecturally invisible events can still obstruct transaction progress, for ex-

ample scheduling issues or corner cases in the coherence protocol. Several examples were presented as

implementation challenges / bugs in Section 4.4.3 and 4.4.6; their workarounds could also have involved

aborting the transaction at detection of such a corner case. It is conceivable that real designs will err on

the side of aborting too many transactions rather than putting transactional safety at risk.

Events that have a large, visible effect on the architectural state may also abort transactions, for

example calling into the operating system / hypervisor explicitly or implicitly due to an exception (page

fault) or interrupt.
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Broadly, the second category of resource depletion will encompass cases when a transaction requires

more resources than are available in the transactional facilities. Depending on the implementation,

transactions may be limited in instruction count (size of the reorder buffer), number of loads / stores

(size of load / store queue), amount of transactional data used (size of the tracking structure, e.g., the

L1 data cache), and related metrics, such as address patterns in indexed associative tracking structures.

The latter is particularly important, because the worst-case capacity of a cache-based implementation

may be limited by the associativity of the cache. While there are academic proposals even to bypass the

capacity constraints of caches, they are firmly outside of what is deemed practically implementable as of

today [80, 86].

Finally, one of the paramount principles outlined in this work, is to not adversely affect the original

microarchitectural substrate and protocols, but instead have a minimally-invasive HTM implementation.

Adverse conflict patterns between two or more concurrent transactions may cause progress issues. Sim-

ple overlapping access patterns of two transactions with reverse access order in the second may cause

livelock, when both transactions conflict on their second access with the first access of each other and

simply retry (in lockstep).

Unfortunately, other, less-obvious effects can complicate the conflict scenario. False sharing of dif-

ferent data in identical cache lines can hide address patterns from programmers. Furthermore, conflict-

inducing coherence messages may be exchanged for reasons unknown / invisible to the application.

Hardware prefetches will speculatively pull in data in order to reduce latency on future accesses. These

prefetches may cause conflicts with concurrent transactions’ read and write sets. While most stream

prefetchers will prefetch data for reading, processors may use exclusive prefetchers for OoO speculative

stores, thus coupling local misspeculation (on a branch containing stores) with remote spurious transac-

tion failure.

Additionally, specific coherence messages may convert resource limitations elsewhere into transaction

aborts, for example enforced evicts due to limited snoop filter / directory capacity.

In summary, there exists a large number of reasons for progress-hindering aborts of transactions. In

the common case, these are expected to be rare, due to sufficient warm-up and expected to go away after

a small number of retries (predictors warmed up, working set paged in); but persistent corner cases may

exist, among them resource limitations and byzantine actual conflict patterns.

For all these reasons, it is hard to give general progress guarantees, such as wait-free / lock-free

execution. Best-effort HTM systems are thus favoured due to the fewer constraints they impose on

the underlying microarchitecture, speculation mechanisms and misspeculation recovery. These fewer

constraints, however, do not make the feature trivial to implement; BeHTM implementations are hard as

the observed bugs in my designs have shown and also the issues Intel has had with its first commercially

available HTM implementations [365, 366].

In ASF, the architecture attempts to give a very limited progress guarantee; essentially obstruction-

freedom when the number of transactional cache lines is smaller or equal to four. In this case, exceptions

and interrupt events are also treated as obstructions. Thus, the guarantee means that small transactions

that do not fault and execute with disabled interrupts will succeed eventually. In real life, the reasonable

expectation is that page faults will not persist indefinitely (due to the OS page tables holding all required

data) and interrupt rates will allow short transactions to complete between two interrupt events.

For the microarchitectural implementation, even such a weak guarantee will severely restrict the free-

dom, as described earlier. Even though the microarchitectures inside the simulators are relatively regular

and cannot expose all quirks and corner cases present in product microarchitectures, the challenges in-

troduced and solved in previous sections are indicative of the class of problems expected in real CPUs,

but will very well present only the tip of the iceberg.
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4.7.3 Influence of ASF-specific Features

Some of ASF’s features influence and complicate hardware design. Because ASF provides a limited capac-

ity guarantee (effectively obstruction freedom for transactions with up to four cachelines worth of read

/ write set), the hardware needs to provide that. That means that hardware cannot arbitrarily abort the

transactions, but must attempt to run small transactions in earnest. The guarantee does not guarantee

(progress) under contention, and also does not protect against external abort causes such as interrupts.

Instead, the core must carefully handle branch prediction and how it adds entries to the transactional

working set, especially with an associativity limited tracking structure. In our chosen implementations,

different structures effectively permit speculation and the limiting structures only track working set when

the accesses are not speculative anymore. Furthermore, our designs support cache and TLB misses while

staying in transactional mode; and generally do not contain any unnecessary aborts.

Another influence on the microarchitecture are ASF’s features of non-speculative accesses and only

partial register checkpoints. Both of these allow state to leak from the transaction; the first challenge

was to specify what behaviour programmers could expect to see of these accesses. Secondly, hardware

of course must carefully adhere to the specification and not leak speculative transactional data through

(falsely) aliasing non-transactional stores, and also ensure that the register file state at the abort time

corresponds an appropriate position in the code.

Non-transactional accesses must of course be distinguished from transactional ones, complicating the

flow and verification space of the load / store path of the core.

Together, however, ASF’s limited amount of register checkpointing reduces the need for complex

register stashing or renaming schemes; allows fast transaction entry and abort; and does not reduce ILP

inside the transaction. Furthermore, non-transactional accesses allow more careful selective annotation

and so a smaller tracking structure can be useful to more code that performs many operations on private

memory.

Similar to overlapping tx and non-tx accesses, the RELEASE instruction requires careful sequencing in

the instruction stream in order to not release later accesses that were hoisted before it due to out-of-order

execution.

4.8 Summary

In this chapter, I have presented various options for implementing a BeHTM ISA extension with the

example of AMD ASF. While conceptually simple on the ISA layer, implementations are complex because

of the cross-cutting responsibility of different hardware mechanisms to coordinate transaction execution

safely. Key challenges for any HTM implementation are the integration with other present layers of

speculation, most prominently out-of-order execution in high-performance cores, and the integration

with the specifics of the cache hierarchy and memory system. There, ensuring that conflicts are tracked

through the life-time of transactions in spatially separate structures without any windows of vulnerability

due to transition between mechanisms is crucial for correct transaction execution. Furthermore, choosing

the right location for data versioning and making all stores of a successful transaction visible to the system

at once while still watching for conflicts can be challenging depending on the layout and strength of the

underlying memory substrate.

Additionally, there is a strong relationship between the chosen microarchitecture and easily observable

application characteristics; in some cases resulting in a step-wise change for small input perturbations.

On the other hand, the features that distinguish ASF from other “run-of-the mill” BeHTMs also need

careful consideration in the microarchitectural realisation.
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Overall, however, it is possible to implement BeHTM with no, or very simple, changes to the overall

memory system architecture and cache coherence protocol. The required changes to the baseline CPU

core and caches are, however, still complex for a relatively “vanilla” BeHTM; therefore several of the pro-

posals from the literature that require more invasive modifications seem prohibitive due to the required

complexity and verification cost – especially for first generation systems.
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Chapter 5

Applications and Evaluation of HTM

5.1 Introduction

Transactional memory, like any other microprocessor feature, does not live in a vacuum, but instead both

ISA design and microarchitectural implementation characteristics need to work well with the applications

that use them. One of the first steps in design and implementation of such a processor extension is the

analysis of workloads and understanding requirements and characteristics of potential use of the feature.

Therefore, after introducing the ISA of a BeHTM (Chapter 3) and micro-architectural implementation

options and details (Chapter 4) in the previous chapters, this chapter will highlight use cases for BeHTM

mechanisms and performance results of our BeHTM implementations described. After understanding

requirements and usage, we build architectural and implementation prototypes to study interactions on

both architectural and microarchitectural levels.

The architectural level analysis leads to an understanding of usability of the feature and allows testing

of prototype software with necessary changes to support the proposed feature. In the case of BeHTM,

the architectural component is important, because of new control flow interactions (transaction aborts),

new instructions (transaction start / end, marked / unmarked memory accesses), and as a vehicle to

test compiler backends, transactional memory libraries and hand-crafted use of BeHTM in concurrent

data-structures and higher-level primitives (such as DCAS).

During my work on ASF, I was very fortunate to collaborate with our our partners in the VELOX EU-

funded project who contributed compiler, language, and library support on top of ASF, and used this

thesis’ simulation infrastructure for testing and performance evaluation of new compiler techniques. This

collaboration resulted in multiple joint publications [158, 210, 213, 214, 220, 254, 274, 289, 337]; some

of which (workshop papers without formal proceedings) I have attached to this thesis (Appendix B) and

will use / paraphrase here for illustration.

Building an actual microprocessor for this thesis work was infeasible, so I implemented all described

microarchitectural mechanisms inside detailed simulators (PTLsim [135] and Marss86 [253]). In fact,

only close to the end of my thesis have products with enabled BeHTM actually started shipping (Intel -

Q3-2013 [278, 286], IBM - Q3-2012 [270, 281, 340]) and been disabled again due to implementation

bugs (Intel - Haswell, Broadwell, Skylake [366]). Through my exposure to actual proprietary microar-

chitectures (mainly at AMD 2006 - 2012), I have tried to keep the simulator implementations as realistic

as possible, without sharing proprietary microarchitectural implementation details.

Despite a faithful simulator implementation, several fundamental differences remain between simula-

tors and actual implementations in RTL / silicon. Since I have not published about these, I will use some

space in this chapter (Section 5.4) to generally introduce high-level differences / characteristics of simu-
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lation environments (Section 5.4.1), show where this simplified my implementation (Section 5.4.3), and

finally present cases where the simulator actually complicated the design significantly (Section 5.4.4).

The remainder of this chapter is organised as follows: Section 5.2 will briefly introduce usage sce-

narios for BeHTM and summarise characteristics of the applications studied. Section 5.3 will present

highlights of the numerous performance studies undertaken with my ASF implementation and will dis-

cuss additional background information, not present in the selected publications.

Section 5.4 will present backgrounds and detailed analysis of the actual simulator implementations,

simplifications and complications; and I will summarise and conclude this chapter in Section 5.5.

5.2 Applications of HTM

Broadly speaking, transactional memory can be used in either a software visible or invisible fashion.

Software visible uses require changes to applications in either high-level programming languages, such

as C / C++ or Java, or direct usage of the primitives / instructions in assembly or through compiler

intrinsics.

Invisible uses of HTM integrate the mechanism “under the hood” of either existing synchronisation

mechanisms (e.g. Java’s synchronized blocks, pthread mutex / locking primitives), into language run-

times (e.g. the Python interpreter) or invisibly into the CPU to accelerate existing locking primitives.

Concurrently with my work on the ISA and hardware implementation of ASF, the popular C / C++

programming languages gained language support for threads, concurrency, memory models and synchro-

nisation in the C++11 standard [268]. The experimental extension for tm_atomic blocks is not yet part

of the standard, but is being discussed officially for eventual language integration [292]. Atomic blocks

group instructions and effectively provide transactional memory semantics directly at the C++ language

level. The work undertaken in the VELOX project including the work by Red Hat, University of Neuchatel,

and TU Dresden on the compiler and runtime, and AMD’s work with significant contributions by me for

providing a realistic testbed for the semantics have had and continue to have an impact on the design of

these primitives.

Since the work on C++ extensions had been concurrent with my work on ASF, not many code exam-

ples exist in C / C++ that use concurrency and locking extensively. Therefore, parts of our analysis uses

STAMP [166], a benchmark suite for transactional memory, handcrafted data structure benchmarks, and

also prototype integration into other languages, such as Python and Java. Finally, we identified a way

for semi-transparent lock elision through the use of a pthread library wrapper. The following sections will

present an overview of each of these use cases.

5.2.1 Direct HTM Usage

Microbenchmarks Several concurrent data structures lend themselves easily to usage of HTM to sim-

plify and accelerate the algorithm. In my thesis work, I have used, extended and evaluated concurrent

integer set implementations that are based on various data structures: linked lists, skip lists, RB-trees,

and hash sets.

On a high-level, there exist three ways how HTM can be employed in concurrent data structures.

Direct usage wraps the entire traversal and update of the underlying data structure into a single trans-

action. This approach ensures that all data structure accesses are properly synchronised by providing

linearisability through the hardware transactions’ strict serialisability property.

Especially for linear data structures, this can cause performance problems, because every transaction

accumulates a read-set with size O(N) for an N entry structure. Therefore, for some data structures I

have split the data structure operation into a non-transactional scan part with subsequent transactional
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Figure 5.1: The VELOX stack showing the different components created and modified for evaluating
Hardware Transactional Memory.

modification. Scanning traverses the linked data structure without acquiring locks or using transactions;

traversing until the region that will be modified by the operation is found. The modification is achieved

as follows: SPECULATE; check data structure consistency, e.g., elements still present and linked; perform

modifications; COMMIT.

This algorithm borrows from conventional fine-grained locking approaches. One difference is that

the scan phase will abort concurrent data structure modifications if they have already performed writes

in their transactions, but have not yet committed. Therefore, the readers do not need to check for

concurrent modifications (through scanning for locks, acquiring traversal locks or read-lock per-node

read-write locks), which improves their performance.

While generally improving performance, this algorithm does not easily compose, despite using HTM,

if the composition maintains the performance-preserving non-transactional scanning phase. Such com-

position is possible with ASF, where the scanning phase can be located inside a transaction (the one

used for composing the two data structure operations), but still be performed non-transactionally (with

unmarked loads in non-inverted ASF).

Finally, a third option to use HTM in concurrent data structures is to use a lower-level primitive

synthesised from HTM, such as DCAS, and use that in a lock-free mechanism that will update the data

structure. In the linked-list case, DCAS can be used to monitor the to be deleted element’s next pointer

and at the same time swing around the previous element’s next pointer.

Large Applications - STAMP Microbenchmarks are a great way of debugging and testing performance

of an HTM implementation. They also reflect a usage of transactions in small scale, mostly homogeneous

settings. The STAMP benchmark suite [166] is designed to be characteristic of large-scale TM usage,

and therefore presents larger transactions with a more diverse set of operations. To enable direct usage

of transactional memory, the global memory accesses and beginning / end of transactions have been

identified by hand and therefore allows direct usage of transactional primitives.

Language- and Library-Level Integration of HTM While hand annotation for transactional memory

applications is possible for small benchmarks, the manual effort required to instrument all the right

memory accesses and check for escaping function calls and other exits is significant. This work should

ideally performed by a compiler that understands programming language-level transactional constructs
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and adds the required transactional memory accesses for data and also inserts instructions to start / end

a transaction.

The most typical way for describing transactions in C-like programming languages is a special basic

block tm_atomic { . . . } wrapping an arbitrary sequence of code into a transaction.

During the course of this work, multiple transaction aware compilers were created by our partners

in the VELOX research project: Deuce for Java [226], and DTMC (the Dresden TM Compiler) based on

LLVM for C++ [150, 210], and finally gcc-tm – a fork of GCC which adds support for atomic blocks (now

part of mainline GCC)1

Figure 5.1 shows the entire VELOX stack with different applications, languages, compilers, and li-

braries for the evaluation of transactional memory.

Conceptually, these compilers work in a very similar fashion. They instrument entry and exit paths of

the basic block and add calls to a transactional-memory library. In addition, the compiler invokes read

/ write barrier functions of the TM library for every access to (potentially) shared memory. Finally, the

compiler instruments called functions and checks that they do not cause problems, such as I/O, system

calls etc., which can escape the transactional memory mechanisms, and adds additional code required

for the control flow of transaction abort.

The transactional memory functionality is provided by the TM library, which can implement various

TM algorithms. For HTM, the TM library mainly acts as a thin proxy layer, translating the compiler-

identified memory accesses and transaction start / end into the right use of the HTM primitives. In

addition, the TM library may provide fallback paths in case a hardware transaction repeatedly fails. The

simplest of such is grabbing a global lock in case of repeated transaction abort.

If transactions get mapped onto HTM, the overheads of the transactional read / write barriers have to

be small. In the small language integration layer introduced in Chapter 3 (Section 3.3), this is achieved by

using only single instruction inline assembly sequences for the barriers and short, hand-crafted assembly

sequences for transaction start and end.

For compilers that support TM language primitives through a TM library, the work per read / write

barrier might be more significant, including a function call / return and parameter passing. In case

of STMs that have to perform more work per transactional access, these overheads may not be too

significant. For ASF, where the barrier essentially is a single LOCK MOV, these overheads have to be

removed. Fortunately, the DTMC compiler uses LLVM which can perform aggressive inlining of functions

at link time2, which significantly reduces overheads.

For most of the work here, I have used and extended TinySTM with various ASF backends. Our joint

publication at EuroSys 2010 describes the stack and presents results for various HTM implementations

and benchmarks [213].

5.2.2 Lock Elision

In addition to using transactional memory directly, transactions may be used to convert lock-based critical

sections that pessimistically force serialisation through lock elision into optimistic transactions which

serialise only if concurrent executions conflict. There are various ways to perform such a transformation.

Manual Software Lock Elision The programmer manually converts the usage of locks / critical sections

into the right transactional primitives (atomic blocks, direct usage of the TM functions / instructions).

The lock usually remains as a fall-back path, in case the critical sections do not make progress with TM.

1See https://gcc.gnu.org/wiki/TransactionalMemory.
2GCC eventually also received link-time optimisation, but as of today (version 4.9) is unable to inline the transactional memory

barriers.

https://gcc.gnu.org/wiki/TransactionalMemory
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Failing transactions will therefore eventually acquire the lock and execute the original content of the

critical section, guaranteeing progress properties of the original critical section construct.

To properly serialise between lock-taking critical sections and concurrent lock-eliding transactions,

the transactions will have to check that the lock variable is free at their linearisation point. This can

be easily achieved by transactionally reading the lock and aborting if it is not free. In that case, if the

lock is free it will remain free until transaction commit / abort. An interesting trade-off is when the lock

should be checked for reading: pushing the check to the end of the transaction reduces the contention

window with lock-acquiring critical sections, but may also cause the transaction to run off inconsistent

state that is still modified by the critical section. While the transaction will eventually abort in that case,

either because it conflicted with one of the “consistent-making” stores of the critical section, or it finds

the lock taken, inspecting inconsistent state may cause anomalies, in particular, if the transaction can

exhibit side-effects as is the case in ASF. In the literature, this is called “lazy subscription” and considered

unsafe [244, 311].

Integrated and Semi-Transparent Software Lock Elision Performing lock elision “under the hood”

without the programmer changing code is compelling because it unlocks potential performance gains

for existing programs without code rewrite. Potential targets are eliding locks in language level con-

structs, such as Java’s synchronized blocks, and C++ std::mutex or derived locks; or locks present

in interpreted languages, such as the global interpreter lock in Python. Similarly, at a lower level the

pthread_mutex_* library interface can be adapted to perform transactions instead of acquiring the asso-

ciated lock.

The general mechanism remains the same as in manual lock elision: instead of acquiring the lock,

the code is changed to start a transaction instead. If the HTM then treats normal memory loads / stores

as transactional (ASF inverse mode), the modifications can be localised in the locking primitives without

requiring generation of two code paths with instrumentation of all shared accesses in one of them. Local-

ising the changes to the locking code can then be accomplished without changing the application code;

if shared libraries are used for the implementation of the locking primitives, the application binary may

remain the same. There are patches that change the popular GNU C libary [318] to perform elision in

the pthread_mutex_* functions using HTM. In our work on ASF, we have investigated approaches that

use LD_PRELOAD to load an interposer between the application and the exiting implementations of these

functions. In addition, we have added lock elision for locks used inside Java HotSpot [290], and Python

(driven mostly by Martin Pohlack, unpublished).

In some of these, complications arise from varying interfaces to the locking primitives. If locks are

elided, the underlying lock is not physically acquired, because that would require a write which in turn

would conflict with other eliding transactions. Instead, the lock is acquired logically: through a com-

bination of transactional tracking of the data and enforcing the lock free state for the duration of the

transaction. Locking interfaces which permit querying the lock variable while holding it (e.g. C++

std::unique_lock::owns_lock, or performing trylock operations on held locks) may need adaptation

to precisely distinguish between the following cases: no lock held, not eliding; holding the queried lock;

eliding queried lock; eliding a separate lock; running a separate transaction. Additional bookkeeping

may be required, but should be performed thread-locally and in a transaction-safe manner in order to

avoid transaction aborts.

Transparently eliding locks also keeps the programmer unaware of the changed performance trade-

offs. In order to get good performance out of an elided critical section, the programmer must: (1) avoid

writes to shared data, in particular data that is often shared between threads, but possibly not part of the

core synchronisation set of the algorithm; (2) be aware of conflict detection granularities, and avoid false

sharing; (3) avoid I/O and system calls as these tend to abort the transactions, too.
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While all of these points constitute good advice for making (non-elided) critical sections run fast (and

in fact most parallel code, including other lock-free techniques), due to reduced cache line bouncing

and reduced length of the critical section, they will only slow down execution with locks, whereas they

can permanently thwart progress with transactions and reduce performance to lower than the fall-back

path due to previous retries. Conversely, it may be surprising for programmers to have expected perfor-

mance gains for elided, non-conflicting critical sections suddenly evaporate due to changes / mechanisms

invisible or unintuitive to the programmer.

Due to the unknown nature of the critical section and the cost of unsuccessful transactional execu-

tion that eventually has to grab the lock, semi-transparent approaches benefit greatly from prediction: a

predictor is consulted with the identity of the critical section / lock and returns whether eliding the lock

acquisition would be beneficial or not. If the predictor indicates that elision is not beneficial, the lock

will be taken straight away. In comparison to branch predictors (which are pretty well understood, but

continue to evolve), two significant differences remain for lock elision predictors: (1) what exactly is the

“identity” of a critical section, and (2) how to update the predictor.

The identity used to index into the predictor should capture a high-level abstraction of the nature of

a transaction. In semi-transparent lock elision, the predictor can be a software component consulted in

the implementation of the elidable locking primitive. As such we found that indexing the predictor based

on the address of the lock provides good results. Indexing based on the instruction address might also be

useful, because it differentiates between different usages of the same lock variable, but relies on inlined

locking primitives. Alternatives include: using parts of the lock acquisition function’s return stack (GCC

exposes a __builtin_return_address function to such effect), or supplying an application-specified ID

value.

Transparent Hardware Lock Elision In contrast to the integrated and semi-transparent approaches,

fully transparent hardware lock elision [58, 62] integrates all required elision functionality into the CPU.

A full-blown, aggressive implementation could then elide all critical sections, irrespective of whether they

come from a (inlined) library, the OS kernel, or are built manually. In their simplest form, locks are built

out of an instruction sequence to acquire and release the lock; with the acquire path usually containing

one atomic read-modify-write instruction (or load-linked / store-conditional sequence to that effect) that

tries to transition the lock from a FREE to a TAKEN state, and a check of successful acquisition. The release

operation then will perform the inverse by storing a FREE value back in the lock variable.

Transparent elision will then perform the following: (1) detect an atomic RMW instruction transition-

ing a lock; (2) instead of acquiring the lock, start a transaction; (3) check that the lock is free, and (4)

acquire the lock locally. Finally, when a store operation is detected that transitions the lock from the local

taken state back to the original free value, the local write operations (FREE to TAKEN, TAKEN to FREE) are

discarded and the transaction committed.

Due to the local execution of the lock acquire / release operations, multiple concurrent threads will

see the lock as being free, transition it locally to taken and perform the elided critical section concurrently.

If there are no true data conflicts between the critical sections, they can execute concurrently.

Similar to the integrated approaches describe earlier, predicting whether a detected critical section can

be elided successfully is crucial for this approach; in transparent HLE, however, another (logical) layer

is required, too: is a particular atomic RMW sequence actually a lock acquisition. From my experience,

reliably detecting and eliding critical sections is challenging because:

• Different instruction sequences being used to acquire the lock

• Similar instruction sequences being used for other purposes, such as lock-free data structures, ref-

erence counting, and as a fence replacement
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• Various instruction sequences used to free the lock variable

• Lock algorithms transitioning the lock from a FREE1, to TAKEN1 and then FREE2 state, making it

hard to detect the transaction end, and impossible to remove the costly lock variable modification

through elision; for example ticket locks

• Lock algorithms that have other complex behaviours such as MCS locks, which spin locally if the

lock was acquired

• Modifications of the lock variable (or neighbouring memory locations) during the lock elision; for

example transitioning the lock from a TAKEN1 to a TAKEN2 value during the critical section; for

example in the 32bit x86 Java HotSpot version

• Wrongly detected lock acquisitions cause nesting of elision, and missed / non-existing release oper-

ations will then continue the elision until the transaction mechanism runs out of capacity, or aborts

otherwise

For these reasons, I believe that fully transparent lock elision is not feasible, or can only have very

narrow coverage. Unpublished studies that I performed at AMD analysing instruction traces of a huge set

of relevant workloads for lock / unlock patterns confirmed that.

Intel’s TSX proposal offers lock elision [303, 367], but side-steps (and arguably implicitly acknowl-

edges) the issue of detecting proper lock acquisitions / releases over other spurious memory modifica-

tions: TSX requires annotations of the memory instructions that constitute the actual lock acquisition and

release with xacquire and xrelease instruction prefixes. While these prefixes require software modi-

fication, the resulting code is still backwards compatible with older, elision-unaware CPUs, because the

prefixes are selected such that they are ignored / meaningless in non-TSX ISAs (they map to the repe /

repne prefixes that are only meaningful with string instructions).

5.2.3 Summary: Challenges of Lock Elision

In summary, lock elision in either form may be a viable way to apply transactional memory to acceler-

ate execution of threaded applications; but several challenges remain. Lock elision reuses code inside

critical sections and places it inside transactions. Supporting transactional execution as a default for all

memory accesses (instead of explicit annotation) eases this transplantation. In addition, the transactional

memory mechanism should abort upon encounter of any construct that it cannot support cleanly inside

a transaction.

These two conditions and the linearisability of transactions ensure correctness: the elided code does

not observe behavioural differences between elision and actually acquiring the lock variable3. The result-

ing construct does not, however, give any performance guarantees. With imprecise, incorrect detection

of critical sections, and frequent aborts due to spurious contention, or unsupported instructions; the

performance of the elided critical sections may be worse than serialising on the original lock.

Proper prediction in hardware or software is therefore important to ensure that unsuitable critical

sections are detected and their elision is not attempted regularly.

Finally, lock elision is unable to cope with data conflicts that would be masked by the serialisation and

may not be obvious to the programmer. False sharing is particularly bad, examples often seen are: the

data structure root node being allocated in the same cache line as other data that is frequently written

to; malloc meta-data in the same cache line as a previous data element and being modified by a new

allocation; and reference counting of objects that are being traversed / read.

3Except specific behaviours that may rely on ordering induced by the RMW operations on the lock variable[82].
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5.3 Evaluation Experiments

Together with project collaborators, I have evaluated the performance characteristics of the proposed

ASF BeHTM ISA extensions and their usability in various scenarios. The analysis focusses on accelerating

concurrent data structures (RB-trees, linked lists, skip lists), larger transactional memory applications

(STAMP), and semi-transparent lock elision (memcached). Further work using ASF has been performed

on eliding the global interpreter lock in Python and eliding locks (from monitors and synchronized

methods) in the HotSpot Java VM. The results of the two latter works could not be published due to

unfortunate timing of AMD liquidating the AMD OSRC Dresden office at the end of 2012. The source

code modifications of the HotSpot JVM are, however, available [290] and anecdotal evidence of design

decisions and complexities has been incorporated into this thesis.

The evaluation appears in the following publications which are available in proceedings, or attached

to this thesis:

• ASF: AMD64 Extension for Lock-free Data Structures and Transactional Memory (MICRO 2010 [214])

• Evaluation of AMD’s Advanced Synchronization Facility Within a Complete Transactional Memory

Stack (EuroSys 2010 [213])

• From Lightweight Hardware Transactional Memory to Lightweight Lock Elision (TRANSACT 2011 [254],

Appendix B.4)

• Between All and Nothing–Versatile Aborts in Hardware Transactional Memory (TRANSACT 2015 [337],

Appendix B.7)

Other publications from collaborators continue to evaluate ASF’s performance and unique feature set:

• Optimizing Hybrid Transactional Memory: The Importance of Nonspeculative Operations (SPAA

2011 [255]),

• A Scalable Lock-Free Universal Construction with Best Effort Transactional Hardware (DISC 2010 [222]),

• Hybrid NOrec: A Case Study in the Effectiveness of Best Effort Hardware Transactional Memory

(ASPLOS 2011 [244]),

• TM-dietlibc: A TM-aware Real-world System Library (IPDPS 2013 [299])

5.3.1 Integer Set Data Structures

Integer sets are widely used as a small micro-benchmark for evaluating transactional memory perfor-

mance and scalability. Due to their small size, and control over algorithms, update rates, data sizes, and

concurrency, they are ideal to understand BeHTM implementations in simulation.

Figure 5.2 shows the performance of a typical set of integer set implementations: liked lists, red-black

trees, skip lists, and hash sets. Four different ASF implementations are tested: small vs large dedicated,

fully-associative buffers for tracking the working set (“LLB 8” vs “LLB 256”), and the optional use of the

set associative L1 data cache for tracking reads (“w/L1”).

Comparing different data structures, it is clear that the linked list has limited scalability due to the

linear access pattern causing aborts between updating and traversing transactions. The other data struc-

tures show much better scalability because update and traversal regions conflict much less frequently.

The linear scan in linked lists does not only cause poor scalability, but also high resource requirements,

as O(N) entries need to be tracked in the working set.

The tiny ASF implementation that uses only a dedicated buffer with eight entries (“LLB-8”) does not

provide enough capacity for any of the data structures requiring traversal. The hash set, however, does
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not require any traversal (unless buckets overflow) and thus the small implementation does offer similar

performance to the bigger designs.

The skip list exposes conflicts in the set associative data cache when comparing performance of “LLB-

256” and “LLB-256 w/ L1”. In the latter, the reads are tracked in the L1 data cache; due to memory

layout effects, the tracking capacity can be significantly smaller than the 256 entries offered by the LLB

(the associativity in the worst case); and patterns with constant large offsets between accesses are known

to sensitise such behaviour.

Overall, ASF provides good scalability, algorithm and tracking capacity permitting.

Size Sensitivity Figure 5.3 explores the sizes of data structures and hardware mechanisms in more

detail for the linked list and the red-black tree. As expected, the linked list performance falls of a cliff

when it exceeds the capacity of the tracking structure (going from six to 14 elements for “LLB-8”), and

generally deteriorates when the list gets longer, as longer lists have longer traversal phases with higher

chances for conflict.

For the red-black tree, the situation is very different: larger trees actually increase the chances of

concurrent threads traversing different paths and thus performance increases until the tree starts to hit

the limitations of the tracking structures.

Early Release Clearly, the linked list is not a great transactional data structure; with additional hard-

ware support, however, it can outperform other, more complex data structures: Figure 5.4 shows the

impact of the RELEASE instruction. Thanks to the simple algorithm, the linked list can use RELEASE to

release the already traversed part of the list; emulating hand-over-hand locking with transactions. As a

result, performance is very high, and independent of size; only when the list becomes too big to fit into

the L1 cache, performance suffers due to the requirement of traversing every element on the path.

Overheads of HTM and STM Because of the small size of the workloads and the use of simulation, it is

possible to annotate separate phases of the transactions (start / commit, application code, transactional

accesses) and compare the performance of STM and HTM. Figure 5.5 visualises the cycle break-down

for single-threaded runs. Clearly, TinySTM is significantly slower than ASF; most of the different comes

from the cost of the transactional memory accesses. For linked list, STM needs 30.1x the number of

cycles for transactional accesses, for skip-list 15.4x, for the red-black tree 32.7x, and for the hash set

9.4x. Generally, the overhead is higher for accesses which would have executed in a tight scan loop with

a predictable access pattern. That is the reason why the overhead for hash set is the lowest: hash sets

are accessed not in a streaming fashion, and require only few accesses in general, and those can overlap

with the STM orec hash table access.

Maximum supported data structure size While hash tables generally perform well under transactional

execution, they can also deteriorate; effectively turning every hash bin into a linked list. In Figure 5.6,

we explored the maximum supported size of an oversubscribed hash table with different ASF implemen-

tations. With more associativity (“ASF-C8” vs “ASF-C4”), the buckets can be filled significantly more;

allowing more elements to be crammed into a hash table before having to perf costly resize operations.

Another implementation (“ASF-LC”) uses a small, fully associative overflow structure in hardware (the

load-store queue) to catch those few accesses that cause cache conflicts and would limit the size of trans-

actions. Using the fully associative structure as a fall-back further increases the supported load factors

and overall size of the hash table. Compared to the earlier “LLB8 w/ L1” design which used the fully

associative LLB only for writes, the fall-back aspect (for both loads and stores) makes a crucial difference.
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Figure 5.2: Scalability of IntegerSet with linked list, skip list, red-black tree, and hash set, with four ASF
implementations and varying thread count and key range (throughput; higher is better). From [213].
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Figure 5.7: PTLsim accuracy for the runtime of the STAMP benchmarks (no TM, no ASF, one thread) for
simulated with respect to native execution. From [213].

5.3.2 STAMP: complex workloads

In addition to micro-benchmarks, the STAMP benchmark suite offers more complex workloads for trans-

actional memory. Before investigating the performance of HTM, I evaluated that the simulator produces

reasonable performance estimates for the workloads by comparing simulated to native performance. Fig-

ure 5.7 shows the that the single-thread performance error is around 30% or less, with most workloads

having errors of 15% or less.

Vacation and K-Means seem to exercise mechanisms in the microarchitecture that perform differently

in PTLsim-ASF and in our selected native machine. Clearly, PTLsim cannot model all of the performance

relevant microarchitectural subtleties present in native cores, because many of them are not public, highly

specific to the revision of the microprocessor, and difficult to reproduce and identify.

One source of the inaccuracies we observed might be a PTLsim quirk: although PTLsim carefully mod-

els a TLB and the logic for page-table walks, it only consults them for loads. Stores do not query the TLB

and therefore are not delayed by TLB misses, do not update TLB entries, and are not stalled by bandwidth

limitations in the page-table walker. The effect on accuracy likely is minor since translations for many

stores already reside in the TLB because of a prior load. Nonetheless, we will add a better simulation

of stores in a future release of PTLsim-ASF. Despite these differences, we think that PTLsim models a

realistic microarchitecture and captures several novel interactions in current microprocessors. For our

main evaluation we conduct all experiments–including the baseline STM runs–inside the simulator to

make sure that our results are not affected by the discrepancies.

DTMC and PTLsim evaluation In a first series of evaluations, we used the DTMC compiler, TinySTM-

ASF, and the detailed PTLsim-ASF simulator to run the HTM4 versions of STAMP workloads.

Figure 5.8 presents scalability results for selected applications from the STAMP benchmark suite. We

also compare the performance of ASF-based TM to the performance of finely tuned STM (TinySTM) and to

4All accesses inside the transactions are annotated.
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serial execution of sequential code (without a TM). We observe that ASF-based TMs show very good scal-

ability and much better performance than STM for some applications, notably genome, intruder, ssca2,

and vacation. Other applications such as labyrinth do not scale well with LLB-8 and LLB-256 because the

TM uses irrevocable mode, which serialises execution, extensively, yet performance is still significantly

better than STM. Interestingly, the applications that do not scale well are those with transactions that have

large read and write sets (according to Table III in [166]). For applications with little contention and short

transactions, all four ASF variants perform well. For other applications, LLB-256 usually outperforms the

other implementation variants because LLB-8 suffers from the transaction lengths and L1/LLB is suscep-

tible to cache-associativity limitations. Yet, it is interesting to note, even the LLB-8-based implementation

provides benefits for many applications.

Figure 5.9 provides a breakdown of the abort reasons in the STAMP applications with different ASF

implementations. Unsurprisingly, the implementation with the small dedicated buffer (eight-entry LLB)

suffers from many capacity aborts for most benchmarks, while the larger dedicated buffer (256-entry
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LLB) usually has the least capacity aborts. Adding the L1 cache for tracking transactional reads (“+L1”)

does not always reduce capacity aborts, but actually increases them for several benchmarks. Three

reasons contribute to the increase. First, although the L1 cache has a large total capacity, it has limited

associativity (two-way set associative) and therefore usable capacity is dependent on address layout.

Second, our current read-set tracking implementation does not modify the cache-line displacement logic.

Non-tx accesses may displace cache lines used for tracking the read set. Finally, cache lines may be

brought into the cache out of order and purely due to speculation of the core. These additional cache

lines may further displace lines that track the transaction’s read set. Since displacement of cache lines

with transactional data causes capacity aborts, the large number of those is not only caused by actual

capacity overflows, but may be caused by disadvantageous transient core behavior. For our current

study, we fall back to serial mode to handle capacity aborts, therefore reducing contention aborts for

benchmarks with high capacity failures. To leverage the partially transient nature of capacity aborts,

one could also retry aborting transactions in ASF and hope for favorable behavior. Furthermore, we will

tackle the issue from the hardware side by containing the random effects and ensuring that we meet the

architectural minimum capacity. Both aspects are subject of current research.

The power of selective annotation In a follow-on study, we evaluated more advanced design points

for the HTM (previously mentioned usage of the load-store-queue for providing additional worst-case

capacity for loads and stores and using the cache for both loads and stores) in a simpler AMD-internal

simulator. In addition to a different hardware design, we also investigated the difference between full

annotation (STAMP’s HTM mode), and much reduced hand annotation (STM mode) with ASF to evaluate

the usage of ASF’s elective annotation. In Figure 5.10 we show performance (as throughput) for the

STAMP workloads. Based on their scalability, there are three groups of behaviour.

For the first group (bayes, labyrinth, and yada), the HTM version of STAMP (“ASF-AS”) scales poorly

in comparison to ASF-LC/C8/C4. This is because ASF-AS does not support selective annotation which

reduces the speculative memory footprints of speculative regions. On closer inspection we find that

the average ratio of speculative accesses to total memory accesses is only 8.25% while the rates for

bayes, labyrinth, and yada are even lower (0.03%, 0.01%, and 1.12%). Fewer non-tx accesses cause

less resource overflows and less contention: while about 89% of all transactions fit into the provided

resources, the remaining transactions serialise and are often not just big, but also long-lived and prevent

ASF-AS from scaling.

Bayes and yada perform better with ASF-LC and ASF-C8 than ASF-C4 since many capacity overflows

due to set-associative conflict misses are eliminated by the higher cache set-associativity of ASF-C8 and

the fully associative load/store queues of ASF-LC.

Applications of the second group (indtruder, kmeans, ssca2) perform very similarly on all designs;

their transactions are only short-lived and trigger few capacity overflows (0.12%, i0.01%, and 0.03%

respectively). Therefore, they do not require selective annotation, a high cache set-associativity, or the

load/store queues. Comparing that to our earlier analysis, intruder is the only difference, here; it stopped

scaling with four cores on PTLsim with a high number of transactional conflicts as abort reasons.

Finally, genome and vacation in the third group show some performance differences among the four

design options. Vacation scales better with ASF-LC and ASF-C8 due to the reduction of set-associative

conflict misses, which is inline with it’s erratic behaviour for any set-associative implementation in our

earlier analysis (with the fully-associative LLB-256 being the only scaling alternative).

Investigating applications of the first and third group in more detail, we find that the execution cycles

spent on overflowing and serialised (“virtualization”) transactions are removed with selective annotation

and higher associativity caches / tracking structures; in Figure 5.11
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Figure 5.12: Performance of various lock elision mechanisms in memcached compared to the native
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5.3.3 Memcached: elision and transaction characteristics

The final analysis shows our semi-transparent approach to lock elision with a new application: the in-

memory database memcached. By replacing pthread locking code dynamically (through LD_PRELOAD)

with ASF transactions (using SPECULATE_INV), we can evaluate performance and other characteristics

of elided critical sections in the application without any changes to source or binary. We simulate the

application in PTLsim-ASF, and find that with four cores, eliding the critical section protecting the hash

map at the heart of memcached, we get performance improvements of up to 34% (Figure 5.12).

Our instrumentation approach outperforms manual instrumentation thanks to larger coverage (more

code paths instrumented), and careful dynamic selection of elision targets (more detail in the paper)

preventing ineffective elision after a short learning period. Improving coverage is important, as a single

taken lock has a high cost, as it will serialise all execution by aborting concurrent eliding transactions.

For memcached, we investigated the transaction characteristics in more detail. Figure 5.13 shows his-

tograms and CDFs for the number of cache lines accessed and cycles spent in transactions. In memcached,

transactions are small and they read about three times as much (median 14 cache lines, maximum 25

cache lines) as they write (median four, maximum six cache lines). Furthermore, transactions execute

quickly (up to 200 cycles) and their execution times depend largely on the cache hit / miss behaviour; so

overall durations are varied and clustered.

Similarly, the instruction count and breakdown in Figure 5.14 show similar trends. The dynamic

number of instructions executed per transaction is small (less than 80 instructions), and the clustering

reflects few distinct execution paths through the code; which results in similar clusters for the numbers of

load / store instructions. Comparing memory instructions and cache lines used, stores cluster into fewer

cache lines than loads; likely due to bundled writes and lookup accesses for loads.

5.3.4 Evaluation Summary

In summary, we have shown that ASF accelerates applications with transactions and elided transactions

efficiently. Thanks to its low single-threaded overheads (especially when accessing transactional memory

locations), it outperforms state-of-the-art STMs, such as TinySTM. ASF handles many benchmarks well;

yet some transactions exceed the provided tracking capacity or exhibit unfavourable access patterns.

Overall, despite its best-effort nature, ASF outperforms STMs by an order of magnitude and provides

significant improvements over single-threaded execution already with two threads for the applications

tested.

Comparing the different implementation variants, the associativity of L1-based implementations may
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be too limiting some address layouts, while the capacity of fully-associative buffers can be too limit-

ing. One of our designs combines a large associative structure (the L1 cache) with an additional fully-

associative overflow mechanism (the load/store queue here); this combination provides fewer perfor-

mance “cliffs” at reasonable additional cost. During our experiments, we tuned memory allocation (and

some data structures) to avoid false conflicts where independent, conflicting data happens to be collo-

cated in the same cache line.

Finally, the simulation platform has been extremely helpful in understanding the performance charac-

teristics and executing applications realistically has allowed us to make great progress in developing the

transactional memory software stack. Conversely, the rich software stack enabled more complex appli-

cations that provided richer feedback for the hardware design and more than once exposed design and

implementation bugs in the HTM primitive. In the next section, I will highlight the simulator implemen-

tations that I created to evaluate ASF.

5.4 Simulator Implementation Details

For our analysis of both architectural and micro-architectural behaviour of ASF, I extended two popu-

lar, cycle-level (cycle-approximate) simulators: PTLsim [135] and the derived Marss86 [253]. I chose

these simulators for their support of running multi-core simulations of full-system software stacks with a

modern ISA (x86 / AMD64). In addition, the simulators support fast emulation to the region of interest

through running the system-under-simulation in extended versions of the Xen hypervisor [72] (PTLsim),

and QEMU [81] (Marss86).

In addition to these two cycle-level simulators, I have implemented architectural emulation of ASF

inside AMD’s SimNow [260] fast emulation platform, and also by Martin Pohlack in Intel’s PIN tool [92].

Both tools were created while I was working at AMD and have not been cleared for public release.

The advantage of these ISA-level tools is the simplicity of the transactional memory implementations:

once the new instructions for ASF are decoded, their implementation is usually straightforward, due

to the simple access to architectural state, strict serial execution of the instruction stream (no OOO-

speculation, or ILP), and much higher level of abstraction (no explicit caches, no coherency protocol,

no interconnect, etc.). In comparison to STM / HyTM libraries, the implementation of the transactional

functions can be simple, because the emulation systems themselves cause significant slowdown. Overall

throughput is still good enough for experimentation and several orders of magnitudes faster than cycle-

level execution.

The simple architectural implementations (consisting only of a few hundreds lines of code each)

therefore will only (1) store a copy of the instruction pointer and stack at transaction start, (2) perform

conflict detection and data versioning in simple (thread-safe) hash-tables / hash-maps, and (3) perform

abort according to conflicts, interrupts and exceptions in accordance with the ASF ISA specification.

The difference between the SimNow and PIN implementations are scope: SimNow models a full-

system stack, including OS code, interrupts, page-faults, etc., so the emulation can capture these interac-

tions accordingly and, for example, can abort a transaction when a contained memory access exhibits a

page fault. Furthermore, tracking uses physical addresses due to the availability of page-tables. The main

downside to SimNow is the forced serialisation between multiple emulated CPU cores. These execute in

a round-robin fashion, which greatly simplifies both the internal data structures of the tool, and also the

ASF implementation, because the instrumentation does not have to be thread-safe.

In PIN, on the other hand, the full-system perspective is lost, due to the user-level only nature of the

instrumentation. This in turn allows quick experimentation (no need to boot another operating system),

but also hides interactions from the ASF implementation (invisible page-faults and interrupts). PIN is,
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however, a concurrent DBT framework and therefore the instrumentation of especially the transactional

memory instructions need to be thread-safe. For our simple prototype, we grab a global lock in the in-

strumentation before the actual instruction, add the conflict detection and data versioning logic, execute

the actual memory instruction, and then free the global lock.

In both SimNow and PIN, the introduced serialisation greatly simplifies the logic and can use simple

C++ hash-maps for tracking both conflicts and perform versioning.

The remainder of this section will focus on cycle-level simulators, because they are more complex

and require more intricate work for faithful implementation of ASF. The full source code modifications

to both the PTLsim and Marss86 simulators are available publicly [262, 304], so the discussion here will

focus on high-level interactions and complications, rather than a full source-code level walk through.

5.4.1 Characteristics of Cycle-Level Simulator Environments

Cycle -level simulators for modern multi-core CPUs can be distinguished along the following general

execution characteristics:

• trace-driven vs execution-driven

• clocked simulators vs discrete event simulators

• accelerated simulation availability

In addition to differences in the general simulation methodology, the simulated models may differ.

The main components we are looking at are the CPU and the interconnect / memory hierarchy. CPU

core models range from non-timing models, fixed-IPC models over pipelined in-order core models to very

detailed out-of-order core models. Memory systems generally vary along the number of supported agents

(single-core vs multi-core), coherency protocol (fixed vs variable), and topology (fixed vs flexible). Sim-

ulation fidelity in memory hierarchies differs with respect to modelling both latencies (fixed vs actual

queueing) and bandwidths (fixed vs limited bandwidth and back-pressure). Finally, one significant im-

portance for memory hierarchies is whether they actually send and store data in memory requests and

caches, or whether those structures are used exclusively for modelling placement, timing and bandwidth

of requests.

In this work, I have extended the PTLsim and Marss86 simulators [135, 253], with the latter derived

from the former. They both feature a very detailed out-of-order core model with pipeline stages, reserva-

tion stations, replay, speculation, etc., faithfully modelling a modern out-of-order core microprocessor.

They also support seamless switching between fast emulation (Xen / QEMU) and detailed simulation.

In addition to full-system simulation, both offer user-level only simulation, but due to limitations (no OS

involvement, paging, interrupts, and deficits in multi-threading), I have not made extensive use of this

feature, but instead focus on full-system execution.

Simulation is driven by time, that means every component of the simulator is clocked on every cy-

cle and consults its data structures to see if waiting entries are ready to progress to the next stage of

execution, need sending on the bus etc.

Both simulators decode both user-level and privileged instructions of the AMD64 instruction set and

break them up into micro-ops that will flow through the pipeline. The various pipeline stages can process

multiple instructions per cycle (super-scalar) and issue / execution of µops can start / complete out-of-

order. A reorder buffer (ROB) keeps track of in-flight instructions; and registers are handled through a

standard renaming table.

The core model consists of a variety of functional units with easily configurable execution capacity.

Mops can be specified to require specific functional units for a specific number of cycles, and communi-

cation latencies for the bypass networks between functional units can be customised, too.
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Memory instructions flow through a load-store-queue and can also be executed out-of-order aggres-

sively. The memory hierarchy will then dictate how many cycles a load / store requires.

Aside from general infrastructure differences between PTLsim and Marss86 (Xen vs QEMU), the mem-

ory hierarchy is the main difference between the two simulators. PTLsim consists of a single cache hier-

archy separate per core, simulating L1i, L1d, L2 and L3 caches (physically indexed and tagged, inclusive

strictly per-core. These are connected to a fixed latency DRAM. By default, caches were not coherent, i.e.,

entries could be present in multiple caches in conflicting states. Marss86 heavily extended this memory

model through earlier work on MPTLsim which appeared in [208]. This improved cache model adds the

following new features to the already very detailed core model from PTLsim: proper bandwidth mod-

elling of caches and interconnects, coherency messages which ensure coherence and model delays due to

interactions in the coherency protocol, multiple coherency protocols (I used the MOESI configuration),

directories to keep track of cache state in specific core-local caches, and large shared caches.

Both memory subsystems rely on a single flat physical backing store to simplify the correctness of

the coherency protocol. This means that in addition to the timing interactions (querying caches, sending

out requests, etc.), loads and stores will access the single shared flat memory to read / write the data in

question. This will ensure that for every address there is always only a single value that corresponds to the

most recently written version of this address, irrespective of the coherence protocol actually implemented

in the timing layer.

This simplification guarantees basic coherence properties basically for free; greatly reduces burden

on the coherence protocol implementation and the verification. It does, however, also lead to unfortu-

nate side-effects in specific timing conditions that cause very unrealistic simulation of tight intra-thread

communication. I will explore his is issue further in Section 5.4.4.

In earlier work, I configured and tweaked the core and (single-core) memory hierarchy to produce

timing / performance results similar to an AMD K8 CPU [158, 159]. For this thesis I updated the adapta-

tions so that the core matches an AMD Family 10h processor core (AMD Phenom / Phenom II).

Detailed Load Path Walkthrough The load path of PTLsim is relatively straight-forward, and its key

code pieces are depicted in Figure 5.15. When a load µop (represented as a ROBEntry–reorder-buffer

entry) gets to the issue stage, like all instructions, it checks that all its input operands (used for address

calculation) are available. It then computes the effective virtual address, and translates it to physical

addresses. Immediately after, the simulator loads the data from the single global physical address view

(with loadphys).

Only after that, the various timing conditions are checked (is there an L1 data cache bank conflict,

are there any unresolved or overlapping earlier stores, are there any held bus locks). Eventually, the load

queries the TLB for a present translation entry and subsequently probes the L1 data cache directly.

Depending on the hit / miss information, the load is put on the issued / miss list and is assigned the

appropriate latency value. The global PTLsim clock function clocks all components and waiting misses

decrement their remaining cycles. If they hit zero, a wake-up callback marks the destination register

ready so that depending instructions can consume the value. While there is a separation between the

core and the memory hierarchy, for simulator efficiency, L1 cache hits are treated through fast-path logic

in the simulator. The slow-path of the memory hierarchy is shown in Figure 5.16 and details the rather

explicit state machine and fixed layout of the cache hierarchy.

