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The mixed-criticality toolbox promises system architects a powerful framework for
consolidating real-time tasks with different safety properties on a single computing
platform. Thanks to the research efforts in the mixed-criticality field, guarantees pro-
vided to the highest criticality level are well understood. However, lower-criticality
job execution depends on the condition that all high-criticality jobs complete within
their more optimistic low-criticality execution time bounds. Otherwise, no guaran-
tees are made. In this paper, we add to the mixed-criticality toolbox by providing
a probabilistic analysis method for low-criticality tasks. While deterministic models
reduce task behavior to constant numbers, probabilistic analysis captures varying run-
time behavior. We introduce a novel algorithmic approach for probabilistic timing
analysis, which we call symbolic scheduling. For restricted task sets, we also present
an analytical solution. We use this method to calculate per-job success probabilities
for low-criticality tasks, in order to quantify, how low-criticality tasks behave in case
of high-criticality jobs overrunning their optimistic low-criticality reservation.
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1 Introduction

Mixed-criticality systems [1] promise size, weight and power savings by consolidating safety-
critical tasks with different certification requirements on a single computing platform. Examples
can be found in many traditional and emerging application scenarios.
Drones for wood-fire detection combine flight control and image processing subsystems on one

platform [2]. However, the image processing and classification tasks may be dropped to free up
resources for the tasks concerned with flying and landing the vehicle safely. Other examples can be
found in autonomous cars, where complex trajectory finding and obstacle avoidance algorithms [3]
may have to yield resources to simpler safety-preserving fail-safes such as stopping the car before
hitting an obstacle.
Often the assignment of tasks to criticality levels follows the separation between safety-critical

and mission-critical functionality. Under normal operating conditions, both safety requirements
and the mission objective should be accomplished. But whenever safety is at risk, mission-related
functionality may be sacrificed.
To formalize such systems and to reason about their behavioral properties, mixed-criticality was

invented. It allows designers to rank tasks by criticality levels, which expresses the confidence in
task parameters such as worst-case execution times and also indicates, which tasks to drop in case
a subset of these task parameters are violated at runtime. Highly critical tasks with high parameter
confidence can then be isolated from lower-criticality tasks with relaxed parameter confidence.
System designers can use this formalism to meet two otherwise competing goals: criticality

levels provide the separation needed for safe operation, while the admission of low-criticality tasks
according to more optimistic task parameters provides the resource sharing needed for efficient
operation.
A large body of research has explored many aspects of the mixed-criticality toolbox [4]. In this

paper, we contribute new analysis results for the following mixed-criticality scheduling discipline:
When a high-criticality job overruns its more optimistic low-criticality execution time bound, all
low-criticality tasks drop in priority, so any task with higher criticality takes precedence. Demoting
the priority of low-criticality tasks constitutes a straightforward extension of the classical Adaptive
Mixed-Criticality (AMC) [5] scheduling discipline, which drops low-criticality jobs altogether
after an execution time overrun of a high-criticality job.
Classical mixed-criticality scheduling is based on deterministic worst-case assumptions, which

are pessimistic, because at runtime job parameters are rarely constant, but follow a distribution.
We present a probabilistic analysis method to capture such varying job behavior. Our task model
expresses job execution using a probabilistic execution time distribution. We describe the task
model in Section 3.
This paper presents two approaches to provide probabilistic guarantees for low-criticality tasks.

Our goal is to quantify, how low-criticality tasks behave in case of high-criticality jobs overrunning
their optimistic low-criticality reservation. We calculate probabilities for jobs of low-criticality
tasks meeting their deadline when the system operates in high criticality mode. We make the
following contributions:

1. In Section 4, we present an analytical solution for restricted task sets with criticality-monotonic
priority assignment and harmonic periods.
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2. For general task sets with arbitrary periods and priority assignments, we introduce in Sec-
tion 5 an algorithmic analysis approach we call symbolic scheduling. The algorithm ex-
tends the restricted analytical solution and is comparable to a specialized model checker,
which symbolically evaluates possible schedules. It supports constrained deadline systems
as well as changing priorities at job releases times and in case of criticality misses. Sym-
bolic scheduling is thus applicable to a wider range of existing mixed-criticality scheduling
regimes. We also describe purpose-built optimizations to curb the combinatorial explosion
usually occurring when traversing all possible schedules.

In Section 6, we evaluate our analysis using randomly generated task sets. We show that our
probabilistic analysis can quantify the low-criticality task execution. These success probabilities
can, for example, be used for amore permissive admission test that requires only a given percentage
p of jobs to succeed in low criticality mode. Potential future Extensions to our model are discussed
in Section 7 before we conclude in Section 8.

2 Related Work

This section surveys the large body of related works on probabilistic task models and schedulers,
and on model-checking-like approaches for analyzing real-time systems.

2.1 Probabilistic Task Models

Lehoczky [6] was first to characterize execution times as random variables and to describe them
through probability density functions. However, as realized by Griffin and Burns [7], modern
processor architectures often violate the independence assumptions required for scheduling based
on probabilistic execution times to remain mathematically tractable. Recent works on probabilistic
worst-case execution times (pWCET) [8, 9, 10, 11, 12, 13, 14] thus describe the confidence in
WCET estimates of a task as the exceedance probability derived from the generalized extreme-
value distribution of observed maxima.
Different methods to derive probabilistic representations of execution time have been explored.

For example, Yue et al. [15] present a technique based on random sampling for determining pWCETs.
Iverson et al. [16] suggest a purely statistical analysis, whereas David and Puaut [17] propose a
combined static and measurement-based analysis. For our analysis we propose a characterization
of task execution times based on over-approximated probabilistic execution times, leading to an
optimistic view on mixed-criticality systems [18] where low-criticality execution time estimates
can deliberately disregard some exceptional behavior of high-criticality tasks, like fault recovery.

