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Abstract

Cyber-physical systems and the Internet of Things raise various challenges concerning
the modelling and analysis of large modular systems. Models for such systems typically
require uncountable state and action spaces, samplings from continuous distributions,
and non-deterministic choices over uncountable many alternatives. In this thesis we fo-
cus on a general modelling formalism for stochastic systems called stochastic transition
system. We introduce a novel composition operator for stochastic transition systems that
is based on couplings of probability measures. Couplings yield a declarative modelling
paradigm appropriate for the formalisation of stochastic dependencies that are caused
by the interaction of components. Congruence results for our operator with respect to
standard notions for simulation and bisimulation are presented for which the challenge
is to prove the existence of appropriate couplings. In this context a theory for stochastic
transition systems concerning simulation, bisimulation, and trace-distribution relations
is developed. We show that under generic Souslin conditions, the simulation preorder
is a subset of trace-distribution inclusion and accordingly, bisimulation equivalence is
finer than trace-distribution equivalence. We moreover establish characterisations of the
simulation preorder and the bisimulation equivalence for a broad subclass of stochastic
transition systems in terms of expressive action-based probabilistic logics and show that
these characterisations are still maintained by small fragments of these logics, respectively.
To treat associated measurability aspects, we rely on methods from descriptive set theory,
properties of Souslin sets, as well as prominent measurable-selection principles.
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1 Introduction

Modelling, control, analysis, and verification of cyber-physical systems and the Internet
of Things represent key challenges of the 21st century in the areas of computer science,
mathematics, and engineering [EG16]. Mathematical challenges arise when the formal
models include uncountable state and action spaces, discrete and continuous dynamics,
samplings from continuous distributions, and non-deterministic choices over uncountable
many alternatives. The article [HH15] provides an excellent overview of prominent classes
of models. For instance, dynamics obtained by interaction of digital sensors with the
continuous environment lead to hybrid systems [Hen96, BBM98, Pla08]. Communication
and interaction of complex and heterogenous systems motivate distributed and composi-
tional approaches of hybrid systems [AH97, AH99] as well as stochastic extension thereof
[WSS97, LSV03, HHHK12, Pla12].

This thesis investigates a general model for modelling complex systems called stochastic
transition system (Part I). We develop a theory on simulation, bisimulation, and trace-
distribution relations (Part II), provide action-based probabilistic logics characterising the
simulation preorder and the bisimulation equivalence (Part III), and present a composition
operator not imposing that stochastic transition systems to be composed behave stochastic-
ally independent (Part IV). Discussions and concepts referring to stochastic systems with
uncountable state spaces are inspired by the pioneering works on labelled Markov pro-
cesses [BDEP97, Des99, DEP02, DGJP03, Pan(09], the contributions on non-deterministic
labelled Markov processes [DTW12, Wol12, DLM16], as well as the investigations for simple
stochastic transition systems in [CSKN05, Cat05]. Considering the world of countable-state-
space systems, this thesis is in the spirit of [SL94, Seg95, LSV07] studying probabilistic
automata and of [D’A99, BD04, DK05] investigating stochastic automata.

Part I: stochastic transition systems. We focus on a general stochastic model, called
stochastic transition system (STS), which consists of three basic ingredients: a state space,
an action space, and a transition relation. Both the state and the action space of an STS
may be uncountable, more precisely, are required to form Polish spaces. A state intuitively

represents the configuration of the modelled system at a certain moment of its execution,
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1 Introduction

e.g., the recent performance mode of a hardware component or the current value of variables
referring to physical quantities such as temperature, velocity, or pressure. An action stands
for an observable process activity, e.g., the switch of a performance mode affecting the
energy consumption or the adjustment of system parameters influencing controlled physical
quantities. Besides this, the sojourn time in a performance mode can be also reported by
means of specific actions. The transition relation finally specifies how the execution of
an action changes the system state and includes arbitrary (continuous) distributions over
action-state pairs.

There are two views on operational systems concerning time: the linear and path-based
[Pnu77] as well as the branching notion of time [EC82, Mil82, HJ94], see also [vG90, vG93,
GSS95]. Simulation and bisimulation notions [vB76, HM80] relate states on the basis of
their branching-time structure and provide prominent formalisms that have been adapted in
many flavours. Whereas bisimulation equivalence assures the equivalence of the branching-
time structure, simulation preorders aim to identify states where a state arises from the
other by means of an abstraction. In the context of this thesis, we consider probabilistic
simulation and bisimulation [LS91, Den15] where we focus on a purely action-based setting,
i.e., the set of all actions represents the relevant set of basic atomic observables.

Intuitively, if the state s;, of an STS simulates the state s;, then s, can mimic the behaviour
of s,. Given a third state s, that in turn simulates s;, one naturally expects that s. also
simulates s,. Thus, it is desired that simulation and also bisimulation yield transitive
relations on the corresponding state space of the STS under consideration. The following
theorem summarises the main contribution of Part I of this thesis:

Theorem A. For every STS the following two statements hold:
(1) The simulation relation X is a preorder on the state space.
(2) The bisimulation relation =~ is an equivalence on the state space.
In particular, both relations < and = are transitive. _|

The challenging part of the proof for this theorem is to justify the transitivity of the
induced relations of simulation and bisimulation. The complete argument can be found in
Section 3.4. Theorem A covers already established transitivity results for instances of STSs
such as labelled Markov processes [FKP17] (see also [Des99, DEP02, DGJP03]) and their
conservative extension of non-deterministic labelled Markov processes including internal
non-determinism [DTW12, Wol12].
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An STS may involve non-deterministic choices over a possible uncountable number of
successor distributions in a state. Thus, reasoning about probabilities of sets of (infinite)
paths requires the resolution of this non-determinism in terms of schedulers, also referred to
as policies, adversaries, or strategies. Here, we follow standard concepts for discrete systems,
e.g., [Seg95, BK08], and continuous systems, e.g., [ CSKN05, Cat05, WJ06, Pan09, Wol12].
A trace is obtained by projecting a path in an STS on the sequence of the basic atomic
observables, i.e., the actions. Hence, every scheduler also induces a distribution over
traces. In the linear-time setting for stochastic models, two systems are considered to be
equivalent if they induce the same trace distributions over sequences of observables. While
the coinductive nature of bisimulations often facilitates elegant arguments about states and
their transitions, reasoning about trace distributions is typically more involved as we also

see in Part II of this thesis.

Part II: simulations and trace distributions for Souslin systems. In the non-stochastic
setting, it is well known that bisimulation equivalence is finer than trace equivalence (see,
e.g., [BKO8]). A corresponding statement for stochastic models involving trace distri-
butions has been shown, e.g., for models with discrete state spaces such as probabilistic
automata [Seg95], continuous-time Markov decision processes [NKO07], labelled concurrent
Markov chains [DGJP10], and for simple STSs in the case of a global notion of bisimulation
[Cat05]. The main objective of Part II is to investigate the mentioned connection between
the bisimulation equivalence and the trace-distribution equivalence for STSs where our
main contribution can be summarised as follows:

Theorem B. For every Souslin STS the Souslin-simulation preorder is a subset of the trace-
distribution preorder and accordingly, the Souslin-bisimulation equivalence is finer that the trace-
distribution equivalence, i.e., for every states s, and sy, the following two implications hold:

(1) s, 2%%s;, implies s, <"sy.
(2) 8,225 s;, implies s, ="sy.
|

A proof of this theorem is finally established in Section 4.6. The sketched result provides
important sufficient criteria for proving trace-distribution preorder and equivalence of
STSs. The latter are often intricate as one has to consider infinite paths or more precisely,
probability measures on the set of all infinite paths. We show, roughly speaking, that local
reasoning about states and their outgoing transitions suffices to determine whether there

exists a simulation or a bisimulation relating given states of an STS. Theorem B is associated
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1 Introduction

with the following scheduler synthesis problem: given two states s, and s;, such that s,
simulates s, and an s,-scheduler, the task is to generate an s,-scheduler inducing the same
trace distribution. The challenging part in the proof of this theorem originates from the

fact that schedulers are required to form Borel functions.

Theorem B includes two requirements referring to Souslin sets. First of all, the STS
under consideration is supposed to be Souslin, meaning that the corresponding transition
relation forms a Souslin set. It even turns out that the theorem does not hold any longer
if one drops this Souslin assumption on the STS. Besides this, an existing (bi)simulation
relating the states under consideration is required to constitute a Souslin set. These Souslin
requirements enable the applicability of measurable-selection principles from the literature
[Wag80, HPV81, AB06, Bog07] that yield a key ingredient for our proof of Theorem B for
the construction of specific schedulers. The potential of measurable-selection principles
has been already discovered in the context of stochastic control problems [DIY79, BS96],
optimisation problems [Rie78] and stochastic relations [Dob07].

Measurability considerations constitute an essential element in the study of systems
that involve uncountable state spaces or uncountable action spaces. For instance, known
techniques for proving the logical characterisation of (bi)simulation for labelled Markov
processes [ Des99, DEP02, DGJP03, DDLP06, Pan09, FKP17] and non-deterministic labelled
Markov processes [DTW12, Wol12] heavily exploit the measurability requirements on the
underlying stochastic model and rely on argumentation principles from measure theory:.
The proof in [NKO07] showing that bisimulation preserves continuous stochastic logic
for continuous-time Markov decision processes is also substantially based on measure
theory. Furthermore, the articles [CSKNO5, Cat05, WJ06] study measurability questions
associated to schedulers and executions of STSs. In general, the challenge is to find generic
measurability assumptions that are satisfied by a large and important class of stochastic

systems while ensuring strong structural properties for theoretical arguments.

Despite the Souslin assumptions, Theorem B has various important consequences. Indeed,
the logical characterisations of the simulation preorder and the bisimulation equivalences
to investigated in Part III of this thesis yield a powerful subclass of Souslin STSs where the
Souslin-simulation preorder and the simulation preorder are the same and accordingly,
where the Souslin-bisimulation equivalence and the bisimulation equivalence collapse.
This class includes probabilistic automata [Seg95], Markov decision processes [Put94],
labelled Markov processes [ Des99, DGJP03, Pan(9 |, image-finite non-deterministic labelled
Markov processes [DTW12, Wol12], and continuous controlled Markov processes [ DIY79,
BS96, ZEM 14, TMKA16].
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Independently of the latter mentioned results, many prominent modelling formalisms
known from the literature turn out to admit a semantics in terms of Souslin STSs, e.g.,
stochastic automata [ D’A99, BD04, DK05], probabilistic rectangular hybrid automata [Spr01,
KNSS02, Spril, ZSR*12, Spr15], and o-minimal hybrid automata for common o-minimal
theories [ LPS00, BMO05, BBCO6]. There are also tight connections to the semantical model
for the prominent modelling language Hmopest [ BDHK06, HHHK12]. Besides HmobEsT,
instances of Souslin STS can be also analysed with the software tools HyTech [HHW1t97],
Puaver [Fre08], Faust2 [SGA15], and KeYmaera [Pla08, Plal0, Plal5]. There are other
prominent approaches for the analysis of stochastic systems with uncountable state spaces,
e.g., based on (stochastic) satisfiability modulo theories [FTE10, EGF15], statistical model-
checking techniques [ZBC12, EGF15], or counterexample-guided abstraction refinement
approaches [NDN"16].

Theorem C. For every deterministic purely stochastic Souslin STS the Souslin-bisimulation equi-
valence and the trace-distribution equivalence are the same, i.e., for every states s, and sy it holds:

sa~sy iff $,2Ms, iff s,="s.
In particular, the relation =T is g bisimulation. g

For arbitrary STSs two states whose associated sets of induced trace distributions coincide
are not bisimilar to each other in general. However, by Theorem C, the corresponding result
holds for a subclass of STSs. This theorem is presented in Section 4.8 of this thesis (see
also Section 7.2). Although our proof showing that the trace-distribution equivalence ="
forms a bisimulation is technical at some places, the argument only uses basic concepts
from measure theory. The transition relation of a purely stochastic STS is completely
determined by a control law that assigns to every state a uniquely determined successor
distribution over action-state pairs. From this it directly follows that simulation preorder
and bisimulation equivalence coincide for this model. To this end, Theorem C is presented
from the bisimulation perspective only. Intuitively, a purely stochastic STS is deterministic
provided in every state s the execution of an action act almost surely leads to a uniquely
determined successor state. It turns out that (deterministic) purely stochastic Souslin STSs
yield an interesting subclass of STSs as they already cover powerful modelling formalisms
from the literature such as stochastic timed automata [BBB* 14, BBCMar], semi Markov
processes [Whi80, LHK01, BHHKO3, GJP06], and discrete-time stochastic hybrid automata
[AKLP10, AKM11, SA13].

For further related work concerning Part II of this thesis we also refer to [HJS07, KK12]
and [JS09, SS11, JSS15] where a coalgebraic framework on a trace semantics for stochastic
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1 Introduction

systems is developed. Moreover, the article [FKS16] investigates algorithmic questions for
discrete Markovian models referring to trace distributions. For instance, it is shown that
the following general trace-refinement problem is undecidable: given two discrete Markov
decision processes and a scheduler for one of them, the general trace-refinement problem
asks whether there exists a scheduler for the other system such that the corresponding
trace distributions coincide.

Part III: action-based probabilistic temporal logics. The main objective of Part III in
this thesis is to provide a characterisation of simulation preorder and bisimulation equi-
valence for a large subclass of (Souslin) STSs in terms of respective temporal action-based
probabilistic logics. For bisimulation we consider an expressive logic called APCTL* to
formalise constraints for probabilities for possibly complex path properties with conditions
on the accumulated reward. The second logic for bisimulation called APCTL, is in the spirit
of probabilistic Hennessy-Milner logic [HM85] where the Boolean fragment is restricted
to conjunctions. Indeed, APCTL" includes the until modality and hence, is convenient
for specifying conditions on infinite behaviours such as liveness properties (e.g., repeated
reachability) and safety properties (e.g., infinite-horizon invariants). In contrast to that,
properties formulated by APCTL, only concern conditions on direct successors in a state.
For the characterisation of the simulation preorder we consider the two temporal logics
JAPCTL* and APCTL,. Again, while JAPCTL* constitutes a comparable expressive logic
capturing, e.g., the until modality, the second logic APCTL, yields an inexpressive sublogic
of JAPCTL* similar to APCTL,.

The temporal logic APCTL* is in the spirit of PCTL [HJ94, Bd95], PCTL* [ASB95], and
CSL [ASSB00, BHHKO3] that extend the classical branching-time logic CTL [EC82] with
probabilities and discrete respective continuous time. Besides this, APCTL* also includes an
accumulation modality in the spirit of the non-probabilistic logics in [BKKW14, BCHK14]
and of the extension of CSL given by CSRL [HCH" 02, Clo06]. In view of the action-
based setting, we are influenced by the action-based variant of CTL in [DV90]. Intuitively,
JAPCTL" is given by the existential fragment of APCTL* where in addition every form
of negation is absent. The logics APCTL, and APCTL, yield very restricted fragments
of APCTL* and are in particular inspired by the modal logics in [BDEP97, Des99, DEP02,
Pan09] for labelled Markov processes and [DTW12, Wol12] for non-deterministic labelled
Markov processes.

Theorem D. We consider an STS augmented with an action event family and a reward function.
Assume the STS is non-blocking, image-finite, and Borel concerning the hit sigma algebra. Then
the simulation preorder, the Souslin-simulation preorder, as well as the preorders induced by the

16



temporal logics APCTLe and JAPCTL* are the same. Accordingly, the bisimulation equivalence,
the Souslin-bisimulation equivalence, as well as the equivalences induced by APCTL, and APCTL*
coincide. Thus, for every states s, and sy one has:

(1) sa=sp iff sa=*sp iff SaZesy if sa=7sp
(2) Saz=sy iff Sa~Us, iff Sic~osp iff San* Sp.
|

As a consequence of the logical characterisation of bisimilarity in terms of the full logic
APCTL" we get that bisimilar states are indeed equivalent for a wide range of properties with
possibly complex temporal and reward-bounded constraints. By the logical characterisation
in terms of the small sublogic of APCTL,, non-bisimilar systems can be distinguished by
comparably simple formulas. The same discussion applies for the simulation preorder
and the corresponding logics JAPCTL* and APCTL,. Besides this, Theorem D identifies
a large class of STSs where the simulation preorder and the Souslin-simulation preorder
as well as the bisimulation equivalence and the Souslin-bisimulation equivalence are the
same, respectively. As every STS in the presented theorem is Souslin, we can thus apply
Theorem B to obtain the following corollary referring to the trace-distribution relations:

Corollary E. We consider an STS that is non-blocking, image-finite, and Borel concerning the hit
sigma algebra. For every states s, and sy, the following two implications hold:

(1) sy <8, implies s, <"sy,.
(2) sy=s, implies s, ="sy,.
|

To show that the properties formulated by APCTL* and JAPCTL* are preserved by
simulation and bisimulation, respectively, we can basically rely on slight extensions of
the techniques developed in Part II of this thesis. To show that non-bisimilar states can
be distinguished by an APCTL, state formula, we follow the argumentation scheme in
[FKP17] that relies on Dynkin’s 77-A theorem and the unique structure theorem. Replacing
these two main ingredients by corresponding new ones [FKP17], the same technique also
applies for the characterisation of the simulation relation.

The approach in [FKP17] heavily exploits the countability of the logic. In our setting
with uncountable action spaces, however, we cannot rely on this argumentation with a
naive definition of the logics APCTL, and APCTL,, i.e., where all the individual actions
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1 Introduction

serve as the basic atomic building blocks. Our main idea to treat this problem is as follows:
instead of focusing on individual actions, the logics APCTL, and APCTL, use a countable
number of certain Borel subsets of the action space as the basic atomic observables. These
subsets are required to satisfy some natural conditions that are formalised by the notion of
an action event space. As a consequence, Theorem D also covers STSs whose action spaces

may be uncountable.

We also provide a variant of Theorem D showing that the provided logical charactersa-
tions in particular hold for image-finite non-deterministic labeled Markov processes with
countable action spaces [DTW12, Wol12]. Consequently, the contributions of Part III of
this thesis cover labelled Markov processes with countable action spaces [ Des99, DEP02,
Pan09], stochastic automata [D’A99, BD04, DKO05], probabilistic guarded-command lan-
guage [MMO04], and a subclass of stochastic hybrid systems [FHH'11, Hah13].

Part IV: parallel composition based on spans and couplings. A major objective in
defining compositional frameworks is to separate concerns into components (specifying
the operational behaviour) and composition operators (addressing the communication
and interaction of the components). Compositionality has its roots in the theory of process
calculi, i.e., CCS [Mil82], CSP [Hoa85], and ACP [Bae05]. There are various investigations
in the stochastic setting concerning, e.g., variants for CCS [HJ90, Yi91, YL92, GJS94, Tof94,
Yi94] and CSP [Low91, DHK99] as well as process algebras for performance modelling
and evaluation [Hil96], stochastic automata [D’A99, DK05], and interactive generalised
semi-Markov processes [Gly89, BG02, Bra04, GJP04]. A process-algebraic approach to
model and analyse software applications can be found in [ ABC10]. There are also parallel
operators for probabilistic automata [Seg95], simple STSs [CSKNO5, Cat05], stochastic
hybrid systems [Str05, BDHK06, HHHK12], and weighted Markov decision processes
[DH13a]. A unifying approach is proposed, e.g., in [BNL13]. There are many variants
and approaches for describing the interaction and communication of components within
models for distributed systems, e.g., input/ output automata [LT87, LS89] where the set
of actions is partitioned into input, output, and internal actions. The latter model has
been extended to timed and hybrid systems [WSS597, LSV03] and probabilistic variants
thereof [ML07, DLM16]. A related approach is given by interface automata, e.g., [dAHO1].
Interface automata yield an automata-based formalism convenient for the specification of
temporal aspects referring to the communication of components.

Within the above approaches for stochastic systems, the composition operator relates
probability distributions of the individual components to be composed in terms of the
product measure. Therefore, these operators are based on the assumption that components

18



interact stochastically independent. However, there are situations where multiple compon-
ents of a system are governed by a common context that yields stochastic dependencies,
e.g., common cause failures. Such failures originate from the same cause and affect multiple
components at the same time. A common source might be given by, e.g., a manufacturing
defect inherent in components of the same type or common external influences the com-
ponents are exposed to. In these situations it is not adequate to rely on the assumption that
components behave stochastically independent.

In Part IV of this thesis we focus on a compositional framework convenient for the
declarative modelling of stochastic dependencies in, e.g., common cause situations and other
compositional scenarios including stochastic dependencies. Relying on specific couplings
of probability measures, a new parallel operator for stochastic systems is introduced where
stochastic dependent transitions are combined. In this way we can incorporate stochastic
dependencies referring to the effect of actions in certain situations. The operator is moreover
indexed by a span. Intuitively, spans allow for arbitrary sets and associated projections
functions to specify the global state space of the STSs to be composed.

A coupling relates two a priori unrelated probability measures in the same space. As a
consequence, couplings yield a flexible and declarative modelling formalism convenient for
expressing stochastic dependencies between components. The potential of couplings has
been already recognised in many different areas. For instance, couplings enable elegant ar-
gumentation techniques in probability and optimal-transport theory [Lin92, Lin99, LPWO09,
Vil09]. These proof schemes have been applied by the formal-verification community for
proving differential privacy [BEG"15, BGG' 16a, BGG*16b, BGHS17]. Simulations and
bisimulations using weight functions also rely on couplings. An overview on different
applications of couplings in computer science can be also found in [DD09].

Theorem F. Under some generic side constraints, for every simple STSs Ty1, Ta2, Tp1, and Ty
simulation and bisimulation are congruences with respect to the span-coupling composition operator
denoted by ||, i.e., the following two statements hold:

(1) Tor 2 Tppand Top 2 Tya  implies Ta1 || Tz = Toa || To-
(2) Tar =Ty and Top ~ Ty implies Ta1 || Taz = T || Too-
_

In the context of process calculi, an important aspect of (bi)simulation is the compatibility
with syntactic operators in the process calculus. Theorem F provides a generic congruence

result for the simulation preorder and the bisimulation equivalence with respect to our
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1 Introduction

newly introduced composition operator. The precise formulation of this result is presented
in Section 6.6. While Theorem F is usually trivial for standard composition operators, the
challenge towards a proof is the construction of suitable couplings representing given
stochastic dependencies. For the latter we exploit the disintegration theorem. Intuitively,
the disintegration theorem provides a way to decompose couplings into its components
and their dependencies.

A congruence result with respect to trace-distribution relations already fails for subclasses
of STSs (see Example 7.4.1 in [Seg95] and also [LSVO07]). That is why, Part IV of this thesis
only concentrates on relations induced by simulations and bisimulations.

Publications of the author in the scope of this thesis. The material of Part IV concerning
the composition operator for STSs is published in the proceedings of the 43rd International
Colloquium on Automata, Languages and Programming (ICALP) [GBK16]. The journal
version of [GBK16] has been submitted [GB17] and additionally covers Part IT on simulation,
bisimulation, and trace-distribution relations. Part III of this thesis has been accepted for
publication in the proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control (HSCC) [GB18]. In fact, the logical characterisation of the
simulation preorder and the bisimulation equivalence provided in this thesis goes beyond
[GB18] as the cited paper only covers purely stochastic Souslin STSs.
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2 Probability measures on Polish spaces

This chapter recalls concepts from the literature towards a self-contained framework about
Polish spaces, on which we rely on throughout this thesis. We also present observations
as well as auxiliary lemmas that, to the best of our knowledge, extend existing literature.
However, whose proofs usually do not involve fundamental new insights.

First, we provide a brief overview of important terms and notions regularly used in this

thesis and sketch their significance.

Polish spaces. Common sets (equipped with their natural metrics) occurring in mod-
elling stochastic systems are covered by Polish spaces, e.g., every countable set, the real
numbers IR, the non-negative real numbers R >, and the set of all evaluations of a countable
set of real-valued variables. The notion of a Polish space enables an advanced mathematical
theory [Kec95, Arv98, ABO06, Sri08, Gao08], providing powerful results such as the disin-
tegration theorem or measurable-selection principles for set-valued functions. Besides this,
Polish spaces constitute the key ingredient of descriptive set theory where certain classes
of subsets of Polish spaces are studied, e.g., the class of all Borel sets as well as the class of
all Souslin sets (see also [Kan95]). It turns out that Polish spaces yield a convenient and
common setting for the study of stochastic system including uncountable state and action
spaces (see also [Dob07, Pan09]).

Souslin sets. Concepts related to Souslin sets provide a crucial mathematical tool in this
thesis. Souslin sets (also called analytic sets) are special subsets of Polish spaces that enjoy
many favourable closure properties [Kec95, Bog07], in particular, the image of a Souslin
set under a Borel function also constitutes a Souslin set. Since every Borel set is also a
Souslin set, the notion of a Souslin set yields a powerful mathematical formalism for the
subsequent chapters of this thesis. For instance, we investigate a Souslin condition for
stochastic transition systems in Chapter 4. Thanks to the rich theory on Souslin sets, this
requirement is general enough to cover many powerful modelling formalisms from the
literature while maintaining strong mathematical properties for theoretical arguments.

Measurable-selection principles. At various points in this thesis the existence of certain
Borel functions with appropriate properties is required, for instance, in the construction of
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2 Probability measures on Polish spaces

schedulers for stochastic transition systems inducing a given trace distribution. In such
a situation we typically rely on a measurable-selection principle [Wag80, HPV81, AB06,
Bog07]. Such a principle provides sufficient conditions on a set of functions represented by
a set-valued function that guarantees the existence of a Borel function in that set. The task
of showing the existence of a specific Borel function then reduces to provide an appropriate
set of functions and to show that this set satisfies the requirements of a measurable-selection
principle. This procedure has been also successfully employed in many applied areas, e.g.,
concerning stochastic optimal control [DIY79, BS96].

Barycentres and convex hulls. Consider a set P of probability measures on some Polish
space. Intuitively, the convex hull of P consists of exactly those probability measures that
are obtained by, roughly speaking, a reweighting of probability measures in P. More
precisely, such a reweighting is given by a barycentre of a probability measure that forms a
distribution over the probability measures in P. Our notions regarding barycentres and
convex hulls are inspired by [DM88] (see also [MS00]). It turns out that building the
convex hull of sets of probability measures yields a closure operator when focusing on
Souslin sets. The mathematical challenge is to prove that taking the convex hull of a set of
probability measures twice gives the same result as if it would have been taken once. We
provide a direct argument for this statement without a detour on related results in [DM88]
for locally convex topological vector spaces.

Couplings of probability measures. A coupling is a probability measure on a product
space that relates two probability measures in the same space. The crux is that besides a few
exceptions there are various couplings between probability measures such that the probabil-
ity measures under consideration can be related from different perspectives. The latter fact
enables many elegant proof techniques in probability theory [Lin92, AGS05, LPW(9, Vil09].
Besides this, couplings have versatile applications in different areas of (theoretical) com-
puter science. For instance, a weight function in the context of simulation and bisimulation
is a coupling being compatible with relation (see below). Besides this, behavioural metrics
relying on the Kantorovich lifting for stochastic systems exploit couplings (see also [DD09]
for a survey). Couplings haven been moreover recently employed for the formal verification
of differentially private algorithms [BEG*15, BGG'16b, BGG ' 16a, BGHS17].

Weight functions. Intuitively, a coupling that is additionally compatible with a given
relation is called a weight function for this relation. The concept of weight functions is
not new and has been studied in both the mathematics and computer-science community.
For instance, the series of articles [Str65, KKO77, Edw78, Kel84, Ska93] study sufficient
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and necessary conditions for the existence of probability measures with given marginal
distributions from a purely mathematical point of view. These contributions have many ap-
plications concerning, among others, stochastic inequalities, distances between probabilities
measures, and comparisons of stochastic processes. Interestingly, in the computer-science
community weight functions also play a key role for the comparison of the branching-time
behaviour of stochastic systems by means of simulations and bisimulations. This discussion
is postponed to the next chapter where we introduce stochastic transition systems and
related notions. The concept of weight function also appears in the thesis [Jon90] in the

context of probabilistic power domains.

Smooth and weakly smooth relations. Intuitively, considering smooth relations from
the perspective of descriptive set theory where one studies the complexity of the definition
of subsets of Polish spaces, a smooth relation are precisely those relations that are Borel
reducible to the diagonal relation of some Polish space [Kec95, Sri08]. As diagonal relations
are comparable simple relations, smooth relations enjoy many strong structural properties.
For smooth as well as weakly smooth relations we prove a characterisation for the existence
of specific weight functions the thesis benefits at various points. More precisely, we provide
a characterisation of the corresponding weight lifting in terms of a lifting used, e.g., in
the context of simulation and bisimulation for labelled Markov processes [Pan09]. Our
argumentation for the mentioned characterisation requires no essential new mathematical
ideas and basically uses Strassen’s theorem on stochastic domination [Str65, KKO77, Kel84,
Les10] as well as the techniques developed in the recent paper [FKP17]. Our investigations
on smooth as well as weakly smooth relations also yield important links to related work as
we discuss later in Chapter 7.

2.1 Setting the mathematical framework

This section introduces the overall mathematical framework of this thesis, in particular,
recalls basic definitions and results for Polish spaces and related notions. The reader is
supposed to be familiar with standard concepts from measure and probability theory as
well as elementary material concerning metric and topological spaces [Bil95, Bil99, Fre(1,
Kal02, Bog07, Sch08]. The first chapters in [Pan09] provide an introduction to these topics
adapted for computer scientists. We briefly elaborate on the basic elements of measure
theory first, i.e., sigma algebras, (probability) measures, and measurable functions.

Sigma algebras. The notion of a sigma algebra is fundamental in measure theory, e.g.,

for specifying measurable information of sets, for defining measures quantifying these
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2 Probability measures on Polish spaces

available information, and for declaring the events of interest in probability theory. Recall,
a sigma algebra on a set X is a family B of subsets of X such that B is not empty, B is
closed under complementation, and B is closed under countable unions. A measurable
space is a set that is endowed with a sigma algebra. Elements of a sigma algebra are called
measurable sets. In many situations a sigma algebra on a set X is specified by a family of
subsets of X. More precisely, for every family G of subsets of X there exists a uniquely
determined sigma algebra 3 on X such that G C B and so that for every sigma algebra B’
on X it holds B C B’. In other words, B is the smallest sigma algebra on X that contains
every setin G. In this context, the family G is called a generator of the sigma algebra I3 and
we say that the sigma algebra B is generated by G.

Probability measures. As sketched before, a measure assigns a real value to every
measurable set and hence, quantifies the available information specified by the sigma
algebra. To be more precise, consider a measurable space X and denote the associated
sigma algebra by B. A measure on X with respect to B is a sigma additive function
p: B — [0,1] such that #(&) = 0. Note, we only work with measures where the domain
is given by [0, 1], however, in general the domain may be the extended real number line
R U {—00, +0co}. For every measurable set B € B the value y(B) intuitively represents the
information content of B concerning the measure .. For instance, for every x € X the very
simple measure Dirac[x], called Dirac measure concentrated at x, quantifies the information
whether x is contained in a given measurable set or not. Indeed, for every measurable set
B C X it holds Dirac[x](B) = 1if x € B and Dirac[x](B) = 0if x ¢ B. In the context
of probability theory, a probability measures assigns the likelihood of the occurrence of
the events specified by the sigma algebra. Recall, a measure y on a measurable space X
is a probability measure provided y(X) = 1. The set of all probability measures on a
measurable space X is denoted by Prob[X].

Carathéodory uniqueness and extension theorem. We present two results named after
Carathéodory topic of every basic measure theory course. Let X be a measurable space
whose sigma algebra is denoted by BB and pick a generator G of B. The precise statement
of Carathéodory uniqueness theorem is as follows (see, e.g., Satz 5.1.1 in [Sch08]): if the
generator G is closed under finite intersections, then for every measures yi: B — [0,1] and
#': B — [0,1] one has u = i’ precisely when for every B € G it holds u(B) = p'(B).
Hence, to justify that two probability measures are the same, it suffices to consider selected
subsets of the whole sigma algebra. As generators of sigma algebras often admit rich
structural properties, Carathéodory uniqueness theorem allows for various applications

in many contexts. Carathéodory extension theorem is in the same spirit as the result
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before (see, e.g., Satz 5.3.3 in [Sch08]): for every sigma additive function ji: G — [0,1]
with (@) = 0, there exists a measure y: B — [0,1] such that u(B) = ji(B) for every
B € G provided the following two conditions hold: the generator G is closed under finite
intersections and moreover, for every By, By € G there are a natural number n € IN \ {0}
and pairwise disjoint sets By, ..., B, € G such that B; \ B, = B} U...U B),. Here, the
measure } hence yields an extension of the function i to the whole sigma algebra B.

Example 1. Let X; and X, be two measurable spaces. Define X = X; X X5. The set X
equipped with the product sigma algebra forms a measurable space. It is well-known
that the product sigma algebra is generated by the family G consisting of all the sets
Ay X Ay where A1 C X and A C X are measurable. According to Carathéodory
uniqueness theorem, for every u € Prob[X; x Xp|, u1 € Prob[Xi], and up € Prob[X;]
it holds ¢ = uy1 ® uy iff for every measurable sets A1 C X; and A, € X5 one has
(A1 x Az) = u1(A1) - u2(Az). Here, p1 ® pp denotes the product measure of yq and
2. Moreover, it is easy to see that the family of sets G also satisfies the requirements of
Carathéodory extension theorem. Define ji: G — [0,1] by fi(A1 X Ap) = u1(A1) - u2(Az)
for every measurable sets A; C X; and Ay C X5. Then, the product measure y1 ® yp can
be defined as the uniquely determined extension of ji. Here, the argument that /i is indeed
sigma additive is part of every basic measure theory course. J

Polish spaces. A metric on a set X is a function dist: X x X — R that intuitively
assigns a distance to every pair of elements in X, i.e., the smaller the value dist(x1, x2)
is, the closer the distance of the elements x1 and x» are. With that intuition in mind, the
conditions on a metric are natural requiring the identity of indiscernibles, symmetry, and
the triangle inequality. Every metric gives rise to a topological space. More precisely, the
topology on X induced by a metric dist on X is defined as the topology on X generated by
the basis consisting of all open balls in X with respect to dist.

A Polish space is a complete and separable metric space [Kec95]. In particular, by the
separability of a Polish space X with respect to the metric dist, there exists a countable
dense subset Dense of X, i.e., for every ¢ € R-pand x € X there is x" € Dense with
dist(x,x") < e. Given a topological space X with topology O, we say that O is Polish
provided O is separable and there is a complete metric on X that induces O. In this thesis
we rarely work directly with the defining properties of Polish spaces. In fact, the precise
definitions of the underlying metrics of given Polish spaces are often irrelevant. Instead,
many of our mathematical arguments are heavily based on the developed mathematical
theory for Polish spaces and thus, the notion of Polish spaces can be used as a black box.
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2 Probability measures on Polish spaces

Fortunately, those metric spaces that appear in our studies of stochastic systems with

uncountable state and action spaces are Polish:

Example 2. The following itemisation provides examples for Polish spaces:

(M

(2)

3)

(4)

(5)

(6)

Every countable set Q with the discrete metric yields a Polish space. Here, the
distance between elements g1 and g2 of Q is one precisely when g1 # g2. The
induced topology is the largest topology containing all the subsets as open sets.

The real number line R with the Euclidean metric, i.e., dist(ry,72) = |rqy — 12| for
every 11,72 € IR, forms a Polish space. The separability of IR follows from the
well-known fact that the rational numbers Q are countable and dense in IR.

Every closed and every open subset of a Polish space with the corresponding subspace
metrics constitutes a Polish space. The closed and the open unit interval, i.e., the
metric spaces [0, 1] and (0, 1), respectively, and the non-negative real numbers R
hence provide examples for Polish spaces.

Let (X;)icmdex be a family of pairwise disjoint Polish spaces with Index being a
countable set. The union of these sets with the disjoint-union topology forms a Polish
space where a subset O is open iff for every i € Index the set O N X; is open in X;.
Hence, Q U R > is a Polish space where Q is a countable set disjoint from R>.

Let (X;)icinder be a family of Polish spaces such that Index is a countable set. Then
the Cartesian product with the product topology constitutes a Polish space. It in
particular follows that the Cantor space {0, 1} and the Baire space N are a Polish
spaces that have an important role in descriptive set theory [Kec95].

For every Polish space X the set Prob[X] of all probability measures on X constitutes
a Polish space (see Theorem 17.23 in [Kec95]). The latter statement is not trivial and
relies, e.g., on convergence properties of probability measures given by the prominent
Portmanteau theorem (see Theorem 17.20 in [Kec95]).

_I

Relying on the previous examples and closure properties of Polish spaces, we think

that the setting of Polish spaces is general enough for the study of stochastic systems with

uncountable state and action spaces (see Section 3.1 and also [Dob07, Pan(09]). In particular,

by Example 2 (5) and (6), if the state space Sta and the action space Act of a stochastic
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system form Polish spaces, the set Prob[Act x Sta] of probability measures over action-state
pairs yield a Polish space.

Borel sigma algebras. There is a natural sigma algebra associated to topological spaces.
Throughout this thesis every topological space is equipped with the associated Borel sigma
algebra if not stated otherwise. Recall, given a topological space X whose topology is
denoted by O, the Borel sigma algebra on X, which we denote by Borel[X] or Borel[O], is
generated by the family of sets O. As sigma algebras are closed under complementation,
Borel sigma algebras are also generated by the family of the closed subsets of X. The
elements of a Borel sigma algebra are called Borel sets. A function f: X — Y between
metric spaces X and Y is called Borel provided the function f is measurable with respect
to the Borel sigma algebras on X and Y, i.e, the preimage f~!(Bx) is a Borel set in Y for
every Borel set By C X.

Example 3. We revisit the Polish spaces presented in Example 2 and investigate the associ-
ated Borel sigma algebras.

(1) The Borel sigma algebra of a countable set Q is the largest sigma algebra on Q
containing all subsets of Q as Borel sets. It is easy to see that this sigma algebra is
generated by the family {{q} ; 4 € Q} consisting of all the singleton sets.

(2) We consider the Borel sigma algebra of the real number line R. It is well-known
that this sigma algebra is for instance generated by the family consisting of all the
intervals [g1, g2) with rational endpoints g1, g2 € Q.

(3) Let X be a Polish space and C C X be a closed set. The Borel sigma algebra of the
Polish C and the induced subspace sigma algebra on C in X are the same, i.e., one
has the identity Borel[C] = {B € Borel[X] ; B C C} (see Lemma 6.2.4 in [Bog07]).
The same observation applies for the open subsets of X.

(4) Let X and Y be disjoint Polish spaces. Then Borel[X U Y] is equal to the disjoint-
union sigma algebra of Borel[X] and Borel[Y], i.e., a subset B C X UY is contained
in Borel[ X U Y] iff one has BN X € Borel[X] and BN'Y € Borel[Y].

(5) For every two Polish space X and Y one has that Borel[X x Y| and the product
sigma algebra of Borel[X] and Borel[Y] are the same (see Lemma 6.4.2 in [Bog07]).
In particular, Borel[X X Y] is generated by the family of all sets Bx x By such that
Bx € Borel[X] and By € Borel[Y] (see also Example 1). The same holds for Cartesian
products of a countable number of Polish spaces.
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(6) Let X be a Polish space. The Borel sigma algebra on Prob[X]| and the Giry sigma
algebra on Prob[X] are the same (see Theorem 17.24 in [Kec95]). Recalling [Gir82],
the Giry sigma algebra on Prob[X] is defined as the smallest sigma algebra on Prob|[X]
such that the function probeval: Prob[X] — [0,1], probevalg(u) = u(B) becomes
measurable for every Borel set B C X, i.e., the Giry sigma algebra is defined as an
initial sigma algebra.

_

The presented examples of Polish spaces and their corresponding Borel sigma algebras
are essentially the same from a measure-theoretic point of view: for every uncountable
Polish spaces X and Y there exists a bijective function Iso: X — Y such that both functions
Iso and its inverse Iso ! are Borel functions (see Corollary 6.8.8 in [Bog07]). In this context,
we refer to the function Iso as Borel isomorphism (between X and Y'). Two Polish spaces are
hence Borel isomorphic iff they have the same cardinality. In particular, as the real number
line IR is Polish, every uncountable Polish space has the cardinality of the continuum.
This classifies all the Polish spaces up to Borel isomorphism. Moreover, to prove purely
measure-theoretic results for Polish spaces, it suffices to consider a specific Polish space as
a representative.

Remark 4. The Borel sigma algebra of every Polish space X is generated by a family G of
subsets of X that satisfies the following three properties:

(1) G is countable.
(2) G is closed under complementation and finite intersections.

(3) G separates the points of X, i.e., for every x1,x, € X one has

X1 =xp iff forevery B € Githoldsx; € Biff x, € B.

Provided the Polish space X is countable, the family G = {B C X ; Bor X \ B is finite} of
all finite and cofinite subsets of X satisfies the stated requirements. Assuming X = [0, 1],
the family of all finite unions of intervals in [0, 1] with rational endpoints fulfills the given
properties. As every uncountable Polish space is Borel isomorphic to [0, 1], we obtain a
generator with the desired properties for every Polish space. 4

Giry sigma algebras revisited. Inspecting Example 3 (6) again, the definition of the Giry
sigma algebra on Prob[X] does not involve any topological properties of the Polish space X.
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Hence, we can safely endow the set of all probability measures on an arbitrary measurable
spaces (that is not necessarily induced by a Polish space) with the corresponding Giry
sigma algebra.

Remark 5. Let X and Y be measurable spaces and f: X — Prob[Y] be a function. Let Gy
be a generator of the sigma algebra on Y that is additionally closed under finite intersections.
For every measurable set B C Y define the function fg: X — [0,1], fg(x) = f(x)(B).
Then the following three statements are equivalent:

(1) fis measurable.
(2) fpis measurable for every measurable set B C Y.
(3) fpis measurable for every B € Gy.

The equivalence of (1) and (2) follows from properties of initial sigma algebras. In fact, the
Giry sigma algebra is the initial sigma algebra with respect to the functions probeval for
every measurable set B C X. Here, the function probevaly is defined as in Example 3 (6).
The equivalence of (2) and (3) can be proven by a standard application of Dynkin’s 77-A
theorem (see, e.g., Theorem 136B in [Fre(01]). a

Example 6. Let X and Y be measurable space. Then the function f: X — Prob[X],
f(x) = Dirac[x]
and the function g: Prob[X] x Prob[Y] — Prob[X x Y],

g(ux, py) = px @ py

are measurable. The latter can be shown relying on the characterization provided by
Remark 5. We illustrate this by showing the claim for the function g. For every meas-
urable sets By C X and By C Y the function g, «p, : Prob[X] x Prob]Y] — [0,1],
9By xBy (Ux, y) = ux(Bx) - puy(By) is measurable by the definition of the Giry sigma
algebra and as the point-wise product of measurable functions yields a measurable func-
tion. The family consisting of all the sets Bx x By with measurable Bx C X and By C Y
generates the sigma algebra on X X Y (see also Example 1) and hence, Remark 5 justifies

that function g is Borel. 4

Sections of relations. When considering probability measures on product spaces, the
following notion for sections of sets turns out to be useful. Let X and Y be Polish spaces
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and B C X X Y be a set. For every x € X define
Section[B,x,-] ={y € Y; (x,y) € R}
and similarly, for every y € Y let
Section[B, -, y] = {x € X; (x,y) € R}.

Clearly, if one has B = Bx X By for some subsets Bx C X and By C Y, for every x € X it
holds Section|B, x, -] = By if x € Bx and Section|B, x, -] = @ if x ¢ Bx. If the set B is Borel
in X X Y, then the sets Section|B, x, -| and Section[B, -, y] are Borel in X and Y/, respectively,
forevery x € X andy € Y (see also Lemma 9.6.4 in [Sch08]).

Semi-product measures. Example 1 provides an overview on product measures. In
turns out that product measures are an instance of the more general notion of semi-product
measures. Let X and Y be measurable spaces, jt € Prob[X] be a probability measure, and
f: X — Prob[Y] be a measurable function. Recall, Prob[Y] is equipped with the Giry sigma
algebra. The semi-product measure (of yix and f) is given by the probability measure
ux X f € Prob[X x Y] defined as follows (see Lemma 1.38 in [Kal02]): for every Borel set
BC X xYlet

jix % f(B) = / F(x)(Section[B, x, ]) du(x).

Thus, for every Borel sets Bx C X and By C Y we obtain

o f(Bx x By) = [ f(x)(By) ().
X
If X and Y are moreover countable, the integral is simplified as follows:

ux 2 f(Bx x By) = Y Y ux({x}) - f(x)({y}).

xeBxyeBy

We write f X px to indicate the analogously defined probability measure on Y x X. Note,
provided yy € Prob[Y] is a probability measure such that f(x) = py for every x € X, we
obtain the identity ux x f = ux ® py.

Post operator. As before, let X and Y be measurable spaces, jix € Prob[X] be a probab-
ility measure, and f: X — Prob[Y] be a measurable function. One can also think of the
Borel function f as taking the measure px into a measure on Y. We formalize this by means
of the following notion. Define the probability measure Post[px, f] on Y as the marginal of
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the semi-product measure yx % f concerning Y, i.e., we have Post[yx, f] € Prob[Y] such
that for every Borel sets By C Y,

Postlux, 1(By) = ux % F(X x By) = [ F(x)(By) dux (x).

Disintegration theorem. Relying on the notion of semi-product measures, one can easily
define probability measures on product spaces. Vice versa, the question which measures
on a product space can be represented as a semi-product measures arises naturally. To be
more precise, let X and Y be measurable spaces and y € Prob[X x Y]. Denote the marginal
of y concerning X by px, i.e., we have jix € Prob[X] and pux(Bx) = u(Bx x Y) for all
measurable sets Bx C X. Does there exists a measurable function f: X — Prob[Y] such
that 4 = px x f? The disintegration theorem (see Exercise 17.35 in [Kec95] or Theorem 5.4
in [Kal02]) states that this question can be answered positively provided X and Y are
Polish spaces, i.e., there indeed exist a Borel function f: X — Prob[Y]| with u = ux x f.
Moreover, this function f is almost surely uniquely determined: assuming a second Borel
function f': X — Prob[Y] with u = px X f’, there exists a Borel set By C X such that
ux(Bx) = land f(x) = f'(x) for every x € By.

The following example illustrates the disintegration principle for countable sets and
also sketches a connection to the concept of conditioning. Note that disintegration and
conditioning typically appear together in the literature (see, e.g., Chapter 5 in [Kal02]).

Example 7. Let X and Y be countable sets and y € Prob[X x Y]. To simplify the following
discussion, assume that u({x} x Y) > 0 for every x € X. As before, let yix € Prob[X] be
the probability measure defined by px({x}) = p({x} x Y) for every x € X. We provide a
Borel function f: X — Prob[Y] such that 4 = px X f. Define f: X — Prob[Y] as follows:
forevery x € Xandy € Y let

f){y}) = u(X < {y} [ {x} xY),

i.e., f(x)({y}) is the conditional probability of X x {y} given the event {x} x Y. For every
x € Xand y € Y we therefore obtain

p((Xx{yp) N({x} xY)) _ p{x} x{y})
p({x} xY) px({x})

Since X is countable, the function f is obviously Borel and moreover, it is easy to see that

fO{y}) =

i = pux X f.Indeed, for every x € X and y € Y we have

px 2 f({{oy)}) = ux({x}) - f(0){y}) = n({{x, ) })-
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This confirms the disintegration theorem for the trivial case where the involved Polish
spaces are countable. J

Fubini’s theorem. Every integral with respect to a probability measures on a product
spaces can be computed using iterated integrals applying the prominent Fubini’s theorem
for Markov kernels (see Exercise 17.36 in [Kec95] or Theorem 5.4 in [Kal02]). The precise
statement is as follows. Let X and Y be Polish spaces, ux € Prob[X] be a probability
measure as well as f: X — Prob[Y] and g: X X Y — [0, 1] be Borel functions. First of all,
according to Fubini’s theorem, for every x € X the function g[x]: Y — [0,1],

gllw) = [ g(oy) df(x)().

is Borel. Moreover, for every Borel sets Bx C X and By C Y Fubini’s theorem provides the
identity below:

J o 8 o) = [ ([ sy df@)) dux)

Note that the integral on the righthand side is indeed well-defined since, as mentioned

before, the function g[x] is Borel for every x € X.

Pushforward functions. Every probability measure on a domain of a measurable func-
tion can be transferred to the codomain by invoking the concept of a pushforward function.
Let X and Y be measurable spaces. The pushforward function of a measurable function
f: X — Yis defined as the function f;: Prob[X]| — Prob[Y] given as follows: for every
probability measure y € Prob[X] and measurable set By C Y let

fi(1)(By) = u(f'(By)).

It is easy to see that f;(u) forms indeed a probability measure. In this context, one refers to
the probability measure f; () as a pushforward measure or as an image measure.

Remark 8. Let X and Y be measurable spaces and f: X — Y be a measurable function.

Then the following statements hold for pushforward functions:
(1) The function f is Borel.
(2) Assuming X and Y are Polish spaces and if f is surjective, then f; is also surjective.

Whereas statement (1) is an easy consequence of Remark 5, a proof for statement (2) is
much more involved (see Theorem 15.14 or Corollary 18.24 in [AB06]). g
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The notions are as before, i.e., X and Y are measurable functions, yx € Prob[X] is a
probability measure, and f: X — Y is a measurable function. At various points throughout
this thesis, we rely on integration by substitution yielding a powerful tool to transform
integrals with respect to pushforward measures (see Satz 9.4.1 in [Sch08]): for every Borel
set By C Y and Borel function g: Y — [0, 1] it holds

[, swafuot = [ () dex().

Whereas the integral of the left hand side refers to the measurable space Y, the integral on
the right hand side refers to the measurable space X.

Outer measures. A measure on a measurable space constitutes a function mapping
every element of the corresponding sigma algebra to some real number between zero
and one. Suppose a measurable space X and a measure y# on X. Given an arbitrary (not
necessarily measurable) set M C X, the expression y(M) hence makes no sense. However,
one can regard the outer measure of M concerning y instead. Relying on the concept of
outer measures (see Section 1.5 in [Bog07]), every measure can be naturally extended to a
function whose domain is given by the whole powerset. The idea is to over-approximate a
subset of X by measurable sets in X. More precisely, the outer-measure function (of y) is
defined by the function p°*: 2% — [0,1],

u°" (M) = inf{u(B) ; B C X measurable set such that M C B},

ie., uO"(M) is the greatest lower bound of all ; masses of measurable sets in X subsuming
the given set M. Note, as the set X is measurable and y(X) = 1, the outer-measure function
indeed assigns a real number between zero and one to every every subset of X. It is easy
to see that y(B) = u®*(B) for all measurable sets B C X and therefore, the function "
yields an extension of y to the whole powerset. However, the outer-measure function may
be not sigma additive and hence, constitutes no measure anymore (with respect to the
powerset sigma algebra). For instance, it is well-known that there does not exist a measure
on the powerset of [0, 1] that extends the Lebesgue measure defined on the Borel sets of
[0, 1]. Recall, every Lebesgue measure is translation invariant and it is not possible to define
a translation-invariant measure on [0, 1] (see, e.g., the proof of Theorem 2.9 in [Pan09]).
However, the outer-measure function still enjoys the property of sigma subadditivity.
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2 Probability measures on Polish spaces

2.2 Souslin sets in Polish spaces

The 1905 paper [Leb05] of Lebesgue contains a mathematical mistake that may add to
the list of the most interesting ones in the history of mathematics: it is claimed that a
projection of a Borel subset in the plane R x IR onto the real line R yields again a Borel
subset. However, Souslin found a counterexample for this statement. Among others this
had contributed to the development of the descriptive set theory and the accompanied
notion of so-called analytic sets, which were later also called Souslin sets. Detailed historical
information and facts on this and related topics are nicely presented in [Kan95].

This section recalls the notion of Souslin sets and presents results from the literature
required for this thesis. Our exposition mainly follows Chapter 14 in [Kec95] and Chapter 6
in [Bog07]. In the latter part of the following material, observations referring to the outer
measures of Souslin sets are proven. However, these lemmas could be skipped at a first
reading and might be checked in detail later on demand.

Definition 9. Let X be a Polish space. We call the set M C X Souslin if M = & or there
exist a Polish space Z and a continuous function g: Z — X such that ¢(Z) = M, i.e., the
set M can be represented as an image of a Polish space under a continuous function.  _

To obtain a feeling for Souslin sets, we solve one part of Exercise 14.3 in [Kec95] that
requires a proof for the following statement: a subset M of a Polish space X is Souslin
provided there exist a Polish space Y and a Borel set B C X X Y such that

M = {x € X ; there exists y € Y with (x,y) € B},

i.e., the set M is obtained by the projection of the set B onto the Polish space X. Let us see
why. The following argument moreover illustrates the usefulness of Polish spaces as well as
their strong (topological) properties. Suppose the Polish space Y, the Borel set B C X x Y,
and the set M C X are given as above. Our task is to show that M is Souslin in X. Denote
the topology on X x Y by Ox y. By Theorem 13.1 in [Kec95], there exists a topology O on
X x Y such that the following three statements hold:

OisPolish, Oxy C O, and Bisclosed concerning the topology O.

Define the set Z = B. The set Z is equipped with the induced subspace topology of O. As
a consequence of the two facts that O is Polish and B is closed in O, the topological space Z
forms a Polish subspace of X x Y (see Example 2 (3)). Introduce the function f: Z — X,
f(x,y) = x. Itis easy to see that f(Z) = M. Since Oxy C O, it moreover follows that
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2.2 Souslin sets in Polish spaces

the function f is continuous. Putting things together, the set M is Souslin in X. Among
other useful properties of Souslin sets, the following remark even shows that the proven
sufficient criterion for a Souslin set is even necessary:

Remark 10. The following itemisation provides important properties of Souslin sets:

(1) Let X be a Polish space. A set M C X is Souslin iff there exists a Polish space Y and
aBorel set B C X x Y such that M = {x € X ; there exists y € Y with (x,y) € B}.

(2) Let X be a Polish space. Every Borel set in X is also Souslin in X. Vice versa, provided
X is uncountable, there are Souslin sets in X that are not Borel in X.

(3) For every n € IN let M, be a Souslin set in the Polish space X;,. Then the Cartesian
product My x M; X ...is Souslin in the product space Xp x X1 X ....

(4) Let X be a Polish space. Like the family of all Borel sets in X, the family of all Souslin

sets in X is closed under both countable intersections and countable unions.

(5) Let X and Y be Polish spaces and f: X — Y be a Borel function. For every Souslin set
My C Y the preimage f~!(My) is Souslin in X and for every Souslin set Mx C X
the image f(Mx) is Souslinin Y.

(6) Let X and Y be Polish spaces and f: X — Y be a function. Then the function f is
Borel iff the set Graph|[f] is Borel in X x Y iff the set Graph[f] is Souslin in X x Y.
Here, we define Graph[f] = {(x,y) € X x Y ; f(x) = y}.

The characterisation of Souslin sets in (1) can be found in Exercise 14.3 in [Kec95]. Here, a
proof for the difficult implication is presented in the discussion before the remark. State-
ment (2) yields a combination of the Theorems 13.7 and 14.2 in [Kec95]. Statement (3)
follows easily from the definition of Souslin sets and closure properties of Polish spaces
(see Example 2 (5) and also Lemma 6.6.5 in [Bog07]). The closure properties stated in
(4) and (5) can be derived from Proposition 14.4 in [Kec95]. The characterisation of Borel
functions in statement (6) is proven by Theorem 14.12. in [Kec95]. J

According to the characterisation of (1) of the previous remark, Souslin sets are precisely
those subsets that arise by the projections of a Borel subsets in product spaces oz, in other
words, that can be represented by means of an existential quantification over a Polish space.
In fact, taking up our introductory discussion concerning a famous mistake of Lebesgue,
statements (1) and (2) together justify the existence a Borel set B in the plane R X IR such
that its projection onto the real line R is not Borel. Inspecting (4), one might ask whether
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2 Probability measures on Polish spaces

the family of all Souslin sets in a Polish space forms a sigma algebra. This is not the case in
general as Souslin sets are not closed under complementation. In fact, one can show that
a subset B of a Polish space X is Borel precisely when both B and its complement X \ B
are Souslin in X (see Corollary 6.6.10 in [Bog07]). Recall, the image of a Borel set under a
Borel functions is not Borel in general. However, the corresponding result for Souslin sets
holds by statement (5). Summarising the previous discussions, Remark 10 provides many
strong closure properties of Souslin sets.

