Diplomarbeit

Untersuchungen zu dynamischen Lagerkräften bei Zahnradgetrieben

Thomas Henlich

15. Mai 1998
Inhaltsverzeichnis

Abbildungsverzeichnis 4
Zusammenfassung 5
Thesen 6
Abkürzungen und Formelzeichen 7
Vorwort 9
1 Präzisierung der Aufgabenstellung 10
2 Literaturauswertung 11
3 Kräfte im Getriebe 12
 3.1 Zahnkräfte ... 12
 3.1.1 Statische und dynamische Zahnkräfte 13
 3.2 Lagerkräfte .. 14
 3.2.1 Statische Lagerkräfte ... 14
 3.2.2 Dynamische Lagerkräfte 15
 3.3 Auswirkungen der Zahnkräfte 15
 3.4 Auswirkungen der Lagerkräfte 16
 3.4.1 Statische Kräfte .. 16
 3.4.2 Dynamische Kräfte ... 16
4 Numerische Simulation eines Torsionsschwingungsmodells 17
 4.1 Einleitung ... 17
 4.2 Ziel ... 17
 4.3 Modell .. 17
 4.4 Bewegungsgleichungen .. 18
 4.5 Statisches Verhalten .. 18
 4.6 Eigenfrequenz .. 19
 4.7 Zustandsgleichung .. 19
 4.8 Simulation ... 20
 4.9 Eingriffsteifigkeit .. 20
 4.10 Dämpfungskoeffizient .. 21
 4.11 Simulationsprotokollierung 23
Inhaltsverzeichnis

4.12 Ergebnisse ... 23

5 Erweitertes Schwingungsmodell 26

6 ITI-SIM ... 28
 6.1 Simulation mit ITI-SIM ... 28
 6.2 Einfaches Torsionsschwingungsmodell 28
 6.3 Torsionsmodell mit Zusatzmasse 28
 6.4 Simulation des erweiterten Schwingungsmodells 28
 6.4.1 Geradverzahnung .. 31
 6.4.2 Schräverzahnung .. 31
 6.4.3 Einfluß des Lastmomentes 31
 6.5 Erweiterung des Koordinatensystems 35

Anhang .. 37

A Die Quelldatei torsionsschwinger1.c 37

B Die Quelldatei zahnsteifigkeit.c 42

C Die Eingabedatei torsionsschwinger1-0.dat 43

D Das Shell-Script eta-verlauf 44

E ITI-Simulationsergebnisse 45

F Simulationsergebnisse des erweiterten Modells mit Schräverzahnung 47

Literaturverzeichnis .. 50

Sachregister .. 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Ein- und Ausgangsmoment am Getriebe</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>Senkr. Flanke</td>
<td>13</td>
</tr>
<tr>
<td>3.3</td>
<td>Evolventische Flanke</td>
<td>13</td>
</tr>
<tr>
<td>3.4</td>
<td>Axialkraft</td>
<td>14</td>
</tr>
<tr>
<td>3.5</td>
<td>Normalkraft</td>
<td>14</td>
</tr>
<tr>
<td>3.6</td>
<td>Kräfteplan</td>
<td>14</td>
</tr>
<tr>
<td>3.7</td>
<td>Schallausbreitung im Getriebe, ausgehend vom Zahneingriff</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Einfaches Torsionsschwingungsmodell</td>
<td>18</td>
</tr>
<tr>
<td>4.2</td>
<td>Eingriffssteifigkeit</td>
<td>22</td>
</tr>
<tr>
<td>4.3</td>
<td>Verlauf der dynamischen Zahnkraft</td>
<td>24</td>
</tr>
<tr>
<td>4.4</td>
<td>Amplitude über Frequenzverhältnis η</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Erweitertes Schwingungsmodell</td>
<td>26</td>
</tr>
<tr>
<td>6.1</td>
<td>Die Benutzungssoberfläche von ITI-SIM</td>
<td>29</td>
</tr>
<tr>
<td>6.2</td>
<td>Simulationsplan des einfachen Torsionsmodells</td>
<td>29</td>
</tr>
<tr>
<td>6.3</td>
<td>Aus der Simulation erhaltene dynamische Kraft bei Einfach-Modell</td>
<td>30</td>
</tr>
<tr>
<td>6.4</td>
<td>Frequenzanalyse der Kraft bei einfachem Modell</td>
<td>30</td>
</tr>
<tr>
<td>6.5</td>
<td>Simulationsplan des Modells mit Zusatzmasse</td>
<td>31</td>
</tr>
<tr>
<td>6.6</td>
<td>Simulationsplan des erweiterten Schwingungsmodells</td>
<td>32</td>
</tr>
<tr>
<td>6.7</td>
<td>Lagerkräfte F_{l1y}, F_{l2y} bei dem erweiterten Schwingungsmodell mit $\beta = 0$</td>
<td>33</td>
</tr>
<tr>
<td>6.8</td>
<td>Lüfterkennlinie</td>
<td>34</td>
</tr>
<tr>
<td>6.9</td>
<td>Simulationsplan mit drehzahlabhängigem Lastmoment – Detail</td>
<td>34</td>
</tr>
<tr>
<td>6.10</td>
<td>Zeitverlauf des Lastmomentes bei Verbraucher mit Lüfterkennlinie</td>
<td>35</td>
</tr>
<tr>
<td>6.11</td>
<td>Erweiterung des Koordinatensystems für beliebige Eingriffsrichtungen</td>
<td>36</td>
</tr>
<tr>
<td>E.1</td>
<td>Dynamische Kraft bei Modell mit Zusatzmasse</td>
<td>46</td>
</tr>
<tr>
<td>E.2</td>
<td>Frequenzanalyse der Kraft bei Zusatzmassen-Modell</td>
<td>46</td>
</tr>
<tr>
<td>F.1</td>
<td>Lagerkräfte F_{l1y}, F_{l1z}</td>
<td>48</td>
</tr>
<tr>
<td>F.2</td>
<td>Lagerkräfte F_{l2y}, F_{l2z}</td>
<td>49</td>
</tr>
</tbody>
</table>
Zusammenfassung

Ein erweitertes Schwingungsmodell mit 6 Freiheitsgraden beinhaltet auch die Lager- und Wellenelastizitäten und die entsprechenden Dämpfungen. Eine analytische Lösung dieses Systems für den Fall nicht konstanter Eingriffssteifigkeit ist nicht zweckmäßig.

ITI-SIM liefert für das einfache Torsionssystem identische Ergebnisse wie das vom Autor entwickelte Simulationsprogramm. Unter Einbeziehung der Lagersteifigkeiten in das ITI-SIM-Modell erhält man den Verlauf der Lagerkräfte. Bei einem Schrägungswinkel \(\beta > 0 \) treten als Simulationsergebnis außerdem Axialkräfte auf. Bei Modellierung einer MomentenKennlinie am Abtrieb schwankt das Abtriebsmoment, hervorgerufen durch die Schwankung der Eingriffssteifigkeit.