2.2 Probabilistic Scheduling

Statistical and probabilistic techniques have been used for real-time analysis in the past. In a way,
Lehoczky [6] pioneered probabilisticmixed-criticality scheduling by regarding hard real-time tasks
as highly and soft real-time tasks as less critical, offering only probabilistic guarantees to the latter.
A more recent work along these lines is by Mollison et al. [19], who execute soft real-time tasks in
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a low-criticality band using global EDFwhereas hard real-time tasks are scheduled by a partitioned
EDF scheduler.
Support for multiple execution time estimates was introduced by Lin et al. [20] in their imprecise

computation framework. A mandatory part of a task was scheduled with hard real-time guarantees
whereas additional execution time was given to optional parts to improve the computation result.
Later, Hamann et al. [21, 22] extended imprecise computations to derive budgets for optional parts
that guarantee a certain completion probability. Our initial idea of characterizing low-criticality-
tasks as optional parts of preceding high-criticality tasks [23] did not extend to general mixed-
criticality systems due to task dependencies, which we resolve here with the help of schedule time
slices.
In their probabilistic schedulability analysis, Guo et al. [24] consider a low-criticality miss rate

for high-criticality tasks. They develop a scheduling algorithm and admission test to guarantee that
the rate of a high-criticality task missing its low-criticality deadline is less than a permitted system
failure probability. Our approach provides quantifiable probabilistic guarantees for low-criticality
tasks when criticality misses occur, while maintaining the non-probabilistic high-criticality com-
pletion guarantees.
Atlas and Bestavros [25] also calculated task success rates. However, their method uses a differ-

ent scheduling scheme: a job is not cancelled, when overrunning its deadline, but it is not eligible
for release, if meeting the deadline cannot be guaranteed. Thus, a priori knowledge of exact exe-
cution times at each release instant is required, while our analysis only needs a known distribution.
Recent work on probabilistic mixed-criticality analysis by Maxim et al. [26] calculates worst-

case response times (WCRT) for static and adaptive mixed-criticality scheduling based on critical
instant analysis. However, WCRT alone is an inadequate quality metric for a mixed-criticality
schedule. After a criticality switch to high-criticality mode, the low-criticality job following the
critical instant may never execute, whereas all following jobs of the same task could always be
successful. Therefore, a success probability based on WCRT is arbitrarily pessimistic.

2.3 Analysis by Model-Checking

Our work extends such WCRT analysis by calculating success probabilities for every job indi-
vidually and aggregating them to a per-task value that is less pessimistic. We propose symbolic
scheduling, which can be viewed as a specialized form of probabilistic model checking, opti-
mized for our narrow task of performing a quantitative analysis of low-criticality job success rates.
Salmon et al. [27] derive an analysis based on timed Petri Nets for classical periodic tasks with
resource dependencies. Behrmann et al. [28] and Igna [29] gained valuable insights in scheduler
design by modeling real-time systems as timed automata and checking them with UPPAAL.

3 Task Model

In his seminal work, Vestal proposed to describe tasks with different certification requirements
through vectors of increasingly pessimistic scheduling parameters [1]. Admission and scheduling
must ensure that a higher-criticality task failing to meet the more optimistic requirements from a
lower certification level can still meet its deadline when it adheres to the more pessimistic param-
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eters at its high certification level. Baruah et al. coined the term certification-cognizant schedul-
ing [30] for this interpretation of the mixed-criticality framework. Our paper follows this interpre-
tation.

3.1 Standard Model

In the standard deterministic model, a task τ = (L, T,D,C (ℓ)) is assumed to be strictly peri-
odic with a criticality level L, a period T , a relative deadline D, and a worst-case execution time
(WCET) C(ℓ) for each criticality level ℓ ď L. To simplify the presentation, we only discuss the
dual criticality case, with the two criticality levels named LO and HI .

• The execution time bound is criticality-dependent, denoted by C(LO) and C(HI) with
C(LO) ď C(HI). Other research also considers criticality-dependent interrelease times [31]
or deadlines [32]. We limit ourselves to criticality-dependent execution times.

• While our analytical solution requires harmonic periods and implicit deadlines, symbolic
scheduling does not restrict the relation of T and D, so D ě T is possible. We do not
consider sporadic or aperiodic release processes.

• During execution of the task set, the system runs in either LO- or HI-criticality mode,
initially starting in LO mode. Scheduling is performed according to an existing mixed-
criticality priority regime, with a prior admission test ensuring the schedulability of the task
set.

• We assume an active enforcement of execution times by the runtime system. Whenever an
execution time bound or deadline is reached, the system aborts jobs or drops them in priority.
Whenever a LO-criticality job executes beyond C(LO), it is aborted. C(HI) is therefore
not meaningful for LO-jobs.

• Whenever a HI-criticality job exceeds its C(LO) execution time, the system switches to
HI-criticality mode. We call this situation criticality miss. As part of this mode switch, the
priorities of all current and future LO-jobs are changed such that all HI jobs dominate all
LO-jobs.

• We allow switching back from HI mode to LO mode only at a simultaneous release in-
stant at the beginning of a hyperperiod. Protocols allowing earlier recovery have been pre-
sented [33], but are not considered here.

The guarantee conveyed by the mixed-criticality system with levels ℓ P tLO,HIu is that all
jobs receive enough time between their release and deadline to complete their ℓ-level execution
requirement C(ℓ), given that the following condition holds: No job of criticality higher than ℓ

exceeds its execution time bound C(ℓ). In this paper, we contribute quantifiable probabilistic job
execution, when this condition does not hold.

3.2 Probabilistic Model

We extend the standard task model to a probabilistic one similar to Maxim et al. [26]. In addition
to the above parameters, each task is described by a probabilistic execution timeX . We consider a
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task system ofmHI-tasks τi and n LO-tasks τm+j . The tasks are thus described by the following
parameters:

τi = (HI, Ti, Di, Xi, Ci(LO), Ci(HI)) , i = 1, . . . ,m

τm+j = (LO, Tm+j , Dm+j , Xm+j , Cm+j(LO)) , j = 1, . . . , n

With k = 1, . . . ,m+ n, these parameters are:

Tk period length (job inter-arrival separation)
Dk relative deadline
Xk job execution time, random variable with

Xk ą 0, Xi ď Ci(HI), Xm+j ď Cm+j(LO)

Ck criticality-dependent execution time bounds for admission, Ci(LO) ď Ci(HI)

The execution time is therefore characterized as a stochastic process. Stated more precisely,
each job Jk,l within one periodic task τk is described by its own random variable Xk,l. Because
we imagine all jobs to run the same code in each period, we assume the per-job random variables
within the same task to be independent and identically distributed. Xk is therefore used as one
common representative of these random variables.
The CDF of this random variable describes the probability for a job to not exceed a given execu-

tion time bound, which allows us to compute probabilistic guarantees for low-criticality jobs. We
writeXk = [2 : 0.8, 5 : 0.2], e.g., meaning that with a probability of 0.8 the job will have finished
executing until 2 time units, and with a probability of 0.2 it may exceed 2 time units and take up
to 5 time units.
We demand all job execution times to be bounded by the respective Ci(HI) or Cm+j(LO), so

that a proper mixed-criticality admission performed using these bounds still yields deterministic
rather than probabilistic guarantees, predicated by the rely condition. We use the probabilities only
to analyze the success rates of LO-jobs after a criticality miss. They do not weaken the classical
mixed-criticality guarantees stated above. We believe our method can be extended to soft-real-time
mixed-criticality task sets, but we leave such an extension for future work.