Remark 11. Let X be a Polish space, y € Prob[X] be a probability measure, and M C X
be a Souslin set. Then there are Borel sets B;, B, C X with

Bl Q M g Bu and “l/l(Bl) = ,‘Ll(Bu).

The statement can be found in Theorem 7.4.1 in [Bog07]. This cited theorem uses notions
investigated by Definition 1.5.1 and Corollary 1.5.8 in [Bog07]. a

Intuitively, Remark 11 states that every Souslin set can be approximated by a lower and
an upper Borel set with respect to a given probability measure. The powerful connection
between Souslin sets in a Polish space and the corresponding Borel sets appear at various
points throughout this thesis.

Outer measures of Souslin sets. Recalling Remark 10 (2), a Souslin set may be not Borel
and hence, it is not appropriate to evaluate a probability measure 3 on some Polish space X
concerning a Souslin set M, i.e., the expression jt(M) makes no sense in general. Instead,
one can however regard outer measures of Souslin sets (see Section 2.1). The remainder
of this sections studies properties of outer measures of Souslin sets. One may skip the
following material at a first reading of this section.

Lemma 12. Let X be a Polish space, M C X be a Souslin set, and y € Prob[X| be a probability
measure. Then the following two statements are equivalent:

(1) po(M) = 1.
(2) Thereis a Borel set B C X with B C M and u(B) = 1.

Proof. 1tis easy to derive statement (1) from statement (2). The reverse implication follows
directly from Remark 11. Indeed, according to this remark, there are Borel sets B;, B, € X
suchthat By C M C By and (B;) = u(B,). Assuming u°"*(M) = 1, we obtain y(B,) = 1
and therefore, it holds y(B;) = u(By)1. O

36



2.2 Souslin sets in Polish spaces

Lemma 13. Let X and Y be Polish spaces and f: X — Y be a Borel function, Mx C X be a
Souslin set, and y € Prob[X]. Define the probability measure v € Prob[Y] by

v=filp)
as well as the set My C Y by
My = f(Mx).
Then the following statement holds:
PO (Mx) =1 implies v (My) = 1.

Proof. According to Remark 10 (5), the set My is Souslin in Y. Thanks to Remark 11, there
hence exist Borel sets By j, By, C Y with

By; C My C By, and v(By;) = v(Byy).
It moreover holds
Mx C f7H(f(Mx)) = f~(My) € f~'(By)-
Assuming #°%(My) = 1, it hence follows y(f~!(By,)) = 1 and therefore,
v(By;) = v(Byu) = u(f ' (Byu)) = 1.
From this one easily derives v°"'(My) = 1. O

Roughly speaking, the previous lemma yields a result to transfer Souslin sets from
one Polish space to another Polish space using a Borel function while preserving specific
properties referring to a given probability measure.

Lemma 14. Let X be a Polish space and M C X be a Souslin set. Then the set P is Souslin in
Prob[X] where

P = {u € Prob[X] ; u°*(M) = 1}.

Proof. Since M is a Souslin set in X, there are a Polish space Z as well as a Borel function
f:Z — X such that f(Z) = M. Relying on Remarks 8 (1) and 10 (5), it suffices to show
the identity

P = f4(Prob[Z]).
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2 Probability measures on Polish spaces

For the remainder of this proof let i € Prob[X].

Assume p € f;(Prob|Z]) first. Let v € Prob|Z] be a probability measure with y = f;(v).
It clearly holds v(Z) = 1. Relying on Lemma 13, we thus obtain u°"*(f(Z)) = 1. By
Lemma 12, there hence exists a Borel set B C X with B C f(Z) and u(B) = 1. Since
f(Z) = M, itfollows B C f(Z) = M and therefore, one has u°®**(M) = 1. This shows the
first inclusion f;(Prob[Z]) C P.

The rest of this proof is devoted to the more intricate inclusion P C f;(Prob[Z]). To
this end assume y € P, i.e., it holds u°"*(M) = 1. Our task is to argue that there exists a
probability measure v € Prob[Z] such that f;(v) = p. According to Remark 11 and as we
additionally have the identity 1°"t(M) = 1, there are Borel sets B;, B, C X with

BiCMCB, and u(B;) =pu(B,) =1.
Define
Z'=f"YB)) and X =B

as well as the function f': Z" — X', f'(2z') = f(2). Itis easy to see that f” is well-defined,
ie, f(z') € X' forallz’ € Z'. The sets X’ and Z' are equipped with the sigma algebras
By and By, respectively, where By is the induced sigma algebra of X and accordingly,
By is the induced sigma algebra of Z. It follows that f” is measurable (with respect to the
selected sigma algebras By and By).

As X" and Z' are also Borel sets in X and Z, respectively, we moreover obtain that X’
and Z' form standard Borel spaces (see Definition 12.5 and Corollary 13.4 in [Kec95]). By
the definition of standard Borel spaces, there exists a metrics on X’ such that the resulting
metric space is even a Polish spaces whose induced Borel sigma algebra coincide with the
sigma algebra By. Analogously, there is a metric on Z’ such that Z’ becomes a Polish space
whose induced Borel sigma algebra agrees with the sigma algebra Bz.

Summarising the previous discussions, the sets X’ and Z’ constitute Polish spaces and
the function f’ with domain X’ and codomain Z’ is Borel.

Observing the statement By C M = f(Z), itis easy to see that the function f is surjective.
By Remark 8 (2), the pushforward function of f” is also surjective. As a consequence, there
exists v/ € Prob[Z'] such that

W= (f:(v).
Here, 11/ € Prob[X'] denotes the restriction of the probability measure y onto X/, i.e., it

holds ' (B’) = p(B’) for every Borel set B" C X’ (thatalso yields a Borel set in X). We have
# (X') = u(X") =1 and thus, the function y’ represents indeed a probability measure.
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Since Z' = f~1(X') = (f')~1(X'), it holds
VI(Z') =v((f) X)) =W (X) = 1.

We can thus extend v’ to a probability measure v € Prob[Z] in a natural way: for every
Borel set By C Z define

v(Bz) =v'(BzNZ").

It remains to show f;(v) = u. For every Borel set B C X we have
fUBYNZ = FUBAB) = (f) (BN B)

and therefore, we obtain

f)(B) =v'(f1(B)yNZ') =v'((f)"(BNB)) =y (BNBy) = u(BNB).
As 11(B;) = 1, for every Borel set B C X itholds f;(v)(B) = u(B). O

Let X be a Polish space. Relying on properties of a Giry sigma algebra (see Section 2.1),
it is straightforward to prove that the set {y € Prob[X] ; (B) = 1} is Borel in Prob[X]
for every Borel set B C X. Lemma 14 provides an adaption of this statement for Souslin
sets involving the concept of outer-measure functions. The given proof of Lemma 14 relies
on the powerful notion of standard Borel spaces. Here, a measurable space X with sigma
algebra B is called a standard Borel space provided there exists a metric on X such that
the resulting metric space is Polish and the associated Borel sigma-algebra agrees with B
(see Definition 12.5 in [Kec95]). An important and useful aspect is that this existing metric
is not uniquely determined in general and can be often chosen in such a way that certain
additional properties are fulfilled (see Section 13.A in [Kec95]). This fact also underlies
Corollary 13.4 in [Kec95], which is essential for the previously presented proof.

Lemma 15. Let X and Y be Polish spaces, f: X — Prob[Y] be a Borel function, u € Prob[X] be
a probability measure, and M C X X Y be a Souslin set. The two statements below are equivalent:

(1) (> f)(M) = 1.

(2) There exists a Borel set Bx C X such that

u(Bx) =1 and (f(x))°"(Section|M,x,]) =1 forall x € By.
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Proof. Define the probability measure v € Prob[X x Y] by
vV=puxf.

(1) implies (2). Assume v°"'(M) = 1. According to Lemma 12, there exists a Borel set
B C X x Y with

BCM and v(B)=1.

The set Section[B, x, -] is Borel in Y for all x € X (see Section 2.1). It holds
/f(x)(Section[B, x,])du(x) =v(B) =1

and therefore,
/1 — f(x)(Section[B, x,-]) du(x) = 0.

Relying on a basic result from measure theory (see Lemma 8.2.8 in [Sch08]), there hence
exists a Borel set By C X with

#(Bx) =1 and f(x)(Section[B,x,-]) = 1forall x € Bx.

Since B C M, for every x € X it holds Section[B, x, -] C Section[M, x, -] and therefore, for
every x € Bx one has (f(x))°"(Section[M, x,]) = 1.

(2) implies (1). Suppose a Borel set Bx C X as in statement (2). Applying Remark 11,
there are Borel sets B;, B, C X X Y with

B,CMCB, and v(B) =uv(By).

For every x € X one has Section[M, x, | C Section[B,, x, -] and therefore, for every x € Bx
it holds

f(x)(Section[B,, x,]) = 1.

As u(Bx) = 1, we obtain

V(B) = v(By) = / F(x)(Section[By, x, -]) du(x) = 1.

It follows v°"(M) = 1 and hence, we are done. O
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Consequently, the outer measure of the set M, which is a subset of the plane X X Y/, is one
precisely when the vertical outer measures of the one-dimensional slices Section[M, x, -]
are almost surely one. The characterisation of the previous lemma is also in the spirit of
the disintegration theorem (see Section 2.1). Moreover, the usefulness of Lemma 15 also
results from the disintegration theorem. Indeed, thanks to the disintegration theorem,
every probability measure v on the product space X X Y can be represented in terms of a
semi-product measure, i.e., there are a probability measure y € Prob[X] as well as a Borel
function f: X — Prob[Y] such thatv = p X f.

2.3 Measurable-selection principles

At various points throughout this thesis we are confronted with the task of showing
the existence of Borel functions with specific properties. To do so, we typically rely on
measurable-selection principles [Wag80, HPV81, AB06, Bog07]. The general approach
concerning the application of a measurable-selection principle is illustrated by means of
the following example investigating a basic mathematical problem.

Example 16. Suppose two Polish spaces X and Y as well as a surjective function g: Y — X.
Of course, using the surjectivity, it is easy to provide a right inverse of the function g
(accepting the axiom of choice), i.e., a function f: X — Y with ¢(f(x)) = xforallx € X.
The problem becomes more difficult if one wants a right inverse that is Borel in addition as
the property of being a Borel function refers to specific subsets of X and Y. To overcome
this issue, one may proceed as follows. First of all, we introduce a set-valued function F
mapping every element in X to a subset of Y such that for every x € X,

F(x)={ye€Y;gly) =x}.

Intuitively, for every x € X the set F(x) consists of all the possible values of a function
f: X — Y evaluated at x such that g(f(x)) = x. We have that there exists an Borel right
inverse of g precisely when F admits a Borel selection, i.e., a Borel function f: X — Y such
that f(x) € F(x) forall x € X. At this point, measurable-selection principles come into
play as they provide conditions on F guaranteeing the existence of such a Borel selection.
Obviously, a necessary condition on F is that the set F(x) is not empty for all x € X which
is, however, fulfilled in our example since the function g is required to be surjective. ~ _

For every Polish spaces X and Y we use F: X ~» Y as a shorthand notion for F: X — 2,
i.e., F is a set-valued function assigning a subset of Y to every element of X. Every set-valued
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function F: X — 2Y induces a relation Rel[F] over X and Y as follows:
Rel[F] = {(x,y) e X xY;y € F(x)}.

Vice versa, every relation R over X and Y can be translated into a set-valued function Fg
such that Rel[Fr] = R. The presentation of measurable-selection principles in the literature
typically involves set-valued functions rather than relations. The reason becomes clear
below when discussing prominent measurable-selection principles below.

Definition 17. Let X and Y be Polish spaces and F: X ~+ Y be a set-valued function. We
call a function f: X — Y a Borel selection of F provided f is a Borel function and

f(x) € F(x) forallx € X,

i.e., it holds Graph[f] C Rel[F]. Moreover, for every probability measure y € Prob[X] a
function f: X — Y is called a Borel p-selection of F provided f is a Borel function and there
exists a Borel set B C X such that

#(B)=1 and f(x) € F(x)forallx € B,
i.e., one has Graph[f] N (B x Y) C Rel[F]. 4

Our brief survey on measurable-measurable selection principles starts with the most

prominent theorem in this area:

Theorem 18 (Theorem 6.9.3 in [Bog07], Kuratowski and Ryll-Nardzewski). Let X and Y be
Polish spaces and F : X ~» Y be a set-valued function. Then there exists a Borel selection of F if the
following two statements hold:

(1) Theset {x € X ; F(x) N Oy # @} is Borel in X for every open set Oy C Y.
(2) The set F(x) is not empty and closed in Y for every x € X.
|

Remark 19. In fact, the theorem of Kuratowski and Ryll-Nardzewski is even stronger
than the previously stated theorem (see Corollary 6.9.3 in [Bog07]). Consider two Polish
spaces X and Y and a set-valued function F: X ~~ Y that satisfies conditions (1) and (2)
of Theorem 18. Then there exists a sequence ( f,;),en of Borel functions such that for every
x € X the following statement holds:

the set { f,,(x) ; n € IN} is dense in F(x),
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i.e., the set F(x) and the topological closure of the set { f,(x) ; # € N} in X are the same,
in particular, for every n € IN the function f, yields a Borel selection of F. In this context,
the sequence (fy;)nen is also called a Castaing representation of F. For every x € X such that
the set F(x) is finite we have the identity F(x) = {f,(x) ; n € N}. 4

Defining an appropriate sigma algebra on the powerset of Y, condition (1) in Theorem 18
provides a measurability requirement on the set-valued function F. To be more precise,
define the hit sigma algebra on the powerset 2" as the smallest sigma algebra on 2" con-
taining the set {My C Y ; My N Oy # @} for every open set Oy C By. Intuitively,
{My C Y ; By NOy # @} consists of those subsets of Y that hit the given set Oy. Then,
condition (1) is equivalent to the requirement that F is measurable with respect to the hit
sigma algebra. Indeed, for every open set Oy C Y it holds

FY({ByCY;ByNnOy #2}) ={x € X;F(x)NOy # @}.

Condition (2) in Theorem 18 constrains the possible image sets of a set-valued functions.
As a sanity check consider a set-valued function F: X ~~ Y such that the set F(x) is a
singleton for every x € X, i.e., F can be viewed as a function f: X — Y, in particular, it
holds F(x) = {f(x)} for every x € X. As the open sets in Y generate the Borel sigma
algebra on Y (see Section 2.1), it is easy to see that F satisfies condition (1) precisely when
the function f is Borel. Consequently, F has a Borel selection iff f is a Borel function. In
this sense, the conditions (1) and (2) can be seen as adequate measurability notions for set-
valued functions. Moreover, the conditions in Theorem 18 are similar to the requirements on
the stochastic model called non-deterministic labelled Markov processes [DTW12, Wol12]
that we precisely discuss in Chapter 7.

Example 20. We continue our discussions of Example 16. Relying on Theorem 18, we
present a condition on a surjective function g such that there exists a Borel right inverse.
Recall, the domain and the codomain of the function g are given by Y and X, respectively.
For every open set Oy C Y it holds

{x e X;F(x)NOy # @} = {x € X; g(y) = x forsomey € Oy} = g(Oy).

Since the function g is surjective, basic knowledge of an undergraduate analysis course
suffices to show that the set {x € X ; F(x) N Oy # @} is Borel in X provided both the
topological space Y is compact and the function g is continuous. Moreover, for every x € X

one has

F(x) =g~ ({x}).
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and consequently, the set F(x) is closed in Y provided the function g is continuous. Thanks
to the Theorem 18, summarising our previous discussions, every surjective continuous
function with compact domain admits a Borel right inverse. 4

In the context of this thesis, we almost only work with Borel selections with respect to a
probability measure. In fact, the probability measure of interest is naturally given in many
situations and moreover, known measurable-selection principles involve surprisingly weak

assumptions on the given set-valued function.

Theorem 21 (Theorem 6.9.5 in [Bog07]). Let X and Y be Polish spaces, 4 € Prob[X] be a
probability measure, and F : X ~» Y be a set-valued function. Then there exists a Borel y-selection
of F if the following two properties hold:

(1) The set Rel[F] is Souslinin X X Y.
(2) There is a Borel set B C X such that

#(B) =1 and F(x) # & forall x € B.

At the end of this section we provide some more detailed comments on Theorem 6.9.5
in [Bog07], which acts as a reference for Theorem 21. Observe, provided there exists a
Borel pi-selection of a given set-valued function, condition (2) in Theorem 21 is necessarily
fulfilled. Thanks to the rich theory on Souslin sets and their various closure properties (see
Section 2.2, in particular, Remark 10), condition (1) of the previously stated measurable-
selection principle fits well with the mathematical framework of this thesis. The theory to
be developed throughout the next chapters shows that this Souslin requirement appears

natural in the context of modelling and analysis of stochastic transition systems.

Example 22. We continue our discussions concerning Example 16. Assume that the given
function g is Borel. According to Remark 10 (6), the set Graph[g] is Souslin in Y x X.
Since Rel[F] = Graph[g]~!, we have that the set Rel[F] is Souslin in X x Y. Thanks to
Theorem 21, for every u € Prob[X] there exists a Borel function f: X — Y and a Borel set
B C X such that #(B) = 1and g(f(x)) = x for all x € B. Consequently, summarising
the previous discussions, every surjective Borel function admits a Borel right inverse with
respect to a given probability measure. 4
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Remark 23. Consider Polish spaces X and Y and let F: X ~» Y be a set-valued function. If
F satisfies the conditions (1) and (2) of Theorem 18, then the set Rel[F] is Borel in X X Y by
Theorem 18.6 in [ AB06], in particular, the set Rel[F] is Souslin in X X Y by Remark 10 (2).
Consequently, every set-valued function satisfying the requirements of Theorem 18 also
fulfills the conditions of the measurable-selection principle given by Theorem 21.
Following the introductory discussions of Chapter 18 in [AB06], a set-valued function F
may not satisfy condition (1) of Theorem 18 even if the two conditions below are fulfilled:
the set Rel[F] is Borel in X x Y and the set F(x) is closed in Y for every x € X. Consequently,
the measurability assumptions on F in Theorem 21 are strictly weaker than the requirements
in Theorem 18 (see also Examples 2.1 (i) and (ii) in [Wag80]). J

In view on Remark 23, we also refer to the article [I0of79] that studies necessary and
sufficient conditions on a set-valued function F: X ~ Y such its induced relation Rel [F ]
forms a Souslin setin X x Y.

Comments on Theorem 21. We summarise concepts and references to derive Theorem 21
in the stated form. In fact, the argument needs some care as well as insights concerning
functions that are measurable with respect to sigma algebras generated by Souslin sets. We
emphasis that Theorem 21 is a very important tool throughout this thesis that is why the
following discussion is conducted carefully.

The precise formulation of Theorem 6.9.5 in [Bog07] is recalled first. For this purpose let
X and Y be Polish spaces. Moreover, denote the sigma algebra on X that is generated by
all the Souslin sets in X by Bx sou. In general, recalling the discussions in Section 2.2, the
family consisting of all Souslin sets in an uncountable Polish space does not form a sigma
algebra. Consider a set-valued function F’: X ~» Y such that Rel[F'] is Souslin in X x Y
and F'(x) # & for every x € X. Then Theorem 6.9.5 in [Bog07] states the existence of a
function f': X — Y satisfying

f'(x) € F'(x) forevery x € X
and
(f') "1 (By) € Bxsou for every Borel set By C Y.

In what follows we derive Theorem 21 from Theorem 6.9.5 in [Bog07]. To this end let X
and Y be Polish spaces and F: X ~~ Y be a set-valued function such that Rel[F] is Souslin
in X X Y. Moreover, let 4 € Prob|[X] be a probability measure and B C X be a Borel set so
that #(B) = 1and F(x) # & forall x € B.
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The first step is straightforward. Let y be an arbitrary element of Y and define F': X ~»Y,

F(x), ifx€B,

F(x) =
{y}, ifx¢B.

We have Graph[F'] = (Graph[F]N (B x Y)) U ((X \ B) x {y}). According to Remark 10,
since Graph|F] is Souslin in X X Y, it follows that Graph[F’] is Souslin in X X Y. Moreover,
for every x € X the set F/(x) is not empty. We can hence apply the previously recapitulated
Theorem 6.9.5 in [Bog07] and thus, there exists a function f': X — Y with f'(x) € F/(x)
for every x € X and such that for every Borel set By C Y itholds (f’) ' (By) € Bxsou. To
finish the argument, it suffices to show that there are a Borel function f: X — Y and a
Borel set B' C X such that #(B’) = 1and f(x) = f’(x) for every x € B'. Indeed, it then
follows (BN B') = 1and f(x) € F(x) for every x € BN B, i.e., f is a Borel y-selection
of the set-valued function F.

Let By, be the smallest sigma algebra on X that consists of all sets M C X with
the following property: there are Borel sets B;, B, C X such that B € M C M, and
1#(B;) = u(By). According to Remark 11, the sigma algebra B, consists of every Souslin
set in X and therefore, it holds By sou € Bx . The function f” is hence measurable with
respect to the newly introduced sigma algebra By,

Without loss of generality we can safely assume that Y = RR. Indeed, if Y is countable,
the elements of Y can be easily identified by a real number and moreover, provided Y is
uncountable, one can rely on the fact that every uncountable Polish space is Borel isomorphic
to R (see Section 2.1). Since Y = IR, we are in the setting of Proposition 2.1.11 in [Bog07]
(see also Definitions 1.5.1 and 2.1.10 and Corollary 1.5.8 in [Bog07]): as a consequence,
there exists a Borel function f: X — Y and a Borel set B* C X such that y(B’) = 1 and
f(x) = f'(x) for every x € B’. From this we can finally derive Theorem 21.

2.4 Barycentres and convex hulls

In the context of stochastic transition systems introduced in the next chapter, the material
of this section yields the basis for the definition of the combined-transition relation that
in turn provides the basic ingredient for the notion of schedulers. Assume a measurable
space X as well as probability measures g, pt1, Y2, . . . on X. A convex combination of these
probability measures is typically defined point-wise. More precisely, a probability measure

uon X is called a convex combination if there are real numbers r¢, 71,12, . . . between zero
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and one such that
ro+ri+mn+...=1

and so that every for measurable set B C X it holds

#(B) =ro-po(B) +r1-p1(B) +ra-pa(B) +....

The following material goes one step further and provides a generalisation of the sketched
concept. In fact, we want to consider convex combinations of a potentially uncountable
number of probability measures. Based on this extended notion, we introduce the concept
of convex hulls of sets of probability measures and show that this notion yields a closure
operator on the family of all Souslin sets. In particular, it is shown that taking the convex
hull of a Souslin set of probability measures twice yields the same result as if the convex-hull
operator was applied once.

The following material is inspired by the notions and results of Chapters X.29 and
XI1.33 in [DM88]. Inspecting the setting in [DM88], the mentioned results are not directly
applicable for our purposes as the cited book concentrates on locally convex topological
vector spaces. In fact, relying on deep and fundamental results from functional analysis, one
can identify the set of all probability measures Prob[X] on a Polish space X with a convenient
topological vector space (see Section 15.1, in particular, Theorem 15.1, in [AB06]). Using
this identification of spaces, one can then transfer notions and results from vector spaces
to our setting. This indeed yields an alternative and equivalent approach to the following
material. However, to make the result of this thesis more accessible and self-contained,
our presentation avoids this involved machinery and develops direct arguments sufficient
for our mathematical setting. Interestingly, the proof of this section’s main result uses a
measurable-selection principle (see Section 2.3).

Definition 24. Let X be a measurable space. Define the function
Barycen: Prob[Prob[X]] — Prob[X]

as follows: for every € Prob[Prob[X]] and measurable set B C X let

Barycen(B)(B) = /,M(B)dﬁ(ﬂ)-

For every B € Prob[Prob[X]] we refer to Barycen(p) as the barycentre of B. 4
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2 Probability measures on Polish spaces

The barycentre Barycen(B) of a probability measure f € Prob[Prob[X]] is intuitively
derived by the following two-step experiment: in a first step a probability measure y is
sampled according to 8 and in a second step an element of X is sampled according to .
The notion in Definition 24 is well-defined. To see this, we first observe that for every Borel
set B C X the function probeval : Prob[X] — [0, 1], probeval (1) = u(B) is Borel (see the
definition of the Giry sigma algebra in Section 2.1). Moreover, for every probability measure
B € Prob[Prob[X]] the definition of Barycen() indeed yields a probability measure on X.
The latter is a consequence of the monotone convergence theorem (also known as Beppo
Levi’s theorem, see Folgerung 8.2.4 in [Sch08]).

Example 25. Let X be a Polish space and po, y1, 42, - . . € Prob|X] be probability measures.
Consider real numbers rg,11,72,... € [0,1] with rg +7 + 72+ ... = 1. Define the
probability measure € Prob[Prob[X]] by

B{mo}) =ro, B{m}) =r, B({{u}) =r2

Then for every Borel set B C X it holds

Barycen(B)(B) = ro - po(B) +r1-p1(B) +r2- u2(B) +... .

Consequently, Barycen () corresponds to the introductory sketched point-wise definition
of convex combinations of a countable number of probability measures. 4

The previous example shows that Definition 24 yields a conservative extension of the
classical notion of a convex combination. The convex hull of a subset in an Euclidean space
is defined as the set of all convex combinations of points in that subset. The corresponding
notion for sets of probability measures uses the previously introduced notion of barycentres:

Definition 26. Let X be a measurable space. For every set P C Prob[X] the convex hull of P
is defined by

Conv[P] = Barycen({B € Prob[Prob[X]] ; B°**(P) = 1}),

i.e., the convex hull consists of precisely those probability measures that can be represented
as an appropriate barycentre. A set P C Prob[X] is called convex if P = Conv[P]. 4

One typically expects that the notion of a convex hull forms a closure operator, i.e., an
operator that is extensive, monotonically increasing, and idempotent. In the remainder of
this section we show that all these properties are fulfilled for the notion as introduced in
Definition 26 when restricting to the Souslin subsets of the Polish space under consideration.

Our main theorem is as follows:
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2.4 Barycentres and convex hulls

Theorem 27. Let X be a Polish space. The convex hull Conv[Q] of every Souslin set Q C Prob[X]
is Souslin in Prob[X]. Moreover, the following three statements hold:

(1) Q C Conv[Q] for every Souslin set Q C Prob[X].
(2) Q C Q' implies Conv[Q] C Conv[Q'] for every Souslin sets Q, Q" C Prob[X].
(3) Conv[Q] = Conv[Conv|Q]] for every Souslin set Q C Prob[X].

In particular, the notion of convex hulls of probability measures induces a closure operator on the
Souslin subsets of Prob[X]. 4

Statements (1) and (2) can be easily derived from the definitions and even hold for arbit-
rary subsets of Prob[X]. Indeed, for every set Q C Prob[X] and probability measure y € Q
the probability measure B € Prob[Prob[X]] with § = Dirac[u] satisfies f°**(Q) = 1 and
thus, we derive y € Conv[Q], which immediately yields statement (1). The monotonicity of
the outer-measure function directly shows statement (2). Moreover, putting (1) and (2) to-
gether, we also obtain the first inclusion in (3), i.e., the inclusion Conv[Q] € Conv|[Conv|[Q]]
for every set Q C Prob[X]. The reverse inclusion is intricate and our proof below indeed
needs the Souslin requirement for the subset of probability measures under consideration.
Let Q C Prob[X] be a Souslin set. To show the inclusion Conv[Conv[Q]] € Conv[Q], the
challenging task is to argue that for every € Prob[Prob[X]] with

Bt (Cone[Q]) = 1

there exists B’ € Prob[Prob[X]] with

(B)°"(Q) =1 and Barycen(B) = Barycen(p').

The desired probability measure B’ intuitively represents a reweighting of the elements in
Q that is additionally compatible with the given by means of their respective barycentres.
At this point of the proof, we need the Souslin assumption on the set Q to rely on the
measurable-selection principle given by Theorem 21 for a specific set-valued function
depending on Q.

Proof of section’s main result. For our proof of Theorem 27 we need the following basic
observation referring to the function introduced in Definition 24.

Lemma 28. For every Polish space the function Barycen is Borel.

49
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Proof. Let X be a Polish space. Applying Theorem 15.13 in [AB06], for every Borel set
B C X the function fp: Prob[Prob[X]] — [0,1],

f8(B) = Barycen(B)(B)

is Borel. The claim thus immediately follows from Remark 5. We remark that the referred
Theorem 15.13 in [AB06] even shows that for every Polish space Y and Borel function
f:Y — [0,1] the function g¢: Prob[Y] — [0,1],

gr(py) = / f(y)duy(y)

is Borel. O

Proof of Theorem 27. Let Q C Prob[X] be a Souslin set. Applying Lemmas 14 and 28 as
well as Remark 10 (5), the set Conv[Q] is Souslin in Prob[X]. Given the discussions after
the statement of Theorem 27, it remains to show the inclusion Conv[Conv[Q]] C Conv[Q].
To this end let 1 € Prob[X] be a probability measure such that y € Conv[Conv[Q]]. Our
task is to show y € Conv[Q]. By the definition of convex hulls, there exists a probability
measure 8 € Prob[Prob[X]]| with

B (Conv[Q]) =1 and u = Barycen(B).

Define the set-valued function F: Prob[X] ~» Prob[Prob[X]],

F(y') = {B' € Prob[Prob[X]] ; Barycen(p') = ' and (B')°"(Q) = 1}.

Then there exists a Borel B-selection of F. Indeed, the assumptions of Theorem 21 are
fulfilled that is shown in the next two proof paragraphs.

Let us first justify that the set Rel[F] is Souslin in Prob[X] x Prob[Prob[X]]. According
to Lemma 28, the function Barycen is Borel. By Remark 10 (6), the set Graph[Barycen] is
hence Borel in Prob[Prob[X]] x Prob[X]. Moreover, thanks to Lemma 14, the set {’ €
Prob[Prob[X]] ; (B')°*(Q) = 1} is Souslin in Prob[Prob[X]]. Putting things together, the
set Rel[F] is Souslin in Prob[X] x Prob|Prob[X]].

Exploiting f°"(Conv[Q]) = 1, Lemma 12 yields a Borel set P" C Prob[X] such that
P’ C Conv|Q] and B(P’') = 1. For every ' € P’ the set F(3') is not empty that can be
seen as follows: since y’ € P’ and P’ C Conv[Q], there exists ' € Prob[Prob[X]]| with

(B)°'(Q) = 1 and Barycen(p') =y,
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We are hence in the situation of Theorem 21. Consequently, there exist a Borel function
f: Prob[X] — Prob[Prob[X]] and Borel set P; C Prob[X] such that

B(Pg) =1 and f(u') € F(y') forall u' € Pg.

For the following definition recall the concept of the post operator from Section 2.1. Intro-
duce the probability measure p’ € Prob[Prob[X]],

p' = Post[B, f],

i.e., for every Borel set P C Prob[X] we have

= [ £ (P dp(w)

To conclude i € Conv[Q)], it remains to show Barycen(p') = p and (B')°*(Q) = 1. We
attend the latter claim first.

Let P C Prob[Prob[X]] be a Borel set such that Q C P. For every u’ € Py it holds
(f(#))°"(Q) = 1 that in turn implies f(y')(P) = 1. Since B(Pg) = 1, it follows

= [ £GPy (') = [ 1) = B(Bs) = 1.

B

This yields (B¢)°*(Q) = 1.
It remains to show Barycen(p’) = p. Let B C X be a Borel set. Applying Fubini’s
theorem (see Section 2.1), we obtain

[werag = [ ([ w@araon) dpo.

From this we directly derive

Barycen(p')(B) = [ Barycen(f(4))(B) dB(s).

/

For every i’ € Pgitholds f(p') € F(y') and therefore, one has Barycen(f(u')) = p'.
Using B(Pg) = 1, we consequently obtain

Barycen(B /y = Barycen(p)(B) = u(B).

This finally completes our argument. O
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2 Probability measures on Polish spaces

2.5 Couplings of probability measures

Intuitively, a coupling places two a-priori unrelated probability measures in the same
probability space by exhibiting an adequate witness distribution over pairs:

Definition 29. Let X and Y be measurable spaces and jix € Prob[X] and py € Prob[Y]
be probability measures. A probability measure y € Prob[X x Y] is called a coupling of
(ux, py) if the following two statements hold:

(1) u(Bx X Y) = ux(Bx) for every measurable set Bx C X.
(2) u(X x By) = uy(By) for every measurable set By C Y.

Obviously, the product measure of yix and py, i.e., the measure givenby px ® yy, represents
a coupling of (px, py) to which we refer as the independent coupling of (ux, Hy). J

It is important to realise that the requirements for a coupling do not explicitly constrain
the probabilities of the form y(Bx x By) where Bx C X and By C Y are measurable sets
such that Bx # X and By # Y. This fact basically constitutes the crux of many applications
of couplings. Intuitively, conditions (1) and (2) in the previous definition only require that
the marginals of a coupling coincide with the given probability measures. In other words,
defining the two Borel functions px: X x Y — X, px(x,y) = xand py: X x Y — Y,
py(x,y) = y, a probability measure y € Prob[X x Y] is a coupling of (yix, yy) precisely
when it holds

(ox):(n) = ux and  (py)s(p) = py.

In case the sets X and Y are countable, a probability measure i is a coupling of (pix, py) iff
for every x € X and y € Y one has the following two identities

EYV({x} < {y'}) = ux({x}) and Zxﬂ({X'} x{y}) = umr({y})-
y'e x'e

Example 30. Consider two (unfair) coins Coiny and Coiny. We assume that Coiny lands
on its head with probability px and accordingly, that Coiny lands on its head with probabil-
ity py. The latter informal description is formalised by means of the two measurable spaces
X = {Heady, Tailx } and Y = {Heady, Taily } as well as the corresponding probability
measures Uy € Prob[X] and py € Prob[Y] with

pux({Headx}) = px and py({Heady}) = py.
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Clearly, it follows px({Tailx}) = 1 — px and py({Taily }) =1 — py.

We consider the experiment of tossing these coins simultaneously now. For the moment,
there are no further information concerning the interplay of the given coins. In particular,
the events stating that the coins Coiny and Coiny land on their heads, respectively, may
be not (stochastically) independent of each other. If only this information is given, every
coupling of (jx, pty) represents a convenient mathematical model for the sketched random
experiment. Indeed, if y is a coupling of (jix, jty), then it holds p({Headx} x Y) = px
and u(X x {Heady}) = py, i.e., the occurrence of the event that Coinx lands on its head
happens with probability px and accordingly for the second coin Coiny.

In the present case, exploiting the finiteness of the sets X and Y, a probability measure y
on X x Y forms a coupling of (ux, #y) precisely when the following four identities hold:

a+b=px, c+d=1—-px, a+c=py, b+d=1—py
where a,b,¢,d € [0,1] are defined by

a = u({Headx} x {Heady}), b= u({Headx} x {Taily}),
c = u({Tailx} x {Heady}), d= u({Tailx} x {Taily}).

For instance, assuming px > py, one can consider a coupling of (yx, #y) such that the
event { (Headx Taily) } happens with probability zero intuitively meaning that it is never
the case that Coiny lands on its head while Coiny lands on its tail. The coins are in
particular not tossed independently of each other here. Using the notions as before, the
following assignment for 4, b, ¢, and d yields the uniquely defined coupling:

a=py, b=px—py, ¢c=0, d=1-px.
Note, b > 0 is implied by the assumption px > py. 4

The previous example clarifies that even for discrete spaces the number of existing coup-
lings may be uncountable. A coupling of two probability measures is uniquely determined
by the corresponding product measure provided one of the two given probability measures
is a Dirac distribution:

Remark 31. Let X and Y be measurable spaces as well as jix € Prob[X] and pty € Prob[Y]
be probability measures. Suppose y € Y with py = Dirac[y]. Then there is precisely one
coupling of (px, #y), namely the product measure yx ® py. This can be seen as follows.
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Let u be a coupling of (px, pty). For every measurable sets By C X and By C Y such that
y ¢ By itholds u(Bx x By) = 0 since

#(Bx x By) < u(X x By) = uy(By) = Dirac|y](By) = 0.

Moreover, for every measurable sets By C X and By C Y where y € By we obtain
}l(BX X By) = ‘ux(Bx) as

#(Bx x By) = u(Bx x X) — p(Bx x (Y \ By)) = p(Bx x X) = px(Bx).

Putting things together, for every measurable sets Bx € X and By C Y we derive the
identity u(Bx X By) = pux(Bx) - py(By) that justifies the claim y = px ® py. N

We finish this section with the following prominent application of couplings in the area of
optimal transport that goes beyond the content of this thesis. The example below provides
another view on couplings also useful for an illustration of the concept of weight functions

in the next section:

Example 32. Let X and Y be measurable spaces ux € Prob[X] and py € Prob[Y] be
probability measures, and cost: X x Y — [0,1] be a measurable function. In the study
of optimal transportation and allocation of resources, the set X may refer to produced
products, the set Y stands for consumers, and the value cost(x, i) can be interpreted as the
cost of moving one unit of a product to the consumer. Given the distributions yx and py on
X and Y, respectively, the objective is to find a transference plan such that the transportation
costs are minimised. Every transference plan is given by a coupling of (yx, py) that leads
to the following formulation of the Monge-Kantorovich minimisation problem considering
an infimum over expected costs (see [Vil09] for an excellent overview on historical notes
and related literature):

inf{ /cost(x,y) du(x,y) ; pis a coupling of (ux, py) }

In the theory of optimal transport one is interested in conditions such that the infimum is
attained and moreover, such that the minimising coupling, also called optimal transference
plan, satisfies certain side constraints. One also investigates conditions under which an
existing optimal transference plan is uniquely determined. 4

2.6 Weight lifting of relations

The weight lifting of a relation to be defined next extends a relation R C X x Y over
measurable spaces X and Y to a relation RW&' C Prob[X] x Prob[Y] over the corresponding
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sets of probability measures Prob[X] and Prob[Y]. Intuitively, two probability measures
x and py are related by the relation RW8! provided there exists a coupling for (jx, uy)
that is additionally compatible with the relation R. In this context such a coupling is called
a weight function:

Definition 33. Let X and Y be a measurable spaces and R C X X Y be a relation. For
every probability measures yx € Prob[X] and ux € Prob[Y] we call a probability measure
W € Prob[X x Y] a weight function for (jix, R, pty) if the following two statements hold:

(1) W isa coupling of (ux, py).
(2) There exists a measurable set R” C X x Y with R* C Rand W(R') = 1.

The weight lifting (of R) is the relation R%8' C Prob[X] x Prob[Y] defined as follows: for
every ux € Prob[X] and py € Prob[Y],

(px, py) € RV& and there is a weight function for (px, R, pty).
_|

The relation R"8! can be indeed seen as a lifting of R since for every x € X andy € Y
we have the following equivalence (see also Remark 31):

(x,y) € R iff (Dirac|x], Dirac[y]) € R"&".

The latter statement also shows that for every relation R” C Prob[X] x Prob[Y] such that
R¥ is a weight lifting of some relation over X and Y there exists exactly one R C X x Y with
RY8' = R™ and moreover, it holds R = {(x,y) € X x Y ; (Dirac[x], Dirac[y]) € R"}.
Thus, the definition of the weight lifting RV8! relies on no other information other than the
given relation R.

In Definition 33 the relation R is not required to be measurable in X x Y. That is why
condition (2) involves the existence of a measurable set in X X Y that is a subset of R. If
the set R is measurable in X X Y, then condition (2) is obviously fulfilled precisely when
one has W(R) = 1. According to Lemma 12, assuming that X and Y are Polish spaces and
that the set R is Souslin X x Y, condition (2) can be replaced by the requirement

WOU(R) = 1.

Provided the set X is countable, the condition (2) is equivalent to the following statement:
foreveryx € Xandy €Y,

W({{x,y)}) >0 implies (x,y) € R,
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i.e., the support of the probability measure W is subsumed by the relation R.

Assuming the set R is Borel in X X Y, the existence of a weight function can be also
characterised in terms of the Monge-Kantorovich minimisation problem briefly introduced
in Example 32 (see also [DD09]). Define the Borel function costg: X X Y — [0,1] as
follows: for every x € X andy € Y let

costr(x,y) = 0if (x,y) € R and costr(x,y) =1if (x,y) ¢ R.

Intuitively, the defined cost function states that a pair in X X Y causes no costs provided
it is contained in the relation R and cost one otherwise. For every probability measures
tx € Prob[X] and py € Prob[Y] it holds (ux, jty) € R™&' precisely when there exists a
coupling W of (ux, py) such that

/costR(x,y) dW(x,y) =0,

in particular, this also means that the infimum of the Monge-Kantorovich minimisation
problem is attained.

The remainder of this section regards the case where X = Y. However, notions and
observations can be adapted for the case where X and Y are not the same. Throughout
this thesis, we are typically confronted with the following question: given a relation R over
some measurable space X and two probability measures y, and y;, on X, does there exist a
weight function for (y,, R, pp)? In what follows we provide simple necessary conditions
for the existence of a corresponding weight function. For this let us recall the following
standard notions first. Let X be a set and R C X X X be a relation. A subset B C X is
called upper R-stable provided

RN(Bx X) C X x B.
Similar, a subset B C X is called R-stable if
RN(Bx X)=RN(X x B),

i.e., the set B is both upper R-stable and upper R~ !-stable. If R is a preorder, an upper
R-stable set is also called an upward closed set or simply an upset. Assuming the relation
R constitutes an equivalence on X, a set B C X is R-stable precisely when B can be written
as an union of equivalence classes concerning R. The latter is equivalent to the requirement
B = Uyep|x]r where for every x € B the equivalence class concerning R that contains x is
denoted by [x]g.
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Remark 34. Let X be a measurable space, j,, ity € Prob[X], and R C X x X be a relation
such that (p,, itp) € RY8. Then the following two statements hold:

(1) pa(B) < up(B) for every upper R-stable Borel set B C X.
(2) ua(B) = up(B) for every R-stable Borel set B C X.

The argument is straightforward. Let W be a weight function for (yu, R,u »). Moreover,
suppose a Borel set R" C X x X with R’ C R and W(R’) = 1. For every Borel set B C X
with RN (B x X) € X x Bitalsoholds R’ N (B x X) C X x B and therefore,

12(B) = W(B x X) = W(R'N (B x X)) < W(X x B) = u,(B).

This justifies statement (1). Statement (2) follows analogously since for every set B C X
with RN (B x X) = RN (X x B)onehas RN (B x X) = RN (X x B). 4

Example 35. Let X be a Polish space. Consider the diagonal relation Diag on X, i.e.,
Ding = {(xz,xp) € X X X ; X5 = Xp}.

By Theorem 6.5.7 in [Bog07] and Remark 4, the set Diag is Borel in X x X. It holds
Diag™® = {(pa, up) € Prob[X] x Prob[X] ; pa = s},

i.e., the weight lifting Diag"'®" and the diagonal relation on Prob[X] are the same. Let us
provide arguments for that claim. Consider two probability measures p,, i, € Prob[X].
Define the Borel function &: X — X x X, (x) = (x, x). Provided y, = uy, itis easy to see
that ¢ (y4) yields a weight function for (4, Diag, piy,). Therefore, the diagonal relation on
Prob[X] is a subset of the weight lifting Diag"8". Every Borel set B C X, is Diag-stable and

wgt

therefore, assuming (ya, itp) € Diag™®", we obtain y,(B) = up(B) by Remark 34. Hence,

Diag"8' is a subset of the diagonal relation on Prob[X]. 4

2.7 Smooth and weakly smooth relations

Inspecting Remark 34 again, one may ask whether the proven necessary conditions give
rise to a characterisation of the weight lifting of a relation. More precisely, the following
question arises naturally: considering probability measures i, and py, in Prob[X] such that
ta(B) = pp(B) for every R-stable Borel set B C X, does there exist a weight function for
(Ma, R, b)? This section presents a condition on R for which the latter question can be
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answered positively. More precisely, we focus on smooth relations [ Dob07, Sri08, Gao08 ]
(also known as countably-separated relations) as well as the closely related concept of
a weakly smooth relations. Intuitively, smooth as well as weakly smooth relations can
be represented by means of a countable number of sets that can be viewed as test sets to
determine whether two elements are in the relation or not:

Definition 36. Let X be a Polish space. A relation R C X x X is called weakly smooth
provided there exists a countable family C of Borel subsets of X such that

R = {(x4,x5) € X x X ; x, € Bimplies x; € B forevery B € C}.

In this context, we refer to C as a witness of the weakly smoothness of R. Similar, a relation
R C X x X is called smooth if there exists a countable family C of Borel subsets of X with

R = {(xs,x5) € X x X ; x, € Biff x;, € Bforevery B € C}.
Here, C is called a witness of the smoothness of R. 4

Every weakly smooth relation is necessarily a preorder and accordingly, every smooth
relation is an equivalence. As the notions suggests, every smooth relation is also weakly
smooth. Indeed, considering a smooth relation R € X x X over some Polish space X
as well as a family of sets C serving as a witness, it is easy to see that the family of sets
CU{X\ B; B € C} constitutes a witness of the weakly smoothness of R. The definition of a
smooth relation is borrowed from Section 5.1 in [Sri08] (see also [Dob07, Gao08]). Besides
this, Definition 36 is also inspired by the general technique for relating (bi)simulation
and logic for labelled Markov processes [Des99, DEP02, DGJP03, DP03, FKP17] (see also
Chapter 5 of this thesis). The usefulness of the introduced notions heavily originates from
the fact that the family C of Borel subsets is required to be countable. Roughly speaking,
although the cardinality of a (weakly) smooth relation may be uncountable, the relation
under consideration is uniquely determined by a countable number of test sets.

Remark 37. Let X be a Polish space and R C X X X be a relation. Then R is smooth
precisely when there are a Polish space Y and a Borel function f: X — Y such that

R = {(xo %) € X x X; f(x:) = f(x,)}.

Although the claimed equivalence is folklore (see, e.g., Exercise 5.1.10 in [Sri08]), let us
present the standard argument. Assume that the relation R is smooth and let C be a family of
subsets of X that serves as a witness. Let By, By, . . . be Borel sets such that C = {By, B, ...}
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2.7 Smooth and weakly smooth relations

Consider the Polish space Y = {0,1}“ (see Example 2 (5)). Define the Borel function
f: X — Y as follows: forevery x € Xand n € IN let

f(x)[n] =1ifx € B, and f(x)[n] =0ifx ¢ B,.

It is easy to see that for every x,, x;, € X itholds (x,, x,) € Riff f(x;) = f(xp).

Let Y be a Polish space and f: X — Y be a Borel function such that the following identity
holds: R = {(x4,xp) € X x X ; f(x;) = f(xp)}. Consider a countable generator Gy of
the Borel sigma algebra on Y that separates the points of Y (see Remark 4). Define the
countable family C of Borel subsets of X by

C={f""(By);By € Gv}.

It is easy to see that for every x,, x;, € X it holds (x,, x;) € R precisely when for every
By € Gy one has x, € f~!(By) iff x, € f~1(By). Hence, the relation R is smooth. J

By the previous remark, a relation R over a set X is smooth provided there is a Borel
assignment f of every element in X to an element of some Polish space Y such that two
elements of X are related by R precisely when they are assigned to the same element in Y.
Viewing the diagonal relation on some Polish space as a rather simple relation, we obtain
another indication for the usefulness of smooth relations. In fact, many properties of a
diagonal relation on a Polish space can be transferred to smooth relations.

Remark 38. Let X be a Polish space and R C X X X be a relation. Provided R is smooth
or weakly smooth, the set R is Borel in X x X (and hence also Souslin in X x X by Re-
mark 10 (2)). It suffices to prove this claim for weakly smooth relations. Assume that the
relation R is weakly smooth in X and let C be a witness of the weakly smoothness of R.
Since the family C is countable and as we have

R= ] ((XxB)U((X\B)xX)),
BeC
it directly follows that the set R is Borel in X x X. 4
The remainder of this section provides characterisations of the weight liftings of smooth

as well as of weakly smooth relations corresponding to the introductory sketched motivation
of this section.

Theorem 39. Let X be a Polish space, ya, i, € Prob[X] be probability measures, and R C X x X
be a weakly smooth relation. Let C be a witness of the weakly smoothness of R such that C is closed
under finite intersections and finite unions. The three statements below are equivalent:
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2 Probability measures on Polish spaces

(1) (pa, pp) € R™E"
(2) ua(B) < up(B) for every upper R-stable Borel set B C X.

(3) #a(B) < uy(B) for every B € C.

|

A precise proof can be found below. Remark 34 (1) shows that statement (2) of the
previous theorem is necessarily fulfilled for every (o, ity) € R"8". The reverse direction,
i.e., the implication from (2) to (1), is an application of Strassen’s theorem on stochastic
domination [Str65, KKO77, Kel84, Les10]. The difficulty we had is that Strassen’s theorem
on stochastic domination focuses on relations that yield closed sets in the product space.
However, as in Polish spaces Borel functions can be turned into continuous ones (see
Chapter 13 in [Kec95]), one can adapt the topology on the Polish space X in an appropriate
way such that the relation R under consideration is closed in the product topology induced
by this new topology. One can then apply Strassen’s theorem on stochastic domination to
finish the argument showing that (1) is implied by (2).

The crux of statement (3) in the previous theorem is that the family C is countable, in
particular, it suffices to consider a countable number of test sets, namely those contained
in C, to determine whether there exists a weight function for ( Ma, R, ]/tb). To show the
equivalence of (2) and (3), we extract a clever argument from the recent paper [FKP17]
using the positive monotone class theorem and the positive unique structure theorem (see
Section 5.1 in [FKP17]).

Theorem 40. Let X be a Polish space, yia, i, € Prob[X] be probability measures, and R C X x X
be a smooth relation. Moreover, let C be a witness of the smoothness of R such that C is closed under

finite intersections. Then the following three statements are equivalent:
(1) (pa, pp) € RWE.
(2) ua(B) = uy(B) for every R-stable Borel sets B C X.
(3) ua(B) = up(B) for every B € C.
4

The previous theorem for smooth relations is exactly in the same shape as Theorem 39
with the important difference that the family is only required to be closed under finite
intersection. The equivalence of (1) and (2) follows directly from Theorem 39. To prove the
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2.7 Smooth and weakly smooth relations

equivalence of (2) and (3), we again adapt an argument from the paper [FKP17] relying
on Dynkin’s 71-A theorem and the unique structure theorem (see Section 4.1 in [FKP17]).
The following corollary can be also found in [Lov12b] (see also [Lov12a]):

Corollary 41. Let X be a Polish space and R C X x X be a relation. Suppose a Polish space Y
and a Borel function f: X — Y with R = {(x,,xp) € X x X ; f(xs) = f(xp)}. For every
probability measures g, uy € Prob[X] the following equivalence holds:

(Mo, Hp) € RYEiff fu(pa) = fi(po)-

In particular, the relation R™&" is smooth.

Proof. For every Borel set By C Y it is easy to see that the set f ~!(By) is R-stable. Thus,
according to Theorem 40, the identity f;(pa) = f4(ptp) follows from (g, pp) € RWE".

We regard the reverse implication. Assume fy(1ta) = f3(up). Let Cy be a countable
generator of the Borel sigma algebra on Y that is closed under finite intersections and
separates the points of Y (see Remark 4). Define

Cx = {fﬁl(By) ; By € Cy}

Then the family Cy is countable, a subset of the Borel sigma algebra on X, and closed under
finite intersections. As Cy separates the points in Y, it is easy to see that Cx is a witness
of the smoothness of R. It moreover holds y,(Bx) = u,(Bx) for every Bx € Cx. Putting
things together, we can apply Theorem 40 and hence, it holds (y,, jty) € RW8.

Since Prob[X] yields a Polish space (see Example 2 (6)) and as the pushforward function
is Borel (see Remark 8 (1)), it moreover follows that the relation R"8! is smooth. O

Proof of section’s main results. It remains to prove Theorems 39 and 40.

Lemma 42. Let X be a Polish space and R be a weakly smooth relation. Then there are a Polish
space Y, a partial order < on 'Y being a closed set in Y x Y, and a Borel function f: X — Y
satisfying the following identity

R ={(xg,xp) € XX X; f(xq) < f(xp)}.

Proof. The argument is basically the same as in Remark 37. Consider a witness C of the
weakly smoothness of R. Let By, By, . . . be Borel subsets of X such thatC = {By, By, ...}.
Define the Polish space Y = {0,1}“ (see Example 2 (5)). The partial order < on Y is
defined point-wise: for every y,,y, € Y let

Ya ]y, and forevery n € Nitholds y,[n] < yu[n].
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2 Probability measures on Polish spaces

It is easy to see that the set < is closed in Y x Y. Define the Borel function f: X — Y as
follows: forevery x € X andn € Nlet f(x)[n] =1ifx € B, and f(x)[n] = 0if x & By,.
Then for every x,, x;, € X one has (x,, x,) € Riff f(x;) < f(xp). O

Proof of Theorem 39. (1) iff (2). Remark 34 yields the implication from (1) to (2). Our
argument for the reverse implication, i.e., (2) implies (1), exploits a result from probability
theory concerning the existence of probability measures on product spaces with given
marginals: the following argument relies on Theorem 11 in [Str65] (see also Theorem 1 in
[KKO77], Proposition 3.12 in [Kel84], and Theorem 2.5 in [Les10]).

By Lemma 42, there are a Polish space Y, a partial order < being a closed setin Y x Y,
and a Borel function f: X — Y such that R = {(x,,x5) € X x X ; f(xs) < f(xp)}. Note,
as the relation < is reflexive, the set R is not empty.

We introduce a suitable topology O on X such that the set R is closed in the product
topology O @ O. Denote the Polish topology on X by O’. By Theorem 13.11 in [Kec95],
there is a Polish topology O on X such that Borel[O’] = Borel[O] and O’ C O as well as so
that function f is continuous with respect to O. Defining the functiong: X x X = Y x Y,
9 (x4, %) = (f(x4), f(xp)), it follows R = ¢~'(<). From this we derive that the set R is
closed in O ® O as, using the inclusion O’ C O, the function g is continuous with respect
to the product topology O ® O.

Putting things together, we are in the situation of Theorem 11 in [Str65]. Indeed, using
this theorem and as Borel[O'] = Borel[O], there exists a weight function for (ug, R, yp) if
for every upper R-stable Borel set B C X one has y,(B) < u;(B). Statement (1) hence
follows from (2).

(2) iff (3). AsC is a witness of the weakly smoothness of R, it is easy to see that every
B € C is upper R-stable. Therefore, statement (3) immediately follows from (2). The
remaining implication from (3) to (2) uses the argument for Theorem 17 in [FKP17]. More
precisely, we rely on Theorems 15 and 16 in [FKP17] called positive monotone class theorem
and positive unique structure theorem, respectively. We rely on the following additional
notion. By SigmaLattice[C] we denote the smallest family of subsets of X that contains
every set of the family C and moreover, that is closed under both countable unions and
countable intersections.

The implication from (3) to (2) is shown by contraposition. To this end consider an
upper R-stable Borel set B* C X such that y,(B’) > u,(B’). As the family C is countable
and a witness of the weakly smoothness of R, we can apply Theorem 16 in [FKP17] that
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2.7 Smooth and weakly smooth relations

yields B' € SigmaLattice[C]. Introduce the family M of Borel subsets of X by
M = {B C X Borel ; s(B) < up(B)}.

Since every measure is continuous from above and below, it follows that M is a monotone
class on X, i.e., the family M is closed under unions of increasing chains and under
intersections of decreasing chains. As C is closed under finite intersections and finite unions,
we are in the situation of Theorem 15 in [FKP17] providing the following implication:

C C M implies SigmaLattice[C] C M.

Since B’ € SigmaLattice[C] and B’ ¢ M, we hence obtain C € M. As a consequence,
there exists B” € C such that y,(B"”) > u,(B”). Putting things together, this shows to
contraposition of the implication from (3) to (2). O

Proof of Theorem 40. (1) iff (2). Remark 34 justifies the implication from (1) to (2). As Ris
smooth, the relation R is in particular weakly smooth. Moreover, since R is a symmetric
relation, every upper R-stable Borel set in X is R-stable. The implication from (2) to (1)
hence follows immediately from Theorem 39.