Um zwei Getriebestufen mit unterschiedlichen Eingriffsrichtungen im Simulationsmodell koppeln zu können, wird eine Koordinatentransformation verwendet.
Thesen

1. Dynamische Zahn- und Lagerkräfte sind die Ursache für die Schallabstrahlung von Getrieben.

3. Diese Schwankung der Eingriffssteifigkeit ist eine wesentliche Ursache der Schwingungen im Getriebe.

4. Die Simulation mittels des speziell entwickelten Simulationsprogramms ist mit geringem Rechenzeitaufwand durchführbar und liefert akzeptable Ergebnisse.

5. Komplexe Modelle sind analytisch nicht lösbar.

6. Mit steigender Modellkomplexität erhöht sich der Rechenaufwand bei der numerischen Simulation überproportional.
Abkürzungen und Formelzeichen

Die Einordnung der griechischen Buchstaben erfolgt nach deren Benennung, z. B. wird \(\psi \) wie *psi* eingeordnet.

\[/ \] Verweis auf eine Textstelle, ein Bild o. ä.

\(\alpha_t \) Eingriffswinkel

\(\beta \) Schrägunswinkel

\(C \) Steifigkeitsmatrix

\(c_m \) mittlere Eingriffssteifigkeit

\(c_p \) Zahnpaarsteifigkeit

\(c_z \) Eingriffssteifigkeit

\(D \) Dämpfungsmatrix

\(D_z \) Dämpfungsmaß

d. h. das heißt

\(d_z \) Eingriffsdämpfung

\(\varepsilon_\alpha \) Profilüberdeckung

\(F_a \) Axialkraft

\(F_{bn} \) Normalkraft am Grundkreis

\(F_{bt} \) Tangentialkraft am Grundkreis

\(f_{dyn} \) dynamische Zahnkraft, bezogen auf statische Zahnkraft

\(F_n \) Normalkraft

\(F_r \) Radialkraft

\(F_t \) Tangentialkraft

\(F_z \) Zahnkraft

\(FFT \) engl. *fast Fourier transform*, Schnelle Fourier-Transformation
Abkürzungen und Formelzeichen

\(h \) Simulationsschrittweite
\(\mathbf{h} \) Vektor der äußeren Kräfte bzw. Momente
\(i \) Index des Simulationsschrittes
i. a. im allgemeinen
ITI ITI ist eingetragenes Warenzeichen der Gesellschaft für ingenieurtechnische Informationsverarbeitung mbH (ITI GmbH)
\(J \) Trägheitsmoment
Kfz Kraftfahrzeug
\(k_v \) Korrekturfaktor für Doppeleingriff
\(m \) Masse
\(\mathbf{M} \) Massenmatrix
o. ä. oder ähnliches
\(\omega \) Eigenfrequenz
\(\mathbf{O}_{(m,n)} \) Nullmatrix
\(\psi \) Drehwinkel
\(\mathbf{q} \) Koordinatenvektor
\(r \) Radius
\(r_b \) Grundkreisradius
S. Seite
\(t \) Zeit
\(T_1 \) Eingangsmoment, Antriebsmoment
\(T_2 \) Ausgangsmoment, Abtriebsmoment
\(x \) eingriffsbezogene Wegkoordinate
\(\mathbf{x} \) Zustandsvektor
\(z \) Zähnezahl
z. B. zum Beispiel
Vorwort

Die vorliegende Arbeit wurde in der Zeit von Januar bis Mai 1998 am Institut für Maschinenelemente und Maschinenkonstruktion an der Technischen Universität Dresden angefertigt.

Meinem Betreuer, Prof. Linke, danke ich für die Unterstützung und die wertvollen Hinweise.

Ich habe diese Arbeit selbständig angefertigt und alle verwendeten Quellen im Literaturverzeichnis (S. 50) angeführt.

Dresden, 15. Mai 1998

Thomas Henlich
1 Präzisierung der Aufgabenstellung

Anhand einer Literaturrecherche ist zu ermitteln, mit welchen Methoden dynamische Belastungen in Getrieben berechnet werden können.

Es ist zu erläutern, welche Kräfte in Zahnradgetrieben wirken und wie sie bestimmt werden. Eine Klassifikation dieser Kräfte ist vorzunehmen: Welchen Einfluß haben sie auf das Schwingungsverhalten des Getriebes?

Die Gleichungen zur analytischen Berechnung der dynamischen Lagerkräfte sind für ein schrägverzahntes einstufiges Stirnradgetriebe aufzustellen. Dabei ist eine solche Formulierung zu wählen, die eine Erweiterung auf beliebige (mehrstufige) Getriebestrukturen ermöglicht. Ist eine analytische Berechnung unter Beachtung aller Parameter praktisch durchführbar?

Als Alternative zur analytischen Rechnung ist die Methode der rechnergestützten Simulation zu diskutieren. Die Vorgehensweise bei der Simulation mechanischer Antriebsysteme ist zu untersuchen. Anhand eines Beispiels sind die Arbeitsschritte vom Modell bis zum Simulationsprogramm und der Darstellung der Ergebnisse durchzuführen.

Die praktische Anwendbarkeit des Simulators ITI-SIM bei Getriebeuntersuchungen ist anhand des bearbeiteten Beispiels zu verifizieren. Ein Simulationsmodell für ITI-SIM soll aufgestellt werden, mit dem die Berechnung der Lagerkräfte bei einem einstufigen Getriebe mit Schrägerzahnung möglich ist; die Berechnung ist durchzuführen und die Ergebnisse sind zu dokumentieren. Dieses Modell muß die Eigenschaft der Modularität besitzen, d. h. kompliziertere Getriebestrukturen sind durch Zusammensetzen der Grundbausteine (Module) generierbar.

Anhand von Modellvariationen (z. B. andere Momentenkennlinie) ist die Flexibilität der Lösung nachzuweisen.
2 Literaturauswertung

THIELE [8] befasst sich mit dem Einsatz von ITI-SIM bei Untersuchungen an Getriebemotoren. Die Erkenntnisse sind auch auf andere Arten mechanischer Systeme anwendbar. THIELE diskutiert zwei konträre Vorgehensweisen bei der Modellbildung:

1. von einem möglichst einfachen Modell ausgehen, dieses bis zur gewünschten Genauigkeit erweitern,
2. ein kompliziertes Modell schaffen und dieses soweit wie möglich vereinfachen

3 Kräfte im Getriebe

In diesem Abschnitt wird ein Überblick über die Kräfte gegeben, die in einem Zahnradgetriebe wirken. Es geht vor allem um die Begriffe statische und dynamische Kräfte, sowie Lager- und Zahnkräfte. Als Beispiel dient ein einstufiges Stirnradgetriebe, die erläuterten Kräfte sind jedoch prinzipiell bei allen Arten von Zahnradgetrieben wirksam.

