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Abstract

A numerical study of dilute suspensions based on a non-Newtonian matrix fluid and rigid
spheroidal particles is performed. A Carreau fluid describes the non-Newtonian matrix, as
it captures the shear thinning behavior observed for many polymer melts.

After a literature review of suspensions containing rigid particles the special case of spherical
particles is considered. Here, a uniaxial elongational flow of a Carreau fluid around a sphere
is simulated and numerical homogenization is used to obtain the bulk viscosity of the dilute
suspension for different applied rates of deformation and different thinning exponents. In the
Newtonian regime the well-known Einstein result for the viscosity of a dilute suspension of
rigid spherical particles is obtained. However in the transition region from Newtonian to non-
Newtonian behavior, lower values of the intrinsic viscosity are obtained, which depend on both
the applied rate of deformation and the thinning exponent. In the power law regime of the Carreau
model, i.e. at high deformation rates, it is found that the intrinsic viscosity depends only on the
thinning exponent. Utilizing the simulation results a modification of the Carreau model for dilute
suspensions with a non-Newtonian matrix fluid is proposed.

In the last part of this thesis non-spherical particles are considered. If such particles, like rods
or discs, are added to a liquid, the increase in the viscosity of the mixture is often described by the
Lipscomb model. One important result of Lipscomb’s model is the prediction of an increase in
the viscosity of the suspension with increasing aspect ratio of the filler particles. Despite the fact
that this model was originally proposed for a Newtonian matrix fluid it is also applied to polymer
melts filled with non-spherical particles. Such an approach completely decouples the influence of
the particle shape from the non-linear properties of the suspending fluid. Yet, since polymer melts
often exhibit a strong non-Newtonian behavior, e.g. shear thinning, it is to be expected that such a
superposition will give a wrong prediction of the suspension viscosity. To investigate the influence
of the particle shape another numerical study is performed. In particular, different flows of a
Carreau fluid around spheroidal particles with different orientations are simulated and numerical
homogenization is used to obtain the intrinsic viscosity of the suspension as function of applied
rate of deformation, thinning exponent and aspect ratio. From the results it is possible to extract
the rheological coefficients of the Lipscomb model. In the Newtonian regime the simulation



results coincide with Lipscomb’s predictions for the rheological coefficients. In the power law
regime of the Carreau model, i.e. at high deformation rates, the rheological coefficients depend
strongly on the thinning exponent. Furthermore, simulation results indicate that the rheological
coefficients additionally depend on the particle orientation in the non-linear regime.
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Résumé

Une étude numérique sur des suspensions diluées à base d’un fluide non newtonien et de particules
sphéroïdales rigides est réalisée. Le comportement de la matrice non newtonienne est décrit par
un fluide de type Carreau, car il capture le phénomène d’amincissement au cisaillement observé
pour de nombreux polymères fondus.

Après une revue de la littérature sur les suspensions de particules rigides, le cas de particules
sphériques est considéré. Ici, un écoulement en élongation uniaxiale d’un fluide de Carreau autour
d’une sphère est simulée. Ensuite, l’homogénéisation numérique est utilisée pour déterminer
la viscosité apparente de la suspension diluée pour différents taux de déformation et d’indices
pseudoplastiques. Dans le domaine newtonien, le résultat d’Einstein donnant la viscosité d’une
suspension diluée de particules sphériques et rigides est obtenu. Cependant, dans la zone de
transition entre un comportement newtonien à parfaitement pseudoplastique, des valeurs plus
faibles de la viscosité intrinsèque sont obtenues et dépendent à la fois du taux de déformation
appliquée et de l’indice d’écoulement. Finalement, dans le régime en loi de puissance du modèle
de Carreau, c’est-à-dire à des taux de déformation élevés, on constate que la viscosité intrinsèque
dépend uniquement de l’indice pseudoplastique.
Dans la dernière partie de cette thèse, des particules non sphériques sont considérées. Si de

telles particules, comme des bâtonnets ou des disques, sont ajoutées à un liquide, l’augmentation
de la viscosité du mélange peut-être décrite par le modèle de Lipscomb. Un résultat important du
modèle de Lipscomb est la prédiction d’une augmentation de la viscosité de la suspension avec
l’accroissement du rapport de forme des particules. Malgré le fait que ce modèle a été initialement
proposé pour un fluide newtonien, il est également applicable aux polymères fondus chargés de
particules non sphériques. Une telle approche découple totalement l’influence de la forme des
particules sur les propriétés non linéaires du fluide suspendant. Pourtant, étant donné que les
polymères fondus présentent souvent un fort comportement non newtonien, par exemple rhéoflui-
difiant, on s’attend à ce qu’une telle superposition donne une mauvaise prédiction de la viscosité
de la suspension. Ainsi, une autre étude numérique est effectuée pour investiguer l’influence
de la forme des particules. En particulier, plusieurs écoulements d’un fluide de Carreau autour
d’une particule sphéroïdale sont simulés pour différentes orientations. Une homogénéisation



numérique est ensuite utilisée pour obtenir la viscosité intrinsèque de la suspension en fonction
du taux de déformation appliqué, de l’indice d’écoulement et du rapport de forme de la particule.
A partir de ces résultats, il est possible d’exprimer les coefficients rhéologiques du modèle de
Lipscomb. Dans le régime newtonien, les résultats de la simulation coïncident avec les prédictions
de Lipscomb. Dans le domaine en loi de puissance du modèle de Carreau, c’est-à-dire à des taux
de déformation élevés, les coefficients rhéologiques deviennent fortement dépendent de l’indice
pseudoplastique. En outre, les résultats des simulations montrent que ces coefficients rhéologiques
dépendent également de l’orientation des particules dans le régime non linéaire.
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Zusammenfassung

Numerische Untersuchung zu verdünnten Suspensionen basierend auf einer nicht Newtonschen
Matrixflüssigkeit und harten spheroidalen Partikeln wurde durchgeführt. Hierbei wurde ein
Carreau Fluid verwendet, um die nicht Newtonschen Eigenschaften des Matrixfluids zu beschrei-
ben. Das Carreau Model wurde gewählt, da es die häufig beobachtete Scherverdünnung von
Polymerschmelzen gut beschreiben kann.
Nach einem Literaturüberblick zu Suspensionen mit harten Partikeln wird zunächst der Spe-

zialfall von harten Kugeln betrachtet. Hierzu wird eine uniaxiale Dehnströmung eines Carreau
Fluids um eine Kugel simuliert. Numerische Homogenisierung wird verwendet um die effektive
Viskosität der Suspension für verschieden aufgebrachte Deformationsgeschwindigkeiten und
Verdünnungsexponenten zu bestimmen. Im Newtonschen Bereich wird die bekannte Lösung
Einsteins für die Viskosität einer verdünnten Suspension harter Kugeln erhalten. Im Übergangs-
bereich von Newtonschem zu nicht Newtonschem Verhalten werden kleinere Werte für die
intrinsische Viskosität erhalten. Die intrinsische Viskosität hängt in diesem Bereich von der
Deformationsgeschwindigkeit und dem Verdünnungsexponenten ab. Im power-law Bereich des
Carreau Fluids, d.h. bei großen Deformationsgeschwindigkeiten, ist die intrinsische Viskosität
einzig eine Funktion des Verdünnungsexponenten. Unter Nutzung der Simulationsergebnisse
wird eine Modifikation des Carreau Modells vorgeschlagen.

Im letzten Teil dieser Arbeit werden nicht-sphärische Partikel betrachtet. Wenn solche Parti-
kel, wie Stäbchen oder Scheiben, zu einer Flüssigkeit hinzugefügt werden wird die Änderung
der Viskosität der Suspension häufig durch das Lipscomb Modell beschrieben. Eine wichtige
Eigenschaft des Lipscomb Modells ist die Vorhersage eines Anstieges der Suspensionsviskosität
mit steigendem Aspektverhältnis der Partikel. Obwohl das Modell ursprünglich für Newtonsche
Flüssigkeiten vorgeschlagen wurde, wird es häufig auch bei, mit nicht-sphärischen Partikeln
gefüllten, Polymerschmelzen angewendet. Solch ein Ansatz entkoppelt jedoch vollkommen den
Einfluss der Partikelform von den nichtlinearen Eigenschaften der Polymerschmelze. Da Polymer-
schmelzen häufig stark nichlineares Verhalten zeigen, z.B. Scherverdünnung, ist zu erwarten dass
solch eine einfache Superposition zu einer falschen Vorhersage der Suspensionsvikosität führen
wird. Um den Einfluss der Partikelform auf die nichtlinearen Eigenschaften zu Untersuchen



werden wieder numerische Simulationen verwendet. Dabei werden verschiedene Strömungen
eines Carreau Fluids um spheroidale Partikel mit unterschiedlichen Orientierung simuliert und
numerische Homogenisierung wird verwendet um die intrinsische Viskosität als Funktion der
aufgebrachten Deformationsgeschwindigkeit, des Verdünnungsexponenten und des Partikela-
spektverhältnisses zu bestimmen. Es ist möglich die rheologischen Parameter des Lipscomb
Modells aus den Simulationsergebnissen zu bestimmen. Im Newtonschen Bereich stimmen die
numerisch bestimmten Werte mit der Vorhersage Lipscomb’s überein. Im power-law Bereich
des Carreau Fluids, d.h. bei großen Deformationsgeschwindigkeiten, hängen die rheologischen
Parameter stark vom Verdünnungsexponenten ab. Weiter kann man aus den Ergebnissen auf eine
zusätzliche Abhängigkeit der rheologischen Parameter von der Partikelorientierung schließen.
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1. Motivation

More than 100 years ago Albert Einstein computed in his dissertation [1] the change in viscosity
of a dilute suspension of rigid spherical particles, the result was later corrected in [2]. Since
Einstein’s calculations many authors extended his work to higher volume fractions of spherical
particles [3–9] and to rigid non-spherical particles [10–14]. Einstein’s equation itself has been
computed by many authors in different ways [15–18] and still today it attracts the interest of
mathematicians [19, 20].
One main assumption in the calculation of Einstein and the later works is that the fluid is

Newtonian, that is its viscosity is constant. If one looks at common polymer melts, as used in the
production of consumer goods, it turns out that these polymer melts are non-Newtonian in their
behavior, their viscosity is not constant. For many polymer melts it is commonly observed that the
shear viscosity decreases with increasing rate of deformation. Accounting for this nonlinearity
in the properties of polymer melts is an interesting topic with direct application in the polymer
industry, since polymer melts are often filled with particles to change their properties. The reasons
for filling polymer melts with rigid particles are multifold. One of the most common reasons is
the improvement of mechanical properties of the end product, for example its stiffness by adding
rigid particles. Others are: flammability (clay) and electric conductivity (carbon black, carbon
nanotubes). For example it is possible to sense strain by adding carbon nanotubes to polymers,
as the conductivity changes with the deformation of the part [21, 22]. A change in conductivity
under deformations can also be observed in rubbers filled with carbon black [23]. This enables for
the production of “smart parts”: one could imagine a part that tells its user it is under a too high
load. It is also possible add magnetic particles to a polymer matrix. Upon addition of magnetic
particles to a rubber one can alter the stiffness of the composite by applying a magnetic field
[24–26].

By adding particles to the polymer to change the properties of the end product one inevitably
changes the properties of the polymer melt to be processed. This means in general an increase
in the viscosity of the melt/mixture. The increase in viscosity results in a need to change the
machine parameters for processing, e.g. higher pressure in injection molding. Thus if one aims to
decrease the flammability, by adding clay to the polymer, one also has to think about how this
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Figure 1.1.: Relative change in viscosity for a LDPE (low-density polyethylene) melt filled with
nano clay versus volume fraction of nano clay, data taken from Costa et al. [27]. Solid
line: fit with Krieger-Dougherty equation (2.14) with [�] = 34.65 and 'max = 0.38.(�(hom) is the viscosity of the filled melt, � the viscosity of the unfilled polymer melt.)

will influence the processability of the polymer melt. For example, in Costa et al. [27] a nano clay
has been added to a LDPE (low-density polyethylene) melt to alter its flammability. Figure 1.1
shows the relative change in the viscosity of the composite as a function of the volume fraction of
clay. In the figure a drastic increase of the viscosity can be observed. For this reason it is helpful
to be able to estimate the change in the viscosity by knowing the properties of the polymer and
the amount and shape of the particles to be added.

Figure 1.2 shows the shear viscosity � for different polymers at temperatures commonly used
in processing as a function of shear rate ̇ . Also indicated in figure 1.2 are ranges of shear rates
for different processing procedures. For injection molding the shear rate range is from 103 s−1 to
104 s−1 and one can clearly see that in this range all the polymers are in the non-linear regime of
deformation1. But also for the other manufacturing processes in figure 1.2 most polymers behave
non-linear. Thus it is very important to know how the non-linear behavior of the polymer melt is
influenced by the addition of filler particles. While the problem of Newtonian fluids filled with
rigid particles has been extensively studied, there are still many open questions for non-Newtonian
fluids filled with rigid particles, even in the dilute case. One can find experimental works [29–31]
1In the linear regime the curve would be horizontal.
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1. Motivation

Figure 1.2.: Flow curves for different polymers at different temperatures. Also indicated are
the shear rate ranges for common processing procedures. The polymer are: ABS
(Acrylonitrile butadiene styrene), PC (Polycarbonate) and PA6 (Polyamide 6). (From
Osswald and Rudolph [28], reprinted with permission from Carl Hanser Verlag
GmbH & Co. KG)

on how the viscosity of a non-Newtonian fluid changes upon addition of filler particles and also
theoretical works [32–37] can be found where attempts where made to predict the behavior of
filled polymers. Due to the non-linear nature of the problem these theoretical works are based on
assumptions which make the problem manageable by analytical methods.

Numerical works studying viscoelastic polymer-solidmixtures can also be found in the literature,
but these are often devoted to the motion of particles in viscoelastic fluids rather than their bulk
properties [38–41]. Only in a few papers [42–44] the authors also computed bulk properties,
such as the storage modulus. Further, some review articles exist on the topic of filled polymers
[45–48] where also non-linear behavior is discussed.
Nevertheless, in none of the aforementioned numerical works do the authors systematically

investigate the influence of the matrix nonlinearity on the bulk properties. The aim of the present
PhD studies is to investigate exactly this question. For that purpose computational fluid dynamics
(CFD) simulations are done using a non-linear viscosity model for the polymer matrix and the bulk
properties of the suspension are computed for a broad range of shear rates. With the simulation
the linear, non-linear and crossover region between linear and non-linear behavior is investigated.

3



1. Motivation

The linear results are compared with the existing analytical solutions.
In Laven and Stein [33], Chateau et al. [34] and Tanner et al. [35] the influence of rigid spherical

particles on the viscosity in the power law regime of polymer melts is investigated, that is at
very high shear rates. One can see in Figure 1.2 that the polymers PC (Polycarbonate) and
PA6 (Polyamide 6) are in the crossover regime from linear to power law behavior at shear rates
that commonly occur in extrusion and injection molding. It is thus important to know how the
crossover between linear and power law regimes is altered upon the addition of filler particles.
One aim of this thesis is to improve those works and investigate how the addition of rigid spherical
particles influences this crossover. As this problem is highly non-linear, numerical methods are
used to compute the viscosity change in a filled polymer melt.

In the case of non spherical particles, such as clays and carbon nanotubes, analytical solutions
are also only known for Newtonian matrix fluids. For spheroidal particles in a Newtonian fluid the
bulk behavior can be described by the transversely isotropic fluid equation (TIF), which has three
parameters that depend on the particle aspect ratio. It is commonly assumed that the parameters
of the TIF equation do not change if the matrix fluid becomes non-Newtonian [49, 50]. This
assumption seems to be brute force. It is already known that the TIF parameters change for
spherical particles (a special case of the TIF equation) in a non-Newtonian fluid. It thus stands
to reason that the parameters in the TIF equation will also change for non-spherical particles in
a non-Newtonian fluid. This question is also investigated within this thesis. As the problem is
again highly non-linear the problem will be solved by means of CFD simulations.

The thesis structure is as follows. Chapter 2 will give a review of results found in literature on
suspensions of rigid particles and chapter 3 will explain the numerical methods used in the CFD
simulations. In chapter 4 the influence of rigid spherical particles on the bulk properties of a
filled polymer melt is investigated and a model is proposed to capture the effect of the presence of
rigid spherical particles in a non-Newtonian fluid. Predictions of this model are compared with
experimental data. Further in chapter 5 dilute suspension of anisometric particles is investigated
and non-linear parameters for the transversely isotropic fluid equation [14] are computed. The
thesis is closed by a short summary and outlook for future studies.

4



2. An overview of the rheology of
suspensions

In everyday life one can find dispersions of solid particles in liquids everywhere. Blood, wheat
beer and mortar are just some common examples.
Since suspensions can be found all around us, there is a lot of interest not only to understand

their behavior from the microstructure, but also to be able to describe their macroscopic behavior
by proper continuum models. This is of big importance for example for process simulations, like
the simulation of the injection molding process of polymer parts.
In this chapter a review of results found in literature is given for spherical and non-spherical

particles.

2.1. Rigid spherical particles

2.1.1. Newtonian matrix fluids

The increase in the viscosity of a homogeneous suspension of a small amount of rigid spherical
particles in a Newtonian fluid was first computed by Einstein [1, 2] and is given by

�(hom) = �(1 + 2.5'). (2.1)

In the above relation �(hom) and � are respectively the viscosity of the homogenous suspension
and that of the suspending or matrix fluid and ' is the volume fraction of particles. Einstein’s
equation (2.1) is only valid for very small volume fractions of particles, that is ' ⪅ 0.03 [51]. It
is customary to introduce additional relations between the viscosity of the suspension and that of
the matrix fluid [52]. The first relation is the so called relative viscosity �r which is defined as

�r = X = �(hom)

�
. (2.2)



2. An overview of the rheology of suspensions

The symbol X is also often used, especially in the rubber community [53] for the amplification
of the shear modulus of filled rubbers, and is referred to as hydrodynamic amplification factor.
This double usage is possible due to a mathematical analogy of the problems: filled linear elastic
solid and filled Newtonian fluid [5, 54].