4 Analytical Solution

We now consider a subset of mixed-criticality systems and analytically derive probabilities for suc-
cessful completion of individual LO-jobs. For the analysis, we require the following restrictions:

• The tasks use implicit deadlines Dk = Tk.

• The scheduling algorithm uses criticality-monotonic priority assignment: Tasks are assigned
a static priority, such that all HI-tasks dominate all LO-tasks, thus forming two priority
bands.

• Within the bands, rate monotonic priority assignment is used. However, between the bands,
rate-monotonicity is not assumed. The longest HI-period may be longer than the short-
est LO-period. Accumulating success probabilities across this discontinuity separates our
analysis from traditional non-mixed-criticality analysis.
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• Furthermore, we require harmonic periods across all tasks and criticality levels. The length
of the hyperperiod for HI-tasks shall be named h, therefore h = Tm.

We lift these restrictions with symbolic scheduling in Section ??, where we show an algorithmic
solution for arbitrary periods and dynamic priority scheduling, including non-criticality-monotonic
assignments.
Because we assume independent job execution and therefore independent random variables, we

use the n-fold convolution of an execution time distributionX to model the consecutive execution
of n jobs. We call this operation the n-fold sum (n P N+) of X and write:

n ˚ X :=
n

ÿ

k=1

X

When operating with random variables, constants are regarded as a degenerate distribution,
which only takes a single value.
We continue by examining the success probabilities of LO-jobs in three cases of increasing

complexity, where a formula-based analysis is tractable. Following that, we describe an algorithm
that calculates success probabilities for all cases within the bounds of the restricted task model.
We show these different and partially redundant approaches to offer easier solutions for special
cases and to inform the reader of pitfalls along the route to a more general solution, with the most
powerful and most complex being the symbolic scheduler described in the next section.
We start with the simple case of all LO-task periods covering the entireHI-hyperperiod h:

Case 1: Tm+1 ě h

Periods of LO-tasks are then integer multiples of h. For the shortest LO-task τm+1, we have

XHI =
m
ÿ

i=1

h

Ti
˚ Xi

as the aggregate execution time of allHI-tasks within theHI-hyperperiod. Note that h
Ti

P N. The
probability of a job of LO-task τm+j completing its execution shall be pj . We see:

p1 = Pr
(
Tm+1

h ˚ XHI +Xm+1 ď Tm+1

)
For other LO-tasks, we need to consider the respective higher-priority LO-tasks. Not just the

successful jobs, but all jobs of higher-priority LO-tasks can influence execution, because all jobs
are started first and then may be cancelled if they reach the end of their period. All HI-tasks and
one job of the highest-priority LO-task thus have an aggregate random computation requirement
S1:

S1 := min
(
Tm+1,

Tm+1

h ˚ XHI +Xm+1

)
From this, we derive:

p2 = Pr
(
Tm+2

Tm+1
˚ S1 +Xm+2 ď Tm+2

)
We now generalize:
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Figure 1: Job phases and remaining execution time of task τ2 at the beginning of phase 1 of τ3

Proposition. Given Tm+1 ě h, the probability of successful execution pj of a job of LO-task
τm+j is:

pj = Pr
(

Tm+j

Tm+j´1
˚ Sj´1 +Xm+j ď Tm+j

)
, j = 1, . . . , n

Sj = min
(
Tm+j ,

Tm+j

Tm+j´1
˚ Sj´1 +Xm+j

)
, So = XHI

In the more complex case of LO-period lengths being shorter than h, the success probability of
a LO-job depends on its relative position within the HI-hyperperiod. We shall call this position
the phase φ of a job, counting from 0 to simplify indexing in formulae further below. Phase φ of
a LO-job of τm+j thus starts with its release at φTm+j and ends with the deadline (φ+ 1)Tm+j .
Figure 1 illustrates two HI-tasks τ1, τ2 and a LO-task τ3 with T1 = 2, T2 = 12, T3 = 4.
Calculating the success probability of aLO-job needs the execution time of allHI-jobs released

within its phase and the remaining execution time of HI-jobs released before the phase. Those
latter jobs are released by a HI-task with a period longer than that of the LO-job in question and
reach into the LO-job phase. Note that this remaining execution time is itself a random variable
and any concrete realization may cause theHI-job to end prematurely.
We first look at a simplified case, where the system contains only a single LO-task next to mul-

tipleHI-tasks. But before, we observe that we can assume T1 ě Tm+1 without loss of generality.
Otherwise, a largest index s ą 1 with Ts ď Tm+1 would exist, such that all tasks τ1, . . . , τs can be
replaced by a single task τ̃ with X̃ =

řs
i=1

Tm+1/Ti ˚Xi, in other words the total execution time of
all these HI-tasks within one phase of the highest-priority LO-task τm+1. The mixed-criticality
admission guarantees that theseHI-jobs never exceed the ends of their periods, so their remaining
execution time is 0 due to the harmonic structure of the periods.

Case 2: Tm+1 ă h, n = 1

Figure 2 shows the general situation and illustrates the method. We need to calculate the aggregate
execution time of all HI-tasks within a phase of the LO-task as well as the remaining execution
times ofHI-jobs at the beginning of the following phase, fromwhichwe derive theLO-job success
probabilities. We perform this calculation by way of schedule time slices of duration Tm+1. We
successively determine the following variables:
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Figure 2: Aggregating execution times

Zφ aggregate execution time of allHI-tasks τ1, . . . , τm during phase φ of LO-task
τm+1

Rφ remaining execution time of theHI-jobs at the beginning of phase φ of LO-task
τm+1

pφ success probability of job in phase φ of LO-task τm+1

We now walk through the calculation using the example from Figure 2. The aggregate time
demand Z0 of theHI-tasks τ1 to τ3 during phase φ = 0 is the sum of their corresponding random
execution timesX1+X2+X3. This sum is restricted by the phase length of 4 = Tm+1. Therefore:

Z0 = min (4, X1 +X2 +X3)

Accordingly, the remaining execution time is zero, if X1 + X2 + X3 does not exceed the length
of one phase. Otherwise, the remaining execution time is the sum, reduced by the phase length:

R1 = (X1 +X2 +X3) ´ 4

The operator ´ denotes a non-negative subtraction, i.e., negative differences are replaced with
zeroes.
In Figure 2, the job of τ3 is neither finished at time t = 12, nor at time t = 16, where the

remaining execution time of the second job of τ2 needs to be added. In general, Zφ follows from
the sum of remaining execution times Rφ of the preceding HI-jobs as well as the execution time
of those HI-jobs, whose period starts at the beginning of the current phase.

