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1.1. Preface

1.1. Preface
In the last decade a large number of studies have been devoted to the peculiarities of correlated
physics found in the quasi-two-dimensional square lattice iridium oxides, such as Sr2IrO4 or
Ba2IrO4 [46, 54, 118]. It was shown that this 5d family of transition metal oxides (TMO)
has strong structural and electronic similarities to the famous 3d family of copper oxides,
the quasi-two-dimensional square-lattice undoped copper oxides as exemplified by La2CuO4
or Sr2CuO2Cl2 [24, 54, 59]. The 5d ions such as Ir have three active d-orbitals, that lie in
t2g manifold and make relevant models to describe physics in the system in general orbital-
dependent and rather complicated. Although electron-electron Coulomb repulsion U is much
smaller in 5d TMO than in 3d TMO, it was shown by B. J. Kim et al. in 2008 [54] that due
to strong on-site spin-orbit coupling (SOC) the effective width of the conductance band can
get significantly reduced and a Mott gap can open upon even moderate U , and insulating
behavior can be observed. Then in 2009 G. Jackeli and G. Khaliullin [46] proposed that upon
strong on-site spin-orbit coupling the superexchange model projected onto the proper basis
of total Jeff momenta transforms into a simple Heisenberg model. It turned out that just as
for the cuprates, the ground state of these square-lattice iridates is a 2D antiferromagnet and
a Mott insulator [16, 54, 59, 117] – albeit formed by the j = 1/2 spin-orbital (SO) isospins
instead of the s = 1/2 spins [46, 54, 59]. This observation has stimulated a lot of research on
these iridates.
Naturally, such a delicate interplay of on-site spin-orbit coupling, Coulomb repulsion

and crystalline electric field interactions is expected to drive various exotic quantum states.
Many theoretical proposals were made in the last decade including the prediction of possible
superconductivity in square-lattice iridates emerging as a sister system to high-Tc cuprates [54,
58–61, 76, 111, 116, 124, 125, 127]. The combination of electron-electron interaction and
spin-orbit coupling was also discovered as a promising route to alternative topologically
nontrivial states, from topological Mott [88, 118] over fractional Chern [8] insulators to a
potential realization [19, 46] of the Kitaev’s celebrated spin-liquid phase with its anyonic
excitations [7, 62]. Honeycomb iridates were predicted to be topological band insulators [100],
hyper-kagome iridates were predicted to host a spin-liquid state [66, 67, 84, 130].
Whereas a number of predicted phenomena were soon discovered in iridates indeed [15],

many of the theoretical predictions have met very limited experimental confirmation. For
instance, despite many experimental indications of possible superconductivity in doped
Sr2IrO4 – including observation of Fermi arcs and a d-wave gap in electron-doped Sr2IrO4 [60,
61, 112] - there is still no superconductivity with zero electrical resistance and/or Meissner
effect revealed in these systems. Interestingly, another compound with a similar structure,
Sr2RuO4, was indeed reported to be superconducting at temperature lower than Tc = 0.93
K [71]. Moreover, a plethora of puzzling features were observed in iridates experimentally,
such as the emergence of an odd-parity hidden order in Rh-doped Sr2IrO4 [47, 129] and the
absence of conventional correlations between magnetic and insulating states [35, 41, 131]
including the nonappearance of any anomaly in the resistivity corresponding to the Néel
temperature and the avoidance of metalization at high pressures [29, 41, 63, 68, 131]. To
name one, why does Sr2IrO4 remain insulating in high pressures up to 48 GPa [41, 131]
whereas long-range magnetic order is already gone at 20 GPa [41, 131]?

Considering all these features, one can raise a general question: To what extend is the
low-energy physics of the quasi-two-dimensional square-lattice iridium oxides different from
other TMO with the same K2NiF4 type crystal structure such as La2CuO4 or Sr2RuO4?
In this thesis we investigate some of the effects which are usually neglected in studies on

iridates, focusing on quasi-two-dimensional square-lattice iridates such as Sr2IrO4 or Ba2IrO4.
In particular, we discuss the role of the electron-phonon coupling in the form of Jahn-Teller
interaction in chapter 2, electron-hole asymmetry introduced by the strong correlations in
chapters 3 – 4 and some effects of coupling scheme chosen to calculate multiplet structure for

3



Chapter 1. Introduction

materials with strong on-site spin-orbit coupling in chapter 5.

1.2. Structure of this thesis
In chapter 1, we briefly introduce the concepts that are vital to understand present challenges
in the field of Iridates. In section 1.3, we introduce a single-band Hubbard model and its
relation to the t-J model and superexchange model as well as discuss shortly the metal-
insulator transition. In section 1.4, we consider multiorbital Hubbard and superexchange
models and introduce the compound we focus on in this manuscript – Sr2IrO4. In section 1.5,
we are going to discuss in detail how the two-dimensional antiferromagnetic (AF) Mott
insulator is stabilized as the ground state of Sr2IrO4 due to strong on-site spin-orbit coupling.
In the last part of the introduction, section 1.6, we talk about the polaronic approach and
self-consistent Born approximation (SCBA) that we are going to use throughout the whole
thesis.

In chapter 2, we study the role of phonons, which is almost always neglected in Sr2IrO4, and
discuss the manifestation of Jahn-Teller effect in the recent data obtained on Sr2IrO4 with the
help of resonant inelastic x-ray scattering. When strong spin-orbit coupling removes orbital
degeneracy, it would at the same time appear to render the Jahn-Teller mechanism ineffective.
We discuss such a situation, the t2g manifold of iridates, and show that, while the Jahn-Teller
effect does indeed not affect the jeff = 1/2 antiferromagnetically ordered ground state, it
leads to distinctive signatures in the jeff = 3/2 spin-orbit exciton. It allows for a hopping of
the spin-orbit exciton between the nearest neighbor sites without producing defects in the
jeff = 1/2 antiferromagnet. This arises because the lattice-driven Jahn-Teller mechanism only
couples to the orbital degree of freedom, but is not sensitive to the phase of the wave function
that defines the isospin jz. This contrasts sharply with purely electronic propagation, which
conserves isospin, and the presence of Jahn-Teller coupling can explain some of the peculiar
features of measured resonant inelastic x-ray scattering spectra of Sr2IrO4.
In chapter 3, we determine the motion of a charge (hole or electron) added to the Mott

insulating, antiferromagnetic ground-state of square-lattice iridates such as Ba2IrO4 or Sr2IrO4.
We show that correlation effects, calculated within the self-consistent Born approximation,
render the hole and electron case very different. An added electron forms a spin-polaron, which
closely resembles the well-known cuprates, but the situation of a removed electron is far more
complex. Many-body 5d4 configurations form that can be either singlets and triplets of total
angular momentum J , which strongly affects the hole motion between AF sublattices. This
not only has important ramifications for the interpretation of angle-resolved photoemission
spectroscopy (ARPES) and inverse photoemission spectroscopy (IPES) experiments of square-
lattice iridates, but also demonstrates that the correlation physics in electron- and hole-doped
iridates is fundamentally different.

In chapter 4 we discuss the application of the model developed in chapter 3 to the calculation
of STS spectra. We show that using STS one can directly probe the quasiparticle excitations
in Sr2IrO4: ladder spectrum on the positive bias side and multiplet structure of the polaron
on the negative bias side. We discuss in detail the ladder spectrum and show its relevance
for Sr2IrO4 which is in general described by more complicated extended t-J -like model.
Theoretical calculation reveals that on the negative bias side the internal degree of freedom
of the charge excitation introduces strong dispersive hopping channels encaving ladder-like
features which is in a perfect agreement with STS experimental data.
Finally, in chapter 5, we discuss how the choice of the coupling scheme to calculate

multiplet structure can affect the theoretical calculation of ARPES and scanning tunneling
spectroscopy (STS) spectral functions. There are two distinct coupling schemes that can be
used to calculate the singlet and triplet states formed by the 5d4 configuration in the case of
strong on-site spin-orbit coupling. One of them assumes spin-orbit coupling to be larger than
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1.3. Single-band superexchange model

i j
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Figure 1.1.: Example of a virtual hopping process creating a virtual charge excitation (double
occupancy) in a Mott insulator with half filling: (a) initial, (b) intermediate and
(c) final states on two sites.

Hund’s coupling and is addressed as jj coupling scheme, the other one approaches spin-orbit
coupling as a perturbation to the Hund’s coupling and is called LS coupling scheme. We
discuss the applicability of each of the two schemes and show how one or the other of them
shall be introduced analytically. We find certain (although not dramatic) effects of using
either coupling scheme on the spectral functions for a particular case of Sr2IrO4.

1.3. Single-band superexchange model
Written in the early 1960’s, the Hubbard model has proven itself to be a relatively simple
though effective way to get insight into strongly correlated materials. Despite its simplicity,
it is able to capture many of subtle and beautiful effects arising from electrons’ interactions
including insulating, magnetic, and even novel superconducting behavior. The (single-band
fermionic) Hubbard model is given by

HHubbard = −
∑

i,j 6=i,σ
tijσa

†
iσajσ + U

∑
i

ni↑ni↓ , (1.1)

where a†iσ denotes an operator creating an electron on site i carrying spin s = 1/2 with
projection sz = σ and niσ = a†iσaiσ is the on-site number of particles operator, tij is a hopping
element that can in principle be direction-dependent and U called “Hubbard U” is the energy
cost of double occupancy on a single site.

One of the fundamental features of the Hubbard model is that as the value of U increases,
the electronic eigenfunctions closer to the atomic representation of electronic states rather
than the non-interacting Bloch states. This fact expresses the so-called Mott-Hubbard or
metal-insulator transition. In the strong coupling limit, i.e. when U � t, one can treat the
hopping part of Hamiltonian 1.1 as a perturbation and in the second order of the perturbation
theory arrive at the t-J model, first derived by J. Spałek et al. [20, 104]:

Ht-J = −
∑
〈i,j〉,σ

(
tijσ (1− ni−σ) c†iσcjσ (1− nj−σ) + h.c.

)
+ J

∑
〈i,j〉

(
Si · Sj −

ninj
4

)
. (1.2)
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Chapter 1. Introduction

In the limiting case of a Mott-Hubbard insulator at half-filling, i.e. when the number of
particles per cite is conserved and is equal to one (for single-band case), the t-J model (1.2)
reduces to well-known antiferromagnetic Heisenberg model (also sometimes referred to as
Anderson superexchange Hamiltonian [103]):

HAFM = J
∑
〈i,j〉

Si · Sj . (1.3)

Here the exchange integral J = 4t2
U is positive (nearest neighbor hopping integrals tijσ =

ti′j′σ′ = t are all equal in the simplest case of a single orbital, no magnetic field or any other
induced translation symmetry breaking).
Let me briefly discuss the derivation of the superexchange model (1.3) from Hubbard

model (1.1) at half-filling by integrating out the double occupancies in the second order of
the perturbation theory in the strong U coupling limit. In Fig. 1.1 one of the virtual hopping
processes taken into account in the second order of the perturbation theory is shown. One
can see, that if the hopping process has amplitude t and an intermediate state costs energy
U , compared to the initial state, then for the half filling the effective Hamiltonian in second
order perturbation theory would be given by

〈m|Heff |n〉 =
∑
|k〉

〈m|Hkin|k〉〈k|Hkin|n〉
E0 − Ek

(1.4)

= − 1
U

∑
|k〉
〈m|Hkin|k〉〈k|Hkin|n〉,

where Hkin is the kinetic part of Hubbard model (1.1), |n〉 and |m〉 are initial and final states
(example shown in Fig. 1.1 on panels (a) and (c)), and |k〉 6= |m〉 is an intermediate state (for
example the one shown on the Fig. 1.1 (b)). Making use of∑

|k〉
|k〉〈k| =

∑
j

njσnj−σ , (1.5)

we get

Heff = − t
2

U

∑
i(j)σσ′σ′′

c†iσ′cjσ′njσnj−σc
†
jσ′′ciσ′′ . (1.6)

Taking into account the no double occupancy constraint

njσ + nj−σ = 1 , (1.7)

and summing over σ′, σ′′ one arrives at

Heff = 2t2

U

∑
〈ij〉σ

(
−niσnj−σ + c†i−σciσc

†
jσcj−σ

)
. (1.8)

To get the Heisenberg equation (1.3), one then needs to write the spin operators in the second
quantization form:

Szi = 1
2 (ni↑ − ni↓) , (1.9)

S+
i = c†i↑ci↓ , (1.10)

S−i = c†i↓ci↑ , (1.11)
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where the particle number operator ni = ni↑ + ni↓. By writing the following relations:

Szi S
z
j −

1
4ninj = (ni↑nj↓ + ni↓nj↑) ,

S+
i S
−
j + S−i S

+
j = c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓ ,

(1.12)

we can transform Eq. (1.8) into

Heff = 4t2

U

∑
〈ij〉

(
Szi S

z
j −

ninj
4 + 1

2
(
S+
i S
−
j + S−i S

+
i

))
, (1.13)

which at half filling (ni = nj = 1) and upon neglecting the constant is Heisenberg model (1.3).
The same way superexchange model for a multiorbital system can be derived by considering

virtual orbital-dependent exchange of electrons (i.e. hopping processes in the second order of
the perturbation theory) in the strong coupling limit, see section 1.4.
Note that formally two types of interactions are distinguished: direct exchange, which

originates from direct virtual hoppings from one magnetic ion to another, and superexchange,
which arises as a result of virtual hoppings via neighboring ligand atoms, for instance oxygens.

1.4. Superexchange for a system with an orbital degree of
freedom: iridates

To derive the superexchange model for multiorbital systems, we consider all possible virtual
hoppings between different orbitals dxy, dyz, dxz (which from now one we would refer to as
xy, yz, xz) of the t2g subshell starting from a multiorbital Hubbard band:

HHubbard =
∑

i,j 6=i,σεε′
tijεε′a

†
iσεajσε′ + U

∑
i,ε

niε↑niε↓ +
(
U − 5

2JH

) ∑
i,ε<ε′

niεniε′

+ JH
∑
i,ε<ε′

(
d†iε↑d

†
iε↓diε′↓diε′↑ + d†iε′↑d

†
iε′↓diε↓diε↑

)
− 2JH

∑
i,ε<ε′

Siε · Siε′ , (1.14)

where a creation operator a†iσε now has an orbital index ε, and the hopping elements tijεε′
can depend on the orbital degree of freedom of the initial and final state, and JH stands
for Hund’s exchange. We consider only spin-conserving hopping processes, hence we use
everywhere only one spin index σ. Superexchange model can be derived from a multiorbital
Hubbard model using the second order perturbation theory in a way similar to how t-J model
was derived from the single-band Hubbard model in section 1.3.

Since deriving the superexchange model requires a defined set of orbital-dependent hopping
parameters, in the following we focus on one particular case of quasi-two-dimensional square-
lattice multiorbital compounds – iridates and namely Sr2IrO4 (see Fig. 1.2).
Distrontium iridium(IV) oxide Sr2IrO4 was long considered to crystallize in a layered

perovskitelike structure with tetragonal I41/acd space group [24, 43, 55]. It was shown
experimentally already in 1990’s that due to the rotation of IrO6 octahedra around the
tetragonal c axis, the Ir-O-Ir bond forms 157◦ angle instead of 180◦ and the Ir-O bonding
length is larger than one-half of the tetragonal a axis [99]. However, recent single-crystal
neutron diffraction studies also observed additional nuclear Bragg peaks that violate this
space group [28, 126]. A symmetry lowering from the I41/acd to I41/a space group that
arises [108] from a staggered tetragonal distortion of the oxygen octahedra was revealed using
nonlinear optical harmonic generation (not shown on Fig. 1.2). In particular, the authors
of [108] have shown that c- and d-glide planes previously thought to exist in the I41/acd

7



Chapter 1. Introduction

Figure 1.2.: (a) The crystal structure of Sr2IrO4 with space group I41/acd. Each IrO6
octahedron is rotated by 11.8◦ around the c-axis. The iridium atoms of the
non-primitive unit cell are labeled 1,2,3,4. (b) The magnetic ordering of Jeff = 1/2
moments, also shown in the basal plane (c). Figure adopted from Ref. [126]

description are absent, which indicates that the tetragonal distortions of the oxygen octahedra
on the two sublattices are inequivalent.

In fact, there has been a long on-going discussion [15] that the octahedra rotations are to a
large extent responsible for the puzzling behavior of iridates since one of the defining features
of Sr2IrO4 and other Ir-based compounds is that the on-site spin-orbit interaction (SOI)
couples physical properties to the lattice degrees of freedom strongly [35, 110, 126]. The main
effect of the octahedra rotations for the polaronic kind of models which we discuss here would
be an asymmetrical renormalization of hopping parameters tijεε′ entering the multiorbital
Hubbard model (1.14), which has proved itself to be important as shown in chapter 3 and
chapter 4. In our model approach we do not account for the tetragonal distortion since it will
only renormalize the ground state moderately [46] and hence cannot significantly affect the
low-energy effective model presented in the following. It can however be taken into account
by using Clebsch-Gordan coefficients (CGC) adapted to a symmetry lower than spherical (for
a model discussed here CGC for a cubic and spherical point group symmetry coincide).
Taking into account that the overlap of wave functions between two iridium atoms along

z ‖ c-axis is greatly reduced due to the layer of Sr atoms separating the layers of iridium atoms
(see Fig. 1.2), Sr2IrO4 can be viewed as an effectively 2D material, where iridium ions in
corner-sharing oxygen octahedra are forming a square lattice. The electronic configuration of
Ir+4 atom is [Xe]4f145d5, i.e. there are five electrons in the valence d-shell. Strong tetragonal
crystal-field splitting present due to the octahedral environment splits those d levels into
lower t2g and higher eg subsets, i.e. one is effectively left with five electrons (or one hole) per
site in the lowest t2g configuration. Such a system with one hole per site is well described by
the multiorbital Hubbard model (1.14), where the orbital index ε is indicating whether the
hole is placed onto xy, yz or xz orbital.

In general, the hopping elements are orbital- and direction-dependent and can be defined
from either symmetric considerations or more elaborately by fitting the dispersion calculated
within a tight-binding model with corresponding hopping integrals to the band structure
obtained with, for example, density functional theory (DFT). Such an approach is advanta-
geous when a material-specific model is required – provided a sufficient number of parameters

8



1.4. Superexchange for a system with an orbital degree of freedom: iridates

Figure 1.3.: Symmetry of the hopping matrix element for cubic site symmetry: (a) overlap
between wave functions of different orbital flavors is zero provided that only
the hopping between the nearest neighbor transition metal ion and the oxygen
orbital is taken into account, (b) overlap between wave functions of xy character
is zero along z axis. Figure adopted from Ref. [40].

were used, one can effectively account for distortions, hybridization and other effects very
well. When particular structural distortions are not very important (for example, they are
known to not alter the physics of the effect in focus), one can keep the amount of parameters
small and define them from simple geometric considerations. Defining the hopping elements
from the comparison with DFT calculations is covered in section 3.3, and here we provide a
derivation from symmetricy considerations.
As seen in the cartoon 1.3, already simple geometrical considerations suggest that along

the z axis, for example, a significant overlap of the wave functions of xz with xz and yz with
yz orbitals would define the largest hopping parameter in the system, whereas overlap of xy
wave functions is quite small, and the hopping of the electron (hole in case of Sr2IrO4) with
xy orbital character along the z axis can be approximately set to zero. Of course, there still
can be an electron (hole) on the xy orbital in a virtual two-electron intermediate state, but
on an inactive orbital, i.e. it is not allowed to hop.
Virtual high-energy excitations determine the superexchange energy J and together with

spin correlations decide for a spectral weight of the upper Hubbard band at half-filling. In Fig.
1.4 as an example one of such possible virtual hopping processes is shown. Here a denotes
|yz〉 orbital, b – |xz〉 orbital and c – |xy〉 orbital. In a simple picture, hole with a particular
spin (here up) and orbital character (here xz) hops from site i to the next neighboring site j
and then back. Depending on the spin and orbital of hopping hole as well as those of the
hole already residing on the site j, such virtual charge excitations can lead to one of four
intermediate excited states [85]: high-spin 3T1 state at energy (U − 3JH) and three low-spin
states: 1T2 and 1E at energy (U − JH) and 1A1 state at energy (U + 2JH). In Fig. 1.4
the triplet 3T1 (|1, 1〉) is shown schematically, but please note that eigenfunctions of the d2

configuration describing the virtual hole excitation are in general more complicated and shall
be presented as linear combinations of different wave functions with certain orbital character.
For detailed discussion of functions of t2g see Refs. [1, 85]. Since double occupancy would cost
an energy U , hopping processes in the strong coupling limit are only happening “virtually”,
i.e. the intermediate state has a very short actual lifetime. Each of such virtual hopping
processes is described by the following Hamiltonian:

Ĥi = T †ijPjTij , (1.15)

where Tij describes the hopping of one electron, and Pj is a projection operator:

9
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i j

i j

i j

t

t

U-3JH

a

b

a

a

a

a

a

b

b

b

bb

a)

b)

c)

Figure 1.4.: Example of a virtual hopping process along z or y-axis creating 3T1 virtual charge
excitation (in particular, 3T1 1z, see [1]) in half filled Mott insulator: (a) initial,
(b) intermediate and (c) final states on two sites. Here a denotes yz orbital, b -
xz orbital and c - xy orbital.

Tij = c†j,a,↑ci,a,↑ + c†j,b,↑ci,b,↑ , (1.16)

Pj = |φj〉〈φj | , (1.17)

where |φj〉 is the wave function of the intermediate doubly occupied state, for the hopping
process considered here as an example |φj〉 = c†j,b,↑cj,a,↑ describes one of the 3T1 intermediate
states.
Note that this description employs none of the simplifications used in the effective one-

electron description. For a system consisting of two sites with one electron on each this is still
an exact expression derived from Hubbard model provided that the set of hopping elements
tijεε′ is extensive. For a crystal, a system of infinitely many sites, this is not exact anymore,
however still a very good approximation when short-range hopping elements are much larger
than long range ones, i.e. wave functions are rather localized. However, even for systems
with more extended wave functions this approach can give good agreement with experiment
if the set of hopping integrals is extended. For instance, it was suggested recently [2] that
Sr2IrO4 and iridates in general are negative charge transfer systems with large covalency
and interactions longer than first neighbor have to be taken into account – indeed as it
will be shown in chapters 2 – 3 we had to extend the set of hopping parameters as well as
superexchange parameters for Sr2IrO4 up to the third neighbor in order to capture all the
details observed experimentally.
The same way as before one can consider all possible hopping processes for a particular

system with one charge carrier per cite (for two and more electrons/holes Eqs. (1.15 –
1.17) shall be generalized.) For our system of interest, one hole in t2g shell, there are 15
intermediate virtual states: three triplets of 3T1 character, one triplet 1T2, two singlets 1E
and one singlet 1A1 [38] to be considered. After straightforward but tedious calculations,
including summing up all possible hopping processes, substituting c̃†iσ = (1− ni−σ) c†iσ which
takes care of projecting out the double occupancies and then introducing spin- and pseudospin-

10



1.5. On-site spin-orbit coupling

(i.e. orbital) operators (S and τ correspondingly) given by

S+
i = c̃†i↑c̃i↓ , (1.18)

S−i = c̃†i↓c̃i↑ , (1.19)

Szi = ñi↑ − ñi↓
2 (1.20)

and

τ+
i,‖c = c̃†i,ac̃i,b , (1.21)

τ−i,c = c̃†i,bc̃i,a , (1.22)

τ zi,c = ñi,a − ñi,b
2 , (1.23)

we obtain the superexchange spin-orbital model for an ideal perovskite structure of the t12g
configuration [85], which is also referred to as Kugel-Khomskii model ( [64]):

H = H1 +H2 +H3 , (1.24)

H1 = 1
2Jr1

(
Si · Sj + 3

4

)(
A

(γ)
ij −

1
2n

(γ)
ij

)
, (1.25)

H2 = 1
2Jr2

(
Si · Sj −

1
4

)(
A

(γ)
ij −

2
3B

(γ)
ij + 1

2n
(γ)
ij

)
,

H3 = 1
3Jr3

(
Si · Sj −

1
4

)
B

(γ)
ij .