In the original PTLsim, multiple cores had completely independent cache hierarchies. Thanks to the

data-less cache hierarchy, this was not a problem, as loads and stores all hit the same single global

physical data store directly (and in sequence). For simulating the first-order effects of coherence, I added

invalidations and cache-to-cache transfers by looking up in caches of the neighbouring hierarchies (in

probe_other_caches) and invalidating their entries (in zero time).
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1 void ROBEntry::issue() {
2 fuinfo[opcode] & cluster.fu_mask & fu_avail
3 /* load data from source registers */
4 if (ld) issueload (..);
5 if (asf) asf_pipeline_intercept . issue (..);
6 }
7

8 void ROBEntry::issueload(..) {
9 physaddr = addrgen(..);

10 data = loadphys(physaddr);
11 asf_pipeline_intercept .issue_probe_and_merge(physaddr, data);
12 /* Check store queue for earlier overlapping stores and fences */
13 /* Perform forwarding if possible , replay otherwise */
14 asf_pipeline_intercept .issue_load (..);
15 /* Check L1 bank conflicts */
16 /* Allocate entry on load queue */
17 /* Check bus lock of others , acquire if necessary */
18 /* Handle misaligned / small loads: merge two parts, shift data */
19 caches.dtlb .probe(addr);
20 probecache(addr);
21 }
22

23 void ROBEntry::probecache(..) {
24 bool hit = caches.probe_cache_and_sfr(addr);
25 if (hit) {
26 cycles_left = LOADLAT;
27 changestate(rob_issued_list );
28 if ( invalidating) caches.probe_other_caches(addr);
29 return;
30 }
31 changestate(rob_cache_miss_list);
32 caches.issueload_slowpath(addr);
33 if ( invalidating) caches.probe_other_caches(addr);
34 }
35

36 void OOOCore::dcache_wakeup(resp) {
37 rob = resp.rob;
38 rob−>physreg−>complete();
39 rob−>lsq−>datavalid = 1;
40 }

Figure 5.15: Key core-side code used in the PTLsim load path.

Finally, the code excerpt shows the various integration hooks of the normal pipeline into the ASF

pipeline extensions that I will describe in the next section.

In the PTLsim-derived simulator Marss86, the core-side of handling loads looks very similar. The

key changes are: data is not loaded at issue time, but instead when the load completes; there are less

alignment checks (to accelerate simulation); and the memory hierarchy is actuated through a data-driven

request interface, including for L1 accesses. Figure 5.17 highlights the key source code constructs.

The memory hierarchy of Marss86 is a complete rewrite: it supports directories, a flexible cache

structure, realistic timing for all coherence interactions, and pluggable coherence modules that work

independently of the cache structures. All messages between components are represented as messages

/ requests, and the wake-up actions are chained together by timed call-back functions. Further, the

simulated components are split into cache controllers, interconnects, and signals (serving as the timed

call-backs). Surprisingly, there is no direct distinction between requests and responses, instead, the

direction of travel of a request (from an upper or lower interconnect port) defines whether it is a request
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1 void CacheHierarchy::issueload_slowpath(addr) {
2 L1hit = L1.probe(addr);
3 L2hit = L2.probe(addr);
4 missbuf. initiate_miss (addr, L2hit);
5 }
6

7 MissBuffer:: initiate_miss (addr, L2hit) {
8 int idx = find(addr);
9 if (idx >= 0) {

10 /* Merge request with existing miss */
11 return;
12 }
13 /* Handle full condition */
14 /* Create new entry */
15 Entry &mb = missbuf[..];
16 bool L3hit = hierarchy.L3.probe(addr);
17 if (L2hit || L3hit) {
18 mb.cycles = ..; //L2 / L3 LATENCY
19 return;
20 }
21 if (probe_other_caches(addr))
22 mb.cycles = CROSS_CACHE_LATENCY;
23 else
24 mb.cycles = MAIN_MEM_LATENCY;
25 return;
26 }
27

28 MissBuffer::clock() {
29 foreach (mb) {
30 mb.cycles−−;
31 if (mb.cycles == 0) {
32 /* Install in L1 / L2 / L3 */
33 /* Switch to next state */
34 if (mb.state == L1) {
35 /* Set HTM bits */
36 lfrq .wakeup(mb.entry);
37 }
38 }
39 }
40

41 LFRQ::wakeup(entry) {
42 ready[entry] = true;
43 }
44

45 LFRQ::clock() {
46 foreach(entry) {
47 if (ready[entry])
48 callback−>dcache_wakeup(entry.req);
49 ready[entry] = false;
50 free[entry] = true;
51 }
52 }

Figure 5.16: Simplified view of functions and flow used in the memory system of the PTLsim load path.
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1 ROB::issueload(..) {
2 /* as before ... */
3 /* do NOT load data here */
4 req = memHier−>get_free_req();
5 req−>init(.., MEMORY_OP_READ);
6 req−>set_coreSignal(dcache_wakeup);
7 bool L1hit = memHier−>access_cache(req);
8 if (L1hit)
9 dcache_wakeup(req);

10 else
11 physreg−>changestate(WAITING);
12 return;
13 }
14

15 OOOCore::dcache_wakeup(req) {
16 if ((request−>get_type == ASF_ABORT) ||
17 (request−>get_type == ASF_COMMIT)) {
18 asf_pipeline_intercept .cache_done();
19 }
20 ..
21 rob = req.rob;
22 data = loadvirt(rob.lsq−>virtaddr);
23 asf_pipeline_intercept .load_binds_data(rob, &data);
24 /* Check for store−to−load forwarding */
25 rob.lsq−>data = extract_bytes(data, ..);
26 rob−>physreg−>complete();
27 rob−>lsq−>datavalid = 1;
28 }
29

30 MemHier::access_cache(req) {
31 ret = cpuController−>access_fast_path(req);
32

33 /* Success : L1 hit or write */
34 if ((ret == 0) || (req−>type == WRITE))
35 return true;
36 return false;
37 }

Figure 5.17: Core logic and memory system glue logic used in Marss86. Notice how the code is similar
to that of PTLsim.

or a response. In addition, despite the elaborate modelling of timing of the cache tags, the caches still

do not contain any data. While the pluggable coherence protocol module determines timing, the actual

value coherence is provided again by a single global physical memory view. Figure 5.18 shows the

high-level connection between the various interconnect and cache call-backs and how they are chained

together depending on a hit / miss in specific caches. Note how the overall logic is distributed between

the different caches; that way, caches can make decisions locally, and be connected in different topologies

easily.

Detailed Store Path Walkthrough As opposed to loads, PTLsim and Marss86 handle stores at the

commit stage of the pipeline; and their code is generally quite simple. Figure 5.19 shows the abbreviated

code of PTLsim; and it is interesting to see that stores do actually not interact with the cache hierarchy, but

instead they directly write to the global physical memory view. Similar to loads, I added simple first-order

coherence (or rather, its timing effects) by snooping the caches of other hierarchies and invalidating their

copy for local stores in zero time. Furthermore, the code excerpt shows the hooks for the ASF pipeline

integration layer.
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1 CacheController::handle_interconnect_cb(msg) {
2 if (msg−>sender == upperInter) {
3 /* This is a request */
4 /* Check space */
5 /* Allocate pending request */
6 deps = find_deps(msg−>req);
7 if (deps)
8 /* Deal with dependencies */
9 else

10 cache_access_cp(..);
11 } else {
12 /* This is a response or snoop req / snoop resp */
13 entry = find_match(msg);
14 if (entry)
15 if (msg.hasData)
16 return complete_request(msg);
17 else
18 return handle_response(msg);
19 /* Handle the remainder in the future */
20 add_event(cache_access_cb, ..);
21 }
22 }
23

24 CacheController::cache_access_cb(req) {
25 if (req−>isASF()) {
26 /* Handle commit / abort messages */
27 add_event(asfAbort, commitLatency, req); // or asfCommit
28 }
29 hit = probe(req);
30 if (hit)
31 signal = cache_hit_cb;
32 else
33 signal = cache_miss_cb;
34 add_event(signal, cacheAccessLatency_, req);
35 }
36

37 Cachecontroller::cache_hit_cb(req) {
38 if (req−>isSnoop)
39 coherence_logic_−>handle_interconn_hit(req);
40 else
41 coherence_logic_−>handle_local_hit(req);
42 }
43

44 Cachecontroller::cache_miss_cb(req) {
45 if (req−>isSnoop)
46 coherence_logic_−>handle_interconn_miss(req);
47 else
48 coherence_logic_−>handle_local_miss(req);
49 }

Figure 5.18: Key parts of the redesigned memory system simulation framework in Marss86.
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1 ROBEntry::commit() {
2 /* Scan the ROB for all sub−uops of the current x86 instruction */
3 /* Check for and handle exceptions */
4 if (uop.opcode == OP_st) {
5 lock = interlocks .probe(addr);
6 if (lock)
7 { /* Deal with bus locks */ }
8 asf_pipeline_intercept .issue_probe_and_merge(addr);
9 }

10 if (uop.is_asf)
11 asf_pipeline_intercept .commit(..);
12 /* Update registers */
13 if (uop.opcode = OP_st)
14 caches.commitstore(lsq, addr);
15 /* Cleanup */
16 }
17

18 CacheHierarchy::commitstore(lsq, addr) {
19 storemask(addr, lsq.data, lsq .mask); // writes to backing store
20 probe_other_caches(addr);
21 }

Figure 5.19: Path for stores becoming visible in memory in PTLsim.

In Marss86, the pipeline integration is again very similar; instead of writing to the backing store

directly, however, the store is sent as a proper request to the memory hierarchy; in Figure 5.20. Subse-

quently, the core still updates the global physical memory view.

5.4.2 ASF Simulator Implementation

Conceptually, the core of the ASF implementation consists of three layers (see Figure 5.21 for structural

linkage, and Figure 5.22 for an example flow): an architectural layer provides a per-core undo-log for

transactional writes that also performs conflict detection when the architectural memory layer is read

/ updated; a micro-architectural layer that augments the existing caches, memory requests, etc., and

provides a faithful implementation of the various implementation variants described in Chapter 4. The

micro-architectural layer adds transactional read / write bits for cache lines and signals aborts to the

core on conflicts and evictions of transactional lines (capacity aborts). Finally, an ISA layer that decodes

ASF instructions n the AMD64 decoder and represents the abstract transaction state in the appropriate

registers.

Architectural Tracking Layer For simplicity, the architectural layer also tracks transactional accesses

on cache line granularity, which is assumed to be 64 bytes in all caches in both simulators, and is also

fixed in the ASF specification (see Chapter 3, and the ASF specification in Appendix A). The architectural

layer can abort transactions running on the local core when there is a remote access that is conflicting

with a tracked entry; for that, it hooks into the issueload / commitstore functions just before they are

actually performing the load / store. Figure 5.23 shows the C++ interface, and Figure 5.24 visualises

the different flows for loads and stores intersecting with the architectural layer tracking logic.

Conflicts are detected as the first step for loads and stores by checking all other cores’ undo-logs for

entries with the same address. If such an entry is present, it will be restored and the transaction on that

core flagged for abort. Transactional invariants guarantee that a transactionally written line is only ever

in use by at most a single core.

Non-transactional memory accesses will then continue with their original flow and read / update
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1 ROBEntry::commit() {
2 ..
3 if (uop.opcode == OP_st) {
4 req = memHier−>get_free_request();
5 req−>init(.., MEMORY_OP_WRITE);
6 req−>setCoreSignal(dcache_wakeup);
7 memHier−>access_cache(req);
8 storemask_virt(lsq−>virtaddr, lsq−>data, ..); // writes to backing store
9 }

10 ..
11 }
12

13 OOOCore::dcache_wakeup(req) {
14 ..
15 if (request−>get_type() == MEMORY_OP_WRITE)
16 { /* Do nothing but logging */ }
17 ..
18 }

Figure 5.20: In Marss86, stores behave similarly to PTLsim, but they are presented to the cache hierarchy,
instead of bypassing it.
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Figure 5.21: High-level graphical overview of the implementation of ASF in the Marss86 simulator.
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1 class ASFContext {
2 public:
3 enum ASFStatusCode {..};
4 enum ASFType {ASF_NORMAL, ASF_INVERTED,
5 ASF_ASYNC};
6

7 bool to_sim_context(Context& c,...);
8 void undo_to_sim_context(Context& c);
9

10 /* Start / end transactions */
11 void enter_spec_region(const Context& c,...);
12 void enter_spec_inv_region(const Context& c);
13 void enter_spec_async_region(const Context& c,
14 Waddr store_virt, Waddr storage_phys_start,
15 Waddr storage_phys_end);
16 void leave_spec_region();
17 void abort_spec_region();
18

19 bool in_spec_region();
20 bool has_error();
21 ASFStatusCode get_status()
22

23 /* Methods to create particular errors */
24 void contention(W64 rip, Waddr addr);
25 void capacity_error(W64 rip, Waddr addr);
26 void interrupt(W64 rip);
27 ...
28

29 /* Handle architectural memory state and aborts */
30 bool snapshot(Waddr physaddr);
31 bool restore(Waddr physaddr);
32 void restore_all ();
33 bool restore_other(Waddr physaddr,...);
34 bool read_remote_line(Waddr physaddr, W64 *data);
35 void handle_arch_contention(Waddr physadr,
36 ASFContext *requestor, bool is_store);
37

38 protected:
39 struct BackupLine {..};
40 struct BackupStorage : std::map< Waddr, BackupLine> {..}
41 BackupStorage backup_storage;
42 BackupLine* find(Waddr physaddr);
43

44 /* Roll−back information */
45 RIPVirtPhys abort_rip; W64 saved_rsp;
46 /* Clobber / link storage information for advanced aborts */
47 Waddr storage_virt, storage_phys_first , storage_phys_last;
48 };

Figure 5.23: Interface of the architectural layer used for data versioning and conflict detection in the
Marss86 implementation of ASF.
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Showing two options for handling RaW conflicts: Top: full contention and abort case; middle: the load
reads from the pre-transactional value. Note that the caches may still flag this as contention, depending
on their conflict detection policy. Bottom: WaW conflicts always causing an abort in the architectural
layer.

non-transactional5 data and continue their execution.

Transactional memory accesses require additional steps, first: stores will check the local undo-log,

and if no entry is present, will create a new entry with the architectural data present before the store

updates it in the snapshot function. If an entry is already present, no new copy is created, since the

original copy already contains the pre-transactional non-speculative state of the cache line in question.

In Marss86, the architectural memory layer uses a per-core std::map to implement the phys_address

→ data mapping. The map will provide fast lookup and modification (faster than O(N), often O(log(N))
or even O(1)), and also store only the required elements. As such, the capacity is unlimited and thus

the architectural layer does not induce any architectural capacity aborts. The microarchitectural layer

will eventually limit the size of transactions and abort if they overflow the microarchitectural tracking

mechanisms so memory consumption is not a major issue. In practice, the total storage required will be

bound by the size of the tracking structure; for the analysed proposals in this thesis, this will be 32kB of

additional storage per simulated core plus a small amount of storage needed for the map’s internal data

structures.

In PTLsim, the architectural memory layer was not yet factored out, and instead was combined with

the Locked-Line Buffer used for tracking both transactional reads and writes (conflict detection) and

providing versioning for transactional writes. Therefore, it was easy to extend that implementation to

also provide conflict detection in the L1d cache, but tracking writes in the L1d was complicated due to the

intrinsic data-less design of the caches.

In comparison, the separation of the architectural and micro-architectural / timing concerns greatly

simplified the design of the cache-based ASF implementation used in Marss86, and allows for much

greater flexibility.

Eagerly writing transactional stores to the flat memory view and performing undo-logging simplifies
5Non-remote-transactional; the own speculative values will be read through the normal code since no conflict detection with the

own undo-log is performed!
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the overall integration, because no additional code is required to handle overlapping transactional stores

and later loads that are misaligned and / or have different access size. Instead, the existing code for

mangling the required bytes as necessary is sufficient and can just read from the flat memory abstraction.

The cost of the required eager conflict detection for every load / store is not problematic, as the

simulator itself is single-threaded, and has significant other overheads (as opposed to an efficient STM

implementation, where these trade-offs might be made differently).

The architectural layer keeps itself consistent by enforcing the single-transactional-writer property as

described through eagerly rolling back concurrent modifications for conflicting lines and then creating a

new entry in the requester’s undo log before performing the new transactional store directly into memory.

The abort condition needs to be communicated to the micro-architectural and ISA levels of the simu-

lation, and this achieved by the core querying the abort state of the architectural memory layer on every

cycle.

Communication also happens in the other direction. The ISA and micro-architectural layer need to

be able to control the architectural memory layer (aborts, transaction start and end). This is achieved

through processing in the centralised per-core ASF state logic which can invoke the architectural layers

abort and commit methods. These will perform an undo of the entire log (for abort) and then clear

the undo log (both functions). Upon transaction start (non-nested SPECULATE), the architectural layer is

already empty.

Overall, the architectural layer does not provide full TM semantics, because it only performs *aW

conflict detection. The consistency of the read-set must be tracked by the microarchitectural layer.

Micro-architectural Layer / Pipeline Control The microarchitectural level of the ASF implementation

consists of two major blocks: ASF-enabled caches / buffers for modelling the conflict detection and

versioning mechanisms (with some extension to other tracking structures and request formats), and a

central component that hooks into the respective pipeline stages and coordinates all ASF-specific features.

In Marss86, the caches are relatively decoupled from the core logic through a request / wakeup

interface. ASF changes the caches by adding ASF.R and ASF.W bits for every cache-line (as separate bits

in the tag) and also adds transactional memory handling to the state machine driving the coherence logic.

The coherence logic is factored out in CoherenceLogic, and I have extended the existing MOESI logic (in

MOESILogic), added the tracking of the transactional state and also the detection of conflicts for a new

ASF_MOESILogic, with the interface shown in Figure 5.25.

In Marss86 (and similarly in real coherency protocols), there is not just a distinction between reads

and writes, but the coherency protocol consists of more request types, some with additional subclasses.

The simple RaW, WaR, WaW conflict matrix extends as follows:

• ASF.R lines conflict with: MEMORY_OP_EVICT, MEMORY_OP_WRITE, and MEMORY_OP_UPDATE(new_-

state) where new_state ̸= SHARED

• Lines marked with ASF.W conflict with any incoming hitting snoop message from a remote core /

agent

Figure 5.26 shows an excerpt of how that logic is implemented in the simulator.

The core-side part of the ASF logic is concentrated in the ASFPipelineIntercept component (Fig-

ure 5.27) that hooks into the correct stages of the standard processor pipeline and intercepts processing

of ASF instructions and those that may affect ASF state. In addition, the ASF pipeline intercept may also

interfere with the flow of the actual pipeline, namely when a transaction abort needs to stop the core

from committing further instructions.

The functions load_binds_data and store_commits interface with the architectural tracking layer

for every in-flight memory instruction and ensure functional correctness of the transactional memory
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1 class ASF_MOESILogic : public CoherenceLogic {
2 public:
3 /* CoherenceLogic interface implementation */
4 void handle_local_hit(CacheQueueEntry *queueEntry);
5 void handle_local_miss(CacheQueueEntry *queueEntry);
6 void handle_interconn_hit(CacheQueueEntry *queueEntry);
7 void handle_interconn_miss(CacheQueueEntry *queueEntry);
8 void handle_cache_insert(CacheQueueEntry *queueEntry, W64 oldTag);
9 void handle_cache_evict(CacheQueueEntry *entry);

10 void complete_request(CacheQueueEntry *queueEntry, Message &message);
11 void handle_response(CacheQueueEntry *entry, Message &message);
12 bool is_line_valid (CacheLine *line);
13 void invalidate_line(CacheLine *line);
14

15 /* ASF−specifics: notification signals and call−back handlers */
16 static void ASF_commit(W64 addr, CacheLine *line);
17 void (*get_ASF_commit()) (W64, CacheLine*) {return ASF_commit;}
18 static void ASF_abort(W64 addr, CacheLine *line);
19 void (*get_ASF_abort()) (W64, CacheLine*) {return ASF_abort;}
20 private:
21 MOESILogic moesi_logic; // Wrapped default MOESI logic
22 /* Convenience functions for querying ASF state of cache lines */
23 static ASF_RWCacheLineState get_ASF_state(const CacheLine *line);
24 static void add_ASF_state(CacheLine *line, ASF_RWCacheLineState s);
25 static void clear_ASF_state(CacheLine *line);
26 static bool is_ASF_spec(const CacheLine *line);
27 };

Figure 5.25: Interface of the ASF_MOESILogic class that adds ASF state tracking and conflict detection to
the Marss86 simulator.

implementation by providing a safety net of conflict detection and data versioning, as described earlier.

The commit_store function creates an undo-log entry for a transactional store.

Finally, the ASF pipeline intercept component also tracks the timing of aborts caused by contention

(check_conflicts) and through other abort reasons, such as interrupts, illegal instructions, etc., through

handle_far_control_transfer.

For the ASF SPECULATE and COMMIT instructions, new uops are added: OP_spec and OP_com that

trigger the actions of starting / committing of the transactions through their flow through the pipeline

in the ASF pipeline intercept component. ASF transactional memory instructions are decoded into the

normal code sequence (potentially adding address arithmetic etc) and have their load / store uop marked

with an ASF bit which triggers special handling in the ASF pipeline intercept functions.

ISA Layer The ASF ISA layer is split into the decoder front-end that has added the encodings for the ASF

instructions to an empty area in the AMD64 instruction set encoding space, and converts the instruction

bytes into instruction sequences containing the OP_spec and OP_spec uops respectively. The decoder also

had to be changed to detect the LOCK prefix in front of normal AMD64 loads / stores (LOCK MOVs), and

add the ASF flag to the resulting load / store uop.

The ISA behaviour is largely contained in the ASFContext class which knows about the ISA-specific

details of the ASF implementation, e.g., which registers hold which parameter in case of an abort, trans-

action start etc. The ASF context is also responsible for tracking transactional nesting depth. It is mainly

involved through the ASF pipeline intercepts at the issue and commit stage to provide the right values in

the right registers.

Basic Layer Interaction Generic transactional flow is induced from the ASF instructions, as follows:
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1 ASF_MOESILogic::handle_local_hit(..) {
2 moesi_logic.handle_local_hit (..);
3 if (req−>get_isASF()) {
4 if (req−>get_type() == MEMORY_OP_WRITE)
5 add_ASF_state(line, ASF_W);
6 else if (req−>get_type() == MEMORY_OP_READ)
7 add_ASF_state(line, ASF_R);
8 }
9 }

10 ASF_MOESILogic::handle_interconn_hit(..) {
11 state = get_ASF_state(line);
12 if (state & ASF_W) {
13 /* _aW Conflict */
14 clear_ASF_state(line);
15 invalidate_line (line );
16 abort_core = true;
17 convert_to_miss = true;
18 }
19 else if ((state == ASF_R) && invProbe) {
20 /* WaR Conflict */
21 clear_ASF_state(line);
22 abort_core = true;
23 }
24

25 if (abort_core) {
26 controller−>send_evict_to_upper(.., isASF = true);
27 }
28 if (convert_to_miss)
29 moesi_logic.handle_interconn_miss(..);
30 else
31 moesi_logic.handle_interconn_hit(..);
32 }

Figure 5.26: Marss86 ASF coherence logic for conflict detection.
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1 class ASFPipelineIntercept {
2 protected:
3 ASFContext *asf_context;
4 ThreadContext *thread;
5 bool wait_for_cache;
6

7 public:
8 /* Issue Stage: transactional loads / stores */
9 int issue(ROBEntry& rob, IssueState& state, W64 radata, W64 rbdata, W64 rcdata);

10 int issue_load(ROBEntry& rob, LSQEntry& state, LSQEntry* sfra);
11 bool issue_probe_and_merge(W64 physaddr, bool inv, W64& out_data, ROBEntry *rob);
12 int issue_store(ROBEntry& rob, LSQEntry& state);
13 void load_binds_data(ROBEntry& rob, W64 *data);
14

15 /* Commit Stage: transactional stores , and normal commit intercept */
16 void store_commits(ROBEntry& rob);
17 bool commit(const Context &ctx, ROBEntry& rob);
18 int pre_commit(Context& ctx, int i);
19 int post_commit(Context& ctx, int i);
20

21 /* Intercepts for handling OOO misspeculation */
22 void annul_replay_redispatch(ROBEntry& rob);
23 void reprobe_load(ROBEntry& rob);
24

25 /* Handling cache & fence interactions */
26 void notify_cache_done();
27 bool fence_can_commit();
28

29 private:
30 int issue_mem(ROBEntry& rob, LSQEntry& state, LSQEntry* sfra);
31 int issue_release(ROBEntry& rob, LSQEntry& state,
32 Waddr& origaddr, W64 ra, W64 rb, W64 rc, PTEUpdate& pteupdate);
33 bool commit_load(ROBEntry& rob, Waddr physaddr, Waddr virtaddr);
34 bool commit_store(ROBEntry& rob, Waddr physaddr, Waddr virtaddr);
35 int vcpuid() const;
36 int check_conflicts(Context &ctx, int commitrc);
37 int handle_far_control_transfer(Context &ctx, int commitrc);
38 void rollback();
39 };

Figure 5.27: Interface of the ASF_MOESILogic class that adds ASF state tracking and conflict detection to
the Marss86 simulator.
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Starting a transaction involves the OP_spec uop and will simply record the start of the transaction and

the current instruction pointer as part of the ASF context for a potential later abort.

Commits clear the architectural memory tracking layer and will send a ASF_COMMIT request to the cache

which will then eventually clear the ASF markings of the lines there and end the transaction through

the ASF_commit callback of the ASF-MOESI logic.

Aborts eventually will show up as error conditions in the ASF context and will be checked in the ASF

pipeline intercept post_commit method. If such an error is detected, the core sends a ASF_ABORT

request to the cache that will then discard all transactional updates and then clears all ASF marking

utilising the ASF-MOESI logic ASF_abort callback. In addition, the architectural tracking layer will

actually undo all the writes and discard the entries of its undo-log. The core in this case must wait

for the abort to complete before it can start a new ASF transaction.

A variety of causes can cause aborts of transactions. Enumerating all of those reasons was a major

challenge in the simulator implementation of ASF. The following abort reasons are captured:

Conflicts in architectural layer will set the ASF context to contention state directly. The ASF context

state is polled for errors on every post_commit call of ASF pipeline intercept and before the commit

of an ASF_com uop (in commit).

Conflicts in microarchitectural layer are detected in the cache hierarchy, or more precisely in the ASF-

MOESI coherence logic in handle_interconnect_hit. The cache sends a special ASF_CONTENTION

message (as a snoop message) to the victim’s (holder) CPU core’s backprobe method. If the core is

currently inside a transaction, the ASF context will be set to the contention abort state, which then

will trigger the abort in the next post_commit.

Out of capacity situations are also detected by the ASF-MOESI coherence logic, namely in handle_-

cache_insert, i.e., when a new cache line is being inserted. If the new cache line displaces an old

line that has ASF mark bits set, the eviction will also send an ASF_CONTENTION message to the core.

The core disambiguates between contention and capacity overflows through the sender’s core-ID

field. If a core “contends” with itself, then the issue is reflected as an ASF capacity abort in the ASF

context, again checked in a subsequent post_commit.

Interrupts and exceptions originate from the pipeline and are detected through the ASF pipeline inter-

cept’s handle_far_control_transfer called from post_commit. These events are already detected

and handled specially in the simulator’s pipeline, due to their non-local control flow changes that

require a pipeline flush. The ASF pipeline intercept (1) converts the detected condition into the

right ASF abort case and ASF context representation and (2) ensures that the non-local control flow

appears to be sourced from the aborted transaction.

Disallowed instructions are also detected like interrupts and exceptions above. The simulator employs

special assists which are special uops that provide complex functionality that does not have to be

modelled as separate uops, but instead can occur at a controlled point in the pipeline (when at the

head of the ROB), and also query / set simulator data structures directly. The assists are used for

complex instructions, such as calling into the OS, I/O, setting flags etc. The ASF implementation

maps those instructions that are disallowed in an ASF transaction to the respective assist types and

flags a disallowed-instruction error if such an assist is detected. Allowed instructions call the assist

function with the transaction staying alive.
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5.4.3 Simplifications

Due to the simulator implementation, several aspects of a real microarchitectural design can be simplified

significantly. The decentralised nature of the implementation would usually require many small changes

in the design of a microprocessor. In the simulator implementation function calls are virtually free, it

is therefore easy to contain most of the implementation logic inside a single component and only add

intercept hooks from the relevant pipeline stages into a centralised component. In a real design such

an implementation would likely cause timing violations due to the long wires required to connect all

pipeline stages to the centralised ASF component.

In general, in a simulator it is easier to cheat physics than in real CPU designs. Accessing registers,

copying data etc. can all happen in zero simulated time. In my design I have used this to simplify the

logic for transaction start and the abort path. I am confident, however, that these changes do not have a

critical impact on the fidelity of the implementation because they are (1) not on the performance critical

path and (2) if they were, there are well known techniques to improve the performance at the cost of

additional implementation effort in the real design.

It is typical for a microarchitectural design flow to start out with a high-level design similar to this

simulator implementation. During the refinement process, it may become necessary to split / replicate

state and change interfaces between components so that timing violations can be dealt with. This usually

means that the actual implementation will be somewhat more complex, but still be true to the original

high-level design and have similar (if not identical) performance characteristics. Compared to other

evaluation approaches (such as widely used one-IPC in-order cores), a design in a cycle-approximate

simulator is the closest step before going to the actual processor RTL which had been out of scope for this

work.

Another simplification of a simulator implementation (in particular in a timing-driven simulator) is the

sequential execution and global visibility of events. Since the simulator goes through every component’s

tick() function sequentially, there are no concurrent accesses to shared data structures, such as the

bus, memory or register state. This simplifies the design from a software engineering perspective (multi-

threading the simulator in some way would make this harder!), and also from a modelling perspective,

because some safety mechanisms that control sequencing in a real microarchitectural design (where

everything happens in parallel by default!) are simply of no concern. For high simulator fidelity however,

important simulated events are modeled to take simulated time and then there is concurrency between

simulated events; I have described some issues I have found with our implementations earlier. Again, the

correct sequencing of the logic of a high-level design is a typical activity when creating the low-level RTL

implementation, and had been out of scope.

The global visibility is another manifestation of the cheat-physics option in simulators. Since there

are no actual wires involved when connecting components and no bandwidth / pin-count limitations, it

is easy to directly connect two components that may be at other ends of the final chip, where they would

probably have to go through a designated shared interconnect. None of the timing ASF components in

the Marss86 ASF implementation use such a short-cut, but the PTLsim-based implementation was forced

to employ such a mechanism to implement ASF conflict detection because there was no fully modelled

coherency protocol available.

The mechanism where both simulator implementations use zero-cycle global communication is the

architectural memory tracking layer which acts as a safety net and ensures correct write tracking even in

cases where the more detailed timing simulation may exhibit a buggy corner case.
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5.4.4 Simulator Extensions and Complications

Clearly, cycle-approximate simulators operate at a higher level of abstraction than microprocessor RTL.

As such one expects them to be easier to extend and prototype features in while still giving accurate

performance predictions and hint at interaction patterns between components.

During my work on both PTLsim and Marss86, I did, however face several challenges specific to the

nature of the simulator implementations. First and foremost, the main concern is the general level of

immaturity in these simulators. In comparison to a commercial microarchitecture, the simulators often

contain more bugs, because they are not as rigorously validated / tested. I have fixed a significant number

of bugs in both PTLsim and Marss86 simulators, in different areas of the design; often in tricky areas such

as pipeline mispeculation recovery, coherence protocol, etc.

The second challenge in simulators is the lack of microarchitectural features. If a feature is not

relevant to model, it is often not included in the simulator implementation due to lack of awareness /

development time, or a concious decision, such reduced simulation complexity and thus faster execution

time or simpler simulator code.

In PTLsim, the lack of a cache coherence protocol required me to add a first-order approximation

model (simple MSI coherence) with constant cache-to-cache propagation delays and a simplified coher-

ence protocol. The PTLsim model has zero-cycle cache-line invalidations and no bandwidth limitations

of both normal memory requests / responses and snoop messages.

In both simulators, the great simplification of a single global flat memory space makes it hard to

deliberately have multiple locally-visible versions of data in the system. Adding such a mechanism then

needs laborious and error-prone detection of all places that silently rely on the simplification and their

change to the new mechanism. The single flat memory view also permits zero cycle communication

between cores in a window where the flat view already has the updated new value of the producing

store, while the microarchitectural view has not yet propagated the invalidation to the consuming load

that therefore still has a cache hit which should read the old data, but can already inspect the freshly

produced data through the flat memory view.

The availability of such short-cuts and safety nets is great for rapid prototyping, but when a feature

needs prototyping that requires the proper functionality, retro-fitting a detailed model can be hard. In

particular for interconnect networks and coherence protocols, where both liveness and correctness are

of paramount concern for commercial designs and are areas for notorious bugs and research [70, 122],

the reliance of a safety-net leads to a potentially large number of issues lurking in the corner cases of the

actual mechanism.

For the simulator implementation of ASF this meant that a significant amount of development, debug-

ging and bug-fixing effort was spent on existing features / functionality. In particular in Marss86’s new

cache coherence protocol I spent several man-months on debugging deadlocks and correctness issues of

the coherence protocol. These had not be found because the coherence protocol was never responsible

for the actual data delivered between loads and stores, and therefore the protocol contained functional

bugs. Another missing feature that I added to both simulators was the proper support for the AMD64

memory model, in particular in-order loads. Both simulators aggressively execute loads from different

addresses out of order, which can be visible to carefully crafted litmus tests. The AMD64 memory model

(and the Intel equivalent) [209] does enforce that loads execute in order. I therefore had to add the

required logic to detect and fix when the effects of out-of-order loads were visible to the application [27].

Another unfortunate simplification in the Marss86 simulator is the direct support of misaligned /

cache-line straddling loads / stores. These induce very subtle corner-case in real microarchitectures for

ISAs that support these, as they require split / merging of multiple cache lines and need delicate tracking

logic. This logic is essential in real microarchitectures and had been present in PTLsim which split these
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misaligned loads / stores in the cores and exposed them as multiple aligned loads / stores (with valid bit

masks) to the other components in the system. For the Marss86 simulator, this logic had been removed

to speed up simulation due to reduced complexity in the simulator6. Since caches, LSQs, etc., never

transport any actual data, this is only a small issue, since the actual access to the global flat memory view

can happen in a misaligned fashion. For the ASF implementation, however, this complicated the logic for

handling marking and tracking of transactional cache lines.

Finally, the C++ structure with heavy use of templates and encapsulation made it sometimes a little

challenging to connect the right components with one another. Especially reaching into the coherence

logic from inside the CPU core on a transaction abort / commit needed poking holes through several

layered interfaces. This observation puts the earlier observation into perspective that in C++ everything

is just a method call away. Similar problems would be expected from a real implementation due to the

distance between the decision making and the mechanism that is invoked; there they manifest in timing

violations / routing problems if a plain wire is used to connect the remote components.

ASF-specific Simulator Challenges For the ASF implementation, a few things were crucial and tricky

to get right in the simulator environment. I have already mentioned the general unreliability of the

coherence protocol implementation, and the effects of the single flat global memory view.

For ASF, these complicated the implementation, because I effectively had to track conflicts in two

layers: in the architectural memory view where an undo-log is kept per core for both versioning and

conflict-detection with stores, and in the microarchitectural realm for both timing and correctness.

Initially, I had hoped that the architectural view could provide a safety net so that the transactions

would be sound even in the face of a buggy coherency protocol. The issue is, however, that the outcome

of most conflicts is strongly dependent on timing which is not faithfully modelled in the architectural

view. The result was that both layers often disagreed on when a conflict would happen and also which

way around concurrent conflicting accesses would be ordered.

I therefore restricted the architectural view to only perform data versioning and conflict detection on

the transactional stores with other loads and stores. These still, however, had a large number of conflicts

that disagreed in timing and abort decision between the microarchitectural and the architectural layer,

so I eventually reduced the amount of conflict detection induced by the architectural layer to a minimum

by not detecting architectural read-after-write conflicts where a load tries to read from a location that is

being transactionally written. Instead, I used the data in the undo-log and forwarded that to the load,

effectively performing selective lazy versioning of these stores. This required, however, careful tie in of

the forwarding of the old data into the path that handles misaligned loads.

The architectural layer is then only responsible for detecting conflicts between transactional (and

non-transactional) stores and will influence abort decisions in these cases.

In all other cases, the correctness of ASF depends on the proper function of the coherency protocol

which previously was only relevant for effects on simulated performance rather than correctness. For that

reason I had to rework and repair the coherency protocol in the Marss86 implementation.

In addition to the conceptual who-aborts-whom-when issue when having two mechanisms for conflict

detection, the general coordination between the two layers was challenging; very similar to the issues

mentioned in Chapter 4 about overlapping conflict detection intervals when moving data and the tracking

responsibility. Some errors were double undo operations overwriting stored memory, abort decisions

being made but being only able to abort transactions at the boundary of x86 instructions and cycles.

6Personal communication with Marss86 maintainers.
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5.5 Summary

In the course of my work on ASF, I have added support for the instruction set extension to two state-of-

the-art simulators for complex CPU cores executing the x86/AMD64 instruction set–PTLsim and Marss86.

Both of these provide a significantly more detailed core model than typical one-IPC in-order pipeline

models used in most research for HTM. As a result, I have obtained a much deeper understanding of

microarchitectural interactions; not least thanks to the significant amount of debug work performed.

The resulting HTM implementation (ASF) is thus more believable and realistic than other feature-loaded

proposals.

A second result of my deepened understanding and improved functionality, I have been the maintainer

of PTLsim. All changes to the simulator, and the extensions to the Hotspot JVM are available publicly as

open-source [262, 290, 304]

ASF has been widely evaluated by myself, collaborators in the VELOX project and related joint re-

search, and has been used as the HTM of choice in other TM publications.
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Chapter 6

Extensions and New Use-Cases

6.1 Introduction

The published ASF instruction set extension was mainly designed to provide resource efficient transac-

tional execution of transactions with explicitly marked accesses. The inverted mode described already in

Section 3.4.1 has been an acknowledgement to supporting unmodified binary code inside a transaction

and executing it transactionally.

The non-transactional accesses were mainly envisioned to bypass / ease capacity restrictions for ac-

cesses that did not require transactional conflict detection and versioning. In this chapter, I will introduce

various extensions to the ISA and the usage of non-transactional execution for new programming pat-

terns.

The next section (Section 6.2), will introduce the general concept of using non-transactional accesses

for communication between transactions and the challenges such a model introduces. In Section 6.3,

this ad-hoc communication is put on structured foundations and embedded into a more generic notion

of parallel nesting of transactions. Finally, in Section 6.4, I will present how non-transactional memory

accesses and light-weight extensions to the ASF ISA can be used to resurrect a transaction if it is aborted.

Section 6.5 will conclude this chapter.

The work in this chapter has been presented at SPAA 2012: communicating transactions (joint work

with Yujie Liu, and Michael Spear) [274], SPAA 2013 and TRANSACT 2015: resurrecting transactions

(joint work with Martin Nowack, Michael Spear, and Christof Fetzer) [289, 337].

6.2 Ad-hoc Communicating Hardware Transactions

ASF–the BeHTM presented in the previous chapters of this thesis has weakened atomicity properties, due

to (1) reduced register snapshots allowing register state to leak out of a transaction, (2) immediate non-

transactional stores that will escape the transaction when the store instruction commits, and (3) leaking

exceptions out of an aborted transaction.

As already explored, the original usage of these non-transactional accesses was rather implicit: in

baseline ASF, transactional accesses had to be explicitly marked and so the non-transactional memory ac-

cesses remained. The idea was to carefully manage scarce transactional resources by forcing annotation.

During the design of ASF, the non-tx access provided some challenges (mixing tx / non-tx accesses to the

same memory location, unintended leakage / overwriting of state through an aborted transaction, and

interactions such as aborts in the middle of instructions that invoke multiple non-transactional modifica-

tions, such as the stack modifying instructions: push, call, which can modify two state containers that

153
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Figure 6.1: Two transactions using non-transactional loads and stores to communicate and coordinate
their commits.

are not versioned. These challenges and complexities were reflected in feedback that we received for our

initial ASF specification draft from both our project partners in the VELOX project and other academic

and industry institutions (collected and presented in [215]).

In addition to said challenges, however, several curious, peculiar and later interesting use cases of

non-transactional accesses started to emerge.

One pattern that started out as a challenge is that of using non-tx loads and stores to coordinate and

communicate between ongoing transactions. Figure 6.1 shows a simple case for such a behaviour.

The example at the time was merely used to illustrate complex memory visibility rules that may affect

transactional behaviour. In the example, if non-tx stores become visible only after transaction commit,

the transactions will never commit (but instead quite likely abort due to a timer interrupt eventually).

Similar ad-hoc communication patterns were used by Riegel, et.al., and Dalessandro, et.al., to coordi-

nate commits between software and best-effort hardware transactions [244, 255]. In their use-cases, the

very specific nature of the communication made it possible to work around the identified challenges and

for example tolerate non-transactional updates from aborted hardware transactions. Nevertheless, for

the creation of [255], Riegel and I had to clarify and refine the semantics of non-transactional memory

operations over the state of the published specification at the time.

It is clear that such usage of non-transactional stores (loads are easier to deal with) is hard to gener-

alise and provide as a general-purpose high-level mechanism to the programmer. Together with Spear,

et.al., I therefore investigated and developed a more high-level generic communication mechanism and

architecture, which is described in the next section.

6.3 Structured Communication: Delegation and Nesting in Best-

Effort HTM

In our (joint work with Yujie Liu and Michael Spear) publication at SPAA 2012, we refined the ad-hoc

communication model and introduce the concept of a TXChannel which is a safe wrapper around the core

of non-transactional stores from within transactions. TxChannels enable delegation, which can offload

work from inside a transaction to be performed by another service thread. We use delegation to perform

actions that are not supported inside a hardware transaction (such as memory allocation) on one of the

service threads without aborting the hardware transaction.

We generalise the notion of delegation to full, parallel nesting in the full paper [274]. There, we

also explore data sharing between parent and child transactions of different qualities; an issue we have

faced also in ASF, when sharing data between transactional and non-transactional parts of a transac-

tion. Furthermore, recent work by IBM on their Power HTM ISA and implementation [340] and their

support for suspend / resume shows similar problems when sharing data between suspended transac-

tions and the currently executing, non-transactional code sequence [374]. In this particular example, the

non-transactional code overwrote the return stack of the suspended transaction; not unlike the problem
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1: procedure SENDMSGASF(src, dst, type, d[])
2: TxChannel[1 . . . 7]← d[0 . . . 6] ▷ store the payload
3: TxChannel[0]← (src, type)
4: end procedure
5:

6: procedure RCVMSGASF(src, dst, type, d[])
7: repeat
8: (s, type)← TxChannel[0] ▷ spin
9: until s = src

10: d[0 . . . 6]← TxChannel[1 . . . 7]
11: end procedure

Figure 6.2: Sending and receiving small messages with ASF, using non-transactional accesses and relying
on well-formed ping-pong communication.

outlined in normal-mode ASF and the handling of the non-transactional stack accesses.

The remainder of this section will focus more on the implementation challenges of the channels

themselves and adds some more detail for a particular use-case: that of delegated memory allocation

from transactions.

6.3.1 Transactional Channels

We define a TxChannel as an unbuffered, bidirectional communication medium with exactly two end-

points. Communication is asynchronous and polling-based. The TxChannel contains a fixed-size message

which can be read and written from either end through LdTxChannel and StTxChannel functions.

Threads will bind to a single channel and cannot change the binding during the execution of a trans-

action. Channels can be changed in between transactions however.

In its simplest case, a TxChannel consists of a single word in memory that is sufficiently padded that

it will not overlap any other transactional / non-transactional memory location; for ASF, placing the

channel communication word in its own 64 byte cache line is sufficient. Performance considerations

may add additional padding to prefetch and cache index conflicts. The strict binding mechanisms ensure

that threads and transactions do not have issues with overlapping working sets, and the access functions

ensure that a proper protocol can be kept.

Due to the well-formedness of the usage of the channel, multi-word channels can be synthesised on top

of single-word non-tx ASF primitives: one approach extends the channel to support fixed-size messages

by introducing a status word that indicates whether earlier multi-word communication through single

non-tx stores is complete, and spinning in the receiver on the status word. The example source code in

Figure 6.2 shows the simple behaviour.

Further handshaking can be used to transfer long messages through a TxChannel by chunking the

message into fixed size parts and acknowledging each successful transfer between endpoints. The ex-

tended code example in Figure 6.3 uses the fixed-length functions and performs the handshakes.

6.3.2 Communication Patterns

To simplify the communication patterns, we propose the use of a single distinguished software thread(DT).

DT is the switchboard of the communication graph between the transactions and controls the higher-level

communication / delegation / nesting protocol. Several BeHTM and STM threads share the same DT, as

shown in Figure 6.4.

Transactions communicating with DT observe a channel protocol that will ensure that communication

is well-formed on a high level with respect to transaction commits and aborts and access to the channel
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1: procedure SENDLONGMSGASF(src, dst, type, d[])
2: rem← len(d)
3: while rem > 0 do ▷ store operands in temporary
4: n← max(rem, 7)
5: tmp[0 . . . (n− 1)]← d[i . . . (i + n− 1)]
6: (rem, i)← (rem− n, i + n)
7: sendMsgASF (src, (type, n, rem), tmp))
8: rcvMsgASF (dst, t, ign) ▷ wait for ack
9: assert(t = (type, OK))

10: end while
11: end procedure
12:

13: procedure RCVLONGMSGASF(src, dst, type, results[])
14: i← 0
15: repeat ▷ receive message in chunks
16: rcvMsgASF (src, t, d)
17: (type, n, rem)← t
18: results[i . . . (i + n− 1)]← d[0 . . . (n− 1)]
19: sendMsgASF (dst, (type, OK),∅)) ▷ ack
20: i← i + n
21: until rem = 0
22: end procedure

Figure 6.3: Sending long messages by chunking and acknowledging each chunk.
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Figure 6.4: Multiple BEHTM and STM transactions using a single service thread DT .
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Figure 6.5: TxChannel state transitions, with messages sent to / by DT . If a transaction sends REQ to
DT, it must send a TS on commit / abort. TS cannot be sent while DT is processing a request (reqexec).
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is properly coordinated. The main challenge is to notify DT of aborts and commits of the main BeHTM

transaction that initiated the communication. Figure 6.5 depicts the main interaction: upon receipt of

the channel message, DT will register on-abort / on-commit handlers and perform the action that was

encoded in the message (“req exec” state). Once the request handling is complete, DT returns the result

of the request (return value (RV)), and waits for further requests (state “in TX”), or a transaction status

(TS(*)) message from the initiating thread.

The TS message needs to be sent by the originating thread when and if the transaction commits /

aborts, after any pending request has been completed by DT (or its delegates) and the thread receives

the corresponding return value message.

6.3.3 Aborts During Channel Operation

Enforcing the strict state machine of the TxChannel makes clear who is waiting and who is writing in

TxChannel. The low-level primitives tolerate aborts during the send phase. The state protocol ensures

that once a request has been started by DT, it can be undone / committed due to DT registering the

respective handlers / undo / redo actions. DT it self does not abort synchronously when the invoking

BeHTM aborts. If the invoking BeHTM aborts, it will inspect the channel state and realise that it sent data

to DT / DT has already responded. The BeHTM will then notify DT of the abort (after possibly waiting

for the request to finish executing by polling for the RV message).

Committing BeHTM similarly will wait (with non-tx loads) for the successful receipt of the RV message

and then commit the hardware transaction and then signal DT of the successful commit.

6.3.4 Use Case: Memory Allocation

One possible use case for the described delegation mechanism is memory allocation from within BeHTM

transactions. These are challenging, because they can not always be hoisted out of the transactions (auto-

matically), for example due to scope limitations in the compiler. Executing memory allocation code fully

transactionally would work, but will likely encounter contention with other concurrent threads allocating

memory, and often also due to meta-data placement with threads accessing nearby, but independent data

elements.

Furthermore, memory allocators will eventually invoke the OS to ask for additional heap space. Such

OS invocations usually are not gracefully handled by BeHTM and will abort the invoking transaction

repeatedly. Executing memory allocators inside ASF with non-inverted semantics would prevent parts of

the contention issue, but is not safe: an abort in the hardware transaction may yank execution out of

the middle of the allocator code and leave behind inconsistent state, such as taken locks, intermediate

logging data etc.

Therefore, memory allocation / deallocation can be a prime candidate for a delegation mechanism,

also because the interface to allocation / deallocation code is small (one word in for size / pointer, pointer

/ no return value).

Embedding malloc and free into the TxChannel mechanism is simple: these functions will invoke

stubs that will send the single parameter and poll for the return of the DT request handling. The allocated

memory can then be used inside the invoking BeHTM without any additional operations. For memory

allocation, DT registers an on-abort handler that will free the allocated memory; for memory frees, DT

will postpone them to after transaction commit in a on-commit handler.

One challenge with using TxChannels for delegating transactional operations out of the transaction is

the cost of communication between the hardware transaction and DT. This cost has to be contrasted with

the cost of an aborted and re-executed transaction if an abort-allocate-cache-retry mechanism is used to
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handle in-tx memory allocation.

To get an understanding of the cost associated with communicating between two hardware threads

in a ping-pong fashion, we investigated on a real system (AMD Phenom(TM) II X4 945 processor at 3.0

GHz).1 Naive polling and using a single cache line for the channel, the round-trip time was approximately

600 clock cycles (approx. 200ns), which we were able to reduce to a mere 300 clock cycles (approx.

100ns) with careful data placement (separate cache lines for each communication direction), prefetching

and polite polling.

Depending on the size of the transaction and the cost of memory allocators, these costs will be rel-

atively small in comparison to both transaction abort and memory allocator invocation. Reducing the

scalability of the memory allocator due to a centralised DT may cause scalability bottlenecks, but may

also simplify the allocator design. Other work [275] has shown benefits from centralising specific con-

current application parts.

6.4 Between All and Nothing–Versatile Aborts in Hardware Trans-

actional Memory

One problem with non-transactional, immediate stores inside a transaction is the issue of the aborts

that happen synchronously with the abort reason and asynchronously with the flow of non-tx code. As

demonstrated in previous sections, this can complicate usage of non-tx primitives that require multiple

instructions to modify a data structure. In the example of TxChannels in Section 6.3, it required careful

layout and ordering of the channel’s send operation because it requires multiple non-tx stores to perform

a send.