The specific viscosity is given as

�sp =
�(hom) − �

�
. (2.3)

The ratio of the specific viscosity to the volume fraction in the dilute limit is called the intrinsic
viscosity:

[�] = lim
'→0

�sp
'
. (2.4)

In the case of Einstein’s equation (2.1) the intrinsic viscosity takes the value of 2.5. For non-
spherical or non-rigid particles this value can differ significantly [52]. Hence we may write
instead of (2.1)

�(hom) = �(1 + [�]'). (2.5)
In the computation that lead to the seminal result given in (2.1), Einstein considered the

additional amount of work per unit time needed to deform a fluid that contains one rigid spherical
particle compared to the same fluid without a particle. This consideration implies that there are
no interactions between particles which is unavoidable for higher volume fractions. Batchelor and
Green [5] accounted for two particle interactions and obtained for the viscosity of a suspension in
an elongational flow

�(hom) = �(1 + 2.5' + 7.6'2). (2.6)
For a shear flow, where the particles are subjected to Brownian motion, Batchelor [6] obtained

�(hom) = �(1 + 2.5' + 6.2'2), (2.7)

where ' ⪅ 0.1 [51]. From equations (2.6) and (2.7) one can see that there is a difference in the
quadratic term in the volume fraction. This difference can be attributed to the fact that in the
calculations leading to (2.6) Brownian motion was neglected, but not for (2.7). In the presence
of relatively strong Brownian motion the spatial distribution is uniform, while in the absence of
Brownian forces some configurations are more common than others [6]. Another example on
how the spatial configuration of particles influences the quadratic term is that of fixed particles.
Such a case can be realized by embedding particles in an elastic matrix subjected to infinitesimal

6



2. An overview of the rheology of suspensions

Figure 2.1.: Viscosity vs. shear stress for a suspension of polymer spheres with diameter d =
250 nm in water, from Laun [56]. Until a particle volume fraction of ' = 0.28 the
suspension stays Newtonian. (Copyright Wiley-VCH Verlag GmbH & Co. KGaA.
Reproduced with permission.)

strains. In this case the prefactor to the quadratic term is 5.0 [5, 55]. From (2.6) and (2.7) one can
also deduce that Brownian motion does not change the dilute result of Einstein, as was shown in
[6]. Happel and Brenner [17] found that there is almost no influence of the type of bulk flow on
Einstein’s result.

In the aforementioned relations the effective material behavior does not change: a Newtonian
fluid stays a Newtonian fluid upon addition of particles. For high volume fractions of particles
this is not generally true. Figure 2.1 shows measured viscosity-shear stress curves from Laun
[56] for a suspension of polymer spheres with diameter d = 250 nm in water for different volume
fractions of particles. The behavior of the suspension stays Newtonian until the volume fraction
of ' = 0.28. For the volume fraction ' = 0.43 a pronounced shear thinning can be observed. At
high shear rates and high particle concentrations an additional shear thickening is observed.
As shown in figure 2.1 at intermediate concentrations of filler particles one observes shear

thinning behavior. This effect can be attributed to the increasing hydrodynamic forces acting
on the particles [51]. The interplay between Brownian and hydrodynamic forces is generally
captured in the so called Peclet number Pe. The Peclet number can be defined as ratio of the time
�d a particle needs to diffuse by its own radius to the time �s, it takes for a particle to be dragged

7



2. An overview of the rheology of suspensions

by the flow about its radius,
Pe =

�d
�s
. (2.8)

The diffusion coefficient D of a spherical particle in a Newtonian liquid is given in the dilute
limit by the Stokes-Einstein equation

D =
kBT
6��r

, (2.9)
where kB is Boltzmann’s constant, T is the absolute temperature and r is the particle radius. The
viscosity of the suspending fluid is �. With the diffusion coefficient one can express the time
needed for a particle to diffuse about its radius as

�d ≈
r2

D
. (2.10)

The time by which a particle was dragged about its radius is given by

�s =
r
U
= 1
̇

(2.11)

with U the fluid velocity and ̇ the shear rate. Inserting (2.10) and (2.11) into (2.8) one obtains
the usual definition of the Peclet number [51, 57]

Pe = 6��r3

kBT
̇. (2.12)

A descriptive interpretation of the Peclet number can be given by rearranging (2.8) to

�d = Pe �s. (2.13)

The above relation can be interpreted as follows: by the time a particle has diffused once its radius
it has traveled Pe times its radius due to the action of hydrodynamic forces. Hence, if Pe≫ 1 it is
justified to neglect Brownian motion.

Coming back to the explanation, why shear thinning is observed at increased volume fractions
in figure 2.1. At high shear stresses, implying high shear rates, the Peclet number is high and the
randomizing effect of Brownian motion is, in part, suppressed by hydrodynamic forces. Thus, at
high Peclet numbers the distribution of particles is not necessarily uniform anymore and some
configurations are more common. This leads to a decrease of the suspension viscosity. The
difference between (2.6) and (2.7) was also attributed to the effect of Brownian motion [6].
For the highest volume fractions in figure 2.1 the viscosity at low shear stresses is diverging.
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2. An overview of the rheology of suspensions

The diverging viscosity is interpreted as an apparent yield stress [51]. The relations for the
viscosity of a suspension shown so far are only valid up to volume fractions of about ' ≈ 0.1. A
popular relation to capture the increase in viscosity over the complete range of volume fractions
is the Krieger-Dougherty equation [9]:

�(hom) = �
(

1 − '
'max

)−[�]'max
. (2.14)

Here 'max is the volume fraction at which the viscosity diverges. The Krieger-Dougherty equation
is based on a mean-field argument, that every time a particle is added to the suspension the
viscosity increases according to Einstein’s equation, plus it assumes the empirical parameter 'max.
The argument for the introduction of the parameter 'max is that after the addition of a particle the
occupiable volume for new particles is decreased. A similar relation has been derived by Maron
and Pierce [8]. In their relation the exponent in (2.14) is [�]'max = 2,

�(hom) = �
(

1 − '
'max

)−2

. (2.15)

Typical values of 'max for spherical particles are between ∼ 0.5 and ∼ 0.64 [57]. Other relations
for the dependence of the viscosity have been derived, for example by Eilers [7], but it seems that
the Krieger-Dougherty equation is the most popular [51, 52, 57]. In chapter 4 the approach of
Krieger and Dougherty is used to extend results for dilute suspensions of rigid spheres to higher
volume fractions.

2.1.2. Non-Newtonian matrix fluids

If the Newtonian matrix of the suspension is replaced by a non-Newtonian one it is almost
impossible to find analytical solutions to the problem of how the effective properties change. The
complication in predicting the effective properties of suspensions with non-Newtonian matrices
is that it is generally not possible to solve analytically for the perturbed flow field around the
particles. This flow field is needed to evaluate the effective properties by averaging the field over
a representative volume.

Non-Newtonian behavior is a vague term and thus it should first be specified what is meant by
non-Newtonian behavior in the following. The behavior of the matrix fluid is often described
as a generalized Newtonian fluid [58]. Such a generalized Newtonian fluid is characterized by
a viscosity that depends on the rate of strain. Generalized Newtonian fluids do not incorporate
viscoelastic effects, most importantly normal stress differences [58]. Two common models to

9



2. An overview of the rheology of suspensions

describe the dependence of the viscosity on the shear rate ̇ are the power law and Carreau fluids
[59]. The power law fluid is defined as

� = K̇n, (2.16)

where K is called flow consistency index and has the units Pa sn + 1. The parameter n is the
dimensionless flow index or (shear) thinning exponent. If n = 0 the behavior is Newtonian and
if n < 0 it is shear thinning. The power law model has one problem: it predicts a viscosity
which diverges as ̇ goes to zero. Polymers normally show a Newtonian plateau at low shear
rates and become shear thinning above some critical shear rate. The Carreau model captures this
experimentally observed effect and is defined as

� = �0
(

1 + (�̇)2
)n∕2 . (2.17)

In the equation above �0 is the zero shear viscosity in Pa s, i.e. the plateau value of the viscosity
at low shear rates. The inverse of characteristic time � corresponds to the onset of shear thinning.
Interestingly the characteristic time in the Carreau model corresponds roughly to the Rouse time
of an unentangled melt of short polymer chains [60]. For arbitrary flows in three dimensions the
shear rate in equations (2.16) and (2.17) is replaced by the the scalar deformation rate defined as

̇ =
√

2d∶d, (2.18)

where d is the rate of strain tensor. The colon in (2.18) denotes the double dot product, it is
defined as A∶B = tr(A ⋅ B) = AijBji where the latter expression uses Einstein’s summation
convention. The rate of strain tensor is defined as the symmetric part of the velocity gradient
tensor

d = 1
2
(grad(u) + grad(u)⊤) (2.19)

where grad(∙) is the gradient operator, (∙)⊤ is the transpose and u is the velocity field. In a simple
shear flow with an applied shear rate ̇0 the rate of strain tensor is

d = ̇0

⎛

⎜

⎜

⎜

⎝

0 1
2
0

1
2
0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

(2.20)

and the scalar deformation rate according to (2.18) is simply ̇0.
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Figure 2.2.: Data of Poslinski et al. [31] for a thermoplastic melt at 150 ◦C filled with glass spheres
with a radius of r = 15 µm for different filler loadings '.

Figure 2.2 shows the results of measurements done by Poslinski et al. [31] on a, not specified,
thermoplastic melt1 filled with 15 µm glass beads at various volume fractions. For the unfilled
data in figure 2.2 the afore mentioned Newtonian plateau is nicely observed at low shear rates and
a power law regime can be seen at high shear rates. With increasing content of filler particles the
zero shear viscosity increases and the onset of shear thinning is shifted to smaller shear rates, a
behavior commonly observed in filled polymers [29, 30, 48]. The basic argument for the shifting
of the onset of shear thinning to lower values of the shear rate is that due to the presence of
filler particles the local flow field is disturbed. Because of the disturbance the average rate of
deformation inside the fluid phase is higher than the applied rate of deformation [52]. It is possible
to compute the average increase of the rate of strain tensor inside of the matrix phase for arbitrary
flows and particle shapes as [5, 61]

⟨d⟩m =
1

1 − '
d0 = add0 (2.21)

with d0 the applied rate of strain tensor on the entire outer boundary of the considered volume.
The angle brackets in the above equation denote the spatial average, i.e. ⟨∙⟩ = 1

V
∫ ∙ dV . The

1The paper states: “[…] a high molecular weight thermoplastic polymer obtained from the Standard Oil Engineered
Materials Company.”
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2. An overview of the rheology of suspensions

result given in (2.21) is independent of the constitutive relation used to describe the matrix fluid
[61], hence it is valid for all kinds of fluids: Newtonian, generalized Newtonian, viscoelastic etc.

In Domurath et al. [61] the result of (2.21) is used as a strain amplification factor ad = 1∕(1−')
to model the behavior of non-linear viscoelastic fluids filled with rigid spherical particles. The
basic argument is that the strain rate in the constitutive relation should be amplified by ad and the
stress by the stress amplification factor as, as it was done by Einstein [1] when calculating the
viscosity of a suspension of rigid spherical particles. Because of the introduction of amplification
factors for the stress and the strain this approach is referred to as stress and strain amplification
approach (SSAA). For the average microscopic stress inside the suspension with a Newtonian
matrix fluid one obtains

⟨�⟩m = 2as� ⟨d⟩m = 2as�add0. (2.22)
The homogeneous macroscopic stress can be written as

�(hom) = 2�(hom)d0. (2.23)

Comparing power densities, that is computing P = � ∶d, using the two above equations for the
microscopic (2.22) and macroscopic (2.23) stress, the viscosity of the suspension is then given by

�(hom) = asa2d�. (2.24)

For a generalized Newtonian fluid with a shear rate dependent viscosity �(̇) the relation becomes

�(hom)(̇0) = asa2d�(aḋ0). (2.25)

The stress amplification factor is computed as

as =
X
a2d

(2.26)

to match the linear result. While this approach can qualitatively describe the observed behavior
for filled polymer melts it underpredicts the strain amplification effect. That is, the onset of shear
thinning is observed at lower shear rates than predicted by this approach [30, 31]. The stress
amplification factor in the SSAA can be interpreted as a correction for the fluctuations in the rate
of strain tensor. If the power density in the suspension is directly averaged, one obtains

⟨P ⟩ = 2� ⟨d∶d⟩ (2.27)

12



2. An overview of the rheology of suspensions

for a Newtonian fluid. In the case of the SSAA the average power density is computed as

⟨P ⟩(SSAA) = 2�as ⟨d⟩m ∶ ⟨d⟩m = 2�asa2d d0∶d0. (2.28)

Thus as corrects that ⟨d∶d⟩ ≠ ⟨d⟩∶⟨d⟩. As in the transition from (2.27) to (2.28) an additional
term about the rigid particles surface appears. This additional term is related to the stresslet, that
is introduced in section 3.5.
That the choice of the strain amplification factor as used in the SSAA (2.21) does not work

particularly well for the estimation of the overall properties of non-linear heterogeneous materials
was also shown by Suquet [62]. Suquet proposed instead that the average strain rate in the matrix
phase should be computed as the square root of the average of the squared strain rate. This can be
written for a fluid as

⟨d⟩m =

√

⟨d∶d⟩m
⟨d0∶d0⟩

d0. (2.29)

By requiring that in the Newtonian limit the linear result should be recovered, the average strain
rate in the matrix phase can be estimated by

⟨d⟩m =
√

X
1 − '

d0. (2.30)

This relation was also proposed by Schikowsky [63] for filled elastomers. The argument given by
Schikowsky is basically that when the average power density inside the filled material is about
X times higher than in the unfilled material one should use an amplified matrix strain such that
X⟨P ⟩ holds. Assuming a linear relation between stress and rate of strain this gives

X ⟨P ⟩ = (1 − ') �
√

X
1 − '

d0∶
√

X
1 − '

d0. (2.31)

The factors of (1 − ') appear because the rate of strain is averaged over the matrix volume only.
The proposed relation in (2.30) has been quite successfully used by Chateau et al. [34] to model
the effective behavior of filled non-linear fluids with a yield stress. For the intrinsic viscosity
(2.4) of a power law fluid (2.16) Chateau et al. obtained

[�]Chateau = 7(n + 1) + 3
4

= 7n
4
+ 5
2
. (2.32)
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2. An overview of the rheology of suspensions

Laven and Stein [33] obtained using (2.29) for the intrinsic viscosity of a power law fluid

[�]Laven = n
2
+ n + 2

2
KL

E (2.33)

where KL
E is referred to as Einstein coefficient in their paper. In general KL

E will be a function
of the thinning exponent n [33]. For a Newtonian fluid with n = 0 KL

E = 2.5. Laven and Stein
deduced from experimental data that KL

E ≈ 2.5 and independent of n. Inserting KL
E = 2.5 into

(2.33) gives the result of Chateau et al. (2.32). Both Chateau et al. [34] and Laven and Stein
[33] showed that in the dilute limit the material behavior does not change, meaning that the
thinning exponent n is constant. In chapter 4 the result of Chateau et al. will be compared with
the numerical results obtained in the framework of the present PhD thesis.

Tanner et al. [35] used solutions for the effective properties of a power law material by Lee and
Mear [32] and obtained

[�]Tanner = 0.383 + 2.177(n + 1). (2.34)
The result of Tanner et al. has a problem, that it does not fulfill the specific case of n = −2. That
is for n = −2 Tanner’s relation gives [�]Tanner = −1.794, while the correct result is can be shown
to be −1. This will be explained in detail in chapter 4.

Until now only power law matrices have been discussed. As power law fluids do not describe
the Newtonian region one cannot determine how the onset of shear thinning shifts. This shift
is however an important characteristic of filled polymers. To investigate the shift of the shear
thinning onset, numerical simulations are carried out in the present thesis and the results will be
presented in chapter 4.

2.1.3. Superposition of viscosity-stress curves

With the literature results discussed above it is possible to question a claim made for polymers
filled with rigid spherical particles by Barnes [48]. That is, it is possible to superimpose the flow
curves for filled polymers by only a vertical shift if the data is plotted as viscosity vs. stress rather
than viscosity vs. shear rate. This claim has been copied by Mewis and Wagner [57]. Highgate
and Whorlow [29] found that in the system they investigated the proposed superposition did work,
though they could not give a reason for this to be possible. Barnes [48] argues that the stress
is uniform in a suspension, contrary to the shear rate. This argument is wrong, as can easily be
shown. The stress in the fluid phase is

� = 2�d (2.35)
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Figure 2.3.: Sketch of the shift factors for a generalized Newtonian fluid.

where for simplicity a Newtonian fluid is assumed. If the microscopic shear rate is non uniform
so must be the stress, since both are related only by the scalar viscosity2.
To show that from a theoretical point of view it is not possible to construct such master curves it is
instructive to consider the flow curves sketched in figure 2.3. The unfilled system has a constant
Newtonian plateau at shear rates smaller than �−1 and a constant slope n otherwise. This flow
curve can be approximated by the Carreau model (2.17). Introducing the shift factors X and Y
for the filled system, see figure 2.3, into the Carreau model (2.17) gives

� = X�0
(

1 + (Y �̇)2
)n∕2 . (2.36)

The three shift factors in figure 2.3 are related by

Z = XY n. (2.37)

The factor X corresponds to the hydrodynamic amplification factor introduced for Newtonian
suspensions (2.2). The vertical shift in the power law region Z is equal to 1 + [�]' where
[�] is given by (2.32) or (2.34). The value of Y is related to the strain amplification factor.
2This implies that for the stress to be uniform for a non uniform rate of strain tensor, the viscosity must be �d−1
(the inverse of the rate of strain tensor). In that case the stress is �1, a constant hydrostatic state, thus the fluid is
at rest.