Lemma. Given Tm+1 ă h for φ = 0, . . . , h
Tm+1

´ 1 and R0 = 0, the aggregate execution time
Zφ and remaining execution times Rφ+1 of the HI-tasks τ1, . . . , τm at the beginning of phase φ
of task τm+1 are:

Zφ = min

Tm+1, Rφ +
ÿ

i:
φTm+1

Ti
PN

Xi



Rφ+1 =

Rφ +
ÿ

i:
φTm+1

Ti
PN

Xi

 ´ Tm+1
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Note that
ř

i:...Xi can be zero, in Figure 2 for Z5 in case T1 would be 12.
The success probability pφ for a job ofLO-task τm+1 in phaseφ can now be derived. In Figure 2,

we see:
p1 = Pr (Z1 +X4 ď 4) , with 4 = Tm+1

Proposition. For the LO-task τm+1 with Tm+1 ă h, the probability of successful execution pφ of
the job in phase φ for φ = 0, . . . , h

Tm+1
´ 1 is:

pφ = Pr (Zφ +Xm+1 ď Tm+1) , with Zφ according to the lemma above

This proposition also applies to task τm+1, if the system consists of more than one LO-task.
A global success probability p1 for the LO-task τm+1 can be stated as

p1 =
1

h/Tm+1

h/Tm+1´1
ÿ

φ=0

pφ

assuming that the phases occur uniformly distributed in time.
Unfortunately, the method of slicing the schedule into phases cannot be applied to multiple LO-

tasks. The aggregate execution time ofHI-tasks τ1 to τ3 during the first two phases of τ4 appears
to be Z0 + Z1, but this would be wrong. We shall illustrate with an example: Imagine a system
containing a single job with an execution time distributionX encompassing the possible values 1
and 4. During a period of length 4, exactly these two values can occur. If we divide this period
into two equal-length phases, the possible execution times in the first phase are 1 and 2, remaining
execution times in the second are 0 and 2. The sum of both random variables now also enables
the aggregate execution time 2 + 0 = 2, contradicting X . This effect is caused by the remaining
execution time in a phase depending on the execution time in the preceding phase. Both ran-
dom variables are therefore not independent and can thus not be added by a simple convolution.
Formally, a conditional probability is needed, which can be calculated by differentiating possible
cases. We now demonstrate this method with a singleHI-task.

Case 3: Tm+n ď h, m = 1

Differing from the formalism introduced in Section 3, we denote theHI-task with τ0, its execution
timeX0, and its period T0. LO-tasks are named τj with j = 1, . . . , n. We determine the following
quantities, dependent on the value x of X0:

pj0(x) success probability of job in phase 0 of LO-task τj
Uj0(x) execution time consumed by tasks τ1, . . . , τj in phase 0 of LO-task τj

The corresponding values pjφ(x) and Ujφ(x) for an arbitrary phase φ of LO-task τj immediately
follow due to the harmonic periodicity.
Figure 3 displays an example.
For the first LO-task, we have:

p10(x) = Pr (x+X1 ď T1) , U10(x) = min (T1, x+X1)
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Figure 3: System with multiple LO-tasks

Specifically, we can confirm:

p10(0) = Pr (X1 ď T1) = 1, U10(0) = min (T1, X1) = X1,

p10(x) = 0, U10(x) = T1 for x ą T1

Values for other phases follow due to the mentioned periodic repetition. For example, the case of
x = 7 in phase 2 of τ0 is equal to the case x = 1 = 7 ´ 2 ¨ 3 in phase 0. This result enables a
simple, closed representation for the other phases of τ1:

p1φ(x) = p10(x ´ φT1), U1φ(x) = U10(x ´ φT1)

Examining τ2 in phase 0 clarifies the structure of the following formulae. They consist of three
components:

1. phases of higher priorityLO-tasks that are completely covered byX0 and where noLO-jobs
are running,

2. followed by one partially covered phase, where higher priority LO-jobs are running and
consume processor time Uj0(x),

3. and finally phases, where theHI-job has finished and only LO-jobs are executed with total
processor time Vj . These jobs will always complete due to the successful LO-admission.

In Figure 3, we can observe for the LO-task τ2 in phase 0 at x = 7:

p20(7) = Pr (6 + U12(7) + 1 ˚ X1 +X2 ď 12)

So in general with k =
Y

x
T1

]

and V1 = X1:

p20(x) = Pr
(
kT1 + U1k(x) +

(
T2
T1

´ 1 ´ k
)

˚ V1 +X2 ď T2

)
U20(x) = min

(
T2, kT1 + U1k(x) +

(
T2
T1

´ 1 ´ k
)

˚ V1 +X2

)
This also holds for x ą T2, due to T2

T1
P N we have kT1 ě T2 and thus p20(x) = 0 and

U20(x) = T2. Results for other phases follow from the periodic repetition. The general situation
is:
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Lemma. Given Tj ď T0 for a LO-task τj in a system with one HI-task τ0, the probability of
successful execution pjφ(x) of a job of LO-task τj in phase φ for φ = 1, . . . , Tn/Tj ´ 1 depending
on a value x from X0 is:

p10(x) = Pr (x+X1 ď T1) , U10(x) = min (T1, x+X1)

p1φ(x) = p10(x ´ φT1), U1φ(x) = U10(x ´ φT1)

and with j = 2, . . . , n and k =
Y

x
Tj´1

]

pj0(x) = Pr
(
kTj´1 + Uj´1,k(x) +

(
Tj

Tj´1
´ 1 ´ k

)
˚ Vj´1 +Xj ď Tj

)
Uj0(x) = min

(
Tj , kTj´1 + Uj´1,k(x) +

(
Tj

Tj´1
´ 1 ´ k

)
˚ Vj´1 +Xj

)
Vj =

Tj

Tj´1
˚ Vj´1 +Xj , with V1 = X1

pjφ(x) = pj0(x ´ φT1),

Ujφ(x) = Uj0(x ´ φT1).

To calculate overall success probabilities for LO-jobs pjφ independent of individual x, we need
to include the probabilities of those x to occur within X0.

Proposition. Given a system with a single HI-task τ0 and n LO-tasks τ1, . . . , τn with Tj ď T0,
the probability of successful execution pjφ of a job of τj in phase φ is:

pjφ =
ÿ

xPX0

Pr(X0 = x) ¨ pjφ(x)

with φ = 0, . . . ,
Tj

Tj´1
´ 1, j = 1, . . . , n and pjφ(x) according to the above lemma.