IBM’s recent HTM proposal in Power 8 [340] solves this problem by performing transaction suspend
and resume. Using suspend will put the transaction in the background; conflicts will still roll-back the

transactional modifications, but will not change the flow of execution. Instead, the abort and change of

control flow to an abort handler will be performed on resume of the transaction. Transaction suspend /

resume is an elegant solution for the application programmer, but it has two drawbacks: (1) it requires

operating system support, because the aborted state of a suspended transaction needs to be recorded

in the thread context when switching; and (2) anecdotal evidence suggests that suspending / resuming

is slow and complex to verify. Interestingly enough, several interactions when sharing data between a

suspended transaction and the code that runs while the transaction is suspended are very similar to the

problems that occurred with ASF’s non-transactional accesses, for example to the call stack [342]. Natu-

rally, some of the solutions are similar, as well: enforcing the tx.begin primitive to be at the outermost

layer of the call stack.

In our (joint work with Martin Nowack, Michael Spear, and Christof Fetzer) publication at SPAA 2013

(brief announcement) and TRANSACT 2015 (full paper), we explored the area between ASF’s immediate

aborts and IBM’s suspension of transactions. We propose a mechanism that allows the resurrection of an

aborted transaction. In our proposal, transactions will abort immediately if an abort condition is detected

(such as a transactional conflict); this ensures that the operating system does not have to be modified,

because it always sees a clean, non-transactional architectural state, because all ongoing transactions will

be architecturally aborted before OS invocation.

In the abort handler, however, all information to resurrect the aborted transaction is available, and

execution can continue precisely where the abort had interrupted the execution inside the transaction.

For successful resurrection, the abort handler needs to know the full architectural state of the trans-

action (including program counter, flags and general purpose registers) at the time of the abort. When
1CPU performance simulators are notoriously bad at capturing realistic core-to-core and cache-to-cache communication delays.
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// Critical operations
ADD  [nontxloc] <- $42

 
acq_lock:
MOV  rax <-  $1
XCHG rax <-> [lock]
IF rax
  GOTO acq_lock
 
 

SPECULATE rsi
JNZ abort
TXLD rsi <-  [txloc]

Figure 6.6: Basic functionality of abort with continuation.

that information is restored, the application will continue execution where it left off due to the abort.

This feature was largely enabled by extending ASF’s limited register snapshot feature (see Section 3.2.7)

which again started out as a feature to save precious resources, but then turned into a semantic feature

of its own right.

ASF will not save / restore the register state at transaction begin / abort. Instead, the abort handler

can inspect the registers and see their values as they were in the transaction. Only a selected number

of registers is checkpointed: the program counter, in order to change the control flow to the abort han-

dler and the stack pointer, to simplify call stack handling after abort. The rAX and flags registers are

overwritten to convey reasons for the abort to the abort handler.

In our resurrection proposal, we show how we can store the in-transaction copies of the overwritten

registers without extending the architectural thread state (no shadow registers): the application provides

a continuation buffer in memory to the SPECULATE instruction, and the CPU uses that buffer to store the

in-tx values of the registers. We also add an instruction that will restore the registers from the continua-

tion buffer in memory. Logically, the transaction abort can then be viewed as a user-level interrupt to the

transaction and we provide a very slim (five words) interrupt / resume state.

Figure 6.6 highlights the life cycle and main interactions: SPECULATE is extended so that it accepts a

memory buffer location parameter (1), looks up the virtual address and translates it to a physical address,

and also checks write permissions to the location. Any page faults that could occur when accessing the

buffer are thus already resolved before the transaction starts. In the event of nested transactions, the

SPECULATE instruction ignores this parameter: Since ASF only supports flat/subsumption nesting, there

is no meaning or benefit to saving multiple register checkpoints.

The CPU keeps the resulting physical address in an internal register (2) and starts the transaction.

The transaction executes, mutating the CPU’s register state (3). In case of an abort (4), the processor

first copies rax, rip, rsi, and rflags into the application-provided buffer (5), and then updates these
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registers and control flow to reflect the abort condition (6), with rsi additionally holding the buffer

address. Furthermore, rsp will no longer be restored:2 this prevents stack smashing due to signals or

interrupt handlers running within the abort handler. The application code checks for aborts and branches

to an abort handler (7). The abort handler can simply restore rsi and rsp from the the buffer pointed

to by rsi and reproduce the original ASF abort functionality. However, it can also resume the code

in the transaction by restoring all overwritten registers from the buffer (8). Since existing assembly

primitives cannot restore all registers without overwriting an additional temporary register, we provide a

new CONTINUE instruction that performs a simple micro-code sequence to restore the registers.

6.4.1 Challenges

Despite its simple design, several challenges in the resurrection approach became apparent during the

actual implementation. Continuing after an abort only to finish a non-transactional section of code (and

then abort) is straight-forward; no additional transaction needs to be started. For full transactional resur-

rection, however, the continuation code needs to start a new transaction with a new continuation buffer

and then resurrect the old transaction through the state in the original continuation buffer. Unfortunately,

during the starting of the new (shell) transaction and completing the resurrection of the previous aborted

transaction, the shell transaction might abort.

This could create a spiral of new shell transactions that try to resume another shell transactions

resume operation, with unlimited depth and unlimited requirement for continuation buffers. To cut the

potential deadlock, we detect the “fractal” case and jump directly to the resurrection of the original

outermost transaction. This limits the amounts of continuation buffers required to two, and also reduces

the susceptibility to pathological abort timing conditions. Figure 6.7 shows the pseudo-code for the

resumption operation with these details highlighted.

Aside from complications in the usage and ISA design of the resurrection primitives, the resurrection

mechanism uncovered a latent issue with the existing ASF implementation: resurrection relies on the

consistency of the register state of the thread and the memory operations performed. One issue was that

if an ASF abort occurred during an instruction that was broken up into multiple micro-ops, the register

state was not consistent: the instruction pointer pointed already to the next instruction, but parts of

the previous instruction had not executed and not performed their effect (register / memory write). In

normal transactional memory implementations, this is rarely a problem, as long as all state modifications

are rolled back / discarded and not used to infer / reconstruct properties of the transaction at the time of

abort.

Repairing this defect in the simulator required more careful timing of aborts with the execution of the

instruction stream and only triggering aborts once execution is between two ISA-level instructions (see

Section 4.4.6).

6.4.2 Use-cases of Transactional Resurrection

Executing multiple non-tx stores As presented, transactional resurrection solves the problem of aborts

disrupting sequences of multiple non-tx stores, because the execution of the non-tx code sequence can be

continued after the abort. That way, a simple mechanism could register (in a thread-local variable with

a non-tx store) a do-not-abort (DNA) intent before executing non-transactional code. If the enclosing

transaction aborts, the abort handler will evaluate the DNA flag, if set will store an abort-registered (AR)

message (in another thread local location, or overwriting the DNA flag), and then resurrect the aborted

transaction. The aborted transaction will then continue with its non-transactional code sequence and, at

2The old value of rsp from SPECULATE is stored in the buffer, instead.
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1: procedure SAHTM_RESURRECT(s) ▷ s holds the resume state
2: if s.resume_ip ∈ lines(5 – 10, 17 – 27) then ▷ Aborted while resuming
3: s← s.other ▷ Squash abort recursion
4: end if
5: SPECULATE s.other ▷ Start HTM container transaction
6: error ← rax
7: if error = 0 then ▷ Successful start of HTM container
8: SAHTM_REPLAY() ▷ Replay transactional working set from SW log
9: pop regs

10: CONTINUE s ▷ Restore full state and return to resurrected transaction.
11: else ▷ Abort in the resurrected transaction
12: s← rsi ▷ Update resumed state from new abort site
13: s.abort_rsp← s.other.abort_rsp
14: return (error, s) ▷ Outer logic handles abort condition and retries
15: end if
16: end procedure

17: procedure SAHTM_REPLAY ▷ Replay and validate transactional accesses
18: for (addr, val, rw) ∈ log do ▷ from the SW log
19: if rw = READ then
20: txload tmp← [addr] ▷ Add to read set
21: if val ̸= tmp then ▷ and validate value
22: ABORT CONTENTION ▷ Use HTM abort to unravel validation failure
23: end if
24: else
25: txstore [addr]← val ▷ Redo stores
26: end if
27: end for
28: end procedure

29: procedure SAHTM_TXLOAD(addr) ▷ Software-assisted read barrier
30: log ← (log, (addr, ∅, READ)) ▷ Append a sentinel protecting against an abort
31: ▷ between line 32 and 33 missing replay of addr
32: txload val← [addr] ▷ Add to HTM read set
33: (log, (addr, ∅, READ))← (log, (addr, val, READ)) ▷ Update with proper read value
34: return val
35: end procedure

36: procedure SAHTM_TXSTORE(addr, val) ▷ Software-assisted write barrier
37: log ← (log, (addr, val, WRITE)) ▷ Append to log
38: txstore [addr]← val ▷ Add to HTM write set
39: end procedure

Figure 6.7: Resurrection and replay of aborted transactions, logging read / write barriers. For simplicity,
we omit handling different sizes in SAHTM_TXSTORE and SAHTM_TXLOAD.
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1: procedure ASTART(handler) ▷ Start AOU and specify alert handler
2: buf1, buf2 ← malloc()
3: (buf1.other, buf2.other)← (buf2, buf1) ▷ Cross-reference resume buffers
4: locs← ∅ ▷ No AOU-watched locations, yet
5: SPECULATE buf1 ▷ Start the enclosing HTM transaction
6: error ← rax ▷ HW returns here from application on update
7: if error ̸= 0 then
8: ACONTINUE(rsi, error, handler) ▷ Handle abort condition and resume
9: end if

10: end procedure

11: procedure ACONTINUE(s, error, handler)
12: push regs
13: repeat
14: if s.ip ∈ lines 21 – 34 then
15: s← s.other ▷ Squash abort recursion.
16: end if
17: if error.type = CONTENTION then ▷ Someone updated our AOU locations
18: handler() ▷ Invoke the alert handler
19: end if
20: . . . ▷ Handle other abort reasons
21: SPECULATE s.other ▷ Start the continuing HTM transaction
22: error ← rax ▷ HW returns here from application on update
23: if error ̸= 0 then
24: s← rsi ▷ Update buffers on error
25: end if
26: until error = 0 ▷ Handle all abort conditions
27: for (addr, exp_val) ∈ locs do ▷ Re-add AOU locations
28: txload val← [addr]
29: if val ̸= exp_val then ▷ Value-based validation for updates while handling
30: . . . ▷ Signal alert and retry
31: end if
32: end for
33: pop regs
34: CONTINUE s ▷ Continue to the application code, does not return
35: end procedure

Figure 6.8: Implementing alert-on-update with ASF.

the end of it, will check for any AR events. If such an event is detected, the transaction will return to the

abort handler and finally perform the full, delayed abort action.

Use as an alert-on-update mechanism Alert-on-update (AOU) [153] is a mechanism that allows

polling-free communication through memory between user threads sharing virtual memory. In AOU, the

user of the mechanism declares to watch one or multiple locations. Whenever another thread writes, all

threads that were watching that location will get notified synchronously by having their flow of execution

being diverted to an alert handler. Originally presented as a separate ISA extension, the non-transactional

loads and stores in ASF together with the resurrection mechanism make it possible to synthesise AOU

primitives without additional changes to the ISA. Generally, the mechanism works as follows (further

detail can be found in Figures 6.8 and 6.9 and in the full paper): it is easy to conceptually map watched

locations to a transactional read set, alert notifications to aborts, and the alert handler to the transactional

abort handler. Wrapping large sections of application code into transactions is problematic for forward

progress. Non-transactional memory accesses for all application code and transactional resurrection will,

however, maintain the full state of the aborted transaction. The mechanism therefore works as follows:

application code is wrapped into ASF transactions when the AOU functionality is to be used, and all
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36: function ALOAD(address) ▷ Adds an alert on update of location address
37: repeat
38: val1 ← [address]
39: locs← locs \ (address, ∗) ∪ (address, val1) ▷ Add value early to prevent data race
40: txload val2 ← [address]
41: until val1 = val2 ▷ Ensure that this was a race-free ALOAD

42: return val1
43: end function

44: procedure AEND ▷ Disable AOU handling
45: COMMIT
46: free(buf1, buf2)
47: locs← ∅
48: end procedure

Figure 6.9: Implementing alert-on-update with ASF, part 2.

memory accesses from the application remain non-transactional. To mark a memory location to perform

AOU, the implementation simply adds them to the transactional read set. Due to strong isolation proper-

ties, any concurrent store to such a location will abort the transaction and thus allow notification of the

concurrent update. Using the resurrection mechanism, the aborted / notified thread can re-establish the

set of watched locations and continue executing the main flow of execution, not losing any progress from

the abort.

A few of the challenges for implementing the mechanism are: handling non-AOU induced aborts,

for example due to page faults or system calls. Generally, all these cases are handled as follows: hard-

ware aborts the transaction, the abort handler checks the abort reason and if necessary (system call)

re-executes the illegal operation (perform the system call) and then resurrects the transaction. The set

of current AOU locations is maintained as a list updated only with non-transactional accesses. Therefore,

the resurrected transaction can again add the watched locations and perform value-based validation

on them. Unfortunately, this leaves this AOU implementation briefly susceptible to the ABA problem.

Another option would be to exhibit false positives–application notifications even though none of the

AOU-watched locations has changed. Using lazy cache cleaning on abort would help and tighten the area

of ABA susceptibility / the amount of false positives, but not reduce either to zero.

In the full paper, we implement the presented AOU mechanism and extend an STM implementa-

tion with a fast revalidation signal in order to avoid issues of privatisation-safety without adding heavy

synchronisation operations and waits in the transaction commit handler.

6.4.3 Working Set Handling

Saving and restoring the full register state of the aborted transaction enables the two use cases just pre-

sented: postponing an abort after a sequence of non-transactional memory accesses, and implementing

alert-on-update. To enable full transactional suspend / resume-like behaviour, the transactional working

set itself needs to be preserved across the abort / resurrection, too.

In our publication, we identify two ways of keeping the working set across aborts. The first approach

is hardware-centric and changes the ISA and implementation of the BeHTM mechanism, such that aborts

for non-conflict reasons will perform lazy rollback (only when a later conflict is detected / when a fresh

transactional state is requested). We have added a “dirty” transaction start instruction that continues

using the remaining transactional state in the tracking structures for the transactional resurrection; if the

transactional state had to be discarded in the meantime, the newly started transaction will abort with a

new abort code “cannot resurrect”.
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In essence this is the Power suspend / resume feature on a microarchitectural level, while the archi-

tectural layer performs a full abort / resurrection operation to avoid modifications to the architectural

state of applications.

Software-assisted HTM Instead of changing the underlying transactional working set tracking in hard-

ware, it is possible to use the mechanism as a way to fully implement suspend / resume hardware

transactions with software assistance in a mode called Software-assisted Hardware Transactional Mem-

ory (SAHTM). We employ simple thread-local logging of the read / write sets and they are only used

to reinstate the hardware versioning and conflict detection structures on resurrection. Non-tx memory

operations are used to add data to the logs, so that they survive the abort of the hardware transactions.

Upon resume, simple value-based validation is used to ensure that the working set is still intact. Fig-

ure 6.10 visualises the flow of transactional execution and resurrection; and Figure 6.11 shows how

these mechanisms can be deployed together and how a hybrid TM may switch between them.

6.4.4 Evaluation

To evaluate the transactional resurrection scheme, I implemented the new instructions inside the existing

implementation of ASF in Marss86 (see also Chapter 4). Together with my co-authors, we extended two

STM runtimes: TinySTM and RSTM [101, 160].

Overhead of Software Logging The extensions to TinySTM use the transaction resurrection feature

and mainly evaluate the added overhead of performing read- / write-set logging in software in addition

to HTM. We used DTMC [213], the Dresden TM Compiler, to instrument and optimise memory accesses
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Figure 6.12: Resurrection and the overhead of performing read / write set logging in software and conflict
detection in hardware.

inside transactions. DTMC uses LLVM and supports link-time optimisation (LTO), which allows inlining

and further optimisation of the SAHTM read / write barriers. Although the additions for logging will

increase the overhead for the SAHTM barriers over plain HTM loads / stores, we assume that their

performance impact is smaller than full STM read / write barriers. The main reason is that the logging is

a thread-local fire-and-forget write-only operation which has good chances to “disappear” in the available

ILP of modern CPUs.

The results for selected micro-benchmarks (a worst-case for measuring STM barrier overheads, be-

cause there is very little additional non-barrier code) in Figure 6.12 shows even though the logging only

barriers are faster than full STM barriers, they are significantly slower than simple HTM barriers (that get

optimised to single HTM accesses).

Upon close inspection of the generated assembly code, we found that the LLVM-based DTMC misses

an optimisation opportunity of hoisting a load of a constant out of the inner data-structure search loop.

As the disassembly in Figure 6.13 shows, the resulting code keeps loading the address for the thread-

local storage and log for every barrier, even though they are marked as thread local and are never written

to. Despite various attempts at coercing the compiler into hoisting out the load from the loop, we were

unsuccessful in doing so. We then resorted to manual assembly modifications, and the results, while

preliminary, clearly show the benefit and reduced overhead (graph “SAHTM opt” in Figure 6.12).

Evaluating Alert-on-Update Functionality The alert-on-update functionality provides a non-polling,

memory-based, user-level notification mechanism. We have extended RSTM with such a notification

mechanism to solve the privatisation problem: a committing software transaction will force immedi-

ate revalidation of all concurrent transactions to ensure that their read set is still consistent. Without

a mechanism to synchronously notify, privatisation-safe STMs need to rely on polling to wait for other

transactions to perform their revalidation before privatised memory can be accessed outside of transac-

tions.

As such, we do not expect a significant performance boost (in particular not for the simple workloads

we investigated), but look to see whether our AOU implementation on top of resurrection ASF has any

performance problems. As outlined in the previous section, the AOU implementation is conceptually
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lock mov 0x8(%rcx),%rcx
lock mov (%rcx),%rax             
cmp      %rbx,%rax
jl       <loop>

mov    0x8(%rbx),%r14             
add    $0x8,%rbx
mov    0x27210(%r13),%rax         
cmp    %r12,%rax                  
jae    <abort>
mov    %rbx,(%rax)                
movb   $0x11,0x7(%rax)            
mov    %r14,0x8(%rax)             
addq   $0x10,0x27210(%r13)        
lock mov (%rbx),%rax              
cmp    %rax,%r14                  
jne    <abort>
                                  
mov    (%r14),%r15                
mov    0x27210(%r13),%rax
cmp    %r12,%rax
jae    <abort>
mov    %r14,(%rax)
movb   $0x11,0x7(%rax)
mov    %r15,0x8(%rax)
addq   $0x10,0x27210(%r13)
lock mov (%r14),%rax
cmp    %rax,%r15
jne    <abort>
                                  
cmp    -0x30(%rbp),%r15  
mov    %r14,%rbx                  
jl     <loop>

mov    0x8(%r13),%r14    
lea    0x8(%r13),%rcx    
mov    %rcx,(%rax)       
movb   $0x11,0x7(%rax)   
mov    %r14,0x8(%rax)    
add    $0x10,%rax        
mov    %rax,0x27210(%r12)
lock mov 0x8(%r13),%rcx  
cmp    %rcx,%r14         
jne    <abort>
                         
mov    (%r14),%rbx       
mov    %r14,(%rax)       
movb   $0x11,0x7(%rax)   
mov    %rbx,0x8(%rax)    
add    $0x10,%rax        
mov    %rax,0x27210(%r12)
lock mov (%r14),%rcx     
cmp    %rcx,%rbx
jne    <abort>
                         
cmp    %r15,%rbx         
mov    %r14,%r13         
jl     <loop>

plain ASF

logging with
compiler optimisation

logging with
manual optimisation

Figure 6.13: Disassembly code snippets of a linked list traversal showing missed hoisting opportunity by
the compiler (left) and manually optimised binary (right). Earlier compiler versions also had to perform a
costly read of the tx descriptor in TLS to access the log for every log barrier. The code blocks correspond
to the expanded single instructions in the “plain ASF” example and show the added complexity due to
logging.
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Figure 6.14: Throughput for RSTM OrecELA with AOU-enhanced privatization safety.

simpler, because the hardware transactions only monitor a read-set (the AOU watched locations), while

all other memory modifications (including those by the underlying STM) are performed as non-tx opera-

tions inside the enclosing AOU hardware transaction. In our implementation, we left the STM algorithm

largely unchanged and performed the validation in the AOU alert handler.

Performance data in Figure 6.14 shows that the overhead of AOU is indeed small compared to the

overhead of STM, while offering stronger TM semantics.

6.5 Summary

The design process of ASF was largely steered by finding the right balance between programmability and

ease of hardware implementation. At several stages during the initial ISA drafting, decisions were made

to offload complexity to the software side to keep the hardware implementation lean. When we revisited

the resulting constructs, we found in several cases that the resulting “imperfect” implementations actually

offered new mechanisms that could be leveraged systematically: communication from within transactions

using non-transactional loads and stores, and continuing transactions by capturing their full architectural

state at abort.

This bottom-up approach of exposing an imperfect abstraction to save resources, followed by sketch-

ing a possible exploitation through novel constructs, and a subsequent prototyping phase to explore

performance trade-offs and expose architectural sharp edges, forms a significant piece of the thesis of

this work. Understanding costs and details of hardware implementations then allowed us to close the

loop and tweak the hardware primitives without prohibitive cost to hardware / system software, and still

smooth out those sharp edges exposed due to unawareness of the possible use case in the first place. One

such example are the new continue instruction and the mechanism for lightweight capture of the full

register state at transaction abort in the resurrection proposal.

In this chapter, I have shown these synergies and how to strike a balance between compelling feature

set at good performance levels and still simple hardware implementation costs. In summary: economical

design and interesting new feature sets do not oppose each other, but instead can amplify each other.
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Chapter 7

Outlook: Semantic Challenges and Further
Architectural Improvement Opportunities

7.1 Introduction

Work on a complex ISA extension such as ASF (and BeHTM in general) is never really complete. Shifting

workloads, further work on decomposing / regularising the ISA interface and new use cases provide

ample opportunity to extend, morph and reevaluate previous decisions on ISA design.

This chapter pays tribute to such forces of constant change and introduces work that has started,

but not been completed during the course of my PhD. The points identified here have been presented at

various transactional memory workshops discussing early transactional memory ideas: the decomposition

of HTM and lock elision primitives in Section 7.2 has been presented at WTM 2013 1 ; issues and solutions

for handling access to high-quality time sources in Section 7.3 has originally been presented at WTTM

2010 2.

Finally, several ideas were only published in the form of patent applications, Section 7.4 will sketch

the issues solved and solutions that we envisioned. Finally, there is work that I have undertaken at my

employers AMD and ARM that is not published at a conference or as a patent / patent application (yet).

Sadly, I can therefore not share any information about that work, except the fact that there is more to

come.

7.2 Decomposing HTM and Lock Elision Primitives

Speculative lock elision (SLE) essentially converts critical sections protected by a lock into transactions

executing in parallel. In the Intel TSX proposal [303, 367], instruction prefixes (ACQUIRE, RELEASE) mark

normal memory accesses as lock acquisition / release operations. For example, a simple test-and-set lock

protecting a critical section looks as follows:

With the ACQUIRE / RELEASE primitives, the processor performs prediction to see whether it makes

sense to elide and can convert the critical section into a transaction. Furthermore, accesses to the lock

variable change: instead of acquiring the memory for writing, only a local modification is made; and the

processor tracks the value history of the lock. If the lock is eventually transitioned back to the original

1Euro-TM Workshop on Transactional Memory (WTM 2013); Prague, Czech Republic, April 14, 2013; http://www.eurotm.
org/action-meetings/wtm2013/program

22nd Workshop on the Theory of Transactional Memory (WTTM); Cambridge (MA), USA, September 16, 2010; http://lpd.
epfl.ch/gramoli/wttm2/html/index.html
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reg <- taken
ACQUIRE exchange(reg <-> *lock)
if (reg != free) goto spin_and_retry
...
RELEASE store(free -> *lock)

free value, the processor effectively compresses this value history cycle into a single read of the free value.

The net effect of these changes is that multiple concurrent critical sections can locally “acquire” the

lock concurrently and do not abort each other due to write-after-write conflicts. On top, the processor

performs transactional execution of the critical section content, performing conflict detection and data

versioning, to enforce isolation.

Unfortunately, these mechanisms (prediction, local stores, compression of store-chain cycles, and

transactional execution) are only exposed as an integrated package. My goal is to make each of these

components available as explicit instructions, following the RISC principle. The separate availability

allows programmers to write their own elision mechanisms more effectively, and can be applied in other

transactional algorithms.

Opt-In Lazy Versioned Stores We can treat local stores as lazily versioned stores: they keep the trans-

actions linearisable, but do not eagerly send out write requests which could abort other transactions.

Instead, they will send out their write requests (invalidating snoop messages) only at the end of the

transaction when it commits. Lazy versioning may require additional hardware (for late sending out

of stores) and may therefore be constrained in capacity. Also, depending on transaction characteristics,

eager versioning may have beneficial effects on system performance due to exposing conflicts as early as

possible. We therefore propose to add a LAZY prefix to allow the programmer to mark their stores as lazy

versioning, making this an opt-in feature.

Squashing Cyclic Value Histories Secondly, tracking the value history can be used to essentially squash

a sequence of writes (e.g. store(A → mem1), store(B → mem1), store(C → mem1) inside a single

transaction to a single global store(C → mem1)).
If that remaining store restores to the value initially read in the transaction, the entire store cycle can

be dropped and compressed to that single load. We propose to mark the initial load with a CYCLE prefix

to enable the HW tracking of the value history of subsequent stores.

Software-visible Hardware Predictor Finally, exposing the prediction mechanism to software can be

achieved with the following ISA design: a BRANCH_ON_PRED <target>, <id> instruction branches to ad-

dress <target> when the processor predicts true. The prediction is steered by software through positive

/ negative feedback instructions: PRED_GOOD <id> and PRED_BAD <id>. The processor uses the usual

correlation mechanisms (branch history, address of branch instruction, correlation with other branches)

to improve the prediction for BRANCH_ON_PRED, maximising the amount of PRED_GOOD feedback.

Putting it All Together Together with simple transactional memory primitives, the existing lock elision

can be expressed as follows:

BRANCH_ON_PRED slowpath, 17
SPECULATE
if (CYCLE lock != free)

PRED_BAD 17
goto slowpath

LAZY (CYCLE) lock := TAKEN

for the entry, and the following sequence for ending the elided critical section:
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(CYCLE) lock := free
COMMIT
PRED_GOOD 17

The result is a speculative lock elision primitive that is very flexible, because applications can control

their abort handlers, and still get the benefits of the special handling of the lock variable. Selective

lazy annotation for stores can enable higher throughput transactions, and similar manual code changes

(moving stores in eager transactions as late as possible) have been suggested elsewhere [249, 282].

7.3 Safely Accessing Timestamps in Transactions

Many applications rely on time measurements for a variety of tasks. Depending on the characteristics

of the measurement device (the clock), an observer may be able to reason about the order of events.

There is a very intuitive notion of such time-based reasoning3 which programmers rely on, although in

the processor manuals, we have found little about the permissible deductions for the available hardware

clocks. In particular, there is a lack of documentation regarding the interplay of concurrent clock accesses

and order induced by other means such as the memory model. Practitioners needing to reason in this

realm therefore rely on a blend of observed behaviour, online testing and documentation, for example in

the Linux kernel [107, 239].

The lack of rigid specifications for standard processing is matched by the way transactional memory

systems treat the subject. Although reasoning about atomicity, isolation and observed serialization / lin-

earization order has been discussed prominently, we find that reasoning about clocks in transactional

context is largely absent from the current research work. In this void, implementations are free to exhibit

different behaviours of time sources in relation to transactional processing. We believe that with the

recent commercial availability of transactional memory and lock elision it is necessary to integrate rea-

soning about time sources and transactions (and general shared memory communication) more tightly.

As a base-line, and without loss of generality, we look at the properties of an ubiquitous clock on x86

microprocessors, the Time Stamp Counter (TSC), and its read-outs, which we will refer to as time stamps.
We assume and explicitly formulate properties which we believe are intuitive and hold for TSCs, and then

derive high-level assumptions about simple concurrency control constructs, such as mutual exclusion.

Subsequently, we find that lock elision [58], if it attempts to mimic mutual exclusion soundly, should

restrict access to the TSC. Due to the close relationship between lock elision and transactional memory

[34], we propose to adopt the semantics of time in mutual exclusion also for transactions. Being a new

programming construct, transactions may define any behaviour they wish (much alike to the many forms

of memory semantics in transactional memory systems [165]). We will define a set of semantics and

show example code sequences to show the effects of weak and strong semantics on observable results.

Finally, practical considerations may have a huge impact on requirements of such a semantics, and

on what is feasible to provide in real systems. To that end, we propose a solution that we believe is light

enough to be implemented in hardware, but permits safe TSC accesses inside transactions.

Our contributions are the following: we formalise intuition about the interplay between memory and

time-stamp order; we show how these orderng rules extend for plain synchronisation and are subse-

quently violated in naive lock elision mechanisms, allowing code to malfunction despite full memory

isolation. Finally, we propose several mechanisms that provide strong temporal isolation, providing par-

allel execution for code that requires properly ordered time stamps.

3We ignore effects of the relativity theory, in particular, relativity of simultaneity in both this paper and our assumption about
intuitive reasoning.
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The remainder of this section is structured as follows: Section 7.3.1 provides a background of con-

currency control mechanisms and time stamps, and Section 7.3.2 reviews their semantics. We then show

critical interactions between time stamps and transactions in Section 7.3.3, and draft two implemen-

tations that properly handle these in Section 7.3.4. Sections 7.3.5 and 7.3.6 provide an outlook and

summarise the work, respectively.

7.3.1 Background

Concurrency Control Critical sections traditionally operate on a strict mutual exclusion property: In-

structions of two critical sections must not interleave if both critical sections are protected by the same

lock variable. Recent literature calls this mode of operation Single Lock Atomicity (SLA) [224].

Database transactions provide serialisability [7], the strongest form of isolation. Briefly, transactions

may overlap if there exists an equivalent execution in which no transactions overlap. Strict serialisability

(and the similar linearisability [21]) is a stronger form of serialisability that restricts the serial order such

that observed real-time order between temporally non-overlapping transactions is maintained.

Transactional memory [34] brings the notion of transactions to general-purpose systems. The large

variety of semantics [165] differs mainly in how they deal with interleaving of memory accesses that

are not part of transactions and accesses that are part of a transaction. Generally, weak and strong

isolation are considered: strong isolation always orders memory accesses outside of transactions with

accesses inside of transactions (treating them as implicit, one-instruction mini-transactions), whereas

weak isolation does not enforce such order and usually specifies other, more complex semantics.

Transactional Lock Elision Transactional execution offers benefits over strict mutual exclusion imposed

by critical sections, because transactions can be optimistically executed in parallel, as long as the specified

isolation level is maintained. The idea to convert lock-protected critical sections into transactions and

extract additional performance has been proposed in previous work on lock elision [58].

To transparently elide locks in existing applications, the semantics provided by lock elision must not

be weaker than that of mutual exclusion. Otherwise, applications may crash or misbehave, for example

causing data loss.

Access to Time Stamp Counters Applications must measure time and its progression, to determine

durations of, order, and coordinate events. Computers provide time sources of varying quality. Without

loss of generality, we will focus our analysis mainly on the CPU’s time stamp counter (TSC), which has

seen significant quality improvements during the last decade. We assume the TSC is a suitable real-

time source,4 and that applications (through libraries such as libc) rely on such behaviour. For brevity,

and without loss of generality, we ignore the potential offset between different TSCs because it can be

bounded by a small constant ϵ with initial calibration. Our results hold also in those cases, with some

additional margins added to comparisons accounting for the difference. Furthermore, we do not consider

TSC wrap-around.

On the AMD64 architecture, the TSC can be read with the RDTSC and RDTSCP instructions. We consider

only RDTSCP because it is properly serialised with the instruction stream. We do not consider other clocks,

because the TSC is the most frequently used fast, stable time source.

7.3.2 Semantics of Time Stamps

In this section, we will explore and formalise assumptions made about time stamps in existing code to

guide our understanding of how time stamps should be treated in transactions. As outlined earlier, we

4This has been true for most x86 microprocessors since 2007.



7.3. SAFELY ACCESSING TIMESTAMPS IN TRANSACTIONS 173

Initially : c = 0
t1 = RDTSCP
c := 1

lc = c
t2 = RDTSCP

Figure 7.1: Dependent reads from the time stamp counter produce properly ordered time stamps: If
lc = 1, then t2 > t1.5

rely on intuition and will generalise from small examples to guide for illustration purposes.

Traditional Code Memory causality and synchronised time stamps should allow us to reason about time

stamp relations across multiple cores and application threads:

Definition 1 (Causal time stamp counters). A system that produces time stamps whose values reflect the

order imposed by memory accesses and other ordering constraints in non-transactional code is called

causal.

In Figure 7.1, two RDTSCP instructions are ordered by a memory dependence. We assume for this

and similar examples5 t2 > t1 always holds; generally, existing order such as memory dependence and

program order also orders time stamps.

Critical sections implemented through locks serialise execution through memory dependencies. There-

fore, for time stamps t1 and t2 read inside critical section CS1 with t1 < t2, and t3, t4 read in CS2 also

ordered t3 < t4, and CS1 and CS2 being protected by the same lock variable, we know from Causal TSCs
that either t2 < t3, or t4 < t1. In other words:

Definition 2 (Temporal mutual exclusion). For two critical sections CS1, CS2 protected by the same lock,

the intervals spanned by the set of obtained causal time stamps T (CS) do not overlap:

[min(T (CS1)), max(T (CS1))] ∩
[min(T (CS2)), max(T (CS2))] = ∅.

TSC-oblivious Transactions Because transactions are a new programming construct, they do not need

to maintain strict compatibility with legacy code and its assumptions. Therefore, access to the TSC is

treated differently in the various implementations of transactional memory: software TMs (STMs) usu-

ally do not track RDTSC(P) instructions and so may allow an application to infer temporal placement and

overlap of the transactions. AMD’s proposed hardware transactional memory, Advanced Synchronization

Facility (ASF), [384] does not allow transactions to execute RDTSC(P) and aborts them if they try. Al-

though this makes it impossible to detect temporal overlap for transactions, it limits the applicability of

transactional programming and of lock elision.

Intel’s recent Transactional Synchronization Extensions (TSX) [303, 367] do not restrict access to the

TSC in both transactions and elided critical sections. This creates a semantic gap between lock elision and

code using locking, but because the elision does not work fully transparently,6 software can be exposed

to the changed semantics [285].

The Need for Stronger Semantics We pointed out earlier that it is desirable to elide critical sections

to enable parallel execution of non-conflicting critical sections and thus reduce the issue of sequential

bottlenecks. Hardware will track memory accesses of elided critical sections and ensure they correlate to a

sequential execution by tracking conflicting accesses. However, as we will show in the next section, this is

5We denote threads as columns, and time progressing downward. Interleaving of events corresponds to the interleaving of rows.
Reads into local variables are marked with = and stores to memory with :=.

6Applications need to use annotated instructions to acquire and release the lock variable and enable elision, and can query
whether they run in a transaction / elided critical section with the XTEST instruction.
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TX2.begin
TX1.begin
t1 = RDTSCP

t = RDTSCP
t2 = RDTSCP
TX1.end ...

TX2.end

Figure 7.2: Overlapping time stamp values violate SLA.

Initially : c = 0

TX1.begin
TX2.begin
t2 = RDTSCP

c := 1
t1 = RDTSCP
TX1.end

lc = c
TX2.end

Figure 7.3: Two transactions can exhibit contradicting ordering if lc = 1 and t2 < t1.

insufficient if applications make use of the TSC inside critical sections. Applications may infer concurrent

execution of critical sections that were supposed to execute strictly sequentially. Such mismatch between

expected behaviour and implementation breaks transparency of the elision and can lead to crashes, or

other misbehaviour.

In addition to supporting stronger semantics for the lock elision case, we also consider a stronger

semantics incorporating TSC accesses for (hardware) transactions. Providing the same semantics in both

modes makes sense: (1) using hardware transactions as a drop in replacement for locking, and (2)

providing a well-known semantics for TSC usage in transactions that is easy to understand and reason

about.

7.3.3 Semantic Issues of Time Stamps in Transactions

In this section we illustrate problematic orderings of transactions and the use of time stamp accesses

from within them. We aim for transactions and elided critical sections to have semantics equivalent to

proper mutual exclusion; and will therefore use the term transactions also for elided critical sections. We

will illustrate corner cases using transactional annotations (instructions TX.begin and TX.end delimit a

transaction) and see how they behave if SLA was used. With that we mimic the intuitive mutual exclusion

semantics and derive the required semantics for TSC accesses in lock elision and transactions.

Simple Overlap Case In Figure 7.2, the case t1 < t < t2 directly violates temporal mutual exclusion in

SLA – the result for time stamps in traditional critical sections obtained in Section 7.3.2. We would like

transactions to provide the equivalent:

Definition 3 (Temporal Isolation). If two transactions T1 and T2 read from the TSC, with T1 reading

multiple time stamps in the interval [t1, t2] and for each time stamp t read in T2, it must not be the case

that t ∈ [t1, t2].

Order Mismatch: Memory vs. Time Stamps In addition to detecting temporal overlap through time

stamps, two transactions may observe mismatches in the respective memory or time stamp orders. Figure

7.3 shows an execution that orders transaction TX1 before TX2 through memory; however, because t2 <
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Initially : c = 0

TX2.begin
t2 = RDTSCP

t1 = RDTSCP
c := 1

lc = c
TX2.end

Figure 7.4: Failure of strong temporal isolation if lc = 1 and t2 < t1. Instructions on the left do not
execute from a transactional context.

t1, the time stamps indicate the reverse order. Proper SLA semantics would not allow such contradicting

orders under Causal TSCs. We therefore extend temporal isolation to agree on the order of transactions

with the order imposed by memory accesses:

Definition 4 (Consistent Temporal Isolation). If two transactions T1 and T2 are ordered such that T2

observes T1’s memory accesses, for all time stamps t1 read in T1 and time stamps t2 read in T2, t1 < t2

has to hold.

Weak and Strong Temporal Isolation If applications accesses the same data inside and outside critical

sections, they do not explicitly establish additional ordering between the accesses outside of critical sec-

tions and those inside. In those cases, order can be created only through reasoning with the underlying

memory semantics or transitive ordering with earlier synchronisation. In particular, if accesses to shared

data happening outside critical sections are not ordered through other dependency chains with accesses

to said data from within critical sections (usually called a data race), the involved accesses are subject to

complex, sometimes even undefined behaviour.

With transactional memory, however, some systems provide strong isolation which properly orders

transactions with respect to all overlapping memory accesses outside of transactions, usually by assuming

that accesses outside of transactions are one-instruction mini-transactions. Systems that do not provide

such isolation, but only order transactions among each other, provide weak isolation.

We observe a similar interaction with TSC accesses, extending the weak / strong (memory) isolation

property to weak / strong temporal isolation (WTI / STI): Figure 7.4 highlights the interaction. Because

there is only a single transction, the example clearly does not violate either SLA, nor does it produce

overlapping time stamp intervals. It also does not violate purely memory-based strong isolation seman-

tics, because TX2 is ordered after the non-transactional store from a memory perspective. We would like

to enable the intuitive combination of strong memory isolation and Causal TSCs through strong temporal

isolation.

Definition 5 (Strong Temporal Isolation). All time stamps ttx read within a transaction T must reflect all

observed memory order T has been subject to. In particular, if through any order / dependency chain T

is ordered after a TSC access (not necessarily inside a transaction) reading time stamp tnontx, with strong

temporal isolation tnontx < ttx holds for all such accesses and time stamps.

Under weak temporal isolation, such additional conditions on time stamps read within transactions

are not enforced.

The Need for Strong Temporal Isolation Strong temporal isolation restricts execution more than a

system that provides only weak temporal isolation because it forbids executions such as the one in Figure

7.4. However, SLA does not inherently order critical sections and code outside of critical sections, so it

may seem sufficient to provide only weak temporal isolation for transparent lock elision (and transac-

tions). However, if we modify the example in Figure 7.4 slightly to obtain that of Figure 7.5, we find
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Initially : c = 0

TX2.begin
t2 = RDTSCP

t1 = RDTSCP
TX1.begin
TX1.end
c := 1

lc = c
TX2.end

Figure 7.5: Transparent lock elision requires strong temporal isolation: with SLA, if t2 < t1 then lc = 0;
however, with weak temporal isolation lc = 1 is possible.

otherwise. Using locks (SLA semantics) instead of transactions, we can deduce: if t2 < t1, TX2 must also

read the old value of c because it must have executed entirely before the empty transaction TX1 which

in turn executed before the update to c. Strong temporal isolation will enforce the same implication to

hold, but the depicted schedule is possible with weak temporal isolation. Therefore we conclude:

Observation 6 (Weak Temporal Isolation insufficient for SLE). Transparent transactional lock elision with

support for accesses to TSCs requires a stronger semantics than weak temporal isolation.7

7.3.4 Supporting Time Stamps in Transactions

In the previous section, we extended the semantics outlined in Section 7.3.2 to transactions. We further-

more showed that existing transaction systems with unrestricted access to time stamps can violate these

rules and intuition. We will now construct systems that are able to detect and avoid violations of the

desired temporal semantics. Our focus is on solutions that work on-line, and require only small addi-

tional effort. We strive for solutions that can be implemented in microprocessors providing transactional

memory / lock elision, but are applicable to software transactional memory solutions and other clocks,

as well.

An easy way to enforce any of the presented temporal semantics is forbidding all access to time stamp

counters from within transactions and elided critical sections. Hardware transactional memory proposals

such as AMD’s ASF work like that and abort all executed transactions that try to use the RDTSC(P)

instruction. However, because time stamping is employed in many applications, it is desirable to find less

rigid solutions that provide temporal isolation.

In summary, the desirable semantics from the previous section can be enforced through the following

temporal isolation rules: (1) the time stamp order needs to agree with the order established by the memory

accesses in transactions and non-transactional code; and, (2) time stamp intervals of transactions / elided

critical sections must not overlap.

Single TSC Access Restricting transactions to access the TSC at most once removes the problem of over-

lapping time stamp intervals (enforcing Rule (2) above). A simple implementation could therefore track

locally that transactions do not read from the TSC twice, and abort the ongoing transaction otherwise.

The simplest solution to enforce consistent time stamp and memory order (Rule (1) above), Single-
AbortAll, is to allow only a single transaction access to the TSC and abort all other concurrently overlap-

ping transactions (e.g., by adding a dedicated memory location TSCA to each transaction’s read set and

treating RDTSC(P) as a write to the proxy location). Going back to the example execution of Figure 7.3,

TX1 would abort immediately at the acquisition of t2, regardless of TX1’s content.

7Strong temporal isolation, for example. In future work we will pursue whether there are semantics weaker than STI that would
also enable transparent SLE.
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A more selective approach is Single-AbortTSC, which aborts only those concurrent, live transactions

that have or will eventually access the TSC. That can be achieved by recording remote TSC usage, and

handling the conflict only if the local transaction has already accessed the TSC, and if not, letting future

RDTSC(P) instructions in this transaction check whether their enclosing transactions have seen a remote

TSC access. Compared to Single-AbortAll, the advantage is that transactions that do not access the TSC

need not be aborted. The execution in Figure 7.3 would only need conflict handling when TX1 obtains

t1. If TX1 had not used RDTSC(P), it could continue execution.

Multiple TSC Accesses Allowing a transaction to read from the TSC multiple times allows transactions

to observe the passage of time.8 Similar to Single-AbortTSC, in Multi-AbortTSC transactions will not

abort all other concurrently running transactions at the first read of the TSC, but rather ensure that no

overlapping time stamp intervals can form.

In this case, each transaction checks at the second or later read from the TSC that it has not received

any notifications from remote TSC accesses; otherwise, a conflict exists. This case needs to be handled

by a conflict resolution policy, for example by self-aborting on the second local RDTSC(P), or by aborting

all other time stamp-using transactions.

The advantage of this technique is that transactions can execute in parallel, and each can access the

TSC multiple times, as long as the intervals formed by each transaction’s first and last accesses to the TSC

are disjunct. In the Figure 7.2 example, the conflict would be detected at the read of t2 because of the

concurrent TSC read to t . If the reads for t2 and t would have been ordered the opposite way (and then

also t2 < t), no conflict would exist.

Enforcing order: Again, in addition to enforcing disjunct time stamp intervals, we need to make sure

that these intervals are ordered consistently with all other orders – in particular those imposed through

memory accesses. Revisiting the simple example in Figure 7.3: so far, the algorithm Multi-AbortTSC does

permit the contradicting order. Consistent ordering between time stamps and memory accesses can be

achieved by ensuring that TX2 commits before TX1 because it read the earlier time stamp. Waiting at

TX1’s commit point for a can_commit message from TX2 will ensure consistent temporal isolation because

the memory conflict on c caused by the contradicting time stamp order will be visible to TX1, see Figure

7.6.

These commit ordering messages do not need to broadcast, because TX2 knows that TX1 has acquired

a later time stamp through the tracking of accesses to the time stamp counter. TX2 can therefore signal

TX1 (and all later) transactions directly that they must wait for a commit signal, and when they can

commit.

Waiting alternatives: Instead of TX1 stalling the CPU at commit, it may be possible for it to continue

execution of instructions behind the transaction transactionally, essentially increasing the length of the

transaction by adding the following, non-transactional instructions to its transactional tail. That way,

useful work can be done, reducing the performance penalty incurred by waiting. Of course, this may lead

to additional conflicts (due to additional memory accesses adding to the working set), and additional

transactional TSC accesses that need special handling.

Another option is to put the core in a low-power state and wait for the special can_commit signal

from TX2 (similar to the low-power mode that can be entered with the MONITOR / MWAIT instruction

combination [257]).

8Some researchers have argued that observing the passage of time would violate the atomicity of transactions, implying that
atomicity is “instantaneousness”. However, we find that neither serialisability, linearisability nor transactional isolation prohibit
the observation of time, but instead find practical use for applications wanting to measure execution time of code executing inside
transactions / elided critical sessions, for example.
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Figure 7.6: Ordering commits between transactions to match time stamp order will ensure that disagree-
ing observations (memory orders) cannot be established due to abort.

Handling Non-transactional TSC Accesses Strong temporal isolation requires that TSC accesses out-

side transactions need to participate in the conflict detection mechanisms. However, we may want to treat

conflicts with non-transactional TSC accesses differently to ensure progress and minimal obstruction for

non-transactional code. We therefore suggest biasing conflict resolution in favour of non-transactional

TSC accesses, by always aborting the concurrent transactions with which the non-transactional RDTSC(P)

conflicted (instead of retrying / delaying the non-transactional access).

7.3.5 Outlook

Although we believe our examples and implementations cover all critical interactions, and thus provide

identical semantics for transactions and lock elision to fully sequential mutual exclusion, we have not yet

proven our solutions to be correct or our restrictions to be minimal.

We are particularly interested in the applicability of our proposed implementations. Clearly, our sys-

tem is more permissive than AMD ASF’s strict ban of TSC reads inside transactions (and more transparent

than Intel’s TSX lock elision), but we still need to abort and serialise a significant number of transactions.

We believe there is a limit to which one can make parallel execution behave similarly to sequential ex-

ecution, but some applications may just not care. For example, applications may use time stamps only

to measure durations, instead of using them to establish order of events. Automatic inference of such

properties seems very hard; therefore, we have restricted our analysis to provide as much performance

as possible with strong temporal isolation. A viable alternative is to leave the decision to software – for

example, by offering an explicit choice between strong and weak temporal semantics with multiple types

of transactions and / or time stamp accesses. This new freedom opens up a new space for looking into

the interactions between different types of accesses and exactly how much each needs to be weakened to

provide compelling performance, while remaining useful for applications.

7.3.6 Conclusion

In addition to communication through memory, time stamps provide another way for parallel code to

coordinate. Therefore, time stamps need to be considered by systems that control parallel execution

such as transactional memory and lock elision. We expect that the wide availability of systems in the

near future will only amplify this need and make this a promising direction for future research. Existing

critical sections provide very intuitive semantics of temporal isolation, which we have not found to be
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provided by most STM and HTM solutions. In this section, we have identified the issue of time stamp

order and have shown with multiple examples how applications can observe time stamps inconsistent

with the isolation level or with the order observed from memory accesses. We formalised the intuitive

reasoning steps and extended them to transactions and lock elision mechanisms, advocating that they

both should be equally strong. We drafted various implementations that will provide weak and strong

temporal isolation without the need to fully serialise execution.

7.4 Further HTM Ideas

Industrial research has to strike a careful balance between publishing and keeping findings proprietary.

One step to publishing research work is to patent ideas and mechanisms, and then publish them in

research literature.

During my time at AMD, me and my collaborators developed several ideas that have not been pub-

lished in academic conferences, but some of which have been published as patents and patent applica-

tions. Others still remain in the process of being evaluated for patenting / being drafted as patents.

This section briefly discusses the scientific problem and core of the solution in plain terms, and links

to the respective patent documents for reference.

7.4.1 Roll-forward Mode

During the design of the initial ASF specification [186] in 2010, we already identified the synchronous

nature of HTM aborts as an unfortunate side-effect, especially with sequences of non-tx operations which

should be completed before handling the abort. The solution I present earlier in this document (transac-

tional resurrection, Section 6.4) proposes to take the synchronous abort, and then continue the aborted

transaction / sequence of non-tx code until the abort can be handled more easily asynchronously.

Our original proposal to handle such cases was to propose a roll-forward mode for ASF9 which we

planned to publish as an update to the existing ASF specification. The roll-forward mode is started with

a special flavour of the SPECULATE instruction; inside the roll-forward transaction, aborts will only set a

flag and continue execution of the transaction. Transactional stores check the flag and if an earlier abort

was detected, they will not perform the store. There is also a new instruction to check for a recorded abort

(VALIDATE) and allow applications to defer handling of the abort to a more suitable time.

Transactional stores checking the flag simplifies the application logic, as otherwise, there would be a

race between the abort happening and the application checking for the validity of the transaction only

before / after the store, but not at the same time.

One challenge in this mode is the mixed nesting of roll-forward / roll-back transactions and tracking

their state when a nested transaction ends: is the outer transaction of the roll-forward or roll-back kind?

7.4.2 Nested Abort Handlers

Nesting transactions in ASF (and most other BeHTMs) is conceptually simple flat nesting which keeps

a nesting count and flattens all nested transactions into the outermost enclosing transaction. As a side-

effect, only the outermost transaction will see the abort.

This is a nuisance for keeping statistics of transaction aborts, because if the innermost transaction is

responsible for the conflict and could provide a separate, non-conflicting code path, it needs to know of

the abort in order to change the selected code path.

