This is the peer reviewed version of the following article: Jian Zhang, Tao Wang, Darius Pohl, Bernd Rellinghaus, Renhao Dong, Shaohua Liu, Xiaodong Zhuang, Xinliang Feng. Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity. Angew.Chem.Int. Ed. 2016, 55,6702 –6707, which has been published in final form at https://doi.org/10.1002/anie.201602237. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ## Interface Engineering of MoS₂/Ni₃S₂ Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity Jian Zhang^[a], Tao Wang^[b], Darius Pohl^[c], Bernd Rellinghaus^[c], Renhao Dong^[a], Shaohua Liu^[a], Xiaodong Zhuang^[a], Xinliang Feng^{*[a]} Dedication Abstract: To achieve sustainable production of H2 fuel through water splitting, low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace Pt and IrO₂ catalysts. Here, for the first time, we present the interface engineering of novel MoS₂/Ni₃S₂ heterostructures, in which abundant interfaces are formed. For OER, such MoS₂/Ni₃S₂ heterostructures show an extremely low overpotential of ~218 mV at 10 mA cm⁻², which is superior to that of the state-of-the-art OER electrocatalysts. Using MoS₂/Ni₃S₂ heterostructures as bifunctional electrocatalysts, an alkali electrolyser delivers a current density of 10 mA cm⁻² at a very low cell voltage of ~1.56 V. In combination with density function theory (DFT) calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygenintermediates, thus accelerating electrochemical water splitting. To achieve sustainable hydrogen production, electrochemical and photoelectrochemical water splitting are favorable strategies benefiting from abundant water resources and high-purity H2 production.^[1] Electrocatalysts are particularly vital to the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by lowering the dynamic overpotentials.[2] Currently, Pt is the most efficient HER electrocatalyst with a near-zero overpotential, while IrO2 and RuO2 hold the benchmark for OER electrocatalysts.[3] However, the scarcity and high-cost of these noble metal-based electrocatalysts considerably impede their large-scale utilization in commercial electrolysers.^[4] For the HER in an alkaline solution, the kinetics are determined through a subtle balance between the dissociation (Volmer step) and the subsequent chemisorption of the water splitting intermediates (OH- and H*) on the surface of the HER electrocatalyst. [5] Thus, once an electrocatalyst facilitates the synergistic chemisorption of both H* and OH⁻ intermediates on the surface, the HER performance will be improved. Similarly, for the OER in an alkaline solution, the chemisorption and dissociation of OH⁻ and the yielded intermediates (OH*, OOH*, and H*) on the surface of the electrocatalysts determine the water oxidation activity. [6] Therefore, the OER electrocatalysts capable of binding both the oxygen-containing and hydrogen intermediates are expected to favor the water oxidation reaction. Nevertheless, only the chemisorption free energy of hydrogen (or oxygen-containing) intermediates has been considered for developing HER (or OER) electrocatalysts thus far. [7] Mo-based nanostructures, particularly MoS₂, have been extensively investigated as HER electrocatalysts in the past.[8] Both DFT calculations and experimental investigations revealed that the undercoordinated Mo-S sites along the edges of MoS2 possess high chemisorption capability for hydrogen, analogous to Pt.