Finally, we address systems consisting of arbitrary numbers of HI- and LO-tasks, but with no
LO-task period exceeding the longestHI-task period.

Case 4: Tm+n ď Tm = h, m, n arbitrary

A potential solution would be to combine all HI-tasks into one single virtual HI-task by aggre-
gating their random variables and then continuing like in the previous case. However, this solution
would not work, because it is not possible to add the execution times of HI-tasks in consecutive
periods. To show this, let us consider four tasks with m = n = 2. The HI-tasks τ1 and τ2 shall
have periods of 8 and 16, the LO-tasks τ3 and τ4 as well. TheHI-tasks can execute for 2 or 4 time
units in the case of τ1, and 1 or 5 time units in the case of τ2. Both LO-tasks execute for 3 time
units.
Assuming that τ1 uses 2 time units in both its periods and τ2 uses 5 time units. As shown in the

left part of Figure 4, the job of τ4 can finish successfully. If however, the execution of τ1 takes 4
time units for each job and τ2 uses one time unit, then the execution of τ4 will be truncated, despite
the fact that the combined time usage of τ1 and τ2 is 9 in both cases.
Consequently, general task systems can only be analyzed by distinguishing all possible cases.

We base this analysis on event trees. In step one, we construct the event tree Ã0 describing all
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Figure 4: Success of LO-tasks depending on time allocation ofHI-tasks

HI-tasks in schedule slices of length Tm+1. Nodes of this tree are random variables A, edges
within the tree are annotated with the probabilities of the respective case. The random variables,
which we assume to be discrete, have the following semantics: For A = a with a ě 0, the highest
priority LO-task receives a processor capacity of a within the respective phase and no remaining
execution time of HI-jobs occurs. In case a ă 0, the processor is completely occupied by the
HI-tasks, which further contribute a remaining execution time of ´a.

We illustrate our approach using the following example task set withm = n = 2:

HI : τ1 : T1 = 8, X1 = [2 : 0.8, 5 : 0.2]

τ2 : T2 = 32, X2 = [1 : 0.6, 11 : 0.4]

the lower value of Xi shall be Ci(LO)

LO : τ3 : T3 = 8, X3 = [1 : 0.9, 3 : 0.1]

τ4 : T4 = 16, X4 = [2 : 0.7, 4 : 0.3]

We denote the resulting random variables Ar1...rφ
0φ , with φ being the phase of τ3 and r1, . . . , rφ the

remaining execution times occurring up until this phase. We call this sequence the history H of
A0φ. For the HI-tasks within phase φ = 0 of τ3 we have:

A00 = 8 ´ (X1 +X2) = [5 : 0.48, 2 : 0.12, ´5 : 0.32, ´8 : 0.08] ,

which determines the root node of the event tree shown in Figure 5. To simplify the figure, we
do not show probabilities for the values within the nodes. Here and in the following, the edge
annotations for non-negative values of random variables result from adding the probabilities. We
now determine Ar

01 with r = 0, 5, 8 during phase φ = 1 of τ3:

A0
01 = 8 ´ X1, A5

01 = A0
01 ´ 5, A8

01 = A0
01 ´ 8

Now we can continue with:

A00
02 = A0

01, A50
02 = A00

02, A52
02 = A00

02 ´ 2, A82
02 = A00

02 ´ 2, A85
02 = A00

02 ´ 5

A000
03 = A0

01 = A500
03 = A520

03 = A820
03 = A850

03 , A852
03 = A850

03 ´ 2

For the general case we observe that a remaining execution time r ă Tm+1 leaves us with a
remaining processor capacity of Tm+1 ´ r. This amount is reduced by the time demand of allHI-
jobs that are released at the beginning of this phase. This conclusion also applies to r ě Tm+1,
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Figure 5: Ã0 – Available execution times for highest-priority LO-task and remaining execution
times of HI-tasks

which can anyways lead to further remaining execution times (A5
01 and A8

01) which are carried
onward into the next phase.

Lemma. After execution of all HI-jobs, the highest priority LO-task receives processor capac-
ity in phase φ = 0, . . . , Tm/Tm+1 depending on remaining execution times r1, . . . rφ´1, r of the
preceding phases:

A
r1...rφ´1r
0φ = A

r1...rφ´10
0φ ´ r with A

r1...rφ´10
0φ = Tm+1 ´

ÿ

i:
φTm+1

Ti
PN

Xi

We have chosen a representation for the lemma that allows efficient calculation. Evidently we
have A00 = Tm+1 ´

řn
i=1Xi.

In the second step, we calculate the corresponding random variables for all other LO-tasks, re-
sulting in success probabilities for each LO-job. The simple difference approachA10 = A00 ´X3

unfortunately leads to wrong results, which we substantiate at the end of the following explanation
of the correct formulation.
We begin with the case ofA00 assuming a negative value, meaning that the CPU is already fully

loaded with an available capacity of 0. The first job of LO-task τm+1 is therefore not running,
thus having success probability p10 = 0. Remaining execution times represented by A00 remain
unchanged. In the other case, the value a ofA00 ´X3 describes, whether the LO-job is successful
(a ě 0) or unsuccessful (a ă 0). Unsuccessful execution does not add to the value of p10 and
no more processor time is available. Hence, those values are replaced with 0. Because LO-jobs
are discarded at the end of their period, they do not contribute remaining execution time and the
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event tree Ã0 remains unchanged. To consider cases with remaining execution being carried into
the current phase, the event tree needs to be transformed for the highest-priority LO-task and
aggregation for all lower-priority LO-tasks as well as modification of node random variables are
required. We summarize those consequences in the following:

• For a discrete random variable Z with negative values, we form a partial distribution: Let
Z(0) be the partial distribution containing all non-negative values of Z. Further, let Z(r)

for r ą 0 be the partial distribution solely containing the value r if Z contains the value ´r.
In both cases, the respective probabilities are copied from Z unchanged.

• The tree Ã0 is transformed into the treeA0 by splitting the nodes of Ã0 as shown in Figure 6.
If successor nodes of a node are split up as well, the original probability is copied to both
branches, e.g., A00(5) with the successors A5

01(0) and A5
01(2).

• For the highest-priority LO-task, partial distributions are calculated:

BH
1φ(r) = AH

0φ(r) ´ X3

Summation leads to the success probability of a LO-job in phase φ. Now BH
1φ(r) is trans-

formed into the final partial distribution AH
1φ(r) by replacing potential negative values in

BH
1φ(r)with 0 and accumulating the accompanying probabilities. For all lower-priorityLO-

tasks, the procedure is the same.