(2) iff (3). Since C is a witness of the smoothness of R, every B € C satisfies the identity
RN (B x X) = RN (X x B) and therefore, statement (3) immediately follows from (2). As
in the proof of Theorem 39, the remaining implication from (3) to (2) exploits the argument
for Theorem 13 in [FKP17]. To be more precise, we use Theorems 11 and 12 in [FKP17]
called Dynkin’s 77-A theorem and unique structure theorem, respectively. Here, the former
theorem is a prominent theorem in basic-measure theory (see also, e.g., Theorem 136B in
[Fre01]). In what follows, SigmaAlgebra[C] denotes the smallest sigma algebra on X that
contains every set in C.

The implication from (3) to (2) is proven by contraposition. Consider a R-stable Borel
set B' C X such that y,(B’) = py(B’). As the family C is countable and a witness of the
smoothness of R, Theorem 12 in [FKP17] justifies B’ € SigmaAlgebra[C]. Introduce the
family D of Borel subsets of X by

D = {B C X Borel ; q(B) = up(B)}.
It follows that D is a Dynkin system, i.e., D is not empty, closed under complementation,

and closed under unions of a countable number of pairwise disjoint sets. As C is closed
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2 Probability measures on Polish spaces

under finite intersections, we are in the situation of Theorem 11 in [FKP17] stating the
following implication:

C CD implies SigmaAlgebra[C] C D.

As B’ € SigmaAlgebra[C]| and B’ ¢ D, we hence obtain C Z D. There hence exists B” € C
with 11,(B") # up(B"). This finally justifies the contraposition of the implication from (3)
to (2). O

It would be interesting whether one could drop or weaken the requirements on the
relation R in Theorems 40 (and also Theorem 39) for the relation under consideration.
In this context we remark that personal communications with the authors of [BBLM14]
yield that (the proof of) Proposition 13 in [BBLM14] is flawed. More precisely, it turns
out that a function constructed in the proof in [BBLM14] is not well-defined. Moreover,
adapting a counterexample provided in the article [Swa96], Proposition 13 in [BBLM14] is
actually false for arbitrary measurable spaces. However, the claim might be still true for
the interesting Polish-space case. In fact, the mentioned proposition for the Polish-space
case would yield a strong improvement of Theorem 40.
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3 Stochastic transition systems

The main model considered in this thesis is called stochastic transition system (STS) and
can be seen as a conservative generalisation of the generative stochastic model in the
classification of [GSS95] for discrete probabilistic systems and of probabilistic automata
[Seg95]. However, while [ GSS95, Seg95] focus on systems with countable state spaces, we
investigate stochastic systems with uncountable state and action spaces. The definition of
STSs is closely related to the model in [CSKNO5, Cat05]. Indeed, the formalism studied
in the latter cited articles corresponds to the notion of simple STSs in this thesis. Further
prominent models with uncountable state spaces are given by labelled Markov processes
[BDEP97, Des99, DEP02, Pan(09] and non-deterministic labelled Markov processes [DTW12,
Wol12]. These models as well as stochastic automata [D’A99, DK05] and other classes of
stochastic hybrid systems are covered by STSs. For more details on this subject, however,
we refer to Chapter 7 since a profound discussion should include those subclasses of STSs
that are studied in later chapters of this thesis.

One challenge we had to address for the definition of simulation and bisimulation is to
conservatively extend the notion of generative bisimulation in [GSS95] (see also [Tin07]) to
our setting addressing STSs with uncountable state and action spaces. Relying on the action-
lifting of a given relation, we indeed obtain suitable notions for simulation and bisimulation.
In Chapter 7 we argue that these notions and corresponding standard definitions for, e.g.,
(non-deterministic) labelled Markov processes, are the same. Moreover, based on a two-
step view on sampling an action-state pair, we obtain an intuitive characterisation of the
introduced concepts.

As a main result of this chapter we provide a proof of Theorem A presented in Chapter 1
stating that the simulation preorder and the bisimulation equivalence form transitive
relations. Our argument proceeds as follows: it is shown that the composition of two simu-
lations also yields a simulation and accordingly, that the composition of two bisimulations
constitutes again a bisimulation. The proof of the latter statement requires the construction
of a weight function that intuitively represents a merging of two given weight functions.
For this we exploit the gluing lemma (see, e.g., Lemma 5.3.2 in [AGS05] or Section 1 in
[Vil09]), which states that two given probability measures on product spaces can be glued
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together along a common marginal. The assumption that the state space and the action
space are Polish turns out to be crucial for our argument, in particular, as the gluing lemma
does not hold for arbitrary measurable spaces [Swa%6].

The main result of the early contribution [BDEP97] on labelled Markov processes is
the result that bisimulation indeed yields an equivalence equivalence relation where the
definition of bisimulation relies on categorical ideas and zig-zag morphisms. In a later
article [DEP02] the authors provide a complete logical characterisation for the latter men-
tioned notion of bisimulation that directly implies transitivity of the induced bisimulation
relation. In [DGJP03] the authors recapitulate this early approach. The recent contribution
[FKP17] shows that simulation preorder on labelled Markov processes is also transitive that
extends a corresponding result in [Des99] for a subclass of labelled Markov processes. The
chapter’s main contribution continuous this research for a much broader class of models
and moreover, as we describe in Chapter 7, covers the previous mentioned results. Whereas
in [Des99, DEP02, DGJP03, FKP17] the transitivity follows directly from the logical charac-
terisation, our proof does not involve any logical characterisation of the simulation preorder
or the bisimulation equivalence.

To reasoning about the linear-time behaviour of STSs, trace distributions as well as
the associated concepts of schedulers and path measures are introduced. Intuitively, in
every state a scheduler chooses a probability measure that can be represented as a convex
combination of enabled distributions in that given state. The latter is precisely formalised by
the notion of combined-transition relation. Relying on the theory developed in Section 2.4,
we show that the combined-transition relation is closed under combining probability
measures under a side constraints that fits to the thesis setting as we see in the subsequent
chapters. This contribution provides a generalisation of Proposition 4.2.1 in [Seg95] where

a corresponding statement is shown for discrete probabilistic automata.

3.1 Modelling stochastic transition systems

The state and the action space of the basic stochastic model investigated throughout this
thesis are Polish spaces. We refer to Section 2.1 for a brief overview on Polish spaces and
their rich mathematical theory. However, for the moment, it suffices to recall Example 2
where important Polish spaces appearing in modelling stochastic systems are presented
such as countable sets as well as countable Cartesian products of the real number line.

Definition 43. A stochastic transition system (STS) is a triple
T = (Sta, Act, —)
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consisting of the following elements:
(1) Stais a Polish space (state space),
(2) Act is a Polish space (action space), and
(3) — C Sta x Prob[Act x Sta] is a relation (transition relation).
|

Before we present examples for STSs, let us introduce the following notions associated to
an STS T = (Sta, Act, —). As usual, for every s € Sta and ¢ € Prob[Act x Sta] we write
s — ¢ rather than (s, ) € —. Accordingly, for every s € Sta, act € Act, and p € Prob|[Sta]
we use s — (act, u) as an alternative notation for s — Dirac|act] & p. For every state s € Sta

we moreover define the set
Enabled[s| = {¢ € Prob[Act x Sta] ; s — ¢}.
Similar, for every state s € Sta and action act € Act let
Enabled[s,act] = {y € Prob[Sta] ; s — (act, u) }.

For every s € Sta and act € Act, to indicate the STS under consideration, we also write
Enabled[T ,s| and Enabled|T,s,act] instead of Enabled[s] and Enabled|s, act], respectively.
The STS T is called non-blocking if for every s € Sta the set Enabled|s] is not empty. Sim-
ilar, we call the STS T point-wise non-blocking if for every s € Sta and act € Act the set
Enabled([s, act| is not empty. The STS 7 is said to be image-finite if for every state s € Sta the
set Enabled s is finite. Moreover, T is called point-wise image-finite provided for every state
s € Sta and action act € Act the set Enabled|s, act] is finite.

We refer to the STS 7T as simple provided for every transition s — ¢ there exists an action
act € Act such that ¢({act} x Sta) = 1. In other words, every transition in a simple STS
involves only one single action: for every every transition s — ¢ and every action act € Act
one either observes the action act with probability one, i.e., ¢({act} x Sta) = 1, or with
probability zero, i.e., ¢({act} x Sta) = 0. Note, the model of simple STSs conservatively

extends the concept of simple probabilistic automata [Seg95].

Real-valued variables. We use variables in order to represent states of an STSs with a
descriptive name. Besides this, in compositional modelling, variables serve as a commu-
nication mechanism since different STSs may reference to the same shared variable. Let
Var be a finite and non-empty set of real-valued variables. Denote the set of all evaluations
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over Var by Eval[Var], i.e., the set Eval[Var| consists of all the functions e with domain Var
and codomain R. Intuitively, if e € Eval[Var| and v € Var, then e(v) represents the value
of the variable v. Obviously, Eval[Var| can be identified with a finite Cartesian product of
the real number line and hence, Eval[Var] is a Polish space according to Example 2 (5).

Considering a finite non-empty subset V' C Var, for every e € Eval[Var] the variable
evaluation ey € Eval[V] is defined by ey, (v) = e(v) forall v € V, i.e, ey denotes the
restriction of e onto V. Similar, for every probability measure 17 € Prob[Eval[Var]| the
restriction of 7 onto V is given by the probability measure 17, € Prob[Eval[V]] defined
as follows: for every Borel set E C Eval[V] let 1, (E) = n({e € Eval[Var] ;e|y € E}).
Thus, 7y is the pushforwad measure of 77 with respect to the Borel function assigning
e € Eval[Var| to ey € Eval[V] (see also Section 2.1).

Letn € N\ {0} and vy,..., v, be variables such that Var = {vy,...,v,}. The set of
all conditions over Var is denoted by Cond[Var|. More precisely, Cond|Var] is the smallest
family of subsets of Eval[Var| that is closed under all boolean connectives and that consists
of every subset cond of Eval[Var] with the following property: there are rational numbers
qi,---,qn,q € Q and a comparison operator > € {<,<,=,>,>} with

cond = {e € Eval[Var] ; q1-e(v1) + ...+ qun-e(v,) D1 g}.

Here, the set cond is usually represented in a symbolic way by g1 - v1 + ...+ g - 0, D4 4.
Clearly, the family Cond[Var] is countable and consists only of Borel subsets of Eval[Var|.
For every conditions cond; and cond, we write cond; A cond, rather than cond; N cond,
and accordingly, for the other boolean connectives (negation —, disjunction V, implication
—,...). We write e |= cond if the variable evaluation e € Eval[Var] satisfies the condition
cond € Cond[Var], i.e., when it holds e € cond. For instance, if n > 2, then for every
variable evaluation e € Eval[Var],

el (v >2718) A (v < 3.141) iff e(vq) > 2.718 and e(v;) < 3.141.

We finally remark that the set Cond|Var] separates the points of Eval[Var], i.e., for every
e1,ep € Ewval[Var] where e; # e there exists a condition cond € Cond[Var| such that
e1 |= cond while ey [~ cond. Indeed, if e; # ey, then there exists v € Var with e (v) # ex(v)
and thus, there is 1 € {<,>} and q € Q such that e;(v) > g X ez(v). Summarising
facts, the family Cond[Var] forms a generator of the Borel sigma algebra on Eval[Var] that
satisfies the conditions in Remark 4 (see also Example 3 (5)).

Example: simple cooling system for a server. As examples for describing stochastic
systems with STSs, we provide different refinement of an STS modelling a simple cool-

68



3.1 Modelling stochastic transition systems

ing system for a server. The following presentation is inspired by [HH15] providing a
classification of modelling formalisms concerning their expressive power.

off Sonl
repair select;
9
/_\ on [ o ]
Sfail Soff Sselect
1 1
fail[ 5] select,
Off Son2

Figure 3.1: Simple cooling system for a server.

Example 44. To maintain the functionality of hardware components of a server, the cooling
system dissipates the heat produced. In order to save energy costs, a cooling system can
be switched on in phases where the server is busy and off when the server is idling. With
a small probability, a switching on the system may fail. Moreover, to be adaptive for
different uses of the server, the cooling system implements two cooling strategies. The STS
(Sta, Act, —) depicted in Figure 3.1 models the simple described cooling system where the

state space is given by
Sta = {Stail, Soff, Son1, Son2, Sselect }
and the action space is formalised by
Act = {fail, off, on, repair, select;, select; }.

Intuitively, the state where the cooling system is off is represented by the state s,¢. When
switching on the cooling system in this state, a failure occurs with the small probability
1/10, i.e., the state s¢,y is entered and a repair is necessary before trying to turn on the
system the next time. Switching on the cooling system in state sy is successful with
probability 9/10 where state Sgeject is entered. Thus, to be precise, we have

) 1 9
Soff = @ where q)({fallr Sfail>}) = E and (P({OI’I, Sselect>}) = E

The illustrated STS is hence not simple. In the state Sggject there is a non-deterministic choice
between two cooling strategies. Depending on the user’s choice, the system either enters
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the state syn1 or the state sgnp, i.e.,
Sselect — (selecty, Dirac[son1]) and  Sgelect — (selecty, Dirac([son]).

Both states 5,1 and son2 represent the phase where the cooling system is working, i.e.,
where the heat produced by the server is dissipated. After a while, to safe energy costs, the
cooling system switches off itself depending on the selected cooling strategy. 4

The STS in the previous example has a finite state space and a finite action space. Including
additional features for a refinement of the model such as timing behaviour leads to a more
complex STS where the action space may be uncountable:

Example 45. The discussions of Example 44 are continued by including information con-
cerning the timing behaviour. In particular, we want to include the fact that the time
between entering and leaving the state sqn1, i.e., the time where the cooling system dissip-
ates the heat produced, is exponential distributed with rate ;. Accordingly, the sojourn
time in state son2 is exponentially distributed with rate ;. For this purpose, we extend the
underlying action space as follows:

Act' = R> X Act

where Act is as in Example 44. Note, the set Act’ forms a Polish space by Example 2 (5).
Intuitively, executing the action (f, off) in state s,n1 means that the cooling system switches
off itself after it has dissipated heat for ¢ time units. The transition relation —’ for the
new STS needs also be adapted. For instance, there is the transition Son, —' @1 where
@1 € Prob[Act’ x Sta] is determined by the exponential distribution with rate 71 and thus,
for every interval interval [£, ] C R>o,
t _
o(([t, 1] x {off}) x {sog}) = / ri-e "t dt =y (el — o7l

t
i.e., the real number ¢( ([, ] x {off}) X {sos}) indicates the probability of entering state
Soff with a delay of at least  and at most f time units. In all the other states of the cooling

system, there are no further timing information available. Thus, there is a non-deterministic

choice in the corresponding states e.g., for every t € IR>o we have the transition

. 1 9
Soff —* Pt where ¢t({<<t/faﬂ>/sfaﬂ>}) = E and q)t({<<t10n>rsselect>}) = E

This means that the cooling system may be switched off for an arbitrary amount of time.
Note that the set Enabled|s,g] is uncountable. J
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The action space of the STS presented in the previous example is uncountable. Moreover,
the example requires sampling from continuous distributions as well as non-deterministic
choices from an uncountable number of alternatives. However, the state space is still finite.
Including dependencies in the model caused by variables representing physical quantities
such as the internal temperature of the server leads to STSs with uncountable state spaces.
This is illustrated by the following example:

Example 46. We proceed our discussions concerning Examples 44 and 45. Assume that
the cooling system is equipped with a sensor measuring the internal temperature of the
server. We include a variable representing the actual internal temperature of the server. The
continuous evolution of this variable can be modelled by differential equations or differential
inclusions for the different modes of the server and the cooling system. Guards for actions
can be also included, e.g., specifying that the cooling system can be only switched on if
the temperature increases above a certain threshold. Using invariants in locations, it can
be moreover modelled that the cooling system needs to be switched off if the temperature
decreases below a given threshold. These features lead to the model of hybrid systems
called hybrid automata. We refer to [Hen96] for an excellent survey on hybrid automata, in
particular, including a nice and simple example of a thermostat that can be easily adapted
for the running example of this thesis. a

To model temperature fluctuations and sensor inaccuracies, the formalism sketched in the
previous example can be further extended by including, e.g, stochastic jumps and stochastic
differential equations. STSs obtained by a (stochastic) hybrid automaton as sketched in the
previous example in particular include uncountable state spaces representing actual values
of real-valued variables. To model and analyse such complex stochastic systems, a general
modelling formalism as introduced by Definition 43 is hence necessary.

3.2 Simulation and bisimulation using weight functions

Two states s, and s, are bisimilar to each other if they exhibit the same stepwise behaviour
with respect to the basic observables given by the set of actions. A state s, simulates another
state s, provided s; can mimic all the stepwise behaviour of s,, however, there are may
transitions of s;, that cannot be performed by s,. Simulation and bisimulation yield local
notions to reason about the branching-time structure of states in the sense that only states
and their successor distributions are taken into account.

For the following material it is appropriate to recall the definition for the weight lifting
of a relation from Section 2.6. STSs include distributions over action-state pair that is why
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we need the following additional notion. For every Polish spaces Sta and Act as well as
every relation R C Sta x Sta the action lifting (of R concerning Act) is given by the relation
RAt C (Act x Sta) x (Act x Sta) defined as follows: for every actions act,, act, € Act and
states s;, s, € Sta,

((acty, s4), (acty,sp)) € RAY iff act, = act, and (s,,s) € R.

The relation R is extended to a relation over Act x Sta by exploiting the diagonal relation on
the action space Act. Intuitively, the definition of the action lifting of a relation guarantees
that probability measures ¢,, ¢, € Prob[Act x Sta] with (@,, @) € (RA%)W8t admit the
same observable. To be more precise, let a;, and &} be the probability measures on Act
obtained by projecting ¢, and ¢, on the action space Act, respectively, i.e., for every Borel
set A C Act one has a;(A) = ¢,(A x Sta) and a(A) = ¢, (A x Sta). By the definition
of the action lifting, for every set A C Act it is easy to see that the set A x Sta is RA-
stable. According to Remark 34, it hence holds a, = &}, provided (., ;) € (RA)Wst,
This discussion is deepened in Section 3.3 where we consider the relation (R4)"8t from
another point of view.

Definition 47. Let 7 = (Sta, Act, —) be an STS. We call a relation R C Sta x Sta on
the state space a simulation (for 7) provided for every states s,, s, € Sta and probability
measure ¢, € Prob[Act x Sta] the following implication holds: if

(Sa,Sp) € R and s, — @,
then there exists a probability measure ¢, € Prob[Act x Sta] such that
sp— @y and  (@g, @) € (RAT)WSE

A relation R C Sta x Sta is said to be a bisimulation (for T") provided both relations R and

its inverse R™! are simulations. J
Sq R Sp Sy R Sp
J can be completed to $ $
P4 @4 ( RAct ) wgt ®p

Figure 3.2: Condition for a simulation R.
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The condition on a simulation is illustrated by Figure 3.2. An analogous illustration
can be given for a bisimulation. The notions of simulation and bisimulation induce the
following relations over the state space of the STS under consideration. Consider an STS
T = (Sta, Act, —). The simulation preorder (for T) and the bisimulation equivalence (for T")
are the binary relation < and ~~ on the state space Sta, respectively, given as follows: for
every states s,, s, € Sta,

sa =SS, iff there exists a simulation R with (s;,s;) € R,

sa sy iff there exists a bisimulation R with (s4, s5) € R.

Note that the simulation preorder = is the coarsest simulation for 7T, i.e., the relation <is a
simulation for 7" and moreover, every simulation for 7 is a subset <. An analogue statement
holds for bisimulations. The latter two claims follow directly from the easy observation
that the concepts of action and weight liftings induce a monotonically increasing operator
on the subsets of Sta x Sta, more precisely, for every relations Ry and R; over Sta we have
that Ry C Ry implies ((Rq)A)W8t C ((Ry)A¢)W8t,

Remark 48. Let Sta and Act be countable sets, R C Sta x Sta be a relation, as well as
®a, 9» € Prob[Act x Sta]. For every state s € Sta define [s|g = {s’ € Sta; (s,s') € R}.
Moreover, let C be the smallest family of subsets of Sta consisting the set [s|g for every s €
Sta and that is additionally closed under finite intersections and finite unions. Obviously, if
the relation R is an equivalence, then the family C and the family of all the finite unions
of equivalence classes concerning R are the same. With the introduced notions we have

following two statements:

(1) Assuming the relation R is a preorder, the following equivalence holds:

(@a, @p) € (RAYWBL iff for every action act € Act and every S € C,
@a({act} x S) < @y ({act} x S).

(2) If the relation R is an equivalence, then we have the statement below:

(@a, pp) € (RA)WBY iff for every action act € Act and every S € C,
@a({act} x S) = ¢p({act} x S).

We provide a proof for claim (1). The following argument relies on Theorem 39. For
this purpose define C' = {{act} x S;act € Actand S € C}. Since the sets Act and
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Sta are finite, it easily follows that the family C’ is countable. Moreover, assuming the
relation R be preorder, it is easy to see that for every action-state pairs s, s, € Act X Sta
it holds (s}, s},) € RA iff for every S’ € C’ we have that s, € S’ implies s, € S'. Putting

things together, the relation RA°*

is weakly smooth and the family C’ yields a witness.
Consequently, claim (1) follows directly from Theorem 39. A proof for statement (2) can
be obtained in the same way using Theorem 40 instead of Theorem 39. Moreover, assuming
the relation R is an equivalence, it suffices to consider the quotient space of the relation R

instead of the family C in statement (2) by Theorem 40. 4

In the introduction of this chapter we mentioned that STSs can be seen as an generalisation
of the generative stochastic model in the classification of [GSS95]. In this context, the
previous remark shows that Definition 47 yields a conservative generalisation of generative
bisimulation defined in [GSS95] (see also [Tin07]).

Remark 49. Let Sta and Act be Polish spaces, R C Sta x Sta be a relation, as well as
®a, ¢ € Prob[Act x Sta). Consider act,,act, € Act and y,, pp € Prob[Sta] with

¢o = Diraclact,] ® pt, and ¢, = Diraclacty] @ py.
Then we have the following equivalence:
(@a, pp) € (RAHYWEL iff act, = acty and (pg, 1p) € RV
The claim is an immediate consequence of Remark 31 as well as Example 35. 4

According to the previous remark, the notion of simulation in Definition 47 can be
rephrased as follows for a simple STS 7 = (Sta, Act, —). A relation R is a simulation
precisely when for every states s;,5, € Sta, action act € Act, and probability measure
Ua € Prob[Sta] such that

(sa,sp) € R and s, — (act, pa)
there exists y, € Prob[Sta] with
sp— (act, up) and  (pg, pp) € RWE.

A similar characterisation can be given for bisimulation. Consequently, the classical notions
for simulation and bisimulation for simple STSs can be derived from our approach using
the action-lifting of relation.
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3.3 Two-step view on distributions over action-state pairs

As the transition relation of STSs include proper distribution over action-state pairs, we
rely on the action lifting R“! of a relation R in order to obtain appropriate simulation and
bisimulation notions. Recall, probability measures ¢,, ¢, € Prob[Act x Sta] are related in
terms of the relation R provided one has (¢@,, @) € (RA)"8!. We present an alternative
approach of relating ¢, and ¢, next. It is then shown that this alternative approach enables
a characterisation of the introduced simulation and bisimulation notions. The following
discussion can be seen as additional material providing a deeper understanding for the
action lifting of a relation.

To explain the starting point of the following discussions, let 7 be an STS whose state and
action space are given by Sta and Act, respectively. Moreover, pick a probability measure
¢ € Prob[Act x Sta]. Sampling an action-state pair according to ¢ in an execution of 7 can
be also intuitively realised by the following two-step procedure: first of all, an action act is
sampled according to & where the probability measure « is obtained by projecting ¢ onto
the action space, i.e., for every Borel set A C Act itholds a(A) = ¢(A X Sta). After that,
a successor state s’ is sampled according to f (act) where, roughly speaking, the probability
measure f (act) on Sta results from ¢ by conditioning with respect to the previously sampled
action act (see disintegration theorem in Section 2.1 and also Example 7). More precisely, f
is a Borel function with domain Act and codomain Prob[Sta] such that ¢ = a x f, i.e., for
every Borel sets A C Act and S C Sta one has

P(A X S) = /A F(act)(S) daact).

This procedure is illustrated by means of the following simple example:

s 1 s 2
acty [3] acty[5]
acty [%]
acty [%] . % ' %
s s! ! J / \
1 2
s} s sh

Figure 3.3: Two illustrations of the same probability measure on Act x Sta.
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Example 50. Consider the sets Sta = {s, s}, 55,55} and Act = {acty,act,} as well as define
the probability measure ¢ € Prob[Act x Sta] by

p({acti} x {s1}) =1/3,
p({act2} x {s2}) = 1/6,
¢({act} x {s5}) =1/6.
The left-hand side of Figure 3.3 provides an illustration of this distribution on Act x Sta.

Let & € Prob[Act] be the probability measure obtained by projecting ¢ onto the action

space, i.e.,

a({act1}) =1/3,
a({act,})=1/6+1/2=2/3.

Assuming f: Act — Prob[Sta] is a function such that ¢ = a x f, then the following three
identities hold (see also Example 7):

flact)({s1})
flactz)({s2})
flactz)({s5})

The right-hand side of Figure 3.3 sketches the two-step view on the probability measure ¢

@(Act x {s}} | {act;} x Sta) =1,
@(Act x {sh} | {acta} x Sta) = 1/4,
@(Act x {s5} | {acta} x Sta) = 3/4.

where an action is sampled with respect to the probability measure « first and then a state
is sampled with respect to a probability measure determined by the function f. a

Definition 51. Let Act and Sta be Polish spaces, R C Sta X Sta be a relation, as well as
®a, Pp € Prob[Act x Sta| be probability measures. Let a,, a; € Prob[Act] be probability
measures and f,: Act — Prob[Sta] and f;,: Act — Prob|[Sta] be Borel functions with

Qa =0, X f, and @, = ap X fp.

We say that probability measures ¢,, ¢, € Prob[Act x Sta] are related by R from the two-step
point of view, denoted by (@,, @) € (RA*)™O, if the following two statements hold:

(1) ag = ay.
(2) There are a Borel set A C Act such that

a,(A)=1 and (fa(act), fy(act)) € RV8" for every act € A.
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A representation of the probability measures ¢, and ¢} in terms of a semi-product
measure, i.e., ¢, = &; X f; and @, = a; X f, always exists thanks to the disintegration
theorem (see Section 2.1). Recall, the disintegration theorem also yields that the functions
fa and f}, are almost surely uniquely determined, i.e., provided f: Act — Prob[Sta] is a
Borel function with ¢, = u, X f], there exists a Borel set A, C Act such that a,(A,) =1
and f,(act) = f,(act) for every action act € A,. The same fact applies for the function
fp- Roughly speaking, instead of requiring a single weight function for (¢4, RA%, @) as
in the last section, Definition 51 relates ¢, and ¢, with two steps that correspond to the
previously sketched two-step view on distributions over action-state pairs. Indeed, the
distributions &, and «;, on the action space are compared in a first step. After that, all the
relevant distributions on the state space are considered. With regard to this discussion, we
think that Definition 51 is intuitive. Fortunately, the approaches of this and the previous
section fit together as the following theorem shows:

Theorem 52. Let Act and Sta be Polish spaces, ¢q, ¢, € Prob[Act x Sta| be probability measures,
and R C Sta x Sta be a Souslin set. Then we have the following equivalence:

(@, @p) € (RA)VE iff (@4, gp) € (RAT)™,
|

This theorem completely characterises the weight lifting of the action lifting of a relation
that yields a Souslin set in the product space. This Souslin condition is in particular fulfilled
if the Polish space Sta is countable. The next chapters of this thesis moreover show that
Souslin sets yield a convenient setting for the analysis of stochastic systems with uncountable
state and action spaces. The statement (@, ;) € (RA)W8t refers to the existence of one
single weight function being a probability measure on (Act x Sta) x (Act x Sta). In
comparison to that, the statement (@, ) € (RA)™° includes multiple weight functions
yielding probability measures on Sta x Sta. Roughly speaking, whereas the proof of one
direction of the equivalence requires the merging of a possible uncountable number of
weight functions, the argument for the other direction is accompanied by a decomposition

of one weight function into a number of weight function.

Proof of section’s main result. Our argument for Theorem 52 requires the following

two auxiliary lemmas.

Lemma 53. Let X and Act be Polish spaces and R C X x X be a Souslin set. Then the relation
RA is Souslin in (Act x X) x (Act x X).
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Proof. Since Act is required to be a Polish space, the diagonal relation on Act, i.e., the
relation defined by {(act,,act,) € Act x Act ; act, = acty}, is Borel and hence Souslin in
Act X Act (see also Remark 10 and Example 35). From this the claim is obtained easily. [

Lemma 54. Let X and Y be Polish spaces, R C X x X be a Souslin set, and f,: Y — Prob[X]
and f,: Y — Prob[X] be Borel functions. Moreover, let yry € Prob[Y| be a probability measure
such that there exists a Borel set By C Y with

uy(By) =1 and {(fo(y), fo(y)) € R"8 foreveryy € Y.

Then there exists a Borel function g: Y — Prob[X x X] and a Borel set B}, C Y such that the
following two properties are fulfilled:

(1) py(By) =1.

(2) g(y) is a weight function for (fa(y), R, fy(y)) for every y € BY,.

Proof. The claim follows by a standard application of the measurable-selection principle
stated in Theorem 21. Indeed, defining the set-valued function F: Y ~~ Prob[X x X],

F(y) = {W € Prob[X x X] ; W is weight function for (f,(v), R, f»(v))},

it suffices to justify that there exists a Borel W-selection of F.

Thanks to the assumptions of the lemma, there exists a Borel set By C Y such that
ty(By) = 1and F(y) # @ forall y € By. By Theorem 21, it remains to show that the set
Rel[F] is Souslinin Y x Prob[X x X]. For reasons of clarity abbreviate

Z = Prob[X] x Prob[X] x Prob[X x X].
Define the Borel function {: Y x Prob[X x X| — Z,

Sy, W) = (fa(y), fo(y), W).
Introduce M C Z by

M = {(pa, iy, W) € Z ; W is a weight function for (y4, R, pp) }
It is easy to observe the identity

Rel[F] = 7 1(M).
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Define the Borel functions {,: X X X — X, {,(x;,x5) = xgand {: X x X — X,
Cp(xa,xp) = xp. Thanks to Lemma 12, for every probability measures 4, y, € Prob[X]
and W € Prob[X x X] we have that W is a weight function for (y,, R, y},) precisely when
the following three statements hold:

(W, a) € Graph|(Za)z], (W, pp) € Graph[(Zp);], and W(R) =1.

By Remarks 8 (1) and 10 (6), the set M is hence Souslin in Z. According to Remark 10 (5),
we finally obtain that the set Rel[F] is Souslin in Y x Prob[X x X]. As pointed our earlier,
this completes a proof. O

Proof of Theorem 52. Throughout this proof let a,, &, € Prob[Act] be the probability meas-
ures defined as follows: for every Borel set A C Act let

aa(A) = @a(A x Sta) and ap(A) = ¢p(A X Sta).
Moreover, let f,: Act — Prob[Sta] and f},: Act — Prob[Sta] be Borel functions such that
Qo =0 X f, and @ = ap X f.

According to the Disintegration theorem (see Section 2.1), functions f, and f;, with the
stated properties indeed exist.

Implication from left to right. Assume that {@,, @) € (RA)W8t. Thanks to Remark 34, for
every Borel set A C Act it holds a;(A) = a(A) as the set A is R““-stable. This yields
the identity a, = «;. It remains to show statement (2) of Definition 51. For this purpose

let W be a weight function for (¢,, R4, ¢,). Moreover, introduce the Borel function
{: (Act x Sta) x (Act x Sta) — Act x (Sta x Sta),

{(acty, sq,acty, sp) = (acty, Sq, Sp)-
Define the probability measure W’ € Prob[Act x Sta x Sta] by
W' = Q(W)

It is easy to see that for all Borel sets A C Act it holds W/(A x Sta x Sta) = a,(A).
According to the Disintegration theorem (see Section 2.1), there hence exists a Borel function
g: Act — Sta x Sta such that

W =a,xg.
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We prove that there exists a Borel set A;, C Act such that the following two properties
hold: w,(As,) = 1 and for every action act € A,, the probability measure g(act) is a
weight function for (f,(act), R, fy(act)). This then shows statement (2) of Definition 51.
The following argument proceeds in three steps.

Let G be a countable generator of the Borel sigma algebra on Sta that is additionally
closed under finite intersections (see Remark 4). Suppose G = {Sy, S1,S2, . . .} for some
Borel sets Sy, 51,52, ... C Sta.

Step (a). We first prove that there exists a Borel set A’ C Act with a,(A’) = 1 and so
that for every act € A" and Borel set S C Sta one has f,(act)(S) = g(act)(S x Sta).
For every n € IN and Borel set A C Act one easily derives the identity

@a(A X Sy) = W((A X Sy) X (Act x Sta)) = W'(A x (S, x Sta))

and therefore, it holds

Afu(act)(sn)daa(act) = /Ag(act)(Sn x Sta) du,(act).

By a basic result from measure theory (see Folgerung 9.2.5 in [Sch08]), for every n € IN
there exists a Borel set A}, C Act such thatw,(A},) = 1and f,(act)(S,) = g(act)(S, x Sta)
for all act € Aj,. Define the Borel set A’ C Actby A’ = N,en A),- It follows

aa(A/) — 1

and moreover, relying on Carathéodory extension theorem (see Section 2.1), for every
action act € A’ and every Borel set S C Sta it holds

fa(act)(S) = g(act)(S x Sta).

Step (b). This proof step is similar to (a). More precisely, using an analogous argument
as in (a), we show that there exists a Borel set A” C Act with a,(A”) = 1 and such that
for every act € A” and Borel set S C Sta one has fy(act)(S) = g(act)(Sta x S).

Using that the probability measure W is a weight function for (¢4, R, @), there exists
a Borel set R" C (Act x Sta) x (Act x Sta) such that

W(R')=1 and R’ C R4

For every ({act,,s,), (acty,s;)) € R’ one has act, = act,. Consequently, one easily derives
that for every n € IN and Borel set A C Act it holds ((Act x Sta) x (A x S,))NR' =
((A x Sta) x (Act x S;)) N R’ and therefore, we obtain

@p(A x Sy) = W((Act x Sta) x (A x S,)) =W (A x (Stax S,)).
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For every n € IN and Borel set A C Act one thus has

Afb(act)(sn)dau(act) = /Ag(act)(Sta X Sp) dag(act).

As in (a), relying on a basic result from measure theory (see Folgerung 9.2.5 in [Sch08]),
for every n € IN there exists a Borel set A), C Act such that w,(A])) = 1and f,(act)(S,) =
g(act)(Sta x S,) forallact € Ajl. Let A” C Act be the Borel set given by A” = (e Alr-
It follows

a,(A") =1

and moreover, exploiting Carathéodory extension theorem (see Section 2.1), for every
action act € A” and every Borel set S C Sta one has

fo(act)(S) = g(act)(Sta x S).

Step (c). In this proof step, we show that there exists a Borel set A”” C Act satisfying
the following two properties: a;(A”’) = 1 and for every act € A" there is a Borel set
R/ C Sta x Sta with g(act)(R),) = 1and R/, C R.

act act =

Asinstep (b),let R" C (Act x Sta) x (Act x Sta) be a Borel set such that
W(R)=1 and R’ C RA¢,
Define the Borel function ¢’: (Act x Sta) x (Act x Sta) — Sta x Sta,
&' ({acty, 84), {acty, sp)) = (Sq,8p)

We justify (W')°Ut(Act x &'(R’)) = 1 next. For every Borel set B C Act x (Sta x Sta)
such that Act x &(R’) C Bitholds R’ C ¢~ 1(Act x &'(R")) C ¢~1(B) and therefore, one
has the identity

W/(B) = W(g!(B)) > W(R') = 1.

This shows (W)U (Act x &'(R")) = 1.
By Remark 10 (5), the set Act x &'(R’) is Souslin in Act x (Sta x Sta). According to
Lemma 15, there hence exists a Borel set A" C Act with

ap(A") = 1
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and such that for every act € A" it holds

(g(act))*™(&'(R)) = 1.

According to Lemma 12, for every action act € A" there exists a Borel set R}, C Sta x Sta
such that g(act)(R),) = 1and R, C {'(R") C R.

Finishing the argument. Putting the three steps (a), (b), and (c) together, for every action
act € A’ A” N A" the probability measure g(act) constitutes indeed a weight function
for (fa(act), R, fy(act)). Since a, (A’ N A” N A”") = 1, we finally derive the implication
from left to right of the equivalence to be proven.

Implication from right to left. Assume that (@g, @) € (RAT)™WO. It follows &, = ap.
Let A C Act be a Borel set and g: Act — Prob[Sta x Sta] be a Borel function as in
Definition 51 (2), i.e., a;(A) = 1 and for every act € A the probability measure g(act) is
a weight function for (f,(act), R, fy(act)). Introduce the Borel function ¢: Act x (Sta x
Sta) — (Act x Sta) x (Act x Sta),

C(act, sq,sp) = (act,s,, act, sp).
Define W € Prob[(Act x Sta) x (Act x Sta)] by

W = Cy(as % g).

We prove that W is a weight function for (¢,, RAct Pp)-

It is shown that W is a coupling of (¢@,, @) first. For every Borel sets A C Act and
S C Sta it holds

W((A x S) x (Act x Sta))
= /Ag(act)(S x Sta) du, (act)

= / falact)(S) day(act)
A
= @.(AxS).
For every Borel set B C Act x Sta it follows W(B x (Act x Sta)) = ¢,(B) thanks to
Carathéodory uniqueness theorem (see Section 2.1). Using the fact &, = &}, one analog-

ously obtains the corresponding identity W((Act x Sta) x B) = ¢,(B) for every Borel set
B C Act x Sta.
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Thanks to Lemmas 12 and 53, it remains to show WO (RA%) = 1. To this end let
R’ C (Act x Sta) x (Act x Sta) be a Borel set such that R4 C R’. We justify W(R’) = 1.
For every action act € Act define the relation R}, C Sta x Sta by

act
R, = {(sa,sp) € Sta x Sta ; (act,s,,act,s;) € R'}.

For every act € Act, as R),; can be viewed as a sections of the relation R, it directly follows
that the set R/, is Borel in Sta x Sta (see Section 2.1). Moreover, for every act € Act it
holds R C R’ and Section|[¢~1(R’),act, -] = R!.,. We hence obtain

act*

W(R') = / g(act)(R.,,) dag(act) = 1.

From this we finally derive the claim. O

3.4 Transitivity of simulation and bisimulation relations

We show that simulation preorder and bisimulation equivalence indeed form transitive rela-
tions. The latter facts are fundamental for convenient notions in the context of abstractions
and equivalences of stochastic systems. The main result of this section is as follows:

Theorem 55. Let T = (Sta, Act, —) be an STS. Then the following two statements hold:
(1) The relation < is a preorder on Sta.
(2) The relation ~ is an equivalences on Sta.
In particular, both relations < and ~ are transitive. _|

We emphasise that Theorem 55 holds for every STS, i.e., the result does not involve
any measurability restrictions. As already pointed out in the introduction of the chapter,
the challenging part of the proof is to establish the transitivity of the relations under
consideration. Our argument for transitivity shows that the product of two simulations
and of two bisimulations also yields a simulation and bisimulation, respectively. To be
more precise, let T = (Sta, Act, —) be an STS and consider two simulations R, and Ry.
Define R,c C Sta X Sta as the composition of the two relations R,;, and Ry, i.e., for every
states s;, 5. € Sta it holds

(Sa,Sc) € Rye iff thereiss, € Stawith (s,,5p) € Ry and (s, 5¢) € Rye.
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Obviously, if R is a simulation, then it directly follows that < is transitive. To show that R,
is a simulation, pick states s,, s, € Sta such that (s,,S.) € Ry. Let ¢, € Prob[Act x Sta]
be so that s, — @,. Relying on the definition of R,. and since the relations R,, and Ry, are
simulations, there are a state s, € Sta and probability measures ¢, € Prob[Act x Sta] and
@c € Prob|Act x Sta] such that the following four statements are fulfilled:

6= b (90 ) € (Rap)" )™, sc = ge, (g, pc) € ((Ruc)' )™

To conclude that R, is a simulation, it suffices to argue that there exist a weight function for
(@a, (Rac)!, @c). For this we exploit the so-called Gluing lemma (see, e.g., Lemma 5.3.2
in [AGS05] or Section 1 in [Vil09]): the intuitive idea is to glue together weight functions
for (@a, (Rap)%, @) and (@p, (Rpe )2, @) along the common marginal given by @y, This
is sketched in detail below.

Proof of section’s main result. Let X,;, X}, and X, be Polish spaces. For every relations
Ry € Xy X Xpand Ry, C X, x X, the composition (of Ry, and Ry, ) is given by the relation
Ryp © Ry over X,; and X, as follows: for every x, € X, and x, € X,

(xg,xc) € Ryp© Ry iff thereis x, € Xj, with (x,, x5) € Ryp and (xp, X¢) € Ry

Lemma 56. Let X,;, Xp, and X, be a Polish space as well as R, € X, X Xp and Ry € Xp, X X,
be Souslin sets. Then the set R, ¢ Ry, is Souslin in X, X X..

Proof. The argument is standard: defining the Borel function {: X, X Xj x X, = X, x X,
{(xq, xp, xc) = (Xg, xc), we immediately obtain the identity

g((Rub X XC) N (Xa X Rbc)) = Rab <>Rbc
and hence, Remark 10 (5) yields the claim. O

Example 57. Take the notions from Lemma 56 and assume that R, and Ry, are even Borel
sets in X,; X Xjp and X, x X, respectively. Interestingly, it turns out that the set R, ¢ Ry, is
not Borel in X,; X X in general. To see this let us investigate the following simple example.
Suppose a Borel set R C R x IR such that the set M is not Borel in IR (see Remarks 10 (1)
and (2)). Here, the relation M is defined as the subset of IR obtained by projecting R onto
its first component, i.e., it holds M = {r, € R ; thereisr, € R with (r,,7,) € R}. Define

X,=Xy=X.=R, Rpy=R, and Ry =R xR.
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3.4 Transitivity of simulation and bisimulation relations

For every r4,7. € R it holds
(ra,7c) € Ryp© Ry iff thereisr, € Rwith (r,,1,) € R iff r, € M,
and therefore, R, ¢ Ry = M X IR. The set R, ¢ Ry, is hence not Borel in R x IR. _|

Let us recapitulate the gluing lemma next (see, e.g., Lemma 5.3.2 in [AGS05] or Section 1
in [Vil09]). For this purpose consider three Polish spaces X,, X, and X, and moreover, let
W, € Prob[X, x X;| and Wy, € Prob[X;, x X.| be two probability measures. Provided
the projections of W, and W, onto X, coincide, i.e., for every Borel set B, C X},

Wb (Xa X By) = Wie(Bp x Xe),

the gluing lemma guarantees the existence of a probability measure on X, X Xj; x X, that
is compatible with W,;, and W, in terms of the respective projections. More precisely,
there exists a probability measure u € Prob[X, x X; x X.| such that for all Borel sets
By € X, X Xpand By, € Xj, x X it holds

#(Bap x Xc) = Wap(Bgp) and  p(Xa X Bye) = Wie(Bye)-

Intuitively, the probability measure y is obtained by gluing together the probability meas-
ures W,;, and W, along their common marginal.

The gluing lemma as presented before is a standard application of the disintegration
theorem (see Section 2.1). For the sake of completeness let us present this argument.
Suppose X,, Xp, Xc, Wy, and W, are given as before so that Wy, (X, X Bp) = Wy (B X X¢)
for all Borel sets B, C X,. Define y;, € Prob[X,] as follows: for every Borel set B, C X}, let

#p(By) = Wap(Xa X By).
For every Borel set B, C X}, we obviously have
#p(By) = Wie(Bp x Xe).

According to the disintegration theorem, there exist Borel functions g, : X, — Prob[X,]
and gpc: Xp — Prob[X.] such that

Wap = &pa X p  and - Wy = pp X gpe.

Define ¢: X, — Prob[X, x X.| by

8(xp) = gal(xp) @ gpe(xp)-
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By Example 6, the function g is Borel. Hence, we can safely define u € Prob[X, x X; x X,]
as follows: for every Borel sets B, C X,, B, C Xj, and B, C X, let

#(Ba X By x Be) = pp x g(By X By X Be).

Here, u is well-defined according to Carathéodory extension theorem (see Section 2.1).
Moreover, for every Borel sets B, C X, and B, C Xj, it holds

"l/l(Ba X Bb X XC) = Up A g(Bb X B, X XC) = Up A gba(Bb X Bg) = Wab(Ba X Bb)
and similar, for every Borel sets B, C X; and B, C X, one has
“I/l(Xa X By % Bc) = Up X g(Bb X Xg X XC) = Up X gbc(Bb X Bc) = Wbc(Bb X BC).

Thus, Carathéodory uniqueness theorem completes a proof for the gluing lemma.

It is interesting to note that the gluing lemma does not hold for arbitrary measurable
spaces: the article [Swa96] provides an example including measurable spaces Y,, Y}, and
Y. as well as probability measures on Y, X Y}, and Y} X Y, that have a common marginal,
however, that cannot be glued together. For the following arguments involving the gluing
lemma, it is hence essential to work with Polish spaces.

Theorem 58. Let X,;, X3, and X, be Polish spaces as well as Ry, € X, X Xp and Ry, € X X X,
be relations. Then, the following two statements hold:

(1) (Rab)Wgt < (Rbc>Wgt C (Rgp © Rye)™et.
(2) (Rup)W8t o (Rye)W8t D (Ryp © Ry )8t if the two sets Ry, and Ry, are Souslin in X, x X,
and X, X X, respectively.

Proof. Denote the relation product of R,; and Ry by Ry, i.e., Rse = Ry © Ry Moreover,
suppose probability measures i, € Prob[X,] and p. € Prob[X,].

Ad (1). Suppose a probability measure y;, € Prob[X,] satisfying (ua, ptp) € (Ryp)"8' and
(pp, the) € (Rpe)W8. Let W, and Wi, be weight functions for (i, Rap, ptp) and (pp, Rye, pic),
respectively. Moreover, let R/, C X, x X}, and R} . C X}, X X, be Borel sets such that

R, € Rap, Ry SRy, Wap(Rl,) =1, and Wy (Rj,) = 1.

In what follows we provide a weight function for (yg, Ry, ‘uc). For this purpose define
the Borel functions (g X, X X X Xe — X X Xy, Cact Xg X Xp X X — X, X X, and
Che: Xa X Xp X Xe = Xp X X, as follows: for every x, € X, x5, € X, and x. € X let

g{lb('xﬂl Xb, xc) = <xa1 .X'b>,
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3.4 Transitivity of simulation and bisimulation relations

éac(xa/ xb/ xc) = <xal xC>/

gbc(xa/ Xb, xc) - <xb/ xc> .

Relying on the gluing lemma (see Lemma 5.3.2 in [AGSO05] or Section 1 in [Vil09]), there is
a probability measure . € Prob[X] with

(gab)ﬁ(,u) = W, and (gbc)ﬁ(.u) = Whe.

Introduce the probability W,. € Prob[X, x X.] by

Wae = (gaC)ﬁ(V)-

We claim that W, is a weight function for (]/ta, Ry, yc). It is easy to see that W, is a
coupling of (g, pc): for all Borel sets B, C X,,

Wac(Ba x Xc) = i(Ba % Xp % Xc) = Wao(Ba X Xo) = ta(By)
and similar, for all Borel sets B, C X,

Wae(Xa X Be) = u(Xa x Xp X Be) = Wye(Xp x Be) = pc(Be).
Define the Borel set B C X,; x X}, x X, by

B = (R, x X.)N (Xz x R},).

Since u(R!, x X;) = Wgup(R/,) = 1and u(X, x R.) = Wp(R},) = 1, we obtain
#(B) = 1. By Lemma 13, there exists a Borel set R},. C X, x X, with W,(R}.) = 1 and
R!. C Z,.(B). Since

R C Cac(B) C Rl o R} C Ry,

it finally follows that W, is a weight function for (p4, Ryp, tc)-

Ad (2). Assume that R, and Ry, are Souslin sets in X,; X X;, and X}, x X, respectively.
Let (fq, tc) € (Ryp)W8t. Our task is to provide a probability measure p;, € Prob[X;] with
(Ma, Mp) € (Rap)™8 and (pyp, pc) € (Rpe)W8. To this end, let W, be a weight function for
(#a, Rap, pic) and suppose a Borel set R/, C X, x X, such that

R;C g Rac and WIJC(R;C) - 1.
Introduce the set-valued function F: X, X X, ~ X},

F(xq,xc) = {xp € Xy ; (x4, %p) € Ryp and (xp, xc) € Ry}
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It is easy to see that set Graph[F| is Souslin in (X, X X.) X X;. In addition, since R}, C
Rae = Ryp © Ry, for every (x4, xc) € R}, itholds F(x,, x;) # @. Since Wy (R}.) = 1, we
can apply Theorem 21. Therefore, there exists a Borel W,-selection of F, say f.

Define the Borel function f': X, x X, — Prob[Xp),

f'(xq,xc) = Dirac[f (x4, x.)]-

Introduce the Borel function : X, X X, X X — X, X X X X,
C(xa, Xe, xp) = (Xa, Xp, Xc).-

Define it € Prob[X, x X;, x X.| by
= Cy(Wae x f').

Moreover, define y;, € Prob[X;| as follows: for all Borel sets B, C X, let
tp(By) = u(Xa x By x X¢).

To justify (2), it suffices to prove (jq, p) € (Ryp)"V8' and (pp, tc) € (Rpe)W8'. For reasons

of symmetry it is enough to show (y,, ) € (Ryp) W8

In the remainder let {,p, {ac, and {p as in the first part of this proof, i.e., {p(Xa, Xp, Xc) =
(xa, Xp), Cac(%Xa, Xp, Xc) = (Xa, Xc), and pe(%Xa, Xp, Xc) = (xp, Xc) for all x, € Xy, x5 € Xp,
and x. € X.. Define

Wy = (gab)ﬁ(l’l)'

We claim that Wy, is a weight function for (3, Rap, ).
It is easy to see that W, is a coupling of (y, j4p). Indeed, for all Borel sets B, C X,,

Wip(Ba X Xp) = pu(Ba x X X X¢) = Wae(Ba x X¢) = pa(Ba)
and moreover, for every Borel set B, C X,
Wab(Xa X Bb) = ‘M(Xa X By % XC) = ‘le(Bb).

To conclude that W, is a weight function for (ys, Ryp, p), it suffices to show the identity
(Wap)°"(Ryp) = 1 applying Lemma 12. As f is a Borel W-selection of F, there exists a
Borel set R rC X, x X such that

Wae(Rf) =1 and  f(xq,xc) € F(xg,xc) forall (x4, xc) € Ry.
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3.4 Transitivity of simulation and bisimulation relations

Moreover, define M C X, x X}, X X, by
M = (Rgp x Xc) N (X; X Rye).

Observe, the set { ! (M) constitutes a relation between the sets X, x X, and X;. Moreover,
for every (x4, x;) € X, x X}, we have

Section|Rp, Xq, -] N Section[Rye, -, xc] = Section[@’l(M), (xq,xc), ]

For all (x,, x;) € Ry we have f(xa,xc) € F(xq,xc) and also, (x4, f (x4, xc)) € Ry and
(f(xa,%c), Xc) € Rye. Therefore, for all (x,, xc) € Ry We obtain

f(xa,xc) € Section[TH(M), (x4, xc), ]
and hence,

(f' (xa, )" (Section[T™H (M), (xa, xc), -]) = 1.

Since W, (R f) = 1 and as the set M is Souslin in X, X X, x X, Lemma 15 yields the
identity (Wye < f")°" (M) = 1. From this we conclude (M) = 1. According to Lemma 13,
we obtain (W) (Z,,(M)) = 1. As {zp(M) C Ry, it finally follows (W,;)°"(Ry) = 1.
This completes our argument. O

We solely need the gluing lemma in our proof for Theorem 58 (1). Our argumentation
for Theorem 58 (2) involves the measurable-selection principle stated in Theorem 21 for the
construction of the probability measure ;. In order to fulfil the assumptions of Theorem 21,
we need the Souslin requirements for the given relations R, and Ry.. It would be interesting
whether Theorem 58 (2) still holds if one drops these additional Souslin requirements.
However, this discussion does not affect the main result of this section as its proof relies
only on the first part of Theorem 58:

Proof of Theorem 55. Thanks to Example 35, it is easy to see that the diagonal relation on
Sta, i.e., Ding = {(s4,sp) € Sta x Sta ; s, = s, }, forms a bisimulation. As a consequence,
the relations < and ~~ are reflexive. Moreover, it is easy to see that relations < is symmetric.
It remains to show that the relations under consideration are transitive.

We justify the transitivity of <. Let s,, sp, S € Sta be states such that s, <'s, and s, <s,..
Our task is to justify s, < s.. Let R;; and Ry, be simulations satisfying (s4, s5) € R, and
(Sp,Sc) € Rye. Denote the relation product of R, and Ry by Ry, ie., Rye = Ryp © Rpe. In
the remainder of this proof, we argue that R, is a simulation. Note, as we have (s,, s.) €
Ry, it follows s; = 5. and thus, we obtain the transitivity of <.
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3 Stochastic transition systems

Let (Sq,Sc) € Rac and @, € Prob[Act x Sta] be such that s, — ¢,. Suppose s; € Stay
with (s;,s5) € Ry and (sp, S¢) € Rpe. As the relations R, and Ry, are simulations, there
are ¢ € Prob[Act x Sta] and ¢, € Prob[Act x Sta] such that the following four statements
are fulfilled:

55— @ (P @) € (Rip) )™, sc—= 9o, (@b, pc) € ((Roe)™)VE"
Since (Ryp) ¢ (Rpe)A C (Rye) A, Theorem 58 (1) yields
((Rab>Act)wgt o ((Rbc)Act)wgt g ((Rab>Act o (RbC)Act>wgt g ((RaC)Act)wgt

and therefore, (¢q, ¢c) € ((Rae)?) "8t We conclude that the relation R, is a simulation.
Transitivity of the relation ~ can be shown analogously. O

The transitive closure of relations. We conclude this section with a further application
of Theorem 58 referring to transitive closures of relations. Inspecting the definitions for
a simulation or bisimulation in Section 3.2 again, we require no additional assumptions
on the relations under consideration compared to, e.g., [Seg95, Des99]. More precisely,
given an STS T with state space Stg, it is neither required that a simulation is a preorder
relation on Sta nor that a bisimulation is an equivalence relation on Sta. However, relying
on the transitive closure of relations, these properties can be assumed without restricting
the generality. Recall, for every relation R C X X X over some set X the transitive closure
is given by

TransClosure[R] = [ |{R’ € X x X ; R C R’ and R’ is transitive}.

As the universal relation X x X is transitive and an arbitrary intersection of transitive
relations is transitive again, the relation TransClosure[R] is indeed transitive and satisfies
the inclusion R C TransClosure[R].

Proposition 59. Let T be an STS with state space Sta. Define the relation Diag C Sta x Sta by
Diag = {(s4,5p) € Sta x Sta ; s, = s, }. Then, the following two statements hold:

(1) For every simulation R the relation TransClosure[Diag U R| is a simulation that contains
the relation R and is a preorder on Sta.

(2) For every bisimulation R the relation TransClosure|R U R~ is a bisimulation that contains
the relation R and is an equivalence on Sta.
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3.5 Combined-transition relation

Proof. Ad (1). Let R be a simulation. Define the relation

R = |J Rx

nelN

where
Ro=DiagUR and R, =R,_19R,_;foreveryn € N\ {0}.

Observe, for every n € IN itholds R, € R,1. An easy induction over the naturals together
with Theorem 58 (1) yield that R, is a simulation for all # € IN. Here, thanks to Example 35,
it directly follows that R forms a simulation. It follows that the relation R’ is a simulation.
This completes our proof as TransClosure[Diag U R] = R'.

Ad (2). The argument is analogous to the first part of this proof: simply replace the defin-
ition for the relation Rg by Ry = R U R™!. Again, if R is a bisimulation, then Example 35
justifies that Ry yields a bisimulation. O

The insight of Proposition 59 is also of practical relevance: it may be difficult or ex-
pensive to determine a (bi)simulation that is transitive or also to check whether a given
(bi)simulation is transitive for some given STS. However, the proven proposition provides
a way to transform a (bi)simulation into a coarser one that is transitive in addition.

3.5 Combined-transition relation

This section basically revisits the mathematical theory in Section 2.4 in the context of
stochastic models concerning barycentres and convex hulls of probability measures. So it is
advisable to briefly recall ideas and definitions of the previously mentioned section. More
precisely, the following material studies the induced combined-transition relation of an
STS, which becomes a crucial ingredient of the definition of schedulers in the next section.
A combined transition in an STS is obtained by a combination of a possible uncountable
number of transitions relying on the concept of barycentres. Intuitively, every assignment
of probabilities to enabled distributions in a picked state induces a combined transition at
that state. The precise definition is as follows:

Definition 60. For every STS T = (Sta, Act, —) the combined-transition relation

= C Sta x Prob[Act x Sta|
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3 Stochastic transition systems

consists of exactly those pairs (s, ¢) € Sta x Prob[Act x Sta| that satisfy the following
statement: there are B € Prob|Prob[Act x Sta]| and a Borel set P C Prob[Act x Sta] with

P C Enabled[s], B(P)=1, and ¢ = Barycen(p).
|

The introduced notion of a combined transition is a conservative extension of the form-
alism presented in Section 4.2.2 in [Seg95] where one focuses on systems with countable
state spaces only and Definition 8.2 in [Cat05] where one regards simple STSs only. As for
the transition relation of an STS, we write s = ¢ rather than (s, ¢) € =-. For every state
s € Sta we moreover define the set CombEnabled[s] C Prob[Act x Sta] by

CombEnabled[s| = {¢ € Prob[Act x Sta] ; s = ¢}.

Example 61. Consider an STS T = (Sta, Act,—) and a state s € Sta. Let ¢p, ¢1,... €
Prob[Act x Sta] be probability measures such that Enabled[s] = {¢o, ¢1,...}. Pick a
distribution function f: N — [0, 1], i.e., itholds f(0) + f(1) 4+ f(2) + ... = 1. Intuitively,
the function f assigns a probability to every element in Enabled|s]. Define the probability
measure ¢ € Prob[Act x Sta] by

¢(B) = f(0) - ¢o(B) + f(1) - 91(B) + f(2) - 92(B) + ... .

Thanks to Example 25, we obtain s = ¢. As the set Enableds| is countable, every combined
transition enabled at s is induced by a distribution function in the presented way:. 4

The following theorem provides a generalisation of Proposition 4.2.1 in [Seg95]. Indeed,
the mentioned result in [Seg95] only covers STSs where for every state s the set Enabled|s]
of enabled distributions over action-state pairs is countable

Theorem 62. Let T = (Sta, Act,—) be an STS and s € Sta be such that the set Enabled|s| is
Souslin in Act x Sta. Then we have the following identity

Conv|Enabled[s|] = CombEnabled[s| = Conv|CombEnabled|s]].
Proof. According to Lemma 12, we have

CombEnabled[s] = Conv|[Enabled|s]].
Thanks to Theorem 27, it also holds

Conv|Enabled[s]] = Conv|Conv|[Enabled|s]]].

These two identities yield the claim. O
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The previous result in particular shows that the set CombEnabled[s| of distributions
on Act x Sta is convex. The significance of this insight is illustrated below. Inspecting
the definition of the combined-transition relation, for every ¢ € Prob[Act x Sta] it holds
¢ € CombEnabled[s| provided ¢ can be written as a barycentre of probability measures
contained in Enabled[s], i.e., ¢ is a combination of measures enabled in s. Theorem 62
shows that ¢ is also contained in CombEnabled|s] in case where ¢ can be represented as a
barycentre of probability measures contained in CombEnabled[s|. In other words, the set
CombEnabled|s] is closed under combining probability measures.

3.6 Schedulers, path measures, and trace distributions

The intuitive behaviour of an STS T = (Sta, Act, —) can be summarised as follows: as-
suming the current state of 7 is given by s, a probability measure ¢ with s — ¢ is chosen
non-deterministically in a first step. After that, an action-state pair (act,s’) is sampled
according to the previously obtained ¢. Intuitively, the action act is executed and the system
enters the successor state s’. In other words, while the action act is taken, the internal sys-
tem state changes from s to s’. The sketched procedure comprising of a non-deterministic
choice followed by a probabilistic choice is repeated continuously. In this way one obtains
infinite sequences of action-state pairs called paths that is precisely formalised as follows.
Reasoning about probabilities of sets of paths of a given STS requires the resolution of the
non-determinism in terms of schedulers. In fact, every scheduler induces a path measure
assigning probabilities to Borel sets of paths.

Finite and infinite paths. Let 7 = (Sta, Act, —) be an STS. For every n € N the set of
all finite paths (of length n) is given by
Path,, = Sta x (Act x Sta)",

i.e., it holds Pathy = Sta. The empty path is denoted by o. The union of the sets {o} and
Path,,, where n ranges over IN, is denoted by Path,, i.e.,

Path., = {o}U | Path,.
nelN

The set of all infinite paths is given by
Path = Sta x (Act x Sta)®.

By Example 2, when equipped with the corresponding natural topologies, the set Path,,
constitutes a Polish space for every n € IN and the same holds for Path,, and Path,,. For
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every n € IN let Last,, : Path, — Sta be the function that maps every finite path of length
n to its last visited state, i.e., Last, () = s, for every finite path 1 = sgacty s1 . ..act, sy.
Obviously, Last,, is a Borel function for every n € IN.

Schedulers and path measures. Let 7 = (Sta, Act, —) be an STS as before. We consider

a function
&: Path.,, — Prob[Sta] U Prob[Act x Sta]
such that
S(o) € Prob[Sta] and &(7t) € Prob[Act x Sta] for all & € Path.,, \ {o}.

For every n € N let &), : Path, — Prob[Act x Sta], &, (#) = &(#). The function & is
Borel iff for every n € IN the function &, is Borel. Assuming the function & is Borel, for
every n € IN the probability measure Pr,[S] is inductively defined as follows:

Pry[6] = &(o) and Pryy1[6] = Pry[6] x &), forevery n € N,
i.e., for every Borel sets I1, C Path,, A C Act,and S C Sta it holds

Pry1[S](TT, x A x S) = /H &u(7)(A x S) dPr, &) (7).

Intuitively, the probability measure Pr,,;1[S] results from Pr,[S] by averaging over the re-
spective outcomes of the function &), with respect to Pr,,[]. Relying on the Kolmogorov’s
measure extension theorem (see Corollary 7.7.2 in [Bog07]), the sequence of measures
Pry[&], Pr1[S], . . . uniquely determine a probability measure Pr[S] on the set of all infinite
paths Path such that for all n € IN and Borel sets 1, C Path,,

Pr[&](I1, x (Act x Sta)*) = Pry[6&](IL,).

We refer to Pr[&] as path measure (induced by &). Accordingly, for every n € IN the
probability measure Pr,, [S] is called finite-path measure (of length n induced by S).

The function & does not involve any information concerning the transition relation of
the STS T so far. Denote the combined-transition relation of the STS 7 by =. For every
probability measure yu € Prob[Sta] we call & a u-scheduler (for T ) provided the following
two properties are fulfilled:

e S is a Borel function.
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e G(0) = pand for every n € IN there exists a Borel set I'T,, C Path,, with

Pr,[6](IT,) =1 and Last,(#) = &(#) for every 7t € I1,.

Here, if 4 = Dirac(s] for some state s € Sta, we also refer to S as an s-scheduler rather than
a Dirac[s]-scheduler. Consequently, schedulers may randomise over enabled transitions in
terms of combined transitions and may access an infinite amount of memory. The Borel
requirement on a scheduler yields an important mathematical foundation concerning the
definition of the respective path measure.

Trace distributions. Given a probability measure y € Prob[Sta], every u-scheduler
induces a probability measure on Act” when projecting paths onto the consecutive sequence
of taken actions. Formally, define the Borel function Trace: Path — Act” as follows: for
every infinite path spact; syacty sy ... € Path,

Trace(soacty syacty sy ...) = actyacty ... .

It is easy to see that the function Trace is Borel. For every probability measure y € Prob|[Sta]
and every p-scheduler G we can hence safely define the trace distribution (induced by &) as

PrTrace[&] = Trace; (Pr[S]),

i.e., for every Borel sets A1, Ay, ... C Act we have
PrTrace[S] (A1 x Ay X ...) = Pr[6&](Sta x (Ay x Sta) x (Ay x Sta) X ...).

The trace-distribution preorder < C Sta x Sta is defined as follows: for every su, S, € Sta,
sq <Us, iff for every s;-scheduler there is an s;-scheduler

such that PrTrace[S,] = PrTrace[Sp).

Trace-distribution equivalence is the relation =% C Sta x Sta given by =% = <t (<) 71,

i.e., for every states s;, s, € Sta it holds

sa="Ts, iff for every s;-scheduler there is an s-scheduler

such that PrTrace[S,] = PrTrace[S,]
and vice versa, for every s,-scheduler there is an s;-scheduler

such that PrTrace[S,] = PrTrace[Sp).

It is easy to see that <" and =" form a preorder and an equivalence, respectively.
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4 Simulations and trace distributions for
Souslin systems

The main object of this chapter is to show that for Souslin STSs the Souslin-simulation
preorder is a subset of trace-distribution preorder and the Souslin-bisimulation equivalence
is finer that trace-distribution equivalence, i.e., we provide a proof of Theorem B (see
Chapter 1). Our proof strategy of the introductory sketched theorem is basically the same
as for the standard result for non-stochastic discrete systems [BK08]. The easy, however,
crucial observation in the setting of [BKO08] is that every simulation can be inductively
extended to a relation between paths, i.e., given states s, and s, where s, is simulated by s,
as well as a path 77, starting from s,, there exists a path 77, starting from s;, that is statewise
related to 77,. The corresponding in our setting includes schedulers and their respective
induced path measures:

Lemma G. Let s, and sy, be states of a Souslin STS and R be a Souslin simulation with (s,,sp) € R.
For every s,-scheduler &, there exists an sy-scheduler Gy, such that for all n € IN the finite-path
measures Pry,[S,] and Pr,,[Sy)] are related concerning the relation R, i.e.,

(Pru[S4], Pry[Sy)) € (RPt)Wet,

A detailed proof of the sketched key lemma can be found in Section 4.5. In what follows
we elaborate on the mathematical challenge for the lemma under consideration. To obtain a
proper mathematical framework for defining path measures and trace distributions, every
scheduler is required to form a Borel function (see Section 3.6 and also [CSKNO05, Cat05]
as well as [W]J06, Wol12]). In fact, it is not straightforward how to use the measurability
properties of the s;-scheduler G, in a proof of the previous lemma for the construction
of an sp-scheduler G;,. The intuitive reason is that the notion of simulation involves no
measurability conditions concerning enabled transitions and hence, one cannot expect that

measurability properties of &, are preserved: in Section 4.6 we even see an STS involving
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states s, and s;, such that s, simulates s,, however, while there exists an s;-scheduler there
exists no sy-scheduler at all.

Indeed, the latter discussion motivates our definition of Souslin STSs as here, assuming
the STS is additionally non-blocking, there exists an s-scheduler for every state s. The
high-level proof idea for this property of Souslin STSs is basically the same as for Lemma G:
we introduce an appropriate set-valued function intuitively representing a set of candidates
for a suitable scheduler. Relying on the given Souslin assumptions, we then show the
applicability of the measurable-selection principle given by Theorem 21 that finally entails
a convenient scheduler from the candidates. We remark that this approach does not yield
an explicit construction for schedulers and only shows the existence of a scheduler with
specific properties.

As we see in Section 4.7, it turns out that Theorem B yields non-trivial generalisation of
Theorem 9.19 in [Cat05]. Moreover, in combination with the logical characterisation of the
simulation preorder and the bisimulation equivalence to be investigated in the next chapter,
Theorem B has various consequences that are summarised in Chapter 7. For instance,
we see that labelled Markov processes [BDEP97, Des99, DEP02, Pan(09] as well as image-
finite non-deterministic labelled Markov processes [DTW12, Wol12] with countable action
spaces and continuous controlled Markov processes [DIY79, BS96, ZEM 14, TMKA16] are
Souslin STSs for which the Souslin-simulation preorder and the simulation preorder are the
same and accordingly, where the Souslin-bisimulation equivalence and the bisimulation
equivalence collapse. Consequently, we also obtain a trace-distribution result for these
prominent subclasses of STSs.

Besides the latter mentioned applications of Theorem B concerning uncountable-state-
space models, the result also applies for STSs whose state space is countable. This includes
probabilistic automata [Seg95], discrete Markov decision processes [Put94], continuous-
time Markov chains [BHHKO03, DP03], continuous-time Markov decision processes [ NK07],
interactive Markov chains [Her02], Markov automata [EHZ10], and stochastic automata
[D’A99, BD04, DKO05]. Continuous-time Markov decision processes serve, e.g., as a se-
mantical model for stochastic Petri nets [CMBC93].

4.1 Souslin stochastic transition systems

Our basic stochastic model of STSs also permits non-deterministic choices over enabled
distributions in a state. To reason about probabilities of Borel sets of paths, the non-
determinism needs to be resolved by schedulers. Recall, schedulers are Borel functions
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4.1 Souslin stochastic transition systems

assigning every state to an enabled distribution over action-state pairs. However, since the
notion of STSs is very generic in the sense that there are no (measurability) restrictions on
the transition relation, there are examples of STSs that admit no schedulers even if the STS
under consideration is non-blocking. In other words, it is possible to given an STS such that
there exists no function that is both Borel and compatible with the underlying transition
relation at the same time. The latter fact has been already observed in [Cat05] We recall

the corresponding example first:

s
acty
Leb
[0 ey 1]
Bern
acty acty
S// §//
acts acts

Figure 4.1: There exists no s-scheduler.

Example 63 (Example 9.2 in [Cat05]). In what follows the Lebesgue measure on [0, 1] is
denoted by Leb. The Lebesgue measure of an interval [r1, 2] contained in [0, 1] is its length
given by , — r1. Let Bern be a Bernstein set, i.e., Bern is a subset of [0, 1] such that for every
Borel set B C [0, 1] the following property holds (see Theorem 5.4 in [Oxt71]):

B C Bernor B C [0,1] \ Bern implies Leb(B) = 0.

In fact, the stated condition for the set Bern is a consequence of the actual definition of a
Bernstein set given in [Oxt71]. However, the presented requirement is sufficient for the
following purposes. Let T = (Sta, Act, —) be the STS illustrated by Figure 4.1 (see also
Figure 9.2 in [Cat05]). To be more precise, it holds

Sta= {s}uU[0,1]U{s",5"} and Act = {acty,acty,acts}.
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4 Simulations and trace distributions for Souslin systems

Moreover, for every r € [0, 1] the following two equivalences are satisfied:

r — {acty, Dirac[s"]) iff r € Bern,

r — (acty, Dirac[3"]) iff r ¢ Bern.
The remaining transitions of 7~ are given as follows:
s — (acty, Leb), s, — (acts, Dirac[s"]), s, — (acts, Dirac[5"]).

Consequently, the STS T is non-blocking. However, there does not exist an s-scheduler. In
what follows we present a detailed formal argument. Towards a contradiction assume that
there is an s-scheduler, say &. Define the two Borel sets fIﬂ, fIb C Pathy by

I, = {s} x {act;} x [0,1] x {act} x {s"},
IT, = {s} x {act;} x [0,1] x {act>} x {&"}.

As the sets I'T, and I'T; form a partition of Path,, we obtain Pr;[&](I1,) + Pro[S](IT,) = 1.
It follows Prp[S](I1,) > 0 or Pro[S](TT,) > 0.

Consider the case Pr,[6](T1,) > 0. Then, as & is an s-scheduler, there is a Borel set
B C [0, 1] with the following three properties: B C Bern, Pr[S]({s} x {act;} x B) =1,
and r — G&(sacty r) for every r € B. Inspecting the STS T, for every r € B it holds
S(sacty r) = Dirac[(act,s")]. From this we conclude

0 < Pry[8](I1,) = Pra[&]({(s,acty, r,acty, s;) ; v € B}) = Leb(B).

This yields a contradiction as we also have Leb(B) = 0 relying on the properties of a Bern-
stein set. One analogously derives a contradiction from the remaining case Pr,[&](I1,) > 0.
We conclude that there does not exist an s-scheduler. a

Considering the STS T in Example 63 again, every path starting at s admits exactly
the same trace acty actp acty. It is hence natural to expect that there exists an uniquely
determined trace distribution at s given by the probability measure Dirac[act; act; acty].
However, Example 63 shows that there is no measurable resolution of the non-determinism
and hence, the STS T with s being the initial state admits no observable behaviour in
terms of trace distributions. As a consequence of this discussion, the STS 7 may be seen as
artificial and may be judged as a flawed model. We present a (syntactical) requirement for
STSs that ensures the existence of schedulers to rule out such pathological models.

Definition 64. Let 7 = (Sta, Act, —) be an STS. We say that 7 is Souslin if the set — of
all transitions is Souslin in Sta x Prob[Act x Sta]. 4
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4.1 Souslin stochastic transition systems

The underlying motivation behind the notion of a Souslin STS is to enable the applicability
of measurable-selection principles (see Section 2.3) for showing the existence of schedulers.
To be more precise, the transition relation of every STS T = (Sta, Act, —) can be naturally
rephrased in terms of the set-valued function F: Sta ~~ Prob[Act x Sta],

F(s) = Enableds].

Assuming an initial distribution y € Prob[Sta] on the states, every choice of a y-scheduler
S in the first step corresponds the Borel ji-selection of F, i.e., &g is a Borel pi-selection of
F. Indeed, provided f is a Borel y-selection of F, there exists a Borel set B C Sta with the
following two properties:

#(B)=1 and s— f(s)foreverys € B,

i.e., f is compatible with the transition relation. To guarantee the existence of a Borel
u-selection of F, we rely on the measurable-selection principle stated in Theorem 21 and
thus, it suffices to assume that the set Rel[F| is Souslin in Sta x Prob[Act x Sta]. However,
the latter holds precisely when the STS T is Souslin. The idea of using measurable-selection
principles in the context of Souslin STSs can be extended to a step-by-step construction of
schedulers that is demonstrated by the proof of the following theorem:

Theorem 65. Let T = (Sta, Act, —) be a non-blocking Souslin STS. Then for every probability
measure y € Prob[Sta] there exists a p-scheduler. In particular, for every state s € Sta and
¢ € Prob[Act x Sta| such that s — ¢ there exists an s-scheduler S with &(s) = ¢.

Proof. The theorem is an application of a measurable-selection principle. More precisely,
we derive it from Theorem 21. For every n € IN we introduce the set-valued function
F,: Path,, ~ Prob[Act x Sta],

E, () = {¢ € Prob|Act x Sta] ; Last,(t) — ¢}.

For every n € IN, using that the STS 7 is Souslin and as the function Last, is Borel,
the set Rel[F,| is Souslin in Path,, x Prob[Act x Sta|. Moreover, using that the STS under
consideration is not blocking, it also follows that the set F, (7) is not empty for every finite
path 7t € Path,. Thus, we are in the setting of Theorem 21. Therefore, for every n € IN
and X, € Prob|Path,] there exists a Borel {,-selection of F,.

Let p € Prob[Sta] be a probability measure. Relying on an easy inductive argument,
there exist a sequence (£, ),enN of probability measures §,, € Prob[Path,] and a sequence
(611)nen of Borel functions &, : Path,, — Prob[Act x Sta] with the following properties:

Xo=wu and Xy41=xXn XS, foreveryn € N

101



4 Simulations and trace distributions for Souslin systems

and
&, is Borel {;-selection of F, for every n € IN.

Let &: Path.,, — Prob[Sta] U Prob[Act x Sta] be the function such that §(o) = y and
so that for every n € IN and 7 € Path,, it holds &(7t,) = &,(7t,). It easily follows that &
is a Borel function and moreover, for every n € IN one has Pr,[S] = {,. From this one
can easily derive that G is a y-scheduler.

Lets € Staand ¢ € Prob[Act x Sta] be such that s — ¢. The remaining claim of the
theorem follows exactly in the same way when replacing the set-valued function Fy by the
function F}: Sta — Prob[Act x Sta], Fi(s") = {¢}. O

With the insight of Theorem 65, the requirement that the transition relation constitutes
a Souslin set rules out pathological examples of STSs as depicted in Figure 4.1. The argu-
mentation scheme for Theorem 65 occurs at various points throughout this thesis: in order
to obtain convenient Borel functions, the basic approach is to introduce an appropriate
set-valued function that fulfills the requirements of the measurable-selection principle

stated in Theorem 21.

Example 66. We continue our discussions concerning Example 63. The STS 7 depicted
in Figure 4.1 is not Souslin by Theorem 65. Let us also provide a simple direct argument
for that observation without using the section’s main theorem. Towards a contradiction

assume that 7 is Souslin. Since
— N ([0,1] x {Dirac[{acty,s4)]}) = Bern x {Dirac[{actz,sa)]},

the set Bern x {Dirac[(acts,s,)]} is Souslin in Sta x Prob[Act x Sta]. By Remark 10 (1),
the set Bern is therefore Souslin in [0, 1]. However, it is well-known that Bernstein sets are
not Souslin [Oxt71]. This can be seen as follows. Towards a contradiction assume that Bern
is Souslin in [0, 1]. Thanks to Remark 11, there are hence Borel sets B;, B, C [0, 1] with

By C Bern C B, and Leb(B;) = Leb(B,).

Relying on the properties of a Bernstein set, it follows Leb(B;) = 0 and hence, Leb(B,,) = 0.
We therefore obtain Leb([0,1] \ B,) = 1. However, as we have [0,1] \ B, C [0,1] \ Bern, it

also holds Leb([0,1] \ B,) = 0 that yields a contradiction. We conclude that the set Bern is
not Souslin in [0, 1] and thus, we finally derive that the STS 7 is not Souslin. -

This section is finished with the following two remarks yielding basic observations for
Souslin STSs.
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4.2 Weakly Souslin stochastic transition systems

Remark 67. For the following important property of Souslin STSs it is appropriate to recall
the notion of barycentres and convex hulls in the context probability theory from Section 2.4
(see also Section 3.5). Let T = (Sta, Act, —) be an Souslin STS. Then for every state s € Sta
the set Enabled|s] is Souslin in Prob[Act x Stal, in particular, it holds

Conv|Enabled[s]] = CombEnabled[s] = Conv|CombEnabled|s]].
The argument for that claim is easy. Consider a state s € Sta. It holds
— N ({s} x Prob|Act x Sta]) = {s} x Enabled]s].

As the STS T is Souslin, the set {s} x Enabled|s] is Souslin in Sta x Prob[Act x Sta]. Con-
sequently, by Remark 10 (1), the set Enabled|[s] is Souslin in Prob[Act x Sta]. Theorem 62

directly yields the remaining claim now. 4
Remark 68. Let T = (Sta, Act, —) be a reactive STSs. Abbreviate
X = Sta x Act x Prob[Sta].
Then the following two statements are equivalent:
(1) T is Souslin.
(2) Theset {(s,act,u) € X ;s — (act, i)} is Souslin in X.
The argument is easy: defining the function {: X — Sta x Prob|Act x Sta],
&(s,act, ) = (s, Diraclact] @ u),
we obtain
— = ({(s,act,u) € X ;s — (act,u)}).

By Example 6, the function ¢ is Borel and hence, the claimed equivalence is a direct con-

sequence of Remark 10 (5). J

4.2 Weakly Souslin stochastic transition systems

Theorem 65 states that every Souslin STS admits a scheduler. In fact, inspecting the proof
again, we provide a deterministic scheduler, i.e., a scheduler that does not randomise
over different enabled distributions in a given state. A priori this insight is not trivial
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4 Simulations and trace distributions for Souslin systems

because of the measurability requirements for schedulers and can be proven by a standard
application of a measurable-selection principle. However, later on in this chapter, we are
confronted with the problem of constructing schedulers that are not necessarily determ-
inistic, i.e., schedulers that may be not compatible with the transition relation but with
the induced combined-transition relation. Recalling Section 3.5 and also Section 2.4, the
combined-transition relation results from the transition relation by combining the enabled
distributions in a state using appropriate barycentres of probability measures. To rely again
on a measurable-selection principle as in the proof of Theorem 65, we need the fact that the
combined-transition relation is Souslin. This motivates the following definition:

Definition 69. We call an STS 7 = (Sta, Act, —) weakly Souslin if the set = is Souslin in
Sta x Prob[Act x Sta] where = denotes the combined-transition relation of 7. N

The previous definition is exact in the same spirit of Definition 64 for Souslin STSs. As
the notions suggests, every Souslin STS is also weakly Souslin. However, the proof for this
insight is not trivial and yields the main contribution of this section:

Theorem 70. Every Souslin STS is weakly Souslin. 4

Let us give the key idea for our argument before we present the precise technical details.
For this purpose pick a Souslin STS 7 = (Sta, Act, —). The basic observation is that every
transition s — ¢ can be identified with the probability measure f (s, ¢) = Dirac[s] ® ¢ in
Prob[Sta x (Act x Sta)]. As a consequence of this identification, the transition relation —
can be viewed as a subset f(—) of Prob[Sta x (Act x Sta)]. The advantage is now that one
can regard the convex hull Conv[f(—)] of f(—). Relying on Theorem 27, it follows that
the set Conv[f(—)] is Souslin in in Prob[Sta x (Act x Sta)]. In a last proof step, roughly
speaking, we see that every probability measure in Conv[f(—)] is of the form Dirac[s| ® ¢
for some state s € Sta and probability measure ¢ € Prob[Act x Sta] such that s = ¢.
Intuitively, the combined-transition relation can be extracted from the set Conv|[f(—)].
From this it finally follows that the STS T is weakly Souslin.

One might ask whether the reverse implication of Theorem 70 holds, i.e., whether every
weakly Souslin STS is also Souslin. We believe that this is not the case but have no counter-
example for our feeling. However, the latter question is neither relevant for practical
purposes nor for the following material. Indeed, throughout this thesis, we solely need
Theorem 70 within theoretical arguments. To show that a concretely given STS is indeed
Souslin, e.g., an STS resulting from the unfolding of a modelling formalism from the lit-
erature, we directly focus on the given transition relation rather than the more complex
induced combined-transition relation (see Chapter 7).
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Proof of the section’s main result. It is appropriate to recall the precise definition of
barycentres and convex hulls in the context of probability measures from Section 2.4. The
following sufficient criterion for showing that a probability measure constitutes a Dirac
measure is routine and follows from basic results from measure theory.

Lemma 71. Let X be a measurable space and G C 2 be a generator of the sigma algebra on X
that is closed under finite intersections and complements. Suppose y € Prob[X] and x € X. If
#(B) = 0 forall B € G with x ¢ B, then we have y = Dirac|x].

Proof. Applying Carathéodory extension theorem (see Section 2.1), we have y = Dirac[x|
iff u(B) = Dirac[x](B) forall B € G. Assume yu # Dirac[x]. Thus, there exists B € G such
that t(B) # Dirac[x](B). In case where Dirac[x|(B) = 0, it follows x ¢ B and u(B) # 0.
In the case where Dirac[x|(B) =1, wehave X\ B € G, x ¢ X\ B,and u(X \ B) # 0. We
are done putting things together. O

Proof of Theorem 70. Let T = (Sta, Act, —) be a Souslin STS and denote the corresponding
combined-transition relation by =-. Introduce the Polish space

X = Sta x Act x Sta

and define the function f: Sta x Prob[Act x Sta] — Prob[X],

f(s, ) = Dirac[s] ® ¢.

The function f is Borel by Example 6. For every s € Sta let fs: Prob[Act x Sta] — Prob[X],

fs(@) = f(s, 9).

For every s € Sta it is easy to see that f; is a Borel function.

By Remark 10 (5) and since the STS T is Souslin, the set f(—) is Souslin in Prob[X].
According to Theorem 27, the set Conv|[f (—)] is Souslin in Prob[X]. Invoking again Re-
mark 10 (5), the set f ~(Conv[f(—)]) is Souslin in Sta x Prob[Act x Sta]. To conclude the
theorem, it hence suffices to show the identity

= = [~ (Conv[f(=))).
To this end let s € Sta and ¢ € Prob[Act x Sta].

Inclusion from left to right. Assume s = ¢ first. Our task is to justify f (s, ¢) € Conv[f(—)],
i.e., Dirac[s] ® ¢ = Barycen(B) for some B € Prob[Prob[X]] with BoU(f(—)) = 1. Re-
call, the set Enabled|s] is Souslin in Prob[Act x Sta] by Remark 67. Since we have s = ¢,
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Lemma 12 thus yields the existence of some 5 € Prob[Prob[Act x Sta]] satisfying
@ = Barycen(B) and B°"(Enabled[s]) =
Define 3 € Prob[Prob[X]] by

B=(f):(B).

As fs(Enabled[s]) C f(—), Lemma 13 entails B°"(f(—)) = 1. To conclude f(s, ¢) €
Conv[f(—)], it hence suffices to show the identity Dirac[s] ® ¢ = Barycen(p). Let S C Sta
and B C Act x Sta be Borel sets. It holds

Barycen(B)(S x B) /fs )(S x B)dB(g /Dzmc ¢/ (B) dB(g).
Using the identity

| Diracls|(s) - ¢'(B) d(g') = Diracls](s) - [ ¢/ (B) dp(y
we hence obtain

Barycen(B)(S x B) = Diracls)(S) - Barycen(p)(B) = (Diracls] © p)(S x B).

It follows Barycen(B) = Dirac[s] ® ¢ applying Carathéodory extension theorem (see
Section 2.1). This justifies the first inclusion = C f~!(Conv[f(—)]).

Inclusion from right to left. Assume f (s, ¢) € Conv[f(—)]. Then there exists a probability
measure 3 € Prob[Prob[X]] such that

B (f(—=)) =1 and Dirac[s] ® ¢ = Barycen(B).

Our task is to show s = ¢. For this purpose define the Borel function {: X — Act x Sta,
Z(s',act,s") = (act,s").

Moreover, define B € Prob[Prob[Act x Sta]] by

B = (22)s(B)

Thanks to Lemma 12, it remains to show Barycen(B) = ¢ and B (Enabled|s]) =
The first claim Barycen(B) = ¢ can be seen as follows. For every Borel set B C Act x Sta
it holds

Barycen(B)(B) = /'y(Sta x B) dB(v) = Barycen(B)(Sta x B) = ¢(B).

106



4.3 Souslin simulation and bisimulation

It remains to show B (Enabled[s]) = 1. We prove B°U( fs(Prob[Act x Sta])) = 1 first.
Let G C 25" be a countable generator of the Borel sigma-algebra on Sta that is closed under
finite intersections and complements (see Remark 4). For every B € G with s ¢ B we have

0 = Dirac[s] ® ¢(B x Prob[Act x Sta])
and therefore,

0 = Barycen(B)(B x Prob|Act x Sta]) = /’y(B X Prob[Act x Sta]) dB ().

Thus, relying on a standard result from measure theory (see, e.g., Lemma 8.2.8 in [Sch08]),
for every B € G with s ¢ B there exists a Borel set Pg C Prob[X] such that

B(Pg) =1 and (B x Prob[Act x Sta]) = 0 for all 7y € Pg.

Define P C Prob[X] by

P= () P

Beg with s¢B

Since G is countable, the set P is Borel in Prob[X] and moreover, it holds B(P) = 1. Ac-
cording to Lemma 71, we have (B x Prob[Act x Sta]) = Dirac[s](B) for all Borel sets
B C Staand v € P. Thus, for every v € P there exists ¢/ € Prob[Act x Sta] such that
v = Dirac[s] ® ¢'. It follows P C f;(Prob[Act x Sta]) and therefore, we finally obtain the
identity B (f;(Prob[Act x Sta])) = 1.

Let P C Prob[Act x Sta] be a Borel set so that Enabled[s] C P. If we show B(P) =1,
then it follows U (Enabled[s]) = 1 and we are done. As Enabled[s] C P, we obtain

f(—=) N fs(Prob[Act x Sta]) C ql(P).
As the outer-measure function is monotonically increasing, it follows
B(P) = B(;'(P)) = p(2;1(P)) = B (f(—=) N f(Prob[Act x Sta])) = 1.

The latter equal sign follows from B°U( f(—)) = 1and U ( fs(Prob[Act x Sta])) = 1. O

4.3 Souslin simulation and bisimulation

A (bi)simulation is a relation over the state space of an STSs ensuring the equivalence of the
branching-time structure of related states. There are no explicit measurability conditions for
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the relation under consideration so far, in particular, it is not required that a (bi)simulation
forms a Borel or Souslin set. The following material introduces simulations and bisimu-
lations that constitute Souslin sets in addition. Based on these new notions we develop a
theory on equivalences and abstraction of Souslin STSs throughout the subsequent sections.

Definition 72. Let 7 = (Sta, Act, —) be an STS. A simulation R is called Souslin if the set
R is Souslin in Sta x Sta. Accordingly, we refer to a bisimulation R as Souslin provided the
set R is Souslin in Sta x Sta. a

As for the original definitions of simulation and bisimulation, the introduced notions
in Definition 72 also induce relations over the state space of an STS 7. Denote the state
space of T by Sta. The Souslin-simulation preorder and the Souslin-bisimulation equivalence are
the binary relations <°°" and ~*°" on Sta, respectively, given as follows: for every states
Sq,Sp € Sta,

sa <%°"s, iff there is a Souslin simulation R with (s,,sp) € R

s ~*"'s, iff there is a Souslin bisimulation R with (s,, s;) € R.
We observe that the relation <°°" is indeed a preorder on Sta and that the relation ~*°" is an
equivalence on Sta. The proof for this insight is analogous to our argument for Theorem 55.
Indeed, Lemma 56 and Theorem 58 (1) together yield the claim.

For every states s;, 5, € Sta we obviously have that s, <°" 5;, implies s, < s, as well
as s, ~*°" 55, implies s, =~ s,. When studying different applications of the mathematical
theory of this chapter (see, e.g., Chapters 5 and 7), we see that for many subclasses of STSs
(from the literature) the relations <°°" and < as well as ~*°" and =~ are the same.

4.4 Combined simulation and bisimulation

Whereas the requirements for a (Souslin) simulation and bisimulation solely focus on the
transition relation, the notions of schedulers, path measures, and trace distributions also
include the combined-transition relation, which properly extends the transition relation
(see also Sections 3.5 and 3.6). The material of this section closes a gap that arises in our
investigations throughout the next sections where connections between the (bi)simulation
relation and the trace-distribution relation are investigated. To be more precise, the fol-
lowing question raises for states s; and s, of an STS where s, simulates s,: Is it the case
that every combined transition in s, can be matched by a combined transition in s,? In
other words, we ask whether a simulation R for an STS T also yields a simulation for
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the STS 7’ where 7" is defined as T expect for the transition relation that is given by the
combined-transition relation of 7 instead. The main achievement of this section is that
the latter question can be answered positively when considering Souslin STSs and Souslin

simulation and bisimulation.

Definition 73. Let 7 = (Sta, Act, —) be an STS and denote its combined-transition relation
by =. Arelation R C Sta x Stais called a combined simulation if for every states s,, s, € Sta
and ¢, € Prob[Act x Sta] such that

(sa,sp) € R and s, = @,
there exists ¢, € Prob[Act x Sta] with
sp=@p and (@a, @p) € (RAT)WS,

A relation R C Sta x Sta is said to be a combined bisimulation if both relations R and its

inverse R ! are combined simulations. _|
Sa R Sp Sa R Sp
ok can be completed to [} [}
Pa @ ( RAct ) wgt ®p

Figure 4.2: Condition for a combined simulation R.

Figure 4.2 illustrates the condition for a combined simulation. The definition of a com-
bined (bi)simulation is completely analogous to Definition 47, however, focusing on the
combined-transition relation rather than the transition relation. Many concepts related to
simulations and bisimulations can be thus easily adapted for the newly introduced notion.
For instance, a combined simulation R is called Souslin provided the set R is Souslin in
Sta x Sta and analogously for combined bisimulations. The Souslin-combined-simulation
preorder and the Souslin-combined-bisimulation equivalence are the relations <" and ~%°"¢
over the state space Sta, respectively, defined as follows: for every states s,,s; € Sta,

sq 3%°"Cs, iff there is a Souslin combined simulation R with (s,,s,) € R,

sou,c

5a >°°%Cs, iff there is a Souslin combined bisimulation R with (s4, s) € R.

An easy adaption of our proof for Theorem 55 shows that both relations <€ and <°°" are
preorders on Sta and that the relations ~ and ~*°" form equivalences on Sta. The main

result of this section is as follows:
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Theorem 74. Let T = (Sta, Act, —) be a Souslin STS. For every states s,, s, € Sta the following
two statements hold:

(1) 5o <%sy, implies s, <°"Cg,.
(2) sq%%sy, implies 5, %" sy,

Moreouver, it even holds that every Souslin simulation is a Souslin combined simulation and accord-
ingly, that every Souslin bisimulation is a Souslin combined bisimulation. 4

We present our proof of Theorem 74 immediately after the following discussions. One
cannot expect a simple argument for Theorem 74. Roughly speaking, the mathematical
difficulty arises from the fact that an uncountable number of transitions may be put together
into one single combined transition relying on the notion of barycentres for probability
measures. However, in contrast, the notions of a simulation or bisimulation focus only
on single individual transitions. Roughly speaking, we hence need a technique to extend

properties of the transition relation to the corresponding combined-transition relation.

Figure 4.3: Illustration of the main idea for our proof of Theorem 74.

Using the schematic overview in Figure 4.3, we sketch the main idea for our proof of
Theorem 74. This also provides a feeling for the use of the involved Souslin requirements.
Let 7 = (Sta, Act, —) be a Souslin STS, s,, s, € Sta be states, and R be a Souslin simulation
such that (s,,s,) € R. The main idea is to provide a Borel function

f: Prob]Act x Sta] — Prob[Act x Sta|
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4.4 Combined simulation and bisimulation

that yields a Borel assignment of elements in Enabled([s,] to elements in Enabled|s,| while
respecting the relation R. Formally, there exists a Borel set P, C Prob[Act x Sta] such that,
among others, P, C Enabled[s,| and so that for every ¢/, € P, one has

f(@;) € Enabled[s,] and (g7, f(¢})) € (R')™®"

The existence of the function f follows basically from the fact that R is a simulation. How-
ever, to guarantee that f can be chosen to be a Borel function, the measurable-selection
principle stated in Theorem 21 is invoked. Thanks to the Souslin assumptions for the STS and
the relation under consideration, it is straightforward to introduce an appropriate set-valued
function for the intended purpose. The remaining argument for Theorem 74 proceeds as fol-
lows. Suppose probability measures ¢, € Prob[Act x Sta] and B, € Prob[Prob[Act x Sta]]
that, among others, satisfy

Sa= ¢a and ¢, = Barycen(B,).

Defining ¢, € Prob[Act x Sta] by

@y = Barycen(f;(Ba)),

it is then argued that
sp= ¢y and (@a, p) € (RAT)VE

This finally shows that every combined transition in s, can be matched by a combined
transition in s, and therefore, the relation R forms a combined simulation. The function f
thus formalises the intuitive idea of transferring properties of combined transitions enabled
at state s, to the state sp,.

One might ask whether the corresponding reverse implications of Theorem 74 also
hold, i.e., whether a combined simulation also forms a simulation and accordingly for
bisimulations. However, the answer for this question is no in general. It is indeed easy to
provide an STS with finite state space that serves as a counterexample.

Proof of the section’s main result. In the remainder of this section we provide the details
for the previously sketched proof of Theorem 74. For this we prove the following two
auxiliary lemmas first whose proofs are straightforward.

Lemma 75. Let X be a Polish space and R C X X X be a Souslin set. Then the relation RV8 is
Souslin in Prob[X] x Prob[X].
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4 Simulations and trace distributions for Souslin systems

Proof. Define the Borel functions {;: X X X — X, {,(xs,%5) = xgand {p: X x X — X,
Cp (x4, xp) = xp. Moreover, introduce the function {: Prob[X x X| — Prob[X] x Prob[X],

GW) = {(Ga)s(W), (Cp)s(W))-
According to Remark 8, the function ( is Borel. By Lemma 12, we moreover have
R™E = C({W € Prob[X x X] ; WO (R) = 1}).
This yields the claim applying Remark 10 and Lemma 14. O

Lemma 76. Let X be a Polish space, R C X x X be a relation, f: X — X be a Borel function,
and B C X be a Borel set such that

Graph[f] N (B x X) C R.
For every p € Prob[X] such that y(B) = 1 it holds

(u, f2(n)) € R

Proof. Let u € Prob[X]. Introduce the Borel function {: X — X X X,

¢(x) = (x, f(x)).

and the probability measure W € Prob[X x X],

W = Zs(p).

We claim that W is a weight function (i, R, f;(u)). It is easy to see that W is a coupling
of (i, fs(u)). Recall, Graph[f] is Borel in X x X (see Section 2.1). It is easy to see that
W(Graph[f]) = u(X) = 1. Assuming y(B) = 1, it moreover holds W(B x X) = 1 and
therefore, W(Graph[f] N (B x X)) = 1. Since Graph[f] N (B x X) C R, we conclude that
W is a weight function for (y, R, f4(1t)). O

Proof of Theorem 74. 1t is sufficient to show statement (1) of Theorem 74 as a proof for (2)
is completely analogous. Throughout this proof, the symbol = denotes the combined-
transition relation of the STS 7. Let R be a Souslin simulation. Our task is to show
that R is even a combined simulation. For this purpose let s,,5, € Sta be states and
®a € Prob[Act x Sta] be a probability measure such that

<Sa,sb> S R and SQ = §0u.
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4.4 Combined simulation and bisimulation

Moreover suppose B, € Prob[Prob[Sta]] and a Borel set P, C Prob[Act x Sta] such that

P, C Enabled[s,|, PBa(P;) =1, and ¢, = Barycen(B,).

In what follows we provide a probability measure ¢, € Prob[Act x Sta] satisfying the
two properties s, = @, and (@a, @) € (RA4)"8t, Our construction of this probability
measure @ relies on the measurable-selection principle in Theorem 21. Define the set-
valued function F: Prob|Act x Sta] ~~ Prob|Act x Sta],

F(¢)) = { ¢}, € Prob[Act x Sta] ; s, — @} and (@}, @,) € (RA)W8t},

By Lemmas 53 and 75, the set Rel[F] is Souslin in Prob[Act x Sta] x Prob[Act x Sta] since
we have

Rel[F] = (RA)V8t N (Prob[Act x Sta] x Enabled|sy)).

For every ¢, € P, the set F(¢}) is not empty relying on the fact that R is a simulation for
T and since we have (s,, s,) € R and s, — ¢),. Putting things together and as 8,(P,) =1,
Theorem 21 yields the existence of a Borel ,-selection of F.

Let f: Prob[Act x Sta] — Prob[Act x Sta] a Borel function and P, C Prob[Act x Sta] be
a Borel set such that

Ba(P;) =1 and f(¢y) € F(¢}) forall ¢, € P,.

Moreover, define the probability measures B, € Prob|Prob[Act x Sta]],

Bo :fii(.Bu)

as well as ¢, € Prob|Act x Sta],

¢y = Barycen(By).

We claim that s, = @y, and {@,, @) € (RA)W8, which finally entails the theorem.

Since B4(P;) = 1, Lemma 13 yields the existence a Borel set P, C Prob[Act x Sta] such
that P) C f(P;) and B,(P}) = 1. By the definition of the set-valued function F, we obtain
P} C f(P;) C Enabled[sy] and therefore, s, = @y,

It remains to show (@g, @) € (RA%)W8t. As one has

Gmph[f] N (P; X Prob[Act x Sta]) C (RACt)Wgt,
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4 Simulations and trace distributions for Souslin systems

Lemma 76 yields (B, Bp) € ((RA)Wet)Wst, Pick a weight function for (B,, (RA)W8t, B;),
say Wg. According to Lemma 54, there exist a Borel function ¢ with domain Prob[Act x
Sta] x Prob|Act x Sta] and codomain Prob[(Act x Sta) x (Act x Sta)| as well as a Borel
set Rg C Prob|Act x Sta] x Prob[Act x Sta] so that

Ws(Rg) =1
and

¢(@h, @) is a weight function for (¢}, RAC @},) for all (¢, ¢},) € Rg.
Define W,, € Prob[Prob[(Act x Sta) x (Act x Sta)]],

Wy, = g:(Wp)
and W, € Prob[(Act x Sta) x (Act x Sta)] by

W, = Barycen(W,),

respectively. We claim that W,, is a weight function for (¢,, R, @;).
For every Borel set B C (Act x Sta) x (Act x Sta) it holds

Wo(B) = [ W'(B)aWy(W") = [ (gl 9}) (B) AWy (gl 9}).

From this one can easily conclude that W, is a coupling of (¢, ¢;). Indeed, using the
properties of Wg and Rg, for every Borel set B, C Act x Sta it holds

W, (B, x (Act x Sta))

— [ 8k @4 (Ba x (Act x Sta)) dWy( ), 9})
= /%(Bu)dwﬁ(qv;,%)

= [ 9h(B.) dpalgl)

= ¢a(Ba).

One analogously shows the corresponding identity W, ((Act x Sta) x By) = ¢4(By) for
every Borel set B, C Act x Sta.

Exploiting Lemma 12 and Lemma 53, it suffices to show (W, )°"(R4“") = 1 in order to
conclude that W, is a weight function for (¢, R4, @y). Let B C (Act x Sta) x (Act x Sta)
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be a Borel set such that R4" C B. For every (¢}, ¢},) € Rg we have g(¢}, ¢,)(B) = 1. As
it holds Wy (Rg) = 1, we obtain

Wo(B) = [ 8(9%, 9})(B) dWy(9ly 9}) = [ 1aWs(el, ¢h) = 1.

We finally conclude that W, is a weight function for (@,, R4, @ ). This finishes our proof
as already discussed before. O

4.5 Simulations and bisimulations on finite paths

For non-stochastic systems it is easy to see that every simulation can be inductively extended
to paths: indeed, given a simulation R and states s, and s, with (s,,s;) € R, for every
finite path s, acty Sq1 . . . acta, San there exists a path sy actyy sp1 . . . acty, Sp, such that for
everyi € {1,...,n} itholds ((act, s,), (acty;, sp;)) € R, i.e., one has act,; = acty; and
(Sai,Spi) € R. This section presents a corresponding result for STSs where, one account
of the presence of probabilities and non-determinism, schedulers and their induced path
measures need to be taken into account.

The following notion is inspired by the initial sketched observation for non-stochastic
systems. Let 7 = (Sta, Act, —) be an STS and R C Sta x Sta be a relation on its state
space. For every n € IN we lift the relation R to finite paths of length n. Formally, for every
n € N the relation RP2h" C Path,, x Path,, is given as follows: for all 7t,, 7, € Path,,

<7°(E,, ﬁb> € Rpath g <Su0, Sb0> € Rand

((actyi,sai), {acty;, spi)) € RA foralli € {1,...,n}

where 7t; = S40acty1 541 - - - ACt gy Sgn and 74, = Spg Actyy Spy - . . acty, Sp,. We obviously have
the identity RPath0 — R The section’s main result is as follows:

Theorem 77. Let T = (Sta, Act, —) be a weakly Souslin STS, R be a Souslin combined simula-
tion, and piq, 4y € Prob[Sta| be such that (g, tty) € RWE'. Then for every pq-scheduler S, there
exists a yy-scheduler &y, such that for every n € IN it holds

(Pry[G,), Pry[&y)) € (RPathmywet,

The formal proof is presented after the following discussions. Compared to the initial
observation for non-stochastic systems, Theorem 77 requires the synthesis of a scheduler
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4 Simulations and trace distributions for Souslin systems

whose induced finite-path measures satisfy a certain condition. In Section 4.1 we have
already illustrated mathematical difficulties caused by the measurability requirements
for schedulers that motivate the notion of Souslin STSs. Invoking a measurable-selection
principle, Theorem 65 shows that every non-blocking Souslin STS has a scheduler. Our
proof for Theorem 77 basically relies on the same idea: we introduce a specific set-valued
function that represents a set of candidates for appropriate schedulers. After that we show
that the requirements of a measurable-selection principle are fulfilled that finally yields the
existence of appropriate Borel functions. The previous discussions give a very high-level
idea of our proof for Theorem 77. However, compared to Theorem 65, the mathematical

argument below is much more intricate and technical at some points.

Corollary 78. Let T = (Sta, Act, —) be a Souslin STS, R be a Souslin simulation, as well as
Ha, Wy € Prob[Sta] be such that (jiq, up) € RV Then for every pg-scheduler S, there exists a
up-scheduler &y, such that for all n € IN it holds

(Pra[&,], Pra[&y]) € (RPA)™EE,
Proof. The claim follows from Theorem 77 together with Theorems 70 and 74. O

As a preview, Theorem 77 and its Corollary 78 are object of further discussions in sub-
sequent chapters of this thesis. For instance, in Section 5.5 we prove the existence of a
tp-scheduler such that (Pr[&,], Pr[&;]) € (RPth)Wst where RPh denotes the lifting of the
relation R to infinite paths. Even though the latter sketched result follows from Theorem 77
or Corollary 78, the argument is not straightforward. Besides this, in Section 7.2 we present
a much simpler argument for Theorem 77 for those Souslin STSs that are additionally purely
stochastic.

Proof of section’s main results. The remainder of this section provides the details for
our proof of Theorem 77. We start with the following very simple observation.

Lemma 79. Let T = (Sta, Act,—) be an STS and R C Sta x Sta be a Souslin set. For every
n € N the set RP2" js Soyslin in Path,, x Path,,.

Proof. The proof is simple and completely analogous to Lemma 53. O

For the next lemma it is convenient to recall the definition of the post operator from
Section 2.1. Given measurable spaces X and Y, a probability measure y € Prob[X], and a
measurable function f: X — Prob[Y], then Post[y, f] defines a probability measure on Y
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that is intuitively obtained by averaging over all probability measures f(x) where x € X
with respect to the measure , i.e., for every Borel set By C Y it holds

Postlu, f1(Bv) = [ £(x)(By) du(x).

Lemma 80. Let T = (Sta, Act, —) be a Souslin STS and s € Sta be a state. Denote the combined-
transition relation by =. Suppose a measurable space X, a measurable set Bx C X, a probability
measure y € Prob[X], and a measurable function f: X — Prob[Act x Sta| such that

#(Bx) =1 and s= f(x)forall x € Bx.
Then it holds
s = Post[y, f].
Proof. For convenience, let us introduce the following two abbreviations:

@ = Post[p, f] and B = fy(u).

First of all it holds ¢ = Barycen () since for every Borel set B C Act x Sta one has

= [ f@) B du(x) = [ ¢/(B)dfy(u)(g") = Barycen(B)(B).

The set Enabled][s] is Souslin in Prob[Act x Sta] by Remark 67 and therefore, the set
Conv|Enabled|[s]] is Souslin in Prob[Act x Sta] by Theorem 27. The combined-transition
relation of 7 is closed under combining inspecting again Remark 67. To conclude the
lemma, it hence suffices to show °(Conv|Enabled|[s]]) = 1 thanks to Lemma 12.

Applying Lemma 13, it holds

pU(f(B)) = 1.
We moreover have the following inclusion:
f(B) C Conv|Enabled]s]].

Indeed, given ¢’ € f(B), then there exists x € B such that f(x) = ¢’, which directly
entails s = ¢’. From this we conclude f°"*(Conv|Enabled[s]]) = 1. O

Intuitively, assuming the setting as in Lemma 80, the function f assigns every element
of the measurable set Bx to a combined transition enabled at the state s. The lemma then
shows that averaging over these annotated combined transitions with respect to the given
probability measure p also yields a combined transition enabled at the state s.
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4 Simulations and trace distributions for Souslin systems

Proof of Theorem 77. As usual the symbol = denotes the combined-transition relation of
the given STS 7. Pick a p,-scheduler, say &,. Our task is to provide a jj,-scheduler &, such

that for every n € IN the induced finite-path measures Pr,[S,] and Pr,[S;] are related

concerning the weight lifting of the relation RP2th/",

For every n € IN define the function &, ,,: Path,, — Prob[Act x Sta],
Son(7) = &,(7)
as well as the probability measure %, € Prob|[Path,],
Xan = Pru[&q].
We obviously have X,0 = 4. For every n € IN the function &, is Borel, it holds
Pryq [Ga] = Xa,n X éa,n
and moreover, there exists a Borel set fla,n C Path,, such that

)@a,n(flu,n) =1 and Last,(7,;)= @a,n(ﬁb) forall 7, € flu,n.

Main claim. The key observation of this proof is summarised by the following statement.
For every n € IN there exist a probability measure X, € Prob[Path,| as well as a Borel
function &, : Path, — Prob[Act x Sta] such that the following three properties hold:

(a) Ttholds {0 = pp and for every n € IN \ {0} one has £, 1 = Rou X Sp e
(b) For every n € IN there is a Borel set I}, , C Path, with the properties

Ron(Tlp,) =1 and Last,(7,) = &, (7) forall &, € TT;, ..

(c) Forevery n € N one has ({4, Xp,,) € (RPA)WEE

Let us derive the theorem assuming for a moment that the previous claim is already
proven. For every n € IN let £, , and &, , as in the claim, in particular, satisfying the three
statements (1), (2), and (3). Moreover, let & : Path.,, — Prob[Sta] U Prob[Act x Sta] be
the function such that

Sy(0) =pp and &y, =&, foralln € N,

~n

In particular, for every n € IN and 7, € Path,, it holds &,(7;,) = Sy, (7).

118



4.5 Simulations and bisimulations on finite paths

As the function &, ,, is Borel for every n € IN, it directly follows that &, is Borel. An easy
induction over the natural numbers together with statement (1) show that for alln € IN,

Pra[6y] = %o and  Pryi1[6y] = Ron % &y

By statement (2), it hence follows that &, forms a pj,-scheduler. Moreover, statement (3)
yields the existence of a weight function for (Pr,[G,], RP*™"", Pr,[&,]) for every n € IN.
Putting things together, we obtain a proof of Theorem 77.

Proof of main claim. Let n € IN be a natural number. Suppose a probability meas-
ure {p,, € Prob[Path,)] satisfying (Xsn, Xpn) € (RP?)W8E Let W, be a weight func-
tion for (o, Rpath'”, Xb,n)- In the remainder of this proof we provide a Borel function
&y, ¢ Path, — Prob[Act x Sta] such that there exists a Borel set IT},, C Path, with

A

Xon(Ilp,) =1 and Last,(7,) = &, (7,) forall A, € 1T,
and moreover, such that it holds
<7€u,n X E%u,n/ Xbn X éb,n> € (Rpath’n+l)wgt'

Relying on an inductive argument, it is then easy to deduce the previously stated main
claim of this proof.

The following proof is comparatively long and in some of its parts also rather technical.
In a first step, we introduce an appropriate set-valued function and justify the existence
of a Borel selection. Exploiting this Borel selection, we then provide a definition of the
function & pn- After that, it remains to show that the desired properties mentioned before
are fulfilled.

Set-valued function F and Borel Wy-selection. We introduce a set-valued function F and
justify the existence of a Borel Wj,-selection. Define F: Path, x Path, ~ Prob[Act x Sta],

F(7ty, 7ty) = {@p € Prob[Act x Sta] ; Last,(7t,) = ¢, and
<éa,n(ﬁa), §0b> S (RACt)Wgt}.

A

As the probability measure W, is a weight function for ({a,,, RP3", %, ), there exists
a Borel set Ry, C Pathy, x Path, with Ry, C RP¥*" and W, (R ,) = 1. Define the
Borel set Riy , C Path,, x Path, by Riy , = Ry, N (T X Pathy). As R (Tle) = 1, we
obtain W, (R{N,n) = 1. Moreover, using that R is a combined-transition simulation, the set
F(7t,, fty) is not empty for every (7, 7tp) € Ryy .
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The set Rel[F] is Souslin in Path, x Path, x Prob[Act x Sta] that can be seen as follows.
Introduce the Borel function { with domain Path,, x Path,, x Prob[Act x Sta] and codomain
Sta x Prob|Act x Sta] x Prob[Act x Sta] as follows: for all &, € Path,, 7t, € Path,, and
@p € Prob[Act x Sta] let

{(Ra, 7y, @p) = (Lasty (1), @p, Gan(fa)).
We immediately obtain the following identity
Rel[F] = {7 Y((= x Prob[Act x Sta]) N (Sta x (RA)Wst)),

The set (RA")Wst is Souslin in Prob[Act x Sta] x Prob[Act x Sta] exploiting Lemmas 53
and 75. As the STS 7T is required to be weakly Souslin, it follows that the set Rel[F] is
Souslin in Path,, x Path,, x Prob[Act x Sta] by Remark 10 (5).

Definition of the Borel function &y, ,. We saw that there exists a Borel W,,-selection of F, say
f. For every 7}, € Path,, define the function f3, : Path, — Prob[Act x Sta],

fﬁb(ﬁa) = f(ﬁa/ ﬁh)-

A standard argument shows that the function f3, is Borel for all 7, € Path,,.
By the disintegration theorem (see Section 2.1), there moreover exists a Borel function
g: Path, — Prob[Path,]| with

W, = X Xb,w

Using the functions f and g, the function &, : Path, — Prob[Act x Sta] is introduced
as follows: for all 7t;, € Path,, define

A

Gy (7ty) = Post[g(7t), f2,],
i.e., for every 7, € Path, and Borel set B, C Act x Sta it holds
Sua(0)(B) = [ fr () (By) dg () (o).

Fubini’s theorem (see Section 2.1) justifies that éb,n is a Borel function.

Compatibility with the combined-transition relation. Since f is a Borel W;-selection of F,
there exists a Borel set Ry C Path,, x Path,, such that

Wn(Rf) =1 and f(ﬁ'a, ﬁb) S P(f(u, ﬁb) for all <ﬁa, ﬁb> S Rf
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The set Section[Ry, -, 7] is Borel in Pathy, for all &, € Path,, (see Section 2.1). Thanks to
Lemma 15, there hence exists a Borel set IAIb,n C Pathy, such that the following properties
are fulfilled:

Xon(Iy,) =1 and g(7ty)(Section[Ry, -, 7tp]) = 1 for all 7, € I,

Let 71, € T, , It remains to show Last(#,) = &, (7t,). For all #, € Section [Rf, -, 7]
one has f(7,, y) € F(#,, 7,) and therefore, it holds

Since g(7t,) (Section[Ry, -, 7ty]) = 1, we can apply Lemma 80 and conclude,
Last, (7ty) = Post[g(7ty), f,]-

By the definition of &y, ,, this finally yields Last(7t,) = &, (#3).

Existence of a weight function. As f is a Borel W;-selection of the set-valued function F
and since W), is a weight function for (X, Rpathn Kb ), Lemma 54 yields the existence of
a Borel function h: Path, x Path,, — Prob[(Act x Sta) x (Act x Sta)] and of a Borel set
Ry, C Pathy, x Path, with the following properties:

Wy(Ry) =1 and R;, C RPath”
and for all {7, 7t,) € Ry,
h(7t,, 7ty) is a weight function for (&, ,(#,), RAY, f (7, 7).

Let { be the function with domain Path,, x Path, x (Act x Sta) x (Act x Sta) and codo-
main Path, 1 X Path, 1 such that for all &, € Path,, 7t, € Pathy, (act,,s.) € Act X Sta,
and (acty, sp) € Act x Sta it holds

C(ﬁa/ ﬁb/ <aCtIZ/ Sll>/ <aCtb/ Sb>> = <7%a aCtg Sa, ﬁb ﬂcth Sb>.
Moreover, define W, 1 € Prob|Path, 1 x Path, 1] by
Wn+1 = gMWn A h)

It remains to show that W,, ;1 is a weight function for (£, X &, RPM L 2, % &) ,).
We justify that W11 is a coupling of ({4, éa,n, Ko X éb,n) first. Let ﬁi,n C Path,
and Bj C Act x Sta be Borel sets. It holds,

WVl-i—] (Pﬂthn_;,_l X (I’—\I;J,ﬂ X Bi?))
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- /  h(fa, 7) (Act % Sta) x BL) dWo(7ta, 7)
Path, xIT} |

= [ e ) (B AW, ()
Path, xIT} |

= [, ([ @) a0 ) disn()
bn

= - éb,n<ﬁb)(B;7) de,n<ﬁb)
bn
= Ron X Spu(TTy, x By)
From this, we immediately obtain W1 (Pathy, 1 x IT, 1) = Ron X &y, (1T, 1) forall
Borel sets ﬂ;m +1 © Path;, 11 by Carathéodory extension theorem (see Section 2.1).
Let T, C Path, and B), C Act x Sta be Borel sets. We have

Wyt ((IT,, X B}) x Pathy1)

I
5>

h( e, 7) (B % (Act x Sta)) dWy(fta, 723)

11,,, x Path,,

= [ San) (B AW, (e 1)
11, , xPath,,

!
a,

= -~ éﬁ/n<ﬁﬂ)<BI{Z) d?%m(ﬁa)

= Xan X éa,ﬂ(ﬁ/a,n X By)

Again, thanks to Carathéodory extension, for all Borel sets fI; a1 & Path,, 1 it holds

Wyiq (fl;n 11 X Pathy 1) = Ran X Sun (IAI’M +1)- Putting things together, W), 1 is a coup-
ling of (Xan ¥ Gan, Ko X Spu)-

By Lemma 79, the set RP?""*1 is Souslin in Path, 1 x Path, 1. Thanks to Lemma 12,
it suffices to show (W, 11)°"(RP"+1) = 1 in order to finish the argument for (3). Let
Rw C Path,1 x Path, 1 be a Borel set such that RP**"+1 C Ryy. For every (7, /) €
RPat e obtain

RA C Section[{ " (Rw), (#ta, 713, -]
For all (#,, 7t,) € Ry, it holds (h(#,, 7)) (RA?) = 1 and therefore,
h(7ta, 7tp) (Section [T (Rw), (#ta, ), *]) = 1.

Since W, (Ry,) = 1, we thus obtain

W (Rw) = [ h(st ) (Section[g ™" (Ruw), (Fa, 7)) dWo (i, ) = 1.
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This proves (W, 1)°"(RP&+1) = 1. As a consequence, the probability measure W, |
forms a weight function for (X, X &, RPEMHL 2 5 &) ). O

4.6 Preservation of trace distributions

We show that in Souslin STSs the simulation preorder is subsumed by the trace-distribution
preorder and accordingly, that the Souslin-bisimulation equivalence is finer than the trace-
distribution equivalence. At the end of this section, we provide two slight generalisations
of this result. Given the preparatory work carried out by the previous sections, it remains
to show the following simple observation:

Lemma 81. Let T = (Sta, Act, —) be an STS, R C Sta x Sta be a relation, as well as piq, pp €
Prob[Sta] be probability measures. Moreover, consider a pq-scheduler S, and a py-scheduler S,
such that foralln € IN,

(Pry[6,], Pry[Gy)) € (RPathmywet,
Then the following identity holds:
PrTrace[S,]| = PrTrace[Sy).
Proof. Letn € N\ {0} and Ay, ..., A, be Borel subsets of Act. Define
A=A; X...x A, X Act®.
as well as
IT= Sta x (Ay x Sta) x ... x (A, x Sta).

Then the sets A and I'T are Borel in Act* and Path,,, respectively. Moreover, it is easy to see
that the set ITis RP®"_stable. Since (Pr,,[S,], Pr,[&;]) € (RPh)Wet Remark 34 yields

PrTrace[S,](A) = Pr,[6,](IT) = Pr,[6,](IT) = PrTrace[S,](A).

Thanks to Carathéodory’s uniqueness theorem (see Section 2.1), we finally obtain the
identity PrTrace[S,] = PrTrace|S)]. O

The lemma gives a simple sufficient criterion for proving that two schedulers induce the
same trace distribution. This together with the achievements of the previous sections in
this chapter yield the first main result of this thesis:
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4 Simulations and trace distributions for Souslin systems

Theorem 82. Let T = (Sta, Act, —) be a weakly Souslin STS. For every states s,, s, € Sta the
following two statements hold:

(1) s, 3%°%Cs;, implies s, < sy,
(2) s,2%%Cs, implies s, =" sy

Proof. Lets,, s, € Sta be states with s, <°°"¢s;,. Moreover let R be a Souslin combined
simulation such that (s,, s,) € R. Suppose an s,-scheduler G,. According to Theorem 77,
there exists an sp-scheduler &, such that for all # € IN it holds

(Pru[Ga], Pra[&y)) € (RPathywet,
Thanks to Lemma 81, we obtain
PrTrace|S,] = PrTrace[Sy).

This entails s, <" s, that justifies statement (1). Obviously, (2) follows directly from
(1). O

Corollary 83. Let T = (Sta, Act, — ) bea Souslin STS. For every states s, s, € Sta the following
two statements hold:

(1) sq 3%%s;, implies s, <"sy.
(2) 845 sg;, implies s, ="sy.
Proof. The claim follows from Theorem 82 together with Theorems 70 and 74. O

As a consequence, establishing a Souslin-simulation and a Souslin-bisimulation are sound
proof techniques for proving trace-distribution preorder and trace-distribution equivalence
in Souslin STSs, respectively. Standard discussions concerning linear-time and branching-
time behaviour of operational systems (see, e.g., [BK08]) show that the respective reverse
implications of Theorem 82 and its Corollary 83 do not hold in general. It can be regarded
as folklore that there are examples of finite non-stochastic systems where s, =" s, while
neither s, = s, nor s, ~ s;, for some states s, and s,. However, as we see in Section 4.8, for
the subclass of Souslin STSs consisting of those systems that are deterministic and purely
stochastic the relations induced by (Souslin) simulation, (Souslin) bisimulation, and trace
distributions are the same.

It turns out that Theorem 82 and its Corollary 83 do not hold if one drops the Souslin
requirement for the STS under consideration. The following example is borrowed from
Example 9.2 in [Cat05] and basically continues our discussions from Section 4.1.
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Sa Sp

actq actq
Leb
s 0 /:/V‘::\ 1]
Bern

acty acty acty

S/u/ S;}l §ZI

acts acts acts

Figure 4.4: It holds s, ~*°" s, but neither s, <" s, nor s, =" s;,.

Example 84 (Example 9.2 in [Cat05]). Suppose the STS 7T involving the states s, and s; is
given as in Figure 4.4. Here, the reachable part from state s, is defined as in Example 63
involving a Bernstein set Bern. Thanks to Examples 63 and 66, the STS T is not Souslin
and moreover, there exists no s;-scheduler. In contrast, it is easy to see that there is a
sa-scheduler and thus, the assertion s, < s, does not hold. However, we obviously have
sq %% 5, as well as s, > sp,. As a result of this example, the thesis [Cat05] proposes a
global bisimulation notion. This approach is detailed discussed in the next section. 4

Theorem 82 as well as its Corollary 83 consider only trace distributions where the initial
conditions of corresponding schedulers are given by a single state. However, the following
proposition illustrates that the main results of this section can be easily adapted for trace
distributions whose generating schedulers involve arbitrary initial distributions over the

state space:

Proposition 85. Let 7 = (Sta, Act,—) be a Souslin STS, R be an Souslin simulation, and
Ha, Uy € Prob[Sta] be such that (ji,, up) € RV8. Then for every pg-scheduler S, there exists a
Up-scheduler Sy, such that

PrTrace[S,| = PrTrace[Sy).

Proof. Inspecting Lemmas 81 and 81, one can apply the same argument as for Theorem 82
and its Corollary 83. 0
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4 Simulations and trace distributions for Souslin systems

4.7 Discussion on Cattani’s result

The measurability requirements on schedulers cause the main mathematical challenges for
a proof of Theorem 82 and its Corollary 83 stating that, besides others, trace-distribution
equivalence is finer than bisimulation equivalence under Souslin side constraints. Illustrated
by Example 84 (see also Example 9.2 in [Cat05]), the problem is that the used standard
notion for bisimulation does not distinguish between states with, roughly speaking, different
measurable structure. Indeed, there might be states s, and s, of an STS with s, ~*°" s}, such
that there exists an s;-scheduler while there is no s,-scheduler. For that reason, reflecting
our idea introduced in Section 4.1, we develop a theory based on Souslin STSs (see also
Theorem 65). In contrast, Cattani proposes another approach in his thesis [Cat05] to treat
the measurability problems caused by schedulers: instead of focusing on the classical
notion for bisimulation, Cattani regards a global variant of bisimulation. Given some side
constraints, Theorem 9.19 in [Cat05] then shows that global-bisimulation equivalence is
finer than trace-distribution equivalence. This section discusses this approach and relates
our result with that in [Cat05].

The starting point of [Cat05] is to view STSs as transformers of probabilities [KVAKI10,
DMS14, AAGT15]. In the standard semantics for stochastic systems, stochastic choices
over successor states are resolved in the sense that each step continues from a single state.
However, viewing stochastic systems as transformers of probabilities, the stochastic choice
is not resolved and one continuous from a distribution over states in every step instead. This
informal description leads to the notion of the global-transition relation and corresponding
notions of (bi)simulations [Cat05, DHR08, EHZ10, Hen12, HKK14, FZ14, Y]JZ17].

For the following material it is appropriate to recall the definition of the post operator
from Section 2.1.

Definition 86. For every STS T = (Sta, Act, —) the global-transition relation
= C Prob[Sta] x Prob[Act x Sta]

consists of exactly those pairs (i, ¢) € Prob[Sta] x Prob[Act x Sta] that satisfy the fol-
lowing statement: there exist a Borel function &: Sta — Prob|Act x Sta] and a Borel set
S C Sta such that

u(S)=1, s=6&(s)foralls €S, and ¢ = Post[u,S].

In this context, we refer to the pair (&, S) as a witness for u = ¢. -
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4.7 Discussion on Cattani’s result

Our previous definition corresponds to Definition 9.7 in [Cat05] where, however, one
refers to global transitions as hyper transitions. Whereas each transition of an STS starts
in a single state, a global transition continues from a distribution over states. Intuitively,
a global transition includes a measurable bundle of transitions that are put together by
averaging with respect to a probability measure.

acty [%]

/—\
acti[3] (s 52 )acty[}]
~_

acty[3]
Figure 4.5: Simple STS for the illustration of the global transition relation.

Example 87. Consider the simple STS T = (Sta, Act, —) depicted in Figure 4.5, i.e., Sta =
{s1,s2} and Act = {acty,act,}. Denote the corresponding global transition by =. Let
i € Prob[Sta] be the probability measure such that pt({s1}) = 1/2 and p({s2}) = 1/2.
For every ¢ € Prob[Act x Sta] one has u = ¢ iff the following four statements hold:

p({ach} x {s1}) =1/4, ({act} x {s1}) = 1/4,

p({acti} x {s2}) =1/4, ¢({actr} x {s2}) =1/4.
Consequently, for every probability measure ¢ € Prob[Act x Sta] such that 4 = ¢ one
obtains ¢(Act x {s1}) = 1/2 = u({s1}) and ¢(Act x {s2}) = 1/2 = u({s2}). Thus,

for every execution continuing from y with respect to the global-transition relation the
distribution over the state space remains invariant and is given by . q

Relying on the global-transition relation, we introduce the following alternative notions
for the comparison of the branching-time structure of states in an STS:

Ha ngt Hp Ha ngt p
1 can be completed to 1l 1l
®a @ (RAct ) wgt ®p

Figure 4.6: Condition for a global simulation R.
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4 Simulations and trace distributions for Souslin systems

Definition 88. Let 7 = (Sta, Act, —) be an STS and denote the corresponding global-
transition relation by =. A relation R C Sta x Sta is called a global simulation if for every
probability measures y,, it € Prob[Sta] and ¢, € Prob[Act x Sta] such that

(fa, pp) € RV and  u, = @,

there exists ¢, € Prob[Act x Sta] with

=gy and  (@q, @p) € (RAT)VEL,

A relation R C Sta x Sta is said to be a global bisimulation if both relations R and its inverse

relation R~! are combined simulations. _|

Figure 4.6 illustrates the condition for a global simulation. Conceptually, Definition 9.8
in [Cat05] and Definition 88 are the same, however, while we rely on the weight lifting of
relations, [Cat05] focuses on an alternative lifting that is precised in the second part of this
section. The classical notions of simulation and bisimulation introduced in Section 3.2 are
local in the sense that only individual states and their outgoing transitions are considered.
Compared with this, global simulation and bisimulation provide a global view on the
branching-time structure of an STS such that measurability aspects are taken into account
(see also the discussions in Chapter 9 in [Cat05]).

The following notions for an STS T = (Sta, Act, —) are routine. A global simulation
R is called Souslin if the set R is Souslin in Sta x Sta. Analogously, we refer to a global
bisimulation R as Souslin provided the set R is Souslin in Sta x Sta. The Souslin-global-
simulation preorder <°°"8 and the Souslin-global-bisimulation equivalence ~%°"& are defined
in a natural fashion, e.g., for every states s,, s, € Sta,

sq X%°%8 s, iff there is a Souslin global simulation R with (s,, s,) € R,

$a~*°"8 s, iff there is a Souslin glob bisimulation R with (s4,s;) € R.

Relying on Lemma 56 as well as Theorem 58 (2), it is easy to see that the relations <*°"&
and ~*°"& form a preorder and an equivalence on the state space Sta, respectively (see
also the proof of Theorem 55). In what follows we relate the introduced global notions for
simulation and bisimulation with combined simulation and bisimulation investigated in
Section 4.3 (see Definition 73).

Example 89. Considering states s, and s, of an STS, it is easy to see that the following two
statements hold:
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(1) s, %8s, implies s, <3"Csy,.
(2) s, %83, implies s, %" sy,

This follows directly from the fact that for every transition s — ¢ in the STS it holds
Dirac[s] =% ¢ where =2 denotes the corresponding global-transition relation.

However, the reverse implications of (1) and (2) do not hold in general. To see this,
consider the STS 7 from Example 84 (see also Figure 4.4). Denote the corresponding
state and action space by Sta and Act, respectively. Moreover, let = be the associated
global-transition relation. Relying on the same argument as in Example 63, there exists no
@ € Prob[Act x Sta] such that Leb = ¢. This implies that neither s, <8 s, nor s, ~*°“8s,
hold. However, it is easy to see that s, ~*°"C sy, _|

According to Example 66, the STS for the counterexample in the previous example in not
Souslin. In fact, if one focuses on Souslin STSs, the notions of Souslin global (bi)simulation
and Souslin combined (bi)simulation are the same:

Theorem 90. Let 7 = (Sta, Act, —) be a Souslin STS. For every states s,,s, € Sta the two
statements below hold:

(1) sq <soug 5, Zﬁc Sq =5OUC g,
(2) s, %0U8 g, lﬁ( Sq SOUC g,

Moreover, it even holds that every Souslin combined simulation is a Souslin global simulation and
accordingly, that every Souslin combined bisimulation is a Souslin global bisimulation. J

If one takes the setting of this chapter into account, the involved Souslin requirements of
the previous result are as expected. Relying on exactly the same argument as for Corollary 78
(or more precisely, Theorem 77), one obtains a proof for Theorem 90 that, in particular, uses
a measurable-selection principle. Nevertheless, at the end of this section, we provide some
more details on an argument. According to Example 89, the previous theorem does not
hold if one drops the Souslin assumption for the involved STS. Theorem 90 also serves as an
answer to concluding questions in Section 9.5.4 in [Cat05] where one asks, besides others,
under which conditions the combined-bisimulation relation and the global-bisimulation
relation are the same.

Corollary 91. Let T = (Sta, Act,—) be a Souslin STS. For every states s,, S, € Sta the two
statements below hold:
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4 Simulations and trace distributions for Souslin systems

(1) s, <°"8s, implies s, <"sy.
(2) 8,508, implies s, =" sy

Proof. The claim follows directly from Corollary 83 and Theorem 90. O

Discussion on Cattani’s result. In what follows we provide a detailed comparison of
Theorem 82 as well as Corollaries 83 and 91 with a main result of Cattani’s thesis [Cat05].
For this let us first remark that in [Cat05] two probability measures i,, 4, € Prob[Sta] are
related in terms of the relation R if for every R-stable Borel S C Sta it holds u,(S) = pp(S).
According to Theorem 40, the this notion and the weight lifting are the same for smooth
relations. This insight is important in regards to the following discussion.

Proposition 92 (Theorem 9.19 in [Cat05]). Let T = (Sta, Act, —) be a simple STS. Then for
every states sq, s, € Sta the following implication holds: if there is a global bisimulation R with
(8a,8p) € R and such that the relation R is smooth, then it holds s, =" s}, N

To be more precise, the given proof of Theorem 9.19 in [Cat05] also works if one assumes
that certain regular conditional probabilities with respect to the quotient functions of a given
(not necessarily smooth) bisimulation exist. However, in applications and for concrete
examples it is difficult to determine whether this requirement is indeed fulfilled. Thatis why
one typically considers smooth relations where this condition is automatically fulfilled (see
Theorem 2.12 in [Cat05] and Theorem 7.11 in [ Pan09] as well as the discussions on this topic
in Section 7.5 in [Pan09]). Besides this, Theorem 9.19 in [Cat05] in fact considers a weak
notion of global equivalence. Weak equivalences abstract from internal steps supposed to
be not observable from an external agent [SL94, BH97, PLS00, DGJP10, CSKN05, DH13b].
However, this does not affect the discussions on measurability aspects for schedulers
assuming every action is observable.

Conceptually, Corollary 91 and Proposition 92 are in the same spirit. Indeed, both
results focus on the generic model of STSs and on a global notion for the comparison
of the branching-time structure of states. However, the results differ concerning their
side constraints. While Proposition 92 holds for arbitrary STSs, Corollary 91 requires a
Souslin STS. The smoothness requirement on the global bisimulation in Proposition 92 is
stronger than the corresponding Souslin assumption in Corollary 91 (see also Remark 38).
Furthermore, Proposition 92 provides no corresponding result for global simulations and
is restricted to simple STSs.

Besides the latter mentioned facts, the main ideas of the proofs in this thesis and in [Cat05]
completely differ. Whereas [Cat05] provides a construction of schedulers based on quotient
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4.7 Discussion on Cattani’s result

spaces and associated quotient functions, we conservatively extend the classical approach
for non-stochastic discrete systems using measurable-selection principles. It is moreover
not clear whether the technique in [Cat05] can be extended for the simulation preorder
as for preorders there is no natural notion concerning quotient spaces and corresponding
quotient functions.

Taking Cattani’s results into account, the precise new insights of this chapter for the
class of all Souslin STS can be summarised as follows. First of all, in Theorem 90 we
establish a connection between global simulation and combined simulation as well as for
the corresponding notions for bisimulation. Taking Theorem 90 and the result in Cattani’s
thesis, i.e., Proposition 92, we derive that for every states s, and s; of a simple Souslin STS
the following implication holds: if there is a combined bisimulation R with (s,, s;) € R and
such that the relation R is smooth, then it holds s, = s p- Thus, in Theorem 82 we moreover
show that the premise of the latter implication can be even relaxed by the requirement
Sq %€ 5}, (see also Theorem 70). Viewing our results from this perspective, Corollary 83
finally states that the condition s, ~*°" s, can be replaced by the statement s, ~*°" s,
considering the ordinary notion of simulation.

Besides the latter mentioned facts, compared to [Cat05], Theorem 82 and Corollary 83
also provide corresponding result for simulations.

Proof of section’s main result. Our argument for Theorem 90 does not need any new
insight. In fact, the proof constitutes a simplification of the argument for Theorem 77. It
basically remains to show the following lemma:

Lemma 93. Let X and Y be Polish spaces, R C X x X be a relation, and f: X — Y be a Borel
function. Define the relation Ry C'Y XY by

Ry = {(f(xa), f(x3)) ; (xa, xp) € R}.

For every probability measures pq, iy € Prob[X] the following implication holds:

(Ma, py) € RVE" implies  (fy(pa), fs(Hp)) € (Ry)"E.

Proof. Define the Borel function g: X x X — Y x Y, ¢(x4, %) = (f(xa), f(x)). Consid-
ering a weight function W for (14, R, pt), we introduce W' € Prob[Y x Y] by W' = g4(W).
Then W' is a weight function for (f;(#a), Ry, fs(pt)). Let us see why. First of all, it is easy
to see that W’ is a coupling for (f;(pa), fs(ptp))- Let R" € X x X be a Borel set such that
W(R’) = 1and R’ C R. According to Lemma 13, there is a Borel set R} C Y x Y with
W/(R}) = 1and R C g(R’). Since we have R C g(R’) € Ry, we can finally conclude

f f
that the probability measure W’ is a weight function for (f;(#a), Ry, fi(pp))- O
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Proof of Theorem 90. We provide a proof for claim (1). as the argument for (2) is completely
analogous. First of all, the implication stating that s, <*°"6 s, implies s, <" s}, for
every states s;, s, € Sta follows directly from the definitions. We consider the reverse
direction now. For this let R be a Souslin combined simulation. In the remainder of this
proof, we show that R is a global simulation that finally yields a proof for claim (1). Let
Ua, iy € Prob[Sta] and @, € Prob[Act x Sta] be such that

(Ma, pp) € R™8&" and Ua = Pa.

Suppose that (S,, S,) is a witness for j; = @,. The argument for Theorem 77 can be
easily simplified to obtain a probability measure ¢, € Prob[Act x Sta] such that yu, = ¢y,
and (@4, pp) € (RA)W8t, More precisely, inspecting this proof again, there exists a Borel
function &, : Sta — Prob[Act x Sta] and a Borel set S;, C Sta such that

1p(Sp) =1, and s, = Sy(sy) foralls, € S,
as well as
(Ha % &4,y x &) € (RPE)WEL,
Defining the probability measure ¢, € Prob[Act x Sta],
@y = Post[py, &),

one easily derives that y, = &;. Here, (&}, Sp) is a witness for y, = &;. It remains to show
(@a, pp) € (RA4)W8t, To this end define the Borel function & : Sta X Act x Sta — Act x Sta,

&(s,act,s') = {act,s’).
Then one easily justifies that
Ci(a 2 &) = @a and  &y(pp 0 &p) = @y

as well as
RA = {(§(#a), 5 (7)) 5 (P, 1) € RPOY

Thanks to Lemma 93, we finally obtain (¢,, ¢,) € (RA*)W8t, O
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4.8 Deterministic purely stochastic systems

It can be regarded as folklore that for non-stochastic systems whose observable branching-
time structure is deterministic the trace relation and the bisimulation relation are the same,
i.e., for every states s, and sj, one has s, ~ s, iff s, =" s;,. The motivation of this section is to
provide a corresponding result for the setting of this thesis. For this purpose we introduce
purely stochastic STSs first. After that, we define the property of being deterministic in
the context of purely stochastic STSs. It is then shown that for every deterministic purely
stochastic Souslin STS the relations induced by bisimulation, Souslin bisimulation, and
trace distributions are the same.

Definition 94. An STS T = (Sta, Act, —) is called purely stochastic provided there exists a
function (control law)

R: Sta — Prob[Act x Sta]
such that for every state s € Sta and probability measure ¢ € Prob[Act x Sta],
s— @ iff R(s)=g¢,
i.e., the transition relation — and the graph of the function £ are the same. 4

In other words, an STS is purely stochastic precisely when the set Enabled|s] is a singleton
for every state s. If an STS is purely stochastic, the corresponding control law is uniquely
determined. Vice versa, the control law of a purely stochastic STS uniquely determines
the associated transition relation. To simplify notions, we can hence safely refer to a tuple
(Sta, Act, R) including the control law R rather than the transition relation — as a purely
stochastic STS where the symbols are given as before.

Remark 95. Let 7 = (Sta, Act, 8) be a purely stochastic STS. Then the following two
statements are equivalent:

(1) The control law R is a Borel function.
(2) The STS T is Souslin.
The claimed equivalence follows directly from Remark 10 (6). 4

The definition of a purely stochastic STS involves no measurability requirement concern-
ing the control law. The previous remark shows that the class of all Souslin STSs covers
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precisely those purely stochastic STSs whose control law constitutes a Borel function. In
the context of stochastic processes, the Borel assumption on the control law is standard.
Thus, the Souslin property for purely stochastic STSs has a natural characterisation that
also provides confidence for the applicability of the key concepts of this chapter. Model-
ling formalisms from the literature that are covered by purely stochastic Souslin STSs are
presented in Chapter 7.2.

Remark 96. Let 7 = (Sta, Act, R) be a purely stochastic Souslin STSand y € Prob[Sta] be a
probability measure intuitively serving as an initial distribution. According to Theorem 65,
there exists a pi-scheduler for 7. Since the set Enabled[s] is a singleton for every state
$ € Sta, there exists exactly one y-scheduler, say &,,. Let n € IN be a natural number. For
every finite path 7 € Path,, it obviously holds

6, (7t) = R(Last,(77)).
Consequently, for every Borel sets fln C Path,, and B C Act x Sta we obtain

Pry1[6,](I1, x B) :/ R(Last, (7)) (B) dPry [6,](71),

n

i.e., the probability measure Pr,,1[&,] is uniquely determined by the probability measure
Pry,[&,] as well as the the control law £. N

According to Remark 96, the concept of schedulers is not needed for the definition of
path measures and trace distributions of purely stochastic Souslin STS. For that reason we
simplify notions as follows. Consider a purely stochastic Souslin STS with state space Sta.
For every i € Prob[Sta] we write Pr[y] rather than Pr[&,]. For every n € IN we use Pr,,[y]
instead of Pr,[S,,]. The notion PrTrace[y] referring to the respective trace distribution is
used analogously. For every state s € Sta we moreover use Pr|s] rather than Pr[Dirac(s]]
and accordingly for finite-path measures and trace distributions.

Remark 97. Let 7 = (Sta, Act, 8) be a purely stochastic STS and R C Sta x Sta be a
relation. Then the following three statements are equivalent:

(1) R isabisimulation.
(2) R isa simulation.

(3) For every states s, s, € Sta,

(sa,sp) € R implies (8(s,), &(sp)) € (RAT)VE,
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This equivalence follows directly from the definitions. a

The notions of simulation and bisimulation are the same for the class of purely stochastic
STSs. In this chapter all the results are written from the bisimulation perspective, however,
every result can be also formulated from the simulation point of view by Remark 97. Besides
this observation, the combined-transition relation of a purely stochastic STS collapses with
the transition relation and hence, the notion of bisimulation and combined bisimulation
are also the same.

We first thought that the bisimulation relation and the trace-distribution relation are the
same for purely stochastic Souslin STS. However, our initial idea is false as the following
(standard) example illustrates:

Sp

Sa
acty [;]/ Ytl [%] et ‘
1
s s s,
actz[%] actz[%]
acty acty
7 sy

all

S Sa §g
acts acty acts acty

Figure 4.7: It holds s, =" s, but not s, ~ sj,.

Example 98. Consider the purely stochastic Souslin STS 7T illustrated by Figure 4.7. In-
specting the states s, and sy, it is easy to see that s, =g,. Indeed, the uniquely determined
trace distribution in these states is given by the probability measure on Act” that assigns
probability 1/2 to the traces acty act, act§ and acty acty acty, respectively. However, we

have that s, and s;, are not bisimilar to each other. J

The purely stochastic STS depicted in Figure 4.7 (see also Example 98) is not deterministic
from the action-based point of view on stochastic systems. Indeed, both states s}, and 3/,
can be reached from state s, by taking the same action act; and accordingly, the execution
of the action act; in state s}, does not lead to an uniquely determined successor state. This

observation motivates to the following definition:

135



4 Simulations and trace distributions for Souslin systems

Definition 99. A purely stochastic STS T = (Sta, Act, R) is called deterministic provided
for every state s € Sta there exists a Borel function f;: Act — Sta such that

A(s)(Graph[£.]) = 1.

In this context, we refer to the function f; as a witness for the determinism in s. 4

By Remark 10 (6), the graph of the Borel function f; is indeed Borel in Act x Sta and
thus, we can safely consider its probability mass concerning the probability measure £(s)
in the previous definition. The intuitive role of the function f; is as follows: when the
action act is executed in the state s, the successor state is almost surely determined by the
state f;(act). Assuming the sets Sta and Act are countable, it is easy to see that the purely
stochastic STS T is deterministic precisely when for every states s,s’,§’ € Sta and action
act € Act the following implication holds:

R(s)({act} x {s'}) > 0and &(s)({act} x {§'}) >0 implies s =73
This observation immediately justifies that the STS in Figure 4.7 is not deterministic.

Theorem 100. Let 7 = (Sta, Act, R) be a deterministic purely stochastic Souslin STS. For every
states s,, 5, € Sta the following equivalence holds:

ou

5. 2%sy, iff s, ="s.

In particular, the relation =% is a Souslin bisimulation. J

As a consequence, establishing Souslin-bisimulation equivalence is sound and complete
for proving trace-distribution equivalence of states for the subclass of STSs under con-
sideration. Relying on Corollary 83, it suffices to show that the relation =" is a Souslin
bisimulation. Our proof for this is technical in some points, however, relies only on basic
concepts of measure theory. Interestingly, the following argument uses the characterisation
of the weight lifting of an action lifting from Section 3.3. Indeed, this is the only place
in this thesis where we exploit the two-step view on distributions over action-state pairs
discussed in Section 3.3 in a mathematical argument.

Proof of section’s main result. Our argumentation for Theorem 100 uses the following
additional notations. Let 7 = (Sta, Act, f) be a purely stochastic Souslin STS. The function
Ract: Sta — Prob[Act] results from the control law R as follows: for every state s € Sta
and Borel set A C Act let

Ract(s)(A) = R(s)(A x Sta),
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i.e.,, Ract(s) is obtained by projecting the probability measure £(s) onto the action space
Act. Obviously, the function K4 is Borel since the control law £ forms a Borel function by
Remark 95. We additionally define the function PrTraceFunc: Sta — Prob[Act®],

PrTraceFunc(s) = PrTracels].

Hence, PrTraceFunc maps every state to its uniquely determined trace distribution (see
also Remark 96). This function is needed for a careful treatment of measurability issues.
For instance, to ensure the well-definedness of integrals over specific trace distributions, we
are required to show that the function PrTraceFunc is Borel. In this context, the following
lemma can be seen as folklore:

Lemma101. Let T = (Sta, Act, R) be a purely stochastic Souslin STS. The function PrTraceFunc
is Borel and moreover, for every state s € Sta and Borel sets A C Act and B C Act it holds

PrTraceFunc(s)(A x B) = / PrTraceFunc(s')(B) d&(s)(act,s")
AxSta

Proof. We rely on a standard argumentation scheme from measure theory. Pick a Borel sets
A C Act. For every Borel set B C Act” define the function fp: Sta — [0,1],

fB(s) = PrTraceFunc(s)(B).

Let M be the family consisting of all Borel subsets B C Act“ with the following property:
the function fp is Borel and for every state s € Sta one has the identity

PrTraceFunc(s)(A x B) = / fB(s") d&(s)(act,s").
AXSta
We show that M and the Borel sigma algebra on the Polish space Act” are the same. By
Remark 5, it then follows that the function PrTraceFunc is Borel and by Carathéodory
uniqueness theorem (see Section 2.1), the claimed identity then follows.

The family of sets M is a monotone class, i.e., the family M is closed under unions
of increasing chains and under intersections of decreasing chains. This follows from the
following three facts: every measure is continuous from below and above, the point-wise
limit of a convergence sequence of Borel functions is Borel, and the monotone convergence
theorem (also known as Beppo Levi’s theorem, see Satz 8.2.1 in [Sch08]).

Define Gy = {Act” } and moreover, for every n € IN \ {0} let

Gn={A1 X ... X Ay X Act“ ; Ay, ..., A, C Act are Borel sets}.

137



4 Simulations and trace distributions for Souslin systems

Relying on an induction over the natural numbers, we show that for every n € IN it holds
Gn € M. For every state s € Sta it holds f4« (s) = 1 as well as

PrTraceFunc(s)(A x Act?) = Kau(s)(A) = / 1dR(s)(act,s")
AXSta

We hence obtain Gy C M. Forevery n € N, if G, C M, then Fubini’s theorem (see
Section 2.1) yields the inclusion G, 11 C M.

The union G; U G U . .. generates the Borel sigma algebra on Act” (see Remark 3 (5) as
well as Section 3.5 in [Bog07]). Thus, putting things together, we can apply the monotone
class theorem (see Theorem 136B in [Fre01]) and therefore, the family M and the Borel
sigma algebra on Act® are the same. O

Whereas Lemma 101 holds for arbitrary purely stochastic Souslin STSs, the following
representation of the function PrTraceFunc is adapted for deterministic systems:

Lemma 102. Let T = (Sta, Act, R) be a deterministic purely stochastic Souslin STS, s € Sta
be a state, and f be a witness of the determinism in s. For every Borel set B C Act® define the
function gg: Act — [0,1],

¢p(act) = PrTraceFunc(f(act))(B).
For every Borel set B C Act® the function gp is Borel and moreover, for all Borel sets A C Act,

PrTraceFunc(s)(A x B) = /A gp(act) dRaq(s)(act).

Proof. Let B C Act” be a Borel set. Remark 5 immediately proves the first claim stating
that the function g¢p is Borel. It remains to show the claimed identity. For this purpose
define the function hp: Sta — [0, 1],

hg(s") = PrTraceFunc(s')(B).

Using the same argument as for the function gp, the function hp is also Borel. For every
pair (act,s’) € Graphl[f] it moreover holds f(act) = s’ and therefore, ¢p(act) = hg(s').
Relying on the identity ¢(Graph[f]) = 1, we hence obtain

/AgB(act) dRac(s)(act)
= /Axsmgg(act) df(s)(act,s")

- /A . a(s) AR(s) act, )
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4.8 Deterministic purely stochastic systems

= PrTraceFunc(s)(A x B)

where the latter equality follows from Lemma 101. O

Lemma 103. Let T = (Sta, Act, R) be a deterministic purely stochastic Souslin STS, s,,s, € Sta
be states, as well as f, and f}, be witnesses of the determinism in s, and sy, respectively. Assume
8qa =" 8y,. Then the following two statements hold:

(1) ﬁAct(su) = ﬁAct(Sb)'
(2) There exists a Borel set A C Act such that 84.(S2)(A) = 1 and for all act € A it holds

PrTraceFunc(f,(act)) = PrTraceFunc( f,(act)).

Proof. For every state s € Sta and Borel set A C Act® it holds
Ract(s)(A) = PrTraceFunc(s)(A x Act?).

This directly yields claim (1) since the identity PrTraceFunc(s,) = PrTraceFunc(sy) is

implied by the assumption s, =" s, (see also Remark 96). The remainder of this proof is

devoted to claim (2). Define the probability measure a € Prob[Act],

o = Ract(Sa)-

Clearly, it also holds & = £4(sp). Let C be a countable family of Borel sets in Act”
that generates the Borel sigma-algebra on Act, and moreover, that is closed under fi-
nite intersections (see Remark 4). Suppose Borel sets By, B, By, ... C Act” such that
C = {By,By,By,...}. For every n € N introduce the functions g,,: Act — [0,1] and
Qo Act — [0,1] as follows: for every act € Act let

Qan(act) = PrTraceFunc(f,(act))(By)
as well as
gbn(act) = PrTraceFunc(fy(act))(By).

For every n € IN, thanks to Lemma 102, both functions g, » and g3, , are Borel and moreover,
for all Borel sets A C Act it holds

PrTraceFunc(s,)(A x B,) = /Aga,n (act) do(act)
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4 Simulations and trace distributions for Souslin systems

and analogously,
PrTraceFunc(sy)(A X By,) = / Qpn(act) da(act).
A

Using again the identity PrTraceFunc(s,) = PrTraceFunc(sy), for every n € IN and every
Borel set A C Act it follows

/Aga,n(act) du(act) :/Agb,n(act) du(act).

According to a standard result from measure theory (see, e.g., Folgerung 9.2.8 in [Sch08]),
for every n € IN there exists a Borel set A, C Act such that

a(Ay) =1 and guu(act) = gy (act) forall act € A,.
Define the subset A¢ of Act by
Ac=AoNAINAN....

Since the family C is countable, the set A¢ is Borel in Act and it holds a(A¢) = 1. For every
act € Ac the probability measures PrTraceFunc(f,(act)) and PrTraceFunc(fy(act)) agree
onC,i.e., for every n € IN one has

PrTraceFunc(f,(act))(By,) = PrTraceFunc(fy(act))(By).

Since the family C generates the Borel sigma-algebra on Act® and is also closed under finite

intersection, for every act € A¢ it follows
PrTraceFunc(f,(act)) = PrTraceFunc( fy(act))
by Carathéodory extension theorem (see Section 2.1). This completes our proof. O

Lemma 104. Let T = (Sta, Act, R) be a deterministic purely stochastic STS, s € Sta be a state,
and f; be a witness of the determinism in s. Define the function f.: Act — Prob[Sta],

fi(act) = Dirac|fs(act)].

Then the following identity holds

£(s) = Rau(s) x fL.
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4.8 Deterministic purely stochastic systems

Proof. Note, by Example 6, the function fs’ is indeed Borel. Let A C Actand S C Sta be
Borel sets. It holds

Race(s) % fL(A x ) = [ Diraclfu(act))(S) dfaa(s) act) = Kaa(s)(A N £7(S)):
Using the identity

(AN () x Sta) N Graph[f.] = (A x S) N Graph(f.),
together with R(s)(Graph[fs]) = 1, we obtain

Kact(s)(ANfTH(S)) = A(s) (AN f7(S)) x Sta) = &(s)(A x S).
Carathéodory extension theorem (see Section 2.1) finally yields fa.¢(s) % f/ = &(s). O

Proof of Theorem 100. Using Remarks 37 and 96, it is easy to see that the relation =" is
smooth. In fact, for every states s,, s, € Sta it holds

sa="sy, iff PrTraceFunc(s,) = PrTraceFunc(sy).

Recall, the function PrTraceFunc is Borel by Lemma 101. Thanks to Remark 38, the set =fr
is in particular Souslin in Sta x Sta. Hence, thanks to Corollary 41, for every probability
measures }ig, i € Prob[Sta] we have

(Ma, tp) € (=")"8" iff PrTraceFuncy(j,) = PrTraceFuncy(pp).

Let s,, s, € Sta be states with s, =% s;,. To obtain a proof of the theorem, remembering
Remark 97, it suffices to show (8(s;), &(sp)) € ((=7)A)Wet. We rely on Theorem 52 and
hence, it suffices to show (R(s,), &(sp)) € ((=1)Act)two,

Suppose witnesses f; and f;, of the determinism in s, and s;, respectively. Introduce the
two functions f,: Act — Prob[Sta] and f;: Act — Prob[Sta] as follows: for every action
act € Act let

fi(act) = Dirac|f,(act)] and fj(act) = Dirac|f,(act)].
Lemma 104 yields the identities
R(sq) = Ract(sa) ¥ fi and  R(sp) = Kact(sp) % fi-

Invoking Lemma 103, we obtain 84¢(S;) = £act(Sp) and there exists a Borel set A C Act
such that £4.¢(s;)(A) = 1 and so that for every act € A,

PrTraceFunc( f,(act)) = PrTraceFunc( f,(act)).
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4 Simulations and trace distributions for Souslin systems

From this one can easily derive that for every act € A,
PrTraceFuncy(f,(act)) = PrTraceFuncy(f,(act)).

For every action act € A, exploiting the initial observation in this proof, we therefore obtain
(fi(act), fi(act)) € (=)Wt This implies (8(s;), &(sp)) € ((=F)A)W0  As already
discussed before, the latter insight completes the proof. O
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5 Action-based probabilistic temporal logics

This chapter is devoted to the proof of Theorem D (see Chapter 1) where simulation preorder
and bisimulation equivalence is related to relations induced by temporal logics. For the
specification of probabilities for complex path properties the temporal logics APCTL* and
its existential fragment JAPCTL" yield comparable expressive temporal logics that. As
already mentioned in Chapter 1, they combine features of several logics that have been
introduced in the literature. The temporal logics APCTL, and APCTL, form Hennessy-
Milner-like sublogics of APCTL* and JAPCTL", respectively. These sublogics are only
allowed to specify properties on direct successor distributions over action-state pairs.

To the best of our knowledge, Theorem D is the first theorem providing logical character-
isations of the simulation preorder and the bisimulation equivalence for a general stochastic
model possibly having an uncountable state and action space in terms of a weak and an
expressive temporal logic. In view of the developed theory in Chapter 4, we emphasise
that Theorem D also identifies a subclass of (Souslin) STSs where Souslin simulation and
simulation are the same and accordingly, where the concepts of Souslin bisimulation and
bisimulation collapse.

To cover STSs whose action spaces are uncountable, the novelty of our syntax for APCTL*
is that the basic atomic observables are certain subsets of the action space that are specified
by an action event family. Recall, an action space Act can be viewed as the set of all relevant
atomic observables. In particular, every action contained in Act stands for a process activity.
However, since the set Act is not restricted to be countable, it is not plausible to assume that
the occurrence of every individual action can be indeed observed, e.g., from an external
agent. Intuitively, an action event family A is a countable family of subsets of Act specifying
those subsets of the action space for which one can determine whether a given action is
contained or not: taking A € A and act € Act, one can provide the answer yes if act € A
and no otherwise.

Initially, we interpret APCTL* over arbitrary STSs augmented with an action event family
and a reward function. While the given semantics is mostly standard, the probability
modality needs some care due to measurability issues caused by uncountable state and
action spaces. In fact, it turns out that specific satisfactions of APCTL* formulas may not be

143
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Borel. To this end, we rely on the concept of outer-measure functions within the definition
of our semantics. Recall that an outer-measure function extends a probability measure
defined on some sigma algebra to the whole powerset (see Section 2.1). This approach
causes no trouble for theoretical arguments and allows us to extend classical results from
the discrete setting to the setting of this thesis.

We present a measurability condition on STSs called: Borel concerning the hit sigma
algebra. This notion in particular ensures that the outer-measure semantics and the classical
semantics for the two weak logics APCTL, and APCTL, are the same since corresponding
satisfaction sets can be proven to yield Borel sets. The latter fact is crucial for the applic-
ation of the techniques in [FKP17] concerning our proof of one part of Theorem D. The
mentioned measurability requirement on an STS is closely connected to the definition of
non-deterministic labelled Markov processes [DTW12, Wol12]. However, there is an seem-
ingly unimportant difference in the corresponding definitions that has crucial consequences
for our compositional framework. The motivation of the concepts also differ.

In this chapter we also provide a variant of Theorem D for simple STSs whose action
space is countable. Consequently, on the one hand, this chapter’s main result covers
the established logical characterisations for the simulation preorder and the bisimulation
equivalence for labelled Markov processes (LMPs) [FKP17] in terms of corresponding
weak modal logics (see also [BDEP97, DEP02, DGJP03, Des99, Pan09]). On the other hand,
this chapter extends the theory on LMPs by providing corresponding preservation results
for the expressive temporal logics APCTL* and JAPCTL*. The same discussion applies for
non-deterministic labelled Markov processes (NLMPs) [DTW12, Wol12] where, to the best
of our knowledge, the existing literature is restricted to bisimulations. Thus, as a byproduct,
Theorem D provides a first result referring to the simulation relations of NLMPs.

Theorem D also extends [ NKO07] by a complete characterisation of both the simulation pre-
order and the bisimulation equivalence. Note, [NKO07] solely provides a preservation result
for bisimulations of continuous-time Markov decision processes concerning an expressive
temporal logic. The main result of this chapter also covers results in [DP03] and [DGJP10]
providing a logical characterisation of the bisimulation equivalence for continuous-time
Markov processes and labelled concurrent Markov chains, respectively. We moreover em-
phasise that the logical characterisations given by Theorem D refer to a generative model in
the classification of [GSS95]. In this context, to the best of our knowledge, a generic logical
characterisation of the simulation preorder and the bisimulation equivalence has been not
proven before. Chapter 7 provides more detailed discussions regarding related models.
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5.1 Syntax using action event spaces

5.1 Syntax using action event spaces

This section presents the syntax of the action-based probabilistic logic APCTL* and of the
corresponding sublogics JAPCTL*, APCTL,, and APCTL,. To this end, we introduce the

notion of an action event family:

Definition 105. For every Polish space Act an action event family (on Act) is a countable gen-
erator A of the Borel sigma algebra on Act that satisfies the following additional property:
the family of sets A separates the points in Act, i.e., for every acty,act, € Act,

act; = acty iff forevery A € Aonehasact; € Aiffact, € A.

An action event space is a pair (Act, A) such that Act is a Polish space and A is an action
event family on Act. J

Let (Act, A) be an action event space. The elements of the action event family A can
be viewed as test sets to distinguish two actions act; and act; in Act. Indeed, act; is not
equal to act, precisely when there exists a test set A € A such thatact; € Aandact, ¢ A
or the other way round, i.e., act; ¢ A and act, € A. The smallest family of subsets of Act
that contains every set in A and that is additionally closed under complementation and
finite intersections is denoted by Bool[.A]. The family Bool[.A] is hence also closed under
finite unions. Moreover, it is easy to see that Bool[.A] also yields an action event family, in
particular, constitutes a countable family of subsets of Act. For every A, A1, Ay € Bool| A]
we write - A rather than Act \ A, A1 A Ay instead of A1 N Ay. and accordingly for the
other boolean connectives (disjunction V, implication —, ...).

Example 106. Based on Examples 2 and 3, we provide examples for action event spaces:

(1) Let Act = Q be a countable set. Define Ag as the family of sets consisting of all
singletons {q} with ¢ € Q. Then it is easy to see that the pair (Q,.Ag) yields an
action event space.

(2) We regard the action space Act = IR>( representing continuous time. Suppose A7 is
the family consisting of all intervals I in IR>( with rational endpoints, i.e., there are
91,41 € Qxo with I € {(q1,42), (91,92], (91, 42), [91,42] }- Then the pair (R>o, A7)

also forms an action event space.

(3) Consider the action space Act = Eval[Var] of all variable evaluations over some
finite set of variables Var. Let Ay,, be the family consisting of all conditions over Var,
ie., Ay, = Cond|[Var]. Again the pair (Eval[Var|, Ay, ) constitutes an action event
space (see also Section 3.1).
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Clearly, one can also combine the presented action event spaces. Consider for instance a
countable set Q that is disjoint from R>¢. Then the union Ag U Az yields an action event
family on the action space Q U R>(. Moreover, {Ag X A7 ; Ag € Agand Az € Az} is
an action event family on the action space Q X R>o. 4

It is important to realise that while an action space may be uncountable an action event
family is required to be countable. From a theoretical point of view, according to Remark 4,
every Polish space gives rise to an action event space. However, the choice of a concrete
action event family can be seen as an engineering task performed while modelling the
system under consideration. The previous example illustrates that action event families
appear naturally in the modelling of stochastic systems.

The following definition provides the syntax of the action-based probabilistic modal
logic APCTL*. The basic atomic building blocks are given by the sets of actions contained
in a picked action event family:

Definition 107. Let (Act, A) be an action event space. An APCTL* state formula (over
(Act, A)) is formed by the following grammar:

o = oAo | oo | 3T

where T is an APCTL* path-measure formula. Here, an APCTL* path-measure formula (over

(Act, A)) is generated by the following grammar:
T = TAT | 2T | Puylv]

where € {<,<,=,>,>1},9 € [0,1] NQ, and v is a APCTL* path formula. An APCTL*
path formula (over (Act, A)) is defined by the following grammar:

v 2= o | A|lvAv ]| v | Quv | vUv | Acclr]
where ¢ is an APCTL* state formula, A € Bool[A], < € {<,<,=,>,>},andr € Q. _

As the names in the previous definition suggest, APCTL* state formulas are interpreted
over states of an STS, APCTL* path-measure formulas constrain path measures induced by
schedulers, and APCTL* path formulas refer to paths. The precise semantics is presented in
the next section, however, let us give a feeling for the meaning of the introduced formulas.
Considering a state s of an STS, the exists modality 37 asserts the existence of an s-scheduler
S whose induced path measure Pr[S] satisfies the formula 7. For instance, assuming
T is equal to the probability modality IP-4[v], the path measure Pr[S] fulfils T if the
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probability of all paths satisfying the formula v is greater than g (this needs some care
due to measurability issues). The next modality () v and the until modality v; U v
have the same meaning as in standard linear temporal logic (see also, e.g., [BK08]). The
accumulation modality Acc[>7] asserts that the accumulated reward of a path up to the
current position is greater than the reward bound 7.

For each of the three levels of APCTL* the operators from propositional logic (true #,
disjunction V, implication —, ...) are derived as usual. For every APCTL* path-measure
formula T we moreover define the forall modality

VT = —E|(—\T).

The forall modality constitutes an APCTL* state formula constraining every s-scheduler of
a picked state s. The eventually and the always modality are defined as in standard linear
temporal logics, i.e., for every APCTL* path formula v we have

Quv=#t#Uv and Ov=-(0-w0).

Considering a path, the formula ¢ v intuitively states that v holds eventually in the future
and [ v specifies that v holds from now on forever.

Example 108. We present properties that can be specified by APCTL*. In every case the
action spaces is equipped with the corresponding action event family from Example 106.

(1) Let Act = Eval[{temp}| where the variable temp intuitively stands for the temper-
ature of room with a temperature controller . The APCTL* state formula

o1 = dP>o7[0(temp>18 A temp <22)]

asserts the existence of a scheduler such that the temperature forever stays between
18 and 22 degree Celsius with a probability greater than or equal to 0.7.

(2) Consider an action space Act with goal € Act. The APCTL* state formula
09 = VIP~9[Acc[>0] U {goal}]

expresses that for all resolutions of the non-determinism the accumulated reward
referring, e.g., to the available energy or the allocated resources, until reaching the
goal action never drops below zero with a probability greater than 0.9.
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(3) The following formula nests the exists modality. Regard an action space Act such
that {error, operating} C Act. The APCTL" state formula

03 = VIP_1[O({error} — JP~05[0(Acc[<17] A {operating})])]

specifies the following resilient condition on an adaptive control system: almost
surely, after an error has been occurred, the system fosters towards an operating
mode with probability greater than 0.8 accumulating at most 17 cost. The cost may
refer to the time that has been elapsed since the occurrence of the indicated error.

_I

The remainder of this section introduces three fragments of APCTL* that become im-
portant in our discussions on the logical characterisation of the simulation preorder and
the bisimulation equivalence later on in this chapter. For instance, having corresponding
results from the discrete setting in mind (see, e.g., Section 7.5 in [BK08]), one cannot expect
that the full temporal logic APCTL" is preserved by the simulation preorder. This leads to
the following definition of the existential fragment of APCTL*.

Definition 109. Let (Act, A) be an action event space. An JAPCTL* state formula (over
(Act, A)) is formed by the following grammar:

o = tH]|oAc|oVe | 3t
where T is an JAPCTL* path-measure formula. Here, an JAPCTL* path-measure formula
(over (Act, A)) is generated by the following grammar:

T = TAT | TVT | Prylv]
where > € {=,>,>},47 € [0,1] N Q, and v is a JAPCTL* path formula. An JAPCTL*
path formula (over (Act, A)) is defined by the following grammar:

v == o | A]JvAv]ovVve | Quv | vUv | Accxr]
where ¢ is an APCTL* state formula, A € Bool[A], < € {<,<,=,>,>},andr € Q.

It is easy to see that the logic JAPCTL* yields a fragment of APCTL*. While for every
APCTL" state formula ¢ the negation —¢ is an APCTL" state formula, the corresponding
statement does not hold for JAPCTL*. In particular, in JAPCTL* the forall quantification
over schedulers is missing that actually motivates the previously introduced sublogic.
Besides this, probabilities for path properties can only be bounded from below by the
probability modality.
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Definition 110. Let (Act, A) be an action event space. An APCTL, state formula (over
(Act, A)) is formed by the following grammar:

o u= t|oAo | 3t

where T is an APCTL, path-measure formula. Here, an APCTL,, path-measure formula (over
(Act, A)) is generated by the following grammar:

T = TAT | Pyyv] | Pylv]

where g € [0,1] N Q and v is a APCTL, path formula. An APCTL, path formula (over
(Act, A)) is defined by the following grammar:

v == O (AA0)
where A € Bool[A] and ¢ is an APCTL, state formula. 4

Although the boolean fragment of APCTL, is restricted to conjunctions and include no
negations, the expressiveness of APCTL, and JAPCTL* are incomparable as in APCTL,
probabilities for path properties can be also bounded from above by arbitrary probability
thresholds. Most importantly, the logic APCTL, basically allows only for those APCTL*
path formulas that include solely the next modality, in particular, the until modality is
missing. Consequently, there is no chance to express the eventually and the always modality
in APCTL,. Intuitively, formulas of APCTL, are only capable of specifying constraints
for direct action-state successors in a specific state. Besides this, the logic APCTL, also

includes no accumulation modality.

Definition 111. Let (Act, A) be an action event space. An APCTL, state formula (over
(Act, A)) is formed by the following grammar:

o u= t|oAo | 3t

where T is an APCTL, path-measure formula. Here, an APCTL, path-measure formula (over
(Act, A)) is generated by the following grammar:

T = TAT | Py4[v]

where g € [0,1] N Q and v is a APCTL, path formula. An APCTL, path formula (over
(Act, A)) is defined by the following grammar:

v == vVvuv | O(AA0)

where A € Bool[A] and ¢ is an APCTL, state formula. N
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The previously introduced sublogic APCTL, of APCTL* is in the same spirit as the
fragment APCTL,. However, compared to APCTL,, the latter defined fragment involves
no form of negation, in particular, probabilities of path properties can only be bounded
from below by the probability modality and hence, APCTL, yields a fragment of JAPCTL*.
In comparison to APCTL,, there is an additional disjunction operator for APCTL, path
formulas. As we see in Section 5.4, this disjunction operator is indispensable.

5.2 Outer-measure semantics

We interpret the temporal logic APCTL* over STSs that are additionally equipped with an
action event family and a reward function. Action event families have been introduced in

the previous section (see Definition 105). Reward functions are defined as expected:

Definition 112. For every Polish space Act a reward function (on Act) is Borel function
rew: Act — R mapping every action in Act to a real number (reward). q

The reward function may, e.g., specify the consumed energy or the produced utility
accompanied with the execution of an action. Let 7 = (Sta, Act, —) be an STS and rew be
a reward function. Intuitively, if the action act is executed, the reward rew(act) is gained. It
is therefore convenient to extend the reward function rew to the set of all finite paths (also
denoted by rew) as follows: for every state s € Sta let

rew(s) =0

and for every finite path 7t = spact; sy . ..act, s, where n € IN with n > 0 let
rew(7t) = rew(acty) + ... + rew(act,),

i.e., rew(7) records the accumulated reward along the given finite path.

Definition 113. Let 7 = (Sta, Act, —) be an STS, A be an action event family, and rew
be a reward function. The satisfaction relation = for APCTL* state formulas is defined as
follows where s € Sta is a state:

S ‘:0'1/\0'2 iff s |:(71ands |: 07,
S‘:—MT iff S[#U’,

sE3r iff there exists an s-scheduler & with Pr[S] |= T.
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The satisfaction relation |= for APCTL* path-measure formulas is given below where x
denotes a probability measure on Path:

X |: T A %) iff X ‘: T and X |: T2,

X E -1 iff x [~ T,
X E Pugglv] iff x°"({7 € Path; = v}) < q.

The satisfaction relation |= for APCTL* path formulas is defined as follows where 1 € IN is
a natural number and 7t = spact; s1 . .. is an infinite path in Path:

(m,n) =0 iff s, =0,

(m,n) = A iff act,,1 € A,

(m,n) =uvyAvy  iff (m,n) |=v1and (7T, n) = vy,

(rr,n) = —v iff (m,n) Ev,

(m,n) = Qv iff (m,n+1)k=v,

(mr,n) =v1U vy iff thereexistsi € IN with n < iso that (77,i) = v

and (71,j) = vy forall j € N withn <j </,

(rr,ny |= Acc[par] iff  rew(spacty sy ...act, s,) < 7.

For every path 7t € Path and APCTL* path formula v we also use 77 |= v as a shorthand
notation for (77,0) |= v. 4

As before, let T = (Sta, Act, —) be an STS, A be an action event family, and rew be a
reward function. For every APCTL" state formula ¢, path-measure formula T, and path
formula v we introduce the respective satisfaction sets by

[o] ={s € Sta;s =oc},

[t] = {x € Prob[Path] ; x = T},

[v] = {m € Path ; 7 |= v}.
Relying on the presented semantics, the temporal logics introduced in Section 5.1 induce the
following relations over the state space. The APCTL* equivalence and the APCTL, equivalence

are the binary relations ~* and ~, over the state space Sta, respectively, given as follows:
for every states s,, s, € Sta,

sqa~*sp iff for every APCTL" state formula one has s, = o iff s, |= 0,
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Sa oSy iff for every APCTL, state formula one has s, |= o iff s, = 0.

Accordingly, the JAPCTL* preorder and the APCTL, preorder are the binary relations <7
and =, over Sta, respectively, defined as follows: for every states s,, s, € Sta,

s; =75, iff forevery JAPCTL" state formula one has s, |= ¢ implies s, |= 0,

Sa Resp iff forevery APCTL, state formula one has s, |= ¢ implies s, |= 0.

In Definition 113 we rely on the outer-measure function of x for the definition of the
semantics of the probability modality Py, [v]. The reason is that we believe that the set [v]
may not be Borel in Path for arbitrary STSs. As we have no counterexample for this yet, let
us briefly sketch the difficulty. If one wants to show that [v] is Borel in Path, the idea is to
rely on an induction over the construction of formulas. Hence, one also has to show that
the sets [¢] and [t] are Borel in Sta and Prob[Path], respectively. Clearly, considering for
instance the APCTL"* state formula ¢ = 07 A 02 for some APCTL* path formulas ¢; and
09, it easily follows that [o] is Borel in Sta assuming the sets [o1] and [o2] are Borel in Sta
since [[o]] = [o1] N [o2]. However, the case 0 = 3T where T is an APCTL* path-measure
formula with [7] being a Borel set in Prob[Path] is more intricate: since the semantics of
the exists modality involves an existential quantification ranging over all schedulers, we
think that one cannot expect that the set [o] is Borel in Sta. Recall, sets defined in terms of
an existential quantification are typically not Borel (see also Section 2.2). At this point, one
may ask whether the set [o] is Souslin in Sta. Indeed, we see a chance to answer the latter
question positively for every Souslin STS (see also [MS00]). Such a result needs a deeper
analysis of structural properties of the set of all path measures induced by a scheduler.

Interestingly, the presented approach to circumvent the latter mentioned problems using
outer measures causes no mathematical difficulties with regard to the main object of this
chapter concerning the logical characterisations of simulation preorder and bisimulation
equivalence. Inspecting the previous discussion carefully, it turns out that the concept
of outer measure can be omitted for PCTL* formulas where the exists modality is not
nested as then all the satisfaction sets of the corresponding subformulas are Borel. This
is for instance the case for the formulas 7 and 0> in Example 108. However, compared to
that, the formula 03 in Example 108 needs some care as here, the exists modality occurs
nested. Obviously, if the state space of the STS under consideration is countable, then the
outer-measure semantics and the standard semantics are the same.

Example 114. Let 7 = (Sta, Act, —) be a non-blocking Souslin STS, A be an action event
family, and rew be a reward function. Consider the APCTL" state formula

0 =TPuy[O (ANT)]
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withx € {<,<,=,>,>},9 €[0,1]NQ, A € Bool[A], and ¢’ being an APCTL* state
formula. Then for every state s € Sta we have the following equivalence:

s = o iff thereis ¢ € Prob[Act x Sta] with s — @ and ¢°™'(A x [0’]) > g.

The formal argument for this claim is as follows. Let s € Sta be a state. Abbreviate the
APCTL* path formula ) (A A ¢’) by v. One has [v] = Sta x (A x [0']) x (Act x Sta)“.
For every s-scheduler & it is hence easy to see that Pr[S]°U([v]) = &(s)°™(A x [¢']).
Consequently, the implication from the left to the right of the claimed equivalence follows
directly from the fact that s — &(s) for every s-scheduler &. The reverse implication
is a consequence of Theorem 65. Indeed, thanks to the assumptions on the STS under
consideration, for every ¢ € Prob[Act x Sta] with s — ¢ there exists an s-scheduler & with

S(s) = ¢. 4

Clearly, the semantics for APCTL* directly transfers to the fragments JAPCTL*, APCTL,,
and APCTL,. In this context, the previous example illustrates that the concepts of sched-
ulers and induced path measures can be avoided for a direct definition of the corresponding

semantics of APCTL, and APCTL,. This also confirms corresponding observations in Sec-
tion 5.1 stating that APCTL, and APCTL, yield inexpressive sublogics of APCTL".

5.3 Borel concerning the hit sigma algebra

We present a sublcass of (Souslin) STSs such that all the satisfaction sets of APCTL,
formulas and APCTL, formulas are Borel. Recalling discussions in Section 3.1, the Souslin
property in the context of STSs is basically motivated by a requirement of the measurable-
selection principle given by Theorem 21. The following condition on an STS is in the spirit
of an assumption of the classical measurable-selection principle given by Theorem 18:

Definition 115. An STS 7 = (Sta, Act, —) is called Borel concerning the hit sigma algebra
provided for every open set O C Prob[Act x Sta] the set

{s € Sta ; Enabled[s] N O # &}
is Borel in Sta. J

In the discussions of Section 2.3 concerning Theorem 18 we have introduced the notion
of hit sigma algebras that also justifies the choice for the name of the new subclass of STSs.
Intuitively, the set {s € Sta ; Enabled[s| N O # @} consists of those states s such that there
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exists an enabled distribution over action-state pairs that hit the given test set O. These
test sets are given by all the open subsets of Prob[Act x Sta|. Definition 115 is also in the
spirit of non-deterministic labelled Markov processes [DTW12, Wol12] that is precisely
discussed in Section 7.4. The following remark establishes a connection between Souslin
STSs and those STSs satisfying the condition in Definition 115:

Remark 116. Let 7 = (Sta, Act, —) be an STS that is non-blocking and such that the set
Enabled|s] is closed in Prob[Act x Sta]. The latter assumption in particular includes the
case where 7T is image finite, i.e., where the set Enabled|s] is finite for every state s € Sta.
By Remark 23, if 7 is Borel concerning the hit sigma algebra, then the STS T is Souslin.
The cited remark also shows that the reverse implication does not hold in general, i.e., the
STS T may not be Borel concerning the hit sigma algebra even though it is Souslin. 4

Theorem 117. Let T = (Sta, Act, —) be an STS and A be an action event family. Assume that
the STS T is non-blocking, image-finite, and Borel concerning the hit sigma algebra. Then the
following two statements hold:

(1) The set [o] is Borel in Sta for every APCTL, state formula .
(2) The set [] is Borel in Sta for every APCTL, state formula .

Proof. We rely on Remark 19 providing a refinement of the measurable-selection prin-
ciple given by Theorem 18: there exists a sequence ( f, )N of Borel functions f,,: Sta —
Prob|Act x Sta] such that for every state s € Sta it holds

Enabled[s] = {fu(s) ; n € N}.
Let k € IN and define the APCTL, state formula ¢ by
o = 3(]P>q0 [vo] A .o A P~ g, [ux])

where for every i € {0,...,k}, g; is a rational number in [0,1] and v; is the APCTL,

path-measure formula given by

v; = O (AiO N 0'1'0) V...V O (Aiki VAN Uiki)

for some natural number k; € N, Aj,..., Ay, € Bool[A] and APCTL, state formula
i, - - -, Oik,- Assume that for all i € {0,...,k} the sets [oj0], ..., [oi,] are Borel in Sta.
Inspecting the syntax of APCTL, state formulas and relying on an induction over the

154



5.4 Logical characterisation

construction of APCTL, state formulas, it suffices to show that the set [¢] is Borel in Sta in
order to conclude the lemma.
Foreveryn € Nandi € {0,...,k} define the function g,;: Sta — [0,1],

8ni(s) = fu(s)((Aio X [oi0]) U... U (A, X [o,]))-

Inspecting Example 114, it is easy to see that

l=U N g (@:1).

n€N ie{0,...k}

According to Remark 5, for every n € N and i € {0, ..., k} the function g,; is Borel and
therefore, it directly follows that the set [o] is Borel in Sta. This shows statement (1).
Claim (2) follows analogously. O

As a consequence, the outer-measure semantics and the standard semantics for APCTL,
and APCTL, are the same concerning the subclass of STSs investigated in the previous
theorem. In particular, it is not necessary to consider outer-measure functions of probability
measures for the interpretation of properties specified by APCTL, or APCTL,. According
to Remark 116, every STS satisfying the conditions in Theorem 117 is also Souslin.

5.4 Logical characterisation

The main object of this section is to show that the APCTL, preorder <, and the simula-
tion preorder =< are the same and accordingly, that the APCTL, equivalence ~, and the
bisimulation equivalence ~ coincide for a subclass of STSs. The proof below adapts the
argumentation scheme of the recent contribution [FKP17] for labelled Markov processes.
More precisely, the key ingredients for the following argumentation are given by Theor-
ems 39 and 40 whose proofs heavily rely on the techniques in [FKP17]. Moreover, as in
[FKP17], the facts that the two temporal logics APCTL, and APCTL, are countable turn
out to be crucial.

Theorem 118. Let T = (Sta, Act, —) be an STS and A be an action event family. Assume that
the STS T is non-blocking, image-finite, and Borel concerning the hit sigma algebra. For every
states s,, 5, € Sta the following two equivalences hold:

(1) sa =sp iff 5, =°Usy, iff s5=e5p.

(2) sa=sp iff 5,%sy,  iff S5 Sp.
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Moreover, the relation < is weakly smooth and accordingly, the relation ~ is smooth. a

The proof of the theorem can be found below. As a byproduct of the presented logical
characterisation, we derive a subclass of Souslin STSs (see also Remark 116), where the
simulation preorder and the Souslin-simulation preorder are the same and accordingly,
where the bisimulation equivalence and the Souslin-bisimulation equivalence collapse.
Applying our results from Chapter 4, we obtain the following corollary:

Corollary 119. Let T = (Sta, Act, —) be an STS. Assume that T is non-blocking, image-finite,
and Borel with respect to open hit sets. For every s,, s, € Sta the two statements below hold:

(1) sq=Xsp implies s, <"sy.
(2) sg~=s, implies s, ="s.

Proof. By Remark 4, we can safely assume some action event family on Act. Remark 116
shows that the STS T is Souslin. Consequently, the claim immediately follows Corollary 83
and Theorem 118. O

It remains to show the section’s main result:

Proof of Theorem 118. The proof schema for both claimed chain of equivalences is the same.
In what follows we first show that formulas that can be formulated in APCTL, and APCTL,
are preserved by the simulation preorder and the bisimulation equivalence, respectively.
In a second step, we show that the relations <, and ~, induced by the temporal logics are
a simulation and bisimulation, respectively. Statements (1) and (2) then easily follow as
the relations <, and ~, are weakly smooth and smooth, respectively. To be more precise,
relying on Theorem 117, the facts the temporal logics APCTL, and APCTL, are countable,
and Remark 38, the family

C< = {[c] ; o is an APCTL, state formula}
is a witnesses of the weakly smoothness of <, and accordingly,
C~ = {[o] ; o is an APCTL, state formula}

yields a witnesses of the smoothness of ~.

Preservation of temporal properties. Let s,, s, € Sta be states. We only show that s, <4 sp
follows from s, <'s;,. Indeed, one analogously derives that s, ~ s;, implies s, >~ s;. Consider
a simulation R with (s,,sp) € R. Let k € IN and define the APCTL, state formula ¢ by

0= 3(Psgyfve] A ... A Psglux])

156



5.4 Logical characterisation

where qo, ..., qx € [0,1] N Q are rational numbers between zero and one and vy, . . ., Uk
are APCTL, path-measure formulas defined as follows: for every i € {0,...,k},

v = QO (A Noig) V ... V O (A, Noi,)
where Aj, ..., Aj, € Bool[A] and oy, ..., 0y, are APCTL, state formulas. We assume
that for every i € {0,...,k}andj € {0,...,k;} the implication below holds:

Sa ): ij implies s, |: 0ij.

Assume s; |= 0. According the syntax of a APCTL, state formula and relying on an
induction over the construction of APCTL, formulas, it suffices to show s; |= ¢ in order to
conclude s; =¢ Sp.

Forevery i € {0,...,k} andj € {0,...,k;} it is easy to see that the set A;; x [o7;] is

upper R -stable. Therefore, for every i € {0,...,k} the set B; is upper RA-stable where

Bi = (Aio X [ono]) U... U (A, X [oi,])-

Applying Lemma 117, for every i € {0, ..., k} the set B; is Borel in Act x Sta. Relying on
the insights in Example 114 and using the assumption s, |= ¢, there exists a probability
measure ¢, € Prob[Act x Sta] such that

Sa— @a and @.(B;) > g, foreveryi € {0,...,k}.

Using that the relation R is a simulation with (s4,s;) € R, there hence exists a probability
measure ¢, € Prob[Act x Sta] such that

ss—= @y and (g, @p) € (RA)VE,
Thanks to Remark 34, for every i € {0, ..., k} it hence holds
@b(Bi) = @a(Bi) > 4.

Applying the same argument as in Example 114, we can conclude s, |= 0.

Characterisation of simulation preorder and bisimulation equivalence. To obtain a proof for
the theorem under consideration, we show that the relation <, is a simulation and that
the relation ~, is a bisimulation. this proof uses the following additional notions For
presentation purposes the remainder of this proof uses the following additional notions.
for every family C of subsets of Sta the relation Rel<[C] over Sta is given by

Rel<[C] = {(sqa,sp) € Sta x Sta ; s, € S implies s, € S forevery S € C}.
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and accordingly, the relation Rel~ [C] over Sta is defined as

Rel~[C] = {(sqa,sp) € Sta x Sta ; s, € Siffs, € S forevery S € C}.

Ad (1). Let C., be the family of subsets of Act x Sta given by
C, ={Ax[o]; A € Bool[A] and 0 is a APCTL, state formula}.

Relying on the requirements on action event families, it is easy to see that the family C’,
is countable. Moreover, according to Theorem 117, every element in C’, is a Borel set in
Act x Sta. It is easy to see that C’, is closed under finite intersections. fndeed, for every
A1, Ay € Bool[ A] and every APCjFL. state formulas 7 and 0» one has

(Al X [[0'1]]) N (A2 X [[0'2]]) = (Al ﬂAQ) X ([[0’1]] N [[0'2]]) = (A1 /\Az) X [[0'1 /\0’2]].

On top of that, it holds Rel<[C"] = (=.)A. Here, the inclusion Rel<[C.] D (=) is
trivial and the reverse inclusion Rel <[CL] C (=e)A follows immediatel_y from the fact
that the action event family A separates the points in Act.

The family C< is defined as the smallest family of subsets of Act x Sta such that C< is
closed under finite unions and so that C, C C<. Itis easy to see that every set contained
in C< is Borel in Act x Sta. Moreover, since the family of sets C', is countable, the newly
introduced family of sets C< is also countable. Using that C', is closed under finite intersec-
tions, the family of sets C< is also closed under finite intersections. Additionally, it is easy
to see that Rel<[C<] = Rel<[CL] = (=)

It follows that (=) is weakly smooth where C< is a witness that is closed under
finite intersections. We are hence in the situation of Theorem 39 that yields the following
statement. For every ¢, ¢} € Prob[Act x Sta] one has the equivalence below:

(@), @) € ((=Z)A)WBt iff  for every B € C< it holds ¢/,(B) < ¢} (B).

Statement (1) can be derived as follows now. Towards a contradiction assume that the
relation =<, is no simulation. Hence, there are states s;, s, € Sta and a probability measure
@a € Prob[Act x Sta] satisfying the following three statements:

Se=eSp Sa— @a, and  (@g, @p) & ((Ze)A) V8 for all @), € Enabled|sy).

As the set Enabled|s,] is required to be finite and not empty, there exists n € IN \ {0}
and @p1, ..., py € Prob[Act x Sta] with

Enabled[sp] = {@p1,---, Pon}-
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For everyi € {1,...,n} itholds (., ¢p;) € ((=s)2)"8" and thus, relying on the first
part of this proof, there exists a set B; € C, and a rational number g; € [0,1] N Q with

@a(B;i) > i > ¢ui(B;).

Inspecting the definition of C<, for every i € {1,...,n} there are a natural number k; €
IN '\ {0}, elements Ajy, ..., Aj, of the action event family .A, and APCTL, path formulas
0i1, - - -, Uik, such that

Bi = (Ain % [on]) U ... U (Ai, x [oi.])-

Foreveryi € {1,...,n} define the APCTL, path formula v; by
vi=0O(AnAon)V ... V O (A, Aoi,)-

The APCTL, state formula ¢ is introduced by
0 =3Py [v1] A ... A Psg,[vn]).

Thanks to Example 114 and Theorem 117, it follows s, = o while s, [= 0. The latter insight
shows (sa, sp) € (Sta x Sta) \ =, that yields a contradiction. We finally conclude that the

relation <, is a simulation.

Ad (2). Our argument for (2) is similar to (1), however, relies on Theorem 40 rather than
Theorem 39. As Theorem 40 requires a family of sets that is closed under finite intersections
only (and not necessarily under finite unions), the following proof for (2) is less technical
than (1). However, the core idea is the same.

Define the family of sets C~. by

C~ = {A x [o]; A € Bool[A] and ¢ is a APCTL, state formula}.

As for C, in the first part of this proof, one can show that C~. is countable, closed under
finite intersections, and consists solely of Borel subsets of Act x Sta. Therefore, applying
Theorem 40, for every probability measures ¢, ¢, € Prob[Act x Sta] the equivalence
below holds:

(9o 93) € (=)™ iff  }(B) = ¢},(B) forall B € Co.

Towards a contradiction assume that ~, is no bisimulation. Thus, there are states
Sa,8p € Staand @, € Prob[Act x Sta] with s, 2~ sy, 5, — @, and (@g, @p) € (=26 )At)Wet
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for all ¢, € Enabled[s,] or vice versa, there are states s,, s, € Sta and ¢, € Prob[Act x Sta]
with 8, 26 83, 8p — @p, and (@q, @p) & ((=)2%)"8! for all ¢, € Enabled|s,]. For reasons
of symmetry it suffices to discuss the first case. Let s,, s, € Sta and ¢, € Prob[Act x Sta]
be such that

Sa™08y, Sa— @a, and  (@g, @p) & ((=)A") V8 for all @), € Enabled|sy).
Letn € N and ¢y, . . ., by € Prob[Act x Sta] be such that

Enabled[sp] = {@po,---, Pon }-

For every i € {0,...,n} there exists A; € A, a APCTL, state formula 0}, a comparison
operator ><; € {<, >}, and a rational number g; € [0,1] N Q such that

Pa(Ai x [i]) > gi < @pi(Ai x [oi]).
Introduce the APCTL, state formula o by

o= H(PM%[O (Ao/\O'o)] ZANIAN I)Mq,,[o (An/\(fn)])

According to Example 114 and Theorem 117, we have s, = ¢ while s;, = 0. This yields a
contradiction to s, >~ s; and hence, we are done. O

Whereas the logic APCTL, allows for disjunction of path formulas, the logic APCTL,
does not. The proof of statement (1) of the previous theorem indeed requires disjunction
of APCTL, path formulas. It is natural to ask whether the argument can be adapted such
that these disjunction are no longer needed in view of obtaining a simpler logic inducing a
simulation. However, Example 4.3.4 in [Des99 | shows that statement (1) of Theorem 118
does not longer hold when dropping the disjunction of APCTL, path formulas. This
example provides an STS with finitely many states where disjunction of APCTL, path
formulas is needed to distinguish states s, and s, where s;, does not simulate s,.

5.5 Simulation and bisimulation on infinite paths

This section revisits and extends the results presented in Section 4.5. To recall these contri-
bution, consider a Souslin simulation R for some Souslin STS 7 = (Sta, Act, —) as well as
probability measures 4, ftp € Prob[Sta] such that (ya, pp) € RV8'. We have proved that
for every y,-scheduler G, there exists a yy-scheduler &; such that the corresponding in-
duced finite-path measures of &, and & are related by appropriate weight functions. The
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following material shows that even the (infinite-)path measures induced by the schedulers
S, and &, are related by a certain weight function. However, compared to the setting in
Section 4.5, our argument needs the stronger assumption that the simulation R is even
weakly smooth (and not merely Souslin, see also Remark 38).

Let T = (Sta, Act, —) be an STS. Recalling Section 4.5, for every relation R C Sta x Sta
and n € IN the lifting of R to the set Path,, of all finite paths of length 7 is denoted by
RpPath - Accordingly, every relation R C Sta x Sta extends naturally to the relation RP3th
over the set of all infinite paths as follows: for every infinite paths 71, = sgoact;1 S41 ... and
7Ty = Spo ACtp1 Sp1 - - -,

(70, 71p) € RPN jff (TCajns TTpjn) € RPM for every n € N

where the two finite paths 7, 73|, € Path,, are given by Tlan = $a0 ACta1 Sa1 - - - ACtan San
and 7Ty, = Spo ACtp1 Spy - - - ACtyy Spy, Tespectively, for every n € IN. It obviously holds
(714, 1) € RPN precisely when both (s, sp,) € R for every n € N and act,, = acty, for
every n € IN'\ {0}. The following result is in the same spirit as Theorem 77.

Theorem 120. Let T = (Sta, Act, —) bea, R be a combined simulation, and p,, pt, € Prob|Sta]
be such that (jg, up) € RV8. Assume that the relation R is weakly smooth. Then for every ji,-
scheduler &, there exists a yy-scheduler Gy, such that

(Pr[&,],Pr[&,]) € (RPah)wst,

The formal proof of the stated result is presented below. Compared to Theorem 77, the
assumption on the relation R is stronger as every weakly smooth relation is in particular
Souslin (see Remark 38). In exchange, the conclusion of Theorem 120 is stronger. Indeed,
relying on Lemma 93, it is easy to see that (Pr,[S,], Pr,[&;]) € (RPA)W8t for every
n € N is implied by (Pr[&,], Pr[&;]) € (RPath)wst,

Let us give an naive proof idea for Theorem 120, which yields an intuition for the
mathematical difficulties associated to the stated result. According to Theorem 77, for
every Jz-scheduler &, there is a jj-scheduler G, such that for every n € IN there exists
a weight function for (Pr,[&,], RP®t"", Pr,[&,]), say W,. Applying, e.g., Kolmogorov’s
extension theorem (see Corollary 7.7.2 in [Bog07]), a first naive idea is to extend these
weight functions to a single weight function for (Pr[&,], RP3th, Pr[&,]). However, there
is no reason why the weight functions W, with n € IN are compatible in some sense
as they are picked completely independent of each other. At this point, the assumption
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concerning the weakly smoothness of R comes into play. Roughly speaking, this assumption
guarantees the existence of compatible weight functions for (Pr,,[S,], RP*™", Pr, [&,]) for
every n € IN that give rise to a weight function for (Pr[&,], RP2th, Pr[&,)).

Corollary 121. Let T = (Sta, Act, —) be a Souslin STS, R be a simulation, as well as piq, pp €
Prob[Sta] be such that (ua, tp) € RV8. Assume that the relation R is weakly smooth. Then for
every pq-scheduler &, there exists a yy,-scheduler &y, such that

(Pr[&,], Pr[&,]) € (RPah)wst,

Proof. By Remark 38, the relation R is Souslin in Sta x Sta. Thus, similar to Corollary 78,
the claim is a consequence of Theorem 120 together with Theorems 70 and 74. O

Proof of main results. The remainder of this section is devoted to a proof of Theorem 120.
We need the following two auxiliary lemmas. Whereas the first lemma is routine, the second
lemma formalises the given intuition for our proof of the main result.

Lemma 122. Let X be a Polish spaces and (R,,) e be a family of relations R, C X x X. Define
the relation R C X x X by

R= ) R

nelN

Then the following two statements hold:
(1) If Ry, is weakly smooth for every n € IN, then R is weakly smooth.
(2) If Ry, is smooth for every n € IN, then R is smooth.

Proof. We only provide a proof of claim (1) as the argument for (2) is completely analogous.
For every n € IN assume that the relation R, is weakly smooth. For every n € IN let C,, be
a witness for the weakly smoothness of R;,. Define the family of sets C by

c=Jcn

nelN

For every x,, x;, € X it easy to see that
(xq,xp) € R iff forevery B € Citholds x, € B implies x;, € B.

It follows that the relation R is weakly smooth where C is a witness. O

162



5.5 Simulation and bisimulation on infinite paths

Lemma 123. Let X be a Polish space. For every n € IN let R, C X x X be a weakly smooth
relation. Assume that for every n € IN it holds R, 2 Ry, 11. Define the relation R € X x X by

R= (] Ru

nelN

Then for every probability measures yg, p, € Prob[X] the implication below holds:
(ta, thp) € (Ry)“& for everyn € N implies  (pq, up) € RVE"

Proof. For every n € IN let C}, be a witness of the weakly smoothness of R,,. For every
n € IN define the family C,, of Borel sets in X as the smallest family of subsets of X that is
closed under both finite intersections and finite unions and such that Cé U...UC, CCy.
For every n € IN the family C}, is countable and consequently, for every n € N the family C,
is countable. For every n € IN and x,, x;, € X, exploiting the assumed chain of inclusions
Ro D Ry D...2 Ry, itholds

(xq,xp) € R, iff forevery B € Cy, one has x, € B implies x;, € B.

Hence, for every n € IN the family of sets C,, constitutes a witness of the weakly smoothness
of R,,. For every n € IN we additionally have the inclusion C,, C C,1.
Define the family C of subsets of X by

c=Jcn

nelN

The family of sets C is countable and for every x,, x;, € X one also has
(xa,xp) € R iff forevery B € Citholds x, € B implies x;, € B.

The family C is therefore a witness of the weakly smoothness of R. Note, Lemma 122 (1)
already shows that the relation R is weakly smooth. Using that C,, C C,, 41 foralln € IN, it
is easy to see that C also forms a lattice on X.

Let yq, 4y € Prob[X] be such that (jg, pp) € (R,)"8' for every n € IN. For every
B € C there exists n € IN with B € C, and therefore, Theorem 39 yields y,(B) < u;(B).
Applying again Theorem 39, we hence finally derive (j,, u) € RV O

In case the set X in the previous lemma is finite, the claim is trivial. Indeed, if X is finite,
there there exists i € IN such that for all n € IN with n > i it holds R; = R,,. The latter
observation directly yields the claim. In the general setting involving an uncountable Polish
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space X, however, it might hold R, 2 R;,11 for every n € IN that causes the mathematical
difficulties of the presented result.

There is an alternative proof for Lemma 123 relying on Lemma 3.11 in [Les10]. The
cited lemma of [Les10] is completely analogous to our previous lemma, however, considers
relations that are closed in the product space (rather than weakly smooth). It turns out that
there is a suitable Polish topology on X such that for every n € IN the set R, is closed in the
corresponding product topology on X x X (see Chapter 13 in [Kec95]). As the this topology
can be chosen in such a why that the induced Borel sigma algebras on X concerning the
original topology and the modified topology are the same, Lemma 123 is indeed implied
by Lemma 3.11 in [Les10]. However, instead, we exploit the nice properties of weakly
smooth relations to provide a direct argument circumventing the detour involving [Les10].
Moreover, our proof is orthogonal to [Les10] where one relies on results for converging
sequences of probability measures on Polish spaces (see also Example 2 (6)).

Proof of Theorem 120. For every n € IN define the relation R,, C Path x Path as follows: for
every paths 71, = S50 act;1 8,1 ... and 71, = sppactyy Spy - - .,

(11, 1) € Ry, iff <7tﬂ|l/l’7-[b|n> c Rpathn

where the finite paths 77,,,, 71|, € Pathy are given as follows: in case n = 0 let 77,,, = Sa0
and Taln = Sbo and in the other case where n > 0 let Tlaln = Sa0@Ctg1 a1 ... ACtan San
and 7T, = Spo ACtp) Spy - - - ACtpy Spy. We have Ry, 2 Ry4q for every n € IN as well as
RPth = N R,. Since the relation R is required to be weakly smooth, for every n € N
it is easy to see that the relation R, is weakly smooth.

Let G, be a jiz-scheduler. Applying Theorem 77, there exists a y-scheduler & such
that foralln € N,

(Pr,[&,], Pry[6y)) € (RPh)Wet,

By Lemma 123, we can conclude the claim of theorem, i.e., the statement (Pr[S,], Pr[&;]) €
(RPatyW8t brovided for every n € IN one has (Pr[S,], Pr[&,]) € (R,)Ws.

Let n € IN be a natural number. We show (Pr[G,], Pr[Sp]) € (R,)"8! now. Let W, be a
weight function for (Pr,[&,], RP*™M", Pr,[&,]). Abbreviate

X = (Act x Sta)“.

Relying on the Disintegration theorem (see Section 2.1), there exist two Borel functions
fan: Path, — Prob[X] and fy,,: Path, — Prob[X] with

Pr[&,] = Pry[S,] X fan and  Pr(Sy] = Pry[Sy| X fp 4.
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Introduce the function f,, : Path, x Path, — Prob[X x X],

fn(ﬁar 7éfb) = fa,n(ﬁa) ®fb,n(ﬁa)~

The function f, is Borel by Example 6. Moreover, introduce the Borel function ¢, with
domain Path, x Path, x X x X and codomain Path x Path as follows: for every 7t,, 7, €
Path,, and 7t,, 71, € X let

(T, fty, a, ty) = (Fa © Ta, 7ty © 7p).
Define the probability measure W € Prob[Path x Path] by

W= (gn)ﬁ<wn A fn)

We claim that W is a weight function for (Pr[S,], Ry, Pr[Gy]).
S

It is shown that W is a coupling of (Pr[&,], Pr[&]) first. Let I1,, C Path, and I, C X

be Borel sets. One has

& (T, x I1,) x Path) = T, x Path, x 1, x X
and therefore,

W ((T1,, x T1,) x Path)

= /Hm Fu(Fra, ) (T1y x X) AW, (4, 7p)

= o Jon ) (010) W (20, 70

= [, fan(0)(ITe) @Pra ()

= [6u](nan x IT,).

By Carathéodory extension theorem (see Section 2.1), for every Borel set I1, C Path
it holds W, (I1, x Path) = Pr[&,|(I1, x Path). One analogously justifies the identity
W, (Path x I1,) = Pr[Sp](Path x I1,) for every Borel set IT, C Path. As a consequence,
the probability measure W is a coupling of (Pr[S,], Pr[Sy]).

Thanks to Remark 38, the sets R,, and RP*"" are Borel in Path x Path and Path, x Path,,,
respectively. To conclude that W is a weight function for (Pr[S,], R, Pr|&;)), it remains
to show W(R;,) = 1. Since

EH(R,) = RPAM 5 X % X,
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we immediately obtain
W(Rn) B /RPath” f”(ﬁ”’ ﬁb)(x x X) dwﬂ(ﬁﬂ' ﬁb) = Wn(Rpath,n) =1

Putting things together, W is a weight function for (Pr[S,], R, Pr[Sy)). O

5.6 Logical characterisation extended

Whereas the logical characterisation in Section 5.4 is restricted to the two temporal logics
APCTL, and APCTL,, the following generalisation of Theorem 118 includes the comparable
expressive logics JAPCTL* and APCTL*. Besides this, the proof goes beyond the presented
techniques in [FKP17] that yielded the key ingredients in the former Section 5.4.

Theorem 124. Let 7 = (Sta, Act,—) be an STS, A be an action event family, and rew be a
reward function. Assume that T is non-blocking, image-finite, and Borel concerning the hit sigma
algebra. For every states s,, s, € Sta the following two chains of equivalences hold:

(1) sa=sp iff $a=°Usy iff Sq=esp iff Sa=78p

(2) sa~sp iff 5,%%sy, iff sa~osp iff S,Fsp.
Moreover, the relation =< is weakly smooth and accordingly, the relation ~ is smooth. 4

Statements (1) and (2) are accompanied with the same difficulty as both logics APCTL*
and JAPCTL* involve the exists modality ranging over schedulers. To be more precise,
consider states s;, s, € Sta such that such that s, <'s;. We show s, <A sp by an induction
over the construction of formulas. Let T be an APCTL* path-measure formula such that
sa = 37. Consider an s;-scheduler &, with Pr[S,] = 7. To derive s, |= 37, the task is
to provide an s,-scheduler &, such that Pr[S,] |= 7. To get a feeling for mathematical
difficulty, the same discussions as in Chapter 4 can be conducted as schedulers are required
to form Borel functions. Fortunately, Theorem 118 tells us that the simulation preorder
yields a weakly smooth relation. Consequently, we can rely on Corollary 121 to obtain a
convenient s — bscheduler. The complete proof of Theorem 124 can be found below.

Proof of section’s main result. The following first two auxiliary lemmas extend simple
observation for probability measures to the corresponding outer-measure functions.

Lemma 125. Let X be a measurable space, yu € Prob[X] be a probability measure, and M C X be
an arbitrary set, and B C X be a Borel set. If u(B) = 1, then it holds

O (M) = p (M B).
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Proof. For every sets M1, M C X the following inequality for outer measures is standard
(see also Lemma 1.5.5 in [Bog07]):

O (M) — ™ (Ma)| < (M1 \ M2) U (M2 \ My)).
Relyingon (M \ (BN M)) U ((BN M)\ M) = M\ B, we hence obtain
[ (M) — p™ (MO B)| < p™(M\ B).

Assuming u(B) = 1, it easily follows u°"*(M \ B) = 0 asone has M \ B C X \ B as well
as 4(X \ B) = 0. From this we finally derive the identity u#°"*(M) = u°"*(M N B) O

Lemma 126. Let X be a measurable space, ua, pp, € Prob[X], and R C X x X be a relation such
that (pa, ) € RWEL. Then the following two statements hold:

(1) pg" (M) < ug"(M) for every upper R-stable sets M C X.

(2) ug" (M) = " (M) for every R-stable sets M C X.

Proof. Let W be a weight function for (14, R, ptp). First of all, we justify that for every sets
M;, M C X the following two identities hold:

WOU (M, x X) = uS"(M,) and WOU(X x M;) = uS*™(M,).

Let M, C X be a set. For every measurable set B C X x X with M, x X C B there exists
a measurable set B, C X such that B = B, x X and M, C B,. This insight entails
W (M, x X)

= inf{W(B) ; B C X x X measurable set with M, x X C B}

= inf{W(B, x X) ; B; C X measurable set with M, C B,}

= inf{ps(B,) ; B, C X measurable set with M, C B, }

= ug™(Ma).
One analogously shows the identity W"(X x M;) = u§"t (M) for every M;, C X.

The remaining proof for the lemma is as in Remark 34. Nevertheless, let us recall the
argument for statement (1). To this end let M C X be an upper R-stable set. Moreover,
suppose a measurable set R C X x X with W(R’) = 1and R’ C R. It obviously holds
R'N (M x X) C X x M. According to Lemma 125, one moreover has WO (M x X) =
WOut (R’ N (M x X)). Putting things together, we obtain

ugtt (M) = WM x X) = WO(R' N (M x X)) < WX x M) = ug"'(M).

This finishes the argumentation. O
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The following lemma yields the key ingredient for our proof of Theorem 124.

Lemma 127. Let T = (Sta, Act, —) be a Souslin STS, A be an action event family, and rew be a
reward function. Then for every states s,, s, € Sta the following two statements hold:

(1) s, =75 if there is a simulation R that is a weakly smooth relation with (s,,sp) € R.

(2) sq* sy if there is a bisimulation R that is a smooth relation with (S,,sp) € R.

Proof. We concentrate on statement (1) as the argument for claim (2) is completely ana-
logous. For this purpose let s,, s, € Sta be states and R be a simulation that is a weakly
smooth relation with (s;,s,) € R. We show s, <7 s, by an induction over the construction
JAPCTL" state formulas. Relying on Corollary 121 and Lemma 126, it suffices to show that
for every JAPCTL" state formula ¢ the set [0] is upper R-stable, that for every JAPCTL*
path-measure formula T the set [7] is upper (RPh)W8t_stable and that for every JAPCTL*
path formula v the set [v] is upper RP3-stable. Again, we proceed by an induction over
the construction of formulas. In what follows we regard two selected cases.

Let T be an JAPCTL* path-measure formula such that the set [7] is upper (RP3th)wst.
stable. Consider the JAPCTL"* state formula o = 37. Let (s,,s;) € RN ([o] x Sta). It
follows s, |= ¢ and hence, there exists an s,-scheduler &, such that Pr[&,]| = T. According
to Corollary 121, there exists an s,-scheduler &, with

(Pr[&,],Pr[&,]) € (RPah)wst,

Using that the set [7] is upper (RP*")W8t_stable and as we have Pr[G,] |= T, we conclude
Pr[Sp] |= T. It therefore follows s;, |= 0, i.e., one has s, € [¢]. Consequently, the set [o] is
upper R-stable.

Let v be an JAPCTL* path formula such that the set [v] is upper RP*"-stable. Consider
g € QN [0,1] and define the JAPCTL* path-measure formula T = IP-;[v]. Moreover, let
(Xa, xv) € (RPEN)Wt N ([7] x Prob[Path]). We have x, |= T, i.e., it holds x3"*([v]) > g.

Since the set [v] is upper RP3th

g < xa"([v]) < xp"(IvD)-

We obtain x;, |= T and thus, we can conclude that set [7] is (RP2) W&t stable. O

-stable, Lemma 126 yields

Proof of Theorem 124. We concentrate on statement (1) as the argument for (2) is completely
analogous. Let s,, s, € Sta be states. Clearly, s, <3 sp implies 5, <o Sp. According to The-
orem 118, it suffices to show that s, <s;, implies s, ja Sp. Assume s; =< sp. By Theorem 118,
we also know that the relation < is weakly smooth. Hence, according to Lemma 127, we
derive s, <7 s; (see also Remark 116). O
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5.7 Logics for simple stochastic transition systems

In a simple STS (Sta, Act, —) every transition involves only one action (see Section 3.1),
more precisely, for every transition s — ¢ there exists an action act € Act such that
¢({act} x Sta) = 1. The developed results in this chapter, in particular, Corollary 119 and
Theorem 124, clearly apply also for simple STSs. This section provides an adapted version
of these main theorems where the assumed image finiteness can be slightly relaxed:

Theorem 128. Let T = (Sta, Act, —) be a simple STS where the set Act is countable, A be an
action event family, and rew be a reward function. Moreover, assume that ‘T is non-blocking, point-
wise image-finite, and Borel concerning the hit sigma algebra. Then for every states s,, s, € Sta the
following two chains of equivalences hold:

(1) sa=sp iff 84 =°Usy iff Sq=esp iff sS4 =78y

(2) sa=sp dff 5,%sy, iff sa~osp iff S, s
Moreover, the relation < is weakly smooth and accordingly, the relation ~ is smooth. a

Observe that the STS in the previous theorem may not be image finite. Indeed, the
conditions on the STS cover the case where Enabled|s] is countable for every state s € Sta.
Consequently, Theorem 128 yields an improvement of Theorem 124 for the subclass of
simple STSs where the action space is countable. The proof steps and involved ideas for
Theorem 128 are the same as for Theorem 124. Indeed, no essential new mathematical
ideas are required for the argument. Nevertheless, some more details are summarised at
the end of this section.

Borel concerning the hit sigma algebra. Before we devote ourselves to a proof of The-
orem 128, let us investigate the property of being Borel concerning the hit sigma algebra
in the context of simple STSs. Roughly speaking, a simple STS is Borel concerning the
hit sigma algebra precisely when the corresponding condition in Definition 115 holds
point-wise, i.e., for every individual action:

Theorem 129. Let T = (Sta, Act, —) be a simple STS where the set Act is countable. Then the
following two statements are equivalent:

(1) T is Borel concerning the hit sigma algebra.
(2) For every act € Act and every open set Osy, C Prob|[Sta] the following set is Borel in Sta,

{s € Sta ; Enabled[s, act] N Og, # @}
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Proof. Our argument below requires some additional insights on the Polish topology on
Prob[X] where X is a Polish space (see also Example 2 (6)). We summarise this auxiliary
material first.

Let X be a Polish space. For every closed set C C X the set {1 € Prob[X]; u(C) < 1}
is open (see Corollary 15.6 in [AB06]). Besides this, as we have a metric on Prob[X], we
can safely speak about convergent sequences of probability measures. Let y € Prob[X] be
a probability measure and (1 ),eN be a sequence of probability measures u, € Prob[X].
According to the Portmanteau theorem (see Theorem 17.20 in [Kec95]), the sequences
(pn)nen converges in Prob[X] to the limit y precisely when for every closed set C C X it
holds lim sup,, . #x(C) < u(C).

Let Y is a Polish space and f: X — Y a continuous function. Then the pushforward
function f; is continuous. This can be shown by an application of the Portmanteau theorem.
Indeed, it is easy to see that for every convergent sequence (i )nenN in Prob[X] with limit
p € Prob[X] the sequence (f;(jin))neN converges in Prob[Y] to the limit f; ().

(1) implies (2). Letact € Act be an action and Og;, C Prob[Sta] be an open set. To obtain
the implication from (1) to (2), it suffices to provide an open set O, C Prob[Act x Sta]
such that the following identity holds:

{s € Sta ; Enabled[s,act] N Ogy, # @} = {s € Sta ; Enabled[s] N\ Opet # 2}.

Recall, as the Polish space Act is equipped with the discrete topology (see Defini-
tion 2 (1)), the set Act \ {act} is closed in Act. Hence, the set Ot 4t is open in Prob[Act]
where

Ouctact = {& € Prob|Act] ; a(Act \ {act}) < 1}.

Define the continuous functions {4 : Act X Sta — Act, Eaq(act’,s) = act’ as well as
Cota: Act x Sta — Sta, {s(act’,s) = s. Hence, the corresponding pushforward functions
(Cact)s and (i) are continuous. It follows that the set Oyt is open in Prob[Act x Sta]
where we define

Oact = (éAct)u_l (OAct,act) N (QSta)u_l (OSta)-

In order to see that for every state s € Sta it holds Enabled[s,act] N Og,, # O iff
Enabled[s] N O, # O, it suffices to observe the following statement. Let act’ € Act
be an action and p¢ € Prob[Sta] be a probability measure. Define ¢ € Prob[Act x Sta] by
¢ = Dirac[act'] ® p. Then we have that

@ € Enabled[s| N Oy iff u € Enabled|[s,act] N Ogy, and act = act'.
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Indeed, the latter equivalence follows immediately from the observation that it holds
Diraclact'] € Oactqct precisely when act = act’.

(2) implies (1). Let act € Act. Define the function &, : Prob[Sta] — Prob[Act x Sta],

Eact (1) = Diraclact] @ p.

We show that the function ¢, is continuous first. To this end let p € Prob[S ta] as well as
(#n)neN be a sequence of probability measures y, € Prob[Sta] that converges in Prob[Sta]
to the limit y. Let C C Act x Sta be a closed set. Then it is easy to see that Section[C, act, -]
is closed in Sta. Using that the sequence () neN converges to j, the Portmanteau theorem
yields the inequality

lim sup 1 (Section[C, act, -]) < u(Section[C, act, -]).
neN

Applying again the Portmanteau theorem and as Cact (pn ) (C) = pn(Section[C, act, -]) for
every n € IN and &t (1) (C) = p(Section[C, act, -]), the sequence (Cact (1n))neN converges
in Prob[Y] to the limit {ac¢ (3). From this we derive that the function ¢, is indeed continu-
ous.

Let O C Prob[Act x Sta] be an open set. Define the set S C Sta by

S= |J {seSta;Enabled[s,act'] N (&) H(O) #£ o).

act' €Act

For every act’ € Act the set (&,.) ~1(O) is open in Sta. Assuming statement (2) holds and
as the set Act is countable, it hence follows that the set S is Borel in Sta. Using that the STS
T is simple, we moreover have the identity

S = {s € Sta ; Enabled[s| N O # &}.
From this it directly follows that the STS T is Borel concerning the hit sigma algebra. [

Corollary 130. Let T = (Sta, Act, —) be a simple STS where the set Act is countable and such
that for every s € Sta and act € Act the set Enabled[s, act] is closed in Prob[Sta]. Moreover,
assume that T is Borel concerning the hit sigma algebra. Then T is Souslin.

Proof. For every action act € Act define the set-valued F,: Sta ~» Prob[Sta],

F,ct(s) = Enabled][s, act].
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As for every state s € Sta and action act € Act the set Enabled([s, act] is closed in Prob[Sta],
Theorem 129 together with Remark 23 yield that for every action act € Act the set Rel[Fye]
is Souslin in Sta x Prob[Sta].

For every act € Act define the function ¢ : Sta x Prob[Sta] — Sta x Prob|Act x Sta],

Cact(s, ) = (s, Diraclact] @ p).

For every act € Act the set {yct(Rel[Fyt]) is Borel in Sta x Prob[Act x Sta] according to
Example 6 and Remark 10 (5). Since

— = U gact(Rel[FﬂCt])’

acteAct

the set — is Souslin in Sta x Prob[Act x Sta| applying Remark 10 (4). Consequently, the
STS under consideration is Souslin. O

Corollary 131. Let T = (Sta, Act, —) be a simple STS where the set Act is countable. Assume
that ‘T is non-blocking, point-wise image-finite, and Borel concerning the hit sigma algebra. For
every sq,Sp € Sta the two statements below hold:

(1) sq=Xsp implies s, <"sy.
(2) sq~s, implies s, ="s.

Proof. The following argument is basically the same as for Corollary 119. By Remark 4, we
can safely assume some action event family on Act. According to Corollary 130, the STS T
is Souslin. Hence, Theorem 128 and Corollary 83 yield the claim. O

Proof of section’s main result. As we have already mentioned, a proof of Theorem 128
is analogous to our argument for Theorem 124. The following material summarises some
intermediary steps. Our first lemma adapts Theorem 117:

Lemma 132. Let T = (Sta, Act, —) be a simple STS where the set Act is countable and A be an
action event family. Moreover, assume that T is non-blocking, point-wise image-finite, and Borel
concerning the hit sigma algebra. Then the following two statements hold:

(1) The set [o] is Borel in Sta for every APCTL, state formula .

(2) The set [o] is Borel in Sta for every APCTL, state formula .
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Proof. The following argumentation is a simple adaption of our proof for Theorem 117.
Thanks to Remark 19 and Theorem 129, for every action act € Act there exists a family
(factn)nen of Borel functions fyct,: Sta — Prob[Sta] such that for every s € Sta,

Enabled[s,act] = { factn(s) ; n € N}.

For every act € Act and n € IN define f,, ,: Sta — Prob[Act x Sta],

factn(s) = Diraclact] @ factn(s).

By Example 6, for every act € Act and n € IN the function f,, , is Borel.
Let k € IN and define the APCTL, state formula ¢ by

o = 3(Psgve] A ... APsg[vg])

where for every i € {0,...,k}, g; is a rational number in [0,1] and v; is the APCTL,
path-measure formula given by

v; = O (Ai() A 0'1‘0) V...V O (Aiki VAN O'iki)

for some natural number k; € IN, Aj, ..., Ay, € Bool[A] and APCTL, state formula
0i0, - - -, Oik,. Assume that for all i € {0,...,k} the sets [oj], ..., [o] are Borel in Sta.
Inspecting the syntax of APCTL, state formulas and relying on an induction over the
construction of APCTL, state formulas, it suffices to show that the set [¢] is Borel in Sta in
order to conclude the lemma.

For every act € Act,n € Nand i € {0,...,k} define the function g, »i: Sta — [0,1],

Sactni(8) = factn(8) (Ao X [o]) U ... U (A, X [0 ]))-

Inspecting Example 114, it is easy to see that

[[U]] = U U ﬂ gactnz %/ ])

act€Act n€eN i€ {0,...,k}

Using the techniques of Remark 5, for every act € Act,n € IN,and i € {0,...,k} the
function gt »; is Borel and therefore, it directly follows that the set [o] is Borel in Sta. This
shows statement (1). Claim (2) follows analogously. O

The following lemma is in the spirit of Theorem 118:
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Lemma 133. Let T = (Sta, Act, —) be a simple STS where the set Act is countable and A be an
action event family. Moreover, assume that T is non-blocking, point-wise image-finite, and Borel
concerning the hit sigma algebra. For every states s,, s, € Sta the following two statements hold:

(1) Sa j Sp Uﬁc Sq jsou Sp l]jc Sa jo Sp.
(2) sa~sp dff 5,%sy,  iff S5~ Sp.
Moreover, the relation < is weakly smooth and accordingly, the relation ~ is smooth.

Proof. Using Lemma 132, the argument is exactly the same as for Theorem 118 (see also
[FKP17]). Again, the key ingredients are given by Theorems 39 and 40. O

5.8 Expected values of payoff functions

Intuitively, a payoff function assigns a real number to every trace of an STS. Thus, whereas
a logical formula either hold in a state or not, expected values of payoff functions provide
quantitative information for a state. In what follows we shows that also these quantitative
properties are preserved by the simulation preorder and the bisimulation equivalence
under the Souslin requirements under consideration. As a consequence, the modal logics
in this chapter can be extended with an expectation operator such that Theorems 124 and
128 are still maintained.

Definition 134. Let 7 = (Sta, Act,—) be an STS. A payoff function (for T) is a Borel

function
pay: Act’ — RU {—co, +00}.

Let pay be a payoff function. For every probability measure y € Prob[Sta] and p-scheduler
G the G-expected payoff (of pay) is defined by

Ex[&, pay] = /pay(a) dPrTrace[S|(0),

i.e., the G-expected payoff is given by the expected value of the function pay with respect
to the trace distribution PrTrace[S)]. 4

We remark that the G-expected payoff of a payoff function pay might be —oco or +oco.
However, it holds —oo < Ex[&, pay| < +oo precisely when the function pay is integrable
with respect to the probability measure PrTrace[S]. For instance, provided there are real
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numbers 7,17, € R such that PrTrace[S|({c € Act” ;1 < pay(c) < r,}) = 1, the
function pay is integrable with respect to the probability measure PrTrace[S], in particular,
it follows —oco < Ex[S, pay| < +o0. For instance, provided the STS under consideration
is augmented with a reward function, the accumulated reward until reaching a goal or
the long-run average (mean payoff) of an infinite path yield natural examples for payoff
functions. The following example of a payoff function does not involve any reward function:

Example 135. Let 7 = (Sta, Act, —) be an STS and assume that response is an action
contained in Act. Introduce the function pay: Act” — R U {—co+,00} as follows: for
every 0 = acty act, ... define

pay(rr) = sup{inf{j € IN ; act,,;;; = response} ; i € IN}.

Consider a state s and an s-scheduler & with the following property: the set consisting of
every trace acty act ... € Act” such that act; = response for infinitely many i € IN \ {0}
has probability one with respect to the trace distribution PrTrace[S]. The value Ex[S, pay|
intuitively represents the expected maximal number of steps between the response action
if the STS under consideration is governed by the scheduler &. a

Proposition 136. Let T = (Sta, Act, —) be a Souslin STS, pay be a payoff function, R be a
Souslin simulation, and g, iy € Prob[Sta] be so that (i, ) € RWE. Then for every ji,-
scheduler &, there exists a yy-scheduler Gy, such that

Ex[&,, pay] = Ex[Sy, pay].

Proof. Let &, be a p,-scheduler. By Corollary 78, there exists a y;-scheduler &, such that
for every n € IN it holds

(Pry[6,], Pry[Sy)) € (RPathmywet,

By Lemma 81, it immediately follows PrTrace[S,] = PrTrace|S;]. This insight directly
yields the claim. O
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6 Parallel composition based on spans and
couplings

We present a generic parallel-composition operator for simple STSs based on spans and
couplings. Our operator only refers to simple STSs for the same reasons as discussed in
Section 4.3.3 of [Seg95]. The new operator does not rely on the assumption that the STSs to
be composed are stochastically independent and covers standard composition operators by
dealing with specific spans.

The assumption that STSs to be composed behave stochastically independent of each
other is not adequate in every situation. We illustrate this continuing the running example
from Section 3.1 modelling a simple cooling system of a server. The server can operate
in different energy modes. For instance, hardware components can be shut down to save
energy costs in phases of low workloads and can be set in a high performance mode in
busy phases. Thus, the energy consumption can be adapted to meet all the service level

agreements while saving energy cost.

7-COOLZ' : ) Eew :
repair Intact;
. Low
i /ﬂall [1 —& i]
' inc
\ﬁaﬂ €]

replace Broken; High

Figure 6.1: Cooling systems T o011 and Tcool 2 Of a server Tgery-

Consider the STSs depicted in Figure 6.1 modelling two cooling systems 7Tcqo11 and
Tcool2 dissipating the heat produced by the server 7sery. A failure in the systems affects
all the components at the same time, which is formalised by means of the synchronisation
action fail. Intuitively, the action fail models a common cause failure, e.g., triggered by
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6 Parallel composition based on spans and couplings

power fluctuations. When fail is executed, the components are interrupted immediately
such that the cooling system ¢, ; needs to be replaces with probability €;. The cooling
system 7o) i can be repaired with probabilities 1 — €;.