Here orbital operators A(γ)
ij , B(γ)

ij describe the interactions between active orbitals along a
particular bond γ:

A
(γ)
ij = 2

(
τ i · τ j + 1

4ninj
)(γ)

, (1.26)

B
(γ)
ij = 2

(
τ i ⊗ τ j + 1

4ninj
)(γ)

,

n
(γ)
ij = n

(γ)
i + n

(γ)
j , (1.27)

τ i ⊗ τ j = τxi τ
x
j − τ

y
i τ

y
j + τ zi τ

z
j , (1.28)

and coefficients ri characterize the multiplet structure of excited states and depend solely on
the η = JH/U ratio between Hund’s coupling and Hubbard U :

r1 = 1
1− 3η , (1.29)

r2 = 1
1− η , (1.30)

r3 = 1
1 + 2η . (1.31)

1.5. On-site spin-orbit coupling
Strong Coulomb repulsion could localize the electrons of a partly filled d-shell of a transition
metal (TM) compound in Mott-Hubbard regime as discussed in section 1.3.

11
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If then the symmetry of the local surrounding of the atom is low enough to lift the orbital
degeneracy (i.e. the system is effectively single-band), it can be described by the single-band
Hubbard model and spin-only superexchange Hamiltonian (see section 1.3). However, often
the orbital degeneracy is present in a TM ion, and the orbitals can form a long-range ordered
pattern. In strongly correlated materials such an orbital ordering can be driven by exchange
or Jahn-Teller interactions, which is to be discussed in chapter 2. In these cases corresponding
superexchange model shall of course include both spin and orbital degrees of freedom.
Such superexchange spin-orbital models derived from the multiorbital Hubbard model

already introduce some entanglement between spin and orbital degrees of freedom, so the
latter cannot be treated independently anymore, however, both spin and orbital momenta are
still conserved and hence are good quantum numbers. This is however not the case anymore
when on-site spin-orbit coupling is present, where the total momentum J shall be considered
instead (for here on we will refer to j for a one-particle state and to J for a state with more
than one electron). On-site spin-orbit coupling Hamiltonian can be written as

HSOC = λ
∑
i

li · si , (1.32)

where for the case of one particle per site λ = ξi is the one particle spin-orbit coupling. In
the so called strong SOC regime, i.e. when λ� J (where J = 4t2/U is the Heisenberg spin
exchange defined in Eq.1.3), it is convenient to work in the basis of total j momentum, in
which the largest contribution to the total Hamiltonian of the system, i.e. the on-site SOC
Hamiltonian is diagonal.
For this reason we make a basis transformation from the basis set of t2g orbitals

t̂ = (|yz, ↑〉, |yz, ↓〉, |xz, ↑〉, |xz, ↓〉 , |xy, ↑〉, |xy, ↓〉) , (1.33)

which is connected to “l · s-basis” as

|lz = 0〉 = |xy〉, (1.34)

|lz = ±1〉 = − 1√
2

(±|yz〉+ i|xz〉)

into the j-basis (also called isospin or sometimes pseudospin in the literature, see e.g. [46])

ĵ =
(
|12 ,

1
2〉, |

1
2 ,
−1
2 〉, |

3
2 ,

3
2〉, |

3
2 ,

1
2〉, |

3
2 ,
−1
2 〉, |

3
2 ,
−3
2 〉
)
. (1.35)

Using tables with Clebsch-Gordan coefficients (see appendix B) or the high-weight decom-
position method (see section 5.2 for details) one can express this basis transformation as

ĵ =



0 − 1√
3 0 − i√

3 − 1√
3 0

− 1√
3 0 i√

3 0 0 1√
3

− 1√
2 0 − i√

2 0 0 0

0 − 1√
6 0 − i√

6

√
2
3 0

1√
6 0 − i√

6 0 0
√

2
3

0 1√
2 0 − i√

2 0 0


t̂ . (1.36)

Due to large on-site spin-orbit coupling, three t2g levels split into lower j = 3/2 quartet
and higher j = 1/2 doublet, which are then filled by five electrons present in the d-shell,
leaving one hole on the j = 1/2 doublet. Thus adding strong on-site SOC reduces the effective
low-energy model from three-band to j = 1/2 single-band problem. Such j = 1/2 state is
schematically shown in Fig. 1.5.
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1.6. Magnetic polarons

Figure 1.5.: Schematic picture of the isospin up state j = |1/2, 1/2〉 which is a superposition
of a spin up electron with lz = 0 (i.e. placed onto |xy〉 orbital) and spin down
electron with lz = 1 (i.e. with orbital character |yz〉 + i|xz〉). Figure adopted
from Ref. [46]

When projected onto spin-orbit coupled basis (1.36) the spin-orbital exchange Hamilto-
nian (1.24) in the lowest doublet takes the form

Hi,j = J1Si · Sj + J2 (Si · rij) (rij · Sj) , (1.37)

where Si is now the operator for isospin, i.e. effective total moment, rij is the unit vector
along ij bond, and J1(2) = 4

9ν1(2) where parameters ν1(2) governing isotropic (anisotropic)
couplings are defined as [46] ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4 with ri given
in Eq. (1.29). Assuming Hund’s coupling is relatively small and substituting JH = 0 in
Eq. (1.24) we see that J2 turns to zero too and Hamiltonian (1.37) reduced to the Heisenberg
model

Hi,j = J1Si · Sj . (1.38)

This unexpected reduction of multi-band Hubbard model to the simple Heisenberg model
in the strong on-site spin-orbit coupling limit was first demonstrated by G. Jackeli and G.
Khaliullin [46] on an example of square-lattice iridates and brought a lot of attention to the
latter, since it suggests that this class of materials can resemble famous cuprates not only
structurally (remember similarities between Sr2IrO4 and La2CuO4) but also on the level of
effective low-energy models.

1.6. Magnetic polarons
As was shown in section 1.4, a complicated Hamiltonian (1.24) describing superexchange in
Sr2IrO4 in the limit of strong spin-orbit coupling reduces to the simple Heisenberg Hamiltonian.
Later experiments have shown that the wave functions of iridium atoms are rather extended
and, in fact, one has to also include up to third neighbor interactions to the Heisenberg model
(see chapter 2 for detailed discussion), however, the key point is that the AF jeff = 1

2 ground
state of Sr2IrO4 can be described by an effective low-energy Heisenberg spin model. In such
a case any kind of excitation introduced into this ground state, be it a charge, or orbital, or
of any other nature, can be described by a model resembling the t-J model, which can then
be mapped on a polaronic model as done in Ref. [74] and then solved semianalytically. This
in few words covers what we will be doing in following chapters.
Throughout this thesis we construct magnetic polaronic models and solving them using

self-consistent Born approximation to address the effects we are interested in. Thus, we first
transform the low-energy effective model in focus (e.g. t-J model) into the polaronic language
by separating degrees of freedom (e.g. spinless fermions (holons) and spin-wave operators
(magnons)) and secondly we calculate the Green’s function of the excitation we are interested
in to get spectral function as its imaginary part. In this section we present main ideas of this
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Chapter 1. Introduction

approach mostly focusing on the simple case of “single-hole problem”, more elaborate cases
shall be discussed in chapters 2 through 4

The approach is in general analytical, which gives control and transparency to understand
certain phenomena, but consequently it also has its limitations. First of all, the presence of
polaronic physics in the system of interest is vital, i.e. the method is suitable for describing
an excitation introduced to the ground state of the system which then propagates interacting
with the low-energy bosonic excitations of the ground state. For example, in the famous
work by S. Schmitt-Rink et al. [97], a single hole introduced into an antiferromagnet gets
“dressed” by magnons while it propagates in the AF background. This being said, the ground
state has to be known in advance and introduced in the model by hand, the set of bosonic
excitations to be considered is also limited. Following original works [50, 74, 97] we use SCBA
to calculate the Green’s function of the excitation, in which bosons are assumed to be (i) not
renormalized back by the fermionic excitation and (ii) not interacting with each other (so
called non-crossing or rainbow approximation). We will discuss SCBA in some more details
in section 1.7.

However, notwithstanding all the limitations the method is very powerful since it provides
an almost exact solution of the one nontrivial limit of the 2D doped Hubbardlike problems,
so-called “single-hole problem”, which relates to the motion of a single charge added to the
AF and insulating ground state of the undoped 2D Hubbardlike model.

Consequently, polaronic approach being extended from simple toy model to realistic
representation can also describe many of the experiments on strongly correlated materials
that can in the first approximation be seen as a creation of some sort of excitation (charge,
spin, etc.) using for instance light or neutrons in the ground state of the material and then
measuring the energy and/or momenta of the outgoing light (or neutron) after the excitation
has relaxed. we will cover experimental applications in chapter 3 where, for instance, an
electron is kicked out in the photoemission process, in chapter 4 where an on-site occupation
is changed due to the bias shift in scanning tunneling spectroscopy and in chapter 2 where a
d-d excitation is created in resonant inelastic x-ray scattering (RIXS).

To start with, let me present the main idea of the magnetic polaronic approach on the
well-studied example of the t-J model following the derivation in Ref. [74]. Isotropic t-J
model was already given in Eq. (1.2):

Ht-J = −
∑
〈i,j〉,σ

(
tijσ (1− ni−σ) c†iσcjσ (1− nj−σ) + h.c.

)
+ J

∑
〈i,j〉

(
Si · Sj −

ninj
4

)
. (1.39)

This equation describes the motion of charge carriers (a single hole in the limiting case) in
the fluctuating AF background (provided J > 0). Let us consider first the t- part of the
Hamiltonian (1.39)

Ht = −t
∑
〈i,j〉,σ

[
(1− ni−σ) c†iσcjσ (1− nj−σ) + (1− nj−σ) c†jσciσ (1− ni−σ)

]
. (1.40)

It is more convenient to rewrite Eq. (1.40) so that the summation is taken over individual
neighbors rather than over bonds:

Ht = −t
∑

i,j(i),σ

[
(1− ni−σ) c†iσcjσ (1− nj−σ)

]
. (1.41)

Since we are considering the AF ground state, there exist two distinct magnetic sublattices.
To account for this, we divide the Hamiltonian into two parts, A and B sublattices (and this
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1.6. Magnetic polarons

is where the ground state of the system is implicitly included into the model):

Ht =− t
∑

i∈A,j(i),σ

[
(1− ni−σ) c†iσcjσ (1− nj−σ)

]
− t

∑
i∈B,j(i),σ

[
(1− ni−σ) c†iσcjσ (1− nj−σ)

]
. (1.42)

Next convenient step to make is to perform a rotation of the spins on the B “spin down”
sublattice by 180◦ so that we can effectively treat the system as a ferromagnet (all the AF
physics is however preserved):

cjσ → cj−σ . (1.43)
Applying spin rotation to Eq. (1.42) we get

Ht =− t
∑

i∈A,j(i),σ

[
(1− ni−σ) c†iσcj−σ (1− njσ)

]
− t

∑
i∈B,j(i),σ

[
(1− niσ) c†i−σcjσ (1− nj−σ)

]
, (1.44)

summing up A and B sublattices:

Ht = −t
∑

i,j(i),σ

[
(1− ni−σ) c†iσcj−σ (1− njσ)

]
. (1.45)

The separation of charge and spin degrees of freedom shall be now performed by means of
Holstein-Primakoff transformation, which for the case of spin Si = 1

2 reads

ci↑ = h†i , (1.46)

c†i↑ = hi ,

ci↓ = h†iai ,

c†i↓ = a†ihi ,

where h†i is a fermionic operator creating charge excitation (here, a hole), and boson a†i
accounts for the spin degree of freedom. In this notation the basic constraint of the t-J model,
namely, no double occupied configurations | ↑↓〉

(1− ni↓)c†i,↑| ↓〉 = 0 (1.47)

is automatically fulfilled. Therefore we can rewrite Hamiltonian (1.45) as

Ht = −t
∑
i,j(i)

[
c†iσcj−σ

]
, (1.48)

and then applying (1.46) to (1.48) we get

Ht = −t
∑
i,j(i)

[
hih
†
jaj + h.c.

]
. (1.49)

In similar way one gets the remaining part of Ht−J (for more details see [74]):

Ht-J = Ht +HJ −
Z

2 JN
(
s2 + 1

4

)
(1− δ)2 , (1.50)

Ht = −t
∑
i,j(i)

[
hih
†
jaj + h.c.

]
,

HJ = J

4
∑
i,j(i)

hih
†
i

(
aiaj + a†ia

†
j + a†iai + a†jaj

)
hjh

†
j .
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Here Z is the coordinate number which indicates the number of nearest neighbors: for a 1D
chain Z = 2 and for 2D square-lattice Z = 4, s = 1

2 is the absolute value of spin and N is the
total number of sites. Hole concentration δ in the limiting case of a single hole can be set to
zero so that (1− δ)2 = 1.
As one can see, Eq. (1.50) has linear part Ht describing hole motion and quadratic part
HJ depicting low-energy spin excitations. To treat the part HJ describing low-energy
bosonic interactions we employ mean-field approximation and replace hih

†
i =

(
1− h†ihi

)
by

(1− δ) = 1. Then the quadratic part can easily be diagonalized by means of Fourier and
Bogoliubov transformations. In second quantization formalism Fourier transformation asserts

a†k = 1√
N

∑
i

eikria†i ,

ak = 1√
N

∑
i

e−ikriai .
(1.51)

Reversed Fourier transformation then reads

a†i = 1√
N

∑
k
e−ikria†k ,

ai = 1√
N

∑
k
eikriak .

(1.52)

After application of Fourier transformation 1.52, quadratic part of Hamiltonian (1.50) HJ
becomes (for more details here and further see [77] and [74])

HJ = J

4N
∑

i,τ ,k1,k2

[
ei(k1+k2)ri+ik2τak1

ak2
+ e−i(k1+k2)ri−ik2τa†k1

a†k2

]
+

+ J

4N
∑

i,τ ,k1,k2

[
ei(k2−k1)ria†k1

ak2
+ ei(k2−k1)(ri+τ )a†k1

ak2

]
=J

4 (1− δ)2∑
τ

∑
k
e−ikτaka−k + eikτa†ka

†
−k + 2a†kak .

(1.53)

Here we used the identity
1
N

∑
i

e−i(k1−k2)ri = δk1k2 . (1.54)

Then, we apply Bogoliubov transformation

αk = ukak − vka
†
−k ,

α†−k = u−ka
†
−k − vkak ,

(1.55)

and get

HJ =
∑
q

ωqα
†
qαq + const , (1.56)

where spin-wave energy ωk = zsJνk and the Bogoliubov coherence factors are defined as

16



1.7. Self-consistent Born approximation

usually in linear spin wave theory:

uk =
√
cz + ωk

2ωk
,

vk = −sign (γk)
√
cz − ωk

2ωk
, (1.57)

νk =
√

1− γ2
k,

γk = 1
z

∑
τ

cosk · τ .

(1.58)

Now we apply the same transformation to the linear part Ht of Eq. (1.50). First, we perform
Fourier transformation (1.51) and after making use of (1.54) we get

Ht = − t√
N

∑
k,q

∑
τ

[
hk−qh

†
ka
†
−qcosk · τ + hk−qh

†
kaqcos (k− q) · τ

]
. (1.59)

Then we apply reversed Bogoliubov transformation

ak = ukαk + vkα
†
−k ,

a†−k = vkαk + ukα
†
−k

(1.60)

and get
Ht = − zt√

N

∑
k,q

M (k,q)h†khk−qαq + h.c. , (1.61)

where the vertex is defined as

M (k,q) =
(
γkvq + γk−quq

)
. (1.62)

Thus, we have obtained the t-J model in the form of polaronic Hamiltonian (1.56) – (1.61):

H = HJ +Ht, (1.63)

which describes the motion of a charge excitation (often referred to as holon) strongly coupled
to the bosonic spin-wave excitations.

1.7. Self-consistent Born approximation
Having obtained t-J model in the polaronic form, one can calculate the Green’s function of
the holon with momentum k and energy ω as

Gh(k, ω) = 〈0|hk
1

ω −H+ iδ
h†k|0〉 , (1.64)

where H is given by 1.63, the operator h†k denotes creation of the spinless fermion with
momentum k. The vacuum state |0〉 with respect to the spin-wave operators αq is the
quantum Néel state

|0〉 = exp(
∑

q

vq
uq
a†qa

†
−q)|N〉 , (1.65)

where |N〉 is the classical Néel state.
In the simple case of a t-J model, operator h†k creates a spinless hole (hence the name

holon), but depending on the problem it can also describe creation of a d-d excitation, an
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Figure 1.6.: Leading diagrams included within SCBA. The solid line represents holon propa-
gator, curvy line – bare propagator of the spin-wave excitation. The momentum
of holon and boson as well as the internal degree of freedom of the holon α,β are
given for each propagator, vertces Mαβ (k,q) describing the coupling between
holon and boson are also shown. Diagrams with crossing boson propagators and
double-magnon processes that would be described by four-particle vertex are not
considered within SCBA.

electron, or even some more complicated spinless excitation with an internal degree of freedom
– in this case Gh will take matrix form and the operator h†k would acquire an index α to
indicate corresponding degree of freedom

Ghαα(k, ω) = 〈0|hαk
1

ω −H+ iδ
h†αk|0〉 . (1.66)

Such an internal degree of freedom can account for example for a singlet/triplet character of a
two-hole charge excitation. This particular case of complicated charge excitation can be seen
in chapter 3, where we discuss application of the polaronic formalism to the photoemission
spectroscopy on iridates.

To calculate the Green’s function of the holon (1.66) we use self-consistent Born approxi-
mation. The SCBA is a well-established quasi-analytical method which, in the language of
Feynman diagrams, can be understood as a summation of all so-called noncrossing diagrams
of the polaronic model as shown in Fig. 1.6. It turns out that for spin polaronic models (as
e.g. those discussed here) this approximate method works very well: the contribution of the
diagrams with crossed bosonic propagators to the electronic Green’s function can be easily
neglected [70, 98, 107]. For more details on the method itself see the pioneering works [50,
74, 97].

The Green’s function( 1.66) is connected to the self-energy Σ (k, ω) via Dyson’s equation [72]

Ghαα (k, ω) = 1
ω − Eα − εααk − Σαα (k, ω) + iδ

,

Ghαβ (k, ω) = 1
εαβk − Σαβ (k, ω)

, (1.67)

where Eα is the energy onset of the holon in a state α, εαβk describes free propagation of a
holon (i.e. propagation without coupling to bosons). In the case of the classical t-J model a
holon has no internal degree of freedom, α = β = 1, and εk is simply the dispersion of a bare
holon. A small broadening δ is added to allow for numerical treatment of Eq. (1.67) poles,
analytically δ → 0. In practice, calculating Green’s function (1.67) amounts to calculating
the self-energy in iterative fashion

Σαβ (k, ω) = z2t2

N

∑
q

M2
αβ (k,q)

ω − ωq − εαβk − Σαβ (k− q, ω − ωq) + iδ
, (1.68)

assuming that for high enough energies ω0 there is no coupling to bosons, i.e. Σ (k, ω0) = 0. It
is therefore important to start the iterative summation from ω0, for which this approximation
holds well. This cutoff would depend on the problem but can be estimated well from the
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1.7. Self-consistent Born approximation

form of the polaronic Hamiltonian and the characteristic energy of the boson. Here q is the
momentum and ωq is the energy of the boson and vertex describing coupling between holon
and boson Mαβ (k,q) acquired matrix structure to account for the holon’s character.
Although the SCBA method is in principle an analytical method, the iterating SCBA

equations (1.67) – (1.68) have to be solved numerically, in order to obtain results which can be
compared with the experiment. Then the spectral function of a holon (or any other fermionic
excitation depending on the polaronic problem considered) can be obtained as

A (k, ω) = − 1
π

Tr (ImG (k, ω)) . (1.69)

By taking particular diagonal entries of imaginary oart of the Green’s function G (k, ω)
rather than the trace, one can calculate contribution of the qusiparticle h†αk with a particular
degree of freedom α to the total dispersion. For example, this is done in section 3.5 where
the holon has an internal multiplet structure and manifestation of different components of
the latter in the spectral function is studied. In cases where α indicates, for instance, spin or
orbital degree of freedom, it is possible to compare such theoretical spectral functions with
orbital- or spin- resolved measurements, for example, orbital- and spin-resolved ARPES.
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CHAPTER 2

Interplay of strong correlation, spin
orbit coupling and electron-phonon
interactions
and the effect of lattice degrees of freedom on
resonant inelastic x-ray scattering spectra of Sr2IrO4
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2.1. Preface

2.1. Preface

In this chapter we discuss the role of the electron-phonon coupling in the form of Jahn-
Teller effect in the strongly correlated materials with severe on-site spin-orbit coupling. In
section 2.2 we describe a quasiparticle recently probed in Sr2IrO4 by RIXS which can be seen
as an excitation from jeff = 1/2 doublet to jeff = 3/2 quartet. We discuss how a polaronic
Hamiltonian can be constructed that describes the propagation of this exciton and will show
that even if it is derived from a pure superexchange (SE) model, this polaronic model gives a
good agreement with the experiment [58, 59]. Then we show how electron-phonon interaction
can be taken into account in the model in order to address some discrepancies between
SE-based theory and experiment. First, we introduce general Jahn-Teller effect in section 2.3,
in particular for systems with strong on-site SOC. Then in section 2.4 we cover in detail the
derivation of the polaronic model describing the Jahn-Teller assistant motion of the spin-orbit
exciton and calculation of the spectral functions. We will also describe unique features arising
from this novel channel of exciton propagation and compare obtained theoretical spectra to
experiment [58, 59]. Main conclusions will be highlighted in section 2.5.

Part of this chapter is published as E. M. Plotnikova, M. Daghofer, J. van den Brink and
K. Wohlfeld, “Jahn-Teller effect in systems with strong on-site spin-orbit coupling”, in: Phys.
Rev. Lett. 116 (10 2016), p. 106401.

2.2. Spin-orbit exciton in Sr2IrO4 measured by RIXS

As we discussed in chapter 1, in the strong on-site spin-orbit coupling limit the multi-
band Hubbard model reduces to the simple Heisenberg model. Indeed, as it was shown in
Ref. [46], the magnon dispersion in Sr2IrO4 can be described by Heisenberg Hamiltonian (1.38).
Experimental evidence followed, although with some delay since large enough single crystals
of Sr2IrO4 are not easy to obtain. Moreover, inelastic neutron scattering, a commonly used
technique for measuring magnon dispersion (see. e.g. [22]) is difficult to apply in the case of
iridates due to the high neutron absorption cross section of iridium.