15



2. An overview of the rheology of suspensions

Equation (2.36) can not generally be inverted to obtain an analytical relation for �(�) but it can
be approximated by considering the asymptotic cases

Y ��
X�0

≪ 1 and Y ��
X�0

≫ 1 (2.38)

the viscosity vs. stress relation corresponding to (2.36) becomes

�(�) ≈ X�0

(

1 +
(

Y ��
X�0

)2
)

n
2(n + 1)

. (2.39)

In the above relation the value of n must be restricted to n > −1. This restriction is not a problem
since the values of n for common polymers are in the range −1 < n ≤ 0 [28]. The derivation of
(2.39) is given in appendix 2.A. From (2.39) it can be clearly seen that a construction of master
curves by only a vertical shift is only possible if X = Y . Since Z is related to the intrinsic
viscosity in the power law regime it is helpful to solve (2.37) for Z in case that Y = X, this gives

Z = X1+n. (2.40)

Inserting the solution for the hydrodynamic amplification factor X in the dilute limit (2.1) and
the solution for Z given by Chateau et al. (2.32) in (2.40) one obtains

1 +
(7n
4
+ 5
2

)

' = (1 + 2.5')1+n. (2.41)

For solutions of the above equation it is thus possible to superimpose the viscosity vs. stress
curves by only a vertical shift. First, one can immediately see that equation (2.41) has two trivial
solutions at n = 0 and ' = 0 but these are not of interest since the first one corresponds to a
Newtonian fluid and the second one is just the pure matrix fluid. Otherwise (2.41) has no further
analytical solutions. However, one can rewrite (2.41) as

g(', n) = (1 + 2.5')1+n −
(

1 +
(7n
4
+ 5
2

)

'
)

(2.42)

and plot this function. This is done in figure 2.4. From the contour plot it can be seen that this
function has no non trivial roots for 0 < ' < 1 and −1 < n < 0.

Further it can be clearly seen from (2.39) for the superposition by only a vertical shift the slope
of the viscosity curve should not change with increasing filler volume fraction, but such a change
in the slope is commonly observed [57]. For example the slope in the data of Poslinski et al. [31]
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Figure 2.4.: Contour plot of the function g(', n) given by (2.42). There are no non trivial roots
for 0 < ' < 1 and −1 < n < 0.

Table 2.1.: Shift factors extracted from the data of Poslinski et al. [31] by fitting to the Carreau
model.

' 0.00 0.13 0.26 0.35 0.46 (0.60)
X 1.00 1.57 3.78 12.07 43.26 (234.66)
Y 1.00 1.05 1.84 5.68 19.69 (97.72)

changes gradually from n = −0.5 to n = −0.6 between the unfilled system and the system with
the highest filler loading.
Thus, while in some studies [29, 48, 57] it may look like the curves are superimposed, this is

most likely just due to the presentation of the data. In figure 2.5 the shifted data of Poslinski et al.
[31] is plotted according to Barnes, the data does not superimpose very well. It is also possible to
extract the shift factors X and Y from the data of Poslinski et al. using the Carreau model. Table
2.1 shows the extracted shift factors. For this data set the value of X is always noticeably larger
than Y . The data set for the volume fraction ' = 0.6 is set parentheses as the data does not show
a Newtonian plateau.

17



2. An overview of the rheology of suspensions

100 101 102 103 104 105

10−2

10−1

100

� [Pa]

�∕
� 0
(1
−
'
∕'

ma
x)
−
2

' = 0.00 ' = 0.13
' = 0.26 ' = 0.35
' = 0.46

Figure 2.5.: Data of Poslinski et al. [31] shifted according to Barnes [48] using the Maron-Pierce
equation (2.15), 'max = 0.526 and � = 117 Pa s. The data for ' = 0.60 is omitted
because it is not possible to shift the data using the proposed Maron-Pierce equation.

2.2. Rigid non-spherical particles

Till now only suspensions of rigid spherical particles have been considered and it was shown
that their behavior is quite complicated. In applications polymer melts are often filled with
non-spherical particles, like rod-like fibers [22] or disk-like silicates [27]. This change in the
shape of the particles complicates the description of the suspension tremendously, even in the
Newtonian case. Therefore, when developing constitutive equations it is usually assumed that the
particles have a rotational symmetry, which is the case for spheroids or rods with circular cross
section.

2.2.1. Newtonian matrix fluids

Jeffery [10] was the first to investigate a spheroidal particle suspended in a Newtonian fluid in the
absence of Brownian motion. He considered spheroidal particles as sketched in figure 2.6. The
spheroid is mathematically described by

x2

a2
+ y2 + z2

b2
= 1 (2.43)
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2b

2a

p

Figure 2.6.: Sketch of a spheroidal particle.

where a and b are the semi-axes of the spheroid. The orientation vector p is parallel to the axis of
revolution x and its length is equal to 1. The aspect ratio is defined as

ra =
a
b
. (2.44)

For an aspect ratio of ra = 1 the spheroid becomes a sphere, for ra > 1 the spheroid is prolate
and for ra < 1 the spheroid is oblate. For rods it is proposed to define an effective aspect ratio as
r(eff)a ≈ 0.7l∕d, where l is the length and d is the diameter [51].

Jeffery [10] has shown that the center of mass of a spheroid translates with the bulk flow of the
fluid and its orientation vector p rotates periodically. The time evolution of the orientation vector
p in the flowing suspension can be described by [51, 64]

ṗ = p ⋅w +

(

r2a − 1
r2a + 1

)

(p ⋅ d − ppp∶d) . (2.45)

Here w is the vorticity tensor defined as the non-symmetric part of the velocity gradient tensor

w = 1
2
(grad(u) − grad(u)⊤) . (2.46)

In a shear flow a spheroidal particle rotates periodically in time. This rotation is called the Jeffery
orbit. Jeffery also computed the intrinsic viscosity for a dilute suspension of spheroidal particles
but due to the rotation of the particles he only gave minimum and maximum values. The minimum
value for the intrinsic viscosity is reported to be 2, while the maximum is infinity [10].

As in the case of spherical particles the presence of Brownian motion influences the behavior
of the suspension. Without Brownian motion the particle can align along the flow direction. This
alignment is for example observed in elongational flows or in shear flows, when the aspect ratio
of the particle tends to either zero or infinity [51]. The influence of Brownian motion is captured
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in the rotational Peclet number that is defined as

Per ≡
̇
Dr
. (2.47)

The value of the rotatory diffusivity Dr in the above equation can be found in literature [51]. For
a spheroidal particle the rotatory diffusivity in the dilute limit is given by [51]

Dr0 =
3kBT

(

ln(2ra) − 0.5
)

��l3
(2.48)

where l = 2max(a, b).
In the case of spherical particles the dilute limit ends slightly above 3% volume fraction. For

nonspherical particles the dilute limit is normally much smaller. Larson [51] gives an estimate
for the crossover volume fraction from dilute to semidilute concentration regime for rods with
aspect rations of ra = l∕d ⪆ 50 as

'dilute ≈ 24
(d
l

)2
. (2.49)

Ericksen [65] developed a theory of transversely isotropic fluids that is properly invariant,
it neither violates the laws of thermodynamics nor objectivity3. A transversely isotropic fluid
is defined as a fluid which has one preferred direction. In the preferred direction the material
behaves differently than perpendicular to it. Thus a transversely isotropic fluid shows a rotational
symmetry about its preferred direction. Based on the results of Jeffery, Hand [11] was able to
show that the stress in a dilute suspension of spheroidal particles can be described as a special
case of Ericksen’s theory. Giesekus [66] also used Jeffery’s results to evaluate the viscosity
of dilute suspension of spheroids. Using the results of Ericksen and Giesekus, Lipscomb et al.
[14] proposed a model for dilute suspensions of spheroidal particles in the absence of Brownian
motion. In Lipscomb’s work the stress is given by the transversely isotropic fluid (TIF) equation

� = −p1 + 2�d + 2�'
(

Aa4∶d + B
(

d ⋅ a2 + a2 ⋅ d
)

+ Cd
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
particle contribution

. (2.50)

Here p is the pressure and A, B and C are rheological coefficients. The tensors a2 and a4 are
orientation tensors: a2 is a second order tensor and a4 is of forth order. For example the orientation

3That is, it is independent of the observer.
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tensors are given for fixed particles that all have the same orientation as

a2 = pp (2.51a)
a4 = pppp, (2.51b)

thus the preferred direction in the fluid is along p. Using (2.45) for the time evolution of p, it
is possible to compute the time evolution of the stress. In case of differently oriented particles
it is necessary to average over the orientation distribution function of the particles. The tensor
a4 is generally unknown in such a case and must be approximated using a2. This averaging
complicates the calculations of these tensors significantly and will not be discussed here, since
for the following discussion it is sufficient to consider a single fixed particle. In the presence of
Brownian motion an additional term is added to (2.50) that depends on the rotatory diffusivity Dr
of the particle. This term can be found in Hinch and Leal [13, 67]. More on the averaging and on
proper closure approximations for a4 = f(a2) can be found in Lipscomb et al. [14] or for a newer
work see Binetruy et al. [68].

Lipscomb et al. gives the following expressions for the rheological coefficients A, B and C

A =
(

r2a − 1
)2 (4Θr2a + 5Θ + 2r

2
a − 11

)

r2a
(

3Θ + 2r2a − 5
) (

2Θr2a + Θ − 3
) −

4
(

r2a − 1
)2

(

r2a + 1
) (

r2a − 3Θr2a + 2
) (2.52a)

B = −
4
(

r2a − 1
)2

r2a
(

3Θ + 2r2a − 5
) +

2
(

r2a − 1
)2

(

r2a + 1
) (

r2a − 3Θr2a + 2
) (2.52b)

C =
4
(

r2a − 1
)2

r2a
(

3Θ + 2r2a − 5
) (2.52c)

where

Θ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

2ra
√

r2a − 1
ln
⎛

⎜

⎜

⎜

⎝

ra +
√

r2a − 1

ra −
√

r2a − 1

⎞

⎟

⎟

⎟

⎠

if ra > 1

1

ra
√

1 − r2a
arctan

⎛

⎜

⎜

⎜

⎝

√

1 − r2a
ra

⎞

⎟

⎟

⎟

⎠

if ra < 1.

(2.53)
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2. An overview of the rheology of suspensions

Other relations for the factors A, B and C have been derived for example by Hinch and Leal [13].
For rods with length l, diameter d and aspect ratio ra = l∕d Batchelor [69, 70] derived using

slender-body theory that
A =

r2a
3 ln

(

2ra
) f (�) (2.54)

where the function f is given by

f (�) = 1 + 0.64�
1 − 1.5�

+ 1.659�2 + (�3) (2.55)

with
� = ln

(

2ra
)−1 . (2.56)

The parameters B = C = 0 for rods, according to slender-body theory [69, 70]. For a sphere
A = B = 0 and C = 2.5, that is Einstein’s result is recovered.
In the cases where ra ≫ 1 and ra ≪ 1 the rheological coefficients given by Lipscomb et al.

simplify significantly. Table 2.2 presents the simplified rheological coefficients and additionally
those of Hinch and Leal [13]. In the habilitation thesis of Ausias [71] an extended overview of
more results for the rheological coefficients A, B and C is given. Also Kim and Karrila [64] and
Férec [72] discuss some results for the rheological coefficients. In figures 2.7 to 2.9 the result of
Lipscomb et al. for the rheological coefficients given by equations (2.52) is plotted, as well the
asymptotic solution of Hinch and Leal [13] and the approximation of Lipscomb et al. as given in
table 2.2. Further certain special cases for the values of the rheological coefficients are marked
in the figures. It can be seen that the asymptotic solution of Hinch and Leal coincides with the
solution given by Lipscomb et al. in (2.52).
From table 2.2 it can be seen that there are differences in the predictions for the rheological

coefficients in the TIF equation. The author of this PhD thesis is not aware of any work that tried
to compute these factors using numerical simulations. The only known work to the author is by
Lee and Mear [32] where the particle orientation is such that p is aligned with the load direction.
In chapter 5 numerical simulations are preformed, for the first time, to determine the rheological
coefficients A, B and C for both Newtonian and non-Newtonian matrices.
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2. An overview of the rheology of suspensions

Table 2.2.: Rheological coefficients A, B and C for the TIF equation (2.50) for the cases when
ra ≫ 1 and ra ≪ 1 from Lipscomb et al. [14] and Hinch and Leal [13].

A B C

ra ≫ 1
Hinch and Leal r2a

2
(

ln(2ra) − 1.5
)

6 ln(2ra) − 11
r2a

2

Lipscomb et al. r2a
2 ln(ra)

0 2

ra ≪ 1
Hinch and Leal 10

3�ra
+ 208
9�2

− 2 − 8
3�ra

+ 1 − 128
9�2

8
3�ra

Lipscomb et al. 10
3�ra

− 8
3�ra

8
3�ra
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Figure 2.7.: Comparison of the rheological coefficient A given by Lipscomb’s solution (2.52)
and the relations presented in table 2.2. The approximation of Lipscomb et al. is not
good for large aspect ratios.
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Figure 2.8.: Comparison of the rheological coefficient B given Lipscomb’s solution (2.52) and
the relations presented in table 2.2.
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Figure 2.9.: Comparison of the rheological coefficient C given by Lipscomb’s solution (2.52)
and the relations presented in table 2.2.
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2. An overview of the rheology of suspensions

2.2.2. Non-Newtonian matrix fluids

For non-Newtonian fluids filled with spheroidal particles not so many theoretical works can be
found, besides the work of Lee and Mear [32] that was already mentioned multiple times.
For example one finds a proposal of Thomasset et al. [73] to replace the Newtonian viscosity

in the TIF equation with a Carreau law (2.17) and to use Lipscomb’s coefficients. Another
approach in a similar style can be found in Wang et al. [49] and Kagarise et al. [50]. In these two
works the authors also assume the validity of the TIF equation for a non Newtonian fluid with
Lipscomb’s coefficients computed for a Newtonian fluid and replace the Newtonian viscosity by a
shear-thinning viscosity described by the Giesekus model. Considering the discussion in section
2.1.2, these approaches seem to be a little bit brute force. To understand this, let us consider the
TIF equation (2.50) for spherical particles

� = −p1 + 2�d + 2�'Cd (2.57)

which predicts the viscosity of the suspension
� = �(1 + C'). (2.58)

Comparing the above equation with Einstein’s result (2.5) gives C = [�]. For non-Newtonian
matrix fluids it was shown in section 2.1.2 that the intrinsic viscosity [�] in a power law fluid
depends on the flow index n. This raises the question: Why should the coefficientC be independent
of the flow index n for non-spherical particles, while it depends on n for spheres? Whether the
rheological coefficients A, B and C are really independent of n will be investigated in chapter 5.
Two interesting works are those of Souloumiac and Vincent [37] and Gibson and Toll [36].

While these two works consider rod-like particles, where only the rheological coefficient A is
non-zero in the TIF equation, the basic results are very interesting. Both works study a power
law fluid that contains rigid rods. Souloumiac and Vincent [37] used a cell based model and
in Gibson and Toll [36] a micro-mechanical approach is used. In both calculations the particle
contribution to the stress tensor for a fixed rod-like particle in a power law fluid can be written as

� = 2'A∗ |p ⋅ d ⋅ p|n a4∶d (2.59)

where a4 is given by (2.51b). The parameter A∗ depends on the flow index n and on the geometry
of the particle. This fortifies the assumption that the rheological coefficients in the TIF equation
depend on the flow index for power law fluids. Such an equation has been used in Férec et al.
[74] to model elongational behavior of fiber filled polymers.
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x

y

z #p

Figure 2.10.: Sketch of a rod in a simple shear flow.

One should nevertheless be careful using the factor |p ⋅ d ⋅ p|n as it diverges for many cases.
For example consider the case of a rod placed in a simple shear flow as sketched in figure 2.10.
The orientation vector for this configuration is defined as

p =
⎛

⎜

⎜

⎜

⎝

cos(#)
sin(#)
0

⎞

⎟

⎟

⎟

⎠

, (2.60)

where the angle take values # ∈ [0, �]. The rate of strain tensor in simple shear is given by (2.20).
Inserting the relations for p and d results in

|p ⋅ d ⋅ p|n = |

|

̇0 sin(#) cos(#)||
n . (2.61)

For shear-thinning fluids with n < 0 this expression diverges as # approaches 0, �∕2 or �. Note
that this is not a problem in the relation for the stress (2.59) as it can be rewritten as

� = 2'A∗ |p ⋅ d ⋅ p|n (p ⋅ d ⋅ p)pp = 2'A∗ sgn(p ⋅ d ⋅ p) |p ⋅ d ⋅ p|n+1 pp (2.62)

where sgn(∙) is the signum function. Thus, for n > −1 the stress will not diverge.
Since there is no such a relation as (2.59) for spheroids, in chapter 5 the numerical solution

will be compared with the TIF equation to determine the coefficients A, B and C . As follows
from (2.59) there is a chance that in the power law regime the coefficients will not only depend
on n but also on p and d. If this is the case, it would complicate the problem immensely.
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2.3. Summary

• The viscosity of a suspension composed of a Newtonian matrix fluid and rigid particles
can be described in the dilute limit as

�(hom) = (1 + [�]')�

with the intrinsic viscosity [�] = 2.5 for spheres.
• If the matrix fluid of a dilute suspension is given by a power lawmodel the intrinsic viscosity

depends on the thinning exponent n.
• It can be shown that a superposition of viscosity - stress curves for polymer melts filled
with rigid spherical particles by only a vertical shift is unlikely.

• If the particles are rigid spheroids and the matrix fluid is Newtonian, the behavior of the
suspension can be described by the transversely isotropic fluid (TIF) equation with the
rheological coefficients given by Lipscomb et al.