3.1 Zahnkräfte

Die Aufgabe von Getrieben ist, Momente und Drehzahlen umzuwandeln. Das Getriebe in Bild 3.1 wandelt das Eingangsmoment \(T_1 \) in das Ausgangsmoment \(T_2 \) um. Am Berührungspunkt der Räder muß eine Tangentialkraft \(F_t \) auftreten:

\[F_t = T_1 r_1 = T_2 r_2 \]

Stellt man sich nun (hypothetisch) die Zähne der Räder so vor, daß ihre Berührungsebene senkrecht zur Verbindungslinie der Radzentren verläuft (Bild 3.2), dann wäre \(F_t \) tatsächlich die einzige auftretende Kraft, und nur durch sie würde das Drehmoment zwischen den Wellen 1 und 2 übertragen. Nun besitzen die Zähne in der Regel jedoch eine Evolventenform. Das bedeutet, daß ihre Berührungsebene um den Winkel \(\alpha_t \) gegenüber der „Senkrechten“ geneigt ist (Bild 3.3). Zwischen zwei sich berührenden Flächen kann eine Kraft immer nur senkrecht zur Berührungsebene übertragen werden.\(^1\) Diese Kraft wird hier mit \(F_{lt} \) bezeichnet (Bild 3.3).\(^2\) Da nun, wie beschrieben, eine Kraft \(F_t \) auftreten muß, kann \(F_{lt} \) als Vektorsumme von \(F_t \) und einer anderen Kraft \(F_r \), der Radialkraft, ausgedrückt werden:

\[F_{lt} = F_t + F_r \]

\(^1\)Tatsächlich existiert auch eine Reibung parallel zur Berührungsebene. Diese ist jedoch in dieser Betrachtung vernachlässigbar.

\(^2\)Bei Schrägverzahnung ist \(F_{lt} \) die Projektion dieser Kraft in die Tangentialebene (Zeichenebene von Bild 3.3).
Aufgrund des Schrägungswinkels β der Zahnräder ist eine dreidimensionale Betrachtungsweise erforderlich (Bild 3.4). Es wird deutlich, daß noch eine zusätzliche Kraft auftritt. Diese Kraft F_a, wirkt in axialer Richtung. Es gilt
\[\vec{F}_n = \vec{F}_t + \vec{F}_a \quad (3.1) \]

Fazit
Um ein Moment T_1 zu übertragen, muß eine Tangentialkraft $F_t = \frac{T_1}{r_1}$ wirken. Aufgrund der Verzahnungsgeometrie treten unerwünschte Kräfte F_r und F_a auf.
\[F_t = F_t \tan \alpha_t; \quad F_n = F_t \tan \beta \]

Die Kraft, die eigentlich senkrecht auf der Kontaktebene der Zahnflanken steht (F_{bt} ist nur die Projektion – Fußnote 2, S. 12), liegt in der Normalebene. Diese ist um den Winkel β gegenüber der Tangentialebene geneigt. Für die Kraft gilt:
\[\vec{F}_{bn} = \vec{F}_n + \vec{F}_r \]
oder, mit Gl. 3.1,
\[\vec{F}_{bn} = \vec{F}_t + \vec{F}_a + \vec{F}_r \]

Der Vektor dieser Kraft (Bild 3.5) wird in weiteren Betrachtungen eine wichtige Rolle spielen.

3.1.1 Statische und dynamische Zahnkräfte
3 Kräfte im Getriebe

3.2 Lagerkräfte

Für die Kräftebetrachtung unterscheidet man folgende Kategorien von Lagern: Radiallager, diese nehmen nur Kräfte senkrecht zur Radachse auf; Axiallager, welche nur Kräfte in Achsrichtung aufnehmen, sowie Radial-/Axiallager. In unserem Beispiel gibt es pro Welle je ein Radiallager und je ein Radial-/Axiallager.

3.2.1 Statische Lagerkräfte

Die Welle wird als starres System aufgefaßt. Die Lagerung erfolgt statisch bestimmt. Dann lassen sich die Lagerkräfte aus Kräfte- und Momentenbilanzen bestimmen (Bild 3.6):

\[F_{rA} = \frac{F_a r + F_{lb} b}{a + b} \]
\[F_{rB} = \frac{F_{lb} a - F_a r}{a + b} \]
\[F_{tA} = \frac{F_t}{a + b} \left(r \tan \beta + \frac{b}{\cos \alpha} \right) \]
\[F_{tB} = \frac{F_t}{a + b} \left(a \frac{1}{\cos \alpha} - r \tan \beta \right) \]

Diese Lösungsmethode mit dem Kräfteplan aus Bild 3.6 stellt eine Näherung dar, deren Genauigkeit aber für eine Berechnung der Lagerkräfte i.a. ausreicht. Genaugenommen liegen die Kräfte \(F_{tA} \) und \(F_{tB} \) nicht in einer Ebene. Das ist jedoch bei den meisten praktischen Anwendungen belanglos.
3 Kräfte im Getriebe

3.2.2 Dynamische Lagerkräfte

All das bedeutet, daß das Getriebe als System von Massen modelliert werden muß, die durch Feder- und Dämpferelemente verbunden sind. Das dynamische Verhalten eines Getriebes wird somit durch ein System von Differentialgleichungen mathematisch beschrieben. Ein solches Modell wird in Kapitel 5 behandelt.

3.3 Auswirkungen der Zahnkräfte

Die maximal zulässige Zahnkraft ist eine Begrenzung für das übertragbare Moment. Bei Überschreitung treten Schäden an der Verzahnung auf, d. h. Zähne brechen oder Zahnflanken werden beschädigt (pitting). Man beachte, daß ein Zahn während jeder Umdrehung einmal be- und entlastet wird, es also für den Zahn keine statische, sondern stets eine dynamische Belastung gibt! Aufgrund dieser Dynamik entstehen auch Schwingungen im Zahneingriff, die sich zu einem Teil als Körperschall durch Rad und Welle fortpflanzen, und zum anderen Teil als Luftschall im Inneren des Getriebes abgestrahlt werden (Bild 3.7).

³Selbst diese Aussage ist eine wesentliche Vereinfachung der tatsächlichen physikalischen Zusammenhänge.

Bild 3.7: Schallausbreitung im Getriebe, ausgehend vom Zahneingriff
3 Kräfte im Getriebe

3.4 Auswirkungen der Lagerkräfte

Die Gesamtbelastung, d. h. die Summe aus statischer und dynamischer Belastung der Lager führt zu einem Verschleiß der Wälzkörper, soweit es sich um Wälzlager handelt. Bei Gleitlagern tritt im allg. kein solcher Verschleiß auf.

3.4.1 Statische Kräfte

3.4.2 Dynamische Kräfte

Wenn neben statischen auch dynamische Lagerkräfte wirken, kann folgender Sachverhalt eintreten: Die dynamische Axialkraft wird genau so groß wie die statische und hebt diese auf. Dann wird der beschriebene Verspanneffekt aufgehoben, und das Lagerspiel wird wirksam, d. h. das Lager „klappert“.

Das besondere Interesse bei der Untersuchung der dynamischen Lagerkräfte gilt jedoch nicht dem Verschleiß, sondern der Geräuschentwicklung. Die Wellen sind im Gehäuse gelagert; deshalb bewirkt eine Schwingungsanregung der Lager eine Weiterleitung des Körperschalls an die Gehäusewände, von denen eine Abstrahlung an die Umgebung in Form von Luftschall erfolgt (Bild 3.7) [7, 6.7].
4 Numerische Simulation eines Torsionsschwingungsmodells

4.1 Einleitung

In diesem Abschnitt wird die Bewegungsgleichung für eine Radpaarung mit Geradverzahnung aufgestellt. Nur die Torsionsschwingungen werden untersucht. Es tritt Parametererregung durch den Zahnsteifigkeitsverlauf auf. Ausgehend von den Bewegungsgleichungen (in Matrixform) werden die Gleichungen für die Eigenfrequenz der Schwingung, die Zustandsgleichung für die numerische Simulation und das Simulationsprogramm (Programmiersprache C) erstellt. Für die Simulation wird das Runge-Kutta-Verfahren (4. Ordnung) verwendet.

4.2 Ziel

Die Beschäftigung mit diesem Simulationsproblem dient der Einarbeitung in die Thematik der numerischen Simulation. Die gewonnenen Erkenntnisse sollen beim Verständnis späterer und weitaus komplexerer Modelle angewendet werden.

Die Rechenergebnisse dieser Simulation werden mit den Resultaten verglichen, welche die Simulation mit ITI-SIM liefert. So können Aussagen über die Eigenschaften beider Verfahren gemacht werden.

4.3 Modell

// Bild 4.1, Seite 18

r_{b1}, r_{b2} Grundkreisradien

T_1, T_2 An-/Abtriebsmoment

ψ_1, ψ_2 Drehwinkel

c_z Verzahnungssteifigkeit

d_z Dämpfungskoeffizient

J_1, J_2 Massenträgheitsmomente

Ein Spiel zwischen den Zahnflanken wird nicht berücksichtigt.
4. Numerische Simulation eines Torsionsschwingungsmodells

4.4 Bewegungsgleichungen

Die Bewegungsgleichungen werden nach dem d’Alembertschen Prinzip aufgestellt. Die gedankliche Schnittführung erfolgt durch die Elemente c_z und d_z.

\[
J_1 \ddot{\psi}_1 + d_z r_{b1} (r_{b1} \dot{\psi}_1 + r_{b2} \dot{\psi}_2) + c_z r_{b1} (r_{b1} \dot{\psi}_1 + r_{b2} \dot{\psi}_2) = T_1
\]
\[
J_2 \ddot{\psi}_2 + d_z r_{b2} (r_{b1} \dot{\psi}_1 + r_{b2} \dot{\psi}_2) + c_z r_{b2} (r_{b1} \dot{\psi}_1 + r_{b2} \dot{\psi}_2) = T_2
\] (4.1)

In Matrizenschreibweise:

\[
M \ddot{q} + D \dot{q} + Cq = h
\] (4.2)

mit $M = \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix}$; $D = \begin{pmatrix} d_z r_{b1}^2 & d_z r_{b1} r_{b2} \\ d_z r_{b1} r_{b2} & d_z r_{b2}^2 \end{pmatrix}$; $C = \begin{pmatrix} c_z r_{b1}^2 & c_z r_{b1} r_{b2} \\ c_z r_{b1} r_{b2} & c_z r_{b2}^2 \end{pmatrix}$;

\[
h = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}; q = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}
\]

4.5 Statisches Verhalten

Um Anfangsbedingungen für die Simulation zu erhalten, wird der Vektor q_0 berechnet. Die Matrix C_m ergibt sich aus der mittleren Zahnsteifigkeit c_m (Abschn. 4.9)

\[
c_m \begin{pmatrix} r_{b1}^2 & r_{b1} r_{b2} \\ r_{b1} r_{b2} & r_{b2}^2 \end{pmatrix} \begin{pmatrix} \psi_{10} \\ \psi_{20} \end{pmatrix} = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}
\] (4.3)
4 Numerische Simulation eines Torsionsschwingungsmodells

\[r_b \psi_1 + r_b \psi_2 = \frac{T_1}{c_m r_b} = \frac{T_2}{c_m r_b} \]
\[\frac{T_1}{r_b} = \frac{T_2}{r_b}; \quad \text{Vorgabe von } \psi_2 = 0 \Rightarrow \psi_1 = \frac{T_1}{c_m r_b^2} \]

4.6 Eigenfrequenz

Die Eigenfrequenz \(\omega \) wird aus folgender Determinante bestimmt:

\[|C_m - \omega^2 M| = 0 \quad (4.4) \]
\[c_m \begin{pmatrix} r_b^2 & r_b r_b \\ r_b r_b & r_b^2 \end{pmatrix} - \omega^2 \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix} = 0 \]
\[\omega^2 = c_m \left(\frac{r_b^2}{J_1} + \frac{r_b^2}{J_2} \right) \quad (4.5) \]

4.7 Zustandsgleichung

Zunächst wird die Bewegungsgleichung (4.2) umgeformt:

\[\ddot{q} = -M^{-1} C q - M^{-1} D \dot{q} + M^{-1} h \quad (4.6) \]

\(M^{-1} \) ist die zu \(M \) inverse Matrix.

Der Zustandsvektor \(x \) beschreibt den Zustand des Schwingungssystems während der Simulation.

\[x = \begin{pmatrix} q \\ \dot{q} \end{pmatrix} = \begin{pmatrix} \psi_1 \\ \dot{\psi}_1 \\ \psi_2 \\ \dot{\psi}_2 \end{pmatrix} \quad (4.7) \]

Die Zustandsgleichung lautet

\[\dot{x} = Ax + b \quad (4.8) \]

mit den Übermatrizen \(A = \begin{pmatrix} O_{(2,2)} & E_{(2,2)} \\ -M^{-1} C & -M^{-1} D \end{pmatrix} \) und \(b = \begin{pmatrix} O_{(2,1)} \\ -M^{-1} h \end{pmatrix} \).

Dabei sind \(O_{(m,n)} (m, n) \)-dimensionale Nullmatrizen und \(E_{(2,2)} \) ist die 2-dimensionale, quadratische Einheitsmatrix \(E_{(2,2)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).
Die Zustandsgleichung in ausführlicher Schreibweise lautet:

\[
\begin{pmatrix}
\dot{\psi}_1 \\
\dot{\psi}_2 \\
\ddot{\psi}_1 \\
\ddot{\psi}_2
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{c_m r_2}{J_2} & -\frac{c_m r_2}{J_2} & -\frac{d r_2^2}{J_1} & -\frac{c_m r_2}{J_2} \\
-\frac{c_m r_1 r_2}{J_2} & -\frac{c_m r_1 r_2}{J_2} & -\frac{d r_2^2}{J_2} & -\frac{c_m r_2}{J_2}
\end{pmatrix}
\begin{pmatrix}
\psi_1 \\
\psi_2 \\
\dot{\psi}_1 \\
\dot{\psi}_2
\end{pmatrix}
+ \begin{pmatrix}
0 \\
0 \\
\frac{T_1}{J_1} \\
\frac{T_2}{J_2}
\end{pmatrix}
\] (4.9)

4.8 Simulation

Der Simulationszeitraum wird in Schritte der Länge \(h = t_{i+1} - t_i \) zerlegt. Unter Verwendung der Zustandsgleichung \(\dot{x} = f(t, x) = Ax + b \) wird aus \(x_i \) der nächste Zustandsvektor \(x_{i+1} \) nach folgendem Schema berechnet (Runge-Kutta-Verfahren):

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(f(t, x))</th>
<th>(h \cdot f(t, x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_i)</td>
<td>(x_i)</td>
<td>(f(t_i, x_i))</td>
<td>(k_1)</td>
</tr>
<tr>
<td>(t_i + \frac{h}{2})</td>
<td>(x_i + \frac{1}{2} k_1)</td>
<td>(f(t_i + \frac{h}{2}, x_i + \frac{1}{2} k_1))</td>
<td>(k_2)</td>
</tr>
<tr>
<td>(t_i + \frac{h}{2})</td>
<td>(x_i + \frac{1}{2} k_2)</td>
<td>(f(t_i + \frac{h}{2}, x_i + \frac{1}{2} k_2))</td>
<td>(k_3)</td>
</tr>
<tr>
<td>(t_i + h)</td>
<td>(x_i + k_3)</td>
<td>(f(t_i + h, x_i + k_3))</td>
<td>(k_4)</td>
</tr>
</tbody>
</table>

\(t_{i+1} = t_i + h \quad x_{i+1} = x_i + k \quad \cdots \quad \cdots \)

Die Simulation beginnt mit \(x_0 \) bei \(t = 0 \). Der Anfangszustand \(x_0 \) ergibt sich aus der statischen Last (Abschnitt 4.5) und der Antriebswinkelgeschwindigkeit \(\Omega \):

\[
x_0 = \begin{pmatrix}
\psi_{10} \\
\psi_{20} \\
\dot{\psi}_{10} \\
\dot{\psi}_{20}
\end{pmatrix} = \begin{pmatrix}
\frac{T_3}{c_m r_{b1}} \\
0 \\
\Omega \\
\frac{\Omega}{\varepsilon_2}
\end{pmatrix}
\]

Die Schrittweite \(h \) richtet sich nach der Eigenfrequenz \(\omega \):

\[
h = \frac{1}{10\omega}
\] (4.10)

Das verwendete Verfahren ist ein Verfahren 4. Ordnung, da der Fehler proportional \(h^4 \) ist.

4.9 Eingriffssteifigkeit

Die Zahnpaarsteifigkeit ist während des Zahneingriffs nicht konstant. Zu Beginn und am Ende des Eingriffs ist sie geringer als in der Mitte. Außerdem sind bei einer Profilüberdeckung von \(\varepsilon_\alpha = 1 \ldots 2 \) abwechselnd ein und zwei Zahnpaare im Eingriff. Die
4 Numerische Simulation eines Torsionsschwingungsmodells

Gesamtsteifigkeit setzt sich im Fall des Doppeleingriffs aus den Einzelsteifigkeiten zusammen.

Die Zahnpaarsteifigkeit wird durch folgendes Polynom angenähert [6]:

\[
\begin{align*}
c_p(x) &= c_{p2} + \frac{4}{\varepsilon_\alpha} (c_{p1} - c_{p2}) x - \frac{4}{\varepsilon_\alpha^2} (c_{p1} - c_{p2}) x^2 \\
c_p(x) &= c_{p1} + (c_{p2} - c_{p1}) \left(\frac{2}{\varepsilon_\alpha} x - 1 \right)^2
\end{align*}
\]

(4.11)

\(c_{p1}\) maximale Zahnpaarsteifigkeit in Eingriffsmitte

\(c_{p2}\) minimale Zahnpaarsteifigkeit zu Eingriffsbeginn und -ende

\(\varepsilon_\alpha\) Profillüberdeckung

\(x\) eingenrsbezogene Wegkoordinate, \(x = \frac{\varphi}{2\pi}\)

Die Gesamtsteifigkeit \(c_z\) ergibt sich wie folgt (\(\varpi\) Bild 4.2):

\[
c_z(x) = \begin{cases} k_v [c_p(x) + c_p(x + 1)] & : 0 \leq x < \varepsilon_\alpha \\
c_p(x) & : \varepsilon_\alpha \leq x < 1
\end{cases}
\]

(4.12)

Der Korrekturfaktor \(k_v\) (\(k_v < 1\)) wird eingeführt, da aufgrund der Radkörperformung unter Last die Einzelsteifigkeiten nicht einfach addiert werden können.

Die mittlere Steifigkeit \(c_m\) ist für die Bestimmung der Eigenfrequenz notwendig. Sie wird durch Integration berechnet:

\[
c_m = \int_{x=0}^{1} c_z(x) \, dx
\]

\[
= k_v \int_0^{\varepsilon_\alpha-1} [c_p(x) + c_p(x + 1)] \, dx + \int_{\varepsilon_\alpha-1}^1 c_p(x) \, dx
\]

\[
= k_v \int_0^{\varepsilon_\alpha-1} c_p(x) \, dx + k_v \int_1^{\varepsilon_\alpha} c_p(x) \, dx + \int_{\varepsilon_\alpha-1}^1 c_p(x) \, dx
\]

\[
c_m = \left[2k_v(\varepsilon_\alpha - 1) + 2 - \varepsilon_\alpha \right] c_{p1} + \frac{\varepsilon_\alpha}{3} (c_{p2} - c_{p1}) \left(1 - k_v \right) \left(\frac{2}{\varepsilon_\alpha} - 1 \right)^3 + k_v
\]

(4.14)

4.10 Dämpfungskoeffizient

Der Dämpfungskoeffizient \(d_z\) wird als konstant über der Eingriffsperiode angenommen.

\[
d_z = 2D_z \sqrt{c_m m_{red} \theta} = 2D_z \sqrt{c_m \frac{c_m}{\omega} + \frac{c_m}{\omega}} = 2D_z \frac{c_m}{\omega}
\]

(4.15)
4 Numerische Simulation eines Torsionsschwingungsmodells

Bild 4.2: Eingriffssteifigkeit
4 Numerische Simulation eines Torsionsschwingungsmodells

\(b \) Zahnbreite

\(D_z \) Dämpfungsmaß (ist abhängig von Betriebsbedingungen)

\(c_\gamma \) Eingriffsfedersteife, \(c_\gamma = \frac{E b}{b} \)

\(m_{\text{red}} \) reduzierte Ersatzmasse, \(m_{\text{red}} = \frac{1}{(\frac{J_1}{J_1} + \frac{J_2}{J_2})} b \)

4.11 Simulationsprotokollierung

Für die Auswertung interessant ist der Verlauf der Zahnkraft \(F_z \). Diese läßt sich bei jedem Simulationsschritt aus dem Zustandsvektor \(x \) berechnen:

\[
F_z = c_z (r_{b1} \psi_1 + r_{b2} \psi_2) + d_z (r_{b1} \dot{\psi}_1 + r_{b2} \dot{\psi}_2)
\]

oder, in vektorieller Schreibweise:

\[
F_z = f^T x = \begin{pmatrix}
 c_z r_{b1} \\
 c_z r_{b2} \\
 d_z r_{b1} \\
 d_z r_{b2}
\end{pmatrix}^T \begin{pmatrix}
 x
\end{pmatrix}
\]

Protokolliert wird die dynamische Kraft, bezogen auf die statische Kraft:

\[
f_{\text{dyn}} = \frac{F_z - F_s}{F_s}
\]

(4.16)

Die statische Kraft \(F_s \) wird allein durch das konstante Antriebsmoment bestimmt:

\[
F_s = \frac{T_1}{r_{b1}}
\]

(4.17)

Die Größe \(f_{\text{dyn}} \) ist einheitslos.

4.12 Ergebnisse

Die Berechnung erfolgte mit den Daten aus Anhang C.

Bild 4.3 zeigt den Verlauf der Kraft zu Beginn der Simulation, im weiteren Simulationsverlauf ist die Amplitude konstant (stationäre Phase).
4 Numerische Simulation eines Torsionsschwingungsmodells

Bild 4.3: Verlauf der dynamischen Zahnkraft
Das Programm *eta-verlauf* (Anhang D) führt die Simulation für wechselnde Frequenzverhältnisse η durch.

$$\eta = \frac{\Omega z_1}{\omega}$$

Ω Antriebswinkelgeschwindigkeit

z Zähnezahl

ω Eigenfrequenz (§4.6)

Die Ergebnisse sind in Bild 4.4 dargestellt.

Bild 4.4: Amplitude über Frequenzverhältnis η
5 Erweitertes Schwingungsmodell

Dieses Modell (Bild 5.1) beinhaltet auch die Feder- und Dämpfungseigenschaften der Lager und die Elastizität der Wellen und Radkörper. Die radiale Gesamt- und Dämpfungseigenschaft, bezogen auf den Zahneingriff, wird durch c_{y1} und c_{y2} dargestellt; c_{z1} und c_{z2} verkörpern die axiale Gesamtsteifigkeit. Die Torsionssteifigkeit hat den Wert $c_{\psi1}$ bzw. $c_{\psi2}$.

Bild 5.1: Erweitertes Schwingungsmodell

Im folgenden wird die Bewegungsgleichung für dieses Modell aufgestellt. Allgemein lautet sie wieder (wie in Gl. 4.2):

$$ M\ddot{q} + D\dot{q} + Cq = O_{(6,1)} $$

1Eine getrennte Erfassung der Lager links und rechts des Rades wäre exakter, erhöht aber auch die Dimension des Gleichungssystems.
Die charakteristische Gleichung dieses Differentialgleichungssystems ist eine Gleichung

Anmerkung zur Lösbarkeit

...
6 ITI-SIM

6.1 Simulation mit ITI-SIM

Die Eingabe des Modells für ITI-SIM erfolgt grafisch (Bild 6.1, Bild 6.2, Bild 6.5): Man positioniert die Knoten (Träger von \(m \) bzw. \(J \)) und die Elemente (Federn und Dämpfer, Kraft- und Momenteinleitung) sowie andere Objekte im Modellfenster und verbindet diese dann gemäß der Modellstruktur [3, 5]. Die Ausgabe der Simulationsergebnisse erfolgt in Diagrammform (Bild 6.3, Bild 6.4, Bild E.1, Bild E.2). ITI-SIM stellt zwar ebenfalls ein Element „Zahnradstufe“ zur Verfügung, dieses ist jedoch zu stark vereinfacht [8].

6.2 Einfaches Torsionsschwingungsmodell

Dieses Modell (Bild 6.2) gleicht dem in Kapitel 4 vorgestellten. Zur Auswertung dient auch hier \(f_{dyn} \) (Gl. 4.16, S. 23).

Das Diagramm (Bild 6.3) zeigt den Verlauf zu Beginn der Simulation, im weiteren Simulationsverlauf bleibt die Amplitude konstant.

Die Frequenzanalyse (Bild 6.4) erfolgte durch ITI-SIM nach dem Algorithmus der FFT (Schnelle Fourier-Transformation) [2]. Sie zeigt das Auftreten einer Grundfrequenz mit Oberschwingungen, die mit zunehmender Ordnung abklingen.

6.3 Torsionsmodell mit Zusatzmasse

Dieses Modell (Bild 6.5) besitzt die gleiche Struktur wie das in 6.2 verwendete, nur ist an der Antriebsseite ein weiterer rotatorischer Knoten (Träger von \(J \)) angebracht, der den Rotor eines Antriebsmotors verkörpert.

Trotz gleicher Parameter des Getriebemodells (\(m, J, c, \ldots \)) kommt es zu einem völlig anderen Schwingungsverlauf (Bild E.1 im Anhang, S. 45). Die Frequenzanalyse (Bild E.2) zeigt wiederum eine dominierende Grundfrequenz mit abklingenden Oberschwingungen.

6.4 Simulation des erweiterten Schwingungsmodells

In diesem Abschnitt wird das Modell aus Kapitel 5 simuliert. Hauptsächlich soll es dabei um die Lagerkräfte gehen, die Zahnkraft wurde bereits in den vorherigen Abschnitten ausreichend untersucht. Verschiedene Variationen des Modells werden behandelt, so eine Schrägverzahnung und die Auswirkungen eines nicht konstanten Lastmomentes.
Bild 6.1: Die Benutzungsoberfläche von ITI-SIM

Bild 6.2: Simulationsplan des einfachen Torsionsmodells
Bild 6.3: Aus der Simulation erhaltene dynamische Kraft bei Einfach-Modell

Bild 6.4: Frequenzanalyse der Kraft bei einfachem Modell
Aufgrund der gegenseitigen Beeinflussung der Koordinatenrichtungen \((y, z, \psi)\) ist dieses Modell (Bild 6.6, S. 32) weitaus komplizierter als die in 6.2 und 6.3 behandelten. Diese Tatsache kommt auch in der vollständigen Besetzung\(^1\) der Matrizen \(C\) und \(D\), die in Kapitel 5 aufgestellt wurden, zum Ausdruck.

6.4.1 Geradverzahnung

Dieses und das in Abschnitt 6.4.2 untersuchte Modell sind bis auf den Wert von \(\beta\) identisch. Die Geradverzahnung wird als Spezialfall der Verzahnung mit \(\beta = 0\) betrachtet. Der Verlauf der Lagerkräfte ist in Bild 6.7 auf Seite 33 dargestellt.

6.4.2 Schrägverzahnung

Unter Berücksichtigung des Schrägewinkels \(\beta\) ergibt sich außer der Lagerkraftkomponente in \(y\)-Richtung eine Komponente in axialer Richtung (\(z\)-Richtung). Diese Axialkomponente ist bei Geräuschuntersuchungen besonders interessant, da durch sie die Gehäusewand durch die daran befestigten Lager zu Schwingungen angeregt wird (Bild 3.7). Die Ergebnisse der Simulation einer Schrägverzahnung mit \(\beta = 14^\circ\) sind in Anhang F dargestellt.

6.4.3 Einfluß des Lastmomentes

Problem

In der Praxis werden häufig Verbraucher verwendet, die ein von der Drehzahl abhängiges Drehmoment aufbringen. Bild 6.8 zeigt eine solche Kennlinie. Es ist eine Lüfterkennlinie: Das Lastmoment ist vom geförderten Luftmassestrom und damit von der Drehzahl

\(^1\)Alle Elemente sind verschieden von Null.
Bild 6.6: Simulationsplan des erweiterten Schwingungsmodells
Bild 6.7: Lagerkräfte F_{l1y}, F_{l2y} bei dem erweiterten Schwingungsmodell mit $\beta = 0$

Bild 6.8: Lüfterkennlinie

Bild 6.9: Simulationsplan mit drehzahlabhängigem Lastmoment – Detail

Ergebnis

Das Lastmoment schwankt (Bild 6.10), wenn auch nur um einen kleinen Betrag. Das ist durch die Schwankung der Eingriffssteifigkeit bedingt. Das Verhalten der anderen Größen (Lager- und Zahnkräfte) weist keine sichtbaren Unterschiede zu denen in 6.4.1 auf.

Bild 6.10: Zeitverlauf des Lastmomentes bei Verbraucher mit Lüfterkennlinie

6.5 Erweiterung des Koordinatensystems

Bei den bis hierher behandelten Modellen wurde die Koordinate \(y \) in Richtung der Eingriffslinie gelegt (\(/ \) Bild 5.1). Bei einstufigen Getrieben ist das eine vernünftige Vereinfachung, da sie die Anzahl der Koordinatenachsen reduziert. Bei mehrstufigen Getrieben sind im allgemeinen die Eingriffsrichtungen der einzelnen Stufen voneinander verschieden, so daß noch eine zusätzliche Koordinate eingeführt werden muß. Diese Erweiterung wird durch das Element „Ebener Transformator“ bewerkstelligt, welches zur Koordinatentransformation eingesetzt werden kann. Beliebige Eingriffsrichtungen können realisiert werden, im gezeigten Beispiel beträgt der Winkel zwischen \(y \)-Achse und Eingriffslinie 30°.
Bild 6.11: Erweiterung des Koordinatensystems für beliebige Eingriffsrichtungen
A Die Quelldatei torsionsschwinger1.c

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <math.h>

double cp1,cp2,epal;
extern double cm(),cp(double),cz(double);

double kv,rb1,rb2,b_Rad,z1,z2,J1,J2,D,T1,eta;
double om_eig,cmi,psi10,dz,Om1,T2,Fs,x_eingr;
ssize_t line,N = 0;
char *LINEPTR = NULL;
double x[4],xp[4],h;
char mode;

/* addiert zu Vektor a den Vektor b */
v_add(double a[],double b[])
{
 int i;
 for (i=0;i<4;i++)
 a[i]+=b[i];
}

/* setzt Vektor a gleich Vektor b */
v_gleich(double a[],double b[])
{
 int i;
 for (i=0;i<4;i++)
 a[i]=b[i];
}

/* multipliziert Vektor a mit Skalar s */
v_skal(double a[],double s)
{
 int i;

for (i=0;i<4;i++)
a[i] *= s;
}

int zust_gl(double xp[], double x[], double t)
{
 double c, x_eingr;
 double A[4][4], b[4];
 int i, j;
 // Berechn. x für Zahnsteifigkeit */
 x_eingr = z1/2/PI*x[0];
 c = cz(x_eingr);
 /* printf("-- %f %f --\n", */
 /* x_eingr,c); */
 /* x_eingr,c); */
 A[0][0] = 0; A[0][1] = 0; A[0][2] = 1; A[0][3] = 0;
 A[1][0] = 0; A[1][1] = 0; A[1][2] = 0; A[1][3] = 1;

 for (i=0;i<4;i++)
 {
 xp[i] = 0;
 for (j=0;j<4;j++)
 {
 xp[i] += A[i][j]*x[j];
 /* printf("A[%d][%d]=%f x[%d]=%f\n", */
 /* i,j,A[i][j],j,x[j]); */
 }
 }
 v_add (xp, b);
}

sim (double t0, double h, int n)
{
 double c, x_eingr, Fz, Frel, Fmax = 0;
 int i;
 double t, t1;
 double x1[4], k1[4], k2[4], k3[4], k[4];
 t = t0;
A
Die Quelldatei torsionsschwinger1.c

for (i=0;i<n;i++)
{
 t1 = t;
 v_gleich (x1,x);
 zust_gl(xp,x1,t1); v skal(xp,h); v_gleich (k1,xp);

 t1 = t+h/2;
 v_gleich (x1,k1); v skal(x1,.5); v_add (x1,x);
 zust_gl(xp,x1,t1); v skal(xp,h); v_gleich (k2,xp);

 v_gleich (x1,k2); v skal(x1,.5); v_add (x1,x);
 zust_gl(xp,x1,t1); v skal(xp,h); v_gleich (k3,xp);

 t1 = t+h;
 v_gleich (x1,k3); v_add (x1,x);
 zust_gl(xp,x1,t1); v skal(xp,h); v_gleich (k,xp);

 v_add (k,k1);
 v_add (k,k2); v_add (k,k2);
 v_add (k,k3); v_add (k,k3);
 v skal (k,1./6);

 t = t+h;
 v_add (x,k);
 /* Berechn. x für Zahnsteifigkeit */
 x_eingr = z1/2/PI*x[0];
 c = cz(x_eingr);
 Fz = c*rb1*x[0] + c*rb2*x[1] + dz*rb1*x[2] + dz*rb2*x[3];
 Frel = (Fz-Fs)/Fs;
 if (mode=='v')
 {
 printf("%d %f %f %f %f %f %f\n", i,t,x[0],x[1],x[2],x[3],Frel,c);
 }
 if ((i>.9*n) && (Frel>Fmax))

 Fmax = Frel;
 }
 if (mode=='a')
 {
 printf("%f %f\n",eta,Fmax);
 }
}

main()
{
 int i;
 double t;

 /* getdelim (&LINEPTR,&N,’\n’,stdin); */
 scanf("%lf %lf %c",
 &rb1,&rb2,&b_Rad,&z1,&z2,&J1,&J2,&cp1,&cp2,&epal,&kv,&D,&T1,&eta,&mode);
 cmi = cm();
 om_eig = sqrt(cmi*(rb1*rb1/J1+rb2*rb2/J2));

 /* Berechnung der Antriebs-wg aus geford. Verhältn. eta=Om*z/om */
 Om1 = eta*om_eig/z1;

 /* stat. Zahnkraft */
 Fs = T1/rb1;
 /* Auslenkung durch stat. Moment */
 psi10 = Fs/cmi/rb1;
 T2 = z2/z1 * T1;
 dz = 2*D*cmi/om_eig;

 /* Anf.wert f. Zustandsvektor x0 */
 x[0] = psi10; x[1] = 0; x[2] = Om1; x[3] = -z1/z2*Om1;
 h = .1/om_eig;

 switch (mode) {
 case 'v':
 case 'a':
 sim (0,h,5000);
 break;
 case 'c':
 for (i=0;i<=1000;i++)
 {
 x_eingr=epal*i/1000.;
 printf("%f %f %f \n",x_eingr,cp(x_eingr),cz(x_eingr),cm());
 }
 }
}
break;
case 'd':
 printf("cmi,om_eig,Om1,x[3],psi10,dz,PI\n");
 printf("%f %f %f %f %f %f\n", cmi,om_eig,Om1,x[3],psi10,dz,PI);
 break;
default:
 break;
}
B Die Quelldatei zahnsteifigkeit.c

/* Modul zur Berechnung der
- Zahnpaarsteifigkeit cp (x)
- Eingriffssteifigkeit cz (x)
- mittl. Verzahnungssteifigkeit cm */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <math.h>

extern double cp1,cp2,epal,kv;

double cp(double x)
{
 return (cp1+(cp2-cp1)*(2/epal*x-1)*(2/epal*x-1));
}

double cz(double x)
{
 double x2;
 /* Normierung von x auf den Bereich 0...1 */
 x2 = fmod(x,1);
 /* printf("++ %lf %lf ++\n",x,x2); */
 return ((x2<epal-1) ? kv*(cp(x2)+cp(x2+1)) : cp(x2));
}

double cm()
{
 return ((2*kv*(epal-1)+2-epal)*cp1\n + epal/3*(cp2-cp1)**((1-kv)*(2/epal-1)*(2/epal-1)+(2/epal-1)+kv));
}
C Die Eingabedatei torsionsschwingenr1-0.dat

50e-3 100e-3
40e-3
25 50
3000e-6 50000e-6
900e6 600e6
1.5 1
.04
300
0.8
c

#Eingabedaten für "torsionsschwingen1"
#rb1 rb2 b z1 z2 J1 J2 cp1 cp2 epal kv D T1 eta
#m m m 1 1 kg·m² kg·m² N/m N/m 1 1 1 N·m 1
#
#Art der Programmausgabe
v: Vollst. Sim.ablauf
a: Amplitude stationär
c: Verlauf der Eingr.steifigkeit über Eingr.strecke
d: debug
D Das Shell-Script eta-verlauf

#!/bin/sh
PROGR=torsionsschwinger1
AUSG='f-eta.dat'
rm $AUSG
RB1=50e-3
RB2=100e-3
B=40e-3
Z1=25
Z2=50
J1=3000e-6
J2=50000e-6
CP1=900e6
CP2=600e6
EPAL=1.5
KV=1.0
D=.04
T1=300
MODE=a

for i in .01 .03 .05 .07 .09 .095\n .1 .105 .11 .111 .112 .12 .125 .13 .14 .143 .147 .15 .16 .167 .17 .18 .19 .195\n .2 .205 .21 .23 .24 .25 .26 .27\n .3 .32 .33 .333 .34 .35 .37 .39\n .4 .42 .45 .47 .49\n .5 .52 .55 .57 .59\n .6 .65 .75 .8 .85\n .9 .92 .95 .97 .99 .995\n1. 1.005 1.01 1.03 1.05 1.08\n1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.82 1.83 1.85;
done

echo $RB1 $RB2 $B $Z1 $Z2 $J1 $J2 $CP1 $CP2 $EPAL $KV $D $T1 $i $MODE\n|$PROGR >>$AUSG;
done
E ITI-Simulationsergebnisse

Variablenliste

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>r<sub>b1</sub></td>
<td>50·10<sup>-3</sup> m</td>
</tr>
<tr>
<td>r<sub>b2</sub></td>
<td>100·10<sup>-3</sup> m</td>
</tr>
<tr>
<td>b</td>
<td>40·10<sup>-3</sup> m</td>
</tr>
<tr>
<td>z<sub>1</sub></td>
<td>25</td>
</tr>
<tr>
<td>z<sub>2</sub></td>
<td>50</td>
</tr>
<tr>
<td>J<sub>1</sub></td>
<td>3000·10<sup>-6</sup> kg·m<sup>2</sup></td>
</tr>
<tr>
<td>J<sub>2</sub></td>
<td>50 000·10<sup>-6</sup> kg·m<sup>2</sup></td>
</tr>
<tr>
<td>c<sub>p1</sub></td>
<td>900·10<sup>6</sup> N/mm</td>
</tr>
<tr>
<td>c<sub>p2</sub></td>
<td>600·10<sup>6</sup> N/mm</td>
</tr>
<tr>
<td>ε<sub>α</sub></td>
<td>1,5</td>
</tr>
<tr>
<td>k<sub>v</sub></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0,04</td>
</tr>
<tr>
<td>T<sub>1</sub></td>
<td>300 N·m</td>
</tr>
<tr>
<td>η</td>
<td>0,8</td>
</tr>
</tbody>
</table>
Bild E.1: Dynamische Kraft bei Modell mit Zusatzmasse

Bild E.2: Frequenzanalyse der Kraft bei Zusatzmassen-Modell
F Simulationsergebnisse des erweiterten Modells mit Schrägverzahnung

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{b1}</td>
<td>$50 \cdot 10^{-3}$ m</td>
</tr>
<tr>
<td>r_{b2}</td>
<td>$100 \cdot 10^{-3}$ m</td>
</tr>
<tr>
<td>b</td>
<td>$40 \cdot 10^{-3}$ m</td>
</tr>
<tr>
<td>z_1</td>
<td>25</td>
</tr>
<tr>
<td>z_2</td>
<td>50</td>
</tr>
<tr>
<td>J_1</td>
<td>$3000 \cdot 10^{-6}$ kg·m²</td>
</tr>
<tr>
<td>J_2</td>
<td>$50000 \cdot 10^{-6}$ kg·m²</td>
</tr>
<tr>
<td>c_{p1}</td>
<td>$900 \cdot 10^6$ N/mm</td>
</tr>
<tr>
<td>c_{p2}</td>
<td>$600 \cdot 10^6$ N/mm</td>
</tr>
<tr>
<td>ε_α</td>
<td>1,5</td>
</tr>
<tr>
<td>k_v</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0,04</td>
</tr>
<tr>
<td>T_1</td>
<td>300 N·m</td>
</tr>
<tr>
<td>η</td>
<td>0,8</td>
</tr>
<tr>
<td>β</td>
<td>$14 \cdot \frac{\pi}{180}$ rad</td>
</tr>
</tbody>
</table>
Simulationsergebnisse des erweiterten Modells mit Schrägverzahnung

Bild F.1: Lagerkräfte F_{1y}, F_{1z}
F Simulationsergebnisse des erweiterten Modells mit Schrägverzahnung

Bild F.2: Lagerkräfte F_{12y}, F_{12z}
Literaturverzeichnis

Sachregister

Ausgangsmoment 12
Axiallager 14
Bewegungsgleichung 17, 19, 26
d’Alembertsches Prinzip 18
Dämpfungskoeffizient 17, 21
Eigenfrequenz 19–21, 25
Eingangsmoment 12
Einheitsmatrix 19
Elemente 28
Festkörperberührung 16
FFT 28
Frequenzanalyse 28
Frequenzverhältnis η 25
Gleichung, charakteristische 27
Grundfrequenz 28
inverse Matrix 19
ITI-SIM 17
Knoten 28
Koordinatentransformation 35
Körperschall 15, 16
Korrekturfaktor 21
Kräfteplan 14
Lagerspiel 16
Lagerung
 statisch bestimmt 14
Lüfterkennlinie 31
Luftschall 15, 16
Modelfenster 28
Modul (Baustein) 10
Normalebene 13
Nullmatrix 19
Oberschwingung 28
Parametererregung 17
pitting 15
Profilüberdeckung 20
Radial-/Axiallager 14
Radialkraft 12
Radiallager 14
Runge-Kutta-Verfahren 17, 20
Schmierspalt
 exzentrischer 16
Schnelle Fourier-Transformation / FFT
Schrägungswinkel 13, 27
Simulation
 Schrittweite 20
stationäre Phase 23
Steifigkeit
 Gesamt- 20, 21, 26
 mittlere 18, 21
 Zahnpaar- 20, 21
Tangentialebene 12, 13
Tangentialkraft 12, 13
Transformator, ebener 35
Übermatrix 19
Wälzkörper
 Verschleiß 16
Zahnkraft
 maximal zulässige 15
Zustandsgleichung 19, 20
Zustandsvektor 19, 20, 23

51