When jeff = 1/2 spin-orbital Mott state in Sr2IrO4 was observed experimentally [55] and
canted AF structure was confirmed by magnetic x-ray diffraction [55], magnon dispersion was
measured by resonant inelastic x-ray scattering (see Fig. 2.1) [58, 59], and shown indeed to
be well described by an antiferromagnetic Heisenberg model including up to third neighbor
interactions

H =
∑
〈ij〉

J1jijj +
∑
〈〈ij〉〉

J2jijj +
∑
〈〈〈ij〉〉〉

J3jijj , (2.1)

where ji is the total jeff momentum on the site i and the first- (second-, third-) neighbor
magnetic interactions are taken to be J1 = 60 meV, J2 = −20 meV, J3 = 15 meV to fit the
experimental curve for Sr2IrO4 [59], [58].
In Fig. 2.1, apart from magnon branch one can clearly see another dispersive feature at

higher energies. The energy scale of this excitation coincides with the well-known value of
the spin-orbit coupling constant for Sr2IrO4 (λ ≈ 0.5 eV) [54], and it was attributed to the
intra site excitation of a hole from the lower lying jeff = 1/2 doublet to one of the jeff = 3/2
quartet levels. In the literature such an excitation is often referred to as a spin-orbit exciton.

It was pointed out in Ref. [59] that the propagation of such a spin-orbit exciton created in
Sr2IrO4 during RIXS process can be well described by a corresponding polaronic model. It
was demonstrated that the problem of the exciton’s hopping process in iridates is formally
identical to the problem of hole motion in the AF ordered background of s = 1/2 moments:
a quasiparticle introduced into the quantum Heisenberg antiferromagnet – be it a hole or a
d-d excitation – would create a string of flipped spins as it propagates (see Fig.2.4 (a))
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Chapter 2. Interplay of strong correlation, SOC and electron-phonon interactions

A polaronic model describing propagation of the exciton in AF background can be obtained
by projecting the spin-orbit superexchange model (Eq. (1.24)) for Sr2IrO4 compound onto
the spin-orbit coupled basis (1.36) as we discussed in section 1.4. Instead of considering the
lowest doublet only as in Eq. (1.37), one would have to also include the terms describing
coupling between jeff = 1/2 doublet and jeff = 3/2 quartet.
Although some of the rigorous calculations briefly sketched above were omitted by the

authors of Refs. [59], [58] and simplified perturbation theory approach was used instead,
they arrived at the polaronic model of the spin-orbit exciton, where the operator h†kα from
Eq. (1.66) has acquired an index α indicating jzeff = 1/2, 3/2 character of the jeff = 3/2
spin-orbit exciton. The overall hopping matrix scales as 2t2/U , and the bare dispersion of
the exciton is renormalized by interaction with magnons just as in the classical t-J model.

As it was mentioned in section 1.3, iridates in general are negative charge transfer systems
with large covalency and interactions longer than first neighbor have to be taken into
account [2]. Indeed, to achieve a good fit to experiment, authors of Refs. [59], [58] needed to
introduce 2nd and 3rd neighbor interactions to the model. As can be seen in Fig. 2.1, the
spectral function calculated based on their model gave perfect agreement with the experiment
leaving out the small downwards dispersing peak at the Γ point. Thus they confirmed that
the exciton dynamics is essentially captured by the effective t-J model and dynamics of the

Figure 2.1.: Comparison between (a) RIXS spectra measured along high symmetry lines in
normal (left) and grazing (right) geometry and (b) SCBA calculations of the
higher energy feature (spin-orbit exciton) reproduced from Ref. [58].
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exciton in iridates resembles so remarkably well the dynamics of the hole in cuprates.
In the following we would like to address the nature of the downwards dispersing peak at

Γ point unidentified in Ref. [58] (see Fig. 2.1 and also Fig. 4 in Ref. [58] where this peak is
much more visible) as well as ask a fundamental question: is a complete ignorance of the
orbital-lattice coupling in iridates due the quenching of the orbital momenta for jeff = 1/2
justified? Although similarities between cuprates and iridates were discussed a lot including
also in chapter 1, the orbital phenomena which played considerable role in 3d compounds
were usually omitted from consideration in 5d systems since the orbital momentum in the
latter is quenched by SOC. In the following section we discuss the orbital phenomena such
as electron-phonon coupling in the form of Jahn-Teller interaction applied to Sr2IrO4. In
particular, we want to show that including Jahn-Teller interaction in the above-described
polaronic scheme can naturally explain the presence of the downwards dispersing feature at
the Γ point in Fig. 2.1.

2.3. Coupling to the lattice in systems with strong on-site
spin-orbit interaction

As described in chapter 1, in square-lattice Sr2IrO4 the t2g levels of the 5d shell are almost
filled, the single hole is subject to both strong SOC and appreciable correlations. The t2g
manifold can be described as an effective angular momentum leff = 1 and SOC locally couples
spin s and l to the total angular momentum j. The threefold orbital degeneracy of the t2g
states is thus lifted by SOC and on-site Hubbard interaction can subsequently open a charge
gap and stabilize a localized (pseudo)spin jeff = 1/2 [46, 54]. Due to the orbital part of
the jeff = 1/2 wave function, couplings between these effective spins are sensitive to lattice
geometry and support a variety of quantum states.
A striking difference to 3d systems with negligible [85] SOC is the lifting of the orbital

degeneracy: a single hole (or electron) in a 3d shell has an orbital degree of freedom in
addition to spin – as opposed to the single jeff = 1/2 degree of freedom of the 5d hole. Such
systems where orbital degeneracy is present then tend to lower their energy by forming
long-range orbital pattern. In strong correlated materials such orbital ordering can be driven
by exchange or Jahn-Teller interactions, and the latter we would like to discuss in this chapter.
According to Jahn-Teller theorem, any system (except some linear molecules) with a

non-Kramers-degenerate electronic ground state is unstable with respect to distortions which
lower the symmetry of the configuration. The entire range of effects resulting from orbital
ground state degeneracy are referred to as Jahn-Teller effect, see [64] for extensive discussion
on Jahn-Teller effect in TM compounds. In Fig 2.2(a) three sites of a 2D square-lattice
of TM ions each in an octahedral oxygen cage are shown schematically – as one can see,
neither of the two orbitals is beneficial for an electron to occupy, the system will therefore
seek an opportunity to lower its energy by undergoing a structural deformation which lifts
this twofold orbital degeneracy. And this is precisely what is shown in Fig. 2.2(b) – as the
lattice has undergone cooperative distortion, the oxygens have been displaced and now one or
another orbital is lower in energy on a site with a particular distortion – the system exhibits
an orbital ordering.

Of course, for a two-fold degenerate system there exist two distinct ways in which a lattice
can accommodate the distortion (see Fig. 2.3), so that the twofold degeneracy in the system
is in general preserved but now for the new electronic-vibrational (vibron) states rather than
for the electronic ground states. In other words, although the orbital degeneracy is now lifted,
the phonon modes associated with the crystal deformation are degenerate too. Depending on
the probability of thermal and quantum transitions between the two minima associated with
the degenerate vibron states, one distinguishes a dynamic and a static Jahn-Teller effect. The
dynamic Jahn-Teller effect takes place if the probability is high and the system fluctuates from
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?

(a) (b) (c) (d)

Figure 2.2.: Cartoon picture showing the Jahn-Teller effect in systems without and with
strong SOC: (a) Weak SOC – orbitally degenerate ground state of the system:
electrons occupying dxz and dyz orbital have the same energy. (b) Weak SOC –
oxygen displacements following “conventional” Jahn-Teller effect for the ground
state with e.g. the dxz/dyz alternating orbital order. (c) Strong SOC – no
oxygen displacements due to the quenched Jahn-Teller effect for the ground
state with e.g. |jeff = 1/2, jz = 1/2〉/|jeff = 1/2, jz = −1/2〉 alternating spin-
orbital order (antiferromagnetic order of jeff = 1/2 isospins). (d) Strong SOC –
oxygen displacements around the |jeff = 3/2, jz = −3/2〉 exciton (which ‘lives’
in the antiferromagnetic jeff = 1/2 ground state) showing that such a system is
Jahn-Teller active.

one energy minimum to another, hence remaining on average spherically symmetric. In the
static Jahn-Teller effect transitions are happening very slowly, therefore the system remains
“frozen” in one of the two states, and the cooperative lattice distortion can be measured with
e.g. x-ray diffraction.

So indeed, a 3d system can not only feature an orbital order in addition to the magnetism,
but Jahn-Teller effect would moreover be expected to couple the orbital degree of freedom to
the lattice [49, 64, 81, 82]. In contrast, in 5d systems the quenching of the orbital degree of
freedom by SOC seemingly removes the possibility of orbital order and would at first sight
also appear to suppress the Jahn-Teller effect and coupling to the lattice. In the next section,
we are nevertheless going to discuss the impact of Jahn-Teller effect on 5d systems with strong
SOC: while it is indeed absent for the ground state consisting of jeff = 1/2 pseudospins, see
Fig. 2.2(c), we are going to show that it leaves clear signatures in the dynamics of collective
excitations into the jeff = 3/2 sector (i.e. excitons). As seen in Fig. 2.2(d), the Jahn-Teller
effect is here not quenched and can allow for a novel type of excitonic propagation. In
particular, we propose that the experimentally observed branch of the exciton dispersion
with the minimum at the Γ point [58], which can not be explained using superexchange alone,
finds a natural explanation within the present Jahn-Teller model. Since the Jahn-Teller effect
discussed here would only take place due to the degeneracy of the excited electronic state it
would be of a local character, i.e. it would cause a local distortion of the lattice that supports
propagation of the exciton.
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EJT

E

x

Figure 2.3.: A cartoon picture showing the energy dependence on the lattice deformation x
for a twofold degenerate systems. Here EJT indicates the energy lowering due to
the Jahn-Teller effect.

2.4. Jahn-Teller assistant propagation of the spin-orbit exciton

Since the SOC constant λ > 0 is assumed to be the largest energy scale involved, with
λ = 0.382 eV in Sr2IrO4 [58], we start our analysis by diagonalizing this dominant term. This
is achieved by a basis change from s (the s = 1/2 spin) and l (the effective leff = 1 orbital
moment) to total angular momentum j = l + s. For a single hole in the t2g shell, SOC
interaction (1.32) becomes then

HSOC = λ/2
∑
i

(j2
j − s2

j − l2j ), (2.2)

and the ground state is given by the doubly-degenerate jeff = 1/2 manifold, while the
jeff = 3/2 manifold forms the excited states at energy 3λ/2. (A crystal-field splitting ∆ can
explicitly be included into this analysis [46, 53], but is omitted here for clarity).

For t2g electrons, the orbital operators l couple both to the tetragonal phonon modes Q2
and Q3 (the eg modes) and to the trigonal phonon modes Q4, Q5, and Q6 (the t2g modes).
After integrating out the phonons, the Jahn-Teller interaction is expressed in terms of l [64]:

HJT = V
∑
〈i,j〉

[(
lzi
)2 − 2

3

] [(
lzj
)2 − 2

3

]
+ V

∑
〈i,j〉

[(
lxi
)2 − (lyi )2] [(lxj )2 − (lyj )2]

+ κV
∑
〈i,j〉

[(
lxi l

y
i + lyi l

x
i
)

(lxj l
y
j + lyj l

x
j ) + ...

]
. (2.3)

The two classes of phonon modes lead to two a priori independent Jahn-Teller coupling
constants Veg ≡ V and Vt2g ≡ κV , i.e. V describes the Jahn-Teller interaction due to the
coupling to the tetragonal modes, while κV stands for the coupling between the trigonal
modes. As Vt2g is typically much smaller than Veg , we set κ = 0.1. The Jahn-Teller interaction
scale V can from experiment [37] be inferred to be non-negligible, but as its strength is at
present unclear, we leave it as a free parameter.
The jeff = 3/2 excitation, an exciton, that can be created in resonant inelastic x-ray
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scattering is described by the Green’s function

G(k, ω) = Tr〈0|χ̂k
1

ω −H + iδ
χ̂†k|0〉, (2.4)

where the χ̂†k is a vector of four creation operators that create an exciton with momentum k
and isospin quantum number jz = ±1/2,±3/2. The Hamiltonian H describes the dynamics
of the exciton coupling to a background of jeff = 1/2 isospins, a minimal Hamiltonian is

H = Hmag
SE +Hexc

SE +Hexc
JT . (2.5)

The first term Hmag
SE is the superexchange interaction between jeff = 1/2 isospins, given by

Eq. (2.1) where we include up to third-neighbor processes ∝ {J1, J2, J3} as discussed in
sections 2.2 and 2.3. The terms Hexc

SE and Hexc
JT = HJT(3/2, 1/2) describe superexchange and

Jahn-Teller interaction between one jeff = 1/2 and one jeff = 3/2 site, these terms allow the
exciton to move.
Without the Jahn-Teller-mediated motion, i.e. for H = Hmag

SE + Hexc
SE , the problem is

analogous to the one discussed in Refs. [58, 59] (see section 2.3). Exciton propagation due to
superexchange is analogous to the mechanism governing orbital excitations in cuprates [96,
120] and is strongly coupled to the magnonlike jeff = 1/2 excitations. We are going to
show here that the Jahn-Teller coupling HJT(3/2, 1/2) provides an additional channel for
delocalization whose signatures can be clearly distinguished from the pure superexchange
scenario.
Following Refs. [58, 59], we extend a scheme that was widely used to describe motion in

an antiferromagnetic background (see chapter 1 and [6, 50, 74, 119]) in order to include
Jahn-Teller-mediated exciton motion.

2.4.1. Derivation of the model
Firstly, since we are interested here in the effective interaction between the j = l+s spin-orbital
angular momenta (as induced by the Jahn-Teller effect), we rewrite the above Jahn-Teller
Hamiltonian in the basis spanned by eigenvectors of j2 and jz (the j-basis). For this reason,
we make a basis transformation from the “l · s”-basis (with the effective leff = 1 and s = 1/2)

Â = (|yz, ↑〉, |yz, ↓〉, |xz, ↑〉, |xz, ↓〉, |xy, ↑〉, |xy, ↓〉) , (2.6)

in which the above Jahn-Teller Hamiltonian is written into the j-basis (with the effective
jeff = 1/2 or jeff = 3/2 and appropriate jz quantum numbers)

ĵ =
(
|12 ,

1
2〉, |

1
2 ,
−1
2 〉, |

3
2 ,

3
2〉, |

3
2 ,

1
2〉, |

3
2 ,
−1
2 〉, |

3
2 ,
−3
2 〉
)
. (2.7)

using the Clebsch-Gordon coefficients as written in Eq. (1.36). As a result we obtain the
Jahn-Teller Hamiltonian which a priori consists of three distinct terms:

HJT = HJT(1/2, 1/2) +HJT(3/2, 1/2) +HJT(3/2, 3/2). (2.8)

The first term HJT(1/2, 1/2) denotes the Jahn-Teller interaction between two jeff = 1/2 states
– it vanishes as expected, reflecting the quenching of orbital physics within the jeff = 1/2
subshell. The last term HJT(3/2, 3/2) between two jeff = 3/2 states can only contribute if
a large number of jeff = 3/2 states are present and is thus strongly suppressed at large λ.
The term HJT(3/2, 1/2) describes the interaction between one jeff = 1/2 and one jeff = 3/2
site: Even at strong SOC, this term becomes relevant when an (iso)orbital excitation raises a
single hole into a jeff = 3/2 state [58, 59].

HJT(3/2, 1/2) ≡ Hexc
JT = H1 +H2 +H3, (2.9)
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where

H1 = 2V
9
∑
〈i,j〉

(
c†i↑ai↑a

†
j↑cj↑ + c†i↓ai↓a

†
j↓cj↓ + h.c.

)
− 2V

9
∑
〈i,j〉

(
c†i↓ai↓a

†
j↑cj↑ + c†i↑ai↑a

†
j↓cj↓ + h.c.

)
+ κV

∑
〈i,j〉

(
c†i↑ai↓a

†
j↓cj↑ + c†i↓ai↑a

†
j↑cj↓ + h.c.

)
, (2.10)

H2 = κV

3
∑
〈i,j〉

(
f †i↑ai↑a

†
j↑fj↑ + f †i↓ai↓a

†
j↓fj↓ + h.c.

)

+ 2V (1 + κ)
3

∑
〈i,j〉

(
f †i↓ai↑a

†
j↑fj↓ + f †i↑ai↓a

†
j↓fj↑ + h.c.

)

+ 2V (κ− 1)
3

∑
〈i,j〉

(
f †i↓ai↑a

†
j↓fj↑ + f †i↑ai↓a

†
j↑fj↓ + h.c.

)
, (2.11)

H3 = −κV√
3
∑
〈i,j〉

(
f †i↑ai↑a

†
j↓cj↑ + c†i↑ai↓a

†
j↑fj↑ + h.c.

)
− κV√

3
∑
〈i,j〉

(
c†i↓ai↑a

†
j↓fj↓ + f †i↓ai↓a

†
j↑cj↓ + h.c.

)
. (2.12)

Here a†iσ denotes an operator creating a hole on site i in the doublet carrying effective total
momentum jeff = 1/2 and σ ≡ jz = ±1/2, while c†iσ (f †iσ) are operators creating a hole on
site i in the jeff = 3/2 quartet with σ ≡ jz = ±1/2,±1/2.
Secondly, we map the above Hamiltonian HexcJT onto a polaronic model. We follow an

algorithm described in section 1.6 and perform the transformations:
(i) Since we assume that the ground state has antiferromagnetic order, we are allowed to

rotate all isospins on one of the two antiferromagnetic sublattices:

ajσ → aj−σ cjσ → cj−σ fjσ → fj−σ. (2.13)

(ii) We introduce the magnon creation α†i and spin-orbit exciton creation χ†i,α operators
(which are bosons and hard-core bosons, respectively). We perform the Holstein-Primakoff
transformation and substitute:

c†i↑bi↑ → χ†iB, c
†
i↓bi↑ → χ†iC, (2.14)

c†i↑bi↓ → χ†iBαi, c
†
i↓bi↓ → χ†iCαi , (2.15)

b†i↑ci↑ → χiB, b
†
i↑ci↓ → χiC, (2.16)

b†i↓ci↑ → α†iχiB, b
†
i↓ci↓ → α†iχiC (2.17)

and

f †i↑bi↑ → χ†iD, f
†
i↓bi↑ → χ†iF, (2.18)

f †i↑bi↓ → χ†iDαi , f
†
i↓bi↓ → χ†iFαi , (2.19)

b†i↑fi↑ → χiD, b
†
i↑fi↓ → χiF, (2.20)

b†i↓fi↑ → α†iχiD, b
†
i↓fi↓ → α†iχiF. (2.21)

Here B, C, D, F denote jz = 1/2, jz = −1/2, jz = 3/2, jz = −3/2 quantum numbers,
respectively.

29



Chapter 2. Interplay of strong correlation, SOC and electron-phonon interactions

(iii) We perform the Fourier and Bogolyubov transformations (see e.g. Ref. [74])

aq = uqαq − vqα
†
−q,

a†-q = u-qα
†
-q − vqαq,

(2.22)

where the magnon energy ωq =
√
A2

q −B2
q and Bogolyubov coefficients uq, vq are given by

the usual expressions in the linear spin-wave theory:

uq = 1√
2

√
Aq
ωq

+ 1, vq = −sign(Bq)√
2

√
Aq
ωq
− 1, (2.23)

where the coefficients Aq and Bq are defined in a usual way, see e.g. Eq. (8) in the
Supplementary Material of Ref. [58]:

Aq = 2(J1 − J2 − J3 + J2 cos qx cos qy) + J3(cos 2qx + cos 2qy), (2.24)
Bq = J1(cos qx + cos qy). (2.25)

Here we neglected terms comprising two magnon operators, since it was shown that coupling
to two magnons does not significantly change the polaronic spectrum (see for example Ref. [6]).
After applying the above transformations to Hamiltonian (2.9) we arrive at the following

polaronic Hamiltonian for the propagation of the jeff = 3/2 spin-orbit exciton:

Hexc
JT =

∑
k,q

[M̂JT
k,qχ̂

†
kχ̂k −qaq + h.c.] +

∑
k
ÊJT

k χ̂†kχ̂k (2.26)

with the momentum-dependent vertices

M̂JT
k,q = zV m̂JT · |γkvq + γk−quq|/

√
N, (2.27)

ÊJT
k = zV êJT · |γk| ,

where N is the total number of sites, z = 4 is the coordination number for a square lattice,
and

γq = 1
2
∑

r
cos q · r (2.28)

and the diagonal (off-diagonal) matrix m̂JT (êJT) describing the polaronic (free) hopping
reads

m̂JT = 1
3


1
3 + κ

2 0 0 0
0 1

3 + κ
2 0 0

0 0 1 + κ
2 0

0 0 0 1 + κ
2

 (2.29)

(2.30)

and

êJT = 2
3


0 −1

3 −
√

3κ
2 0

−1
3 0 0 −

√
3κ
2

−
√

3κ
2 0 0 −1 + κ

0 −
√

3κ
2 −1 + κ 0

 , (2.31)

which act on the row of kets of the excited states

X = (|jz = 1/2〉, |jz = −1/2〉, |jz = 3/2〉, |jz = −3/2〉) (2.32)
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(a) (b)

Figure 2.4.: Spin-orbit exciton with both superexchange and Jahn-Teller interaction, see
(2.33) - (2.35) calculated using the SCBA. Intensities are given for two RIXS
geometries: (a) normal and (b) grazing incidence [58]. ‘A’, ‘B’, ‘C’ in panel (a)
denote three main features of the spectrum. Jahn-Teller interaction V = 0.8 J1
and broadening δ = 0.05 J1. Superexchange parameters J2 = −0.33 J1, J3 =
0.25 J1, W1 = 0.5 J1 [58], and W2 = W3 = 0. Following Ref. [58], the on-site
energy of the exciton is 10J1 ≈ 3

2λ, crystal-field splitting between |jz| = 1/2 and
|jz| = 3/2 states is 2.29 J1, and J1 = 0.06 eV.

with jeff = 3/2.
Then Hamiltonian (2.5) would comprise

Hmag
SE =

∑
k
ωka

†
kak, (2.33)

Hexc
SE +Hexc

JT =
∑

k
(ÊSE

k + ÊJT
k )χ̂†kχ̂k (2.34)

+
∑
k,q

[
(M̂SE

k,q + M̂JT
k,q)χ̂†kχ̂k−qaq + h.c.

]
. (2.35)

Equation (2.33) describes the isospin ‘magnons’ originating from Hmag
SE (see section 1.6

for detailed derivation), a†k creates a magnon with momentum k and energy ωk. A free
exciton hopping is included in Eq. (2.34), it can either be due to second- and third-neighbor
superexchange [58], or originate from coupling to the lattice. It will actually turn out that the
crucial new feature will come from the free dispersion ÊJT

k , where the Jahn-Teller effect induces
a nearest-neighbor contribution absent from superexchange. Finally, Eq. (2.35) captures
the coupling between exciton hopping and the isospin background: Both Jahn-Teller effect
and superexchange can allow the exciton to exchange place with a nearest-neighbor isospin
without flipping said isospin. This creates ‘faults’ in the alternating order, see Fig. 2.6(a),
and thus creates or annihilates magnons.