• In case of a non Newtonian matrix fluid the rheological coefficients in the TIF equation
might depend on the particle orientation.
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2. An overview of the rheology of suspensions

2.A. Viscosity as function of stress

To obtain the viscosity as a function of the stress such that � = �(�) one can invert the relation
for the stress:

� = �(̇)̇ (2.63)
to obtain the shear rate as a function of the stress ̇ = ̇(�) and insert this relation into �(̇).
The shear stress in the modified Carreau model given by (2.36) is

� = X�0
(

1 + (Y �̇)2
)n∕2 ̇ . (2.64)

The above relation cannot generally be analytically inverted for n ≤ 0. The inversion is neverthe-
less possible by considering only the asymptotic cases: the Newtonian limit where Y �̇ ≪ 1 and
the power law regime with Y �̇ ≫ 1.
In the Newtonian case the expression for �(�) can be directly written down as in this case

(2.64) is simply constant and thus
� = X�0. (2.65)

In the power law regime (2.64) reduces to

� = X�0(Y �)ṅn+1, (2.66)

where it is assumed, without loss of generality, that ̇ ≥ 0. The inversion of the above relation
results in

̇ =
(

�
X�0(Y �)n

)1∕(n+1)

. (2.67)
This expression is undefined for n = −1. The shear rate ̇ diverges as the stress � approaches
zero for n < −1 and the shear rate approaches zero as the stress goes to infinity. Thus for n ≤ −1
(2.67) gives unphysical results. This is because (2.64) is not a strictly monotonically increasing
functions for n ≤ −1, �(̇) is not one-to-one.
Inserting (2.67) into (2.36) under the assumption that Y �̇ ≫ 1 gives

�(�) = X�0
(

Y ��
X�0

)
n
n+1

. (2.68)

With equations (2.65) and (2.68) it is possible to construct a function for the dependence of
the viscosity on the stress. At small stresses the viscosity should have the constant value of X�0
and at high stresses it should follow the power law given by (2.68). In analogy with the Carreau
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Figure 2.11.: Viscosity as a function of stress. Comparison of the approximation (2.69) with the
numerically computed exact values for various n. The curves are shifted by a factor,
indicated in parenthesis, for better comparability. All other parameters are set to
unity.

model one may write

�(�) ≈ X�0

(

1 +
(

Y ��
X�0

)2
)

n
2(n + 1)

. (2.69)

This equation clearly fulfills (2.65) when (Y ��)∕(X�0)≪ 1 and (2.68) when (Y ��)∕(X�0)≫ 1.
The crossover from the constant plateau to the power law is fairly well captured until n about −0.5.
For smaller values of n the crossover described by (2.69) is too smooth as the actual crossover
becomes almost a kink. Figure 2.11 shows a comparison of the approximation given by (2.69)
with the actual viscosity vs. stress function for different values of n. It is also possible to improve
the approximation of the crossover by introducing a free parameter m into (2.69) such that

�(�) ≈ X�0
(

1 +
(

Y ��
X�0

)m)
n

m(n + 1) . (2.70)

With increasing values of m the crossover described by (2.70) becomes more and more like a
kink.
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3. Computational fluid dynamics
simulations of suspensions

3.1. Introduction

In the following chapters computational fluid dynamics simulations using the finite element
method (FEM) are performed to compute bulk properties of suspensions of rigid particles. For
the simulations a representative volume element (RVE) that is subjected to a macroscopic velocity
at its outer boundaries is considered. The RVE is a cube with a spheroidal hole at its center as
sketched in figure 3.1. For convenience it is assumed that the centers of mass of the cube and
of the particle coincide at XRVE = Xp = (0, 0, 0)⊤. The particle orientation is described by the
orientation vector p. In general the spheroidal particle at the center of the RVE will translate and
rotate in the flow. For certain applied boundary conditions for the velocity the spheroidal particle
will only rotate or neither rotate nor translate. Under these conditions the RVE can be reduced
due to symmetry of the problem.
If the particle is oriented along one of the coordinate axes and the macroscopically applied

velocity corresponds to an elongational flow, the particle will not rotate nor translate if it is placed
in the stagnation point of the elongational flow. Such a case was considered by Einstein in his
calculation of the viscosity of a dilute suspension [1]. In general an elongational flow can be
expressed by a rate of strain tensor of the form

d =
⎛

⎜

⎜

⎜

⎝

�̇1 0 0
0 �̇2 0
0 0 −(�̇1 + �̇2)

⎞

⎟

⎟

⎟

⎠

(3.1)

where �̇1 and �̇2 are prescribed strain rates. The vorticity tensorw is zero for an elongational flow.
As the fluid is assumed to be incompressible the rate of strain tensor is traceless. The velocity at
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L

Figure 3.1.: Sketch of the computational domain.

some point x can be expressed using d as

u = d ⋅ x. (3.2)

In case of a uniaxial elongational flow �̇1 = "̇ and �̇2 = −0.5"̇. For a planar flow �̇1 = "̇ and
�2 = −"̇. As it is assumed here that the centers of mass of the RVE cube and of the particle are
placed at (0, 0, 0)⊤, the particle is in fact placed in the stagnation point.
If in a uniaxial or planar flow the particle orientation vector p coincides with one of the

coordinate axes it is possible to exploit the symmetry of the problem and only consider one eighth
of the RVE. In such a case the particle is in a stable or metastable position: the orientation vector
p will not evolve in time. For Newtonian matrix fluids one can use equation (2.45) to determine
the time evolution of the orientation vector p. Equation (2.45) simplifies to

ṗ =

(

r2a − 1
r2a + 1

)

(p ⋅ d − ppp∶d) (3.3)

since the vorticity tensor is zero for the flow considered. Inserting (3.1) into (3.3) and choosing
p aligned with coordinate axes as p = (1, 0, 0)⊤ or p = (0, 1, 0)⊤ or p = (0, 0, 1)⊤ gives for all
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considered orientations the same result as

ṗ =

(

r2a − 1
r2a + 1

)⎛

⎜

⎜

⎜

⎝

0
0
0

⎞

⎟

⎟

⎟

⎠

(3.4)

thus the particle orientation does not change. This calculation is formally only correct for a
Newtonian matrix fluid, as (3.3) was derived for this kind of fluids, nevertheless it is also true for
a generalized Newtonian fluid due to the symmetry of the problem. The particle neither rotates
nor translates because the forces exerted by the fluid on the particle must be symmetric since the
particle is symmetrically positioned in a symmetric flow field and thus the total forces cancel.
Hence the particle remains at rest. This symmetry is exploited in the calculations to follow.
Further as the particle stays at rest the simulation procedure can be considerably simplified as
described in section 3.3.

Another case where symmetry can be exploited to reduce the computational effort is a simple
shear flow given by the rate of strain and vorticity tensors as

d = 1
2

⎛

⎜

⎜

⎜

⎝

0 ̇ 0
̇ 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

and w = 1
2

⎛

⎜

⎜

⎜

⎝

0 ̇ 0
−̇ 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

(3.5)

where ̇ is the prescribed shear rate. If the orientation vector of the particle p lies in the x−y–plane
it is possible to exploit the symmetry of the problem and solve only on one half of the RVE. The
velocity at some point x is expressed by

u = (d +w) ⋅ x. (3.6)

Using equation (2.45) and assuming the particle is oriented along the x-axis, one obtains for the
evolution of the particle orientation in this configuration

ṗ = ̇
2

((

r2a − 1
r2a + 1

)

− 1

)⎛

⎜

⎜

⎜

⎝

0
1
0

⎞

⎟

⎟

⎟

⎠

. (3.7)

Thus, strongly elongated particles will not change their orientation as (r2a − 1)∕(r2a + 1)→ 1 as
ra → ∞. Similar to the elongational flow the particle will not translate in a simple shear flow
as the forces exerted on it by the fluid are in equilibrium if the particle center of mass is placed
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at Xp = (0, x2, x3)⊤. However, the particle can rotate in a simple shear flow. This makes the
computation in a shear flow more complicated compared to that in an elongational flow, as one
also has to solve for the particle rotation. The simulation procedure for a rotating particle in a
simple shear flow is described in section 3.4.

3.2. Computational domain and mesh generation

The domain on which the simulations are performed is a cube of length L with a spheroidal hole
at its center, as sketched in figure 3.1. The spheroidal hole is described by its semi-axes a and b
(2.43) and its orientation is given by p. The center of mass of the cube and the particle are, for
convenience, located at XRVE = Xp = (0, 0, 0)⊤. The orientation vector p is parallel to the axis
of revolution and is of unit length.

For the forthcoming computations it is convenient to prescribe the volume Vp and aspect ratio
ra of the spheroidal particle instead of its semi-axes. For a prescribed volume and aspect ratio the
semi-axes are then defined by

a =

(

3r2aVp
4�

)1∕3

(3.8a)

b = a
ra
. (3.8b)

To capture the geometry of the particle and to solve the flow problem accurately, the mesh is
graded towards the particle surface. That is the elements near the particle are smaller than far
away from the particle. For particles that differ considerably from a sphere the element sizes on
the particle surface are scaled by the curvature of the particle surface. The Gaussian curvature of
a spheroid aligned with the x-axis is given by

K = a6
[

a4 + (b2 − a2)x2
]2 (3.9)

where x ∈ [−a, a]. The actual meshes are generated by Gmsh [75] using its Frontal algorithms
for the 2d and 3d meshing. The grading is done using linear interpolation of the element sizes.
Figure 3.2 shows an example mesh for an oblate spheroidal particle, here only one half of the RVE
is meshed as symmetry of the problem is exploited. Note that the volume of the rigid particle is
not explicitly meshed, it is represented as a hole.
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(a) (b)

Figure 3.2.: Example mesh for an oblate spheroid with an aspect ratio of 1∕10, 1∕2 of the domain
is meshed. (a) full mesh, (b) closeup of the region near the particle.

3.3. Fixed particle in elongational flows

3.3.1. Problem description

When we consider the particle to be in a position where it does not rotate nor translate, the problem
is only described by the flow of the fluid matrix around a fixed particle.

The flow of a possibly non-linear incompressible fluid is described by the Cauchy momentum
equation and the continuity equation:

%
()u
)t
+ u ⋅ grad(u)

)

= div(�) − grad(p) (3.10a)
div(u) = 0. (3.10b)

Here (3.10a) is the balance of momentum and (3.10b) is the continuity equation for an incom-
pressible fluid. In the above equations p is the pressure, u is the fluid velocity, % its density and �
is the stress tensor that may depend nonlinearly on the velocity1,

� = �(u)d. (3.11)

1In the following the dependence on the primary variables, the ones that are solved for in the numerical method,
is indicated since this makes the following equations much clearer. In the numerical scheme used, this is the
velocity u and the pressure p.
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The left hand side of (3.10a) accounts for fluid inertia (transport of momentum) and the right
hand side for internal friction (viscous forces). If a Newtonian fluid with constant viscosity � is
assumed, (3.10) reduces to the incompressible Navier-Stokes equations. It is often customary to
rewrite (3.10) in a dimensionless form using the Reynolds number Re

Re

(

)u′
)t′

+ u′ ⋅ grad(u′)
)

= div(�′) − grad(p′) (3.12a)
div(u′) = 0. (3.12b)

where the variables with a prime are the dimensionless counterparts, e.g. u′ = u∕U and t′ =
tU∕Lc with U a characteristic fluid velocity and Lc a characteristic length of the problem. From
(3.12a) it can be seen that if Re≪ 1 the right hand side of (3.12a) dominates and one can neglect
the inertia term on the left hand side. A flow like this, where the viscous term dominates, is
called a Stokes or creeping flow and (3.12) reduces to the so called Stokes equations. Such an
introduction of dimensionless parameters, like it is commonly done in the Newtonian case, is
generally a very complicated task for non-Newtonian fluids and there is no guarantee that one
can find such a scaling [76, 77]. In literature one can find expressions for the Reynolds number in
a pipe flow of generalized Newtonian fluids [78–80]. Nevertheless, even for relatively simple
constitutive equations like the Carreau model (2.17) the expressions for the Reynolds number
become bewilderingly complicated [80]. Therefore, only the Newtonian and power law regime
of the Carreau model (2.17) are considered in the computation of the Reynolds number. The
Reynolds number for the flow of a power law fluid (2.16) around a sphere is given by [81–83]

RePL =
%U 1−ndn+1

K
. (3.13)

In the definition of RePL the parameter K is the consistency index and can be determined for a
Carreau fluid (2.17) when �̇ ≫ 1 as K = �0�n. Further, d is the particle diameter and U the
characteristic velocity. The velocity U can be determined in a shear flow with shear rate ̇0 as
̇0 = 2U∕d [81]. Using this relation and the expression forK given above, (3.13) can be rewritten
as

RePL =
2n−1%d2

�0�n
̇1−n. (3.14)

For a Newtonian fluid with n = 0 the above definition corresponds to the one given by Lin et al.
[84].

It can be shown that the Reynolds number for filled polymers is often small and, hence, one can
neglect inertia of the fluid. For that let us consider typical values of the parameters in (3.14). The
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characteristic length scale, that is the particle diameter, is of the order d ∼ 10−6m, the density of
the fluid is of the order % ∼ 103 kgm−3. The polymer is characterized by its zero shear viscosity
of the order �0 ∼ 10(1…3) Pa s or even higher and its characteristic time � ∼ 10(−3…−2) s, compare
with figure 1.2. The flow index n takes commonly values between 0 and −1. Using these factors
for the material and geometry parameters one obtains that the shear rate has to be smaller than

̇ ≲ 10
�′0+�

′n+9

1−n s−1 (3.15)

where �′0 = 1…3 and �′ = −3… − 2 are the respective powers to �0 and � and n = −1…0.
This gives in the worst case, �′0 = 1, �′ = −2, n = −1, a value for the shear rate of ̇0 ∼ 106 s−1 to
fulfill the creeping motion equations. Considering common shear rates in processing procedures
and experiments, up to ̇ ∼ 105 s−1 (compare with figures 1.2 and 2.2), it is reasonable to assume
that the viscous forces dominate and the left hand side of (3.10a) can be set to zero. Thus, the
fluid behavior can be described by the non-linear Stokes equations

div(�(u)) − grad(p) = 0 (3.16a)
div(u) = 0. (3.16b)

The dependence of the viscosity on the velocity is given in the present PhD thesis by the Carreau
model (2.17). The non-linear system of equations (3.16) is solved using a standard Galerkin
method in a velocity-pressure formulation [85, 86]. For that (3.16) is multiplied by the test
functions ũ and p̃ and integrated by parts over the domain Ω with the boundary )Ω. This gives
the weak form of the problem as
find (u, p) ∈ such that:

∫Ω
�(u)∶d(ũ) −p div(ũ) dΩ − ∫)Ω

ũ ⋅ [�(u) −p1] ⋅ n dΓ = 0 ∀ũ ∈  (3.17a)

−∫Ω
p̃ div(u) dΩ = 0 ∀p̃ ∈  (3.17b)

with (ũ, p̃) ∈  and  =  ×  . The function spaces are given by  ∈ [H1(Ω)]ds and
 ∈ L2(Ω), with ds the spatial dimension. H1(Ω) is the Hilbert space and L2(Ω) is the space of
square integrable functions [85, 86]. For a numerically stable discretization a suitable choice of
basis functions for the finite elements is needed. A commonly used choice, that is also used here,
is the so called Taylor-Hood element [87]. The Taylor-Hood element is recommended by Boffi
et al. [87] for three dimensional problems. In the Taylor-Hood element the basis functions are
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Figure 3.3.: Sketch of the boundaries for 1∕8 of the RVE.

givens as follows: for the velocity piecewise continuous quadratic Lagrange polynomials and
for the pressure piecewise continuous linear Lagrange polynomials (P2P1). Equation (3.17) is
implemented using the finite element library FEniCS/Dolfin [88–91]. The non-linear system of
equations resulting from the discretization of (3.17) is solved using a Newton–Raphson scheme.
In each Newton iteration the direct sparse solver MUMPS [92, 93] is used through the PETSc
library [94–96].
Since only the gradient of the pressure enters in (3.16) it is generally only determined up to

a constant. To fix the pressure level a common approach is to force the average pressure in the
volume to be zero [86]

1
|Ω| ∫Ω

p dΩ = 0. (3.18)

Here |Ω| is the volume of the domain in three spatial dimensions, |Ω| = ∫Ω 1 dΩ.

3.3.2. Boundary conditions for a fixed particle

Figure 3.3 shows a sketch of the RVE when symmetry is exploited. The domain is then given
as Ω = [0, L

2
]3. On the boundaries in the symmetry planes the velocity normal to the plane is

zero. A no-slip condition is applied on the particle surface Γp, that is u = 0 on Γp. A traction free
condition is applied at the boundary Γ2: (� − p1) ⋅ n = 0 on Γ2. The conditions on the boundaries
Γ1 and Γ6 are discussed in the respective chapters where the simulation results are presented.
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3.4. Moving particle in a shear flow

3.4.1. Problem description

In case of a moving particle the mathematical description of the problem becomes more involved.
Hu et al. [97] showed that it is superior to use a strong coupling of the governing equations by
setting up a weak momentum balance for the whole suspension instead of an iterative coupling.
In the iterative coupling one would first solve the fluid problem assuming that the particles are
fixed and compute with the solution of the flow field the forces and torques exerted by the fluid
onto the particle. Knowing the forces and torques one would update the particle translational and
angular velocities and solve again the fluid problem assuming that the particles move with the
previously computed velocities. This procedure is then repeated over and over, until convergence
is reached. While the iterative coupling is essentially easier to implement, since one can use a
standard solver for the flow problem, its biggest problem is that the particles will always start an
oscillatory movement with the amplitude increasing to infinity [97]. Thus, the iterative coupling
is unstable and is not a feasible method to simulate a moving particle.
Figure 3.4 shows a sketch of the fluid domain with one immersed particle. In the following

only one particle is considered since this is sufficient for the purpose of this work. The particle
in figure 3.4 is described by its mass mp, moment of inertia tensor Ip and the position of its
center of mass Xp. The boundary of the particle is denoted by )Ωp and is assumed to be fully
immersed in the fluid. The matrix fluid is described by its density % and its viscosity �(u) which
is again assumed to obey the Carreau law (2.17). The fluid can be described by the previously
introduced Cauchy momentum equation for an incompressible fluid (3.10). The motion of the
fluid is coupled to the motion of the particle by requiring that the force and torque exerted by the
fluid on the particle must be equal to the force and torque exerted by the particle on the fluid. For
a rigid particle the translatory motion is given by Newton’s second law

mp
dvp
dt

= −∫)Ωp
(� − p1) ⋅ n dΓ (3.19)

where the integral on the right hand side is to be taken over the surface of the particle. In (3.19)
vp is the translatory velocity of the particle, � and p are the stress and pressure in the fluid. The
unit normal vector n is pointing into the fluid, see figure 3.4.
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Figure 3.4.: Sketch of a fluid domain with one immersed particle.