9USPTO patent no 8,621,183
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Figure 7.7: Tracking transactional read sets in two dimensions using a combination of different gran-
ularity mechanisms for additional capacity and precision. Precise tracking uses the normal cacheline-
granularity HTM mechanism; overflow tracking marks the entire set as transactional when a read set
entry was evicted from it; in combination with coarse tracking, precision loss is reduced because both
structure need to indicate a conflict.

In addition, if nested transactions perform non-tx operations, they might want to undo them with

a registered undo-action in case of an abort. The outermost handler, however, does not know of the

undo-actions of the nested transaction which may be behind a library interface.

In our work on nesting abort handlers10 we show how to reverse the handling of aborts: instead of

invoking only the outermost abort handler, hardware invokes the innermost handler and a combination of

hardware and software tracking (similar in technique to the transactional resurrection proposal described

in Section 6.4) ensures that the innermost handler knows about the nesting hierarchy of abort handlers.

For that, nested SPECULATEs will push link information to the previous abort handler on the stack so

that software can then perform a simple POP / RET sequence and link to the outer handler from the inner.

Pushing the link information out to memory ensures that hardware does not have to provide for a large

buffer tracking this information and that the information can persist a context switch so that the abort

handler hierarchy can be walked when the application is then later switched to again.

7.4.3 Two-dimensional Tracking of Large Objects

One technique to extend the HTM’s capacity for tracking the read set is to use a simple overflow mech-

anism: once a tx-read cache line is displaced from the conflict detection hardware structure (for ex-

ample the L1 data cache), the entire set of the cache is marked as TX.R. That way, all remote con-

flicting memory snoops that access this set will cause a transactional abort. The addresses that map

into the set depend on the cache geometry, and are distributed regularly in memory: usually11 every

cache_capacity/cache_associativity. For example, for a two-way set-associative L1 data cache with 32 kB

capacity, the overflown set would (falsely) detect conflicts with all memory locations with an offset of in-

teger multiplies of 16 kB.

Overall, this mechanism trades tracking precision over tracking capacity. Another mechanism that

performs the same trade-off differently is using a more coarse grained tracking granularity; for example,

instead of tracking cache-line-sized memory regions (64 byte), one could track larger blocks of 4 kB to

increase the total tracked capacity.

In our invention12, we propose to combine the two tracking mechanisms, i.e., once a cache-line is

displaced from the cache and the entire index will conflict, a secondary tracking structure with larger

granularity (such as the TLB with 4 kB page sizes) can be used to reduce the number of false positives

caused by the aliasing of the equidistant addresses.

As is apparent from Figure 7.7, this is effectively tracking the transactional read set in two dimensions.

10USPTO patent application 20140181480
11if the lowest possible bits are used for indexing into the cache
12USPTO 8,612,694
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7.4.4 Tracking Large Objects in the TLB / Page Tables

Using a separate, purpose-built tracking structure with different granularity is straightforward, but re-

quires an additional hardware widget. Using the TLB directly has challenges because it is usually queried

with virtual addresses and is also not consulted on external snoop messages. In two separate inventions13,

we have shown how to use the actual page-table data structure in memory and the fact that the AMD64

architecture maintains in hardware accessed and dirty bits for every page-table entry.

In a nutshell, the algorithm uses the normal ASF conflict detection mechanism (e.g. the L1 data

cache), but instead of tracking conflicts on (all cache lines of) the accessed object, the conflict detection

mechanism will monitor changes to the respective entry in the page-table (the last level PTE). Thanks to

the hardware maintained accessed and dirty bits, a remote writer will need to write to the PTE to update

the dirty bit, and thus cause a proxy conflict on the PTE with the original transactional reader.

In summary, this mechanism then can track accesses on page-granularity, supporting huge read sets

with very little amount of actual conflict detection hardware; of course at the cost of losing tracking

precision and potentially inducing false conflicts and aborts. The two inventions deal in more detail with

challenges such exact marking / unmarking of the accessed / dirty bits.

7.4.5 Reducing Live-Lock by Ordering Transaction Memory Accesses

Two transactions can have mutually overlapping working sets and thus one of them may conflict abort,

restart and then abort the other transaction, leading to the same, mirrored cycle. A system in such

a condition is making progress on some level (the CPUs keep executing instructions), but failing to

make progress on some higher level of abstraction (the transactions / operations they represent never

complete)–a live lock.

There is a large body of related work on solving these issues, usually with specific contention man-

agement policies, delaying the restart of conflicting transactions probabilistically and also mechanisms

for stricter scheduling of transactions.

In HTM implementations that use the cache coherence protocol for conflict detection, one option is

to stall answers to incoming conflicting snoop messages in order to throttle the conflict, abort, restart,

conflict loop and increase chances of the local transaction to commit in time. Unfortunately, stalling

snoop responses in such a way may impede progress guarantees of the underlying coherence protocol,

sometimes through long, obscure, system-wide resource dependencies; in other more obvious ways where

two transactions decide to not respond to each others’ snoop requests and thus deadlock the system.

In our invention14, we carefully establish a non-cyclic order between memory accesses (for example

by physical address), and allow transactions / CPUs to block snoop responses if their accesses are ordered

in accordance. That way, in the mutual conflict case, one of the two transactions will be able to “lock” its

working set and commit the transaction, clearing the livelock situation.

7.5 HTM Product Experiences

Most of my work in this PhD has been performed before HTM implementations were available commer-

cially. Even then, a debate over the actual value of the feature arose, and it was clear that HTM is not a

“silver bullet” for all synchronisation / parallelisation challenges [155, 246, 252].

IBM and Intel are currently leading in terms of having HTM implementations available, and have had

these for considerable amounts of time (since 2013). Intel especially are pushing HTM as a differentiator

13USPTO 8,943,278 and 8,914,586
14USPTO application 20140181480
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Figure 7.8: Throughput of different hash tables on a 4-core system. From [320].

to competing platforms that do not have HTM (most notably AMD and ARM), and claim significant

performance gains in SAP HANA’s radix tree and DPDK’s hash table, of 2.2x and 11x respectively [335,

348]. However, on closer inspection, most (if not all) of these spectacular gains can be achieved by using

different, already concurrent data structures, and / or converting the existing single-global-lock version

to use fine-grained locking.

Li et al investigate the DPDK cuckoo-hash table in more detail in [320]. They break out the benefits

of the different optimisation separately, and also convert the data structure to fine-grained locking. In

Figure 7.8, it is obvious that that performance varies significantly between different hash tables. Com-

paring the performance of the fine-grained version and the optimised TSX version, it becomes clear that

the most significant (and arguably only) benefit of HTM is the simplification / avoidance of the work

required to convert the data structure to fine-grained locking / lock-free operation. The authors note on

that point:

Our results about TSX can be interpreted in two ways. On one hand, in almost all of our

experiments, hardware transactional memory provided a modest but significant speedup over

either global locking or our best-engineered fine-grained locking, and it was easy to use.

. . .

On the other hand, the benefits of data structure engineering for efficient concurrent access

con- tributed substantially more to improving performance, but also required deep algorithmic

changes to the point of being a research contribution on their own.

With absolute performance removed from the list of HTM benefits (as opposed to the very valid

performance vs application engineering trade-off), the other key remaining aspect of TM is composability.

Going back to the detailed work in [320], however, we find that HTM performance of the application

improved significantly only with significant code motion of application code out of the critical section /

transaction. Such modification, however, loses the benefit when the entire macro data structure operation

including the out-of-transaction prefix / suffix is part of an outer transaction. In my earlier work on

ASF 1, I have speculated about possible ways to compose such operations by extracting and merging the

prefix and transactional part of the operations separately [158, 159]. In the meantime, several authors

have refined and formalised that concept [240, 314, 346], under such concepts as Consistency Oblivious

Programming, Partitioned Transactions, and Optimistic Transactional Boosting.

With the remaining valid feature of TM being simpler development of fine-grained concurrent data

structures, one should note that the overall complexity in the system remains, but is pushed into the

hardware layer. This can for example be seen that Intel had to disable their HTM in the first three
generations of products due to errors in the implementation [365, 366].
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7.6 Summary

Despite significant work from both industry and academic researchers, and several commercially available

implementations, transactional memory still has many open questions and available optimisation tweaks.

In this chapter, I presented a small selection of work that I have undertaken towards understanding

semantical challenges when using HTM and reasoning based on observing synchronised clocks, further

added features and regularised ISAs to ease manual synthesis of flexible lock elision primitives, and

further ISA extensions (nested abort handlers, roll-forward mode) and microachitectural improvements

to provide better performance and larger capacities for HTM implementations.

In accordance with the industry research pipeline (research, patent, productise, publish), some of

these ideas are only available publicly through patent applications and granted patents, while others are

still in the patenting process and consequently cannot be discussed in this public thesis document. Still,

despite a lot of work of me and other academic and industry researchers in the field mostly since 2006,

there are still uncovered / unpublished extensions and optimisations twelve years later in 2018, and my

employers (both AMD and ARM) continue the investigation; and I am sure that other companies are too.
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Chapter 8

Conclusions

The key thesis of this work has been that one needs a detailed hardware substrate and ISA description to

understand corner cases, feasibility, cost, and value of HTM implementations. Furthermore, I stipulated

that despite and because of the higher level of detail, interesting solutions to both instruction set design

and microarchitecture for HTM would be possible and new challenges could be uncovered–leading to

solutions different from those presented in academic state of the art.

8.1 Summary

In the previous chapters, I have presented a summary of the state of the art in transactional memory

and simulation (in Chapter 2); presented a production level ISA extension for HTM–AMD’s Advanced

Synchronization Facility–with background information and justifications for design decisions, challenges,

and changes made due to experience from iterating through a full executable model, compiler, and

real application stack (in Chapter 3). ASF provides full HTM functionality, but provides some additional

features (limited capacity / progress guarantee, non-transactional accesses) and differences to “text book”

style designs (no full register checkpoint). Then, I show various implementation options for that ISA

extension in realistic and complex CPU cores that take into account interactions with the relevant CPU

features, such as out-of-order execution, misspeculation, and complex memory hierarchies (Chapter 4);

followed by a summary of ASF use cases and performance evaluation experiments, and a detailed tour

through the simulator and challenges unique to the simulator implementation of ASF (in Chapter 5).

Finally, I show new use cases and extensions to ASF, namely building communication channels on top of

ASF and a mechanism to use the limited register checkpoint for transactions that can be resurrected after

they have been aborted (Chapter 6); and present further extensions: decomposing lock elision primitives,

roll-forward mode, nested abort handlers, two-dimensional conflict tracking, and using the TLB to track

larger objects, and challenges: handling time sources as an implicit communication channel between

elided critical sections (in Chapter 7).

My main contribution to the state of the art is the detailed level of microarchitectural, ISA, and

system-level understanding for HTM that I have gained and made available to the research community

through my work on the PTLsim and Marss86 simulation platforms [262, 304]. A further software artifact

that I contributed to is the DTMC compiler toolchain; mainly through testing, and bug fixing thanks to

detailed visibility into the whole system state in simulation. Additionally, my extensions to the Oracle

Hotspot JVM uncovered several challenging real-world interactions that would break typical lock elision

approaches [290]. These artifacts have been one leg of the foundation of the VELOX project that has

taken a holistic application to transistor view of transactional memory.

185
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From a commercial perspective, my main contributions are certainly the significant number of mi-

croarchitectural HTM implementation variants, their evaluation, and associated patent filings with AMD

(27 patents pending, 19 patents granted as of writing), and the detailed ASF ISA extension that we

published [186] (also available in Appendix A).

Academically, many of my contributions are part of papers at top-tier conferences and high-class

relevant workshops. On top of those publications that I (co-)authored, several other publications use the

ASF implementation in the simulator for further experimentation. The full list of publications that I have

worked on is:

• Hardware Acceleration for Lock-Free Data Structures and Software-Transactional Memory (EPHAM

2008 [158], Appendix B.1)

• ASF: AMD64 Extension for Lock-free Data Structures and Transactional Memory (MICRO 2010 [214])

• Evaluation of AMD’s Advanced Synchronization Facility Within a Complete Transactional Memory

Stack (EuroSys 2010 [213])

• The Velox Transactional Memory Stack (IEEE Micro Journal [210])

• Implementing AMD’s Advanced Synchronization Facility in an Out-of-Order x86 Core (TRANSACT

2010 [220], Appendix B.2)

• Compilation of Thoughts about AMD Advanced Synchronization Facility and First-Generation Hard-

ware Transactional Memory Support (TRANSACT 2010 [215], Appendix B.3)

• Sane Semantics of Best-effort Hardware Transactional Memory (WTTM 2010 [221], Appendix B.5)

• From Lightweight Hardware Transactional Memory to Lightweight Lock Elision (TRANSACT 2011 [254],

Appendix B.4)

• Delegation and Nesting in Best Effort Hardware Transactional Memory (SPAA 2012 [274])

• Safely Accessing Time Stamps in Transactions (WTTM 2012 [263], Appendix B.6)

• Between All and Nothing–Versatile Aborts in Hardware Transactional Memory (SPAA 2013 and

TRANSACT 2015 [289, 337], Appendix B.7)

As already reviewed in Section 1.4, these are largely split into three phases; (1) baseline ISA, microar-

chitecture, and evaluation with full TM stack in 2010; (2) use cases and extensions (several of which did

not turn into academic papers) until 2012, when the AMD Research office dissolved; and then further

extensions with improved simulator models and extended use cases (2013 - 2015).

Comparing that to the trend in the field, this was after several of the seminal STM and HTM papers,

but that time was not squandered, but instead allowed me and my collaborators to gain deeper insight

into TM and related CPU architecture and micro-architecture concepts and challenges. Academic interest

in HTM shifted, and commercial TM implementations became available, yet they were usually of quite

simple nature (and often offering a single differenciating feature on top) around 2013. Overall, most of

my contributions conincide with the peak of academic interest in TM, see Figure 2.2.

8.2 Thesis Evaluation

Reflecting back on the initial thesis of my work, my contributions, and the state of the art, my impres-

sion is that the thesis did hold; I have shown interesting extensions to baseline HTMs that have a small
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implementation footprint. For myself, I got a much higher level of appreciation for the complexities al-

ready in today’s systems without HTM, and contributed to a detailed microarchitectural proof-of-concept

and evaluation platform and ISA specification. During the course of the creation of each of those, we

faced several non-obvious corner cases, precisely because we were thinking and experimenting on a very

detailed level and had great applications and application experts that were stress-testing our systems.

Therefore, I would strongly argue for the success of methodology of a high-level of detail, executable

artifacts, and cross-stack understanding and collaboration.

8.3 Critical Reflection

Looking back at my experiences throughout my thesis work, they are very positive to the largest extent.

Starting with the trust and flexibility of my thesis advisor, Prof Christof Fetzer, who was open to this

somewhat unusual arrangement, and to the direction and trust I received inside of AMD thanks to my

colleagues Dr Michael Hohmuth, Sherry Hurwitz, and Dr Martin Pohlack. Additionally, a significant

amount of in-depth computer architecture knowledge came through a very collaborative atmosphere

inside of AMD, both inside the Dresden office, but also globally across sites. Conversely, the collaboration

with the VELOX researchers and the general Systems Engineering group at TU Dresden taught me a lot

about transactional memory algorithms, compilers, and distributed systems. Finally, the VELOX project

provided a great seed for connections across industry groups and universities around HTM, but also wider

computer architecture, algorithms, and theory researchers.

With a lot of light, there comes a risk of shadow, too; I think the biggest impact on my work was

the AMD Dresden office closing at the end of 2012, due to the strained financial situation at AMD. That

caused a significant disruption to our work and meant that we could not publish and pursue some ideas

that we were evaluating–some of these have made it into Chapter 7, however. One of those is the Oracle

Hotspot ASF port, and a more detailed evaluation of it.

Looking back at my undergraduate degree1 compared to what I know now after my PhD, I would

have liked to learn more about computer architecture in my undergraduate degree–I think with the cfaed

centre, the closer collaboration with the Faculty of Electrical Engineering, and a new chair for processor

design, this will improve for future students at TU Dresden. Similarly, while the VELOX project grouped

together many researchers from across the stack, in some cases it has only been during the write-up of

my work that I have come across and appreciated work that has been done concurrently in the project,

especially at BSC / UPC and Chalmers University. Getting young researchers to collaborate more closely

across geographic regions and across layers in the stack is a challenge, but will undoubtedly increase the

depth of understanding and education.

Another unfortunate aspect is that the VELOX website2 has been offline, and several of the toolchains

released through the VELOX project are not available publicly elsewhere, or hard to find3. Pushing open-

sourced projects to reliable open-source hosting providers, such as GitHub, bitbucket, or GitLab would

certainly keep code and its history available for future researchers, past the projects due date.

Finally, I personally underestimated the amount of effort, time, and mental focus required to condense

my research work into this thesis document. Alongside starting a new job (at Arm Research), moving

places to live (Dresden, Germany to Cambridge, UK), and buying a house, it has taken too much calendar

time to complete the write-up. Partially due to my arrangements as “external” researcher and largely

informal rules, writing up remained a low priority item on my to-do list. Some universities (I am now

1Diplom-Informatik (Masters in Computer Science) at TU Dresden
2http://velox-project.eu
3The DTMC compiler has been forked and extended at https://github.com/basicthinker/PTMC as the Persper Transactional

Memory Compiler.

http://velox-project.eu
https://github.com/basicthinker/PTMC
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collaborating with) enforce checkpoints with a periodic write-up (first year report largely consisting of

a state-of-the-art analysis, further reports adding research results incrementally)–essentially leaving the

final write-up to a research update and refinement pass. I would encourage thesis advisers at TU Dresden

Computer Science Faculty to consider such a regular model to support their PhD students.

8.4 Current State of the Eco-System

In the time I have been working on the topic of HTM (2007 to 2018), many aspects have changed.

The number of publications at computer architecture and related conferences investigating transactional

memory has reduced significantly, following the typical “hype curve” model. Several commercial imple-

mentations of HTM are now available, in all IBM architectures and the mainline performance Intel cores

(IBM BlueGene/Q, IBM zSeries, IBM Power 8, Intel Haswell, Intel Broadwell, Intel Skylake, Intel Kaby

Lake, Intel Coffee Lake); yet a significant fraction of those (Haswell, Broadwell, Skylake) had to be dis-

abled due to implementation bugs (“errata”). Especially Intel has been marketing their TSX implementa-

tion aggressively with significant performance improvements quoted for SAP and DPDK workloads [348],

and Intel-funded support for TSX in the glibc library [273, 317]. Production level compiler support in

GCC for transactional memory is available, partially as a result of the work undertaken in the VELOX

project.

Despite the (partial) availability of silicon and tool chains, there does not seem to be a great push

towards using TM in applications; most use-cases use HTM for some form of (semi-transparent) lock

elision. With a push to higher-level programming languages and abstractions, however, there may well

be a good chance for using TM more in language runtimes, and query execution engines.

Going forward, I think it is clear that TM is not a silver bullet, but instead a powerful tool in the

application programmer’s toolbox. With more stable market penetration of (functioning) hardware, I

would expect adoption to rise when application programmers want to unlock parallelism in their code

through optimistic concurrency control. While the benefit of blindly and transparently applying TM

and/or lock elision will be small, I strongly believe in the greater benefit of incremental return: changing

code in transactions / elided locks to be more transaction friendly (removing conflicting global counters,

removing system calls, looking after false conflicts) is not free, but produces instantly better performance.

Restructuring code to either use fine-grained locking or lock-free algorithms often carries a higher upfront

investment cost until performance improvements are seen, and furthermore, often complicates reasoning

about the correctness of the code significantly.

As for market penetration of HTM, there is work at the other two big CPU vendors, AMD and Arm,

on HTM; so a future where HTM is a standard feature of general purpose computing looks increasingly

likely.

On the other hand, two big, current trends are pushing against that: (1) share nothing software, and

(2) accelerators for future compute efficiency improvements. Looking at software, some solutions (Red-

dis vs memcached) use multiple processes on CMPs without sharing any memory between the different

instances; similarly, data parallel programming models, such as PGAS, define the problem of data sharing

between concurrent threads away through the programming language. In addition, thanks to further

slowing of compute per Watt improvements in general purpose CPUs, a significant amount of compu-

tation will not happen on general purpose CPUs anymore, but instead on accelerators (GPUs, neural

network accelerators). In those systems, the implementation of TM between general purpose CPUs and

accelerators seems unlikely; instead, data sharing and transfer will need to be more carefully managed

on a more coarse granularity.

Still, I believe there is room for flexible, easy to use optimistic concurrency control; especially in
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irregularly structured data sets, such as graphs, or sparse matrices, where static partitioning is impossible,

and data replication would carry a too high storage cost.

As mentioned before, academic interest in TM has reduced since the peak in 2010; yet there are

several recent publications on using and tuning applications on top of commercial HTM implementations,

and working around limitations of HTM through thin software abstractions on top. Several works have

suggested using transactional memory for non-coherent architectures, such as GPUs, and distributed

systems, or for their failure atomicity properties in persistent memory (NVM) use cases. Several topics

presented in Chapter 7 remain relevant and would benefit from additional evaluation and refinement.

For industry, once of the challenges that need solving (privately) is that of verifying that an HTM

implementation is indeed correct. The experience with three Intel generations of TSX failing suggests

that verification of the interactions and corner cases of HTM is not easy; my experience with my ASF

implementations agrees: there are many racy interactions between the various speculation and coherence

mechanisms that will not have an impact on single-location read-modify-write instructions, or the general

memory consistency model, but will cause a transaction to not provide atomicity or isolation in the rarest

circumstances.

But not just on the micro-architectural level, but also on the ISA, there seem to be many challenges

defining how HTM should behave, especially with topics such as performance counters, trace, mem-

ory translation, and debug. Furthermore, the exact behaviour of transactions in a non-sequentially-

consistent memory model, especially in weaker memory models such as IBM Power, or the presence of

non-transactional accesses in ASF make that challenging [287, 370].

8.5 Post-thesis work

After the closing of the AMD Dresden office at the end of 2012, I moved to TU Dresden briefly and worked

on three papers [274, 328, 337], and joined Arm Research in Cambridge, UK in August 2013. There,

I worked on the gem5 simulator [241], implementing a snoop filter / directory using the experience

gained in simulator code bases in general, and coherent memory systems in particular. I have worked on

memory consistency model related issues, and picked up new projects such as low-power design (per-core

DVFS, power modelling). At the time of writing, I am leading the Memory and Systems research group

and look after general memory system architecture, and am consulting on HTM work. In total, since

completing the bulk of HTM work, I have worked on the following publications: using turbo boosting for

accelerating critical sections [301, 328], tracing and acceleration of simulation [356, 368, 382], power

modelling [364, 375, 379], non-volatile memory [358, 371, 373], and future heterogeneous system

composition [378].

The work in this thesis and the guidance of my advisers, mentors, and colleagues taught me many

skills that are useful in my current role and will remain valuable throughout my life. First, this work has

taught me how to dig through terabytes of logfile to find the needle in the haystack and not be afraid

of drilling deep to find root causes for unexpected behaviour and bugs. Second, proposing a feature like

HTM and trying to implement it in a realistic substrate has made me appreciate the general complexities

and requirements of memory system design, and has given me a solid computer architecture and ISA

design background (mainly through osmosis). I have been exposed to memory consistency models and

their quirks, compilers, and generally a wide stack of software.

None of that would have been possible without this opportunity for work between industry and

academia, and those who have put in considerable trust in my abilities, patience in explaining con-

nections and backgrounds, and openness when discussing and improving wild ideas–many thanks!
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Chapter 1 Introduction

The Advanced Synchronization Facility (ASF) is an AMD64 extension to allow user- and system-
level code to modify a set of memory objects atomically without requiring expensive traditional 
synchronization mechanisms.

The ASF extension provides an inexpensive primitive from which higher-level synchronization 
mechanisms can be synthesized: for example, multi-word compare-and-exchange, load-locked-
store-conditional, lock-free data structures, lock-based data structures that do not suffer from 
priority inversion, and primitives for software-transactional memory.

ASF is both more flexible and less expensive than existing atomic memory modification 
primitives. Instead of offering new instructions with hardwired semantics (such as compare-and-
exchange for two independent memory locations), ASF only exposes a mechanism for atomically 
updating multiple independent memory locations and allows software to implement the intended 
synchronization semantics.

1.1 Overview

ASF works by allowing software to declare speculative regions that specify and modify a set of 
protected memory locations. Modifications made to protected memory become visible to other 
CPUs either all at once (when the speculative region finishes successfully) or never (if the 
speculative region is aborted).

Unlike traditional critical sections, ASF speculative regions do not require mutual exclusion. 
Multiple ASF speculative regions that may access the same memory locations can be active at the 
same time on different processors, allowing greater parallelism. When ASF detects conflicting 
accesses to protected memory, it aborts the speculative region and notifies software, which can 
retry the operation as desired.

ASF protects memory at cache-line granularity. Despite cache-line size being an implementation 
detail, software does not have to be concerned with cache lines and can instead work on the level 
of memory objects, as long as all of the following constraints are met, which are supported by all 
ASF-capable CPU implementations:

• ASF-protected memory objects have a size of up to 64 bytes and are naturally aligned. (All 
ASF-capable implementations have a cache-line size of at least 64 bytes.)

• The speculative region does not reference more than four objects (the architecturally 
guaranteed minimum; more may be supported on a model-specific basis).

• Memory objects protected using ASF do not share cache lines with memory objects that 
should not be so protected. (False sharing may lead to unwanted protection, exceptions, 
and unnecessary aborts.)

Chapter 1 Introduction 7
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1.1.1 ASF guarantees

In more detail, ASF guarantees forward progress for speculative regions, provided the following 
conditions hold:

• The speculative region does not exceed ASF's guaranteed capacity: up to four cacheable 
memory regions with a size and alignment of 64 bytes. (See Section 1.6 for details.)

• No interrupt or exception is delivered while executing the speculative region.
• There are no conflicting memory accesses from other CPUs.

If one of these conditions does not hold, the speculative region will be aborted (explained in more 
detail in Section 1.4).

1.1.2 ASF limitations

ASF has the following limitations:

• ASF supports only a limited form of nested speculative regions. (Refer to Section 1.5 for 
details.)

• ASF only operates on cacheable data and has a weakened memory-access-ordering model 
in certain respects. Memory ordering can be controlled as necessary via existing fence 
instructions. (Refer to Section 6.5 for details.)

1.2 Speculative region structure

ASF introduces a set of new instructions for denoting the beginning and end of a speculative 
region and for protecting memory objects. Additionally, ASF speculative regions first need to 
specify which memory objects should be protected using special declarator instructions.

Once a set of memory objects is protected, a speculative region can modify these memory objects 
speculatively. If a speculative region completes successfully, all such modifications become 
visible to all CPUs simultaneously and atomically. Otherwise, the modifications are discarded.

An ASF speculative region has the following structure:

1. The speculative region is entered with the SPECULATE instruction.
2. SPECULATE always writes an ASF status code of zero in rAX and sets the rFLAGS 

register accordingly. This status code distinguishes between the initial entry into a 
speculative region and an abort situation. SPECULATE also remembers the address of the 
instruction following the SPECULATE instruction as the landmark to which control is 
transferred on an abort.

3. SPECULATE is followed by instructions that check the status code and jump to an error 
handler if it is not zero (typically JNZ).

4. Declarator instructions (memory-load forms of LOCK MOVx, LOCK PREFETCH, and 
LOCK PREFETCHW instructions) are used to specify locations for atomic access – 
memory that ASF should protect. The MOV forms also perform the specified register load.

5. The speculative region (standard x86 instructions) is executed.

8 Introduction Chapter 1
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6. Once a memory location has been protected using a declarator, it can be read using regular 
x86 instructions. However, to modify protected memory locations, the speculative region 
uses memory-store forms of LOCK MOVx instructions. (It is an error to use regular 
memory-updating instructions for protected memory locations. Doing so results in a #GP 
exception.)

7. The COMMIT instruction denotes the end of the speculative region and causes the 
modifications to the protected lines to become visible to the rest of the system.

8. An ABORT instruction is available to programmatically terminate the speculative region 
with abort rather than commit semantics.

Note that the two declarators LOCK PREFETCH and LOCK PREFETCHW differ from non-
LOCK-prefixed prefetches in that they need to check the specified memory address for translation 
faults and memory-access permission and generate a page fault if unsuccessful. This behavior is 
necessary because ASF needs to establish a valid translation before it starts monitoring the 
protected memory location.

Example

The following example code implements compare-and-exchange on two independent memory 
locations using ASF (dubbed “DCAS” for “double compare-and-swap”). (This code uses 
immediate retry as the recovery strategy. A real implementation might have a more elaborate 
recovery strategy, for example, exponential backoff.)

; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX))
; {
;   mem1 = RDI
;   mem2 = RSI
;   RCX = 0
; }
; ELSE
; {
;   RAX = mem1
;   RBX = mem2
;   RCX = 1
; }
; (R8, R9 modified)
;
DCAS:

MOV      R8, RAX
MOV      R9, RBX

retry:
SPECULATE                    ; Speculative region begins
JNZ      retry               ; Page fault, interrupt, or contention
MOV      RCX, 1              ; Default result, overwritten on success
LOCK MOV RAX, [mem1]         ; Specification begins
LOCK MOV RBX, [mem2]
CMP      R8, RAX             ; DCAS semantics
JNZ      out
CMP      R9, RBX
JNZ      out
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LOCK MOV [mem1], RDI         ; Update protected memory
LOCK MOV [mem2], RSI
XOR      RCX, RCX            ; Success indication

out:
COMMIT                       ; End of speculative region

1.3 Unprotected memory

ASF only protects memory lines that have been specified using declarator instructions. All other 
memory remains unprotected and can be modified inside a speculative region using standard x86 
instructions. These modifications retain their standard behavior, that is, they become visible to 
other CPUs immediately and in program order.

1.4 Speculative region aborts

Speculative regions can be aborted at any point because of contention, far control transfers 
(including those caused by interrupts and faults), or software aborts.

Speculative-region aborts discard modifications to the contents of the protected lines, causing 
them to be unobservable by other CPUs. However, ASF does not roll back modifications to 
unprotected memory. Software must be written to accommodate these modifications. In many 
cases this will simply be a matter of reentering the initialization sequence leading up to the 
speculative region.

Aborts do not roll back register state (except for the instruction and stack pointers, as described 
later in this section). Software must be written to handle or ignore modified register contents in 
case of an abort, or it must avoid modifying them in the speculative regions.

Before an interrupt or exception handler returns, operating-system code or other processes may 
have executed in the interim. This is of no consequence for the interrupted software as no ASF-
related state is maintained across context switches. Other processes may even have executed ASF 
speculative regions that inspected or modified any of the locations targeted by the interrupted 
speculative region. The interrupted software will have its speculative region aborted and simply 
needs to re-inspect the state of the shared data structure as it attempts its speculative region again.

ASF is unusual in that SPECULATE has rollback semantics (much like C's setjmp interface): 
Speculative-region aborts reset the instruction and stack pointers to the values they had after 
SPECULATE was first executed. The rAX register is also written with a nonzero status code that 
provides details of the abort condition, and rFLAGS is set accordingly. The subsequent 
instructions can inspect the status code or rFLAGS register and direct the control flow (via a 
conditional jump) to the error handler.
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1.5 Nested speculative regions

ASF supports composing a speculative region out of pseudo-nested speculative regions by 
flattening a hierarchy of SPECULATE-COMMIT pairs into just one speculative region. All 
pseudo-nested speculative regions share ASF's resources; nested COMMIT instructions do not 
release any protected lines. For nesting to work, all memory that is protected in the outermost 
SPECULATE-COMMIT pair plus all nested SPECULATE-COMMIT pairs must fit within ASF's 
limits for protected lines.

Because of the flattening, memory locations protected in a nested speculative region remain 
protected in outer speculative regions. Therefore, outer speculative regions need to use LOCK 
MOV for updating memory locations protected by an inner speculative region. (Use of regular 
memory-update instructions for protected lines results in a #GP exception.)

To detect nesting, ASF maintains an internal nesting count that is incremented by SPECULATE 
and decremented by COMMIT. A nested SPECULATE does not define a new checkpoint for 
rollback. Instead, aborts always roll back to the first SPECULATE that started the speculative 
region.

1.6 Capacity

A given ASF implementation will have certain capacity constraints caused by hardware 
limitations, such as the number of locations that can be simultaneously monitored for contention, 
or the number of stores that can be handled speculatively. There are two aspects to this: a 
minimum guaranteed capacity, and a larger reference-pattern dependent capacity.

A speculative region is guaranteed to complete, in the absence of disturbances such as faults, 
interrupts, or contention, as long as the number of protected locations does not exceed the 
minimum guaranteed capacity, regardless of where in the cacheable address space those locations 
are. An implementation may also provide a capacity beyond the minimum that can vary depending 
on which locations are referenced.

For example, an implementation may require that all protected locations simultaneously reside in 
the data cache for the duration of the speculative region, and if a protected line is displaced from 
the cache because of replacement, the speculative region is aborted. Hence, a speculative region 
that happened to reference N+1 locations that all mapped to the same index in an N-way 
associative data cache would never be able to complete. In this case, the minimum guaranteed 
capacity would be determined by the cache’s associativity.

For more random reference patterns, a speculative region could however reference many locations 
before the associativity at any one cache index is exceeded and a protected line is displaced, and 
hence could often operate successfully on a much larger data set than the guaranteed minimum. 
However, there would be no guarantee for any given set of references that it would not hit a 
hardware limitation. In such a scenario, software must provide an alternate means for completing 
the intended operation in case the ASF hardware cannot handle it – for example employing a 
global lock (see Section -Lock for a specific example). ASF provides an indication to software of 
when such a limitation has been hit, distinguishing it from transient conditions which might not be 
encountered on a retry. (Refer to Section 6.1 for details.)
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Implementations may use monitoring and store buffering mechanisms which are not tied to cache 
associativity. In any event, all ASF implementations architecturally guarantee a minimum capacity 
of four cache lines. The actual minimum of a given implementation (which may be higher) is 
reported by CPUID.

For some use cases, the odds that a speculative region with a larger number of reads will succeed 
can be increased through the use of RELEASE instructions, which remove designated cache lines 
from the monitored set, lowering the chances of hitting a hardware capacity limit. This could be 
applicable in such cases as walking a long linked list, where each successive element can be 
dropped once it has been traversed without being modified.
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Chapter 2 Terminology

(Terms set in italics are defined in a separate glossary entry.)

ABORT

Instruction that voluntarily aborts a speculative region. See also Abort and Section 5.5.

Abort

A condition that causes a speculative region to fail. Different abort conditions are 
distinguished by an abort status code written to rAX when the abort is signaled. In case of an 
abort, the contents of protected lines and the instruction and stack pointers are rolled back to 
the values they had when SPECULATE was executed. Aborts in nested speculative regions 
roll back to the SPECULATE instruction that started the outermost speculative region.

ASF configuration MSR

A model-specific register (MSR) configuring ASF.

Cache line

Aside from their use to reduce memory-access latencies, ASF uses the cache-coherency 
protocol for detecting contention. Therefore, the granularity for ASF memory protection is 
the size of a cache line.

See also memory line.

COMMIT

Instruction that denotes the end of a speculative region. See Section 5.4.

Contention

Conflicting memory accesses that usually cause a speculative region to abort. See Section 
6.2.

CPU

In this specification, the term “CPU” refers to one logical CPU (one hardware thread 
executing x86 instructions), irrespective of how these logical CPUs are packaged. (Its use is 
synonymous to terms like “CPU core” and “x86 thread,” which are not used in this 
specification.)

Declarator

Chapter 2 Terminology 13
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Instruction that declares a location for atomic access (protected lines) during a speculative  
region: LOCK MOVx (load), LOCK PREFETCH, and LOCK PREFETCHW. See Section 
5.2.

Far control transfer

A (voluntary or involuntary) control-flow diversion to another privilege level or another 
code segment. Far control transfers include far-call, far-jump, far-ret, and interrupts. See 
Section 6.4.

Imprecise exception

Exceptions occurring in a speculative region cause an abort, rolling back execution flow to 
the instruction following SPECULATE before the exception handler is called. Consequently, 
the instruction and stack pointers reported to the exception handler do not correspond to the 
fault site, making the exception imprecise. See Section 6.4.1.1.

Memory line

A region of physical memory that has the same size and alignment as a cache line.

Protected line

A memory line that is protected during a speculative region. ASF maintains atomicity of 
updates to all protected lines as long as no other CPU contends for it (see contention). 
Otherwise, the speculative region is aborted.

RELEASE

Instruction that allows ASF to release one protected line before the end of a speculative  
region. Protected lines that have been modified cannot be released.

SPECULATE

Instruction that starts an ASF speculative region. In case the speculative region is aborted, 
the instruction and stack pointer are rolled back to the post-SPECULATE instruction values, 
and modifications to protected lines are discarded.

Speculative region

An ASF speculative region starts with the execution of the SPECULATE instruction and 
ends either when the COMMIT instruction is executed or when the speculative region is 
aborted.

Transactional store

Instructions that write to protected lines, in particular, memory-store variants of LOCK 
MOVx. No other instructions are allowed to write to protected lines. See Section 5.3.
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Chapter 3 CPUID identification

To determine whether ASF is present and which capabilities it has, use the CPUID instruction.

3.1 Detecting ASF presence and capabilities

CPUID <= EAX = TBD

Return: ASF capabilities, according to the following table:

Register Bits Meaning

EDX 31:1 Reserved.

EDX 0 ASF: Set to 1 if the CPU supports ASF.

EBX 31:16 Reserved.

EBX 15:0 ASFCapacity: ASF capacity. The minimum number of different protected lines in an 
ASF speculative region that this implementation supports. If ASF is present, this value is 
always greater than or equal to 4.

Note that an ASF implementation might support more than the number of protected lines 
reported by ASFCapacity under certain conditions; see Section 1.6.

3.2 Detecting the cache-line size

CPUID <= EAX = 0000_0001h

Return: Various information (refer to the CPUID specification for details). Includes:

Register Bits Meaning

EBX 15:8 CLFlush: Cache-line size. Specifies the size of a cache line in quadwords. (A quadword 
has a size of eight bytes.) AMD64 implementations supporting ASF always have a cache-
line size of at least 8 quadwords (64 bytes).
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Chapter 4 Model-specific registers

4.1 ASF configuration MSR

MSR TBD – ASF_CFG

ASF configuration MSR

This MSR defines ASF's current operating mode.

Bits Meaning

63:1 Reserved – MBZ

0 ASFFault: Fault when ASF capacity is exceeded. When this bit it set to 1, declarators generate a 
#GP(0) fault when software attempts to protect more lines than supported by ASF. Otherwise, the 
#GP is suppressed. Instead, the speculative region is aborted and the abort status code is set to 
ASF_CAPACITY.

This MSR is read–write. Its reset value is 0.

4.2 ASF exception IP MSR

MSR TBD – ASF_EXCEPTION_IP

ASF exception IP MSR

In the case of an exception in a speculative region that causes an abort, ASF saves the rIP of the 
original fault or trap site in this MSR before aborting the speculative region. (This rIP value is the 
one that would have been put in the exception frame if the rollback had not happened.) The rIP 
actually reported in the exception frame is the address of the instruction following the initial 
SPECULATE instruction due to the rollback.

A bit on the exception handler's stack frame indicates whether the ASF_EXCEPTION_IP MSR 
contains a valid value. Refer to Section 6.4.1.1 for details.

Bits Meaning

63:0 ExceptionIP: rIP at which an exception or fault occurred before the speculative region was aborted.
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This MSR is read-only.

4.3 Debug-control MSR

MSR 0000_01D9 – DebugCtlMSR

The following bit is added to this MSR:

Bits Meaning

TBD DebugAbort: If set to 1, #DB debug traps abort speculative regions. Otherwise, ASF speculative 
regions act as an interrupt shadow for debug traps: #DB traps in ASF speculative regions are 
deferred until after the speculative region has ended. Read-write. Defaults to 0.
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Chapter 5 Instructions

This section describes the instructions added to the AMD64 architecture to support ASF. All of 
these instructions raise #UD if ASF is not implemented or if bit 0 of the ASF_CFG MSR is 0.

5.1 SPECULATE

5.1.1 Instruction

Mnemonic

SPECULATE

Opcode

TBD

5.1.2 Description

SPECULATE starts an ASF speculative region.

The exact operation of SPECULATE differs depending on whether it is the initial SPECULATE 
of a top-level speculative region or a nested SPECULATE.

The initial instance of SPECULATE records the (partial) checkpoint to which execution returns if 
the speculative region is aborted. The checkpoint consists of the values the instruction and stack 
pointers will have after SPECULATE has completed execution (hence on an abort, control 
transfers to whatever instruction follows SPECULATE). SPECULATE also clears the rAX 
register, sets rFLAGS accordingly, and sets the nesting level (an internal processor state variable) 
to 1.

If an instance of SPECULATE is encountered within an ASF speculative region, it does not 
checkpoint the instruction and stack pointers but it does clear rAX and set rFLAGS. It also 
increments the nesting level. An ASF abort will transfer control to the checkpoint recorded by the 
initial instance of SPECULATE.

The maximum nesting level is 256. If this level is exceeded, SPECULATE raises #GP(0).
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5.1.3 Operation

IF (NEST_LEVEL = 256)
{
  EXCEPTION [#GP(0)]
}
rAX = 0
NEST_LEVEL += 1
IF (NEST_LEVEL = 1)
{
  SAVED_rSP = rSP
  SAVED_rIP = rIP of next instruction
}

5.1.4 Flags affected

SF, ZF, AF, PF, CF set according to result in rAX. OF is set to 0.

5.2 LOCK MOVx (load), PREFETCH, and 
PREFETCHW

5.2.1 Instruction

Mnemonic

LOCK MOV reg,mem

Opcodes

F0 8A/r, F0 8B/r, F0 A0, F0 A1

Mnemonic

LOCK MOV{D,DQA,DQU,Q} xmm,mem

Opcodes

F0 66 0F 6E/r, F0 66 0F 6F/r, F0 F3 0F 6F/r, F0 F3 0F 7E/r

Mnemonic

LOCK PREFETCH mem

Opcode
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F0 0F 0D/0

Mnemonic

LOCK PREFETCHW mem

Opcode

F0 0F 0D/1

5.2.2 Description

These memory-reference instructions, called declarators, are used to specify locations for which 
atomic access is desired.

Declarators work like their counterparts without the LOCK prefix, with the following additional 
operation:

Each declarator adds the memory line containing the first byte of the referenced memory object to 
the set of protected lines. Software must ensure that unaligned memory accesses do not span both 
protected and unprotected lines; otherwise, the atomicity of data accesses to these memory objects 
is not guaranteed.

Unlike prefetches without a LOCK prefix, LOCK PREFETCH and LOCK PREFETCHW also 
check the specified memory address for translation faults and memory-access permission (read or 
write, respectively) and, if unsuccessful, generate a page-fault or general-protection exception as 
appropriate. Also, LOCK PREFETCH and LOCK PREFETCHW generate a #DB exception when 
they reference a memory address for which a data breakpoint has been configured.

A declarator referencing a line that has already been protected is permitted and behaves like a 
regular memory reference. It does not change the protected status of the line.

Once a memory line has been protected using a declarator, it can be modified speculatively (but 
cannot be modified nonspeculatively) within the speculative region. See Section 5.3 for 
instructions that can update protected lines, and Section 6.5 for memory access ordering rules.

If the number of declarators issued in the current speculative region exceeds ASF's maximum 
supported capacity, the behavior depends on the setting of MSR ASF_CFG[ASFFault]. If that bit 
is set to 1, a #GP(0) is generated. Otherwise, the #GP is suppressed. Instead, the speculative region 
is aborted and the abort status code is set to ASF_CAPACITY.

Declarators are not allowed outside of speculative regions and result in #UD in this case.

LOCK MOVx from memory with a caching type other than WB (writeback) is not supported by 
ASF and results in #GP(0).

LOCK MOVD into MMX registers is not supported and results in #UD.

(#GP and #UD, like all interrupts, also abort the speculative region. See Section 6.4.)
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5.2.3 Operation

IF (CPU not in speculative region)
{
  EXCEPTION [#UD]
}
IF (instruction = LOCK PREFETCHW)
{
  translate memory address and check for write permission
    // Generates #GP or #PF if necessary
}
ELSE
{
  translate memory address and check for read permission
    // Generates #GP or #PF if necessary
}
IF (line already protected)
{
  perform conventional memory reference operation
  EXIT
}
IF (address refers to non-WB memory type)
{
  EXCEPTION [#GP(0)]
}
IF (ASF capacity overflow)
{
  IF (ASF_CFG[ASFFault])
  {
    EXCEPTION [#GP(0)]
  }
  ELSE
  {
    abort speculative region (ASF_CAPACITY, 1, 0) // See Section 6.1
    EXIT
  }
}
execute memory reference and handle contention // See Section 6.2
add line to set of protected lines

5.2.4 Flags affected

None.
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5.3 LOCK MOVx (store)

5.3.1 Instruction

Mnemonic

LOCK MOV mem,reg/imm

Opcodes

F0 88/r, F0 89/r, F0 A2, F0 A3, F0 C6/0i, F0 C7/0i

Mnemonic

LOCK MOV{D,DQA,DQU,Q} mem,xmm

Opcodes

F0 66 0F 7E/r, F0 66 0F 7F/r, F0 F3 0F 7F/r, F0 66 0F D6/r

5.3.2 Description

These memory-store instructions are used to store data into protected lines. The lines must already 
have been protected by a declarator instruction (see Section 5.2); if not, these store instructions 
result in #GP(0).

Updates to protected lines do not become visible to other CPUs until the COMMIT instruction is 
executed. If the speculative region is aborted, these updates will be discarded and cannot be 
observed from other CPUs.

There are no other instructions to store data into protected lines. Attempting to modify protected 
lines using regular move instructions or other memory-updating instructions results in #GP(0).

LOCK MOVx store instructions are not allowed outside of speculative regions and result in #UD 
in this case.

Software must ensure that unaligned memory accesses resulting from LOCK MOVx store 
instructions do not span both protected and unprotected lines; otherwise, #GP(0) is generated.

LOCK MOVD from MMX registers is not supported and results in #UD.

(#GP and #UD, like all interrupts, also abort the speculative region. See Section 6.4.)

5.3.3 Operation

IF (CPU not in speculative region)
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{
  EXCEPTION [#UD]
}
translate memory address and check for write permission
  // Generates #PF if necessary
IF (access spanning protected and unprotected line
    || ! line already protected)
{
  EXCEPTION [#GP(0)]
}
execute memory reference and handle contention // See Section 6.2

5.3.4 Flags affected

None.

5.4 COMMIT

5.4.1 Instruction

Mnemonic

COMMIT

Opcode

TBD

5.4.2 Description

Denotes end of an ASF speculative region.

When the COMMIT belongs to a pseudo-nested speculative region (a nested SPECULATE-
COMMIT pair), COMMIT decrements the nesting count and exits without releasing any protected 
lines.

When COMMIT ends a speculative region (nest count is equal to 1), this instruction releases all 
protected lines. Modified protected lines will be committed and made visible to other CPUs.

COMMIT sets the rAX register to zero and sets rFLAGS according to the value in rAX. (Future 
enhancements to ASF may result in COMMIT setting rAX to a value other than zero.)
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When encountered outside of a speculative region, the COMMIT instruction raises #GP(0).

5.4.3 Operation

IF (CPU not in speculative region)  // NEST_LEVEL = 0
{
  EXCEPTION [#GP(0)]
}
rAX = 0
NEST_LEVEL -= 1
IF (NEST_LEVEL = 0)
{
  commit protected lines
  release protected lines
  end speculative region
}

5.4.4 Flags affected

SF, ZF, AF, PF, CF set according to result in rAX. OF is set to 0.

5.5 ABORT

5.5.1 Instruction

Mnemonic

ABORT

Opcode

TBD

5.5.2 Description

Aborts an ASF speculative region.
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In a speculative region, ABORT discards modifications to previously protected lines and releases 
all protected lines. The contents of the AX register are copied into the SoftwareAbort field of the 
abort code in rAX. The abort status-code field will be set to ASF_ABORT.

Refer to Section 6.1 for a further description of abort behavior.

When encountered outside an ASF speculative region, the ABORT instruction generates #GP(0).

5.5.3 Operation

IF (CPU not in speculative region)
{
  EXCEPTION [#GP(0)]
}
abort speculative region (ASF_ABORT, 0, AX) // See Section 6.1

5.5.4 Flags affected

None.

5.6 RELEASE

5.6.1 Instruction

Mnemonic

RELEASE mem

Opcode

TBD

5.6.2 Description

The RELEASE instruction is a hint that allows ASF to remove an unmodified protected line 
(referenced by the specified memory address) from a speculative region's set of protected lines.

RELEASE can be used to circumvent ASF's capacity limitations when traversing potentially long 
chains of pointers. However, as the instruction does not guarantee that the specified protected line 
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will actually be released, software must be designed to fall back to a different code path when the 
capacity limit is reached.

RELEASE never releases protected lines that have been modified within the speculative region. 
The circumstances under which RELEASE releases unmodified protected lines are 
implementation specific.

If RELEASE does release a protected line, then another CPU accessing data contained in that 
memory line will no longer cause ASF contention. Otherwise, ASF continues to monitor the 
protected line for contention.

RELEASE does not consider the number of declarators that were used to protect the memory line. 
In other words, a protected line might be released even if it was specified using more than one 
declarator.

When attempting to release a line that is not in the current set of protected lines, the instruction is a 
no-op.

When encountered outside an ASF speculative region, the instruction generates #GP(0).

5.6.3 Operation

IF (CPU not in speculative region)
{
  EXCEPTION [#GP(0)]
}
IF (referenced line not in set of protected lines)
{
  EXIT
}
IF (referenced line has not been modified in speculative region)
{
  IF (implementation-specific conditions)
  {
    release referenced line
  }
}

5.6.4 Flags affected

None.
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Chapter 6 Operation in ASF speculative 
regions

6.1 Aborts

6.1.1 Description

ASF automatically aborts a speculative region when one of the following conditions occurs:

• Contention for memory that is included in the set of protected lines (see Section 6.2)
• A condition that results in a far control transfer (see Section 6.4)
• Explicit abort (by executing ABORT)
• Other implementation-specific conditions

Aborts discard any modifications to currently locked cache lines and release all protected cache 
lines. Conditions that cause an abort also set the abort status code to a nonzero value. This code is 
passed to software in the rAX register, and rFLAGS is set accordingly, when the abort is signaled.

ASF signals aborts by rolling back rSP and rIP to the instruction following the SPECULATE 
instruction that initiated the speculative region. The conditional jump following SPECULATE can 
then jump to a recovery routine.

The other registers (general-purpose registers, floating-point registers, XMM registers) are not 
restored during a roll back. The only way software can rely on the contents of a register after a roll 
back is by not modifying it in the speculative region. Otherwise, software must be written to 
ignore, in the case of an abort, the contents of any registers the speculative region might have 
modified.