2.4.2. Manifestation of SE and JT interactions in the excitonic spectral
function

We evaluate the Green’s function Eq. (2.4) using the self-consistent Born approximation
(see section 1.6 for detailed discussion of the method). The excitonic spectral functions are

31



Chapter 2. Interplay of strong correlation, SOC and electron-phonon interactions

(a) Jahn-Teller (b) Jahn-Teller,
ÊJT

k ≡ 0

(c) Superexchange (d) Superexchange,
ÊSE

k ≡ 0

Figure 2.5.: Spin-orbit exciton spectra with propagation driven by either superexchange
or Jahn-Teller interaction [calculated using SCBA, see text]: (a) Jahn-Teller
only, (b) Jahn-Teller only and setting ÊJT

k ≡ 0, (c) superexchange only, (d)
superexchange only and setting ÊSE

k ≡ 0. For clarity, parameters are chosen
slightly different from those used in Fig. 2.4: J2 = −0.33 J1, J3 = 0.25 J1,
W1 = 0.5 J1, W2 = W3 = 0.13 J1 [58], Jahn-Teller interaction V = J1 and
broadening δ = 0.05 J1. Spectra are offset by the exciton energy of 10J1 ≈ 3

2λ.
Dotted lines in (a) and (c) follow the free dispersion relations given by ÊJT

k and
ÊSE

k , respectively.

calculated numerically for a 32× 32 cluster, taking into account ‘matrix elements’ depending
on the angle of the incident beam [58], and shown in Fig. 2.4. The most striking difference to
the pure superexchange scenario becomes visible in the so-called ‘normal’ RIXS geometry
[cf. Fig. 2.4(a)]: a dispersive feature at around 0.4 eV (denoted as A in the figure) that has
its minimal energy at k = (0, 0) and disperses upward towards the zone boundary, where it
merges with the B feature.

Similar unexplained feature with a minimum at the Γ point was observed in normal-incidence
RIXS experiments on Sr2IrO4 [58], albeit with a weaker intensity. This discrepancy may be
due to (i) contributions to the RIXS intensity of the exciton beyond the one determined in
the fast core-hole approximation [4, 48] or (ii) the SCBA over-emphasizing the quasiparticle
spectral weight [58]. Some fine-tuning of the unknown constant V is needed to reproduce
the experimental dispersion, especially the merging with the B feature, see the appendix
A for details. It is here worth noting that a similar peak was also seen in Na2IrO3 [36],
where it does not merge with the higher-energy features, suggesting that the merging may
be a detail specific to Sr2IrO4. In contrast and as discussed below, the minimum at the Γ
point is a robust and characteristic feature of Jahn-Teller-mediated propagation, because
superexchange-driven peaks invariably have a maximum at the Γ point.
Figure 2.5 illustrates the qualitative difference between Jahn-Teller and superexchange
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mediated exciton propagation, with panels (a) and (c) showing the purely Jahn-Teller
(Hexc

SE ≡ 0) and purely superexchange (Hexc
JT ≡ 0) scenarios. A striking difference is that the

two quasi-particlelike branches of the superexchange case (c) become four in the Jahn-Teller
case (a) – one of which has indeed a minimum at the Γ point. We continue the analysis by
noting that both mechanisms allow in principle for a ‘free’ dispersion without disturbing the
alternating isospin order, see Eq. (2.34), as well as for a ‘polaronic’ propagation involving
magnons, see Eq. (2.35). Panels (b) and (d) include only the latter and reveal that the two
mechanisms are then almost indistinguishable. This points to a dominant role for isospin
fluctuations (on the scale of J in both scenarios) in the ‘polaronic’ part of exciton motion.

This brings us to the following question: is the difference between the free dispersion relation
in the superexchange and in the Jahn-Teller generic or it is just a matter of fine-tuning of
the parameters? It turns out that the difference between these two dispersion relations is
of fundamental nature. The crucial aspect concerns the nearest-neighbor process, which is
therefore depicted for superexchange and Jahn-Teller effect in Fig. 2.6. In superexchange,
the exciton propagates by exchanging place with an isospin while both conserve their ‘spin’,
i.e. their jz quantum number. In an alternating isospin order, where nearest neighbors are
always of opposite jz, this necessarily creates or removes ‘defects’, see Fig. 2.6(a), and thus
magnons. The Jahn-Teller effect, in contrast, allows the exciton and the isospin to flip their
quantum numbers while exchanging places and this allows for the nearest neighbor hopping
of an exciton without creating magnons, i.e., a free excitonic dispersion. The origin of the
difference is that the hole hopping driving superexchange conserves the jz quantum number,
while the lattice-mediated Jahn-Teller effect is insensitive to the orbital phase. This allows jz
to change during Jahn-Teller-driven propagation and accordingly yields four quasi-particles
rather than two.

2.5. Conclusions
To summarize, we have analyzed the impact of a lattice-mediated Jahn-Teller effect in the
presence of strong SOC, which quenches the orbital degeneracy in the ground state. We
found that the Jahn-Teller effect remains present for excited states, and in particular allows
for a free nearest-neighbor hopping of the spin-orbit exciton without producing defects in
the alternating jeff = 1/2 ordering of the ground state. The tell-tale spectral signature is a
dispersion with a minimum at the Γ point, which was observed in experiment but cannot be
explained with superexchange alone [58].
Experiments on Sr2IrO4 at higher temperatures moreover reveal an active orbital degree

of freedom and its coupling to the lattice [37], corroborating the relevance of Jahn-Teller
physics when going beyond the ground state.

We have found spin-orbit coupling to substantially affect the interplay of Jahn-Teller effect
and superexchange. In 3d compounds with weak spin-orbit coupling and unquenched orbital
degeneracy (e.g. in manganites [32, 33]) both act on the same microscopic degree of freedom
(i.e. orbitals) and in general lead to similar signatures.

In the strongly spin-orbit-coupled 5d case, however, Jahn-Teller effect (determined purely
by the orbital) and superexchange (strongly affected by spin-orbit entanglement) address
different microscopic degrees of freedom. Their interplay is thus far more intricate, as is
coupling between ions with and without strong spin-orbit coupling [13].
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(a)

(b)

Figure 2.6.: Cartoon showing the two types of nearest neighbor hopping of a jeff = 3/2 exciton
in the antiferromagnetically-ordered background: (a) Polaronic hopping (due to
Jahn-Teller effect or superexchange): a jeff = 3/2 exciton with the jz = −3/2
quantum number (left panel) does not change its jz quantum number during the
hopping process to the nearest neighbor sites (middle and right panels) and thus
the jeff = 1/2 magnons are created at each step of the excitonic hopping (wiggle
lines on middle and right panels). (b) Free hopping (solely due to Jahn-Teller
effect): a jeff = 3/2 exciton with the jz = −3/2 quantum number (left panel)
hops to the nearest neighbor site and acquires jz = 3/2 quantum number (middle
panel). Note that in this case the jeff = 1/2 magnons are not created in the
system (middle and right panels).
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CHAPTER 3

Correlation induced electron-hole
asymmetry in quasi-2D iridates
and its manifestation in (inverse-)photoemission
spectra
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3.1. Preface

3.1. Preface

The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional
iridates Ba2IrO4 and Sr2IrO4 to La2CuO4 points at an analogy to cuprate high-Tc super-
conductors, even if spin-orbit coupling is very strong in iridates. The first step towards
understanding the physics of the doped compound is to study the motion of a single charge
carrier introduced to the compound. Here we examine the analogy between cuprates and
iridates for the motion of an elementary charge (hole or electron) added to the antiferro-
magnetic ground state. First we give a short overview of current progress in the search for
possible high-temperature superconductivity in iridates and discuss the motivation behind
this work in section 3.2. Then in section 3.3 we derive the low-energy effective model for
a single charge carrier doped into the ground state of Sr2IrO4, discussing the case of an
electron in section 3.3.1 and a hole in section 3.3.3. As pointed out in section 1.4, hopping
elements entering such a low-energy model are orbital- and direction-dependent and can be
defined from either symmetric considerations (see section 1.4) or from ab-initio calculations.
In section 3.3.2 we discuss how the the dispersion calculated within a tight-binding model
with corresponding hopping integrals is fitted to the band structure calculated within DFT.

In section 3.3 we show that correlation effects render the hole and electron case in iridates
very different. An added electron forms a spin-polaron, similar to the cuprates, but the
situation of a removed electron is far more complex, since in this case many-body 5d4

configurations form. They can then be in a singlet or triplet state depending on the total
angular momentum which strongly affects the hole motion. In section 3.4 we show how the
theoretical spectra are calculated using models developed in section 3.3 and then in section 3.5
we discuss the ramifications of the hole and electron asymmetry for the interpretation of
(inverse-)photoemission experiments. At the end of the chapter we will highlight main
conclusions in section 3.6.

Part of this chapter is published as E. M. Pärschke, K. Wohlfeld, K. Foyevtsova and J. van
den Brink, “Correlation induced electron-hole asymmetry in quasi-two-dimensional iridates”,
in: Nat. Commun. 8 (686 2017)

3.2. Introduction

It is a well-known fact that the quasi-two-dimensional copper oxides turn into non-BCS
superconductors when a sufficient amount of extra charge is introduced into their Mott
insulating ground state [44]. Based on the similarities between cuprates and iridates (discussed
in detail in chapter 1) it is natural to ask the question [111] whether the quasi-two-dimensional
iridates can also become superconducting upon charge doping. On the experimental side, very
recently signatures of Fermi arcs and the pseudogap physics were found in the electron- and
hole-doped iridates [16, 60, 61, 124] on top of the d-wave gap in the electron-doped iridate [61].
On the theoretical side, this requires studying a doped multiorbital two-dimensional Hubbard
model supplemented by the non-negligible spin-orbit coupling [17, 39, 76, 112, 115–117]. The
latter is a difficult task, since even a far simpler version of this correlated model (the one-band
Hubbard model) is not easily solvable on large, thermodynamically relevant, clusters [73].
Fortunately, there exists one nontrivial limit of the two-dimensional doped Hubbardlike

problems, whose solution can be obtained in a relatively exact manner. It is the so-called
single-hole problem which relates to the motion of a single charge (hole or doublon) added to
the AF and insulating ground state of the undoped two-dimensional Hubbardlike model [50,
97]. In the strong coupling limit at half-filling this problem reduces down to solving a t-J
model which was discussed in detail in chapter 1 and in particular in sections 1.6 – 1.7. In the
case of the cuprates, this problem has been intensively studied both on the theoretical as well
as the experimental side and its solution (the formation of the spin polaron) is considered
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Chapter 3. Correlation induced electron-hole asymmetry in quasi-2D iridates

a first step in understanding the motion of doped charge in the two-dimensional Hubbard
model [6, 27, 74, 114].

In the case of iridates, several recent angle-resolved photoemission spectroscopy experiments
unveiled the shape of the iridate spectral functions [12, 16, 54, 61, 69, 83, 109, 113, 123].
However, on the theoretical side this correlated electron problem has not been investigated
using the above approach [16, 54, 57, 117] – although it was suggested that the combination
of local density approximation of density-functional theory and dynamical mean field theory
(LDA+DMFT) or even LDA+U band structure description might be sufficient [12, 54,
80, 83, 109, 128]. We will compare results presented in this thesis to that obtained with
(LDA+DMFT) in Ref. [128] in section 3.5.

In the following we calculate the spectral function of the correlated strong coupling model
describing the motion of a single charge doped into the AF and insulating ground state of the
quasi-two-dimensional iridate, using the self-consistent Born approximation (SCBA) which
is well suited to the problem [11, 70, 74, 98, 107, 114]. The main result is that we find a
fundamental difference between the motion of a single electron or hole added to the undoped
iridate. Whereas the single electron added to the Ir4+ ion locally forms a 5d6 configuration,
adding a hole (i.e. removing an electron) to the Ir4+ ion leads to the 5d4 configuration. (Let
me note here that in what follows we assume that the iridium oxides are in the Mott-Hubbard
regime, since the on-site Hubbard U on iridium is smaller than the iridium-oxygen charge
transfer gap [17, 51, 78]). Due to the strong on-site Coulomb repulsion, these differences
in the local ionic physics have tremendous consequences for the propagation of the doped
electrons and holes. In particular, in the electron case the lack of internal degrees of freedom
of the added charge, forming a 5d6 configuration, makes the problem qualitatively similar to
the above-discussed problem of the quasi-two-dimensional cuprates and to the formation of
the spin polaron. On the contrary, the hopping of a hole to the nearest neighbor site does not
necessarily lead to the coupling to the magnetic excitations from j = 1/2 AF, which is a result
of the fact that the 5d4 configuration may have a nonzero total angular momentum J [18].
As discussed in the following, this result has important consequences for our understanding
of recent and future experiments on the quasi-two-dimensional iridates.

3.3. Effective low-energy model of the square-lattice iridates

We begin with the low-energy description of the quasi-two-dimensional iridates. In the ionic
picture (i.e. taking into account in an appropriate ionic Hamiltonain the cubic crystal field
splitting [79], the spin-orbit coupling [46], and the on-site Coulomb interaction [18]) the strong
on-site spin-orbit coupling λ splits the iridium ion t2g levels into the j = 1/2 lower energy
doublet (see Fig. 3.1) and the j = 3/2 higher energy quartet, where j is the isospin (total
angular momentum) of the only hole in the 5d5 iridium shell [46, 54, 58, 111]. For the bulk,
the strong on-site Hubbard repulsion between holes on iridium ions needs to be taken into
account which leads to the localization of the iridium holes and the AF interaction between
their j = 1/2 isospins in the two-dimensional iridium plane [46]. Consequently, this Mott
insulating ground state possesses two-dimensional AF long range order with the low-energy
excitations well described in the linear spin-wave approximation [56]

Hmag =
∑

q
ωq(α†qαq + β†qβq), (3.1)

where q is the crystal momentum and ωq is the dispersion of the (iso)magnons |αq〉 and |βq〉:

ωq =
√
A2

q −B2
q (3.2)
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Figure 3.1.: Low-energy eigenstates of iridium ions. (a) Quantum numbers characterising
certain electronic configuration, where j, l, and s (J , L, and S) stands for single-
particle (multi-particle) total, orbital, and spin angular momentum. The red
circles indicate the states that are explicitly taken into account in our effective
low-energy theory. (b) Eigenstates for the 5d4 configuration (relevant for the 5d4

hole case) of the appropriate ionic Hamiltonian of iridium ion. (c) Same as (b)
but for the 5d5 configuration (as relevant for the quasi-two-dimensional iridate
ground state). (d) Same as (b) but for the 5d6 configuration (relevant for 5d6

doublon case). Blue, red and beige cartoon orbitals indicate the one-particle
states with the effective angular momentum l = 1 and lz = 1, lz = −1 and lz = 0
respectively. Round beige cartoon orbital indicates full shell with L = 0. Up
(down) black arrows indicate sz = 1/2 (sz = 1/2) of spin s = 1/2 states. No
arrow on an orbital indicates S = 0 state.

with

Aq = 2(J1 − J2 + J2 cos qx cos qy − J3(1− 1
2(cos 2qx + cos 2qy))), (3.3)

Bq = J1(cos qx + cos qy). (3.4)

Here J1, J2 and J3 are the nearest, next nearest and third neighbor isospin exchange
interactions, respectively.

The parameters of the Bogoliubov transformation, the so-called Bogoliubov coefficients uq,
vq, are given by the following expressions:

uq = 1√
2

√
Aq
ωq

+ 1,

vq = −sign(Bq)√
2

√
Aq
ωq
− 1

(3.5)

see also section 1.6 where derivation of eq. (3.1) (although for one type of magnons) is
described in greater detail.
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We note here that, although the size of the experimentally observed optical gap is not large
(around 500 meV [78]), it is still more than twice larger than the top of the magnon band in
the resonant inelastic x-ray scattering spectra (around 200 meV) [58, 59]. This, together with
the fact that the linear spin wave theory very well describes the experimental RIXS spectra
of the quasi-two-dimensional iridates [58, 59], justifies using the strong coupling approach.

3.3.1. Motion of electron in the ground state of Sr2IrO4: IPES
Introducing a single electron into the quasi-two-dimensional iridates, as experimentally
realized in an inverse photoemission (IPES) experiment, leads to the creation of a single
5d6 doublon in the bulk, leaving the nominal 5d5 configuration on all other iridium sites.
Since the t2g shell is for the 5d6 configuration completely filled, the only eigenstate of the
appropriate ionic Hamiltonian is the one carrying J = 0 total angular momentum. Therefore,
just as in the cuprates, the 5d6 doublon formed in IPES has no internal degrees of freedom,
i.e. |d〉 ≡ |J = 0〉, see Fig. 3.1.

Turning on the hybridization between iridium ions leads to the hopping of the 5d6 doublon
between iridium sites i and j: |5d5

i 5d6
j 〉〈5d6

i 5d5
j |. To derive the Hamiltonian which would

describe the motion of the 5d6 doublon added to the Mott insulating ground state formed
by the 5d5 iridium ions of the (undoped) square-lattice iridates due to the nonzero hopping
elements we need to calculate the following matrix elements of the tight-binding Hamiltonian
describing the hybridization between iridium sites 〈5d6

i 5d5
j |HTB|5d5

i 5d6
j 〉. The exact form of

the tight-binding Hamiltonian depends on the fine details of the structure like distortions and
is given in details in section 3.3.2. It is important to realise at this point that, although such
hopping is restricted to the lowest Hubbard subband of the problem, it may change the AF
configuration and excite magnons. In fact, magnons are excited during all nearest neighbor
hopping processes, since the kinetic energy conserves the total angular momentum.
Firstly, we calculate the above matrix elements in the appropriate eigenstates of ionic

Hamiltonian of the 5d5 and 5d6 configurations (these states are listed in Fig. 3.1). We note
that these matrix elements do not explicitly depend on the strong on-site spin-orbit coupling
λ, though the form of the appropriate eigenstates of the ionic Hamiltonian (Fig. 1 of the main
text) is of course due to the onset of strong on-site spin-orbit coupling λ. Secondly, we assume
the so-called no double occupancy constraint, which follows from the implicitly assumed
here limit of strong on-site Coulomb repulsion – which prohibits the creation of unnecessary
5d6 doublons once the electron added to the quasi-two-dimensional iridate 5d5 ground state
hops between sites. Technically this amounts to the introduction of the projection operator
which takes care of this constraint. Finally, following the path described for example in
Refs. [74, 90] and introducing the slave-fermion formalism followed by Fourier and Bogoliubov
transformations, we arrive at the following polaronic Hamiltonian which describes the motion
of the 5d6 doublon:

HIPES = Hmag +Hd
t , (3.6)

where Hmag is defined above and the hopping of the single 5d6 doublon in the bulk follows
from the spin-polaronic [6, 50, 74, 119] Hamiltonian

Hd
t =

∑
k
V 0

k

(
d†kAdkA + d†kBdkB

)
+
∑
k,q

Vk,q
(
d†k-qBdkAα

†
q + d†k-qAdkBβ

†
q + h.c.

)
, (3.7)

where A,B are two AF sublattices, the term V 0
k describes the next nearest and third neighbor

hopping which does not excite magnons (free hopping), and the term Vk,q describes the
nearest neighbor coupling between the 5d6 doublon and the magnons as a result of the
nearest neighbor electronic hopping (polaronic hopping, see above). We note that the exact
expressions for V ’s depend on the five hopping elements of the minimal tight binding model:
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Figure 3.2.: Tight-binding model. (a) A cartoon illustrating the t1, t2, t3, t′ and t′′ hopping
paths between the Ir-5d-t2g orbitals taken into account in the tight-binding model.
(b) Comparison between the density functional theory (DFT) band structure as
calculated for Sr2IrO4 (blue and grey lines) and the tight-binding (TB) model
written in the Ir-5d-t2g orbital basis (red lines). The intensity of the blue shade
of the DFT bands represents the amount of the Ir-5d-t2g character in a given
band at a particular momentum (darkest blue – largest overlap with the Ir-5d-t2g
orbitals; grey – lowest overlap with the Ir-5d-t2g orbitals). The Fermi energy is
set to zero. Figure courtesy by K. Foyevtsova [86].

t1 (t′, t′′) describing nearest (next-nearest, third-) neighbor hopping between the dxy orbitals
in the xy plane, t2 – the nearest neighbor in-plane hopping between the other two active
orbitals, dxz(dyz), along the x(y) direction, and t3 – the nearest neighbor hopping between
dxz (dyz) orbitals along the y(x) direction.

3.3.2. Determining the tight-binding Hamiltonian from the DFT calculations

The values of the parameters (t1 = −0.2239 eV, t2 = −0.373 eV, t′ = −0.1154 eV, t′′ = −0.0595
eV, t3 = −0.0592 eV) in the tight-binding Hamiltonian are found as a best fit of this restricted
tight-binding model to the LDA band structure. The TB model band structure based on the
parameter values is shown in red in Fig. 3.2 (b).

The electronic band structure of Sr2IrO4 was calculated using DFT in the local density
approximation [87] and within the linearized augmented plane wave approach using the
WIEN2k code [9] by K. Foyevtsova [86]. The 10 K crystal structure of Sr2IrO4 was considered,
with the space group I41/acd, as reported in Ref. [43]. The calculated band structure of
Sr2IrO4 is shown in Fig. 3.2 (a) along a path in the Brillouin zone of the I41/acd unit cell.
The bands with the predominant Ir-5d-t2g character are highlighted in blue.

Then the calculated dispersion of the Ir-5d-t2g bands were used to parameterized the
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tight-binding (TB) model

HTB =− t1
∑

〈i,j〉||x̂,ŷ,σ
c†iσcjσ − t2

∑
〈i,j〉||ŷ,σ

a†iσajσ − t2
∑

〈i,j〉||x̂,σ
b†iσbjσ − t3

∑
〈i,j〉||ŷ,σ

b†iσbjσ

− t3
∑

〈i,j〉||x̂,σ
a†iσajσ − t

′ ∑
〈〈i,j〉〉||x̂′,ŷ′,σ

c†iσcjσ − t
′′ ∑
〈〈〈i,j〉〉〉||x̂′′,ŷ′′,σ

c†iσcjσ + h.c., (3.8)

where a†, b†, and c† operator create an electron in the dyz, dxz, dxy orbitals (respectively)
with spin σ = ±1

2 , x̂ and ŷ indicate the directions of the nearest neighbor bonds in the
xy plane of the quasi-two-dimensional iridate, and x̂′ = x̂ − ŷ and ŷ′ = x̂ + ŷ (x̂′′ = 2x̂
and ŷ′ = 2ŷ) indicate the directions of the next nearest (third) neighbor bonds in the xy
plane of the quasi-two-dimensional iridate. The TB model includes the nearest neighbor
hopping integrals t1, t2 and t3 as well as the next nearest and third neighbor integral t′ and
t′′ between the Ir-5d-t2g orbitals, with their meaning explained in Fig. 3.2 (a). Let us note
that the generic structure of the TB Hamiltonian follows from the well-known symmetries
of an effective TB Hamiltonian for the transition metal oxide with the t2g orbital degrees
of freedom: the electrons located in the dab orbital can solely hop in the ab plane. While in
what follows we use the above set of tight-binding parameters in the polaronic model, we
stress that the final results are not critically sensitive to this particular choice of the model
parameters. The obtained PES / IPES spectra are quite robust w.r.t. small changes in the
TB parameters: in particular, as long as the TB parameters provide a relatively good fit to
the LDA spectra, they lead to the SCBA spectra with all of the reported features.

3.3.3. Motion of a hole in the ground state of Sr2IrO4: ARPES
Next, following similar logic we derive the microscopic model for a single hole introduced into
the iridate, which resembles the case encountered in the photoemission (PES) experiment.
In this case a single 5d4 hole is created in the bulk. Due to the strong Hund’s coupling the
lowest eigenstate of the appropriate ionic Hamiltonian for four t2g electrons has the total
(effective) orbital momentum L = 1 and the total spin momentum S = 1 [52]. Moreover, in
the strong spin-orbit coupled regime the L = 1 and S = 1 moments the eigenstates of such
an ionic Hamiltonian are the lowest lying J = 0 singlet S, and the higher lying J = 1 triplets
Tσ (σ = −1, 0, 1, split by energy λ from the singlet state) and J = 2 quintets. For a detailed
discussion of the multiplet structure of 5d4 configuration see chapter 5. Since the high energy
quintets are only marginally relevant to the low-energy description in strong on-site spin-orbit
coupling λ [58] limit, one obtains [18] that, unlike e.g. in the cuprates, the 5d4 hole formed in
PES is effectively left with four internal degrees of freedom, i.e. |h〉 ≡ {|S〉, |T1〉, |T0〉, |T−1〉},
see Fig. 3.1.