Further, the rotational motion is governed by Euler’s equation
d
dt

(

Ip!p
)

= −∫)Ωp
(x −Xp) × ((� − p1) ⋅ n) dΓ (3.20)

here !p is the angular velocity of the particle and x is the spatial coordinate. The integral on the
right hand side of (3.20) is again to be taken over the surface of the particle. Finally a no-slip
condition between the fluid and the particle is assumed

u −
(

vp + !p ×
(

x −Xp
))

= 0 on )Ωp. (3.21)

The particle position can be computed by
dXp
dt

= vp with Xp|t=0 = Xp,0 (3.22)

and its rotation angle �p by
d�p
dt

= !p with �p|t=0 = �p,0 (3.23)

where Xp,0 and �p,0 are the initial position and orientation of the particle.
Equations (3.10) and (3.19) to (3.23) fully describe the suspension. To solve the equations

using the finite element method it is necessary to convert them into a weak form. The weak form
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of the Cauchy momentum equation for an incompressible fluid (3.10) is obtained by multiplying
with the test functions for the velocity ũ and pressure p̃ and integrating by parts. This yields

∫Ω
%
()u
)t
+ u ⋅ grad(u)

)

⋅ ũ dΩ + ∫Ω

[

�(u) ∶d(ũ) −p div(ũ) − p̃ div(u)] dΩ

− ∫)Ω
ũ ⋅ (�(u) −p1) ⋅ n dΓ − ∫)Ωp

ũ ⋅ (�(u) −p1) ⋅ n dΓ = 0. (3.24)

The two last terms in the above equation are the boundary terms over the outer boundary of the
fluid )Ω and the particle boundary )Ωp. The integral over the particle surface gives the force and
torque exerted by the fluid on the particle. This integral can be rewritten using equations (3.19)
and (3.20) as [97]

−∫)Ωp
ũ ⋅ (�(u) −p1) ⋅ n dΓ = −∫)Ωp

[

ṽp + !̃p ×
(

x −Xp
)]

⋅ ((�(u) −p1) ⋅ n) dΓ (3.25a)

= ṽp ⋅ mp
dvp
dt

+ !̃p ⋅
d
dt

(

Ip!p
) (3.25b)

where ṽp and !̃p are the test functions for the particle translatory and angular velocities respectively.
The introduction of (3.25) requires that the test functions and the solutions on the particle surface
are equal [97]. This equality of the test functions and solutions is achieved by enforcing the
no-slip condition (3.21) using a Lagrange multiplier �p on the particle surface [42]

∫)Ωp

[(

ũ −
(

ṽp + !̃p ×
(

x −Xp
)))

⋅ �p
]

+
[

�̃p ⋅
(

u −
(

vp + !p ×
(

x −Xp
)))]

dΓ = 0 (3.26)

with �̃p being the test function for the Lagrange multiplier. Equations (3.24), (3.25b) and (3.26)
give the complete weak momentum balance of the suspension. A nice property of this formulation
is that one obtains the fluid velocity and pressure as well as the particle velocities in one solution
step, thus there is no need for an iterative procedure.

As already shown in the previous section, it is generally reasonable to assume that the inertia
of the fluid can be neglected in filled polymer melts. If one additionally assumes that the particles
are force free [98], that is the net force and torque acting on the particle is zero, the weak form
for the suspension simplifies significantly. The weak form for a suspension of force free rigid
particles reads
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find (u, p, vp,!p, �p) ∈ such that:

∫Ω
�(u)∶d(ũ) −p div(ũ) dΩ − ∫)Ω

ũ ⋅ [�(u) −p1] ⋅ n dΓ = 0 (3.27a)

−∫Ω
p̃ div(u) dΩ = 0 (3.27b)

∫)Ωp
�̃p ⋅

(

u −
(

vp + !p ×
(

x −Xp
)))

dΓ = 0 (3.27c)

∫)Ωp

(

ũ −
(

ṽp + !̃p ×
(

x −Xp
)))

⋅ �p dΓ = 0 (3.27d)

for all (ũ, p̃, ṽp, !̃p, �̃p) ∈ and =  × × × ×. The first two equations above are the
already introduced weak form of the non-linear Stokes equations (3.17). The function spaces are
given by  ∈ [H1(Ω)]ds and  ∈ L2(Ω) with ds being the spatial dimension, as in the previous
section. The function spaces for the particle velocities are given by  ∈ ds and  ∈ ds ,
here  is the space of real numbers. The space for the Lagrange multiplier is only defined on
the particle surface as  ∈ [L2()Ωp)]ds . For the discretization of the velocity and pressure the
Taylor-Hood element is again used. The Lagrange multiplier �p is discretized using continuous
piecewise linear Lagrange polynomials. The particle velocities are introduced as real degrees of
freedom. Equation (3.27) is again implemented using the finite element library FEniCS/Dolfin
[88–91]. The non-linear system of equations arising from discretizing of (3.27) is solved using a
Newton–Raphson scheme where in each iteration the direct sparse solver MUMPS [92, 93] is
used through the PETSc library [94–96].
If the constitutive relation for the stress tensor is time independent, as it is for a generalized

Newtonian fluid, equations (3.27) are independent of the time t. This means that in a force free
suspension the stress only depends on the current position and orientation of the particle. In other
words, the history of how the particle moved though the fluid in time has no influence on the
solution. This property of (3.27) allows to solve for a specific particle position and orientation
immediately. Thus it is not necessary to move the particle according to (3.22) and (3.23), it is
sufficient to place the particle at the position of interest with the corresponding particle orientation
and solve (3.27).

3.4.2. Boundary conditions for a moving particle

Figure 3.5 shows a sketch of the domain when symmetry is exploited, as discussed in the
introduction of this chapter. The domain is then given as Ω = [−L

2
, L
2
; −L

2
, L
2
; 0, L

2
]. On the
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Figure 3.5.: Sketch of the boundaries for 1∕2 of the RVE.

boundary in the symmetry plane the velocity normal to the plane is zero. On the particle surface
Γp a no-slip condition is weakly enforced by (3.27c) and (3.27d). At the boundaries Γ1, Γ2, Γ3,
Γ4 and Γ6 the velocity according to (3.6) is applied with d and w given by (3.5).

3.5. Computation of effective macroscopic properties

3.5.1. Introduction

To obtain the effective properties of the suspension it is necessary to compute the average power
density or the average stress tensor. The average power density is given by

⟨P ⟩ = ⟨� ∶d⟩ = 1
|Ω| ∫Ω

� ∶d dΩ (3.28)

where � is the local stress tensor and d is the local rate of strain tensor. The pressure does not
contribute to the power density for an incompressible fluid, since

p1∶d = p tr(d) = 0. (3.29)

The average stress tensor can be computed as shown by Batchelor [98]

⟨�⟩ = �0 + �p (3.30)
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where �0 is the matrix stress without the presence of any particle and �p is the contribution of
the particle to the stress tensor, which can be computed as

�p =
1
|Ω| ∫Γp

(� − p1) ⋅ nx dΓ. (3.31)

Γp is the surface of the particle with the outward normal n at position x. The particle contribution
to the stress �p is also referred to as stresslet [98]. The average power density ⟨P ⟩ from (3.28) can
also be expressed using the average stress tensor by employing the Hill-Mandel lemma [99–103]

⟨P ⟩ = ⟨� ∶d⟩ = ⟨�⟩ ∶ ⟨d⟩ . (3.32)

If the velocity u0 is prescribed on the complete outer boundary )Ω of the RVE, the average rate
of strain tensor is equal to the applied rate of strain tensor as

⟨d⟩ = 1
|Ω| ∫Ω

1
2
(grad(u) + grad(u)⊤) dΩ (3.33a)

= 1
2|Ω| ∫)Ω

nu0 + u0n dΓ (3.33b)
= d0. (3.33c)

Here the Gauss theorem has been used to transform the volume integral into a surface integral.

3.5.2. Computing the intrinsic viscosity

The intrinsic viscosity can be computed using (3.28). For this a homogeneous equivalent fluid
with viscosity �(hom) that is subjected to the same macroscopic rate-of-strain tensor d0 on its
boundary is introduced. Thus, for the homogeneous equivalent material the average power density
is given by

⟨P ⟩(hom) = 1
|Ω| ∫Ω

2�(hom)d0∶d0 dΩ = 2�(hom)
⟨d0∶d0⟩ (3.34)

where the right hand side results from the assumption that the macroscopic viscosity is not
spatially varying.

To determine the value of �(hom), the power density in the filled system and the homogeneous
equivalent material are compared:

⟨P ⟩(hom) = ⟨P ⟩ . (3.35)
This comparison is schematically sketched in figure 3.6. The particles are smeared out in the
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microscopic

=
⟨P ⟩

⟨P ⟩(hom)

homogeneous

Figure 3.6.: Schematic sketch of the comparison on power density in the suspension.

homogeneous equivalent fluid. Using the equality of power density and (3.34) the viscosity of
the homogeneous equivalent material can be expressed as

�(hom) =
⟨P ⟩

2⟨d0∶d0⟩
. (3.36)

The intrinsic viscosity introduced in section 2.1 can be computed from (2.4) and (3.36) as

[�] = �(hom) − �
�'

(3.37)

where � is the matrix viscosity at the same applied rate of strain tensor d0. Since formally the
intrinsic viscosity is only defined in the limit, when the volume fraction of particles goes to
zero, it is necessary to check that the intrinsic viscosity computed numerically using (3.37) is
independent of '.

Equation (3.34) can be further simplified by assuming that d0 is applied on the complete outer
boundary of the box, in this case

⟨P ⟩(hom) = 2�(hom)d0∶d0. (3.38)

It turns out that this relation is also true for many symmetric flows around particles, where d0 is
only applied on parts of the boundary. If (3.38) is fulfilled can be easily checked in numerical
simulations by computing the average rate-of-strain tensor ⟨d⟩. For (3.38) to be fulfilled the
relation

⟨d⟩ = d0 (3.39)
must hold, see (3.33).
Numerical experiments have been carried out to check whether the volume average or the

stresslet is numerically more feasible. For this Einstein’s equation (2.1) was computed using
Newtonian fluids. It turned out that computing the intrinsic viscosity using the volume average
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Figure 3.7.: Comparison of the intrinsic viscosity [�] for a Newtonian fluid using the volume
average (3.28) and the stresslet (3.31). The dashed line indicates the analytical
solution.

(3.28) required a coarser mesh at the particle surface than using the surface integral (3.31) to
achieve the same accuracy. For this the average power density has been computed directly using
(3.28) and using the Hill-Madel lemma (3.32). For the simulations a sphere was placed in the
stagnation point of a uniaxial elongational flow and the velocity and pressure fields have been
resolved using the method described in section 3.3. At the boundaries Γ1 and Γ6 defined in section
3.3.2 the velocity has been prescribed according to (3.2). The rate of strain tensor is given by (3.1)
with �̇1 = 1 s−1 and �̇2 = −0.5 s−1. The intrinsic viscosity has been computed using (3.36) where
⟨P ⟩ has been computed either using the 1st approach with the direct volume averaging (3.28) or
using the 2nd approach with the stresslet (3.31). The meshes have been generated in such a way
that the number of elements along an outer edge of the RVE has been set to 5 and the number of
elements along the arc of the spherical particles has been varied. The number of elements along
the arc is referred to asNa. The results for the intrinsic viscosity are shown in figure 3.7, where
the dashed line indicates the analytical result for the intrinsic viscosity, [�] = 2.5. It can be seen
that the volume average converges faster to the analytical solution. Therefore the volume average
will be used in the following to compute the intrinsic viscosity in order to reduce numerical effort.
Figure 3.9 shows exemplarily some of the meshes close to the inclusion used in the above tests.
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n
n

n

Figure 3.8.: 2d mesh around a quarter circle, the actual circle is draw in orange. The normal
vector “jump” as the mesh consists of straight lines. In the nodes, indicated by the
points, the normal vector is not well defined.

The slower convergence of the stresslet can be explained by the fact that in the computation
of the stresslet the numerical scheme uses normal vectors which “jump”. Let us consider, for
simplicity, the two dimensional case as depicted in figure 3.8. In the figure the part of a two
dimensional mesh, composed of triangles around a quarter of a circle, is sketched. The actual
circle is drawn in orange. The dots in figure 3.8 are the so called nodes of the mesh. Along the
boundary of the circle the normal vectors are drawn and it can be seen that the orientation of
these vectors changes “jump”-like from one element to another. In the nodes at the boundary the
normal is not well defined, normally the normal at a node is computed by averaging the normals
of all the adjacent elements. As the mesh becomes finer the normals are approximated better and
better and the stresslet converges to the analytical solution. In three dimensions the problem is
essentially the same as in 2d but the boundary is described by flat triangles instead of straight
lines.

3.6. Summary

• In this thesis two finite element codes have been implemented utilizing the FEniCS/Dolfin
libraries. In one code the particle is considered to be fixed, in the other code the particle
can freely rotate and translate.

• A finite element scheme is described to solve for a moving particle in a flow field by means
of a global weak momentum balance for the suspension.
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• In case that the fluid inertia can be neglected and the particles are considered to be force
free the stress in the suspension is independent of the flow history. The current stress in the
suspension is only described by the current position/orientation of the particles.

• For certain particle orientations and flows symmetries can be exploited to reduce the
numerical effort.

• In elongational flows it is possible to place the particle in such a way that it can be considered
fixed.

• The average power density in the system can be computed by two means. The first is to
directly average the power density. The second method first computes the average stress
tensor and uses the Hill-Mandel lemma to compute the average power density.

• In numerical experiments it turned out that the direct average could be done using a coarser
mesh. This reduces the numerical effort and hence this method is chosen to compute the
intrinsic viscosity in the following chapters.
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(a)Na = 5 (b)Na = 10

(c)Na = 15 (d)Na = 20

Figure 3.9.: Example meshes for different values ofNa used to check the convergence of volume
average and stresslet.
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4.1. Introduction

In this chapter a problem quite similar to Einstein’s original problem [1] is considered. The
only, nevertheless crucial, difference is that, whereas in the calculation of Einstein the matrix
fluid was Newtonian, here a non-Newtonian matrix fluid is investigated. The fluid is considered
to be shear thinning and is described by the Carreau model (2.17). The effective properties of
the dilute suspension of rigid spherical particles are computed as described in chapter 3. In
particular, the numerical scheme for the fixed particle is used, for details refer to section 3.3. The
geometry of the RVE is that of a cube with edge length L = 1 and a spherical hole at its center (at
XRVE = (0, 0, 0)⊤), see section 3.2. The radius of the sphere r is varied as 0.02, 0.03, 0.04, 0.05.
Note that the units of L and r are arbitrary: they just have to be the same, e.g. both in millimeter
or micrometer. This is possible because in the following only relative values where the units
cancel will be considered. The actual volume fraction of the particles is computed by a sum over
the volumes of the elements in the mesh. Table 4.1 shows the computed volume fractions for the
different radii used. The meshes used in the simulations are described in section 3.2 and have
between ∼ 12000 and ∼ 14000 elements. Figure 4.1 shows exemplary the mesh for the radius
r = 0.05. The boundary conditions have mostly been defined already in section 3.3.2. Only the
boundary conditions at Γ1 and Γ6 need to be specified here, see figure 3.3. At the boundary Γ6
a traction free condition is applied: (� − p1) ⋅ n = 0 on Γ6. On Γ1 the velocity is prescribed by
(3.2) using the macroscopic rate-of-strain tensor of a uniaxial extensional flow along x-direction.

Table 4.1.: Radii and the corresponding computed volume fractions of the particles.
r '
0.02 3.32 ⋅ 10−5
0.03 1.13 ⋅ 10−4
0.04 2.67 ⋅ 10−4
0.05 5.23 ⋅ 10−4
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Figure 4.1.: Mesh used for the simulation for the particle with radius r = 0.05.

The values for the strain rates in (3.1) are given by �̇1 = d0 and �̇2 = −0.5d0, thus the applied
macroscopic rate-of-strain tensor is:

d0 = d0

⎛

⎜

⎜

⎜

⎝

1 0 0
0 −0.5 0
0 0 −0.5

⎞

⎟

⎟

⎟

⎠

. (4.1)

Note, that for the rate-of-strain tensor given by (4.1) the scalar rate-of-strain, according to (2.18),
is ̇0 =

√

3d0. It is checked that the rate-of-strain tensor averaged over the RVE agrees with a
very high accuracy with the applied rate-of-strain tensor (4.1). This means that the computed
velocity field complies with equation (4.1) at the boundaries of the RVE, see the end of section
3.5.2.
For the radii given in table 4.1 the intrinsic viscosity [�] is computed as described in section

3.5.2. The applied elongation rates are ranging between d0 = 10−6…106 s−1. The simulations are
carried out for a number of thinning exponents in the range of n = 0 to n = −0.9. For smaller n
the numerical solution becomes unstable, because the stress becomes a non-strictly monotonically
increasing function [77]. The other material parameters in the Carreau model (2.17) are set to
be �0 = 1Pa s and � = 1 s. The Newton–Raphson scheme needed up to 25 iterations to reach
convergence for the smallest value of the thinning exponent, n = −0.9.
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4.2. Simulation results

Since formally the intrinsic viscosity is only defined in the dilute limit, that is as the volume
fraction of particles goes to zero (2.4), it is necessary to verify that the simulations have been
carried out in this limit. To check if the dilute limit was reached, it is sufficient to show that the
ratio of specific viscosity (2.3) to volume fraction is independent of the volume fraction. Figure
4.2 shows the ratio of the specific viscosity �sp to the volume fraction ' versus the Carreau number
̇0� for all the simulated radii and a thinning exponent of n = −0.5. In the figure it can be seen
that all curves fall together, hence the simulations were done in the dilute limit. For the other
thinning exponents studied in this thesis similar results are obtained and therefore not shown here.