It may be irritating that we allow distribution functions of the form [0 : 0.8]. These partial dis-
tributions enable a relatively simple, closed form representation and saves us from distinguishing
a lot of extra cases. Also, we write Z(0) even if Z does not contain any negative values. We note
that partial distributions do not necessarily represent a random variable, because their probabilities
are less than 1. Also note that AH

1φ(r) can be calculated directly as AH
1φ(r) = AH

0φ(r) ´ X3 and
analogously for otherLO-tasks. But evaluation of this equation leads to an additional convolution,
which our approach avoids.
We end up with a tree A1, which is structurally identical to A0, but the distributions kept at the

nodes have changed. We continue with our example and obtain:

B10(0) = A00(0) ´ X3 = [4 : 0.432, 2 : 0.048, 1 : 0.108, ´1 : 0.012]

This immediately gives us p10(0) = 0.588 and further:

A10(0) = [4 : 0.432, 2 : 0.048, 1 : 0.108, 0 : 0.012]

From which follows:

p10(5) = p10(8) = 0, A10(5) = [0 : 0.32] , A10(8) = [0 : 0.08]

and thus a success probability of p10 = 0.588.

The procedure continues for the other phases in the same way:

B5
11(0) = A5

01(0) ´ X3 = [1 : 0.8] ´ [1 : 0.9, 3 : 0.1] = [0 : 0.72, ´2 : 0.08] ,
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Figure 6: A0 – Available execution times for highest-priority LO-task and aggregation for second
LO-task; blue boxes represent nodes of the tree A2

resulting in p511(0) = 0.72 and A5
11(0) = [0 : 0.8]. We then get p011(0) = 1, all other success

probabilities are 0, such that weighing those values with the product of the probabilities along the
path from the root node finally yields p11 = 0.8304.
For all further LO-tasks, we can continue in the same manner. The stochastic independence

of execution times in successive phases is guaranteed by the separation into distinct cases in the
event tree. Therefore, connected random variables can be added, causing related phases of A1 to
be aggregated, which leads to a new tree A2. Therefore, we calculate for phase φ = 0 of τ4:

B0
20(0) =

(
A10(0) +A0

11(0)
)

´ X4

We obtain p020(0) = 0.590544. We continue with

B5
20(0) =

(
A10(5) +A5

11(0)
)

´ X4

and so on. Here, all resulting probabilities are 0, leading to a total of p20 = 0.590544. Ac-
cordingly, we determine p21 = 0.99032576. The necessary weights result from the products of
the probabilities along the paths from the root node to the considered leaf node, in our example
q85021 (0) = 0.08 ¨0.2 forA850

21 (0). Because τ4 is the final task, theA-variables are not relevant here.
All values presented here for this example where confirmed by the symbolic scheduler, which we
present in the next section.
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For a generalized formulation, let qHjφ(r) be the probability along the path from the root of the
tree Aj to the considered leaf node and let the parameter r of AH

jφ(r) be called the state of the job.
Symbols for probability distributions also denote their corresponding node in the tree. Then:

Proposition. In case Tm+n ď Tm, the success probability pHjφ(r) of a job from LO-task τm+j in
state r within phase φ and with history H for φ = 0, . . . , Tm/Tm+j ´ 1, j = 1, . . . , n is

pHjφ(r) = Pr(BH
jφ(r) ě 0)

with

BH
1φ(r) = AH

0φ(r) ´ Xm+1,

BH
jφ(r) =

qj
ÿ

k=0

AH
j,qjφ+k(r) ´ Xm+j ,

for qj = Tm+j/Tm+j´1.

The final success probability of a job from LO-task τm+j in phase φ follows:

pjφ =
ÿ

H,r

qHjφ(r) ¨ pHjφ(r).

Further,

AH
jφ(r) =

qj
ÿ

k=0

AH
j,qjφ+k(r) ´ Xm+j

We now return to the wrong solution A10 = A00 ´ X3 mentioned above, which supposedly
describes the time remaining after executing the first LO-task in phase φ = 0. In our example we
would see:

A00 ´ X3 = [4 : 0.432, 2 : 0.048, 1 : 0.108, ´1 : 0.012,

´6 : 0.288, ´8 : 0.032, ´9 : 0.072, ´11 : 0.008]

The first four values necessarily match B10(0), the other values are incorrect, because they stem
from negative values of A00. The remaining processor time is never negative but 0 in this case.
However, aggregating all negative values—as in the transition from B10(0) to A10(0)—is again
wrong, because these values originate from different system states that need to be handled sepa-
rately.

Case 5: Tm+n ą Tm = h

Finally, we sketch an approach for the remaining case of unrestricted periods in relation to the
hyperperiod h of the HI-tasks. Let s be an index with 1 ď s ă n and Tm+s ď h, Tm+s+1 ą h.
In the case Tm+s ă h, we form a fictitious task τm+s+1/2 with period h and a constant execution
time of 0 with probability 1 to calculate the partial distributions AH

m+s+1/2,0(r). We weigh the
probabilities with the corresponding path probabilities and concatenate the tables of possible val-
ues, coalescing potential duplicates. The sum of all path probabilities in one phase is now always
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1, the result therefore represents a random variable AHP of processor time remaining within the
hyperperiod after executing the tasks τ1, . . . , τm+s. The random variable ZHP = h ´ AHP thus
describes the consumed processor time. ZHP is used instead of XHI for tasks beginning with
τm+s+1. For Tm+s = h, no such fictitious task is needed.
Even in thismost general case, our analysis is limited to harmonic periods and criticality-monotonic

priority assignment. In the following section, we therefore present a novel algorithmic approach
that is applicable without these restrictions.