When an abort is signaled, the rAX register is always nonzero and has the following layout:

Bits Meaning

63:32 (In 64-bit mode:) Set to zero

31:16 SoftwareAbort: 16-bit value passed to the ABORT instruction. Zero if no ABORT instruction was 
encountered.

15:8 NestLevel: Nesting level in which the abort occurred (equivalent to ASF's nesting count minus 1). 
Zero if the aborted speculative region has not been nested.

7 HardError: If set to 0, the speculative region has been aborted because of a transient error (such as 
contention) and can be retried. If set to 1, a hard error (such as a capacity overrun) has been 
detected, requiring a different recovery method.
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6:0 StatusCode: The reason for the abort. See following table.

The StatusCode and HardError fields have the following meaning:

Status code
Hard 
error

Meaning

0 0 Success (no abort)

ASF_CONTENTION 0 Speculative region was aborted because of contention.

ASF_ABORT 0 Speculative region aborted using ABORT instruction.

ASF_FAR 0 Speculative region aborted by an exception or an interrupt.

ASF_DISALLOWED_
OP

1 Speculative region aborted because of a disallowed instruction. (This 
status code indicates a programming error.)

ASF_CAPACITY 1 ASF capacity exceeded. The number of declarators exceeded the 
hardware's capacity for handling them atomically.

Other value 0 Spurious error

Other value 1 Hard error

“ASF_CONTENTION”, “ASF_ABORT”, and so on, are symbolic constants that will be defined in 
a later revision of this document.

Note that it is possible for interrupt handlers to modify the abort status code in rAX when they 
detect that an ASF speculative region has been aborted (through the Imprecise bit in the rFLAGS 
image on the stack or in the VMCB; see Section 6.4.1.1). For example, interrupt handlers can 
convey additional information in the SoftwareAbort field according to a software convention, and 
exception handlers can set the HardError flag if necessary.

6.1.2 Operation

abort speculative region (status_code, hard_error, software_code):
STATUS_CODE = (status_code
               | (hard_error << 7)
               | ((NEST_LEVEL - 1) << 8)
               | ((software_code & FFFFh) << 16))
undo modifications to protected lines
release protected lines
NEST_LEVEL = 0
rSP = SAVED_rSP
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rIP = SAVED_rIP
rAX = STATUS_CODE
set EFLAGS.{SF,ZF,AF,PF,CF,OF} according to rAX

6.2 Contention

6.2.1 Description

Contention is interference that other CPUs cause when they access memory that has previously 
been protected. ASF aborts speculative regions under certain types of contention.

The following table summarizes how ASF handles contention in the case where CPU A performs 
an operation while CPU B is in a speculative region with the line protected by ASF:

CPU A mode CPU A operation CPU B cache-line state

Protected Shared Protected Owned *

Speculative region LOCK MOVx (load) OK B aborts

Speculative region LOCK MOVx (store) B aborts B aborts

Speculative region LOCK PREFETCH OK B aborts

Speculative region LOCK PREFETCHW B aborts B aborts

Speculative region COMMIT OK OK

Any Read operation OK B aborts

Any Write operation B aborts B aborts

Any Prefetch operation OK B aborts

Any PREFETCHW B aborts B aborts

“Owned *” – Modified or owned
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6.2.2 Operation

Memory references:

// "CPU A" refers to the current CPU executing the memory reference;
// "CPU B" refers to another CPU
IF (memory reference contends with CPU B's ASF speculative region)
{
  CPU B -> abort speculative region (ASF_CONTENTION, 0, 0) // See 

Section 6.1
}
execute memory reference

6.3 Disallowed instructions

Privileged instructions (those that must be executed at CPL = 0), instructions that cause a far 
control transfer or an exception, and all instructions that can be intercepted by an SVM hypervisor 
are not allowed in an ASF speculative region. This includes:

• FAR JMP, FAR CALL, FAR RET
• SYSCALL, SYSRET, SYSENTER, SYSEXIT
• INT, INT1, INT3, INTO, IRET, RSM
• BOUND, UD2
• PUSHF, POPF, PAUSE, HLT, CPUID, MONITOR, MWAIT, RDTSC, RDTSCP, 

RDPMC
• IN, OUT
• SIDT, SLDT, SGDT, STR, SMSW
• All privileged instructions
• All SVM instructions

Attempting to execute these instructions causes an #GP fault, which will be handled as a far 
control transfer (as described in the next section).

6.4 Far control transfers

6.4.1 Description

All far control transfers lead to an abort of the ASF speculative region. Far control transfers 
include traps, faults, exceptions, NMIs, SMIs, unmasked interrupts, and disallowed instructions 
converted into an exception (see previous section).
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Instructions that directly or indirectly cause a far control transfer, described in Section 6.3, are not 
allowed inside ASF speculative regions and will generate a #GP exception.

After aborting the speculative region, discarding any modified protected lines, and rolling back rIP 
and rSP, ASF changes the abort status code to ASF_FAR and then executes the far control transfer. 
Upon return from the far control transfer (or the fault handler invoked by the #GP caused by a 
disallowed instruction), the conditional jump following SPECULATE can jump to a recovery 
routine.

6.4.1.1 Imprecise exception reporting

Exceptions, like all other far control transfers, cause ASF speculative regions to be aborted. 
Therefore, the rIP of the interrupted program that is pushed to the exception-handler stack does not 
correspond to the instruction that caused the fault or trap (unless a fault occurred at the first 
instruction after SPECULATE). For this reason, exceptions occurring while an ASF speculative 
region was active are called imprecise exceptions.

ASF saves the rIP of the original fault or trap site in the ASF_EXCEPTION_IP MSR.

To signal that an imprecise exception has occurred, ASF uses a flag (Imprecise) in the rFLAGS 
register image in the exception-handler stack frame or, in case the exception was intercepted, in 
the VMCB.RFLAGS state-save-area field. The Imprecise flag bit in the rFLAGS register cannot 
be set (it always reads as zero). Instructions that read rFLAGS from memory (such as IRET, 
POPF, and VMRUN) mask out the Imprecise bit when restoring the rFLAGS register. VMRUN 
uses VMCB.RFLAGS[Imprecise] only when injecting an exception or interrupt into a virtual 
machine: If the bit is set, the injected event will be marked as imprecise.

Specifically, the rFLAGS image on the exception-handler stack and VMCB.RFLAGS are 
extended as follows:

Bit Meaning

31 Imprecise: When this bit is set, the exception has aborted an ASF speculative region, and the rIP 
pushed to the stack or saved to the VMCB may not correspond to the fault site. ASF sets this bit when 
rolling back an aborted speculative region; in that case, the rIP points to the instruction following the 
SPECULATE instruction. The ASF_EXCEPTION_IP MSR reports the original fault or trap site.

This bit is not available to interrupt handlers invoked through a 16-bit interrupt or trap gate.

The ASF_EXCEPTION_IP MSR will be overwritten every time an imprecise exception occurs. 
To fully support ASF applications, operating systems should read this value as soon as possible 
and pass it on to user-level exception handlers.
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6.4.1.2 Debug traps

When MSR DebugCtlMSR[DebugAbort] is cleared to 0, debug traps (#DB, caused by hardware 
breakpoints or single stepping) are deferred until the speculative region ends. Otherwise, they 
behave like the other far control transfers and abort the speculative region. (Please note that debug 
traps that abort a speculative region are signaled as imprecise exceptions – see previous 
subsection.)

In case of a debug trap, the debug-status register (DR6) reflects the conditions valid when the 
configured breakpoint was hit. If the #DB exception is deferred, DR6 reflects the condition 
immediately and is not protected from being overwritten before the exception is delivered. In 
addition, DR6 can accumulate additional breakpoint information throughout the rest of the 
speculative region.

6.4.1.3 Page faults

In case of page faults, CR2 (page-fault linear address) contains the actual page-fault address 
before the rollback.

6.4.2 Operation

IF (far control transfer because of a disallowed instruction)
{
  tmp_hard_error = 1
  tmp_status_code = ASF_DISALLOWED_OP
}
ELSE
{
  tmp_hard_error = 0
  tmp_status_code = ASF_FAR
}
IF (CPU in speculative region)
{
  tmp_rIP = rIP
  abort speculative region (tmp_status_code, tmp_hard_error, 0) // See 

Section 6.1
  IF (far control transfer = exception)
  {
    MSR ASF_EXCEPTION_IP = tmp_RIP
    if (exception intercepted)
    {
      VMCB.RFLAGS |= 2^31
    }
    ELSE
    {
      rFLAGS stack-image value |= 2^31
    }
  }

34 Operation in ASF speculative regions Chapter 6

259



Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

}
execute far control transfer

6.5 Memory access ordering

ASF speculative regions have a different memory access ordering model in that modifications to 
protected lines cannot be observed from other CPUs until successful completion of a COMMIT 
instruction, at which point they become visible at once.

While writes to memory locations in unprotected lines become visible in program order, the total 
order of memory accesses in both protected and unprotected lines after COMMIT or RELEASE 
(observed from another CPU) is implementation specific. If a stronger ordering model is desired, 
software needs to insert LFENCE, SFENCE, and MFENCE instructions. For example, if all 
unprotected memory writes should become visible before all protected ones, software can use 
SFENCE immediately before COMMIT.

For all other memory modifications, the standard ordering rules apply. In particular, writes 
occurring before SPECULATE always become visible before all writes in the speculative region – 
both protected and unprotected ones (not considering incompatible caching types).

Example

Consider the following program:

MOV      [mem1], 0
SPECULATE
JNZ      error
LOCK MOV RAX, [mem3]
MOV      [mem2], 0
LOCK MOV [mem3], 0
MOV      [mem4], 0
COMMIT
MOV      [mem5], 0

This program can expose any of the following memory write orders (assuming the speculative 
region is not aborted):

1. mem1, mem2, mem3, mem4, mem5
2. mem1, mem2, mem4, mem3, mem5

Inserting SFENCE just before COMMIT forces the order to be the second one.

Even though writes to protected memory are held pending and do not become visible to other 
CPUs before COMMIT, all writes (to protected or unprotected memory) appear to be in program 
order on the executing CPU.
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Conventional LOCK-prefixed instructions (such as LOCK CMPXCHG; or XCHG, which has 
implicit LOCK semantics) have unchanged behavior, including fencing semantics. However, note 
that it is not possible to use conventional LOCK-prefixed instructions to manipulate ASF-
protected memory (only LOCK MOV store instructions can be used to update protected memory).

6.6 Updating Accessed and Dirty bits in page-table entries

When executing an ASF speculative region, the CPU updates the Accessed and Dirty bits of the 
referenced page-table entries as it would if no speculative region were active. Speculative 
modifications to protected memory locations thus leads to a set Dirty bit even if the modifications 
are later discarded because of an abort.

The behavior caused by protecting memory lines (using declarator instructions) containing active 
page tables (memory lines accessed and updated by the CPU's page-table walker) is undefined.
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Chapter 7 ASF usage models

ASF provides considerable flexibility in the construction of synchronization methods. Some basic 
usage examples are provided here for illustration.

7.1 Lock-free synchronization primitives

7.1.1 Double-word compare and swap

Double compare-and-swap (DCAS) is a primitive that allows atomic manipulation of pointer-
based data structures such as doubly linked lists, queues, and trees.

Unlike the example in Section 1.2, this version of DCAS does not implicitly retry in case of 
contention or aborts, but leaves the retry (and the backoff) to application code. (Also, in that case 
it does not return the current memory values.)

; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX))
; {
;   mem1 = RDI
;   mem2 = RSI
;   RCX = 0
; }
; ELSE
; {
;   RCX = 1
; }
; (RAX, RBX, R8, R9 modified)
;
DCAS:

MOV      R8, RAX
MOV      R9, RBX
MOV      RCX, 1
SPECULATE                    ; speculative region begins
JNZ      fail                ; Bail out if rolled back
LOCK MOV RAX, [mem1]         ; Specification begins
LOCK MOV RBX, [mem2]
CMP      R8, RAX             ; DCAS semantics
JNZ      out
CMP      R9, RBX
JNZ      out
LOCK MOV [mem1], RDI         ; Update protected memory
LOCK MOV [mem2], RSI
XOR      RCX, RCX
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out:
COMMIT                       ; End of speculative region

fail:

7.1.2 Load locked, store conditional

Load locked (LL) and store conditional (SC) are a pair of primitives that allow a store to occur 
only if a previously loaded memory operand has not been changed.

Typical LL and SC instructions cannot directly be translated to ASF because ASF always rolls 
back program flow to a point before the first memory reference. However, programs using LL and 
SC can be expressed using ASF as follows:

SPECULATE                    ; LL/SC section begins
JNZ      ll_sc_failed
LOCK MOV RAX, [mem]
...

 ; compute new value for mem in RAX
...
LOCK MOV [mem], RAX
COMMIT                       ; End of speculative region
...

; Error handling
ll_sc_failed:

...

In addition to traditional LL/SC semantics, ASF also supports pipelined LL/SC sequences:

SPECULATE                    ; LL/SC section begins
JNZ      ll_sc_failed
LOCK MOV RAX, [mem1]
LOCK MOV RBX, [mem2]
LOCK MOV RCX, [mem3]
...
LOCK MOV [mem1], RAX
LOCK MOV [mem2], RBX
LOCK MOV [mem3], RCX
COMMIT                       ; End of speculative region
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7.2 Lock-free data structures

ASF can be used to construct large speculative regions for manipulating lock-free data structures 
for which simple primitives such as DCAS are not sufficient or not convenient.

7.2.1 LIFO list manipulation

Lock-free LIFO lists are common linked-list structures where elements can be added or removed 
at the front of the list by manipulating a list header structure with a single compare-and-exchange 
instruction, such as CMPXCHG8B. One typical use of such structures is for maintaining a pool of 
buffers, where a buffer can be popped off the list as needed, and pushed back on when done with. 
The compare-and-exchange manipulation of the header structure allows the list to be manipulated 
simultaneously by competing threads without needing a global lock to provide mutually-exclusive 
access.

This benefit comes with a couple of constraints:

1. The list header must include a version number along with the pointer to the top-most 
element of the list in order to avoid the A–B–A problem where a concurrently executing, or 
interrupted, pop operation could erroneously modify the header and break the list: When 
popping off a list element A, the header is updated to point to the second element B, the 
pointer for which is read from the link field of element A. However, in the time between 
reading the pointer to B and updating the list header, the header might have been modified 
multiple times. It might again point to A, but this time A's next pointer might reference a 
different second element C. A compare-and-exchange operation comparing the list header 
to A would succeed and change it to B, which might not even be an element of the list 
anymore. A version number that is incremented each time the header is manipulated, and is 
included in the compare-and-exchange operation, prevents such erroneous matching on 
stale values. This requires a compare-and-exchange operation that is larger than the pointer 
size, and a version field that is large enough that wrap-around causing a false match is 
sufficiently unlikely.

2. Multiple elements cannot be removed from the list in one operation (although multiple 
elements can be pushed on in one operation). This latter constraint comes from the fact that 
one cannot safely walk the list to find the Nth element to point the header to when 
removing N-1 elements, because other threads can be altering the list at the same time, 
pushing elements on and/or popping them off.

ASF solves both of these issues. ASF eliminates the need for a version number because it allows 
the header to be monitored while the top-most element’s link value is read and ultimately used to 
update the header. Any intervening manipulation of the header, or interrupt of the sequence, 
causes the operation to abort. Because element A’s link to B is read and used to update the pointer 
atomically, the A-B-A problem does not exist.
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ASF also allows multiple elements to be removed from the list in a single operation. Because the 
header can be continuously monitored while the list is being walked to find the Nth element, any 
manipulation of the list during this time will be detected and the operation aborted. With the use of 
the RELEASE instruction, there is a better chance that the list could be walked without exceeding 
the hardware’s minimum guaranteed capacity. In any event, a suitable response to a hardware 
capacity limitation, or high contention, would be to simply resort to popping elements from the list 
one at a time, as is done today.

The following example code demonstrates single-element push and pop using ASF.

; PUSH_ELEM Operation:
;   (INPUT: element ptr in RAX)
;   (INPUT: list ptr in RBX)
; RAX->next = RBX->head
; RBX->head = RAX
; (RDX modified)
;
PUSH_ELEM:
retry:

SPECULATE
JNZ      retry
LOCK MOV RDX, [RBX + head]
MOV      [RAX + next], RDX
LOCK MOV [RBX + head], RAX
COMMIT
RET

; POP_ELEM Operation:
;   (INPUT: list ptr in RBX)
;   (RETURN: element ptr in RAX)
; RAX = RBX->head
; IF (RBX->head != 0)
; {
;   RBX->head = RAX->next
; }
; (RDX modified)
;
POP_ELEM:
retry:

SPECULATE
JNZ      retry
LOCK MOV RAX, [RBX + head]
TEST     RAX, RAX
JZ       end
MOV      RDX, [RAX + next]
LOCK MOV [RBX + head], RDX

end:
COMMIT
RET
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7.2.2 FIFO queue

The following example presents a FIFO queue implemented using ASF. Without ASF, lock-free 
FIFO queues supporting multiple readers and writers have considerably higher overhead.

Note that ASF speculative regions can safely dereference pointers once they have been protected: 
Pointer modifications on other CPUs (for example when elements are removed from the list) will 
abort the speculative region.

; ENQUEUE Operation:
;   (INPUT: element ptr in RAX)
;   (INPUT: list ptr in RBX)
; RAX->next = 0
; IF (RBX->tail != 0)
; {
;   tmp_ptr_next = & RBX->tail->next
; } ELSE {
;   tmp_ptr_next = & RBX->head
; }
; *tmp_ptr_next = RAX
; RBX->tail = RAX
;
ENQUEUE:

MOV      [RAX + next], 0
retry:

SPECULATE
JNZ      retry
LOCK PREFETCH [RBX + head]
LOCK MOV RCX, [RBX + tail]
TEST     RCX, RCX
JZ       empty_list
LOCK PREFETCHW [RCX + next]
LEA      RCX, [RCX + next]
JMP      ok

empty_list:
LEA      RCX, [RBX + head]

ok:
LOCK MOV [RCX], RAX
LOCK MOV [RBX + tail], RAX
COMMIT
RET

; DEQUEUE Operation:
;   (INPUT: list ptr in RBX)
;   (RETURN: element ptr in RAX)
; RAX = RBX->head
; IF (RBX->head != 0)
; {
;   RBX->head = RAX->next
;   IF (RBX->head = 0)
;   {
;     RBX->tail = 0
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;   }
; }
;
DEQUEUE:
retry:

SPECULATE
JNZ      retry
LOCK MOV RAX, [RBX + head]
LOCK PREFETCH [RBX + tail]
TEST     RAX, RAX
JZ       end
LOCK MOV RDX, [RAX + next]
LOCK MOV [RBX + head], RDX
TEST     RDX, RDX
JNZ      end
LOCK MOV [RBX + tail], RDX

end:
COMMIT
RET

7.2.3 Speculative region composition

ASF allows composing large speculative regions out of smaller ones. In effect, ASF flattens the 
hierarchy of SPECULATE-COMMIT pairs into one large speculative region.

For example, a speculative region that removes a piece of data from one FIFO queue and puts it on 
another one can be composed of the routines presented in the previous subsections as follows:

; DEQUEUE_ENQUEUE Operation:
;   (INPUT: remove-list ptr in RBX)
;   (INPUT: insert-list ptr in RAX)
DEQUEUE_ENQUEUE:
retry_spec:

SPECULATE
JNZ      retry_spec
PUSH     RAX
CALL     DEQUEUE
POP      RBX
CALL     ENQUEUE
COMMIT
RET

7.3 Coexistence with lock-based critical sections

ASF can be used in conjunction with traditional non-ASF lock-based critical sections by including 
a read declarator that refers to the lock variable and checking the value of the variable before 
proceeding. The ASF speculative region tests and monitors the lock variable without modifying it.

42 ASF usage models Chapter 7
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For example, consider a data structure such as a B-tree. Concurrent users of the B-tree perform 
frequent insert and delete operations in a lock-free manner using ASF. Occasionally the B-tree 
needs rebalancing for efficiency, but such an operation would be beyond ASF’s capacity. A global 
lock associated with the B-tree solves this problem in a straightforward manner: Each ASF 
speculative region that operates on the B-tree first initiates monitoring of the lock variable with a 
LOCK MOV and examines the current value of the lock. If the lock variable is set (indicating that 
some other thread is rebalancing the B-tree), the speculative region commits without doing any 
modifications (or programmatically aborts using the ABORT instruction) and then retries, 
effectively spinning on the lock until it clears.

The code that implements the rebalancing operation does not use ASF. It is a traditional lock-
based critical section. It acquires the lock with (for example) a test-and-set-bit operation on the 
lock variable. The resulting write to the lock variable forces any active ASF speculative regions to 
abort, and upon retry they see that the lock variable is set and wait for it to clear. The rebalancing 
procedure need not be concerned with other operations that may be in progress and can be 
executed at any time.

; Delete operation
del_btree:
retry:

SPECULATE
JNZ      retry
LOCK MOV EAX, btree_lock     ; Check and monitor global lock
TEST     EAX, EAX            ; Rebalance in process?
JE       nolock              ; No
MOV      EAX, ABORT_REBALANCING ; Software abort code
COMMIT                       ; Abort speculative region
JMP      retry

nolock:
 ; Do the real work of deleting, using ASF
 ; If a rebalance starts, this section aborts

...
COMMIT                       ; Delete finished

;
;----------------------------------------------------------------------
;
; Rebalance (does not use ASF)
rebalance_btree:

LOCK BTS btree_lock, 0       ; Acquire rebalance lock
JC       done                ; Another thread is rebalancing

 ; Do the rebalancing work
...
MOV      btree_lock, 0       ; Release the lock

done:

This technique can also be used more generally as a fallback position for handling reference-
pattern-dependent capacity limitations or even contention situations. Depending on the specific 
use case, it may be subject to some limitations of a traditional critical section, such as not being 
able to (easily) abort a partially completed update, or provide strong isolation in the face of non-
mutex-based and non-ASF-based accesses to the shared data.

Chapter 7 ASF usage models 43
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ABSTRACT
In this paper, we report on a new CPU-architecture extension pro-
posal, named Advanced Synchronization Facility (ASF), which is
geared toward accelerating and easing lock-free programming and
software transactional memory (STM). We present an initial per-
formance simulation and usability study of ASF’s application to a
lock-free data structure (a singly linked list) and to accelerating a
state-of-the-art STM system, TinySTM. Our results indicate that
ASF can significantly increase the throughput and scaling behavior
of these workloads: Single-thread performance increased by up to
15 %, and the factor of scaling to eight CPUs increased by up to
20 %.

1. INTRODUCTION
Future CPU generations will no longer be able to increase their
single-thread performance exponentially. Instead, CPUs will scale
the number of processing cores. In consequence, software will no
longer get faster execution speeds automatically with each hard-
ware upgrade, but will have to be adapted to the higher level of par-
allelism exposed by the CPU. Existing parallelization techniques
get more and more complex with an increasing number of execu-
tion threads, which is why the software industry is looking for new,
less complex parallel programming paradigms.

Transactional memory is a promising programming model that pro-
vides transactions (known from database technology) that take the
burden for synchronizing concurrent data access off programmers’
backs. However, today’s software implementations of transactional
memory, known as Software Transactional Memory (STM), still
inflict too much overhead for synchronization and bookkeeping,
making STMs impractical for the CPU count to be expected in the
near future. One way to reduce this overhead is to accelerate STMs
with new hardware mechanisms.

Another promising programming paradigm is that of lock-free data
structures. Many authors have shown that lock-free algorithms
perform and scale well and are robust against deadlocks, but to
date these algorithms have been limited by incomplete hardware
support: Lock-free programming relies on atomically modifying
a set of memory locations using instructions like test-and-set and
compare-and-swap (CAS). However, these instructions typically

∗Stephan Diestelhorst contributed to this work while interning at
Advanced Micro Devices.

Revision 1.1 (Aug 14, 2008)
c© 2008 Advanced Micro Devices, Inc. All rights reserved.

operate on only one or two words of memory and have a high la-
tency, making lock-free programming impractical for more com-
plex data structures or when low latency is required.

In this paper, we introduce a new hardware acceleration mecha-
nism, Advanced Synchronization Facility (ASF). ASF is an exper-
imental AMD64 architecture extension originally intended for the
acceleration of lock-free algorithms. We evaluate ASF in the con-
texts of lock-free data structures and STMs.

Our evaluation results indicate that ASF has excellent potential
for lock-free data structure acceleration. For an integer set imple-
mented as a singly linked list, the ASF-based implementation has
both better single-thread performance and better scalability than
a lock-based implementation and a conventional lock-free version
based on CAS.

We also applied ASF to the implementation of an STM system,
TinySTM [4]. In two STM workloads we examined, a red-black-
tree-based integer set and a singly-linked-list-based one, we ob-
served a significant increase in multiprocessor throughput. Single-
thread performance was comparable to or better than the baseline
STM system in each case.

This paper is organized as follows. Section 2 presents related work.
In Section 3, we introduce ASF and demonstrate how it simplifies
lock-free programming. Section 4 applies ASF to the example ap-
plications used in our performance study: a lock-free linked-list
implementation and TinySTM. In Section 5, we describe our simu-
lation and performance measurement environment and compare the
ASF-accelerated applications developed in Section 4 to their con-
ventional counterparts. We conclude the paper in Section 6 with an
outlook on future research directions.

2. BACKGROUND AND RELATED WORK
2.1 Lock-free data structures
Lock-free data structures do not use locks to coordinate concur-
rent accesses, avoiding most drawbacks of traditional locks, such
as deadlock and priority inversion. Herlihy [7] showed that, given
an atomic CAS primitive, all concurrent data structures can be im-
plemented in a lock-free manner. Despite this general proof, only
few lock-free implementations exist, such as the singly linked list,
introduced by Valois [16]. Harris’ later attempt [5] fixes bugs and is
conceptually simpler, suggesting that correct and well-performing
lock-free implementations are not trivial to find.

ASF aims at making lock-free programming significantly easier by
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providing a mechanism that is both more powerful and more flexi-
ble than traditional primitives such as CAS.

2.2 Transactional memory
Herlihy and Moss proposed transactional memory in [9], imple-
mented in hardware. Recently, a large number of software imple-
mentations (STM) have been developed [8, 3, 6, 4], but despite
steady improvements, they are still about an order of magnitude
worse than native hardware in single-threaded performance. Hard-
ware support to reduce this penalty has been proposed earlier. To
keep architectural extensions modest, proposals primarily either (1)
restrain the size of supported hardware transactions (e. g., HyTm
[2, 10], PhTM [11]), or (2) limit the offered expressiveness (e. g.,
LogTM-SE [17], SigTM [14]), or both (HASTM [15]).

Each of these hardware approaches is accompanied by software
that works around the limitations and provides the interface and
features of STM: flexibility, expressiveness, and large transaction
sizes.

ASF in contrast has a broader scope than only the acceleration of
transactional memory and can be implemented with moderate hard-
ware extensions. The result is a mechanism that has relatively small
capacity (compared to those listed under (1)) and richer expressive-
ness (than those listed under (2)), but requires a more static setup
than hardware proposals under both (1) and (2) and STMs.

2.3 Simulation
Evaluation of new hardware-extension proposals requires simula-
tors that can provide accurate timing information. Besides the in-
ternal tools employed by CPU vendors, various tools model the mi-
croarchitecture of a modern out-of-order processor [1, 12, 13]. This
paper uses PTLsim [18], because unlike other solutions it is freely
available and largely supports the AMD64 instruction set. In addi-
tion, it supports co-simulation, transparent switching between sim-
ulation and native hardware to quickly execute uninteresting parts
of the application under test. PTLsim also supports full-system
simulation and features a rich CPU model, which provides detailed
architectural statistics.

3. ADVANCED SYNCHRONIZATION FA-
CILITY (ASF)

3.1 Overview
ASF is an experimental AMD64 extension that allows user- and
system-level code to modify a set of memory objects atomically
without requiring expensive synchronization mechanisms.

The ASF extension provides an inexpensive primitive from which
higher-level synchronization mechanisms can be synthesized:
for example, multi-word compare-and-exchange, load-locked-
store-conditional, lock-free data structures, and primitives for
software-transactional memory.

ASF is both more flexible and faster than existing lock-free atomic
memory-modification approaches. Instead of offering new instruc-
tions with hardwired semantics (such as compare-and-exchange for
two independent memory locations), ASF only exposes a mecha-
nism for atomically updating multiple independent memory loca-
tions and allows software to implement the intended synchroniza-
tion semantics.

ASF works by allowing software to declare critical sections that

modify a specified set of protected memory locations. Protected
memory that critical sections modify will become visible to other
CPUs1 either all at once (when the critical section finishes success-
fully) or never (if the critical section is aborted). CPUs can protect
and speculatively modify up to 8 memory objects that can each be
at most cache-line sized and need to be size-aligned. When ASF
detects conflicting accesses to one of these objects, it aborts the
critical section.

Unlike traditional critical sections, ASF critical sections do not re-
quire mutual exclusion. Multiple ASF critical sections on different
CPUs can be active at the same time, allowing greater parallelism.

3.2 Critical section structure
ASF critical sections consist of two phases. In the first phase,
the specification phase, software declares which memory objects
should be protected. The second phase, the atomic phase, can
modify these memory objects speculatively. If the atomic phase
completes successfully, all such modifications become visible to
all CPUs simultaneously and atomically. Otherwise, modifications
to protected memory objects are discarded.

ASF introduces a set of new instructions that denote the beginning
and end of ASF phases. An ASF critical section has the following
structure:

• The specification phase is entered when the first declarator
instruction, or declarator, (LOCK MOV, LOCK PRE-
FETCH, and LOCK PREFETCHW instructions) occurs.
Declarators are used to declare memory that ASF should
protect.

• A VALIDATE instruction can be used in the specification
phase to check whether any of the previously declared mem-
ory locations has been invalidated by a concurrent write op-
eration.

• The ACQUIRE instruction denotes the end of the specifica-
tion phase and the beginning of the atomic phase. ACQUIRE
has a return code that signals whether the atomic phase has
been entered successfully, and also sets the rFLAGS register
accordingly. A return code of 0 signals success.

• ACQUIRE is followed by instructions that check the return
code and jump to an error handler if it is not zero (typically
just a JNZ).

• The atomic-phase instructions (standard x86 instructions, in-
cluding standard load and store instructions) are executed.

• The COMMIT instruction denotes the end of the atomic
phase.

Figure 1 shows example code that uses ASF to implement compare-
and-exchange for two independent memory locations, dubbed
DCAS for “double compare-and-swap.” (This code uses immedi-
ate retry as the recovery strategy. A real implementation might
have a more elaborate recovery strategy, for example exponential
backoff.)
1In this paper, the term “CPU” refers to one logical CPU (one hard-
ware thread executing x86 instructions), irrespective of how these
logical CPUs are packaged. (Its use is synonymous to terms like
“CPU core” and “x86 thread,” which are not used in this paper.)
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; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX)) {
; swap (mem1, RDI)
; swap (mem2, RSI)
; RCX = 1
; } ELSE {
; RCX = 0
; }

DCAS:
retry:

LOCK MOV R8, [mem1] ; Specification phase begins
LOCK MOV R9, [mem2]
ACQUIRE RCX, 2 ; Try to enter atomic phase
JNZ retry ; Retry if unsuccessful
CMP R8, RAX ; Atomic-phase code
JNZ out
CMP R9, RBX
JNZ out
MOV [mem1], RDI
MOV RDI, RAX
MOV [mem2], RSI
MOV RSI, RBX
MOV RCX, 1

out:
COMMIT ; End of atomic phase

Figure 1: DCAS implemented using ASF

3.3 Critical section aborts
Critical sections can be aborted at any point because of contention,
far control transfers (including those caused by interrupts and
faults), or software aborts.

Specification phase aborts are signaled by an ACQUIRE return
code. ACQUIRE has a count argument that must match the number
of declarators, allowing it to detect whether an interrupt occurred
in the specification phase.

ASF is an unusual x86 architecture feature in that ACQUIRE has
setjmp-like semantics: Atomic-phase aborts not only discard all
modifications to all modified protected memory objects, but also
reset the instruction and stack pointers to the values they had when
ACQUIRE was executed. This results in a reexecution of AC-
QUIRE, which now returns an error code and directs the control
flow (via the following conditional jump) to the error handler.

When an interrupt occurs during a critical section, that critical sec-
tion will be aborted. Note that before an interrupt or exception han-
dler returns, operating-system code or other processes may have ex-
ecuted in the interim. This is of no consequence as no ASF-related
state is maintained across context switches. Other processes may
even have executed ASF critical sections that inspected or modified
any of the locations targeted by the interrupted critical section. The
interrupted software will simply reinspect the state of the shared
data structure and attempt its critical section again.

3.4 Implementation and performance
There are several conceivable ways in which processors can imple-
ment ASF. Our architecture simulator currently implements ASF as
follows:

• We implemented ASF on top of the cache-coherency proto-
col. Any contention for a protected cache line will abort the
critical section in question.

• The back-up copies of protected memory locations (to be
written back in case of an abort) are held in a separate per-
CPU buffer, called the locked-line buffer (LLB).

• Our pipeline allows only one ASF critical section in flight,
thereby serializing all of a CPU’s critical sections. Declara-
tor instructions starting a new critical section are prevented
from issuing until the previous critical section’s COMMIT
instruction has been retired. In consequence, the processor
does not have to track independent lock sets.

The LLB allows CPUs to evict protected, speculatively modified
memory out of the caches if necessary. Despite not being part of
the memory hierarchy—the LLB only holds backup data—it partic-
ipates in the cache-coherency protocol and monitors for contention
for protected memory regions. If the LLB detects a contending
probe, it holds off the probe response until the backup copies have
been written back to the memory hierarchy.

Our design is easy to implement in an existing architecture, but
limits the instruction-level parallelism (ILP) that can be exploited
because the CPU cannot speculate across multiple critical sections.
Other than that, all ASF instructions can be fully pipelined and have
little latency (about one clock cycle).

The performance can be enhanced further in several ways:

• An implementation can track multiple ASF critical-section
instances in parallel to come close to the ILP exposed by an
unprotected version of the code.

• An implementation can prevent instructions in a critical sec-
tion from committing before COMMIT, keeping all modi-
fications in the internal store buffer. While such a design
would limit the number of instructions in a critical section
to the size of the reorder buffer, it works without an LLB
(thereby removing the LLB as a potential bottleneck) be-
cause all outstanding writes remain in the store buffer until
COMMIT.

4. APPLYING ASF
4.1 An ASF-based linked list
In this section, we introduce an implementation of a singly linked
list based on ASF. It serves as an example of how to integrate ASF
into a programming language and will also be the target of our eval-
uation in Section 5.

Before we present the ASF-based implementation, we show a lock-
based version for comparison (Figure 2). We will use this version
in our performance comparison in Section 5, along with the CAS-
based lock-free list implementation proposed by Harris [5].

Figure 3 shows part of the ASF-based implementation. It is essen-
tially similar to Harris’ CAS-based one, but can remove elements
directly from the list instead of marking them first. The code sam-
ple highlights this difference. It also illustrates a programming-
language interface to ASF, which we implemented using C macros.

272



void acquire(lock_t* lock) {
do {

while (lock->locked);
} while ( CAS(&lock->locked,0,1) );

}
void release(lock_t* lock) {

lock->locked = 0;
}

int set_remove(set_t *set, int val) {
...
acquire(&set->lock);
find(set, val, &prev, &next);

if (next->val != val) {
release(&set->lock);
return 0;

}
prev->next = next->next;
release(&set->lock);
...
return 1;

}

Figure 2: Removal from a singly linked list protected by a single
lock

int set_remove(set_t *set, int val) {
...

retry:
/* Traverse the list to the element,

without any locks / ASF protection. */
find(set, val, &prev, &next);
...
contained = 0;
prev_next = asf_lock_load(&prev->next);
next_next = asf_lock_load(&next->next);
next_val = asf_lock_load(&next->val);

if (!asf_acquire(3)) { /* atomic start */
/* Could not acquire locations -> Retry */
goto retry;

}
/* check for chaining errors */
if (prev_next != next) {

commit();
goto retry;

}
if (next_val == val) {

contained = 1;
prev->next = next_next;
next->next = (node_t*)NULL;

}
asf_commit(); /* atomic end */
...
return contained;

}

Figure 3: Lock-free removal from a singly linked list using ASF

Like Harris’ CAS-based implementation, our ASF-based one does
not support concurrent memory reclamation and requires that ele-
ments removed from the list do not change in type.2

4.2 STM acceleration
We now describe how we applied ASF to accelerate an STM sys-
tem. We started from the idea that ASF could relieve the STM’s
metadata-bookkeeping tasks by monitoring memory locations for
conflicting modifications in hardware instead of in software.

We used TinySTM as the baseline for our experiments [4]. Tiny-
STM is a state-of-the-art lock-based STM system. It has compara-
tively low overhead and scales well to the number of CPUs found
in today’s shared-memory systems. TinySTM avoids some of the
overheads of lock-free STMs, such as additional indirections.

TinySTM works by tracking the time interval in which the currently
running transaction is valid. As long as no value newer than the end
of the current interval is read, the overhead of revalidating the set
of previously read memory locations can be skipped and deferred
to one validation at commit time.

Read-set validation ensures that all previously read values are con-
sistent for a given time interval. To this end, TinySTM keeps track
of the read set (and the version of the previously read values) in an
internal data structure that it updates on every read operation, im-
plemented by TinySTM’s stm_load routine. We applied ASF by
monitoring and validating a part of the read set in hardware, saving
some of the bookkeeping and validation overhead.

The stm_load routine is already quite small and well optimized,
which is one of the reasons why TinySTM performs so well. The
original version (Figure 4) executes the following steps:

1. Locate the metadata for the memory location.

2. Read the version number of the memory location.

3. Check whether the write lock is set. If so, abort the transac-
tion.

4. Read the desired memory location.

5. Check again whether the write lock is set or whether the ob-
ject’s version number has changed. If so, abort the transac-
tion.

6. Check whether the version of the memory location is still
within or lower than the transaction’s validity interval. If not,
try to extend this interval—this requires revalidating the read
set. If this fails, abort.

7. Append the memory location to the list of addresses to verify
at the end of the transaction.

With ASF, it is possible to read the memory location with a
LOCK MOV instruction to let the hardware monitor for concurrent
alterations. This allows us to omit the second lock check and the
2This restriction can be lifted by using a doubly linked list and
checking the back references during list traversal. With ASF, the
changes to the presented singly linked list algorithm are small. In
our experiments, this safer list was still slightly faster than Harris’
singly linked list.
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stm_word_t stm_load(stm_tx_t *tx,
volatile stm_word_t *addr)

{
...
lock = GET_LOCK(addr);
/* Read lock, value, lock */
l = ATOMIC_LOAD_MB(lock);

restart:
if (LOCK_GET_OWNED(l)) {

/* Locked: Check if by us, if not abort. */
...

}
value = ATOMIC_LOAD_MB(addr);
l2 = ATOMIC_LOAD_MB(lock);
if (l != l2) { l = l2; goto restart;}
/* Check timestamp */
version = LOCK_GET_TIMESTAMP(l);
/* Valid version? */
if (version > tx->end) {

/* No: Revalidate read-set
if that fails abort. */

...
/* Recheck lock, perhaps

locked during validation. */
l = ATOMIC_LOAD_MB(lock);
if (l != l2) goto restart;

}
/* Good version: Add to read set */
if (tx->r_set.nb_entries == tx->r_set.size) {

/* Enlarge read set */
}
r = &tx->r_set.entries[tx->r_set.nb_entries++];
r->version = version;
r->lock = lock;
return value;

}

Figure 4: Simplified version of the original stm_load operation
(TinySTM, write-through version)

version comparisons (Steps 5, 6), as well as recording the location
in the read log (final step).

The resulting new stm_load_asf routine (Fig. 5) uses ASF to
monitor memory until ASF’s capacity limit is reached (tracked with
a thread-local counter variable), after which it transparently falls
back to the original stm_load implementation when further ex-
tending the read set. Additionally, stm_load_asf prevents allo-
cation of another protected memory location if the most recently
allocated location and the current one share one cache line. This
microoptimization is possible because ASF works on the granular-
ity of the size of one cache line.

The stm_load_asf routine first protects the read value using ASF,
then checks the lock. The subsequent VALIDATE ensures that the
value has not been updated before reading the lock, thus allowing
us to read the lock only once.

The ASF-based optimization works because it is easy and fast to
check the validity of the ASF-protected memory locations along
with those recorded in the read log: A simple VALIDATE instruc-

stm_word_t stm_load_asf(stm_tx_t *tx,
volatile stm_word_t *addr)

{
stm_word_t res;
ulong cache_addr = (ulong)addr & ASF_LINE_MASK;
if (tx->asf_last & ASF_HINT_SOFTWARE)

return stm_load(tx, addr);

/* Aliasing on the last ASF line */
if (tx->asf_last == cache_addr) {

res = ATOMIC_LOAD_MB(addr);
goto load_validate;

}
/* ASF capacity exceeded */
if (tx->asf_entries >= ASF_ENTRIES) {

tx->asf_last = ASF_HINT_SOFTWARE;
return stm_load(tx, addr);

}
/* Check that the location is unlocked */
res = asf_lock_load(addr);
tx->asf_last = cache_addr;
tx->asf_entries++;
stm_word_t l = ATOMIC_LOAD_MB(GET_LOCK(addr));
if ( LOCK_GET_OWNED(l) )

return stm_load(tx, addr);
/* Validate recent ASF read-set */

load_validate:
long asf_inv;
asf_validate(asf_inv, tx->asf_entries);
if (asf_inv) {

stm_abort_self(tx);
return 0;

}
return res;

}

Figure 5: Transactional load using ASF

tion suffices. A final VALIDATE and COMMIT in the transaction-
commit code completes the modification.

5. EVALUATION
5.1 Evaluation setup
Given the high cost for developing a new processor core, instruc-
tion-set extensions are initially evaluated with processor simula-
tors. We have chosen PTLsim [18] and have implemented ASF as
described in Section 3. Additional modifications have been made to
the simulator, partially bug fixing and architectural enhancements
to bring its architecture more in line with our native hardware. We
build on the work Yourst introduced in [18] making PTLsim behave
similar to an AMD K8 core.

To show the significance of our simulation results, we will compare
results from multi-threaded benchmarks on native hardware to our
tuned simulator, thereby laying the foundation for the fidelity of the
evaluation of the ASF extensions.

For the native measurements we have used a dual-socket sys-
tem, equipped with two AMD OpteronTM processors (family 10h,
Barcelona) running at 2.2 GHz. Each processor consists of four
CPUs, each with private caches (L1D & L1I: 64 KByte, 2-way

274



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000
lis

t (
W

T)

lis
t (

W
B)

rb
tre

e 
(W

T)

rb
tre

e 
(W

B)

C
AS lo
ck

no
 s

yn
c

tra
ns

ac
tio

ns
 / 

m
s

native
simulated

Figure 6: Single-thread performance for native and simulated
execution

set-associative; unified L2: 512 KByte, 16-way set-associative) in
an exclusive hierarchy, and a shared (between the four CPUs) L3
cache (2 MB, 32-way) with a mostly exclusive (sharing-aware)
configuration. Both sockets are connected with HyperTransportTM

links, making main memory at each socket available in a ccNUMA
fashion.

Benchmarking is done using the well-known “intset” workload, a
data structure that provides methods for insertion, removal, and
query of a set of integers. We use the test harness included in Fel-
ber’s TinySTM distribution3 [4] and add the different implementa-
tions of the set interface. TinySTM itself is also extended to use
ASF primitives, as sketched in Section 4.2.

Because simulation is rather slow (depending on the number of
simulated CPUs about 100,000 times slower), we have limited the
number of operations on the intset to 5000 per thread. Variance
is reduced by pinning worker threads statically to CPUs (avoiding
the OS’s balancer) and maintaining a fixed seed for reproducibility.
Other parameters of the benchmark from TinySTM remain at their
default values (set with 256 entries, entries range from 0 to 65535,
20 % rate of updates).

In addition to the implementations mentioned previously (sorted
singly and doubly linked lists using ASF) and those contained in
TinySTM (sorted singly linked list and red–black tree using STM),
we have added Harris’ implementation of a lock-free singly linked
list, as described in [5]. Another singly linked list simply protected
with a single spin-lock and a single-threaded implementation with-
out any locks mark the limits of (poor) scalability and excellent
single-thread performance.

5.2 Simulator precision
Figure 6 compares throughput for different implementations of the
intset interface on native hardware as well as inside the simulator.
Simulator precision varies, dependent on the actual implementa-
tion, but is within about 20 % of native performance, except for
the implementation using just a single big lock and the one without
any synchronization. The larger gap for the latter originates from
the tight loop that traverses the list. We have tuned the simula-
tor to schedule instructions in the simulated CPU as efficiently as
3Available from http://www.tinystm.org
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Figure 7: Multi-thread performance for native and simulated
execution

possible, a behavior that the native hardware has as well if we in-
crease the total number of intset operations per test. The difference
is likely an artifact of the testing environment, which is not as con-
trolled as within PTLsim, or an effect of the incomplete knowledge
of the AMD Opteron processor’s Barcelona core in PTLsim. With
the present tight traversal loop (about 3 cycles per iteration), every
additional stall has a large effect on total performance.

Multi-thread results are shown in Figure 7, and although PTLsim
captures the general trend, simulation results scale better, espe-
cially at working-thread numbers larger than four. This deviation
is caused by our simulation’s interconnect model, which does not
differentiate between local (between CPUs in the same socket) and
cross-socket communication. On native hardware, these links differ
in both latency and available bandwidth. Therefore, our simulation
can be viewed as modeling a single-socket eight-core processor in-
stead of two four-core processors.

Additionally, PTLsim and native hardware differ in the way they
treat atomic read-modify-write (RMW) instructions: PTLsim sim-
ply grabs a simulator-internal lock for the affected memory lo-
cation (without any delays), whereas native hardware drains exe-
cution until the instruction is not speculative, waits for buffered
stores to complete, and then executes the instruction. This leads
to highly different behavior for atomic RMW instructions on con-
tended memory locations, such as spin locks (as used in the “big-
lock” implementation).

5.3 Lock-free data structures
Well designed lock-free data structures usually offer performance
superior to those implemented with coarse-grained locks and STM,
because of increased parallelism and reduced overhead. Figure 8
shows the results for the various implementations of the intset in-
terface: singly linked lock-free list using ASF (labeled ASF), Har-
ris’ CAS-based lock-free implementation (CAS), and the version
that uses a single lock (lock).

It can clearly be seen that the ASF implementation outperforms
both the CAS-based and the lock-based implementation.

The performance advantage over the CAS-based implementation
comes from three facts: First, the ASF lists do not keep deleted el-
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Figure 8: Lock-free data structures and single lock implemen-
tation

ements in the list for later clean-up. This keeps the list short and
saves the overhead of marking and cleaning up later. Second, ASF
does not guarantee progress and thus does not need any synchro-
nization when contention on the same memory location occurs.
Finally, ASF does not serialize the other memory accesses in the
CPU, leaving more potential for parallel and out-of-order execu-
tion.

5.4 Acceleration of STM
In Figures 9, 10, and 11 we compare a standard TinySTM against
the ASF-accelerated version from Section 4.2. The large tree and
the linked list both benefit from the reduced revalidation overhead.
The number of revalidations grows with the level of concurrency
(frequent validity-interval extensions) and thus the accelerated ver-
sion benefits more at higher CPU counts.

Surprisingly, the small tree (in Figure 9) does not profit from the
acceleration although its entire read set should fit into ASF. We be-
lieve we observe this behavior because of the small read set, which
makes the validation in the standard STM still reasonably fast. This
reduces the advantage of ASF’s fast VALIDATE and brings out
some unknown overhead. We will investigate further into where
this overhead of the accelerated STM comes from and how it can
be avoided.

Figures 9, 10, and 11 also contain the performance of the native
execution using the unmodified STM for reference. As we pointed
out previously, the simulator does not yet model the limitations of
the interconnect between the two sockets in the system, which obvi-
ously limits performance for the red–black tree on native hardware
for CPU counts greater than four when cross-socket communica-
tion is necessary.

6. CONCLUSION AND FUTURE DIREC-
TIONS

In the lock-free programming and STM scenarios we have ana-
lyzed, ASF has provided substantial performance improvements—
up to 15 %. Additionally, ASF significantly simplifies lock-free
programming.

In the remainder of this section, we outline a few directions for
future research.
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Accelerating lock-free STMs. The work presented in this pa-
per attempted to accelerate TinySTM, one of the best performing
STM systems available. TinySTM belongs to the class of STM
systems that are based on locks. Lock-based STMs have largely re-
placed lock-free STM systems because they have less single-thread
overhead while still scaling well to the number of CPUs found in
today’s shared-memory multiprocessor systems. However, lock-
based STMs have two drawbacks to lock-free ones: susceptibility
to lock-holder preemption, causing locks to be held longer than
necessary; and lower scalability as the number of CPUs grows be-
yond what is found in today’s systems. Therefore, one direction of
future research is to use ASF-like hardware acceleration to reduce
the overhead of lock-free STMs to the level of lock-based ones.

Compiler integration. In Section 4.1, we have sketched a C-
preprocessor-macro-based interface to ASF. We acknowledge that
a more robust and usable interface is needed to make use of ASF
in programming languages. This requirement is reinforced by ASF
being targeted not only to STM runtimes but also to lock-free ap-
plication code.

The latter use case additionally raises the question of backward
compatibility. The compiler interface should support application
code that needs to work regardless of whether ASF is present or
not.

Hardware changes. ASF can be used to protect both reads and
writes against conflicting memory accesses, but the latter is bound
to ASF’s roll-back facility: It is currently not possible to discard
memory modifications without ACQUIRE, which resets stack and
instruction pointer to the values they had at the beginning of the
atomic phase in case of contention. Accelerating STM-write oper-
ations would benefit from a more flexible mechanism.

Simulator precision. We outlined in Section 5.2 that our sim-
ulator lacks precision for tight loops and when modeling cross-
socket communication. We plan to tackle especially the latter short-
coming to enable better prediction of highly parallel workloads.
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Abstract
AMD’s Advanced Synchronization Facility (ASF) is an experimen-
tal architecture extension proposal aiming at making lock-free pro-
gramming easier and at accelerating transactional memory systems.

We report our experiences implementing ASF in an out-of-order
(OoO) CPU core simulator and our lessons learned for a future
a real (silicon) implementation of ASF. Specifically, we describe
how we integrated ASF into the pipeline of the simulated OoO
core and how we handle the intricacies caused by the the inherently
asynchronous multiprocessor memory-coherence protocol that can
cause transaction aborts in any CPU state.

We present our ASF implementation’s answers for four of
ASF’s key requirements: providing an architectural interface, rather
than exposing microarchitecture directly; providing sequential
memory access semantics; early abort semantics; and, capacity
guarantees. We find relatively lightweight solutions for all of these
requirements, but the OoO nature of the core necessitates many
small changes to several CPU data structures to provide complete
tracking of protected memory locations and timely reactions to
conflicting memory access.