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106
1.4

1.6

1.8

2

2.2

2.4

̇0�

� s
p∕
'

r = 0.02
r = 0.03
r = 0.04
r = 0.05

Figure 4.2.: Dependence of �sp∕' on the Carreau number and the particle radius. The thinning
exponent is n = −0.5.

The obtained intrinsic viscosities for all the simulated thinning exponents are shown in figure 4.3.
For small values of the scalar deformation rate, i.e. in the linear regime, Einstein’s result for
the intrinsic viscosity of spherical particles [�] = 2.50 is reproduced for all n; exact with at
least 3 digits. This demonstrates the correctness and accuracy of the numerical simulations as
well as of the homogenization procedure used in this work. At higher scalar deformation rates
the intrinsic viscosity is found to decrease monotonically, finally attaining a plateau, the value
of which depends on the thinning exponent n. Note that this lower plateau corresponds to the
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Figure 4.3.: Dependence of [�] on the Carreau number ̇0� for different thinning exponents.

power law thinning region of the rate dependent matrix viscosity: � ∼ ̇n. To understand the
appearance of these three regions, seen as plateau-crossover-plateau in Fig. 4.3, let us consider
Fig. 4.4. The figure depicts the flow curve for the Carreau model and exemplarily three applied
deformation rates: ̇ (1)0 , ̇ (2)0 and ̇ (3)0 . If a particle is present in the fluid it will disturb the otherwise
homogeneous flow field and there will be a range of local deformation rates around the applied
one, as depicted by the shaded regions in Fig. 4.4. For the first applied deformation rate ̇ (1)0 the
range of local deformation rates is always in the linear regime of the flow curve and one observes
the first higher plateau in the intrinsic viscosity. For the second applied deformation rate ̇ (2)0
the local deformation rates around the particle are in the crossover regime of the flow curve
and correspondingly a crossover in the intrinsic viscosity is observed. For the last deformation
rate ̇ (3)0 the local deformation rates are completely in the non-linear regime. Here the flow curve
has a constant slope n and the second lower plateau in the intrinsic viscosity is seen.
Figure 4.5 shows a plot of the values of intrinsic viscosity obtained by the CFD simulations

at high values of the effective deformation rate as a function of the thinning exponent n. Here
an infinity symbol as subscript is used to indicate the intrinsic viscosities at high deformation
rates: [�](̇) = [�]∞ if ̇� ≫ 1. Figure 4.5 also shows two predictions found in literature for the
intrinsic viscosity in the power law regime [34, 35] as discussed already in section 2.1.2 and a
Taylor expansion that has been computed in this study based on the results of the simulations.
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Figure 4.4.: Sketch of the different regions in the Carreau model (2.17) and their corresponding
intrinsic viscosities after homogenization.

The discussion starts with the two aforementioned literature predictions.
The linear relation given by Chateau et al. [34] (2.32) does not fit to the simulation results (Fig-

ure 4.5, green dash-dotted line). Yet it predicts the two special cases exactly, that is: (i) [�]∞(n =
0) = 2.5 which is just Einstein’s result for the Newtonian fluid and (ii) [�]∞(n = −2) = −1 which
is an exact result in the limit of high shear rates, as will be shown below. For example the Wagner
model [104] for a polymer melt has a slope of n = −2.
The other dependence of the high shear rate intrinsic viscosity on the thinning exponent is

given by Tanner et al. [35] (2.34). Tanner’s fit seems to coincide with the simulation results very
well but it does not predict the special case at n = −2 (Figure 4.5, blue dashed line).

4.3. Taylor expansion

The already mentioned special case at n = −2 can be obtained by a direct comparison of
macroscopic and microscopic power density as shown below. At high effective rates, �̇ ≫ 1,
the average power density in the RVE with volume V is given by:

⟨P ⟩ = 1
V ∫V

�(̇)d∶d dV = 1
V ∫V −Vp

�0�
ṅ2+n dV . (4.2)
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Tanner et al. [35], eq. (2.34)
Taylor expansion, eq. (4.10)

Figure 4.5.: Dependence of [�] on the thinning exponent n at high values of the scalar deformation
rate, i.e. in the region of lower plateau. The exact analytical result [�]∞ = −1 forthe special case n = −2 is marked by the green circle. It can be seen that the Taylor
expansion and the prediction of Chateau et al. have the correct limit at n = −2, while
the prediction of Tanner et al. fails to reproduce this exact analytical result.

Here, when taking the average over all positions x in the volume V , the fact that there is no energy
dissipation inside a rigid sphere with a volume Vp was used. According to the homogenization
approach, the average power density in the microscopic RVE should be equal to the power ⟨P ⟩(hom)

in the equivalent macroscopic media [101]. To calculate the latter, it is assumed that the effective
viscosity of dilute suspension is described by the same Carreau model as the matrix viscosity:

�(hom)(̇0) = �
(hom)
0

(

1 + (�(hom)̇0)2
)
n
2 , (4.3)

where �(hom)
0 is the viscosity of a suspension in the zero deformation rate limit, �(hom) is the

characteristic relaxation time of the suspension and ̇0 is the applied deformation rate. The
experimental results of Poslinski et al. [31] presented in Section 4.6 demonstrate that this is a
reasonable assumption at least up to ' = 0.1. In section 2.1.2 it has already been discussed that a
dilute suspension based on a power law fluid can be described with the same power law.
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At high deformation rates, �(hom)̇0 ≫ 1, the macroscopic power density can be expressed to
the first order of ' as:

⟨P ⟩(hom) = �(hom)
0

(

�(hom))n ̇2+n0 = (1 + [�]∞')�0�ṅ2+n0 . (4.4)

The right hand side of (4.4) is readily obtained, assuming that both �(hom)
0 ∕�0 and �(hom)∕� are

functions of ' and keeping the terms up to the first order of ' in a Taylor expansion of their
product. The resulting pre-factor should be equal to 1 + [�]∞' due to the definition of [�]∞ given
on page 54.

Satisfying the requirement ⟨P ⟩ = ⟨P ⟩(hom), it is obtained from (4.2) and (4.4) that

1 + [�]∞' =
1
V ∫V −Vp

[

̇2

̇20

]1+ n
2

dV . (4.5)

Representing ̇2 as a sum of the homogeneous term ̇20 and the perturbation termΔ(̇2) = ̇2− ̇20 it
is possible to develop the integrand on the right hand side of (4.5) into a Taylor series inΔ(̇2)∕̇20 :

[

̇2

̇20

]1+ n
2

=

[

1 + Δ(̇
2)

̇20

]1+ n
2

≈ 1 +
(

1 + n
2

) Δ(̇2)
̇20

+ n
4

(

1 + n
2

)

[

Δ(̇2)
̇20

]2

. (4.6)

Substituting (4.6) into (4.5) the following expression is obtained

1 + [�]∞' = 1 − ' +
(

1 + n
2

)

IA +
n
4

(

1 + n
2

)

IB, (4.7)

where
IA =

1
V ∫V −Vp

Δ(̇2)
̇20

dV , IB =
1
V ∫V −Vp

[

Δ(̇2)
̇20

]2

dV . (4.8)

The integral IA can be calculated considering the Einstein limit with n = 0:

1 + 2.5' = 1 − ' + IA. (4.9)

This gives IA = 3.5'. Note that the integral IA is independent on ̇0, as it defines a value of the
rate-independent viscosity in the linear regime. In case that n = −2 in (4.7) the already mentioned
value of [�]∞ = −1 is obtained1 as predicted for the special case of a Wagner fluid [104] by
Chateau et al. [34]. The value of integral IB can be determined from the computational fluid
1This can be obtained immediately from (4.5), hence it is exact.
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dynamics simulation data (see Figure 4.5) using a particular numerical result for the intrinsic
viscosity, for example [�]∞ ≈ 0.63 obtained for n = −0.9. By doing this, it is assumed that
the integral IB does not depend on ̇0, as [�]∞ is found to be independent on ̇0 for the volume
fractions studied (see Figure 4.3). If [�]∞ will start to depend on ̇0 at higher volume fractions,
this would mean that the effective viscosity of the suspension will not be described by the same
power law as the matrix viscosity but by a power law with another exponent. Finally, the intrinsic
viscosity can be expressed as a function of the thinning exponent n as:

[�]∞ ≈ 2.5 +
47
20
n + 3

10
n2. (4.10)

For completeness, one can also do a least squares fit to obtain the value of IB and gets:

[�]∞ ≈ 2.5 +
93
40
n + 23

80
n2

but since the difference between these two relations is very small the first expression is used,
i.e. (4.10), for the following calculations. The quadratic function given in (4.10) agrees very well
with the CFD simulation data obtained at high values of the effective deformation rate, as can be
seen from Fig. 4.5 (orange curve). It reproduces the special case at n = −2 as well. The function
[�]∞(n) will be used in the next section to define the parameters �(hom)

0 and �(hom) in (4.3). This
allows for the extension of the Carreau model for the case of dilute suspensions of rigid spherical
particles.

4.4. Fitting intrinsic viscosity

The hydrodynamic amplification factor X, defined as the ratio of the suspension viscosity to the
matrix viscosity in the linear regime of deformation, is given by the Einstein formula [1, 2]:

X =
�(hom)
0

�0
= 1 + 2.5'. (4.11)

One can see from (4.10) that the Einstein result is reproduced as [�] = 2.5 for n = 0, i.e. in the
linear regime. At high values of the effective deformation rate it follows from (4.4) that

1 + [�]∞' = X
[

�(hom)
�

]n

. (4.12)
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1 + 2.5'

1 + [�]∞'

̇ (hom)
crit

log ̇

lo
g�

Figure 4.6.: Definition of relaxation time in the Carreau model, � = ̇−1crit.

The characteristic relaxation time of the suspension is defined as the inverse of the deformation
rate corresponding to the crossing-point of the two dependences, given by (4.11) and (4.12). This
is shown schematically in Fig. 4.6 and results to the first order of ' in

�(hom) =
(

1 + 6n + 47
20

'
)

�. (4.13)

Finally, substituting (4.11) and (4.13) into (4.3), it is obtained that

�(hom)(̇0) = (1 + 2.5')�0
{

1 +
[(

1 + 6n + 47
20

'
)

�̇0
]2}

n
2

. (4.14)

Figure 4.7 shows exemplarily the comparison of the simulation data for the intrinsic viscosity
at n = −0.2, n = −0.5 and n = −0.9 with the results predicted by the modified Carreau model
given by (4.14). It can be seen that the modified Carreau model describes the simulation data at
all deformation rates quite well, even the transition region between the linear (high plateau) and
power law (low plateau) regimes. Similar results are obtained for all other values of the thinning
exponent n.

It is interesting to consider another quantity which is usually used to describe the onset of the
non-linear regime. This is the so-called critical deformation rate ̇crit which is equal to the inverse
of the characteristic relaxation time in (2.17) or (4.3) and is marked by a circle in figure 4.6. This
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Figure 4.7.: Dependence of the intrinsic viscosity on the Carreau number. Simulation results: sym-
bols; prediction of the modified Carreau model as given by (4.14): lines.

study predicts that ̇ (hom)
crit for the suspension of hard spheres decreases with the increase of volume

fraction ' as
̇ (hom)
crit (') =

(

1 − 6n + 47
20

'
)

̇crit, (4.15)
where ̇crit = �−1. A decrease in the critical deformation rate reflects the effect of strain amplifica-
tion in the matrix fluid. The critical deformation rate exhibits a weak dependence on n as shown
in figure 4.8 for a volume fraction of ' = 0.05. The figure shows further the graphs of the strain
amplification factor as used in Domurath et al. [61]

̇ (hom)
crit, simple = (1 − ')̇crit (4.16)

and the strain amplification factor used by Chateau et al. [34], that is:

̇ (hom)
crit, Chateau =

√

1 − '
X

̇crit =

√

1 − '
1 + 2.5'

̇crit ≈
(

1 − 7
4
'
)

̇crit. (4.17)

The latter two equations do not depend on the thinning exponent n. It can be seen in Fig. 4.8
that the present result for the critical deformation rate (4.15) and the factor used by Chateau et al.
[34] (4.17) intersect at n = −2 and that they differ more and more with increasing n. One should
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keep in mind that the critical shear rate has no meaning in the case when n = 0. The simple
average as given by (4.16) is always above, hence it underpredicts the strain amplification.

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.8

0.85

0.9

0.95

1

n

̇h
om cri
t∕
̇ c

rri
t

simple average (4.16)
after Chateau et al. [34], eq. (4.17)
utilizing Taylor expansion, eq. (4.15)

Figure 4.8.: Dependence of the relative critical deformation rate on the thinning exponent n as
given by (4.15). We plot results at ' = 0.05 for better comparison.

4.5. Discussion of strain amplification

In the previous study of Domurath et al. [61] it has been proposed to modify the Carreau equation
for a suspension of rigid spherical particles in a thermoplastic matrix as follows:

�(hom)(̇0) = X�0
(

1 + (ad�̇0)2
)
n
2 . (4.18)

where the strain amplification factor ad is defined by (2.21) andX is given by the Einstein formula
(4.11). This proposal was based on the stress and strain amplification approach (SSAA) for
non-linear constitutive equations. Equation (4.14) elaborated in this work is clearly of the same
form as (4.18). The only, but nevertheless essential, difference is the dependence of the strain
amplification factor ad on ' and n. Comparing (4.14) and (4.18), the following expression for ad
up to the 1st order in n is obtained:

ad = 1 +
6n + 47
20

'. (4.19)
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This expression is an outcome of CFD simulation data, in which different powers of the scalar
deformation rate ̇ have been averaged over the representative volume element. The effective
viscosity of a suspension based on the Carreau matrix with the thinning exponent n is defined by
two averages: by ⟨̇2⟩ in the region of the Newtonian plateau and by ⟨̇n+2⟩ in the power law region.
As the latter average carries in it the dependence on n, the strain amplification factor depends
also on n. This effect has not been taken into account in a previous study of Domurath et al. [61].
Instead it was assumed that averages of other powers of ̇ over the deformable volume Vm = V −Vp
can be approximated by the respective powers of ⟨̇⟩m defined by (2.21):

⟨̇n⟩m ≈ ⟨̇⟩nm = (1 − ')
−ṅn0 , (4.20)

Such an approach predicts that the critical shear rate decreases with the increase of volume
fraction as given in (4.16). Another approach that can be found in literature [62, 63, 105] is to
use ⟨̇2⟩m to calculate averages of other powers of ̇:

⟨̇n⟩m ≈
⟨

̇2
⟩n∕2
m =

(

X
1 − '

)n∕2

̇n0 . (4.21)

These averages then replace the corresponding powers of the magnitude of applied rate-of-strain
tensor in modified non-linear equations. Based on this suggestion, Chateau et al. [34] obtained
the already mentioned linear estimate for the intrinsic viscosity of a dilute suspensions, see (2.32).
Further, it follows from (4.21) that the critical deformation rate should decrease with the increase
of volume fraction as given in (4.17). From the approach taken by Chateau et al. [34] the
aforementioned intersection of the two results given by (4.15) and (4.17) at n = −2 is to be
expected as at this value of n the behaviour of the modified Carreau model is exactly given by the
average ⟨̇2⟩m. Overall, the estimate given by Chateau et al. [34] is closer to the CFD results and
this is further in accordance with the finding of Suquet [62] that the approximation (4.21) provides
more accurate results than the approximation (4.20). A question arises whether results obtained
in this study can be used to obtain more accurate predictions for suspensions based on non-linear
viscoelastic matrices for example described by the Wagner [104] and the Doi-Edwards [106]
constitutive models. As found in this study, the stress and strain amplification approach proposed
by Domurath et al. [61] correctly predicts the form of a constitutive law for viscous suspensions
and even reproduces the CFD result if a correct average of ̇ is used. This average can be obtained
knowing the thinning exponent of the non-linear constitutive equation, namely n = −2 for the
Wagner model [104] and n = −3∕2 for the Doi-Edwards model [51, 106].
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4.6. Extension to higher volume fractions

Until now only the dilute limit was considered but in practical applications one normally deals
with higher volume fractions, say 20% to 30%.

To extend the obtained results to higher volume fractions a mean-field type approach, in the
style of Krieger and Dougherty [9], is used. In the following only a short derivation is presented,
for a more elaborate one the reader is referred to [57]. The argumentation begins with assuming
that every new particle added to a fluid changes its viscosity as:

d�(hom) = �(hom)[�] d'. (4.22)

It is then stated that there are already a few particles in the fluid and it has already a viscosity
of �(hom)(') and the occupiable volume that is left for new particles has decreased to 1 − k'.
The factor k is a correction constant, because it will not be possible to have only particles, some
maximum packing will be reached first. When a new particle is added to the suspension its
viscosity becomes

�(hom)(') + d�(hom) = �(hom)(')
{

1 + [�] d'
1 − k'

}

. (4.23)

This equation can be rearranged and integrated to get

∫

�(hom)(')

�′=�
d ln �′ = ∫

'

'′=0

[�]
k
d ln(1 − k'′), (4.24)

where � is the viscosity of the matrix fluid and �(hom) is the zero shear viscosity of the suspension.
Evaluating the integrals in (4.24) it is obtained

�(hom)

�
=
(

1 − '
'max

)−[�]'max
. (4.25)

Here k is assumed to be equal to k = 1∕'max with 'max a maximum volume fraction of particles.
Thus, the viscosity diverges when the dense packing of particles is reached.

In the specific case considered in this study the value for amplification factor of the zero shear
viscosity is then found to be:

X =
(

1 − '
'max

)−2.5'max
, (4.26)

which is just the Krieger-Dougherty equation [9]. By similar argumentation as in section 4.4 it is
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Figure 4.9.: Application of (4.18) to the data of Poslinski et al. [31], with �0 = 118 Pa s, � =
0.13 s−1, n = −0.5 and 'max = 0.38. The two highest volume fractions (0.46 and
0.6) are omitted, see text.

possible to obtain an expression for the strain amplification factor similar to (4.26)
(

1 − '
'max

)−[�]∞'max
= X

[

�(hom)
�

]n

(4.27)

where X is now given by (4.26). Equation (4.27) can be rearranged to obtain the strain amplifica-
tion factor as

ad =
�(hom)
�

=
(

1 − '
'max

)− 6n+47
20 'max

. (4.28)
The factors (4.26) and (4.28) can be used in the modified Carreau model (4.18). In this approach
the only free parameters are the zero shear viscosity and characteristic time of the unfilled system
and a maximal volume fraction, 'max, for the suspension. There is only one parameter 'max to
describe the change of viscosity and characteristic time with increasing filler volume. Figure 4.9
shows the prediction of our approach compared with data from Poslinski et al. [31]. For this
the Carreau model was fitted to the data set with ' = 0 to extract the zero shear viscosity and
characteristic time of the unfilled system. Afterwards the zero shear viscosities for all volume
fractions have been fitted with (4.26) to obtain the value of'max. The two highest volume fractions
can not be fitted well to the Krieger-Dougherty equation (4.26) and are omitted. As can be seen
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from Figure 4.9, the predictions are quite good, especially for the onset of shear thinning. Yet at
high shear rates there is a change in slope in the data of Poslinski et al. [31] and the presented
approach cannot predict this kind of behaviour, as at high shear rates the predicted slope is always
the same (independent of filler volume) and has the value of the unfilled system.

4.7. Summary

• Computational fluid dynamics (CFD) simulations are performed to determine the intrinsic
viscosity in a Carreau fluid filled with rigid spherical particles.

• A modified Carreau model is proposed for a dilute suspension of rigid spheres in a Carreau
fluid. The model has the following form

�(hom)(̇0) = X�0
(

1 + (ad�̇0)2
)
n
2 .

with X the linear hydrodynamic amplification factor and ad the strain amplification factor.
• The strain amplification factor ad is a linear function in the thinning exponent n of the

Carreau model
ad = 1 +

6n + 47
20

'.

• The critical deformation rate, that marks the onset of the non-linear regime, thereby also de-
pends on the thinning exponent n. This result differs noticeably from the two n-independent
estimates found in literature.

• The model is extended to high volume fraction of particle using a mean field approach and
successfully compared to experimental data of Poslinski et al.
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5.1. Introduction

In this chapter computational fluid dynamics simulations are performed to study the bulk properties
of dilute suspensions of rigid spheroidal particles in a non-Newtonian matrix fluid. In particular,
the simulations are performed for a wide range of aspect ratios from highly oblate to highly
prolate spheroids. The CFD simulations allow to compute the rheological coefficients A, B and
C for the TIF equation (2.50) in the case of a non-Newtonian matrix fluid. As in the previous
chapter a Carreau model is used to describe the matrix. The key difference to the previous
simulations of suspensions of spherical particles is that, additionally to the dependence on the
thinning exponent n, a dependence on the particles aspect ratio ra and, possibly, a dependence on
the particle orientation is expected.
To determine the rheological coefficients it is necessary to solve for at least three particle

orientations. This can be seen from the TIF equation (2.50) as the stress and thus the intrinsic
viscosity is defined by a combination of the three rheological coefficients A, B and C . To reduce
numerical effort it is feasible to choose particle orientations and flows where symmetry of the
problem can be exploited and the particles do not translate. This has been already discussed in
section 3.1. By directly employing the homogenization procedure outlined in section 3.5.2, it is
possible to find relations for the intrinsic viscosity of the transversely isotropic fluid. The stress
in the suspension is given by (2.50) and the power density as1

P (TIF) = �(TIF)(d0) ∶d0 (5.1)

where d0 is the macroscopically applied rate of strain tensor. The stress can also be expressed as

�(hom) = 2�(hom)d0 (5.2)

1Here � is used as symbol for the stress tensor, implying that the pressure has been dropped; as it does not contribute
to the power density, see (3.29).
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with �(hom) the homogeneous viscosity of the suspension. Using the above relation for the stress
tensor �(hom) the power density is given by

P (hom) = �(hom)∶d0 = 2�(hom)d0∶d0. (5.3)

Since (5.1) and (5.3) describe the exactly the same suspension it follows that P (TIF) = P (hom).
Realizing that

�(hom) = P (TIF)
2d0∶d0

, (5.4)
compare this expression with (3.36), it is possible to rearrange (2.5) to give the intrinsic viscosity
as

[�] =

P (TIF)(d0)
2�d0∶d0

− 1

'
. (5.5)

The configurations, that is particle position and flow, with the highest symmetry are when
the particle is placed in the stagnation point of an elongational flow (uniaxial or planar) and the
particle is oriented along one of the coordinate axes. For such configurations the problem can be
solved only on one eighth of the RVE. For the afore mentioned configurations in elongation it
is possible to find 4 unique configuration by evaluating (5.5), these are shown in table 5.1.The
configurations can be altered by permutation the corresponding rows in p and d0 while still giving
the same result. It is preferable to always use the same particle orientation p since the same mesh
can be used for all simulations. The configuration (c3) in table 5.1 is particularly nice because
it immediately gives the value of C . Nevertheless it is not possible to construct a consistent
system of equations from the configurations given in table 5.1 to solve for all three rheological
coefficients. This can be seen as the coefficients A and B are linearly dependent in (c1), (c2) and
(c4). Therefore, another configuration is needed to separate the rheological coefficients A and
B. In a simple shear flow two additional configurations can be found, they are listed in table
5.2. Here it is also assumed that the particle is oriented along one of the coordinate axes. By
exploiting the symmetry of the problem it is only necessary to consider one half of the RVE, see
section 3.1. Configuration (c6) gives the same result as configuration (c3) but using (c5) it is
possible to construct a consistent and determined system of equations to compute the rheological
coefficients A, B and C . It is thus possible to compute the rheological coefficients using the
configuration (c3) and any of the configurations (c1), (c2) and (c4) in elongation as given in table
5.1 and the configuration (c5) in simple shear from table 5.2.
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p d0 [�]

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

1 0 0
0 − 1

2
0

0 0 − 1
2

⎤

⎥

⎥

⎥

⎦

2A
3
+ 4B
3
+ C (c1)

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

− 1
2
0 0

0 1 0
0 0 −1

2

⎤

⎥

⎥

⎥

⎦

A
6
+ B
3
+ C (c2)

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

0 0 0
0 −1 0
0 0 1

⎤

⎥

⎥

⎥

⎦

C (c3)

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

1 0 0
0 −1 0
0 0 0

⎤

⎥

⎥

⎥

⎦

A
2
+ B + C (c4)

Table 5.1.: Unique configurations in uniaxial and planar elongation. Here p is the orientation
vector of the particle, d0 is the applied rate of strain tensor and [�] the intrinsic
viscosity.

p d0 w0 [�]

⎡

⎢

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

0 1
2
0

1
2
0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

0 1
2
0

− 1
2
0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

B + C (c5)

⎡

⎢

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

0 1
2
0

1
2
0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

d0

⎡

⎢

⎢

⎢

⎣

0 1
2
0

− 1
2
0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

C (c6)

Table 5.2.: Unique configurations in simple shear. Here p is the orientation vector of the
particle, d0 and w0 are the applied rate of strain and vorticity tensors and [�] theintrinsic viscosity.
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configuration (c1) configuration (c3)

configuration (c2) configuration (c5)

Figure 5.1.: Sketches of the four selected configurations: uniaxial elongation (c1) and (c2), planar
elongation (c3) and simple shear (c5).

As mentioned in the literature review, there exist calculations that predict an additional depen-
dence of the stress tensor on the particle orientation for power law fluids filled with rods, see (2.59)
in section 2.2.2. Therefore it seems reasonable to check if this is the case for ellipsoids. To check
for a possible orientation dependence of the rheological coefficients an additional configuration
to the three necessary ones to determine A, B and C is simulated.

Finally the configurations (c1), (c2), (c3) and (c5) have been selected to compute the rheological
coefficients and check for a possible orientation dependence. Figure 5.1 shows sketches of these
four configurations. The configuration (c3) allows for direct computation of the coefficient C
using additionally (c5) one can obtain the coefficient B. Using the results of the intrinsic viscosity
for the configurations (c1) and (c2) the coefficient A can be computed in two different ways. In
case that the rheological coefficients are independent of the particle orientation, the two computed
values of A should be equal. If it is not the case this indicates that there is indeed an additional
orientation dependence of the rheological coefficients. It is only possible to check if there is an
orientation dependence of A, B and C . To actually determine the dependence on the particle
orientation additional simulations will be necessary.
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The simulations for the configurations (c1), (c2) and (c3) are performed using the method for
a fixed particle as described in section 3.3. The boundary conditions have mostly been defined
already in section 3.3.2. Only the boundary conditions at Γ1 and Γ6 need to be specified here, see
figure 3.3. On the boundaries Γ1 and Γ6 the velocity is prescribed by means of the macroscopic
rate-of-strain tensor, using (3.2). The values for the strain rates in (3.1) are given for the three
configurations by

�̇1 = d0 and �̇2 = −0.5d0 for configuration (c1),
�̇1 = −0.5d0 and �̇2 = d0 for configuration (c2),
�̇1 = 0 and �̇2 = −d0 for configuration (c3).

The configuration (c5) has been simulated using the method described in section 3.4. For the
boundary conditions as described in section 3.4.2 the value of ̇ in (3.5) is set equal to d0.

To investigate the influence of the shape of the spheroidal particles the simulations are performed
for many aspect ratios

ra =
1
20

, 1
18

, … , 1
2
, 1, 2, … , 18, 20. (5.6)

For aspect ratios higher than 20 the particle becomes so pointed that generating proper meshes
was a problem. Figures 5.2 and 5.3 show exemplarily the meshes for a prolate and an oblate
spheroid. The mesh shown in figure 5.2 shows a prolate particle with an aspect ratio of 10, here
only one eighth of the reference cube is meshed since this mesh is for simulations in elongation.
The particle in figure 5.3 has an aspect ratio of 1∕10. The mesh is cut in half for better visibility
of the oblate, since this mesh is for simulations in shear only half of the RVE needs to be meshed.
The simulations are performed for the thinning exponents

n = 0.0, − 0.2, − 0.4, − 0.6, − 0.8. (5.7)
The deformation rate d0 in the rate of strain tensor in the configurations (c1), (c2), (c3) and (c5)

is varied between 10−6 s−1 and 10−6 s−1 in 50 steps. This results in different scalar deformation
rates ̇ according to (2.18). In configurations (c1) and (c2) ̇0 =

√

3d0, in (c3) ̇0 = 2d0 and in
(c5) ̇0 = d0. Furthermore, the same material parameters for the Carreau model (2.17) are chosen
as for simulations of suspensions of rigid spheres in the previous chapter. These are set to be
�0 = 1Pa s and � = 1 s.
Similar to the suspensions of rigid spheres, it is necessary to check that the simulations are

performed in the dilute limit. This is again done by computing the intrinsic viscosity for different
volume fractions and if the curves fall together the simulations are performed in the dilute limit.
To check this, the intrinsic viscosity has been computed for configuration (c1) for three different
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volume fractions of the particles. The simulated volume fractions are 10−6, 5 × 10−6 and 10−5.
The results are shown in figures 5.4 and 5.5 for all thinning exponents but only for the aspect
ratios 18 and 1∕18. For the other aspect ratios similar results are obtained. The results for the
different volume fractions fall nicely together and hence the simulations are indeed done in the
dilute regime. Therefore, the simulations of the other configurations only the volume fraction
' = 10−5 has been chosen.

Figure 5.2.: Prolate particle mesh for elongation with an aspect ratio ra = 10.

5.2. Simulation Results

In this section the numerical results for the simulation of suspensions with spheroidal particles in
a non-Newtonian fluid are discussed. In figures 5.4 and 5.5 the value of the intrinsic viscosity
is plotted against the Carreau number ̇0�. In these figures the same principal behavior as for
spherical particles can be observed for prolate and oblate spheroids. Compare with figure 4.3
in section 4.2. As for the rigid spheres the plateau-crossover-plateau behavior is observed for
oblate and prolate spheroids. To explain this behavior it is referred to section 4.2. In the rest of
this section only the value of the intrinsic viscosity at high deformation rates is discussed. This
value corresponds to the second plateau in case of a non-Newtonian matrix fluid (n < 0). This is
indicated by an infinity symbol as index.
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Figure 5.3.: Oblate particle mesh for shear. The mesh is cut in the middle of the oblate with an
aspect ratio ra = 1∕10.

Figures 5.6 to 5.9 show the intrinsic viscosities at high deformation rates for the four considered
configurations. For the Newtonian regime with n = 0 the analytical solution of Lipscomb et al.
[14] (2.52) for intrinsic viscosity is also plotted. For that the rheological coefficients of Lipscomb
et al. [14] (2.52) are inserted into the relations for the intrinsic viscosity given in tables 5.1
and 5.2. In all four cases the numerical data coincides very well with the result of Lipscomb
et al. To the author’s knowledge this is the first time that the analytical solution for rheological
coefficients by Lipscomb has been verified by direct numerical simulations. With decreasing
values of n a decrease in the intrinsic viscosity can be observed. This decrease in the intrinsic
viscosity becomes more pronounced with increasing (> 1) or decreasing (< 1) aspect ratios.
For the configuration (c1) for uniaxial elongation, with the particle aligned with the x direction,
the effect of the thinning exponent n on the intrinsic viscosity is stronger for prolate particles.
On the contrary, for configuration (c3) in planar elongation the change is more pronounced for
oblates. For the configurations (c2) for uniaxial elongation, with the particle aligned with the y
direction, and (c5) for simple shear the changes are similar for prolate and oblate particles. The
relative change in the intrinsic viscosity at high deformation rates is also different for the different
configurations. For example in configuration (c1) for ra = 20 the relative change of [�]∞ between
the n = 0 and n = −0.8 is about 4 while for (c1) it is about 2.5.
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Using the results for the intrinsic viscosity of the four configurations the rheological coefficients
have been calculated and are shown in figures 5.10 till 5.13, in reverse order from C to A. In all
figures dashed lines indicate special cases. The vertical line marks the case of a spherical particle
with aspect ratio ra = 1. For C∞ in figure 5.10 the value C∞ = 2.5 is marked as the solution for a
spherical particle and the value of 2 as C approaches 2 as the aspect ratio ra goes to infinity in the
case of a Newtonian matrix fluid. The value of B approaches zero as ra → ∞ in the Newtonian
case. In all figures the results of Lipscomb et al. [14] (2.52) are plotted and the simulations
coincide with the analytical solution. Generally in the plots a decrease in the magnitude of the
rheological coefficients can be observed as the matrix fluid becomes more non-linear.

In figure 5.10 it can be seen that value of C∞ for a specific n also converges to constant value as
the aspect ratio goes to infinity, as in the Newtonian case. This constant value at large ra decreases
with decreasing n.

For B∞ in figure 5.11 a decrease in the magnitude with decreasing n can be observed. This
decrease is more pronounced for oblate particles. As the aspect ratio tends to infinity the value of
B∞ approaches zero, here no influence of the non-Newtonian matrix behavior can be observed.
For a spherical particle, ra = 1, the value of B∞ is independent of n and takes the value zero.

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106
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n = −0.4
n = −0.6
n = −0.8

Figure 5.4.: Intrinsic viscosity for different particle volumes, ra = 18. The particles are place inthe stagnation point of a uniaxial elongational flow and oriented along the x direction,
configuration (c1).
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Figure 5.5.: Intrinsic viscosity for different particle volumes, ra = 1
18

. The particles are place in
the stagnation point of a uniaxial elongational flow and oriented along the x direction,
configuration (c1).