[9] On the other hand, earth-abundant transition metal (Fe, Co, and Ni, particularly Ni)-based sulphides, [10] oxides, [11] hydroxides,[12] layered double hydroxides (LDHs),[13] and phosphates[14] have been largely explored as OER electrocatalysts. The undercoordinated metal sites on the surface are pivotal in water oxidation because of their outstanding chemisorption of OH- and oxygen-containing intermediates. Therefore, integrating the advantages of the aforementioned HER and OER electrocatalysts to construct novel heterostructures, which possess binding affinities to both hydrogen and oxygencontaining intermediates, is extremely beneficial for enhancing the overall electrochemical water splitting activity. In this study, for the first time, we present the interface engineering of novel MoS₂/Ni₃S₂ heterostructures on nickel foam. In the resultant MoS₂/Ni₃S₂ heterostructures, the outer MoS₂ nanosheets are decorated on the surface of the inner Ni₃S₂ nanoparticles, which generates abundant interfaces. Such MoS₂/Ni₃S₂ heterostructures exhibit both highly efficient OER and HER activities in 1 M KOH solution. In particular, the OER onset potential of MoS₂/Ni₃S₂ heterostructures is as low as ~175 mV, and the OER current density reaches 10 mA cm⁻² at an overpotential of ~218 mV, which is superior to the previously reported OER electrocatalysts. Furthermore, utilizing the MoS₂/Ni₃S₂ heterostructure as a bifunctional electrocatalyst, an alkaline electrolyzer with a current density of 10 mA cm⁻² is operated at a low cell voltage of 1.56 V, which is considerably lower than that of the state-of-the-art overall water splitting electrocatalysts such as NiFe-LDH,[15] NiSe nanowires,[16] Ni₂P nanoparticles,[17] and electrodeposited cobalt-phosphorousderived films[18] (cell voltages > 1.6 V). Combined with DFT calculations, our results suggest that the established interfaces between Ni₃S₂ and MoS₂ as well as the in-situ generated interfaces between NiO (surface electrochemical oxidation of Ni₃S₂ under OER condition) and MoS₂ facilitate the synchronous [b] Dr. T. Wang Leibniz-Institut für Katalyse, e.V. Universität Rostock 18059 Rostock, Germany [c] Dr. D. Pohl, Dr. B. Rellinghaus Institute for Metallic Materials IFW Dresden 01171 Dresden, Germany Supporting information for this article is given via a link at the end of the document. [[]a] Dr. J. Zhang, Dr. R. Dong, Dr. S. Liu, Dr. X. Zhuang, Prof. X. Feng Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden, Germany E-mail: xinliang.feng@tu-dresden.de **Figure 1.** (a) and (b) scanning electron microscopy and (c) and (d) high-resolution transmission electron microscopy images of MoS_2/Ni_3S_2 heterostructures and high-resolution X-ray photoelectron spectroscopy spectrum of (e) Mo 3d and (f) Ni 2p. Inset: digital image of nickel foam coated with MoS_2/Ni_3S_2 heterostructures. chemisorption of hydrogen and oxygen-containing intermediates, consequently improving the overall electrochemical water splitting activity. MoS_2/Ni_3S_2 heterostructures were prepared using a commercial nickel foam (1 × 3 cm²) and (NH₄)₂MoS₄ (40 mg) through a one-pot solvothermal reaction at 200 °C for 12 h in 15 mL N, N-Dimethylformamide (DMF) (Supporting Information). During the solvothermal reaction, (NH₄)₂MoS₄ not only served as the precursor of MoS₂ nanosheets but also provided the sulphur source for the in-situ growth of Ni₃S₂ nanoparticles on the nickel foam. The loading amount of MoS₂/Ni₃S₂ heterostructures on the nickel foam is approximately 9.7 mg cm $^{-2}$; this value could be controlled by adjusting the amount of (NH₄)₂MoS₄ in the solution. For instance, the loading weights of MoS₂/Ni₃S₂ heterostructures were ~5.7 and ~13.1 mg cm $^{-2}$ when the amounts of (NH₄)₂MoS₄ were 20 and 80 mg, respectively (Figure S1-S3). As shown in Figure 1a and the inset, the obtained nickel foam coated with MoS₂/Ni₃S₂ heterostructures has macroporous and free-standing features. The crystalline structure and surface composition of the MoS₂/Ni₃S₂ heterostructures were first confirmed through