1. Introduction
Transactional programming is a promising paradigm for parallel
programming that is based on a simplified programming model,
but requires runtime support in the form of a software or hardware
transactional memory (TM) system. Because software-only solu-
tions come with a high overhead, hardware support for TM has
been the subject of intense research in the past few years [5, 11].

Most hardware extensions (including the two implemented in
real silicon [7, 10]) have been evaluated for (more or less) simple
in-order processors. However, many modern commercial micropro-
cessors employ out-of-order (OoO) cores. It is unclear whether re-
sults presented for in-order cores translate to OoO cores, for the
following two reasons:

• First, OoO cores are significantly more complex than in-order
cores, which also complicates the implementation of any hard-
ware support for TM. For example, an OoO core could have
multiple transactions in flight, competing for hardware re-
sources and interfering with each other, or memory references
could be reordered across the boundary of a transaction. There-
fore, to assess the feasibility of TM support for an OoO core, it
is important to evaluate it for an OoO model.
• Second, OoO cores exhibit a different performance profile than

in-order cores. To accurately predict TM performance for mod-

c© 2010 Advanced Micro Devices, Inc. All rights reserved.

ern microprocessors, it is crucial to use a simulator that closely
tracks native performance for conventional workloads.

In this work we set out to implement a recent hardware-
extension proposal, AMD’s Advanced Synchronization Facility
(ASF), in PTLsim, an instruction-driven near-cycle-accurate full-
system OoO-core AMD64 simulator [24]. ASF is an experimental
AMD64 architecture extension proposal developed by AMD [1].
It aims at making lock-free programming significantly easier and
faster as well as accelerating TM systems [6].

We report our experiences integrating ASF with an existing
OoO core simulator and our lessons learned for a future real (sili-
con) implementation of ASF. Specifically, we describe how we in-
tegrated ASF into the pipeline of the simulated OoO core and how
we handle the intricacies caused by the the inherently asynchronous
multiprocessor memory-coherence protocol that can cause transac-
tion aborts in any CPU state.

We present our ASF implementation’s answers for four of
ASF’s key requirements:

• Providing an architectural interface, rather than exposing mi-
croarchitecture directly
• Providing sequential memory access semantics
• Early abort semantics
• Capacity guarantees

We find that there are relatively lightweight solutions for all of these
requirements, but that the OoO nature of the core necessitates many
small changes to several CPU data structures to provide complete
tracking of protected memory locations and timely reactions to
conflicting memory access.

In this paper, we do not digress into the rationale that led to
ASF’s design, or any workloads we have used to validate our
simulator or to evaluate ASF’s performance. We refer interested
readers to [6].

In the rest of this paper, Section 2 revisits the fundamentals of
our work: it introduces ASF’s programming interface and basic
implementation options, provides background on OoO cores, and
contrasts OoO speculation with ASF speculation. In Section 3 we
present the implementation of ASF in the OoO core simulated by
PTLsim. We discuss related work in Section 4. Section 5 summa-
rizes our lessons learned and concludes the paper.

2. Fundamentals
2.1 ASF specification
ASF is purely experimental and has not been announced for any
future product. However, it has been developed in the framework
of constraints that apply to the development of a high-volume
microprocessor.

1
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; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX)) {
; mem1 = RDI; mem2 = RSI; RCX = 0;
; } ELSE {
; RAX = mem1; RBX = mem2; RCX = 1;
; } // (R8, R9, R10 modified)
DCAS:

MOV R8, RAX
MOV R9, RBX

retry:
SPECULATE ; Speculative region begins
JNZ retry ; Page fault, interrupt, or contention
MOV RCX, 1 ; Default result, overwritten on success
LOCK MOV R10, [mem1] ; Specification begins
LOCK MOV RBX, [mem2]
CMP R8, R10 ; DCAS semantics
JNZ out
CMP R9, RBX
JNZ out
LOCK MOV [mem1], RDI ; Update protected memory
LOCK MOV [mem2], RSI
XOR RCX, RCX ; Success indication

out:
COMMIT
MOV RAX, R10

Figure 1: A DCAS primitive using ASF.

ASF provides seven new instructions for entering and leaving
speculative code regions (or speculative regions, for short), and for
accessing protected memory locations (i.e., memory locations that
can be read and written speculatively and which abort the specu-
lative region if accessed by another thread): SPECULATE, COMMIT,
ABORT, LOCK MOV, WATCHR, WATCHW, and RELEASE (the last three are
not further discussed in this paper). Figure 1 shows an example of
a double compare-and-swap (DCAS) primitive implemented using
ASF.

Speculative-region structure. Speculative regions have the fol-
lowing structure. The SPECULATE instruction signifies the start of
such a region. It also defines the point to which control is passed
if the speculative region aborts: in this case, execution continues at
the instruction following the SPECULATE instruction (with an error
code in the rAX register and the zero flag cleared, allowing subse-
quent code to branch to an abort handler).

The code in the speculative region indicates protected memory
locations using the LOCK MOV instruction, which is also used to load
and store protected data.

COMMIT and ABORT signify the end of a speculative region.
COMMIT makes all speculative modifications instantly visible to all
other CPUs, whereas ABORT discards these modifications.

ASF supports a limited form of nesting that allows simple com-
position of multiple speculative regions into an overarching specu-
lative region. Nesting is implemented by flattening the hierarchy of
speculative regions: memory locations protected by a nested spec-
ulative region remain protected until the outermost speculative re-
gion ends.

Aborts. Besides the ABORT instruction, there are several condi-
tions that can lead to the abort of a speculative region: contention
for protected memory; system calls, exceptions, and interrupts; the
use of certain disallowed instructions; and, implementation-specific
transient conditions. Unlike in Sun’s hardware TM (HTM) design
[10], TLB misses do not cause an abort.

In case of an abort, all modifications to protected memory lo-
cations are undone, and execution flow is rolled back to the begin-
ning of the speculative region in a setjmp/longjmp-like fashion by
resetting the instruction and stack pointers to the values they had
directly after the SPECULATE instruction. No other register is rolled

back; software is responsible for saving and restoring any context
that is needed in the abort handler. Additionally, the reason for the
abort is passed in the rAX register.

Page faults (as well as other exceptions and interrupts) abort the
speculative region before they are reported to the OS. This allows
the OS to resolve any faults before the speculative region is retried.

Strong isolation guarantees. ASF provides strong isolation: it
protects speculative regions against conflicting memory accesses
to protected memory locations from other speculative regions and
regular code concurrently running on other CPUs.

In addition, all aborts caused by contention appear to be instan-
taneous: ASF never allows any spurious side effects caused by ASF
misspeculation in a speculative region to become visible. These
side effects include nonspeculative memory modifications and page
faults caused by dependencies on stale data.

Eventual forward progress. ASF architecturally guarantees even-
tual forward progress in the absence of contention and exceptions
when a speculative region protects not more than four memory
lines.1 This guarantee enables easy lock-free programming with-
out requiring software to provide a second code path that does not
use ASF. Because the guarantee only holds in the absence of con-
tention, software still has to control contention to avoid livelock,
but that can be accomplished easily (for example, by employing an
exponential-backoff scheme).

2.2 Basic ASF implementation variants
We designed ASF such that a CPU design can implement ASF in
various ways. The minimal capacity requirements for an ASF im-
plementation (four transactional cache lines) are deliberately low so
existing CPU designs can support simple ASF applications, such as
lock-free algorithms or small transactions, with very low additional
cost. On the other side of the implementation spectrum, an ASF im-
plementation can support even large transactions efficiently.

In this section, we present two basic implementation variants.
We implemented these two variants in the simulator described in
later sections of this paper.

Cache-based implementation. A first variant is to keep the trans-
actional data in each CPU core’s L1 cache and use the regular
cache-coherence protocol for monitoring the transactional data set.

Each cache line needs two additional bits, a speculative-read
and a speculative-write bit, which are used to mark protected cache
lines that have been read or written by a speculative region, respec-
tively. These bits are cleared when the speculative region ends. In
case the speculative region is aborted, the cache also invalidates all
cache lines that have the speculative-write bit set.

This implementation has the advantage that potentially the com-
plete L1 cache capacity is at disposal for transactional data. How-
ever, the capacity is limited by the cache’s associativity. Addition-
ally, an implementation that wants to provide the (associativity-
independent) minimum capacity guarantee of four memory lines
using the L1 needs to ensure that each cache index can hold at least
four cache transactional lines that cannot be evicted by nontransac-
tional data refills.

LLB-based implementation. An alternative ASF implementation
variant is to introduce a new CPU data structure called the locked
line buffer (LLB). The LLB holds the addresses of protected mem-
ory locations as well as backup copies of speculatively modified

1 Eventual means there may be transient conditions that lead to spurious
aborts, but eventually the speculative region will succeed when retried con-
tinuously. The expectation is that spurious aborts rarely occur and specula-
tive regions succeed the first time in common cases.
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memory lines. It snoops remote memory requests, and if an incom-
patible probe request is received, it aborts the speculative region
and writes back the backup copies before the probe is answered.

The advantage of an LLB-based implementation is that the
cache hierarchy does not have to be modified. Speculatively mod-
ified cache lines can even be evicted to another cache level or to
main memory. (We assume the LLB can snoop probes indepen-
dently from the caches and is not affected by cache-line evictions.)

Because the LLB is a fully associative structure, it is not bound
by the L1 cache’s associativity and can guarantee a larger number
of protected memory locations. However, since fully associative
structures are more costly, the total capacity typically would be
much smaller than the L1 size.

2.3 Out-of-order core fundamentals
This section will briefly introduce some of the key concepts em-
ployed in current OoO microprocessors. A large number of pub-
lications exist on the matter; Hennessy and Patterson provide an
extensive overview [14].

Many high-performance microprocessor cores do not process
instructions in order (that is, not in the order demanded by the pro-
gram executed), but rather reorder instructions to interleave long la-
tency operations (such as complex computations and cache misses)
with independent instructions, and to exploit instruction-level par-
allelism (ILP). With such OoO execution, book-keeping mecha-
nisms need to be employed to maintain the sequential program se-
mantics.

A central data structure called the reorder buffer (ROB) keeps
track of in-flight instructions, their states, and required input op-
erands. Dependencies among instructions are formed through
producer–consumer relationships between instructions—operands
required by one instruction are produced as results by an earlier one
and are usually conveyed through registers. Because architecturally
visible registers may be used by multiple independent in-flight in-
struction pairs, register renaming is used to separate these aliases.

Once an instruction has all input dependencies fulfilled, it is
considered for execution and is eventually issued on one of the
functional units of the core. Executing these instructions is not
dependent on program order at this point anymore, but can proceed
out of order: later instructions with fulfilled dependencies may
execute before earlier instructions with unmet dependencies. Once
the instructions complete execution, they forward the results to
dependent in-flight instructions. The final pipeline step retires the
instruction from the core. However, it processes completed in-
flight instructions strictly in program order and thus maintains the
sequential semantics of the code.

One source for long-latency operations is load instructions that
miss in the cache. OoO execution helps here because the core
can issue multiple cache-missing loads at once, thereby effectively
overlapping the latencies for them. Several data structures keep
track of in-flight memory operations: The load and store queue(s)
of the core handle single load and store instructions, while a miss
buffer keeps track of the pending cache-lines, which may be refer-
enced by multiple in-flight memory operations.

Executing memory instructions out of order interferes with the
global order of memory accesses in multiprocessor systems, im-
pacting memory consistency guarantees [2, 21]. To free the appli-
cation programmer from reasoning over the actual complex interac-
tions, the core maintains stronger (simpler to reason about) guaran-
tees by locally checking for consistency violations and selectively
replaying memory instructions [13].

The core fetches instructions in the native AMD64 instruction-
set architecture (ISA) from memory (the instruction cache) and
decodes the instructions and operand information. A number of the
instructions are not executed directly in the core, but are split up

into multiple smaller instructions, so called microoperations (µops),
instead. These flow through the pipeline independently and also
retire in sequence.

2.4 Levels of speculation
Conditional branches make the code sequence dependent on data,
which usually is produced only near the branch instruction and may
be subject to long-latency operations, such as complex arithmetic
and cache misses. To maintain a sufficiently large look-ahead in-
struction window, modern microprocessors employ branch predic-
tion to forecast the instruction stream. If a conditional branch is
predicted the wrong way (predicted taken vs. resolved not taken,
and vice versa), instructions on the wrong branch have been exe-
cuted. The instructions have to be removed from the core and their
effects have to be undone, or annulled, and architectural state needs
to be restored to a previous, known-good configuration.

Other predictions, such as predicting intrathread data depen-
dencies (or their absence) for pairs of stores and loads with unre-
solved addresses (store-load aliases), or optimistic assumptions for
scheduling conflicts and late resource shortages, may also cause
re-execution of instructions.

In this paper, we will refer to this collection of speculation as
employed by current OoO microprocessors as OoO speculation
(OoO-spec). In contrast, we will refer to speculation caused by
entering an ASF speculative region as ASF speculation (ASF-spec).

3. Pipeline and core integration
In this section we present how we integrated ASF with an OoO core
simulated in an instruction-driven near-cycle-accurate AMD64
simulator, PTLsim [24]. We discuss the integration of both basic
ASF implementation variants (introduced in Section 2.2) through-
out this section, which we organize by high-level goals:

• In Section 3.1, we discuss the danger of using implementation
artifacts as architecture, which motivates our choice of not
reusing the existing OoO speculation mechanisms of the core
for ASF speculation.
• Section 3.2 explains how we provide sequential ASF semantics

on an OoO core.
• Section 3.3 describes our implementation of ASF’s early-abort

semantics.
• Section 3.4 discusses ASF’s minimum capacity guarantee.

3.1 Avoiding implementation as architecture
Given that many cores already have mechanisms for keeping pro-
gram state private, such as the store queue and an OoO-speculation
mechanism, it is tempting to reuse these mechanisms for ASF spec-
ulation.

To illustrate, we consider the Rock processor [10], which re-
lies on existing microarchitectural features to implement transac-
tions: Rock uses the hardware’s register checkpointing mechanism
for keeping and restoring the register-file contents before starting
speculation, and it keeps speculative memory updates in the core’s
store queue. Consequently, Rock needs to abort transactions when
the capacity of either hardware resource is exhausted. Furthermore,
Rock employs only a single level of speculation; the resolution of
branch mispredictions, TLB misses, and other exceptional condi-
tions abort an ongoing transaction. For these and other reasons,
Rock does not give any guarantees on transaction success even in
the absence of contention and interrupts.

In contrast, ASF does give an architectural forward-progress
guarantee (in the absence of contention) and a minimum-capacity
guarantee for speculative regions. Microarchitectural conditions
such as a TLB miss or a store-queue overflow must not prevent a
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retry1:
SPECULATE
; First speculative region
JNZ retry1
LOCK MOV [mem1], RBX
...
COMMIT

retry2:
SPECULATE
; Second speculative region
JNZ retry2
LOCK MOV [mem2], RDX
...
COMMIT

retry1:
asf.spec1
asf.mfence1
br.nz retry1
asf.ld1 [mem1], RBX
...
asf.commit1

retry2:
asf.spec2
asf.mfence2
br.nz retry2
asf.ld2 [mem2], RDX
...
asf.commit2

Figure 2: Two speculative regions close to each other, with original
assembly (left) and decoded µops with added fences (right).

speculative region from ever succeeding. Because it would be im-
possible to provide these guarantees (including the weaker guaran-
tee of eventual forward progress) based on the OoO microarchitec-
ture, we chose to implement the ASF mechanisms separately from
(and complementary to) the OoO mechanisms.

3.2 Sequential ASF semantics
ASF has sequential programming semantics, which a core must
preserve whether it employs OoO-speculative execution or not. For
example, a protected memory access occurring inside a speculative
region must not be reordered to occur before the beginning of
a speculative region. In this section, we discuss two aspects of
executing ASF-speculative memory accesses on an OoO core. We
begin with issues raised by executing protected memory accesses
out of order in Section 3.2.1. Section 3.2.2 discusses how ASF
resources reserved for ASF-speculative data can be managed when
the instructions referencing this data are OoO-speculative and later
annulled.

3.2.1 Speculative-region flow
The execution order of instructions in an OoO core is only deter-
mined through data dependencies. Instructions without dependen-
cies can execute in arbitrary order.

For ASF speculative regions, we need to decide whether partic-
ular memory accesses (LOCK MOVs) are executed inside or outside
a speculative region. Hence, these instructions have to be ordered
with respect to the marker instructions that begin / end such a con-
taining region (SPECULATE and COMMIT).

We add special ASF memory-fence µops during decode of the
SPECULATE instruction to attain this goal, as shown in Figure 2.
These fences operate mostly like normal fences in that they cre-
ate an artificial dependency on any later memory instruction that is
only resolved once the fence has retired from the core. Later mem-
ory instructions can therefore only issue after the fence has retired.

The fences are ASF-specific in that they only affect ASF-spec
memory instructions and not regular memory references.

Memory instructions are then ordered by the following ordering
rules (with → being similar to Lamport’s happened-before relation
[16] and S(X) denoting the event of instruction X being in pipeline
stage S):

issue(asf.spec)→ retire(asf.spec) (1)
retire(asf.spec)→ retire(asf.mfence1) (2)

retire(asf.mfence1)→ issue(asf.memop) (3)
issue(asf.memop)→ retire(asf.memop) (4)
retire(asf.memop)→ retire(asf.commit) (5)

Ensuring that

issue(asf.spec)→ issue(asf.memop)→
retire(asf.memop)→ retire(asf.commit)

Rules 1 and 4 trivially follow from the regular pipeline flow;
Rule 5 is ensured by retiring all instructions in order. We imple-
mented the other rules by introducing artificial dependencies in the
instructions’ ROB entries.

Speculative-region overlap. Short speculative regions that exe-
cute neck-to-neck, such as in Figure 2, can be in flight in the core
simultaneously because of the reorder window.

Keeping track of the state of multiple simultaneous speculative
regions is complicated. Whereas conventional state containers—
registers—are renamed to track simultaneous usage of shared re-
sources, making all of ASF’s state renameable is complex, because
it contains not only the information of the speculative region state,
the abort instruction and stack pointer, but also the entirety of the
bits used to track the read/write sets.

While there may be safe approximations to full renaming (such
as merging read/write sets), we have chosen a more straightforward
approach by serializing the execution of consecutive speculative
regions in the core. The heavy pipeline-serialization mechanisms,
such as flushes and stalls, have a large performance impact because
of the time needed to drain and fill the pipeline, decreasing perfor-
mance especially for frequent, small speculative regions that would
execute in few cycles.

To avoid this performance decrease, we chose to implement the
serialization through the existing dependency rules, ASF memory
barriers, and by not changing the state of the speculative region
until SPECULATE and COMMIT hit the pipeline’s retire stage. The
serialization of two consecutive speculative regions then is ensured
through the following dependency chain:

issue(asf.memop1)→ retire(asf.memop1)→ retire(asf.commit1)→
retire(asf.spec2)→ retire(asf.mfence2)→ issue(asf.memop2)

3.2.2 Misspeculation
Section 2.3 introduced multiple instances for speculation in the
OoO core and how they could fail. ASF-speculative load and store
instructions are also subject to these mechanisms and this has
caused several challenges for our implementation, because of the
complex interactions imposed by release and redistribution of re-
sources due to misspeculation.

Precise ASF working-set tracking. Because of OoO speculation,
the core may overestimate ASF’s working set: misspeculated mem-
ory instructions can add spurious ASF-spec entries to the LLB or
cache before the misspeculation is detected and the corresponding
memory instructions are annulled.

The overestimation does not impact correctness of the execu-
tion conceptually (all lines that need protection are protected), but
has performance implications, since the additional lines artificially
increase contention and also put additional pressure on the limited
capacity.

It is thus desirable to detect and remove spurious entries in
ASF’s working sets. However, recomputing the actual ASF-spec
state of a cache line when annulling an ASF-spec memory access
is challenging. It depends not only on in-flight memory instruc-
tions, but also has to take into account retired ASF-spec memory
instructions of the current speculative region that have referenced
the cache line.

Our LLB-based ASF design supports reference counting for
that particular purpose and thus can track read/write sets precisely.
Adding reference-counting mechanisms to the existing L1 cache
would be expensive; thus, the L1-based ASF implementation cur-
rently may overestimate the read set.

4

281



Orphan cache entries. Although not precisely tracking ASF’s
working set in an L1-based ASF implementation is safe in prin-
ciple, under specific timing constraints it can lead to orphan ASF-
spec entries in the cache even though the originating speculative
region has already successfully committed or aborted.

To illustrate, consider the following sequence of events: an
ASF-spec load misses in the cache and sets up an ASF-spec miss-
buffer entry to track the cache miss. The load eventually is annulled
because it is on a wrongly predicted branch. The cache-miss han-
dling cannot be aborted at this time. Eventually, the speculative re-
gion commits by successfully retiring the COMMIT instruction (the
original dependency on the cache-missing load is not present any-
more, since that load has been annulled). The cache line is eventu-
ally filled into the cache and gets its spec-read bit enabled because
the corresponding miss-buffer entry was tagged as ASF-spec, lead-
ing to an orphan spec-read cache line.

Note that simply resetting the cache line’s spec-read bit on an-
nulment of referencing ASF-spec loads would be incorrect, because
multiple in-flight loads (ASF-spec and non-ASF-spec) may still
reference the miss-buffer entry. Similarly, the miss-buffer entry’s
ASF-spec state cannot be simply reset because it may still be refer-
enced by other in-flight ASF-spec loads.

A simplified version of the recomputation introduced previously
solves this issue: we reuse the existing reference from a miss-buffer
entry to its associated in-flight loads and count the ASF-spec-load
references. We observe that no retired load can contribute to the
ASF-spec state of the miss-buffer entry because loads can only
retire once their cache misses have been resolved. Therefore, the
number of ASF-spec loads referencing the miss-buffer entry can
always be computed online by counting all nonretired (in-flight)
loads with such a reference, allowing miss-buffer entries to pre-
cisely track their ASF-spec state and eliminating the need for ded-
icated reference counting in the L1 cache. In result, no modifica-
tion to the L1 cache is necessary, and we readily implemented this
mechanism to prevent orphan spec-read cache entries in our ASF
prototype.

Flash clearing all ASF-spec bits (of miss-buffer and cache en-
tries) at the end of a speculative region (retirement of the COMMIT
instruction) would also work around the orphan-cache-entries is-
sue. However, our recomputation approach tracks ASF’s working
set more closely and thus reduces the likelihood of contention.

3.3 Abort semantics
ASF has eager conflict detection and provides early-abort seman-
tics: it defines that no side effects (e. g., memory modifications or
page faults) ever become visible caused by ASF misspeculation
(i. e., further execution of a speculative region after is has been
aborted). The rationale is that no ASF-speculative state should be
able to leak unintentionally from an aborted speculative region.

This section discusses how our ASF implementation realizes
early abort semantics. Section 3.3.1 explains that, to receive timely
abort information, cores need to track access conflicts with pro-
tected data in more CPU data structures than just the cache or LLB
because of the asynchronous nature of memory accesses in OoO
processors. In Section 3.3.2 we describe how a core recovers when
it has received an abort signal.

3.3.1 Conflict detection handshake
The global linearizability of ASF speculative regions and consis-
tency of the read and write sets is ensured through eager conflict
detection. Conflict detection has to start when or before the value
of the load is bound [12] or the load is performed [22]. Usually,
some limited form of conflict detection and additional ordering
is already employed in current multiprocessor systems to provide
suitable memory-consistency semantics to the application. To keep

changes to this very sensitive area of microarchitecture small, it is
advisable to reuse the existing mechanisms and extend coverage of
the conflict observation until the speculative region commits. How-
ever, extending the monitoring period of the legacy mechanisms is
difficult, because it again involves touching sensitive hardware and
furthermore may not be possible due to design decisions, such as
reliance on bounded delay for certain operations, or serialization of
monitoring requests.

Therefore, the responsibility for monitoring ASF-spec data
eventually has to transition from the legacy mechanisms (such as
the miss buffer) to ASF’s monitoring facility (such as the LLB
or the augmented L1 cache). During the transition, it has to be
ensured that the data element is never without conflict observance,
necessitating atomic transitions or overlapping intervals of conflict-
detection responsibility.

For our prototype, we reuse the existing miss buffers and flag
cache lines as soon as they are initially probed (for cache hits) or
when they are delivered to L1 (for cache misses) with the according
ASF-spec bits. Our LLB-based implementation similarly allocates
entries as soon as possible, too. This design saves an additional
cache lookup at a later point in time (to set the respective ASF-spec
bits) and ensures overlapping contention monitoring.

The timing between the hand-over from one conflict detection
mechanism to another (in particular to the enhanced L1 cache) has
been a source of a lot of complexity. For example, one issue we en-
countered was caused by store-to-load forwarding, in which a load
receives the data directly from an earlier store to the same address
in the same thread. These loads effectively bypass the caches, cir-
cumventing any conflict-detection mechanism implemented in the
cache. This issue was solved by creating additional entries in the
L1 cache to ensure proper conflict monitoring.

3.3.2 Abort implications
Speculative regions abort whenever a conflicting concurrent data
access is detected (requester-wins conflict resolution policy), which
may happen asynchronously to other core timing. As outlined
previously, we use the existing cache-coherence mechanisms to
detect these conflicting memory accesses. Whenever an ASF-
speculatively modified line is read by another core, it must be
ensured that the requesting core receives the backup copy with
the probe answer, and not the updated data.

Therefore, the timing between probes, replies, and the rollback
operation is crucial for correct operation. To reduce the delay be-
tween the arrival of the conflicting probe and the final probe answer,
we introduce partial rollbacks. These rollbacks undo modifications
only for the requested line, deliver the probe answer, and then sig-
nal the core for further abort handling.

Aborting the core can then proceed independently of probe han-
dling, at the core’s discretion. The core checks for detected conflicts
every cycle. If one is found, the core triggers the full rollback, en-
codes the abort reason into the rAX register, sets the flags register
accordingly, and resets the instruction and stack pointer to the val-
ues right after SPECULATE. Finally, a pipeline flush and reset of the
instruction fetcher (similar to the resolution of a mispredicted con-
ditional branch) completes the abort.

Although checking for abort conditions every cycle seems suf-
ficient on the surface, we had to address two subtleties of modern
cores, which we describe in the remainder of this section.

Intra-cycle parallelism. It is possible for a specifically timed
store operation to the line already rolled back to retire in the same
cycle in which the abort condition was detected, but before the
pipeline flush, essentially proceeding in parallel to the ongoing
abort. Therefore, it is important to avoid disabling write-set track-
ing too early. Otherwise, the store would be able to make ASF-
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SPECULATE
JNZ abort_handler

traverse:
LOCK MOV RDX, [RSI + val] ; Load val
CMP RDX, RDI ; Element found?
JE found
LOCK MOV RSI, [RSI + next] ; Load next pointer
TEST RSI, RSI ; End of list?
JNZ traverse
COMMIT ; Element not found
...

found:
COMMIT ; Element found

Figure 3: A small linked-list traversal loop searching for a partic-
ular element, illustrating potential inflation of speculative working
set because of mispredicted branches: The “Load next pointer” in-
struction may be mispredicted and use up ASF resources needed
for maintaining ASF’s capacity guarantee.

speculative modifications permanent (despite the abort of the en-
closing speculative region).

µop splitting. As described in Section 2.3, native-ISA (AMD64)
instructions do not have to proceed atomically through the core.
Instead, they may be split up into smaller µops. These µops flow
through the pipeline independently and also retire in sequence,
which creates another subtlety with respect to the asynchronous na-
ture of aborts: an abort may trigger when only a subset of the µops
comprising an instruction have retired and updated the architectural
state.

The most critical instructions regarding this behavior are CALL
and RET, because they both access the stack pointer, the instruc-
tion pointer, and memory. Their partial retirement is, however, con-
tained by ASF, because the abort resets both registers to a consistent
value (and no guarantees for stack values below the stack pointer
are given).

3.4 Capacity guarantees
The ASF specification mandates that implementations support a
minimal number of read/write set entries (four cache lines), re-
gardless of address layout and other aspects (such as TLB misses,
branch misprediction, etc.).

Supporting such a guarantee under the OoO execution regime is
complicated by several interactions. As described previously, ASF-
speculative memory instructions may flag cache lines as speculative
optimistically, artificially increasing the speculative region’s work-
ing set and reducing the number of available entries that an appli-
cation can really use. In particular, ASF loads behind unresolved
and mispredicted branches, such as mispredicted pointer traversal
loops (Figure 3), can cause this behavior.

Furthermore, loads may be issued out of order and may also fill
missing cache lines in arbitrary order, depending on their residence
in the underlying memory hierarchy (e. g., line present in L2 cache
vs. line fetched from remote main memory). Determining precisely
if and when the capacity limit is reached is therefore not clear-cut.

Non-ASF-spec memory instructions may also compete for
space in the employed conflict detection device, in particular if an
existing structure, such as the L1 cache, is reused for that purpose.
It may be possible that non-ASF-spec entries displace ASF-spec
entries, thwarting any possible capacity guarantee.

Finally, the organization of the speculative storage and track-
ing device heavily impacts the feasible minimal guarantee. Set-
associative caches have a small worst-case minimal capacity—their
associativity—because all requested addresses may alias into the
same cache index. Other devices such as Bloom filters [4] may al-

low tracking of an arbitrary number of elements (with decreasing
precision), but do not provide space for backup copies to support
ASF-spec stores.

In summary, a naïve implementation does not even guarantee
the worst-case capacity of the storage container (i. e., the associa-
tivity of the L1 cache for a cache-based implementation). Addi-
tional ordering and priority mechanisms are necessary to give such
a guarantee, for example by carefully ordering accesses to capacity-
critical parts of the storage device. However, strictly serializing all
memory accesses would reduce overall performance and compli-
cate core design.

For our LLB-based implementation, we have therefore crafted
a staged buffer that has a (small) first stage where cache lines are
held as long as they are only referenced by OoO-speculative in-
flight memory instructions. Whenever one of these instructions re-
tires, the line in the LLB transitions to the non-OoO-spec second
buffer stage. The minimal guarantee is then enforced by the non-
OoO-spec second buffer stage, while the first OoO-spec stage basi-
cally controls how much (OoO-)speculation can go on. This design
allows us to carefully trade performance (through higher ILP) for
additional buffer space (for the additional first stage buffer).

Memory instructions have to wait until a free entry in the first
stage is available before they can issue. To avoid deadlocks through
OoO fill-up of the speculative buffer stage, we carefully replay later
memory instructions (further down in the program flow) that have
already been granted an entry to make room for the earlier ones
waiting for a free entry.

Our cache-based implementation currently lacks these features,
because it aims at reusing most of the existing cache implementa-
tion. Hence, it does not yet meet ASF’s required minimal capacity
guarantee under certain circumstances.

4. Related work
Using simulation is the most common approach for evaluating
hardware-extension proposals for accelerating TMs because sim-
ulation can be realized with much less effort and lower costs than
a hardware prototype. In related work, simplified simulation ap-
proaches are employed often. For example, trace generation and
timing simulation are separated or simple in-order core models are
applied.

This trading of simulation accuracy and speed for effort is, of
course, a valid approach for research proposals in which creating a
new simulation infrastructure or vastly extending existing simula-
tors is not possible. In this paper, we present a prototype proposal
targeted at implementation in current high-volume OoO micropro-
cessors and want to achieve a very high simulation accuracy to ac-
curately predict behavior and potential pitfalls for a silicon imple-
mentation.

Herlihy and Moss [15] employ the Proteus simulator for eval-
uating their TM proposal. The target programs to be simulated
have to be written a superset of C, and calls into the simulator are
created, for example, for calls to shared memory. Memory timing
is only simulated for shared memory areas. Proteus is execution-
driven, and cycle counting is embedded by a preprocessor into the
simulation target programs.

Ananian et al. [3] use cycle-accurate simulation of a simpli-
fied architecture to evaluate their unbounded TM (UTM) proposal.
The authors utilize UVSIM and simulate OoO MIPS 10K proces-
sors. The simulator supports cycle-accurate simulation and was ex-
tended to support a simplified HTM model (named LTM). Also,
a trace-driven simulator is used that evaluates memory references
and transactional operations. No detailed discussion regarding the
implementability of UTM or LTM in an OoO architecture is pro-
vided.

6

283



Moore et al. [20] present log-based TM (LogTM) and employ
Simics [17] for the processor model (single-issue, in-order). They
use a multilevel memory model and integrated LogTM with Wis-
consin GEMS [18]. The authors report that HTM instructions are
implemented via Simics “magic,” which leads us to believe that it
would be hard to draw any conclusions for an implementation of
LogTM in a real microarchitecture.

Damron et al. [8] introduce hybrid TM. Wisconsin GEMS with
LogTM is used for simulation. Instead of letting hardware (LogTM
here) do retries for transactions, the authors modified GEMS to
hand over control for retry to software after the first failure.

Yen et al.’s LogTM-SE [23] was implemented using OoO pro-
cessor cores supporting two-way SMT. Their implementation was
done using a modified version of Wisconsin GEMS 2.0 for the
SPARC ISA. LogTM-SE needs cache-coherence protocol changes
(and NACKs probe requests on conflicts), benefits from OS adapta-
tions, and does not provide minimal guarantees (e.g., conflict detec-
tion may produce false positives due to signature implementations).
In contrast, our PTLsim implementation prevents changes to cache
coherence protocols and HyperTransport, does not usually require
OS interactions, and provides minimal guarantees. In this paper,
we focus on the integration of HTM with OoO cores, and we be-
lieve our discussions are applicable to previously proposed HTM
systems.

Moir et al. [19] discuss an adaptive TM test platform (ATMTP)
and demonstrate its use in [9]. They provide a simulation environ-
ment targeted at Sun’s Rock processor, especially its HTM aspects.
The authors explicitly state that the model is not aimed at accuracy
but for gaining early experience. ATMTP is based on Wisconsin
GEMS 2.0. The detailed memory model Ruby is used, but not the
OoO processor model (Opal). Instead, Simics with a simple model
with one instruction per cycle covers the processor. LogTM (now
integrated in Ruby) provides similar semantics to Rock’s specula-
tive cache bits. Rock’s limitations (e. g., overflow of limited register
window) are approximated in ATMTP. Up to now, only single-chip
systems are supported. In [10], early Rock prototypes are compared
to ATMTP.

Sun [10] and Azul Systems [7] have developed actual multi-
core processors with HTM mechanisms. Their implementations are
based on in-order architectures. Both HTMs have a few notable dif-
ferences to ASF. We have introduced Sun’s Rock processor in Sec-
tion 3.1. Azul Systems’ HTM does not abort transactions in case of
interrupts and exceptions and does not support selective annotation.

In contrast to the often-employed combination of GEMS and
Simics with its single-issue in-order processor model, we have
implemented and simulated ASF using PTLsim’s OoO processor
model to obtain detailed predictions and experience with imple-
menting ASF in a modern OoO processor.

5. Lessons learned and conclusion
In this paper we outlined an implementation of ASF for the OoO
core simulated by PTLsim. We reviewed four requirements im-
posed by ASF and how we addressed them in our ASF implemen-
tation for the OoO core:

• An architectural interface, rather than exposing microarchitec-
ture directly
• Providing sequential memory access semantics in an OoO core
• Early abort semantics despite asynchronous memory requests
• Handling capacity guarantees in light of cache contents arriving

out of order

We found relatively lightweight solutions for all of these require-
ments, but the OoO nature of the core necessitates many small
changes to several CPU data structures to provide complete track-

ing of protected memory locations and timely reactions to conflict-
ing memory access.

We found that, somewhat counterintuitively, the existing mi-
croarchitecture mechanisms for OoO speculation do not ease the
implementation of ASF speculation. The reason is that ASF guar-
antees eventual forward progress (in the absence of contention),
and an OoO core can annul speculative instructions for many more
reasons than allowed for ASF aborts.

We stress that implementability is of major importance for any
hardware-extension proposal, and argue based on our findings that
ASF has passed this test. We believe that most of our findings
directly relate to a real OoO core implementation. However, we
did identify functional areas of ASF—in particular, the minimum-
capacity guarantee—in which the benefits may not outweigh the
additional implementation complexity. Further research is required
to motivate inclusion or exclusion of the feature.
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Abstract

AMD’s Advanced Synchronization Facility (ASF) is an AMD64 ex-
tension for transactional programming and lock-free data structures.
After we had released the ASF specification to the public, we contacted
various transactional memory (TM) experts in academia and indus-
try to get their opinions on ASF and suggestions for improvements.
We found their feedback invaluable in understanding what the first-
generation TM hardware support should look like and how to improve
ASF. In this paper, we present the summary of their likes, dislikes,
and concerns about ASF and explain our opinions on their sugges-
tions. By sharing the reviews, we hope to encourage further involve-
ment of TM experts in defining a desirable set of requirements for the
first-generation TM hardware support. We believe that this will greatly
help to bring out a better TM support sooner in commercial processors.

1. Introduction

Transactional memory (TM) is a promising solution to help pro-
grammers develop parallel programs [4, 7, 11, 13, 14]. With TM, pro-
grammers enclose a group of instructions within a transaction to exe-
cute them in an atomic and isolated way. The underlying TM system
runs transactions in parallel as long as they have no inter-transaction
data dependencies.

Advanced Synchronization Facility (ASF) is an AMD64 hardware
extension for transactional programming and lock-free data structures [1,
8]. ASF consists of seven instructions. SPECULATE and COMMIT
are for demarcating transaction boundaries. ABORT is for rolling back
a transaction voluntarily. LOCK MOV is for selectively annotating the
memory accesses to be processed transactionally. RELEASE is to se-
mantically drop a transactional read access performed previously by
LOCK MOV before COMMIT. Advanced programmers can use the
ISA directly to implement lock-free data structures. They use LOCK
MOV and RELEASE to control the number of words accessed transac-
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Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tionally between SPECULATE and COMMIT. By keeping the number
of cache lines accessed in a transaction under what ASF guarantees to
support in hardware, they do not need to have a software backup mecha-
nism for transactional execution and can use ASF as a flexible extension
of the existing single-word atomic primitives such as CMPXCHG [3].
Average programmers can rely on compilers that accept high-level lan-
guage constructs such as atomic blocks [4] and that generate ASF-based
code. WATCHR and WATCHW are used to set a system-wide access
monitor on an address in a transaction and to detect memory accesses
to the address originating from other cores in the system.

After the ASF specification [1] had been released, we contacted
many experts ranging from professors to OS developers and game pro-
grammers to get various reviews on ASF. In this paper, we present the
summary of the reviews that we find invaluable in understanding what
the first-generation TM hardware support should look like and how to
improve the current ASF specification. This summary paper presents
what the reviewers liked and disliked about ASF. It also includes their
concerns and our opinions on their suggestions. By sharing the re-
views, we hope that readers formulate their own opinions on the issues
discussed in the paper, make suggestions to the TM community, and
identify more issues. All of this will greatly help to bring out a better
first-generation TM hardware support in future commercial processors.

The paper is organized as follows. Section 2 provides an overview
of ASF and programming examples. Section 3 presents the summary
of the reviews and our opinions on them. Section 4 discusses related
work and Section 5 concludes the paper.

2. ASF Overview

2.1 ISA

Table 1 shows the seven instructions ASF adds to the AMD64 ar-
chitecture. SPECULATE starts a transaction. It takes a register check-
point that consists of the program counter (rIP) and the stack pointer
(rSP). The rest of the registers are selectively checkpointed by software
in the interest of saving hardware cost. Nested transactions are sup-
ported through flat nesting — parent transactions subsume child trans-
action [13].

LOCK MOV moves data between registers and memory like MOV,
but with two differences. First, it should only be used within trans-
action boundaries; otherwise, a general protection exception (#GP) is
triggered. Second, the underlying ASF implementation processes the
memory access by LOCK MOV transactionally (i.e., data versioning
and conflict detection for the access). A conflict against the access is
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Category Instruction Function
Transaction SPECULATE Start a transaction
Boundary COMMIT End a transaction
Transactional LOCK MOV Load from [Addr]
Memory [Reg], [Addr] to [Reg] transactionally
Access LOCK MOV Store from [Reg]

[Addr], [Reg] to [Addr] transactionally
ASF Context ABORT Abort the current transaction
Control RELEASE [Addr] Undo a transactional load

to [Addr] done by
a previous LOCK MOV

Access WATCHR [Addr] Detect a store from
Monitor [Addr] by the other cores

WATCHW [Addr] Detect a load or store to
[Addr] by the other cores

Table 1. ASF instruction set architecture.

detected when either a transactional access from another transaction
or a non-transactional access also touches the same cache line, and at
least one of the accesses is a write. This ensures strong isolation of
the memory accesses by LOCK MOV [7]. Since the detection is done
at cache-line granularity, there can be false conflicts due to false data
sharing in a cache line. To reduce design complexity, LOCK MOV is
allowed only for the WB (writeback) memory access type [3]. We pro-
vide the minimum capacity guarantee as part of ISA so that transactions
that access up to four distinctive memory words with LOCK MOV are
guaranteed not to suffer from capacity overflows.

Since ASF allows transactional accesses and non-transactional ac-
cesses to be mixed within transaction boundaries, it is possible that the
same cache line is accessed by both access types. ASF disallows only
one case where a cache line modified by a transactional access is mod-
ified by a non-transactional access later in the same transaction. This
rule aims to separate the previous transactional data that will be com-
mitted at the end of the transaction from the current non-transactional
data that must be committed immediately. If this rule is violated, a #GP
exception is triggered.

All the other cases are allowed. A transactional access following a
non-transactional access to the same address is allowed since the non-
transactional access is committed when the instruction triggering the
access retires. A non-transactional load following a transactional load
is allowed since loads do not conflict. A non-transactional load follow-
ing a transactional store is allowed since the load just reads the result of
the store in program order. A non-transactional store following a trans-
actional load is allowed simply because it does not break the memory
consistency maintained by the underlying ASF system. There are two
sub-cases here with regard to another thread accessing the cache line.
If another thread reads from the cache line, the value written by the
non-transactional store is returned since the previous transactional load
does not conflict with it and the non-transactional store has been al-
ready committed. If another thread writes to the cache line, a conflict is
detected against the previous transactional load regardless of the non-
transactional store.

RELEASE drops isolation on a transactional load access performed
to an address by LOCK MOV. The underlying ASF implementation
may stop detecting conflicts to the address with the semantics that the
load access never happened. It is ignored if used on an address pre-
viously modified by LOCK MOV to prohibit discarding transactional
data before committing a transaction.

COMMIT concludes a transaction. The register checkpoint is dis-

Status Code Aborted by
ASF CONTENTION Transaction conflict
ASF ABORT ABORT instruction
ASF CAPACITY Transaction overflow
ASF DISALLOWED OP Prohibited instructions
ASF FAR Exception, Interrupt
Table 2. ASF abort status codes set in rAX.

carded and the transactional data are committed. A nested COMMIT
does not finish a transaction for flat nesting. The underlying ASF im-
plementation checks if there is a matching SPECULATE. If not, a #GP
exception is triggered.

ABORT is for rolling back a transaction voluntarily. Transactional
data are discarded, and the register checkpoint is restored. This brings
the execution flow back to the instruction following the outermost SPEC-
ULATE and terminates transactional operation. ASF supports jumping
to an alternative rIP at a transaction abort by manipulating the zero
flag (ZF). ZF is cleared by SPECULATE and set when a transaction
is aborted. JNZ (jump when not zero) with an alternative rIP can be
placed right below SPECULATE. JNZ falls through at first since ZF
is cleared by SPECULATE but jumps to the alternative rIP at transac-
tion abort since ZF is set for an aborted transaction. Since the execu-
tion flow is out of transactional context after the transaction abort, JNZ
needs to jump back to SPECULATE if the transaction is to be retried.
The combination of SPECULATE and JNZ is essentially identical to
an alternative design in which SPECULATE takes an alternative rIP
as an operand since AMD64 processors translate this kind of complex
instructions into multiple micro-operations (e.g., the micro-operation
versions of SPECULATE and JNZ in this case). On detecting a trans-
action conflict, ASF performs the same abort procedure to roll back the
conflicted transaction.

There are multiple conditions for a transaction abort besides ABORT
and a transaction conflict. Since it is important for software to under-
stand why a transaction has failed and respond appropriately, ASF uses
rAX to pass an abort status code to software, as shown in Table 2. Since
rAX is updated with the status code at a transaction abort, compilers
must not use rAX to retain a temporary variable over SPECULATE. A
general purpose register is used for the status code rather than a new
dedicated register that would require additional OS support to handle
context switches.

There are five abort status codes. ASF CONTENTION is set when
a transaction is aborted by a transaction conflict. ASF ABORT is set by
ABORT. ASF CAPACITY is set when a transaction is aborted due to
transactional hardware-resource constraints. ASF DISALLOWED OP
is set when a prohibited instruction is attempted within transaction bound-
aries. Prohibited instructions are categorized into three groups. The
first group includes the instructions that may change the code seg-
ments and the privilege levels such as FAR CALL, FAR JUMP, and
SYSCALL. The second group includes the instructions that trigger in-
terrupts such as INT and INT3. The third group includes instructions
that can be intercepted by the AMD-V (Virtualization) hypervisor [2].

ASF FAR is set when a transaction is aborted due to an exception
(e.g., page fault) or an interrupt (e.g., timer interrupt). Due to design
simplicity, ASF rolls back transactions at exceptions and interrupts. To
report which instruction triggered the exception, ASF adds a new MSR
(Model Specific Register), ASF Exception IP, which contains the pro-
gram counter (rIP) of the instruction triggering the exception. At a page
fault, a transaction is aborted and as usual the page fault’s linear address
is stored in CR2 (Control Register 2) [3].

WATCHR and WATCHW set an access monitor to track memory
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Push:
   SPECULATE
   JNZ <Push>
   LOCK MOV RAX, [RBX + head]
   MOV [RDX+ next], RAX
   LOCK MOV [RBX + head], RDX
   COMMIT

Pop:
   SPECULATE
   JNZ <Pop>
   LOCK MOV RAX, [RBX + head]
   CMP RAX, 0
   JE <Out>
   MOV RDX, [RAX + next]
   LOCK MOV [RBX + head], RDX
Out:
   COMMIT

(a) Lock-free LIFO

Insert:
   SPECULATE
   JNZ <Insert>
   LOCK MOV RAX, [table_lock]
   CMP RAX, 0
   JE <ActualInsert>
   ABORT
ActualInsert:
   // insert an element
   COMMIT

Resize:
   LOCK BTS [table_lock], 0
   JC <Out>
   // resize the table   
   MOV [table_lock], 0
Out:

(b) Resizable Hashtable

Figure 1. Lock-free LIFO and resizable hashtable with
ASF ISA.

accesses to an address originating from other cores. WATCHR detects
a store to the address. WATCHW detects a load or a store to the address.
If such accesses are detected, the transaction enclosing the instructions
is aborted.

2.2 Programming with ASF

ASF supports three programming styles: transactional programming,
lock-free programming, and collaboration with traditional lock-based
programming.

Transactional Programming: It is straight-forward to write trans-
actional programs with ASF. A transaction is enclosed by SPECU-
LATE and COMMIT, and all memory accesses in the transaction are
performed with LOCK MOV. ABORT is used for rolling back the
transaction voluntarily.

Lock-free Programming: ASF makes it easy to construct lock-
free data structures for which simple primitives such as CAS are either
insufficient or inconvenient. For example, a lock-free LIFO list is a
concurrent linked list that pushes and pops elements like a stack with-
out locking. It can be implemented with a single-word CAS (Compare-
And-Swap) instruction such as CMPXCHG. A new element B is pushed
by first reading the top element A, setting B’s next pointer to point to
A, and then writing B to the link head with CAS that updates the link
head only when the head still points to A. While providing better con-
currency than the lock-based LIFO, the CAS-based implementation has
the ABA problem [12] caused by the time window between reading A
and executing CAS. If another thread pops A, pushes a new element
C, and pushes A back during the time window, CAS will update the
list header with B since the header still points to A. This breaks the list
since C is lost. This issue has traditionally been addressed by appending
a version number to the list head pointer which is atomically read and
updated with the pointer. However, this requires a wider CAS operation
and extra space consumed for the list head pointer. ASF avoids these
requirements by detecting data races not based on data values but based
on the accesses themselves. In the Push function in Figure 1(a), the cur-
rent value of the head pointer (RBX + head) is loaded transactionally to
a temporary register (RAX), which initiates conflict detection against

   SPECULATE
   LOCK MOV RAX, [mem1]
   LOCK MOV RBX, [mem2]

   /* a random op with RAX and RBX */

   LOCK MOV [mem1], RAX
   LOCK MOV [mem2], RBX
   COMMIT

Figure 2. A flexible fetch-and-op pattern.

the head pointer. Then, the current head pointer value is assigned to
the next pointer of a new element (RDX + next) being pushed. Finally,
the head pointer is updated with the new element (RDX). In this way,
the Push function is free of the ABA problem since the head pointer is
protected by ASF throughout the function and a transaction conflict is
detected when C is pushed. The Pop function works similarly except
that it has an additional check (i.e., CMP RAX, 0) to see if the LIFO is
empty. Moreover, ASF allows multiple elements to be popped in one
atomic operation, by allowing one to safely walk the list to the desired
extraction point, then updating the head pointer.

Collaboration with Lock-based Programming: It is beneficial for
ASF-based code to work with traditional lock-based code in order to
use it as a simple software backup mechanism covering uncommon
cases. For example, consider a concurrent hashtable. It is easy to de-
velop the ASF-based code that inserts/removes an element to/from the
hashtable. Occasionally, the hashtable may need to be resized, which
requires accessing all elements in the hashtable. If the hashtable is
large, the limited hardware resource in a first-generation ASF imple-
mentation will cause a transaction capacity overflow.

Our recommendation is to implement a lock-based resizing code
with a 1-bit hashtable lock, as shown in Figure 1(b). The insertion
code starts a transaction and reads the lock bit (table lock) with LOCK
MOV. If the lock bit is not set, it jumps to ActualInsert and inserts a
new element. If the lock bit is set, it busy-waits by aborting and retrying
the transaction. The resizing code grabs the lock non-transactionally
with BTS (bit test and set) [3]. The BTS instruction reads the lock bit,
copies it to CF (Carry Flag), and sets the lock bit. If the lock bit is
set, someone else is resizing the hashtable, in which case, it escapes the
function (JC). If the lock bit was not set, it resizes the hashtable and fin-
ishes the function by resetting the lock bit. By setting the lock bit with
BTS, it aborts all active insert transactions through transaction conflicts
and blocks future insert transactions until the resizing code resets the
lock bit. This ensures that the resizing code accesses the hashtable ex-
clusively, and the hashtable is race-free during resizing. While the re-
sizing code is not running, the transactions inserting elements execute
in parallel since they read-share the lock bit.