Once the hybridization between the iridium ions is turned on, the hopping of the 5d4 hole
between iridium sites i and j is possible: |5d5

i 5d4
j 〉〈5d4

i 5d5
j | = |5d5

i 〉〈5d5
j ||hj〉〈hi|. Similarly to

the IPES case described above, in principle such hopping of the 5d4 hole may or may not
couple to magnons. However, there is one crucial difference w.r.t. IPES: the 5d4 hole can
carry finite angular momentum and thus the 5d4 doublon may move between the nearest
neighbor sites without coupling to magnons. Altogether, the PES Hamiltonian reads

HPES = Hmag +HSOC +Hh
t , (3.9)

where
HSOC = λ

∑
k,σ=−1,0,1

T †kσTkσ (3.10)

describes the on-site energy of the triplet states λ = ξ/2 where ξ = 0.382 [58] is a one particle
on-site spin-orbit coupling and the hopping of the single 5d4 hole in the bulk is described by
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the following spin-polaronic [50, 74, 97] Hamiltonian

Hh
t =

∑
k

(
h†kAV̂

0
k hkA+h†kBV̂

0
k hkB

)
+
∑
k,q

(
h†k-qBV̂

α
k,qhkBα

†
q+h†k-qAV̂

β
k,qhkBβ

†
q+h.c.

)
(3.11)

where (as above) A,B are two AF sublattices, the term V̂ 0
k describes the nearest, next nearest,

and third neighbor free hopping, and the terms V̂ α
k,q and V̂ β

k,q describe the polaronic hopping.

The free hopping matrix is

V̂ 0
k =



F1 0 −F2 0 0 P2 0 −P1
0 F4 0 0 P1 0 Q1 0
−F2 0 F3 0 0 Q2 0 Q1

0 0 0 0 −P2 0 Q2 0
0 P1 0 −P2 F1 0 F2 0
P2 0 Q2 0 0 0 0 0
0 Q1 0 Q2 F2 0 F3 0
−P1 0 Q1 0 0 0 0 F4


, (3.12)

while the matrices containing vertices are

V̂ α
k,q =



0 L3 0 −L3 Y1 0 −W2 0
L3 0 L1 0 0 Y4 0 W1
0 L1 0 L1 −W2 0 Y2 0
−L3 0 L1 0 0 W1 0 Y3

0 0 0 0 0 L4 0 −L4
0 0 0 0 L4 0 L2 0
0 0 0 0 0 L2 0 L2
0 0 0 0 −L4 0 L2 0


, (3.13)

V̂ β
k,q =



0 L4 0 −L4 0 0 0 0
L4 0 L2 0 0 0 0 0
0 L2 0 L2 0 0 0 0
−L4 0 L2 0 0 0 0 0
Y1 0 W2 0 0 L3 0 −L3
0 Y3 0 W1 L3 0 L1 0
W2 0 Y2 0 0 L1 0 L1
0 W1 0 Y4 −L3 0 L1 0


, (3.14)

The nearest neighbor free hopping P (k), Q(k) and the polaronic diagonal Y (k,q) and
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non-diagonal W (k,q) vertex elements are

P1(k) = 2 (2t1 − t2)
3
√

3
γk −

2t3
3
√

3
γk, (3.15)

P2(k) = 2t2√
3
γ̃k −

2t3√
3
γ̃k, (3.16)

Q1(k) = (4t1 + t2)
3
√

2
γk + t3

3
√

2
γk, (3.17)

Q2(k) = t2√
2
γ̃k −

t3√
2
γ̃k, (3.18)

W1(k,q) = t3 − t2√
2N

(
γ̃k-quq + γ̃kvq

)
, (3.19)

W2(k,q) = −4 (2t1 − t2 − t3)
3
√

3N
(
γk-quq − γkvq

)
, (3.20)

Y1(k,q) = −16 (t1 + t2 + t3)
9
√

2N
(
γk-quq + γkvq

)
, (3.21)

Y2(k,q) = −2 (4t1 + t2 + t3)
3
√

2N
(
γk-quq + γkvq

)
, (3.22)

Y3(k,q) = −4t1 + t2 + t3

3
√

2N
γkvq −

3 (t2 + t3)√
2N

γk-quq, (3.23)

Y4(k,q) = −4t1 + t2 + t3

3
√

2N
γk-quq −

3 (t2 + t3)√
2N

γkvq, (3.24)

with γ̃k = 1/2(cos kx − cos ky);
The free hopping elements arising from the next-nearest and third neighbor hoppings

F1(k) = −4t′γ′k
9 − 4t′′γ′′k

9 , (3.25)

F2(k) = −8t′γ′k
3
√

6
− 8t′′γ′′k

3
√

6
, (3.26)

F3(k) = −2t′γ′k
3 − 2t′′γ′′k

3 , (3.27)

F4(k) = − t
′γ′k
3 − t′′γ′′k

3 ; (3.28)

The polaronic next-nearest and third neighbor hopping elements

L1(k,q) = 4t′

3
√
N
γ′k-quq + 4t′′

3
√
N
γ′′k-quq, (3.29)

L2(k,q) = 4t′

3
√
N
γ′kvq + 4t′′

3
√
N
γ′′kvq, (3.30)

L3(k,q) = 8t′

3
√

6N
γ′k-quq + 8t′′

3
√

6N
γ′′k-quq, (3.31)

L4(k,q) = 8t′

3
√

6N
γ′kvq + 8t′′

3
√

6N
γ′′kvq. (3.32)

We stress that while V̂ ’s again depend on the the five hopping parameters, their form is
far more complex than in the case of an added electron.

3.4. Theoretical (inverse-)photoemission spectra
Using the SCBA method [70, 74, 98, 107, 114], which was discussed in section 1.7, we calculate
the relevant Green’s functions for the single electron (5d6 doublon, |d〉) doped into the AF
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3.4. Theoretical (inverse-)photoemission spectra

(a) (b)

(c) !t

Figure 3.3.: Theoretical spectral functions of iridates: (a) photoemission (PES) and (b) inverse
photoemission (IPES) spectral function of the low-energy (polaronic) models
developed for the square-lattice iridates and solved using the self-consistent Born
approximation. Following parameters are used: spin exchange J1 = 0.06 eV,
J2 = −0.02 eV, J2 = 0.015 eV, and spin-orbit coupling ξ = 0.382 eV following
Ref. [58]; hopping integrals calculated as the best fit to the density functional
theory (DFT) band structure as discussed in section 3.3.2: t1 = −0.2239 eV,
t2 = −0.373 eV, t′ = −0.1154 eV, t3 = −0.0592 eV, t′′ = −0.0595 eV; spectra off-
set by (a) E = −0.77 eV and (b) E = −1.47 eV; broadening δ = 0.01 eV.

ground state of the quasi-two-dimensional iridates

GIPES(k, ω) = 〈AF|dk
1

ω −HIPES + iδ
d†k|AF〉, (3.33)

and the single hole (5d4 hole, |h〉) doped into the AF ground state of the quasi-two-dimensional
iridates

GPES(k, ω) = Tr〈AF|hk
1

ω −HPES + iδ
h†k|AF〉. (3.34)

We note that using the SCBA method to treat the spin-polaronic problems is well-established
and that the non-crossing approximation is well-justified [70, 98, 107]. We solve the SCBA
equations on a finite lattice of 16× 16 sites and calculate the imaginary parts of the above
Green’s functions – which (qualitatively) correspond to the theoretical IPES and PES spectral
functions.

We first discuss the calculated angle-resolved IPES spectral function shown in Fig. 3.3(b).
One can see that the first addition state has a quasiparticle character, though its dispersion
is relatively small (compared to the LDA bands, see section 3.3.2): there is a rather shallow
minimum at (π/2, π/2) and a maximum at the Γ point. Moreover, a large part of the spectral
weight is transferred from the quasiparticle to the higher lying ladder spectrum, due to the
rather small ratio of the spin exchange constants and the electronic hopping [74]. Altogether,
these are all well-known signatures of the spin-polaron physics: the mobile defect in an AF is
strongly coupled to magnons (leading to the ladder spectrum) and can move coherently as a
quasiparticle only on the scale of the spin exchange J1 [50, 74, 97]. Thus, it is not striking
that the calculated IPES spectrum of the iridates is similar to the PES spectrum of the t-J
model with a negative next nearest neighbor hopping – the model case of the hole-doped
cuprates [6, 27, 98, 114]. This agrees with a more general conjecture, previously reported in
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Chapter 3. Correlation induced electron-hole asymmetry in quasi-2D iridates

(a) (b)

Figure 3.4.: Free and polaronic contributions to the spectrum: (a) Theoretical photoemission
spectral function with only propagation of the hole not coupled to magnons
allowed as achieved by setting V̂ α

k = V̂ β
k ≡ 0. (b) Theoretical photoemission

spectral function with only polaronic propagation via coupling to magnons allowed
(i.e. no free dispersion) as achieved by setting V̂ 0

k ≡ 0. Parameters as in Fig. 3.3.

the literature: the correspondence between the physics of the hole-doped cuprates and the
electron-doped iridates [111].

Due to the internal spin and orbital angular momentum degrees of freedom of the 5d4 states,
the angle-resolved PES spectrum of the iridates [Fig. 3.3(a)] is very different. The first removal
state shows a quasiparticle character with a relatively small dispersion and a minimum is at
the (π, 0) point (so that we obtain an indirect gap for the quasi-two-dimensional iridates).
On a qualitative level this quasiparticle dispersion resembles the situation found in the PES
spectrum of the t-J model with a positive next nearest neighbor hopping [114], which should
model the electron-doped cuprates (or IPES on the undoped). However, the higher energy
part of the PES spectrum of the iridates is quite distinct not only w.r.t. the IPES but also
the PES spectrum of the t-J model with the positive next nearest neighbor hopping [6, 27,
114]. Thus, the spin-polaron physics, as we know it from the cuprate studies [50, 74, 97], is
modified in this case and we find only very partial agreement with the paradigm stating that
the electron-doped cuprates and the hole-doped iridates show similar physics [111].
The above result follows from the interplay between the free [Fig. 3.4(a)] and polaronic

hoppings [Fig. 3.4(b)] (we note that typically such interplay is highly nontrivial and the
resulting full spectrum is never a simple superposition of these two types of hopping processes,
cf. Refs. [6, 25, 30, 90, 114, 121]). The free hopping of the 5d4 hole is possible here for both
the J = 0 singlet and J = 1 triplets which leads to the onset of several bands. As already
stated, the J = 1 triplets can freely hop not only to the next nearest neighbors but also
to the nearest neighbors (see above). For the polaronic hopping, the appearance of several
polaronic channels, originating in the free J-bands being dressed by the j = 1/2 magnons,
contributes to the strong quantitative differences w.r.t. the 5d6 doublon case or the cuprates.

3.5. Comparison to the experiment
To directly compare our results with the experimental ARPES spectra of Sr2IrO4 [54, 61,
83, 109], we plot the zoomed-in spectra for PES, see Fig. 3.5. Clearly, we find that the first
electron removal state is at a deep minimum at (π, 0), in good agreement with experiment.
This locus coincides with the k-point where the final state J = 0 singlet has maximum spectral
weight, see Fig. 3.5(b). Also the plateau around (π/2, π/2) and the shallow minimum of the
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(a) (b) (c)

Figure 3.5.: A zoom-in into the photoemission spectrum: (a) a zoom-in into the complete
theoretical photoemission spectral function of Fig. 3.4(a), (b, c) same as panel (a)
but J-resolved – with (b) showing the J = 0 contribution (motion of a “singlet
hole”) and (c) the J = 1 contribution (motion of a “triplet hole”).

dispersion at the Γ point are reproduced, where the latter is related to a strong back-bending
of higher energy J = 1 triplets, see Fig. 3.5(c). Thus one observes that the motion of the
5d4 hole with the singlet character is mostly visible around the minimum at (π, 0) and near
the plateau at (π/2, π/2) [Fig. 3.5(b)], whereas the triplet is mostly visible at the Γ points
and much less at (π, 0) [Fig. 3.5(c)]. The higher energy features in the PES spectrum are
mostly of triplet character, due to the difference in the on-site energies between the singlet
and triplets λ. These features, however, may in case of real materials be strongly affected by
the onset of the oxygen states in the PES spectrum (not included in this study, see above).

Experimentally, electron doping causes Fermi-arcs to appear in Sr2IrO4 that are centered
around (π/2, π/2) [16, 60, 61, 124], which indeed corresponds the momentum at which our
calculations place the lowest energy d6 electron addition state. On the basis of the calculated
electron-hole asymmetry one expects that for hole-doping such Fermi arcs must instead be
centered around (π, 0), unless of course such doping disrupts the underlying host electronic
structure of Sr2IrO4.
Finally, it shall be noted that although the iridate spectral function calculated using

LDA+DMFT is also in good agreement with the experimental ARPES spectrum [128], there
are two well-visible spectral features that are observed experimentally, and seem to be better
reproduced by the t-J model based approach: the experimentally observed maximum at Γ
point in ARPES being 150-250 meV lower than the maximum at the X point [12, 16, 54, 61,
69, 83, 109, 123], and the more incoherent spectral weight just below the quasiparticle peak
around the Γ point than around the M point. We believe that the better agreement with
the experiment of the spin polaronic approach than of the DMFT is due to the momentum
independence of the DMFT self-energy – which means that the latter method is not able
to fully capture the spin-polaron physics [74, 105]. It is known that the self-energy of the
quaiparticle in the spin-polaron problem is in general momentum-dependent [74]. Similarly,
in the spin-polaronic problem applicable to the iridates studied here, the self-energy is also
explicitely momentum dependent, as illustrated in Fig. 3.6. Particularly strong momentum
dependence is observed near Γ point where the most prominent differences to LDA+DMFT
indeed take place.
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(a) (b)

Figure 3.6.: The momentum dependence of imaginary (a) and real (b) part of the self-
energy Σ (k, ω) calculated for the Green’s function in Eq. (3.34) using Dyson’s
equation [72]. Here brighter color indicate higher intensity.

3.6. Conclusions
The differences between the motion of the added hole and electron in the quasi-two-dimensional
iridates have crucial consequences for our understanding of these compounds. The PES
spectrum of the undoped quasi-two-dimensional iridates should be interpreted as showing the
J = 0 and J = 1 bands dressed by j = 1/2 magnons and a free nearest and further neighbor
dispersion.

The IPES spectrum, on the other hand, consists solely of a J = 0 band dressed by j = 1/2
magnons and a free next nearest and third neighbor dispersion. Thus, whereas the IPES
spectrum of the quasi-two-dimensional iridates qualitatively resemble the PES spectrum of
the cuprates, this is not the case of the iridate PES.
This result suggests that, unlike in the case of the cuprates, the differences between the

electron and hole doped quasi-two-dimensional iridates cannot be modelled by a mere change
of sign in the next nearest hopping in the respective Hubbard or t-J model. Any realistic
model of the hole doped iridates should instead include the onset of J = 0 and J = 1
quasiparticle states upon hole doping.
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CHAPTER 4

Spin-polaron ladder spectrum of
Sr2IrO4 probed by scanning tunneling
spectroscopy
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4.1. Preface

4.1. Preface

We have shown in chapter 3 that the extended t-J model accounting for a realistic set of
hopping parameters and the on-site many-body multiplet structure successfully explains the
recent ARPES experiments on Sr2IrO4 including small details of the spectra like lowering of
the maximum at Γ point or spectral weight transfer to the incoherent part of the spectrum.
As pointed out in section 1.6, such a realistic polaronic approach can explain many of the
experiments on strongly correlated materials where some sort of charge excitation is created.
In the photoemission process a charge excitation is created by the incident light beam from a
synchrotron source or a gas-discharge lamp [45]. The same kind of excited state, a charge
excitation, is also present in scanning tunneling spectroscopy where the electronic occupation
is changed due to an applied voltage bias. In PES, probing states above the Fermi level is
a difficult task since some electrons have to be excited to the unoccupied states first, for
example as in inverse photoelectron spectroscopy [101] or using pump laser pulses as done in
time-resolved photoelectron spectroscopy (tr-PES) [89]. In STS, however, those states are
probed conveniently as the applied bias changes from negative to positive. In a scanning
tunneling microscope, the differential conductance dI/dV is measured as a function of the tip
position, which can be controlled in three spatial dimensions x, y parallel and z perpendicular
to the sample’s surface. A precision in the picometer range can be achieved [42], making it
possible to measure on-site spectral function in real space. The information obtained using
STS complements data measured by ARPES since it lacks k-resolution but instead gives a
high lateral resolution as well as access to the states both above and below Fermi level.

In this chapter we analyse tunneling conductance data [106] that reveal distinct shoulder-
like features at occupied and unoccupied states beyond the Mott gap ∆ ≈ 620 meV. We show,
using the self-consistent Born approximation, that these anomalies at the positive bias side
can be interpreted as the spin-polaron ladder spectrum in this material. On the negative bias
side, however, the internal degree of freedom of the charge excitation renders incoherence
of the quasiparticle and broadens the delta-function-like features, so the observed peaks is
interpreted as singlet and triplet states of the spin polaron. These results confirm the strongly
correlated electronic structure of square-lattice iridates.
In the following we discuss spin-polaron ladder spectrum of Sr2IrO4 probed by scanning

tunneling spectroscopy presented in [106] mostly focusing on the theoretical theoretical
description of the tunneling conductance spectra. First, we introduce the t-Jz model and
ladder physics in section 4.2. Then, the experimental STS data (courtesy by Z. Sun, J. M.
Guevara, D. Baumann, K. Manna, S. Wurmehl, B. Büchner and C. Hess) are discussed in
the section 4.3. Derivation of the model is discussed in section 4.4.1 followed by the general
discussion on the nature of the ladder spectra introduction in section 4.4.2. In 4.4.3 we will
discuss the relevance of the classical t-Jz model to the model discussed here and show that
ladder spectrum can indeed be directly observed from the STS measurements. Finally, we
highlight the main conclusions in section 4.5.

4.2. Introduction

As discussed in chapters 1 and 3, the motion of a single charge (hole or doublon) added
to the AF and insulating ground state of the undoped Sr2IrO4 can be modeled within the
spin-polaron model. As will be shown in section 4.4, within this model the shoulder-like
features at unoccupied states in the STS spectra are directly related to an inherent ladder
spectrum attributed to the presence of confined spin polaron quasiparticles in Sr2IrO4.

But before we proceed, let us discuss the ladder spectrum which in classical example occurs
in the much simpler t-Jz model. Assuming the ground state to be exactly a classical Néel
state (i.e. without spin fluctuations), one can describe the motion of the hole in the AF
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background by a t-Jz model which naturally follows from the anisotropic t-J model [50] in
the Ising limit α = J⊥/Jz = 0:

H =
∑

q
ωqa

†
qaq + zt√

N

∑
k,q

a†qh
†
khk+q

(
uqγk-q + vqγk

)
+ h.c., (4.1)

where a charge excitation is described by a spinless fermion with creation operator h†k
and spin excitations are represented by the boson operators a†q. The spin-wave dispersion
ωq = zsJ (1− δ)2 νq where s = 1/2 is the spin and z is the coordination number of the
underlying square lattice and the Bogoliubov factors are given by

νq =
√

1− α2γ2
q,

uq =
√

1 + νq
2νk

, (4.2)

vq = −sign(γq)
√

1− νq
2νq

,

and coupling of the hole to magnons is described by γq = 1
z

∑
~τ
cosq · ~τ (see section 1.6 for a

detailed discussion on the t-J model). Substituting α = 0 to Eq. (4.1) we get the t-J z model
in explicit form

H = ω
∑

q
a†qaq + zt√

N

∑
k,q

γka
†
qh
†
khk+q + h.c., (4.3)

where the coefficients become q-independent: ω = szJz and γk = 1
2(cos kx + cos ky).

Unlike in t-J model where the low energy excitations are described by Heisenberg Hamilto-
nian (1.3) and ground state can be modeled as a Néel state dressed with quantum fluctuations,
in t-Jz model low-energy description is given by Ising Hamiltonian

HIsing = Jz
∑
〈i,j〉

(
Szi S

z
j −

ninj
4

)
, (4.4)

for which a Néel state is the exact solution for J > 0.
A hole introduced into the AF background interacts strongly with its environment of

ordered spins and forms a new quasiparticle – the spin polaron. Its excitations in t-Jz model
have been investigated within the self-consistent Born approximation [50, 74] and quantum
wave function methods [94]. These studies show that the spin polaron is characterized by
coupling to a string of misaligned spins, forming an effective potential of confinement where
the polaron can occupy excited states of different orbital-like character [122] as shown in
Fig. 4.1.

The one-particle spectrum of the hole in the t-Jz model calculated using SCBA is shown in
Fig. 4.2. It is characterized by dispersionless excitations separated by energy intervals, first
of which is proportional to t(Jz/t)2/3 [14]. This ladder-like spectrum is typically observed if
the particle is confined by a correlated background. In our case the confinement is created
by strings of spin defects in the AF background, which are not allowed to relax due to the
absence of the spin-flip terms (Eqs. (1.10-1.11)) in the Ising Hamiltonian (4.4) as compared
to the Heisenberg Hamiltonian (1.3). The different internal excitations of the hole within
this so-called spin polaron shown in Fig. 4.1 manifest themselves as the different “rungs” in
the corresponding ladder spectrum.
If the spin-flip processes are allowed, i.e., the ground state is dressed with quantum

fluctuations, spin defects can relax and the quasiparticle becomes dispersive, thus partially
(or in some cases even completely) encaving the ladder structure.
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Figure 4.1.: Behavior of a hole in a strongly correlated antiferromagnetic background forming
the spin polaron. (a) The motion of the hole is accompanied by the creation
of strings of misaligned spins (indicated by dotted lines) leading to an effective
potential which prevents the hole to move freely (wavy dotted line). (b) Some of
the possible internal excitations of the spin polaron with respect to the number
of misaligned spins and symmetry of orbital momentum. The excitation energy
values are well separated and appear in the one-particle spectrum as characteristic
“ladder structure”. Courtesy by J. M. Guevara [106].

Figure 4.2.: Spectral function of a hole in the t-Jz model. Calculated on the lattice 16× 16
with J = 0.1t and broadening δ = 0.01t. Reproduced from Ref. [74].

4.3. Experimental results

The tunneling spectroscopy measurements were performed on single crystals of Sr2IrO4−δ.
The crystals exhibit a slightly reduced resistivity as compared to the stoichiometric parent
compound, allowing for high-resolution STS measurements even at very low temperature
(T < 10 K). STM data obtained at the cold-cleaved crystal surface (Fig. 4.3(a)) yield
atomically resolved SrO-terminated flat terraces with several local defects, about 2% with
respect to Ir.
Fig. 4.3(b) shows an overview tunneling conductance dI/dV spectrum taken at 8.8 K at
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a place free of defects. The data reveal a sizable gap ∆ ≈ 620 meV, where dI/dV ≈ 0, in
agreement with earlier findings [26, 124]. Remarkably, at larger bias voltages Vbias, distinct
shoulder-like structures are visible (indicated by arrows). These interesting features suggest a
direct coupling of the tunneling electrons/holes to some specific excitations of the correlated
Mott state. There are resonance peak-like features in the conductance spectrum at about 700
mV and 1100 mV. These signatures are directly related to the presence of an inherent ladder
spectrum attributed to the presence of confined spin polaron quasiparticles in Sr2IrO4 as will
be shown in sections (4.4.1 – 4.4.3). Also at the negative bias side, there are clear although
less pronounced peaks at about 300 mV and 700 mV below the Fermi level, which shall be
interpreted as singlet and triplet states of the spin polaron. We note that the spectra at
negative bias side are in general more continuous.
At larger Vbias & 1.3 eV, the dI/dV spectra increase sharply. Because of a strong energy

dependence of the tunneling matrix element, higher-order electronic excitations and dominant
oxygen 2p orbital contributions at such large energies, also comparing with the optical results
[91], we restrict our discussion to the rich and interesting structure at |Vbias| . 1.3 eV.