X-ray diffraction (Figure S4) and Raman spectroscopy (Figure S5) studies. To analyze the as-obtained MoS₂/Ni₃S₂ heterostructures, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy were used. Figure 1b reveals heterostructures, which consist of inner Ni₃S₂ nanoparticles and decorated MoS₂ nanosheets. The size of the Ni₃S₂ nanoparticles was about several hundred nanometers. The size and thickness of the MoS₂ nanosheets were 30-130 and 5-15 nm, respectively. The element distributions of the MoS₂/Ni₃S₂ heterostructures were further analyzed through the elemental mapping of fieldemission SEM (FE-SEM) (Figure S6a-d). Notably, the nickel element was mainly distributed over the nanoparticles, whereas molybdenum and sulfur were spread on and around the nanoparticles. The molar content of MoS2 in MoS2/Ni3S2 heterostructures was determined to be ~7.8% through energydispersive X-ray spectroscopy (EDX) (Figure S6e), which is consistent with the inductively coupled plasma spectrometer (ICP-MS) analysis (~8.0%). We further peeled off MoS₂/Ni₃S₂ heterostructures from the nickel foam by sonication and investigated the samples by HRTEM (Figure 1c, 1d, S7 and S8). Lattice fringes with lattice distances of 0.27 and 0.61 nm corresponded to the (100) and (002) facets of MoS₂, respectively, while the lattice distances of 0.40 and 0.28 nm were ascribed to the (101) and (110) facets of Ni₃S₂, respectively. The (002) and (100) facets of MoS₂ and the neighboring (101) and (110) surfaces of Ni₃S₂ constitute the interfaces in MoS₂/Ni₃S₂ heterostructures. Next, the X-ray photoelectron spectroscopy (XPS) survey spectrum of MoS₂/Ni₃S₂ demonstrates that the chemical composition of Ni, Mo, and S is consistent with the EDX results (Figure S9). For bare MoS2 nanosheets, the peaks of Mo 3d_{5/2} and Mo 3d_{3/2} appear at 228.5 and 231.8 eV, respectively. However, the binding energies of Mo $3d_{5/2}$ and Mo $3d_{3/2}$ in MoS₂/Ni₃S₂ heterostructures shift to 228.6 and 232.2 eV, respectively (Figure 1e). Similarly, the Ni 2p_{3/2} signal in the MoS₂/Ni₃S₂ heterostructures exhibits a positive shift of ~0.3 eV relative to that in the bare Ni₃S₂ nanoparticles (Figure 1f). These results strongly suggest the existence of strong electronic interactions between Ni₃S₂ and MoS₂, which implies the establishment of coupling interfaces. **Figure 2.** (a) CV curves and (c) related Tafel slopes of the nickel foam, MoS_2 nanosheets, Ni_3S_2 nanoparticles, MoS_2/Ni_3S_2 heterostructures, and IrO_2 ; b) OER overpotentials of the MoS_2/Ni_3S_2 heterostructures and the reported electrocatalysts for comparison at 10 mA cm⁻²; and d) the long-term electrochemical OER test of the MoS_2/Ni_3S_2 heterostructures at 10 mA cm⁻². Electrolyte: 1 M KOH solution; CV scan rate: 1 mV s⁻¹. To evaluate the OER performance of the as-prepared MoS_2 -/ Ni_3S_2 heterostructures, a three-electrode configuration was applied using an Hg/HgO electrode and a Pt rod as the reference and counter electrodes, respectively (Figure S10). The OER activities of the nickel foam, Ni_3S_2 nanoparticles, MoS_2 nanosheets, MoS_2/Ni_3S_2 heterostructures, and IrO_2 were examined through cyclic voltammetry (CV) at a scan rate of 1 mV s⁻¹ in a 1 M KOH aqueous solution purged with O_2 (Figure 2a). Bare Ni_3S_2 nanoparticles and MoS_2 nanosheets exhibited OER onset overpotentials of ~230 and 280 mV, respectively. By contrast, for MoS₂/Ni₃S₂ heterostructures, oxygen generation occurred at an extremely low overpotential (~175 mV), which is considerably lower than that of commercial IrO₂ (~250 mV) (Figure S11 and S12). Significantly, the current density of MoS₂/Ni₃S₂ heterostructures reached 10 mA cm⁻² at an extremely low overpotential of ~218 mV, which outperformed IrO₂ (~330 