In figures 5.12 and 5.13 the values of A∞, computed from the two different configurations in
uniaxial elongation (c1) and (c2), are plotted. As for B∞ the value at ra = 1 is independent of
n and equal to zero. The curves for the two different orientations of the particle in the uniaxial
elongation are qualitatively similar: there is a strong dependence on the aspect ratio for both
prolate and oblate particles, as well a noticeable drop of A∞ with decreasing n. Figure 5.14 shows
the comparison of the two configuration for A∞ at three values of n. For the Newtonian case
the results coincide, thus no dependence on the particle orientation can be observed. For the
non-Newtonian case the curves for the same n differ more and more with increasing (ra > 1)
aspect ratios. For decreasing (ra < 1) aspect rations there is a slight difference between the two
particle orientations, about 4% for n = −0.8 and ra = 1∕20, which can be neglected. The changes
due to the different orientations can be quite significant, for n = −0.8 and ra = 20 the values of
A∞ differ by over 40%. This implies an influence of the particle orientation on the rheological
coefficient A∞. Nevertheless, from the results of the simulation of two fixed orientations it is not
possible to conclude how the rheological coefficient A∞ depends on the orientation of the particle
in a flow, nor can be concluded whether the rheological coefficients B∞ and C∞ also depend on
the particle orientation.
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Figure 5.6.: Intrinsic viscosity as function of the particle aspect ratio for configuration (c1),
uniaxial elongational flow with the particle aligned with the x direction.
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Figure 5.7.: Intrinsic viscosity as function of the particle aspect ratio for configuration (c2),
uniaxial elongational flow with the particle aligned with the y direction.
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Figure 5.8.: Intrinsic viscosity as function of the particle aspect ratio for configuration (c3), planar
elongational flow with the particle aligned with the x direction. The values are equal
to C∞

10−1 100 101

0.5

1

1.5

2

2.5

ra

[�
] ∞

Lipscomb
n = 0.0
n = −0.2
n = −0.4
n = −0.6
n = −0.8

Figure 5.9.: Intrinsic viscosity as function of the particle aspect ratio for configuration (c5), simple
shear flow with the particle aligned with the x direction.
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Figure 5.10.: Values for the rheological coefficient C∞. In the Newtonian regime for n = 0 the
results coincide with the solution of Lipscomb et al. [14] given in (2.52).
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Figure 5.11.: Values for the rheological coefficient B∞. In the Newtonian regime for n = 0 the
results coincide with the solution of Lipscomb et al. [14] given in (2.52).
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Figure 5.12.: Values for the rheological coefficient A∞ for the configuration (c1). In the Newto-
nian regime for n = 0 the results coincide with the solution of Lipscomb et al. [14]
given in (2.52).
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Figure 5.13.: Values for the rheological coefficient A∞ for the configuration (c2). In the Newto-
nian regime for n = 0 the results coincid with the solution of Lipscomb et al. [14]
given in (2.52).
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Figure 5.14.: Comparison of the coefficients A(c1)
∞ and A(c2)

∞ . In the Newtonian regime for n = 0
the results coincide, otherwise not.

As the value of B∞ goes to zero with increasing aspect ratio for all thinning exponents n, the
intrinsic viscosity in configuration (c5) [�](c5) = B+C will converge to the value ofC as the aspect
ratio is increased. This opens another possibility to check whether an orientation dependence
exists for the rheological coefficient C . Since the configuration (c3) in planar elongation directly
gives the value of C , it is possible to check if C depends on the orientation of the particle. Since
the types of flows in (c3) and (c5) are different it is further possible to check if C depends the
type of flow. Figure 5.15 shows the values of the intrinsic viscosities at high deformation rates
for the two configurations. The results for aspect ratios smaller than 1∕2 are not shown because
B∞ becomes negative for oblate particles, see figure 5.11. In figure 5.15 it can be nicely seen
that for a spherical particle, indicated by the dashed line, the intrinsic viscosities in the two
configurations are equal, as B = 0 for spheres. For increasing aspect ratios the results for the two
configurations converge to the same value for the same thinning exponent. Thus, the simulations
indicate that there is no orientation dependence for the rheological coefficient C∞ in the two
considered configurations.

The configuration (c5) describes a rotating particle in a simple shear flow. Therefore, it was also
solved for the angular velocity of the particle. It is interesting to compare the angular velocities
in a Newtonian matrix with those in a non-Newtonian matrix. For a spherical particle in a simple
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Figure 5.15.: Comparison of [�]∞ = B∞ + C∞ in simple shear (c5) and [�]∞ = C∞ in planar
elongation (c3), for large ra they converge to the same value, for a given n.

shear flow of a Newtonian fluid the angular velocity is given by

! = −1
2
curl(u). (5.8)

For the simulated velocity field this results in the angular velocity of a spherical particle

! = −1
2
d0

⎛

⎜

⎜

⎜

⎝

0
0
1

⎞

⎟

⎟

⎟

⎠

. (5.9)

In figure 5.16 the values for the z-component of ! normalized by d0 for n = 0 and n = −0.8 are
shown. The other components of ! are zero, see (5.9), and thus not shown. For the spherical
particle the result is independent of n and is equal to −1∕2. The oblate particles rotate more
rapidly, for example the highly oblate particle with ra = 1∕20 rotates twice faster than a sphere.
Contrary,the rotation of prolate particles slows down with the increase of ra. This becomes clear
as in the considered configuration the particle orientation vector is aligned with the flow direction.
Thus, the long semi-axis of the oblate particle stands perpendicular to the flow direction which
results in large torque exerted by the fluid on the particle and hence the high angular velocity.
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Figure 5.16.: Comparison of the z-component of the angular velocity of particles with different
aspect ratios in a simple shear flow.

For the prolate particle it is opposite. For non spherical particles the results for the angular
velocity differ slightly in the non-linear regime from those in the linear regime. The change
in the non-linear regime is more pronounced for the particle whose aspect ratios are close to a
sphere. For the particle with the largest aspect ratio the angular velocity is almost zero. The result
corresponds to the result obtained in section 3.1, see equation (3.7). There it was obtained that a
spheroidal particle with a large aspect ratio in a shear flow will not change its orientation.

5.3. Ad hoc model for the rheological coefficients

For dilute suspensions of spherical particles it was shown in section 4.3 that in the power law
regime the relative change in the power density can be expressed using (4.7). Since a suspension
of rigid spherical particles is a spherical case of the TIF equation where A = B = 0 it can be
assumed that the value of C∞ can be expressed in a similar form as [�]∞ for spheres, see section
4.4. Thus,

C∞' = −'c1 +
(

1 + n
2

)

c2 +
n
4

(

1 + n
2

)

c3 (5.10)
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with c1, c2 and c3 being scalar parameters. It is now assumed that the rheological coefficients A∞
and B∞ can be expressed in the same form:

A∞' = −'a1 +
(

1 + n
2

)

a2 +
n
4

(

1 + n
2

)

a3 (5.11a)

B∞' = −'b1 +
(

1 + n
2

)

b2 +
n
4

(

1 + n
2

)

b3 (5.11b)

with a1, a2, a3, b1, b2 and b3 being scalar parameters. It is possible to determine the values of most
parameters from the following considerations. First, as was discussed in chapter 4 the intrinsic
viscosity must be equal to −1 for n = −2. In this case the relations (5.10) and (5.11) reduce to

A∞ = −a1 (5.12a)

B∞ = −b1 (5.12b)

C∞ = −c1. (5.12c)

As [�] = −1 for n = −2 must hold for any particle orientation, this implies that a1 = b1 = 0 and
c1 = −1 as the term involving C is the only term in the TIF equation that does not depend on the
particle orientation.
The parameters a2, b2 and c2 can be determined by requiring that for n = 0 the Newtonian

solution must be obtained. This gives a2 = A', b2 = B' and c2 = (C + 1)', where A, B and C
are the rheological coefficients given the solution of Lipscomb et al. [14] (2.52).

For the values of the remaining parameters the following assumptions are made

a3 = xAA' (5.13a)

b3 = xBB' (5.13b)

c3 = xCC' (5.13c)

where xA, xB and xC are parameters. If the parameters x□ are zero the rheological coefficients at
high deformation rates are linear functions in n and independent of the particle orientation. Using
the parameters x□ it is thus possible to introduce a dependence of the rheological coefficients on
the particle orientation.
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Thus the model for the rheological coefficients becomes

A∞ =
(

1 + n
2

)

A + n
4

(

1 + n
2

)

xAA (5.14a)

B∞ =
(

1 + n
2

)

B + n
4

(

1 + n
2

)

xBB (5.14b)

C∞ = −1 +
(

1 + n
2

)

(C + 1) + n
4

(

1 + n
2

)

xCC. (5.14c)

In the model (5.14) there is only one free parameter x□ for each rheological coefficient.
In figures 5.17 to 5.20 the model given in (5.14) is compared with the numerical results obtained.

The proposed model fits very well to the numerical results. The values of the parameters xA, xB
and xC are “chosen by hand”, no fit has been made. It is surprising that the parameters for the
model are the same for A(c2)

∞ , B∞ and C∞, that is x(c2)A = xB = xC = 1.8. Nevertheless for A(c1)
∞

the model does not fit quite as well as for the other cases, especially at small n.
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Figure 5.17.: Comparison of the numerical results for C∞ with the model proposed in (5.14c),
curves for xC = 1.8.
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Figure 5.18.: Comparison of the numerical results for B∞ with the model proposed in (5.14b),
curves for xB = 1.8.
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Figure 5.19.: Comparison of the numerical results for A(c1)
∞ with the model proposed in (5.14a),

curves for x(c1)A = 2.4
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Figure 5.20.: Comparison of the numerical results for A(c2)
∞ with the model proposed in (5.14a),

curves for x(c2)A = 1.8

5.4. Re-evaluating spherical particles

Using the results obtained in the current chapter it is possible to re-evaluate the model proposed
for the intrinsic viscosity at high rates (4.10) for a suspension of spherical particles in chapter
4. Figure 5.21 shows the intrinsic viscosities for spherical particles for the four configurations
considered in this chapter. In the Newtonian case the solutions for all four configurations coincide
but in the non-Newtonian regime the solutions differ slightly.
The configurations (c1) and (c2) in a uniaxial elongational flow are the same for a spherical

particle and thus the same result is obtained. The same case was considered in chapter 4 and
therefore the results shown for (c1) and (c2) coincide with the results shown on figure 4.5.
Interestingly the values of the intrinsic viscosities for the configurations in planar elongation (c3)
and simple shear (c5) are equal but differ slightly from the values obtained for the configurations
(c1) and (c2), about 8% for n = −0.8. The difference between the configurations (c1) and (c2)
and the configurations (c3) and (c5) increases with decreasing values of the thinning exponent n.

In figure 5.22 the numerical results for intrinsic viscosity at high deformation rates are compared
with the model for the intrinsic viscosity at high deformation rates (4.10) proposed in chapter
4. The model fits very well to the configurations (c1) and (c2) which is to be expected as these
are the configurations the model was initially created for. For the configurations (c3) and (c5)
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Figure 5.21.: Comparison of [�] for spherical particles for the four different configurations.

the numerical results deviate slightly from the curve with decreasing values of n. The difference
between the model and the data is still very small. Using the new data one can reevaluate the
integrals in (4.8). The cases with n = 0 and n = −2 are the same. The only difference is that now
for n = −0.8 the intrinsic viscosity at high rates is [�]∞ ≈ 0.74, this gives

[�](c3, c5)∞ = 2.5(1 + n) + 3
8
n2. (5.15)

It is also possible to apply the model given in equations (5.14) as the spherical case is a special
case of this model. In this case A = B = 0 and C = 2.5 and the model reduces to

C (sphere)
∞ = [�]∞ = −1 +

(

1 + n
2

)

3.5 + 5n
8

(

1 + n
2

)

xC . (5.16)

Equations (5.15) and (4.10) can be reproduced by setting the value xC in (5.16) to x(c3, c5)C = 1.2
and x(c1, c2)C = 0.96 respectively.
The results presented in this section confirm the conclusion from section 5.2, that in config-

urations (c3) and (c5) C∞ is equal for spheres. Though, the results here imply that there is a
dependence on the flow for C∞.
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Figure 5.22.: Comparison of the model for [�]∞ given by (4.10) with the results for the different
configurations.

5.5. Summary

• Computational fluid dynamics (CFD) simulations are performed for different types of flows
and multiple particle orientations and the intrinsic viscosities are computed for each flow -
particle configuration. From a set of intrinsic viscosities the rheological coefficients for the
transversely isotropic fluid (TIF) equation can be determined.

• The numerically computed rheological coefficients for the TIF equation in the Newtonian
regime coincide with the analytical result of Lipscomb et al.

• In the non-Newtonian regime the rheological coefficients depend not only on the thinning
index n but also on the particle orientation.

• In the power law regime the coefficient B is independent of the thinning exponent n for
large aspect ratios being equal to zero.

• An ad hoc model to describe the obtained results for the rheological coefficients is proposed.
The model predicts a quadratic dependence on n for all rheological coefficients.

• For spherical particles there is a slight dependence of the intrinsic viscosity on the type of
flow.

88
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In the present PhD studies the influence of a non-Newtonian matrix fluid on the effective properties
of a suspension of rigid spheroidal particles is investigated. A critical review of literature results
is given in chapter 2, where it is shown that a superposition of viscosity-stress curves for polymer
melts filled with rigid spherical particles by only a vertical shift is unlikely.

To determine the effective properties of the suspensions computational fluid dynamics (CFD)
simulations based on the finite element method (FEM) are performed. The suspensions are
considered to be dilute and the matrix fluid is modeled using a Carreau model. The simulations
are performed for different values of the thinning exponent in the Carreau model and different
aspect ratios of rigid spheroidal particles are considered.
To perform the CFD simulations, two different codes are implemented for this thesis. In one

codee the particle is considered to be fixed, as this is shown to be a possible case for elongational
flows. In the other implemented code the particles can flow with the surrounding fluid. Using the
implemented software spherical and spheroidal particles are investigated.

Based on the results of the CFD simulations, a modified Carreau model is proposed for a dilute
suspension of rigid spheres in a Carreau fluid. The model has the following form

�(hom)(̇0) = X�0
(

1 + (ad�̇0)2
)
n
2

with X the linear hydrodynamic amplification factor and ad the strain amplification factor given
by

ad = 1 +
6n + 47
20

'.

An important result of the study is that the critical deformation rate that marks the onset of the
non-linear regime depends on the thinning exponent n. Therefore, the critical deformation rate
differs noticeably from the two n-independent estimates found in literature. The reason is that
these two estimates are made using a particular average of the rate-of-strain tensor magnitude
over the matrix volume: either on its first or its second power. However, the exact results are
defined by averages of the n-th power. Using a mean-field approach the result for the dilute limit
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is extended to higher volume fractions and is compared with measurements by Poslinski et al. The
proposed model agrees well with the data, especially the onset of shear thinning is described very
well. One effect observed by Poslinski et al. that the thinning exponent decreases with increasing
filler volume cannot be explained the results. The proposed model improves models for power
law fluids proposed in literature, as it can also model the crossover from the Newtonian to the
power law regime. To investigate the experimentally observed change in the thinning exponent it
is necessary to simulate higher concentrations of particles. This is out of the scope of this thesis
and is left for future studies within a currently funded DFG project.

For spheroidal particles the rheological coefficients for the transversely isotropic fluid (TIF)
equation are numerically computed and coincide with the analytical result of Lipscomb et al. in
the case of a Newtonian matrix fluid. It is found, that in the non-Newtonian regime the rheological
coefficients differ considerably from the coefficients in the Newtonian case. This clearly shows
that the assumption of n-independent rheological coefficients is not valid for filled polymer melts,
as commonly presumed in literature. For a non-Newtonian matrix fluid the results show that
the rheological coefficients depend on the thinning index n and on the particle orientation. It is
found that the coefficient B for large aspect ratios is not influenced by the non-linear behavior and
always converges to zero as the aspect ratio increases. A dependence on the particle orientation
was found for the coefficient A. Interestingly the orientation dependence is more pronounced for
prolate particles. The exact dependence of the rheological coefficients on the particle orientation
can not be determined within the present work as this requires more simulations. Thus this is
left for a future work in the frame of the DFG project. Nevertheless an ad hoc model to describe
the obtained results for the rheological coefficients is proposed. The model works surprisingly
well. For spherical particles a slight dependence of the intrinsic viscosity on the type of flow
is found. This implies that the rheological coefficients will generally depend on the bulk flow.
For aspect ratios larger than 20 it was not possible to create proper meshes anymore. To obtain
results such large aspect ratios it is be interesting to simulate capped fibers. These results can
also be compared with the models proposed by Gibson and Toll and Souloumiac and Vincent.
These simulation studies are presently in progress.
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A. Notation

Given the Cartesian basis vectors ei

e1 =
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⎜

⎜
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⎠

(A.1)

a vector is defined as
a = aiei = a1e1 + a2e2 + a3e3 (A.2)

and a 2nd order tensor is given by

a = aijeiej = a11e1e1 + a12e1e2 +… (A.3)

In the following the basis vectors are omitted, thus instead of aiei it is just written ai and the basis
vector is implied.

Transpose, symmetry and skew of second order tensors

a⊤ = a⊤ij = aji (A.4)
A tensor a is symmetric if

a = a⊤ (A.5)
and skew if

a = −a⊤. (A.6)



A. Notation

A tensor a can be split into a symmetric and skew part by

a = 1
2
(

a + a⊤
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
sym(a)

+ 1
2
(

a − a⊤
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
skew(a)

(A.7)

The trace of a second order tensor is defines as

tr(a) = aij ei ⋅ ej
⏟⏟⏟

�ij

= aii (A.8)

Kronecker delta �ij and unit tensor 1

�ij =

{

0 if i ≠ j

1 if i = j (A.9)

1 = �ijeiej (A.10)
Permutation tensor or Levi-Civita symbol is defined in 3 spatial dimensions as

"ijk =
⎧

⎪

⎨

⎪

⎩

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),
0 if i = j, or j = k, or k = i

(A.11)

Gradient, Divergence and Curl; following [107].

The gradient of a vector is defined as:

grad(a) ≡ )ai
)xj

= ai,j = Lij . (A.12)

If the gradient is defined as above the derivative is taken with respect to the second index.
The divergence of a second tensor is defined as:

div(a) ≡ )aij
)xj

ei = Di =
)aij
)xj

. (A.13)
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A. Notation

The curl of a tensor of a vector is defined as:

curl(a) ≡ )ak
)xj

"ijkei = Ai. (A.14)

Products

a ⋅ b = aiei ⋅ bjej = aibj ei ⋅ ej
⏟⏟⏟

�ij

= aibi (A.15)

a∶b = aijeiej ∶bklekel = aijbkl (ej ⋅ ek)
⏟⏟⏟

�jk

(ei ⋅ el)
⏟⏟⏟

�il

= aijbji = tr(a ⋅ b) (A.16)

multiplying from the inside out. Note that S ∶b = S ∶b⊤ = S⊤∶b if S is symmetric. For
example the double dot product of a second order tensor with a third order tensor is:

aij ∶bklm = aijbjim = cm (A.17)
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