(1x1)

a b

5 nm

a b

Figure 4.3.: Topography and experimental tunneling conductance of the clean area of the
surface. (a) Topography of the sample surface for the defect-free area with bias
voltage 1.0 V. The onset shows the Fourier transition of the topography image,
where we labeled the Bragg peak and the (1 × 1) reconstruction. (b) Large
scale tunneling conductance spectrum taken on a clean place. Courtesy by J. M.
Guevara [106].

4.4. Modeling the tunneling data
4.4.1. Derivation of the theoretical model
Constructing a polaronic model to calculate dI/dV spectra, we address separately the positive
and negative bias regions since the strong on-site correlations render these two cases very
different [86]. When a negative bias is applied, an electron is removed from the d5 configuration
creating an excitation which can be locally described as a d4 configuration with its complicated
intrinsic multiplet structure. Thus, this charge excitation in the lowest energy subspace
of the Hilbert space would form a singlet and a triplet state. The corresponding charge
excitation creation operator h would therefore posses an additional internal degree of freedom
|h〉 ≡ {|J = 0〉, |J = 1, Jz = 1〉, |J = 1, Jz = 0〉, J = 1, Jz = −1〉}. Opposite to this, applying
positive bias results in adding an electron to the local Ir site with d5 configuration. Hence,
the charge excitation one has to consider would resemble the filled-shell d6 configuration and
be described by polaronic excitations shown in Fig. 4.1.

54



4.4. Modeling the tunneling data

The motion of the charge excitation on positive (+) and negative (−) sides of the dI/dV
spectra is described by the Hamiltonian

H+,− = Hmag +H+,−
t , (4.5)

where Hmag describes low energy excitations of the AF Jeff = 1/2 ground state. It is
derived from Heisenberg model (1.3) by applying consequently Fourier, Hostein-Primakoff
and Bogoliubov transformations (see section 1.6 for details) and is given by

Hmag =
∑

k
ωk(α†kαk + β†kβk), (4.6)

where ωk is the dispersion of the (iso)magnons represented by the quasiparticle states |αk〉
and |βk〉. The hopping part of the Hamiltonian, H+,−

t , describes the transfer of the charge
excitation in the bulk coupled to the magnons (which we also address as polaron quasiparticle).
It is given by

H+
t =

∑
k
V 0

k

(
d†kAdkA + d†kBdkB

)
+
∑
k,q

Vk,q
(
d†k-qBdkAα

†
q + d†k-qAdkBβ

†
q + h.c.

)
, (4.7)

H−t =
∑

k

(
h†kAV̂

0
k hkA+h†kBV̂

0
k hkB

)
+
∑
k,q

(
h†k-qBV̂

α
k,qhkBα

†
q+h†k-qAV̂

β
k,qhkBβ

†
q+h.c.

)
,

where A,B are the two antiferromagnetic sublattices. The dispersions V 0
k (V̂ 0

k ) describe
the nearest, next nearest, and third neighbor free hopping. The terms Vk,q (V̂ α

k,q and
V̂ β

k,q) are vertices describing the polaronic hopping of the charge excitation on the positive
(negative) side and are given explicitly in Eqs. (3.12 – 3.14). The Hamiltonians (4.7) resemble
Hamiltonians (3.7) and (3.11) and their derivation is given explicitly in chapter 3. All the
vertices were obtained analytically in the limit of strong on-site Coulomb repulsion and
depend on the five hopping parameters of the minimal tight-binding model obtained as the
best fit of the latter to the LDA calculations.
The tunneling conductance spectra are then obtained as

dI/dV (ω) ∝ − 1
2π
∑

k
ImG(k, ω), (4.8)

where the Green’s function is calculated using SCBA as

G(k, ω)− = Tr〈AF|hk
1

ω −H− + iδ
h†k|AF〉, (4.9)

G(k, ω)+ = 〈AF|dk
1

ω −H+ + iδ
d†k|AF〉, (4.10)

where d†k creates an electron on the positive side of the conductance spectra and the charge
excitation vector operator h†k creates a hole with four internal degrees of freedom |h〉 described
above.

The calculated tunneling conductance spectra displayed in Fig. 4.4 show the ladder structure
of the peaks on the positive bias side typical for the t-Jz model even though the model
described here is more complicated. This ladder structure on the positive bias side can be
clearly identified from the experimental data, see peaks at about 700 mV and 1100 mV. One
can see that position of the peaks in the theoretical calculation corresponds very well to
that in the experiment. We note, that the tunneling spectra on the positive side is further
broadened by other effects including measurement precision and electron-phonon scattering
processes, which are not taken into account in our effective low-energy model. We also note,
that there are no adjustable parameters in the calculation apart from the total energy shift
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Figure 4.4.: Tunneling conductance spectra for the clean surface: Experiment is shown in
brown, calculated within SCBA full spectra – in black. Additionally, J -resolved
calculated spectra are shown, with blue corresponding to charge excitations with
total angular momenta J = 0 and red to J = 1. The spectra are offset by
E = −0.9 V (negative side) and E = −1.52 V (positive side). Broadening of 10
meV was used.

coming from chemical potential, which cannot be included in the polaronic model directly
and on which the distance between two peaks in theoretical spectra does not depend. In
sections 4.4.2 – 4.4.3 it is shown that indeed, the ladder spectrum features can be directly
observed in STS measurements.
Not surprisingly, however, such ladder spectrum is not present on the negative bias side.

The polaron motion on the negative voltage is additionally complicated by the internal degree
of freedom of the charge excitation, which not only creates additional interacting channels but
also provides a possibility for a nearest-neighbor free hopping of the polaronic quasiparticle.
This renders polaron quasiparticle less localized and more dispersive, greatly broadening
delta-like features, thus encaving the internal polaron excitation structure shown in Fig. 4.1,
and transfers some spectral weight to the incoherent part of the spectra.
By studying separate contributions to the total Green’s function G(k, ω)− in Eq. (4.9)

instead of taking the trace, one can access the Green’s function for a polaron carrying
particular value of total quantum momenta J = 0, 1 and study the manifestation of these
additional degrees of freedom in the spectral function. Such J-resolved spectra are shown
in Fig. 4.4 in blue and red correspondingly. Unlike on the positive bias side, the two peaks
observed on the negative side of the tunneling conductance spectra correspond to singlet and
triplet polarons rather than to the ladder-like features.
By careful analysis of the spectra shown on on Fig. 2.2 one can also extract the value of

Coulomb repulsion. The Hubbard U is connected to the Mott gap value ∆Mott as

∆Mott = U − Epol
hole − E

pol
electron, (4.11)

where Epol
hole (Epol

electron) is the binding energy of the polaron formed when a hole (electron) is
added to the ground state of the system. We estimate polaron binding energies by performing
SCBA calculations setting the hopping part of Hamiltonian Eq. (4.7) to zero separately for
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[ω
]

Figure 4.5.: Polaronic quasiparticle dispersion for the effective Hamiltonian of the anisotropic
t-J model given by Eq. ((4.1)) calculated for three different values of the ratio
α = J⊥/Jz. The value of t is fixed throughout the calculation. The spectrum
becomes more ladder-like as α approaches the Ising limit α = 0. For the lowest
value of α (red circles) the value of t/ω lies in the relevant for Sr2IrO4 parameter
region (as indicated in Fig. 4.6(b)) and the energy spacing between the first and
second excitation is of the order of J . Courtesy by S. Sykora.

positive and negative bias cases. This way the polaron is artificially fully localized and its
spectral function is simply a delta function. The binding energies are then calculated as a
relative shift between these delta function peaks and quasiparticle peaks in the full calculation
(Fig. 4.4) and are estimated to be

Epol
hole = 0.57 eV (4.12)

Epol
electron = 0.81 eV.

Then the Coulomb repulsion U = 2.05 – 2.18 eV since the Mott gap ∆Mott ≈ ∆ correct to
the lowest quasiparticle peak bandwidth (both on positive and negative bias sides).

4.4.2. Ladder spectrum in the the t-Jz model
To show that indeed different excitations in the ladder spectrum of the t-J z model can be
directly observed in the tunneling spectroscopy experiment, we map the polaronic Hamilto-
nian (4.1) onto an effective system of free fermions and bosons

H̃ =
∑

q
ω̃qα

†
qαq +

∑
k
ε̃kf

†
kfk, (4.13)

where the new effective Hamiltonian H̃ is related to the original Hamiltonian via a unitary
transformation, H̃ = eXHe−X . Such a method enables to study the polaron excitations as
projected on the effective free particle, which can directly couple to the tunneling electrons
in the STS experiment.
The unitary transformation eX in general renormalizes the spin excitations of the back-

ground (first term of Eq. (4.13)) and generates the second term of Eq. (4.13). Since the
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Eq. (4.13) has the quadratic diagonal form and the transformation eX is unitary, the energy
quantities ε̃k and ω̃q can be seen as eigenenergies of the original model. The transformation
eX can be constructed and numerically carried out by using the projective renormalization
method (PRM) (see Ref. [21]). Within this method the polaronic term of the Hamiltonian is
integrated out in steps (1500 in the actual calculation), leading to the renormalization of the
fermion and boson energy parameters.

Using the unitary transformation eX , the one-particle spectral function can be calculated
immediately,

Ak(E) = |ã0
k|2δ(E − ε̃k) + 1

N

∑
q
|ã1

k,q|2δ(E − ε̃k−q − ω̃q) + . . . , (4.14)

where ã0
k and ã1

k,q are calculated in the renormalization process described above and represent
the spectral weight of the particular polaron excitation.

The internal excitations of the polaron can also be visualized by its wave function. Follow-
ing [94], we write it in the form

|Ψk〉 = a0(k)f †k|0〉+ 1√
N

∑
q
a1(k,q)f †k−qα

†
q|0〉+ . . . . (4.15)

Here, |0〉 is the product of the hole vacuum and the spin-wave vacuum, and ã0
k, ã1

k,q are
so-called Reiter coefficients. We see that the wave function of the doped hole can in principle
be approximated by a superposition of the wave function of a free hole and m wave functions
of the hole dressed with m magnons.

Fig. 4.5 shows the calculated effective dispersion of the spin polaron for different values of
the ratio α = J⊥/Jz. For small values of α, i.e. close to the Ising limit, one clearly sees that
the energy of the polaron increases as a function of its momentum k in stair-step fashion:
as soon as the momentum k is sufficiently large to produce a magnon, the polaron is raised
to the next excited level. The ground state of the polaron is characterized by momentum
states around k = 0 where only a finite range of momentum values is occupied. Since the
values of α examined in Fig. 4.5 are small (α < 0.25), the magnon dispersion ω̃q is almost
momentum-independent and approximately equal to the magnon dispersion in the t-J z model
4.3. For smaller values of α = 0.028 (shown in Fig. 4.5 with red circles), the polaron dispersion
within each rung is quite flat, whereas for larger values of α = 0.25 (green circles), the polaron
becomes more dispersive. Overall, the polaron becomes less localized with the ratio t/ω
decreasing.

The possibility to map the spin polaron model to an effective model of free charge carriers
(dressed with characteristic ladder-like quasiparticle dispersion) indicates that it must indeed
be possible to detect internal excitations of spin polarons in STM experiment.
To get better understanding of the nature of polaron states shown on the Fig. 4.1, we

calculate first two Reiter coefficients a0(k) and a1(k,q) from Eq. 4.15 using perturbation
theory with respect to the parameter t/ω assuming ω � t (strong coupling limit):

a0(k) = 1− 1
N

∑
q

γ2
k−q
ω2 (4.16)

a1(k,q) = γk−q
ω

.

In this approximation, the spectral function of the hole has the form (similar to Eq. 4.14)

Ak(E) = [a0(k)]2δ(E) + 1
N

∑
q

γ2
k−q
ω2 δ(E − ω). (4.17)
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Figure 4.6.: Comparison of energy spacing between first and second excitation state of polaron
scaling as a function of J/t ratio: (a) t-Jz model, (b) material-specific t-J model
defined by H+ in Eq. (4.5). In light gray the region of the J/t values relevant
for the Sr2IrO4 is shown: J = 0.06 eV, first neighbor hoppings takes values from
0.224 eV to 0.373 eV depending on the orbital character.

This equation includes two different types of internal excitations. As one can see from the
momentum dependence of the Reiter coefficients, the lowest excitation a0(k) has s-wave
character and represents a rather localized state of the hole. The second excitation a1(k,q)
is spatially more extended due to its proportionality to cos-functions, and the sign of the
coefficient changes as a function of momentum, which means that it is orthogonal to the first
term.

4.4.3. Relevance of the t-Jz ladder physics to Sr2IrO4

To show relevance of the above discussed theory to the case of Sr2IrO4, we have calculated
the scaling of the energy spacing between the first and second excited states on the positive
side of the tunneling conductance as a function of J/t ratio for the material specific t-J -like
model (4.5). It is known, that for the t-Jz model this energy spacing scales as t(Jz/t)2/3 [14],
see Fig. 4.6(a). As one can see on the Fig. 4.6(b), first energy gap calculated for model (4.5)
follows the same law in the region of parameters relevant to the real material Sr2IrO4 (shown
in light gray).

4.5. Conclusions
We have analyzed the STM/STS spectra of clean surfaces of Sr2IrO4. The observation of
nearly equidistant peak-like features in the spectrum indicates the direct coupling of the
tunneling carriers to specific internal excitations of the underlying antiferromagnetic Mott
system. The experimental results are compared with the calculated spectrum based on a
realistic spin polaron model which has been also used to consistently describe measured
ARPES spectra of Sr2IrO4. We find excellent agreement between the measurements and
theory.
We have investigated the excitations on the positive and negative sides of the tunneling

conductance spectra using SCBA. We conclude that for the positive bias, STS probes the
spin-polaron ladder spectrum resulting from the confinement of the hole in the AF background
as is well known from other anti-ferromagnetic Mott systems. The features on the negative
bias side shall be assigned to singlet and triplet states of the spin polaron arising from the
complicated multiplet structure of the charge excitations on the negative bias side. Thus, we
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have shown that STS can probe internal excitations of quasiparticles.
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CHAPTER 5

Spin-orbit interaction in Sr2IrO4:
jj vs LS coupling schemes
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5.1. Preface

5.1. Preface
The excellent agreement between the experimental and theoretical PES spectra on Sr2IrO4
discussed in the chapter 3 is both interesting and intriguing. Many theoretical works inspired
by Ref. [46] have assumed, following Ref. [46], that the superexchange model for Sr2IrO4 can
be derived by projecting the Kugel-Khomskii model (1.24) onto the SO basis (see section 1.5).
However, this is a valid approach only if the virtual intermediate doubly occupied states
considered in the second order perturbation theory can be well approximated by the 3T1, 1T2,
1E and 1A1 basis set. Such a basis set is defined by the full Coulomb Hamiltonian which
includes the 10Dq crystal field as well as the Hund’s coupling, but not SOC. In other words,
this approach is valid in the limit of crystal field and Hund’s coupling much larger than SOC.
Consequently, the multiplet structure of d4 configuration is well described by the LS coupling
scheme. This is indeed the assumption made in chapter 3 while deriving the t-J -like model
for Sr2IrO4.
Yet, for materials with large atomic number Z, such as Ir, SOC is expected to be larger

than the Hund’s coupling. It is well known that the electrostatic energy of an electron in the
field of atomic charge Ze scales as

λ̄ ∼
(
Ze2

~c

)2
me4

~2 . (5.1)

Thus, SOC scales as Z2, and naturally the heavier the atom, the more pronounced this effect
will be. It should be noted that SOC strength is often said to scale as Z4, which is not
precisely correct because once we consider spin-orbit coupling as a perturbation, we have to
average it over the non-perturbed state to calculate the energy. For an electron in the outer
shell, this implies that Eq. (5.1) should be multiplied by the probability of the electron being
in the proximity of the core, which scales as 1/Z2. Interested reader is referred to § 72 of the
Landau and Lifshitz textbook [65]. It is known that the LS coupling scheme holds well for
atoms in the iron group which includes Fe, Ni, Co [102]. For atoms in the platinum group
consisting of Ru, Rh, Rd, Os, Ir, Pt, there are increasing deviations from the LS coupling
scheme, and for heavier atoms such as Pb and Bi the LS coupling scheme is expected to fail.
As the relation of SOC to the electrostatic interaction increases with increasing atomic

number Z, neither L nor S are any longer good quantum numbers and the LS coupling scheme
breaks down. To estimate the relation between the electrostatic correlation and spin-orbit
coupling we evaluate the ratio [132]

χ = ξ

F2
, (5.2)

where ξ is SOC defined in Eq. (5.11) and F2 is a Slater integral connected to the Slater
parameter F (2) as F2 = F (2)/49 [93] for d2 configuration. The Slater parameters can be
evaluated using Racah parameters B and C [92, 93] as

F (2) = 49
(
B + 5

441F
(4)
)
, (5.3)

F (4) = 441
35 C. (5.4)

Adopting the values for Racah parameters of an Ir4+ ion in an octahedral crystal field from
Ref. [5] we get

F (2) = 35280 cm−1, (5.5)
F (4) = 26460 cm−1, (5.6)
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and the Slater integral F2 = 720 cm−1. Substituting ξ ≈ 0.4 eV ≈ 3226 cm−1, we get

χ ≈ 4.48. (5.7)

It is known that the LS coupling scheme is a good approximation for values χ . 1 [132].
Therefore, for the case of iridium the choice of the LS coupling scheme is questionable.

At the same time, caution must be exercised in the choice of the coupling scheme. For
example, the authors of Ref. [52] claim that 4d and 5d transition metal ions with t42g
configuration such as Re3+, Ru4+, Os4+ and Ir5+ realize a low-spin S = 1 state because of
relatively large Hund’s coupling JH, and therefore the multiplet structure should be calculated
within the LS coupling scheme. While it is likely to be true for Ru4+ as a 4d-element, which
is in fact the only element discussed in detail in Refs. [3, 18, 52], the validity of the statement
for heavier elements of the platinum group (e.g. TM ions with partly filled 5d shell) is not a
priori known.

In this chapter, therefore, we investigate the implications of the two coupling schemes in the
experimental observations on Sr2IrO4. In particular, we study theoretical ARPES and STS
spectra caclualated within the jj coupling scheme and compare them with the corresponding
results obtained earlier in chapters 3 – 4. This is particularly relevant in view of the fact that
a number of assumptions in the theoretical investigations of iridates have been doubted or
even proved wrong later on. For example, the number of nearest neighbor couplings required
to fit the magnon dispersion [59], and the critical role played by the in-plane rotations of
oxygen octahedra and distortions in resolving the puzzling behavior (see [15] and chapter 1).
We first discuss how LS and the jj coupling schemes appear in perturbation theory

calculations of the multiplet structure in section 5.2. In section 5.3, we discuss the case of
two holes on t2g shell relevant for theoretical modeling of the ARPES spectra of iridates.
After that in section 5.4 we discuss how the choice of the coupling scheme manifests itself in
the t-J model. We show how the kinetic Hamiltonian derived in chapter 3 describing hopping
of one electron from one site to another depends on the coupling scheme. In section 5.5,
the relevance of all these results to the calculation of ARPES spectra on Sr2IrO4 will be
discussed. Finally, the conclusions will be made in section 5.6.

5.2. Introduction
In the classical textbooks [23, 65, 102], computing the multiplet structure in both LS and
the jj coupling schemes has been discussed. Most of the textbooks deal with the LS coupling
scheme in some detail including the consideration of more sophisticated problems such as
possible violation of the Pauli principle in orbital configurations. However, not much attention
is usually paid to the jj coupling scheme [95]. Some authors discuss it in much greater detail
and even link the two coupling schemes [102]. However, details including basis transformations
of wave functions in both coupling scheme are often left out.

In short, the LS and the jj coupling schemes are two different ways to sum up the individual
spin or orbital momenta of electrons to obtain the total momenta J describing the system.
For a single atom in the lattice, there are two effects to consider: (i) interaction between one-
particle spin s and orbital l momenta j = l + s and (ii) electrostatic interaction between the
electrons (in particular, its direction-dependent, i.e. angular part):

L = l1 + l2 + ... , (5.8)
S = s1 + s2 + ... . (5.9)

Naturally, both of these effects have to be included into the full Hamiltonian describing the
system. In order to solve the full Hamiltonian one chooses to treat both effects perturbatively
since the exact solution requires immense computational power and is often not possible.
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Depending on the order of included perturbations, one or another coupling scheme is said
being used. Let us start with a full Hamiltonian in its general form

H = H̃+HSOC, (5.10)

where HSOC describes the sum of all the on-site spin-orbit interactions (1.32)

HSOC =
N∑
i=1

ξilisi, (5.11)

and H̃ is the full Schrödinger Hamiltonian

H̃ =
N∑
i=1

(
−1

2∇
2
ri
− Z

ri

)
+

N∑
i>j

1
rij

, (5.12)

where Z is the atomic number of the nucleus and N is the total amount of electrons in the
system.
Naturally, in a completely filled orbital, half of the electrons have spin up, the other half

spin down, therefore filled shells have zero contribution to the total S. Moreover, for each
electron on the orbital l with a quantum momentum ml there is an electron with the quantum
momentum −ml, so the filled shell contribution to the total L momentum is zero as well.
Therefore electrons in closed shells are not considered in the sum in Eq. (5.11). It should be
noted that in the limit of strong electron-electron correlation and under certain approximations,
e.g. neglecting inter-site electron-electron correlation and kinetic interactions between farther
neighbors Eq. (5.12) can be mapped onto the multiorbital Hubbard model (1.14).
The Hamiltonian (5.12) can be separated into a central field part, which includes kinetic

energy of all electrons, nucleus-electron Coulomb interaction and central-symmetric part S(ri)
of the Coulomb electron-electron repulsion

HCF =
N∑
i=1

(
−1

2∇
2
ri
− Z

ri
+ S(ri)

)
, (5.13)

and a residual Coulomb Hamiltonian

Hres =
N∑
i>j

1
rij
−

N∑
i=1

S(ri), (5.14)

describing the angular part of the Coulomb interaction between electrons. The relevant
energy scales are the on-site Coulomb repulsion U and Hund’s couping JH corresponding to
the Hamiltonians (5.13) and (5.14), respectively.
To solve Eq. (5.10), we invoke perturbation theory taking HCF to be the unperturbed

part of the Hamiltonian since usually in lattices HCF >> Hres and HCF >> HSOC. The
eigenstates of this unperturbed system are described by ψCF:

HCF |ψCF〉 = ECF |ψCF〉 , (5.15)

and define the electronic configuration ψCF = |n1 l1, n2 l2, ... , nNlN〉 where ni is a principal
quantum number of the i-th particle. Each electronic configuration |n1 l1, n2 l2, ... , nN lN〉
consists of

∏N
i=1 2(2li + 1) states, which are degenerate in the absence of the non-central-

symmetric part of the Coulomb interaction and SO interaction.
Depending on whether Hres > HSOC or HSOC > Hres the equations (5.11) and (5.14) would

be taken as the first and the second order perturbations. We consider two cases separately,
starting with the former.

65



Chapter 5. Spin-orbit interaction in Sr2IrO4: jj vs LS coupling schemes

5.2.1. LS coupling scheme
If Hres > HSOC, then the strongest perturbation to the eigenstates of HCF can be calculated
as 〈ψCF |Hres|ψCF〉. Electronic configurations then split into multiplet terms

ψLS = |γS MS LML〉 , (5.16)

characterized by the total orbital L and spin S momenta that fulfill

[Hres,L] = [Hres,S] = 0. (5.17)

Here ML,S is the projection of the L, S momenta on the quantization axis and |γ〉 stands
for a particular electronic configuration. One usually uses Latin letters to label states with
different L: S, P, D, F, G, H, I... refer to L = 0, 1, 2, 3, 4, 5, 6... , respectively. [102]. When
SOC is added as a further perturbation, each multiplet term splits into levels described by the
total momenta J = L + S. As an example, in Fig. 5.1 one can see the splitting of multiplets
for a p2 configuration which is also relevant for theoretical modeling of the ARPES spectra
of iridates as shown later in section 5.3. Such multiplet splitting is called fine structure and
can be measured for example in extended x-ray absorption edge fine structure (EXAFS).

J=0

J=1

J=2

J=2

J=0 J=0

J=2

J=2

J=1

J=0

jjLS

LS vs jj schemes
(j1,j2)

(3/2,3/2)

(1/2,3/2)

(1/2,1/2)

(L,S)

(0,0)

(2,0)

(1,1)

1S0

1D2

3P

3P2

--5
8

p2 p2

3P1
3P0

Figure 5.1.: Schematic representation of the multiplet structure for a p2 configuration in the
LS coupling scheme (left) and the jj coupling scheme (right). The mixing between
3P0 and 1S0 multiplets is schematically shown by dotted line (see section 5.4 for
details) For comparison, the energy reference has been chosen to be equal in
both coupling schemes.

The total momentum J can take values L+ S > J > |L− S|. In most cases, L > S and
then there are 2S + 1 different values of J , i.e. the level described by L, S under small SOC
would split into 2S + 1 different components. Therefore the number 2S + 1 is referred to as
multiplicity. In the rare cases of L 6 S the term would split into 2L+ 1 components, however
by multiplicity one would nevertheless mean 2S + 1. Depending on the multiplicity, terms
are referred to as singlet, doublet, triplet and so on. Multiplicity of the term is usually shown
as the left superscript of the term symbol 2S+1LJ (see Fig. 5.1).
In general, there are (2L + 1)(2S + 1) states included in one term 2S+1LJ which differ

from each other by values of ML and MS . Spin-orbit interaction cannot lift this degeneracy
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fully, so all of the 2J + 1 states described by different MJ have the same energy. Obviously,
applying SO coupling does not change the total amount of the states corresponding to a
particular term: ∑

J

(2J + 1) = (2S + 1)(2L+ 1). (5.18)

The degeneracy of MJ states can be further lifted by applying magnetic field.
It is important to note the order of the states. For a particular electronic configuration

containing indistinguishable electrons according to the empirical Hund’s rule the ground state
is the one with the largest possible for this configuration value of the total spin S and the
largest possible for this S value of the total orbital momentum L. If an electron configuration
is less than half-filled (i.e. n < 2l + 1), then the multiplets are ordered normally, i.e. the
component with smallest possible value of J = |L− S| has the smallest possible energy. If
the filling is more than a half (n > 2l + 1) then the lowest in energy level has the largest
possible J = L+ S and the multiplets are addressed as inverted.

5.2.2. jj coupling scheme
In the jj coupling scheme, one assumes HSOC > Hres and takes HSOC to be the strongest
perturbation to HCF. In practice this means that L and S are not good quantum numbers
anymore (i.e. they are not even forming good first order approximation to the unknown
eingenbasis of the total Hamiltonian (5.10)) and the total J momentum has to be calculated
as a sum of individual j momenta characterizing each electron. So, one has to first sum up
the individual moments of one electron:

ji = li + si , (5.19)

and then calculate the total momentum as

J = j1 + j2 + ... (5.20)

It is interesting to note that a mixed type of coupling takes place for atoms in highly exited
states: while the atomic core is in Russel-Saunders state, the highly excited electron(s) are
best described in jj coupling approximation [65]. This happens because an electron excited to
a state with much higher principal number n is a subject to reduced electrostatic interaction
due to the increased distance to the nucleus while the SO interaction does not depend on the
distance and remains constant.

5.3. Multiplet structure of the t2
2g configuration: Ir atom

Calculating the ARPES spectral function for Sr2IrO4 amounts to calculating the Green’s
function of the hole introduced into the AF j = 1/2 ground state in the photoemission process
(see chapter 3 for details). Since adding a hole (i.e. removing an electron) to the Ir4+ ion
leads to the 5d4 configuration, we are interested in the multiplet structure of the latter. In
the octahedral crystal field, the d shell splits into eg and t2g manifolds. Two holes residing
on a site with d4 configuration occupy the t2g manifold with effective orbital momentum
l = 1 per hole [1]. Therefore, the d4 configuration effectively mimics the p2 configuration (see
Fig. 5.1) which was discussed in subsection 5.2.1.

Calculating the multiplet structure for a p2 configuration depends on the coupling scheme.
In the LS coupling scheme, it amounts to first summing up the l and s momenta of all the
electrons and then summing up total L and total S momenta to a total J. In the jj coupling
scheme, one first sum up individual l and s momenta for an electron and then calculating
total J =

∑
i ji. It is important to note that even if the complete Hilbert space is considered,
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choice of the coupling scheme could have prominent consequences due to change in relative
energy splittings and composition of the multiplets.
Such effects on the kinetic energy term of Hamiltonian (3.9), i.e. eq. (3.11) and its

manifestation in theoretical ARPES and STS spectra are discussed in the following.

5.3.1. LS coupling scheme: high weight decomposition method
Let us start with the LS coupling scheme as used in chapter 3 and discuss it here in detail.
We want to establish an unambiguous link between |ασ〉 , |α′σ′〉 single particle basis (for two
holes) and the final multiplet set |S,MS , L,ML〉 where α, α′ = xy, yz, xz indicate the orbitals
occupied by the holes, and σ and σ′ stands for their spins.
First, we make a basis transformation from the |ασ〉 basis to the single-particle |lsmlms〉

basis as described in section 1.5.
Secondly, we want to construct the basis transformation to arrive at the total L and S.

In principle, one can try to use Clebsch-Gordan coefficients, however, one has to do it with
caution: Clebsch-Gordan tables are formulated for summation of momenta of two inequivalent
electrons. So, if we want to sum spins s1 and s2 of two electrons, they have to have some
degree of freedom to differentiate between them. If they were on two different sites, then the
position would do the job, if they are however on one site as in our case, they must reside
on different orbitals in order to be correctly treated by Clebsch-Gordan coefficients. Let’s
say we want to calculate the total spin momenta of two electrons residing on one orbital (i.e.
indistinguishable). We know that Pauli principle forbids any other state than one electron
with spin up, another one with spin down. But according to CGC (see appendix B for the
CGC table), two particles with s = 1/2, s′ = 1/2 and ms = 1/2, ms′ = −1/2 can form two
different states. So, bearing this in mind we avoid using CGC for two-particle configurations
and instead perform moment summation using the high weight decomposition method.

We start with the “high spin” state with the largest possible total spin S = 1 and highest
possible L for this S. Obviously, there are nine states with S = 1 and L = 1 which form the
3P multiplet. From them we choose the one with the maximum projections ML and MS :
ψLS1 = |S MS LML〉 = |1 1 1 1〉. In terms of single-particle second quantization operators
there is only one way this state can possibly be constructed:

ψLS1 = |1, 1, 1, 1〉 = c†0↑c
†
1↑ |0〉 , (5.21)

where c†ασ is an operator creating an electron on the leff = 1 orbital with ml = α and spin σ,
and the vacuum state |0〉 is defined as empty t2g shell. To construct the next possible state
we employ a ladder operator L̂−:

ψLS2 = L̂−ψLS1 . (5.22)

Using formula for the ladder operator known from textbooks (see for example Landau and
Lifshitz [65])

〈L,ML−1| L̂− |L,ML〉 =
√

(L+ML)(L−ML + 1), (5.23)

and normalizing (5.22) we get

ψLS2 = |1 1 1 0〉 = c†−1↑c
†
1↑ |0〉 . (5.24)

Now we can either apply L̂− once more or employ spin ladder Ŝ− operator instead. Let us
look at the effect of the latter:

|1 0 1 0〉 = Ŝ−ψLS2 = 1√
2

(
c†−1↓c

†
1↑ + c†−1↑c

†
1↓

)
|0〉 . (5.25)
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Having obtained all nine states of the 3P multiplet in this way we proceed by searching
for a state with the highest possible total orbital momentum. Since one has to place two
electrons on the same orbital to get total orbital momentum L = 2, they must have opposite
spins in order to obey Pauli’s principle. This state thus has L = 2, S = 0 and belongs to 1D
quintet. Again, for the state with the highest possible momentum, be it orbital or spin, there
is always one unique way to construct it:

ψLS10 = |0 0 2 2〉 = c†1↓c
†
1↑ |0〉 . (5.26)

It is important on this step to keep operator ordering convention consistent with that
used in (5.21). After we have obtained all five states of 1D multiplet using ladder operators,
we only need to find the last missing state: singlet 1S (full list of multiplets forming for a
particular electronic configuration can be found in many atomic physics book, see e.g. Table
2.1 in [102]). We know that 1S state shall have MS = 0 and ML = 0, but we do not know
what the quantum numbers L, S are. What we however know is that 1S state has to be
orthogonal to the other two states with MS = 0 and ML = 0, which are written as

|1 0 1 0〉 = 1√
2

(
c†−1↓c

†
1↑ + c†−1↑c

†
1↓

)
|0〉 , (5.27)

|0 0 2 0〉 = 1√
6

(
c†−1↓c

†
1↑ − c

†
−1↑c

†
1↓ + 2c†0↓c

†
0↑

)
|0〉 .

Since there can be no other combination of two creation operators creating a state with
both MS = 0 and ML = 0 other than the three used in (5.27) the missing state has to be
a combination of them as well and simultaneously orthogonal to the two states in (5.27).
Employing trivial linear algebra we get that the 1S multiplet is written as

ψLS15 = |0 0 0 0〉 = 1√
3

(
c†−1↓c

†
1↑ − c

†
−1↑c

†
1↓ − c

†
0↓c
†
0↑

)
|0〉 . (5.28)

Having obtained in this way all the states of new basis we can construct the matrix U1
that transforms the Hamiltonian Hls from the product state |l s ml ms〉 |l′ s′ m′l m′s〉 basis to
the total spin and orbital momentum |L S MLMS〉 basis:

HLSLS−basis = U †1Hls−basisU1, (5.29)

where

U1 =



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1√

2 0 0 0 0 0 0 1√
2 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1√

2 0 0 0 0 0 0 1√
6 0 0 1√

3
0 0 0 1√

2 0 0 0 0 0 0 − 1√
2 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1√

2 0 0 0 0 0 0 − 1√
6 0 0 − 1√

3
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

√
2
3 0 0 − 1√

3
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1√

2 0 0 0 0 0 0 1√
2 0 0

0 0 0 0 0 1√
2 0 0 0 0 0 0 − 1√

2 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



, (5.30)
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where the product state |l s ml ms〉 |l′ s′ m′l m′s〉 basis is defined as

â =



1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1



, (5.31)

where 1(0) means (un-)occupied state of the single particle Hilbert space defined by |mlms〉
as {|1 ↑〉 , |1 ↓〉 , |0 ↑〉 , |0 ↓〉 , |−1 ↑〉 , |−1 ↓〉}. The multiplet basis |S MS LML〉 is defined as

Â ={|1 1 1 1〉 , |1 1 1 0〉 , |1 1 1−1〉 , |1 0 1 1〉 , |1 0 1 0〉 , |1 0 1−1〉 , |1−1 1 1〉 , |1−1 1 0〉 ,
|1−1 1−1〉 , |0 0 2 2〉 , |0 0 2 1〉 , |0 0 2 0〉 , |0 0 2−1〉 , |0 0 2−2〉 , | 0 0 0 0〉}, (5.32)

so that
Â = U1â. (5.33)

After employing this transformation, we have effectively taken Hamiltonian (5.14) that
defines the first-order corrections to the eigenstates of the system into account. As discussed
in section 5.2.1, according to Hund’s rules the state with the lowest energy is the one with
the highest multiplicity and the highest possible L, i.e. in the first approximation the ground
state is the nine-fold degenerate 3P multiplet.
To account for further perturbations on the system, which in case of the LS coupling

scheme is the on-site spin-orbit coupling (5.11), we now have to go to the basis of total J
momenta. We truncate our Hilbert space down to the high spin 3P states only because we
are building the low-energy effective model. Since total spin S = 1 and orbital momenta
L = 1 are distinguishable by their nature, we can simply use the CG coefficients to sum them
up:

U2 =



0 0 0 0 1 0 0 0 0
0 1√

2 0 0 0 1√
2 0 0 0

1√
3 0 1√

2 0 0 0 1√
6 0 0

0 − 1√
2 0 0 0 1√

2 0 0 0

− 1√
3 0 0 0 0 0

√
2
3 0 0

0 0 0 1√
2 0 0 0 1√

2 0
1√
3 0 − 1√

2 0 0 0 1√
6 0 0

0 0 0 − 1√
2 0 0 0 1√

2 0
0 0 0 0 0 0 0 0 1



, (5.34)

arriving at the final Hamiltonian

HLSJ−basis = U †2H
LS
LS−basisU2 , (5.35)
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where HLSJ−basis is written in the spin-orbit coupled basis

Ĵ = {S, T1, T0, T−1,M2,M1,M0,M−1,M−2} , (5.36)

which consists of the lowest J = 0 singlet S, the higher J = 1 triplets Tσ (σ = −1, 0, 1, split
by energy λ from the singlet state) and J = 2 quintets (see section 3.3.3 and Fig. 3.1 for
detailed explanation).
To build an effective low-energy model we further truncate the Hilbert space and reduce

the basis set to the two lowest multiplets 3P0 and 3P1 (see Fig 5.1):

Ĵ = {S, T1, T0, T−1} . (5.37)

We note that reducing the Hilbert space down to J = 0 and J = 1 states is a well justified
physical cutoff since we are interested in the low-energy physics. However, mathematically
such a basis is incomplete, and a proper basis transformation between the product state basis
(Eq. 5.31) and multiplet basis (Eq. 5.32) can not be defined. Therefore we have considered
the full set of 15 configurations formed by two holes residing on the xy, yz and xz orbitals
while deriving transformations (5.30,5.34) and have implemented the cutoff only after we
arrived at the final basis set which is a good approximation to the eigenstates of the full
Hamiltonian.

5.3.2. jj coupling scheme
We now derive the basis transformation to connect Hamiltonian in the |ασ〉 , |α′σ′〉 independent
particle basis to the Hamiltonian defined in the basis of the total momenta J in the jj coupling
scheme. First, we use CGC to sum up the total momenta on each site

c†0↑c
†
1↑ |0〉 →

(√
2
3

∣∣∣∣32 1
2

〉
−
√

1
3

∣∣∣∣12 1
2

〉)(∣∣∣∣32 3
2

〉)
, (5.38)

where the latter is written in the |j mj〉 spin-orbit coupled single-particle basis. Since we
perform CG summation here independently for both electrons, we have to take Pauli principle
into account manually by projecting out forbidden states by hand. In the end, we arrive at
the following matrix:

U3 =



0 −
√

2
3 0 0 0 0 0 0 0 1√

3 0 0 0 0 0

0 1√
3 0 0 0 0 0 0 0

√
2
3 0 0 0 0 0

0 0 − 1√
3 0 0 0 0 0 0 0

√
2
3 0 0 0 0

0 0
√

2
3 0 0 0 0 0 0 0 1√

3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0√
2

3 0 0 0 −1
3

2
3 0 0 0 0 0

√
2

3 0 0 0
−2

3 0 0 0
√

2
3

√
2

3 0 0 0 0 0 1
3 0 0 0

0 0 0 0 0 0 0
√

2
3 0 0 0 0 0 1√

3 0
−1

3 0 0 0 −
√

2
3 −

√
2

3 0 0 0 0 0 2
3 0 0 0√

2
3 0 0 0 2

3 −1
3 0 0 0 0 0

√
2

3 0 0 0
0 0 0 0 0 0 0 − 1√

3 0 0 0 0 0
√

2
3 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1√

3 0 0 0 0 0
√

2
3

0 0 0 0 0 0 0 0 −
√

2
3 0 0 0 0 0 1√

3



,

(5.39)
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which is to be used as

Hjjjj−basis = U †3H
jj
ls−basisU3 (5.40)

to transform the Hamiltonian from the basis (5.31) into the individual j basis
∣∣j mj j

′ mj′
〉
:

ĵ =
{ ∣∣∣12 −1

2
1
2 ,

1
2

〉
,
∣∣∣32 3

2
1
2 ,

1
2

〉
,
∣∣∣32 3

2
1
2 ,−

1
2

〉
,
∣∣∣32 1

2
1
2 ,

1
2

〉
,
∣∣∣32 1

2
1
2 ,−

1
2

〉
,
∣∣∣32 −1

2
1
2 ,

1
2

〉
,∣∣∣32 −1

2
1
2 ,−

1
2

〉
,
∣∣∣32 −3

2
1
2

1
2

〉
,
∣∣∣32 −3

2
1
2 ,−

1
2

〉
,
∣∣∣32 1

2
3
2

3
2

〉
,
∣∣∣32 −1

2
3
2 ,

3
2

〉
,∣∣∣32 −1

2
3
2

1
2

〉
,
∣∣∣32 −3

2
3
2 ,

3
2

〉
,
∣∣∣32 −3

2
3
2

1
2

〉
,
∣∣∣32 −3

2
3
2 ,−

1
2

〉 }
. (5.41)

We employ now the high weight decomposition method introduced in section 5.3.1 in order
to obtain Hamiltonian (5.40) in the total J basis:

Ĵ ={S( 1
2 ,

1
2 )
, T

( 3
2 ,

1
2 )

1 , T
( 3

2 ,
1
2 )

0 , T
( 3

2 ,
1
2 )

−1 ,M
( 3

2 ,
1
2 )

2 ,M
( 3

2 ,
1
2 )

1 ,M
( 3

2 ,
1
2 )

0 ,M
( 3

2 ,
1
2 )

−1 ,

M
( 3

2 ,
1
2 )

−2 , S
( 3

2 ,
3
2 )
,M

( 3
2 ,

3
2 )

2 ,M
( 3

2 ,
3
2 )

1 ,M
( 3

2 ,
3
2 )

0 ,M
( 3

2 ,
3
2 )

−1 ,M
( 3

2 ,
3
2 )

−2 }, (5.42)

where S is singlet state, Tα represents a triplet state with J = 1, Jz = α, Mα signifies a triplet
state with J = 2, Jz = α and the superscript stands for (j1, j2). Basis (5.42) is equivalent
to (5.36) when cut down to the lowest 9 states and to (5.37) upon further truncation to
lowest 4 states. We start from the state with highest possible MJ = 2. The state with the
highest total momenta J = 2 can be constructed either by placing one electron on the j = 3

2
state with energy λ = ξ/2 and one electron on the 1

2 state or by placing two electrons on
j = 3

2 quartets both having energy λ = ξ/2 so that a two-particle state has energy λ = ξ.
Let us start with a state that is lower in energy

ψjj5 = |J = 2MJ = 2〉(
3
2 ,

1
2 ) =

∣∣∣∣32 3
2

1
2

1
2

〉
. (5.43)

Applying ladder operator J− and normalizing the result we obtain the next state

ψjj6 = |J = 2MJ = 1〉(
3
2 ,

1
2 ) =

√
3

2

∣∣∣∣32 1
2

1
2

1
2

〉
+ 1

2

∣∣∣∣32 3
2

1
2 −

1
2

〉
. (5.44)

Once we have obtained five possible J = 2 states we consider the other |J = 2MJ = 1〉
configuration formed by two electrons in the j = 3

2 quartet:

ψjj11 = |J = 2MJ = 2〉(
3
2 ,

3
2 ) =

∣∣∣∣32 1
2

3
2

1
2

〉
. (5.45)

Note that once chosen, the ordering convention has to be followed since fermionic operators
anticommute.

We perform the rest of the derivation analogously to that in section 5.3.1 and arrive at the
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basis transformation

U4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0

√
3

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0

0 −1
2 0 0 0

√
3

2 0 0 0 0 0 0 0 0 0
0 0 1√

2 0 0 0 1√
2 0 0 0 0 0 0 0 0

0 0 − 1√
2 0 0 0 1√

2 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0
√

3
2 0 0 0 0 0 0 0

0 0 0 −
√

3
2 0 0 0 1

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 − 1√

2 0 0 1√
2 0 0

0 0 0 0 0 0 0 0 0 1√
2 0 0 1√

2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (5.46)

The final Hamiltonian than can be obtained as

HjjJJ−basis = U †4H
jj
jj−basisU4. (5.47)

5.4. Manifestation of the coupling scheme in the t-J model
Naturally, once having obtained the kinetic part of the t-J model (3.9) in LS (Hamilto-
nian (5.35)) and jj (Hamiltonian (5.47)) coupling schemes, one would want to check if there
are any differences and if so then how dramatic are they. Applying basis transformations in
the LS coupling approximation from section 5.3.1 to the Hamiltonian derived from Eq. (3.8)
as 〈5d4

i 5d5
j |HTB|5d5

i 5d4
j 〉 followed by slave-fermion, Holstein-Primakoff, Fourier, and Bogoli-

ubov transformations one arrives at Hamiltonian (3.11), see section 3.3.3 for details. In
similar fashion we derive the kinetic Hamiltonian using basis transformation derived within jj
coupling approximation in section 5.3.2:

Hj−jt =
∑

k

(
h†kAŴ

0
khkA+h†kBŴ

0
khkB

)
+
∑
k,q

(
h†k-qBŴ

α
k,qhkBα

†
q+h†k-qAŴ

β
k,qhkBβ

†
q+h.c.

)
.