mV) and the previously reported NiFe-LDH film (~240 mV), [15] (Ln_{0.5}Ba_{0.5})CoO₃₋₅ perovskite (~320 mV), [19] single-crystal Co₃O₄@CoO (~430 mV), [20] and electrodeposited Co-P film (~300 mV)] (Figure 2b). [10, 21] Figure 2c illustrates that the Tafel slope of the MoS_2/Ni_3S_2 heterostructures is ~88 mV decade⁻¹, which is considerably lower than that of the Ni_3S_2 nanoparticles (~118 mV decade⁻¹), the MoS_2 nanosheets (~166 mV decade⁻¹), and the nickel foam (~98 mV decade⁻¹). This result strongly suggests that the constructed MoS_2/Ni_3S_2 heterostructures activate water oxidation reaction kinetics. To assess the electrochemical OER stability of MoS_2/Ni_3S_2 heterostructures, a long-term water oxidation was conducted at 10 mA cm⁻² in 1 M KOH media. Figure 2d illustrates that the MoS_2/Ni_3S_2 heterostructures retained steady OER activity and no noticeable potential augment was observed for more than 10 h of oxygen release. **Figure 3.** (a) Polarization curves and (b) corresponding Tafel slopes of the nickel foam, MoS $_2$ nanosheets, Ni $_3$ S $_2$ nanoparticles, MoS $_2$ /Ni $_3$ S $_2$ heterostructures, and Pt, c) polarization curves of MoS $_2$ /Ni $_3$ S $_2$ heterostructures and IrO $_2$ -Pt couple in a two-electrode system; and d) durable operation of the MoS $_2$ /Ni $_3$ S $_2$ heterostructures and IrO $_2$ -Pt couple at 10 mA cm $^{-2}$ in an alkaline electrolyzer. Electrolyte: 1 M KOH solution; CV scan rate: 1 mV s $^{-1}$. The HER activities of the as-prepared samples were evaluated in 1 M KOH electrolyte purged with N_2 . The polarization curves in Figure 3a show that the onset overpotentials of Ni_3S_2 nanoparticles and MoS_2 nanosheets are ~120 and 236 mV, respectively. However, the onset overpotential of the MoS_2/Ni_3S_2 heterostructures substantially decreases to ~50 mV, approaching that of the Pt catalyst. At 10 mA cm⁻², the applied overpotential is ~110 mV, substantially lower than that of the Ni_3S_2 nanoparticles (~193 mV), the MoS_2 nanosheets (~431 mV), and the recently reported WC nanocrystals on carbon nanotubes (~150 mV), $^{[22]}$ CoP on carbon cloth (~209 mV), $^{[23]}$ MoC_x nano-octahedrons (~150 mV), [²⁴] and cobalt-nitrogen-rich carbon nanotubes (~360 mV), [²⁵] (Figure S13 and S14). The Tafel slopes of the MoS₂/Ni₃S₂ heterostructures, Ni₃S₂ nanoparticles, and MoS₂ nanosheets are ~83, 85 and 308 mV per decade, respectively (Figure 3b). Such a Tafel slope of the MoS₂/Ni₃S₂ heterostructures suggests a combined Volmer–Heyrovsky mechanism for hydrogen production. [²⁶] Under a cathodic current of 10 mA cm⁻², there is no noticeable degradation over a 10 h galvanostatic test, which indicates an excellent electrochemical HER stability (Figure S15). The MoS₂/Ni₃S₂ heterostructures were utilized as a bifunctional electrocatalyst for overall water splitting in a two-electrode setup in 1 M KOH solution (Figure S16). A current density of 10 mA cm⁻² was delivered at ~1.56 V, that is, a combined overpotential of ~330 mV for electrochemical overall water splitting (Figure 3c). Figure S17 reveals that the overall water splitting activity of the MoS₂/Ni₃S₂ heterostructures is much higher than that of the IrO₂-Pt couple (~1.7 V) and other recently reported overall water splitting electrocatalysts such as NiFe-LDH (~1.7 V),[16] NiSe nanowires (~1.63 V)[17] and Ni₂P nanoparticles (~1.63 V),[18]. Over a 10-h galvanostatic electrolysis at 10 mA cm⁻², the MoS₂/Ni₃S₂ heterostructures presented an excellent durability with negligible degradation, which is superior to that of the noble metal IrO2-Pt couple (Figure 3d). We further tested the overall electrocatalytic water splitting performance under an extremely high current density of 500 mA cm⁻². Figure S18 and Movie 1 show that massive bubbles were rapidly generated on both electrodes at an applied voltage of ~1.6 V. Such a prominent performance of the constructed electrolyzer utilizing the MoS₂/Ni₃S₂ heterostructures is close to the commercial requirement of a water splitting electrolyzer (voltage ≤1.55 V at 500 mA cm⁻²).