5 Symbolic Scheduling

An obvious way to obtain approximate success rates of probabilistic task systems is a Monte-Carlo
simulator: Given distributions of execution times of all jobs, a concrete schedule is executed with
execution times randomly drawn from these distributions. With enough such samples the proba-
bility of a job finishing successfully is approximately the ratio of samples in which it succeeded to
the number of samples taken.
We propose the concept of symbolic scheduling, which we present here and which we have im-

plemented and published (https://github.com/mkuettler/symbolic-scheduler). Symbolic schedul-
ing draws on ideas from such a simulation, in that it tracks runs of jobs to figure out which meet
their deadline. Unlike the simulator, though, it does not randomly choose execution times, but it
keeps track of every possible execution and its probability. For discrete probabilities there is a
conceptually simple but computationally expensive way to do this: For every job, try every pos-
sible runtime separately. This leads to a tree, where each path from the root to a leaf is a possible
execution of the system, and each node branches into as many subtrees as the respective job has
possible values for its execution. The obvious disadvantage is that this tree will grow huge, and
that many paths through it will be equivalent for practical purposes. Such equivalent paths may
differ in execution times, but agree in the succession of jobs and them finishing before their dead-
line. Symbolic scheduling takes advantage of these equivalencies by trying to merge branches that
only differ in timings, but not in the jobs’ order and success. More precisely, it does not branch
unless there is an immediate important difference. Instead, it keeps multiple executions combined
in one path as long as possible.
Symbolic scheduling will insert at most three branches at any node because there are three dis-

tinct outcomes for a job: It could finish, it could experience a criticality miss, or it could hit a
scheduling event, e.g., its deadline or the release of a job of higher priority. Readers familiar
with model checkers will recognize that symbolic scheduling could be implemented using a model
checker. We refrained from that idea for two main reasons: First, implementing the algorithm
in a general purpose language (C++ in this case) was easier for us than creating a formal model.
This clearly is a personal preference, although one we expect many people to share. Secondly, we
expected to get much better performance out of our own code. Our algorithm does not match the
way general model checkers would approach the problem, because we only need to solve a much
more specific problem.
We will first explain a simplified version of the algorithm using an example, followed by the

main ideas for extending to the general case.
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Figure 7: Event tree for the presented example

5.1 Example

Consider the following example with two tasks:

τ1 : T = D = 8, X = [2 : 0.8, 5 : 0.2]

τ2 : T = D = 16, X = [1 : 0.6, 11 : 0.4]

We ignore criticality for now, so we can ignore L and C. The two jobs of task τ1 that run in the
first hyperperiod are called J11 and J12, the job of τ2 is called J21.
Assuming EDF scheduling, the symbolic scheduler starts at time t = 0 and first select job J11.

Since it is a job of the task of highest priority, it will run until completion at either time 2 or 5. Note
that these two cases only differ in their time of occurrence and probability— the ready jobs and
completed jobs are exactly the same. Thus we do not want to distinguish these cases as different
timelines, because the full combinatorial tree that would ensue is prohibitively huge. Instead, the
symbolic scheduler represents the current time using (partial) distributions: after scheduling J11
we are at time t = [2 : 0.8, 5 : 0.2]. These distributions describe the probability of the currently
investigated situation. Note that we use partial distributions, so the accumulated probability can
be less than 1.
Next, job J21 runs. The total runtime of these first two jobs can be 3, 6, 13, or 16. Only the first

two results are possible times for J21 to complete, because J12 becomes ready at time 8 and will
interrupt J21 if it is still running. Thus, the symbolic scheduler needs to branch into two different
possible timelines.
Like before, we do not want to branch needlessly. We only need to distinguish whether J21

finishes before J12 arrives. If it does— i.e., when J21 executes only for 1 time unit—we are at
time t = [3 : 0.48, 6 : 0.12], with J12 as the only job left. The scheduler will wait until the arrival
of J12 at 8, which leaves us at t = [8 : 0.6], since the total probability is 0.6 = 0.48 + 0.12.
Then J12 can run, and finishes at t = [10 : 0.48, 13 : 0.12]. This trace corresponds to the topmost
branches in Figure 7.
If J21 does not finish before J12 arrives, it is interrupted at t = [8 : 0.4], because J12 has higher

priority. But J21 is not done yet and still remains in the list of ready jobs. It ran for [6 : 0.8, 3 : 0.2]

time units already, so the remaining time is [5 : 0.8, 8 : 0.2]. Now J12 runs to completion at
t = [10 : 0.32, 13 : 0.08]. After that the remaining part of J21 is scheduled, and runs until
[15 : 0.256, 18 : 0.128, 21 : 0.016]. But since the deadline of J21 is at 16, the job will finish suc-
cessfully with a probability of 0.256, and miss its deadline with probability 0.128+0.016 = 0.144.

21



This simplified example illustrates the main concept of symbolic scheduling. To give a formal de-
scription we need to introduce some notation.

5.2 Notation

Let d, d1, d2 be potentially partial distributions, and x be a number.

• d1 + d2 denotes the convolution of d1 and d2.

• d è x is the part of d that lies to the left of x, including x. Conversely, d é x is the part of
d that lies to the right of x, excluding x.

• sum(d) denotes the total probability of all values of d. Thus sum(d) = sum(d è x) +

sum(d é x) for all d and x.

• d1 Y d2 is defined to be the distribution that contains all the points in d1 and d2, with their
respective probabilities. Hence sum(d1 Y d2) = sum(d1) + sum(d2), which must be ď 1

for this operation to make sense.

• d ↣ x := (d é x) Y [x : sum(d è x)]

With this notation, we can formally describe symbolic scheduling for the simplified scenario where
criticality misses do not change job priorities, i.e., priorities are criticality monotonic.

5.3 Simplified Formal Description

Let t be the current time distribution, and J the next job, i.e., the ready job with the highest priority.
Let s be the time of the next scheduling event, i.e., either the deadline of J or the release of a job
with higher priority. Note that s is not a distribution, but a scalar value. To calculate the next time
point tnext, there are two cases to consider:

• J finishes before s: tnext = (t+X(J)) è s.

• J does not finish before s. Intuitively, tnext should be [s : sum((t+X(J)) é s)], like in the
example above. But that only works if t ď s (i.e. t é s is empty), otherwise the next time
point would lie in the past. Branching into two different timelines would be an option, but
for performance reasons we want to reduce branches. Instead, we can handle this case as
follows:

tnext = t é s Y
[
s : sum

(
(t+X(J)) é s

)
´ sum(t é s)

]
.

In this case J is not done, so unless s is its deadline it must be kept in the list of ready
jobs. But to account for the time it did run, its remaining execution time must be set to
(X(J) ´ ((s ´ t) ↣ 0)) é 0, normalized to total probability of 1.