(5.48)

One can see that it has similar structure to Hamiltonian (3.11), however the terms Ŵ 0
k

describing the nearest, next nearest, and third neighbor free hopping, and the vertices
Ŵα

k,q and Ŵ β
k,q describing the polaronic hopping are different from V̂ 0

k , V̂ α
k,q and V̂ β

k,q in
Eqs. (3.12 – 3.14). The free hopping matrix now reads

Ŵ 0
k =



3
2F1 0 −

√
3
2F2 0 0

√
3
2P2 0 −

√
3
2P1

0 F4 0 0
√

3
2P1 0 Q1 0

−
√

3
2F2 0 F3 0 0 Q2 0 Q1

0 0 0 0 −
√

3
2P2 0 Q2 0

0
√

3
2P1 0 −

√
3
2P2

3
2F1 0

√
3
2F2 0√

3
2P2 0 Q2 0 0 0 0 0
0 Q1 0 Q2

√
3
2F2 0 F3 0

−
√

3
2P1 0 Q1 0 0 0 0 F4



, (5.49)
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while the matrices containing vertices are

Ŵα
k,q =



0
√

3
2L3 0 −

√
3
2L3

3
2Y1 0 −

√
3
2W2 0√

3
2L3 0 L1 0 0 Y4 0 W1

0 L1 0 L1 −
√

3
2W2 0 Y2 0

−
√

3
2L3 0 L1 0 0 W1 0 Y3

0 0 0 0 0
√

3
2L4 0 −

√
3
2L4

0 0 0 0
√

3
2L4 0 L2 0

0 0 0 0 0 L2 0 L2

0 0 0 0 −
√

3
2L4 0 L2 0



, (5.50)

and

Ŵ β
k,q =



0
√

3
2L4 0 −

√
3
2L4 0 0 0 0√

3
2L4 0 L2 0 0 0 0 0
0 L2 0 L2 0 0 0 0

−
√

3
2L4 0 L2 0 0 0 0 0

3
2Y1 0

√
3
2W2 0 0

√
3
2L3 0 −

√
3
2L3

0 Y3 0 W1
√

3
2L3 0 L1 0√

3
2W2 0 Y2 0 0 L1 0 L1

0 W1 0 Y4 −
√

3
2L3 0 L1 0



. (5.51)

The matrices are written in the basis (5.37) where additionally the sublattice index A/B
accounting for the AF order has been introduced:

Ĵ = {SA, T1A, T0A, T−1A, SB, T1B, T0B, T−1B} . (5.52)

Comparing Eqs (5.49 – 5.51) with Eqs. (3.12 – 3.14) one can see directly that changing
the coupling scheme results in renormalization of free-polaron dispersion Ŵ 0

k and vertices
Ŵα

k,q and Ŵ β
k,q, in particular of those entries in the matrix that describe propagation of the

polaron with a singlet SA,B character. The coupling scheme seem to have a particular way of
manifesting itself in the structure of the t-J model: each term of kinetic Hamiltonian (3.11)
containing h†S (A,B) (hS (A,B)) operator gets a factor of

√
3
2 while those containing two of

singlet creation (annihilation) operators get a factor of 3
2 .

Actually, there is a mixing of the two J = 0 states 3P0 and 1S0 as one goes from the LS to
the jj limit which explains the observed renormalization. This mixing is shown schematically
in Fig. 5.1 with dotted lines. One knows that the coupling scheme can not result in the change
of the number of multiplets or appearance of new multiplets so there exists a misconception
that the coupling scheme cannot influence the eigenstates of the system at all. However, the
choice of the coupling scheme can have interesting consequences for the low-energy effective
model.
In fact, the same renormalization effect would be also observed for a hole in the material

with t12g configuration in ground state and strong on-site SOC for any geometry and choice
of hopping parameters (see Fig. 3.2). For example, deriving a t-J model for a honeycomb
iridates with one hole which forms the many-body d4 configurations as well, one would get the
same renormalization of the kinetic Hamiltonian when going from LS to jj limit, even though
the motion of free charge on the honeycomb lattice is described by a completely different TB
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model: the hoppings between different orbitals are much larger than the hoppings between
the same ones and they are moreover strongly bond-dependent [34].
Naturally, there will be a mixing between the two J = 2 states, 1D2 and 3P2, as well.

However, we do not consider it here in detail since we are not interested in the higher energy
levels. It is also omitted from Fig. 5.1 for clarity.

In fact, the correspondence between the multiplets ψLSS L J MJ
and ψjjj j′ J MJ

obtained within
the LS and jj coupling schemes can generally be described as [102]:

ψjjJ MJ j j′ =
∑
L,S

(
ss′[S]ll′[L]J |sl[j]s′l′[j′]J

)
ψLSS MS L ML

. (5.53)

Since the transition between LS and the jj coupling scheme is a change of the scheme of
summation of four angular momenta, transformation coefficients in (5.53) can be expressed
in terms of 9j symbols [102]:(

ss′[S]ll′[L]J |sl[j]s′l′[j′]J
)

= (−1)S+L−J+s+l−j+s′+l′−j′ (
ll′[L]ss′[S]J |ls[j]l′s′[j′]J

)
=

=
√

(2S + 1) (2L+ 1) (2j + 1) (2j′ + 1)


l l′ L
j j′ J
1
2

1
2 S

 . (5.54)

The values of the factor 
l l′ L
j j′ J
1
2

1
2 S

 = A
(
SLJ ; jj′J

)
(5.55)

are given, for example, in table (5.23) of Ref. [102] or in Ref. [75].
Calculating the transformation coefficients (5.54), although straightforward, may demand

tedious computations. Let us, however, explicitly calculate how ψjj0 0 1
2

1
2
transforms into the

ψL−SS L J MJ
basis to understand the renormalization we observed in Eqs. (5.49 – 5.51):

ψjj0 0 1
2

1
2

=
√

(2S + 1) (2L+ 1)
(

2 · 1
2 + 1

)(
2 · 1

2 + 1
)
·A (S L 0; 0 0 0) . (5.56)

Using table (5.23) of [102] we calculate the values of A (S L 0; 0 0 0) and arrive at

ψjj0 0 1
2

1
2

= 1√
3
ψL−S0 0 0 0 +

√
2
3ψ

LS
1 1 0 0, (5.57)

i.e.

ψjj0 0 1
2

1
2

= 1√
3
ψ
(

1S0
)

+
√

2
3ψ

(
3P0

)
. (5.58)

Indeed, the singlet state in the jj coupling scheme gets only
√

2
3 of the spectral weight of

the singlet derived in the LS coupling scheme. This renormalization is compensated by the√
3
2 factors arising in Eqs. (5.49 – 5.51). The physical consequences of this renormalization we

will see in the next section where the theoretical ARPES spectra for Sr2IrO4 will be explored
in both coupling schemes.

5.5. Influence of the coupling scheme choice on the Sr2IrO4
theoretical spectral function

Having obtained the vertices Eqs. (5.49 – 5.51) describing the propagation of the polaron
in Sr2IrO4, we can now calculate the Green’s functions of the polaron and plot its spectral
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(a) (b)

(c) (d)

Figure 5.2.: Theoretical PES spectral function of the low-energy (polaronic) models developed
for the square-lattice iridates within the jj coupling scheme and solved using the
self-consistent Born approximation. The value of Coulomb splitting ∆ varies
so that singlet-triplet splitting λ− 5/8∆ is (a) λ, (b) 0.5λ, (c) 0.25λ. Spectral
function calculated within the LS coupling scheme is shown on (d) for comparison
(see also Fig. 3.3). Here spin-orbit coupling λ = ξ/2 where one-particle SOC
ξ = 0.382 eV following Ref. [58]; hopping integrals calculated as the best fit
to the density functional theory (DFT) band structure as discussed in section
3.3.2: t1 = −0.2239 eV, t2 = −0.373 eV, t′ = −0.1154 eV, t3 = −0.0592 eV,
t′′ = −0.0595 eV; spectra offset by (a) – (c) E = −0.97 eV, (c) E = −0.77 eV;
broadening δ = 0.01 eV.

function whithin SCBA. The only remaining problem is that we do not know the exact value
of splitting ∆ between ψjj1 M 1

2
3
2
and ψjj2 M′ 1

2
3
2
(see Fig. 5.1) which depends on the Hund’s

coupling JH. Therefore, we take ∆ as a free parameter and perform calculations for four
values of ∆ such that the value of singlet-triplet splitting λ− 5/8∆ takes values between λ
and λ/4 (see Fig. 5.2).

There have been plenty of ARPES experiments recently revealing the shape of the iridate
spectral functions [12, 16, 54, 61, 69, 83, 109, 113, 123], see chapter 3 for more details. Upon
comparison with the experiment, one can see that the experimentally observed maximum at
Γ point at 0.35 – 0.45 eV below Fermi level is not present on the theoretical spectral function
calculated within the jj coupling for any choice of Coulomb ∆. However, as ∆ increases, the
comparison becomes better. One could expect that for ∆ larger than λ, comparison would be
even better, however in this case using the jj coupling scheme is not applicable anymore and
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(a) (b)

Figure 5.3.: Free and polaronic contributions to the spectrum in Fig. 5.2(a). (a) Theoretical
photoemission spectral function with only propagation of the hole not coupled
to magnons allowed as achieved by setting Ŵα

k = Ŵ β
k ≡ 0. (b) Theoretical

photoemission spectral function with only polaronic propagation via coupling
to magnons allowed (i.e. no free dispersion) as achieved by setting Ŵ 0

k ≡ 0.
Parameters as in Fig. 5.2.

the LS coupling scheme has to be used instead. Indeed, comparing Fig. 5.2(d) obtained for a
t-J model derived within LS coupling scheme to the experiment we note excellent agreement.

It is interesting to note, that most prominent changes in the spectral function within
the jj coupling scheme is the larger relative shift of the quasiparticle peak. Although this
depends on the singlet-triplet splitting, it is not fully defined by it. Thus, even in the case of
unrealistically small gap of λ/4 (shown in Fig. 5.2(c)) one observes significant band shifting
as compared to the spectral function calculated within the LS coupling scheme (Fig. 5.2(d)).
In fact, the significant shift of the quasiparticle peak can be understood as an effect of the
renormalization of the polaronic coupling discussed in section 5.4. As can be seen in Fig. 5.3
the coupling scheme has a stronger influence on the polaronic part of the spectra (Fig. 5.3(a))
rather than on the free part (Fig. 5.3(b)). Indeed, the hole of a singlet character has a biggest
contribution to the low-energy band (see Fig. 5.4) and when the strength of its coupling to
magnons is increased by a factor of 3

2 , the band gets additionally renormalized, thus indicating
the importance of the polaronic processes. It is also interesting to note that there is less
quasiparticle weight from J = 1 sector as compared to the LS coupling scheme (compare
Fig. 5.4(b) and Fig. 3.5(b)).
Apart from the photoemission spectra, the two coupling schemes can also influence the

theoretical STS spectra. In Fig. 5.5, we see the ramifications of the jj coupling scheme used in
the calculation of tunneling conductance. We see that the the distance between two primary
peaks, corresponding to singlet and triplet charge excitation, on the negative side of the
spectra calculated within the jj coupling scheme is quite large, whereas in the experiment
the peaks are close to each other and even appear merging. The STS data on Sr2IrO4 are
in general featureless compared to the ARPES data, but we nevertheless see that the LS
coupling scheme (Fig. 4.4) gives much better agreement to experiment than the jj scheme
(Fig. 5.5). We note, that the theoretical spectra for positive bias are not affected, since adding
extra electron to the ground state of Sr2IrO4 creates a polaron which does not posses internal
multiplet degree of freedom (see section 4.4.1 for a detailed discussion).
It is known that for ions with intermediate strong SOC, ground state multiplets are in

general much better captured by LS coupling scheme than the excited states [132]. Thus, for
rare-earth compounds which have ξ ≈ 1 − 10, LS coupling usually describes quite well the
experimentally measured lowest multiplet but not higher states. For example, for Er+3 ion,
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(a) (b) (c)

Figure 5.4.: (a) A zoom-in into theoretical photoemission spectral function of Fig. 5.2(a). (b,
c) As panel (a) but J-resolved – with (b) showing the J = 0 contribution (motion
of a “singlet hole”) and (c) the J = 1 contribution (motion of a “triplet hole”).

which has a value of ξ ≈ 5.53 close to Ir, the ground-state wave function is given by

|ψGS〉 = 0, 982|4I〉 − 0, 186|2K〉 ≈ |4I15/2〉 . (5.59)

i.e. the ground state is indeed well described by the LS coupling scheme. However, already
for the highest exited multiplet in the same term we have

|ψ1〉 = 0, 627|4I〉 − 0, 416|2K〉 − 0, 342|2G〉 − 0, 219|2H〉+ 0, 276|2G′〉+ 0.438|2H ′〉 . (5.60)

We see that the multiplet 4I, which according to the LS coupling scheme should describe
|ψ1〉, has in fact only 39% contribution in the corresponding excited wave function.
Most of the SO driven strongly correlated materials lie in the intermediate spin-orbit

coupling regime rather than in the extreme well defined by the LS or jj coupling schemes [102].
In fact, knowledge of the composition of the low-energy states and the relative energy splittings
unambiguously dictates which coupling scheme is appropriate. For example, for one hole
doped Sr2IrO4, if the orbital moments in the ground state is 〈Lz〉 ≈ 0.9, the system is well
described by the LS coupling scheme. On the other hand, 〈Lz〉 ≈ 0.7 would suggest that the
jj coupling is to be used. In the absence of such concrete experimental signatures, one needs
to resort to indirect verification of a suitable theoretical model.

It is also important to note that, in the case of Ir, the first excited state 3P1 is not affected
by the coupling scheme choice as there exist a unique J = 1 state. However, this is not
the case for, i.e., p3 and p4 configurations. In p3 configuration, two lowest multiplets, 4S 3

2
and 4D 3

2
, can in general mix with each other as well as with higher lying 3P 3

2
. In the p4

configuration, where the order of some states is inverted as compared to the p2 configuration,
the first two excited multiplets 3P0 and 3P2 do change places upon going from one coupling
scheme to another [102], probably rendering more pronounced changes in the theoretical
description. One can in general expect much bigger ramifications of the coupling scheme
choice in the cases where the excited states are renormalized, since under the same values of
SOC they usually do get renormalized much more than the ground state, as exemplified by
Eqs. (5.59) – (5.60).

We note, that in case of strong distortions deviations from presented here results may occur
since distortions can cause additional mixing of the states [10], and, even more importantly,
the renormalization of the Clebsch-Gordan coefficients [46].
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Figure 5.5.: Tunneling conductance spectra for the a surface: Experiment is shown in brown,
theoretical spectra spectra calculated within jj coupling scheme – in black.
Additionally, J-resolved calculated spectra is shown, with blue corresponding to
charge excitations with total angular momenta J = 0 and red to J = 1. The
spectra are offset by E = −1.1 V (negative side) and E = 1.52 V (positive side).
Such an offset is required to account for the chemical potential which is not taken
care of in the polaronic models. Broadening of 10 mV was used.

5.6. Conclusions

In conclusion, we have studied how the choice of the coupling scheme can influence the
multiplet structure and consequently the low-energy effective model in spin-orbit driven
correlated materials. Although, the choice of the coupling scheme and the effective low-energy
model can be guided by the knowledge of the composition and relative energy splittings of
the multiplets, in the absence of such experimental and/or quantum chemistry studies, the
validity of the same must be ascertained.

For the case of p2 configuration relevant for Sr2IrO4,we have investigated the implications
of the two coupling schemes in the effective low-energy models and theoretical ARPES and
STS spectra of Sr2IrO4. We have shown that for a t-J -like model for Sr2IrO4, the jj coupling
scheme induces renormalization of the vertices in the kinetic part of the Hamiltonian and
prominent changes in the spectral function calculated within SCBA. We have compared
spectra calculated in both coupling schemes to the experimental ARPES data on Sr2IrO4 [12,
16, 54, 61, 69, 83, 109, 113, 123]. Interestingly, despite large SOC, we find much better
agreement to the experiment for the model derived within the LS coupling scheme. We argue
that just as well as for many rare-earth compounds, which have comparable SOC strength,
the spin orbit coupling albeit strong is yet weak enough to allow for successful description of
the ground state in the framework of the LS coupling scheme.

For other electronic configurations, such as p3 or p4, where all of the low-energy multiplets
are renormalized as we go from LS to jj coupling scheme, more dramatic consequences are
expected in the theoretical ARPES and STS spectra.

Presented here analysis highlights the importance of careful choice of the coupling scheme
while deriving low energy-effective model since an ill-motivated choice can significantly affect
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the results. Furthermore, the analysis also suggests that the superexchange model for Sr2IrO4
can be derived by simply projecting the Kugel-Khomskii model (1.24) onto the spin-orbit
coupled basis as done in e.g. Ref. [46].
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A.1. Dependence of the results on the model parameters

In this appendix we discuss in greater details the spectral function of the spin-orbit exciton
discussed in chapter 2. In appendix A.1 we discuss how the spectral function of the exciton
depends on the model parameters and in appendix A.2 we present a toy model that sheds
light on the peculiar shape of this spectral function, e.g. we discuss which physical processes
are responsible for such features of the spectral function as minimum at the Γ point.

A.1. Dependence of the results on the model parameters

(a) (b) (c)

(d) (e) (f)

Figure A.1.: Dependence of the spin-orbit exciton spectral function on the parameters of the
model [Eq. (4) in the main text of the paper]: on-site spin-orbit coupling λ, the
on-site energy gap between the |jz| = 1/2 and |jz| = 3/2 excitons ∆BC , and the
Jahn-Teller coupling constant V and κ: (a) λ = 6.67J1, (b) ∆BC = 1.86J1, (c)
V = 0.4J1, (d) V = 1.6J1, (e) κ = 0.025, (f) κ = 0.4. If not specified above, all
other model parameters are as in the main text of the paper (cf. caption of Fig.
2). Letters ‘A’, ‘B’, ‘C’ in panel (a) denote three main spectral features of the
spectrum – see text for further details.

The parameters we vary to analyse changes of the spin-orbit exciton spectral function as
calculated within the model discussed in chapter 2 are: the on-site spin-orbit coupling λ, the
on-site energy gap between the |jz| = 1/2 and |jz| = 3/2 excitons (following the notation
used in Ref. [58] we call it ∆BC below), and the Jahn-Teller coupling constants V and κ. We
note, that the results for different choices of the superexchange parameters can already be
inferred from Refs. [58, 59].

In Fig. A.1(a) the excitonic spectrum is shown for the value of λ = 6.67J1 (which corresponds
to one of the proposed values of λ = 400 meV [54] for Sr2IrO4). We see that increasing the
value of the spin-orbit coupling with respect to the one chosen in the main text of the paper
leads to a merely modest shift of the spectral weight to higher energies without a significant
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change of the shape of the spectra. The decrease of the on-site energy gap between the
|jz| = 1/2 and |jz| = 3/2 excitons from its main-text value of ∆BC = 2.29J1 to ∆BC = 1.86J1
(which follows from the crystal field splitting ∆ = −155 meV as suggested for Sr2IrO4 by e.g.
Ref. [10]), cf. Fig. A.1(b), leads to a small shift of the spectrum and also slightly renormalises
the spectral weight, especially around (π, 0).

In Fig. A.1(c)-A.1(f) the dependence of the excitonic spectrum on the Jahn-Teller coupling
constants is shown. Since the values of the Jahn-Teller coupling constants are rather hard to
estimate and to the best of our knowledge no estimates are available for Sr2IrO4, we vary
these values in a rather wide range. First we take V twice smaller than the one used in
the main text of the paper, V = 0.4J1, and keep κ unchanged. As we see in Fig. A.1(c)
such change affects the spectra in the following way: the middle feature [denoted as ‘B’ in
Fig. A.1(a)] shifts to the lower energies, separates more from the the highest one [denoted as
‘C’ in Fig. A.1(a)], and forms a clear maximum at the Γ point. Next, if we make V twice
larger w.r.t. the value suggested in the main text of the paper [see Fig. A.1(d)], then the
effect is exactly opposite: feature B shifts to higher energies, almost merges with C and
some spectral weight shifts from feature B to C. Finally, as one varies κ, one sees almost no
changes for a smaller value of κ w.r.t. the value suggested in the main text of the paper [see
Fig. A.1(e)], while for a relatively large κ there is a relatively large shift of the spectral weight
from feature B to C. It should also be noted that increasing the strength of the Jahn-Teller
couplings (by making either V or κ larger) leads to a larger dispersion relation of all the
features.
Altogether we conclude that there are rather severe constraints on the possible realistic

values of these parameters, provided that the spectrum is intended to describe the excitonic
propagation in one of the quasi-2D iridates (such as e.g. Sr2IrO4). Moreover, the changes in
the excitonic spectrum, due to the small variations in λ or ∆BC , are rather small. On the
other hand, the values of the Jahn-Teller constants in the iridium oxides are rather hard to
estimate and the large variations in the values of the Jahn-Teller constants may indeed lead
to some more substantial changes in the shape of the excitonic spectrum. Nevertheless, such
changes are never as substantial as to completely alter the main qualitative features of the
excitonic spectrum: the mere existence of the three main features (A, B, C) as well as the
generic features of their dispersion relations.

A.2. Understanding the free excitonic hopping arising from the
Jahn-Teller model

In order to better understand the interplay of polaronic and free hopping processes in the
Jahn-Teller and superexchange models, we introduced a toy model which is based on the
above-written polaronic form of the Jahn-Teller model – though with modified polaronic and
free hopping couplings in the following way:
First of all, we assume that the longer range exchange between the jeff = 1/2 magnons

vanishes, i.e. J2 = J3 = 0. Secondly, we assume a diagonal form of the matrix describing
the polaronic hopping: m̂ JT → I. Next, we consider four different forms of the free hopping
processes as described below.

In the first place, we put Ê JT
k → 0 – the corresponding spectral function, calculated using

SCBA (see main text of the paper), is shown in Fig. A.2(a). It is interesting to note that
adding a next-nearest-neighbor free excitonic hopping with only diagonal elements between
different flavors of the excitons, i.e. substituting Ê JT

k → zV I·|γ2k| (where γ2k = cos kx cos ky),
does not change the generic features of the spectral function a lot, see Fig. A.2(b). Since
the latter case qualitatively resembles the superexchange model for the excitonic hopping,
as discussed in Ref. [58] and in the main text of the paper, this means that within the
superexchange model the polaronic and the free hopping are responsible for the qualitatively
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similar features in the spectral function. This is because, in the superexchange case both
the polaronic and the free hopping allow for an effectively next-nearest-neighbor type of the
excitonic dispersion.

(a) (b)

(c) (d)

Figure A.2.: Toy model illustrating the interplay between the polaronic hopping and the
various types of the free excitonic hopping: (a) no free hopping, (b) diagonal
free hopping of next-nearest-neighbor type, (c) off-diagonal free hopping of
next-nearest-neighbor type, (d) off-diagonal free hopping of nearest-neighbor
type; see text for further details. The solid line denotes the dispersion arising
from pure free hopping (i.e. the polaronic hopping is not included).

In the next step, we switch off the diagonal terms in the matrix describing the free excitonic
hopping and instead introduce the off-diagonal free hopping – in order to mimic the Jahn-
Teller model. More precisely, we substitute Ê JT

k → zV A · |γ2 k|, where matrix A has the
form:

A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (A.1)

As one can easily see in Fig. A.2(c), involving the non-diagonal elements in the free hopping
matrix instead of the diagonal ones drastically changes the spectrum – in particular, each of
the two dispersive branches splits now into two branches. Finally, the spectrum in Fig. A.2(d)
is calculated for a toy model which also has the off-diagonal free hopping elements in the
matrix – however, instead of the next-nearest-neighbor hopping it includes solely the nearest-
neighbor hopping [i.e. we substitute Ê JT

k → zV A · |γ k|]. We note that the latter case of the
toy model is the closest (out of all four toy models discussed) to the considered in the main
text Jahn-Teller model.
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One can see that the spectra in Figs. A.2(c) and A.2(d) have slightly more in common
than the spectra in Figs. A.2(b) and A.2(c). This means that the presence of the off-diagonal
hopping elements in the free excitonic hopping plays an even more important role in the
propagation of the exciton, than the type of the free excitonic hopping dispersion (i.e. whether
it is of the nearest- or next-nearest-neighbor character).

Altogether, we have shown that the particular features found in the excitonic spectrum of
the Jahn-Teller model, which make it so different with respect to the superexchange model,
originate from: (i) the nearest-neighbor-character of the free hopping that is always present
in the Jahn-Teller Hamiltonian and has no analog in the superexchange model, and (ii) the
off-diagonal elements in the free hopping matrix – which is also absent in the superexchange
case.
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Clebsch-Gordan Coefficients
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Figure B.1.: Clebsch-Gordan coefficients table reproduced from Ref. [31]
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