[27] The nature and amount of undercoordinated metal sites are crucial for the electrochemical water splitting. The effects of the surface area on OER and HER activities of the obtained-electrocatalysts were firstly studied through electrochemical double-layer capacitances (Cdl) (Figure S19). As shown in Tabel S1, MoS2/Ni3S2 heterostructures show a larger Cdl (15.6 mF) than Ni3S2 nanoparticles (2.1 mF) and MoS2 nanosheets (8.2 mF). In sharp contrast, for OER (or HER), the current density of MoS2/Ni3S2 heterostructures at 1.53 V (or -0.15 V) reached 94.8 (or 45) mA/cm², which is substantially higher than those of Ni3S2 nanoparticles (5.0 mA/cm² for OER; 4.7 mA/cm² for HER) and MoS2 nanosheets (1.6 mA/cm² for OER; 2.5 mA/cm² for HER). Thereby, the greatly enhanced water splitting activities of MoS2/Ni3S2 heterostructures are mainly attributed to the constructed interfaces, rather than the active surface areas. As shown in Figure S20, the reduction and oxidation peaks of $\text{Mo}^{\delta+}/\text{Mo}^{\epsilon+}$ (\$\epsilon \delta \geq 1)\$ in MoS_2 nanosheets are located at ~0.333 and 0.449 V, while the redox reactions of $\text{Ni}^{2+}/\text{Ni}^{3+}$ in Ni_3S_2 nanoparticles occur at ~0.254 and 0.369 V. In contrast, the redox peaks in the $\text{MoS}_2/\text{Ni}_3\text{S}_2$ heterostructures are centered at ~0.216 and 0.489 V. These results suggest that the fabricated $\text{MoS}_2/\text{Ni}_3\text{S}_2$ heterostructures offer new water splitting active sites, which are endowed with the electrocatalytic properties of both Ni_3S_2 and MoS_2 . The reduction peak area of $\text{MoS}_2/\text{Ni}_3\text{S}_2$ heterostructures is ~9.3 and 17.7 times larger than those of the Ni_3S_2 nanoparticles and MoS_2 nanosheets, respectively. After the electrochemical OER process at 10 mA cm⁻² for 10 h in 1 M KOH solution, the structure of the $\text{MoS}_2/\text{Ni}_3\text{S}_2$ heterostructures was analyzed by SEM, HRTEM, XPS, element mapping and EDX, and XPS analyses (Figure S21-S24). Notably, a thin layer of NiO with thickness of ~12. 6 nm was identified on Ni $_3$ S $_2$ surface, for which the lattice fringe with a lattice distance of 0.21 nm was indexed to be the (010) facet of NiO (Figure S20c). XPS result in Figure S24 further revealed the existence of NiO. The formation of NiO is due to the in-situ surface electrochemical oxidation of Ni $_3$ S $_2$ during the OER process which is in agreement with literature reports; and the NiO sites are electrochemically active for the OER process. ¹⁰ Therefore, we consider that the constructed interfaces between the Ni $_3$ S $_2$ and MoS $_2$ stably facilitate HER process and the interfaces between the in-situ formed NiO and MoS $_2$ are favorable for the OER process. To further investigate the role of the constructed interfaces in electrochemical OER and HER, the MoS₂/Ni₃S₂ heterostructures with different molar contents of MoS₂ have been synthesized on carbon cloth (see Experimental Section). Figure S25 shows that the OER and HER overpotentials of the bare Ni₃S₂ nanoparticles and MoS₂ nanosheets at 10 mA cm⁻² are approximately 379 and 421 and 341 and 429 mV, respectively. However, the electrochemical OER and HER performances of the MoS₂/Ni₃S₂ heterostructures are noticeably enhanced. When the molar content of MoS₂ is ~8.3%, the OER and HER overpotentials of the MoS₂/Ni₃S₂ heterostructures at 10 mA cm⁻² are as low as ~330 and 150 mV, respectively. For