3. Likes, Dislikes, Concerns, and Our Opinions

In this section, we present the summary of the reviews on our ASF
specification. We also present our opinions.

3.1 Overall Rating and Usage

As the first x86 TM hardware-support specification, ASF was highly
welcome with very positive expressions such as “really cool”, “drool-
ing on it”, and “I want it now”. Some reviewers perceived it as more
of a flexible x86 atomic primitive beyond CAS due to the limited TM
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Figure 3. The ratios of the memory accesses instru-
mented with software barriers to all memory accesses
within transaction boundaries in the STAMP bench-
mark suite [6]. The ratios of bayes and labyrinth are
almost negligible.

support for general transactional programming with ASF. An inter-
esting stereotype usage suggested for atomic operations was a flexible
multi-word fetch-and-op as shown in Figure 2. Multiple data items are
loaded transactionally (e.g., two data items in the figure), manipulated
for a random op in private storage (e.g., registers or stack memory) non-
transactionally, and stored back transactionally. If used, stack variables
have to be alive only between SPECULATE and COMMIT. This usage
encompasses many interesting cases such as multi-word compare-and-
swap and multi-word fused-multiply-add (i.e., A = A + B x C). Some
reviewers mentioned using ASF for speculative lock elision of small
critical sections that works similar to the code in Figure 1(b).

3.2 Selective Annotation

Selective annotation of transactional memory accesses in a trans-
action enables (a) TM hardware resource saving for transactional pro-
gramming and (b) flexible mixture of speculative accesses and non-
speculative memory accesses for lock-free programming. Our obser-
vation from the existing transactional programs for STM systems is
that only a small portion of memory accesses in a transaction has to be
annotated with software barriers for transactional execution. Figure 3
shows the ratio of the memory accesses instrumented with software bar-
riers to all memory accesses in transactions in the STAMP benchmark
suite [6]. On average, the ratio is only 8%. There are various mem-
ory access patterns that contribute to the 92% of memory accesses that
do not require software barriers. For example, as a CISC architecture,
AMD64 has a small number of architectural registers and induces stack
accesses to spill the registers. These stack accesses do not require con-
flict detection since they are to private data if the data do not escape the
stack. If the stack variables are created after a transaction begins, the ac-
cesses to the variables do not need data versioning as well since the vari-
ables are effectively discarded by restoring the stack pointer when the
transaction is aborted. As a result, these stack accesses do not require
software barriers. Overall, the low ratio indicates that the majority of
memory accesses in a transaction can be executed non-transactionally
without compromising program correctness. Reviewers seem to easily
acknowledge this opportunity of saving TM hardware resources.

On the other hand, as for the flexible mixture of transactional ac-
cesses and non-transactional accesses, some reviewers disliked allow-
ing non-transactional accesses in a transaction since it could potentially

   SPECULATE
   LOCK MOV [mem1], RBX
   MOV [mem2], RCX
   COMMIT

Figure 4. A simple example that breaks the x86’s mem-
ory consistency model.

weaken isolation among transactions. Other reviewers liked it since it 
enables TM software tools to “punch through” a transaction. This fea-
ture can, for example, be useful for debuggers to log information about 
outstanding transactions [10]. We advocate selective annotation in fa-
vor of giving more programming freedom to software developers. Pro-
grammers can always use transactional accesses to be on the safe side 
whenever they are concerned with weakening isolation.

Another concern with mixing transactional accesses and non-trans-
actional accesses was about the exception triggered when a transac-
tional access and a non-transactional access modify the same cache 
line. This can make ASF-based code less portable. For example, 
assume an object with two fields one of which is accessed transaction-
ally and the other accessed non-transactionally. Depending on memory 
allocation schemes and runtime systems, the two fields may or may not 
be allocated in the same cache line, which means that the exception 
could be avoided in some systems but will be triggered in the other 
systems. This is troublesome and calls for open discussion.

3.3 Memory Access Ordering

There were questions about the cases where ASF breaks the x86’s 
memory consistency model [3]. Figure 4 shows a very simple transac-
tion with a transactional store and a following non-transactional store to 
two different cache lines. According to the x86 memory model, mem-
ory accesses should be observed in program order, which means that 
the transactional store should be exposed to the rest of the system first. 
However, in ASF, the transactional store is exposed after COMMIT is 
executed. The non-transactional store is exposed ahead in the reversed 
program order. We think that this deferred commit of the transactional 
store is essential for ASF to support atomicity. In our opinion, program-
mers should either use only transactional accesses for the code sensitive
to the memory consistency model or be aware of this behavior and write 
the code accordingly. A COMMIT works as a memory barrier so that 
the memory accesses before the COMMIT are always exposed to the 
rest of the system ahead of the memory accesses after the COMMIT.

3.4 Minimum Capacity Guarantee

The issue of minimum capacity guarantee (i.e., the largest trans-
action memory footprint guaranteed not to cause capacity overflows) is 
one of the hottest topics not only for ASF but also for any TM hardware 
support in general. Should processor vendors provide any guarantee 
about TM or can TM support be purely best-effort (i.e., no guarantee at 
all)? Obviously, no guarantee is an easier choice for processor vendors 
and is advocated by some reviewers. However, other reviewers also 
pointed out that best-effort hardware transactions lack a good property
of the existing atomic primitives (e.g., compare-and-swap) — that the 
primitives always commit in a certain way and make progress. They 
liked the minimum capacity guarantee supported by ASF in two ways. 
First, it makes best-effort hardware transactions look less like “black
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magic” for successful transactional execution. Second, programmers
will know when they do not need to write software fallback code to
deal with capacity overflows.

An obvious follow-up question was how we knew that the minimum
capacity guarantee in the current ASF specification (i.e., four distinctive
memory lines) was sufficient. The answer is that we did not know. As
most readers can easily guess, the number four came from the likely
set-associativity of four in the L1 cache. Since all AMD processors
support out-of-order execution with the load/store queues, it should not
be hard to increase the minimum capacity guarantee by leveraging the
queues as transactional buffer as SUN Rock did [9]. However it is not
easy to make a company-wide commitment on the minimum capacity
guarantee for any future AMD processor with ASF support, as it may
restrict the design freedom of future AMD micro-architectures.

3.5 Best-effort Maximum Capacity

Our discussion with AMD engineers brought up an interesting is-
sue. The best-effort maximum capacity supported by ASF with no
guarantee (i.e., the largest possible transaction memory footprint that
may not cause capacity overflows) can also be problematic from the
perspective of practical business. Assume a software product that has
transactions bigger than the guaranteed minimum capacity but runs fine
without capacity overflows due to additional best-effort transactional
buffer provided by an AMD processor. The product does not have soft-
ware fallback code to deal with capacity overflows simply because it
just runs fine without the code. The problem happens with a poten-
tial next-generation AMD processor which provides a lower degree of
best-effort support (e.g., a smaller best-effort transactional buffer). The
software product would suffer from capacity overflows on this proces-
sor. According to the ASF specification that guarantees nothing for
transactions bigger than the minimum capacity guarantee, it is clear
that the software company has to add proper software fallback mecha-
nisms. But what could happen in practice is that the company blames
AMD for not being able to execute the code that used to run fine with
older processors and demands AMD to fix it. One solution is to make
the minimum capacity guarantee equal to the best-effort maximum ca-
pacity (i.e., no more best-effort approach). We present it as another
open question for TM experts.

3.6 Abort

There was a question about the possibility of “orphan transactions”
[11] in ASF. Orphan transactions are those that are marked to be
aborted due to a transaction conflict by the underlying ASF system but
not yet aborted. We noticed that there could be a time window for or-
phan transactions depending on ASF implementations. For example,
one of the cost-effective ways we consider to implement the abort pro-
cedure is to deal with it as if it was a special interrupt. We refer to
Figure 5 in our discussions. In step (1), the interrupt is triggered by the
cache when a transaction conflict is detected with cache coherence pro-
tocol. In step (2), the interrupt is delivered to the CPU core by setting
an interrupt bit. Finally, in step (3) the microcode engine checks the
bit (typically at the end of issuing micro-ops of an x86 instruction) and
starts the abort procedure. In this case, the window for orphan trans-
actions starts at the time when the conflict is detected (i.e., (1)) and
ends at the time when the microcode engine starts the abort procedure
(i.e., (3)). With the out-of-order execution pipeline, many things can
happen in this window. The potential problems with the window will
have to be worked out with the designers of a specific baseline AMD
processor. We intend not to expose any side effects of potential orphan
transactions.

There were suggestions to clarify what happens with the registers
other than rIP (program counter) and rSP (stack pointer) when a trans-
action aborts. The current specification guarantees the restoration of
only rIP and rSP, leaving the other registers to be restored by software.
The question was if those registers that were not modified in the aborted
transaction are guaranteed to remain unchanged after the abort. The
current specification does not guarantee it. However, we agree that this
guarantee can enable interesting compiler optimizations to reduce the
software–register-checkpoint overhead. We consider adding this guar-
antee to the next version of ASF.

3.7 Software Fallback

In comparison to traditional lock-based code, some reviewers did
not like the programming pattern of combining hardware transactions
and software-fallback code since it makes the best-case faster but the
worst-case slower. This is not a clear win from the performance per-
spective unless there is a good proof showing that the best-case is the
common case. We agree that it depends on application characteristics
if the hardware TM support helps improve performance.

3.8 Nesting

Multiple reviewers suggested not to bother supporting nested trans-
actions. They agreed that transaction composability with nesting is im-
portant but argued that this may have to be supported by software for
first-generation TM hardware support. While it is quite easy for us to
support flat nesting with a simple nesting depth counter [13], we agree
that nested transactions will be rare at least with the limited TM hard-
ware support of first-generation ASF implementations.

3.9 Contention Management

The baseline ASF contention-management policy is attacker wins
where a transaction issuing a conflicting memory access wins a trans-
action conflict [5]. This can cause live-locks, and some reviewers ex-
pressed that “dead-lock is hard to deal with, but live-lock is harder”.
We chose the attacker wins policy for two reasons: 1) it is cheap to
implement and 2) the complexity of modern processor designs tends to
introduce random back-off latencies when transactions are re-executed,
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which can eliminate live-locks naturally in some cases. However, we
agree that there still is a danger to suffer from live-locks and are de-
veloping cost-effective hardware schemes to eliminate live-locks. For
now, we expect that software backup code either takes an alternative
execution path or retries an aborted transaction after random backoff
time.

3.10 RELEASE

In addition to the general difficulty of using early release [5], there
was a concern about the case where RELEASE can unintentionally re-
lease transactionally accessed data. For example, assume two memory
words are accessed transactionally but only one word is intended to be
released. Depending on memory allocation mechanisms, the two mem-
ory words may or may not be located in the same cache line. The RE-
LEASE instruction can only release whole cache lines. Consequently,
if both words are located in the same cache line, both will be released
together. Though we think that this problem has to be essentially dealt
with by software developers, we also consider a hardware mechanism
that detects this case with a set of counters incremented whenever dis-
tinctive locations of a cache line are transactionally accessed. An ex-
ception could be triggered when a RELEASE instruction is executed on
a cache line with the counter value bigger than one.

3.11 Imprecise Exception

Since ASF aborts transactions at exceptions, the processor state ob-
served by the OS exception handler is different from the processor state
of the moment exceptions are triggered. In other words, ASF makes
exceptions imprecise from the perspective of software. There were
questions about what kinds of information the OS can get when a page
fault happens. We thought that it to be enough for ASF to provide the
accurate rIP and the faulting memory address. However, there were
questions about other information such as the rSP value at a page fault.
We were not told what the information is exactly for but certainly can
consider providing more information if needed. Another question was
about stepping an outstanding transaction through for debugging. We
have an idea to allow for the stepping by suspending a transaction at a
debug trap, running the debugger non-transactionally, and resuming the
transaction when returning from the trap. However, it incurs additional
cost to do that and will be considered only when there is a clear demand
from software companies.

3.12 Cache-line Awareness

A reviewer disliked the fact that the current specification defines a
transaction conflict in connection with cache lines instead of describing
it more abstractly. We partly agree with him since this definition style
may reduce the design freedom in choosing implementation schemes.
However, it is highly likely that ASF implementations will leverage
the existing cache coherence protocols for conflict detection. We think
the concrete descriptions of the conditions for conflict detection with
cache lines is better for programmers and compiler developers to help
understand exactly when a transaction conflict happens.

3.13 Far Call and Ring 0

There were questions about the reason to prevent far calls (i.e., func-
tion calls that change segment registers) in a transaction. The answer
is that we want to avoid implementing additional hardware schemes

to eliminate security issues with program control transfer. The pro-
gram control is transferred to the OS at system calls, exceptions, and
interrupts [3]. If a control transfer happens in an application transac-
tion and the underlying ASF implementation is not equipped with ad-
ditional hardware to deal with program control transfer, the OS code is
executed as part of the transaction. The problem is that if the transac-
tion fails to complete, there can be security problems. For example, like
most modern processors supporting security features to separate the OS
and applications, the x86 architecture allows the OS and applications to
use different code segments and privilege levels by changing the code
segment selectors at the boundary of system calls [3]. If an ASF im-
plementation does not have additional hardware to manage the segment
registers that contain the segment selectors, an application transaction
aborted in the middle of executing a system call will be restarted with
the OS privilege level since the segment registers will still hold the seg-
ment selectors for the OS. This results in a security breach. Malicious
programs can take advantage of this security hole to get the OS privi-
lege level with a contrived multi-threaded TM code that forces a trans-
action in the middle of a system call to conflict with another transaction
intentionally. We have a general hardware design to prevent security
problems like this but have not reflected it yet in the specification due
to its additional hardware cost.

On the other hand, the current ASF specification supports trans-
actions in Ring 0 [3] (i.e., transactions that stay in the kernel mode
throughout their lifetime).

4. Related Work

SUN developed their TM hardware support in the Rock proces-
sor [9]. There are several differences between ASF and SUN’s TM sup-
port. First, ASF supports selective annotation of transactional memory
accesses for efficient TM resource use. Second, it offers a minimum ca-
pacity guarantee to help programmers develop sophisticated lock-free
data structures without complex backup software. Third, near function
calls (i.e., function calls that do not change segment registers) and TLB
misses do not abort transactions with ASF. Fourth, ASF takes a register
checkpoint of rIP and rSP at the beginning of a transaction, leaving the
rest of the registers to be managed by software.

5. Conclusions

In order to stimulate discussions on what the first-generation TM
hardware support in commercial processors should look like, we present
the summary of the various reviews on ASF and our opinions on them.
We believe that this will enable a better TM hardware support to come
out earlier.
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Abstract
AMD’s Advanced Synchronization Facility (ASF) has been
evaluated in earlier work in the context of hardware and hy-
brid transactional memory, software transactional memory,
and lock-free programming. In this work, we describe an
extension to ASF for applying it in the area of lock elision
(LE), which is now a well established concept in academia,
but has not found its way into mainstream micro-processors.

We extended ASF to allow transactional execution of un-
modified binary code, minimizing toolchain requirements
and employing this extension to run existing lock-base mul-
tithreaded programs using a combined software-hardware
approach. Software is responsible for demarcating transac-
tion boundaries, for register snapshotting, for providing an
elision policy, and a software backup path. Hardware in the
form of an extended ASF is used for data conflict detection
at runtime and rolling back modified memory in an abort
case.

Early measurement results for a memcached-based setup
show great potential for concurrent execution.

1. Introduction
The ubiquity of commodity multi-core processors and di-
minishing performance gains for single-core processors have
spurred interest in making parallel programming more ap-
plicable to a wider variety of applications and tangible for
a larger number of programmers. Transactional memory
[19] proposes simple semantics of executing blocks of code
atomically, but with enabled fine-grained parallelism. As
such, transactional memory requires changes to the source
code of applications and elaborate adaptations to the com-
piler and hardware. Although the original goal of transac-
tional memory has been simple semantics, it turns out that
software transactional memory (STM) implementations pro-
vide a wealth of weakened atomicity semantics [32] and pay
a performance premium to support stronger semantics. The
weakened semantics in turn compromise the simplicity goal
by requiring knowledge of the underlying STM algorithm.

c© 2011 Advanced Micro Devices, Inc. All rights reserved.

Although hardware solutions can provide stronger se-
mantics, they suffer from limitations induced by the underly-
ing microarchitecture. Existing attempts to lift these limita-
tions complicate the microarchitecture [5, 7, 9, 22, 29], and
consequently have not been adopted by any of the industry-
proposed transactional memory proposals.

Speculative lock elision (SLE) [27] re-uses the existing
locking infrastructure and critical-section annotations and
executes non-conflicting critical sections in parallel. To be
transparent on the instruction set architecture (ISA) level,
SLE requires prediction and tracking logic in addition to the
HTM-like speculation logic. In the AMD64 ISA, the efforts
of the prediction and detection logic are complicated by the
many different ways to write locks and also by several id-
ioms using the same instructions but not demarcating critical
sections (statistics updates, lock-free data structures). SLE
misprediction may cause significant numbers of wasted cy-
cles due to aborts and subsequent re-tries of code not belong-
ing to critical sections.

In this paper, we propose to lift the simplicity require-
ment of transactional memory, and instead offer incremental
performance improvements for incremental programmer ef-
fort, akin to earlier work on transactional lock elision (TLE)
[13]. We also propose to reduce the burden on the hardware
prediction and tracking logic and reduce erroneous specula-
tion attempts by keeping entry into and exit from speculation
as special instructions. For this we extend AMD’s Advanced
Synchronization Facility (ASF, [4]) with a speculation-by-
default mode, allowing execution of unmodified code in-
side the critical sections. We effectively side-step the need
for re-compilation by wrapping the pthread-library mutex
functionality with support for lock elision using our new in-
structions. This wrapper library can be linked dynamically
(at load time) to unmodified, binary applications and makes
the benefits of LE available to them. Using this infrastruc-
ture, we will report on early results with a memcached-based
setup in this paper.

2. AMD’s Advanced Synchronization Facility
AMD’s ASF [4] is a flexible, multi-word atomic prim-
itive, much like transactional memory. To keep micro-
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architectural complexity small, we have opted for an almost
entirely best-effort design: The processor is free to abort
any ongoing transaction at any time. In particular, data con-
flicts, capacity overflows, exceptions, interrupts, and specific
unsupported instructions can lead to an abort. However, in
the absence of conflicts and when keeping the number of
accessed locations within the worst-case capacity bound1,
ASF will not indefinitely abort transactions; the intention is
to have transactions succeed on the first try most of the time.

ASF tracks data at cache-line granularity (naturally aligned
blocks of 64 bytes) and aborts in-flight transactions with
conflicts in the tracked working sets, employing a simple
requester-wins abort policy. Conflicts are also detected be-
tween transactions and normal code, making ASF strongly
isolating.

ASF extends the AMD64 ISA with seven new instruc-
tions: SPECULATE and COMMIT begin and end transactions;
LOCK MOV (both loads and stores) is used for speculative
data access and conflict detection, while WATCHR and WATCHW
arm the conflict-detection mechanism without loading the
data. The RELEASE instruction will remove an unmodified
cache line from the set of conflict-checked locations. Finally,
ABORT allows code within a transaction to voluntarily abort
it.

An abort in ASF is performed by rolling back mod-
ifications to cache lines accessed with LOCK MOV or pro-
tected with LOCK WATCHR/W, reverting the stack pointer to
the value it had when passing SPECULATE, returning an abort
status code in the rAX and rFLAGS registers, and finally
resetting the instruction pointer to the instruction follow-
ing SPECULATE. Note that ASF does not keep a full register
snapshot, nor does it explicitly have the notion of an abort
handler. The former can easily be achieved by register clob-
bering code from the compiler, and the latter can be emulated
by checking the abort code after SPECULATE (which is zero
on success and non-zero on an abort) and branching to an
appropriate handler.

Aborts caused by transient conditions, such as interrupts
or page faults due to lazy paging, and conflicts, usually
warrant a re-try of the transaction, assuming that the tran-
sient condition has vanished in the meantime. To this end,
ASF conveys status information in the abort code, allowing
streamlined re-try logic in the application. In addition, ASF
makes exceptions inside transactions visible after the abort
so that page faults can be handled by the operating system,
transparently to user code.

The ASF specification does not mandate a particular im-
plementation; we have experimented with a number of them
in earlier publications [6, 8, 10, 14, 16].

Selective annotation Transactions in ASF do not mandate
each memory access to be annotated with the LOCK prefix, but
instead also allows normal MOV and other memory accessing

1 We consider four cache lines of 64 bytes each.

instructions. These instructions will perform standard, non-
speculative memory operations, but will not add the accessed
memory location (the accessed cache line(s)) to the set of
tracked locations causing abort on conflict.2 This selective
annotation allows significant reductions in the footprint of
applications [10], for example, by removing thread-local or
stack accesses from the limited working set. Selective an-
notation can be employed by compilers automatically, prov-
ing that specific locations are thread local, or by expert pro-
grammers tweaking performance through working-set size
and conflict probability reductions [12, 14, 30].

3. Speculation by Default
ASF in its existing shape is targeted to be used with strong
toolchain support for making the most use of its limited
hardware capacity. The selective annotation feature is a key
component here and can be used to great benefit given a
suitable toolchain [6].

However, due to the need for affixing LOCK prefixes to
MOV instructions for speculative memory accesses, it does not
support execution of unmodified binary code within a trans-
action. Code executed that way would issue non-speculative
memory instructions, which would not participate in conflict
detection and would not be rolled back on abort.

To fulfill our transparency requirement for LE, we de-
cided to introduce a new ASF mode, speculation by default,
which changes the “polarity” of the LOCK prefix annotation:
accesses with the prefix become non-speculative, while all
other accesses are treated as speculative within transactions.
For starting speculation-by-default transactions, we provide
a new instruction, SPECULATE_INV.

The high-level effect of this inversion is that high-level
language code and third-party library code can be called di-
rectly inside transactions. No additional compilation or in-
strumentation step is required as all standard memory ac-
cesses become part of the enclosing transaction and are sub-
ject to conflict detection and rollback. Toolchain support re-
quired to work with this mode is minimal; usually, only some
assembly-language bindings with register clobbering are re-
quired for forcing the compiler to do the snapshotting. Of
course, some of ASF’s limitations are still active: hardware
capacity is limited, certain instructions are still illegal inside
transactions, and far calls (e. g., kernel entries due to inter-
rupts or system calls) will still lead to aborts.

This new mode lends itself to a software-supported im-
plementation of lock elision.

4. Application Example
For evaluating ASF-based lock elision, we looked at lock-
based multi-threaded workloads that have potential for spec-
ulative execution of concurrent critical sections. In this sec-
tion, we report on our experience with memcached, which

2 The specifics of mixing speculative and non-speculative accesses to the
same data are discussed in more detail in [4, 15].
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has already received some attention in the area of scalability
[2, 24, 26, 33].

4.1 memcached
Memcached is a distributed key-value in-memory database.
In a large setup, several server instances run in a cluster-like
environment serving from in-memory hash tables. Clients
distribute load across the server instances by hashing the key
part of requests [18]. Memcached is used, for example, by
Facebook, Flickr, Twitter, and YouTube.

For our experiments we used the most recent public ver-
sion from memcached.org (version 1.4.5). This version also
supports running with multiple threads and supports the new,
binary version of the memcached protocol [1].

The two most simple commands in the memcached pro-
tocol are GET and PUT for requesting and storing and string
under a given key, respectively. GET-type requests are usu-
ally assumed to be the most common ones for memcached
setups.

Memcached internally uses several locks for protecting
critical data structures against races by concurrently running
threads. We extended mutrace [25] to also measure blocking
time per mutex to help identifying potentially contending
locks. In our experiments, the central cache_lock was by
far the most contended one, suggesting around 20% blocking
time in the server for a high-load scenario. Other locks are
used for protecting access to statistics and memory allocator
data structures. All locks seen in memcached are standard
pthread mutexes.

After considering the typical situation that GET requests
usually dominate the workload, one is tempted to replace
the standard mutexes with reader-writer locks. From looking
into the code, it turns out that even typical read requests (like
GET) do not follow pure read paths in the server. Occasion-
ally, statistics have to be written, living timeouts for entries
trigger, or the hashtable has to be resized. Typical GET paths
are not read-only, but are read-mostly.

A second observation is that locks are usually only held
for very brief moments. Typically, only some pointers are ex-
changed with brief meta-data updates. There is no memcpy()
or similar code in the critical sections that would depend on
the actual data targeted.

To summarize: (a) critical sections protected by the
cache_lock are pessimistic in the sense that often only read-
access is required and concurrent readers would typically
be possible, and (b) those critical sections are usually very
short, with few memory locations touched, lending them-
selves to a hardware-based solution with limited capacity.

4.2 Setup
Our complete measurement setup is located in one instance
of the full-system simulator PTLsim, which we enhanced
with ASF implementations [6] and the extension speculation
by default. The implementation of the extension in PTLsim
is relatively straightforward: The speculative bit for memory

micro-ops is inverted in an early pipeline stage. The most
tricky part here was not to invert several times upon potential
replay of instructions. We configured PTLsim to simulate a
machine with eight cores and adapted the memory latencies
and the core model to be similar to those obtained on native
AMD OpteronTM processors of families 0Fh (K8 core) and
10h (formerly code-named “Barcelona”).

We run both the client workload generator and the mem-
cached server inside this single machine and use four threads
for each. Although a multi-machine setup would be more re-
alistic, this approach is the only one feasible when using the
PTLsim full-system simulator. PTLsim can only simulate a
single machine at once and does not have support for sim-
ulation of a full networking infrastructure. Also, coupling
a simulated server with a non-simulated client machine via
network is infeasible, due to the huge slow-down factor in
the simulator that would lead to network timeouts. In a way,
this setup behaves like a worst-case scenario for the mem-
cached server, because network latency is very small and
bandwidth is not limited by a physical network.

For generating workloads we use memslap, which is very
suitable for finding sustained maximum throughput for a
given setup. It contains a custom modern implementation
of the memcached protocol and supports the modern binary
version of the protocol and many concurrent requests. Mem-
slap is part of the standard client library libmemcached. In its
default configuration, memslap uses 90% GET requests and
10% PUT requests. The default key size is 64 bytes and the
default value size is 1 024 bytes. We use this default config-
uration unless otherwise noted.

We experimented with each memslap parameter in a na-
tive, gigabit-network setup to determine values that would
maximize system throughput to put high contention on the
mutexes inside memcached. As a result of these experi-
ments, we use a window size of 10 000 for each concurrency,
with 256 concurrencies simulated. We use four threads in
the workload generator and let the setup execute 500 000
requests — which easily takes more than a day to com-
plete inside a full-system simulator. Finally, we target the
server at our local test machine and use the binary protocol
for communication. A typical command line in our experi-
ments looks like this: memslap -w10k -c256 -T4 -t500000
-s localhost -B.

4.3 Manual instrumentation
As a first approach, we manually replaced the locking code
in the very common GET path of memcached (item_get()
in thread.c) with ASF-based lock elision code (cf. to Fig-
ure 1). item_get() is a wrapper around do_item_get() that
grabs the main cache_lock for the hash table. From a high-
level point of view, pthread_mutex_lock is the point to
start the ASF speculation and pthread_mutex_unlock is re-
placed with ASF’s commit instruction. Starting the specula-
tion comprises enforcing a register snapshot by the compiler
by clobbering all relevant registers inside an inline assem-
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item *item_get(const char *key, const size_t nkey) {

item *it; int retries = 5; ulong asf_fail;

while (retries > 0) // ASF lock-elision path

{

asf_speculate_inv(asf_fail); // start speculation with inverted semantics

if (unlikely (asf_fail)) { // rollback point

if (asf_hard_error(asf_fail)) {

retries = 0; // hard error, don’t try again

} else {

retries--; // soft error, maybe try again

}

continue;
}

if (cache_lock.__data.__lock) { // pull lock into ASF’s readset and check for race

asf_abort(1); // lock was already held, bail out

}

it = do_item_get(key, nkey); // actual memcached GET path

asf_commit_(); // commit ASF transaction

return it;

}

pthread_mutex_lock(&cache_lock); // software fall-back path: really grab lock

it = do_item_get(key, nkey); // ...

pthread_mutex_unlock(&cache_lock); // ...

return it; // ...

}

Figure 1. Simplified manual instrumentation in GET path.

Figure 2. Software predictor state machine with the hard-
ware lock-elision level stored per mutex and thread. Low
levels incur a high chance to try hardware elision; high-
levels imply a very low probability. Failed hardware attempts
increase the level; successful ones decrease the level

bler snippet and adding the actual lock part of the pthread
mutex struct to the transaction’s read set by reading it. After
the transaction is started, one has to look into the lock vari-
able to verify that is was actually free at the time of starting
the transaction. A side-effect of looking into the variable is
its addition into the read set.

In case of contention or aborts, we currently employ a
very simplistic approach of retrying a small number of times
with ASF before falling back to the traditional approach of
actually taking the lock without ASF. The write request to
the actual lock done inside pthread_mutex_lock in the fall-
back path is the point that aborts potentially running ASF
transactions on other cores.

4.4 Dynamic instrumentation
Obviously, manual instrumentation has some disadvan-
tages: access to source code is required and potentially
a lot of locations have to be patched. To eliminate these
problems, we use a technique of wrapping access to func-
tions in shared libraries. We designed a library that wraps
calls to pthread_mutex_lock and -unlock using Linux’s
LD_PRELOAD mechanisms. The core approach to elide
locks is very similar to the manual instrumentation approach
discussed in Section 4.3, but we now generate statistics about
each mutex that we use to better guide the decision whether
lock elision is feasible for a given mutex at a given time.
We count the number of soft and hard aborts, the number of
successful ASF transactions, and the number of normal lock
operations required. Our software predictor state machine
represents a notion of recent elision successes per mutex
and thread and is comprised of a level and a chance for
hardware re-try (cf. to Figure 2). The level is increased on
ASF transaction failures, and decreased on successful ASF
transactions. The current level for a given mutex determines
the chance to actually try to elide the lock using ASF. For
low levels, the chance is high and for high levels, the chance
is very low (for level 0 mutexes, ASF will be always at-
tempted; level 10 mutexs very rarely attempt ASF elisions
but often directly fall back to normal mutex operations). We
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currently implement the chance with a variable, counting
normal locking approaches. If this counter reaches a level-
specific threshold, another ASF attempt is made.

That way, mutexes quickly adapt to the actual code pro-
tected by them at runtime and are still able to adjust to
changes in workload.

In Section 4.5 we provide results for two slightly differ-
ent strategies for reducing the level part of the statistics. The
more aggressive strategy starts a hardware transaction di-
rectly after a level reduction, while the more conservative
strategy first runs a level-specific amount of software lock-
ing rounds. The aggressive strategy is able to adapt more
quickly to hardware-lock-elision-friendly changes but might
overshoot doing so.

The dynamic approach that we describe here also incurs
additional overhead of two forms: (a) call indirection and
(b) statistics gathering. We user another level of indirection
for acquiring locks. Where the manual instrumentation ap-
proach could directly inline the ASF code into the mem-
cached code, the dynamic instrumentation puts this code into
a function in a shared library, which itself does another in-
direct call to the actual pthread_mutex functions in the fall-
back case.

The dynamic part also gathers and uses per-mutex thead-
local statistics, which are stored in a hash-table indexed by
mutexes’ addresses. This information is updated after trans-
actions and guides the lock elision process before transac-
tions. For the manual instrumentation approach, we simply
use one static policy for the single case that we support.

The results show that the additional effort done with the
dynamic instrumentation pays off in the form of increased
throughput.

4.5 Results
Although we would like to report on a huge number of ex-
periments, running everything inside a full-system simula-
tor severely limits our resources to do so. Simulations in-
side PTLsim typically run six to seven orders of magnitude
slower than on bare metal. We therefore only present here
throughput results for the different approaches already de-
scribed, but do not alter all other possible parameters.

Table 1 shows that the manual instrumentation yields a
speedup of around 20%. The dynamic approaches are even
more successful, with a speedup of around 30% and 35% to
the baseline, respectively.

We identified the following factors contributing to the ad-
ditional performance gained by the dynamic approach over
the static one, despite the additional overhead for call indi-
rection and statistics collection:

• With the dynamic approach, we instrument all locks in
the program, not only the single, common cache_lock.
This includes locks in linked shared libraries.

• We instrument all paths for those locks (e. g., also the
store path in memcached).

Table 1. Throughput results for four memcached setups.

Setup Throughput
(transactions / s)

Improvement
(to baseline)

Baseline 430 470 0.0%

Manual instr. 524 430 21.8%

Dynamic instr.a 559 250 29.9%

Dynamic instr.b 576 675 34.0%
a Conservative back-in strategy
b Aggressive back-in strategy

Additionally eliding rare paths might contribute overpro-
portionally to reduce abort rates, as transactions in rare
paths might abort serveral transactions in common paths
(especially with high thread counts).

• The additional statistics collected contribute only indi-
rectly to the additional speedup by restricting elision to
effective locks. Statistics collection replaces the manual
work of identifying relevant points for elision and will
keep overhead down caused by useless elision.
Statistics might also prevent some overhead on locks
whose profiles are not temporally stable, for example,
caused by workload changes over time. We don’t expect
to see this effect for the synthetic workload created by
memslap though.

The results reported in Table 1 are also roughly in line
with the blocking times we saw with mutrace (cf. to Sec-
tion 4.1) and indicate that lock elision may be a good tech-
nique to eliminate huge portions of overhead due to pes-
simistic locking in memcached.

5. Related work
AMD has proposed ASF [4] as a best-effort hardware trans-
actional memory (HTM).

Converting critical sections requiring mutual exclusion
into parallel code can be achieved in multiple ways. The
original speculative lock elision proposal [27, 28] is a mech-
anism that does not change the CPU architecture but relies
on complex prediction to transparently detect locks and crit-
ical sections. We suggest to offload the adaptation logic to a
transparent software layer and thus do not need complex and
inflexible hardware predictors.

Azul’s Java-specific hardware transactional memory com-
ponent allows parallel execution of Java’s synchronized
methods, but relies on a modified JIT compiler and custom
hardware design [11].

Dice et al. use the transactional memory implementation
of the Rock processor to implement transactional lock eli-
sion [13]. They modify the C++ standard vector class to use
Rock’s transactional memory primitives and suggest an im-
plementation inside a Java virtual machine. Our approach
does not require recompilation, but makes the benefits of
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lock elision available to all applications using the standard
pthread mutexes. According to [13], Rock would have dif-
ficulties with such an approach due to hardware limitations
in Rock’s TM to execute arbitrary binary code (divisions,
function calls, TLB misses, ...).

Transactional memory (TM) in general offers an alter-
native to lock-protected critical sections; however, several
problems complicate the conversion process and hinder
adoption.

Traditionally, software transactional memory (STM) pro-
vided a simple library-based interface that required program-
mers to manually annotate transaction begin and end, and
wrap all memory accesses within the transaction. To re-
duce the tedious and error-prone manual effort, compilers
for transactional memory have been proposed by industry
[3, 23] and academia [6, 17], but language semantics are still
in draft state [20, 21, 31].

The enhanced compilers provide atomic blocks and in-
sert appropriate calls and new instructions automatically.
Zyulkyarov et al. convert a lock-based Quake server to trans-
actional memory [35]. Despite the use of a TM-enabled
compiler, they require significant amounts of manual inspec-
tion of the source code.

We do not need compiler support and laborious software
conversion, but provide instantaneous performance gains for
existing critical section annotations and offer further perfor-
mance improvements for programmer tuning effort.

Felber et al. discuss transactional annotation of binary
code through binary translation [17], but still rely on man-
ually annotated transaction boundaries and cause a 3x per-
formance degradation.

Usui et al. proposed the concept of adaptive locks in [34],
which combine traditional mutexes with STM-backed code
paths. From a user’s point of view adaptive locks look simi-
lar to our dynamic instrumentation. Behind the scenes, how-
ever, different techniques are employed. For adaptive locks,
two code paths are created for all critical sections, one for
either mode of operation. The authors use a full compiler
tool-chain for recompiling programs and for instrumenting
all memory accesses for the STM paths. We only need to
provide one additional library to the system that is integrated
by the dynamic linker at start time as our extension to ASF
can directly execute legacy code in transactions and, unlike
STM, provides strong isolation. Usui et al. also use a de-
tailed cost-benefit model to limit the overhead for their STM
mode. In our hardware-based implementation, overheads are
small for execution in transactional mode. Our policy there-
fore only uses a simple and low-overhead success predictor
but not expensive-to-determine, anticipated costs. In the fu-
ture, more complex workloads or less capable hardware im-
plementations may benefit from more elaborate statistics.

6. Conclusion
For this work we applied AMD’s Advanced Synchronization
Facility (ASF) proposal (a hardware transactional memory)
to the domain of lock elision. We extended ASF with the
speculation-by-default mode to allow better re-using of ex-
isting code and to work with a smaller and simpler toolchain.

We used a combination of software and hardware ap-
proaches for lock elisions. Software was used for detecting
the actual locks (by manual instrumentation and dynamic
instrumentation), for register snapshotting, for providing a
software back-up path, and for implementing the policy of
when to elide. Hardware, in the form of ASF, was used for
detecting actual data conflicts at runtime and rolling back
in case of conflict. We experimented with different software
approaches and found that a more complex software scheme
paid off in the form of higher transaction throughput for the
memcached workload.

More investigations with more use cases are obviously
needed (and underway) to get a broader understanding. This
paper is meant as an initial report on our approach. These
early results show interesting speedups in the area of 20–
35%.
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1 Introduction

Transactional memory’s (TM) biggest promise is that of making it easier to
devise scalable multi-core programs. Arguably the biggest simplification of rea-
soning about parallel code with TM comes from atomicity : transactions either
take effect instantaneously, or not at all. TM frees the programmer from reason-
ing how this atomicity is achieved and asks only where it should be employed.

Commercial proposals and implementations of hardware TM, such as Sun’s
Rock [2] and AMD’s ASF [1], face a number of limitations and also propose
extensions to the all-or-nothing semantics of TM, essentially permitting a set of
visible side-effects on various levels.

In this abstract (and talk), we will outline several spots of weakened seman-
tics, discuss implications for applications through some examples, and provide a
solution within our ASF framework. Because this is work in progress, we would
like to discuss whether our specification is useful and whether it is sufficiently
detailed and clear.

2 Weakened Atomicity

There are several reasons for weakened atomic semantics. Some stem from
practical requirements, such as software compatibility; others are imposed by
conscious resource usage and the need to keep the underlying implementation
simple.

2.1 Mixed-mode accesses

ASF [1] allows non-transactional accesses from within hardware transactions1,
and we believe Rock [2] has the same support. Conceptually, non-transactional
accesses have several interesting properties:

• they do not cause aborts of the transaction on concurrent accesses;

1ASF calls these “speculative regions”, we will use the term “transaction.”

1
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• they do not occupy resources needed for tracking the transactional working
set; and,

• they allow intentional export of state from uncommitted transactions.

While the general idea of these accesses is rather clear, the exact usage
has provoked interesting feedback and requests for clarification from users of
ASF. For example, can non-transactional accesses be used to synchronise two
transactions out of band? This depends on the timeliness of the global visibility
of non-transactional stores relative to the commit of the hardware transaction.

Generally, memory semantics’ specifications and their implementations guar-
antee that values stored will be visible eventually (and how they are ordered
relative to other shared memory operations). An HTM implementation might
buffer all stores (transactional and non-transactional) until successful commit
of the transaction, and still adhere to the existing memory semantics.

However, the following code sequence will not commit with such an imple-
mentation:

Shared: a = b = 0;

Thread 1: Thread 2:

tx_start(); tx_start();

... ...

nontx_store(*a, 1); while(!nontx_load(*a));

while(!nontx_load(*b)) nontx_store(*b, 1);

tx_commit(); tx_commit();

A clear specification of the ordering of non-speculative memory accesses with
respect to transaction commit is thus needed to reason about code wishing to
employ this pattern.

2.2 Side-effects and aborts

For several reasons, it is not feasible to continue hardware transactions upon en-
try into the operating system and context switch: OSes ideally should not need
to change for HTM support; the state associated with the transactional working
set is large and difficult to grab from and inject to the hardware; and availability
/ security concerns mandate that kernel code should not get interrupted due to
unknown transactions in user space.

If a transaction causes a kernel entry, what happens to the reason for the
entry? Should the kernel still be invoked? Because the mechanics are similar
to the disputed behaviour of exceptions in transactions in C++, can we learn
something there?

Reasons for kernel entries that do not originate from the transaction itself,
such as interrupts, should cause a kernel entry.

However, what if the reason for the kernel invocation is based inside the
transaction? Strict atomic semantics mandates that these invocations do not
happen. However, page faults (and other OS-handled transient conditions) are
good candidates for circumstances in which resolving the fault outside the trans-
action makes sense; otherwise, a retry would likely hit the same condition again,
making complex recovery methods necessary [2].

2
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Nevertheless, there is a requirement that these faults are not caused by spu-
rious, invalid data. We would certainly like to ensure that the state operated
on is always consistent. However, a hardware implementation without permit-
ted side-effects may be free to continue execution of transactions running on
inconsistent state, just buffering all transactional stores and discarding them.

With visible side-effects of exceptions and non-speculative memory accesses,
we need to specify the (visible) timeliness of the aborts.

For ASF, we have chosen to make page faults and other exceptions visi-
ble, fuelled by the assumption that code inside a transaction always runs on
consistent state.

2.3 Imperfect Register Snapshots

Yet another side channel through which data can leak is through the partial
register snapshots of ASF. While some of this state is beneficial (such as the
page fault address in the preceeding example), some of it is disturbing, such as
the unclear state of the general purpose registers.

The current ASF spec leaves it open, whether registers not touched by the
transaction have to keep their value. While this can be fixed easily, the then
following question remains: can we make further assumptions on the register
values? Consider the following assembly example:

SPECULATE

... (RCX not modified here)

CMP %RBX, $0

JE over

MOV %1, %RCX

over:

... (RCX not modified here)

COMMIT

In case of an abort, can the programmer deduce that if RBX = 0, RCX
will not have changed its value?

2.4 Spurious Contention

Relying solely on atomicity is not enough for a sane TM semantics, however, be-
cause an implementation may be free to abort all transactions executed. Ideally,
transactions should abort only when absolutely necessary (i.e., on unresolvable
conflict), but several aspects demand simplifications: estimating the minimal
set of transactions to abort is complex, so Rock and ASF employ a simple static
policy of requester-wins conflict resolution. Nevertheless, in earlier work [3] we
have discussed that conflicts in a simple HTM implementation on top of an out-
of-order microprocessor can abort due to conflicts on data on mis-speculated
branches, both in the read and write sets.

Without a clear specification, resulting performance may be difficult to pre-
dict, particularly if optimisation with non-transactional memory is employed.
Even more importantly, without a specification, implementations may even be
free to treat non-transactional accesses as transactional. Apart from the obvious
performance implications, how much does software rely on this?

3
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For ASF, we have designed a minimal capacity for progress in the absence
of actual contention, which ensures that the implementation must eventually
execute sufficiently small transactions successfully.

3 Conclusion

Hardware transactional memory implementations deliberately weaken the atom-
icity property associated with transactions. We have illustrated several aspects
of this weakening and why it may actually be beneficial to have in some cases,
and provided small examples that depend on the actual way of weakening.

We have shown how we think these ambiguities should be solved; namely, in
the ASF specification. However, we believe open areas of what we have specified
remain, and open areas may remain in how we have specified certain aspects.
We would therefore like to use the workshop as a platform for discussion and to
learn about open issues and how other practitioners feel about out attempts.

We would also like to learn about work in deriving a more formal specification
of TM.
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Abstract
Time stamps are frequently used in multi-threaded appli-
cations, and provide a way for an application to deter-
mine order between events. We identify interactions be-
tween time stamps and transactional mechanisms that dif-
fer from the expected behaviour of using locks for mutual
exclusion, and draft implementations that remove these
differences.

Keywords: Transactional Memory, Lock Elision, Clocks,
Synchronization

1 Roadmap
Section 2 provides the background of concurrency control
mechanisms and time stamps, and Section 3 reviews their
semantics. We then show critical interactions between
time stamps and transactions in Section 4, and draft two
implementations that properly handle these in Section
5. Sections 6 and 7 provide an outlook and conclude the
paper, respectively.

2 Background
2.1 Concurrency Control

Critical sections traditionally operate on a strict mutual
exclusion property: Instructions of two critical sections
must not interleave if both critical sections are protected
by the same lock variable. Recent literature calls this
mode of operation Single Lock Atomicity (SLA) [6].

Database transactions provide serialisability [8], the
strongest form of isolation. Briefly, transactions may
overlap if there exists an equivalent execution in which no
transactions overlap. Strict serialisability (and the similar
linearisability [4]) is a stronger form of serialisability that
restricts the serial order such that observed real-time order
between non-overlapping transactions is maintained.

Transactional memory [3] brings the notion of trans-
actions to general-purpose systems. The large variety of
semantics [7] differs mainly in how they deal with inter-
leavings of instructions that are not part of transactions
and instructions that are part of a transaction.

2.2 Transactional Lock Elision

Transactional execution offers benefits over strict mutual
exclusion imposed by critical sections, because transac-
tions can be optimistically executed in parallel, as long
as the specified isolation level is maintained. The idea to
convert lock-protected critical sections into transactions
and extract additional performance has been proposed in
previous work on lock elision [10].

Initially: c = 0
t1 = RDTSCP
c := 1

lc = c
t2 = RDTSCP

Figure 1: Dependent reads from the time stamp counter
produce properly ordered time stamps: If lc = 1, then t2 > t1.

To transparently elide locks in existing applications,
the semantics must not be weaker than that provided by
mutual exclusion.

2.3 Access to Time Stamp Counters
Applications must measure time and its progression,
to determine durations of, order and coordinate events.
Computers provide time sources of varying quality.
We will focus our analysis mainly on the CPU’s time
stamp counter (TSC), which has seen significant quality
improvements during the last decade. We assume the
TSC is a suitable real-time source,1 and that applications
(through libraries such as libc) rely on such behaviour.
For brevity, and without loss of generality, we ignore the
potential offset between different TSCs because it can be
bounded by a small constant εwith initial calibration. Our
results hold also in those cases, with some additional mar-
gins added to comparisons accounting for the difference.

On the AMD64 architecture, the TSC can be read
with the RDTSC and RDTSCP instructions. We consider
only RDTSCP because it is properly serialised with the
instruction stream. We do not consider other clocks, due
to space and because the TSC is the most frequently used
fast, stable time source.

3 Semantics of Time Stamps
3.1 Traditional Code
Memory causality and synchronised time stamps allow
us to reason about time stamp relations across multiple
cores and application threads:

Causal TSCs: In non-transactional code, order im-
posed by memory accesses will be reflected in time
stamps that are ordered accordingly.

In Figure 1, two RDTSCP instructions are ordered by
a memory dependence. We assume for this and similar
examples t2 > t1 always holds; generally, existing order
such as memory dependence and program order also
orders time stamps.

Critical sections implemented through locks serialise
execution through memory dependencies. Therefore, for

1This has been true for most x86 microprocessors since 2007.
1
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time stamps t1 and t2 read in inside critical section CS1
with t1 < t2, and t3, t4 read in CS2 also ordered t3 < t4,
and CS1 and CS2 being protected by the same lock
variable, we know from Causal TSCs that either t2 < t3,
or t4 < t1. In other words:

Temporal mutual exclusion: For two critical sections
CS1, CS2 protected by the same lock, the intervals
spanned by the set of obtained time stamps T (CS)
do not overlap: [min(T (CS1)),max(T (CS1))] ∩
[min(T (CS2)),max(T (CS2))] = ∅.

3.2 TSC-oblivious Transactions

Because transactions are a new programming construct,
they need not maintain strict compatibility with legacy
code and its assumptions. Therefore, access to the TSC
is treated differently in the various implementations of
transactional memory: software TMs (STMs) usually do
not track RDTSC(P) instructions and so may allow an
application to infer temporal placement and overlap of
the transactions. AMD’s proposed Advanced Synchro-
nization Facility (ASF) [1] does not allow transactions
to execute RDTSC(P), making it impossible to detect
temporal overlap for transactions at the cost of not being
able to read the TSC in transactions.

In Intel’s recent Transactional Synchronization Exten-
sions (TSX) [5], access to the TSC is permitted in both
transactions and elided critical sections. Because the
elision does not work fully transparently,2 software can
be exposed to the changed semantics of (elided) critical
sections [9].

3.3 The Need for Stronger Semantics

Usually, elided critical sections track memory accesses
and ensure they correlate to a sequential execution by
tracking conflicting accesses. However, as we will show
in the next section, this is insufficient if applications make
use of the TSC inside critical sections. Applications may
infer concurrent execution of critical sections that were
supposed to execute strictly sequentially. Such mismatch
between expected behaviour and implementation breaks
transparency of the elision and can lead to crashes, or
other misbehaviour.

In addition to supporting stronger semantics for the
lock elision case, we also consider a stronger semantics
incorporating TSC accesses for (hardware) transactions.
Providing the same semantics in both modes makes
sense: (1) using hardware transactions as a drop in
replacement for locking, and (2) providing a well-known
semantics for TSC usage in transactions that is easy to
understand and reason about.

4 Semantic Issues of Time Stamps in Transac-
tions

This section illustrates problematic orderings of transac-
tions and the use of time stamp accesses from within. We
aim for transactions and elided critical sections to have
a semantics that is equivalent to proper mutual exclusion.

2Applications need to use annotated instructions to acquire and
release the lock variable, and can query whether they run in a
transaction / elided critical section with the XTEST instruction

TX1.begin TX2.begin
t1 = RDTSCP

t = RDTSCP
t2 = RDTSCP
TX1.end ...

TX2.end

Figure 2: Overlapping time stamp values violate SLA.

Initially: c = 0

TX1.begin
TX2.begin
t2 = RDTSCP

c := 1
t1 = RDTSCP
TX1.end

lc = c
TX2.end

Figure 3: Two transactions can exhibit contradicting ordering
if lc = 1 and t2 < t1.

We will therefore use the term transactions also for elided
critical sections.

4.1 Simple Overlap Case

In Figure 2, the case t1 < t < t2 directly violates
Temporal mutual exclusion – the result for time stamps in
traditional critical sections obtained in Section 3.1.

4.2 Order Mismatch: Memory vs. Time Stamps

In addition to detecting temporal overlap through time
stamps, two transactions may observe mismatches in
the respective memory or time stamp orders. Figure 3
shows an execution that orders transaction TX1 before
TX2 through memory; however, because t2 < t1, the
time stamps indicate the opposite. Proper SLA semantics
would not allow such contradicting orders under Causal
TSCs.

4.3 Weak and Strong Temporal Isolation

If code accesses the same data inside and outside critical
sections, no new order between these accesses is cre-
ated. In those cases, order can be created only through
reasoning with the underlying memory semantics. If no
such order can be established (usually called a data race),
the involved accesses are subject to complex, sometimes
even all-bets-are-off / catch-fire semantics.