The algorithm is shown in Algorithm 1. Starting at t = 0, it selects the ready job with the highest
priority, and, for each of the two cases, updates the time and ready list, and repeats.
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Algorithm 1 Symbolic Scheduling without criticality misses

1 function sym_sched(t, jobs) {
2 J = next_job(jobs)
3 if J is None: return
4 t = t ↣ J.release
5 s = next_sched_event(jobs)
6 t1 = (t + J.X) è s
7 t2 = (t + J.X) é s
8 if not empty(t1) {
9 J.success += sum(t1)

10 new_jobs = jobs.remove(J)
11 sym_sched(t1, new_jobs)
12 }
13 if not empty(t2) {
14 diff = sum(t2)-sum(t é s)
15 t_next = (t é s) Y [s: diff]
16 new_jobs = jobs.remove(J)
17 if s ‰ J.deadline {
18 elapsed = (s-time) ↣ 0
19 J.X = (J.X - elapsed) é 0
20 J.X = normalize(J.X)
21 new_jobs.insert(J)
22 }
23 sym_sched(t_next, new_jobs)
24 }
25 }

5.4 General Case

In a general mixed-critically system there is one additional case to consider: A job may trigger
a critically miss, i.e., it may overrun its C(LO), thus causing the system to switch to HI-mode.
This situation can be covered by a third branch to be followed and analyzed.
Tracking criticality misses complicates the algorithm considerably, so we only provide a rough

description here. Every job branches into a maximum of three possible situations:

1. The job finishes in time. This case is similar to the description above, but it may only include
times for which neither a scheduling event nor a criticality miss occurs.

2. The job hits a scheduling event. Unless it is the deadline, the job must be updated to continue
later. This update includes modifying the criticality miss instant and the remaining runtime.
The time to the criticalitymiss turns it into a distribution, because the time this job ran already
is a distribution.

3. A criticality miss happens before a scheduling event. Like in the second case, the job is in-
terrupted but not removed from the system. Thus, a modified version with new probabilistic
execution time and criticality miss instant must be added. Also, the criticality mode of the
system changes, which might alter priorities for all following jobs.
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Figure 8: Average job success probability (red) and first job success probability (blue) for RMS in
bands

The second point hints at one of the most difficult challenges about this scheme: Whereas initially,
jobs have fixed criticality miss instants, which are part of the task description, the symbolic sched-
uler has to handle partly run jobs, which have a distribution as criticality miss instant. Therefore,
jobs are described by multiple distributions, which are not independent. Special care has to be
taken to never combine these. Also, the convolution operation we denoted as + does not have an
easily computable inverse operation, which complicates several conceptually simple ideas.

6 Evaluation

In this section we show preliminary results of our per-job analysis of LO-tasks in mixed criticality
systems. We determine success probabilities ofLO-job execution. We compare our analysis results
to critical instant response time analysis.

6.1 Task Generation

We choseD = T from a list of 7 values that roughly follow a log-uniform distribution between 15
and 1000. C(LO) is determined from a utilization generated by the UUnifast algorithm [34]. We
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Figure 9: Average job success probability (red) and first job success probability (blue) for EDF

vary the total utilization (see below). Tasksets have two criticality levels LO and HI , the chance
for a task to haveHI criticality is 50%. In this case C(HI) = 1.6C(LO).
The pWCET distribution of each task can take values between 0.6C(LO) and C(LO) (for LO-

tasks) or C(HI) (for HI-tasks). Values are uniformly spaced with a distance of 0.2C(LO), thus
there are 3 values in LO-task distributions and 6 values inHI-task distributions. The correspond-
ing probabilities start at 0.5 for 0.6C(LO) and are halved at each step except the last (so that the
sum is 1). This way the pWCET distributions approximates an exponential tail distribution.

6.2 Results

For each utilization in 0.1, 0.2, . . . , 0.9 we generated 100 tasksets. They were scheduled twice,
once with criticality-monotonic priorities and rate-monotonic ordering within each criticality band
(Figure 8), and once with bands determined by the system criticality level (jobs of at least that
criticality in the upper, all other in the lower band) and EDF priorities within the bands (Figure 9).
In both figures, red marks denote aggregate task success probabilities, i.e., the average success
probability across all jobs of a task, and blue marks denote the success probability at the critical
instant (at time 0 in these examples). Marks are transparent to illustrate their distribution, crosses
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show the average within each column. Only LO jobs were considered in both plots, as high jobs
must always finish in a valid schedule.
In Figure 8, where priorities are static, critical instant probabilities are a— sometimes very pes-

simistic— lower bound of the average probability. When priorities depend on the system criticality
however, as in Figure 9, the critical instant with standard criticality does not provide a lower bound.

7 Model Extensions

Our taskmodel and both the analytical and algorithmic analysis lend themselves to three interesting
extensions, which we would like to propose as avenues for future research.

1. When estimating an execution time distribution for LO-tasks, this estimate may be reliable
only up to a value xmax. An insecurity remains that this value may be exceeded at runtime
with a small probability pexc, but it is unknown, how large this exceedance might be. How-
ever, in a real system the job will at the latest be cancelled at the end of its period. Such
a situation can be modeled by using the estimated distribution until xmax, scaled to a cu-
mulative probability 1 ´ pexc and adding the period length of the task as an extra value to
the distribution with probability pexc. The same approach can be applied to HI-tasks, if
scheduled as soft-real-time mixed-criticality tasks.

2. Our model allows executing task sets with probabilistic guarantees, which deterministic
mixed-criticality admission would reject. Take the following example of one HI-task τ1
and one LO-task τ2 with these parameters:

T1 = 4, X1 = [1 : 0.3, 2 : 0.5, 3 : 0.2] , C1(HI) = 3

T2 = 2, X2 = [1 : 0.9, 2 : 0.1] , C2(LO) = 2

Even with C1(LO) = 1, this task set is unschedulable, due to 1+ 2 ¨ 2 ą 4. If it is executed
with criticality-monotonic priorities, our analysis shows τ2 to successfully execute in its two
phases with 27%and 98%, respectively. In averagemore than every other job of τ2 succeeds,
which a system designer may consider adequate.

3. The presented analysis determines success probabilities from the task parameters. A mod-
ification to our method can control the success rate to a desired value for each LO-task, if
feasible. Every LO-task receives an execution budget b and jobs are cancelled when it is
depleted, causing lower-priority jobs to receive more execution time. Success probabilities
then depend on b and can be calculated by replacing the distributions X with min(b,X) in
our formalism. However, a fully developed solution is left for future work.

8 Conclusion

In this work, we propose twomethods for quantifying the completion probabilities ofLO-criticality
jobs that are dropped in priority as a result of a criticality miss of HI-criticality tasks. We have
proposed an analytical solution, which is applicable to harmonic task sets and criticality-monotonic
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priority assignment. To overcome these limitations, we presented symbolic scheduling, which
branches on dissimilar job execution sequences while collapsing similar job sequences into a single
branch. We use our analysis to show first results on success probabilities of low-criticality tasks.
We believe our analysis provides a useful new tool to designers of mixed-criticality systems.
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