comparison, the physically mixed MoS₂/Ni₃S₂ composite (having the same chemical composition as the MoS₂/Ni₃S₂ heterostructures) deliver OER and HER current densities of 10 mA cm⁻² at overpotentials of ~356 and 199 mV, respectively, which are considerably higher than those of the MoS₂/Ni₃S₂ heterostructures. These results clearly manifest the crucial role of the constructed interfaces between Ni₃S₂ and MoS₂ as well as the interfaces between NiO and MoS2, which are responsible for the enhanced electrochemical hydrogen and oxygen evolutions, respectively. **Figure 4.** a) Chemisorption models of H and OH intermediates on the surfaces of MoS $_2$, Ni $_3$ S $_2$, MoS $_2$ /Ni $_3$ S $_2$ heterostructures (Ni-MoS $_2$ and Mo-Ni $_3$ S $_2$ models), and MoS $_2$ /NiO heterostructures (Ni-MoS $_2$ and Mo-NiO models) respectively; b) the proposed mechanisms of the dissociation of H $_2$ O, OH, and OOH intermediates on the MoS $_2$ /Ni $_3$ S $_2$ heterostructures. In order to clarify the effect of the constructed interfaces on the chemisorption of hydrogen and oxygen-containing intermediates, we utilized DFT to calculate the chemisorption free energies of hydrogen ($\triangle G_H$) and hydroxide ($\triangle G_{OH}$) on the (101) surface of Ni₃S₂, the (010) surface of NiO, and the (002) surface of MoS₂. The obtained results are described in Figure 4a. Contrary to the chemisorption on the (101) surface of Ni₃S₂ ($\triangle G_H = -1.81 \text{ eV}$) and (002) surface of MoS_2 ($\triangle G_H = -2.71 \text{ eV}$), H is opt to adsorb on the Mo-S edge sites of Ni-doped MoS₂ model (denoted as Ni-MoS₂) because of a lower chemisorption free energy of -3.17eV. As expected, the surface undercoordinated Ni sites of Mo-doped Ni₃S₂ model (denoted as Mo-Ni₃S₂) have a HO-chemisorption energy of -2.92 eV, which is lower than the -1.68 eV energy of MoS₂ and -2.36 eV energy of Ni₃S₂. The (101) surface of Mo-Ni₃S₂ thus exhibits superior binding activity toward oxygen-containing groups. Moreover, considering the formed interfaces between MoS₂ and NiO for OER, the Mo sites of the Mo-doped NiO model (Mo-NiO) show a largely-increased HO-chemisorption energy up to -5.12 eV. Accordingly, a HER mechanism on MoS₂/Ni₃S₂ heterostructures and an OER mechanism on MoS₂/NiO heterostructures are proposed in Figure 4b. The constructed interfaces between Ni₃S₂ and MoS₂ as well as the interfaces between NiO and MoS2 have the advantages of the Hchemisorption of MoS2 and the HO-chemisorption of Ni3S2 and NiO. As a result, the Gibbs free energies of the corresponding intermediates are efficiently decreased, facilitating the dissociation of the O-H bonds of the H2O molecule and the OH and OOH intermediates. Eventually, the OER and HER processes are highly accelerated. In summary, we have presented a novel approach for developing earth-abundant and high-activity overall water splitting electrocatalysts through interface engineering. The as-prepared MoS_2/Ni_3S_2 heterostructures with abundant interfaces manifest excellent chemisorption abilities for both hydrogen and oxygencontaining intermediates, leading to outstanding OER and HER electrocatalytic activities in alkaline media. Therefore, the engineering and understanding of the constructed interfaces provide a favorable direction for developing low-cost and high-activity water splitting electrocatalysts, which have potential applications in photochemical, photoelectrochemical, and electrochemical H_2 production and CO_2 reduction. ## **Acknowledgements** This work was financially supported by the ERC Grant on 2DMATER and EC under Graphene Flagship (No. CNECT-ICT-604391). We also acknowledge the Cfaed (Center for Advancing Electronics Dresden) and the Dresden Center for Nanoanalysis (DCN) at TU Dresden. **Keywords:** Interface engineering • Water splitting • Electrocatalysts • Nickel sulfide • Molybdenum disulfide - J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909-913. - [2] C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347-4357. - [3] D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, J. G. Chen, *Angew. Chem. Int. Ed.