With transactional memory, however, some sys-
tems provide strong isolation which properly orders
transactions with respect to memory accesses out-
side of transactions, usually by assuming that the
non-transactions are one-instruction mini-transactions.
Systems that do not provide such isolation, but only order
transactions, provide weak isolation.

We observe a similar interaction with TSC accesses,
extending the weak / strong isolation property to weak /
strong temporal isolation (WTI / STI).

Figure 4 highlights the interaction. The example
clearly does not violate either SLA, nor does it produce
overlapping time stamp intervals. It also does not violate
purely memory-based strong isolation semantics, because

2
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Initially: c = 0

TX2.begin
t2 = RDTSCP

t1 = RDTSCP
c := 1

lc = c
TX2.end

Figure 4: Failure of strong temporal isolation if lc = 1
and t2 < t1. Instructions on the left do not execute from a
transactional context.

Initially: c = 0

TX2.begin
t2 = RDTSCP

t1 = RDTSCP
TX1.begin
TX1.end
c := 1

lc = c
TX2.end

Figure 5: Transparent lock elision requires strong temporal
isolation: with SLA, if t2 < t1 then lc = 0; however, with
weak temporal isolation lc = 1 is possible.

TX2 is ordered behind the non-transactional store from
a memory perspective. With strong temporal isolation,
the intuitive combination of strong memory isolation and
Causal TSCs is enforced.

4.4 The Need for Strong Temporal Isolation
Strong temporal isolation restricts execution more than
a system that provides only weak temporal isolation.
However, SLA does not inherently order critical sections
and code outside of critical sections, so it may seem
sufficient to provide only weak temporal isolation for
transparent lock elision (and transactions). However, if
we modify the example in Figure 4 slightly to obtain Fig-
ure 5, we find otherwise. Using locks (SLA semantics),
we can deduce the following: If t2 < t1, TX2 must also
read the old value of c because it must have executed
entirely before the empty transaction TX1 which in
turn executed before the update to c. Strong temporal
isolation will enforce the same implication to hold, but
the depicted schedule is possible with weak temporal
isolation. Therefore we conclude:

WTI insufficient: Transparent transactional lock
elision with support for accesses to TSCs requires a
stronger semantics than weak temporal isolation.3

5 Supporting Time Stamps in Transactions
In the previous section, we presented various problems
that illustrated how existing systems with unrestricted ac-
cess to time stamps can cause violations of the semantics
outlined in Section 3.

Of course, forbidding all access to time stamp counters
from within transactions and elided critical sections
will provide the exact semantics. ASF works like that

3Strong temporal isolation, for example. We do not know if a
semantics weaker than STI would also work.

and aborts all executed transactions that try to use the
RDTSC(P) instruction. However, because time stamping
is employed in many applications, it is desirable to find
less rigid solutions that provide temporal isolation.

Temporal Isolation Rules: Clearly, there are two rules
needed for proper temporal isolation: (1) The time stamp
order needs to agree with the order established by the
memory accesses in transactions and non-transactional
code; and, (2) time stamp intervals of transactions / elided
critical sections must not overlap.

5.1 Single TSC Access
Restricting transactions to access the TSC at most once
removes the problem of overlapping time stamp intervals.
A simple implementation could therefore track locally
that transactions do not read from the TSC twice, and
abort otherwise.

The simplest solution to enforce consistent time stamp
and memory order, Single-AbortAll, is to allow only a
single transaction access to the TSC and abort all other
overlapping transactions (e.g., by adding a dedicated
memory location TSCA to each transaction’s read set and
sending out conflicting write probes on an RDTSC(P)).
For example, the execution of Figure 3 would abort TX1
immediately at the acquisition of t2, regardless of TX1’s
content.

A more selective approach is Single-AbortTSC, which
aborts only those live transactions that have or will
eventually access the TSC. That can be achieved by
recording TSC usage, handling the conflict only if a
running transaction has already accessed the TSC, and
letting future RDTSC instructions check whether their
enclosing transactions have seen a remote TSC access.
Compared to Single-AbortAll, the advantage is that
transactions that do not access the TSC need not be
aborted. The execution in Figure 3 would only need
conflict handling when TX1 obtains t1. If it would not
have used RDTSCP, it could continue execution.

5.2 Multiple TSC Accesses
Allowing a transaction to read from the TSC multiple
times allows transactions to observe the passage of time.
Similar to Single-AbortTSC, transactions will not abort
all other concurrently running transactions at the first
read of the TSC, but rather ensure that no overlapping
time stamp intervals can form.

In this case, each transaction checks at the second
or later read from the TSC that it has not received any
notifications from remote TSC accesses; otherwise, a
conflict exists. This case needs to be handled by a conflict
resolution policy, for example by self-aborting on the
second local RDTSC(P), or by aborting all other time
stamp-using transactions.

The advantage of this technique is that transactions can
execute in parallel, and each can access the TSC multiple
times, as long as the intervals formed by each transac-
tion’s first and last accesses to the TSC are disjunct. In the
Figure 2 example, the conflict would be detected at the
read of t2 because of the concurrent TSC read to t . If the
reads for t2 and t would have been ordered the opposite
way (and then also t2 < t), no conflict would exist.

3
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Enforcing order: Again, in addition to enforcing
disjunct time stamp intervals, we need to make sure
that these intervals are ordered consistently with all
other orders – for example, imposed through memory
accesses. Take the simple example in Figure 3: so far, the
algorithm does permit the contradicting order. Consistent
ordering betwen time stamps and memory accesses can
be achieved by ensuring that TX2 commits before TX1,
for example by waiting at TX1’s commit point for a
can commit message from TX2. These messages do not
need to broadcast, because TX2 knows that TX1 has
acquired a later time stamp. TX2 can therefore signal
TX1 (and all later) transactions that they must wait for a
commit signal, and when they can commit.

Waiting alternatives: Instead of TX1 stalling the CPU
at commit, it may be possible for it to continue execution
of instructions behind the transaction transactionally,
essentially increasing the length of the transaction by
adding the following, non-transactional instructions to
its transactional tail. That way, useful work can be done,
reducing the performance penalty incurred by waiting.
Of course, this may lead to additional conflicts (due
to additional memory accesses adding to the working
set), and additional transactional TSC accesses that need
special handling.

Another option is to put the core in a low-power state
and wait for the special can commit signal from TX2
(similar to the low-power mode that can be entered with
the MONITOR / MWAIT instruction combination [2]).

5.3 Handling Non-transactional TSC Accesses
STI requires that TSC accesses outside transactions
need to participate in the conflict detection mechanisms.
However, we may want to treat conflicts with non-
transactional TSC accesses differently to ensure progress
and minimal obstruction for non-transactional code. We
therefore suggest biasing conflict resolution in favour of
non-transactional TSC accesses, by always aborting the
concurrent transactions with which the non-transactional
RDTSC(P) conflicted (instead of retrying / delaying the
non-transactional access).

6 Outlook
Although we believe our examples and implementations
cover all critical interactions, and thus provide an iden-
tical semantics to fully sequential mutual exclusion, we
have not yet proven our solutions to be correct or our
restrictions to be minimal. We have started to develop
a formalism, but have not discussed it here due to space
constraints and prematurity.

We are particularly interested in the applicability of our
proposed implementations. Clearly, our system is more
permissive than AMD ASF’s strict ban of TSC reads in-
side transactions (and more transparent than Intel’s TSX
lock elision), but we still need to abort and serialise a sig-
nificant number of transactions. Although we believe that
this is inherent to the limit to which one can make parallel
execution behave similarly to sequential execution, some
applications may just not care. Automatic inference
of such properties seems very hard; therefore, we have
restricted our analysis to provide as much performance as

possible with STI. The straightforward way out (for us as
hardware designers) is to leave the decision to software
– for example, by offering an explicit choice between
strong and weak temporal semantics with multiple types
of transactions and / or time stamp accesses. This new
freedom opens up a new space for looking into the
interactions between different types and exactly how
much each needs to be weakened to provide compelling
performance, while remaining useful for applications.

7 Conclusion
In addition to communication through memory, time
stamps provide another way for parallel code to coor-
dinate. Therefore, time stamps need to be considered
by systems that control parallel execution such as
transactional memory and lock elision. Existing critical
sections provide very strong semantics of strong temporal
isolation, which we have not found to be provided by
most STM and HTM solutions. In this paper, we have
identified the issue of time stamp order and have shown
with multiple examples how applications can observe
time stamps inconsistent with the isolation level or with
the order observed from memory accesses. We drafted
various implementations that will provide strong temporal
isolation without the need to fully serialise execution.
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Abstract
Hardware Transactional Memory (HTM) implementations are be-
coming available in commercial, off-the-shelf components. While
generally comparable, some implementations deviate from the
strict all-or-nothing property of pure Transactional Memory. In-
stead of trying to hide them, we lift these deviations to a simple
transactional resurrection mechanism that can be used to accel-
erate and simplify both transactional and non-transactional pro-
gramming constructs. We implement our modifications both archi-
tecturally and micro-architecturally in a detailed HTM proposal,
without changes to system software and only light modifications
to the existing HTM microarchitecture. We then show applica-
tion of transactional resurrection in both transactional and non-
transactional parallel programming: hybrid transactional memory;
transactional escape actions; alert-on-update; and transactional sus-
pend / resume.

Categories and Subject Descriptors C.1.2 [Computer Systems
Organization]: Processor Architectures—Multiprocessors; D.1.3
[Software]: Programming Techniques—Parallel Programming

Keywords computer architecture, synchronisation, transactional
memory, cross thread communication

1. Introduction
Originally proposed in 1993, Hardware Transactional Memory[11]
(HTM) has at last gained traction with industry, and leading mi-
croprocessors have incorporated HTM support [13–15]. However,
these products provide a much less exotic flavor of HTM than those
proposed by researchers [26, 27]. They generally offer a compara-
ble best-effort HTM with strong isolation, but very loose capacity
specifications, as capacity is usually determined by size and organ-
isation of the cache used to track the transactional working set.

Clearly, there is a gap between what the hardware provides now
and in the near future,1 and the compelling features suggested in

1 IBM POWER8 2014 [17], IBM zEC12 [2], Intel Haswell [39]
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academia. We show how to extend a basic HTM proposal to bridge
this gap and bring features proposed in academia to product-grade
HTM proposals.

Even though the various HTM proposals and forthcoming prod-
ucts have many similarities in their core feature set, on the periph-
ery the proposals differ, for example how they treat the register
state, and in the availability and design of mechanisms that allow
code to escape through the transactional layer. Comparing, for ex-
ample, Intel’s Transactional Synchronization Extension (TSX) and
AMD’s Advanced Synchronization Facility (ASF), both provide
best-effort transactional memory (Restricted Transactional Mem-
ory (RTM) in Intel’s proposal), but differ in (1) the way they treat
the snapshot / rollback of a transaction’s register state, (2) non-
transactional accesses from within a transaction, and (3) the avail-
ability of a minimum capacity guarantee.

TSX snapshots all registers on transaction start, and restores
them automatically on abort; it also does not provide instructions
to bypass the transactional mechanisms (e.g., loads within a trans-
action that are not tracked, or stores within a transaction that do
not roll back). ASF provides the opposite: registers are not auto-
matically saved and restored, but instead software needs to man-
ually save live registers on transaction start and restore them on
abort. Additionally, ASF allows programs to bypass the transac-
tional mechanisms through the application of an existing instruc-
tion prefix to mark memory operations as non-transactional; these
operations will appear to take effect immediately, rather than at the
end of the transaction. A similar feature was present in the can-
celled Rock processor [4].

We explore the different policies for register snapshotting and
propose transactional resurrection as a lightweight mechanism
which we use to synthesise features such as alert-on-update[34], es-
cape actions[22] and transactional suspend / resume; thus achieving
a rich transactional programming environment.

We focus on extending the HTM interface, but are careful not
to increase hardware verification costs or require changes to exist-
ing system software. In particular, we do not extend the architected
state of applications, and thus the operating system and hypervi-
sor can remain oblivious of the extensions, e.g., when performing
context switches. Our hardware modifications are non-invasive in
nature and do not require any additional associative tracking struc-
tures, or other deep changes to the processor pipeline or the cache
coherence / memory subsystem.

Our contributions in this paper are: we propose the mechanism
of transactional resurrection that allows aborted hardware transac-
tions to resume; we implement these mechanisms as four new in-
structions in a detailed architectural and micro-architectural HTM
prototype (ASF); on top of these, we build transaction suspend / re-
sume, escape actions, and multi-location alert-on-update. Finally,
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we evaluate performance overheads and demonstrate the function-
ality of our implementation in a full-system, cycle-level simulator.

The paper is structured as follows: first, we give a brief intro-
duction to ASF in (Section 2) and detail our proposed hardware ex-
tensions (Section 3). We present the different higher level use cases
for the extensions (Section 4,5,6) and conclude with an evaluation
(Section 7) and related work (Section 8).

2. Background: ASF
For our design we extend AMD’s Advanced Synchronization Fa-
cility (ASF) [6]. In this section we briefly review how ASF exposes
core HTM functionality, as well as the unique aspects of ASF that
we use to build a more robust programming environment.

ASF transactions are started with the SPECULATE instruction
which creates a partial checkpoint of the thread state. SPECULATE
also serves as the entry to an abort handler if a transaction fails
to commit. The COMMIT instruction ends a transaction, making all
transactional updates immediately and atomically visible to mem-
ory. Within a transaction, regular x86 MOV instructions and pre-
fixed LOCK MOV instructions (which can be either loads or stores)
are used to distinguish between immediate, irrevocable accesses
that escape the transaction and transactional accesses (i.e., stores
are buffered until commit, and loads are tracked in the cache).
The polarity of the LOCK prefix is determined by selecting either
SPECULATE or SPECULATE INV to start the transaction. The for-
mer executes undecorated accesses non-transactionally and uses
prefixes to mark transactional accesses, while the latter inverts the
scheme and is more similar to TSX, Rock and other HTM pro-
posals. In the remainder of this paper we will explicitly state the
transactional property of accesses.

ASF provides strong isolation: transactions will detect conflicts
with concurrent accesses, even when those concurrent accesses oc-
cur outside of a transaction. Conflicts are resolved through a sim-
ple requester-wins abort policy which always aborts the transaction
that added the conflicting item to its working set first. When per-
core private data caches are used to detect conflicts, this policy can
be supported without any change to the underlying cache coherence
protocol, thereby reducing the verification cost of transactional ex-
tensions to the ISA.

In case of an abort, ASF will undo any speculative memory
writes, but will keep the processor registers and all other memory
updates visible. The CPU redirects execution to the instruction fol-
lowing SPECULATE and provides an error code (in register rax)
with information about the abort reason. The application should
check the error code and branch to an abort handler that will take
appropriate measures (e.g., back-off and restart the transaction).
Aborts in ASF happen synchronously with the condition for the
abort, and may occur between any two instructions in the transac-
tion. As a “best effort” HTM implementation, additional causes of
aborts include, but are not limited to, system calls, exceptions and
interrupts (to include timer interrupts), and capacity/conflict cache
evictions (i.e., due to the transaction’s working set exceeding the
size of the cache).

3. Resurrection–Aborts with Continuation
When an ASF transaction aborts, almost the entire register state is
available to the abort handler. The only exceptions are the registers
used to: convey the abort cause (rax, rflags); restore the stack
pointer (rsp); and change the control flow to the instruction after
the SPECULATE instruction (rip). If the values of these registers
were made available, the abort handler could resume execution
inside the transaction (ignoring for now that the abort would clear
the transaction’s working set).

rel_lock:
MOV [lock] <- rax
...
IF saw_abort
  GOTO handle_abort
COMMIT
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ADD  [nontxloc] <- $42

acq_lock:
MOV  rax <-  $1
XCHG rax <-> [lock]
IF rax
  GOTO acq_lock

SPECULATE rsi
JNZ abort
TXLD rsi <-  [txloc]

Figure 1. Basic Functionality of Abort with Continuation
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Figure 2. Suspend/Resume mechanism: (1) A hardware transac-
tion is started (SPECULATE with “backup” as argument), but the
transaction body is instrumented so that accesses will also be
logged; (2) In case of an abort, ASF records the instruction pointer
rax and executes the abort handler; (3) If the transaction can be
recovered, the handler starts a new hardware transaction; (4) The
working set is replayed; (5) The transaction resumes the normal
execution (using CONTINUE); (6) The transaction commits its hard-
ware transaction and resets its logs.

One option to place these register values is to use additional,
new registers for either storing the old content of the overwritten
registers, or conveying the necessary additional abort information
and not use existing registers for that purpose. Both variants do
increase the footprint of the architectural register state of appli-
cations. Therefore, operating systems and hypervisors would then
have to be aware of these registers and save / restore them on con-
text switches. To avoid affecting systems software, the register state
must go elsewhere: we let the programmer allocate a buffer to hold
the old values of the overwritten registers and provide the location
of the buffer as a parameter to an extended SPECULATE instruction.

In Figure 1 we present the main interaction: SPECULATE is
extended so that it accepts a memory buffer location parameter (1),
looks up the virtual address and translates it to a physical address,
and also checks write permissions to the location. Any page faults
that could occur when accessing the buffer are thus already resolved
before the transaction starts. In the event of nested transactions,
the SPECULATE instruction ignores this parameter: Since ASF only
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supports flat/subsumption nesting, there is no meaning or benefit to
saving multiple register checkpoints.

The CPU keeps the resulting physical address in an internal reg-
ister (2) and starts the transaction. The transaction executes, mutat-
ing the CPU’s register state (3). In case of an abort (4), the pro-
cessor first copies rax, rip, rsi, and rflags into the application-
provided buffer (5), and then updates these registers and control
flow to reflect the abort condition (6), with rsi additionally holding
the buffer address. Furthermore, rsp will no longer be restored:2

this prevents stack smashing due to signals or interrupt handlers
running within the abort handler. The application code checks for
aborts and branches to an abort handler (7). The abort handler can
simply restore rsi and rsp from the the buffer pointed to by rsi
and reproduce the original ASF abort functionality. However, it can
also resume the code in the transaction by restoring all overwrit-
ten registers from the buffer (8). Since existing assembly primitives
cannot restore all registers without overwriting an additional tem-
porary register, we provide a new CONTINUE instruction that per-
forms a simple micro-code sequence to restore the registers.

To simplify the ASF interface, we also provide RDINVMODE and
WRINVMODE instructions. These allow the programmer to detect and
change the behaviour of MOV and LOCK MOV within transactions.

3.1 Handling synchronous aborts asynchronously
ASF transactions are aborted immediately in case there is a reason
for it (e.g. contention). This provides strong isolation guarantees for
transactions but puts the burden on a programmer to reason about
correctness, as a transaction might be aborted at every machine
level instruction. Especially, if non-transactional modifications are
made inside a transaction (e.g. memory allocation), a correct state
has to be preserved. With the proposed extensions, it is easy to
translate HTM’s synchronous aborts into asynchronous aborts. The
abort handler will simply set a thread local variable (saw abort in
the example) signalling an abort, and will then execute CONTINUE.
The code inside the transaction will query the variable at suitable
intervals and then can handle the earlier abort asynchronously.

3.2 Cost
From a hardware perspective, the required changes atop ASF are
minimal: memorising an additional pointer during the execution of
the transaction is easily achieved in either an internal register or
in scratchpad memory. The changes to SPECULATE, aborts and the
new CONTINUE instruction can be effectively coded in microcode.
Pre-checking the allocated buffer location for a proper virtual to
physical address mapping when executing SPECULATE ensures that
the processor will always be able to store the continuation informa-
tion and no abort page fault deadlock can occur.3

Implementing our changes on top of other industry HTM pro-
posals, such as Intel TSX, requires slightly more effort. Our addi-
tions to the abort handler and new instructions remain lightweight,
but non-transactional accesses are usually absent from the cur-
rently specified proposals. Discussion with hardware designers
showed, however, that supporting non-transactional accesses is
neither overly complex nor requires a lot of silicon, but instead
has been postponed due to lack of demand and semantic corner
cases. We show how non-transactional accesses can be used in a
beneficial, controlled, and semantically clear manner.

Best-effort TMs, such as ASF, usually do not virtualise the
transactional resources on context switches; instead, they abort on-

2 The old value of rsp from SPECULATE is stored in the buffer, instead.
3 Since page faults cause aborts, we would otherwise risk deadlock from
the following cycle: abort transaction→ store to buffer to keep overwritten
register values → page fault due to buffer access → abort transaction
because of a page fault

1: procedure SAHTM START . Start a software-assisted HTM
transaction

2: buf1, buf2 ← malloc()
3: (buf1.other, buf2.other)← (buf2, buf1) . Cross-link buf1

and buf2
4: log ← ()
5: SPECULATE buf1 . Start the hardware transaction
6: error ← rax
7: if error 6= 0 then
8: return SAHTM ABORT(rsi, error) . Handle errors and

resume if possible
9: return IN TX

10: procedure SAHTM ABORT(s, error) . Handle aborts, s holds the
resume state

11: push regs
12: retry:
13: if error.type = CONTENTION then
14: rsp← s.abort rsp . Do a full abort
15: return ABORTED
16: else if error.type = FAR then . Resurrect after interrupts,

page-faults
17: (error, s)← SAHTM RESURRECT(s) . Successful

resurrection does not return
18: goto retry
19: else if error.type = ILLEGAL then . Emulate syscalls etc.
20: s← EMULATE(s)
21: (error, s)← SAHTM RESURRECT(s) . Resurrect after

successful emulation
22: goto retry
23: else
24: . . . . Handle other abort reasons

25: procedure SAHTM COMMIT
26: COMMIT . Just commit the HTM transaction
27: free(buf1, buf2)

Figure 3. Handling the life-cycle of HTM transactions with sus-
pend / resume extensions. Applicable to both software-assisted and
hardware-extended suspend / resume HTM.

going transactions. In our design we do the same, thereby avoiding
resource-hungry virtualisation. Note that the full architectural CPU
state can be reconstructed by the abort handler even after a con-
text switch: saving the registers clobbered by the hardware abort in
virtual memory lets them survive the context switch, and the OS’s
existing context save / restore mechanism naturally takes care of all
other registers.

4. OS-transparent Transaction Suspend / Resume
Suspend / resume appears in the new IBM POWER8 HTM pro-
posal [13], but relies on additional registers and special handling
in the OS when dealing with suspended transactions. Suspending
a transaction is useful for tolerating short execution of other code,
for example dealing with hardware interrupts, syscalls or excep-
tions. We now show how to enable full transaction suspension and
resume in ASF without changes to the OS, by building upon the
simple extensions we proposed in Section 3.

Our general approach is to let the transaction abort instead of
suspending it, and then offer a mechanism to resurrect the aborted
transaction when resumption is necessary. From an architectural
perspective, this means that suspended transactions are the same
as aborted transactions, and thus do not require special treatment
by the OS. Transaction-aware OS can use transactions without
concerns for the application’s usage of the transactional memory
resources and legacy OS can handle applications using HTM. Our
extended abort mechanism allows full access to all registers in the
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28: procedure SAHTM RESURRECT(s) . s holds the resume state
29: if s.resume ip ∈ lines(31 – 36, 41 – 48) then . Aborted while

resuming
30: s← s.other . Squash abort recursion
31: SPECULATE s.other . Start HTM container transaction
32: error ← rax
33: if error = 0 then . Successful start of HTM container
34: SAHTM REPLAY() . Replay transactional working set from

SW log
35: pop regs
36: CONTINUE s . Restore full state and return to resurrected

transaction.
37: else . Abort in the resurrected transaction
38: s← rsi . Update resumed state from new abort site
39: s.abort rsp← s.other.abort rsp
40: return (error, s) . Outer logic handles abort condition and

retries

41: procedure SAHTM REPLAY . Replay and validate transactional
accesses

42: for (addr, val, rw) ∈ log do . from the SW log
43: if rw = READ then
44: txload tmp← [addr] . Add to read set
45: if val 6= tmp then . and validate value
46: ABORT CONTENTION . Use HTM abort to

unravel validation failure
47: else
48: txstore [addr]← val . Redo stores

49: procedure SAHTM TXLOAD(addr) . Software-assisted read barrier
50: log ← (log, (addr, ∅, READ)) . Append a sentinel

protecting against an abort
51: . between line 52 and 53 missing replay of addr
52: txload val← [addr] . Add to HTM read set
53: (log, (addr, ∅, READ))← (log, (addr, val, READ)) .

Update with proper read value
54: return val

55: procedure SAHTM TXSTORE(addr, val) . Software-assisted write
barrier

56: log ← (log, (addr, val,WRITE)) . Append to log
57: txstore [addr]← val . Add to HTM write set

Figure 4. Resurrection and replay of aborted transactions, logging
read / write barriers. For simplicity, we omit handling different
sizes in SAHTM TXSTORE and SAHTM TXLOAD.

abort handler, so that it can restore the transaction’s register state
exactly as it was at the time of the suspension (abort).

In Figure 2, we depict the time line of a suspend / resume cycle.
Resume / resurrection is initiated in the abort handler when the
suspend condition has been handled, for example when control
has passed back to the application after invocation of an hardware
interrupt handler. A new transaction is started with SPECULATE
with a new buffer for storing the abort state and CONTINUE then
restores the suspended transaction’s register state and resurrects it.
Figure 3 shows the general behaviour in pseudo-code.

Clearly, making available all register state of the transaction to
the abort handler is not enough to resurrect the aborted transaction,
because the transactional working set in memory is rolled back in
ASF upon any abort. We present two options to deal with resur-
recting the transactional working set: (1) tentatively keeping trans-
actional state across aborts in hardware, or (2) adding minimal log-
ging instrumentation in software.

Inspecting the different abort reasons, we find that not all of
them require immediate roll-back of the working set. In partic-
ular, for aborts not caused by violations of the integrity of the
working set (i.e., aborts other than (certain types of) contention

1: procedure MESSYHTM RESURRECT . Resurrect with additional
HW support

2: if s.ip ∈ lines(4 – 8) then
3: s← s.other . Squash abort recursion.
4: SPEC RESURRECT s.other . Start HTM transaction using

working set still in cache
5: error ← rax
6: if error = 0 then . Successful resurrection
7: pop regs . No need to restore the read / write set
8: CONTINUE s . Restore full state and return to resurrected

transaction.
9: else . Abort in the resurrected transaction

10: s← rsi . Update resumed state from new abort site
11: s.abort rsp← s.other.abort rsp
12: return (error, s) . Outer logic handles abort condition and

retries

13: procedure HTM TXLOAD(addr) . Read barrier for resurrection
with HW support

14: txload val← [addr]
15: return val

16: procedure HTM TXSTORE(addr, val) . Write barrier for
resurrection with HW support

17: txstore [addr]← val

Figure 5. Hardware support in the caches to tentatively keep the
aborted transaction’s working set significantly simplifies the resur-
rection logic.

or capacity evictions), it may be possible to keep the transactional
state tentatively in the cache and make it available to the resur-
recting SPECULATE / CONTINUE pair. We propose Messy-HTM that
extends the SPECULATE instruction so that the cache can distin-
guish between a request to start with a clean transactional state
(SPECULATE) and attempts to reactivate the old transactional state
and aborts when this fails (SPEC RESURRECT). To keep the OS un-
modified, the speculative state is cleared when the processor sees an
event that causes a TLB flush, usually indicating a context switch.
Nevertheless, the proposed suspension / resurrection mechanism
can tolerate brief kernel invocations, for example due to interrupts
or system calls from within the transaction.

If lazy clearing of transactional state proves too complex for
an HTM implementation, or if support for surviving full con-
text switches is desired, we can employ a lightweight hybrid TM
approach of Software-assisted HTM (SAHTM): transactional ac-
cesses can be manually logged in a thread local buffer, which is
used to validate and replay the hardware transaction upon resurrec-
tion.4 We store in the buffer transactionally read and written val-
ues, the associated addresses, access sizes and access types (read
/ write). The buffer is updated during transactional execution by
using non-transactional stores. Since the HTM is used to provide
proper conflict detection and versioning, the log is append-only
and never read during normal operation: buffered updates that are
stored in the log are also performed as part of the transaction, and
loads that are tracked in the log need not be validated, since these
loads are also part of the transaction’s working set. To reduce the
overhead of logging, we combine the address and meta-data into a
single 64 bit word (note that virtual addresses are only 48 bit wide
in the current x86-64 specification). We contrast the details for res-
urrection and the respective read and write barriers in Figure 4 with
SAHTM and in Figure 5 with Messy-HTM that keeps the cache
content available. In combination with full hybrid TM systems em-

4 Note that software and hybrid TM systems already require this instrumen-
tation, and that compiler support for automatically adding this instrumenta-
tion is available in several production-grade compiler frameworks.
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ploying STM for large transactions, SAHTM’s logging mechanism
allows seamless transition from SAHTM to STM execution with-
out requiring an abort: the SAHTM’s access log is replayed into the
STM’s tracking data structures. In total, we add points on the per-
formance vs capacity / functionality spectrum. In Section 7 we will
quantify the performance characteristics of each of these options.

4.1 Cost
There is no additional hardware cost associated with the logging-
based SAHTM variant of resurrecting transactions, and even keep-
ing the transactional working set in the caches with Messy-HTM re-
quires only minimal changes. The cache remains unchanged from
an existing cache-based HTM design, especially if that HTM al-
ready offers non-transactional accesses, as is the case with ASF.
We change the handling of aborts: the core will not clear the trans-
actional state in the caches when encountering an interrupt, excep-
tion, or instruction that calls into the OS. Furthermore, the core
needs to memorise the fact that there is a suspended transaction and
detect TLB flushes. The cost for these modifications in terms of sil-
icon real-estate is small, but they incur a design and verification
cost. We acknowledge the cost and offer an intermediate update
step with our logging-based SAHTM approach.

The OS does not need to manage the transactional state of the
application with our extensions, because all detection of context
switches happens in hardware conservatively and is handled by
fully aborting the transaction. Because the register state of each ap-
plication reflects the aborted state already, no TM-specific update
of the architectural state has to occur during / for a context switch.
Accessing transactionally written data when the transaction is sus-
pended is dangerous in all suspend / resume proposals, because
hardware may need to drop the transactional updates to ensure the
consistency of the working set. Our SAHTM approach side-steps
the issue by hiding the transactional updates from the invoked OS
routines. If data needs to be reliably transferred into the OS han-
dler through memory, ASF’s non-transactional stores provide a safe
way to protect against spontaneously disappearing working sets. It
is also possible to instrument library codes so that they perform a
lookup in the log. This is reminiscent of techniques for achieving
open nesting in BEHTM [19]. We will show a way to safely handle
state transferal into the kernel in Section 5.

5. Escape Actions from Hardware Transactions
ASF already allows individual loads and stores to escape from a
transaction. Composing longer code blocks escaping these mech-
anisms (as in [40]) is complicated due to the synchronous nature
of aborts in ASF; whenever a condition for abort is detected (to
include concurrent memory conflicts and timer interrupts), control
flow can transfer from the middle of a basic block into the abort
handler. This is usually not an issue with transactional code since
all side-effects are tracked and rolled back. However, interrupting
an escape action while it has not finished executing can leave es-
caped data in an inconsistent state.

Given our mechanism for suspend/abort from Section 4, it is
straightforward to provide support for escape actions as well. For
simplicity, we adhere to the principles set forth for delegated escape
actions [19], namely that an escape action’s accesses are disjoint
with respect to the calling transaction’s read and write sets.

Without loss of generality, we assume that escape actions con-
sist entirely of non-transactional code (i.e., they use RD/WRINVMODE
at their entry and exit to set and restore this status). To support es-
cape actions, we update a thread-local field F prior to beginning
the escape action. Should an abort occur during the escape action,
the abort handler first checks F : if it is set, the handler memorises
information about the abort in another field H , and then uses a
CONTINUE to immediately resume the escape action. In this man-

ner, the (non-transactional) escape action code will not be aborted
while holding locks, or while at some point where invariants may
not hold. Upon completion of the escape action, the code registers
any undo actions related to the escape action, clears F , and checks
H . If H indicates that an abort occurred during the escape action,
the program uses the additional information saved by the handler
to complete the abort, closely resembling an explicit abort in a
software TM implementation.

In the event that the escape action requires a context switch or
system call, we seamlessly transition to a more heavyweight sus-
pend/resume operation. This may require the transaction to abort
and restart in SAHTM mode, if accesses have not been logged.
However, such a transition is only necessary if the system call can-
not be emulated; otherwise, the CONTINUE would immediately re-
turn to the OS trap instruction, which would abort the newly started
transaction and return to the abort handler. By switching on the
fly, we can suppress aborts for lightweight escape actions, while
still supporting escape actions that must be executed from a non-
transactional context.

5.1 Hardware Cost and OS Interaction
There is no additional hardware cost to provide support for escape
actions. With respect to OS interaction, the common case again re-
quires no support. However, run-time libraries that ought to run as
escape actions will require wrapper code to manage the F and H
flags. If an escape action must access state modified by the transac-
tion, then the action must be rewritten to check the access logs man-
aged by the transaction, and the transaction will require SAHTM
instrumentation. More complex software-based techniques are pos-
sible, wherein concurrent transactions are blocked and the transac-
tion executing the escape action temporarily becomes irrevocable.
In the absence of workloads requiring such functionality, the cost
of this approach is likely too high.

Note, too, that it is not necessary to execute every escape ac-
tion as a non-transactional operation. With the new instructions
to control whether LOCK prefixes indicate transactional or non-
transactional accesses, binaries (such as libc functions) may be
called in either an escaping fashion or through making all their
memory references transactional. By storing the current mode of
the transaction (inverted / non-inverted, attempt continue / abort)
in a thread-local variable, we can ensure that the right strategy is
employed in the abort handler, and that the best approach is taken
for each library function.

6. Multi-Location Alert-on-Update
Alert-on-update (AOU) is a mechanism that uses transactional read
set tracking to generate user-level signals upon certain cache evic-
tions [34]. To synthesise alert-on-update on top of our extended
abort behaviour, we begin an ASF transaction via the SPECULATE
command, use transactional (LOCK-prefixed) loads in place of AOU
loads, and keep all other memory accesses of the program non-
transactional. We also non-transactionally manage a record of all
AOU-loaded locations (Figure 6). Whenever a monitored (AOU)
location is written to by another core and evicted from the cache,
the ASF transaction aborts and jumps to its abort handler, which
serves as (or chains to) the alert handler (replacing the abort han-
dling in Figure 3). Note that changes to program state will not roll
back on transaction abort, since we have chosen in this case for the
default behaviour of loads and stores to be non-transactional.

After the handler finishes resolving the alert, it starts a new
transaction, re-adds the monitored location(s) to the working set,
and continues execution at the previously aborted location through
a CONTINUE instruction. Due to the overlapping nature of starting
a transaction before executing CONTINUE to restore the state of the
preceding transaction, we must take care to use alternating buffers
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1: function ALOAD(address) . Adds an alert on update of location
address

2: repeat
3: val1 ← [address]
4: locs← locs \ (address, ∗) ∪ (address, val1) . Add

value early to prevent data race
5: txload val2 ← [address]
6: until val1 = val2 . Ensure that this was a race-free ALOAD
7: return val1

Figure 6. Implementing alert-on-update with ASF.

for the storage of the clobbered registers. To prevent unbounded
abort recursion, we flatten aborts in the overlap region. The abort
handler will also be invoked for other reasons than changes in the
monitored location(s), such as syscalls and timer interrupts, but
those cases can be discerned through the abort condition codes pre-
sented to the abort handler by ASF. Continuing the transaction is
usually enough to continue execution, but some cases require sim-
ple emulation of instructions illegal within transactions (such as
I/O-related system calls). Often, the mechanisms discussed in pre-
vious sections suffice for this emulation. In other cases, lightweight
instrumentation is required to (a) COMMIT the SPECULATE opera-
tion, then perform the operation, and then begin a new SPECULATE
and restore all AOU loads. Note that this is simpler than suspend/re-
sume, because there is no transactional state that must be protected
during the (escaped) syscall.

6.1 Privatisation-safe STM with AOU
To demonstrate the utility of AOU, we consider its use to strengthen
the correctness guarantees of an STM algorithm without adding
overhead. In general, language-level implementations of transac-
tional memory (TM) require the TM implementation to be privati-
sation safe [1]. Roughly, this means that execution with transac-
tions appears equivalent to an execution in which all critical sec-
tions are protected by a single global lock [20]. This, in turn, boils
down to two problems [35]: when committing a transaction T that
logically transitions some region of memory R to a state in which
other threads can no longer access R transactionally, T must be
sure that (a) any transaction that committed or aborted before T
committed must not still be cleaning up its changes to R5, and (b)
any transaction still running will not continue to use data in region
R. These two problems are sometimes called the “delayed cleanup”
and “doomed transaction” problems.

The most general solution to both problems is a heavyweight
quiescence mechanism, in which every committing writer transac-
tion must wait for all concurrent transactions to commit or abort
and clean up before it departs from its commit function. Decou-
pled solutions to the problem tend to scale better, but these so-
lutions rely on polling to solve the doomed transaction problem:
when T commits, concurrent doomed transaction D may be in the
midst of accessing R, and will not determine that it should abort
until its next access of shared memory. The problem with this ap-
proach is that when T wishes to deallocate R, it cannot prevent
concurrent accesses by D. The only known solution in this case is
to change the allocator, so that T ’s deallocation is deferred until D
completes [12]. This mechanism, also popular in RCU synchroni-
sation, can result in an unbounded delay between when T commits
and when R is finally reclaimed. Consequently, production STM
implementations choose the quiescence approach.

5 We use the term “clean up” to refer to write-back in STM implementations
that use commit-time locking, and also to refer to undo operations at
abort time in STM implementations that lock and modify memory before
reaching their commit point.

Our implementation of AOU enables the use of decoupled vali-
dation without incurring the risk of unbounded delay during recla-
mation. The key observation is that if transactions use AOU to mon-
itor the notification location that they formerly polled, then they
will be notified immediately when it changes, due to transactional
abort. The notified thread can then ensure its validity with respect
to the newly committed transaction. If it remains valid, it can re-
sume; otherwise it will abort. Crucially, the interruption, valida-
tion, and abort of a transaction will occur between when T com-
mits and when D might next access R. That is, if T deallocates R,
it cannot affect D so long as D’s validation does not access R. In
practical terms, this prohibits algorithms that use value-based vali-
dation [8, 24], but otherwise carries no cost.

In prior work on AOU [34], the AOU hardware monitored
some subset of read locations and metadata to avoid validation.
In contrast, we use the AOU mechanism as a polling-free, low-
latency, immediate cross-core (cross-thread) communication mech-
anism that invokes the STM’s validation handler upon the commit
of every writing transaction; this requires AOU tracking of only a
single location, and is thereby beneficial for even the most capacity-
constrained HTM implementations. Since our AOU implementa-
tion is built atop our transparent suspend/resume mechanism, it is
practical: system calls and quantum expirations will cause a trans-
action to resume from inside its validation handler, and aborts dur-
ing calls to lock-based libraries (such as malloc) can be delayed
safely. Furthermore, the use of AOU-based notification simplifies
the STM algorithm, eliminating some comparisons for corner-case
behaviours.6

6.2 Hardware Dependence
In contrast to the transactional suspend and resume mechanism
from Section 4, with AOU we employ the transactions as an auxil-
iary wrapper to non-transactional code. Therefore, we expect to see
non-transactional accesses as the norm, which is well reflected by
ASF’s (non-inverted) SPECULATE instruction. For hardware imple-
mentations with small HTM implementations, programming with
AOU will side-step the capacity limitations of the HTM, while still
gaining some benefits relative to a pure STM library.

As before, the OS / hypervisor can remain oblivious of usage of
AOU in application code. This is an improvement over the original
alert-on-update proposal [34]. However, in some cases it may be
necessary to wrap system calls as escape actions that run outside of
a transactional context, in order to prevent infinite aborts at the trap
instruction. As discussed above, these escape actions are simpler
than those in Section 5: since we aren’t using the HTM for data
versioning, we can simply commit the SPECULATE region, run the
escape action, and then start a new SPECULATE region.

7. Evaluation
In this section, we evaluate the performance of our extensions.
All experiments were performed on Marss86, a cycle-accurate x86
simulator [25]. We extended Marss86 with ASF support based on
PTLsim-ASF [5],7 and then added the features discussed in this pa-
per. Our evaluation of AOU-enhanced STM uses benchmarks from
the RSTM [33] open-source library, and we evaluate suspend/re-
sume performance in the TinySTM [5] toolchain. Experiments ran
for 10,000 successful transaction commits per thread, and all re-

6 These simplifications, while useful, are lengthy and limited in novelty. We
intend to distribute them via open-source channels, but due to limited space
cannot include code listings in this submission.
7 We ported and heavily extended code from PTLsim-ASF (https://
github.com/stephand/ptlsim/tree/ptlsim_asf) to work with the
new memory hierarchy in Marssx86 and made changes available at https:
//bitbucket.org/stephand/marss86-asf.
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Figure 7. Throughput for RSTM OrecELA with AOU-enhanced
privatization safety.

sults are the average of three (RSTM RB-Tree and Hashset) or six
(RSTM Linked List) trials. Our simulated machine features a mod-
ern processor with 16 out-of-order cores, with per-core L1 and L2
caches and a shared L3 cache, and realistic default sizes for them
and DRAM. All experiments run in full-system simulation, with
Ubuntu Linux 12.04 LTS. All RSTM code was compiled with GCC
4.6.3 and the “-O3 -flto” optimisation options. The TinySTM-based
experiments use the Clang version of DTMC compiler [5] using
LLVM 3.2 with optimisation “-O3 -flto”.

7.1 Alert on Update for Privatisation-Safety
We enhance two variants of RSTM’s OrecELA STM implemen-
tation with our AOU implementation outlined in Section 6: Ore-
cELA and OrecELA + AOU use ordered commit departure, Ore-
cELAPQ and OrecELA + AOUQ perform quiescence to achieve
privatization-safety. The AOU-enhanced variants do not require de-
layed reclamation and therefore are not prone to unbounded delays
between memory free and actual availability of the memory. In-
stead, they can immediately reclaim memory at transaction commit
without inducing segmentation violations in doomed readers.

We use three data-structures implementing the integer set inter-
face that are provided with the RSTM source code: ListBench, a
singly linked list; HashBench, a hash table; and TreeBench, using
a Red-Black tree to store the set. We vary the thread count, fix the
total number of transactions and keep other parameters at their de-
faults (set size of 256 elements, pre-filled to 128 elements, value
range 0 - 255, update rate 66%).

Comparing the performance for the three data structures in Fig-
ure 7, we find that, overall, performance of the four solutions is
comparable. The linked list produces large levels of contention that
cause significant jitter in our results at higher thread counts. The
AOU-based STMs change the timing of validation due to their syn-
chronous signalling. In the linked list, abort characteristics change
for long transactions, because a short committing writer causes an
immediate validation and abort of a long, uncommitted transaction
that has traversed the list. In the non-AOU STM variants, that long
transaction would also be doomed but detect the conflict only when
it tries to commit.

In the hash set experiment, all transactions are small and con-
flict rarely. For the AOU-enabled cases, the frequent writers force
many AOU-induced revalidations causing overhead for the short
transactions. The net effect is an increase of the effective length of
the transactions. The present performance delta reflects this, but we
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Figure 8. Throughput for Intset benchmark using different TM
implementations

argue that the additional application-level guarantees outweigh the
performance impact of this application worst-case.

In summary, we show that our multi-location AOU prototype
(based on the extensions to our best-effort HTM ASF from Sec-
tion 3) works with small overhead and can be used to enhance an
STM library. We found that some work in the STM logic was nec-
essary to adapt it to handle the AOU-induced notifications arriving
at arbitrary code locations. To mitigate, we selectively switched be-
tween synchronous and asynchronous handling (see Section 5).

7.2 Transaction Suspend / Resume
For testing the transaction suspend / resume with SAHTM, we base
our work on the HyTM implementation in TinySTM which uses
plain ASF HTM with minimal additional software support to im-
plement serial irrevocable execution and memory management [5].
We extend read and write accesses to additionally log accessed ad-
dresses and values as described in Section 4. To reduce memory
pressure and to keep the log overhead small, we encode additional
meta data (size of the accessed data, read/write operation) in the
upper 8 bits of the address part of the log entries.

TinySTM contains four benchmarks implementing the integer
set interface: linked list, skip list, hash set, and red-black tree. We
evaluate each with an initial capacity of 256 elements and an update
rate of 20%. Figure 8 shows the throughput achieved for an increas-
ing number of cores for those benchmarks. We compare four dif-
ferent transactional memory implementations: Global Lock which
uses a single global lock for synchronisation - no accesses inside
a transaction are instrumented; STM WT a state-of-the-art write
through implementation for Software TM [28]; HTM the hardware
TM implementation using ASF as described above; and our new
implementation, SAHTM, that adds the logging read/write barri-
ers. SAHTM opt is a proof-of-concept hand-optimised binary that
bypasses shortcomings in LLVM’s optimisation passes, in particu-
lar hoisting loop invariants across barriers and handling inline as-
sembly with memory operands. We manually performed these op-
timisations on the SAHTM binary and briefly show first results for
linked list.

Looking at the throughput and transactional statistics (not
shown due to space limitations), we find that the RB-Tree and
Hash Set scale well, and HTM and SAHTM behave very simi-
larly for all core counts. The difference in throughput is due to
the additional overhead of the read/write barrier implementation.
For higher core counts, (> 8) SAHTM’s scalability shows a more
similar behaviour to STM. The reason for that is the additional
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overhead of the barriers and the need to replay the logs in case of
contention.

Both Linked and Skip List are a high-intensity workload for
all of our TM implementations: the linear scanning loop exposes
every bit of added overhead, due to very little other logic and pre-
dictable access patterns. SAHTM has a slight performance advan-
tage over the STM implementation but the logging overheads are
much more exposed than in RB-Tree and Hash Set. HTM scales
better, because its list traversal loop is extremely small and the
additional logging in SAHTM consumes memory and core exe-
cution bandwidth–causing significant slowdown. The major rea-
son for SAHTM’s overhead is missed optimisation opportunities
by the compiler (appropriate hoisting and reuse of the pointer to
the log structure instead of fetching them for each iteration in the
loop) adding superfluous instructions and extra memory traffic. Our
manually optimised prototype (SAHTM opt) for Linked List shows
the potential benefit from these optimisation which should be per-
formed by the compiler. This implementation is almost on par with
the HTM implementation for the thread counts we managed to test.

In summary, our suspend/resume experiments show that it is
indeed possible to implement transaction suspend/resume through
resurrection of aborted transactions in an OS-transparent way. For
data-structures with complex access patterns, the additional log-
ging instructions and memory traffic are apparently effectively
hidden in branch mis-predictions, cache misses and available
instruction-level parallelism. We see strong hints that carefully con-
trolling the optimisation in our framework can significantly drive
down the execution resource demand of our logging code and thus
can have low overheads also in simple data access patterns.

8. Related Work
For nearly a decade, researchers have been exploring mechanisms
for exploiting bounded HTM resources in more robust and pro-
grammable ways. One of the earliest proposals, from Zilles and
Baugh [40], introduced suspend/resume as a mechanism for al-
lowing hardware transactions to avoid the size constraints of HTM
when executing operations that either (a) are known to never cause
conflicts, or (b) are best served with other concurrency control
mechanisms (e.g., memory allocation). In that proposal, the hard-
ware still controlled the execution of the transaction, with their ex-
tensions serving only as a means of temporarily suspending the
transaction. Furthermore, without ASF-style HTM resources, this
work required significant changes to the underlying HTM, whereas
our implementation can leverage existing ASF support to require
only a minimal amount of additional hardware and software exten-
sion. Transaction escape actions [22] provided a similar feature in
LogTM, though again there was a noticeable hardware cost.

A more aggressive approach to exploiting bounded HTM is ex-
hibited by the many hardware accelerated software TM (HASTM)
systems. These proposals typically extended a traditional ISA with
features resembling TM hardware, most notably mechanisms for
tracking locations accessed within a region [30, 34, 36]. While
these features closely resembled those of more complete HTM pro-
posals, the control of transactions was fully delegated to a software
library. Additional proposals offered programmable control of data
versioning and buffering [21, 31, 32]. This offered low enough
overhead to be competitive with full HTM implementations, but
typically with less hardware complexity. At the extremes, Casper et
al. showed that an out-of-core FPGA-based prototype could deliver
strong transactional performance [3], and Carouge et al. showed
that HTM resources could make an existing STM algorithm lock-
free without affecting performance [10].

Our work on hybrid TM is inspired by a wide variety of algo-
rithms proposed in the literature. These algorithms attempt to build
a runtime system in which some transactions are fully controlled

by software, and others accelerated by hardware. The benefit of
such a system is that there is a graceful fallback for those transac-
tions whose memory accesses or running times extend beyond the
limits of the HTM subsystem. However, small, short transactions
must, in turn, sacrifice some performance in order to be compati-
ble with these software transactions. Initial hybrid systems focused
on correctness and non-blocking progress [16], after which the fo-
cus turned to systems in which transactions operated in distinct
modes (i.e., software-only, hardware-only, and serial) [5, 18]. Later
works showed that true concurrency between hardware-controlled
and software-controlled transactions was possible, but that spe-
cific characteristics of the hardware (most notably the availability
of non-transactional loads and stores within the hardware transac-
tion) was critical to achieving good performance [9, 29]. This paper
builds on prior work by showing that minor extensions to the HTM
can simplify the implementation of such systems without affecting
performance.

Several groups have also explored the use of HTM resources for
purposes orthogonal to scalable concurrent execution of language-
level transactions. The original AOU paper [34] proposed several
uses of AOU outside of TM implementation, such as for reducing
the cost of polling in event-based systems and implementing a lim-
ited form of active messages [37]. Neelakantam et al. [23] showed
that hardware TM extended with a self-abort instruction could be
used by compilers for speculative unsafe optimisation. Most re-
cently, Unsal et al. have shown that HTM resources could be used
both to detect and prevent transient faults during sequential execu-
tion [38], and as a mechanism for lowering power consumption by
running a processor at an extremely low voltage, and then using
transactional rollback and recovery to compensate for faults that
occur during execution [7].

9. Conclusion
In this paper, we presented small modifications to the ASF HTM
proposal that change abort handling to allow transaction resurrec-
tion, and added two instructions for explicitly managing the polar-
ity of transactional / non-transactional accesses. With only these
two minor extensions, neither of which requires extensive hard-
ware verification or changes to cache structures and protocols, we
showed that Alert-on-Update, Escape Actions, and Suspend / Re-
sume can all be supported in an otherwise relatively simple hard-
ware TM. We believe that our modifications lie in the same com-
plexity realm as the differences between the various HTM industry
proposals and thus can be implemented in actual hardware, for ex-
ample as an extension to first generation HTM support. This is a
promising direction that can turn these synchronisation extensions
into synchronisation and speculation extensions that support a rich
transactional programming environment.
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