The behaviour of the cooling systems 711 and T ool 2 is coupled by the internal power
and cooling strategy of the server Tsery. In case the server operates in the energy-saving
state labelled by Low, the server typically stresses only one cooling system and internally
alternates between them. The latter ensures that the cooling components wearing out
equally during a certain time span that in turn lowers maintenance costs. As a consequence,
the common failure affects either Tcoo11 O Tcool2 depending on which device is actually
working. We can thus rely on the assumption that the cooling systems behave stochastically

independent within a failure in the energy-saving mode, which is formalised by
[fail]: Low = IP(Broken; A Broken,) = IP(Broken;) - IP(Brokeny).

In contrast, if the server operates in the energy-consuming state labelled by High, the cooling
systems are stressed equally to dissipate the increased heat. Here, it is highly probable that
a failure affects the cooling systems equally. More precisely, either both cooling systems
need to be replaced or none of them with high probability: with a probability greater than

0.9, either both cooling systems are broken or both are intact, i.e.,
[fail]: High = IPP((Broken; A Broken,) V (Intact; A Intacty)) > 0.9.

In our example we abstract from the precise operational behaviour of the internal power-
management strategy of the server controlling the interplay of the cooling systems. On the
one hand, we have only vague knowledge on the precise implementation of this internal
strategy and on the other hand, we want to abstract from the complex internal behaviour
to keep the model simple and manageable. Therefore, stochastic dependencies caused by
the power-management strategy are formalised in a declarative manner by the above two
symbolic expressions for the action fail.

The main feature of the span-coupling composition operator to be developed in this
chapter is that stochastic dependencies between components can be declaratively specified
by specific couplings of probability measures. In contrast to the standard composition
operator, the new operator takes all the possible couplings between components into
account instead of considering only the independent one. Thus, the new operator does not
rely on the assumption that components interact stochastically independent. To the best of
our knowledge, couplings have not been used as a declarative modelling formalism in a

compositional framework for operational systems.
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Besides couplings, our composition operator relies on spans to characterise the global
state space of the STSs to be composed. Spans allow for arbitrary sets and associated
projections functions as well as induce a generic notion for couplings. As a consequence,
our composition operator in particular covers stochastic transition systems with shared
variables. As a consequence, our framework can be instantiated in several ways so that
standard composition operators for stochastic systems are covered, e.g., [Seg95, D’A99,
DKO05, CSKNO5, Cat05]. Moreover, compatibility results with composition operators for
modelling formalisms from the literature such as probabilistic timed and rectangular hybrid
automata [Spr01, KNSS02, Sprl1, ZSR"12, Spr15] can be obtained.

As a main result of this chapter, we show Theorem F (see Chapter 1) stating that simu-
lation preorder and bisimulation equivalence are congruences with respect to our newly
developed composition operator under some side constraints. The mathematical challenge
associated to the proof is to construct appropriate probability measures that yield a certain
span coupling and that are compatible with a specific relation. The key feature of our
proof is given by the disintegration theorem (see Section 2.1), which, roughly speaking,
makes the coupling structure of probability measures on a product space accessible from a
mathematical point of view.

6.1 Standard compositional framework

We provide a brief introduction on the standard compositional framework for simple STSs
where probability measures occurring in STSs to be composed are put together by means of
their product measure. After that, we present a first easy congruence result with respect to
the standard composition operator. The following material contains no new contributions
and can be seen as foundations for further considerations in this chapter on a general

compositional framework.

Definition 137. Two Polish spaces Act; and Act; are called composable provided their union
Acty U Act; constitutes a Polish space when equipped with the union topology. Recall, a
subset O C Acty U Acty is open with respect to the union topology iff both sets O N Act;
and O N Act, are open in Act; and Act, respectively. We refer to two STSs 77 and 7 as
composable provided the respective action spaces are composable. a

The previous definition is motivated by the fact that the action space in a composition
is obtained by the union of the respective action spaces of the STSs to be composed. The
requirement in the definition ensures that the action space of the resulting STS constitutes a
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6 Parallel composition based on spans and couplings

Polish space. Recall, Example 2 (4) shows that the union of disjoint Polish spaces is Polish.
However, the Polish spaces Act; and Act, in Definition 137 are not necessarily disjoint. For
practical applications the requirement in Definition 137 is harmless that is also illustrated
by the following example:

Example 138. Let Q; and Q> be countable sets disjoint from IR>. Then Act; = Q1 UR>p
and Act, = Q> UIR>( form Polish spaces by Example 2 (4). Moreover, it is easy to see that
Acty and Act; are composable. Indeed, as the sets Q1 and Q> are countable, we immediately
obtain that the Polish spaces Q; and Q; are composable. Since the union Q; U Q3 is also
disjoint from IR, the claim follows from Example 2 (4). 4

Definition 139. Let 7; = (Stay, Acty, —1) and T, = (Stay, Acty, —7) be simple STSs and
Sync C Acty N Actp be a set. If 77 and 7, are composable, the (standard) composition of
(71, T2) concerning Sync is given by the STS

71 ||®,Sync 75 = (Sta1 X Sta,, Actq UACtz,—))
whose transition relation — is defined by the following three inference rules:
(1) Forevery act; € Acty \ Sync, s1 € Stay, sy € Stap, and py € Prob[Sta; |:

S1 —1 <tZCt1, ]41>
(s1,82) — (acty, u1 ® Diraclsz])

(2) Forevery acty € Acty \ Sync, s1 € Stay, sy € Stap, and pp € Prob[Stay]:

Sp —o (acty, o)
(s1,82) — (acty, Dirac[s1] ® pa)

(3) Forevery act € Sync, s; € Stay, sy € Stap, uy € Prob[Sta;], and py € Prob[Stay]:

s1 —1 {act,u1) and sy — (act, u)
(s1,82) = (act, p1 @ p2)

_I

When composing two STSs by means of the operator introduced in the previous definition,
we implicitly assume that the considered STSs are composable. Actions in Acty \ Sync and
Acty \ Sync are viewed as local and can be taken by the respective STS in an autonomous
fashion (see inference rules (1) and (2)). In particular, an execution of an action contained
in Acty \ Sync does not affect the local state of the STS 7, and accordingly for the actions

180



6.1 Standard compositional framework

in Act \ Sync. In contrast to that, those action that are contained in the set Sync are
synchronisation actions meaning that they need to be performed by 77 and 7 at the same
time (see inference rule (3)). Involved distributions over the corresponding state spaces
are combined using the respective product measures. Consequently, if S; C Sta; and
S, C Sta, are Borel sets, the two events that the STS 71 enters a state in S; and that the STS
T2 enters a state in S, are stochastically independent from each other with respect to every
probability measure occurring in the standard composition of (77, 72).

Definition 140. Let 7, = (Sta,, Act, —,) and T, = (Stay, Act, —}) be simple STSs such
that their respective action spaces are the same. A simulation for (T,,Tp) is a relation
R C Sta, x Stay with the following property: for every states s, € Sta, and s, € Stay,
action act € Act, and probability measure y, € Prob[Sta,| with

(sa,sp) € R and s, —, (act, u,)
there exists a probability measure y;, € Prob[Stay| such that
sp —p {act, yup) and  (pa, up) € RVE

A relation R C Sta, x Stay, is called a bisimulation for ('T,, Ty,) provided the relation R is a
simulation for (7, 7;) and its inverse relation R~ is a simulation for (73, 7,). N

In the previous chapters simulation and bisimulation has been considered as a relation
between states of one single STSs (see, e.g., Definition 47 as well as Remark 49). Compared
with this, Definition 140 introduces these concepts as a relation between STSs such that the
branching-time behaviour of different STSs can be compared. In order to achieve a coherent
comparison, the STSs are assumed to involve the same action spaces. For two simple STSs
Ta = (Stay, Act,—,) and T, = (Stay, Act, —}) as well as corresponding states s, € Sta,
and s, € Sta, we furthermore define

Ta,5a = Tp,sp iff there is a simulation R for (7,, T,) with (s4,sp) € R,
Ta,5a >~ Ty, sp iff thereis a bisimulation R for (7, T) with (s,,sp) € R.

The following result shows that simulation and bisimulation are congruences with respect
to the standard composition operator for STS:

Proposition 141. Consider four STSs Tz1, Ty, Taz, and Ty, and denote the respective state spaces
by Stag1, Stayy, Staz, and Stay,. Assume that the action space of T,1 and Ty are given by the
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Polish space Acty and that the action space of T and Ty are given by the Polish space Acty. Let
Sync C Acty N Acty and define the two STSs

Ta=Ta H@,Sync Tz and Ty =T H@,Sync Tha-
For every s,1 € Stagy, Sp1 € Stayy, Sap € Stagn, and sy € Stay, the two statements below hold:
(1) Ta1,8a1 = Tor, so1 and Taz, 802 = T, Sp2 implies Ta, (Sa1,8a2) = To, (Sv1, S02)-
(2) Tar,8a1 = Tor, sp1 and Taz, 802 == T, Sy implies Ta, (Sa1,8a2) == Tp, (Sv1, S02)-

Proof. The argument is standard. Nevertheless, let us illustrate a proof for the two claims.
Let Ry be a simulation for (7,1, Tp1) and Ry be a simulation for (72, T2 ). Define the Polish
spaces Sta, = Sta, X Sta,y and Stay, = Stay X Stayy. Introduce the relation

R = {((5a1,5a2), (Sp1,5p2)) € Stay X Stay ; (Sa1,5,) € Ry and (sx2, Sp2) € R}

Then R is a simulation for (7,, 7). This follows easily from the following observation. Let
Ua1 € Prob[Stas ], py1 € Prob[Stay |, pap € Prob[Stag|, and py, € Prob[Stay,]. Consider
weight functions Wy and W, for (p41, R1, pp1) and (a2, Ro, pp2), respectively. Then W
is a weight function for (s ® pao, R, up1 ® pyp) where W € Prob[Sta, x Stay) is given
as follows (see also Carathéodory extension theorem in Section 2.1): for every Borel set
B,1 C Stag1, Byy € Stayy, Bap € Stagp, and By, C Stay, let

W((Ba1 X Baz) X (Bp1 X Bpa)) = Wi(Ba1 X Bp1) ® Wa(Baz2 X Ba).
From this claim (1) immediately follows and claim (2) can be derived analogously. O

The importance of a congruence result for a compositional framework like the previous
proposition is also accompanied by the question which properties are preserved by the
simulation preorder and the bisimulation equivalence. The material below can be seen as
folklore (see, e.g., Section 7.1.1 in [BK08] and Section 7.6 in [Pan09]). More precisely, to
rely on the preservation results presented in Chapters 4 and 5, the following observation
relating the notions in Definitions 47 and 140 is crucial.

Remark 142. Let 7, = (Sta,, Act, —,) and T, = (Stay,, Act, —}) be simple STSs that have
the same action space Act. For simplicity assume that the state spaces Sta, and Sta;, are
disjoint. The union of (7, Tp) is defined by the simple STS

T.U T, = (Sta, U Stay, Act, —)

whose transition relation — is given by the following two inference rules:
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(1) Forevery s, € Sta,, act € Act, and p, € Prob[Sta, U Stay|:

Ha(Stag) =1 and s, —, (acty, u)

Sa — (actq, ta)

(2) Forevery s, € Stay, act € Act, and p;, € Prob[Sta, U Stay):

up(Stay) =1 and s, — (acty, u})

sy — (acty, up)

Here, u,, € Prob[Sta,]| is the probability measure induced by j,, i.e., for every Borel set
Sa C Stag itholds u},(Ss) = 1a(Sa), and analogously for y),. Intuitively, the STS 7, U 7,
simply combines the two STSs 7, and 7, into one.

For every states s, € Sta, and s, € Stay, the following two equivalences hold:

Sa jﬁuﬁ Sp iff 7;/ Sa j 727/ Sp,
Sa ~T,UT, Sb iff 7;,551 ~ E, Sp-

Here, the relations <7.7, and ~7, 7, denote the simulation preorder and the bisimulation
equivalence for the STS 7, U 7j, respectively. A precise proof for these equivalence is
technical but easy (see also Remark 49). We omit the details here and only remark that
it suffices to show the following two observations. If R C (Sta, U Sta,) x (Sta, U Stay) is
a simulation for 7, U Tj, then the relation R N (Sta, X Stay) is a simulation for (7, 7Tp).
Vice versa, if R C Sta, x Stay is a simulation for (7,,7Ty), then R is also a relation in
(Sta, U Stay,) x (Sta, U Stay,) that additionally forms a simulation for 7, U 7. N

Relying on the previous remark, the results of the previous chapters turn out to be
applicable for the comparison of two STSs. We illustrate this by means of the following
example. Let T, = (Sta,, Act,—,) and T, = (Stay, Act, —}) be two Souslin STSs and
s, € Sta, and s, € Stay, be respective states. For simplicity assume that Sta, N Sta, = <.
Consider a simulation R for (7, Tj) such that (s,, s;) € R and so that the set R is Souslin
in Sta, x Stay. Then for every s,-scheduler for 7, say &,, there exists an sy-scheduler for
Ty, say &y, such that

PrTrace[S,] = PrTrace[Sy),

i.e., every trace distribution in the STS 7, originating in state s, can be mimicked by a
trace distribution in the STS 7, originating in state s,. This claim follows directly from
Corollary 83 as well as Remark 142. Again, as in Remark 142, the precise argument is
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technical but easy. The basic observations are as follows: first of all, the STS 7, U Ty, is
Souslin, and moreover, the set R is Souslin in the Polish space (Sta, U Sta,) x (Sta, U Stay).
A similar discussion can be conducted for the results in Chapter 5 concerning the proven
logical characterisation of the simulation preorder and the bisimulation equivalence.

6.2 Spans and span couplings

The following definition for spans is borrowed from category theory where the notion of a
span yields a generalisation of the concept of a relation between objects. Throughout this
thesis, we use spans as a modelling formalism to specify the global state space of two STSs

to be composed.

BN

X1 X
Figure 6.2: Illustration of a span.

Definition 143. A span is defined as a tuple

Sp = (X, X1, X2, 01,02)

such that X, X;, and Xj are three Polish spaces as well as p1: X — Xjand p2: X — X5

are two Borel functions. a

Figure 6.2 provides an illustration of a span. For every x € X we also write x|; and x),
instead of p1(x) and pa(x), respectively. Moreover, the span relation is given by the relation
Rel[Sp] C X3 x X defined as follows:

Rel[Sp] = {{x1,x2) € Xj X Xp ; thereis x € X with x; = x}; and x2 = x)p }.

Given two STSs 77 and 7, with state spaces Sta; = Xj and Sta, = Xj, respectively,
the set X intuitively stands for the global state space of 7; and 7, where p; and p, yield
corresponding projection functions from X to Sta; and Stay, respectively. Thus, considering
two states s1 € Staj and s, € Stap, every x € X such that p1(x) = s; and p2(x) = s
represents a global state resulting from the local states s; and s; of the respective STSs T;

and 75 to be composed.

184



6.2 Spans and span couplings

Example 144. The following examples provide natural instances of spans. We remark that
all the sets appearing in the following enumeration form Polish spaces by Example 2.

(1) Let X; and X; be Polish spaces. Denote the natural projections from the Cartesian
product X; x X, onto the components X; and X, by p1 and p,, respectively, i.e.,
p1(x1,x2) = x7 and p2(x1,x2) = xp for every x1 € Xj and x; € Xp. Then the
Cartesian span for (X1, X7) is the span (X7 x X, X1, X2, 01, 02)-

(2) Let X be a Polish space. Suppose that p is the identity function on X, i.e., for every
x € X itholds p(x) = x. The identity span for X is the span (X, X, X, p, p).

(3) Consider finite sets of variables Var; and Var,. Let p1 and p> be the functions project-
ing a variable evaluation over Var; U Var, onto Vary and Vary, respectively, i.e., for
every e € Eval[Vary U Var,] it holds p1(e) = ejysy, and pa(e) = €|y,y,- The variable
span for (Vary, Vary) is given by (Eval[Vary U Vary), Eval[Vary|, Eval[Var,], p1, p2)-

(4) Pick two finite alphabets 21 and Y. Moreover, let p; and p, be the functions project-
ing a word over the alphabet 1 U X, onto its consecutive sequences of letters in g
and X, respectively. Then the finite-words span for (£1,%;) is defined by the tuple
(21 UX2)" E1, X5, 01,02).

(5) Consider a span Sp = (X, X1, X3, 01, Pz)- Recall, according to Remark 8 (1), the two
pushforward functions (1) and (p2); are Borel. Hence, we can safely define the
probabilistic version of Sp by the span (Prob[X], Prob[X1], Prob[ Xz, (01)z, (02)1)-

_I

The variable span for (Vary, Var,) in Example 144 (3) can be seen as a generalisation
of the spans in (1), i.e., Var; N Var, = &, and in (2), i.e.,, Var; = Varp. Intuitively, the
presented definition for a variable span inherently declares the variables in Var; N Varp
as shared and the remaining ones contained in Var; \ Var, or Var, \ Var; as local. Let us
illustrate the versatility of spans by means of the following example of a span:

Example 145. Pick three different variables v1, v7, and v. Consider the variant of the
variable span given by the span (Eval[{v1,v2}], Eval[{v}], Eval[{v}], p1, p2) such that for
every e € Eval[{v1,v5}] itholds p1(e)(v) = e(v1) and p2(e)(v) = e(v2). Intuitively, given
two STSs that both control a variable with name v, the above span formalises the fact that v
is not shared between these two STSs, i.e., the global state space specified by the span Sp
incorporates the two copies v1 and v, of v. 4

185



6 Parallel composition based on spans and couplings

The definition of a span coupling is straightforward:

Definition 146. Let Sp = (X, X3, X2, p1,p2) be a span as well as y; € Prob[X;] and
H2 € Prob|[Xs] be probability measures. A probability measure j € Prob[X] is called a
span coupling of (y1, p2) (concerning Sp) if the following two conditions hold:

(1) (p1)4(p) = p1, ie., for every Borel set B; C X; one has y(pfl(Bl)) = u1(B) .
(2) (pz)ﬁ(‘u) = Jip, i.e., for every Borel set By C X, one has ‘u(pgl(Bz)) = uz(Ba).
J

For every probability measure u € Prob[X] we use #|1 and p; as shorthand notations for
(01)3(p) and (02)4 (1), respectively. Obviously, Definitions 146 collapses with Definition 29
considering the special case where the underlying span is a Cartesian span. Inspecting for
instance the identity span or the variable span, there may exists no span coupling of given
probability measures. In the remainder of this section we establish a connection between
the concepts of a span coupling and a weight function that finally provides an intuitive
characterisation for the existence of span couplings.

Lemma 147. Let Sp = (X, X1, Xo, p1,p2) be a span, W € Prob[X; x Xa] be a probability
measure, and B C Xy x Xo be a Borel set such that B C Rel[Sp]| and W(B) = 1. Then there is a
Borel set B C X1 x Xj and a Borel function f: Xy x Xo — X with the following properties:

(1) B'C Band u(B') = 1.
(2) Forevery (x1,x2) € B it holds f(x1,%2);1 = x1 and f(x1,x2)p = X2.

Proof. A proof can be obtained by a standard application of a measurable-selection principle.
More precisely, define the set-valued function F: X; x Xp ~ X,

F<X1,XQ) = {X €X; Xp=x and Xp = XQ}.

The function p: X — X1 x Xy, p(x) = (xp, X)) is Borel, and therefore the set Graph/p] is
Borel in X x (X7 X X3) (see Remark 10 (6)). From this we derive that the set Rel[F] is Borel
and also Souslin in (X7 X X3) X X (see Remark 10 (2)). Moreover, for every (x1,x2) € B
the set F(x1, x) is not empty. We can hence apply Theorem 21 that yields the existence of
a Borel W-selection of F. Thus, there are a Borel set B’ C X; x X, and a Borel function
f: X1 x Xo — X such that W(B”) = 1and f(x1,x2) € F(x1,x2) for every (x1,x2) € B”.
Defining B = B N B”, the set B’ and the function f satisfy requirements (1) and (2). O
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Theorem 148. Let Sp = (X, X1, X2, p1, p2) be a span and yy € Prob[X;] and yy € Prob[X;]
be probability measures. Then we have the following equivalence:

there is a span coupling of (p1, p2) iff (p1, p2) € Rel[Sp]™8".

Proof. Define the Borel function p: X — X1 x Xa, p(x) = (x|1, X)) By Remark 10 (1), the
set Rel[Sp] is Souslin in X; X X5. Thus, relying on Lemma 13, it is easy to see that for every
span coupling y of (yi1, #2) the probability measure p;(j) forms a weight function for
(p1, Rel[Sp], u2). Hence, if there is span coupling of (y1, 2), then (p1, p2) € Rel[Sp]™8t.
This shows the first implication of the claimed equivalence.

For the reverse implication consider a weight function W for (u1, Rel[Sp], p12). Thus,
there exists a Borel set B C X; X Xj such that B C Rel[Sp] and W(B) = 1. According to
Lemma 147, there exist are a Borel set B’ C X7 x X3 and a Borel function f: X7 x X, — X
such that B’ C Rel[Sp| and W(B') = 1 as well as f(x1,x2); = x1 and f(x1, x2)p = x2 for
every (x1,Xz) € B'. Itis easy to see that f;(W) is a span coupling of (1, ji2). O

The previous theorem provides a tight connection between the existence of span couplings
and weight functions concerning the span relation. This yields another nice application of
weight functions. Moreover, our foundational results in Sections 2.6 and 2.7 concerning
weight liftings of relations turn out to be applicable in the study of span couplings:

Corollary 149. Let Sp = (X, X1, X2, p1,p2) be a span, y1 € Prob[Xi], and yp € Prob[Xa].
Consider a Polish space Y and two Borel functions f1: X1 — Y and fo: Xo — Y such that

Rel[Sp] = {(x1,x2) € X1 x X5 ; fi(x1) = fa(x2) }.
Then the following equivalence holds:
there is a span coupling of (1, 42)  iff  (f1):(#1) = (f2)1(2)-
Proof. The claim is a consequence of Theorem 148 together with Corollary 41. O

In the previous corollary we assume that the span relation is smooth (see also Remark 37).
It turns out that this requirement is harmless in the context of this chapter having for instance

a variable span in mind:

Example 150. Let Vary and Var, be two finite sets of variables and consider the variable
span Sp for (Vary, Vary) (see Example 144 (3)). Define SVar = Vary N Var,. Intuitively,
the variables in SVar represent shared variables. It is easy to see that

Rel[Sp] = {{(e1,e2) € Eval[Var1] x Eval[Vara] ; e1jsvar = €2/svar },
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i.e., the span relation is smooth by Remark 37. According to Corollary 149, for every
11 € Prob[Eval[Vari]] and 17, € Prob[Eval[Var;]] the following equivalence holds:

there is a span coupling of (171,172) iff  #1)svar = 12/sVar-

As a consequence, there exists a span coupling of (771, 772) precisely when the corresponding
restrictions onto the shared variables are the same. This is a statement one naturally expects
in the context of variables. a

6.3 Span-coupling composition operator

This section is devoted to our new composition operator for simple STSs relying on spans
and span couplings. Let 77 and 7, be STSs and denote their corresponding state spaces
by Sta; and Sta,, respectively. To improve our notions, we drop the Polish spaces Sta;
and Sta, from the tuple (Sta, Stay, Stay, p1, p2) defining a span and simply refer to a triple
(Sta, p1,02) as a span for (71, 72).

Definition 151. Let 71 = (Staj, Act;, —1) and T, = (Stay, Acty, —7) be simple STSs,
Sync C Act; N Acty be a set of actions, and Sp = (Sta, p1,p2) be a span for (71, 72).
Provided the STSs 77 and 7, are composable, the span-coupling composition of (T1,T2)
concerning (Sp, Sync) is defined by the STS

T1 \lsp,sync T2 = (Sta, Acty U Acty, —),
whose transition relation — is given by the following three inference rules:

(1) Foreverys € Sta, act; € Acty \ Sync, and y € Prob[Sta]:

sp —1 (acty, pp) and  ppp = Dirac[s),]

s — (acty, u)

(2) Forevery s € Sta, act; € Act \ Sync, and y € Prob[Sta]:

pup = Dirac[s;;] and s — (acta, ppp)

s — (acty, u)

(3) Foreverys € Sta,act € Act, and u € Prob[Stal:

sjp—1 (act,pp) and  sp —o (act, ppp)

s — (act, )
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_

Intuitively, the set of actions Sync stands for the set of all synchronisation actions and the
span Sp specifies the global state space for the STSs 77 and 75 to be composed. As for the
standard compositional framework, the new composition operator requires that the STSs
under consideration are composable (see Definition 137). However, this assumption is
harmless (see Example 138) and is assumed implicitly when composing STSs. To simplify
notions, we write

7] HCurtSp,Sync 7-2' 71 HIdSp,Sync 7-2’ and 7-1 HVarSp,Sync 75

provided the considered span is given by the respective Cartesian span, identity span, and
variable span, respectively (see Example 144). Clearly, if one focuses on the identity span
for (71, 72), then the state spaces of 71 and 7T, are necessarily the same.

Actions not contained in Sync are seen as local for the respective STS and can be executed
autonomously. Inspecting the inference rule in (1), the condition yi, = Diracls),] ensures
that the state space of the STS 7 is not affected when the STS 7; takes the local action act;.
The same discussion applies for the inference rule (2). As for the standard composition
operator, according to the inference rule (3), a synchronisation action can be executed if
both communication partners are ready to perform the action.

To refer to our initial motivation presented in Section 1, our composition operator intro-
duced in Definition 151 does not involve any assumptions concerning stochastic dependen-
cies between 77 and 7. Considering for instance the case where the span Sp is Cartesian,
i.e., Sta = Sta; x Stap, we obtain the following insight: if s; —1 (act, u1) and s, — (act, yo)
with act € Sync, then for every coupling p of (p1, y2) it holds (s1,s2) — (act, pt) . Hence,
we take all possible couplings of (ji1, #2) into account. In comparison to that, the standard
composition operator only includes the independent coupling 11 ® 2 (see Definition 139).
However, the standard composition can be expressed by our compositional framework as
illustrated below:

Example 152. Let 71 = (Stay, Acty, —1) and T, = (Stay, Acty, —7) be simple STSs and
Sync C Acty N Acty be a set of actions. Assume that 77 and 7 are composable. Define
Sta = Sta; x Stay and Act = Act; U Acty. Introduce the simple STS T, = (Sta, Act, —)
whose transition relation — is given by the following inference rule: for every s € Sta,
act € Act, and p € Prob[Sta):

i = p1 @ pp for some pq € Prob[Sta;] and pp € Prob|[Stas)]
s — (act, )
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6 Parallel composition based on spans and couplings

Then we have the identity below (see also Remark 31):

,Tl ||®,Sync 75 = (,Tl HCartSp,Sync 75) HIdSp,Act 7%9

Intuitively, the STS Ty encodes the fact that all the relevant couplings in the standard

composition of 77 and 7, are given by the respective product measures. 4
Tx: Ty:
toss{y wswx] toss[y wsum
Heady Taily Heady Taily
T:

t ' toss|d
y XSH a+b=px
Headx toss|[b] toss|c] Taily c+d=1-px

Heady Taily a+c=py
Headx Taﬂx b + d= 1—171/
Taily Heady

Figure 6.3: Simple STSs modelling coin tosses.

Example 153. We return to our coin-tossing example from Section 2.5 that discusses differ-
ent couplings modelling a simultaneous toss of two coins. Take the notions as in Example 30
concerning a coin-toss experiment with the two coins Coiny and Coiny. The simple STSs
Tx and Ty depicted in Figure 6.3 model the toss of the individual coins Coiny and Coiny,
respectively. The span-coupling composition of (7, Ty), i.e., the STS T illustrated in
Figure 6.3, formally given by

T="Tx ||Cart5p,{toss} Ty,

models the experiment of tossing the two coins Coiny and Coiny simultaneously where we
do not rely on any further stochastic information concerning their interplay. In particular,
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6.3 Span-coupling composition operator

it is not assumed that the coins are tossed independently from each other. Note, as demon-
strated by Example 152, an additional STS may encode available stochastic information to
refine the model for the simultaneous coin toss. J

Example 154. Let Var; = {cool} and Var, = {temp, cool}. Recalling our running ex-
ample concerning a cooling system of a server (see introduction of this chapter and also
Section 3.1), the variable temp may refer to the internal temperature of the server and the
variable cool may represent the heat dissipated by the cooling system. Consider the STSs
T1 = (Eval[Vari],R>0, —1) and T, = (Eval[Var], R>0, —2) modelling the continuous
evolution of the cooling system and the server, respectively.

Assume the STS 7; for the cooling system is determined by the the differential inclusion

dot[cool] € [0,5].

Intuitively, this means that the heat dissipated over time can be represented by every
differentiable function whose slope is between zero and five at each point in time. Formally,
forevery e € Eval[Var|andt € R>githoldse — (t, Dirac[e']) if there exists a differentiable
function f: R>o — Ewval[Var;] such that for every t' € [0, t] one has that dot[f](t') (cool) €
[0,5]. Here, dot[f] is the function with domain R>( and codomain Eval[Var;] given by the
first derivative of f concerning the time.

The STS 7 for the server is governed by the differential equation

dot[temp] = temp — cool,

i.e., for every e, e/ € Eval[Vary] and t € R>( we have e —; (t, Dirac[e']) if there exists
a differentiable function ¢: R>9 — Ewval[Var;| such that for every ' € [0,¢] it holds
dot[g](t') (temp) = g(#')(temp) — g(#')(cool). Again, dot[g] denotes the derivate of g
with respect to time. Note, the STS 75 includes no equation constraining the derivative of
the variable cool. Indeed, this variable is controlled and determined by the cooling system
and, roughly speaking, the server has no knowledge on how the flow of the actual cooling
system looks like relying on the principle of separation the concerns.
The span-coupling composition for (77, 72) given by

T=" ||V11rSp,IR20 T2

represents the differential inclusion system comprising of the two equations dot[cool]| €
[0,5] and dot[temp] = temp — cool. The variable span under consideration declares the
variable cool as shared. The components synchronise over the time. 4
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6 Parallel composition based on spans and couplings

Although the latter example involving a variable span involves no proper distributions,
let us refer to Example 150. As a consequence of this example, a synchronisation action
of two STSs with shared variables can only be executed provided the shared variables are

affected equally.

6.4 Closure properties for Souslin and image-compact systems

We have investigated subclasses of STSs in Chapters 4 and 5. Concerning a proper theory
on composition that fits well with our previous achievements, the question whether these
subclasses are closed under composition is crucial. Besides others, we show that the
composition of two reactive Souslin STSs also yields a Souslin STS. The latter is also of great
practical importance: large and complex STSs satisfying certain measurability conditions
can be obtained by the composition of small and manageable STSs with the specific property
under consideration.

Theorem 155. Let T; = (Stay, Acty, —1) and T, = (Stay, Acty, —2) be reactive STSs. Pick a
span Sp = (Sta, p1, p2) for (T1, T2) as well as Borel set Sync C Act; U Acty. Define

T = 71 HSp,Sync 7-2
If the STSs T1 and T, are Souslin, then the STS T is also Souslin.

Proof. The argument is straightforward and can be easily derived from Remark 68 O

The previous result is related to those subclass of STSs investigated in Chapter 4 con-
cerning trace-distribution relations. In the remainder of this chapter, we provide a similar

result referring to the STSs in Chapter 5 being Borel concerning the hit sigma algebra.

Definition 156. A span (X, X1, X, p1, p2) is called proper provided the functions p; and
p2 are continuous and moreover, for every compact sets K; € X; and Ky C X the set
(p1) "1 (K1) N (p2) " 1(K>) is compact in X. 4

Example 157. The requirements on a proper span are harmless in the context of this
thesis. Indeed, it is easy to see that every Cartesian span, every variable span, and every
identity span is proper (see Example 144). Moreover, the variant of the variable span in
Example 145 is also proper. Vice versa, it easy to give a span that is not proper. Consider
for instance the span Sp = (R X R x R, Ry, Ry, p1, p2) such that for every r1, 15,13 € R it
holds p1(r1,72,73) = r1 and pa(r1,72,73) = r2. For every compact sets Kq, K C R the set
(p1) "1 (K1) N (02) " 1(Kz) = K7 x K3 x R is obviously not compact and hence, the span

Sp is not proper. 4
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6.4 Closure properties for Souslin and image-compact systems

Continuing the previous example, we remark that every Sp = (X, X1, Xp, p1,02) is
proper provided the functions p; and p; are continuous and the the Polish space X is
compact. Indeed, for every compact sets K; C X; and Ky C X5, using the continuity of p;
and py, the set (p1) "1 (K1) N (02) 1 (K3) is closed in X and therefore, by the compactness
of X, also compact in X.

The following lemma shows that the probabilistic version of a proper span is proper:

Lemma 158. Let Sp = (X, Xy, X, 01, 02) be a proper span as well as Py C Prob[Xq] and
P, C Prob|X3] be compact sets. Define

P = {u € Prob[X] ; u span coupling of (1, uz) for some py € Py and yp € P }.
Then the set P is compact in Prob[X].

Proof. The argument for the latter claim is the same as for the case where P; and P; are
singleton sets (see also the proof of Lemma 3.5 in [Les10]). In fact, the claim basically
follows from Prokhorov’s theorem characterising the relatively compact subsets of probab-
ility measures (see Theorems 5.1 and 5.2 in [Bil99]). Recalling the theorem, given a Polish
space Y and a subset Py C Prob[Y], Prokhorov’s theorem states that the set Py is compact
in Prob[Y] precisely when for every € € R+ there is a compact set Ky C Y such that for
every y € Py itholds yu(Ky) > 1 —e.

Since the functions p; and p; are continuous, the pushforward functions (p1); and (p2);
are continuous as well (see introduction of the proof of Theorem 129). It holds

P = (p1); ' (P1) N (p2); " (P2).

Consequently, the set P is closed in Prob[X]. To show that P is compact in Prob[X], it
hence remains to show that P is relatively compact in Prob[X]. Let ¢ € R~¢. According to
Prokhorov’s theorem theorem, there are compact sets K; € X; and K; C X> such that for
every y1 € Poand up € Py,

(K >1— ; and 1p(Kp) >1— ;
Define the set K C X by
K = (01) 7" (K1) N (02) ! (Ka).

As the span Sp is proper, the set K is compact in X. Moreover, for every i € P it holds

u(X\K)
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6 Parallel composition based on spans and couplings

= u((p1) (X1 \ K1) U (p2) (X2 \ Kp))
< u((e) N(X K1) + p((p2) (X2 \ Ka2))
= pp(Xa \ Ky) + pp (X2 \ Ka)

€

IN

Consequently, applying Prokhorov’s theorem, the set P is relatively compact in Prob[X]
and therefore, compact in Prob[X]. O

The span-coupling composition operator takes all the possible couplings of components
into account and hence, the composition of two reactive point-wise image-finite STSs is
not image-finite in general. The following definition weakens the condition on the image-
finiteness that yields a class of STSs related to Theorem 128 of Chapter 5 that is closed

under composition

Definition 159. An STS T = (Sta, Act, —) is called point-wise image-compact if for every
state s € Sta and action act € Act the set Enabled|[s,act] is compact in Prob[Sta]. In
particular, every point-wise image-finite STS is point-wise image-compact. 4

Theorem 160. Let 71 = (Stay, Acty, —1) and T, = (Stay, Acty, —2) be reactive STSs such
that the sets Acty and Acty are countable. Pick a proper span Sp = (Sta, p1, p2) for (T1, T2) as
well as set Sync C Acty; U Acty. Define

T=" HSp,Sync T2

Provided the STSs ‘T1 and T, are point-wise image-compact and Borel concerning the hit sigma
algebra, the STS T is also point-wise image-compact and Borel concerning the hit sigma algebra.

Proof. Letact € Act. As the set Act is countable, we can rely on Theorem 129. It hence
suffices to show that for the set valued function F,¢: Sta — Prob|Sta],

F,t(s) = Enabled|T s, act]

the following two properties hold: First, the set-valued function F, is Borel concerning
the hit sigma algebra, i.e., the set {s € Sta ; F,¢(s) N O # @} is Borel in Sta for every open
set O C Prob[Sta] and second, the set F,(s) is compact in Prob[Sta] for every s € Sta.
Here, Lemma 18.4 in [ AB06] shows that F,; is Borel concerning the hit sigma algebra and
moreover, Lemma 158 provides a proof for the fact that F.(s) is compact in Prob[Sta] for
every s € Sta. O
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6.5 Construction of span couplings

Remark 161. Inspecting Lemma 18.4 in [AB06] carefully, we even obtain the following
result where the notions are as in Theorem 160. The STS 7T is Borel concerning the hit
sigma algebra provided the following two statement holds:

(1) For every state s € Sta; and action acty € Act; the set Enabled| Ty, s1,act;] is closed
in Prob[Sta;] and accordingly, for every state s, € Stap and action act, € Acty the set
Enabled[T;, s3,acty) is closed in Prob|Stay].

(2) Forevery s; € Stay, sp € Stay, and act € Sync the set Enabled[ Ty, s1,act] is compact
in Prob[Sta;] or the set Enabled[T5, s, act] is compact in Prob|[Sta].

Thus, the compactness requirement only appears for synchronisation actions and even
here, only one of the corresponding sets is assumed to be compact. However, assuming
just the previous properties (1) and (2), we cannot conclude that the STS 7T is point-wise

image-compact in general. J

6.5 Construction of span couplings

X T,
e
Xal\ X”Z\ X R

Figure 6.4: Schematic overview of the section’s setting.

The following material provides a sufficient and necessary condition for the existence of
span couplings with specific properties. To be more precise and to illustrate the motivation
of this section, let Sp, = (Xa, X1, Xa2, 0a1, Pa2) and Sp, = (Xp, Xp1, Xp2, b1, p2) be spans
aswellas R1 C X1 X X1 and Ry C X;» X X be relations. Define the relation

R = {(xa,xp) € Xa X Xp ; (Xa11, %pj1) € R1and (x,p, Xp2) € Ro}.

Moreover, pick probability measures j, € Prob[X,|, uy € Prob[Xp], and pyp € Prob[Xp,]
with the following two properties:

<Va\1/ .ub1> € (R1>Wgt and <.ua|2/ ;ubZ> S <R2)wgt‘
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6 Parallel composition based on spans and couplings

We refer to Figure 6.4 for an overview on the introduced notions. Intuitively, the relations Ry,
Rj, and R connect the components of the two spans under consideration where the relation
R yields a lifting of two relations Rj and Rj. In this section we focus on a condition that
ensures the existence of a probability measure y, € Prob[X,| that satisfies the following
two conditions:

1y is a span coupling of (ppy, pp) and  (pa, pp) € RVEE

Roughly speaking, we are hence interested in a condition such that the span coupling
Ma With respect to the span Sp, can be transferred to a span coupling y;, with respect to
the span Sp,, while respecting the given relations. The special case where y, = Dirac[x,],
up1 = Dirac[xp], and ppy = Dirac[xy,] for some x, € X,, xp1 € Xp1, and xpp € X
motivates the following definition of a compatibility criterion:

Definition 162. Let Spﬂ = (Xa, X, X2, p,ﬂ,paz) and Spb = (Xb/ Xp1, XbZ/pbllpr) be
spans and Ry C X1 X Xp; and Ry € X X Xp be relations. We say that the relations Ry
and Ry are compatible with Sp,, and Sp,, provided the following property holds: for every
Xp € X4, Xp1 € Xp1, and xpy € Xjpp such that

(Xap,xp1) € R1 and (x4, xp2) € Ra
there exists x;, € X with
Xpp = Xp1 and  Xpjp = Xpp.
|

Theorem 163. Let Sp, = (Xa, Xa1, Xa2, Pa1, Pa2) and Sp, = (Xp, Xp1, Xp2, Pv1, Pp2) be spans
as well as Ry C X1 X X1 and Ry C X;p X Xy be relations. Define the relation

R = {(xa, Xb> e Xy xXp; <xa‘1,xb|1> € Ry and <xa‘2, xb‘2> € Rz}.

If the relations Ry and Ry are compatible with Sp, and Sp,, then for every probability measures
Ua € Prob[X,), up1 € Prob[Xp], and uyy € Prob[Xy,] the two statements below are equivalent:

(1) (Hap 1) € (R1)“8%and (pugp, ppa) € (Ro)™E

(2) There exists a span coupling uy, of (Up1, Hpo ) such that (jiq, up) € RWE
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6.5 Construction of span couplings

A precise proof of the theorem can be found below. The result provides a characterisation
of the existence of a specific span coupling under a compatibility assumption. It even turns
out that the involved compatibility assumption given by Definition 162 is best possible
by means of the following observation: assuming that for every probability measures
Ua € Prob[X,), pp € Prob[Xy1], and uy, € Prob[Xy,] the statements (1) and (2) of
Theorem 163 are equivalent, then it easily follows that the relations R and R, are compatible
with Sp, and Sp,. Indeed, given x, € X;, X1 € Xp1, and x4 € Xjp as in Definition 162,
then one can simply consider the assumed equivalence of (1) and (2) for the corresponding

Dirac measures.

Corollary 164. Let Sp, = (Xa, Xa1, Xa2, Pat, Pa2) and Spy, = (Xp, Xp1, Xp2, b1, P2 be spans
as well as Ry C X1 X Xp1 and Ry C Xgp X Xy be two relations. Define

R = {<x,1, xh> € Xy X Xp; <xa‘1,xb|1> € Ry and <xa‘2, xb|2> S R2}.

If the span Sp,, is Cartesian, then for every probability measures pi, € Prob[X,), up € Prob[Xp],
and pyy € Prob[Xyy,]| the following two statements are equivalent:

(1) <.ua\1/ .ub1> € (R1>wgt and <.ua|2/ Vb2> € (RZ)wgt'
(2) There exists a span coupling uy, of (Up1, Hpo ) such that (jiq, up) € RWE

Proof. Assuming the span Sp, is Cartesian, it directly follows that the relations Ry and R»
are compatible with Sp, and Sp;, and thus, Theorem 163 directly yields the claim. O

In the previous corollary we restrict ourselves to the important case where the span Sp, is
Cartesian. We emphasise that even a direct proof of the corollary without using Theorem 163
is not immediate. Indeed, the main challenge of constructing a specific coupling as sketched
in the introduction of this chapter remains and hence, a direct argument basically avoids
technicalities we deal with in our proof of the general theorem below.

Let us present a sketch how to obtain a convenient span coupling for (2) assuming
statement (1) holds. This also provides a feeling for the proof of the general result given
by Theorem 163. Consider the notions as in Corollary 164. Assume statement (1) and
let Wy and W, be weight functions for (p,1, pip1) € (R1)™8" and (pgp, i) € (R2)™#',
respectively. According to the disintegration theorem (see Section 2.1), there are two Borel
functions f1: X;1 — Prob[Xy1] and fo: Xao — Prob[Xy,] such that

Wi = pign % fi and Wa = g 4 fo
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6 Parallel composition based on spans and couplings

Based on the functions f; and f, define the function f: X, — Prob[X,],

f(xa) = fi(xap) @ fa(xg)2)-

By Example 6, the function f is Borel and hence, we can safely define the probability
measures W = p, x f, i.e., for every Borel sets B, C X, and B, C Xy,

W(Box By) = [ Flxa) (By) dua(xa),

and py, = Post[,, f], i.e., for every Borel sets B, C X,

o (Bs) = [ FCxo) (Be) dpala).

Thus, for every Borel set B, C Xj it holds p;(Bp) = W(X, X Bp). It turns out that
is a span coupling of (i1, Hpp) that additionally satisfies (u,, ttp) € RV8'. The latter is
precisely proven below. From this statement (2) of Corollary 164 follows.

Roughly speaking, to recapitulating the previous argument, the disintegration theorem
makes the coupling structure of the weight functions W; and W, accessible from a math-
ematical point of view. Note, a similar construction is applied in the illustrated proof of the

gluing lemma in Section 3.4.
Proof of section’s main result. The following lemma summarises the presented key

observation for Corollary 164 presented above:

Lemma 165. Let Sp, = (Xa, Xa1, Xa2, 01, Pa2) and Sp, = (Xp, Xp1, Xo2, O1, P2) be spans
and Ry C X1 X Xpy and Ry € X X Xy be relations. Define

R = {(xg,xp) € Xa X Xp ; (X1, %p1) € Ry and (x40, Xpp2) € Ro}.

For every probability measures y, € Prob[X,|, uyy € Prob[Xy], and py, € Prob[Xy,] the
following two statements are equivalent:

(1) There are Borel functions fy: Xa1 — Prob[Xpi| and fo: Xgp — Prob|[Xy,]| satisfying the
two conditions below:

a) The probability measure p,q X fi is a weight function for (ya1, R1, pip1) and accord-
ingly, pap X f2 is a weight function for (pa|n, Ro, P2 )-

b) There exists a Borel set B, C X, such that ya(Bu) = 1 and so that for every x, € B,
there is a span coupling of ( f1 (xa“),fz(xap)).
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(2) There exists a span coupling uy, of (Up1, Hpo ) such that (jq, up) € RWE

Proof. (1) implies (2). Let fi: X;1 — Prob[Xp1] and fo: Xp — Prob[Xy;] be Borel func-
tions as well as B, C X, be a Borel set as in (1). Defining

Wi = Ha1 X f1 and W, = Hal2 X fz,

the following properties hence hold: W; and W, are weight functions for ( a1, Ra, Up1)
and (papp, Ra, py2), respectively, as well as one has i,(B,) = 1 and for every x, € B, there

is a span coupling of (f1(x,p1), f2(xa2))-
Define the function f": X, — Prob[Xy1]| x Prob[Xy,],

f'(xa) = (fr(xap), f2(xq2))-
According to Lemma 13, there exists a Borel set P’ C Prob[Xy1| x Prob[X,] such that
PC f(Bs) and (f);(pa)(P) =1.

Here, as P C f'(B,), for every (uy,, 4;,) € P there exists a span coupling of (i}, 1},)-
Applying Lemma 147, there are a Borel function g: Prob[Xp;] x Prob[Xy;] — Prob[X;]
and a Borel set P’ C Prob[Xy1| X Prob[Xy;] such that the following properties hold:

PPCP and (f):(pa)(P) =1
as well as for every (up,, ) € P/,
8(Mp1, M) is a span coupling of (py, )
Based on the Borel functions f’ and g, define the Borel function f: X, — Prob[X,],

f(xa) = g(f' (xa))-

Introduce the probability measure y;, € Prob[X;| by py = Post[pg, f], i.e., for every Borel
set B, C X,

po(Be) = [ £ (By) dta(a).

We show that the probability measure yy, is a span coupling of (yy1, i) that additionally
satisfies the condition (14, ptp) € RW8! that finally shows (2).
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6 Parallel composition based on spans and couplings

Let¢1: Xy X Xp = X1 X Xpp and G2 Xy X X — Xa2 X Xpp be given as follows: for
every x, € X, and x, € X let

C1(xa, xp) = (Xap, xpp) and  8a(Xa, Xp) = (Xap2, Xpp2)-
Define the probability measure W € Prob[X, x X;| by

W =g~ f.
Then, the following two identities hold:

Wi = (¢1)3(W) and W, = (&2)4(W).

Let us see why. Suppose Borel sets B;; C X;1 and By; € Xj;1. Relying on the identity
& N(Ba1 X Bp1) = p1' (Ba1) X py! (Bp1), we obtain

() (W) (B x Ba) = [ Flxa) (03 (Bun) (o)

P,,_1 (Bal)

Recalling the properties of the set P’, for every pair (yy,, jt;,) € P’ we have the identity

S(Hy1 M)t = My Thus, for every x, € (f') "1 (P') itholds g(f'(xa))1 = f1(%41)- Since
ua((fH)~H(P)) = (f")4(pa)(P") = 1, we therefore obtain

(@05 (W)(Ba x Bo) = [ fil) (Bon) daa(x).

pnl (Blll

and consequently,

(€1)5(W)(Ba1 X Bp1) = fB fi(xa1) (Bin) dptap (Xa1) = Wi(Bar X Bpa).

Carathéodory uniqueness theorem (see Section 2.1) therefore yields ({1);(W) = Wy. The
second statement (2); (W) = W, can be proven in the same way.

Relying on the obtained identities, we show that yy, is a span coupling of (yp1, fp ). For
every Borel set By; € Xj it holds

W (Xa x py; (Be1)) = W(E ™ (Xa1 X Bp1)) = Wi(Xa1 X Bp1) = pip1(Bp1)

and therefore, we obtain

1p11(Br1) = (01 (Bo1)) = W(Xa X 01 (By1)) = pp1 (Bpa)-

One analogously justifies yi, o = pp, and hence, pj, is a span coupling of (Mp1, Hin)-
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It remains to show that W is a weight function for (p,, R, j4p). Clearly, W is a coupling of
(Ma, Mp)- Let R} C X1 x Xpp and R C X X Xpp be Borel sets so that

Wi(R}) =1, R} CR;, Wa(R3)=1, and RjC R».
Define
R =& (R NG, (Ry).

It holds W(&; ' (R})) = Wi(R}) = 1and W(& '(R})) = Wi(R}) = 1. From this we
conclude W(R’) = 1. Itis easy to see that R" C R. Consequently, W is a weight function
for (ua, R, pp). This finishes the proof of the implication from (1) to (2).

(2) implies (1). Let p, be a span coupling of (14p1, yn ) such that (pa, ) € RV8. Suppose
a weight function W for (y4, R, itp). As in the first part of the proof introduce the Borel
functions ¢1: X; X Xp = X1 X Xpp and G2 X,y X X — Xao X Xy as follows: for every
X, € X;and xp € X, let

C1(xa, xp) = (xg1, %pp) and  Ga(Xa, Xp) = (Xap2, Xpp2)-

Define the probability measures Wy € Prob[X,; X Xp1] and W, € Prob[ Xz X Xpp| by

Wi = (81)3(W) and Wz = (82)3(W).

Using Lemma 13, it is easy to see that W; and W are a weight functions for ( a1, Ra, Up1)
and (‘ua|2, Ry, pyp), respectively. Relying on the disintegration theorem (see Section 2.1),
there are three Borel functions f1: X1 — Prob[Xp], fo: Xap — Prob[Xy,], and f: X, —
Prob[Xp] so that

Wi = Va\l X fl/ W, = .ua|2 X fz, and W = Ha X f

To conclude statement (1), it suffices to show that there exists a Borel set B, C X, with
#a(B;) = 1 and such that for every x, € B, the probability measure f(x;) is a span
coupling of (fi (x1), fo(¥u(2)) -

Let Gy be a countable generator of the Borel sigma algebra on Xj; such that Gy is closed
under finite intersections (see Remark 4). Pick Borel sets By o, By1 1, By1,2, - - - of Xp1 such
that Gy1 = {Bp10, Bp11, Br12, - - -} Moreover, define the family of sets

By = {p,;' (Ba1) ; Ba1 C X,1 is a Borel set}.
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6 Parallel composition based on spans and couplings

It is easy to see that B, is a sigma algebra on X, that is contained in the Borel sigma
algebra on X,. Hence, j, can be also viewed as probability measure concerning the newly
introduced sigma algebra B, on X,.

Since Wi = (G1):(W), W1 = pop ¥ f1,and W = p, x4 f, for every n € IN and every
Borel sets B;; € X1 it holds

/Pﬂll(Bal)f(xa)U(Bbl,n)dya(xa) _ /

ol (Ba) f1(Xa1) (Bo,n) dpta(xa).-

Thus, by a standard result from measure theory (see Folgerung 9.2.5 in [Sch08]), for every
n € IN there exists a set B, ,, € B, with y, (Bsn) = 1 and such that for every X, € By, the
following identity holds:

f(xa) 1 (Bor,u) = f1(Xa1) (Bon)-

Define

B, = (1 Ban.
nelN

As for every n € N the set B, , is Borel in X, we have that the set B/, is Borel in X,. It
holds y,(B},) = 1, Moreover, Carathéodory uniqueness theorem (see Section 2.1) yields
the identity f(xq) = f1(x,p1) for every x, € B,.

One analogously proves the existence of a Borel set B C X, such that y,(B]) = 1 and
f(xa)j2 = fa(xg)p) for every x, € B;. Defining B, = B; N B;/, we obtain p,(B,) = 1 and
moreover, f(x,) is a span coupling of (f1(x,(1), f2(xs)) for every x, € B,. O

Proof of Theorem 163. The implication from (2) to (1) follows immediately from Lemma 165.
The reminder of this proof is devoted to the reverse implication. Assume statement (1)
holds. Let W; and W, be weight functions for (441, R1, pte1) and (p,)2, R, pip2), respectively.
By the disintegration theorem (see Section 2.1), there are Borel functions fi: X;1 —
Prob[Xy1) and fo: Xao — Prob[Xy,] such that

Wy = Haj1 X fl and W, = Haj2 X f2'
Consider Borel sets R} C X,1 x Xp1 and R C Xpo X X so that
Wi(R})) =1, R{CRy, Wy(Rj)) =1, and RjC Rn.

Sections of Borel sets in product spaces are Borel (see Section 2.1). According to Lemma 15,
there hence exists a Borel set B,; C X1 so that

Hapn(Ba) =1 and  fi(xa)(Section[R’, x41,]) = 1 for every x,1 € Bg1.
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6.6 Congruence property of simulation and bisimulation

Analogously, there exists a Borel set B, € X with

Map(Bi2) =1 and  fo(xae2)(Section[R', xa,-]) = 1 for every x, € Bpa.
Define

B = 1 (Bat) NPy (Be2)-

Then we have y,(B;) = 1.
It remains to show that for every x, € B, there is a span coupling of (f1(X,1), f2(¥4)2))-
Let x;, € B,. Define the set B, C Xj; X Xjp by

By, = Section[R}, x,p1, -] x Section[Ry, X5, -].

Since R) and R/, are Borel sets in X,1 X X1 and Xg X X, respectively, the set By, is Borel
in Xp1 X Xy (see also Section 2.1). It follows f1(x,1) ® f2(x,p2) (Bp) = 1. Moreover, using
the assumptions of the corollary, we have the inclusion B, C Rel[Sp,|. It therefore follows
that f1(x,1) ® f2(x,)2) is a weight function for (f1(x,1), Rel[Sp,], f2(x4p2)). According to
Theorem 148, there exists a span coupling of (f1(x,1), f2(Xg2))- O

6.6 Congruence property of simulation and bisimulation

This section provides results stating that the simulation preorder and the bisimulation
equivalence are congruences with respect to the span-coupling composition operator.
Throughout this section we consider the four simple STSs

T = (Stag, Act1, —41), T2 = (Stag, Actry, =),
To1 = (Stap, Act1, =p1), Ty = (Stapy, Acty, —pp).

Note, the action spaces of the STSs 7,1 and 7 are the same and accordingly, the action
spaces of 7,2 and Ty, coincide.

Theorem 166. Consider a set Sync C Acty N Acty, a span Sp, = (Staz, pa1, Pa2) for (Ta1, Taz),
as well as a span Spy, = (Stay, pp1, Pv2) for (Tp1, Tpz). Moreover, let Ry and Ry be a simulations
for (Ta1, Taz) and (Ty1, Tya), respectively. Assume that the relations Ry and Ry are compatible
with Sp,, and Sp,,. Define the two STSs

To=Ta HSpa,Sync Ta2 and 7;1 = 7271 HSpb,Sync 7272‘
Then the relation R is a simulation for (T,, Ty) where

R = {(s4,5p) € Stag x Stay ; (511,5pp1) € R and (sqp, sp2) € Ra}.
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6 Parallel composition based on spans and couplings

Proof. Assume that the relations Rq and R; are compatible with Sp, and Sp,. Let s, € Sta,,
Sy € Stay, act € Acty U Acty, and p, € Prob[Sta,] be such that

(Sa,Sp) € R and s, —, (act, ug).

Our task is to show that there exists a probability measure u;, € Prob|[Sta,| with the two
properties s, — (act, up) and (pa, ptp) € RWEL

We consider the case where act € Sync first. It follows s;;; = (act, ],ta“) and s, —a2
(act, ya‘2>. As Rj and R; are simulations for (7,1, Tp1) and (72, Tp2), respectively, there
are iy € Prob[Stay | and ppy € Prob[Stay,] such that

Spl1 b1 (act, pp1) and <.ua\1/.ub1> € (Ry)"¢,

Spi2 —vb2 (act, pup)  and  (pap, pirz) € (Ro)™E"

By Theorem 163, there exists a span coupling j; of (}p1, Hpo) such that (pg, pp) € RV Tt
moreover holds s, —, (act, uy)

Assume act € Acty \ Sync now. Then it holds s,y —41 (act, piz1) and pgp = Dirac[s,p].
Since Ry is a simulation for (71, 7p1) and as we have (s,1,spj1) € Ry, there is a probability
measure Uy, € Prob[Stay] such that

Spj1 —rp1 (act, pp1)  and  (papr, pp1) € (Rp)™W8.

Relying on the identity p,, = Dirac[s,,], we derive (i, Dirac[syp]) € (R2)"8'. We can
hence apply Theorem 163 that yields a span coupling py, of (pp1, Dirac[sy|p]) such that
(Ma, Mp) € RVBL. It moreover holds s, — (act, j1p). The remaining case where the action
act is contained in Act; \ Sync can be treated as the previous case. O

Relying on the established general theorem, we obtain the following result for the
Cartesian case without any further side constraints:

Corollary 167. Let Sync C Acty N Acty and define the two STSs
Ta = Ta1 || cantspsyne Tz and - To = Ton || cartsp,sync Tr2-
For every s,1 € Stag, sp1 € Stapy, a2 € Stagn, and syy € Stayy the two implications below hold:
(1) Ta1,5a1 = Ton, sp1 and Tz, Sa2 = T, Sp2 implies Ta, (Sa1,8a2) = To, (Sp1,512)-
(2) Ta1,5a1 = Ton, sp1 and Taz, a2 == T, Sp2  implies  Ta, (Sa1,Sa2) == Tp, (Sp1, Sp2)-

Proof. The claim is a direct consequence of Theorem 166 (see also Corollary 164). O
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6.7 Declarative modelling of stochastic dependencies

6.7 Declarative modelling of stochastic dependencies

As discussed in the introduction of this chapter by means of an example of two cooling
systems dissipating the heat produced by an energy-adaptive server (see also Figure 6.1),
there are situations where one wants to abstract from the precise operational behaviour
causing specific stochastic dependencies. We present an application of the span-coupling
composition operator illustrating how to include additional stochastic information in a

declarative manner.

Definition 168. Let AP be a finite set. Given an STS T with state space Sta, an AP-labelling
function (for T") is a Borel function Lab: Sta ~» AP. a

Intuitively, the elements of AP stand for atomic proposition expressing facts known
about states of the STS under consideration. An AP-labelling function assigns those atomic
propositions to a state that are satisfied in that state. To keep the theory in this section
simple and to avoid extensive measure-theoretic considerations, we only focus on finite sets
of atomic propositions. As a consequence, the powerset of AP is finite and hence, trivially
forms a Polish space whose induced Borel sigma algebra is given by the discrete sigma
algebra (see Example 3 (1)). It in particular follows that a function Lab: Sta ~» AP is Borel
if for every atomic proposition ap the set {s € Sta ; ap € Lab(s)} is Borel in Sta.

Compositions based on coupling-constraint functions. Let 71 = (Stay, Act;, —1) and
T2 = (Stay, Acty, —7) be two simple STSs as well as Sync C Acty N Actp. Moreover, let AP
be a finite set as well as Lab; and Lab, be AP-labelling functions for 77 and 7, respectively.
Define the Borel function Lab: Stay x Stay ~~ AP,

Lab(sy,s2) = Laby(s1) U Laby(sz).
Moreover, pick a function
¢: 24P x Sync ~» Prob[27]

to which we also refer as a coupling-constraint function. The function € represents the
additional stochastic information caused by the interaction of 771 and 7,. To be more
precise, given transitions s; — (act, u1) and sy — (act, up) with act € Sync, only those
couplings of (i1, j2) are considered in a composition of 71 and 7, with respect to € that
are compatible with some probability measure contained in the set €(Lab(sy,s2), act). As
in Example 152, this additional available stochastic information is encoded in a third STS
controlling the interplay of the STSs 77 and 75: introduce the simple STS

Te = (Stay x Stap, Act, —¢)
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6 Parallel composition based on spans and couplings

whose transition relation —¢ is given by the following inference rule: for every states
s1 € Sta; and sy € Stap, action act € Act, and probability measure p € Prob[Sta],

act € Sync and Laby(u) € €(Lab(sy,s2),act)
(s1,52) —e (act, p)

Following Example 152, this leads to the following definition:
Definition 169. The notions are given as before. Then the coupling composition of (T1,T2)
concerning (€, Sync) is given by the STS
ﬂ || ¢,Sync T2 = (7-1 ||Cart5p,5ync ,TZ) ||IdSp,Sync 7&
a

Roughly speaking, stochastic information referring to the interaction of 77 and 7, are
encoded by the third STS 7T¢, which sorts out all the couplings being not compatible with
the coupling-constraint function € under consideration. Thus, stochastic information
concerning the interaction of 77 and 7; are specified declaratively by the function €. We
demonstrate this by means of the following example:

Example 170. We continue our running example from the introduction of this chapter
involving two cooling systems modelled by the STSs Tcoo1,1 and Tcool 2 dissipating the heat
produced by the server Tsery (see Figure 6.1). Let

Sync = {fail}
be the set of synchronisation actions as well as
AP = {Low, High, Broken;, Brokeny, Intact;, Intact, }

be the set of atomic propositions. In the introduction of this chapter, depending on the
actual performance mode of the server, we have already specified a coupling-constraint
function € concerning (AP, Sync) in a symbolical way: indeed, the set €({Low}, fail)
2AP]

contains precisely those € Prob| where

{(Broken; A Brokeny) = {(Broken;) - {(Broken;)

and accordingly, the set €({High}, fail) consists precisely of those probability measures
{ € Prob[24] such that

¢((Broken; A Brokeny) V (Intact; A Intactp)) > 0.9,

206



6.7 Declarative modelling of stochastic dependencies

Moreover, for every B € 24P\ {{Low}, {High} } we have &(B, fail) = Prob[24"]. Recall, if
the server operates in the low mode, the cooling systems behave stochastically independent
after a failure. In contrast, there is a stochastic dependence when the server is in the high
power mode. The composition of the cooling systems and the server with respect to the
available stochastic information is given by the STS

T = (7-C001,1

|Cart5p,5ync 72:001,2) | €, Sync 7’Serv-

When composing the cooling systems in a first step, we do not rely on any stochastic
assumptions and take all the possible couplings into account. However, when adding the
STS for the server in a next step, we include the available stochastic information induced by
the internal power-management strategy of the server. 4

Our approach allows for a systematic system design, facilitate the interchangeability and
reusability of components, and thus also eases the maintainability. For instance, if there is
another device using the batteries with an alternative internal power-management strategy,
we can use the STSs o011 and Tcool 2, solely adapt the STS Tsery and the corresponding

coupling-constraint function.

Congruence result. We extend our congruence property from Section 6.6 to the coupling
composition operator relying on a specific coupling-constraint function. For this purpose
we consider the four simple STSs

T = (Stag, Acti, —a1), Taz = (Stag, Actr, =),
To1 = (Stap, Act1, =p1), T = (Stapy, Actz, —pp).

Let AP be a finite set as well as Lab,1, Laby,, Lab,y, and Laby, be AP-labelling functions
for Ta1, Taz, Tp1, and Ty, respectively. Moreover, let Rq be a simulation for (7,1, 7p1) and
R be a simulation for (75, Tpp). Assume that for every states s,1 € Stag1, S;p € Stag,
Sqa1 € Stayy, and sy € Stayy,

<5a1/5b1> € Ry implies Lab (S,ﬂ) = Laby, (Sbl)/

<Su2, Sb2> € Ry implies Labaz(saz) = Labbz(sw).
Intuitively, the latter requirements on R and R; ensure that only those states are related
where the same atomic propositions hold. In a state-based setting for simulation and

bisimulation, the latter condition is standard (see, e.g., [BK08]). We obtain the following

congruence result:
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Proposition 171. The notions are given as before. Consider a set Sync C Acty M Acty as well as
a function €: 247 x Sync ~ Prob[24%]. Define the STSs

Ta="Ta1 lesyne Tz and To = Ton |l¢,sync Too-

as well as the relation
R = {(sa,sp) € Stag X Stay ; (Sap1,Spp1) € Ry and (syp, sppp) € Ro}.

Then the relation R is a simulation for (T, Ty).

Proof. According to Theorem 166, the relation R is a simulation for (7, 7,)) where
T, =Ta HCartSp,Sync Tz and T} =Tn HCartSp,Sync To2-

Define the sets Sta, = Sta,; X Stazy and Sta, = Stay; X Stap,. Introduce the func-
tions Lab,: Sta, ~» AP, Lab,(Ss1,5:2) = Labgi(sg2) U Labgy(ss2) and Laby: Sta, ~ AP,
Laby (sp1, Sp2) = Laby(sp1) U Labyy (spp). Clearly, for every (s,,s,) € R we have the iden-
tity Lab,(s,) = Laby(sp). To conclude that R is a simulation for (7, 7 ), it hence suffices
to show that for every probability measures ji, € Prob[Sta,| and p, € Prob[Stay] the

following implication holds:

(o, up) € R™8" implies  (Laba);(sa) = (Laby)y(pp).

Let y, € Prob[Sta,] and p;, € Prob[Sta,) be such that (p,, up) € RW8' aswellas B C 247
be a set. Since Lab,(s,) = Laby(s) for every (s,, sp) € R, we obtain

RN ((Lab,) Y (B) x Stay) = RN (Sta, x (Lab,) 1(B)).
Inspecting the argument in Remark 34, this yields

Ha((Laba) " (B)) = py((Laby) " (B))

that finally justifies (Lab, ) (1a) = (Laby)4(pp)- O
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The following material summarises the contribution of this thesis for prominent model-
ling formalisms from the literature. Despite the measurability requirements investigated
throughout this thesis, our investigations extend existing frameworks properly.

We discuss consequences for discrete stochastic systems first covering probabilistic auto-
mata [Seg95], discrete Markov decision processes [Put94], and discrete-time as well as
continuous-time Markov chains [BHHKO03, DP03]. Moreover, as discrete STSs allow for
non-deterministic choices between a countable number of alternatives, discrete STS also
include continuous-time Markov decision processes [Put94, NK07], interactive Markov
chains [Her02], and Markov automata [EHZ10].

Having considered discrete STSs, we focus on purely stochastic STSs (see also Section 4.8)
that in particular cover continuous-time Markov chains [ BHHKO03], semi Markov process
[Whi80, LHKO01, GJP06], and discrete-time stochastic hybrid automata [AKLP10, AKM11,
SA13]. The Souslin condition for purely stochastic as well as the property of being Borel
concerning the hit sigma algebra appear natural in the context of purely stochastic STSs
(see also Remark 95) and hence, the above mentioned examples of models are covered by
the main results of Chapters 4 and 5.

Labelled Markov processes (LMPs) [BDEP97, Des99, DEP02, Pan09] as well as non-
deterministic labelled Markov processes (NLMPs) [DTW12, Wol12] yield other prominent
subclasses of simple STSs. Assuming the underlying action space is countable, our results
of Chapters 4 and 5 are applicable for point-wise image-finite NLMPs and thus also for
LMPs. This in particular extends the existing literature by a logical characterisation for the
simulation preorder and the bisimulation equivalence in terms of comparable expressive
modal logics. Moreover, to the best of our knowledge, simulations has been not considered
for NLMPs before. Besides this, we provide an example showing that the class of all
NLMPs is not closed under parallel composition. This also influences the investigations on
a compositional framework for NLMPs [DLM16].

The stochastic-hybrid-system model in [Hah13, HH13] has an NLMP-like semantics, in
particular, the unfolded STS is Borel concerning the hit sigma algebra. A similar discussion
applies for Hvopest [ BDHK06, HHHK12], a powerful modelling language for stochastic

209



7 Relations to models from the literature

hybrid systems covering several prominent models from the literature (see Table 4 in
[BDHKO06] and Table 3 in [HHHKI12]). The latter yield a nice and powerful modelling
language for subclasses of STSs.

Stochastic optimal control [ DIY79, BS96 ] aims to design a strategy for input variables with
respect to the presence of stochastic noise satisfying a specified objective while maximising
or minimising a given cost functional. This functional may refer to the energy or utility
accumulated along sample paths (see also Section 5.8). Stochastic control problems appear
in many areas of economy and engineering for the design of, e.g., portfolios of safe and
risky assets, consumption-investment strategies, acceleration behaviours for the steering of
vehicles, and strategies for job-scheduling scenarios.

A convenient and prominent formalism for modelling the underlying stochastic process of
a stochastic control problem is given by controlled Markov processes (CMPs). Interestingly,
CMPs are prominent in both the mathematics community, e.g., [DIY79, BS96], and the
computer-science community, e.g., [ZEM " 14, TMKA16]. CMPs are also formalised in
terms of controlled discrete-time stochastic hybrid automata [ APLS08, AKLP10, SA13,
TMKA13, ZEM ' 14, TMKA16]. The latter cited articles provide approximate verification
techniques, model-checking approaches, as well as corresponding practical experiments.
The case studies rely, e.g., on the software tool Faust2 [SGA15] that allows for exporting
abstracted models to the prominent probabilistic model checker Prism [KNP11].

We show that CMPs are covered by Souslin STSs and moreover, that for continuous CMPs
the Souslin-bisimulation equivalence and the bisimulation equivalence are the same and
accordingly, for simulations. This provides an important connection to our contributions of
Chapter 4 and, to the best of our knowledge, enables a trace-distribution result for CMPs
that has been not known before.

Dynamics obtained by interaction of (digital) sensors with the (continuous) environment
lead to hybrid systems. A well-known modeling formalism for hybrid systems is given
by hybrid automata [ACH 95, Hen96] consisting of a discrete control structure and flow
functions that model the evolution of continuous variables when time passes. The research
on stochastic extensions of hybrid automata [Spr01, Pla08, HHHK12, 7ZSR*12, Hah13]
are motivated, e.g., by imperfect sensors that deliver vague information. Undecidability
results for stochastic hybrid automata initiate the research on subclasses of the powerful
formalism. For instance, the subclass consisting of all (probabilistic) rectangular hybrid
automata play an important role within the theory of hybrid systems since many decision
problems, e.g., the reachability problem, turn out to be decidable under mild side constraints
[ACH 195, Hen96, Kop96, Spr01].
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In the last part of this chapter, we introduce stochastic rectangular hybrid automata
(SRHAs) and show that such an automaton can be unfolded into a Souslin STSs exploiting
the mean value theorem. As a consequence, due to the expressiveness of SRHAs, it follows
that many modelling formalisms from the literature are covered by Souslin STSs. This yields
a foundation for further work investigating other classes of systems and their respective

behavioural relations.

7.1 Discrete stochastic transition systems

We emphasise that the action space for discrete STS is not restricted to be a countable set.
The precise definition is as follows:

Definition 172. We call an STS T = (Sta, Act, —) discrete provided it is image finite and

the set Sta is countable. N

Discrete STSs cover probabilistic automata [Seg95], discrete Markov decision processes
[Put94], and discrete-time as well as continuous-time Markov chains [BHHKO03, DP03].
Moreover, since discrete STSs include uncountable action spaces and finite non-determinism,
discrete STS include continuous-time Markov decision processes [Put94, NK07], interact-
ive Markov chains [Her02], and Markov automata [EHZ10]. Continuous-time Markov
decision processes serve, e.g., as a semantical model for stochastic Petri nets [CMBC93].

By Remark 10, it is easy to see that every discrete STS is Souslin. Moreover, we also obtain
that every discrete STS is Borel concerning the hit sigma algebra. This yields the following
summary of our results:

Proposition 173. Let T = (Sta, Act, —) be a non-blocking discrete STS, A be an action event
family, and rew be a reward function. For every s,, s, € Sta the following statements hold:

(1) sa=Xsp iff sa=°Usy, iff sa=esy ff sa <3y
(2) sq s, implies s, <Wsy,.
(3) samsy i sa=Us, if sies, ff sa= sy
(4) so~s, implies s, ="s.
Moreover, the relation =< is weakly smooth and accordingly, the relation ~ is smooth.

Proof. The proposition follows directly from Corollary 119 and Theorem 124. O

211



7 Relations to models from the literature

Clearly, for certain subclasses of discrete STSs the previous proposition is not new such
as for probabilistic automata and Markov chains. However, we emphasise that the result
covers the generative model in the classification of [GSS95] and in this context, to the best
of our knowledge, a generic logical characterisation of the simulation preorder and the
bisimulation equivalence has been not proven before. Besides this, as the model under
consideration includes uncountable action spaces, the result in [NK07] is extended by a
complete characterisation of both the simulation preorder and the bisimulation equivalence.
Moreover, Proposition 173 (together with Proposition 136 concerning the preservation of
expected values) also covers results in [ DP03] providing a logical characterisation of the
bisimulation equivalence for continuous-time Markov processes.

7.2 Purely stochastic systems

According to Theorem 100, the Souslin-bisimulation equivalence and the trace-distribution
equivalence are the same for every deterministic purely stochastic Souslin STSs. Thanks
to the theory developed in Chapter 5 concerning relations induced by temporal logics,
we can extend the latter mentioned result. Recalling Remark 95, a purely stochastic STS
T = (Sta, Act, R) is Souslin precisely when the corresponding control law R constitutes a
Borel function. It is easy to see that the latter statement holds precisely when 7 is Borel
concerning the hit sigma algebra. Hence, we are in the situation of Theorem 124 that finally

enables the following result:

Proposition 174. Let T = (Sta, Act, R) be a purely stochastic Souslin STS, A be an action event
family, and rew be a reward function. For every s,, s, € Sta the following statement holds:

(1) sasp iff sa=*Msp iff Sa~cSy iff Sa="Sp.
(2) sg~=s, implies s, ="s.

Moreover, the relation < is weakly smooth and accordingly, the relation ~ is smooth. The implication
in statement (2) is an equivalence if the purely stochastic Souslin STS T is deterministic.

Proof. Every purely stochastic Souslin STS is non-blocking, image-finite, and Borel concern-
ing the hit sigma algebra. Therefore, Theorem 100, Corollary 119 as well as Theorem 124
yield the claims. [

Focusing on purely stochastic Souslin STSs, every satisfaction set of an APCTL* is Borel

and hence, one can drop the outer-measure function in Definition 113 where we declare
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the satisfaction relation for APCTL* path-measure formulas. The reason is that for purely
stochastic Souslin STSs there exists exactly one s-scheduler for every state s (see Remark 96)
and moreover, the function that maps every state s to the corresponding path measure
Pr[s] turns out to be Borel (see also Lemma 101). Thus, one can rely on an easy induction
over the construction of APCTL* formulas in order to show that all the corresponding
satisfaction sets are Borel.

Embedding models from the literature. The model of (deterministic) purely stochastic
Souslin STS serve as a semantical model for prominent stochastic-hybrid-system modelling
formalisms from the literature. In what follows we provide an short overview on some

important examples:

Stochastic timed automata. The stochastic extension of classical timed automata [AD94 ]
given by stochastic timed automata (STAs) [BBB*14, BBCMar] is subsumed by purely
stochastic STSs, i.e., the unfolding of every STA forms a purely stochastic Souslin STS.
The behaviour of an STA is determined by clocks whose values increase with slope one
when (continuous) time passes. Invariant conditions in locations and guards of edges
between locations constrain the values for clocks. In an STA both delays in locations and
discrete choices over enabled actions are made randomly. Provided the different edges
from one location in an STA are labelled by distinct actions, the induced purely stochastic
STS obtained by an unfolding is even deterministic.

Semi Markov processes. The residence times in locations of a semi Markov process
(SMP) [Whi80, LHKO01, GJP06] follow an arbitrary distribution, in particular, SMPs cover
continuous-time Markov processes. A SMP induces a purely stochastic Souslin STS with an
action space Act = IR>( and a naturally given control law £. Intuitively, the real number
£R(s)([t, t] x S) stands for the probability of moving from state s to a state contained in the
set S with a delay of at least t and at most f time units.

Discrete-time stochastic hybrid automata. purely stochastic Souslin STSs cover the stochastic
extension of hybrid automata given by discrete-time stochastic hybrid automata (DTSHAs)
[AKLP10, AKM11, SA13]. Every DTSHA comprises a discrete control graph with locations
and jumps in-between as well as real-valued variables. In a location the values of the vari-
ables are governed by a stochastic flow, e.g., specified by discrete-time stochastic differential
equations. Within a jump, variables can be updated instantaneously with respect to an

arbitrary continuous distribution.

Pure jump Markov processes. purely stochastic Souslin STSs subsume the model in [EMA16]
called pure jump Markov processes (PJMPs). A PIMP evolves in continuous time and has
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instantaneous discrete movements with exponential distributed random times.

Stochastic differential equations. Assuming certain regularity assumption, it is well-known
that the solution of a stochastic differential equation (SDE) can be represented by a function
f: R x R>¢ — Prob[R] satisfying certain requirements, e.g., the Chapman-Kolmogorov
equation. Assuming the current state is given by 7, the value f(r,t)(B) stands for the
probability of entering a state contained in the Borel set B after exact time t elapsed. Suppose
a Borel function g: R — Prob[R>¢]. Intuitively, the probability measure g(r) specifies the
residence time in state r € IR that might be, e.g., exponential distributed. The composition
of the functions f and g yields a single Borel function £: R — Prob[R>g x R] (see also
Lemma 1.38 [Kal02]) forming a control law of a purely stochastic Souslin STS. Roughly
speaking, the function & combines the stochastic evolution of states specified by f and the
stochastic timing given by ¢. Consequently, purely stochastic Souslin STS cover general
stochastic hybrid automata [BL04, BLBO5] (see also [BSA04]), which can be seen as a
continuous-time analogue of DTSHAs where the stochastic flows of variables in the discrete
locations are specified by SDEs.

Revisiting Proposition 174. The major difficulties in proving that the bisimulation equi-
valence is finer than the trace-distribution equivalence arises from the measurability require-
ments on schedulers (see discussions in Chapter 4). Recall, we exploit measurable-selection
principles to treat these measurability issues. In purely stochastic STSs non-determinism is
absent and hence, schedulers can be omitted for the resolution of the non-determinism. It
turns out that this fact can be used to substantially simplify the argument for showing that
the bisimulation equivalence is subsumed by the trace-distribution equivalence.

Let 7 = (Sta, Act, —) be a a purely stochastic Souslin STS, s,, s; € Sta be states, and R
be a bisimulation such that (s,, s;) € R. According to Theorem 118, we can safely assume
that the relation R is smooth. The following material provides a direct argument showing
that s, =" s, without using Corollary 119. In particular, a measurable-selection principle is
avoided and thus, we obtain a simpler argument for Proposition 174 (2).

To conclude s, =" sy, relying on Lemma 81 as well as Remark 96, it suffices show that
for every n € IN it holds

(Pry[Sal, Pralsy]) € (Rpath,n)wgt.

We perform a induction over the natural numbers. The induction base follows trivially
since it holds Prg[s,] = Dirac|s,], Pro[sp] = Diraclsp], and RP*" = R. Letn € IN and
assume (Pr,,[1a], Pra[up]) € (RP)W8t a5 an induction hypothesis. As R is smooth and

RAct

relying on Remark 37, it is easy to see that the two relations RPath and are smooth.
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7.2 Purely stochastic systems

Moreover, there are two Polish spaces Y and Z as well as two Borel functions f: Path, — Y
and g: Act X Sta — Z such that the following statements hold: for every finite paths
Tta, 1y, € Pathy,,

(Fra, ) € RPAiff - f(7)) = f(7)
and accordingly, for every action-state pairs {(act,, s,), {(acty,s,) € Act x Sta,

({actq, sq), {acty,sp)) € RA iff  g(act,,s,) = g(acty, sp).

The Borel function h: Path,; — Y X Z is introduced as follows: for every finite path
7t € Path,, action act € Act, and state s € Sta let

h(#tacts) = (f(7), g(act,s)).
Obviously, for every finite paths 7t,, 71, € Path,, 1 it holds
(g, 71p) € RPAVMTL e h(7,) = h(7y,).

In particular, relying again on Remark 37, the relation RP#M"+1 js smooth.
Let Bx C X and By C Y be Borel sets. Using that the relation R is a bisimulation and
applying Corollary 41 as well as Remark 97, for every finite paths 7,, 7t, € Path,, it holds

(fta, 71p) € RPA implies  &(Last(7,))(g 1 (By)) = &(Last(7,)) (g~ (By)).

The set f ~!(By) is R-stable. Thus, relying on a standard argument from measure theory
concerning point-wise approximations of Borel functions by sequences of step functions
(see, e.g., Teil I in [Sch08]), for every Borel function &: Path, x Path, — [0, 1] it holds
(see also Remark 34):

o, ty) d Wy (7, 7ty) = o, tp) A Wy (72, 71p).
/fl(Bx)xPuthn 6, ) (P 7) Path, x f~1(B) 6t ) (Pl )

Putting things together, we hence obtain
Pry1[sa] (™" (Bx x By))
= [, S(Last()(3 7 (Br) dPrfsi (%)
f1(Bx)

/fl(B ) x Patlh K(Last(7a)) (g (By)) d Wi (7o, 71y)
X athy

/ R(Last(7)) (g~ (By)) d Wy(#ta, 75
Pllthn Xffl(Bx)
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_ /f o A(Last(7)) (g7 (By)) dPralsy)(7)
= Pruqasp) (k' (Bx x By)).

According to Carathéodory uniqueness theorem (see Section 2.1), we derive

hy(Prpqa(sa]) = hy(Prpqa[ss])-

Thus, Corollary 41 yields (Pr, 11 [pa], Proi1[ps]) € (RPEH1)Wet - Ag discussed before,
this shows s, = s},.

7.3 Labelled Markov processes

The original paper [BDEP97] on labelled Markov processes (LMPs) provide fundamental
contributions regarding stochastic systems with uncountable state and action spaces. The
theory has been adapted and extended in various directions [ DEP02, DGJP03, DDLP06,
DTW12, FKP17], and is aggregated in the thesis [Des99] as well as the textbook [Pan09].
This section summarises our contributions regarding the theory on LMPs. Let us first recall
the definition of the model:

Definition 175. A non-blocking simple STS T = (Sta, Act, —) is called a labelled Markov
process (LMP) provided there are a family (£t )acteact of Borel functions

Lact: Sta — Prob[Stal
and a family (Sgct)acreact Of Borel sets
Sact € Sta
such that for every s € Sta, act € Act, and u € Prob|[Sta] it holds
s — (act,u)y iff s € Surand Loet(s) = .
N

An important difference concerning the standard literature on LMPs is given by the
fact that we focus on probability measures rather than sub-probability measures. Here, a
measure ji on the Polish space Sta is called a sub-probability measure provided one has
fi(Sta) < 1. Hence, to be precise, our definition of an LMP covers only those systems from
the LMP literature that only include sub-probability measures with ji(Sta) € {0,1}. One
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7.3 Labelled Markov processes

motivation of sub-probability measures is that one wants to make a distinction between
states where a specific action is enabled and where not (see, e.g., Section 7.4 in [Pan09]). For
instance, considering a sub-probability measures fi with ji(Sta) = 0 such that s — (act, ji),
then this intuitively means that the action act is not enabled at s. This kind of distinction
between states is also included within our formalism since the set Enabled|s, act] may be
empty that is precisely the case when s & St

Proposition 176. Let T = (Sta, Act, —) be an LMP such that the action space Act is countable.
For every states sy, s, € Sta the following four statements hold:

(1) sp=sp iff 5, =°Ns, iff s, =esp Iff 54 =75
(2) sq s, implies s, <"sy.
(3) sa=sp iff sa=*"sp iff Sa~osp iff Sa " Sp.
(4) sg~s, implies s, ="s.
Moreover, the relation =< is weakly smooth and accordingly, the relation =~ is smooth.

Proof. According to Theorem 129, every LMP with a countable action space is Borel con-
cerning the hit sigma algebra. As a side remark, thanks to Corollary 130, every LMP with a
countable action space is hence also Souslin. The proposition under consideration is thus a

summary of Theorem 128 and Corollary 131. O

Let us first note that the notions of simulation and bisimulation used throughout this
thesis and the corresponding definitions in the LMP literature coincide. The simple reason
is that according to Proposition 176 the simulation relation < is weakly smooth and the
bisimulation relation ~ is smooth and thus, the characterisations of Theorems 39 and 40
are applicable. The latter observation indeed directly implies that the settings of this thesis
and the LMP literature are the same. In this thesis the state space of an LMP is required to
form a Polish space and hence, we also derive that event bisimulation [ DDLP06] and the
bisimulation notion of this thesis are the same if the underlying action space of the LMP
under consideration is countable.

The recent contribution [FKP17] provides elegant proofs showing that for every states
sq and s, of an LMP it holds s, <'s; iff 5, <4 5, and accordingly, s, =~ s, iff 5; ~, 55. In
particular, the facts that the relations < and ~ are weakly smooth and smooth, respectively,
are also not new. In fact, the part of Chapter 5 where we provide a charactersation of

the simulation preorder and the bisimulation equivalence in terms of the weak modal
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logics APCTL, and APCTL,, respectively, heavily rely on the techniques in [FKP17] (see
Section 5.4 and also Section 5.7). Having the special structure of LMPs in mind, APCTL,
and APCTL, and the corresponding modal logics in [FKP17] are basically the same besides
the fact that the probability modality in [FKP17] can only be bound probabilities from
below. We also refer to Chapter 4 of the thesis [Des99] providing various examples and
intuitive explanations of the considered logics for LMPs. To the best of our knowledge,
apart from the previous mentioned results, the remaining implications in Proposition 176
properly extend the up to now developed theory for LMPs.

7.4 Non-deterministic labelled Markov processes

The theory for LMPs has been conservatively extended in [DTW12, Wol12, DLM16] for
non-deterministic labelled Markov processes that include internal non-determinism. The
definition of the latter mentioned model is as follows:

Definition 177. A non-blocking simple STS T = (Sta, Act, —) is called a non-deterministic
labelled Markov process (NLMP) provided for every action act € Act the following two
conditions hold:

(1) Enabled|[s,act] is Borel in Prob|Sta] for every state s € Sta.

(2) For every Borel set P C Prob[Sta] the following set is Borel in Sta,

{s € Sta ; Enabled[s,act| N P # &}.

_I

The requirements for NLMPs are closely connected to the property for an STS of being
Borel concerning the hit sigma algebra (see Theorem 129). Regarding this issue, let us first
state the following remark.

Remark 178. Let 7 = (Sta, Act, —) be an NLMP where the action space Act is countable.
According to Theorem 129, the NLMP 7T is Borel concerning the hit sigma algebra. By
Corollary 130, the NLMP 7 is Souslin provided for every s € Sta and act € Act the set
Enabled|s, act| is closed in Prob|Sta]. As a consequence, the class of all Souslin STSs covers
image-finite NLMPs with countable action spaces. 4

It is easy to see that image-finite NLMPs cover LMPs (see also Proposition 4.2 in [ Wol12]).
We refer to Chapter 5 in [Wol12] where modelling formalisms from the literature with an
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7.4 Non-deterministic labelled Markov processes

NLMP semantics are presented. This discussion in particular includes stochastic automata
[D’A99, BD04, DKO5], probabilistic guarded command language [MMO04], and a class of
stochastic hybrid systems [FHH 11, Hah13].

Proposition 179. Let T = (Sta, Act, —) be an image-finite NLMP such that the set Act is
countable. For every states sq,s, € Sta the following four statements hold:

(1) sa=2sp iff 84 =3%%sy iff sa=esy iff sa <3 Sp-
(2) sq s, implies s, <"sy.
(3) sa=sy iff 5,%sy, iff sa~osp iff s, s
(4) sg~s, implies s, ="s.
Moreover, the relation < is weakly smooth and accordingly, the relation ~ is smooth.
Proof. By Remark 178, the proposition is a summary of Theorem 128 and Corollary 131. [

For the same reasons as in Section 7.3 the bisimulation notion of this thesis and the
corresponding one in the NLMP literature are the same for every image-finite NLMP where
the action space is countable. This also implies that bisimulation equivalence and the equi-
valence induced by event bisimulation [DTW12, Wol12] are the same for the mentioned
subclass of NLMPs. The result that APCTL,, characterises the bisimulation equivalence can
be already found in [DTW12, Wol12] (see also our discussions in Section 7.3). However,
the remaining implications in Proposition 179 are new. In particular, whereas existing
NLMP literature focus on bisimulation relations only, Proposition 179 also includes cor-
responding results for the simulation preorder. Moreover, we identified an important
class of STSs where the Souslin-simulation preorder and the simulation preorder are the
same and accordingly, for the corresponding relations induced by Souslin bisimulation and
bisimulation.

The second condition on an NLMP in Definition 177 is closed connected to our property
on STS of being Borel concerning the hit sigma algebra. However, whereas condition (2) in
Definition 177 takes all the Borel subsets of Prob[Sta] into account, the corresponding con-
dition in this thesis regards only the open subsets of Prob[Sta| (see also Theorem 129). This
seemingly small difference has serious consequences (see also the discussion in Section 18.1
in [ABO6] concerning different measurability notions for set-valued functions). First of
all, the whole theory in [DTW12, Wol12] heavily relies on the fact that condition (2) in
Definition 177 indeed includes all the Borel subsets of Prob[Sta]. For instance, this is already
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important for the definition of the semantics of the modal logics in [DTW12, Wol12]. In
this sense, we completely rework this existing theory with the weakened assumption (see
Theorem 128). Moreover, whereas NLMPs are not closed under composition, a corres-
ponding closure result holds for STSs being Borel concerning the hit sigma algebra (see
Theorem 160). The latter is illustrated by the following example:

Example 180. Consider the simple STSs 71 = (Sta, Act,—1) and T, = (Sta, Act, —»)
where Sta = [0, 1] and the set Act is a singleton, say Act = {act} for some symbol act, and
the transition relations —1 and —, are given as follows:

—1 = {{(s, Diraclact] ® Dirac|s]) ; s € Sta},

—» = {(s, Dirac[act] ® Dirac[s']) ; s,s' € Sta}.

It is easy to see that 77 and 7, are NLMPs. According to Remark 178, the STSs 77 and 7
are hence Borel concerning the hit sigma. Define the STS

T = ,Tl HCartSp,Act 75

Thanks to Theorem 160, we have that the STS T is also Borel concerning the hit sigma
algebra. Indeed, for every s € Sta the set Enabled[Ty,s,act] is a singleton and hence
compact and moreover, the set Enabled[T3, s, act] is equal to Prob[Sta] and thus compact
(see Theorem 17.22 in [Kec95]).

Although 7T is Borel concerning the hit sigma algebra, the STS is no NLMP. Let us provide
an argument for this claim. According to Remarks 10 (1) and (2), there exists a Borel set
B C Sta x Sta such that the set M is not Borel in Sta where

M = {r € R ; there exists /' € R with (r,7") € B}.
Defining the set
Dirac[B] = {Dirac[r1] ® Dirac|r,] ; (r1,72) € B},

we have that Dirac|B] is Borel in Prob[Sta x Sta] (see, e.g., Corollary 4.5 in [Wol12]).

However, the following set is not Borel in Sta x Sta,
{(s1,s2) € Sta x Sta ; Enabled[T, (s1,s2),act] N Dirac[B] # @} = M X Sta.

As M x Sta is not Borel in Sta x Sta, it follows that 7 is no NLMP. Our example involves
no stochastic and hence, it also applies for the standard composition operator. 4
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7.5 Controlled Markov processes

7.5 Controlled Markov processes

This section focuses on controlled Markov processes, in particular, it is shown that every
controlled Markov process induces a Souslin STS. We moreover provide a subclass of
controlled Markov processes where the Souslin-simulation preorder and the simulation
preorder as well as the Souslin-bisimulation equivalence and the bisimulation equivalence
are the same, respectively. As a consequence, our results of Chapter 4 concerning trace-
distribution relations are applicable for the model under consideration. The definition
below is borrowed from [TMKA16].

Definition 181. A controlled Markov process (CMP) is given by a tuple
M = (Sta, Act, U, Ctr, Adm)
comprising of the following components:
(1) Stais a Polish space (called state space).
(2) Act is a Polish space (called action space).
(3) U is a Polish space (called input space).
(4) Ctr: Sta x U — Prob[Act x Sta] is a Borel function (called control law).

(5) Adm: Sta~~ U is a set-valued function whose induced relation Rel[Adm] is a Souslin
setin Sta x U.

Roughly speaking, the space U consists of all possible inputs controlled by an external
agent, the function Ctr formalises the control law of the CMP, and the set-valued function
Adm represents the set of all admissible controls in a state, i.e., an input u € U is admissible
in a state s € Sta provided u € Adm(s). In the context of stochastic control problems,
this section focuses solely on modelling purposes of the operational behaviour of the
underlying stochastic systems. Hence, the introduced formal model for an CMP includes
neither reward functions nor cost functionals to be optimised. However, the formalism
can be extended in this direction in a natural way (see also Section 5.8). We introduce the
following subclass of CMPs satisfying additional topological properties for the involved

spaces and functions.
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Definition 182. We call a CMP (Sta, Act, U, Ctr, Adm) continuous provided the following
four conditions are fulfilled:

(1) The Polish space U is a compact.
(2) The function Ctr is continuous.
(3) The set Rel[Adm] is closed in Sta x U.

(4) The set-valued function Adm is lower hemicontinuous, i.e., for every open set O C U
the set {s € Sta ; Adm(s) N O # @} is open in Sta.

Whereas requirements (1), (2), and (3) are adopted from Definition 1 of [TMKA16],
requirement (4) yields an additional constraint for the formalism studied in [TMKA16].
In fact, lower hemicontinuity is a condition that appears natural in the study of constrained
maximisation problems represented by set-valued functions (see, e.g., Sections 17.2 and
17.5in [ABO06]). In examples where the set-valued function Adm models global constraints

for control decisions, the lower-hemicontinuity condition is harmless:

Example 183. Consider a CMP M = (Sta, Act, U, Ctr, Adm) such that the function Ctr is
continuous and where the input space is given by

u=10,1] x [0,1],
Consider a continuous function f: Sta — [0, 1] such that for every state s € Sta it holds
Adm(s) = {(u1,uz) € U; uq+ux = f(s)},

i.e., the function Adm may represent possible weightings for the share of resources such
as energy, memory, or bandwidth depending on the actual grading formalised by f. In
many situations the function f is even constant with f(s) = 1 for every s € Sta (see also
the example on a small power network in Section 2.2 of [TMKA16]).

We have that the CMP M under consideration is continuous. Clearly, the Polish space
U is compact. By the continuity of the function f, it is moreover easy to see that the set
Rel[Adml] is closed in Sta x U. Moreover, it easily follows that the set-valued function Adm

is lower hemicontinuous. a
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The control law Ctr of an CMP depends on the actual state of the system and the given
input. Intuitively, assuming the actual state of the system is s and an input # admissible
in s, the successor state of the system is determined by the probability measure Ctr(s, u).
More precisely, the semantics of a CMP is defined as follows:

Definition 184. Let M = (Sta, Act, U, Ctr, Adm) be a CMP. The semantics of M is given
by the STS

[M] = (Sta, Act, —)
such that for all s € Sta and ¢ € Prob[Act x Sta] the following equivalence holds:
s— ¢ iff thereexistsu € U such thatu € Adm(s) and ¢ = Ctr(s, u).

_I

The introduced STS may involve uncountable non-determinism as every admissible
control in a state induces a distribution over action-state pairs. The actions can be seen as a
labelling of the corresponding transitions. If all the inputs in U are observable, one may
consider CMPs (Sta, Act, U, Ctr, Adm) where Act = U and Ctr(s,u)({u} x Sta) =1 for
every state s € Sta and control u € U.

Proposition 185. Let M = (Sta, Act, U, Ctr, Adm) be a CMP. Then the STS [M] is Souslin.
If the CMP M is continuous, then for every states s,,s, € Sta the following four statements
concerning the simulation preorder and the bisimulation equivalence of the STS [M] hold:

(1) sa=Zsp iff sa 35" sy
(2) sq s, implies s, <"sy,.
(3) sa~sy iff 5,225y
(4) sg~s, implies s,="s.
Moreover, the sets < and ~ are closed in Sta X Sta.

Proof. The argument showing that the STS [M] has the Souslin property is straightforward.
Nevertheless, let us present the details. Denote the transition relation of the STS [M] by
—. Define the set M C Sta x U x Prob|[Act x Sta] by

M = Graph|[Ctr] N (Graph[Adm] x Prob[Act x Sta])
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As Ctr is a Borel function, the set Graph[Ctr] is Souslin in Sta x U x Prob[Act x Sta] (see
Remark 10 (6)). By the definition of CMPs, the set Graph[Adm] is Souslin in Sta x U.
It follows that the set M is Souslin in Sta x U x Prob[Act x Sta] (see Remark 10 (4)).

Moreover, it holds
— = {(s, ¢) € Sta x Prob[Act x Sta] ; (s,u, p) € M forsome u € U}.

Applying Remark 10 (5), we conclude that the STS [M] is Souslin.

Assume that the CMP M is continuous. Let s,,s, € Sta be states and R be a simulation
for [M]. Denote the topological of the set R in Sta x Sta by R. In the remainder of this
proof, we show that R is a simulation for [M]. Indeed, this suffices to conclude the
remaining claims of theorem: first of all, if the topological closure of a simulation is also
a simulation, it follows that the simulation preorder < is a closed set in Sta x Sta. As
every closed set in Sta x Sta is in particular Souslin in Sta x Sta (see Remark 10 (2)), we
immediately obtain statement (1). This together with Corollary 83 yield statement (2).
The corresponding claims for the bisimulation equivalence can be proven analogously.

For the remainder of this proof denote the metric on U inducing the corresponding Polish
topology on U by dist. For every u € U and € € R the open ball in U concerning dist
centered at u with radius ¢ is denoted by Ball(u, ), i.e., we have

Ball(u,e) = {u' € U ; dist(u,u’) < ¢}.

Let (s, 85) € Staand ¢, € Prob[Act x Sta] be such that (s,,sp) € Rand s, — @,. By the
definition of R, there exists a sequence ({Sau, Sp,n) )neN Of pairs (Sqn, Sp,) € R converging
in Sta x Sta to the limit (s,, s;). As we have s, — @, the semantics of CMPs yields a control
u, € U such that u, € Adm(s,) and ¢, = Ctr(s,, ug).

Clearly, for every n € IN the set Ball(u,,1/n) is an open set in U. Note, for every n € IN
we have that Adm(s,) N Ball(u,,1/n) # @. Using that Adm is upper hemicontinuous, for
every n € IN theset {s], € Sta ; Adm(s},) N Ball(u,,1/n) # @} is open in Sta. This insight
and the fact that the sequence (S, )neN converges in Sta to the limit s, yield the following
statement: there is a natural number N € IN and a sequence (i, )neN of elements in U
such that for every n € N with n > N itholds u,,, € Adm(s,,) and dist(i15,,u,) < 1/n.
It follows that the sequence (1, ;) neN converges in U to the limit 1, and for every n € IN
with n > N we moreover have that s, , — Ctr(San, tgn)-

As R is a simulation, there exists a sequence (1, )nenN in U such that for every n € IN
with n > N it holds s, — Ctr(sp, ty,) and (Ctr(Sgpn, than), Ctr(spu, ) € (RAT)WSE,
Using that U is compact, there exists a strictly increasing function f: IN — IN such that
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the sequences (i ¢(n))neN converges in U. Let up € U be the limit of the sequence
(Up,f(n) )nen- Since the set Rel[Adm] is closed in Sta x U, it follows u, € Adm(s,). We
therefore obtain s, — Ctr(sp, up).

It remains to show (Ctr(s,, u,), Ctr(sy, up)) € (RA)"8t. Since the function Ctr is con-
tinuous and as for every n € N with n > f(N) it holds

(Ctr(Sa, f(n)s Ua,f(m) ) CEF (St ) U o))} € (RAT)WBEC (RAT)™EY,

it suffices to show that the set (RA)"8! is closed in Prob[Act x Sta] x Prob[Act x Stal.
However, as R is closed in (Act x Sta) x (Act x Sta), the latter is stated in Lemma 3.9
in [Les10]. The mentioned lemma is a consequence of general results referring to the con-
vergence of probability measures such as Prokhorov’s theorem characterising the relatively
compact subsets in Prob[Act x Sta] (see also Theorems 5.1 and 5.2 in [Bil99]) and the
Portmanteau theorem (see also Theorem 17.20 in [Kec95]). O

To the best of our knowledge, the established results referring to trace-distribution

relations of an CMP are new and extend existing literature.

7.6 Stochastic hybrid systems

We introduce stochastic rectangular hybrid automata (SRHAs) where we follow the stand-
ard schema for hybrid automata [Hen96]. It turns out that every SRHA admits a Souslin-STS
semantics. As SRHAs cover, e.g., probabilistic timed and hybrid automata [Spr01, KNSS02,
Sprill, ZSR1t12, Spr15] as well as stochastic automata [D’A99, BD04, DKO05], this section
provides a powerful high-level modelling formalism for Souslin STSs.

Given a finite set Var of variables, the set Update[Var| denotes the set of all Borel func-
tions with domain Eval[Var] and codomain Prob[Eval[Var]]. Intuitively, every function
in Update[Var| represents an update for variables: given upd € Update[Var| and a vari-
able evaluation e for Var, a new variable evaluation €’ for Var is sampled according to the

probability measure upd(e).

Definition 186. A stochastic rectangular hybrid automaton (SRHA) is a tuple
R = (Loc, Var, Act, Flow, Inv, Jump)

comprising of the following components:

(1) Loc is a countable set (location space),
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(2) Var is a finite set of variables,

(3) Act is a countable set (action space) disjoint from IR>q,
(4) Flow: Loc — Cond[Var] is a function (flow function),
(5) Inv: Loc — Cond[Var] is a function (invariant function),
(6) Jump is a countable relation (jump relation) where

Jump C Loc x Cond[Var] x Act x Update[Var] x Prob|Loc].

Furthermore, for every I € Loc the sets Flow(1) and Inv(1) are required to be convex. Here,
a condition cond € Cond[Var] is convex if for every r € [0,1] and e, e’ € Eval[Var| such that
e |= cond and ¢’ |= cond it holds e |= cond where the variable evaluation e, € Eval[Var]
is defined by ¢’ (v) = r-e(v) + (1 —r) - ¢/(v) for every v € Var. J

Let R be an SRHA as before. Intuitively, when times passes in a location /, then the vari-
ables evolves according to a differentiable function whose derivative satisfies the condition
Flow(I) for every point in the considered time span. Time can advance in a location [ as
long as the evaluations of the variables satisfy the invariant Inv(I). Assuming the current
location and variable evaluation of the SRHA are given by [ and e, respectively, a jump
(1, guard, act, upd, A) is enabled if e |= guard. Here, when invoking this jump, the action
act is executed, the variable evaluation is updated according to the function upd, and the

successor location is sampled according to A. The formal semantics is as follows:

Definition 187. Let R = (Loc, Var, Act, Flow, Inv, Jump) be an SRHA. The semantics of R
is given by the simple STS

[R] = (Loc x Eval[Var], R>o U Act, —)

where the transition relation — is given as follows: for every location I € Loc, variable
evaluatione € Eval[Var|, actionact’ € R>o U Act, and probability measure € Prob[Loc x
Eval[Var]] we have

(I,e) — (act’, u)
precisely when one of the two conditions below is satisfied:

(1) There are t € R>p and a function f: [0,t] — Eval[Var] such thatact’ = t, f(0) =,
u = Dirac[(1, f(t))], f(¥') |= Inv(1) forallt' € [0, t] and moreover, f is differentiable
on (0, t) with dot[f] (') = Flow(1) forall ¢’ € (0, t).
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(2) There are act € Act, guard € Cond[Var], A € Prob|Loc|, upd € Update[Var], and
1 € Prob[Eval[Var]] such that act'’ = act, e |= quard, y € upd(e), p = A ® 1, and
moreover, (I, guard, act,upd, A) € Jump.

J

Inspecting the definition of the transition relation — again, it is possible that a jump of
the SRHA leads to a state (I, e) with e [= Inv(I). However, no time can pass in such a state.
Regarding this issue, we also refer to the notion of weak-invariant semantics, also used
and discussed in [HHHK12]. Simple syntactical restrictions for an given SRHA ensure
that the underlying STS always enters a state (/, e) satisfying e |= Inv(l). For instance, one
may require that for every jump (I, guard, act,upd, A) € Jump and e € Eval[Var| such that
e = Inv(1) A guard the following condition holds: for every location I € Loc,

A{I'}) >0 implies #(Ino(l')) = 1.
Proposition 188. For every SRHA R the STS [R] is Souslin.

Proof. Let R = (Loc, Var, Act, Flow, Inv, Jump) be an SRHA. Denote the transition relation
of the STS [R] by — and moreover, define

Sta = Loc x Eval[Var] and Act’' = R>qU Act.
We additionally introduce the sets

—Rop = 1(5,t, 1) € Sta x R>q x Prob[Sta] ; s — (t, )},
—act = {(s,act, u) € Sta x Act x Prob[Sta] ; s — (act, u) }.

Our task is to show that the STS [R] is Souslin. According to Remark 68, it suffices to
show that the sets —r_, and — 4 are Souslin in Sta X R>o x Prob[Sta] and Sta x Act x
Prob[Sta], respectively.

The set —R., is Souslin. We show that the set —R_, is Souslin in Sta x R>q x Prob[Sta.
Define the Polish space

XR., = Eval[Var| x Sta x R>q X Prob|Sta]

The following argument relies on the mean value theorem well-known from undergraduate

analysis courses. Introduce the function g: Eval[Var| x Sta x R>¢ — Prob[Sta],

g(slope, (1,e),t) = Dirac[(l,e + t - slope)].
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7 Relations to models from the literature

Relying on Example 6, it is easy to see that g is a Borel function. Thus, the set Graph[g] is
Borel in XR_, by Remark 10 (6). As the set Loc is countable, it is easy to see that B is Borel

in XR., where

B = | Flow(l) x ({1} x Ino(l)) x Rxg x {Dirac[(l,)] ; ¢ = Inv(I)}.

I€Loc

As the sets Flow(1) and Inv(1) are convex for every | € Loc, the mean value theorem yields
the following equivalence for every s € Sta, t € R>o, and 1 € Prob[Stal:

(s,t,u) € =Rr., iff there existsslope € Eval[Var]
such that (slope, s, t, i) € Graph[g] N B.

Finally, applying Remark 10 (1), the set —R_, is Souslin in Sta x R>q x Prob[Sta].

The set — a¢ is Souslin. It remains to show that — 4 is Souslin in Sta x Act x Prob[Sta].
Define the Polish space

Xact = Loc x Prob[Loc] x Eval[Var] x Prob[Eval[Var]] x Act.
Every jump € Jump induces a Souslin subset M, of X4 as follows:
Mjymp = {1} x {A} x (Graph[upd] N (guard x Prob|Eval[Var|])) x {act}

where jump = (I, guard, act,upd, ). By Remark 10 (6), the set My, is indeed Souslin in
Xact- Define M C X 44 by

M= U M

jump€Jump

Since every SRHA includes only countably many jumps, the set M is Souslin in X4+ by
Remark 10 (4). Introduce the function hi: X4 — Sta x Act x Prob[Sta],

h(l,A,e,n,act) = ((l,e),act, A ®1n).
The function / is Borel by Example 6. According to Remark 10 (5) and as we have
—Act — h(M)/

we finally obtain that the set — 4. is Souslin in Sta x Act x Prob[Sta]. O
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In this thesis we have investigated STSs including both an uncountable state space and
an uncountable action space (see Chapter 3). Using measurable-selection principles and
techniques from descriptive set theory, we have shown that under a Souslin side constraint
the simulation preorder is subsumed by the trace-distribution preorder and the bisimulation
equivalence is finer that the trace-distribution equivalence (see Chapter 4). This, together
with the presented logical characterisation of simulation and bisimulation concerning a
weak and a strong modal logic, provide a complete picture on behavioural relations for a
large subclass of STSs (see Chapter 5). In order to obtain a logical characterisation covering
STSs with uncountable action spaces, the key idea is the new concept of action event families
specifying the basic atomic building blocks of the introduced logics.

Furthermore, we have introduced a new parallel-composition operator for STSs appropri-
ate to model stochastic dependencies between components declarative fashion relying on
the notion of couplings (see Section 6). Our framework is convenient in situations where
one wants to abstract from vaguely or unknown operational behaviour causing specific
stochastic dependencies. We have proved that simulation preorder and bisimulation equi-
valence are congruences with respect to our newly developed parallel operator where the
challenge is to construct specific (span) couplings. For this, we have heavily exploited the
disintegration theorem.

Our research covers many prominent modelling formalisms from the literature and
extend existing contributions for those (see Chapter 7), in particular, for labelled Markov
processes, discrete-time stochastic hybrid automata, and controlled Markov processes. Our
results yield the basis of many possible directions for further research that are briefly
summarised next.

It would be interesting to know whether one can weaken or even drop the (Souslin)
assumptions for the main results in Chapters 4 and 5. Regarding this aspect, the following
question arises: given a Souslin STS 7 and states s, and s, with s; >~ s;, does it hold
Sa %% 53, i.e., does there exist a Souslin bisimulation R for 7 with (s;,s,) € R? An
analogous question is relevant for simulations. By the main result in Chapter 5, we have
already identified a large subclass of Souslin STSs for which the latter question can be
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8 Conclusions

answered positively. An interesting question is whether results from Chapter 5 can be in
particular extended for a subclass of STSs that goes beyond image-finite systems. Here,
one may focus on, e.g., image-compact STSs in a first step. In this context, the article
[Ter15] is also interesting where a not image-finite NLMP is presented whose bisimulation
equivalence forms a Souslin set, however, no Borel set.

This thesis focused on exact notions for simulation and bisimulation. However, it would
be interesting to extend our results for weak simulation and bisimulation, approximation
notions thereof, as well as behavioural metrics. Regarding this issue, there already exists
many literature focusing on subclasses of STSs. For instance, the recent work [BA17] shows
that for approximate bisimilar states of a labelled Markov chain the induced finite-trace
distributions are close with respect to the total variation distance (see also [HAV16]).

Besides approximate notions, there are also metrics for stochastic models to escape from
the fragility of exact equivalences. For instance, the contributions for labelled Markov chains
[CvW12], for concurrent labelled Markov chains [CGPX14], LMPs [ Des99, DGJP03, Pan(09],
generalised semi-Markov processes [GJP04], as well as the abstract coalgebraic setting
[BBKK14] yield an excellent starting point for the study of behavioural metrics for (Souslin)
STSs (see also [DD09] for a survey).

Weak equivalences abstract from internal steps that are supposed to be not observable
from an external agent, e.g., [SL94, BH97, PLS00, DGJP10, Cat05, CSKN05, DH13b]. Weak
notions for simulations and bisimulations have been for instance already discussed in
the context of trace-distribution relations of STSs [Cat05] (see also Section 4.7) as well as
concerning a logical characterisation of the bisimulation equivalence of labelled concurrent
Markov chains [DGJP10].

Our congruence results for the span-coupling composition operator focused on the
relations induced by simulation and bisimulation. It is well known that trace-distribution
equivalence is not a congruence with respect to (standard) composition for subclasses of
STSs [Seg95, LSV07]. Regarding this issue, it seems plausible to combine ideas of the latter
cited articles with the developed techniques in this thesis to extend the results concerning
probabilistic contexts in [LSV07] for (Souslin) STSs.

In statistics there is the concept of copulas [Nel06], i.e., specific functions convenient
for the specification of dependencies between real-valued random variables. Adapting
and extending (statistical) techniques referring the analysis and synthesis of copulas to
STSs and our developed compositional framework would be another interesting idea left
as future work. As a first simple starting point, one may consider coupling-constraint
functions that are induced by appropriate (parametric) families of copulas.
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The presented compositional framework for STSs in this thesis yields a basis for our
composition operator presented at [GBK16] covering a generic model for stochastic hybrid
systems called stochastic hybrid motion automata. In this new model the progressing flow
is recorded within states and the adaption of flows depends on executing commands rather
than happening on arbitrary occasions. As a next step, one may extend this class of hybrid
systems by allowing for stochastic flows, i.e., flows where stochastic choices can be made
continuously over time (see also [BL04, BLB05, BL06]). The presented algebraic theory
on behavioural relations then needs to be extended for this expressive class of stochastic
hybrid systems.
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