* 2010, 49, 9859-9862. - [4] K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307-326. - [5] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, *Science* 2011, 334, 1256-1260 - [6] I. C. Man, H. Y. Su, F. Calle Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159-1165. - [7] a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060-2086; b); a) J. Zhang, S. Liu, H. Liang, R. Dong, X. Feng, Adv. Mater. 2015, 27, 7426-7431; c) H.-W. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, K. Müllen, Nat. Commun. 2015, 6, 7992-7999; d)J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215-230. - [8] Y. Yan, B. Xia, Z. Xu, X. Wang, ACS Catal. 2014, 4, 1693-1705. - [9] T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100-102. - [10] W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 2013, 6, 2921-2924. - [11] R. D. L. Smith, M. S. Prévot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, C. P. Berlinguette, Science 2013, 340, 60-63. - [12] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J. Am. Chem. Soc. 2014, 136, 7077-7084. - [13] C. Tang, H.-S. Wang, H.-F. Wang, Q. Zhang, G.-L. Tian, J.-Q. Nie, F. Wei. Adv. Mater. 2015, 27, 4516-4522. - [14] M. W. Kanan, Y. Surendranath, D. G. Nocera, Chem. Soc. Rev. 2009, 38 109-114 - [15] J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, M. Grätzel, *Science* **2014**, *345*, 1593-1596. - [16] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 2015, 127, 9483-9487. - [17] L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 2015, 8, 2347-2351. - [18] N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed. 2015, 54, 6251-6254. - [19] A. Grimaud, K. J. May, C. E. Carlton, Y.-L. Lee, M. Risch, W. T. Hong, J. Zhou, Y. Shao-Horn, *Nat. Commun.* 2013, 4, 2439-2445. - [20] C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng, H. M. Chen, *Nat. Commun.* 2015, 6, 8106-8114. - [21] a) F. Song, X. Hu, Nat. Commun. 2014, 5, 4477-4485; b) H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 2015, 6, 7261-7268; c) L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023–14026; d) W. Chen, H. Wang, Y. Li, Y. Liu, J. Sun, S. Lee, J.-S. Lee, Y. Cui, ACS Cent. Sci. 2015, 1, 244-251; e) J. Wang, K. Li, H.-x. Zhong, D. Xu, Z.-I. Wang, Z. Jiang, Z.-j. Wu, X.-b. Zhang, Angew. Chem. Int. Ed. 2015, 54, 10530-10534. - [22] X. Fan, H. Zhou, X. Guo, ACS Nano 2015, 9, 5125-5134. - [23] J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587-7590. - [24] H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu, X. W. Lou, Nat. Commun. 2015, 6, 6512-6519. - [25] X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková, T. Asefa, Angew. Chem. Int. Ed. 2014, 126, 4461-4465. - [26] M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang, H. Dai, *Nat. Commun.* 2014, 5, 4695-4700. - [27] X. Lu, C. Zhao, Nat. Commun. 2015, 6, 6616-6622. ## COMMUNICATION The interface engineering of novel MoS_2/Ni_3S_2 heterostructures with abundant interfaces has been presented. Experimental results and DFT calculations demonstrate that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen-containing intermediates, thus leading to highly enhanced water splitting activity. Jian Zhang, Tao Wang, Darius Pohl, Bernd Rellinghaus, Renhao Dong, Shaohua Liu, Xiaodong Zhuang, Xinliang Feng* Page No. - Page No. Interface Engineering of MoS₂/Ni₃S₂ Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity