
Ontology-Driven, Guided
Visualisation Supporting Explicit

and Composable Mappings

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Medieninf. Jan Polowinski
geboren am 3. März 1981

in Gelsenkirchen

Gutachter

Prof. Dr. rer. nat. habil. Uwe Aßmann,
Technische Universität Dresden

Prof. Dr. Ulrich W. Eisenecker,
Universität Leipzig

Tag der Verteidigung: 20. Januar 2017

Dresden, den 19. Oktober 2017

Abstract

Data masses on the World Wide Web can hardly be managed by humans or machines. One
option is the formal description and linking of data sources using Semantic Web and Linked Data
technologies. Ontologies written in standardised languages foster the sharing and linking of data
as they provide a means to formally define concepts and relations between these concepts. A
second option is visualisation. The visual representation allows humans to perceive information
more directly, using the highly developed visual sense. Relatively few efforts have been made on
combining both options, although the formality and rich semantics of ontological data make
it an ideal candidate for visualisation. Advanced visualisation design systems support the
visualisation of tabular, typically statistical data. However, visualisations of ontological data
still have to be created manually, since automated solutions are often limited to generic lists
or node-link diagrams. Also, the semantics of ontological data are not exploited for guiding
users through visualisation tasks. Finally, once a good visualisation setting has been created, it
cannot easily be reused and shared. Trying to tackle these problems, we had to answer how to
define composable and shareable mappings from ontological data to visual means and how to
guide the visual mapping of ontological data.

We present an approach that allows for the guided visualisation of ontological data, the
creation of effective graphics and the reuse of visualisation settings. Instead of generic graphics,
we aim at tailor-made graphics, produced using the whole palette of visual means in a flexible,
bottom-up approach. It not only allows for visualising ontologies, but uses ontologies to guide
users when visualising data and to drive the visualisation process at various places: First, as a
rich source of information on data characteristics, second, as a means to formally describe the
vocabulary for building abstract graphics, and third, as a knowledge base of facts on visualisation.
This is why we call our approach ontology-driven. We suggest generating an Abstract Visual
Model (AVM) to represent and »synthesise« a graphic following a role-based approach, inspired
by the one used by J. v. Engelhardt for the analysis of graphics. It consists of graphic objects
and relations formalised in the Visualisation Ontology (VISO). A mappings model, based on the
declarative RDFS/OWL Visualisation Language (RVL), determines a set of transformations from
the domain data to the AVM. RVL allows for composable visual mappings that can be shared
and reused across platforms. To guide the user, for example, we discourage the construction of
mappings that are suboptimal according to an effectiveness ranking formalised in the fact base
and suggest more effective mappings instead. The guidance process is flexible, since it is based on
exchangeable rules. VISO, RVL and the AVM are additional contributions of this thesis. Further,
we initially analysed the state of the art in visualisation and RDF-presentation comparing 10
approaches by 29 criteria. Our approach is unique because it combines ontology-driven guidance
with composable visual mappings. Finally, we compare three prototypes covering the essential
parts of our approach to show its feasibility. We show how the mapping process can be supported
by tools displaying warning messages for non-optimal visual mappings, e. g., by considering
relation characteristics such as »symmetry«. In a constructive evaluation, we challenge both
the RVL language and the latest prototype trying to regenerate sketches of graphics we created
manually during analysis. We demonstrate how graphics can be varied and complex mappings
can be composed from simple ones. Two thirds of the sketches can be almost or completely
specified and half of them can be almost or completely implemented.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Uwe Aßmann, for giving me the opportunity to work
on my topic, which fascinated me from day one until now. I appreciate this very much. Thank
you as well for many helpful comments. I also would like to thank Prof. Ulrich W. Eisenecker,
who accepted to be my external reviewer, for taking the time to comment on my work in detail.

Many thanks also to Jendrik Johannes and Katja Siegemund, who carefully reviewed chapters
of this work, for their constructive comments. Thank you also to my former colleagues and
friends from the software technology group at TU Dresden for commenting on talks I gave
there and for helping me out in my research life. Especially, I would like to thank Christoff
Bürger, who shared the office with me, for the discussions on graph transformations and language
definitions. Thank you also to Christian Wende for introducing me to OWLText.

The VISO ontology is the result of fruitful discussions with my colleague Martin Voigt from
the chair for multimedia technology. As noted in the respective chapter, the chapter on the VISO
ontology has been built on work previously published and co-authored with Martin. The initial
version of the VISO documentation and its bibliographic annotations was set up and improved
many times by Fabian Prager. Thank you for your endurance. Many thanks also to Pooran
Patel, one of the students I supervised, who successfully built the second (OntoWiki-based)
prototype in spite of many changes to the then premature RVL specification. Thank you Anna
and Hermann for proofreading on short call.

This work would not have been possible without the patience and trust of many people
including my family and especially my wife Anna. Standing by me all the time I worked on
this thesis is something that cannot be taken for granted. Thank you for supporting and
encouraging me.

Work on this thesis received financial support from the European Social Fund and the Free
State of Saxony, contract no. 80937064.

v

Publications

This thesis is partially based on the following peer-reviewed publications:

• J. Polowinski. Towards RVL: a declarative language for visualizing RDFS/OWL data.
In Proceedings of the 3rd International Conference on Web Intelligence, Mining and
Semantics (WIMS ’13), 38:1–38:11. New York, NY, USA, 2013. ACM.

• J. Polowinski and M. Voigt. VISO: A shared, formal knowledge base as a foundation for
semi-automatic InfoVis systems. In CHI ’13 Extended Abstracts on Human Factors in
Computing Systems (CHI WIP ’13). Paris, France, 2013. ACM.

The following peer-reviewed publications cover work on faceted browsing , which is closely related
to the content of the thesis, but not contained herein (we suggest the mechanism of faceted
browsing to be used for filtering and selection tasks in our approach):

• J. Polowinski. Widgets for faceted browsing. In Human Interface and the Management
of Information. Designing Information Environments, LNCS 5617 proceedings, pages
601–610. 2009. Springer-Verlag Berlin Heidelberg.

• M. Schmidt, J. Polowinski, J. Johannes, and M. A. Fernandez. An integrated facet-based
library for arbitrary software components. In ECMFA 2010, LNCS 6138 proceedings,
pages 261–276. 2010. Springer-Verlag Berlin Heidelberg.

• M. Voigt, A. Werstler, J. Polowinski, and K. Meißner. Weighted faceted browsing for
characteristics-based visualization selection through end users. In Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive computing systems (EICS ’12), pages
151–156. New York, NY, USA, 2012. ACM.

• U. Aßmann, A. Bartho, C. Bürger, S. Cech, B. Demuth, F. Heidenreich, J. Johannes,
S. Karol, J. Polowinski, J. Reimann, J. Schroeter, M. Seifert, M. Thiele, C. Wende,
and C. Wilke. DropsBox: the Dresden Open Software Toolbox. In Software & Systems
Modelling. 2012.

vii

Contents

Legend and Overview of Prefixes xiii

1 Introduction 1

2 Background 11
2.1 Visualisation . 11

2.1.1 What is Visualisation? . 11
2.1.2 What are the Benefits of Visualisation? 12
2.1.3 Visualisation Related Terms Used in this Thesis 12
2.1.4 Visualisation Models and Architectural Patterns 12
2.1.5 Visualisation Design Systems . 14
2.1.6 What is the Difference between Visual Mapping and Styling? 14
2.1.7 Lessons Learned from Style Sheet Languages 15

2.2 Data . 16
2.2.1 Data – Information – Knowledge . 17
2.2.2 Structured Data . 17
2.2.3 Ontologies in Computer Science . 19
2.2.4 The Semantic Web and its Languages . 19
2.2.5 Linked Data and Open Data . 20
2.2.6 The Metamodelling Technological Space 21
2.2.7 SPIN . 21

2.3 Guidance . 22
2.3.1 Guidance in Visualisation . 22

3 Problem Analysis 23
3.1 Problems of Ontology Visualisation Approaches 24
3.2 Research Questions . 25
3.3 Set up of the Case Studies . 25

3.3.1 Case Studies in the Life Sciences Domain 26
3.3.2 Case Studies in the Publishing Domain 26
3.3.3 Case Studies in the Software Technology Domain 27

3.4 Analysis of the Case Studies’ Ontologies . 27
3.5 Manual Sketching of Graphics . 29
3.6 Analysis of the Graphics for Typical Visualisation Cases 29
3.7 Requirements . 33

3.7.1 Requirements for Visualisation and Interaction 34
3.7.2 Requirements for Data Awareness . 34
3.7.3 Requirements for Reuse and Composition 34
3.7.4 Requirements for Variability . 35
3.7.5 Requirements for Tooling Support and Guidance 35
3.7.6 Optional Features and Limitations . 36

ix

4 Analysis of the State of the Art 37
4.1 Related Visualisation Approaches . 38

4.1.1 Short Overview of the Approaches . 38
4.1.2 Detailed Comparison by Criteria . 46
4.1.3 Conclusion – What Is Still Missing? . 60

4.2 Visualisation Languages . 62
4.2.1 Short Overview of the Compared Languages 62
4.2.2 Detailed Comparison by Language Criteria 66
4.2.3 Conclusion – What Is Still Missing? . 71

4.3 RDF Presentation Languages . 72
4.3.1 Short Overview of the Compared Languages 72
4.3.2 Detailed Comparison by Language Criteria 76
4.3.3 Additional Criteria for RDF Display Languages 87
4.3.4 Conclusion – What Is Still Missing? . 89

4.4 Model-Driven Interfaces . 90
4.4.1 Metamodel-Driven Interfaces . 90
4.4.2 Ontology-Driven Interfaces . 92
4.4.3 Combined Usage of the Metamodelling and Ontology Technological Space 94

5 A Visualisation Ontology – VISO 97
5.1 Methodology Used for Ontology Creation . 100
5.2 Requirements for a Visualisation Ontology . 100
5.3 Existing Approaches to Modelling in the Field of Visualisation 101

5.3.1 Terminologies and Taxonomies . 101
5.3.2 Existing Visualisation Ontologies . 102
5.3.3 Other Visualisation Models and Approaches to Formalisation 103
5.3.4 Summary . 103

5.4 Technical Aspects of VISO . 103
5.5 VISO/graphic Module – Graphic Vocabulary . 104

5.5.1 Graphic Representations and Graphic Objects 105
5.5.2 Graphic Relations and Syntactic Structures 107

5.6 VISO/data Module – Characterising Data . 110
5.6.1 Data Structure and Characteristics of Relations 110
5.6.2 The Scale of Measurement and Units . 112
5.6.3 Properties for Characterising Data Variables in Statistical Data 113

5.7 VISO/facts Module – Facts for Vis. Constraints and Rules 115
5.7.1 Expressiveness of Graphic Relations . 116
5.7.2 Effectiveness Ranking of Graphic Relations 118
5.7.3 Rules for Composing Graphics . 119
5.7.4 Other Rules to Consider for Visual Mapping 124
5.7.5 Providing Named Value Collections . 124
5.7.6 Existing Approaches to the Formalisation of Visualisation Knowledge . . 126
5.7.7 The VISO/facts/empiric Example Knowledge Base 126

5.8 Other VISO Modules . 126
5.9 Conclusions and Future Work . 127
5.10 Further Use Cases for VISO . 127
5.11 VISO on the Web – Sharing the Vocabulary to Build a Community 128

6 A VISO-Based Abstract Visual Model – AVM 129
6.1 Graphical Notation Used in this Chapter . 129
6.2 Elementary Graphic Objects and Graphic Attributes 131
6.3 N-Ary Relations . 131
6.4 Binary Relations . 131
6.5 Composition of Graphic Objects Using Roles . 132

6.6 Composition of Graphic Relations Using Roles 132
6.7 Composition of Visual Mappings Using the AVM 135
6.8 Tracing . 135
6.9 Is it Worth Having an Abstract Visual Model? 135
6.10 Discussion of Fresnel as a Related Language . 137
6.11 Related Work . 139
6.12 Limitations . 139
6.13 Conclusions . 140

7 A Language for RDFS/OWL Visualisation – RVL 141
7.1 Language Requirements . 142
7.2 Main RVL Constructs . 145

7.2.1 Mapping . 145
7.2.2 Property Mapping . 146
7.2.3 Identity Mapping . 146
7.2.4 Value Mapping . 147
7.2.5 Inheriting RVL Settings . 147
7.2.6 Resource Mapping . 148
7.2.7 Simplifications . 149

7.3 Calculating Value Mappings . 150
7.4 Defining Scale of Measurement . 153

7.4.1 Determining the Scale of Measurement . 154
7.5 Addressing Values in Value Mappings . 156

7.5.1 Determining the Set of Addressed Source Values 156
7.5.2 Determining the Set of Addressed Target Values 157

7.6 Overlapping Value Mappings . 158
7.7 Default Value Mapping . 158
7.8 Default Labelling . 159
7.9 Defining Interaction . 159
7.10 Mapping Composition and Submappings . 160
7.11 A Schema Language for RVL . 160

7.11.1 Concrete Examples of the RVL Schema 163
7.12 Conclusions and Future Work . 166

8 The OGVIC Approach 169
8.1 Ontology-Driven, Guided Editing of Visual Mappings 172

8.1.1 Classification of Constraints . 172
8.1.2 Levels of Guidance . 173
8.1.3 Implementing Constraint-Based Guidance 173

8.2 Support of Explicit and Composable Visual Mappings 177
8.2.1 Mapping Composition Cases . 178
8.2.2 Selecting a Context . 180
8.2.3 Using the Same Graphic Relation Multiple Times 181

8.3 Prototype P1 (TopBraid-Composer-based) . 182
8.4 Prototype P2 (OntoWiki-based) . 184
8.5 Prototype P3 (Java Implementation of RVL) . 187
8.6 Lessons Learned from Prototypes & Future Work 190

8.6.1 Checking RVL Constraints and Visualisation Rules 190
8.6.2 A User Interface for Editing RVL Mappings 190
8.6.3 Graph Transformations with SPIN and SPARQL 1.1 Update 192
8.6.4 Selection and Filtering of Data . 193
8.6.5 Interactivity and Incremental Processing 193
8.6.6 Rendering the Final Platform-Specific Code 196

9 Application 197
9.1 Coverage of Case Study Sketches and Necessary Features 198
9.2 Coverage of Visualisation Cases . 201
9.3 Coverage of Requirements . 205
9.4 Full Example . 206

10 Conclusions 211
10.1 Contributions . 211
10.2 Constructive Evaluation . 212
10.3 Research Questions . 213
10.4 Transfer to Other Models and Constraint Languages 213
10.5 Limitations . 214
10.6 Future Work . 214

Appendices 217

A Case Study Sketches 219

B VISO – Comparison of Visualisation Literature 229

C RVL 231

D RVL Example Mappings and Application 233
D.1 Listings of RVL Example Mappings as Required by Prototype P3 233
D.2 Features Required for Implementing all Sketches 235
D.3 JSON Format for Processing the AVM with D3 – Hierarchical Variant 238

Bibliography 238

List of Figures 251

List of Tables 254

List of Listings 257

Legend

Overview of Prefixes and Namespaces

xsd: XML Schema http://www.w3.org/2001/XMLSchema#
rdf: Resource Description Framework http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: RDF Schema http://www.w3.org/2000/01/rdf-schema#
owl: Web Ontology Language http://www.w3.org/2002/07/owl#
dct: Dublin Core Terms http://purl.org/dc/terms/
dc: Dublin Core Elements 1.1 http://purl.org/dc/elements/1.1/

spin: SPARQL Inferencing Notation http://spinrdf.org/spin#
sp: SPIN SPARQL Syntax http://spinrdf.org/sp#
smf: SPIN Functions http://spinrdf.org/spif/
spl: SPIN Standard Library http://spinrdf.org/spl#
fn: XPath Functions http://www.w3.org/2005/xpath-functions#
afn: Jena ARQ Functions http://jena.hpl.hp.com/ARQ/function#

rvl: RDFS/OWL Visualisation Language http://purl.org/rvl/
rvl-cs: RVL SPIN-Constraints http://purl.org/rvl/spin-constraints/
rvl-fb-cs: RVL Fact-Based SPIN-Constraints http://purl.org/rvl/fact-based-spin-constraints/
rexc: RVL Example Commons http://purl.org/rvl/example-commons/
viso: Visualisation Ontology http://purl.org/viso/graphic/
viso-graphic: / vg: VISO/graphic module http://purl.org/viso/graphic/
viso-data: / vd: VISO/data module http://purl.org/viso/data/
viso-facts: VISO/facts module http://purl.org/viso/facts/
common-shapes: VISO Common Shapes http://purl.org/viso/shape/commons/
bio-shapes: Examples of shapes for the

domain of Biology
http://purl.org/viso/addon/shapes/bio/

amino-acid: Amino-Acids Ontology http://www.co-ode.org/ontologies/amino-
acid/2006/05/18/amino-acid.owl#

cito: Citation Typing Ontology http://purl.org/spar/cito/
obo: Open Biomedical Ontologies (OBO) http://purl.org/obo/owl/obo#
obo-rel: OBO relations http://purl.org/obo/owl/OBO_REL#
po: OBO Plant Ontology http://purl.org/obo/owl/PO#
zfo: OBO Zebra Fish Anatomy Ontology http://purl.org/obo/owl/ZFA
ro: Requirements Ontology http://purl.org/ro/ont#

ex: No specific namespace but an example graph

xiii

http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/
http://spinrdf.org/spin#
http://spinrdf.org/sp#
http://spinrdf.org/spif/
http://spinrdf.org/spl#
http://www.w3.org/2005/xpath-functions#
http://jena.hpl.hp.com/ARQ/function#
http://purl.org/rvl/
http://purl.org/rvl/spin-constraints/
http://purl.org/rvl/fact-based-spin-constraints/
http://purl.org/rvl/example-commons/
http://purl.org/viso/graphic/
http://purl.org/viso/graphic/
http://purl.org/viso/data/
http://purl.org/viso/facts/
http://purl.org/viso/shape/commons/
http://purl.org/viso/addon/shapes/bio/
http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-acid.owl#
http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-acid.owl#
http://purl.org/spar/cito/
http://purl.org/obo/owl/obo#
http://purl.org/obo/owl/OBO_REL#
http://purl.org/obo/owl/PO#
http://purl.org/obo/owl/ZFA
http://purl.org/ro/ont#

xiv

Chapter 1

Introduction

The amount of information available on the World Wide Web and in isolated databases can
hardly be managed, neither by machines, nor by humans. Data from social networks, sensor
data and raw data from governments and industry, as currently postulated by the open data
movement, will further increase the problem of information overflow.

One option to move from data masses to meaningful information is the formal description
and linking of data sources using Semantic Web and Linked Data technologies. Ontologies
written in Semantic Web languages, as recommended by the W3C, foster the sharing and linking
of data by providing a means to formally define concepts and relations between these concepts.
Due to the formal description and standardisation, it becomes easier for machines to connect
data sources, infer implicit facts from existing knowledge and provide meaningful, semantically
rich, data.

A second option is information visualisation, which combines the abilities of machines
and humans to prepare, visualise, conclude and refine – in order to finally gain a graphic
representation of the knowledge that was previously hidden in a data set. In contrast to the
textual representation, the visual representation of facts allows humans to perceive information
more directly, using the highly developed visual sense. At the core of the visualisation process is
the visual mapping, i. e., the mapping of data variables or relations to visual means. Examples
of such visual means are graphic attributes such as colour hue, colour lightness or shape and
graphic relations between the objects in a graphic, e. g., linking or containment.

Relatively few efforts have been made so far on combining both of the options that we
mention above – that is applying information visualisation to Semantic Web data, although
the formality and rich semantics of the data make it an ideal candidate for visualisation. The
general need for effective ontology visualisations has early been noted [SBLH06, KHL+07]
and also Paulheim and Probst conclude in their survey of ontology-enhanced UIs: »There
are clear research gaps in [..] advanced visualizations, and exploiting the possibilities of highly
formal ontologies in user interfaces« [PP10]. This is not to say that there are no approaches
to visualising ontological data [GSGC08, CTW+09, VPM13, LNHE14], and it also has to be
stated that there are advanced visualisation design systems available, which support the user
in visualising tabular, typically statistical data. An example for such a design system, is the
commercial software Tableau [TAB]. However, we see many unsolved problems that can be
summarised as follows:

First, specific, tailor-made visualisations of ontological data are still difficult and time
consuming, since they have to be created manually. Many (semi-)automated solutions for generic
visualisations exist, but they are usually limited to lists or node-link diagrams as illustrated in
Fig. 1.1. In other cases, the available visual means (e. g., colour hue or shape) are not directly used
to encode information, but only to structure and style a textual representation of the underlying
data. Second, the additional semantics that the ontological data offers, are not exploited for
guiding the end-user through visualisation tasks. And finally, once a good visualisation setting
has been created, it cannot easily be combined with other existing settings or shared with

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a generic node-link representation of the Zebrafish Anatomy Ontology as
created by the graph view on BioPortal1. To date, generic visualisation tools for ontological data often
create node-link representations. In contrast, with the visualisation approach proposed in this thesis,
we aim at tailor-made graphics as shown in Fig. 1.2.

other users. The lack of reuse also applies to visualisation knowledge (e. g., results from empiric
visualisation studies). Such results could be used across different systems.

Trying to tackle these problems, the overall goal of this thesis is to present an approach
that allows for a flexible, guided visualisation of ontological data, the creation of tailor-made,
effective graphics and the reuse of visualisation settings. Instead of generating the above-
mentioned generic graphics such as node-link diagrams or lists of resources, we want to enable
domain-experts and other end-users to create fine-tailored graphics such as the one shown in
Fig. 1.2. In contrast to many similar ontology representations known from ontology modelling
environments – e. g., TopBraid Composer’s2 Graph view, the Protégé3 plugins OntoGraf 4,
OWLViz 5 or Protégé VOWL [LNB14] – we aim at using the whole palette of visual means.
These include commonly used graphic attributes such as colour hue and (spatial) relations
between graphic objects such as linking (e. g., used in node-link diagrams) and containment
(e. g., used in Venn-diagrams) but also simple and effective, though more rarely used, ones,
such as proportional repetition (e. g., used in »star rankings«), proportional division (pie charts),
clustering and line-up of graphic objects. Furthermore, we do not aim at a visual notation
for OWL like VOWL [LNHE14] or SOVA6. The fact that we aim at tailor-made graphics in
a bottom-up approach [LNS06], distinguishes this work from top-down approaches such as

1 BioPortal – http://bioportal.org (now http://bioportal.bioontology.org; accessed: 29.03.2010)
2 TopBraid Composer – Ontology modelling environment. http://www.topquadrant.com, accessed: 12.04.2015.
3 Protégé – Ontology modelling environment. http://protege.stanford.edu/, accessed: 16.04.2016.
4 OntoGraf. http://protegewiki.stanford.edu/wiki/OntoGraf/, accessed: 16.04.2016.
5 OWLViz. http://protegewiki.stanford.edu/wiki/OWLViz/, accessed: 16.04.2016.
6 SOVA – Simple Ontology Vis. API. http://protegewiki.stanford.edu/wiki/SOVA/, accessed: 16.04.2016.

2

http://bioportal.org
http://bioportal.bioontology.org
http://www.topquadrant.com
http://protege.stanford.edu/
http://protegewiki.stanford.edu/wiki/OntoGraf/
http://protegewiki.stanford.edu/wiki/OWLViz/
http://protegewiki.stanford.edu/wiki/SOVA/

Figure 1.2: Example of a tailor-made graphic representing several concepts described in the Zebrafish
Ontology. Various visual means such as containment, line-up, width and position are used to encode
ontological relations such as part-of or the start and end times of phases during the fish’s development.
Multiple of these visual mappings are composed to yield a complex graphic. Pointing to parts of
the zebra fish anatomy in the upper half of the graphic interactively highlights the corresponding
development phases.

Vispedia [CTW+09] or VizBoard [VPM13], which take the approach of building »mash-ups« by
instantiating and connecting ready-made graphic types.

To receive an impression of how a user may interact with such a visualisation design system,
and to further motivate our approach, we start with a concrete example taken from our case
studies: Let us assume, we want to visualise data about software requirements that is described
using the Requirements Ontology [STZ+11]. In the following, we go through steps of an iterative,
guided visualisation process as the system should offer it for visualising the requirements data.
The resulting intermediate graphic after each step is shown in Fig. 1.3. During the interactive
process, the design system and the user take action in turn:

• Initially, the system shows only a graphic object with its default appearance for each entity
to be visualised (Shape= Rectangle, Colour =Grey, Position= Random . . . ; Fig. 1.3a).

• System: The following relations are relevant: »has priority«, »has response time in ms«,
»is in conflict with«, . . .

• User selects »has priority«

Based on formally stored knowledge from the field of graphics and visualisation, the system can
suggest effective visual means and guide the user:

• System: The following visual means are recommended: »lightness«, »position«, . . .

• User selects »lightness« . . .

• System shows Fig. 1.3b and suggests further relations . . .

• User selects »is in conflict with«

For the selected relation from the domain data – »is in conflict with« – information is available
regarding the characteristics of this relation. For example, the system knows that it is a
symmetric relation. Since symmetric relations are not directed, this should be reflected by the

3

CHAPTER 1. INTRODUCTION

(a) Graphic objects, each representing a re-
quirement, before applying visual mappings.

(b) After mapping to lightness.

(c) After mapping to linking with
double headed arrow.

(d) After mapping to containment
and labelling .

(e) Generic representation of the same information encoded in (d).

Figure 1.3: Example for steps of an iterative, guided visualisation process using ontological data from
the case study Requirements Ontology (a–d). The labels (RO , R1 , R2) are shown from the beginning
without requiring explicit labelling settings, because we assume that graphic objects are labelled by
default with the local identifier (e. g., RO) of the represented resources (here requirements). For
comparison, the last subfigure (e) shows a generic visualisation as typically provided by ontology editors.

4

graphic representation accordingly:

• System realises »is in conflict with« is a symmetric relation. Hence, it offers the undirected
visual means »linking by line«, »linking by double-headed arrow«, . . .

• User selects »linking by double-headed arrow«

• System updates the view and shows Fig. 1.3c

Following these steps, the system could offer adding further relations to the visualisation, such as
»is refinement of«, »has response time in ms«, . . . and the user could perform further mappings.
After additional visual mapping steps the result could look like Fig. 1.3d, which is already a
complex composed graphic employing five different visual means. Instead of a pure generic
node-link diagram (cf. Fig. 1.3e), we replaced some links and nodes by alternative ways of graphic
representation, thereby obtaining a less crowded diagram.

This example already demands some of the requirements7 that we have for our visualisation
approach: First, we need a guidance system for end-users that is aware of types and characteristics
of the relations used in the source data and that has access to a collection of formalised, machine-
readable visual means such as colour and containment . Second, this graphic vocabulary needs
to be formally defined. Third, for recommending visual means, the system also requires access
to a collection of perceptual facts on visualisation.

A second set of requirements emerges, when we have a closer look at what different actors
may want to do with the visual mappings, once they have defined a set of mappings that
suits their purposes. Let us assume that the user wants to share the visualisation settings she
created with a colleague. The colleague has similar needs of visualising requirements (which
have also been specified with the Requirements Ontology), but works with different visualisation
software on a different platform. Additionally, she uses an extension of the requirements ontology
that introduces a set of missing relations she requires. From this use case, we derive further
requirements: To support reuse and sharing of the visual mappings that we define with our
system, these mappings should be stated explicitly, they should be composable and usable
on different platforms. In order to further support the sharing of visual mappings, existing
standards such as the W3C languages for the Semantic Web – RDF(S), OWL and SPARQL –
should be used wherever possible.

Having presented current problems in visualising ontological data and having motivated our
general goal, in the following, we briefly outline how this thesis contributes to a solution:

Contributions

In this thesis, we make the following main contributions, each of which corresponds to a chapter
in the remainder:

C-1 Our first contribution is the OGVIC approach to Ontology-Driven, Guided Visu-
alisation Supporting Explicit and Composable Mappings (Chapter 8), which we
conceptually describe in Fig. 1.4. Using this figure, we briefly introduce the overall approach
and point to additional contributions that were created as necessary prerequisites.

We assume that ontological data described in RDFS/OWL is selected from a Linked
Data source or read from local files (a, b). Once available to the visualisation system,
this data can be filtered at any time to change the subset of filtered data that will be
visualised (c, d). Selection and interactive filtering are not in focus of this thesis, since a
variety of mechanisms have already been proposed for these process steps such as faceted
browsing and other visual query mechanisms [ODD06, VWPM12, HZL08].

7 We give a complete list of additional visualisation cases, concrete problems, research questions and
requirements, as well as a detailed description of actors and use cases in Chapter 3 (Problem analysis).

5

CHAPTER 1. INTRODUCTION

Following the principle of the Model Driven Architecture8 (MDA), we suggest to generate
an Abstract Visual Model – the AVM – in a next step (e, f). In terms of the MDA, the
AVM is a Platform-Independent Model. It consists of graphic objects and relations that
have been formalised in the Visualisation Ontology – the VISO (g1–g3). The information
on which transformations (including the visual mapping) from the domain data (c) to the
AVM (f) are to be performed is described in a fourth model – the RVL mappings model (h),
which is based on the declarative RVL language (introduced further below). Finally, in a
rendering9 step (j), the actual concrete rendered graphic (k) for a final platform such as
SVG, HTML or X3D is created from the AVM. One reason for this extra abstract graphic
model becomes apparent, when we look at the remaining process step – the guided editing
of visual mappings (i), which is at the core of this thesis: During this step – while guiding
the user through the process of creating and editing a set of visual mappings – not only
the available data and the possible visual means need to be taken into consideration; also
the AVM needs to be available for introspection. This is because additional mappings may
be constrained by existing ones. This would be impossible if we had only access to the
resulting final (SVG) graphic.

As foundations for our approach, multiple technologies, ontologies and languages have
been developed and published as additional contributions of this thesis.

C-2 The developed ontologies comprise the VISO ontology [PV13, VP11] (g1–g3) that was al-
ready mentioned above, consisting of multiple modules such as VISO/graphic (formalising
graphic concepts), VISO/data (for formalising data-characteristics) and VISO/facts (of-
fering vocabulary to describe knowledge gained from visualisation research). Additionally,
a default fact base VISO/facts/empiric (g4) was created to store facts on the effectiveness
of visual means as described in visualisation literature (Chapter 5).

C-3 The principle of the Abstract Visual Model (AVM) can be seen as a contribution
on its own, since it is the first approach to formalise the various, complex relations
between graphic objects following the observations from Engelhardt [vE02]. The AVM
allows for modelling roles of graphic objects and, thereby, lays the foundation for a precise
composition of multiple visual mappings (Chapter 6).

C-4 A further contribution and foundation of our approach is the RDFS/OWL Visualisation
Language (RVL) [Pol13]. RVL allows for composable, declarative mappings that can be
shared among users and systems and may be stored along with the RDF domain data. An
RVL mapping could, for example, explicitly define a visual mapping of an RDF property
to a specific visual means, such as: »Map the property dc:hasPart to the graphic relation
viso-graphic:Containment_Relation« (Chapter 7).

Fig. 1.4 also clarifies why we call our approach ontology-driven and shows how ontologies are
used to drive the visualisation process at various places: First, as a rich source of information on
the data characteristics (c), second, as a means to formally describe the vocabulary for building
abstract graphics (g1), and third, as a formal knowledge base to store facts on the effective use
of visualisations (g4). We give a precise definition of »ontology-driven« in Sect. 4.1.2.

C-5 Besides the contributions shown in Fig. 1.4, we made a detailed analysis of the state
of the art in the field of visualisation approaches and languages used for visualisation and
RDF-presentation, which we see as an additional contribution of this thesis (Chapter 4).
For the analysis of related visualisation approaches, a set of 29 criteria was established
and applied to compare ten approaches in detail. Existing work only covers a subset of

8 Model Driven Architecture. http://www.omg.org/mda/, accessed: 12.12.2015.
9 By rendering , in this thesis, we do not refer to the process of creating a rasterised image, but we use the term

in a broader sense for a transformation to a concrete (graphic) format.

6

http://www.omg.org/mda/

Figure 1.4: The principle of OGVIC – Schematic overview. This figure illustrates the complete OGVIC
approach showing the main process steps and models (a–k), which are referenced in this section. For
each of the three models – the »Filtered (domain) data« model, the »RVL mappings« model and the
»Abstract Visual Model« – a brief example is given using ontological data from the Zebrafish Ontology.

7

CHAPTER 1. INTRODUCTION

the four aspects Visual mapping, Composability, Guidance and Ontology-driven. Fig. 1.5
summarises the results from our analysis of related visualisation approaches and shows
the combination of aspects that makes the OGVIC approach unique: The approach is the
first to combine ontology-driven guidance with the possibility to define composable visual
mappings.

Figure 1.5: Unique selling points of OGVIC – The approach is the first to combine ontology-driven
guidance with the possibility to define composable visual mappings. Existing work only covers a subset
of the four aspects Visual mapping, Composability, Guidance and Ontology-driven.

C-6 Finally, we compare three prototypical implementations that have been created10 to cover
the essential parts of the OGVIC approach and show its feasibility. Two of them are
embedded into existing editors for RDF data – TopBraid Composer and OntoWiki. A
third one has been built from scratch. While no prototype covers all aspects of the OGVIC
approach, our first two prototypes serve demonstrating the constrained-based guidance for
defining RVL mappings as well as the rule-based interpretation of RVL mappings. The
last one puts the focus on interpreting as much of the RVL specification as possible and
rendering concrete interactive (web) graphics (Sect. 8.3–8.5).

10 The OntoWiki-based prototype has been developed by Pooran Patel in student work supervised by the author.

8

Is this approach limited to Ontologies or RDFS/OWL?

The OGVIC approach is exemplified in the RDF technical space, which offers the benefit that the
graphic knowledge we formalised as an OWL ontology can directly be accessed and the contained
implicit knowledge can be exploited. As a second benefit, we can directly use terms of the
graphics vocabulary for building the Abstract Visual Model (AVM) without translating back and
forth between technological spaces. In order to concentrate on the relevant research questions, we
completely stay within the (RDF-based) ontology technological space in the following chapters.
However, the general ideas described in this thesis as the OGVIC approach are not bound
to RDF-based ontological data and could at least partly be transferred to other models than
ontologies (e. g., Ecore models; Sect. 2.2.6), once stable bridging technology is available (cf. the
work of Gašević et al. [GDD05] and Aßmann et al. [AEWW13a] for first approaches in this
direction).

Outline of the Thesis

This thesis is structured as follows: After this introduction, where we have motivated our approach
by a concrete example and pointed to our main research goals, questions and contributions, we
provide background information on enabling technologies used in this thesis for readers who are
not familiar to the field of Semantic Web or Information visualisation (Chapter 2).

We then describe each of the contributions of this thesis in its own chapter: First, we present
a detailed problem analysis (Chapter 3) and an analysis of the state of the art (Chapter 4).
The next chapters present our formalisation of terms in the field of graphics, the Visualisation
Ontology (VISO), in Chapter 5, the Abstract Visual Model (AVM) in Chapter 6 and the
RDFS/OWL Visualisation Language (RVL) in Chapter 7.

After having presented all necessary foundations for our approach, we introduce the OGVIC
approach to Ontology-Driven, Guided Visualisation (Chapter 8) and briefly present prototypical
implementations as well as lessons learned from building these prototypes. Chapter 9 presents
the results of applying the prototypes to ontologies from our case studies. Finally, in Chapter 10,
we conclude from our findings and discuss current limitations of OGVIC as well as future work.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Background

In the following, we briefly introduce the fields of visualisation, ontologies and guidance and
point to how the OGVIC approach relates to these fields. Since this chapter mainly serves as a
place to look up basic knowledge for readers lacking some of this background, readers may skip
sections accordingly.

2.1 Visualisation

In the first section of this chapter, we define basic terms from the field of visualisation such as
visualisation itself and visualisation design system. Further, we give reasons for using visuali-
sation and introduce existing visualisation models and architectures. Finally, we distinguish
visualisation languages from well-established style sheet languages and summarise lessons learned
from the design of these languages.

2.1.1 What is Visualisation?

The term visualisation often refers to both – the process and the product. On the one hand
visualisation can be seen as the mapping from data to visual form. This mapping includes
transformation and often human interaction, so it is not a static document, but a process. On
the other hand, often also the product of a visualisation process is called a visualisation. As
the product often allows further interactive settings, especially in information visualisation, the
process of visualisation continues with the product. This way the product and the process are
closely intertwined. For clarity, we refer to the product of a visualisation process as a graphic
representation or short graphic in this thesis. Maps are one of the oldest examples of graphic
representations. Charts, tree maps, class diagrams, timelines and interactive visual browsers are
other examples.

Definition 1 (Visualisation)
The process of creating visual graphic representations from data.

Additionally, visualisation stands for a field of research. Since we are formulating an approach
to visualise abstract information stored in ontologies – rather than raw physical data – our work
can be assigned to the field of information visualisation (InfoVis). If we consider that ontologies
store knowledge (and not only information), we could even more precisely classify our approach
under the less popular term of knowledge visualisation. A distinction of data, information and
knowledge is given in Sect. 2.2.1.

11

CHAPTER 2. BACKGROUND

2.1.2 What are the Benefits of Visualisation?

The question »Why should we use visualisation?« is easier to answer than the question what
visualisation actually is: It amplifies cognition. This is widely accepted, for example, according
to Card et al. [CMS99], visualisation amplifies cognition by

(a) increasing the memory and processing resources available to the users,

(b) reducing search for information,

(c) using visual representations to enhance the detection of patterns,

(d) enabling perceptual inference operations,

(e) using perceptual attention mechanisms for monitoring,

(f) encoding information in a manipulable medium.

The authors list references and give examples, which support each of the statements. For
example, the increase of memory and processing resources (a) can be explained by the fact that
some graphic attributes can be processed faster and in parallel, compared to text, which needs
to be processed serially. The reduced search (b) is explained by the fact that visualisations
can often »represent a large amount of data in a small space«, a phenomenon that has been
described by [Tuf83] as the Data–Ink Ratio. The reader is referred to Card et al.’s work for
further reading.

2.1.3 Visualisation Related Terms Used in this Thesis

While we give detailed definitions of visualisation related terms in Chapter 5, we would like to give
the reader a brief introduction to two terms that will frequently be used in the following chapters
already: visual means and visual structure. In the less technical chapters of this thesis, we use
the term visual means for attributes (e. g., colour , width, x-position) as well as relations between
graphic objects such as linking , overlapping , containment . The latter group, the relations,
form larger constructs that are often referred to as visual structures. The main visual structure,
i. e., the one that dominates a graphic, is sometimes also called visual paradigm.

2.1.4 Visualisation Models and Architectural Patterns

Several abstract models with different focuses were developed to allow for a better understanding
of the visualisation process. The pipeline models of Mackinlay [Mac86a], and Haber and
McNabb [HM90] describe visualisation as a process consisting of a series of transformation steps
that convert data into a displayable image. Other researchers adopted this model and extended
it, e. g., with human interaction and tasks [CMS99], focused on modelling data states [Chi00] or
the coordination of different views [BRR03].

Applica�on

Database
Rela�ons

extract

Data
Graphical
design

Image

Presenta�on	Tool

synthesize render

Figure 2.1: A pipeline model as used by Mackinlay to demonstrate a linear process of generating
graphics, redrawn after Mackinlay [Mac86a].

12

2.1. VISUALISATION

Raw	Data Data	Tables
Visual

Structures Views

Data
Transforma�ons

Visual
Mappings

View
Transforma�ons

Human	Interac�on

Figure 2.2: Visualisation Reference Model, redrawn after Card et al. [CMS99].

Pipeline Models for Visualisation

Fig. 2.1 shows a typical linear pipeline model, as used by Mackinlay [Mac86a] to illustrate
the stepwise visualisation process taken by the tool he developed. Extracted data is used
to synthesise an intermediate Graphical design, which is then rendered to the final Image.
Mackinlay already noted that for »difficult design problems« »feedback loops« are required,
i. e., the model needs to be extended by human interaction. Also Haber and McNabb [HM90]
describe three transformation steps, which »convert« raw data to a Displayable Image (not
shown). However, they emphasise the fact that data variables are mapped to graphic attributes
by calling the central transformation step Visualisation Mapping .

The Visualisation Reference Model – Modelling Interaction

Interaction is a defining characteristic of information visualisation:

»
Information visualisation is about the not just creation of visual images, but also
the interaction with those images in the service of some problem.

Stuart Card [CMS09] «
As examples of interactive visualisation structures Card et al. [CMS99] list Dynamic queries,
Magic lens, Overview and detail, Linking and brushing, Extraction and comparison and the
Attribute explorer.

As an extension of the pipeline models with respect to human interaction, Card et al.
developed the Visualisation Reference Model (Fig. 2.2). The user can interact with the system
by modifying all three transformation steps – data transformations, visual mappings and
view transformations. Navigation in the scene and changing the perspective are examples of
view transformations, which can be triggered from within an existing view, but also the data
transformations and the visual mappings can be modified interactively.

While the model of Card et al. became popular as the Visualisation Reference Model in the
InfoVis community, visualisation reference models in general have been discussed already in 1993
by Butler et al. [BAB+93]. A further reference model with a different focus is the Data State
Reference Model developed by Chi [Chi00], which emphasises the intermediate results in the
visualisation process and allows for modelling multiple operations on each of four data stages
(not shown). The intermediate stage between data and views is not called Visual Structures,
but Visualization Abstraction by Chi – similarly, we call the intermediate graphic model that we
introduce in Chapter 6 the Abstract Visual Model (AVM).

13

CHAPTER 2. BACKGROUND

The Reference Model Pattern for Visualisation

Analysing the models of Chi and Card et al., Heer and Agrawala [HA06] described the Reference
Model pattern (Fig. 2.3) as a visualisation specific software design pattern [GHJV94], which
captures the essential structure of a software architecture that supports interactive visualisation.
The authors note that the Reference Model pattern can be interpreted as a »tiered version of
MVC [Model View Controller, [Bur92]], with the model divided into separate abstractions for
the data and visual properties«.

DataSet

poten�al	references

Visualisa�on View

DataSource Control

creates

Figure 2.3: The Reference Model pattern for visualisation, redrawn after Heer and Agrawala [HA06].

2.1.5 Visualisation Design Systems

The OGVIC approach presented in this thesis is an approach to create visualisation design
systems for ontological data. Therefore, we define the term Visualisation Design System and
summarise classifications of these systems.

Definition 2 (Visualisation Design System) A system that takes data as input and either
creates a visualisation automatically or helps the user to do so.

Lange, Nocke and Schumann [LNS06] distinguish systems following a top-down approach
from those following bottom-up approaches. Top-down approaches use templates of complex,
»predesigned« [Mac86a] graphic representations, which are then populated with data. While this
allows for offering proven and tested graphics for frequently occurring scenarios, the extensibility
of these approaches is limited. Bottom-up approaches synthesise graphics, for example using an
algebra, which allows for creating graphics in a more flexible way. However, composing multiple
visual means is challenging, since many rules have to be considered in order to achieve useful
graphics. The OGVIC approach describes a bottom-up approach for creating graphics.

Visualisation design systems can further vary with respect to their degree of automation and
the supported customisation times [Bul08]. We discuss visualisation systems and approaches in
Sect. 4.1.1 in detail.

2.1.6 What is the Difference between Visual Mapping and Styling?

Visual mapping differs from styling. For styling, a wide-spread declarative language for the
definition of styles exists – the Cascading Style Sheets (CSS) – which are used in combination
with HTML and other XML languages such as SVG. We define Styling for the scope of this
thesis as follows:

Definition 3 (Styling) The process of adding styles to a structured document, where styles
are variations of how a structured document and its parts are presented.

14

2.1. VISUALISATION

Styles usually concern visual properties, for example, variations of font-face, font-colour, border-
width and position, but they may also be created for aural properties such as the intonation
or volume. The W3C states on its website [W3C13] that style sheets, which bundle a set of
styles into a file, »describe how documents are presented on screens, in print, or perhaps how
they are pronounced.« Typical situations for defining styles include the following and are always
anchored to parts of the document structure (in this case an HTML structure):

• Set the font style of a specific DIV-element to »italic«.

• Set the border-width of all DIV elements to »1.5 cm«.

• Set the style of anchors to »underline«.

Visual mappings are at the core of the visualisation process. We define them as follows:

Definition 4 (Visual Mapping) Also referred to as »visual encoding«. During the
visual mapping process, data relations and values are mapped to (encoded as) visual rela-
tions and values. Besides for the mapping process, we also use the term visual mapping for
descriptions of visual mappings that state source and target in a declarative way.

We can distinguish three types of visual mappings:

a) Manual mapping to constants Here a data relation (e. g., age) or a value (e. g., 40 years)
is mapped to a constant visual attribute value (e. g., red).

b) Manual mapping to visual relations Here a data relation (e. g., part of) is mapped to
a constant visual relation (e. g., containment or linking).

c) Dynamic, value-depending mapping o visual attributes A binding between values of
data relations and graphic attributes dynamically depending on the relation between a set
of values (e. g., map the range of age values [0,100] to a range of colour values between red
and yellow).

The assignment of styles with CSS is different from the definition of visual mappings for RDF
properties for two reasons: First, styles are applied to parts of a structured document, while
visual mappings directly refer to data relations and data values. Second, styles are usually not
dynamic and value-dependent. Similar to mapping type (a), they define constant values – but
usually with the intention to achieve a more aesthetic or readable presentation, rather than to
encode data values. A calculation of values, type (c), could only be done with XSL, not with
CSS (both languages will be compared in detail in the next section). The problem that we
cannot attach styles directly to RDF properties is targeted by Fresnel, which we introduce in
Sect. 4.3.1. Fresnel allows for describing how an RDF graph should be turned into a document
structure and, in a second step, then allows for assigning styles to the elements of the newly
created structure. To define visual mappings, we do not need to first transform a knowledge
graph into a document shape.

2.1.7 Lessons Learned from Style Sheet Languages
– Separation of Concerns

Having pointed out the difference between styling and visual mapping, it is still worth looking at
style sheet languages in more detail to learn from these languages. Therefore, we briefly introduce
and compare the style sheet languages CSS and XSL. By separating the styling information
from the rest of the document (structure and content), device independence is supported. Using
a selection mechanism, the document parts that are to be styled can be selected and then be
used in style rules.

15

CHAPTER 2. BACKGROUND

Cascading Style Sheets (CSS), initially CHSS, the H standing for HTML, were invented
to prevent HTML from turning into a full »page description language« [Lie05]. They are now
a W3C standard for defining presentation, not only of HTML webpages, but also of XML
documents, vector graphics (SVG) and UIs (XUL1). The term cascading refers to a priority
scheme that determines, which style to select in case of multiple applicable style rules. For
example, styles are inherited (propagated) along the box structure of the document, i. e., inner
elements will inherit style values from outer elements unless an explicitly defined style (with
higher priority) overrides the more general, inherited one. Cascading also allows for combining
styles from multiple style sheets, which distinguishes it from other style languages and lends
itself for the use on the web.

CSS XSL
Declarative? [Lie05] yes yes
Can be used with HTML? yes no
Can be used with XML? yes yes
Transformation language? no yes
Loss of machine-readable semantics? [Lie05] no yes
Syntax CSS XML

Table 2.1: Comparison of XSL and CSS, extended after a table from the W3C’s »Web Style Sheets
home page« [W3C13].

Extensible Stylesheet Language (XSL) is actually a bundle of W3C-recommended
languages, consisting of XSL-Formatting objects (XSL-FO) – a page description language,
Extensible Stylesheet Language Transformations (XSLT) as a language for transformations
between XML documents and X-Path as a query language for (XML) trees, which provides the
selection mechanism in XSL.

While both CSS and XSL are declarative and use the same formatting principles, impor-
tant differences between the two languages exist: A major difference is that XSL follows a
transformational approach, whereas CSS is interpreted by the presenting client. Lie points
to the problems that occur with transformation-based style sheet languages: Applied on the
server side »there will be a loss of semantics since the transmitted content is at a lower level of
abstraction«. Applied at the client side he argues that »the browser will not be able to support
progressive rendering of content where content is displayed in small chunks as the document is
downloaded. Since the transformation may specify that the last element in the logical structure
should come first in the presentational structure, the whole document must be downloaded
before the transformation can take place«. Another difference between CSS and XSL is that
XSL uses the syntax of XML, while CSS defines its own syntax. Table 2.1 summarises differences
and commonalities between CSS and XSL.

2.2 Data

In this section, we define basic terms from the field of data such as what is structured data
and how it relates to ontologies and ontological data. Further, we give a brief overview
of the Semantic Web technologies mentioned in this thesis and clarify what is meant by
Linked Open Data.

1 XML User Interface Language. https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/,
accessed: 03.11.2015.

16

https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/

2.2. DATA

2.2.1 Data – Information – Knowledge
Since we speak of visualising structured data while many of the approaches we review in this
thesis belong to the field of information visualisation and some even use the term knowledge
visualisation, we briefly need to clarify these three terms, which are often used interchangeably
in everyday language, but also in scientific literature. Chen et al. [CEH+09] tried to resolve
the terminological confusion by introducing a set notation, which distinguishes between data,
information and knowledge in the perceptual and cognitive space (P) on the one hand and the
computational space (C) on the other hand. For the perceptual space Chen et al. reuse the
definitions from Ackoff [Ack89]:

Pdata Pinformation Pknowledge

symbols data that are processed to
be useful, providing answers
to ‘who’, ‘what’, ‘where’, and
‘when’ questions

application of data and infor-
mation, providing answers to
‘how’ questions

Cdata Cinformation Cknowledge

computerized representations
of models and attributes of
real or simulated entities

data that represents the re-
sults of a computational pro-
cess, such as statistical analy-
sis, for assigning meanings to
the data, or the transcripts of
some meanings assigned by
human beings

data that represents the re-
sults of a computer-simulated
cognitive process, such as per-
ception, learning, association,
and reasoning, or the tran-
scripts of some knowledge ac-
quired by human beings

2.2.2 Structured Data
Structured data is the prerequisite for visualising data, since we need to identify some structure
in the data that we can map to visual means or use in interactions such as filtering and faceted
browsing [Kar13]. This structure is defined by means of a data model such as a database schema,
an XML schema – or an ontology. A definition of ontology will follow in the next subsection.

Often three classes of data are distinguished – unstructured data, semi-structured data and
structured data. While some agreement exists on the distinction between unstructured data
(e. g., text documents, images) and structured data, the definition of semi-structured data is
harder than it might appear at first sight. Abiteboul lines up the following main characteristics of
semi-structured data (among others): »the structure is irregular«, »partial«, and »implicit«, »the
schema is very large« and »the distinction between schema and data is blurred« [Abi97]. However,
according to Buneman [Bun97], it is not always differentiated between semi-structured data and
unstructured data in literature.

A related question concerns the formality of the data: Instead of a three-fold classification,
Uschold et al. [UG04] suggest a continuum of languages for data modelling (Fig. 2.4), ranging
from glossaries and thesauri via XML and database schemas to frames, description logics and
first-order logic. From left to right they describe an increasing »amount of meaning specified«
and an increasing degree of formality, which leads to a reduction of ambiguity. Further, they also
describe an »increasing support for automatic reasoning« (i. e., the ability to infer new explicit
facts from implicit knowledge) towards the right end of the continuum. Formal ontologies, stated
in logic languages, are at the rightmost end of the spectrum.

Rauschmeyer [Rau10] characterises structured data by five criteria: First, the flexibility of
the schema, with respect to annotation and schema evolution. Second, globally unique symbols,
to ensure all data on a given concepts can be gathered from distributed sources and third, simple
composability of these distributed data. Fourth, links between entities to organise entities by

17

CHAPTER 2. BACKGROUND

cross-referencing and fifth, standardised exchange formats to allow for applying external tools.
Ontologies written in standard ontology languages, as described in the next subsections, fulfil
these criteria.

XML	DTDsTerms

structured
Glossaries

adhoc
Hierarchies
(Yahoo!)

'ordinary'
Glossaries

Data
Dic�onaries

(EDI)

Thesauri

Pricipled,
informal

Hierarchies

XML
Schema

DB
Schema

formal
Taxonomies

Descrip�on
Logics

(OWL-DL)

Data	Models
(UML,	STEP)

Frames
(OKBC)

General
Logic

Glossaries	&
Data	dic�onaries

Thesauri,
Taxonomies

MetaData,
XML	Schemas
&	Data	Models

Formal	Ontologies
&	Inference

Figure 2.4: Continuum of data modelling languages (simplified, after Uschold et al. [UG04]).
Uschold et al. refer to all these languages as ontologies, while we only use the term Ontology where we
refer to Formal Ontologies, which are positioned at the rightmost end of the spectrum.

18

2.2. DATA

2.2.3 Ontologies in Computer Science

An often cited definition for ontologies in computer science was given by Gruber [Gru93]: »An
ontology is an explicit specification of a conceptualization.« Guarino et al. [GOS09] give a good
overview of how this broad definition was combined by Studer et al. [SBF98] with the definition
from Borst [Bor97] to include the two additional aspects of being formal, i. e., machine-readable,
and shared. For the readers of this thesis, we also consider the following excerpt of a more
verbose definition of Ontology helpful, which was given by Gruber in 2009 [Gru09] pointing out
the differences and commonalities between an ontology and a database:

»
[. . .] an ontology defines a set of representational primitives with which to model
a domain of knowledge or discourse. The representational primitives are typi-
cally classes (or sets), attributes (or properties), and relationships (or relations
among class members). The definitions of the representational primitives include
information about their meaning and constraints on their logically consistent ap-
plication. In the context of database systems, ontology can be viewed as a level of
abstraction of data models, analogous to hierarchical and relational models, but
intended for modelling knowledge about individuals, their attributes, and their
relationships to other individuals. Ontologies are typically specified in languages
that allow abstraction away from data structures and implementation strategies;
in practice, the languages of ontologies are closer in expressive power to first-order
logic than languages used to model databases. For this reason, ontologies are
said to be at the »semantic« level, whereas database schema are models of data
at the »logical« or »physical« level. Due to their independence from lower level
data models, ontologies are used for integrating heterogeneous databases, enabling
interoperability among disparate systems, and specifying interfaces to independent,
knowledge-based services. [. . .]

Thomas R. Gruber [Gru09] «
Ontologies usually consist of two components, the T-Box (terminological component) containing
classes, relations and their properties and the A-Box (assertion component) containing state-
ments about instances or individuals. While the OGVIC approach also supports the visualisation
of the T-Box, we sometimes use the term ontological data, or ontology instance data to stress that
we are foremost concerned with visualising instance data and not the »schema« of ontologies2.

2.2.4 The Semantic Web and its Languages

In this thesis, we focus on ontologies written in the languages standardised by the W3C as part
of the Semantic Web technology stack.

The Resource Description Framework (RDF) [RDF04a] is the basis of this stack. It
allows for describing a graph and offers the principle of defining simple statements as triples
consisting of subject, predicate, object. The RDF Schema (RDFS) [RDF04b] allows for
defining relations (properties in RDFS) and classes for typing the RDF data. The Web
Ontology Language (OWL) [OWL04] allows for using Description Logics to reason about
RDF resources. Following the principle of Description Logics, which allow for describing a
specific logic by combining the required operators, also OWL is not one single language, but
was specified as a language family in three variants with different expressivity and decidability.
OWL Full offers the maximum expressivity. OWL Light offers decidability, but focuses on a few
basic language constructs, which are sufficient to describe taxonomies, for example. OWL DL is

2 Some authors use the term ontology only for the T-Box and instance data for the A-Box, e. g., in [UG04]
where both together are then referred to as a knowledge base.

19

CHAPTER 2. BACKGROUND

a compromise, which offers reasonable reasoning times for many purposes at the cost of some
constraints on expressivity, e. g., relations (properties) may not appear as objects or subjects
in a statement. Our approach is specific to OWL and not only RDFS, since with OWL it is
possible, for example, to define characteristics of relations such as symmetry or transitivity .

In the following, we give a brief overview on some important concepts of OWL that we refer
to in the next chapters. To describe classes by restrictions, OWL provides:

owl:allValuesFrom is equivalent to the universal quantifier (∀) from predicate logic. Restrict-
ing a class C1 on a property P1 to C2 using owl:allValuesFrom means that an individual
belonging to class C1 is any individual that is related by P1 only to individuals belonging
to C2.

owl:someValuesFrom is equivalent to the existential quantifier (∃) from predicate logic. Re-
stricting a class C1 on a property P1 to C2 using owl:someValuesFrom means that an
individual belonging to class C1 is any individual that is related by P1 to at least one
individual belonging to C2.

Furthermore, we sometimes refer to different classes of properties that OWL defines:

owl:ObjectProperty is used to relate individuals.

owl:DataProperty is used to relate individuals to data values, e. g., integers or strings.

SPARQL [SPA08] was developed as a query language for RDF data. Similar to SQL, queries
can be formulated to select a tabular result set from an RDF graph (SELECT operation), or
to construct a new RDF graph from the data (CONSTRUCT operation). From version 1.1,
the SPARQL Query language is accompanied by a set of related recommendations such as the
SPARQL 1.1 Update Language [SPA13], which provides functionality to delete triples and
create new ones. The UPDATE, INSERT and DELETE operations introduced in SPARQL 1.1,
expand SPARQL from a query language to a means for manipulating RDF data.

A benefit of focusing on the RDF technical space, is the wide spreading of ontologies written
in RDFS and OWL. For many ontologies written in other popular formats – such as OBO [OBO]
in the life science domain – translations to OWL exist [GHH+07].

2.2.5 Linked Data and Open Data
While many websites are internally based on structured data sources (e. g., relational databases
like MySQL), data is usually only provided as unstructured documents to the users as HTML
pages or PDF files. This lack of raw data has been criticised, for example, by Tim Berners
Lee [BHBL09], who requests to open up data silos and provide structured data in machine-
readable formats.

Linked data makes structured data available for use. The idea is that browsers are enabled
to download new information (new RDF triples) on a resource, by dereferencing its URI (Uniform
Resource Identifier) and interpreting it as a URL [BHBL09]. The triples downloaded from the
URL can point to further URIs, which the browser can follow in turns and so forth and so on,
which has been called the »follow-your-nose strategy« (e. g., [Hau09]). First sources of Linked
Data were the DBpedia3, an extract from structured Wikipedia data, and Freebase4.

The paradigm of Open Data aims at data that is (among other criteria) freely accessi-
ble [BK12]. Open Data can be stored in relational databases and made available for editing by
the crowd. For example, on factual.com5 tables of Open Data can be edited. This means Open
Data does not necessarily be stored as Linked Open Data, although the terms are often used
in conjunction.

3 http://www.dbpedia.org; [ABK+07]
4 Freebase has been announced to be shut down.. http://www.freebase.com, accessed: 02.07.2015.
5 Factual. http://www.factual.com, accessed: 02.07.2015.

20

http://www.dbpedia.org
http://www.freebase.com
http://www.factual.com

2.2. DATA

2.2.6 The Metamodelling Technological Space

Having provided some background on the ontology technological space and the technologies of
the Semantic Web, we also need to briefly describe its counterpart commonly used in the software
modelling domain – the metamodelling technological space. A definition of metamodel is given
by Seidewitz:

»
A metamodel makes statements about what can be expressed in the valid models
of a certain modelling language.

Ed Seidewitz [Sei03] «
Beyond this very general definition, metamodelling is often associated with the technologies
and standards defined by the Object Management Group6 (OMG), such as the Meta Object
Facility7 (MOF). MOF is the metadata architecture the OMG recommends for metamodelling.
It is a four-layered architecture consisting of four layers: M0 (objects, e. g., the objects in a
program written in an object-oriented programming language), M1 (models, e. g., a concrete
UML model), M2 (metamodels, e. g., UML), and M3 (the metametamodel). The layer M3
is the last layer, since it can be used to express the MOF in itself. As a means to specify
constraints and object query expressions to a MOF model, the Object Constraint Language8

(OCL) is recommended by the OMG.
In this thesis we sometimes refer to Eclipse-specific9 technologies such as the Eclipse

Modeling Framework10 (EMF). The EMF implementation of the MOF is Ecore.

2.2.7 SPIN

The SPARQL Inferencing Notation11 (SPIN) [KHI11] is a W3C Member Submission promoted
by TopQuadrant12. It represents SPARQL in RDF, so that it can be stored alongside the data
that is queried. SPIN further is a set of RDF vocabularies that allow for defining inference
rules and constraints. Defining a constraint on an RDFS class is similar to how constraints
can be added to UML classes with OCL. Beyond rules and constraints, SPIN also allows for
defining functions, reusing queries by parametrisable templates, and specifying attributes, like
in UML. Thereby, SPIN brings the object-oriented paradigm and metamodelling capabilities to
(RDF-based) ontologies.

Besides proprietary implementations of SPIN for products of TopQuadrant, an open-source
implementation of SPIN, the SPIN API13, is available. Since constructs such as constraints and
rules represent encapsulated SPARQL and SPARQL Update requests, they can internally be
processed by a SPARQL engine.

We already refer to SPIN and related technologies such as UISPIN during the analysis of
the state of the art (Sect. 4.3.1). Additionally, we discuss SPIN in more detail under various
aspects in the remainder of this thesis: In the context of the RVL language (Sect. 7.11), we use
the metamodelling capabilities of SPIN. In the context of guidance (Sect. 8.1), we use SPIN for
formulating further constraints that are evaluated to guide the visualisation process.

6 Object Management Group. http://www.omg.org, accessed: 02.011.2015.
7 Meta Object Facility. http://www.omg.org/mof/, accessed: 02.011.2015.
8 Object Constraint Language. http://www.omg.org/spec/OCL/, accessed: 03.11.2015.
9 Eclipse. http://www.eclipse.org, accessed: 02.07.2015.
10 Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/, accessed: 02.07.2015.
11 SPIN. http://spinrdf.org/, accessed: 02.07.2015.
12 TopQuadrant. http://www.topquadrant.com, accessed: 02.11.2015.
13 SPIN API. http://topbraid.org/spin/api/, accessed: 02.11.2015.

21

http://www.omg.org
http://www.omg.org/mof/
http://www.omg.org/spec/OCL/
http://www.eclipse.org
http://www.eclipse.org/modeling/emf/
http://spinrdf.org/
http://www.topquadrant.com
http://topbraid.org/spin/api/

CHAPTER 2. BACKGROUND

2.3 Guidance
The guidance of the user is a defining requirement for the OGVIC approach; therefore, we
briefly give a definition of guidance, discuss different kinds of guidance and show where in the
visualisation pipeline the user can be guided.

Definition 5 (Guidance) The »act or process of guiding« where guiding is defined as to
»direct or control the path or course of (something)« [MWa].

This definition leaves much space on the degree of enforcement of guidance rules (»direct« vs.
»control«); therefore, we introduce levels of guidance in Chapter 8. Furthermore, according to
Si-Said et al. [SSR98], guidance can be categorised into step guidance and flow guidance. Step
guidance concerns guiding a user in fulfilling a single process step. Flow guidance concerns
guiding a user from one step in a process to the next step in a process that is the best to perform.
Both kinds of guidance are relevant to visualisation processes.

2.3.1 Guidance in Visualisation
Guidance for visualisation has been discussed by Bull [Bul08] and is inherently interlinked
with tooling, since it is the system that shall guide the user. Guidance can be offered for all
customisation steps in the visualisation reference model (cf. Fig. 2.2), whenever the user interacts
with the system. The user can be guided when filtering data, when performing the visual
mapping and also when performing view transformations.

Guidance for Filtering When filtering the source data, one means for guiding the user
is faceted browsing , which became popular in recent years. The user is restricted by
construction of the GUI in order to allow only those filtering queries that return results.
Ben-Yitzhak et al. [BGH+08] also refer to faceted browsing as guided navigation.

Guidance for Visual Mapping When performing the visual mappings the user may be
guided to select expressive, effective and appropriate visual means (cf. Sect. 5.7). Some
visualisation design systems from the field of statistics analyse the data and data types in
order to suggest visual means based on the probable scale of measurement (e. g., nominal,
ordinal, quantitative; cf. Sect. 5.6.2).

Guidance for View Transformations Even in the final rendered view, the user may be
guided, for example by enabling navigation along visual structures in addition to a free
movement through the graphical space.

The focus of the OGVIC approach is on the second case, the guidance for performing the visual
mapping. We show that with the emergence of highly structured data, new and different oppor-
tunities for guiding the user are possible. These go beyond the abilities of classic visualisation
design systems for tabular statistical data.

22

Chapter 3

Problem Analysis

Data stored in ontologies is highly interrelated and has formal semantics offering good op-
portunities for connecting various data sources and enabling complex querying and filtering.
However, intentionally, this data is completely free from presentation, structuring and formatting
information. On the one hand, this means that the pure ontological data is hard to read and
understand by humans. On the other hand, this can be seen as an advantage, since the raw shape
of data offers ideal conditions for visualisation. We argue that current ontology visualisation
approaches often do not exploit the benefits that ontological data offers. Furthermore, ontologies
could help to overcome problems with the interoperability of visualisation systems and the
exchange of visualisation knowledge.

In this chapter, we list the problems we identified in this context (Sect. 3.1). Based on these
problems, we formulate concretised research questions (Sect. 3.2) and describe the case studies
we conducted (Sect. 3.3) in order to analyse concrete ontologies from various domains (Sect. 3.4)
and identify frequently occurring visual mapping situations (Sect. 3.5 and 3.6). This problem
analysis chapter results in a list of precise requirements for our ontology-driven visualisation
approach (Sect. 3.7).

When identifying concrete problems in the next step, in many cases we describe these
problems from the perspective of a specific actor. Therefore, we briefly introduce these actors
and their use cases. Both actors are typically experts on their domain (e. g., biotechnology), but
not necessarily skilled in visualisation or programming:

• The Visualisation Author – Her goal is to visualise ontological data that she found
on the Semantic Web or that is available from local ontologies. After specifying a set of
helpful visual mappings, she wants to send her visualisation settings to a colleague who
told her that he needs to visualise a similar ontology. In a later project, she also needs to
reuse the settings herself. However, some changes and extensions have to be done, since
the ontology grew in the meantime. Additionally, her company decided to use a completely
different visualisation suite. A third colleague also defined some visualisation settings. She
could save some time if it were somehow possible to combine his settings with hers.

• The Domain Author – She created a new domain ontology and wants to suggest a good
visualisation that is helpful for people using her ontology. Just like authors of XML data
sometimes offer style sheets, she would like to offer recommendations for visualising her
ontology.

23

CHAPTER 3. PROBLEM ANALYSIS

3.1 Problems of Ontology Visualisation Approaches
We identified the following eight problems of current visualisation approaches for ontological
data1:

P-1 Often no visual mapping exists, but a general transformation of data to document shape

P-2 Visualisations often follow a single visual paradigm (e. g., Node-Link-Diagrams), while
others are ignored

To make use of the human eye’s capability of quickly perceiving complex data sets, we need
to encode data variables to visual means. It is not sufficient to bring a huge ontology file
into a document shape (P-1) or simply reflect the graph structure of the ontology by using
a trivial node-link-diagram representation (P-2). The ontological data from our case studies
greatly varies with respect to its scale of measurement, data types and structure. Since different
visual structures have different effectiveness for encoding different kinds of data, multiple visual
structures should be provided to create an appropriate tailor-made visualisation instead of using
generic visualisations.

P-3 Visualisation authors cannot reuse visual mappings in other tools and share them with
other people

P-4 Visualisation authors cannot compose their own mappings with existing ones

P-5 Domain authors do not have a standard format to ship visualisation information along
with their domain ontologies

Ontology visualisations are created for specific platforms and separately for each visual paradigm.
They cannot be shared with others and reused on other visualisation platforms (P-3) or in
combination with different visual paradigms (P-4). Whereas more and more standardised
formats are used for storing domain knowledge, visualisation settings are not stored based on
standards (P-5).

P-6 A visualisation language for ontological data does not exist

Even though not standardized, a few general visualisation languages exist (Sect. 4.2.2). However,
these cannot directly reference ontology specific constructs such as individuals, classes and
relations (P-6). As an example, visualisation authors need to be able to conveniently reference
relations between classes that exist indirectly by existential or universal restrictions.

P-7 Generic visualisation design systems do not exploit the specifics of ontological data

P-8 Visualisation authors cannot exchange their system’s expert knowledge

Currently, only for tabular, statistical data good visualisation design systems exist (Sect. 4.1.1)
that offer basic guidance functionality for simple data types based on internal visualisation
knowledge and the analysis of the data. However, they cannot guide the user, when it comes to
visualising ontological data with its specifics (P-7). As a basis to reduce visual mapping options
to a useful subset, a visualisation approach should consider all the information it can extract
from the ontology. Examples are inverse relations or the symmetry and transitivity of relations
as well as subproperty relationships. An additional prerequisite for guiding the visualisation
author is expert knowledge on visualisation. This visualisation knowledge is usually hard-coded
into the system and cannot easily be exchanged, when new empirical results are available (P-8).

1 While we concentrate on the visualisation of ontological data in this thesis, we are aware that many of the
discussed problems, just like many of our proposed solutions, could also be applied to general visualisation
systems.

24

3.2. RESEARCH QUESTIONS

3.2 Research Questions
Our main research question is: How can we support the tailor-made, effective and reusable
visualisation of ontological data? Starting from this very general question and taking into
account the problems identified in the last section, we formulate the following two concretised
subquestions, which in turn have two subquestions each:

Q-1 How can we define composable and shareable mappings from ontological data to visual
means? (P-1, P-2, P-3, P-4, P-5, P-6)

Q-1.1 Which ontology constructs do we want to map and onto which visual means? (P-2, P-6)

Q-1.2 What should be the target model we map to? (P-2, P-3, P-4, P-5)

The first group of questions above aims at the general problems of reusing and composing visual
mappings, while the group below aims at the question of how end-users can be supported in
creating these mappings.

Q-2 How can we guide the visual mapping of ontological data? (P-7, P-8)

Q-2.1 Can visualisation benefit from the rich semantics of ontological data? (P-2, P-7) Can it,
for example, help to allow for other visual paradigms than the node-link paradigm?

Q-2.2 How can we formalise expert visualisation knowledge? (P-8)

Although we split our research questions into these two groups, almost none of the questions
can be thought separately from the others; therefore, all six questions are subject to this thesis.
In the remainder of this thesis, we try to answers these six research questions starting with
Question Q-1.1, which is answered already in the following sections of the Problem Analysis.

3.3 Set up of the Case Studies
In order to approach research question Q-1.1 , case studies have been conducted for eight
ontologies from three different domains – publishing, life sciences and software requirements.
This included:

1. Analysing the case studies ontologies by identifying ontological concepts such as transitivity,
inverse relations, subproperties and domain-range relations and counting their occurrences

2. Selecting ontological concepts according to the frequency of their usage but also to cover a
broad range of different ontological concepts

3. Interviewing domain experts and doing a (subjective) review of domain literature in order to
identify common visualisations from the respective domain

4. Drawing manual sketches for selected concepts

5. Analysing these sketches for visualisation cases

6. Testing the prototypical visualisation system with respect to the manual sketches

While it was not possible to perform a detailed analysis of the graphics used in arbitrary
domains, we see this procedure as a compromise of effort and generality, which allows for working
with real world examples from three very different scenarios. As opposed to an analysis that only
focuses on the popularity or usefulness of visualisations in the respective domains, our approach
enabled us to consider as well, which ontologies are actually available and which ontological
power they have.

In the following, we briefly introduce the examined ontologies for each of our three case
study domains. Afterwards we describe each of the steps listed above in more detail, except for
the last step (testing), which is described at the end of this thesis (Chapter 9).

25

CHAPTER 3. PROBLEM ANALYSIS

3.3.1 Case Studies in the Life Sciences Domain

In the life sciences domain, we closely inspected three ontologies from biology and biotechnology.
The well-known Gene Ontology was intentionally excluded, since it uses only two different
ontological relations – is a and part of.

• The Plant Ontology (PO)
http://purl.org/obo/obo-all/po_anatomy/po_anatomy.owl
http://purl.org/obo/owl/po_temporal

• The Zebrafish Anatomy Ontology (ZFA)
http://purl.org/obo/owl/zebrafish_anatomy

• The Amino Acids Ontology2

http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-acid.owl

The Plant Ontology is an OBO3 ontology. Parts of it have been transformed to various OWL
ontologies such as the plant anatomy and the temporal module that we chose for our case
study. The anatomy module mainly represents a obo:part_of-hierarchy of plant components, the
temporal module offers information on plant development stages (obo:develops_from). The high
number of change requests4 suggests that the Plant Ontology has an active user community.

The Zebra Fish Anatomy Ontology is likewise a transcript of an OBO ontology to
OWL. The ontology represents a obo:part_of-hierarchy of the fish sections, and the sequence of
development stages (obo:develops_from). Additionally, obo:start and obo:end define the duration
of each stage.

The Amino Acids Ontology was developed by Robert Stevens and Phillip Lord at the
University of Manchester and »combines many aspects of the physicochemical properties Tay-
lor [Tay86] uses to classify amino acids to give a rich, multi axial classification of amino
acids«5.

Rather than instance data, the Plant Ontology, the Zebra Fish Anatomy Ontology and the
Amino Acids Ontology represent knowledge in the T-Box as existential constraints (cf. Sect. 2.2.3).
Besides this, in the Amino-Acids ontology, properties are described via domain–range axioms.
All three ontologies contain rdfs:subClassOf-hierarchies and use various owl:AnnotationPropertys
such as oboInOwl:hasSynonym.

3.3.2 Case Studies in the Publishing Domain

In the publishing domain, we closely inspected two ontologies:

• The Citation Typing Ontology (CiTO)
http://purl.org/spar/cito/

• The Bibliographic Ontology (BIBO)
http://purl.org/ontology/bibo/

CiTO is part of a collection of ontologies from the publishing domain called SPAR6. It consists of
eight main ontologies, whereof we have a closer look at CiTO, the Citation Typing Ontology and
FaBiO, the FRBR-aligned Bibliographic Ontology. CiTO is already used in opencitations.net7

2 Amino Acids Ontology (download). http://www.cs.man.ac.uk/~stevensr/ontology/amino-acid.owl,
accessed: 09.11.2015.

3 The Open Biological and Biomedical Ontologies. http://obofoundry.org/, accessed: 09.11.2015.
4 Plant Ontology (issue tracker). https://github.com/Planteome/plant-ontology/issues/, accessed: 09.11.2015.
5 From the abstract of the Amino Acids Ontology
6 SPAR Ontologies. http://purl.org/spar/, accessed: 02.07.2015.
7 Open Citations. http://opencitations.net/, accessed: 18.12.2014.

26

http://purl.org/obo/obo-all/po_anatomy/po_anatomy.owl
http://purl.org/obo/owl/po_temporal
http://purl.org/obo/owl/zebrafish_anatomy
http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-acid.owl
http://purl.org/spar/cito/
http://purl.org/ontology/bibo/
http://www.cs.man.ac.uk/~stevensr/ontology/amino-acid.owl
http://obofoundry.org/
https://github.com/Planteome/plant-ontology/issues/
http://purl.org/spar/
http://opencitations.net/

3.4. ANALYSIS OF THE CASE STUDIES’ ONTOLOGIES

and citeulike8. CiTO offers a large number of different object properties that allow for describing
various ways of how one document cites another (e. g., DocumentA cito:disagreesWith DocumentB).
With respect to visualisation, this raises the question of how to support the visual distinction of
theses relationships.

BIBO is in competition with SPAR. Unlike SPAR, BIBO defines all of its terms in a single
ontology and has a narrower domain. It focuses on bibliographic entities, but also offers some
terms of other fields of publishing, such as a citation relationship (without subtypes) and
document identifiers such as DOI and ISBN. Unlike SPAR, it supports lists of authors. Although
not being as detailed and comprehensive as SPAR, it seems to be more stable for the time being
and is already reused in many other ontologies such as VIVO9.

For our case study we instantiated CiTO and BIBO with a fictional set of six bibo:Documents
citing each other by various subproperties of cito:cites.

3.3.3 Case Studies in the Software Technology Domain
In the domain of software technology we inspected the Requirements Ontology, which offers
a vocabulary to formally define requirements, goals and use cases. The ontology has been
developed by Siegemund et al. and was used in the context of ontology-driven requirements
engineering [STZ+11].

• Requirements Ontology (RO)
http://purl.org/ro/ont

In our case study the Requirements Ontology is instantiated by an example scenario that
describes requirements for a social network application. This example data was provided by
the authors of the ontology. Modelled relations include ro:refinesTo (for refining goals) and
ro:hasCost to state the costs of a requirement. Some characteristics are expressed by assigning
additional types, e. g., ro:HighPriority is modelled as a class.

3.4 Analysis of the Case Studies’ Ontologies
The analysis of the case studies’ ontologies first of all included the identification of ontological
concepts10 that could be candidates for mappings to visual means.

Which ontological concepts and relations may be visualised? Fig. 3.1 gives an overview
of ontological resources that can be addressed when creating visualisations. As an example
scenario, we show part of a fictional knowledge base about foaf:Persons that are the dc:creators of
bibo:Documents. The first thing we note is that classes (e. g., foaf:Person), individuals (ex:BookA)
and relations (cito:cites) should be directly referencable by a visual mapping vocabulary or
system. A second general observation is that individuals and their relations – the A-Box – may
be visualised (e. g., we may want to graphically represent that ex:AuthorA is the dc:creator of
ex:BookA), but also the relations between types – the T-Box – may be subject to visualisation.
For example, often classes defined via property restrictions form complex graphs that could be
visualised. In Fig. 3.1, we give a brief example of an existential restriction on the class bibo:Book,
for which it is stated that there exists some foaf:Person. However, longer chains of such indirectly
stated T-Box relationships were frequently found in our use case ontologies, e. g., in the Plant
Ontology. Another indirect relationship between classes is sometimes given by domain-range
settings (in our example, we show domain and range settings for the ex:childOf relation).

8 Blog post on citeulike. http://opencitations.wordpress.com/2010/10/21/use-of-cito-in-citeulike/,
accessed: 02.07.2015.

9 VIVO describes networks of scientists. http://vivoweb.org/, accessed: 10.10.2015.
10 See Sect. 2.2.3 for a brief introduction to ontological concepts

27

http://purl.org/ro/ont
http://opencitations.wordpress.com/2010/10/21/use-of-cito-in-citeulike/
http://vivoweb.org/

CHAPTER 3. PROBLEM ANALYSIS

T-
BO

X	
(S
CH

EM
A)

A-
BO

X	
(IN

ST
AN

CE
S)

dc:creatorP bibo:numPagesPfoaf:PersonC bibo:BookC

bibo:DocumentC

ex:DocAI

ex:DocBI

ex:DocCI

ex:AuthorBI

dc:creator

cito:citesP

cito:disagreesWithP

cito:disagreesWith

owl:AsymmetricPropertyC

dc:creatorP

ex:childOfP
rdfs:range

rdfs:domain

"10"

"15"

"29"

some	dc:creator
rdfs:subPropertyOf

lists
and
sets

count	of	individuals

ranges
of	
values,
e.	g.,	
[10,	20]

dc:hasPart

ex:Part_II ex:Part_III

ex:AuthorAI ex:BookAI

Figure 3.1: Identified ontological concepts and relations of the A-Box (bottom pane) and T-Box (top
pane) which could be mapped to visual means. The identified concepts and relations are illustrated
using a fictional knowledge base on persons and documents.

Third, it is important to distinguish »attributes« from »relations«: owl:ObjectProperty is
only sometimes used to describe relations between complex objects, while there are also cases, in
which owl:ObjectPropertys may point to simple data (strings, integers) »packed« into a resource
to allow for referencing it. This means, when we are looking for attributes in our data that could
be mapped, we have to consider properties of all types, not only owl:DatatypePropertys. In the
following, to abstract from the concrete property type used on the RDFS/OWL modelling level,
we simply differentiate between attributes (often, but not always typed as owl:DatatypeProperty)
and relations (often, but not always typed as owl:ObjectProperty).

Further, in the A-Box of our example knowledge base, we may want to reference sets and
lists of values (e. g., a list of authors) or count individuals (e. g., all resources of a given type
that can be found in the database). Especially, when referring to values of simple data types
(e. g., bibo:numPages), we may want to select ranges (intervals) of values rather than selecting
single specific values. Similarly, we sometimes may need to select only a subset of resources
for visualisation purposes, even when there is no asserted or defined class in the ontology that
describes this subset (e. g., all bibo:Documents with at least two subparts).

Taking a closer look at the T-Box, we find that besides the relations (properties in RDFS)
themselves, also the characteristics of relations could be used in visualisation settings (e. g., to
specify that an owl:AsymmetricObjectProperty should be visualised as directed line-connectors
with arrowheads and owl:SymmetricObjectProperty only as undirected line-connectors).

Related to the question of what needs to be selectable for visualisation is the question,
what should not be required to be explicitly selected. For example, often subproperties are
used to relate instances. In this case, we might not want to define a visualisation for each of
the subproperties, but expect that mapping a superproperty will be sufficient. A mapping of
cito:cites should – by default – also apply to statements using the subproperty cito:disagreesWith.
At the same time, there may be situations, where we need to easily define a different visual
mapping for all subproperties of cito:cites.

28

3.5. MANUAL SKETCHING OF GRAPHICS

Often Sometimes Rarely
Transitivity Functional Asymmetry
Reflexivity Symmetry Irreflexivity
Inverse Anti-Symmetry Disjointness

Inverse functional
Cardinality constraints

Table 3.1: Characteristics of relations ordered by frequency of occurrence in the case studies’ ontologies.

Which ontological concepts and relations should we focus on? Resources in an ontol-
ogy are often connected to other complex entities, which may, in turn, have multiple attributes
and relations to other entities themselves. This is in contrast to the large homogeneous tables of
statistical data, as they emerge from measurements that return values with simple data types
such as floats, integers, Booleans or strings. This statistical data, which has been processed
already in many existing visualisation approaches, is not typically stored in ontologies. Therefore,
we focus on the relations between complex objects and the characteristics of relations that can
be specified with OWL. To find the most important ontological concepts and relations, we first
examined the availability of these concepts in our test set by counting the frequency of their
occurrence. Second, we ordered the ontological concepts according to their expected usefulness
for driving visualisation aspects. Table 3.1 shows an example of this ranking for OWL relation
characteristics.

3.5 Manual Sketching of Graphics

To identify the graphics that are common in the case studies’ domains, a (subjective) literature
review and interviews with domain experts were done. However, our hypothesis was that the
availability of ontological data with formal semantics allows for new visualisation possibilities
and different, richer graphics than currently used in many domains. Therefore, when sketching a
set of graphics that represent ontological data from a certain domain, rebuilding typical graphics
that are commonly used in a field was only one goal. Additionally, we inspected existing ontology
visualisations and tried to create alternative graphic representations, aiming at both a better
exploitation of the available semantics and a better usage of the full palette of visual means.
The graphics were first sketched manually and only later refined with a vector graphic program
to avoid constraining the visual possibilities by technical burdens. In the next subsection, we
present and analyse a subset of these graphics11.

3.6 Analysis of the Graphics for Typical Visualisation Cases

Figures 3.2, 3.3 and 3.4 show a small excerpt of the sketches we created during our case studies.
In the following, at the example of this excerpt, we describe 12 Visualisation Cases (VC)
identified during the analysis of these sketches. The VC include typical cases of defining and
combining elementary visual mappings, but also other cases of specifying visualisation related
settings.

The identified VC add to the requirements of our visualisation approach (Sect. 3.7) and
especially to the requirements we set up for the design of an RDFS/OWL visualisation language
in Chapter 7.

VC-1 Create a graphic object per resource. Often graphic objects need to be created for
the main resources of interest that shall be visualised. These graphic objects can then

11 A complete list of the sketches that were done for the case studies’ ontologies can be found in AppendixA.

29

CHAPTER 3. PROBLEM ANALYSIS

R0

R2

R3

R1

(a) rdf:type (ro:LowPriority,
ro:MediumPriority . . .) ↦→ lightness (RO-4b)

(b) aa:hasSideChainStructure
↦→ shape (AA-4)

R2

R3

R1

100 €

70 €

10 € expensive
cheap

(c) ro:hasCost
↦→ green or red (RO-5)

corkcambrium

phelloderm

phellem

(d) po:develops_from–1

↦→ (directed) linking (PO-8)

Figure 3.2: First set of sketches for the case studies’ ontologies Requirements Ont. (ro:), Amino Acid
Ont. (aa:), and Plant Ont. (po:). The interval labels »expensive« and »cheap« used in the legend
of subfigure (c) are not defined in the Requirements Ontology and will have to be added during the
visualisation process.

be assigned graphic attributes and may be graphically related to other objects. Other
resources of secondary interest, which are not in focus of the graphic, are often encoded
into graphic attributes of existing graphic objects rather than into new graphic objects.
For example, in Fig. 3.2a the priority of a requirement is not represented by its own object,
but only by the lightness of the graphic object representing a requirement.

VC-2 Map to Graphic Attributes. Mapping a property of a resource to a graphic attribute
is a basic visualisation case. A second example for it can be found in Fig. 3.2b, where
shape is used to differentiate subtypes of Amino Acid. However, a 1-to-1 mapping of
values is not sufficient, neither is it possible to map values automatically in all cases. As
an example, as Fig. 3.2c illustrates, we sometimes need options for manually mapping
ranges of source values.

VC-3 Map to Graphic-Object-to-Object-Relations. Most of the sketches do not only
make use of graphic attributes, but use various other (spatial) relations that can exist
between graphic objects and that we refer to as Graphic-Object-to-Object-Relations [vE02]
in this thesis. These include the frequently needed linking (Fig. 3.2d) and containment
(Fig. 3.4b), but also other relations are used: For example, in Fig. 3.3b alignment is used to
represent equal levels in a (part-of) hierarchy, which results in the common representation
type of an indented list.

30

3.6. ANALYSIS OF THE GRAPHICS FOR TYPICAL VISUALISATION CASES

VC-4 Create additional graphic objects. While some resources are not represented by
their own graphic object, there are also cases, where additional graphic objects need to be
created, for example, in order to represent a relation to another resource or an attribute
explicitly via a connector object (Fig. 3.2d) or to represent an attribute via a label object
(Figures 3.3c, 3.3d).

VC-5 Define simple interactions. In many situations simple interactions can be used such
as highlighting objects based on their relation to a second object, which the user selects
or moves the mouse pointer over. A frequently occurring case is that of duplicated
graphic objects both representing the same resource (Fig. 3.3b). Duplicating graphic
objects becomes necessary every time a graph needs to be turned into a tree structure for
presentation. Another case for highlighting is that of related neighbours (Fig. 3.3a).

VC-6 Simplify the ontological model. While not actually being a matter of visual mapping,
it is often necessary to »prepare« the source data RDF graph, before mapping it to visual
means. In this step, information can be simplified, e. g., from two inverse properties, one
can be picked as the preferred one, while hiding the other from the graphic. Similarly, for
transitive properties, derivable statements may be undesired in the graphic and need to
be hidden as well.

phellodermc.cambrium

phelem

(a) po:develops_from–1

↦→ directed linking (with specially shaped connec-
tors) + highlighting of direct neighbours when
hovering (PO-9)

(b) obo:part_of ↦→ indented list
+ »co-highlighting« duplicates (PO-7)

(c) cito:cites
↦→ directed linking + iconic labels on the connec-
tor to distinguish subproperties of cites (CIT-5)

P

(d) aa:hasPolarity
↦→ label with a »circled P« shape but only if the
value is aa:Polar (AA-3)

Figure 3.3: Second set of sketches for the case studies’ ontologies Plant Ont. (po:), Citation Ont.
(cito:), and Amino Acid Ont. (aa:).

31

CHAPTER 3. PROBLEM ANALYSIS

(a) Like Fig. 3.2c + ro:refines + ro:isInConflictWith
↦→ linking with differently shaped and coloured arrows.
A label, composed from a static clock symbol and a
text value encodes ro:hasResponseTimeInMs (RO-6).

(b) Like Fig. 3.4a, but ro:refines is now
mapped to containment instead of linking
(RO-7).

Paper	A

Paper	B

Paper	C

(c) cito:cites ↦→ directed linking + subproperties distinguished
by a set of ordered colours (traffic light set) (CIT-1).

Figure 3.4: Third set of sketches for the case studies’ ontologies Requirements Ont. (ro:) and Citation
Ont. (cito:).

VC-7 Reuse/extend/compose mappings. Some of the mapping cases can be found many
times in the case studies’ sketches. For example, Fig. 3.4a and Fig. 3.4b share multiple
mapping settings, e. g., colour is used to encode the costs of requirements in both graphics.
Only the refinement relation between requirements is mapped differently in the two graphics
– while Fig. 3.4a uses linking (with a UML-like arrow head), Fig. 3.4b uses containment
instead. It should be possible to extend the settings made for Fig. 3.4a and only add the
mapping to containment. Furthermore, it should also be possible to reuse two already
defined mappings and compose them to an new more complex graphic as it was done in
Fig. 3.5.

VC-8 Use complex standard graphics. Complex graphic representations such as tree maps
and tables with column and row labelling should be easy to define. Nevertheless, it should
be possible, to add further mappings to such representations, as in Fig. 3.5.

VC-9 Refer to parts of the graphic. When multiple mappings are applied in combination,
later mappings may refer to specific graphic objects created by earlier mappings. For
example, in Fig. 3.4c, the mapping on colour is applied to the connector introduced by
another mapping.

VC-10 Draw legends and labelled axes. While some visual mappings can be understood
intuitively by the human observer based on experiences with conventions or the physical
environment (e. g., blue for cold/ice, red for fire/heat), in many situations (e. g., Fig. 3.2c)
legends are necessary to allow for a precise visual »decoding« of mappings.

32

3.7. REQUIREMENTS

VC-11 Define styles. In the sketches, some graphic settings exist that do not encode infor-
mation and which cannot be controlled by mappings. Examples of such settings that we
call styles, are the border- and background colours of objects (Fig. 3.3b) and shadows
(Fig. 3.4c). Styles assign a single constant value or a combination of constant values to a
set of elements. One of multiple possible values for a graphic attribute is chosen, without
necessarily encoding meaning.

VC-12 Benefit from good defaults. Style settings should be based on good defaults. An
example for this is the colour of text (dark coloured font on bright backgrounds, bright on
dark ones; Fig. 3.2a) or the concrete appearance of directed connectors (e. g., an arrow
with a middle large arrow head; Fig. 3.2d). Beyond style settings, also other defaults could
be assumed for many sketches. For example, the labelling of graphic objects with the label
of the resource they represent is such a setting that could become a mapping default.

3.7 Requirements

Based on our general goal of effective, tailor-made and reusable visualisations of ontological
data by end-users, the concrete visualisation cases we identified in the previous section, as well
as on experiences other researchers described for visualisation and presentation approaches
(Chapter 4), we formulated 15 requirements (R-1 –R-15) for our visualisation approach. These
requirements partly correspond to the criteria for characterising related work, which are described
in Sect. 4.1.2 in more detail. In brackets after each requirement, we point to problems (P-X),
visualisation cases (VC-X) and other, more general requirements that explain why we laid down
the requirement.

Charge

H
yd
ro
ph

ob
ic
ity

P

P

P

Figure 3.5: Sketch of a tabular representation of amino acids from the Amino Acid Ont. (aa:) using
two spatial dimensions to segregate amino acids by aa:hasCharge and aa:hasHydrophobicity. Additionally,
mappings from aa:hasSideChainStructure and aa:hasPolarity to shape (Fig. 3.2b) and labelling (Fig. 3.3d)
are reused (AA-5).

33

CHAPTER 3. PROBLEM ANALYSIS

3.7.1 Requirements for Visualisation and Interaction

R-1 Dynamic and value-dependent visual mapping – not only presentation (P-1, VC-2, VC-3)

R-2 Variety of graphic relations (P-2, VC-3)

R-3 Interaction with the visualisation (VC-5)

First, we require our approach to support configuration of dynamic and value-dependent
visual mappings (R-1), i. e., to allow for actual visualisation as opposed to just structuring data
into a document shape or formatting data (font type or background colour). Further, instead
of focusing on node-link diagrams (graphs) alone, the approach shall cover a large variety
of graphic relations (R-2) such as containment (enclosure), alignment and the separation
of graphic objects by a separator. Additionally, also simple interactions (R-3) need to be
possible to define such as »Highlight all linked nodes on select«.

3.7.2 Requirements for Data Awareness

R-4 Ontology-aware (A/T-Box) (P-7, VC-12)

R-4a Terminological ontology relations (T-Box) supported (P-7)

R-5 RDF supported (P-7, P-8)

R-6 Domain agnostic (P-7)

We require the visualisation approach to be aware of the specifics of ontologies (R-4). That
means processing and representing RDF on a graph level is not considered sufficient and implies
that we need to allow for referencing ontology terms within visualisation settings. We further
require that also a specific visualisation of T-Box statements is possible and that these
relations can explicitly be referenced in mappings (R-4a). Since all domain ontologies from
our case studies are available in RDF, we add the requirement that RDF-based ontologies
need to be supported (R-5). Additionally, because we did not restrict ourselves to a certain
domain we want to visualise, it is important that our approach is domain agnostic (R-6).

3.7.3 Requirements for Reuse and Composition

R-7 Reusability of the defined mappings (P-3, VC-7)

R-8 Composability of the defined mappings (P-4, VC-7, VC-8)

R-9 Explicit mapping definitions (VC-7, R-7, R-8)

We require visualisation settings made for one data set to be reusable for other similar data
sets using the same ontological terms (R-7). Visualisation authors should be able to adapt
existing settings found on the web to their specific use cases. Related to this, a composition
of multiple visualisation settings has to be supported (R-8) – as far as this is possible
with respect to the constraints and rules that apply to the composition of graphics, such as

34

3.7. REQUIREMENTS

syntactic and perceptual interactions, expressiveness and effectiveness12. We require the general
composability of visual mappings and demand that our approach offers the foundation for
checking constraints and rules of graphic composition. The problem of actually checking the
constraints is something that we do not expect to be completely solved in the scope of this thesis.
Our definition of composability includes that we allow for mixing visual paradigms such as
node-link and tabular representation. Composability of mappings adds to reusability, since only
if users can combine mappings with other existing mappings, they can fully benefit from existing
work. A prerequisite for composing and reusing existing mappings is that these mappings have
to be made explicit and can be stored and referenced by name (R-9).

3.7.4 Requirements for Variability

R-10 Platform variability (P-3, P-5)

R-11 Visual structure variability (P-2)

Since we aim at reusing mappings defined by others, e. g., in a different visualisation tool, we
require platform variability (R-10), i. e., it should be possible to vary the graphic platform
(e. g., exchange SVG by X3D) and still use the same visualisation settings. Similarly, mappings
should be composable and exchangeable independently as far as possible, even when we vary
the visual structure or visual paradigm13, e. g., from list to tree structure (R-11).

We already anticipated that we decided to use a declarative approach for defining visual
mappings. This was done for reasons of separation of concerns (separating presentation logic
from data) and the resulting benefits for reusability [Lie05, Huy07, HB10]. We discuss the
advantages and disadvantages of a declarative approach in more detail in the context of the
RDFS/OWL Visualisation Language (RVL) in Sect. 7.2.

3.7.5 Requirements for Tooling Support and Guidance

R-12 Domain experts can visualise their data without programming or visualisation skills
(P-7, VC-12)

R-13 Visualisation settings configurable with a GUI (P-7, R-12)

R-14 Interactions configurable with a GUI (P-7, R-12)

R-15 Guidance for Visual Mapping with a GUI (P-7, R-12)

R-16 Consider complex semantics of an ontology for visual mapping (P-7, R-12)

As described in the introduction to this chapter, our target user group includes domain
experts, which may lack programming skills or visualisation expertise or both. Since domain
experts should equally be able to visualise their data (R-12), a GUI should be offered for the
configuration of visual mapping (R-13) and interaction settings (R-14). To allow not only for
configuring some visualisation, but support effective visualisations (e. g., adhering to laws of
visual perception), we further require guidance for the visual mapping process via a GUI.

12 We come back to rules for graphic composition in Sect. 5.7.3.
13 We use the term visual paradigm for the dominant visual structure in a graphic.

35

CHAPTER 3. PROBLEM ANALYSIS

Beyond the guidance support that existing visualisation design suites offer, we require guidance
to consider the complex semantics of ontologies for the visual mapping advices (R-16).

3.7.6 Optional Features and Limitations

O-1 Configuration results instantly shown

O-2 Data Filtering

O-3 Guidance for Data Selection

O-4 Guidance for View Transformations

L-1 No support for editing the visualised data

The features O-1 –O-5 are considered optional with respect to the prototype that has to be
built, since they are not in the focus of this thesis. Nevertheless, integrating features such
as a mechanism for data filtering (O-2) is essential for a real world scenario. Technologies
for creating visual queries or faceted browsing [ODD06] are possible candidates for filtering.
Another problem we do not try to solve with this thesis is to instantly show the result of
configuration changes (O-1). While the classical visualisation pipeline model/architecture
fails with respect to this feature, the need for instantly reflecting changes has been recognized
and approached by [Bul08] and also in the context of visual analytics, which requires fast
configuration-feedback cycles [KS12].

Two other optional features concern the extension of guidance to other parts of the visualisa-
tion process. While we focus on guidance for configuring visual mappings, guidance could be
extended to data selection steps (guidance for data selection, O-3) and to the navigation in
the rendered scene (guidance for view transformations, O-4).

Finally, although we design the visualisation language to be well usable by tooling in order
to allow for convenient editing of the visual mapping definitions, we do not aim at editing
support for the underlying source data (L-1).

36

Chapter 4

Analysis of the State of the Art

In this chapter we give a detailed analysis of the state of the art in the fields that are touched by
this thesis. These fields are approaches to visualisation design, approaches to RDF presentation,
the corresponding languages that are used within these approaches, and, finally, approaches to
generating user interfaces from models.

Accordingly, the analysis of the state of the art is split into four parts: In a first section,
we compare visualisation approaches as a whole, before looking at the languages, that often
correspond to one of these approaches, in detail. The comparison of languages is split again
into visualisation languages and RDF presentation languages presented in the second and third
section of this chapter. For each of these three areas, we first give a brief overview of each
system or language we inspected. Then, we precisely define a certain reference criterion and
finally compare all items by this criterion, pointing to the most important differences. A tabular
overview sums up and completes the comparison. Finally, in a fourth and last part of this state
of the art analysis, we need to review approaches of generating interfaces from models. This is
due to the fact that we aim at dynamically generating the visualisation system based on several
models – the source data ontologies, visualisation ontologies and a concise schema of a visual
mapping language (which will be introduced in the following chapters). Since we already know
that we have to reference ontology terms in many situations, we also examine what options are
at hand for using »traditional« modelling technologies and ontologies in conjunction.

At the end of each section, we briefly conclude the results of the analysis. We see that none
of the visualisation approaches examined here fulfills all the requirements put for our approach;
neither does an RDF visualisation language exist, which could be reused.

37

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

4.1 Related Visualisation Approaches

In a first step, we analyse visualisation approaches as a whole. Among those are established
visualisation design systems from the field of statistics, but also academic systems and prototypes
for visualising (RDF) graphs. When choosing the candidates for this comparison, we focused on
those approaches, actually being able to perform multiple visual mappings. Therefore, many
existing ontology visualisation tools, which use a node-link structure as the only visual means,
are not part of this comparison.

4.1.1 Short Overview of the Approaches

First, we briefly introduce each visualisation approach we examined. In Sect. 4.1.2, we then
compare all of them in detail by several criteria.

Microsoft Excel

The focus of Microsoft Excel is on data calculation. It can be considered a foremost manual
visualisation tool. Although the software offers a wide range of diagram types and shall be
mentioned here due to its popularity, MS Excel does not guide the user when choosing one of
these types. Also, it is not possible to state the scale of measurement for a variable. Since these
are features that Tableau and SPSS Viz Designer add, we rather have a closer look at these
products in the following sections.

Polaris and Tableau

Tableau is a comprehensive tool for designing visualisations from tabular data. It is a commer-
cialisation of Polaris, described in [STH02].

The philosophy of Polaris and Tableau is to extend the declarative principle of SQL by
visualisation, inspired by the fact that SQL already offers some abilities to structure, sort
and group data. In order to find a compromise between ease of use and flexibility, Tableau
concentrates on tabular data and uses the familiarity of users to spreadsheets. Queries are defined
in VizQL (cf. Sect. 4.2.1), a visual query language to visually construct queries to relational
databases and OLAP servers, generating SQL. Via drag-and-drop, columns can be selected as
input to the visualisation process. By adding fields from the database to either columns or rows
of a metaphorical table representation, the user can influence how these fields are nested. This
allows, for example, for the description of small multiple1 views of data.

Unlike Tableau, our focus is not on tabular data, but on heterogeneous ontological data.

SPSS Viz Designer

In Sect. 4.2.1 we discuss Wilkinson’s formal Grammar of Graphics. A commercial Java system
based on Wilkinson’s grammar is nViZn. It is described as »based on the mathematical definition
of the graph of a function« [WRRN01]. As opposed to Tableau or Polaris, it is not bound to
relational data and can generate new graphics more flexibly. Since it was developed for the web,
heterogeneous and distributed data sources are supported and network data can be processed.
Unlike Tableau or Polaris, the available types of graphics include node-link diagrams. Also
interaction can be specified: Filtering, sorting, linking and brushing between multiple views,
zooming, and coordinate transformations (lenses) can be employed. While viewing data, the
views can be interactively manipulated via widgets such as sliders.

Another software based on Wilkinson’s algebra is SPSS Viz Designer. It was added as a
visualisation component to SPSS, a statistic analysis and visualisation tool by IBM, which is

1 A nested graphic representation showing multiple small, similar graphics next to each other.

38

4.1. RELATED VISUALISATION APPROACHES

mainly focused on quantitative data. Viz Designer uses a tabular representation of data where
the rows are the cases and the columns are the variables. In contrast to Microsoft Excel, SPSS
Viz Designer allows the assignment of additional information to variables, including the scale of
measurement. In cases where the settings that can be specified via the user interface are not
sufficient, the user can write more complex configurations using one of the languages ViZml and
GPL (cf. Sect. 4.2.1).

Although not only tabular data is supported, neither nViZn nor Viz Designer considers the
specifics of ontological data.

TopBraid Composer + UISPIN

TopBraid Composer is a Semantic Web development environment and part of the TopBraid
technology stack2. It supports an ontology-aware node-link view of RDF-graphs. Beyond this,
RDF-data can be rendered to document shape (HTML and SVG) using UISPIN3, which we
introduce in the languages part (Sect. 4.3.1). UISPIN builds on SPIN, which we introduced in
Sect. 2.2.7.

While TopBraidComposer+UISPIN covers many of our requirements and brings reusable
components, it has only basic visualisation capabilities, particularly with respect to the compos-
ability of graphics.

Cytoscape

Cytoscape [SMO+03] is an open-source plug-in environment for biological network visualisation
and analysis actively used in bioinformatics. Layouting and data filtering are core functionalities
the framework offers. Many analysis plug-ins have been developed for it, including RDFScape,
a plug-in for RDF visualisation (described below).

The most interesting part of the framework with respect to our work is the Vizmap-
per (cf. Fig. 4.1). The Vizmapper allows for the advanced mapping of network attributes to
visual attributes via visual mappers. These mappers come in the variants: continuous mappers ,
discrete mappers and continuous to discrete mappers. It is also possible to define some visual
attributes to depend on the values of other attributes, e. g., width = height, node colour = text
colour, arrow colour = line colour. Legends can be automatically generated. Further features
are filters for data customisation and some basic editing functionality (creating, deleting nodes).

RDFScape

RDFScape [Spl08] is a plug-in for Cytoscape that enables the display of RDF graphs. Since
RDFScape is intended for use in the field of biotechnology, it concentrates, like Cytoscape,
on node-link representations that are a seemingly obvious choice for interaction networks and
similar data.

Mapping features are the following: In addition to the node-link representation, datatype
properties can be displayed like UML-attributes (a table contained in a node), and properties
such as rdfs:label or URIs can be displayed as labels of nodes. Furthermore, different namespaces
can be mapped to different colours. All mapping settings can conveniently be specified using the
Cytoscape Vismappers. Other features include querying ontologies with SPARQL and RDQL,
incrementally extending (»navigating«) the graph visualisation based on the ontology, and using
the graph visualisation to define visual queries. The system supports (customisable) reasoning
and the inferred knowledge can be filtered and visualised as well.

RDFScape does not offer guidance functionality for the visual mapping. Also, the mappings
themselves cannot be stored as RDF for inter-tool exchange.

2 TopBraid. http://www.topquadrant.com/technology/topbraid-platform-overview/, accessed: 09.11.2015.
3 UISPIN was renamed to SPARQL Web Pages (SWP).

39

http://www.topquadrant.com/technology/topbraid-platform-overview/

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Figure 4.1: Cytoscape – Visual Mapper View.

40

4.1. RELATED VISUALISATION APPROACHES

Model-Driven Visualisation – Bull, 2008

In the Model-Driven Visualisation approach (MDV) [Bul08], Bull uses a model transformation
language (ATL4) to build view (visualisation) models from domain models, both represented in
Ecore (cf. Sect. 2.2.6). The view model is realised with the ZEST5 toolkit the author initiated.
ZEST generalises the principle of using the Model View Controller (MVC) pattern [Bur92]
and content providers (interface IContentProvider), which has been used before in SWT/JFace
widgets such as trees and lists, and transfers it to other graphics such as node-link represen-
tations (cf. Fig. 4.2). Both the view model and the controllers (the content providers) for the
MVC pattern are generated by MDV.

However, MDV alone does not provide an approach to visually support the configuration of
visual mappings and can only be used for the visualisation of ontologies with the extensions
described in the next subsection.

Figure 4.2: ZEST – Static Graph Viewer showing Eclipse plug-in dependency graph. Taken from
http://www.eclipse.org/gef/zest/.

CogZ + MDV

An approach for using MDV for ontologies as well was developed by Falconer and Bull et al. at
the interdisciplinary CHISEL group (University of Victoria) [FBGS09], extending the existing,
Protégé-based ontology mapping tool CogZ [FS07]. Thereby, they gained a visual mapping
interface for defining a visual mapping of ontology terms to terms of a visual model, which is
also defined as an ontology and which describes one of the models that the MDV approach can
handle (cf. Fig. 4.4). It is then possible to generate a visualisation of the domain instance data.

CogZ stores mappings explicitly, but only rather simple value mappings are possible. Although
instances could be mapped directly (e. g., »water« mapped to »blue«, »location« mapped to
»square« . . .), problems arise, when mapping to continuous ranges. These mappings cannot be

4 Atlas Transformation Language. http://www.eclipse.org/atl/, accessed: 11.11.2015.
5 ZEST, Eclipse Visualization Toolkit. http://www.eclipse.org/gef/zest/, accessed: 10.10.2015.

41

http://www.eclipse.org/gef/zest/
http://www.eclipse.org/atl/
http://www.eclipse.org/gef/zest/

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

easily defined with the CogZ plug-in. Furthermore, no guidance is offered on which visualisation
options are most appropriate.

Figure 4.3: CogZ+MDV – Mapping View. Taken from [FBGS09].

Generative Software Visualization – Müller et al., 2011

Müller et al. suggest an approach to generative software visualization [MKSE11] that is related
to the work of Bull. Both are based on model-driven technologies located in the EMF technical
space and introduce platform-independent intermediate models. However, for our detailed
tabular comparison, we chose the approach from Bull. We consider it closer to ours, because
it is domain-independent and not specifically about visualising software. Having said this, the
approach of Müller et al. has also similarities with the OGVIC approach: Unlike Bull, they use
a DSL to avoid writing transformations in multi-purpose (transformation) languages. Similarly,
we introduce the (domain specific) language RVL to simplify the mapping definition (Chapter 7).
Besides that we do not focus on the domain of software visualisation and exclude the aspect of
3D visualisation in this work, the OGVIC approach differs in the way that mappings are defined.
Although Müller et al. employ clear mapping rules (e. g., represent attributes as nodes shaped as
a blue cone) they do not distinguish the mappings of relations (in the domain data) from the
mapping of values as we do. Neither the approach of Bull, nor the one of Müller et al. store
general visualisation knowledge and rules externally in standard formalism (to allow for reuse).
Instead, this configuration knowledge is part of the generators.

Protovis

Protovis, developed at the Stanford Visualization Group, is a JavaScript visualisation toolkit
with a declarative visualisation language also being referred to as Protovis [BH09]. Since

42

4.1. RELATED VISUALISATION APPROACHES

implementations in JavaScript (JS) and Java are offered, we do not only discuss it as a language
but included it in the list of visualisation approaches (cf. Sect. 4.2.1 for details on Protovis as a
language). Fig. 4.6 gives an example of a declarative visualisation definition of a bar chart in
Protovis (Java version) and also shows the corresponding rendered SVG+HTML result on the
right.

The development of Protovis was stopped in the meantime in favour of the follow-up project
D36 [BOH11]. While the declarative approach and the support of interactivity and incremental
updates are close to our needs, neither Protovis nor D3 support ontological data.

Figure 4.4: Protovis (Java version) – Bar chart example. Taken from [HB10].

SemViz

The approach of Gilson et al., called SemViz [GSGC08], aims at automation for ontology
visualisation. The authors tried to achieve this by combining an existing mapping algorithm
with probabilistic reasoning techniques.

Within the mapping process, the system uses three ontologies: The first is a Domain Ontology
(DO) to describe the domain data semantically. Second, a Visual Representation Ontology
(VRO) captures a description of a visual representation (2D Graphs, TreeMaps, and Parallel
Coordinates are shown in the examples). And third, a Semantic Bridging Ontology (SBO) stores
expert knowledge on the appropriateness of mapping a domain concept to some visual attribute.

In a first step, for each domain, a DO has to be created by a system (not a domain) expert and
is then mapped automatically to tabulated data that has been extracted from semi-structured
webpages. Since we assume to have structured data as a starting point for visualisation, we do
not further discuss this step. In a second step, a »controlled set of relationships and attributes«
has to be defined and used in the DO. These are very general and include statements on the scale
type (qualitative, quantitative, informational), information concerning primary keys, priority
and complementation. The VROs describe the properties of the visual representation, e. g., X,
Y, Width, Height, Text Label, Shape Colour. Again, relations between these properties are
given such as priority, complementation and statements on the (accepted) scale type of data.
There is an attribute isQuantitative that is used to describe domain concepts in the DO and a
»semantically equivalent« attribute that is used to describe »visual artefacts« (visual means) of
the VRO. For example, the concept Weeks in Chart7 has the value 0.75 for isQuantitative in the
DO and, in the VRO, Y is assigned a value of 0.99 for isQuantitative. Similarly, complements is
used in the DO and in the VRO. For example, the concept Weeks in Chart only complements

6 D3.js (Data Driven Documents). http://d3js.org/, accessed: 02.07.2015.
7 We are referring here to the example domain ontology used by the authors, which is about music charts, songs

and artists.

43

http://d3js.org/

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Last Week Chart Position with a value of 0.6 (DO), while Y complements X with a value of 0.9,
making Last Week Chart Position not a perfect match for Y. Finally, based on the »semantically
equivalent« relations, a matching of DO and VRO concepts is then performed, leading to a
set of recommended permutations. To reduce the number of permutations, additional expert
knowledge can be represented in the SBO by weighting some of the so called »semantic bridges«
between DO and VRO concepts with higher appropriateness values than others (cf. Fig. 4.5).

Although Gilson et al. even aim at »automatic generation of visualizations« [GSGC08], they
as well offer automation only to some extent. For example, a specific domain ontology has to be
created manually for every new domain. Also, expert knowledge has to be formalised manually
in a SBO for each new combination of a new DO with a VRO. As opposed to this, we aim at
semi-automation for arbitrary domains, leaving the actual mapping to the user, but trying to
support her as much as possible inspecting characteristics of the existing domain ontologies.
Another difference between our approach and SemViz is that we do not (directly) match domain
relations and visual means by scale types, but take into account what is the expressiveness and
effectiveness of a visual means for a given scale type.

Figure 4.5: SemViz – Semantic Bridging Ontology. Taken from [GSGC08].

Less + LeTl

Less [ADD10] is a collaborative, template-based system, mainly for presenting RDF from
SPARQL-query results. The authors of LESS want to offer an end-to-end-approach and focus on
community aspects. They, therefore, aim at a simple user-interface-based creation of templates

44

4.1. RELATED VISUALISATION APPROACHES

and offer features such as dereferencing URIs, or caching to avoid dead links. Templates are
described with the language LeTl , which we discuss separately in Sect. 4.3.1.

As opposed to the OGVIC approach, Less does not aim at visualisation but on presentation
of data, i. e., visual mappings cannot explicitly be specified.

Vispedia

Cammarano et al. [CDC+07] describe a system that automatically matches RDF properties with
attributes that visualisations offer. They see this problem from a schema matching perspective
and try to find data variables that can be associated with the visual attributes of visualisation
templates considering both structural matching and type matching. As templates, ready-to-use
widgets such as the SIMILE timeline component are used.

Vispedia [CTW+09, CWT+08] builds on the work from Cammarano et al., presented above.
Attributes of a visualisation are annotated with XML data types. Additionally, for each visual
attribute, the user can provide a keyword. Based on this information, schema matching is used to
match visualisation attributes with table columns of Wikipedia data tables and associated RDF
data. The system provides multiple matching solutions (also following links in the RDF graph),
from which the user can interactively choose the most appropriate one (cf. Fig. 4.6). Compared
to our bottom-up (cf. Sect. 2.1.5) approach, which supports the synthesis of graphics, Vispedia
could be referred to as a top-down approach, since only ready-to-use templates, i. e., complete
graphic representations, may be used. The drawback of this approach is the lack of flexibility
and composability.

Figure 4.6: Vispedia – Interactive mapping interface. Taken from [CWT+08].

45

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

4.1.2 Detailed Comparison by Criteria

We now compare ten approaches introduced in the last section by several criteria we chose in
order to understand what are the most important differences between these approaches. Each
criterion and its possible values will be explained in tabular form. Besides pointing to the
most interesting characteristics of each approach, we present overview tables for groups of criteria.

All comparison tables share the following legend:

x applies (x) applies with restrictions

(–) not applies with some exception – not applies

Supported data models

As a first characterisation of processable data, we distinguish, whether databases (C-1) or
graphs (C-2) are supported. While almost all approaches can represent graph data somehow
(possibly as a three-column-table), they often do not support graph file formats. Especially
the two complex visualisation design systems in our test set (Tableau and SPSS Viz Designer)
are specialised on tabular, relatively homogeneous, data that comes in rows and columns from
spreadsheets and databases. Although node-link-diagrams and matrices can be created with
both systems, graphs are not in the focus of these tools. For example, in SPSS Viz Designer
there is no support for handling graphs in the UI, and in Tableau, coordinates have to be given
explicitly and operations on the graph such as joining nodes are not provided.

Awareness of structure and semantics

By using the term »awareness« instead of speaking of the »ability to represent some kind of
data«, we want to stress that for this criterion, the ability of referencing constructs of the schema
and creating specific visualisations matters. For example, a generic visualisation of an (RDF)
graph, we do not consider ontology-aware.

Three levels of awareness are examined here: First: Can constructs of a schema or
types be referenced? (C-4) Second: Can ontology constructs be referenced (in some ontology
language)? (C-5) Third: If ontology constructs can be referenced, can also relations between
classes and properties – the T-Box – be referenced? (C-6)

Except for Cytoscape, RDFScape and Protovis, which only have an understanding of typed
graphs, all other approaches can reference constructs from some kind of schema. This may
be a database schema or an XSD. Some of the approaches, e. g., MDV+Cogz or SemViz
also allow for referencing constructs from ontologies, but not on the T-Box level (for example,
characteristics of properties cannot be referenced). Only two of the approaches, TopBraidC.
with UISPIN and Less + LeTl can also reference T-Box terms.

All the approaches in our test set that work with ontological data also support RDF
or RDF-based languages such as RDFS or OWL (C-3). For a definition of ontology and the
classification of data we use here, refer to Sect. 2.2.

Domain

Since we did not restrict ourselves to a certain domain for visualisation, also the criterion
domain agnostic (C-7) is important for the review of related work. None of the approaches is
totally specific to a certain domain – however, we need to confine that statement for SemViz and
Cytoscape. Cytoscape, having a biotechnological background, is focused on biological graphs
such as gene–protein interaction networks. In SemViz a Domain Ontology (DO) needs to be
created for every new domain, so that we cannot simply switch to a new domain. Besides this,
some approaches have domain specific enhancements, e. g., Protovis recognises data from the
geological domain. We return to this issue when comparing data analysis features in Sect. 4.1.2.

46

4.1. RELATED VISUALISATION APPROACHES

Supported
data models

C-1 Relational databases supported The system can display/visualise data with a
tabular data model.

C-2 Graphs supported The system can display/visualise data that forms a network.

C-3 RDF supported RDF or the languages built on top of it (RDFS, OWL) are
supported.

Awareness of
structure and
semantics

C-4 Schema-/type-aware The system can reference the data’s schema within display
definitions. For graphs, edges are distinguished by type at least.

C-5 Ontology-aware (A/T-Box) The system can reference ontology terms (in any
formalism) within display definitions. The visualisation is specific to ontologies.
Representing RDF on a graph level is not sufficient.

C-6 Terminological ontology relations (T-Box) supported Specific representa-
tion of statements on the relation between classes and properties – T-Box (termi-
nological component). Here it is not sufficient that these relations are somehow
displayed, but they should be displayed differently from A-Box information.

Domain C-7 Domain agnostic The system can display data from every domain. It has at
least some support that is independent from the domain. Still there might be
additional support for some domains.

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
iz

C
yt

os
ca

pe

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

pe
di

a

Rel. DB supported x x - x - x - - - x
Graphs supported - (x) x x x x x x x x
– RDF supported - - x - x x - x x x
Schema-/type-aware x x x - x x - - x x
Ontology-aware - - x - x x - - x (-)
– T-Box support - - (-) - - - - - (-) -
Domain agnostic x x x x x (x) (x) x x x

Table 4.1: Comparison of related visualisation systems and approaches – Data.

47

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Visual Mapping

We need to distinguish approaches turning data into a formatted document shape from those
actually mapping information directly to the available visual means, which we defined as »visual
mapping« in Sect. 2.1.6 (C-8). Most approaches we selected for the comparison do at least some
kind of visual mapping. Still we added some approaches that do not (or only in a limited way),
but provide many other features of importance with respect to our requirements. For example,
RDFScape is not able to implicitly perform a dynamic, value depending visual mapping from a
set of data values to a set of visual values. This is only possible explicitly for each single value.

Interactivity

Interactivity is an essential part of the visualisation process if large amounts of data need to
be visualised [YaKSJ07, Kei02, Few09]. Not only to enable overview-and-detail techniques as
already stressed by Shneiderman’s Visual Information Seeking Mantra [Shn96], but also for
other techniques, such as linking and brushing [Kei02], which can be used to visually select
items presented in multiple connected views.

»
The effectiveness of information visualisation hinges on two things: its ability to
clearly and accurately represent information and our ability to interact with it to
figure out what the information means.

Stephen Few [Few09] «

Interactivity comprises the ability to have control/behaviour integrated with the visualisa-
tion (C-9). Simple interactions are behaviours such as mouseover that can extend the palette
of visual means with conditional display options. More powerful controls allow for turning
the visualisation into a self-adaptive piece of software, since they may be used to interactively
(re)configure the visualisation at each configurable transformation step of the visualisation refer-
ence model (cf. the next paragraph on configurability). In contrast to other ways of configuring
a visualisation, the configuration with an interactive UI, puts requirements on the performance
on the system, because very short response times between a users action (change configuration)
and the system reaction (perform changes and show them to the user) are required [Sta06].
Thereby, the performance issue becomes a qualitative requirement and puts constraints on the
chosen software architecture.

While all approaches support the definition of some kind of control/behaviour for the graphic
that is produced, this is often limited to rather basic interactions, such as showing pop-ups
on mouseover or click GUI events. In Sect. 4.2.2, we look at how interaction can be defined in
visualisation languages.

Configurability

Our criteria for configurability are oriented to the classification of »customisations« of visual-
isations introduced in [Bul08]. Bull states various customisation aspects and methods and a
classification of visualisations by customisation properties.

48

4.1. RELATED VISUALISATION APPROACHES

Visual
Mapping

C-8 Visual Mapping (not only presentation) The approach allows the definition
of dynamic and value-dependent mappings to visual means. As opposed to this,
presentation or styling only allows for statically and explicitly assigning visual values
to some concrete items.

Interactivity C-9 Interactivity The output is interactive as opposed to static output such as PDF.

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
iz

C
yt

os
ca

p e

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

p e
di

a

Visual mapping
(not only presentation)

x x (-) x x x x (x) - (x)

Interactivity x x (x) x x x x x (x) (x)

Table 4.2: Comparison of related visualisation systems and approaches – Visualisation and interaction.

Bull distinguishes three aspects of customisation:

• Data customisation

• Presentation customisation

• Control/behaviour customisation

Further, he distinguishes the following three methods of customisation:

• User Interface (UI)

• Domain Specific Language (DSL)

• Source code (SC)

While configuration by means of a UI, especially by a GUI, requires the least skills from the user
with respect to the specifics of the data format and programming – unfortunately, it also offers
the least flexibility. On the other end of the spectrum, there is the configuration via changes to
the source code, which is highly flexible, but cannot be expected to be done by domain-experts.
Using DSLs is situated somewhere in between both extremes and can be an appropriate choice
for some user groups, but still requires some training to be used efficiently. The chosen method
of configuration is inherently connected to the criterion of interactivity: While small, precisely
defined changes via a GUI or DSL may be used to interactively change a configuration, writing
new source code does not lead to an interactive experience with short system response times.
Similar to Bull, we set up three criteria of configurability – data configurability, presentation
configurability and control/behaviour configurability:

Data configurability (C-10) comprises filtering data, renaming data items and sometimes
also deriving new information to be presented. For information visualisation, filtering data is
important in order to reduce large data sets to the most important aspects. Table 4.3 shows
that most of the approaches allow for some customisation of data. However, frequently this
cannot be achieved with an interactive UI, but has to be done via DSLs or by writing additional
source code. An example for more advanced filtering is Cytoscape. It supports the construction

49

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

of conjunctive queries and optionally negation. Also ranges can be selected for ordinal data.
Still the interactive filtering experience is limited here, because settings have to be submitted
before changes are performed.

Presentation configurability (C-11) is achieved by all approaches, mostly via a GUI.
Still, there are other approaches such as Protovis that uses an embedded DSL (EDSL) to achieve
higher flexibility. Also Less requires users to write template code, although the management
and sharing of templates is supported with a GUI. In SemViz, no actual »configuration« is
foreseen at all, but a change in the presentation can be achieved indirectly by varying probability
settings.

Besides configuring visual mapping settings, some approaches also support view modifications.
For example, Cytoscape allows for hiding elements and bypassing the mapping with constant
values.

Control/behaviour configurability (C-12) is often supported only marginally by means
of source code or DSL configuration. While simple behaviours such as mouseover effects can
sometimes be defined explicitly, more complex interactions can only be achieved via scripting
(e. g., Protovis, Less, UISPIN).

Target user group

Since we did not restrict our target users to visualisation experts or programmers, also the
average user, who may be a domain-expert, should be able to use it. Therefore, it is interesting
to consider the target user group of other visualisation approaches. We found that only three of
the examined tools, Tableau, Viz Designer and Vispedia may be used by domain experts
without visualisation or programming experience (C-13). In all other cases, knowledge on
visualisation, programming or confidence with semantic web languages is required.

Explicit Presentation Definition

We distinguish whether presentation information is stored internally or single views/mappings
are explicit (C-14), i. e., they are entities given a name, maybe even a URI. Explicit mappings
are the prerequisite for many of the following characteristics, such as variability, composability
and shareability. Almost all approaches we examined bring their own languages for explicitly
defining presentation information. These languages will be the subject of the following two
sections 4.2 and 4.3. However, there are a few exceptions to this: In SemViz, the final mapping is
automatically calculated from probabilities and not defined explicitly. Cytoscape and RDFScape
use internal properties-files for the purpose of storing presentation settings. Each mapping is a
line in a property-file that cannot be externally referenced. Also Vispedia does not offer the
possibility to name the single mappings that make up a visualisation.

Variability

We distinguish two dimensions of variability – platform variability and variability of the visual
structure. For both, explicit presentation definition is a precondition, since we need to be able
to refer to the display definitions in order to transform or replace them.

Platform Variability Platform variability (C-15) is achieved by describing the definition of
presentation in a platform-independent way. Two ways are possible. The first way is a generative
approach. Instead of directly constructing a visualisation on the final presentation platform
(such as HTML, SVG, X3D or Java2D), a platform-independent model is created that can be
further transformed into platform-specific code in a second step. The MDV + Cogz approach
and SemViz take this way. Also Protovis (JavaScript version) is able to generate visualisation
code for three platforms, HTML5 Canvas, SVG and Flash [BH09], from definitions given by
means of the JavaScript-embedded DSL. Protovis (Java version) even has an event model that
is decoupled from the runtime platform in order to support platform independence [HB10]. The

50

4.1. RELATED VISUALISATION APPROACHES

Configurability C-10 Data Configurability (incl. filtering) Relevant information (for the users
task) can be separated from the rest. Possibilities are: Filtering, data deduction,
move/rename data (cf. [Bul08]).

C-11 Presentation Configurability (incl. visual mapping) The selection
and configuration of visual means is offered. Additionally views may be ad-
justable (cf. [Bul08]).

C-12 Control/Behaviour Configurability Some behaviour of visualisation parts
and interactive controls can be configured easily.

Target
user group

C-13 Domain experts can use the system Users need to have only little back-
ground knowledge on visualisation or programming but can use their world
knowledge to configure visualisations.

Configurability V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
iz

C
yt

os
ca

pe

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

pe
di

a

Data
conf.

GUI GUI DSL SC - SC* GUI GUI DSL GUI

Presentation
conf.

GUI GUI GUI EDSL GUI SC* GUI GUI SC GUI

Control/behaviour
conf.

- (DSL) SC EDSL - - (-) (-) SC -

Usable by domain
experts

x x - - - - x (-) - x

(E)DSL = Configuration method: (Embedded) Domain Specific Language
GUI = Configuration method: Graphical User Interface
SC = Configuration method: Source Code
*) by modifying the code for extracting data from webpages or the stored probability settings

Table 4.3: Comparison of related visualisation systems and approaches – Configurability.

51

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

second way is the interpretative approach, in which multiple variants of a system for different
platforms are built, which interpret a common, platform-independent, declarative presentation
definition. The visualisation design systems Tableau and Viz Designer take this approach in
order to allow for desktop and web renderings.

However, many approaches can only define presentation information for a single platform.
Especially the graph visualisation design systems Cytoscape and RDFScape do not create
platform-independent presentation definitions, nor do the web-based ones (Less and Vispedia).
The lack of platform-independent models in some systems does not mean that this could not be
beneficial: For example, developers of Cytoscape discussed a platform-independent model they
call »ViewModel« for a new version of Cytoscape in order to achieve independence from the
rendering engine, however, this has not been implemented by now8.

Visual Structure Variability As an example of visual structure variability consider the
following case: »We want to vary our visualisation by selecting a tabular representation instead
of a node-link representation.« This change of the graphic representation implies that one
visual structure (in this case the dominant one) has to be replaced from linking to multiple
line-ups and separations making up a table. Despite that change, we would like to keep other
mapping definitions, such as mappings to colour or size or even mappings to other (minor) visual
structures.

A prerequisite of this criterion is the general availability of multiple explicitly defined
visual structures to choose from (C-16). TopBraid C.+ UISPIN and Less+LeTl do not offer
the selection of alternative visual structures, but use a box model that can be used well to
render nested HTML DIV-elements. Similarly, Cytoscape and RDFScape are bound to the
node-link paradigm that can easily represent graphs. All other approaches support multiple
visual structures, usually by offering alternative graphic types such as »Matrix«, »Node-link«,
»Tabular«, »Tree Map« or »Bar Chart«. If an approach supports the creation of multiple visual
structures only by means of a natural purpose language, we do not consider the criterion fulfiled,
because one cannot switch between multiple explicitly defined structures.

Similar to platform variability, we now ask if we can keep other mapping definitions
when we switch to different visual structures9 (C-17). Of course, this can only work
when there are some settings that are valuable for multiple visual structures. Vispedia and
SemViz support multiple visual relations, but these cannot be varied independently from the
main visual structure, since a completely different template or ontology representing a different
type of graphic has to be selected. All other approaches allow for at least some definitions to be
reused when changing the visual paradigm. For example, Viz Designer allows for shifting from
a bar to a dot diagram without loosing the configuration of visual attributes (such as colour
settings).

Composability of the Defined Views/Mappings

The composition of visual mappings and views needs to be distinguished from the composition of
graphics from graphic objects [vE02]; see also Sect. 8.2. For the field of visualisation, the composi-
tion of graphics has been described by the algebras of Mackinlay [Mac86a] and Wilkinson [Wil05].
Also Card [CM97] discusses various classes of »composing a compound Visual Structure out of
several simple Visual Structures«. However, here we refer specifically to the composability of
visual mappings and views. For the purpose of this analysis, we define composability as (C-18).
»Explicitness« of the views or mappings (C-14) is a prerequisite for this criterion. Furthermore,
it also subsumes »reusability« of the components. Our definition of composability does not

8 Cytoscape Discussion Forum. http://wiki.cytoscape.org/Cytoscape_3/CoreDevelopment/Architecture,
accessed: 21.02.2012.

9 This includes being independent from the dominant main visual structure, which has also been called visual
paradigm [PBKL06b].

52

http://wiki.cytoscape.org/Cytoscape_3/CoreDevelopment/Architecture

4.1. RELATED VISUALISATION APPROACHES

Explicit
presentation
definition

C-14 Explicit view/mapping definition By explicitly specifying a view/mapping
it can more easily be reused, shared, found, modified, analysed and discussed
by others; cf. [Bul08].

Platform
variability

C-15 Platform variability Code for various platforms can be generated from a
common description or the mapping/view definition is interpretable on various
platforms.

Visual
Structure
Variability

C-16 Multiple Visual Structures/Paradigms Multiple visual structures/-
paradigms or types of graphics can be chosen by the user.

C-17 Visual structure variability Visual structures can be changed independently
from other parts of the view/mapping definition.

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
Iz

C
yt

os
ca

p e

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

p e
di

a

Explicit view/mapping definition x x x x x - - - x -
Platform variability x x (x) x x x - - - -
Multiple visual structures/paradigms x x - x x x - - - x
— Visual structure variability x - - x (x) - - - - -

Table 4.4: Comparison of related visualisation systems and approaches –
Explicit presentation definition & variability.

53

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Composition C-18 Composability of the defined views/mappings Explicitly defined
views/mappings can be combined by third parties to build more complex
ones.

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
Iz

C
yt

os
ca

p e

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

pe
di

a

Composability of the defined views/mappings (x) - x (x) - - - - x -

Table 4.5: Comparison of related visualisation systems and approaches – Composition.

directly relate to that of software components as given by Szyperski [Szy97], but we too require
that composition by third parties is possible.

Since Protovis and Viz Designer allow for storing mappings only in variables, we list these
two approaches as supporting »restricted composability«. Only two approaches among the
related work fully support composability according to our definition: TopBraidC. + UISPIN
allows for defining templates that can be used to instantiate more complex templates. Also
Less+LeTl supports calling (named) templates within other templates. Our less restrictive
definition of composability does not require the explicit definition of a composition system
including a component model and a composition language, as propagated in [Aß03b], neither is
this provided by any of the approaches.

While the criterion of composability is important for comparing visualisation approaches, we
discuss composability again in the languages sections 4.2 and 4.3, since it is foremost a language
criterion.

Degree of Automation

Visualisation systems can be characterised by their degree of automation. We take up this
criterion in order to compare our approach that we see as semi-automatic, to existing work.

We speak of manual visualisation (C-19) if no guidance by the system is given to the
user and no default settings are performed. Arbitrary visualisations, including ineffective and
inappropriate ones, can be created.

Following Wills [WW10] we define automatic visualisation as full automation, where
no interaction of the visualisation author is required anymore, once the data to be visualised
has been passed to the system (C-21). An example for an automatic visualisation system is
the »Show me!« [MHS07] component of the Tableau visualisation design system. »Show me!«
analyses the data to be visualised and offers only possible graphical representation types to the
user. For example, when geographical data is recognised by the system, a map is offered as
a potential choice. Otherwise, this option is greyed out. SemViz is classified as an automatic
visualisation approach by the authors, according to their schema. However, in order to visualise
data from a new domain, preparations have to be taken such as creating a new domain and
semantic bridging ontology and the user has to select from a best-of gallery in a last step. That
means, although the visualisation process runs automatically, extra manual preparations have
to be done in advance. Wilkinson lists more examples of automatic visualisation tools: SAS,
SPSS, Stata and SYSTAT, which are not discussed here in detail, since automation is not in our
focus [Wil05].

54

4.1. RELATED VISUALISATION APPROACHES

Degree of
automation

C-19 Manual The system allows to manually create a visualisation from data. It
does not constraint the users choice nor does it recommend something. Errors
may happen and also ineffective and inappropriate visualisations can be created.

C-20 Semi-Automatic The system partially acts automatically. The user still has
some configuration to do, but some settings are put to defaults since some choices
have been done automatically. The user is supported with the mapping step in
the visualisation process. This support can be the suggestion of defaults, the
issuing of warnings or the display of a help menu and also (but not necessarily)
guidance.

C-21 Automatic The user simply inputs data and receives a visualisation without
configuring the system.

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
iz

C
yt

os
ca

pe

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

pe
di

a

Manual - - x - x - x x x -
Semi-Automatic x x - (x) - x x - - x
Automatic - x* - - - - - - - -

*) The »Show Me!«-button aims at full automation.

Table 4.6: Comparison of related visualisation systems and approaches – Level of automation.

All other systems, where some part of the visual mapping has to be done manually by the
visualisation author, we refer to as semi-automatic (C-20). Here, default values may be set
by the system but it may still ask for manual intervention.

Wilkinson states that »combining contextual meta-data with the graphics grammar can
enable us to generate graphics automatically from user queries« [Wil05, p. 51]. Hence, for
(semi-)automation to work, the system requires knowledge on both the data to process and the
visualisations to create. We come back to these two issues in the following two subsections.

Consideration of Data Semantics

The first source of information that is needed to enable (semi-)automation is the data itself.
Therefore, we compare how existing approaches extract, analyse and exploit qualitative and
quantitative characteristics of the data, the data’s schema and the available metadata. We distin-
guish, whether systems consider the semantics of the data at all (C-22) and if so, whether
they gain this information from inspecting an underlying ontology (C-23). This criterion
is closely related to what other authors called »information assisted visualisation« [GSGC08].

Tableau and Viz Designer analyse source data, but do this by inspecting quantities or by
guessing the data type. For example, Tableau uses the number of records to choose the type of
graphic. Also, some semantic properties of a field, such as geographical and time data types are
recognised. SPSS Viz Designer extracts some date-strings as dates, guesses the semantics of zip
codes from their values and recognises geographical coordinates.

Additionally, to the extraction of semantics, systems may also ask the user in case of doubt
and allow her to improve the systems decisions. In Tableau, after default settings are made
based on the fields data type, a GUI lets the user choose how to interpret a given database field:

55

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

either as a measure or as a dimension. As Tableau, also Viz Designer allows the assignment
of additional information to variables, including the scale of measurement that may be either
nominal, ordinal, or scale10.

However, none of the approaches considers complex axioms of an ontology. SemViz and
Vispedia use ontologies, but only try to match data types and do not exploit further metadata
such as relation characteristics.

Usage of Visualisation Knowledge

As stated above, (semi-)automation requires the system to have expert knowledge on visualisa-
tion. We distinguish whether a system uses visualisation knowledge at all, stored by any
means (C-24), or whether the visualisation knowledge is stored in an ontology (C-25).
The (semi-)automatic visualisation design systems (e. g., Tableau) have their own internal repre-
sentation of knowledge that they use to make reasonable defaults and automate visual mapping.
Also Protovis and Cytoscape have some built-in visualisation knowledge. However, none of these
tools allows for exchanging this knowledge with new facts in a standard formalism. SemViz is the
only approach that stores visualisation knowledge in an ontology, but here we have the special
case that this knowledge consists of probabilities on good matches between visual attributes
and domain specific attributes. No generally valid visualisation knowledge is used, but expert
knowledge has to be newly defined each time the domain ontology or the desired visualisation
changes.

Usage of Guidance

We distinguish three use cases of guidance in the context of visualisation, aligned with the stages
in the visualisation pipeline model that allow for human interaction (cf. Sect. 2.1.4). Our main
interest is on »guidance for visual mapping«. Still, we also inspected all systems with respect to
how »guidance for data filtering«, being part of the data transformation stage, and »guidance
for view transformation« is achieved. For a general definition of guidance cf. Sect. 2.3.

Guidance for filtering (C-26) is supported by about half of the systems we examined,
though often very basically. In Cytoscape, filters are adapted based on the range of the possible
values. RDFScape allows for the visual and guided creation of filter queries by graph patterns.
Also Vispedia helps the user to filter the data he is interested in. In Tableau, Quickfilters and
range widgets are generated. However, no approach integrates advanced self-adaptive visual
filtering techniques, such as faceted browsing, to guide the user and avoid empty result sets.
Also the semantics of the data are not used to further guide the filtering process.

Guidance for visual mapping (C-27) can mean that incomplete mappings are avoided
and only possible values are allowed when visual mappings are created. Furthermore, guidance
for the visual mapping process may include discouraging inexpressive visual means or suggesting
the most effective visual means (cf. Sect. 5.7). We found that only Tableau, Viz Designer and
Vispedia guide the user when doing the visual mapping. Also Cytoscape offers some very limited
guidance by means of suggested defaults. Table 4.8 also shows that whenever guidance for visual
mapping is supported, this is achieved by a graphical user interface (C-29). CogZ offers an
interesting UI for visual mapping where mappings are created visually by drawing connector
lines, however no guidance is given here.

One example for Guidance for view transformations (C-28) can be found in SPSS
Viz Designer, which offers guidance for some very basic view transformations, such as the
activation of the 3D exploration mode for three-dimensional graphics. However, none of the
other approaches guides view transformations.

In summary we can say, while guidance is offered quite often for data filtering purposes,
the guidance of the visual mapping process is a feature that can be found in the established

10 Scale here comprises ratio and interval scale

56

4.1. RELATED VISUALISATION APPROACHES

Consideration
of the data
semantics

C-22 Considers semantics for visual mapping When doing the visual mapping,
semantics of the data are taken into consideration either by the system auto-
matically, or they are turned into suggestions and restrictions for the user.

C-23 Considers semantics of an ontology for visual mapping Complex axioms
in the data can be considered for visualising instance data in a more appropriate
way. Not only the meaning of fields is considered somehow, but an ontology is
inspected by the system. Guidance or automation is not a requirement to fulfil
this feature.

Usage of
visualisation
knowledge

C-24 Uses visualisation knowledge The system uses formalised visualisation
knowledge, such as colour palettes, rankings of visual means, facts on rela-
tions of visual means.

C-25 Uses visualisation knowledge from ontology The system uses visualisation
knowledge that has been formalised as an ontology

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
iz

C
yt

os
ca

pe

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

pe
di

a

Considers semantics for visual mapping x x n/a - - x - (-) n/a (x)
– . . . of an ontology - - n/a - - (-) - - n/a (-)
Uses visualisation knowledge x x n/a x - (x) (-) (x) n/a -
– . . . from an ontology - - n/a - - x - - n/a -

n/a = Not applicable. These criteria are only applicable to approaches that support at least semi-automatic
visual mapping.

Table 4.7: Comparison of related visualisation systems and approaches – Consideration of data
semantics and usage of visualisation knowledge.

57

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Usage of
guidance

C-26 Guidance for Data Filtering The filtering of data is guided.

C-27 Guidance for Visual Mapping The visual mapping is guided. This can
mean that only possible values are allowed or that expressive and effective
mappings are suggested. If the user ignores them, or interactions between
multiple mappings occur, warnings may be issued.

C-28 Guidance for View Transformations The (end) user is guided when viewing
the visualisation. For example, he may be guided along an invisible route along
a visual structure or he may have a restricted perspective in 3D space.

Means of
guidance

C-29 Guidance with a GUI The guidance is given via a graphical user interface.

Name V
iz

D
es

ig
ne

r
+

L
an

g.

T
ab

le
au

+
V

iz
Q

L

T
op

B
ra

id
C

.+
U

IS
P

IN

P
ro

to
vi

s

M
D

V
+

C
og

z

Se
m

V
iz

C
yt

os
ca

pe

R
D

F
Sc

ap
e

L
es

s
+

L
eT

l

V
is

pe
di

a

Guidance for data filtering (x) (x) - - - - x x (x) x
Guidance for visual mapping GUI GUI - - - - (GUI) - - GUI
Guidance for view transformations - x - - - - - - - -

Table 4.8: Comparison of related visualisation systems and approaches – Guidance.

commercial desktop visualisation design suites for statistical data, but is rarely a feature of open
web-based services for graph data.

Level of Ontology-Usage

While ontologies have been mentioned in the previous sections, the term ontology-driven has
not yet been defined properly, which is important though, since it adds to the uniqueness of
our approach. In this subsection, we define ontology-driven as a combined characteristic that
includes some of the ontology-related criteria already mentioned before.

What adds ontology-driven visualisation to model-driven visualisation? The term
ontology-driven has to be seen in the context of the term model-driven. What is it that
ontology-driven adds to model-driven?

The OMG defines model-driven as »an approach to software development whereby models are
used as the primary source for documenting, analysing, designing, constructing, deploying and
maintaining a system« [Tru06]. Similarly, already Guarino [Gua98] defined and distinguished
ontology-driven information systems and their development as the following, emphasising the
temporal dimension: »When the ontology is used by an IS [Information System] at run time,
we speak of an ’ontology-driven IS’ proper; when it is used at development time, we speak of
’ontology-driven IS development’ «. Following these definitions, we refer to an approach as
ontology-driven, when ontologies are not only displayed and referenced, but when the whole
system does heavily rely on ontologies at runtime.

Based on the OMG’s definition of model-driven, Bull defines »Model-driven visualisation«
as »a model-based approach to view creation« and »a process for designing and customising
interactive visualisations using principles from model-driven engineering« [Bul08]. We build
upon and extend these definitions to define »ontology-driven visualisation« as follows:

58

4.1. RELATED VISUALISATION APPROACHES

Definition 6 (Ontology-driven visualisation) Ontology-driven visualisation describes an
approach to visualisation design where ontologies are the primary models for analysing and
constructing visualisations, as well as for storing and sharing visualisation knowledge and
visual mapping definitions.

Existing Ontology-Driven Approaches Table 4.9 summarises all criteria being concerned
with the usage of ontologies that have been introduced before. We removed all tools from the
list that do not make any use of ontologies.

All approaches are ontology-aware (C-5), i. e., they can reference constructs in an ontology
language and define ontology specific presentation information. Beyond this, for some of the
visualisation approaches, we already noted the usage of ontologies as (a) a source of semantics
that can be used to steer the visualisation and generate suggestions and (b) as a means to store
and share visualisation knowledge. Further, more general, usage scenarios for ontologies in
presentation or visualisation systems are possible, such as constructing presentation models or
storing the presentation settings themselves based on ontology languages. These usage scenarios
have been added here as well.

Semantics of the ontological data (C-23) are only considered for automating visualisation
by CogZ, SemViz and Vispedia. However, they use ontology semantics on a very low level of
ontological complexity. SemViz is the only approach that stores visualisation knowledge as
ontologies (C-25), but these ontologies have to be recreated by experts for each new domain
and do not contain general rules and knowledge from empiric visualisation research.

TopBraid C. + UISPIN uses ontologies for constructing an HTML/SVG model and also stores
RDF-based UISPIN presentation definitions. Even transformations can be directly formulated
(as SPARQL 1.1 Update requests) on the level of ontological models. Also CogZ and SemViz
both store mapping definitions in RDFS and additionally define a visual model for each type of
graphic as an ontology. We described this as other heavy use of ontologies in the comparison
table.

According to our definition, two visualisation approaches can be called actually driven by
ontologies: SemViz and the approach of using the ontology mapping tool CogZ and MDV in
combination. Vispedia could be referred to as partly driven by ontologies, mainly using them on
the side of the source data. Also the TopBraidC.+UISPIN approach is fully ontology-driven,
but is not a visualisation approach, since it does not support explicit visual mapping.

Name T
op

B
ra

id
C

.+
U

IS
P

IN

M
D

V
+

C
og

z

Se
m

V
iz

L
es

s
+

L
eT

l

V
is

pe
di

a

Ontology-aware x x x x (x)
Considers semantics of an ontology for visual mapping n/a (-) (-) n/a (x)
Uses visualisation knowledge from ontology n/a - x n/a -
Other heavy use of ontologies x x x - -
Ontology-driven x x x - (x)

Table 4.9: Comparison of related visualisation systems and approaches – Ontology usage.

59

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

4.1.3 Conclusion – What Is Still Missing?
Each of these approaches fulfills only a subset of the requirements, while none of them combines
all the required characteristics. Fig. 4.7 gives an overview of the visualisation approaches that
we analysed in the last section.

First, we have a group of visual mapping approaches, often offering guidance for visual
mapping and sometimes also defining precise composition operators. Unfortunately, none of
them is aware of ontologies, neither do they store their visualisation knowledge as ontologies
nor do they use standards to enable the sharing of visual mappings. Here, the approach of Viz
Designer and its languages ViZml and GPL is the one that is closest to our requirements.

Second, we have a group of ontology-driven approaches, some of them modelling composition,
which do not explicitly store visual mappings, but can only be used for displaying ontologies
in document style. Here, TopBraidC.+UISPIN comes close to our requirements, but visual
mappings are not explicitly modelled in this approach.

From all approaches MDV + Cogz is the solution that is the most promising: It is ontology-
driven, visual mappings can be modelled explicitly and composed to a certain extent. However,
no guidance for the visualisation process is offered and some of the criteria are only very basically
fulfilled. For example, visual mappings can only be done for concrete values, not for ranges of
values. Furthermore, no composition of multiple visual structures can be defined.

With this thesis, we aim at filling the gap and find an approach to combine the four aspects
Visual mapping, Composability, Guidance and Ontology-driven to enable ontology-driven guidance
with the possibility to define composable visual mappings.

60

Figure 4.7: Overview of visualisation approaches. Existing work only covers a subset of the four
aspects Visual mapping, Composability, Guidance and Ontology-driven, while there is a gap of solutions
that address all of these aspects. What is more, most approaches only combine two aspects. An approach
that enables ontology-driven guidance with the possibility to define composable visual mappings is
missing. (A variant of this figure was shown in the introduction.)

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

4.2 Visualisation Languages
After having presented complete visualisation approaches in the last section, we now focus on
languages for visualisation, many of them being part of the approaches introduced before. To
explicitly define visual mappings for ontological data, we need to have a dedicated language for
that purpose. A few visualisation languages exist, some of them very powerful and grounded
in graphic algebras. However, none of them is targeted at ontology visualisation and aware of
ontology specifics.

4.2.1 Short Overview of the Compared Languages
First, we briefly introduce each language. All visualisation languages will then be compared in
detail in Sect. 4.2.2.

ViZml and GPL

Wilkinson [Wil05]11 describes a »grammar of graphics« by means of an algebra. Based on this
graphic algebra, two languages are used by Wilkinson to allow for the description and automated
production of graphics. Both were intended to be non-proprietary languages and introduced as
open standards, however to the best of our knowledge, they are only used in SPSS. The first is
the Graphics Production Language (GPL), which is an operational grammar-based language.
The second is the Visualisation Markup Language (ViZml), a declarative markup language
based on XML and defined by an XML schema. Both languages complement each other, having
different benefits. While GPL can be used to specify graphics very concisely, ViZml is more
extensible and can be easily checked by tools, based on its XML schema definition. GPL can
also be generated from ViZml. ViZml is split into three parts that may be varied independently
– the data, structure and style part. For styling, ViZml reuses CSS and SVG terms as much as
possible, but it cannot directly be linked to CSS style sheets.

An example for a ViZml mapping is given in Listing 4.1, which shows a structure definition
for a two-dimensional line chart, including axis labelling and colour settings. Also the concise
definition of mappings to ranges of visual attributes is possible in ViZml, for example a data
variable may be mapped to a range of visual (colour) values as shown in Listing 4.2.

<color variable=’range’ low=’navy’ high=’red’>

Listing 4.2: ViZml – Example of mapping the data variable range to a colour range.

An example for a GPL program is given by Listing 4.3. GPL programs consist of statements,
which are basically made up from a label defining the type of statement, and a set of functions.
Graphic algebra expressions (using the cross, nest and blend operators) are also considered to
be functions. The corresponding graphic is shown in Fig. 4.8.

11 First published in 1999

62

4.2. VISUALISATION LANGUAGES

1 <!-- Structure -->
<graph id="graph" cellStyle="graphStyle">
<!-- Size -->
<location method="fixed" part="right" value="100%"/>
<location method="attach" part="right" target="container_39754"/>

6 <coordinates>
<dimension>
<axis>
<label purpose="auto" style="labelStyle">
<descriptionGroup target="sourceVariable_39994">

11 <description name="label"/>
</descriptionGroup>

</label>
<majorTicks markStyle="majorTicksStyle3" style="majorTicksStyle"/>

</axis>
16 </dimension>

<dimension>
<axis>
<label purpose="auto" style="labelStyle2">
<text>Mean (</text>

21 <descriptionGroup target="y">
<description name="label"/>

</descriptionGroup>
<text>)</text>

</label>
26 <majorTicks markStyle="majorTicksStyle4" style="majorTicksStyle2"/>

</axis>
</dimension>

</coordinates>
<line positionModifier="stack" style="lineStyle">

31 <binStatistic dimensions="1" gridType="square"/>
<summaryStatistic convertIntervalToSingleValue="true" method="mean"/>
<color id="color_39751" affect="main" cycle="cycle" missing="silver" scale="bipolarWhite"

variable="y">
<summaryStatistic method="mean"/>

</color>
36 <x variable="sourceVariable_39994"/>

<y variable="y"/>
</line>

</graph>
<container id="container_39754" clip="false">

Listing 4.1: ViZml (Visualisation Markup Language) – Example of a line chart (excerpt).

GGRAPH
/GRAPHDATASET NAME="graphdataset" VARIABLES=schtyp MEAN(write)[name="MEAN_write"] female
/GRAPHSPEC SOURCE=INLINE.

4 BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: schtyp=col(source(s), name("schtyp"), unit.category())
DATA: MEAN_write=col(source(s), name("MEAN_write"))
DATA: female=col(source(s), name("female"), unit.category())

9 COORD: rect(dim(1,2), cluster(3,0))
GUIDE: axis(dim(3), label("type of school"))
GUIDE: axis(dim(2), label("Mean write"), delta(5))
GUIDE: legend(aesthetic(aesthetic.color.interior), label("female"))
SCALE: linear(dim(2), min(40), max(60))

14 ELEMENT: interval(position(female*MEAN_write*schtyp), color.interior(female), shape.interior(
shape.square))

END GPL.

Listing 4.3: GPL (Graphics Production Language) – Example of a grouped bar graph, taken from
http://www.ats.ucla.edu/stat/spss/library/ggraph_examples.htm, accessed: 02.07.2015.

63

http://www.ats.ucla.edu/stat/spss/library/ggraph_examples.htm

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Figure 4.8: GPL – Example of a grouped bar graph (as described by Listing 4.3). In a grouped bar
graph, bars are clustered in groups that emerge from examining an additional (nominal) attribute, in
this example the sex of the participants.

64

4.2. VISUALISATION LANGUAGES

VizQL

VizQL is a declarative language that extends the abilities of SQL by formatting and visualisation
capabilities. This is inspired by the fact that SQL already offers some abilities to structure,
sort and group data. The VizQL definitions are used by a query analyser to generate both
visualisation settings and SQL, respectively MDX12 for querying relational databases and OLAP
servers [HSM07].

Mackinlay states in [MHS07] that VizQL is based on an improved algebra from the A
Presentation Tool (APT) [Mac86a] and »the ability to compile into database queries«. He also
compares Wilkinson’s algebraic approach to VizQL and describes the main distinguishing feature
as that it »clearly describes the row and column structure of small multiple views of data«. Both
statements show that VizQL is, even more than GPL, targeted at the visualisation of tabular
data. VizQL was first developed for the Polaris prototype and is now the basis of the commercial
Tableau visualisation software (cf. Sect. 4.1.1 and Fig. 4.9).

Figure 4.9: Tableau – User interface for VizQL. Although VizQL is readable, it is not intended to be
written manually, but through a GUI.

Protovis

Protovis is a declarative visualisation language by Michael Bostock and Jeffrey Heer that has
implementations as an embedded DSL in JavaScript [BH09] and Java [HB10]. It was designed
to benefit from the advantages of declarative languages while still keeping an »intermediate level

12 Multidimensional Expressions – Query language for OLAP databases, similar to SQL

65

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

of abstraction« to allow for flexible customisation of visualisations. This compromise between a
declarativity and flexibility is achieved by using functions as mapping definitions, passed to other
functions as (higher level) arguments. Also compare for Listing 4.4. The general declarative
approach of the language allows for easily generating visualisations for other platforms. In the
Java version, even the event model is »decoupled from the runtime platform« [HB10], in order
to support cross-platform development.

When comparing visualisation languages in the next section, we refer to the JavaScript
version of Protovis if not stated otherwise.

new pv.Panel()
.width(150)
.height(150)

.add(pv.Bar)
5 .data([1, 1.2, 1.7, 1.5, .7])

.bottom(2)

.width(20)

.height(function(d) d * 80)

.left(function() this.index * 25 + 2)
10 .strokeStyle(function(d) (d > 1) ? "red" : "black")

.root.render();

Listing 4.4: Protovis – Example of a bar chart. In Protovis, visualisation settings are specified by
chaining function calls one after another, each call working on the return value of the previous call
(method chaining). By this means, first, a panel is described and then a bar is added to this panel. The
bar in turns is passed an array of source data values, static presentation values for defining bottom
position and width, but also dynamic values as functions calculating height, left position and stroke style
(colour) from the given data. Finally, the render action is triggered just like the declarative settings
have been done before.

4.2.2 Detailed Comparison by Language Criteria

After having briefly introduced each language, we now compare them according to several criteria
we consider important for our own ontology visualisation language13.

Supported Data Models

Since the visualisation languages we found mainly have a background of visualisation for statistics,
where we have a lot of homogeneous data that can well be stored in relational databases, the
tabular data model is the kind of data model that is supported by all languages (LC-1).
ViZmL and VizQL have been built to be used with relational databases. Protovis has functions for
handling tabular data, and also some functions that aim at hierarchical or graph data structures
(for example, setting the link degree or choosing between various force directed layouts). However,
the other visualisation languages do not support graphs (LC-2) to a greater extent; no graph
file formats can be referenced, implying that RDF is neither supported (LC-3), and few functions
exist that are specific to graphs. The focus is clearly on the needs of statistics, although some
means to display a node-link-diagram are available.

Addressable Language Constructs

We further ask, whether constructs of (a potential) schema of the source data can be refer-
enced within mapping definitions (LC-4), which is possible with all languages, except Protovis,
to the extent that columns of a database schema can explicitly be mapped to visual means.
Protovis does not refer to a database directly, but uses internal JavaScript arrays for storing

13 The corresponding requirements will be listed in detail in Sect. 7.1.

66

4.2. VISUALISATION LANGUAGES

Supported
data models

LC-1 Tabular data model supported The language can reference source data from
a tabular data model.

LC-2 Graphs supported The language can reference data that forms a network or
graph data specific settings are possible.

LC-3 RDF supported RDF or the languages build on top of it (RDFS, OWL) are
supported.

Addressable
constructs

LC-4 Schema/types addressable The language can reference the data’s schema
within display definitions. For graphs, the type of edges can be referenced at
least.

LC-5 Ontology constructs addressable The language can reference to ontology
terms (in any formalism). Switching on/off inference is optional.

LC-6 Terminological ontology relations (T-Box) addressable Specific repre-
sentation of statements on the relation between classes and properties – T-Box
(terminological component). It is possible to reference these relations explicitly
in the display definition.

Name ViZml GPL VizQL Protovis (JS)
Tabular data model supported x x x x
Graphs supported (x) (x) (x) x
RDF supported - - - -
Schema/types addressable x x x -
Ontology constructs addressable - - - -

Table 4.10: Comparison of visualisation languages – Supported data models and referencable constructs.

data. However, none of these languages can reference ontological constructs (LC-5) or has
specific features for handling ontologies, neither on A-Box nor T-Box level. The criterion of
T-Box support (LC-6) will be used later, in the next section on RDF display languages, and
is listed here only for the sake of completeness.

Interactivity

Except for GPL, all visualisation languages have special terms for conveniently defining simple
interaction tasks (LC-8): In ViZml, there are language constructs for defining some interac-
tions, however none of them is configurable via the Viz Designer UI. The whitepaper on Tableau
and VizQL [HSM07, p. 19] further states that interactive visualisations can be »described by a
simple [. . .]VizQL statement that Tableau’s interpreter translates into an interactive information
visualization«. Among these interactions are linking and brushing14 and tool-tips. Also in
Protovis mouse events can be mapped to pan and zoom behaviours.

Language Paradigm

All languages we examined can be referred to as Domain Specific Languages (DSLs) being
designed to serve a purpose that is specific to a certain domain – in our case visualisation
respectively the display of RDF data. However, we can further classify these DSLs into
declarative (LC-9), imperative (LC-10) and hybrid languages [Wu07]. For the group of
visualisation languages, all languages we inspected are declarative, except for GPL, which has

14 When items are selected in one of multiple views, all views show the selection [CMS09].

67

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Visual
Mapping

LC-7 Visual Mapping (not only presentation) Visual mappings can be explicitly
defined.1)

Interactivity LC-8 Interaction describeable Interactions with the visualisation can be defined.
E. g., »What happens on select?«.

Name ViZml GPL VizQL Protovis (JS)
Interaction describable x - x x

1) Applies to all visualisation languages, according to our definition and is listed here only for completeness.
It will be needed for comparing RDF display languages in the next section.

Table 4.11: Comparison of visualisation languages – Interactivity.

Language
paradigm

LC-9 Declarative The language describes WHAT should happen as opposed to
describing HOW exactly it should happen.

LC-10 Imperative The opposite of declarative style describing exactly HOW to do
a calculation in terms of assignments and control flow statements.

LC-11 Templates Templates are used to generate code or more specific models.1)

Name ViZml GPL VizQL Protovis (JS)
Declarative x (x) x x

1) Applies to imperative languages and is listed here only for the sake of completeness. It will be used to
further characterise RDF display languages in the next section.

Table 4.12: Comparison of visualisation languages – Language paradigm.

the DO control statement for iterating and conditional execution. However, we will see in
Sect. 4.3.2 that for RDF display languages both paradigms are used.

Differences between the four visualisation languages exist in the way they are implemented.
While ViZml, GPL and VizQL are defined as completely new languages (although ViZml is
based on XML and VizQL is oriented at SQL), the designers of Protovis chose the solution of a
DSL, embedded into JavaScript [BH09]. Also a Java-embedded version was built [HB10]. A
discussion of the advantages and disadvantages of declarative vs. imperative languages will be
given in Sect. 7.1, when discussing our requirements for an RDFS/OWL visualisation language.

Platform Independence and Visual Structure Independence

The criteria of platform and visual structure independence relate to the criteria of variabil-
ity (C-15, C-17) that we discussed in Sect. 4.1.2. To allow for variation of platforms and
visual structures, the language used for storing display definitions needs to be independent of
platforms respectively specific visual structures. While all visualisation languages are platform-
independent (LC-12) and all of them support multiple visual structures (LC-14), only
VizQL allows for specifying visual mappings independently from the type of the chosen

68

4.2. VISUALISATION LANGUAGES

Platforms LC-12 Platform independence The mapping/view definition (at least part of it)
is done without referring to a specific platform, i. e., there are some settings
that are valuable for all platforms.

Visual
Structures

LC-13 Visual structure independence The view/mapping definition (at least
part of it) is done without referring to a specific visual structure.

LC-14 Multiple visual structures/paradigms Multiple Visual structures can be
described. This includes the explicit description of visual structures and the
construction by general purposes languages.

Name ViZml GPL VizQL Protovis (JS)
Platform independence x x x x
Multiple visual structures/paradigms x x x x
Visual structure independence (x) - x (x)

Table 4.13: Comparison of visualisation languages – Platform and visual structure independence.

main visual structure15 (LC-13). In ViZml, style sheets and visual structure are separated,
so that they can be varied independently. However, other mappings than styles are directly
inter-linked with the (main) visual structure, so that changing this structure will require re-
defining these other mappings. Also Protovis »reuses the semantics of [..] properties as much
as possible« [HB10] to support consistency. That means mappings to visual attributes can
sometimes be reused, when changing the visual structure.

Shareability and Reusability

Although every mapping definition might be shared with others, there are means of supporting
this already by a visualisation language (LC-15). Examples for this are Protovis and ViZml.
Protovis intentionally describes visualisations simply as JavaScript, such that »visualisations
become open source« [BH09] and can be reused and extended by others easily. ViZml lowers
the barrier to share and reuse mapping definitions by using XML that can be easily processed
on many platforms and for which a lot of tooling exists. Unlike RDF display languages, none
of the visualisation languages uses URIs to uniquely identify created mappings on the
web (LC-16). This could help when multiple users share mappings, especially when already
the source data can be found on the web at a URI. Shareability implies reusability , which we do
not list separately.

Extensibility

Extensibility refers to whether or not existing mappings can be extended (LC-17). ViZml
is based on XML (the Extensible Markup Language) and, therefore, is generally extensible. The
ViZml XSD was intentionally designed to allow for extensions of the schema. For situations,
where changing the schema is impractical, another extension mechanism is offered by the
»Parameter and Method« nodes that allow for a very flexible generalisation. In GPL and VizQL,
there is no support to extend the mappings easily, such that new mappings could be built on
existing ones and inconsistency is avoided when mappings need to be changed. Protovis uses
»mix-in functionality« to allow for prototype inheritance.

15 In VizQL, a main visual structure is chosen by selecting the type of graphic

69

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Shareability LC-15 Shareability supported by language View/mapping definitions can be
shared among various users on different platforms visualising different instance
data. Sharing is supported by some mechanism, e. g., URIs.

LC-16 URIs for each view/mapping Each mapping/view gets a URI.

Extensibility LC-17 Extensibility of views/mappings Existing view/mapping definitions can
be extended, e. g., by inheritance.

Composability LC-18 Composability of views/mappings Explicitly defined views/mappings
can be combined by third parties to build more complex ones. (Same as C-18)

Name ViZml GPL VizQL Protovis (JS)
Shareability supported by language x - - x
– URIs for each view/mapping - - - -
Extensibility of views/mappings x - - x
Composability of views/mappings x x - x

Table 4.14: Comparison of visualisation languages – Extensibility, shareability and composability.

Composability of Visual Mappings and Views

We refer here specifically to the composability of mapping definitions and views (LC-18), which
is equivalent to the criterion C-18 from the comparison of visualisation approaches.

Although all the languages allow for applying multiple visual mappings, the composition of
mappings that have been stored earlier is supported differently well. Therefore, the reuse of
existing mappings is sometimes difficult: Protovis allows for storing partial mappings, which are
nested function calls, in variables. This way, they can be referenced and composed, but from
outside the scope of the Protovis program, it will be harder to reference them, compared to
UISPIN components, which have a URI (Sect. 4.3.1). The same applies to GPL [Wil05], which
allows for storing visualisation settings in variables for later use. In ViZml, it is possible to create
two graphics and display them next to each other. While this kind of composition is supported,
no other complex compositions seem to be available. For his graphic algebra, Wilkinson defines
three operators, cross (*), nest (/), and blend (+), that work on sets of variables. However,
these are not graphic-level composition operators but data-level operators. They are closely
related to operators such as the JOIN operator from relational algebra and allow for writing
multi-dimensional algebraic expressions for preparing data sets.

A different criterion, which has not been examined here, is, whether or not the composability
of definitions is constrained in a reasonable way to prevent the creation of mappings that are
syntactically valid, but impossible to realise. We return to the aspect of composition in Sect. 8.2.

Construction of Editors

To decide whether one of the visualisation languages could be extended towards ontology
visualisation, it is interesting to know how easily an editor for visual mappings can be built or if
an existing editor could be extended.

None of the languages we inspected offers an open-source editor that could be reused (LC-20).
ViZml, GPL and VizQL are used within commercial software and hence do neither have a free
API available. In the case of Protovis, an implementation is freely available under the BSD
License. However, also here, no tooling for editing mappings exists.

Another question related to the construction of editors is, whether the language is described

70

4.2. VISUALISATION LANGUAGES

Editor
construction

LC-19 Restrictive tool-usable schema The language definition is directly usable
by tools to restrict instance creation. E. g., an XSD offers constraints that XML
editors can use to allow only schema compliant XML code.

LC-20 Open source editor An editor for the mapping definition is available open
source.

Familiar to
users

LC-21 Familiar to users If complex queries or other instructions need to be defined,
the language should be familiar to the users and the same as for other parts of
the configuration if possible. (Criterion oriented at [Bul08])

Name ViZml GPL VizQL Protovis
(JS)

Restrictive tool-usable schema x (x) - -
Open-source editor - - - -
Familiar to users x - (x) (x)

Table 4.15: Comparison of visualisation languages – Construction of editors and familiarity to users.

with a formal and restrictive tool-usable schema (LC-19) that is strict enough to allow for
automatically deriving an editor. In the case of ViZml, which is described via an XML schema,
this is true at least partially and for the syntax. Tools can easily check ViZml code against the
schema. Also GPL is defined with an EBNF grammar, however, this grammar does not seem to
be available on the web. For VizQL and Protovis, there exists no such schema.

Familiarity to users

Except for GPL, all visualisation languages build upon existing knowledge of visualisation
authors in using common languages (LC-21). ViZml is familiar to users who are used to
handle XML; VizQL builds on existing SQL knowledge and Protovis aims at users with a web
background already having some JavaScript skills.

4.2.3 Conclusion – What Is Still Missing?
Although some visualisation languages exist, none of them can be used to define visual mappings
directly between ontological terms and visual means. So, for example, ViZml and GPL are
advanced visualisation languages with a profound algebra-founded concept for composition.
However, they do not allow for referencing ontology constructs and are targeted at visualising
homogeneous tabular data in first place.

71

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

4.3 RDF Presentation Languages

After having compared visualisation languages in the last section, we look at existing RDF
presentation languages. We also look at related non-RDF languages that have been developed
for displaying and styling general graphs and could also be applied to RDF graphs. As we will
see, RDF presentation languages are not a subset of visualisation languages.

4.3.1 Short Overview of the Compared Languages

First, we briefly introduce the RDF presentation languages. All languages are then compared in
detail in Sect. 4.3.2.

Graph Style Sheets

Graph Style Sheets (GSS) is an RDF vocabulary that can be used to modify the visual appearance
of a node-link diagram with style rules. Unlike Fresnel, GSS basically do not transform the
graph, but style it. That means, the data’s graph structure is (directly) transferred into a visual
structure, i. e., a node-link-diagram. However, there are exceptions to this, e. g., it is possible to
combine the node-link representation with tables, representing statements that belong to one
object in a more compact way (cf. Listing 4.5). A second exception is the complete removal of
elements from display, thereby changing the node-link structure.

GSS is oriented at CSS, often accepting the same values, however it does not actually
integrate and reuse it. For example, cascading and weighting is used to allow the combination of
multiple style sheets. Similar to CSS, a style rule consists of a left-hand side, called selector, and
a right-hand side that holds the styling advices. GSS are used in the RDF tool IsaViz [Pie07],
which also provides a graphical editor for GSS.

[rdf:type gss:Property ;
gss:uriStartsWith d: ;
gss:display gss:None

4] .

[rdf:type gss:Resource ;
gss:style :presidentStyle ;
gss:subjectOfStatement [gss:predicate rdf:type]

9 gss:layout gss:Table ;
gss:sortPropertiesBy gss:Namespace ;

] .

:presidentStyle gss:shape gss:RoundRectangle .

Listing 4.5: Example GSS style removing all properties from namespace d and representing all resources
that have an rdf:type assigned as round rectangles with their properties being represented as a table

Figure 4.10: Result of the GSS styling given in Listing 4.5 (screenshot from IsaViz).

72

4.3. RDF PRESENTATION LANGUAGES

VPOET

VPOET [RCC09] enables web designers to embed macros for displaying and editing RDF data
into web pages without requiring expert knowledge on Semantic Web languages. However, ease
of use for the web designers’ community is given priority over advanced functionality.

Fresnel

Fresnel was developed as a »Presentation Vocabulary for RDF« [BLP05] in order to offer a
common language to define reusable presentation information for RDF. This became necessary,
because many projects started developing proprietary languages for this purpose on their own.
The authors argue that there is no reason why the benefits of semantic web languages (i. e., unique
identifiers, shareability, inference) should not also be used for presentation information as well;
therefore, they defined the declarative language Fresnel on top of RDFS/OWL.

Fresnel distinguishes three steps in a presentation process – selecting what to present,
structuring the items to be presented, and finally formatting them. It does not specify how
to render them. Selection and structuring is handled by the Fresnel Lenses. With the lens
construct, Fresnel introduces an explicit definition of a view. Furthermore, Fresnel offers a means
to loosely connect the view to a set of resources by means of various selectors. Formatting,
the assignment of layout information is done with the help of Fresnel Formats, which can, for
example, attach CSS-styles to resources.

Lenses and Formats need to define selection expressions, e. g., to specify the properties
to be shown by a Lens. This can be done in Fresnel via a simple URI reference, or – for
increasingly complex selections – via the languages Fresnel Selector Language (FSL) and
SPARQL. FSL [Pie05] is a language to describe traversal paths through RDF graphs (with limited
expressiveness) and allows for more compact selection expressions than SPARQL does. For
example, the FSL expression »foaf:knows/foaf:Person/foaf:name« selects the foaf:name property
of all instances of foaf:Person known by a given resource.

The most important characteristics of Fresnel are its platform- and visual paradigm-
independence. We discuss this in detail in Sect. 4.3.2.

Content
selec�on	

and	ordering

Fresnel	Lens

Lens

Lens Lens

Content
forma�ng	

and	addi�onal
content

Fresnel	Format

Format

Format Format

CSS	class

CSS	class

CSS	class

Cascading	Style	Sheet

Styling	instruc�ons	for
fonts,	colors	and

borders

Figure 4.11: Foundational concepts of Fresnel. Redrawn after Pietriga et al. [PBKL06b].

Fresnel Application Fresnel has been used in the applications listed in Table 4.16. We noted
whether Fresnel or one of its extensions is used. Furthermore, we distinguish applications that

73

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Application extended by Fresnel inventors
Longwell16 no yes
IsaViz (Sect. 4.3.1) no yes
Geonames Browser [PBKL06a] yes (2D) yes
Hyena [Rau05] yes (editing) no
Lena17 no no
DBpedia Mobile18 no yes
Arago19 no no

Table 4.16: Applications using Fresnel.

have been worked on by the Fresnel inventors themselves. Although Fresnel was only used by
a few external authors, this is more frequent than for any other RDF display or visualisation
language we inspected, which have not been reused in other contexts to our knowledge.

Fresnel2D

Fresnel2D is an example of an extension vocabulary for Fresnel for the 2D-layout of RDF
data. It was used in the »Geonames Browser« to layout geographical locations on a map using
longitude and latitude properties. It declaratively defines a mapping from the geographical
data to the x- and y-positions of the map by defining the range of longitude (-180◦–180◦) and
latitude (-90◦–90◦) that should be mapped to the whole range of the available x- and y-positions.
Fresnel2D was introduced as work in progress on ISCW 2006 [PBKL06a], however, we could
not find later publication on the extension.

RDF Editing Metamodel (REMM)

The RDF Editing Metamodel introduced by Rauschmayer [Rau10] extends Fresnel with editing-
specific features. It is used by the Hyena application to provide form-based editing for
RDF. The idea is to use Fresnel to define an editing view. Because Fresnel is not spe-
cialised on editing, REMM extends it by offering constructs to define defaults and editing
profiles for RDF. For a given property, these profiles can define possible types that newly
created objects should have. REMM also extends Fresnels ability to display value hints
(e. g., :someProperty fresnel:value fresnel:image.) to enable the suggestion of widgets
that are suitable for editing values of the property (e. g., :someProperty remm:editHint
remm:EditCheckBox.). Another example is given in Listing 4.6.
[a fresnel:PropertyDescription ;

2 fresnel:property ex:genre ;
remm:propertyRange ex:Genre ;
fresnel:use [

a fresnel:Format ;
remm:editHint [

7 a remm:EditInstanceCollection
]

]
]

Listing 4.6: REMM Example – Fresnel and REMM expressions are mixed to define that a collection
widget showing instances of the class Genre should be displayed for editing.

16 Longwell browser. SIMILE project, MIT and CSAIL. http://simile.mit.edu/longwell/
17 A Fresnel LEns based RDF/Linked Data NAvigator with SPARQL selector support [KFS08].

University of Koblenz.
18 DBpedia Mobile: A Location-Aware Semantic Web Client [BB08]. Freie Universität Berlin.
19 From Graph to GUI: Displaying RDF Data from the Web with Arago [GH05]. Université de Fribourg.

74

http://simile.mit.edu/longwell/

4.3. RDF PRESENTATION LANGUAGES

Tal4RDF

Tal4RDF [Cha09] is a pragmatic, lightweight template language for RDF presentation that
aims at being simpler than Fresnel and thereby more feasible for rapid prototyping. It is based
on Zopes TAL20 and written in Python. Special tags are integrated into the XML-tags of
the original document, which remains a valid document in the »host« format. This has the
benefit that the host language can still be statically type checked (assuming the host language is
also XML-based). Language features include condition-tags (if), repeat-tags (looping) and the
bundling of similar properties using »OR«. The developers see it as a benefit that they directly
aim at rendering the presentation format. The downside of this is, however, that although
all formats could be rendered (such as SVG or JavaScript), a mapping of RDF-properties to
graphical means, depending on their values, cannot explicitly be modelled with the language.
Also, complex queries cannot separately be defined, but have to be combined with the template.

LESS Template Language

The LESS Template Language (LeTL) [ADD10] is the template language used in LESS
(Sect. 4.1.1) and inherits from the Smarty Template Language21 for PHP.

Users can create output fragments with placeholders for RDF-data using LeTL. These views
can then be shared and also taken as a prototype for new views. The authors state that they
could also have included Tal4Rdf or Fresnel, but wanted to keep it simple. Future integration of
these languages has been considered. In contrast to Tal4RDF, query and template are stored
separately. The template then references variables from the (SPARQL) query result. Also LeTL
does not support visual mapping or interaction explicitly.

XSLT-Based Approaches

At first glance, it might seem suitable to use XSLT style sheets for transforming RDF data into
a human readable format. However, RDF/XML is only one out of many serialisations for RDF.
Others are N3 and Turtle. Moreover, even the XML serialisation cannot be processed directly
with plain XSLT+XPATH, since it represents only one possibility of stating the same facts in
RDF. Although the RDF/XML describes a hierarchy, this hierarchy does not necessarily represent
a useful structure for human representation. In [Ste03] the following further shortcoming of using
XSLT+XPATH for RDF/OWL are given: First, owl:imports statements cannot be handled, so
that only a single file can be considered. Second, it is not possible to process implicit knowledge
because XSLT is not aware of inference.

To process not only the serialisation structure but the RDF graph behind it, extensions
of XSLT and XSLT-influenced approaches have been developed. Xenon [QK05] and RDF
Twig [Wal03] belong to this category of languages. To access the data graph, these approaches
use path traversal query languages such as RDFPath [Ste03], which is similar to XPATH but
considers RDF specifics. In [FLB+06], Furche et al. mention other similar languages. However,
as with RDFPath, there seems to be no further work on them. These approaches have the
characteristic that they are procedural and, therefore, are bound to a concrete output format.
It is also not possible to define display paradigm-agnostic presentation information.

OWL-PL

OWL-PL [BH10] is not an XSLT-based but an XSLT-inspired language for transforming
RDF/OWL into XHTML. It aims at producing both machine and human readable data. The
language provides the definition of default views. It further defines an order of precendence
between default views, views coupled to classes, views coupled to instances and user-defined

20 http://wiki.zope.org/ZPT/TAL/, accessed: 02.07.2015.
21 Smarty Template Language. http://www.smarty.net/, accessed: 02.07.2015.

75

http://wiki.zope.org/ZPT/TAL/
http://www.smarty.net/

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

view settings, which supersede all other settings. Connecting views (format files) and resources
is done with the help of vocabulary from a »formatting ontology«. The language comprises
constructs for conditions (if, when, otherwise) and for looping (for-each, for-all, for-others).
Views can be reused similar to the reuse that XSLT-templates offer. Inference is not handled by
the language, but expected to be solved by ontology mapping in the data layer.

STOOG Graph Stylesheets

STOOG is a style sheet language22 for graphs. In contrast to the GSS, it is not explicitly
targeted at RDF graphs, but at general multivariate graphs with attributed nodes and edges
and optional clustering information. Although STOOG is not ontology-aware, we added the
language to our comparison for its close relation to CSS. As with GSS, the cascading mechanism
known from CSS is supported, but STOOG is close to CSS with respect to syntax as well.
Additionally, the language has slightly more direct visual mapping abilities than GSS.

UISPIN

UISPIN, also called SPARQL Web Pages (SWP)23 [Knu10], is a declarative RDF-based UI-
framework used in TopBraid Composer24 (Sect. 4.1.1) to define HTML and SVG views of
ontological data. UISPIN builds on SPIN, which we introduced in Sect. 2.2.7 as a means to
attach (SPARQL-based) constraints and rules to RDFS classes.

UISPIN offers properties that can be used to link RDFS resources with descriptions of
the UI (cf. Fig. 4.12). The UI components are declaratively described and contain SPARQL
queries to dynamically insert data. The common UI-tags, specific XHTML-tags and SPARQL
expressions are all together transparently transformed into an RDF representation for storage,
allowing for a unified handling of all three – data, presentation information, and queries. Static
type checking for HTML and SVG is possible, since their schemata were completely re-modelled
in RDF. This is also the prerequisite, if a new target language should be used with UISPIN.
It is generally possible to build visualisations with UISPIN, since also charts, maps and other
diagrams can be included using UISPIN Charts25. However, only out-of-the-box Google widgets
can be embedded. That means, it is not possible to actually model or interactively configure
the visualisation. A drawback of UISPIN is that its textual notation is hardly human-readable,
because like all SPIN-based expressions the templates and functions result in complex RDF list
structures. That means UISPIN definitions always require an appropriate UI for presentation
and editing.

4.3.2 Detailed Comparison by Language Criteria
Having introduced related languages for RDF presentation, we now compare these languages in
detail. We use the language criteria LC-1 – LC-21 that we already introduced for visualisation
languages in Sect. 4.2.2. Further criteria that are specific to RDF display languages are added
and used for additional comparisons in Sect. 4.3.3.

Supported Data Model and Referenceable Source Language Constructs

All languages can reference terms from some kind of schema (LC-4). All of them are
aware of ontology terms (LC-5) in an RDF-based language (LC-3), except for STOOG.

22 Although STOOG is also a toolkit, we did not consider these aspects in our comparison, since it lacks an
available implementation for further testing.

23 http://uispin.org/, accessed: 02.07.2015.
24 http://www.topquadrant.com/topbraid/, accessed: 02.07.2015.
25 http://uispin.org/charts.html, accessed: 02.07.2015.
26 Example taken from the blog »Composing the Semantic Web« by Holger Knublauch.

http://composing-the-semantic-web.blogspot.com, accessed: 12.01.2016.

76

http://uispin.org/
http://www.topquadrant.com/topbraid/
http://uispin.org/charts.html
http://composing-the-semantic-web.blogspot.com

4.3. RDF PRESENTATION LANGUAGES

(a) UISPIN settings.

(b) Rendered HTML.

Figure 4.12: UISPIN HTML display settings (a) and the corresponding rendered HTML view (b) as
displayed by a browser. The display settings are attached to the class SPINFunction via an »instance
view«. This means the settings are applied to instances of the class, but not the class itself.26

77

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Name G
SS

V
P

O
E

T

Fr
es

ne
l

R
E

M
M

T
al

4R
df

L
eT

L

O
W

L
-P

L

ST
O

O
G

U
IS

P
IN

Schema/types referenceable x x x x x x x x x
Ontology constructs referenceable x x x x x x x - x
T-Box referenceable (-) - (-) (-) (-) (-) - - (-)

Table 4.17: Comparison of RDF display languages – Supported data models and referencable constructs.

STOOG works on general multivariate graphs with nodes and edges that may have additional
attributes.

Therefore, we have a closer look at the exact terms from a schema or ontology that can
be referenced directly with the language. The T-Box, i. e., relations between classes and
relations, cannot be referenced directly in display definitions in any of the languages (LC-6).
Nevertheless, in some languages mapping relations that exist indirectly due to existential or
universal restrictions can indirectly be achieved by using a selector language. For example,
Fresnel and REMM support the Fresnel Selector Language (FSL) and also Tal4RDF has its
own path-based selector language. In others, SPARQL can be used for this purpose (UISPIN
and LeTL).

Visual Mapping

We defined visual mapping (LC-7) as the mapping of relations and values in the data to visual
means (Sect. 2.1.5), including dynamic, value-dependent mappings. This means, mappings can
be formally described on the level of RDFS properties and visual means.

None of the RDF presentation languages is capable of defining such mappings. As an example,
it is not possible in any of the languages to define mappings from RDF properties to visual
attributes such that each value of the property is implicitly mapped to some visual attribute
value. Fig. 4.13 illustrates the difference between mapping on a property level and mapping
single instances to visual values.

With GSS, as already described above, at least complete graphic representations can be
chosen as »layout« with two options: »Table« and »Node and Arc«. Visualisations can also
be created with the UISPIN extensions UISPIN Charts, but for this, ready-to-use visualisation
components are used, which do not allow for composition and reasoning about further possible
additional visual mappings, because the semantics of their configurable »slots« are not formally
described. STOOG style sheets allow for defining more complex mappings than only one-to-one
value mappings by expressions such as

@f_math.max(@self.weight/15 ∗ 255) + 13

However, again the mapping between a source data variable and a target visual attribute is not
explicitly modelled, leading to the same problems mentioned above.

Interactivity

Interaction with the graphic representation (LC-8) is possible with all languages except GSS, but
often in a very limited way. In other cases interactions cannot explicitly be modelled, but can only
be achieved by means of HTML or a general-purpose language such as JavaScript. Fresnel and
STOOG have a few concepts to model interaction, similar to the pseudo-selector classes of CSS.

78

4.3. RDF PRESENTATION LANGUAGES

red

ColorPublication
Type

green

yellow

IN
ST

A
N

C
E

 L
E

V
E

L
P

R
O

P
E

R
TY

 L
E

V
E

L

Book chapter

Journal paper

Workshop paper

Whitepaper
white

Figure 4.13: Visual mapping on the level of properties and classes (top) and on the level of instances
(bottom). While the latter could also be achieved by means of presentation or styling, the first cannot
be defined with existing RDF presentation languages.

For example, hovering is supported in Fresnel and STOOG. However, none of the languages allows
for modelling further, more visualisation specific interactions such as co-highlighting graphic
objects or highlighting neighboured nodes or edges of a node-link representation. More complex
behaviour, such as multiple views connected by linking and brushing interaction techniques
cannot be specified. Since visual mapping is often not modelled at all (cf. last subsection), this
is not surprising. REMM and UISPIN support the definition of editing instructions with their
languages, which could be seen as a kind of interaction with the generated graphic. In REMM,
hints can be given how to transfer edits of the visualised data back to the source data, and
UISPIN allows for the integration of SPARQL Update requests into the display definition.

Name G
SS

V
P

O
E

T

Fr
es

ne
l

R
E

M
M

T
al

4R
df

L
eT

L

O
W

L
-P

L

ST
O

O
G

U
IS

P
IN

Visual mapping (not only presentation) (-) - - - - - - - (-)
Interaction describable - (-) (-) (-) (-) (-) (-) (x) (-)

Table 4.18: Comparison of RDF display languages – Visual mapping and interactivity.

Language Paradigm

Only a few purely declarative (LC-9) RDF display languages exist. These include the style
sheet languages GSS and STOOG Graph Stylesheets as well as Fresnel and the Fresnel-based
REMM. In LeTL, only the selection of source data can be done declaratively using SPARQL,
while display information cannot be stated declaratively.

The other display languages, Tal4RDF, VPOET and LeTL have an imperative style (LC-10)
and describe how to turn data into a displayable document. Often code templates are used to
merge data and formatting code (LC-11). Tal4RDF, VPOET, LeTL and OWL-PL use templates
that combine fragments of the target platform code, containing the display information, with
the source data. All these template approaches offer branching (limited in VPOET) and

79

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Name G
SS

V
P

O
E

T

Fr
es

ne
l

R
E

M
M

T
al

4R
df

L
eT

L

O
W

L
-P

L

ST
O

O
G

U
IS

P
IN

Declarative x - x x - x* x** x x
Imperative - x - - x x - - -
— Templates - x - - x x x - -***

*) Data selection via SPARQL is declarative
**) Transformational (similar to XSLT)
***) »Templates« in UISPIN are not templates in the sense of a fragment of code used as a »mockup«, but still
modelled

Table 4.19: Comparison of RDF display languages – Language paradigm.

iteration constructs to process the templates. Since templates are fragments of code in a
concrete general-purpose language, the template-based approach does not allow platform-
independence (cf. Sect. 4.3.2). UISPIN also uses the terms templates. However, here templates
have a different meaning and the target platform code is not directly generated from code
fragments, but represented by an RDF model. In OWL-PL, templates resemble XSLT-templates.

Platform and Visual Structure Independence

Corresponding to the two dimensions of variability we described in Sect. 4.1.2, we distinguish the
language criteria platform-independence and visual structure independence, as we already did for
visualisation languages. As a third criterion, we examine whether the languages support multiple
visual structures and whether platform independence respectively visual structure independence
and multiple visual structures do exclude each other or not. After having compared all languages
by these three criteria, we discuss the platform and visual paradigm independent features of
Fresnel in more detail, since the abstraction of Fresnel will be subject to further discussion in
the following chapters.

Platform Independence Only a few of the languages in Table 4.20 are platform-independent,
that means, display definition can be defined without referring to a specific platform (LC-12).
Among these are the style sheet languages GSS and STOOG Graph Stylesheets as well as
Fresnel, which was designed to be reusable on multiple platforms.

In contrast, the added level of abstraction that platform-independence requires has inten-
tionally been avoided and criticised by the designers of other languages, such as OWL-PL and
VPOET, in favour of a less complicated or a more flexible approach. Hence, for the sake of
simplicity, platform independence is not targeted by the template approaches and display code
in the language of a concrete target platform is used instead.

UISPIN offers means of variability, but it does not aim at platform-independence. General
variability can be achieved by the SPIN template mechanism that allows for defining parameter-
isable prototypes and, thereby, serves modularity and encapsulation. Besides that, a plug-in
mechanism can be used by explicitly defining base components and insertion points. Although
UISPIN was not intended27 to be platform-independent, it is not limited to HTML and other
XML-based languages such as SVG can be described. Platform independence could be achieved
to a certain degree, whenever it is possible to describe some presentation information in an
abstract view – avoiding platform-specific tags – and refine this view for each target language.

27 Personal communication with Holger Knublauch by e-mail, 18.01.2011

80

4.3. RDF PRESENTATION LANGUAGES

Name G
SS

V
P

O
E

T

Fr
es

ne
l

R
E

M
M

T
al

4R
df

L
eT

L

O
W

L
-P

L

ST
O

O
G

U
IS

P
IN

Platform independence x - x - - - - x (-)
Visual structure independence (-) - x - - - - (-) (-)
Multiple visual structures/paradigms (-) (x) - - x x (x) - -
Shareability supported by language x x x x - (-) x x x
Extensibility of views - - x (x) (x) (x) x x x
Composability of views (x) - x x x x x - (x)

Table 4.20: Comparison of RDF display languages – Variability, shareability and composability.

Visual Structure Independence For the languages we examined, visual structure indepen-
dence (LC-13), i. e., the possibility to define display information independently from the visual
structure, can be found whenever platform independence can be found. In the case of Fresnel,
the authors explicitly state that they want the display information to be »visual paradigm
independent« and give the examples of nested boxes versus node-link representation. Presen-
tation information in GSS and STOOG is basically oriented towards the node-link paradigm,
but some settings, for example style settings, can be done independently of that as will be
described in more detail in the next paragraph. Finally, again, UISPIN could partly be used in
a visual structure independent manner (to the same amount as described above for platform
independence).

Multiple Visual Structures Multiple and arbitrary visual structures (LC-14) can always
be described by languages that extend a general-purpose language and create arbitrary text
output. However, if the output is limited to a specific language, the target language will
sometimes lack the power to describe certain visual structures. For example, if the output is
limited to (X)HTML, as it is the case for OWL-PL or VPOET, node-link-representations cannot
reasonably be represented. LeTL and Tal4RDF can render SVG as well and, thereby, have
this power. Among the declarative languages, only GSS allows for choosing between multiple
explicitly described visual structures (table vs. node-link). STOOG Graph Stylesheets implicitly
expects a node-link structure and Fresnel does (intentionally) not make any statements on visual
structure.

The possibility to describe multiple visual structures and visual structure independence
are two orthogonal criteria. On the one hand, some languages allow for the description of
arbitrary visual structures, while not being visual structure independent. On the other hand,
some languages do not describe any visual structure (e. g., Fresnel), but they allow for display
definitions that are visual structure independent. Similarly, in those cases where platform-
independence is achieved, this does usually not include a platform-independent description
of visual structures. Rather a specific visual structure such as node-link (e.g, STOOG) or
nested boxes (e. g., with the UISPIN HTML Vocabulary) is implicitly expected, or no explicit
statements on the visual structure are made at all, as it is the case with Fresnel.

Only one language very basically allows for making statements on the visual structure and
defining additional structure-independent display information at the same time: This is GSS,
since, although the dominant visual structure in GSS is clearly the node-link structure, there
is an exception to this – the layout setting allows for choosing between node-link and table
structure for parts of the graphic, while there are some settings being valid in the context of
both structures.

81

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

classLensDomain and in-
stanceLensDomain

define the set of resources to which a lens applies

showProperties and hide-
Properties

control what properties of the selected resource are displayed,
in what order

mergeProperties and alter-
nateProperties

handle cases of properties that should be displayed together or
used as fallbacks (irregularity of data)

Lenses used as sublenses specify what lens to use to show the value of a given property
(possible recursion)

Table 4.21: Overview of Fresnel’s browser- and visual-paradigm-independent presentation knowledge –
Selection and ordering. After Pietriga et al. [PBKL06a].

Platform and Visual Structure Independence in Fresnel
Before we continue the comparison of RDF presentation languages, let us have a closer look at how
independence of platform and visual structures is achieved in Fresnel, which strongly influenced
the work presented in thesis. The authors of Fresnel argue that the specification of presentations,
that they call presentation knowledge [PBKL06a], is defined by each ontology-based viewer,
editor or browser in a different manner. For this reason, although these applications share
many presentation definition needs, no reuse was possible between them. Fresnel is suggested
to be used as a common RDF presentation language to allow reuse and exchange between
tools with different audiences, different domains, and also very different architectures. The
Fresnel core vocabularies are independent of the »browser/application« and the »representation
paradigm« [PBKL06a]. Pietriga et al. state that the expression of more knowledge would cause
the vocabulary to loose this characteristic and suggest paradigm/application-specific extensions
to Fresnel. Hence, Fresnel introduces an additional level of abstraction. As a basis for discussing,
whether this abstraction is justified, we now have a close look at what is the exact part of
presentation definition that Fresnel abstracts.

First, we focus on the selection and structuring part of Fresnel. Table 4.21 gives an
overview of terms that are used for selecting and structuring RDF data, without being platform-
or visual-paradigm-specific. For each lens, which may be seen as a view, it can be stated
which properties of the data are to be shown and which are to be hidden. Also the order
of these properties in the presentation can be defined. Further, Fresnel offers a means to
loosely relate lenses to a set of resources by using the properties fresnel:classLensDomain and
fresnel:instanceLensDomain. Displaying, sorting properties and coupling lenses to resources are
independent of both the final platform and a concrete visual structure.

Merging and alternating properties is especially important due to the specific character
of RDF data, which possibly comes from various sources on the web and, therefore, may be
incomplete. Merging means summing up different property values under one heading. Alternating
means accepting multiple properties, however, only the first available will be presented. For
example, one source on the web may use a property located-in, while another uses has-location.
Again, this is a feature that has nothing to do with specific rendering, but can be defined equally
for all platforms.

Defining sublenses offers a general mechanism to select a special lens in the context of another
lens. This allows for displaying resources depending on which role they play. For example, a
person should not always be rendered in full detail, but sometimes, when the person is not the
main subject of interest, a summary is sufficient. This is a very general principle that is required
within many ontology-based UIs.

Second, we focus on the formatting aspects of Fresnel. Table 4.22 gives an overview of
terms that are used for formatting RDF data, without being platform- or visual-paradigm-
specific. Pietriga et al. refer to the formatting that Fresnel allows as »high-level, representation
paradigm independent«. Since a lot of formatting is passed to CSS style sheets, the remaining
formatting instructions are limited. Still, some instructions can be shared between platforms

82

4.3. RDF PRESENTATION LANGUAGES

propertyFormatDomain defines the set of properties to which a format applies
classFormatDomain and
instanceFormatDomain

define the set of resources to which a format applies

value controls how a property value is rendered (text, fetched image,
link)

label used to specify a human-friendly label for properties
content* (contentBefore,
contentAfter, . . .)

used to specify additional content to put before, after, or in-
between property values28

Table 4.22: Fresnel’s browser- and visual-paradigm-independent presentation knowledge – Formatting.
After Pietriga et al. [PBKL06a].

and visual paradigms: As with lenses, Fresnel offers a means to relate formats with resources
(here classes, instances and properties are possible). A further useful term is fresnel:value that
allows for defining how property values should be presented. For example, instead of displaying
a URL as text, the user may want to create a navigable link, or load the image at the URL
and display it directly instead. Independent of the final platform, all applications that display
text need to define human-readable labels that may be constructed from multiple parts of the
RDF data. For example, a common setting is to use rdfs:label, but display part of the URI, if no
rdfs:label exists. For some resources, also other identifiers may be made a label, e. g., for persons,
the forename and surname may be concatenated. Since these options depend on the purpose of
presentation, it makes sense to define them within the presentation knowledge. In Fresnel this is
done using fresnel:label. Sometimes there may be the need to display text that is not part of the
RDF data. The additional content can be added with the Fresnel terms fresnel:contentBefore,
fresnel:contentAfter, and fresnel:contentLast. This allows, for example, for defining once, for all
platforms that property values should be separated by a comma and finalised by a dot. Similarly,
also text to display in the case of a missing value can be defined.

Since the question of whether another level of abstraction can be justified also needs to be
asked for our visualisation approach, we discuss the pros and cons of the Fresnel abstraction
in more detail in the context of the Abstract Visual Model (Chapter 6). Having had a closer
look at Fresnel with respect to platform and visual structure independence, in the following we
continue the comparison of RDF presentation languages by the remaining criteria shareability ,
extensibility , composability as we all the construction of editors and the familiarity to users.

Shareability

All languages support sharing display definitions to a certain degree (LC-15), which is usually
realised by URIs, in contrast to the visualisation languages, where URIs are not used at all for
this purpose. The benefits for shareability of using RDF and URIs also drove the development of
Fresnel. Except for VPOET and STOOG Graph Stylesheets, all languages use URIs to identify
the created views, templates or lenses. In LeTL, sharing view definitions is supported, but can
only be done within the Less web platform and views may not be reused on other platforms.

Extensibility

All languages, except for VPOET and GSS, support some mechanism to extend existing display
definitions, instead of building them from scratch (LC-17). This can be done by inheritance of

28 Strictly speaking we could argue that here, a line-up of graphic objects (as it is the case with text) is the
required paradigm here, since otherwise no notion of before or after exists. However, since text is part of
almost every graphic representation, this feature is widely applicable for various visual structures.

83

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

lenses and calls to sublenses, as in Fresnel, or by calling templates within other templates as in
LeTL, OWL-PL or UISPIN.

Composability

All languages we compared, except for VPOET and STOOG Graph Stylesheets, supported at
least some means of composing existing view or display definitions (LC-18). For Fresnel and
REMM, composability can be achieved by the sublens mechanism, and, for the other approaches,
by calling named templates. The most explicit composition mechanism is provided by UISPIN,
which allows for the definition of plugins with insertion points. Since also queries are stored as
RDF, even they can be addressed via URI. For the two languages that also support some means
of visual mapping (GSS and UISPIN), composability does not apply to the visual mapping part.

Construction of Editors

In contrast to the visualisation languages from the previous section, open-source implemen-
tations of editors (LC-20) are available for all RDF display languages, except for VPOET,
REMM and UISPIN. Not for UISPIN, but at least for the main modules of SPIN, an API
is available under an AGPL license. An implementation of STOOG was not available at the
time of writing of this thesis. However, many of the languages do not have a restrictive
schema (LC-19) that could be used for deriving editors from it. Tal4RDF uses an EBNF
schema to describe valid expressions in its path selector language. UISPIN is restricted via a
set of SPIN rules and constraints that are evaluated by TopBraid Composer Maestro Edition.
However, for the time being, no other SPIN-aware systems exist that could use this language
schema. For editing OWL-PL, since it is only XSLT-influenced and not actually XSLT, only
XML-, but not XSLT-tools may be used. In REMM, lenses and profiles are used to overcome
the inability of pure OWL to prescribe a schema that can be used to create an editor for the
efficient creation of instances. We further discuss this in Sect. 4.4.

Familiarity to users

Only VPOET expects users to learn a completely new syntax for the purpose of display definition.
All other languages try to build upon popular languages users might already know, depending
on their background (LC-21). Fresnel aims at semantic web developers and is built upon RDF.
UISPIN counts on the familiarity of webdesigners with tags from markup languages such as
HTML or XML, but also on experiences with SPARQL for more complex settings. Tal4RDF
builds upon TAL, a template language that is supposed to be familiar to ZOPE users (ZOPE
is a python application server). Similarly, LeTL reuses the syntax of Smarty templates that
are well known to PHP developers. OWL-PL benefits from its close relation to XSLT as a
widely used XML transformation language. Finally, CSS, which is also familiar to web designers,
inspired GSS and STOOG. All these languages, just as the popular ones they are based on, are
not intended to be used by end-users directly, but rather by web developers and web designers.
For a few languages such as GSS, REMM, STOOG or LeTL, UIs for end-users exist that help
with configuring display definitions.

84

4.3. RDF PRESENTATION LANGUAGES

Name G
SS

V
P

O
E

T

Fr
es

ne
l

R
E

M
M

T
al

4R
df

L
eT

L

O
W

L
-P

L

ST
O

O
G

U
IS

P
IN

Restrictive, tool-usable schema - - - - (-) - (x) - (x)
Open-source editor x - x - x x x - -
Familiar to users x - x x (x) (x) (x) x x

Table 4.23: Comparison of RDF display languages – Construction of editors and familiarity to users.

85

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

R
es

ou
rc

e
di

sp
la

y

R
es

ou
rc

e
so

rt
in

g

R
es

ou
rc

e
fo

rm
at

ti
ng

C
on

di
ti

on
al

br
an

ch
in

g

L
o o

pi
ng

R
es

ou
rc

e
se

le
ct

io
n

A
tt

ac
hi

ng
pr

es
en

ta
ti

on
in

f.
to

re
so

ur
ce

s

G
SS

- styles matching nodes or edges
(arcs) define layout, stroke, fill,
shape..

- - by URI and
multiple other
specific selec-
tors

gss:matchNode,
gss:matchArc

Fr
es

ne
l

Fresnel Lenses Fresnel Formats;
hooks for CSS; accumu-
lated styles

- - Basic- (URI),
FSL- and
SPARQL-
Selector

:instanceLensDomain;
:classLensDomain;
:propertyFormatDo-
main ..

R
E

M
M

Fresnel Lenses Fresnel formats;
no CSS

- - only Basic Se-
lector (URI)

as Fresnel

V
P

O
E

T

embedded »VPOET macros« used for combined
display, sorting, formatting and rendering

(x) - by URI implicitly

T
al

4R
df

embedded templates used for combined display,
sorting, formatting and rendering

x x path-based
TAL Expres-
sion Syntax
(TALES)

implicitly

L
eT

L

URI or
SPARQL
result set

while display selection is separated,
templates are used for combined
sorting and formatting and render-
ing (LeTL inherits from the Smarty
Template Language)

x x SPARQL;
by URI

restriction to a class
possible

O
W

L
-P

L

embedded OWL-PL expressions (XSLT-inspired)
used for combined display, sorting, formatting and
rendering

x x OWL-PL
expressions
(extended
XPATH)

via extra Formatting
Ontology

U
IS

P
IN

SPARQL and conditional/looping tags are embed-
ded into (RDF-based models of) XML languages.
A display model is created first and then rendered.

x x SPARQL;
by URI

uispin:instanceView,
uispin:view;
resourceView

U
IS

P
IN

C
ha

rt
s

tabular SPARQL
result set
(spr:ResultSet)

XHTML and URLs to
display Google Charts
API are generated

as UISPIN

Table 4.24: Comparison of RDF display languages – Resource display/sorting/formatting and data
selection mechanisms.

86

4.3. RDF PRESENTATION LANGUAGES

4.3.3 Additional Criteria for RDF Display Languages

In the remainder of this section, we list additional criteria only applying to RDF display
languages.

Display, Sorting and Formatting of Resources Table 4.24 gives an overview of how the
examined RDF presentation languages handle the questions of (1) What resources to display?
(2) In which order? (Sorting) and (3) How should resources be formatted?

Looking at the first three columns, which represent these presentation steps, we note that
none of the languages separates all these steps. Some languages such as Fresnel/REMM and
LeTL separate some steps though. In Fresnel, selecting what to display and in which order is
performed by the »Lenses« and separated from formatting being the »Formats« task. Also in
LeTL, the choice of what to display is done in a previous step (SPARQL query) before going on
with formatting. GSS does not provide means to select subgraphs for display, but the whole
graph is styled unless parts of the graph are excluded using gss:display = none.

Conditional Branching and Looping Conditional branching and looping constructs can
be found in all languages, except for the declarative ones. VPOET offers very limited conditional
branching, though, and no looping.

Resource Selection Methods and Languages The basic means of selecting resources
(properties, classes or instances) is to address them by URI. Besides this, however, most of the
languages also support the description of selectors by means of a dedicated selection language.
While SPARQL is frequently supported (Fresnel, LeTL, UISPIN), some languages use own
expression languages, which are often path-based and inspired by XPATH (FSL used in Fresnel,
TALES used in Tal4Rdf and OWL-PL expressions). Path-based languages are often considered
a more concise or intuitive [Cha09] alternative to SPARQL, but may also coexist.

Attaching Display Information to Resources In the last column of Table 4.24, we
compare how presentation information is »attached« to the resources. This is an interesting
detail, since a similar mechanism is required for visualisation information as well.

While Fresnel and GSS select the resources in question by means of selectors that are attached
to the Styles respectively Lenses and Formats, in UISPIN, the opposite approach was chosen.
Here, a view can be attached to a resource, which may be a class or instance. For classes, it is
possible to attach views in two different ways in order to distinguish styling the instances of a
class from styling the class itself29. This is achieved by using the instanceView instead of the view
property. In the template approaches no explicit coupling between classes and styles is possible,
but data is referenced ad hoc within display descriptions. An exception to this is LeTL, which
allows for restricting templates to special classes. A further observation is that only Fresnel
allows for styling properties, i. e., making explicit statements on how relations should be styled.
This is interesting, since we aim at the definition of visualisation information per relation.

Details of Resource Display and Formatting

Table 4.25 offers more details for those readers interested in a detailed comparison of RDF
presentation languages. The criteria are again separated into display and formatting of resources:

Since RDF is a graph, cycles may occur and need to be handled somehow in order to obtain
a document structure. Fresnel turns the graph into an ordered tree for this purpose. Since
sublens relationships can cause infinite loops, this can be addressed by specifying a maximum
recursion depth. In GSS, there is no need to handle cycles, since the graphs spatial structure is

29 The problem of how to display instances having multiple types is not addressed here.

87

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

left as is and not turned into a document (tree) structure at all. Tal4Rdf restricts each node
to show up only once in the presentation and thereby avoids infinite recursion problems. For
the other languages, we could not find means of handling cycles explicitly. UISPIN and LeTL
seem to delegate this problem to SPARQL (a DISTINCT SPARQL result set cannot contain
the same statement multiple times).

The nature of RDF data, which could be gathered from various sources on the web, suggests
additional language features that we sum up as robustness improvements and property bundling.
Robustness aims at handling missing or redundant data. Fresnel allows for defining content
to be displayed if no value is available for a property as well as a list of alternative properties.
If the first property is not set for a given resource, the second best is taken and so on. Less
improves robustness on the system level by dereferencing URIs and downloading supplementary
linked data. However, robustness is not explicitly supported by the LeTL language.

Bundling properties goes beyond alternating properties, since the created »bundle« may
have its own formatting information. Fresnel supports this with its mergeProperties construct.
While not making this feature explicit, also Tal4Rdf and OWL-PL offer some support for
bundling properties. In OWL-PL, the »or« operator may be used in statements for the same
purpose. Tal4Rdf relies on reasoning for merging properties, however, the availability of a
reasoner cannot be assumed in all situations, especially in lightweight linked-data scenarios. In
the template languages and UISPIN, robustness and bundling may be partly achieved by using
if-then-else-statements. While this allows for great flexibility, it may suffer from the fact that
display code becomes verbose.

Specific language constructs for modifying labels and values explicitly can only be found
in Fresnel. Here it is possible to add presentation-specific labels and thereby override default30
labels or compensate for missing labels. Further, if there are multiple values for a property,
often iterating these values only for the purpose of concatenating them by »,« is necessary.

30 rdfs:label is evaluated by default.

C
yc

le
s

ha
nd

le
d

R
ob

us
tn

es
s

im
pr

ov
em

en
ts

P
ro

pe
rt

y
bu

nd
lin

g
(e

xp
lic

it
)

M
o d

ify
la

be
ls

(e
xp

lic
it

)

A
dd

co
nt

en
t

to
va

lu
es

(e
xp

lic
it

)

D
efi

ne
va

lu
e

re
nd

er
in

g
ty

pe
(e

xp
lic

it
)

C
SS

-s
up

po
rt

T
ar

ge
t

la
ng

ua
ge

GSS - - - - - (x) - (interpreted) interactive UI, DOT, SVG
Fresnel x x x x x x x -
REMM - - - - - x - -
VPOET - - - - - x HTML, also JS, CSS
Tal4Rdf x - (x) - - - x XML, other textual formats
LeTL x - - - - - x XML, other textual formats
OWL-PL ? - (x) - - - x XHTML
UISPIN x - - (x) (x) - x SVG, XHTML (extendible to other XML formats)
UISPIN Charts as UISPIN - - - - Google Widgets code (XHTML)

Display Formatting

Table 4.25: Comparison of RDF display languages – Details of display and formatting.

88

4.3. RDF PRESENTATION LANGUAGES

Again, only Fresnel allows for stating this concisely by language constructs (fresnel:contentBefore,
fresnel:contentLast). UISPIN offers similar support by allowing for the definition of specific
UI-templates to iterate over values or present useful labels. Some of these are already available
in the TUI31 extension.

Another feature only supported by the declarative languages is the definition of rendering
type for the values of a given property. Fresnel, but also GSS, allow for defining, whether
a URL of an image should be printed as text or the image located at the URL should be
displayed. Fresnel can also define that a navigable link should be created. REMM even extends
these capabilities and allows for defining hints on suitable widgets to edit the property’s values.

Most languages delegate style settings to CSS or use similar terms and accept values defined
in CSS. The latter is the case for GSS, for example.

Additionally, in the same table, the target language is given, unless the approach is
platform-independent. While GSS, Fresnel and REMM are not bound to any concrete platform,
the template approaches directly produce code in the target platform’s language. The code
generation can be aware of the languages schema, e. g., with XML as target language (UISPIN)
or XHTML (OWL-PL), but otherwise as arbitrary text (Tal4Rdf, LeTL, VPOET) loosing the
ability to statically validate the templates.

4.3.4 Conclusion – What Is Still Missing?
All the languages we compared in this section are languages for presenting data, i. e., turning
raw (graph) data into a human readable document format. However, none of them allows for the
explicit definition of visual mappings in a simple manner. We can further summarise that many
of these languages are not (fully) declarative and depend on a specific platform or a specific
visual structure. Composability, where available, does not include visualisation aspects. Besides
this, the lack of a formally described, restrictive schema often prevents the derivation of editors.

However, several lessons can be learned from the RDF presentation languages that have been
collected and analysed here, especially from Fresnel. Some of the RDF-specific aspects, such as
»resource selection«, »attachment of presentation information to resources« and »robustness in
an open web« are important for an RDF-based visualisation language as well and should be
considered in such a language. In Chapter 7, we discuss, whether building an extension to one
of the presentation languages mentioned here is sufficient to overcome their shortcomings or
whether a completely new language is required. Further, we also need to clarify, how presentation
and visualisation languages can be used in conjunction.

31 UISPIN component library. http://uispin.org/tui.html, accessed: 13.12.2015.

89

http://uispin.org/tui.html

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

4.4 Model-Driven Interfaces

A model-driven UI is a user interface that is at least in part generated from models. Additionally,
models may also be used at runtime to steer the behaviour of the UI. Constraints between model
elements may be turned into restrictions to guide the user. Model-driven UIs may be graphic or
non-graphic.

Many approaches for generating model-driven interfaces are based on technologies from the
(OMG’s) Metamodelling Technological Space; therefore, in the following, we first introduce model-
driven UIs that build on the »conventional and established« software modelling technologies
such as Eclipse Ecore (cf. Sect. 2.2.6). Then, in Sect. 4.4.2, we will turn to the ontology modelling
world and present approaches of generating UIs that use ontologies as models. Finally, in
Sect. 4.4.3, we review how both technological spaces may be used in combination.

We distinguish the terms Metamodelling Technological Space and Ontology Technological
Space in line with [WE09].

4.4.1 Metamodel-Driven Interfaces

We could find three main different types of generating UIs from models and metamodels: The
first category comprises graphical editors for graphical languages, such as those that can be
built with the Eclipse Graphical Modelling Framework (GMF). The second category comprises
textual editors that may contain graphical elements as well, but basically work on a textual
representation and offer autocomplete features to suggest valid choices. An example for this
category are text editors built with the EMFText framework. A third class of approaches allows
to construct models via standard GUI widgets such as selection boxes, radio buttons, text fields
and wizards, e. g., the Extended Editing Framework (EEF). These classes are not meant to be
fully disjoint.

Graphical Modelling Framework

The Graphical Modelling Framework (GMF)32 allows for building a graphical editor based on
a model of the domain and an additional description of tools and graphics of the editor. All
models in GMF are based on Ecore. The starting point is the Domain Model (cf. Fig. 4.15).
Additionally, models describing graphical elements and tools may exist. If they do not exist
already, GMF can help to derive them from the Domain Model. GMF distinguishes between
Figures, which can be any graphical element, such as Line or Rectangle, and Nodes, which
carry semantics such as Relation or InfoBox. After further refinement of the derived Graphical
Definition and Tool Definition, domain elements are mapped to the tools and graphics. This
information is stored in the Mapping Model. Finally, the GMF uses this Mapping Model to
automatically create a Generator Model that describes the diagram editor, and which can then
be used to generate platform-specific code.

EMFText

EMFText33 allows for defining a text syntax for Ecore-based metamodels. Based on the schema
of the language (concrete syntax and metamodel), EMFText generates editors, being built
around the concrete text syntax. These editors have autocomplete features that support writing
valid statements and when constraints are broken in spite of that warnings can be issued. By
this, the editor allows for guidance with respect to (and driven by) both the concrete and
abstract syntax definition.

32 http://www.eclipse.org/modeling/gmp/, accessed: 02.07.2015.
33 http://www.emftext.org, accessed: 02.07.2015.

90

http://www.eclipse.org/modeling/gmp/
http://www.emftext.org

Figure 4.14: Extended Editing Framework (EEF) – Editor without (top) and with EFF (bottom).
Images taken from http://www.eclipse.org.

Graphical	Defini�on
Model

Mapping	Model
Domain	Model

in	Ecore Combine Transform

Derive

Derive
Tooling	Defini�on

Model
Generator	Model

Diagram	Plug-in

Figure 4.15: Architecture of the Graphical Modelling Framework (GMF).

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

Extended Editing Framework

The Extended Editing Framework (EEF)34 extends the basic graphical Ecore editor that ships
with the EMF by more complex GUI elements than the generic tree representation. Instead, it
uses SWT/JFace GUI widgets such as selection boxes, sliders and wizards that can be integrated
with existing GUI components (also cf. Fig. 4.14). The choice of appropriate editing widgets can
partly be done automatically based on information from the metamodel (e. g., checkboxes are
chosen for booleans). It can then be refined manually.

4.4.2 Ontology-Driven Interfaces

In the ontology technological space, ontology-driven (cf. Sect. 4.1.2) interfaces have been de-
veloped for several purposes already, including the convenient filtering of resources but also
the editing of resources. In the following, we look at these cases in detail. A survey describing
ontology-enhanced35 UIs has been done by Paulheim and Probst [PP10]. They point out that
generating user interfaces from ontologies can be seen as a special case of the MDA.

Ontology-Driven Filtering Interfaces

For filtering and exploring data, the problem of ontology-driven UIs has been successfully
addressed by faceted browsing GUIs. These GUIs are always dynamically adapted at runtime,
based on both the data model and a model of the users browsing state. For faceted browsing,
the user does not need to have a-priory knowledge of the schema, but can start at any point
and is presented all remaining options visually and instantly.

One of the first approaches to faceted browsing of RDF data was Longwell developed in the
SIMILE project36. Further approaches have been compared by Delbru, Oren and Decker already
in 2006 [ODD06]. They also presented the faceted browser BrowseRDF [DOD06], which has
a high expressiveness with respect to various faceted browsing operators. An extension of the
faceted browsing paradigm by weighted filtering criteria has been done by Voigt et al. [VWPM12].

Ontology-Driven Editing Interfaces

The creation and editing of (visual) mappings we are interested in, can be seen as a specialisation
of the more general case of creating and editing ontological instance data. Therefore, in the
following, we have a close look if and how ontology editors create UIs for creating instance data
from the ontologies themselves.

OWL – Often abused for Prescriptive Constraints (Metamodelling) People who have
to model ontology instance data often expect UIs to help them by presenting the options at hand
and constraining them to »valid« choices. However, ontology constructs, such as domain or range
and restrictions on properties are not intended to be used in a prescriptive but only descriptive
manner [AZW06]. Holger Knublauch gives the following example for this common misunder-
standing in a discussion of the Semantic Web community on answers.semanticweb.com37:

34 http://www.eclipse.org/modelling/emft/?project=eef, accessed: 02.07.2015.
35 Ontology-enhanced [PP10] is a less strict concept than ontology-driven.
36 http://simile.mit.edu/wiki/Longwell, accessed: 02.07.2015.
37 http://answers.semanticweb.com/questions/2329/rifspin-needed-or-not-as-when-owl2-seems-sufficient,

accessed: 02.07.2015.

92

http://www.eclipse.org/modelling/emft/?project=eef
http://simile.mit.edu/wiki/Longwell
http://answers.semanticweb.com/questions/2329/rifspin-needed-or-not-as-when-owl2-seems-sufficient

4.4. MODEL-DRIVEN INTERFACES

»
Constraint checking is particularly useful for interactive editing applications,
e. g., validating user input on forms. Many people are (ab)using OWL for that
purpose, e. g., to set an owl:maxCardinality constraint to »ensure« that some prop-
erty can only take one value. However, doing this with OWL is usually technically
incorrect, because OWL would only infer new triples. For example, assume you
have maxCardinality = 1, and a resource has two values ex:Person1 and ex:Person2,
then an OWL engine will tell you that ex:Person1 and ex:Person2 are the same
object.

Holger Knublauch «
Also rdfs:range and rdfs:domain are often subject to confusion as stated in other discussions38:

»
For similar reasons in RDFS, things like rdfs:domain and rdfs:range – which masquer-
ade as constraints – are open to confusion. Saying that hasChild rdfs:range Person
does not mean that any value for hasChild should be typed as Person: OWA [Open
World Assumption] means that any value for hasChild can be automatically typed
as Person, even if the data is incomplete (if x type Person is not explicitly given).

User »Signified« «
The problem – or feature – behind these two misunderstandings described here, is due to the
fact that OWL makes the Open World Assumption (OWA) and no Unique Name Assumption
(UNA) [HPVH03]. Assuming an open world means that anything that is not expressed explicitly
is not known, while under a closed world assumption what is not expressed explicitly is assumed
to be either false or true, depending on defaults that can be stated. Assuming a unique name
allows reasoning that two entities with different names are two different entities while without
the UNA, as it is the case with OWL, two differently named entities may still be inferred to be
the same.

Both assumptions are reasonable when inferring new data in a web of open, heterogeneous
sources, where neither the completeness of data can be expected, nor can it be expected that
names are always chosen uniquely. However, in some situations assuming a closed world and
unique names may be beneficial, as already noted in [HPVH03]. We argue that editing data and
generating input forms is such as situation, since, when editing, the user adds elements referring
to his local portion of data. This is already implemented by some tools: For example, Ontology
editors such as the Protégé 3.x and TopBraid Composer interpret domain–range settings as
prescriptive constraints for the purpose of UI generation. Also class restrictions are evaluated
(even using basic reasoning) in order to constrain the available options offered for instance
editing. In TopBraid Composer, the user can override these settings by pressing a »Show all
types« button.

Having said that OWL is not intended to prescribe models, nevertheless, OWL allows for
defining some constraints that could be used for constraining UIs, even, when we assume the
normal interpretation (with OWA and without UNA). For example, it is possible to define
inconsistencies explicitly. This is a feature that can be used to check, whether the user’s choices
caused a contradiction. If an inconsistency occurs, the choice can then be denied.

Alternative Approaches to Modelling Constraints for Ontologies Defining prescrip-
tive constraints that could be used to derive editors is what metamodells (cf. Sect. 2.2.6) or
frames typically are used for. Interestingly, the older frame-based 3.x versions of Protégé allow for
the convenient input of instances in OWL, using editing forms that are automatically generated

38 http://answers.semanticweb.com/questions/1476/expressing-constraints-using-rdfowl-or-something-else,
accessed: 02.07.2015.

93

http://answers.semanticweb.com/questions/1476/expressing-constraints-using-rdfowl-or-something-else

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

from schema restrictions. This was possible, since here the OWL support was implemented
as a plugin on top of an ontology system that was based on frames and used a metamodel
to prescribe valid ontological models. In recent versions (starting from 4.x), Protégé does not
anymore inspect the ontology schema when it builds instance data editors. This was considered
inconsequent and misusage, since OWL is based on the OWA, as discussed above. Therefore,
now the user is not anymore restricted when editing instances and also values not belonging
to the domain of a property may now be selected. On the downside, this also means there is
no more guidance for the user. This results in more possibilities as needed and selecting useful
and probable values takes longer. As with textual command languages, problems arise for users
that do not know the schema in advance, i. e., they do not know which values can be inserted at
some given position, so they cannot search for them either.

To overcome these problems and close the gap of insufficient constraints for the description
of an RDF editors various solutions have been suggested. Rauschmayer and Kiesel introduced
the RDF Editing Metamodel (REMM; Sect. 4.3.1, [RK08]). Similarly, in [PENN07] »annotation
profiles« are used to annotate how to configure forms for editing RDF. As in REMM, besides
presentation information such as sorting and selecting parts of the ontology for editing, cardinality
and range constraints can be added. The important insight here is that there are situations,
where we do not want to constrain the underlying ontology, representing the world, but rather add
a layer of »complementary configuration mechanism to RDFS and OWL ontologies« [PENN07]
that applies only locally for editing purposes. A third approach to modelling constraints for
RDF data is taken by TopBraid Composer based on SPIN, which we briefly introduced in
Sect. 2.2.7. It can be seen as a complementary technology, designed to put (SPARQL-based)
integrity constraints and rules to ontological concepts. This allows for customised closed world
reasoning in addition to the use of standard (open world) reasoning for OWL. Also the general
interpretation of existing OWL RL constraints under a closed world assumption can be triggered
by transformation rules39.

As an example, assume that we want to configure editing tools for a personal management
ontology, and only men are working in our department. Using the aforementioned approaches,
we could add a constraint that allows only men to be chosen from all available persons in order
to accelerate the selection via the UI. This is in contrast to modelling such a constraint as
»general truth« in the ontology. Other complementary information for editing can be hints on
the preferred data types for strings or whether blank nodes should be created or not.

The approaches of REMM, annotation profiles and SPIN seem to support our idea that we
need an additional means of formulating constraints, compared to what OWL offers us, when
we want to define a schema for our RDF-based visualisation language in such a way that we can
derive tooling from it. We come back to this issue in Chapter 7.

4.4.3 Using the Metamodelling and Ontology Technological Space
in Combination

Many approaches to model-driven interfaces using technologies from the metamodelling techno-
logical space exist. However, we still want to benefit from the characteristics of the ontology
technological space. Therefore, combining both spaces has to be considered [PSA+12]. Two
main options can be distinguished: Transformation and Bridging . Simply transforming the
ontology once into Ecore-based models and metamodels, to work with these models from then
on, has limited flexibility. Changes to the underlying ontologies are not automatically available,
but only after rerunning the transformation. Furthermore, it is not possible anymore to use
open world reasoning on the models, once they are transformed. On the contrary, by bridging,
we refer to approaches, where we work with the original, not a transformed ontology. This

39 http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-sparql-using-spin.html,
accessed: 02.07.2015.

94

http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-sparql-using-spin.html

4.4. MODEL-DRIVEN INTERFACES

second approach aims at keeping the ontology accessible in the background as long as possible
(preferably also at runtime). Established (open world) reasoning services can be used on demand
to infer new explicit model constraints from the ones implicitly contained in the ontology. We
discuss in Sect. 8.1.3, what exactly are the benefits of this with respect to visualisation. In the
following, we briefly introduce three technical approaches to bridging and comment on their
applicability to our use case.

Bridging Technological Spaces with the Eclipse Ontology Definition Metamodel

The Eclipse Ontology Definition Metamodel (EODM)40 was the first implementation of the
ODM41 using the EMF with additional parsing, inference, model transformation and editing
functions. EODM was part of the IBM Integrated Ontology Development Toolkit (IODT) and
used the Eclipse EMF extension to drive this integration. The toolkit enabled users to load
an RDF-based ontology into EMF-based Java objects, in order to manipulate and infer the
EMF Java objects representing the ontology, and to serialise the objects in RDF/XML syntax.
Furthermore, it provided model transformations between RDF/OWL and other languages, such
as Ecore and UML.

Unfortunately, the EODM project was terminated and is not under development anymore
since 2008.

Bridging Technological Spaces with OWLText

OWLText42 [AEWW13b] is based on EMFText, which supports defining a text syntax for Ecore-
based metamodels and generating an editor for the defined DSLs. Thereby, EMFText already
bridges the grammar technological space and the metamodelling technological space. OWLText
additionally allows for using OWL expressions as integrity constraints in the description of a DSL
schema. The OWL expressions receive their semantics as integrity constraints by being embedded
into OWL Constraint Language (OWL-CL) expressions. This way, OWL-CL represents a second
bridge between the metamodelling technological space and the ontology technological space.

However, OWLText can only add additional constraints to existing structures that have
been modelled as (Ecore-based) metamodels before. That means, existing ontologies with their
constraints are not natively supported. Since work on OWLText completed after starting our
work, it has not yet been thoroughly investigated how easily OWLText may be extended into
this direction. Still this may be an option for future implementations beyond the prototype that
will be presented in this thesis.

Combining Technological Spaces with SPIN and TopBraid Composer

SPIN and TopBraid Composer can be seen as a further solution to combine technological spaces.
However, metamodelling is here enabled by means of the SPARQL-based SPIN-constraints and
SPIN-rules – not with Ecore. Standard OWL/RDFS-reasoners (ontology technological space)
and SPIN-constraints and -rules (metamodelling technological space) can be applied to the same
(RDF) models. This is realised by configurable chains of inference engines (Fig. 4.16). Each
inference engine can offer its inferred triples as input to the next engine.

The example of SPIN – bridging the ontology and metamodelling technologial space –
also demonstrates that we have to differentiate technical and technologial spaces: With this
approach no technical spaces have to be bridged – both the inference of SPIN (which breaks
down to SPARQL) as well as the OWL/RDFS-reasoning takes place in the same technical

40 http://www.eclipse.org/modelling/mdt/eodm/docs/articles/EODM_Documentation/#_Toc147228127,
accessed: 02.07.2015.

41 The ontology definition metamodel (ODM)[OMG09], developed by the OMG in 2009 defines
RDF(S)/OWL-based metamodels.

42 OWLText. http://www.emftext.org/index.php/OWLText, accessed: 23.11.2015.

95

http://www.eclipse.org/modelling/mdt/eodm/docs/articles/EODM_Documentation/#_Toc147228127
http://www.emftext.org/index.php/OWLText

CHAPTER 4. ANALYSIS OF THE STATE OF THE ART

space of RDF. In this thesis, we use this last approach in order to have the »best from both
worlds« available: Metamodelling and constraint checking with SPIN and standard RDFS/OWL
reasoning (Sect. 8.1).

Figure 4.16: Configuration of multiple inference engines in TopBraid Composer.

96

Chapter 5

A Visualisation Ontology – VISO

This chapter is based on work published in [VP11] and [PV13].

Although many terminologies, taxonomies and also a few ontologies for visualisation have
been suggested, there is still no formal, accessible and reusable knowledge representation
that covers the various fields of this interdisciplinary domain. For this reason, we developed
a Visualisation Ontology (VISO) from scratch, which is applicable for our ontology-driven
visualisation approach, but may be used in other visualisation systems as well. Machine-
readability and interoperability is achieved using well-established Semantic Web standards such
as RDF(S) [RDF04b] and OWL [OWL04].

VISO is a composite of seven ontology modules, each focusing on a different field of visu-
alisation. Fig. 5.1 gives an overview of these modules. The graphic module formalises terms
such as Graphic attribute and Graphic representation, VISO/data allows for characterising data
variables and structures, and VISO/activity is concerned with the human aspects of visualisa-
tion, i. e., tasks, actions and operations. VISO/system, VISO/user and VISO/domain allow
for describing the visualisation context and domain-specific facts. The facts module serves to
formalise visualisation facts, e. g., rankings of visual means that have been described in literature,
and makes this knowledge available to tools in a standardised, interoperable way.

For this thesis, the three modules graphic, data and facts will play the most import role.
Fig. 5.2 shows a subset of classes, instances and properties defined in these three modules and
illustrates how they are connected. The graphic module is shown in greater detail to provide an
idea of how resources inside a module are linked to each other. We show the subclass hierarchy
of the class Graphic relation1, which divides into Graphic attribute and Graphic Object-to-Object
relation. Also, concrete relations are modelled such as Containment as well as discrete and
continuous attributes such as shape (named) or saturation (in the HSL colour model). The data
module defines terms like Scale of Measurement, Data Structure and their subclasses. Finally,
the facts module provides properties to relate terms from other modules according to facts found
in the literature, e. g., in the rankings of expresiveness and effectiveness of graphic relations
by Mackinlay [Mac86a]. Due to space limitations, only a very small part of the data and facts
module can be shown in Fig. 5.2. As a concrete example of how the three modules are related,
look at the graphic attribute viso-graphic:color_hsl_saturation ➀. For saturation, it is stated by
means of the facts module ➁ that it can express data with an Ordinal Scale of Measurement ➂.

In the remaining sections of this chapter, we first introduce the methodology used for creating

1 Up to this chapter, we sometimes used the less technical visual means instead of graphic relation.

97

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

Figure 5.1: The Visualisation Ontology (VISO) is a composite of seven modules, each focusing on a
different field of visualisation.

the VISO ontology (Sect. 5.1) and define a set of requirements for the VISO ontology (Sect. 5.2).
After this, we discuss related work on visualisation models and classifications (Sect. 5.3) and
identify seven fields related to visualisation to which the existing approaches belong to.

For each of these fields, we review the existing literature, identify important terms and
discuss them in detail. Thereby, we extract and align visualisation knowledge from existing work
to formalise it and enter it into the VISO vocabulary. The discussion of the existing literature is
done in parallel with the description of the corresponding VISO ontology module (Sect. 5.5 – 5.8).

With respect to our approach of ontology-driven visualisation, VISO serves four purposes:
First, the graphic module formalises the concepts that we need to describe visual means within
the declarative mapping definitions that we introduce in Chapter 7. Second, the VISO/graphic
also precisely defines the terms and relations to be used within our Abstract Visual Model,
which we introduce in Chapter 6. Third, with the data module we can describe the properties
of data relations, as required to enable guidance for visualisation. Finally, using the facts and
empiric-facts modules, VISO represents a source of formal, machine understandable visualisation
knowledge that might be easily shared on the web.

The resulting visualisation ontology (VISO) we also consider a contribution on its own (C-2),
whose value is beyond the usage in our ontology-driven visualisation approach. Therefore, after
briefly summarising our results in Sect. 5.9, we give an outlook on possible future work based on
the ontology and point to additional usage scenarios (Sect. 5.10) and how we try to make VISO
an actually popular and agreed-upon shared vocabulary (Sect. 5.11). As it was our intention,
the ontology was built in cooperation and is already used in a second project.

98

F
ig

u
re

5.
2:

T
hi

s
di

ag
ra

m
in

tr
od

uc
es

so
m

e
of

th
e

te
rm

s
de

fin
ed

by
th

e
th

re
e

m
os

t
im

po
rt

an
t

m
od

ul
es

(g
ra

ph
ic

/d
at

a/
fa

ct
s)

an
d

sh
ow

s
ho

w
th

ey
ar

e
co

nn
ec

te
d

us
in

g
a

co
nc

re
te

ex
am

pl
e:

Fo
r

th
e

gr
ap

hi
c

at
tr

ib
ut

e
Sa

tu
ra

ti
on

(v
is
o-

gr
ap

hi
c:

co
lo

r_
hs

l_
sa

tu
ra

ti
on

)
➀

,
it

is
st

at
ed

by
m

ea
ns

of
th

e
fa

ct
s

m
od

ul
e

➁
th

at
sa

tu
ra

ti
on

ca
n

ex
pr

es
s

da
ta

w
it

h
an

O
rd

in
al

sc
al

e
of

m
ea

su
re

m
en

t
➂

.F
ur

th
er

m
or

e,
sa

tu
ra

ti
on

is
as

si
gn

ed
an

eff
ec

ti
ve

ne
ss

va
lu

e
fo

r
qu

an
ti

ta
ti

ve
da

ta
of

»6
0«

(o
n

an
or

di
na

ls
ca

le
)

➃
.O

W
L

an
d

R
D

F
S

C
la

ss
es

ar
e

co
m

pa
ra

bl
e

to
(y

et
no

t
th

e
sa

m
e

as
)

cl
as

se
s

in
ob

je
ct

-o
ri

en
te

d
pr

og
ra

m
m

in
g,

w
hi

le
O

W
L

in
di

vi
du

al
s

ca
n

ro
ug

hl
y

be
th

ou
gh

t
of

as
in

st
an

ce
s.

O
W

L
O

b
je

ct
an

d
D

at
at

yp
e

pr
op

er
ti

es
m

od
el

re
la

ti
on

s
an

d
at

tr
ib

ut
es

.
T

he
im

ag
es

ill
us

tr
at

in
g

fu
rt

he
r

ra
nk

in
gs

th
at

w
e

ca
n

fo
rm

al
is

e
w

it
h

th
e

fa
ct

s
m

od
ul

e
ar

e
ta

ke
n

fr
om

[v
E

02
,M

ac
86

a]
.

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

5.1 Methodology Used for Ontology Creation

As a process model for creating the VISO ontology, the METHONTOLOGY [FGJ97] was
chosen, which proposes to first set up requirements for the ontology, then acquire knowledge
from all available sources, build semi-formal documents (glossaries, taxonomies, verb tables,
concept tables, rule tables) and then do the actual formalisation. The requirements for the
ontology are listed in the next section. A glossary of terms was collaboratively created using
a wiki2 and online spreadsheets. We do not show the semi-formal (intermediate) results in
this document. However, for each term that was chosen to become part of the ontology, we
added rich annotations pointing to the quotations from the original sources that influenced its
definition (cf. Sect 5.11).

5.2 Requirements for a Visualisation Ontology

The requirements for VISO can be derived from general requirements we defined for the OGVIC
approach. In the following, we precisely list the requirements and comment on their justification:

VR-1 A great variety of visual means must be defined.

VR-2 Interactive visual means must be supported (e. g., highlighting of objects).

VR-3 The visual means have to be suitable for complex, linked objects.

VR-4 Visual means need to be defined at a fine granularity to allow for flexible composition.

VR-5 Visualisation knowledge needs to be provided.

A first group of requirements concerns the content and complexity of the ontology. Being domain
agnostic (R-6) and supporting interaction (R-3) requires us to formalise a large number of various
visual means (VR-1) including interactive ones (VR-2). Since we also want to have special
support for ontological data (R-4), we need to assure that those visual means are considered
that are suitable for visualising complex linked objects (VR-3). A flexible recombination of
visualisation components (R-8 and R-7) and the ability to independently vary various visual
structures used in a graphic (R-11), require a fine granularity (VR-4) of the visual means
described in the vocabulary. Finally, allowing domain experts as users of our visualisation
approach (R-12), requires us to provide formalised visualisation knowledge to be used by a
guidance system (VR-5). Examples of questions that have to be answered based on this
knowledge are: »Which combinations of graphic attributes are problematic with respect to
human perception?« Or: »Which visual means can I present to the user when she wants to
visualise symmetric relations?«

VR-6 Visual means need to be made explicit to allow for being referenced in mapping
definitions.

VR-7 The models must be formal and machine-processable.

VR-8 The models needs to be described independently of a specific platform.

VR-9 When formulating knowledge base facts, ontology terms need to be easily referenced.

2 http://www.mediawiki.org, accessed: 02.07.2015.

100

http://www.mediawiki.org

5.3. EXISTING APPROACHES TO MODELLING IN THE FIELD OF VISUALISATION

A second group of requirements concerns the technical aspects of the ontology. Since we aim at
using the VISO vocabulary to describe the »target side« of our explicit, declarative mapping
definitions (R-9), we also need to make visual means explicit (VR-6). Moreover, directly using
the defined visual means for a (guided) configuration of graphic representations (R-14, R-13
and R-15) requires us to store both the graphic vocabulary and the visualisation knowledge
in a formal, machine-processable and understandable way (VR-7). The criterion of platform
variability (R-10) enforces the description of visualisation terms and knowledge to be platform-
independent (VR-8) as well. To allow for mapping the specifics of ontologies (R-16), it has to
be simple to reference ontological terms within these rules (VR-9).

V0-1 The models should be easily accessible, preferably by the same technologies as the
data to be visualised.

Furthermore, the ontology should be easily processable by the same technologies as the data
being processed and should be easily shared and integrated with existing vocabularies from the
Semantic Web community (V0-1; optional requirement). This suggests building the ontology
in the widespread and standardised RDF-based Web Ontology Language (OWL) to avoid
technological gaps.

5.3 Existing Approaches to Modelling in the Field of Visu-
alisation

Numerous models have already been developed in the field of visualisation with different goals,
e. g., to classify and clarify concepts of the visualisation domain, to describe the visualisation
process and even to model knowledge for visualisation systems. Already in 1986, Mackinlay
started to formalise visualisation knowledge as LISP-rules [Mac86a]. Furthermore, there are
multiple taxonomies on visualisation stressing different aspects of it, such as interaction, tasks
or the characteristics of underlying data. In preparation of the VISO ontology, we compared a
broad corpus of articles from the field of graphics and visualisation, especially those already
suggesting terminologies, taxonomies and ontologies. The objective was to comprehend which
fields of visualisation are covered and whether an ontology already exists that could be reused
for our purposes. Further, we needed to understand what are the drawbacks of existing models
and to identify important work, which could serve as a basis for the VISO ontology.

For classification models, various level of formalisation are possible. Duke et al. [DBDH05]
distinguish the following three levels of formalisation for classifications: Terminologies intro-
duce concepts in a less structured, informal way. Taxonomies define concepts in a hierarchically
structured but mostly informal way. Ontologies are the most formal approach where concepts
and their relations are based on a shared meaning. Since we require a model that can be equally
processed and understood by humans and machines, a high level of formalisation is a critical
factor. However, although a few initial ontologies existed in the visualisation domain, they
did not cover our requirements (Sect. 5.3.2). Therefore, we extensively compare terminologies
and taxonomies as well, of which many are described in the literature of the last decades
(Sect. 5.3.1). Finally, we summarise other visualisation models (Sect. 5.3.3) whose main purpose
is not classification.

5.3.1 Terminologies and Taxonomies

In the domain of visualisation and related areas, numerous terminologies and taxonomies have
been developed with different goals, e. g., to allow for systematic reviews of existing techniques

101

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

and ideas. It is not possible to discuss them all in depth in this work, hence, Fig. 5.3 illustrates
the overall results of surveying 53 articles. An extensive comparison can be found in the
Appendix B.1. We distinguish the field of data and the domain of the data. Further, we refer to
graphic representation as the result of the visualisation process, which is synthesised using a
graphic vocabulary. We subsume the topics task and interaction as activity (cf. Sect. 5.8). The
fields user and system are about modelling the user and system context and how this benefits
the visualisation process.

From our survey, we discovered three findings. In Fig. 5.3-a, one can observe that most
classifications concentrate on data, graphical representation and activity. The other fields got less
attention and, thus, seem to be good future directions of research. Further, only few works try
to unify a broader spectrum of concepts of the interdisciplinary domain of visualisation, because
in most cases only one or two, sometimes three areas are tackled by a single work (cf. Fig. 5.3-b).
Finally, about 90% of the reviewed literature deals with terminologies or taxonomies and only
10% deals with ontologies, which we have a closer look at in the next section.

0%
10%
20%
30%
40%
50%
60%
70%

a) b)

0

5

10

15

20

1 2 3 4 5 6 7Da Do Vo Re Ac Us Sy

Figure 5.3: Statistical overview of reviewed literature (a) by fields they focus in general [Data (Da),
Domain (Do), Graphical Vocabulary (Vo), Graphic Representation (Re), Task and Interaction (Ta),
User (Us) and System (Sy)] and (b) by how many areas are covered within a single work.

5.3.2 Existing Visualisation Ontologies
In the following, we give an overview of existing visualisation ontologies and relate them to
our objectives. Based on a workshop held at the National e-Science Centre of Scotland in
2004 [BDD+04], Duke et al. advise to merge the existing visualisation knowledge fragments
by means of an ontology [DBD04]. They provide a vocabulary by which users and system
can communicate. It comprises only a small set of concepts and relations like data, visual
representation and task. Unfortunately, an implementation or a more detailed version of their
ideas are missing. Potter and Wright [PW07] took up the idea for the description of visualisation
resources with focus on hard- and software requirements. Their ontology is not accessible and
also misses a comprehensive overview. Rhodes et al. [RKR06] worked on an application to
categorize and store information about software visualisation systems. Although they state to
incorporate the concepts of Duke et al. [DBD04], the paper lacks a clear description of this
fusion. Further, the developed ontology schema is tailored to software visualisation, thus, the
work does not directly contribute to a domain-independent visualisation ontologies. The Visual
Representation Ontology that Gilson et al. [GSGC08] propose as part of their tool for automatic
visualisation, comprises properties of the entire graphic representation as well as attributes
of single graphic objects. While this work is promising in terms of formalisation, its focus
is narrow: Neither interaction or tasks nor the user are considered in this ontology. Finally,
Shu et al. [SAR08] created an ontology for visualisation, intended for the semantic description
of visualisation services. Based on the initial visualisation ontology [DBD04], as well as on
taxonomies proposed in [BCE+92] and [TM04b], their visualisation ontology mainly comprises
classes for modelling data and visualisation techniques. However, they did not consider concepts

102

5.4. TECHNICAL ASPECTS OF VISO

like user, tasks or interaction. Furthermore, the names of numerous classes (e. g., »EnS3« or
»A3_3T3«) are readable for machines but hard to understand by humans and hard to map to
existing ontological concepts.

5.3.3 Other Visualisation Models and Approaches to Formalisation

The visualisation process is a complex procedure involving many steps. Therefore, several
abstract models with different focuses were developed to allow for a better understanding of
this process. We discussed these models already in Sect. 2.1.4. The algebras for constructing
graphics as first suggested by Mackinlay [Mac86a] and later by Wilkinson in the Grammar of
Graphics [Wil05] are a further source of approaches to the formalisation of graphics. However,
unlike ontologies, they do not focus on the aspect of sharing knowledge and terminologies.
Tory and Möller [TM04b] proposed a high-level, model-based taxonomy unifying scientific and
information visualisation. Finally, the model of Brodlie and Noor [BN07] should be mentioned
here, which combines a set of aspects from other existing models.

5.3.4 Summary

We distinguished seven fields the existing work on visualisation can be associated with. Most
of the related work focuses only on few of these fields, while there is little work that tries to
unify all of them. Further, we found that most visualisation knowledge is stored informally in
terminologies and taxonomies and is not directly usable for computational reasoning.

First approaches of visualisation ontologies have emerged, but they do not sufficiently
subsume and align the knowledge that is already available in existing models and classifications.
Furthermore, they are not accessible to public. At the time of developing VISO, no other
ontology existed that fulfilled all our requirements: None of the ontologies covered all fields
of visualisation that we required to formalise for the OGVIC approach (data, graphic and the
formalisation of facts), while – at the same time – being formal enough for machine processing
and offering a fine granularity in the description of graphic elements.

Trying to tackle these shortcomings and build a new visualisation ontology, in the follow-
ing sections, after briefly discussing technical aspects of VISO, we systematically survey the
visualisation literature and discuss existing concepts and relations used by different authors.

5.4 Technical Aspects of VISO

We decided to provide the formalised graphic and visualisation knowledge in shape of an OWL23

ontology – the Visualisation Ontology (VISO). This choice was made to stay within the same
technological space [BK05] as the data that is subject to visualisation. The ontology does
currently not comply with the OWL-DL variant, but only with OWL-Full, due to the fact that
we need to specify properties of properties (which is not generally allowed in OWL-DL).

As an effort to reflect the fields of visualisation identified in the previous section, we split the
ontology into smaller parts for easier maintenance and, thereby, modularised the VISO ontology.
In Fig. 5.1, we already gave an overview of the seven modules we created to partition terms and
knowledge related to visualisation. We tried to create modules in a way that at least some of
the modules have no dependencies to other modules. Still, most of the modules are strongly
related to other modules.

In the following sections, for each module, we discuss contradicting terms, homonyms and
synonyms that have been used in the literature in detail. Additionally, we present the main
concepts we chose from the given field. Each term that we picked for formalisation in the

3 OWL 2 Web Ontology Language Document Overview (Second Edition) –
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

103

http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

VISO is briefly introduced in a text-box summarising facts such as the name of the resource,
its URI, its sub- and superclasses and a short description. A detailed documentation of the
ontology terms cannot be provided here, but is available by pointing a web browser to the
URI of the ontology (http://purl.org/viso/) or directly to the URIs of an ontology resource,
e. g., http://purl.org/viso/Graphic_Object.

For our approach to ontology-driven visualisation, mainly the modules graphic, data and
facts are relevant. Therefore, we describe these modules and the corresponding literature in
more detail, while only overviewing the remaining modules. We did not constrain ourselves to
these three modules, since the visualisation ontology was built to be a universal, comprehensive
ontology from the beginning. It was built in cooperation with another visualisation project with
a different focus, which also required to integrate the fields of human activity as well as the
consideration of user and system context.

5.5 VISO/graphic Module – Graphic Vocabulary

The VISO/graphic module formalises terms used in the graphics domain such as Graphic Relation
and Graphic Object . Types of Graphic Representation – as the final results of a visualisation
process – can also be described with the vocabulary. Throughout the section, we discuss
and describe terms that emerged in the context of graphical grammars and languages as
suggested by Mackinlay [Mac86a], Engelhardt [vE02], Wilkinson [Wil05] and Andrienko and
Andrienko [AA06]. In parallel, we present our choices of terms that we finally formalised as part
of the graphics module of VISO (introduced in text boxes). Fig. 5.4 gives an overview of the
most important classes of the graphic module.

viso-graphic:GraphicObj.ToObj.Rel.C viso-graphic:GraphicA�ributeC

viso-graphic:GraphicA�ributeDiscreteC viso-graphic:GraphicA�ributeCont.C

viso-graphic:N-AryGraphicO2ORel.C

viso-graphic:NamedGraphicA�ributeValueC

common-shapes:StarShapeI vg:RedI

viso-graphic:color_hsl_satura�onPviso-facts:shape_namedP

rdfs:range

viso-graphic:NamedShapeValueC

viso-graphic:GraphicRela�onC

Figure 5.4: Main classes in the VISO/graphic module including examples of instances of these classes.

104

http://purl.org/viso/
http://purl.org/viso/Graphic_Object

5.5. VISO/GRAPHIC MODULE – GRAPHIC VOCABULARY

5.5.1 Graphic Representations and Graphic Objects

Graphic Representation
http://purl.org/viso/graphic/Graphic_Representation

A graphic representation is the result of a visualisation process consisting of graphic objects
and their relations. Various subclasses allow for classifying graphic representations into named
classes such as Map, Table or Node-Link diagram (primary graphic representation types) or
Time Chart, Path Map (hybrid graphic representation types). Fig. 5.5 gives two examples of
graphic representations currently formalised in VISO by showing concrete instances of a treemap
and a time chart that have been developed in the research community. Further examples of
popular graphic representations are dot plots, bar charts and pie charts.

Superclasses: viso-graphic:Graphic_Object
Subclasses: viso-graphic:Hybrid_Graphic_Representation, viso-graphic:Primary_Graphic_-
Representation, . . .

A Graphic representation is the result of the visualisation process. In line with Engelhardt, we
distinguish Primary graphic representations (e. g., Map, Table, Node-link diagram) and Hybrid
graphic representations (e. g., Chronological link diagram) [vE02]. We consider Primary graphic
representations to be useful concepts that should appear in VISO, because users are comfortable
with these terms and will watch out for common terms like Map. However, it is not clear if
further named classes, such as those described by Engelhardt’s hybrid graphic representations,
make sense, since a combinatorial explosion of such classes will obviously happen for further
specialisations. Also some of the Visual Structures listed by Card [CMS09] such as Pie charts
or Cone trees can be referred to as subclasses of graphic representations according to this
terminology, while he also lists techniques such as Overview+detail that we cannot subsume as
graphic representations. Following Mackinlay [Mac86a], we permit graphic representations to be
assigned a value of expressiveness, effectiveness and appropriateness with regard to a certain
data type. We come back to these criteria in the section on facts and rankings (Sect. 5.7).

Graphic Object
http://purl.org/viso/graphic/Graphic_Object

Graphic objects are the parts that make up a graphic representation. They have values for the
Graphic Attributes and may be related to other graphic objects via Graphic Object-to-Object
Relations. Since Graphic Representations are (composite) graphic objects as well, they can
recursively be used to build more complex representations.

Subclasses: viso-graphic:Composite_Graphic_Object, viso-graphic:Elementary_Graphic_-
Object, viso-graphic:Graphic_Representation

Following the composite pattern [GHJV94], a graphic object may be an elementary graphic object
or a composite graphic object , according to Engelhardt [vE02]. A composite graphic object is
defined as »a graphic object that consists of a graphic space, a set of graphic objects that are
contained in this graphic space, and a set of graphic relations in which these contained graphic
objects are involved«. Engelhardt further states that graphic objects carry the visual attributes
such as size, shape and colour . He sees graphic representations as special composite graphic
objects, which allows for recursion. Thereby, not only elementary graphic objects such as

105

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

(a)

(b)

Figure 5.5: Examples of graphic representations: a) Early treemap (taken from the orginal paper on
treemaps by Johnson and Shneiderman [JS91]). b) SIMILE Timeline showing events related to the
death of John F. Kennedy (http://www.simile-widgets.org/timeline/, accessed: 02.07.2015).

106

5.5. VISO/GRAPHIC MODULE – GRAPHIC VOCABULARY

areas or lines4, but also composite graphic objects can carry attributes. Bertin uses the term
marks [Ber83], however, this term seems to refer rather to the role that an object plays in a
diagram. Therefore, we decided to use the term Graphic object in VISO.

5.5.2 Graphic Relations and Syntactic Structures

We use the term graphic relation5 to refer to the things that we can vary in a visualisa-
tion including attributes such as colour and relative relations between graphic objects such
as containment . Bertin used the term visual variable for this [Ber83]. Mackinlay puts a
basis set of primitive graphical languages that consists of positional language categories such
as single position and apposed position and the retinal variables list, but also of the cate-
gories map, connection (trees, networks) and misc (pie charts, Venn diagrams). However,
when we consider that both attributes and complex, n-ary spatial relations can be used to
visualise data, terms like variable or language seem misleading to us. Visual variable could
also be confused with visual attribute. Also the terms perceptual tasks [CM84, Mac86a] and
visualisation primitives [AA06] we consider problematic, since they may be mixed up with the
users tasks or elementary graphic objects. We, therefore, use graphic relation instead.

Graphic Attribute
http://purl.org/viso/graphic/GraphicAttribute

Graphic attributes represent inherent attributes of graphic objects such as colour , size
and shape. These attributes can be distinguished from relations between graphic objects
(viso-graphic:GraphicObjectToObjectRelations). In addition to the graphic attributes them-
selves (e. g., viso-graphic:color_named, possible named values such as viso-graphic:Red and
viso-graphic:Green or viso-graphic:Bright and viso-graphic:Dark for lightness are stored in the
graphic module.
Examples of graphic attributes that are currently formalised in VISO are given in Fig. 5.6.

Superclasses: viso-graphic:GraphicRelation
Subclasses: viso-graphic:GraphicAttributeContinuous, viso-graphic:GraphicAttributeDiscrete

Graphic attributes are properties of graphic objects and represent their inherent characteris-
tics such as colour , size and shape. Following Engelhardt, we distinguish graphic attributes,
which characterise a graphic attribute in a graphic space, and relations between graphic ob-
jects, which will be described below. Various variants of the term graphic attribute have been
used in literature for similar, yet often not identical, concepts: Bertin introduced the term
retinal variables for properties to which the retina is sensitive independent of the movement
of the eye: size, saturation, texture, colour , orientation, shape. Other categories of Bertin are
positional and temporal variables. Later authors reused this classification [Mac86a, Maz09].
Similarly Engelhardt classifies visual attributes into two groups: spatial attributes and area-fill
attributes [vE02]. He describes the difference as follows: »If we would regard every point of a
graphic object as being anchored to its location in graphic space, then varying a spatial attribute
of the object would alter this anchoring, while varying an area-fill attribute of the object would
not alter this anchoring.« Andrienko and Andrienko again use the term retinal variables that
they see as »internal, individual properties of marks« and distinguish them from dimensions

4 Lines – from a perception point of view – cannot actually be 1-dimensional, but must be thin areas too, in
order to be visible.

5 Up to this point, we sometimes used the less technical visual means instead of graphic relation. The
remainder of this thesis will use the terms defined in VISO.

107

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

(a) Colour (named). (b) Shape (named). (c) Texture (named).

(d) Hue (HSL). (e) Saturation (HSL). (f) Lightness (HSL).

Figure 5.6: Examples of graphic attributes defined in the VISO/graphic module. a–c are examples
of discrete »named« attributes, i. e., they will point to fixed values that are stored as resources in
the ontology as NamedGraphicAttributeValue, e. g., viso-graphic:Red. Subfigures d–f show examples of
continuous attributes, which point to a value that can be stored as an RDF literal.

108

5.5. VISO/GRAPHIC MODULE – GRAPHIC VOCABULARY

which they describe as »containers for marks«. Not only spatial position, but also time plays an
extra role among the visual attributes, since both are physical dimensions or spatial attributes.
Although time is often less discussed, already Bertin introduced temporal relationships and gave
animation as an example. Besides using time as another physical dimension, it can also be used
in attributes such as flicker frequency .

Finally, it is important to note that some of the graphic attributes have multiple dimensions, or
are bundled (as Wilkinson [Wil05] calls it). Position belongs to this category of attributes (three
spatial dimensions) but also colour may be seen as having multiple dimensions that span a colour
space (e. g., hue, saturation, lightness or red, green, blue). In VISO/graphic, we model each of
these dimensions as a separate property, i. e., we have three properties viso-graphic:color_hsl_hue,
viso-graphic:color_hsl_saturation and viso-graphic:color_hsl_lightness.

For graphic attributes that can take continuous values from a specific value range, the
(maximum) value range can be stated using viso-graphic:max_value_range, which is neces-
sary to enable default value mappings (Sect. 7.7). For example, VISO/graphic defines that
viso-graphic:color_hsl_lightness can range between »0« and »100«.

Graphic Object-to-Object Relation
http://purl.org/viso/graphic/GraphicObjectToObjectRelation

The class of all properties that are visual relations between complex objects. Visual relations
build visual (syntactic) object-to-object structures.
Examples of (elementary) graphic object-to-object relations that are currently formalised in
VISO are given in Fig. 5.7 (a–i).

Superclasses: viso-graphic:GraphicRelation
Subclasses: viso-graphic:BinaryGraphicO2ORelation, viso-graphic:N-AryGraphicO2ORelation

viso-graphic:GraphicObjectToObjectRelation is a second subclass of viso-graphic:GraphicRelation
besides viso-graphic:GraphicAttribute, cf. Fig. 5.4). To explain the origin of this concept, we
now have a close look at the aforementioned »set of graphic relations« and the resulting
graphical syntactic structures, as Engelhardt calls them [vE02]. Since he distinguishes spatial
and area-fill attributes, he introduces spatial syntactic structures and attribute-based syntactic
structures. He further distinguishes structures of relations in-between graphical objects and
between graphical objects and graphical space. Structures involving object-to-object relations
are, for example, spatial clustering , linking , containment and superimposition. Card calls them
topological structures [CMS09]. An example for a structure involving object-to-space relations
is a coordinate system that spans a metric space.

Andrienko and Andrienko’s dimensions are similar to Engelhardt’s spatial syntactic structures.
They are concerned with everything that provides a position. This includes physical dimensions,
but also various arrangements of the display space. Examples of arrangements are node-link-
structures and discontinuous tables that resemble Engelhardt’s spatial object-to-object structures.

The treatment of graphic relations and spatial structures is the field where we encountered
the most diverging approaches. Engelhardt’s description of object-to-object and object-to-space
structures as well as the consideration of both attribute- and spatial-relationships covers all
our use cases and uses coherent terms. For this reason, we picked his terms for reuse in
VISO to a large extent, including the notions of object-to-object relations, which we model as
viso-graphic:GraphicObjectToObjectRelation.

In Fig. 5.7, besides the elementary graphic object-to-object relations (a–i), the subfigures
j–l show further relations between graphic objects, which are more complex and need to be
composed from elementary relations. For example, labelling needs to be »realised« using a
connector or drawing the label (relatively) close to the labelled object as shown in the figure.
Also building and co-highlighting include elementary relations or attributes such as line-up,

109

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

position and colour. The formalisation of the exact relation between elementary and »composite«
graphic relations is subject to further research. For example, currently VISO does not allow for
specifying how labelling should be realised. This may cause interactions with graphic relations
chosen in other mappings.

5.6 VISO/data Module – Characterising Data
The goal of visualisation is the representation of data; therefore, data has early been considered
an important aspect to classify visualisations. Most of the models and classifications from
Sect. 5.3 are considering data. Several classifications of »data types« describing data sets were
used in the past decades. One of the most prominent classifications in this research area is
the »Task by Data Type Taxonomy« by Shneiderman [Shn96]. He distinguished between 1-,
2-, 3-dimensional, temporal, multidimensional, tree and network data; which is an abstraction
from reality, because many variations of them are possible (e. g., multitrees). Keim [Kei02]
suggested six data types with some overlap with Shneidermans classification but adding the
categories Text and Hypertext and Algorithms and Software. Unlike Shneiderman and Keim,
Heer et al. [HHC+08] are considering data from the perspective of the user. They are categorising
three kinds of data: personal, community and scientific data.

Also in our approach, the characterisation of data plays an important role and is essential to
allow for the effective suggestion of visual means and the correct calculation of visual mappings.
Unfortunately, no mature ontology on data characteristics exists that could be reused. An initial
approach that we found was described in the article »Towards an Ontology of Fields« [KV98],
for which no implementation is available though. Many of the approaches we listed above suggest
a simple classification of data types. We take a different approach and characterise and classify
data by multiple facets, which are presented in this section.

In the following, we discuss the field of data in more detail, starting with the structure
of data and its properties. Following this, we examine characteristics of data variables. The
most important characteristic of a data variable in the context of this thesis is the scale of
measurement. Additionally, for completeness, we discuss properties of data variables in the
context of statistical data. Finally, we present data-related ontologies that have been integrated
with VISO or could be integrated in future.

5.6.1 Data Structure and Characteristics of Relations

Data Structure
http://purl.org/viso/data/Data_Structure

Describes the structure that is formed by a relation. For example, the »part-of« relation will
form a Directed Acyclic Graph (DAG), while the »knows« relation will only form a (general
directed) Graph. Some relations will only form sequences without branching. Not every relation
forms a linked structure. For some cases, e. g., »age« or »lives in« the data will only consist
of a set of tuples.

Subclasses: viso-data:Graph, viso-data:DAG, viso-data:Tree, . . .

Data can be characterised by the relational structures6, for instance, a sequence, a tree (cf. Fig. 5.8)
or another possibly cyclic un-/directed graph. Besides the type of the structure, its properties
including planarity, average degree of fan-in and fan-out and the existence of disconnected

6 We refer to discrete mathematical structures in VISO, not to the corresponding structures and data models
used in computing such as arrays or lists.

110

(a) Linking (Undirected). (b) Separation (Unordered). (c) Spatial Clustering.

(d) Superimposition (Z-Axis). (e) Containment. (f) Line Up (Unordered).

(g) Adjacency. (h) Proportional Division. (i) Proportional Repetition.

(j) Labelling. (k) Building (Y-Axis). (l) Co-Highlighting.

Figure 5.7: Overview of graphic relations. The first three rows (a–i) are elementary graphic-object-to-
object-relations, while the last three examples represent already composed graphic relations. Also for
case i (proportional repetition) it could be argued that it is (typically) composed with a line-up.

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

rdf:PropertyC

viso-data:Scale_of_MeasurementC

viso-data:TreeC

viso-data:Ordinal_SoM.C

viso-data:Data_StructureC

viso-data:Nominal_SoM.Cviso-data:GraphC

viso-data:SequenceC

viso-data:Quan�ta�ve_SoM.C

viso-data:can_form_structureP

viso-data:has_scale_of_measurementrdfs:range

rdfs:domain

"true"^^xsd:string

has	viso-data:planar

Figure 5.8: Main classes in the VISO/data module.

subsets [Spe07] can be described. Furthermore, characteristics of relations may be described
such as whether the relation is reflexive, symmetric or transitive. These characteristics can
already be stated in OWL. Another characteristic is the arity of a relation and whether a relation
is weighted or not. Since RDFS does not allow for modelling n-ary relations directly, an n-ary
relation pattern (cf. Sect. 6.3) has to be used. In statistical data, derived from measurements
and surveys, data structure often plays a subordinated role. To provide for the high arity of the
involved relations, data is often stored in a »tabular« model rather than in a graph.

5.6.2 The Scale of Measurement and Units

A (raw) data value, e. g., gained by observation, generally complies to a scale of measurement,
which has to be available when it comes to interpreting the data [VW93]. Scales of measurement
are important for visualisation purposes, since they determine the mathematical operations on
the data. Similarly, if a unit belongs to this scale it becomes inherently connected to the values.
This extrinsic information on units and scales of measurement can be stored as metadata [Wil05],
which can conveniently be realised for RDF data. For tabular data, stored in spreadsheets or
relational databases, often only the attribute names (the column headers) and basic data types
are stored along with the raw data, while information on the scale of measurement or units
has to be requested from the user during visualisation (e. g., Tableau and SPSS Viz Designer
proceed like this, cf. Sect. 4.1.1).

Scale of Measurement
http://purl.org/viso/data/Scale_of_Measurement

The Scale of Measurement describes data (variables) by defining the possible mathematical
operations that can be meaningfully performed on the data values. While the most frequently
used scales are the nominal, the ordinal and the quantitative scale, other scales can be defined
that refine the scales (e. g., we can refine the quantitative scale into interval and ratio) or to
add domain specific criteria (e. g., a quantitative geographic scale).

Subclasses: viso-data:Nominal_Scale_of_Measurement, viso-data:Ordinal_Scale_of_Mea-
surement, viso-data:Quantitative_Scale_of_Measurement, viso-data:Unstructured_Scale_-
of_Measurement

112

5.6. VISO/DATA MODULE – CHARACTERISING DATA

While we did not yet integrate ontologies for units (cf. Sect. 5.6.3), VISO can already be used to
characterise the used scale of measurement, which we discuss in the following. Wilkinson [Wil05]
distinguishes two possible approaches of classifying scales:

The first classification is based on Stevens’ basic work on axiomatic scale theory [Ste46]. He
defined four different types of scales based on the operations that are allowed on the values.
These types are nominal, ordinal, interval and ratio. Combining the latter, Ware [War04] and
Mazza [Maz09] are considering categorical, ordinal and quantitative data values. Stevens scales
were detailed again by Card [CMS99] who added spatial (Qs), similarity (Qm), geographic (Qg)
and time (Qt) quantitative scales. When calling them time quantitative or spatial quantitative,
Card describes the domain of the scales of measurement. Also Engelhardt [vE02] considers
relations of physical order and physical distance. The need for other than Stevens’ scale types has
been realised in the field of geography [Chr95] and by Marks [Mar74] who defined many more
scale types. Prytulak [Pry75] criticises that every operation introduced, leads to another scale
type and, consequently, the number of scale types is arbitrary. However, the general usefulness
of scale types to classify variables is mostly not doubted [KS93].

As a second classification, Wilkinson differentiates between base unit classes (e. g., length,
mass, time, temperature), secondary unit classes that are derived (e. g., area, volume, density)
as well as dimension-less scales of measurement. Base and secondary unit classes follow The
International System of Units (SI) [TT01].

While adopting Steven’s well-known scale types, we modelled the domain of the data
separately as an orthogonal facet. Base unit classes could be integrated from existing vocabu-
lary (cf. Sect. 5.6.3).

5.6.3 Properties for Characterising Data Variables in Statistical Data

In this subsection, we compare the literature concerning various means of characterising data
variables in statistical data sets. The visualisation of statistical data is not in the focus of this
thesis, where we aim at supporting the visualisation of models and knowledge as represented by
our case studies. Since modelling data sets and data variables is not a prerequisite for the OGVIC
approach, VISO/data does not provide stable modelling solutions for the concepts discussed in
this subsection. Furthermore, in 2014, the RDF Data Cube Vocabulary7 was published, which
serves exactly this purpose and is compatible with SDMX (Statistical Data and Metadata
eXchange)8, a standard for sharing statistical (meta) data. Since many existing visualisation
approaches focus on statistical data and also the results of measurements and surveys may be
published as Open Data in RDF, the VISO/data module should be aligned with the RDF Data
Cube Vocabulary. This is something that we consider as future work.

In the following, we introduce basic terms for the characterisation of data variables in statisti-
cal data using the well-known tabular representation for this kind of data. Fig. 5.9 illustrates the
tabular model at the example of measurement data: A data set (the table) is a set of data records
/ objects [AA06] (the table rows) in turns consisting of data values / characteristics [AA06] (the
cells). It has data variables (the table columns) that we varied, the independent variables (to
the left), and variables that we measured, the dependent variables (to the right; cf. [KV98]).
Some authors simply use the term object instead of data record and characteristic instead of
data value (e. g. [AA06]). The column headers often contain metadata such as units besides the
name of the variable.

Independent and Dependent Variables In mathematics, variables are considered input
to functions. In line with this view, Andrienko and Andrienko [AA06] see the whole data set as a
function between independent variables, the input that is varied when we measure, and dependent

7 RDF Data Cube Vocabulary, W3C Recommendation. http://www.w3.org/TR/vocab-data-cube/,
accessed: 10.11.2015.

8 Statistical Data and Metadata eXchange. https://sdmx.org/, accessed: 10.11.2015.

113

http://www.w3.org/TR/vocab-data-cube/
https://sdmx.org/

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

Place Time Water-level	(m) Temp.	(°C)

Dresden 4pm 8

Berlin 2am 10 20

Independent	Variables /	
Referrers

Dependent	 Variables /	
Attributes

Data	Record	/	
Object

Hamburg 4am 5

20

Reference

Data	Value	/	Characteris�c

18

Metadata

Figure 5.9: Tabular data model – Overview of terms used to describe tabular data.

variables, the output that is measured. Independent variables, are also called referrers [AA06]
or properties of the domain [KV98]. The combination of all values of the independent variables
is called a reference. Dependent variables are also called attributes [AA06] or properties of the
range [KV98]. Two variables (dependent or not) may correlate, e. g., foot-size will correlate with
shoe-size. Variables that have formerly been varied (as independent) can also be interpreted as
dependent and the other way round [AA06]. Therefore, we suggest to model dependency as an
exchangeable role of data variables in the context of a given data set.

Dimensionality Dimensionality is often seen as the number of all variables in a data set
(both independent and dependent), since the term dimension is used synonymously with vari-
able/attribute [Kei02, TM04b, Maz09]. Similarly, the term multi-dimensional is sometimes used
synonymously with the term multivariate [YWR03]. However, for Santos [San04] dimensionality
refers only to independent variables, not to all the variables – consequently he distinguishes
multi-dimensional and multivariate data: Multi-dimensional data has multiple independent
variables [San04, AA06] while multivariate data has multiple dependent variables [San04]. A
varying meaning of dimensionality has also been noticed by Tory and Möller [TM04b]: They
realised that, in their own taxonomy, dimensionality means »number of independent variables«
when used in the context of continuous models while for discrete models it means »number of
dimensions in total«. To shift around these different interpretations we speak of dimension-
ality of independent variables vs. dimensionality of dependent variables similar to Kemp and
Vckovski [KV98].

While the dimensionality of a data set is an important criterion to describe sets of mea-
surement data, we generally expect Linked Data sources to describe highly dimensional data.
Adding more »variables« (i. e., more properties) to a selected subset of Linked Data is expected
to be the normal case.

Continuous vs. Discrete Andrienko and Andrienko [AA06] distinguish continuous and
discrete referrers and attributes. However, they do not state that a variable is continuous per
se, but that an attribute is continuous with respect to some referrer. As a prerequisite for a
continuous attribute, this referrer has to be continuous as well. An attribute is discrete, if there
are only characteristics for a countable number of references possible; otherwise it is continuous.
This can be aligned with Tory and Möller’s [TM04b] view who understand continuity as a
property of the model of data in the users mind, not as an intrinsic property of data itself. We
would like to adapt this notion of continuity in future versions of VISO. One option could be
to model continuity as a role of a data variable with respect to other variables, similar to the
modelling of dependency.

114

5.7. VISO/FACTS MODULE – FACTS FOR VIS. CONSTRAINTS AND RULES

Integration of Data-Related Ontologies

To a certain extent, existing ontologies on data have been integrated: The XML Schema
Part 2 [BM04] defines primitive data types (e. g., byte, data, integer, sequence) and gives a
mechanism for deriving further user-defined types. Beyond that, as early as in 1994, Gruber and
Olsen [GO94] worked on the EngMath ontology, a shared notation for mathematics formalising
physical quantities and dimensions. Multiple ontologies exist that are concerned with units —
we only consider two recent ones from 2009 in more detail: The first is the Quantities and Units
of Measure Ontology Standard (QUOMOS) by OASIS [OAS09], which aims at specifying the
basic concepts of quantities, systems of measurement units, and scales based on the SI [TT01].
The other, the Quantities, Units, Dimensions and Data Types in OWL and XML Ontologies
(QUDT) by TopQuadrant and NASA [MHK10] follows similar goals and is already fully specified
in OWL; therefore, it could be well integrated with VISO.

5.7 VISO/facts Module – Facts for use in Visualisation
Constraints and Rules

Many constraints, rules, and recommendations have been proposed in visualisation literature
in order to help visualisation designers in finding not only possible, but the most appropriate
visualisations for their purpose. These rules can be found in the early work of Bertin [Ber83],
Tufte [Tuf83], Few [Few04], Cleveland and McGill [CM84], and Mackinlay [Mac86a]. We split
the overall set of visualisation rules into four parts that we discuss in the following sections.

First, following Mackinlay’s [Mac86a] definition of visualisation criteria, we distinguish
statements on the expressiveness (Sect. 5.7.1) and effectiveness (Sect. 5.7.2) of graphic relations
and their values. Besides these constraints, more complex rules have to be considered if we want
to use multiple visual mappings in combination, as already noted in [SI94]. Therefore, we add a
third section on rules concerning the composition of graphic relations and graphic representations
(Sect. 5.7.3). In a last section (5.7.4), we summarise other constraints and recommendations
that have been suggested by visualisation authors, e. g., with respect to the use of legends or
logarithmic scaling. An additional subset of facts, which may be used in visualisation rules, is
made up from collections of named values and value ranges, e. g., various sets of commonly used
colours or shapes (Sect. 5.7.5).

A comprehensive collection of various visualisation rules (about 150) has been extracted from
visualisation literature by Senay and Ignatius and was published as a technical report [SI90],
described informally in natural language. However, for automation, a visualisation system
needs visualisation knowledge as formally stated facts. This also applies to our approach to
ontology-driven visualisation. Therefore, after having discussed sources of these rules, we then
compare means of formalising them in Sect. 5.7.6.

When discussing the various classes of constraints and rules, like for the other VISO modules,
we introduce ontology concepts and discuss related terms from literature in parallel. Although
we structure this section by different kinds of rules, VISO/facts does only provide the vocabulary
to be used in these rules as well as the vocabulary to store additional facts and rankings. It
does not provide the constraints and rules themselves. Since we chose to formulate constraints
and rules not with OWL, but with SPIN (Sect. 8.1.3), and because they are closely related to
the visual mappings that we introduce in the next Chapter on the RVL language (Chapter 7),
we deal with the actual visualisation constraints and rules separately in Sect. 8.1.

At last we introduce VISO/facts/empiric – an example knowledge base that we built
by instantiating VISO/facts in order to use it in our prototypes (Sect. 5.7.7). Herein the
actual facts, rankings and value collections are stored that we needed to feed our OGVIC
prototypes, cf. Fig. 5.10.

115

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

Figure 5.10: Main properties in the VISO/facts module. Various properties from the facts module
can be used to state, for example, the expressiveness and effectiveness of graphic relations. The actual
statements themselves may be subject to change based on new empiric results and should be stored in
extra modules. The VISO/facts/empiric module is one such module we provide as a starting point to
store a basic set of facts (Sect. 5.7.7).

5.7.1 Expressiveness of Graphic Relations
Mackinlay sees graphic representations as »sentences of graphical languages that have precise
syntactic and semantic definitions.« Based on this, he defines expressiveness as follows:

»
A set of facts is expressible in a language if it contains a sentence that

(1) encodes all the facts in the set,

(2) encodes only the facts in the set.

Jock D. Mackinlay [Mac86a] «
That means, for a graphic relation to be expressive with respect to some data, it is not only
required that all data values are covered by the graphic, but also no »incorrect« additional
values may be represented, which would lead to misinterpretations. Table 5.1 shows, which
of the retinal visual attributes9 express which data with respect to its scale of measurement,
according to Mackinlay. Besides clearly stating which attribute can generally express a certain

9 Mackinlay calls them retinal techniques.

116

5.7. VISO/FACTS MODULE – FACTS FOR VIS. CONSTRAINTS AND RULES

scale, exceptions are given. For example, Mackinlay discourages the use of size and saturation for
nominal values. For colour, he indicates that not the whole colour spectrum can express order
(whereas a brightness scale can do, but Mackinlay does not consider the components of colour
separately). Further refinements to this table can, for example, be found in Wilkinson [Wil05],
who distinguishes length, area, and volume instead of speaking about size. For area and volume,
he even discourages the usage as visual attributes at all, since areas and volumes »are not
perceived in a linear relationship to the scale values«.

can express
http://purl.org/viso/facts/can_express

States which scale of measurement the data may have that a given graphic relation can express.

Type: owl:ObjectProperty

Expressiveness of Graphic Attribute Values Statements on expressiveness are not limited
to visual attributes and relations, but can also apply to sets or ranges of visual values. This is
supported by the collection of rules in [SI90]. For example they quote rules such as the following:

• »Rule: If no one element is more important, avoid using hues of different brightness or
saturations for the different [nominal] elements.« – [KPSP83] as cited in [SI90]

• »Rule: If a single qualitative variable is to be represented by symbols, the different levels
of the variable should be portrayed by symbols that are graphically distinct.« – [CCKT83]
as cited in [SI90]

Nominal Ordinal Quantitative
Size – × ×
Saturation – × ×
Texture × ×
Colour × *
Orientation ×
Shape ×

Table 5.1: »Expressiveness of retinal techniques« after Mackinlay [Mac86a] – Mackinlay discourages
the use of size and saturation for encoding nominal values and constraints the usefulness of colour to
encode ordinal values, since not the full colour spectrum was perceived ordinal.

Encoding Technique Expressiveness Criteria
Single-position X → Y (X is nominal)
Apposed-position X × Y (X,Y are not nominal)
Retinal-list X, orX → Y (X is not quantitative)
Map L → X1, . . . (L is a location)
Connection X ×X (X is nominal)
Miscellaneous (single, contain, . . .) Generally, X × Y)

Table 5.2: »Expressiveness criteria for the primitive languages« after Mackinlay [Mac86a] – Mackinlay
gives expressiveness constraints for a set of primitive languages that he defined. In the terminology of
VISO, these comprise graphic relations such as linking (»Connection«) or colour but also compositions
of those (»Apposed-position«).

117

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

5.7.2 Effectiveness Ranking of Graphic Relations

has effectiveness ranking for nominal data
http://purl.org/viso/facts/has_effectiveness_ranking_for_nominal_data

States how effective a graphic relation is ranked for nominal data.

Superproperties: viso-data:has_effectiveness_ranking_value
Type: owl:DatatypeProperty

Usually, multiple graphic relations come into consideration for expressing a certain data variable.
In this case, a means for picking the best visual mapping among multiple possible ones,
according to some ranking criterion, is required. Effectiveness is such a criterion, as suggested
by Mackinlay. He extended the ranking of visual attributes for quantitative data by Cleveland
and McGill [CM84] (Fig. 5.11) to ordinal and nominal data. Therefore, just as Cleveland and
McGill’s ranking, Mackinlay’s effectiveness ranking is basically oriented at accuracy of data
representation. We refer to alternative measures for effectiveness below. Furthermore, Mackinlay
not only ranked attributes, but adds a few other popular visual relations such as connection
and containment.

More	accurateLess	accurate

Posi�on Area Volume

Color
(not	

shown)

Density

Length

Angle

Slope

Figure 5.11: Cleveland and McGill’s empirically verified ranking of quantitative perceptual tasks,
redrawn as cited by Mackinlay [Mac86a] and rotated.

Looking at Fig. 5.12, especially the attribute position stands out, because it is rated most
effective for all kinds of scales. Thereby, it becomes the most valuable attribute. All other
graphic relations have a varying effectiveness depending on the scale of measurement of the data
they represent. Especially length, angle, slope, area, and volume, which are good at encoding
quantitative values, roughly change the ranking position with the three colour components
(density , saturation, hue), texture, connection and containment for ordinal and nominal values.
Also for ordinal and nominal values differences apply: For example, shape receives a high ranking
value for nominal data, whereas it is rated not relevant at all for ordinal and quantitative data.

Although Mackinlay’s ranking is more comprehensive, unlike Cleveland and McGill’s ranking,
it was not empirically verified by the author ([Mac86b] as cited in [Mac86a]). Additionally, time,
as an additional valuable attribute for current interactive visualisations is not included.

Other Quality Measures While we adopted Mackinlay’s effectiveness definition, which
mainly focuses on accuracy of the graphic relation with respect to the data that needs to be
represented, we are aware that this definition has been criticised [Zhu07] as incomplete, because
other aspects of effectiveness exist. Zhu gives a comprehensive overview of the use of the term
effectiveness in visualisation literature, pointing to other aspects such as utility and efficiency

118

5.7. VISO/FACTS MODULE – FACTS FOR VIS. CONSTRAINTS AND RULES

Quan�ta�ve Ordinal Nominal

Posi�on
Length
Angle
Slope
Area

Volume
Density

Color	Satura�on
Color	Hue

Texture
Connec�on

Containment
Shape

Posi�on
Density

Color	Satura�on
Color	Hue
Texture

Connec�on
Containment

Length
Angle
Slope
Area

Volume
Shape

Posi�on
Color	Hue
Texture
Connec�on
Containment
Density
Color	Satura�on
Shape
Length
Angle
Slope
Area
Volume

Figure 5.12: Mackinlay’s extendend ranking of perceptual tasks for quantitative, nominal and ordinal
values, redrawn after Mackinlay [Mac86a]. The boxed values are stated to be »not relevant« for
the effectiveness ranking of the respective scale type. However, this cannot fully be aligned with
the expressiveness criterion given in Table 5.1 that states, for example, that colour cannot express
quantitative values at all.

as well. Besides contradicting definitions of effectiveness, he also points to a lack of empirical
validation and means for measuring effectiveness objectively. Nevertheless, we think that our
work of formalising facts and rules by using standard ontology languages can be a useful starting
point. This is again supported by Zhu, who suggests that »there needs to be a classification or
taxonomy of the heuristic rules and principles«. As a basis for this he recommends that »a
taxonomy of visualisation techniques should be developed to classify the various attributes and
structures of visualization« and that »domain specific data classifications are needed for better
accuracy assessment«.

Effectiveness Ranking of Graphic Attribute Values Also the criterion of effectiveness
can be applied to visual values besides visual relations. Examples from Senay and Ignatius’
list [SI90] are:

• »Rule: The eye is able to perceive dark objects with greater impact than light ones.«
[CCKT83] as cited in [SI90]

• »Rule: In order to be distinguishable, shapes must be quite distinct from one another.
Veniar ([Ven48] as cited in [SI90]) established a differential sensitivity of 1.37 percent for
shape distortion when either the horizontal or vertical sides of the square were distorted.«

5.7.3 Rules for Composing Graphics

A third class of rules concerns the composition of graphics. Senay and Ignatius, who extended
Mackinlay’s approach to automate the design of visualisation (APT) [Mac86a] for their visual-
isation system Vista [SI94], introduced a set of rules on composition to complement rules on
expressiveness and effectiveness. These composition rules define constraints on data charac-
teristics and apply to the five composition techniques defined by the authors. For each kind
of composition, Senay and Ignatius describe rules and associated conditions that concern the
»compatibility of component visualisation techniques«, the »visibility of each component upon

119

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

composition« and the »distinguishability of components in the composite design«. Although,
unlike expressiveness and effectiveness, the authors do not subsume composition rules as »rules
of visual perception«, many rules concern the perception of the final graphic (e. g., »fields should
mostly be visible through the marks of the other component«). These rules are often vague and
difficult to formalise.

While we do not discuss graphic composition here in detail (we return to composition in
Sect. 6.5, 6.6 and 8.2), the important thing to note is that the composition of graphics requires
an additional set of facts and rules in order to respect syntactical and perceptual aspects. Based
on Senay and Ignatius’ composition rules as well as on statements of Wilkinson and Mackinlay
on »bundling« and »interaction« of attributes, we propose the following two types of relations
in which two graphic relations may take part: Dependency and Interaction.

Dependency

Dependency applies only to visual attributes and can directly be explained by the multi-
dimensionality of graphic spaces [vE02]. The problem of dependent attributes needs to be
considered, wherever combinations of the dimensions that span a graphic space are used for
visual mapping. Two attributes are independent, if it is possible to set them to any value without
changing the values of other variables, e. g., colour and shape can be varied independently.
Visual attributes are dependent, if one variable is composed from the other, for example
area = height ∗ width. That means area and height are dependent as well as area and width.
As a consequence, it is not possible to use all three involved attributes at the same time (two
of them can still be used, as long as the third is not encoded). Dependency is closely related
to the observations of Wilkinson, who observes that attributes can be bundled. For example,
he describes colour as a bundle of hue, saturation and brightness [Wil05]. For independent
attributes, Wilkinson also uses the term orthogonal. Similarly, Engelhardt calls size a »versatile«
attribute and notes that variations of size can either be homogeneous or »restricted to height,
length or width of an object« [vE02].

depends on
http://purl.org/viso/facts/depends_on

States whether a graphic attribute depends on another graphic relation, i. e., whether changing
the graphic values for the one attribute will always change the values for the other attribute.

Type: owl:ObjectProperty

Interaction

By interaction we refer to a relationship between graphic relations having the potential to
influence the composition of graphic relations – at least for certain values. Usually, this influence
manifests itself in a negative way. Wilkinson [Wil05] remarks that »orthogonalisation in design
means making every dimension of variation that is available to one object available to another«.
That is, some graphic relations are not orthogonal or independent per se, but have to be made
independent by putting appropriate constraints. Further, he states that »how these variations
are perceived is another matter«. Accordingly, we subdivide interactions and the corresponding
constraints into two groups: Syntactic interactions and constraints and perceptual interactions
and constraints. We differentiate, whether an interaction concerns a fundamental syntactical
issue – which makes it impossible to construct or decode a certain composed visualisation – or
a problem with human perception. Unlike for dependency, interactions do not only apply to
the composition of graphic attributes, but also to the composition of graphic object-to-object
relations, as it will become clear from the examples below.

120

5.7. VISO/FACTS MODULE – FACTS FOR VIS. CONSTRAINTS AND RULES

Syntactic interactions and constraints Although some visual attributes such as shape
and colour are clearly orthogonal and can be varied independently, others such as shape and
size are not independent per se. This is again supported by Wilkinson, who states that »shape
must vary without affecting size, rotation and other attributes«. That means, two shapes are
different and distinguishable, only if one cannot be created from the other by rotation or scaling.
Hence, when both attributes shall be used, constraints have to be put on the shapes allowed
for encoding (Fig. 5.13, top; the same problem arises, when no orientation exists in a graphic,
e. g., at table-displays where users sit around the presentation). The second and third row
of Fig. 5.13 show two examples of syntactic interactions involving object-to-object-relations:
Superimposition can only be recognised as such, if the objects are filled, otherwise it cannot be
distinguished from (overlapping) containment. Similarly, transparency can only be recognised as
such, when the transparent objects do partially overlap (again superimposition), otherwise it
cannot be distinguished from variations of colour parameters such as saturation and lightness.
Syntactic constraints between object-to-object-relations also apply to ordered line-up and linking,
when we try to avoid crossing connectors (Fig. 5.13, bottom). The composition with an ordered
line-up makes this harder than the problem of planarity alone, because the position of nodes is
not arbitrary anymore.

interacts with (syntactically)
http://purl.org/viso/facts/interacts_with_syntactically

States whether a graphic relation syntactically interacts with another graphic relation. Two
graphic relations syntactically interact, if data encoded by these relations cannot be decoded in
a unique way, leading to ambigious interpretations. We also speak of syntactic interaction,
when the composition only works under additional constraints.

Superproperties: viso-facts:interacts_with
Type: owl:ObjectProperty

Perceptual interactions and constraints Perceptual interaction between two graphic
relations may cause difficulties in interpreting when an encoded value takes certain values,
such as extreme ones. The limitation is given by the human eye (e. g., resolution) and brain
(e. g., distinction of colours). This is different from two graphic relations being in syntactic
conflict, as described in the last paragraph. As an example of interaction, Mackinlay [Mac86a]
describes the perceptual problem that occurs if shape and size of a visual object both encode
information and size takes very low values (illustrated in Fig. 5.14, top row). Mackinlay already
used the term interaction, however, he only refers to visual attributes, not graphic relations
in general. But also the composition of object-to-object relations may be under perceptual
constraints. For an example of how lineup and separation by a separator interfere with shape
(second row) respectively clustering (last row), please refer to the detailed description of Fig. 5.14.

interacts with (perceptually)
http://purl.org/viso/facts/interacts_with_perceptually

States whether a graphic relation perceptually interacts with another graphic relation,
i. e., whether the visual perception and interpretation by humans becomes difficult. In contrast
to syntactic interaction, the interpretation of the composed graphic is still (theoretically)
possible though.

Superproperties: viso-facts:interacts_with
Type: owl:ObjectProperty

121

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

Figure 5.13: Examples of syntactic interaction between different graphic relations causing problems
during composition. Top row: If both shape and rotation shall be used, constraints have to be put on
the allowed shapes, otherwise rotating an object cannot be distinguished from changing an object’s
shape. Second and third row: Further examples of syntactic interactions: Superimposition is only
perceptible if objects are filled, otherwise it could be confused with (overlapping) containment . Also
transparency is only perceptible, if the transparent objects partially overlap, otherwise it could be
confused with variations of colour parameters such as saturation and lightness. Bottom row: Syntactic
constraints between ordered line-up and linking , when we try to avoid crossing connectors while keeping
the position of the nodes.

122

5.7. VISO/FACTS MODULE – FACTS FOR VIS. CONSTRAINTS AND RULES

Figure 5.14: Examples of perceptual interaction between different graphic relations causing problems
during composition. The example in the first row is taken from a figure of Mackinlay [Mac86a], titled
the »Interaction between Visual Variables«, which shows how size and shape interact for small values.
Other examples of such interactions are the interaction between shape and the shape used for separators,
which must clearly be distinguishable from other shapes in the graphic (second row) or the interaction
of clustering and lineup, since a lineup can only be perceived as such as long as the clustering does not
too much distort its appearance (last row).

123

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

Constraints on the Usage of Single Graphic Relations

While, so far, we only discussed constraints for composing different graphic relations, rules exist
as well for composing graphic objects by means of a single graphic relation. Again, we can
differentiate between constraints that apply due to syntactic problems and those that apply due
to perceptional problems. In some cases, syntactic constraints apply to this kind of compositions
such as the problem of non-crossing connectors (planarity; Fig. 5.15, first row). Moreover,
not every graphic relation supports every possible graph structure (e. g., containment cannot
represent cyclic structures; Fig. 5.15, third row). But also perceptual constraints apply. For
example, the number of graphic objects often needs to be constrained to produce a perceptually
effective graphic (Fig. 5.15, bottom row).

Implementation in VISO

Currently, VISO is able to describe which graphic relations depend on each other or interact,
but not how they do exactly. Constraints on the usage of single graphic relations cannot be
specified so far.

5.7.4 Other Rules to Consider for Visual Mapping
Various other rules on visualisation exist that do not directly concern visual attributes and
relations or their composition. These rules concern reference objects (e. g., the use of legends,
frames, labels and background colours), scaling (e. g., when to use logarithmic scales) and issues
of how to handle missing data. Many of these rules are collected in [SI90]. These rules have not
yet been formalised with VISO.

5.7.5 Providing Named Value Collections
Using VISO – besides the graphic attributes themselves – named attribute values can be stored as
individuals typed with viso-graphic:NamedGraphicAttributeValue as mentioned before in Sect. 5.5.
Collections of these values can be created, e. g., by instantiating viso-graphic:Visual_Value_List.
These collections represent a further part of the overall set of visualisation facts. An example for
such collections are colour palettes. Special colour palettes have been defined that adhere to con-
straints of the human psychology or potential disabilities such as red-green blindness. An example
for a tool creating such well-defined colour schemes can be found at http://colorbrewer2.org.
Furthermore, Wilkinson names different scales for colour: Rainbow Scale, Brightness Scale,
Circular Scale for circular variables, and Bipolar scales [Wil05]. Also for other attributes such
as shape, additional facts may be formalised in order to store and share collections of common
shapes and even whole symbols. For example, being able to precisely refer to and reuse values of
those collections could be especially interesting, if they have been proven by a psychological test,
to be well distinguishable. One example of a colour palette that we created for demo purposes
(Fig. 7.10) is a visual value list containing four basic (named) colours:

empiric-facts:ExampleColorSetNominal a viso-graphic:Visual_Value_List ;
rdf:first vg:Red ; rdf:rest (viso-graphic:Green viso-graphic:Blue viso-graphic:Yellow) .

Similarly, colour sets given as hexadecimal values (here a colour-blind safe set taken from
ColorBrewer) can be defined:

empiric-facts:ColorBlindSafeColorSet a viso-graphic:Visual_Value_List ;
rdf:first "#a6cee3" ; rdf:rest ("#1f78b4" "#b2df8a" "#33a02c") .

124

http://colorbrewer2.org

A

B
A

B
A B

Figure 5.15: Examples of conflicts that occur if composing graphic objects by using the same graphic
object-to-object relation multiple times. The example given in the first row shows the problem of crossing
edges (non-planarity) that occurs for some node-link-diagrams. Further, not all graphic relations support
all possible graph structures. For example, directed linking can represent both branching and confluent
structures. Containment can represent branching as well, but representing confluence is only possible
for a variant of containment (used in Venn diagrams) that allows for overlap (second row). Even then,
the number of confluenting branches that can be visualised is limited to three for circles; higher values
require to adapt the shape of the containers to ellipses and more complicated shapes. Similarly, cycles
in the data are supported by directed linking, but not by containment, unless we duplicate graphic
objects (third row). The last row shows that containment cannot be used arbitrary times, or will
become difficult to perceive visually. While all examples involve only a single graphic relation, the first
three describe a syntactic graphic problem that is impossible to overcome (at least for two-dimensional
graphic representations), the last does »only« concern a limited visual perception. The graphics in the
last row show a typical Venn diagram representing three sets (left) and a 6-set Edwards–Venn diagram
(right; redrawn from https://en.wikipedia.org/wiki/Venn_diagram, accessed: 01.12.2015). The latter
technically fulfils the criterion of Venn diagrams (i. e., one container for each logical combination of
sets), but is obviously much harder to perceive.

https://en.wikipedia.org/wiki/Venn_diagram

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

5.7.6 Existing Approaches to the Formalisation of Knowledge
on Visualisation

The formalisation of rules has been done as LISP statements in Mackinlay’s APT [Mac86a] and
also VISTA [SI94] uses LISP-based condition-action pairs to formulate rules. Unfortunately,
these rules cannot directly be used in the Semantic Web technical space, because they are not
openly accessible, nor addressable on the web. Tableau and SPSS Viz Designer use visualisation
rules as well, however, these rules are not stored using a common standard formalism. Expert
knowledge on visualisation has also already been captured in ontologies by Gilson et al. [GSGC08].
However, they do not deal with generally applicable rules or facts on visualisation (cf. Sect. 4.1.2).

5.7.7 The VISO/facts/empiric Example Knowledge Base

As indicated above, for reasons of flexibility, the VISO module VISO/facts10 only offers the
vocabulary for defining facts about visualisation. It has to be complemented by an actual
knowledge base, using this vocabulary. With the VISO/facts/empiric knowledge base we offer
an example collection of facts for the purpose of this thesis and as a starting point for others.
This knowledge base may be replaced in case there are new results in empiric visualisation
research. The collection may also evolve into a common collection of facts if adopted by the
community. The empirical facts collection contains only simple facts but no knowledge in the
shape of rules or constraints. For example, the effectiveness ranking of graphic relations for
specific scales of measurement is stored in VISO/facts/empiric but the actual constraint that
uses these ranking values is stored separately in the RVL-VISO-Constraints collection (realised
as a SPIN-constraint, cf. Sect. 8.1.3). The VISO/facts/empiric module may also be extended to
store further common collections and ranges of attribute values as discussed in the last section.

5.8 Other VISO Modules –
Activity, User, System and Domain

Since VISO was modelled to be universally usable in a broad range of use cases, additional
modules have been created, which are related to the modules discussed above, but are not
used in this thesis. Therefore, we only give a brief overview of these modules and point to the
detailed documentation of VISO on the web11. These complementary modules are VISO/activity ,
VISO/system, VISO/user and VISO/domain.

Since visualisations are usually created for a specific purpose of the user, tasks, activities
and operations can be modelled with the VISO/activity , following the Activity Theory which
is well established in HCI [Nar96]. However, since our ontology-driven visualisation approach
has not been extended to include these aspects so far, we do not give a detailed analysis of this
field. Please refer to the technical report on VISO [VP11]. As an example for a fact that might
be stored using vocabulary from the VISO/activity module take the following statement: »A
TreeMap supports the action Zoom«. Besides view-related actions such as zooming, panning or
reordering views, there are also important data-related actions such as querying, filtering or
creating entities.

Further, an adaptation of visualisations based on the context, especially on a user model
(VISO/user) and characteristics of the (hard- and software) system (VISO/system) could be done.
Here the integration of context models, such as [PMWM08], could be taken into consideration.
While such adaptations could be integrated into the ontology-driven visualisation paradigm in
future, this is not within the scope of this thesis.

10 http://purl.org/viso/facts/empiric/
11 http://purl.org/viso/

126

http://purl.org/viso/facts/empiric/
http://purl.org/viso/

5.9. CONCLUSIONS AND FUTURE WORK

Finally, the VISO/domain module bundles terms that help to relate data to a specific domain
that is relevant to visualisation (e. g., geographic data, physical data). Further, also graphic
representations can be marked as being frequently used in a certain domain. For example, a Map
may be marked as being frequently used for the domain of geography. While the ontology-driven
visualisation paradigm could be extended to consider domain-specific constraints, this is not
within the scope of this thesis either.

5.9 Conclusions and Future Work

In this chapter, we described the VISO ontology, which we use for multiple purposes within the
OGVIC approach: First, we use it as a target model in our visual mappings, second to formalise
the concepts that we build our graphic models on, third to describe the data that is subject to
visualisation, and finally as a means to share formal visualisation knowledge. With the VISO
ontology, we answered the research questions Q-1.2 and Q-2.2 (cf. Sect. 3.2), asking for a target
model to use in visual mappings and a means to formalise visualisation knowledge.

The creation of the VISO ontology became necessary, since the existing approaches to
formalisation were often not accessible or did not sufficiently cover the required concepts at
the right granularity. In addition to presenting the main concepts of VISO, we compared,
discussed, and aligned related terms that we extracted during an extensive, systematic survey
of visualisation literature, including many existing taxonomies and terminologies. We found
that only a few, mostly basic, entities, e. g., colour, had the same meaning in all cases. In
contrast, many terms had multiple meanings and also their relationships were not always in-line.
An example is the dichotomy of continuous and discrete. Although many authors see this
difference, the involved concepts are often slightly different – while Andrienko and Andrienko
speak of continuous vs. discrete attributes, referrers and phenomena (as discussed in Sect. 5.6.3),
Wilkinson [Wil05] differentiates continuous vs. categorical variables and scales.

Future work includes the integration of existing ontologies on data (RDF Data Cube
Vocabulary, unit ontologies) as well as ontologies on the user and system context. Also the
human activity module of the ontology should be refined to allow for more complex and adaptive
applications. From the technical point of view, additional modules could be introduced, in order
to achieve a reduced reasoning complexity for parts of the ontology (e. g., conformance to the
OWL-DL profile) and allow for automatic consistency checking.

5.10 Further Use Cases for VISO

While our development on VISO was foremost motivated by the need for a widely accepted
model of graphic terms and knowledge to be directly used in our approach, VISO is intended
to be used in other upcoming projects as well. When building their own visualisation systems,
developers have different options to employ VISO. A simple but effective example is linking to
VISO resources by their URI, e. g., http://purl.org/viso/graphic/Graphic_Representation, which
provides a label and description in multiple languages as well as the instances and specialisations
for the selected concept. As a developer, you can reuse this knowledge – which may help users
to understand visualisation terms – instead of providing it on your own. Beyond this simple
usage, you could also benefit from the rankings offered by the VISO/facts module to suggest
appropriate graphic relations for your data.

Thanks to the collaboration with another visualisation project [VPGM12] worked on by
Voigt et al., all VISO terms were intensely discussed between two scientific groups right from the
beginning. Since their project focuses on different aspects of visualisation, the fields touched by
VISO are comprehensive. Therefore, beyond its benefit for the interoperability of visualisation
systems, we think that our ontology can serve the visualisation community as a foundation to
further formalise, align and unify its knowledge. By clarifying synonyms, homonyms, and overlap
of concepts, it supports a common understanding between all interdisciplinary stakeholders in

127

http://purl.org/viso/graphic/Graphic_Representation

CHAPTER 5. A VISUALISATION ONTOLOGY – VISO

the visualisation process. Further, VISO could be beneficial to classify newly developed graphic
representations, publications and other work of the visualisation community. This would ease
the search for visualisations and papers as well as the discovery of research directions that
received little attention in the past.

5.11 VISO on the Web
An initial version of this ontology is published at the URL http://purl.org/viso/ to document it
and share it for the discussion within the community. A detailed documentation of each ontology
module is automatically generated using the LODE ontology-documentation tool12 and includes
a description of each ontology term, its related terms, and depictions. However, the ontology and
its documentation are not meant to be in a final state, but to be a basis for ongoing discussion.
We can only benefit from the aspect of a shared ontology, if it is broadly used and accepted
by the community. Therefore, we created a web-platform with rich communication and voting
abilities to allow for discussing each ontological term. The platform, which is tightly integrated
with the ontology documentation, allows for both ranking existing definitions and proposing new
interpretations. Because the ontological terms can only be effectively discussed if the original
literature sources are available, we further extended the documentation to show examples as well
as quotations and literature references for each resource (Fig. 5.16). Since quotations, references,
and authors are modelled in RDF as well, they can be conveniently queried using SPARQL,
e. g., to find out which terms a specific author has influenced.

Figure 5.16: Excerpt of the VISO documentation showing the term Composite Graphic Object.
Quotations from literature are given as annotations. Each term can be commented and discussed.

12 http://lode.sourceforge.net, accessed: 02.07.2015.

128

http://lode.sourceforge.net

Chapter 6

A VISO-Based Abstract Visual
Model – AVM

The Abstract Visual Model (AVM) abstracts from concrete platform dependent models such
as HTML or X3D. It can be seen as a platform-independent model (PIM) in the sense of the
Model Driven Architecture1 (MDA). In contrast to scenegraphs, which focus on offering a model
for rendering the geometry of a scene, including logical and physical constraints, the AVM offers
a model for information visualisation graphics that explicitly stores the graphic relations of
graphic objects. This allows for using the AVM for calculations concerning (additional) valid
mappings. Concrete positioning in space is only stated, if information is directly mapped on
position in a graphical space. This also means that no layout information is stored and tools
interpreting the AVM have to use layout algorithms. The model does not necessarily form
a tree structure, but may form an arbitrary graph. The AVM is made up from terms of the
VISO. It is an RDF model with instances of type viso-graphic:GraphicObject, related to each
other via viso-graphic:GraphicObjectToObjectRelations in order to form visual structures. Each
viso-graphic:GraphicObject may also have a set of viso-graphic:GraphicAttributes attached defining
properties of the object in the graphic space such as position or colour. Fig. 6.1 shows an
example of an abstract visual model of two graphic objects being visually linked to each other,
each graphic object representing a resource in the (domain) RDF model.

In the remainder of this chapter, we have a closer look at the »building blocks« of the AVM –
graphic objects, graphic attributes and other graphic relations. Furthermore, we introduce a
role-based approach to compose graphics on a fine-grained level, describe composition classes
based on these roles and give examples of AVM models. Finally, we discuss why there is the
necessity for an additional abstraction like the AVM.

6.1 Graphical Notation Used in this Chapter

Since displaying the whole RDF model of an AVM graphically leads to very crowded and
complex diagrams, throughout this chapter, we use a specific graphical notation for AVM, which
we developed for illustration purposes. This notation does not scale well to arbitrary models,
though. Fig. 6.2 shows the model of Fig. 6.1 using this notation. The pentagons represent
graphics objects, labeled with their shapes (circle, line). Rhombs stand for relationships; played
roles are represented as rounded rectangles. The AVM could be seen as a further application
of the Object Role Model (ORM) of Halpin [Hal01]. Consequently, the graphical notation of
ORM [Hal05] may be a candidate notation to substitute the notation that we use in this

1 Model Driven Architecture. http://www.omg.org/mda/, accessed: 12.12.2015.

129

http://www.omg.org/mda/

CHAPTER 6. A VISO-BASED ABSTRACT VISUAL MODEL – AVM

I:GO1 I

:LinkingRel1

vg:linked_with
I

:GO2

I
:GO3

vg:linked_with

I
vg:Line

vg:shape_named

vg:linking_node vg:linking_node

vg:linking_connector

I
vg:Circle

vg:shape_named

vg:shape_named

avm:represents

I
ex:PersonB

I
ex:PersonA

avm:represents

avm:repre-
sents

ex:knows
P

Figure 6.1: Example of an Abstract Visual Model (AVM) describing a complex graphic object with con-
cepts and relations defined in the VISO/graphic ontology: The graphic relation viso-graphic:linked_with
is used to relate various instances of viso-graphic:Graphic_Object. Notation: I for instance, P for
property, cf. legend in .

Figure 6.2: The same AVM as shown in Fig. 6.1 using a graphical role notation (hiding some information
such as links to the represented resources). In the upper left corner a concrete graphic implementing
the model is shown.

130

6.2. ELEMENTARY GRAPHIC OBJECTS AND GRAPHIC ATTRIBUTES

chapter for the modelling of graphic roles, which could be rather seen as an ad hoc extension of
entity–relationship diagrams (Chen’s notation, [Che76]).

6.2 Elementary Graphic Objects and Graphic Attributes

Elementary graphic objects carry the graphic attributes such as viso-graphic:shape_named or
viso-graphic:color_hsl_lightness. Furthermore, they can – but do not have to – represent RDF
nodes from the domain data, which can be stated in the AVM as well. Elementary graphic
objects will be referenced in graphic relations, which can be binary or n-ary.

6.3 N-Ary Relations

Most graphic relations are n-ary, since either an additional graphic object (e. g., a connector or
a separator) is part of the relation, or a quantitative value needs to be added (weighting), such
as the amount of overlap for the superimposition relation.

For implementing n-ary relations in RDF, the n-ary relation design pattern2 (Pattern 1) can
be used. The pattern suggests creating an individual for each relation and relate two objects
via this individual. In our case, the relations from this individual to the participating resources
exactly correspond to the roles that the involved graphic objects are playing.

6.4 Binary Relations

Only a few graphic relations are binary, among those simple forms of the well-known »contain-
ment« and »links to« relation. For implementing these relations in RDF, it would have been
possible to use a single property (e. g., »contains somehow« or »links to somehow«) to point
from the containing graphic object to the contained graphic object. However, the roles of the
two concerned resources (e. g., »container« and »containee«) cannot be explicitly named, when
proceeding like this. Furthermore, even seemingly simple graphic relations – which seem to be
binary at first glance – involve extra graphic objects, which turn them into n-ary relations. For
this reason, we treat binary relations as n-ary relations.

Figure 6.3: AVM of a containment relation between two graphic objects. In the upper left corner, a
concrete graphic implementing the model is shown.

2 http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/, accessed: 02.07.2015.

131

http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/

CHAPTER 6. A VISO-BASED ABSTRACT VISUAL MODEL – AVM

6.5 Composition of Graphic Objects Using Roles

In the above explanation of the AVM, we used the term »role« a few times already. We use »role«
in the meaning of a »syntactic role«, which graphic objects can play according to Engelhardt:

»
A syntactic role is a role that a graphic object may play within a syntactic structure.
We distinguish [...] node, label, connector, separator, container, point locator, line
locator, surface locator, volume locator, metric bar, and grid line.

Jörg von Engelhardt [vE02] «
Unlike Engelhardt, who uses roles to analyse graphics and describe their decomposition, we try to
use roles for synthesising and composing graphics. For example, we do not model graphic objects
to be of a certain type, i. e., we do not model: »GraphicObjectA has type Connector«; but we
state: »GraphicObjectA plays role connector«. The use of roles in the AVM was not in first place
motivated by the work on modelling with the role concept in software engineering as described
by Steimann [Ste00] but was directly motivated by the work of Engelhardt. Nevertheless, of
course, the way we use roles in the AVM could be classified using the work of Steimann as »roles
as named places [of a relationship]«.

Being able to reference graphic objects via their role enables us to compose complex graphic
objects from elementary ones on a very fine-grained level, as opposed to the high-level composition
of complete graphic representations (e. g., in a mash-up scenario). Examining the roles of graphic
objects also helps us to classify these compositions. We define two criteria for classifying
compositions of graphic objects:

Single vs. Multiple Roles A graphic object can play a single or multiple roles at a time

Same vs. Different Role Type A graphic object can play multiple roles of the same type or
different types

Fig. 6.5 shows the three composition cases emerging from this: The first row represents a very
simple artificial composition case: Each graphic object plays only a single role at any point in
time. Graphic objects have to be duplicated to take part in more than one graphic relation. The
second row represents a slightly more complex composition case – it is now valid for a graphic
object to play a graphic role more than once, but it has always to be the same role. In the
directed linking example (second column), A plays the role of an »end node« twice. In the third
row, we allow for graphic objects playing multiple different roles at the same time. Graphic
object B plays both the role of a »container« and a »containee«, respectively for linking, B
plays the role of »start node« and »end node« at the same time.

6.6 Composition of Graphic Relations Using Roles

A further criterion for classifying graphics is whether multiple different graphic relations are
involved in the same graphic, which was not the case in the examples above. Fig. 6.6 demonstrates
this at the example of (undirected) linking and containment . Two of the nodes (»node« is a role
assigned by the graphic relation »linked_to«) simultaneously play a role in a »containment«
relation. From here on, in addition to a composition of graphic objects, we have a composition
of graphic relations:

Same vs. Different Graphic Relation A graphic object can play multiple roles belonging
to one and the same graphic relation or belonging to different graphic relations, i. e., it can
take part in different graphic relation types.

132

Figure 6.4: Syntactic roles in Engelhardt’s work [vE02]: Engelhardt analysed many graphics by
decomposing them and describing the syntactic roles that the graphic objects play – in this graphic
separator and connector . Image taken from [vE02].

Figure 6.5: Classification of the composition of graphic objects by roles.

Figure 6.6: Example of an AVM where two graphic relations are used in combination: The centre and
the left »node« simultaneously plays the role of a »container« respectively a »containee«. In the upper
left corner a concrete graphic implementing the model is shown.

6.7. COMPOSITION OF VISUAL MAPPINGS USING THE AVM

6.7 Composition of Visual Mappings Using the AVM

The AVM is also the foundation for our approach to the composition of visual mappings, which
will be introduced in Sect. 7. Similar to the composition of graphic objects and relations, roles
in the AVM serve as an anchor for the composition of visual mappings. Hence, we revisit
and extend the classification of compositions in Sect. 8.2.1. Furthermore, the AVM allows for
calculating composable mappings. Some visual mappings can only jointly be applied if certain
conditions are met, e. g., there might be constraints on already defined mappings and on the
data that shall be mapped (cf. Sect. 5.7.3). This would be impossible, if we only stored a final
graphic, even in formats like SVG, since for the calculation of further applicable mappings, we
need to know a) which mappings were already applied and b) which parts of the graphic resulted
from which mapping. Checking for constraint violations and the resulting guidance activities
that become possible on the level of the AVM are explained in Sect. 8.1. Thus the AVM – as
a common target format – is the prerequisite for composing visual mappings in the OGVIC
approach. It offers the opportunity to store visual mappings in a reusable form.

6.8 Tracing

Calculations on the composability of mappings, as described in the last section, require tracing
capabilities. The introductory AVM example already showed references from graphic objects to
the resources they represent. The following excerpt of an AVM model uses two kinds of such
trace links – avm:represents and avm:mappedBy – to point to the data and the visual mappings:

The vocabulary used for this purpose belongs to an extra module of VISO – the VISO/avm
vocabulary3. Using the property avm:represents, we can trace back to the origin of a graphic
object, i. e., the rdfs:Resource or rdfs:Literal that was mapped to the graphic object. Similarly,
avm:mappedBy points from (n-ary) graphic relations to the mapping that created them.

6.9 Is it Worth Having an Abstract Visual Model?

The additional model introduced with the AVM can be justified for three reasons. First, platform-
variability (R-10) requires such a model. If we want to define visual mappings independently
from the final platform, an abstraction has to be created, which then becomes refined to
multiple concrete graphic formats containing the platform-specific settings. Platform-variability
is worthwhile in the following two cases:

a) There are graphic relations that belong to a common core of graphic relations available on
each platform (except for naming differences)

3 http://purl.org/viso/avm

135

http://purl.org/viso/avm

CHAPTER 6. A VISO-BASED ABSTRACT VISUAL MODEL – AVM

b) There are graphic relations that can be defined abstractly and refined to a concrete setting
for each platform

However, it has to be considered that a concrete platform may not support all graphic relations
and, hence, not all types of graphics that may have been defined. There are dependencies
between concrete output platforms and the available types of graphics. For example, HTML
cannot display Node-Link-Diagrams. That means concrete platforms and visual structures
(or »Representation paradigms«, the term used in Fresnel) are two aspects that are not fully
orthogonal. An initial idea to solve this issue was to define only the intersection of those graphic
relations in the AVM that are available on all concrete platforms. Since the set of potential
output platforms is unknown, this is not possible, though. Instead, for such cases, alternative
solutions should be definable. As an example, consider a platform that does not support colour.
On this platform, an alternative mapping could be defined to replace colour values by grey scale
values. Further examples are:

• Colour ↦→ Texture

• 3D ↦→ 2D Small Multiples

• Animated 2D ↦→ 2D Time-Series

Similarly, graphic relations that cannot be represented due to missing graphical power could be
replaced by falling back to alternative ones. There are two possibilities to define alternative
mappings for replacing graphic relations not available on a given platform:

a) Define alternative mappings for the platform in general

b) Define alternative mappings only for a specific data set

The RVL mappings that will be introduced in the next chapter, support (b) with the fallback
mechanism (Sect. 7.2.1). Another observation is that the overlap between concrete platforms is
reduced by the efforts to enable separation of concerns. For example, HTML and SVG both
use CSS. Conceptually, all overlap between HTML and SVG (concerning graphic attributes) is
treated by CSS, and a single mapping to CSS is now sufficient in theory. In practice, different
names may be used in CSS for SVG and HTML, e. g., »background-colour« vs. »fill«. Only the
structural information may still overlap, since both HTML and SVG can create nested boxes,
list and tables, for example. This means, with the use of CSS, platform-independence mostly
concerns the structural aspects of graphics.

The second reason that justifies the additional abstraction introduced by the AVM are
composition (R-8) and guidance requirements (R-15). As discussed in Sect. 6.7, we need to
analyse not only the existing mappings, but also the preliminary graphic, so that guidance tools
can recommend valid additional mappings and answer questions like »Does it make sense to add
a mapping X from the visual perception point of view?«. The AVM, which explicitly models
both graphic relations and references to mappings, enables powerful introspection options for
this purpose. This would not be possible, if we directly generated a graphic by means of the final
platform such as SVG. Also interaction and editing require diagrams to be “internally represented
by a formal model” [Min00] (see also Sect. 6.11). In Table 6.1 we compare the AVM from Fig. 6.1,
which represents a line connecting two nodes, to a possible SVG »implementation« of this AVM.
Metadata describing the document can be embedded as RDF in SVG as recommended in the
SVG specification4. So the information on which graphic object represents which resources
could possibly be embedded directly into SVG as well. However, it also becomes apparent that
there is no explicit information on how the three graphic objects are visually related in the SVG.
Each object is independently positioned in the graphic space by means of absolute coordinates.

4 SVG 1.1 (Second Edition) — 16 August 2011. W3C Recommendation –
http://www.w3.org/TR/SVG11/metadata.html

136

http://www.w3.org/TR/SVG11/metadata.html

6.10. DISCUSSION OF FRESNEL AS A RELATED LANGUAGE

A third reason for the AVM is reusability (R-7). Currently, for the definition of visual
mappings, each application uses its own language, although approaches such as ViZmL and
GPL have been proposed. For RDF-based data, there is no such language at all. Therefore,
reusability of visual mappings across platforms and for various visual structures is a further
argument to justify the AVM.

6.10 Discussion of Fresnel as a Related Language

The RDF display vocabulary Fresnel served as inspiration for the RVL language, which we
discuss in detail in Chapter 7. The language was intentionally designed to be independent of
platform and visual paradigm for reasons of reusability of display knowledge (cf. Sect. 4.3.2).
Fresnel does not describe a rendering to a concrete platform such as HTML, SVG or X3D, but
introduces an additional level of abstraction – similar to the introduction of the AVM in this
thesis. But although Fresnel was presented already in 2006, it is still not widely used and did not
become a standard. Therefore, in this section we look at experiences with Fresnel and discuss
critical statements on Fresnel and the level of abstraction that Fresnel adds to the visualisation
process. We conclude that our approach of creating an AVM is not harmed by criticism on
Fresnel. Fresnel has been criticised for the following reasons5:

Too complicated – The benefits of Fresnel are not worth the additional effort of
learning another language.

In [RCC09], the authors of VPOET find that the syntax of Fresnel requires »skills in semantic
web technologies that severely limit the number of designers available«. However, it is not a
requirement that Fresnel is written manually. With an appropriate (graphical) UI, Fresnel
descriptions could be created conveniently by domain experts as well. Also the developers of
Tal4RDF see it as beneficial to directly aim at rendering the presentation format. However, they
also see the option that their approach could possibly complement Fresnel: »an implementation
of Fresnel could rely on T4R for the actual rendering.«6

Too abstract – Too much formatting decisions remain to the rendering engine.

From the examination of platform and visual structure independent features of Fresnel in
Sect. 4.3.2, we conclude that Fresnel defines a presentation vocabulary that leaves many decisions
to the renderer, but still offers a core of clearly platform-independent presentation features. This
core seems to justify platform-independence. Nevertheless, for example the authors of OWL-PL
argue that »[. . .] the formatting options available to the author are too generic as a result, and
individual implementation is left up to the application incorporating Fresnel. This may remove
too much control from the author’s hands when deciding how to display their data« [BH10].
OWL-PL simply overcomes these problems by forgoing the criterion of platform-independence.
While this may be disputable for creating documents, this is not an option for storing arbitrary
visual mappings. The authors of Fresnel are aware of the limited expressivity, but state that the
expression of more knowledge would cause the vocabulary to loose its characteristic of being
paradigm-/platform-independent.

Replaceable by existing technology – Fresnel adds little value beyond XSLT, CSS,
and SPARQL.

5 Much of the criticism concerns the abstraction introduced by Fresnel, rather than concrete language
constructs. Therefore, and to have all the discussion in one place, we decided to discuss Fresnel in this
chapter, not in the next one on the RVL language.

6 Tal4RDF documentation. http://liris.cnrs.fr/~pchampin/t4r/doc/rationale.html, accessed: 05.02.2011.

137

http://liris.cnrs.fr/~pchampin/t4r/doc/rationale.html

CHAPTER 6. A VISO-BASED ABSTRACT VISUAL MODEL – AVM

@prefix : <http://purl.org/rvl/example-avm/> .
@prefix avm: <http://purl.org/viso/avm/> .
@prefix vg: <http://purl.org/viso/graphic/> .
@prefix common-shapes:

<http://purl.org/viso/shapes/common/> .
@prefix ex: <http://example.org/> .

:LinkingRel1
a vg:Linking_Undirected_Relation ;
vg:linking_connector :GO3 ;
vg:linking_node :GO1 , :GO2 .

:GO1
a vg:Graphic_Object ;
vg:linked_with :LinkingRel1 ;
avm:represents ex:PersonA ;
vg:shape_named common-shapes:Circle .

:GO2
a vg:Graphic_Object ;
vg:linked_with :LinkingRel1 ;
avm:represents ex:PersonB ;
vg:shape_named common-shapes:Circle .

:GO3
a vg:Graphic_Object ;
avm:represents ex:knows ;
vg:shape_named common-shapes:Line .

<svg

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
[...]
version="1.1" >

<metadata id="metadata237">
<rdf:RDF>
<cc:Work>
<dc:format>image/svg+xml</dc:format>
<dc:type rdf:resource="http://purl.org/

dc/dcmitype/StillImage" />
</cc:Work>

</rdf:RDF>
</metadata>

<path id="path871"
d="m 17,25 85,-9"
style="fill:none;stroke:black" />

<circle id="ellipse240"
r="10" cy="16" cx="102" />

<circle id="ellipse241"
r="10" cx="17" cy="25" />

</svg>

Table 6.1: Comparison of AVM and SVG. Both listings describe the graphic from Fig. 6.1, which
represents a line connecting two nodes. The left column shows the AVM model in Turtle syntax. The
right column shows a possible SVG representation of the described graphic (incl. exemplary metadata
on the SVG document).

138

6.11. RELATED WORK

Another critique of Fresnel is that it could be almost completely replaced by reusing »technologies
like (X)HTML, XSLT, and CSS« [BH10]. One might also argue that the features listed in
Sect. 4.3.2 are purely data-related and languages such as SPARQL should be used instead. But,
although SPARQL allows for the selection of resources and the ordering of values, SPARQL
neither offers a means to store »views« created by a SPARQL-query, nor allows for attaching
them to resources. Additionally, some selections may more easily and concisely be stated by a
path language such as FSL (Fresnel Selector Language, Sect. 4.3.1) than with SPARQL7. For
reasons discussed in Sect. 4.3.1, languages such as XPath (used by XSLT) cannot simply be
applied to RDF.

A last issue that we would like to raise is the question of flexibility, because this also applies
to our approach of generating an AVM. It is hard to define additional formatting in case
the formatting defined with Fresnel is not sufficient. A reduction of the visualisation designer’s
flexibility is the drawback of all approaches that use abstract platform-independent models to
generate platform-specific ones. Although additional formatting could be defined manually, the
changes will be lost when regenerating the platform-specific code.

6.11 Related Work

While the AVM is novel implementing Engelhardt’s syntactic graphic roles and being located in
the RDF technical space, there are approaches from the graph transformation community that
use graphs as formal, internal models for diagrams in order to enable tool support for visual
languages (for example to build diagram editors). Therefore, we need to point to commonalities
and differences of their approaches:

Bardohl et al. [BTMS99] discuss various approaches, beginning with the early approach of
Rekers and Schürr [RS96] (as cited in [BTMS99]), who use a Spatial Relation Graph (edges
represent graphic relations, nodes represent graphic objects). This resembles the »binary
version« (Sect. 6.4) of modelling graphic relations, which we initially also considered for the
AVM but abandoned, since most graphic relations could not be handled. Minas [Min00] uses
hypergraphs to provide a uniform, internal model of a diagram and shows that hypergraphs
cannot only model node-link diagrams, but arbitrary spatial relations, such as inside and
overlaps (containment with and without overlap in our terminology). While we use multiple
associated (RDF) properties to allow for modelling complex n-ary graphic relations and roles of
graphic objects in the AVM, Minas uses hyperedges and their tentacles to model spatial graphic
relations and their attachment areas.

Hypergraphs and graph transformations are not widely referenced in the information vi-
sualisation literature, but rather familiar to researchers in the field of visual languages and
diagram editors, possibly because the data structures to be visualised in these fields are graphs
themselves. Since we are visualising knowledge graphs – not tabular data, as it is frequently the
case in information visualisation – such techniques are interesting for us as well.

6.12 Limitations

The AVM, as described in this chapter, does not allow for tracing from graphic attributes back
to the resources and data properties that they represent. This also applies to tracing graphic
attributes back to the mappings.

7 SPARQL 1.1 introduced property-paths, though (cf. http://www.w3.org/TR/sparql11-query/#propertypaths).

139

http://www.w3.org/TR/sparql11-query/#propertypaths

CHAPTER 6. A VISO-BASED ABSTRACT VISUAL MODEL – AVM

6.13 Conclusions
In this chapter we introduced the AVM as our approach of a platform-independent model of
graphics. We showed what are the constituent parts of this model and why the additional
abstraction introduced by such a model is necessary; in summary, because it supports reuse
by platform-variability and benefits guidance and composability by enabling tracing and intro-
spection. The necessity for a rather complex modelling approach like the AVM is additionally
supported by Minas [Min00], who suggests hypergraphs for handling also the less trivial graphic
relations. Future work on the AVM, should carefully compare the work of Minas, also with
respect to syntax-checking the AVM with graph grammars.

Furthermore, we compared the abstraction of the AVM to the abstraction that Fresnel
introduces, which had been criticised for various reasons although it is frequently cited and was
adopted by many projects. Nevertheless, in summary, most of the criticism on Fresnel can either
not stand the discussion or does not equally apply to a visualisation language. Concerning
the criticised reduction of flexibility, we consider this tolerable for many visualisation scenarios.
Where it is not, one option to improve flexibility could be the adoption of ideas from round-trip
engineering [Aß03a] to the visualisation process, cf. future work on editing described in Sect. 10.6.

The RVL language presented in the next chapter relies on the graphic roles provided by
AVM models to realise mapping composition.

140

Chapter 7

A Language for RDFS/OWL
Visualisation – RVL

This chapter is based on work published in [Pol13].

Visualising data requires a mapping from data objects to graphic objects. To date, each
visualisation tool uses its own internal solution for storing visual mappings, making it impossible
to reuse effective settings in different contexts and share them with others. Sharing visualisation
settings between users would be beneficial for two reasons: First, tools have different strengths
with respect to the handling of large data, interactive analysis features or accessibility. Second,
authors of domain ontologies could suggest useful visualisations and publish them along with their
data. While there are presentation or display languages for RDF data such as Fresnel1, these
serve the purpose of turning data into formatted documents, but they do not allow for explicitly
defining visual mappings. Up to now, no language specific to RDFS/OWL visualisation was
published. Hence, during the problem analysis (Sect. 3), we formulated the research questionQ-1,
asking how to define composable, shareable visual mappings from ontological data to visual
means and what should be the ontology constructs that can be mapped.

To answer this question, we propose the RDFS/OWL Visualisation Language (RVL) as a
declarative visualisation language for ontological data. RVL defines a set of mapping types
that can be instantiated to describe visual mappings from relations, classes and individual
values in the source data to graphic concepts. On the source data side, RVL mappings reference
RDF(S)/OWL properties, classes and individuals from the domain data. On the target side, the
visualisation mappings point to concepts of the VISO/graphic ontology, an ontology on graphic
concepts and relations that we introduced in Chapter 5. Fig. 7.1 gives an overview of this general
idea at the example of a Property Mapping. By various mapping types and preferences such
as Value Mappings, RVL does not only allow for simple one-to-one-mappings of single source
values to single graphic values, but offers rich capabilities to steer the calculation of mappings.
Assuming defaults, RVL still allows for quickly handling common mapping situations.

In the following, we briefly sum up problems of current approaches to visual mappings for
RDF data and recall the list of common visualisation cases that we identified during our case
studies. Based on this, we establish a set of concrete language requirements that a novel language
for RDFS/OWL visualisation must fulfil (Sect. 7.1) and discuss choices in language design as

1 Compare for Sect. 4.3.2 for a detailed comparison of RDF presentation languages, which we did during our
analysis of related work.

141

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

Figure 7.1: The principle of RVL. Mappings in RVL describe visual mappings from relations in
the domain data to graphic relations defined by VISO/graphic. This is illustrated using a sim-
plified example of a rvl:PropertyMapping, which maps the ontological relation obo:has_part to the
graphic relation viso-graphic:Containment_Relation. The result is an Abstract Visual Model (AVM) of
viso-graphic:GraphicObjects related by viso-graphic:Containment_Relations (only a fraction of the AVM
is shown here). Rendering to a concrete graphic is not in the scope of RVL.

well as the limitations of our language. Afterwards, we present our approach – the RDFS/OWL
Visualisation Language (RVL) – in Sect. 7.2. We cover the main language constructs, followed
by an additional section on the composition of mappings (Sect. 7.10). Sect. 7.11 discusses our
choice for defining a schema for RVL and describes how editors for RVL can easily be derived
from the rich schema definition. Finally, in Sect. 7.12, we briefly evaluate the current status of
RVL with respect to the use cases we defined and point to open issues for future work.

7.1 Language Requirements
During the problem analysis (Chapter 3), we formulated the following problems of current
approaches to ontology visualisation: We criticised that ontology visualisations are created for
specific platforms and separately for each visual paradigm. Further, we noted that they cannot
be shared with others and reused on other visualisation platforms (P-3) or in combination with
different visual paradigms (P-4). We concluded that domain authors lack a standard to store
visualisation settings based on standards (P-5), since a visualisation language for ontological
data does not exist (P-6). The problems P-3 – P-6 are tackled in this chapter. Further, we
described the need to cover a set of visualisation cases (VC-1 – VC-12). These cases are
referenced in the following discussion of our language requirements.

Based on our general goals and requirements, the concrete visualisation cases we identified,
and experiences described in related work, we formulate 14 language requirements (LR) for a
visualisation language for RDFS/OWL data:

LR-1 The language must support the visual mapping, not only the presentation of data.

LR-2 The language must support multiple visual structures.

LR-3 The language must allow for the definition of simple interactions.

First, we require RVL – as a visualisation language – to describe dynamic and value-dependent
visual mappings (LR-1) as opposed to just style a document with explicit static settings such as
font type or background colour, like it is possible with CSS (Sect. 2.1.6). Instead of focusing on
node-link diagrams (graphs), we want to allow for choosing from multiple visual structures such
as containment (enclosure) structures (LR-2). Furthermore, also simple interactions with the

142

7.1. LANGUAGE REQUIREMENTS

visualisation should be usable in the mappings such as »What happens on select?« (LR-3; VC-2
to VC-4 and VC-10).

In many cases, as for LR1 – LR3, the language requirements directly correspond to general
requirements that we defined for our approach as a whole (Chapter 3). In other cases, they
refine the general requirements to more concrete requirements on the language. The language
requirements will also resemble the criteria we set up for comparing presentation languages in
Chapter 4.3.2.

LR-4 Ontology terms must be referenceable via their URI.

LR-5 T-Box ontological relations must be referenceable.

Referencing ontology terms such as classes and properties, from both the domain ontologies
and the VISO/graphic ontology module, needs to be easy in the language. Since all domain
ontologies from our case studies as well as VISO/graphic are available in RDF, and each of
these terms can be identified via its URI as a unique identifier, referring to the ontology terms
is quite simple. It only requires that URIs are allowed in the mapping definitions (LR-4). Using
common standards such as URIs and W3C-recommended ontology languages based on RDF
greatly improves the sharing of the mappings. Further, we require that a specific visualisation of
T-Box statements is possible and these relations can explicitly be referenced in mappings (LR-5).

LR-6 Visual mappings must be defined independently of a specific platform.

LR-7 Visual mappings must be defined independently of any specific visual structure.

LR-8 Visual mappings must be defined in declarative style.

LR-9 The language must support sharing visual mappings.

LR-10 Each visual mapping must be identified via a URI.

Since we want to be able to reuse mappings in different visualisation tools, we require the
mappings to be platform-independent (LR-6), i. e., the mappings need to be formulated without
referring to platfom-specific terms. Similarly, we want to be able to vary the visual structures
and we require the mappings to be formulated in a way that is independent from a specific visual
structure (LR-7). That means, mappings should be independently replaceable as far as possible.
Due to the requirements LR-6 and LR-7, we further require RDF to be declarative (LR-8),
i. e., the language should describe what should happen as opposed to how exactly it should happen.
Arguments for a declarative style can be found in the discussion on both style sheet languages such
as CSS [Lie05] (cf. Sect. 2.1.7) and visualisation languages such as Protovis [HB10] (cf. Sect. 4.2.1).
For Protovis, Heer and Bostock argue that by using a declarative language »[. . .] visualizations
become open source: since specifications are concise and are not compiled, but instead interpreted
at runtime by the web browser, users can easily view the source code and data behind any
visualisation. In addition to learning by example, visualisations are constructed from modular
primitives, which make it easier for designers to incorporate discovered techniques into their own
work through copy-and-paste. Open source also facilitates some degree of collaboration, since users
can more easily create derivative works to show different views or fix mistakes.« [BH09]. Having
decided on a declarative approach still leaves the choice between a transformational approach
(e. g., XSL) and an approach where the mappings are interpreted by the client (e. g., CSS). The
disadvantages of the transformational approach, such as a loss of semantics, have been listed
in Sect. 2.1.7, where we summarised lessons learned from style sheet languages. Consequently,

143

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

for the design of RVL, the interpretative, CSS-like approach is preferred to a transformational
approach. Both, the ability to trace back to the semantics of the source data as well as conciseness
and open-source-friendliness are important criteria for RVL as well, and they directly contribute
to the general goal of explicit and reusable mappings. Fostering reusability, we need to support
shareability (LR-9) with our language. The prerequisite for sharing mappings and sending
them to other users is that mapping definitions can be named and a concrete syntax exists to
describe them. Going one step further, using URIs for each mapping (LR-10) even allows us to
universally identify a mapping and let it be globally referenced and reused.

LR-11 The extension of visual mappings must be supported.

LR-12 The composition of visual mappings must be supported.

LR-13 The language should be familiar to users.

LR-14 Useful defaults should be specified for the language settings wherever possible.

Only if users can extend existing mappings, according to their specific needs, or combine
them with other existing mappings, they can fully benefit from existing work without being
constrained in their flexibility (VC-7 and VC-8). Therefore, also the extensibility (LR-11) and
composability (LR-12) of defined mappings contributes to reusability. To increase the familiarity
to users (LR-13), RVL should resemble other languages from the Semantic Web or InfoVis
communities. Ideally, it should also resemble other configuration settings and languages used in
our approach (OGVIC). Finally, RVL should specify reasonable defaults (LR-14) for common
mapping situations such as labelling objects (VC-12).

Limitations

There will be no support for editing mapped data in RVL. While we design the visualisation
language to be well usable by tooling in order to allow for convenient editing of the visual
mapping definitions, we do not aim at editing support for the source data. Further, RVL
will not allow for defining styles directly. Although we aim at a language for visual mapping,
custom styling of graphical elements in a graphic representation may be required to describe a
visualisation, e. g., for reasons of corporate design, personal preferences or better readability
(VC-11). For defining these styles, CSS could be reused, since it is a widely accepted standard.
While the full integration of RVL and CSS is beyond the scope of this thesis, RVL should be
designed to easily integrate with declarative style sheet languages like CSS, which is another
argument for a declarative approach.

144

7.2. MAIN RVL CONSTRUCTS

7.2 Main RVL Constructs

Having described the general idea of RVL mappings, we now look at the various mapping types
we created, relate them to the visualisation cases (VC) we identified (Sect. 3.6) and discuss
why we decided to use extra mapping types in some cases while, in general, aiming at as few
mapping types as possible. The class diagram Fig. 7.2 gives an overview of important RVL
classes. In the following sections, we can only point to the most important principles of RVL.
For a complete specification of the language we point to the language reference2. For each class
shown in the following diagrams of RVL classes (except Fig.7.2), important properties are listed
like attributes in the UML. The coloured rectangle in front of each attribute marks whether the
property is an owl:ObjectProperty (blue), owl:DatatypeProperty (green) or other (purple). The
listings in this chapter are given in Turtle3 notation.

rvl:PropertyToGraphic
ObjToObjRelMapping

C rvl:PropertyToGraphic-
ObjToObjRelMapping

C

rvl:MappingC

rvl:PropertyMappingC

rvl:ValueMappingC

rvl:valueMapping

rvl:sourceValueInterval	0..1

rvl:targetValueInterval	0..1

rvl:subMapping

rvl:fallsBackTo

rvl:Iden�tyMappingCrvl:PropertyToGraphic
ObjToObjRelMapping

C rvl:PropertyToGraphic-
A�ributeMapping

C

rvl:ResourceMappingC

rvl:IntervalC

Figure 7.2: Overview of main RVL classes including rvl:PropertyMapping and rvl:ValueMapping follow-
ing the notation of UML class diagrams.

7.2.1 Mapping

All mapping types in RVL inherit from rvl:Mapping in order to define the appearance of the
mapping in a legend (rvl:includeInLegend), which RVL tools should generate by default (VC-12).
Additionally, for each mapping, a »fallback« can be defined (rvl:fallsBackTo) to specify what
should happen if an RVL tool cannot handle a mapping. For example, a mapping to colour
could fall back to a mapping to texture on black-and-white systems.

rvl:MappingC

rvl:fallsBackTo :	Mapping
rvl:includeInLegend	:	xsd:boolean	=	true

2 http://purl.org/rvl/
3 Terse RDF Triple Language. http://www.w3.org/TR/2012/WD-turtle-20120710/, accessed: 12.12.2015.

145

http://purl.org/rvl/
http://www.w3.org/TR/2012/WD-turtle-20120710/

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

7.2.2 Property Mapping

rvl:PropertyMapping defines a mapping from one domain property (i. e., a domain relation) to
one graphic relation. Property mappings apply, whenever a statement using the property
(i. e., a property instance) exists, no matter what is the object or subject of the statement. A
simple Property Mapping that maps the value cito:cites to Linking_Directed from the viso-graphic
vocabulary may be as simple as follows:
[] a rvl:PropertyMapping ;

rvl:sourceProperty cito:cites ;
rvl:targetGraphicRelation viso-graphic:Linking_Directed_Relation .

If constraints need to be made on the application of the mapping, filters have to be applied on
the subject and/or the object. These filters can be defined by expressions in FSL (Sect. 4.3.1) or
in SPARQL. They will reduce the set of statements to be mapped to those where the object,
respectively the subject, matches the filter. Fig. C.1 in the appendix gives an overview of how
filters can be used in RVL and what is the difference between subject and object filters.

Two subtypes of Property Mapping exist, one for mapping to graphic attributes (VC-2) and
one for mapping to Graphic-Object-to-Object-Relations (VC-3). Applying a Property Mapping
implicitly creates graphic objects for the involved (domain) resources (VC-1).

rvl:PropertyMappingC

rvl:sourceProperty	:	rdf:Property	[1..1]
rvl:targetGraphicRela�on	:	vg:GraphicRel.	[1..1]

rvl:inheritedBy	:	rdf:Property

rvl:submapping	:	SubMappingRela�on

rvl:invertSourceProperty	:	xsd:boolean	=	false
rvl:subjectFilter	:	rvl:sparqlSelector	[0..1]
rvl:objectFilter	:	rvl:sparqlSelector	[0..1]

rvl:PropertyToGraphicA�ributeMappingC

rvl:targetA�ribute	:	
				viso-graphic:GraphicA�ribute	[1..1]

rvl:PropertyToGraphicObjToObjRelMappingC

rvl:targetObjToObjRela�on	:	
				vg:GraphicObj.ToObj.Rel	[1..1]

rvl:valueMapping

rvl:sourceValuesOutOfBounds	:	
				rvl:OutOfBoundHandlingType	[1..1]

rvl:Iden�ty
Mapping

C

rvl:passedTo	:	rdf:Property

rvl:ValueMappingC

Figure 7.3: Overview of the rvl:PropertyMapping class.

7.2.3 Identity Mapping

rvl:IdentityMappings pass on the value of the source data and directly use it as the graphic value.
A common case for this is to pass on rdfs:label as a text value (shown in the listing below).
Sometimes, graphic values may already exist in the source data such as RGB colour values,
which can directly be used in the graphic. Identity Mappings are also used in RDFScape [Spl08]
and referred to as Passthrough mappings.
[] a rvl:IdentityMapping ;

rvl:sourceProperty rdfs:label ;
rvl:targetGraphicRelation viso-graphic:text_value .

146

7.2. MAIN RVL CONSTRUCTS

Figure 7.4: Examples of Property Mappings. Although most frequently owl:ObjectPropertys (blue) will
be mapped to Graphic-Object-to-Object Relations and owl:DatatypePropertys (green) will be mapped
to Graphic Attributes, other constellations are possible. Furthermore, often relations are only modelled
as rdf:Property (purple). The fourth mapping (rdfs:label to viso-graphic:text_value) is an example of an
rvl:IdentityMapping.

7.2.4 Value Mapping

rvl:ValueMappings define which source values are mapped to which target values. Optionally,
they provide further information on how to do this mapping of values exactly. That way, they
are a supplement to Property Mappings, which only draw the general connection between a
source relation and a target Graphic Attribute4. If no Value Mapping is defined, the default
value mapping is used (Sect. 7.7). Value Mappings can be seen as shorthand, eliminating the
need to define many Property Mappings with simple filters on the object (value) side of a
statement. A simple Value Mapping that maps the value ro:Requirement to the shape Square
from the common-shapes collection may be defined as follows:

[] a rvl:ValueMapping ;
rvl:sourceValue ro:Requirement ;
rvl:targetValue common-shapes:Square .

We return to value mappings in the next sections, where we specify the calculation of target
values from source values (Sect. 7.3) and describe how exactly source and target values can be
addressed in RVL (Sect. 7.5).

7.2.5 Inheriting RVL Settings

Setting rvl:inheritedBy allows for extending the results of a defined mapping to related resources.
The property defined by rvl:inheritedBy states how other resources need to be related to the
originally mapped resource in order to inherit its mapping settings. An example is given below
as a listing and a corresponding sketch.

4 Value Mappings are only allowed when mapping to graphic attributes, not to other graphic relations.

147

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

Larval	Stage	Days	7-13

Le�	Eye
Indiv	X

Le�	Eye

Head

Different classes of the Zebra Fish Ontology are distinguished by using a rhombic shape for
subclasses of zfo:Fish_Part versus an arrow-like shape for subclasses of zfo:Stage. The mapping
to a rhomb is applied to the classes Head and Left_Eye, which are subclasses of Fish_Part but
also to the individual Left_Eye_Indiv_X, which is an instance of Left_Eye, resulting in all three
objects having a rhombic shape. This is because the shape-mapping is »rvl:inheritedBy rdf:type«
to individuals. To distinguish classes from individuals, an additional mapping of rdfs:type to
colour is used (not shown in the listing below).

1 zfo:Fish_Part a rdfs:Class ;
zfo:Head rdfs:subClassOf zfo:Fish_Part ;
zfo:Left_Eye rdfs:subClassOf zfo:Head ;
zfo:Left_Eye_Indiv_X rdf:type zfo:Head ;
zfo:Stage a rdfs:Class ;

6 zfo:Larval_Stage_7_13 rdfs:subClassOf zfo:Stage ;

[] a rvl:PropertyMapping ;
rvl:sourceProperty rdfs:subClassOf ;
rvl:targetAttribute viso-graphic:shape_named ;

11 rvl:inheritedBy rdf:type ;
rvl:valueMapping
[rvl:sourceValue zfo:Fish_Part ;
rvl:targetValue common-shapes:Rhomb

] ,
16 [rvl:sourceValue zfo:Stage ;

rvl:targetValue common-shapes:Arrow
] .

(classes of the ZFO renamed and extended for simplicity)

For cases, where the defined mapping shall not be inherited, but exclusively be used for the
related resources, the property rvl:passedTo can be used. For the above example, this would
mean that only the instances of Fish_Part will be shown as a rhomb, but not the classes.
Besides inheriting via rdf:type, inheritance can also be defined to happen via rdfs:subClassOf
or any other rdf:Property, including rdfs:subClassOf, to extend the mapping to subclasses, but
also dct:isPartOf. Further, mapping settings may also be extended to T-Box relations, using
rvl:inheritedBy in combination with rvl:tBoxDomainRange, rvl:tBoxRestriction, or a specific T-Box
relation such as owl:someValuesFrom, owl:allValuesFrom or owl:hasValue.

7.2.6 Resource Mapping

rvl:ResourceMappings are convenience mappings for mapping a specific resource to a specific
graphic value. Each Resource Mapping may be replaced by a Property Mapping to rdf:ID,
additional selector settings and a Value Mapping. However, since mapping resources by their
ID is very common (in our case study examples), we introduced a new mapping type for this
purpose. Defining Resource Mappings can be the more compact alternative, if only a few values
need to be mapped.

The following compact listing shows a resource mapping that maps all resources typed
Fish_Part to the shape common-shapes:Rhomb. Since the target value can be unambiguously

148

7.2. MAIN RVL CONSTRUCTS

associated with the graphic relation viso-graphic:shape_named, we can even ommit defining an
rvl:targetGraphicRelation:

[] a rvl:ResourceMapping ;
rvl:sourceValue zfo:Fish_Part ;
rvl:targetValue common-shapes:Rhomb ;
rvl:passTo rdf:type .

(classes of the ZFO renamed and extended for simplicity)

In general, as for the example of Resource Mappings, many of the mapping types described
could be replaced by a mapping that uses a complex pattern matching expression given as a FSL-
or SPARQL-selector. While this is flexible and used in other tools such as RDFScape [Spl08],
we argue that this may quickly become too complex, when filter expressions become long.
Readability improves by introducing extra mapping types for frequently used cases. Still, we
aim at minimising the number of mapping types. Therefore, in other cases, we use extra
properties as »parameters« instead of extra mapping types. One example for this is the
distinction between the mapping of classes and the mapping of instances. Introducing the more
general concept of a ResourceMapping (instead of two new types such as »InstanceMapping« and
»ClassMapping«), we save one additional mapping type and instead allow for the distinction
via the property rvl:inheritedBy. As described in the previous subsection, this allows us to
extend the Resource Mapping to instances of the resource’s type (rvl:inheritedBy rdf:type) or to
its subclasses (rvl:inheritedBy rdfs:subClassOf). A further reduction of the number of mapping
types can be achieved via mapping composition (Sect. 7.10).

rvl:ResourceMappingC

rvl:sourceValue	[1..1]

rvl:targetGraphicRela�on	[0..1]
rvl:targetValue	[1..1]

rvl:inheritedBy	:	rdf:Property
rvl:passedTo	:	rdf:Property	

7.2.7 Simplifications
Simplifications are not part of the actual visual mapping, but sometimes a necessary preceding
step. The intention of a simplification is to gain a simpler model by summarising similar data
or removing redundant information. One of the simplifications that can be defined with RVL is
rvl:RemoveTransitiveHull, which prevents unnecessary (implicitly given) statements from being
displayed (VC-6):

[] a rvl:RemoveTransitiveHull ;
rvl:simplify ex:partOf .

Another simplification is rvl:UnifyWithInverse, which selects two inverse properties and defines
one of them as the preferred property. The other will be ignored. While inferring inverse
statements based on owl:inverseProperty can be handled by OWL reasoners, without this setting,
both ex:partOf and ex:hasPart would be displayed redundantly.

[] a rvl:UnifyWithInverse ;
rvl:simplify ex:partOf ;
rvl:prefer ex:hasPart .

149

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

7.3 Calculating Value Mappings

A special case of a Value Mapping is a mapping that requires no calculation and maps one or
more (domain) source values to exactly one target (graphic) value such as the simple value
mapping we already introduced above:

[] rvl:sourceValue ro:Requirement ;
rvl:targetValue common-shapes:Square .

This behaviour is similar to what can be achieved by »styling«, and we refer to this as manual
value mapping. However, the more common case is the calculated mapping of sets or intervals
of source values to sets or intervals of target values. Fig. 7.5 provides an overview of the
ValueMapping class and its attributes. An example of a calculated Value Mapping between two
intervals is given below:

[] a rvl:ValueMapping ;
2 rvl:sourceValueInterval [

rvl:lowerBoundIncl "0" ;
rvl:upperBoundIncl "50"

] ;
rvl:targetValueInterval [

7 rvl:lowerBoundIncl "0" ;
rvl:upperBoundIncl "100"

] .

It will frequently happen that source values from the domain data and the target graphic values
have a different scale of measurement, or, they have the same scale, but the source values are
continuous and the target values are discrete (or the other way round). Sometimes, also a
discretisation of values will be required while calculating the mapping. In this section, we give
an overview of these more complicated cases. Fig. 7.6 shows a matrix of three main scales of
measurement that we distinguish (nominal, ordinal and quantitative) for both source and target
values. For a detailed description of the semantics of all cases refer to the appendix or the RVL
specification provided at http://purl.org/rvl/ValueMapping. Below, we give a brief tabular
overview of the ten cases that are sketched schematically in Figure 7.6:

rvl:IntervalC

rvl:lowerBoundExcl

rvl:upperBoundExcl

rvl:lowerBoundIncl

rvl:upperBoundIncl

rdfs:label	:	xsd:string

rvl:ValueMappingC

rvl:sourceValue	

rvl:targetValue	

rvl:sourceValueSet/OrderedSet	:	rdf:List	[0..1]

rvl:orderSourceValuesBy	:	rdf:Property	[0..1]

rvl:discreteStepCount	:	xsd:int	[0..1]

rvl:invertOrderOfTargetValues	:	xsd:boolean	=	false

rvl:targetValues	:	viso-graphic:GraphicValueList	[0..1]	

rvl:sourceFilter	:	rvl:sparql/fslSelector	[0..1]

rvl:sourceValuesLabel	:	xsd:string	[0..1]

rvl:excludeTargetValue

rvl:orderTargetValuesBy	:	rdf:Property	[0..1]
rvl:quan�fySourceValuesBy	:	rdf:Property	[0..1]
rvl:quan�fyTargetValuesBy	:	rdf:Property	[0..1]

rvl:excludeSourceValue

rvl:sourceValue-
Interval

rvl:targetValue-
Interval

rvl:discre�ze	:	boolean	=	false

0..1

0..1

rvl:PropertyToGraphicA�ributeMappingC

rvl:valueMapping

Figure 7.5: Overview of the rvl:ValueMapping class.

150

http://purl.org/rvl/ValueMapping

7.3. CALCULATING VALUE MAPPINGS

TARGET	GRAPHIC	VALUES

SO
U
RC

E	
	D
AT
A

CONTINUOUS	RANGE
QUANTITATIVE

di
sc
re
�z
e

=	
fa
ls
e

ORDERED	SET	/	LIST
ORDINAL

SET
NOMINAL

CO
N
TI
N
U
O
U
S	
RA

N
G
E

Q
U
AN

TI
TA
TI
VE

O
RD

ER
ED

	S
ET

O
RD

IN
AL

SE
T

N
O
M
IN
AL

di
sc
re
�z
e

=	
tr
ue

a1 b c

d e f

g h i

a2

Figure 7.6: Calculation of value mappings depending on the scale of measurement of both source data
and graphic values taking part in a mapping. For each cell of this matrix, we state by its background
colour whether this mapping case leads to information loss (white; a2, b, c, f), the target graphic attribute
is not fully exploited with respect to its ability to express the scale of measurement (grey; d, g, h) or
whether the scale of source and target values exactly match (green; a1, e, i).

151

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

a1 continuous range
↦→ continuous range

If discretize = false
Map the maximum range of the available source values
to the maximum range of available target values.

a2 continuous range
↦→ continuous range

If discretize = true & discreteStepCount not set
Discretize the range of available target values into x
steps, where x is the number of named values in the
target range.

If discretize = true & discreteStepCount set
Discretize the range of available target values into
rvl:discreteStepCount steps.

Case a1 is the most simple case of a mapping between continuous source and target values,
both scales being quantitative. For each source value a concrete target value can simply be
calculated by scaling the source to the target range. (Recall that if no intervals are explicitly
defined, these ranges are calculated as the span from the lowest to the highest value). Case a2
is similar to a1, but with the rvl:discretize flag being set. Furthermore, we distinguish, whether
a rvl:discreteStepCount is defined, i. e., whether the mapping explicitly defines into how many
discrete steps the range of target values shall be split. If rvl:discreteStepCount is not set, RVL
interpreters should use the default set (Sect. 7.7) of discrete (named) values that corresponds to
the chosen graphic attribute.

b continuous range
↦→ ordered set

Discretise the source values into x steps, where x is the
number of values in the target set. Then map all source
values belonging to the first step to the first target
value, those belonging to the second step to the second
target value ... 5

c continuous range
↦→ set

Discretise the source values into x steps, where x is the
number of values in the target set. Then map all source
values belonging to the same step to some (but
different) target value.6

In case b, the target values are already discrete (an ordered set or list of named values), so only
the source values have to be discretised. The number of discretisation steps is determined by
the size of the ordered set (respectively the length of the list). While in case b, the source and
target values are matched with respect to their order, for case c, the target values are unordered.
Therefore, every source value is simply mapped to one of the remaining target values7.

5 discreteStepCount could also be allowed here.
6 See footnote 5.
7 Ideally, it should be avoided that a subset of values is accidentally selected that appears to be ordered

(e. g., the named colours orange, red , light-orange).

152

7.4. DEFINING SCALE OF MEASUREMENT

d, g (ordered) set
↦→ continuous range

Discretise the range of available target values into x
steps, where x is the number of source values.

If discreteStepCount set
Discretise the range of available target values into
discreteStepCount steps.

e ordered set
↦→ ordered set/list

If |source set| ≤ |target set|
Stretch the available range of ordered target values to
the whole range of source values (similar to mapping
intervals of continuous data).

If |source set| > |target set|
Issue a warning and ask if cycling should be used (will
be ambiguous except in special cases, where the context
helps to distinguish the values).

f, h, i (ordered) set
↦→ (ordered) set/list

If |target set| = 1
Use the same target value for all source values.

Else if |source set| ≤ |target set|
Use a random subset of target values.

Else if |source set| > |target set|
Issue an error.

For each mapping case shown in Fig. 7.6, we indicate by the background colour whether the
mapping case leads to information loss (white), the target graphic attribute is not fully exploited
with respect to its ability to express the scale (grey) or whether the scale of source and target
values exactly match (green)8. Information may also be lost when discretisation happens during
the calculation, e. g., in case a2, we have to accept some information loss, which may be tolerable
for the sake of achieving clear distinct values that can more easily be distinguished.

7.4 Defining Scale of Measurement

When calculating Value Mappings, RVL engines must act differently depending on the scale of
measurement of source data and target graphic attributes, as we described in the last section. In
the following, we introduce the options that the RVL and VISO vocabularies offer for specifying
these scales. Furthermore, we describe how RVL engines should proceed in order to derive scales
from explicit settings, implicit settings and the data itself.

For globally defining the scale of measurement of a property, vocabulary from the VISO/data
module can be used. Making ex:size a subproperty of viso-data:has_quantitative_value tells RVL
engines that values of the property size are quantitative, for instance:

ex:size rdfs:subPropertyOf viso-data:has_quantitative_value .

8 Although this is similar to the definition the two expressiveness criteria by Mackinlay [Mac86a], we do not
consider the expressiveness of graphic relations directly in the RVL specification, but, here, we only refer to
the relation between the two involved scale of measurements (the scale of the source and the scale of the
target values). Statements, as defined by Mackinlay, such as »saturation can only express ordinal and
quantitative values« are not considered at the language specification level, but should be loaded from a
VISO/facts-based knowledge base by visualisation systems.

153

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

In some cases, setting the scale of measurement globally may not be desired, but needs to be
done locally, for the context of a Value Mapping. In other cases, global settings may not be
possible, e. g., if no numeric values at all are attached to the resources. Multiple options exist for
locally defining the scale of measurement. The first is to define a property to order or quantify
the source values, e. g.:
ex:PersonA ex:receivedAward ex:Silver ;

ex:Bronce ex:ranked "3"^^xsd:float ;
4 ex:Silver ex:ranked "2"^^xsd:float ;

ex:Gold ex:ranked "1"^^xsd:float ;

[] a rvl:ValueMapping ;
rvl:orderSourceValuesBy ex:ranked ;

9

... other settings of the Value Mapping ...

Here, rvl:orderSourceValuesBy is used to select the relation ex:ranked for ordering the resources
Bronce, Gold, Silver. This allows for ranking these resources differently in different situations.
Setting rvl:orderSourceValuesBy resp. rvl:quantifySourceValuesBy can be omitted, if values are
assigned via VISO/data properties such as viso-data:has_quantitative_value, as these properties
will be evaluated by default. For assigning order, two other options exist: First, an (RDF) list
of the resources may be used. Using a list allows for selecting certain values while omitting
others. Lists may be created ad hoc and anonymously in a mapping or given a name for reuse.
ex:CityA ex:size ex:Medium ;
ex:CityB ex:size ex:Big ;

[] a rvl:ValueMapping ;
5 rvl:sourceValueOrderedSet (

ex:Big
ex:Medium
ex:Small
) ;

10

... other settings of the Value Mapping ...

Second, a property relating the various resources may be selected. In the example below, the
scale of measurement for ex:size is given by defining the property ex:gt (greaterThan) as an
order relation. This way, the order of the size values Small, Medium, Big is defined.
ex:Big ex:gt ex:Medium .
ex:Medium ex:gt ex:Small .

4 [] a rvl:ValueMapping ;
rvl:orderSourceValuesBy ex:gt ;

... other settings of the Value Mapping ...

7.4.1 Determining the Scale of Measurement
The decision diagram in Fig. 7.7 describes how to calculate the scale of measurement of source
values from statements defined with the RVL and VISO-data vocabularies. The scale of
measurement can be derived from explicitly and implicitly stated global or local settings or – if
no other information is available – also be guessed from the source values’ data type. Advanced
guessing of the scale of measurement is beyond the scope of this work. However, we specify
two domain-agnostic cases based on the type of source literals that are used: For xsd:int, we
assume an ordinal scale of measurement and for xsd:float, we assume a quantitative scale of
measurement. In all remaining cases, we can only assume a nominal scale.

The calculation of the scale of measurement for the target values (not shown here) could be
done analogous to the calculation of the scale of measurement for the source values in Fig. 7.7,
but, since we require every graphic relation to explicitly define its scale of measurement, no such
calculation is necessary.

154

7.4. DEFINING SCALE OF MEASUREMENT

Scale	of	measurement	
explicitly	(globally)	defined?

rvl:orderSourceValuesBy
defined?	

rvl:quan�fySourceValuesBy
defined?

no yes,	
quan�ta�ve

rvl:sourceValueInterval
defined? yes,	

ordinal

yes,
nominal

QUANTITATIVE

ORDINAL

NOMINAL

rvl:sourceValueOrderedSet
defined?

Guess	Scale	of	Measurement	
depending	on	the	type	of	
literal	that	is	used

no

yes

no

yes

no xsd:float

xsd:int

other

yes

yes

no

Figure 7.7: Decision diagram specifying how to determine the scale of measurement of source values.

155

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

7.5 Addressing Values in Value Mappings
In addition to the scale of measurement, the exact set of source and target values is required for
the calculation of value mappings. Therefore, in this section, we introduce the value selectors
that RVL offers and specify how to determine the set of source and target values from the
possible selector settings.

RVL defines various selectors to allow for selecting intervals (ranges) of values by specifying
a minimum and/or maximum value as well as for selecting ordered and unordered sets of values.
Besides selecting values to be included, single values may also be excluded. If even more complex
selectors are required, again filter expressions, e. g., in SPARQL, can be used. In Fig. 7.5, we
already gave a first overview of these selectors. Selector-properties exist for both source and
target side of a value mapping. We first look at the selection of source (domain) values and then
turn to the target (graphic) values.

7.5.1 Determining the Set of Addressed Source Values
Value Mappings can address one or multiple source values. In the following, we specify how to
derive these values from the various possible source value selectors that can be used with a Value
Mapping. Fig. 7.8 shows this process by means of a decision diagram. In a first step, it needs
to be distinguished whether the Value Mapping requires a calculation of values at all. This is
obviously not given, if only a single source value is selected using rvl:sourceValue – in this case,

Restricted
con�nuous	range

Restricted
ordered	set

Restricted
unordered	set

Single
source	value

Scale	of	measurement? Scale	of	measurement?

Figure 7.8: Decision diagram specifying how to determine the set of source values addressed by a
value mapping.
*) If no source values are defined by any means this leads to an invalid mapping. This case and other
combinations of parameters leading to invalid mappings are not shown in the diagram.

156

7.5. ADDRESSING VALUES IN VALUE MAPPINGS

we simply map the source value to the specified target value (manual value mapping). Manual
value mappings are only allowed when a single target value is selected. Depending on whether
other selector properties such as rvl:sourceFilter or rvl:sourceValueInterval are set and also taking
into consideration the scale of measurement, which we identified beforehand, we decide on a
restricted range, respectively a restricted ordered or unordered set of values. Sets of restricted
source values can further be reduced by excluding single values using rvl:excludeSourceValue.
While most of the selectors are to be used alternatively, those selecting an (unordered) set of
values can be used in combination. The union of all selected values will be used in this case.

7.5.2 Determining the Set of Addressed Target Values

Determining the addressed target values is similar to the calculation of source values, but still
differs in a few points. As for the source values, the calculated mapping of values only takes place,
if more than a single target value is selected. In the case of a single target value, all source values
simply receive the same target value (manual value mapping). Since less selector properties exist
for the target side, fewer decisions are required. Only for value ranges (rvl:targetValueInterval)

also	rvl:targetValueSet	
defined?	 	create	Union

rvl:targetValueSet	
defined?

rvl:targetValue
defined?

mul�ple	�mes

one	�me

yes*

rvl:excludeTargetValue
defined?	 	exclude	values

rvl:excludeTargetValue
defined?	 	exclude	values

Scale	of	measure-
ment	=	"ordinal"	?

yes

rvl:targetValueInterval
defined?

rvl:targetValueList	or	
rvl:targetValueOrderedSet	or
rvl:targetValueCycle	defined?

yes

no

no yes

no

no

rvl:invertOrderOf-
TargetValues	=	"true"

rvl:invertOrderOf-
TargetValues	=	"true"

no yes no yes

Restricted
con�nuous	range

Restricted
list

Restricted
unordered	set

Single
target	value

Restricted	inverted
con�nuous	range

Restricted	inverted
list

Figure 7.9: Decision diagram specifying how to determine the set of target values addressed by a
value mapping.
*) If no target values are defined by any means this leads to an invalid mapping. This case and other
combinations of parameters leading to invalid mappings are not shown in the diagram.

157

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

we need to distinguish ordinal from quantitative ranges. However, as opposed to source values,
there is an additional property rvl:invertTargetValues. This allows, for example, for reusing an
existing list of target values that fits the intended visualisation purpose, except having the
wrong orientation. As for source values existing unordered sets of target values can be extended
»on the fly« by additional values, since the union of all value sets will be processed, and single
values can be excluded.

7.6 Overlapping Value Mappings

If a source value is mapped by multiple Value Mappings, the priority of the Value Mapping – an
integer between 1 (highest priority) and 5 (lowest priority) – is used to determine the mapping to
be applied. Additionally, a warning should be issued. The highest priority have Value Mappings
of single source values, followed by ordered sets, lists and, finally, sets and intervals having the
lowest priority:

Selectors used in the
value mapping

Priority Examples

Single value 1 rvl:sourceValue ex:Dresden ;

Ordered set /
list

2 rvl:sourceValueOrderedSet
(ex:Small ex:Medium ex:Large) ;

Ad hoc set 3 rvl:sourceValueSet
(ex:Dresden ex:Berlin ex:Munich) ;

Named set 4 rvl:sourceValueSet ex:ExampleSetOfCities ;

Interval 5 rvl:sourceValueInterval [
rvl:lowerBoundIncl "0" ;
rvl:upperBoundIncl "50"] ;

This means that in the following example, ex:Dresden will be mapped to viso-graphic:Green, since
the single selected value has a higher priority (1) than the ad hoc created set of values (3): . . .

ex:SomeValueMapping a rvl:ValueMapping ;
rvl:sourceValueSet (ex:Dresden ex:Berlin ex:Munich) ;
rvl:targetValue viso-graphic:Red .

ex:AnotherValueMapping a rvl:ValueMapping ;
rvl:sourceValue ex:Dresden ;
rvl:targetValue viso-graphic:Green .

7.7 Default Value Mapping

As initially mentioned, property mappings can also be created without adding an explicit value
mapping. Assuming reasonable defaults (VC-12) yields very compact mappings:

ex:SimplePM a rvl:PropertyMapping ;
rvl:sourceProperty rdf:type ;
rvl:targetGraphicRelation viso-graphic:color_named .

A default set or range of graphic attributes can be defined with rvl:defaultValueSet respectively
rvl:defaultValueRange. In the following example, we define a default set of target values for the
graphic attribute colour (named). We choose a predefined set of colours from our example facts
collection empiric-facts:

viso-graphic:color_named rvl:defaultValueSet empiric-facts:ColorBlindSafeColorSet .

158

7.8. DEFAULT LABELLING

Similarly, for the attribute x-position, we could define that – by default – all mappings to
x-position will cover a range from 0–100 (percentage of the available screen space):

viso-graphic:x_position rvl:defaultValueRange [
a rvl:Interval ;
rvl:lowerBoundIncl "0" ;
rvl:upperBoundIncl "100"] .

Following the convention over configuration principle, we might even omit the previous setting,
since whenever no default value range is defined with RVL, the maximum range defined in
VISO/graphic is used. For graphic attributes such as viso-graphic:shape_named, a trivial default
value set can be retrieved by selecting all graphic attribute values (defined as named resources
like viso-graphic:Square) that are available to the RVL interpreter. Once a default target value
range or set is identified, a default value mapping can be performed by mapping all values
available in the source data to the default value range or set.

7.8 Default Labelling

Labelling graphic objects is done by default. The labelling is realised by superimposing the
label over the labelled object. The text value of the label is derived from the rdfs:label of the
represented resource in first place, followed by the local name of the resource if not available.
Defining alternative text values could be passed to Fresnel in future versions of RVL. The
specification currently lacks a means to prevent the automatic labelling. One option could be
to shift all default settings to a basic set of (default) RVL mappings that can be disabled on
demand.

7.9 Defining Interaction

The current RVL specification allows for defining basic interactions. No specific RVL constructs
are provided for interactions; rather general Property Mappings can be used in combination
with special target graphic relations from the VISO. The following example defines that the
ex:borders relation should result in a viso-graphic:co-highlight relationship between the graphic
objects representing the bordering countries. That means all graphic objects taking part in the
borders relation should be highlighted, whenever one of them is »activated«.

[] a rvl:PropertyMapping ;
rvl:sourceProperty ex:borders ;
rvl:targetGraphicAttribute viso-graphic:co-highlight .

While this example shows that some interactions can be concisely defined using Property
mappings, it also raises the question how similar, slightly more complex tasks should be
solved. For example, we might want to limit co-highlighting to one direction for non-symmetric
properties. Also, we did not specify when the highlighting should be triggered – on hovering or
on clicking? Probably, new RVL mapping constructs are required to specify such interactions.
The specification should also be aligned with the corresponding selectors in CSS.

Another observation is that for some interactions, we do not need to reference relations in
the source data, but relations from the AVM. This is, for instance, the case for co-highlighting
graphic objects that have been duplicated to occur at various places in a tree. Allowing for AVM-
relations such as avm:representsSameResourceAs9 as rvl:sourceProperty could possibly describe
such scenarios in a consistent manner.

9 avm:representsSameResourceAs may be derived from avm:represents relations.

159

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

7.10 Mapping Composition and Submappings
We distinguish two basic types of mapping compositions that can currently be described with
RVL – simultaneous composition and context composition. Although many of the sketches
from the case studies can be implemented with these compositions (VC-7), further work on
composition is required based on the composition cases we list in Sect. 8.2.1.

Mappings taking part in a simultaneous composition can be added to or removed from
a set of mappings10 independently from one another. Each mapping works on the same graphic
objects without depending on the other mappings. Mappings taking part in a context
composition cannot be changed independently of one another, because one mapping needs to
work on graphic objects that are identified by a role assigned by the other mapping. Sometimes
it will even work on objects that are newly created by the other mapping.

In RVL, a second mapping can be attached to a first one via an rvl:SubMappingRelation.
The graphic object to work on (graphic context) is identified by its role using the property
rvl:submapping_onRole (VC-9). The data that the submapping should process (data con-
text) is defined by pointing to either subject, predicate or object of the first mapping using
rvl:submapping_onTriplePart11. To clarify this, in Fig. 7.10, we give another complete example
of an RVL mapping (process). The example refers to the sketch from Fig. 3.4c, depicting the
visualisation of documents and their citation relations. While we used a UML-like notation to
represent the involved RVL mappings for the use case described in Fig. 7.10, the same mapping
in Turtle notation is given below. Although the Turtle syntax is more human-readable than
the RDF/XML notation, it becomes clear that for building more complex composed mappings,
tooling is required:

[] a rvl:PropertyMapping ;
2 rvl:sourceProperty cito:cites ;

rvl:targetGraphicRelation viso-graphic:Linking_Directed_Relation ;
rvl:hasSubMapping [
rvl:submapping_onRole viso-graphic:linking_connector ;
rvl:submapping_onTriplePart rvl:predicate ;

7 rvl:submapping_mapping [
a rvl:PropertyMapping ;
rvl:sourceProperty rdf:ID ;
rvl:targetGraphicAttribute viso-graphic:color_named

]
12] .

7.11 A Schema Language for RVL
This section is about the schema of RVL and discusses languages that could be used to define
this schema. Since it is not about the features of RVL itself, readers not interested in the schema,
may continue with Sect. 7.12.

To clarify the distinction between mappings defined with RVL, the RVL schema, and
languages used to define this schema, Table 7.1 compares the different »language levels« in the
context of RVL. We first look at the latter, i. e., languages that can be used to define schemata.
For defining the schema of RVL, multiple options exist, which we discuss in the following, based
on three additional requirements that we put with respect to the schema. At the end of this
section, we briefly describe our approach for defining the RVL schema using SPIN (introduced
in Sect. 2.2.7) constraints.

10 Currently, there is no such construct as a mapping set defined in the RVL specification, hence the set of all
(enabled) mappings defined in the RVL mapping model is used in our prototypes. However, this seems to be
an obvious future extension of RVL to allow for switching between mapping sets, i. e., switching between
multiple graphics. Alternatively, one named RDF graph per graphic could be used.

11 Defining rvl:submapping_onTriplePart is optional. By default, the subject will be used.

160

RD
FS
/O

W
L	
DA

TA

II

II

II
	cri�cises

discusses

updates

DocA DocB

DocC DocD

DocE DocF

citesP

cri�cisesP
discussesP

updatesP

rdf:

(1) The source data that
we want to visualise consists
of three pairs of documents,
where one document is
related to the other via a
different subproperty of the
cito:cites relation, namely
cito:updates, cito:discusses
and cito:criticizes.

(2) The visual map-
ping is realised by two
rvl:PropertyMappings – one
for mapping cito:cites to
linking and another to
distinguish the exact kind
of citation by colour. The
context composition of the
two mappings is defined
by attaching the second
one as a submapping to
the graphic object with the
role vg:linking_connector.
Further, we define that
the submapping should be
based on the rdf:predicate of
the statement handled by
the first mapping.

(3) The result is an ab-
stract visual model of a
graphic (AVM, Chapter 6),
consisting of graphic objects
and relations. For each
document, a corresponding
graphic object has been
created (suffixed »_GO«)
and graphically related to
the cited document via
a vg:Linking_Directed_Rel..
Each connector is assigned a
different attribute value for
vg:color_named, using the
default set of colours.

(4) The rendering of the fi-
nal graphic is not defined by
RVL but only shown here for
illustration purposes. The
rendering engine picked ar-
rows to implement the di-
rected connectors and lay-
outed the nodes. Con-
crete RGB values have been
looked up and assigned to
the arrows during rendering.

Figure 7.10: Example of an RVL mapping using submappings.

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

Language level Name Examples

Meta-languages &
Schema languages

RDF(S), OWL, SPIN rdfs:Class is an rdfs:Class.

Language & Schema RVL defined by the
RVL Schema

rvl:PropertyMapping is an owl:Class.

rvl:PropertyMapping has exactly 1
rvl:targetGraphicRelation.

Model Concrete RVL
mappings

ex:Cost2LightnessMapping is an rvl:PropertyMapping.

Table 7.1: Overview of language levels in the context of RVL (examples are given in natural language).

LR-15 The schema of the language must be restrictive and expressive enough to derive
tooling from it.

LR-16 The schema language must be aware of ontology semantics, not only URIs.

LR-17 Constraints in the mapping language’s schema and constraints defined in VISO/facts
should be handled consistently

First, in order to allow for the generation of mapping editors from the language description,
the RVL schema should define, in a tool-usable way, what is a valid mapping in RVL (LR-15).
Changes to the language definition should automatically lead to changes in the editor, which
is something that metamodelling enables. If we could derive a guided editor for RVL directly
from the language’s schema, constraints already specified in the schema would not have to be
redundantly hard-coded in the source code of guidance tools. This would contribute to the
extensibility of RVL.

Second, since we want to easily define constraints on our mapping types, the schema language
should be aware of ontology semantics (LR-16). It will frequently occur that constraints of the
mapping language have to reference VISO/graphic terms, such as in the following constraint
(here defined in natural language):

»An rvl:PropertyMapping
always maps an rdf:Property
to a viso-graphic:GraphicRelation.«

Third, an additional requirement exists, because we want to use RVL in a semi-automatic
visualisation system: External rules on graphic syntax and human perception based on the
VISO/facts module will have to be accessed for constructing editors. Therefore, we require that
both the constraints from the mapping language’s schema and the constraints defined with
VISO/facts can be handled consistently (LR-17).

One option was to stay completely within the (RDF-based) ontology technological space.
This is suggested by the fact that both the source data and the graphic elements we are mapping
onto are RDF-based ontologies. Defining also our mapping language RVL with RDF-based
technologies, therefore, could help avoiding technological gaps. Defining restrictions that use
terms from the source ontologies and VISO could easily be done, e. g., via OWL class restrictions
and also the domain and range of properties could easily be stated with OWL. An additional
benefit is that mapping definitions, instantiating an RDF-based vocabulary, could conveniently
be shipped along with the data they are visualising. Furthermore, since each mapping was an
RDF resource, globally uniquely identified via a URI, linked data principles would apply to
it. This would contribute to the requirement of shareable mappings, since other users could
dereferentiate mappings and reuse them in their own visualisations. The authors of Fresnel chose

162

7.11. A SCHEMA LANGUAGE FOR RVL

this approach and defined the RDF presentation vocabulary on top of OWL (cf. left column of
Table 7.2). The problem with this approach is that class restrictions and domain–range settings
defined in OWL are not meant to prescribe valid user input, but to derive new knowledge under
the Open World Assumption, as we discussed in more detail in Sect. 4.4. Since the regular
OWL semantics and the corresponding tools are not applicable, we do not consider OWL (alone)
appropriate to define the RVL language. While OWL may also be interpreted with different
(closed world) semantics and specific tooling could be built, OWL also lacks constructs such as
defaults and attributes for conveniently defining a rich prescriptive schema.

Another option was to write the RVL schema in a different technological space, such as the
metamodelling world or the grammar world [PSA+12], and only reference the ontology resources
via their URIs (right column of Table 7.2). If the mapping language was defined by grammar
rules or metamodel constraints, under a closed world assumption, tooling for constrained-based
guidance (editors, warning messages, auto-suggest functions) could conveniently be generated
based on these constraints with existing technologies. On top of Ecore and EMF (cf. Sect. 2.2.6),
which became a popular base for metamodelling, many frameworks support building textual or
graphical editors for Ecore-based languages (Sect. 4.4.1). On the downside, if this means that
ontologies need to be transformed, (e. g., to Ecore), it will be difficult to dynamically adapt to
extensions of the ontological models. Re-modelling ontologies in Ecore is a drawback, if we need
to access facts from external knowledge bases, which may be subject to frequent change.

Our choice for RVL was to select the first option and stay within the (RDF-based) ontology
technological space. However, we use RDFS/OWL only for modelling the abstract syntax of
RVL, and use SPIN for defining the constraints of the RVL schema (centre column of Table 7.2).
With TopBraid Composer12, a modelling environment is available that can be used to build
an editor that supports guidance for creating valid RVL mappings and, at the same time,
allows for conveniently accessing VISO/graphic resources as well as visualisation facts from
a knowledge base such as VISO/facts/empiric. Table 7.2 summarises our comparison of the
three options described above under the aspects of expressiveness, use of standards, support of
shareability of mappings, the availability of tooling and the support of guidance based on both
schema knowledge and external facts from existing knowledge bases. In the right column, we
use the concrete solution of OWL+OWL-CL (used by OWLText, introduced in Sect. 4.4.3) as
an example for the second approach.13

7.11.1 Concrete Examples of the RVL Schema defined with
RDFS/OWL and SPIN

In the following, we provide a set of concrete examples to illustrate which parts of RVL are
defined with RDFS/OWL, respectively SPIN, and how a SPIN constraint can be defined. Types
and relations of RVL are defined with RDFS and OWL14:

rvl:PropertyMapping rdfs:subClassOf rvl:Mapping.

3 rvl:sourceProperty a rdf:Property.

rvl:Clamp
a rvl:OutOfBoundHandlingType ;
rdfs:label "clamp"^^xsd:string ;

8 dct:description "Values outside the defined interval are
set to the interval’s boundaries."^^xsd:string .

12 http://www.topquadrant.com/topbraid/, accessed: 02.07.2015.
13 A comparison of SPIN to other rule/constraint languages has been done by Pooran Patel in a master

thesis [Pat13], confirming our choice of SPIN.
14 The usage of OWL is not shown in the example; RVL employs OWL property classes such as

owl:ObjectProperty.

163

http://www.topquadrant.com/topbraid/

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

Pure OWL OWL+SPIN OWL+OWL-CL
used to describe
Fresnel

our approach for
RVL

used within
OWLText

Standard reasoning – Open/Closed world
OW OW+CW CW

Referencing terms of existing ontologies
++ ++ – (requires remod-

elling in Ecore)

Expressiveness
– Defaults – (natural language) x x
– Path selector language x (FSL) (x) property paths in

SPARQL 1.1
–

Shareability ++ ++ +
Use of standards RDF(S), OWL,

SPARQL
RDF(S), OWL,
SPARQL

OWL

Non-standards FSL SPIN OWL-CL

Availability of tooling that considers the constraints
– Textual editor – – (textual representa-

tion not human read-
able)

x (EMFtext)

– Graphical editor – x (TopBraid Com-
poser; list handling
inconvenient)

–

Guidance support based on schema
– Warnings + ++ ++
– Constrained UI + + +

Guidance support based on existing referenced knowledge bases
– Warnings – ++ –
– Constrained UI – + –

Table 7.2: Comparison of three techniques to define schemata and derive tooling from these schemata:
The left column represents the approach of staying completely within the ontology technological space,
exemplified by the solution chosen to define Fresnel. (FSL stands for the Fresnel Selector Language,
cf. Sect. 4.3.1.) The right column represents the approach of bridging the ontology and metamodelling
technological space, exemplified by OWLText. The centre column shows our choice of using OWL in
combination with SPIN for the definition of constraints for combined open and closed world reasoning.

164

7.11. A SCHEMA LANGUAGE FOR RVL

In order to prescribe how a mapping type must be used, SPIN is used as a constraint language.
As described in Sect. 4.3.1, SPIN allows for storing SPARQL queries as RDF. However, additional
properties, such as spin:constraint and spl:Attribute15 enable the definition of prescriptions such
as attributes constraining the usage of certain properties in the context of a specific class. In
the following listing, we show how SPIN can be used to express the examples of constraints we
already introduced above in natural language. It states that a rvl:PropertyMapping always maps
exactly one rdf:Property to exactly one viso-graphic:GraphicRelation:

1 rvl:PropertyMapping
spin:constraint
[a spl:Attribute ;
rdfs:comment "There has to be exactly one target

graphic relation."^^xsd:string ;
6 spl:maxCount 1 ;

spl:minCount 1 ;
spl:predicate rvl:targetGraphicRelation ;
spl:valueType viso-graphic:GraphicRelation

] ;
11

spin:constraint
[a spl:Attribute ;
rdfs:comment "There has to be exactly one source property

of type rdf:Property."^^xsd:string ;
16 spl:maxCount 1 ;

spl:minCount 1 ;
spl:predicate rvl:sourceProperty ;
spl:valueType rdf:Property

] .

Attributes encapsulate a SPARQL query, which can be evaluated to decide whether some
property is used as required. The most simple kind of query is a SPARQL ASK query – when it
returns yes, the constraint is violated, when it returns no, the RVL model meets the constraint.
The listing below shows such a constraint that is simply stored as a SPARQL ASK query. For
better readability we show the SPARQL query in the usual syntax, not as SPIN, i. e., stored as
RDF triples. The constraint ensures that whenever an rvl:ValueMapping defines a set of source
values, it may not define a range of source values at the same time.

rvl:ValueMapping
spin:constraint
[a sp:Ask ;

4 rdfs:comment "You can either define a set of source values
or give bounds"^^xsd:string ;

sp:where (

... SPARQL-query represented as RDF statements with SPIN,
9 # here shown as plain SPARQL ...

?this rvl:sourceValueSet ?svs .
?this rvl:sourceValueInterval ?svi .
)

14] .

More examples of constraints on RVL mappings, including such constraints that require a
knowledge base conforming to the VISO/facts module can be found in Chapter 8, were we also
provide a classification of the various kinds of constraints used in the OGVIC context as an
overview.

15 http://spinrdf.org/spl# is a SPIN library to provide common functions.

165

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

7.12 Conclusions and Future Work
This chapter introduced RVL, a novel declarative visualisation language for RDFS/OWL.
Furthermore, we described the process of creating the language and discussed choices regarding
a schema language for RVL.

With RVL, we answer the research questions Q-1 and Q-1.1, asking for a way to define
composable and shareable mappings. While the design of RVL was driven by concrete mapping
situations as they occurred in our case studies, the various possibilities of composing mappings
and the application to three very different scenarios during our case studies supports the
assumption that RVL allows for flexible mapping solutions and is not bound to a specific domain.
Yet, RVL has to be further evaluated in other domains possibly leading to extensions or changes.

Beyond the usage of RVL within the OGVIC visualisation approach for storing and composing
visual mappings, we designed RVL to be generally useful as an exchange format for visual
mappings. Further, RVL enables domain ontology authors to propose visualisation settings for
RDFS/OWL data and store these settings side by side with the data.

RVL is used in the prototypes of visualisation systems that we present in detail in Chapter 8.
Two of them are realised on top of an existing ontology editor, which is turned into an RVL
specific editor by evaluating the RVL schema. The first one builds on TopBraid Composer and
reads the RVL SPIN constraints to guide the user when defining RVL mappings. Furthermore,
SPIN rules are used to process RVL mappings to the AVM model (cf. Chapter 6). The second
one is realised as an OntoWiki Plug-In and directly processes RVL mappings to D3.js16 using
the SPIN API for constraint checking. The third one does not evaluate RVL constraints, but
aims at implementing as much as possible of the RVL specification.

In the current version, RVL already covers all general requirements of Sect. 7.1, with two
exceptions. First, although concepts for integrating simple interactions (LR-3) exist, these have
not been fully specified and tested so far. Second, the extensibility of mappings (LR-11) is given
to a certain degree, since, as for every RDF resource, third parties can add additional triples to
mappings published on the web. However, like for CSS, there is no extension mechanism that
would allow for defining (multiple) variants of mappings published on the web by specifying
additional settings or removing unwanted settings.

Evaluating the current RVL against the sketches from our case studies (Sect. 3.3), we find
that most of the sketches can already be described in RVL, including many of the more complex
ones that can be composed from multiple mappings. In many cases, styles need to be selected
in addition to visual mapping; Assigning a CSS style class to selected RDF resources can be
done with Fresnel (Sect. 4.3.1) therefore, an integration of RVL with Fresnel and CSS should be
considered. Besides this, we need to allow for describing static parts of graphics and mixing
them with the ones that are generated by visual mapping. When generating texts, often, static
strings are concatenated with dynamically generated strings, which is quite simple due to the
linear, one-dimensional character of text. For graphics, having a graph-based structure, this
is more complicated. This language feature is required when mappings introduce new graphic
objects, for example, when using complex Labelling (e. g., the label composed from a clock and
text in Fig. 3.4a).17 Table 7.3 gives an overview of the visualisation cases that can be handled
by the current version of RVL.

We encouraged researchers in the field of Semantic Web visualisation to comment on an alpha
version of RVL [Pol13], add further use cases and point to inconsistencies in the specification.
To ease the communication, we set up a detailed documentation of RVL on the web and allowed
for discussing each language construct. The documentation can be accessed by pointing a web
browser to the language’s URI (http://purl.org/rvl/).

16 D3.js (Data Driven Documents). http://d3js.org/, accessed: 02.07.2015.
17 Currently, such actually static parts have to be created using simple mappings as a workaround.

166

http://purl.org/rvl/
http://d3js.org/

7.12. CONCLUSIONS AND FUTURE WORK

Number Description RVL Explanation
VC-1 Create a graphic object

per resource
x implicitly by PropertyMapping (Sect. 7.2.2)

VC-2 Map to Graphic Attributes x PropertyToGraphicAttributeMapping (Sect. 7.2.2)

VC-3 Map to Graphic-Object-to-
Object-Relations

x PropertyToGraphicObjToObjRelMapping (Sect. 7.2.2)

VC-4 Create additional graphic
objects

(x) implicitly: connectors, labels, . . .

VC-5 Define simple interactions (x) partially: e. g., co-highlighting (Sect. 7.9)

VC-6 Simplify the ontological
model

x simplifications (Sect. 7.2.7)

VC-7 Reuse / extend / compose
mappings

(x) reuse and composition (Sect. 7.10)

VC-8 Use complex standard
graphics

–

VC-9 Refer to parts of the
graphic

x by roles (e. g., viso-graphic:connector) (Sect. 7.10)

VC-10 Draw legends and labelled
axes

(x) legend flag on Mapping class; axes not yet supported

VC-11 Define styles – (could be done via future Fresnel integration)

VC-12 Benefit from good defaults x defaults specified for many mapping types (e. g., for calcu-
lating Value Mappings, Sect. 7.3)

Table 7.3: Overview of the visualisation cases that can be handled by the current version of RVL.

167

CHAPTER 7. A LANGUAGE FOR RDFS/OWL VISUALISATION – RVL

168

Chapter 8

The OGVIC Approach to
Ontology-Driven, Guided
Visualisation Supporting Explicit
and Composable Mappings

The prerequisites for the approach have been laid in the previous chapters – we introduced a
formalisation of graphic concepts by means of the Visualisation Ontology (VISO) and suggested
the RDFS/OWL Visualisation Language (RVL) for defining visual mappings based on Semantic
Web technologies. As a platform-independent model, we introduced the Abstract Visual Model
(AVM). At this point we have all models available that we need to describe the overall visualisation
approach.

The OGVIC approach can be classified as a model-driven [Tru06] and generative [CE00]
approach, with multiple transformations between models and from models to code. However, its
technological space is not the classical metamodelling technological space as described by the
OMG, but it builds on RDF-based technologies to ease the consumption of RDF data and the
production of settings (mappings) and models that can easily be exchanged in a Semantic Web
context. With respect to the classification by configurability (Sect. 4.1.2), the OGVIC approach
can be classified as »customisable via a UI«. Further, all aspects of customisation are covered –
data, presentation and control.

A schematic overview of an architecture for the OGVIC approach has already been presented
in the introduction (Fig. 1.4) to provide context for the contributions of this thesis. In the follow-
ing we recall this architecture, add more details, and describe how the various models and pro-
cesses that we introduced are connected. The architectural overview of OGVIC (Fig. 8.1) shows a
system of models and transformation processes starting from the source data and finally resulting
in a model (or code) for a concrete platform. Like the Visualisation Reference Model (Sect. 2.1.4),
it is not an automatic, linear pipeline, but an incremental process, where intermediate results are
taken into consideration. While not explicitly shown in this figure, all process steps, except e1
and e2, are meant to be modified interactively by users of the visualisation system.

Looking at the models used in our approach, not only the source data is represented as an
RDF model, but there are four models (including the VISO ontology), each of which plays an
important role at (visualisation) runtime. The first model holds the source data (c) from various
domains. In a real world scenario, it may be selected from a Linked Data source or provided
from a local file or triple store (a). A second model represents the current RVL mappings
model (h) conforming to the RDFS/OWL Visualisation Language (RVL). The third model is
the VISO ontology (g1–g3). For the OGVIC approach the modules data, graphic, facts and a
fact base are required. In our example, we use the VISO module VISO/facts/empiric to provide

169

CHAPTER 8. THE OGVIC APPROACH

knowledge from empiric visualisation studies, but this may be replaced by other fact bases,
e. g., if new experiments lead to new insights. The AVM (f) is the fourth RDF model. In terms
of the MDA, the AVM is a Platform-Independent Model (PIM). It consists of graphic objects
and relations that have been formalised in the VISO/graphic module.

Looking at the processes, we can identify five main process steps: Selection (b), filtering (d),
the guided editing of mappings (i), the generation of the AVM (e2) and, finally, the generation of
code for a concrete platform based on the AVM (j). Step e1 resolves RVL convenience constructs
into basic RVL constructs. As announced earlier, selecting (b) as well as filtering the source
data (d) are indispensable parts of a productive visualisation system, but not discussed in this
thesis as many solutions have been described for these process steps. Methods such as faceted
browsing [ODD06, VWPM12, HZL08] or other (visual) querying and filtering approaches may
be integrated to reduce the data before applying the remaining process steps. The guided editing
of visual mappings (i) is detailed in Sect. 8.1. During this step not only the available data
and the possible graphic relations are taken into consideration, but also the AVM needs to
be available for introspection, since additional mappings may be constrained by existing ones.
Unlike the guided mapping process, the actual transformation generating the AVM from the
source data and the RVL mappings, is supposed to be automatic and unattended (e2). It can
be seen as a PIM-to-PIM-transformation in terms of the MDA. Finally, in a further automatic
transformation step – here called rendering (j), the code describing a graphic on a concrete
platform is created from the AVM (PIM-to-PSM-transformation1). This may be a format such
as SVG, HTML or X3D, which can then be directly displayed by a browser or – as it is the case
for our third prototype – a format that can be further interpreted, e. g., by D3.js.

Extending the list of actors from Chapter 3, we introduce an OGVIC developer and a
platform developer as well as a visualisation user . Not all components of this architecture have
to be implemented by the same actor. The OGVIC developer may implement new RVL features,
filtering mechanisms and guidance capabilities. The platform developer only has to know about
the AVM and can start the development from this point. Her exclusive task is to develop a
transformation to a specific platform such as D3.js or X3D. Finally, the visualisation user does
not have to write program code or RVL mappings, but watches and interacts with visualisations
configured by visualisation authors to explore or analyse data. A single user may play multiple
roles at the same time.

Before discussing lessons learned from building three prototypes in Sect. 8.3–8.6, in the first
two sections of this chapter, we deal with the core aspects of the OGVIC approach. We begin
with the title’s parts ontology-driven and guided in Sect. 8.1 and then explain the further aspects
of explicit and composable mappings in Sect. 8.2.

1 Platform-Specific Model (PSM).

170

Figure 8.1: Suggested architecture for a visualisation design system implementing the OGVIC approach.
The process steps and models labelled a, b, c, . . . g1, g2, . . . are referenced in the main text.

CHAPTER 8. THE OGVIC APPROACH

8.1 Ontology-Driven, Guided Editing of Visual Mappings

Offering the visualisation author guidance for the visual mapping process – i. e., for the editing of
RVL mappings – is at the core of the OGVIC approach and corresponds to research question Q-2.
With respect to the classification of guidance into flow guidance and step guidance (cf. Sect. 2.3)
our approach focuses on step guidance for the visual mapping process step. Flow guidance plays
a subordinated role in our approach; the technical processing order is given by the necessary
pipeline (e. g., visual mapping first, then rendering) and user interaction can take place at any
process step and in abitrary order, (e. g., filter first, then create visual mappings, then filter
again). Guidance for the visual mapping process step (Fig. 8.1, i) covers the following:

• mapping data relations to graphic relations (including attributes such as colour or texture,
but also graphic relations building complex spatial visual structures)

• mapping data values to graphic attribute values

To realise guidance under the OGVIC approach, we suggest to generate an ontology-driven,
guided editor for visual mappings. Why should this UI be ontology-driven? In Sect. 7.11, we
already anticipated that the RVL schema should be defined such that tooling could be derived
from it and justified this by the reduction of redundancy and the increased extensibility of the
RVL language. Since not only the RVL schema, but also facts and rules based on the VISO
ontology need to be considered in the guidance process, we speak of ontology-driven guidance.

This also means that guidance needs to be provided based on constraints from different
sources and serves different purposes. For example, some constraints ensure that mappings
are valid, i. e., they conform to the RVL schema. Other constraints go beyond this to support
guidance for questions of human perception or to discourage second-best mappings in favour of
the most effective ones. Guidance can also employ different levels of enforcement from simple
warning messages to carefully adapted error-prevention. In the following, we give an overview of
the different constraint classes, as well as on the different levels of guidance that we distinguish.
Finally, we show where and how ontologies are used for driving this process in the OGVIC
approach and give examples of the defined constraints.

8.1.1 Classification of Constraints

A first idea was to classify constraints for guidance into syntactic and semantic constraints. How-
ever, since the distinction of semantic vs. syntactic constraints »is somewhat arbitrary« [SC02]
and semantic constraints can be transformed into syntactic ones by refining the grammar, we
instead classify the constraints by the following facets:

• Structural depth – The distinction into intra-object and inter-object can also be found in
the context of database integrity constraints [Tü99]:

– SINGLE PROPERTY – The constraint is on the value of some property, without
referring to other properties

– INTRA-OBJECT – The constraint references values of other properties associated
with the same subject

– INTER-OBJECT – The constraint references values of properties associated with
other resources

• Inference needed

– INFER – Standard (RDFS/OWL) reasoners can be used to infer subclasses and types
of resources used in the constraints

• Usage of external knowledge

172

8.1. ONTOLOGY-DRIVEN, GUIDED EDITING OF VISUAL MAPPINGS

– EXTERNAL TYPE SYSTEM – Usage of an existing type system for constraint
definition

– EXTERNAL FACTS – Usage of facts from an external knowledge base

• Severity

– ERROR

– WARNING

– DISCOURAGED

– RECOMMENDED

As suggested by the severity level »RECOMMENDED«, constraints can not only be used for
validation purposes, but can also be used for different levels of guidance, which we discuss in
the next section. Among the constraints based on external facts from VISO, we can further
distinguish between expressiveness and effectiveness constraints, as well as between constraints
concerning the usage of a single graphic relation and those concerning the composition of multiple
graphic relations. This further visualisation-specific classification is not listed here; see Sect. 5.7
for details.

8.1.2 Levels of Guidance

We further classify guidance by the level of enforcement and the techniques used. This is strongly
connected to the Severity facet of the constraint classification above.

• Display global messages, whenever a constraint is violated

– ERROR MESSAGES – Display global error messages

– WARNING MESSAGES – Display global warning messages

– RECOMMENDATIONS – Display global recommendations

• Adapt the user interface

– PREVENT VIOLATIONS – Constraint violations are not possible by construction
of the editor

– DISCOURAGE VALUES – Constraint violations when selecting values are possible,
but marked and visually discouraged (by greying-out second-best options and pointing
to constraint violations, e. g., with warning icons or marked red)

– RECOMMEND VALUES – Best values are recommended, e. g., by highlighting or
sorting, but no warnings appear

– DISCOURAGE PROPERTIES – Constraint violations when selecting properties are
possible, but marked and visually discouraged

– RECOMMEND PROPERTIES – Best properties are recommended

– DERIVE QUICKFIXES – Executable solutions are offered that solve the constraint
violation

8.1.3 Implementing Constraint-Based Guidance with
SPIN and VISO/facts

We already introduced simple SPIN constraints in Sect. 7.11.1 as a means to define a schema for
RVL. In the absence of a standard to define contraints and hints for guidance, we also use SPIN

173

CHAPTER 8. THE OGVIC APPROACH

to formulate the necessary (additional) constraints for guidance. In the following, we apply the
classification of constraints and guidance levels to the OGVIC approach and give examples of
constraints we implemented with SPIN and interpreted with our prototypes. SPIN constraints
are attached to classes of the RVL language using the property spin:constraint. The constraint
itself is a SPARQL query in SPIN notation (stored as triples). In most examples, to maintain
readability, we give the query as plain text, though.

Structural Depth

With respect to the structural depth of the constraints, we require »SINGLE PROPERTY«
(e. g., to constrain a datatype property to xsd:int) and »INTRA-OBJECT« constraints. An
example for an »INTRA-OBJECT« constraint is given in Listing 8.1, where two properties of
the same object are used in one constraint – rvl:lowerBound and rvl:upperBound – to express
that rvl:lowerBound must always have a value smaller than rvl:upperBound.

1 rvl:Interval
spin:constraint

[a sp:Ask ;
rdfs:comment "Upper bound may not be less than lower bound." ;
sp:where (

6

... SPARQL-query represented as RDF statements with SPIN,
here shown as plain SPARQL ...

?this rvl:lowerBoundIncl ?lb .
11 ?this rvl:upperBoundIncl ?ub .

FILTER (?ub < ?lb) .
)

] .

Listing 8.1: Intra-object constraint realised in SPIN. The constraint detects an error, if the upper
bound of an rvl:Interval is less than the lower bound (corresponds to Fig. 8.6 in Sect. 8.3).

So far we could not identify cases where »INTER-OBJECT« references are required.

Inference and Constraint Evaluation

Constraints defined with SPIN can be checked with the open-source SPIN API (cf. Sect. 2.2.7 for
background on SPIN-related software) and are internally evaluated using a SPARQL engine. Still,
sometimes the preceding run of an RDFS reasoner is required. This may be necessary to extend
constraints to subclasses and consider subproperty hierarchies. For example, using standard
reasoning avoids the necessity to put a constraint for each subclass of rvl:PropertyMapping,
since constraints defined for the class are automatically applied to subclasses. The benefits of
combining (OWL and RDFS) reasoning with constraint checking – as it possible with SPIN –
have been recently elaborated by Bosch et al. [BANE15].

Usage of External Knowledge

Referencing an »EXTERNAL TYPE SYSTEM« is the common case for the set of constraints
that we defined for the OGVIC approach. For example, types of graphic relations defined in
VISO/graphic are referenced in RVL constraints (cf. Listing 8.1). However, we can split the
overall set of constraints into two subsets by the criterion »EXTERNAL FACTS«. We stored
the two subsets separately as RVL-Constraints and RVL-VISO-Constraints.

The module RVL-Constraints provides all constraints that serve to describe valid RVL
mappings, but does not need to evaluate facts from external knowledge bases. These constraints
can been seen as part of a formal specification of the RVL language that we refer to as RVL
schema in Sect. 7.11. Examples of such constraints are the constraint on rvl:ValueMapping given
in Sect. 7.11 (last listing) and Listing 8.1.

174

8.1. ONTOLOGY-DRIVEN, GUIDED EDITING OF VISUAL MAPPINGS

The module RVL-VISO-Constraints provides all constraints that reference external facts
from a knowledge base. These constraints go beyond ensuring valid RVL mappings but can be
used for generating warnings and recommendations concerning the quality of the graphic. For
example, we defined constraints on the expressiveness and effectiveness of visual mappings with
respect to the scale of measurement of the data. An example of an expressiveness constraint
is given in Listing 8.2. An example of an effectiveness constraint is given in Listing 8.3. The
knowledge base utilised by RVL-VISO-Constraints has to conform to the VISO/facts module,
i. e., it has to offer knowledge about graphics formulated with the VISO/facts vocabulary. As
introduced in Sect. 5.7, we offer the module VISO/facts/empiric as a basic instance of such a
knowledge base.

1 ASK WHERE {
?this rvl:sourceProperty ?sp .
?this rvl:targetGraphicRelation ?tgr .
{

?sp rdfs:subPropertyOf viso-data:has_nominal_value .
6 ?tgr viso-facts:not_expresses viso-data:Nominal_Data .

} UNION {
?sp rdfs:subPropertyOf viso-data:has_ordinal_value .
?tgr viso-facts:not_expresses viso-data:Ordinal_Data .

} UNION {
11 ?sp rdfs:subPropertyOf viso-data:has_quantitative_value .

?tgr viso-facts:not_expresses viso-data:Quantitative_Data .
}

}

Listing 8.2: Example of how an expressiveness constraint can be realised in SPIN (showing only the
encapsulated SPARQL query as plain text).

1 CONSTRUCT {
_:b0 a spin:ConstraintViolation .
_:b0 spin:violationRoot ?this .
_:b0 spin:violationPath rvl:targetAttribute .
_:b0 rdfs:label ?cvLabel .

6 _:b0 spin:violationLevel spin:Warning .
_:b0 spin:fix _:b1 .
_:b1 a :DeleteTriple .
_:b1 rdf:subject ?this .
_:b1 rdf:predicate rvl:targetAttribute .

11 _:b1 rdf:object ?tga .
}
WHERE {

?this rvl:targetAttribute ?tga .
{

16 SELECT COUNT(?tga) AS ?altCount SAMPLE(?sp) AS ?sp1 SAMPLE(?som) AS ?som1
WHERE {

?this rvl:sourceProperty ?sp .
?this rvl:targetAttribute ?tga .
{

21 ?sp rdfs:subPropertyOf viso-data:has_nominal_value .
?tga viso-facts:has_effectiveness_ranking_for_nominal_data ?rankValue .
?anyOtherGr viso-facts:has_effectiveness_ranking_for_nominal_data ?otherRankValue .
BIND ("nominal" AS ?som)

} UNION {
26 ?sp rdfs:subPropertyOf viso-data:has_ordinal_value .

?tga viso-facts:has_effectiveness_ranking_for_ordinal_data ?rankValue .
?anyOtherGr viso-facts:has_effectiveness_ranking_for_ordinal_data ?otherRankValue .
BIND ("ordinal" AS ?som)

} UNION {
31 ?sp rdfs:subPropertyOf viso-data:has_quantitative_value .

?tga viso-facts:has_effectiveness_ranking_for_quantitative_data ?rankValue .
?anyOtherGr viso-facts:has_effect.._ranking_for_quantitative_data ?otherRankValue .
BIND ("quantitative" AS ?som)

}
36 FILTER (?tga != ?anyOtherGr)

FILTER (?otherRankValue > ?rankValue)

175

CHAPTER 8. THE OGVIC APPROACH

NOT EXISTS {
?anyOtherMapping rvl:targetGraphicRelation ?anyOtherGr .
FILTER (?this != ?anyOtherMapping)

41 }
}
GROUP BY ?tga

}
FILTER (?altCount > 0)

46 BIND (fn:concat("There are ", ?altCount, " more effective visual means for visualizing
the selected ", ?som1," source property ’", afn:localname(?sp1), "’ that are not yet
used in other mappings.") AS ?cvLabel)

}

Listing 8.3: Example of how an effectiveness constraint can be realised in SPIN (showing only the
encapsulated SPARQL query as plain text). The constraint definition includes a quickfix for deleting
ineffective mappings using spin:fix (Line 7–11). Furthermore, the severity level – spin:violationLevel–
is set to spin:Warning (Line 6). rvl-cs:DeleteTriple is a spin:UpdateTemplate for deleting arbitrary
statements, which we instantiate here for deleting ineffective rvl:targetGraphicRelation-statements.
Possible improvements include extending the quickfix to suggest the most effective visual means
as well as considering the fact that visual means may be used more than once if we use submappings.
See Fig. 8.2 and 8.3 for an example of how this constraint is interpreted in prototype P1.

Figure 8.2: Effectiveness constraint – Warning: This figure shows how the constraint from Listing 8.3
is interpreted in the TopBraid-Composer-based prototype (see Sect. 8.3). A warning is issued for this
property mapping, since viso-graphic:color_hsl_lightness was used for visualising the quantitative values
of ex:population, which is not the optimal choice according to the effectiveness ranking that we formalised
in the VISO module VISO/facts/empiric.

Supported Levels of Severity

Severity levels can be added to a SPIN constraint or SPIN rule by adding an extra triple using
spin:violationLevel. For example, we assign the level spin:Warning if the effectiveness of a mapping
is non-optimal and spin:Error if the expressiveness is not given.

Supported Levels of Guidance and Quickfixes

With respect to the levels of guidance used in the OGVIC approach, the levels »DISCOURAGE
VALUES«, »RECOMMEND VALUES«, »DISCOURAGE PROPERTIES« and »DERIVE
QUICKFIXES« have been employed. Our first (Sect. 8.3) and second protototype (Sect. 8.4) can

176

8.2. SUPPORT OF EXPLICIT AND COMPOSABLE VISUAL MAPPINGS

display error and warning messages. These messages are not only listed in a global view, but also
displayed locally on the involved property widgets of the respective constrained class (Fig. 8.2
and Listing 8.3). Furthermore, TopBraid Composer evaluates constraints to suggest possible
values in the value-select-dialogues of the editor. However, errors are not completely avoided
(»PREVENT VIOLATIONS«), nor are properties suggested »RECOMMEND PROPERTIES«.
Listing 8.3 also gives an example of a quickfix defined using spin:fix. Fig. 8.3 shows how this
quickfix is presented in TopBraid Composer.

Figure 8.3: Effectiveness constraint – Quickfix: This figure shows how the constraint from Listing 8.3
is interpreted in the TopBraid-Composer-based prototype (see Sect. 8.3). A quickfix is offered to delete
the statement that violates the effectiveness constraint.

8.2 Support of Explicit and Composable Visual Mappings

A second important feature of the OGVIC approach, are the aspects »explicit« and »composable«
visual mappings, corresponding to research question Q-1. Composition is not an optional feature
but required for realising most of the sketches from our case studies. Speaking of composition,
we first have to clarify what is subject to composition. This includes the

• composition of graphic objects,

• composition of graphic relations,

• composition of mappings, and eventually, the

• composition of data as a pre-step (not in focus here).

When introducing the AVM in Chapter 6, we already dealt with the composition of graphic
objects (Sect. 6.5) and graphic relations (Sect. 6.6). We introduced how graphic objects as well
as graphic relations and the emerging structures can be composed based on the syntactic graphic
roles that graphic objects can play. Visual mappings may be composed as well. The prerequisite
for reusing and composing mappings is that we make the visual mapping from data relations
to graphic relations explicit. We provided the RVL language for this purpose, which defines
the possible mappings. With the graphic module of the VISO ontology, we introduced a formal
description for the graphic relations to be used within these mappings. Also the composition of
visual mappings was already briefly mentioned in the context of the RVL language (Sect. 7.10):
We showed how composability is realised by the submapping mechanism of RVL, in combination

177

CHAPTER 8. THE OGVIC APPROACH

with the concept of the role-based AVM. In the following section, we discuss in more detail,
which composition cases may occur, beyond the basic distinction we already described in the
chapter on RVL – Simultaneous Composition and Context Composition.

8.2.1 Mapping Composition Cases
The following figures illustrate the identified cases of visual mapping compositions. We omit the
concrete source data relations and focus on the composed graphic relations instead.

Simultaneous composition. All mappings are applied to the graphic objects independently
of other mappings, i. e., removing one mapping does not influence the other mappings. Si-
multaneous composition steps are confluent, that means they can be performed in any order.
Each mapping works on the same set of graphic objects. Fig. 8.4 shows an example of the
simultaneous composition of multiple mappings. We use the term »simultaneous« referring to
the »simultaneous combination of visual syntactic structures« described by Engelhardt [vE02].

Crossing of graphic attributes. A special case of a simultaneous composition is the crossing
of graphic attributes. The same graphic attribute may be used multiple times if its value space can
be split into multiple orthogonal dimensions. This works – and is frequently done – for position
in physical space, but also for attributes like colour, which equally spans up a multidimensional
colour value space2.

Y

X

Y

X

Si
m
ul
ta
ne

ou
s	
Co

m
po

si
�o

n
Cr
os
si
ng

X-Posi�on,	Y-Posi�on
(con�nuous	values)

X-Posi�on,	Y-Posi�on
(discrete	values)

Line-Up
(ordered	variant)

Separa�on	by	a	Separator
(ordered	variant)

Hue,	Lightness	
(HSL	color	space)

Crossing of other graphic relations. Since graphic-object-to-object-relations consume
graphic attributes like spatial position, crossing can also be applied to relations such as
separation by a separator or line-up, as long as each mapping is constrained to use only one of
the dimensions available. The last subfigure above shows an example of this: Two different

2 For spatial dimensions, this works only if the graphic attribute comprises only one dimension, since already
the crossing of two by two dimensions would result in four spatial dimensions, which is more than the three
spatial dimensions that can be perceived by the human eye.

178

Figure 8.4: Example for a set of visual mappings that are simultaneously applied to the whole set of
»raw« graphic objects. The order in which they are applied to the graphic objects does not affect the
final result, since simultaneous composition is confluent. Because line-up is the only graphic relation
that internally uses position, no conflicts occur. Depending on the data, this may be different if we
compose with containment (cf. Sect. 5.7.3).

CHAPTER 8. THE OGVIC APPROACH

semantic relations are both mapped to the same graphic relation separation by a separator .
This works, because one is mapped to horizontal separators and the other to vertical separators.

Context composition. In a context composition, the second mapping applies only to a subset
of the graphic objects defined by the first mapping, the context. In the next subsection, we discuss
multiple options to define a context. Two mappings taking part in a context composition cannot
be changed independently of one another, because one mapping needs to work on graphic objects
that depend on the other mapping. Sometimes, the objects to which a context composition is
applied, may even have been newly created by the other mapping. In the example below, the
second mapping is used in the context of the first mapping, which is determined by a graphic
role connector . This graphic role is assigned during the first mapping, so the scope of the second
mapping is limited by the first one. Still, the second mapping is self-contained and could be
reused in other contexts.

Mapping	A	(linking) Composi�on	of	A	and	BMapping	B	(color)
Simultaneous	c. Context	c.	(role:	connector)

8.2.2 Selecting a Context

Describing a context composition requires the selection of a graphic context as well as a data
context:

Selecting a graphic context. In order to create a graphic context, we need to reference
parts of a graphic. In RVL, the rvl:submapping_onRole property of submappings allows for
selecting only those graphic objects that currently play a specific graphic role.

While not yet being part of the RVL specification, another option is to select the graphic
objects indirectly via the resources they represent. Filters, which may even select a single entity
by ID, could be applied to further restrict the set of graphic objects. Further contexts based
on the structure of the data or the structure of the graphic are conceivable. Context could, for
instance, be given through structural references by

• a certain level of a hierarchy (DAG required),

• each level of a hierarchy (DAG required),

• leaf nodes of a hierarchy per branch (DAG required),

• second degree neighbours (this would be dependent on the »position« of a user, e. g., in a
node-link diagram),

• nodes with fan-out > 20.

Finally, further contexts, such as referencing specific graphic objects by their graphic values, are
possible. For example, we could apply some mapping to each graphic object that was coloured
»red« by a previous mapping. A similar case is to pick graphic objects by their ID. Both cases
should be rare.

180

8.2. SUPPORT OF EXPLICIT AND COMPOSABLE VISUAL MAPPINGS

Selecting a data context. To determine the data to be processed by the composed mapping,
we also need a data context. In RVL, we can refer to the statement processed by the »supermap-
ping«. With the rvl:submapping_onTriplePart property, we then define whether subject, predicate
or object of this statement should form the new data context for the submapping (cf. Sect. 7.10).

8.2.3 Using the Same Graphic Relation Multiple Times
Valuable graphic relations such as linking , but also separation by a separator or proportional
repetition can be mapped more than once, if their instances can be clearly distinguished. This
can be easily achieved if the respective graphic relation involves creating additional graphic
objects (such as a separator , a connector , a label or proportionally repeated objects). In this
case, a second mapping (e. g., to colour) can be applied on the newly created objects (by means
of a context composition) to resolve the ambiguity. In the figure below we give three examples
of using the same graphic relation for two different semantic relations: for linking, we colour
the connectors; for proportional repetition, we colour the repeated objects; for separation by
a separator, we colour the separators (here we use grey and green). A similar example from
our case study sketches is RO-6 (Fig. 3.4a), where both ro:refines and ro:isInConflictWith are
mapped to linking . Here, the two completely unrelated semantic relations are distinguished
by the shape of the connectors. A special case of this principle is the use of colour/shape to
distinguish subproperties in example CIT-1 (Fig. 3.4c) and CIT-5 (Fig. 3.3c).

Linking Separa�on	by	a	Separator
(ordered	variant)

Propor�onal	Repe��on

With respect to the scalability and complexity of the composition approach, we have to keep
in mind that while calculations on the composability of various graphic relations may quickly
become complex and expensive, a single graphic will, for the sake of human perception, only
make use of a limited number of relations. If it is necessary to encode more relations, multiple
views will probably be used, which should also break down the necessary calculations into
reasonable fractions.

181

CHAPTER 8. THE OGVIC APPROACH

Having discussed the defining features of the OGVIC approach, in the following, we present
three prototypes that have been developed to implement aspects of our approach and discuss
their differences and shortages. For each prototype (P1–P3), we give an architectural overview.
These figures refer back to the schematic overview of an architecture for the OGVIC approach
that we presented in the introduction (Fig. 8.1).

8.3 Prototype P1 (TopBraid-Composer-based)

A first prototype (P1) of the OGVIC architecture (Fig. 8.5) was realised based on the graphical
ontology modelling suite TopBraid Composer. The modelling environment comprises a graphical
editor for the RVL language and a SPIN-rule-based interpreter that takes RVL definitions and
data and transforms them into the AVM. Since SPIN-rules are grounded in SPARQL 1.1 Update,
they may be regarded as graph transformation rules. The tooling provided by the modelling
environment based on the RVL schema (defined in RDFS+SPIN), can validate RVL mappings
and issue warnings on the UI when the user violates a constraint. Since the constraints and
rules can access external graphs such as the knowledge base VISO/facts/empiric, also the
expressiveness and effectiveness of visual mappings can be checked. To allow for both standard
inference (open world reasoning) and constraint checking with SPIN (closed world reasoning)
in the same environment, chains of different reasoners can be specified. Beyond displaying
error messages and warnings (Fig. 8.6), SPIN allows for defining quickfixes. Quickfixes (spin:fix)
are realised as SPARQL Update requests, which can be evaluated to suggest changes that
eliminate possibly detected constraint violations. Finally, the AVM is rendered to HTML based
on UISPIN-templates (Sect. 4.3.1) within the boundaries of the limited visual structures that
UISPIN supports.

As an example for a graph transformation with SPIN, we demonstrate how the convenience
construct rvl:ResourceMapping (cf. Sect. 7.2.6) is internally transformed to an rvl:PropertyMapping
and a connected rvl:ValueMapping. Listing 8.4 shows the original rvl:ResourceMapping, followed
by the necessary transformation of the RDF graph described using spin:rule (Listing 8.5). Finally,
the transformation result is shown in Listing 8.6. This exemplary transformation is part of
the RVL-2-RVL SPIN-rules (step e1 in Fig. 8.5). Similarly, transformations from the RVL
mapping graph to the graph representing the AVM (step e2) have been realised (cf. Listing 8.8
in Sect. 8.6.3).

It would have been desirable to build on top of P1 to benefit from the SPIN-based environment
from TopBraid instead of building completely different prototypes. Unfortunately, this was not
possible due to license restrictions. Since reimplementing a comparable generic open-source
infrastructure was out of scope of this thesis, two other specific prototypes have been developed
to implement further aspects of the OGVIC approach.

ex-mapping:ExampleResourceMapping
a rvl:ResourceMapping ;
rvl:targetGraphicRelation ex:exampleGraphicRelation ;
rvl:sourceValue ex:exampleSourceValue ;
rvl:targetValue ex:exampleTargetValue .

Listing 8.4: Resource mapping.

INSERT {
GRAPH ?genRvlGraph {

?genPm a rvl:PropertyMapping .
?genPm rvl:sourceProperty rdf:ID .

5 ?genPm rvl:targetGraphicRelation ?tgr .
?genPm rvl:valueMapping ?genVm .
?genVm a rvl:ValueMapping .
?genVm rvl:sourceValue ?sv .
?genVm rvl:targetValue ?tv .

10 }
} WHERE { # continued on page 184 ...

182

8.3. PROTOTYPE P1 (TOPBRAID-COMPOSER-BASED)

Figure 8.5: Architecture of the TopBraid-Composer-based prototype: RVL mappings can be (graphi-
cally) edited within the TopBraid Composer environment (i), offering basic guidance functionality. The
TopBraid Composer SPIN engine is then used for interpreting RVL with SPIN-rules and constraints
(SPIN-based graph transformation; step e2) and building the AVM (f) from c, h and g1–g4. Finally, the
AVM is rendered (j) to HTML (k) based on UISPIN templates (m). In step e1, SPIN-rules are used in
case it is necessary to transform from RVL to RVL to resolve RVL convenience constructs into basic
mapping types.

Figure 8.6: TopBraid-Composer-based prototype – Bounds constraint: Warnings are issued for this
mapping, since the values for the lower and upper bound violate an RVL constraint stating that the
upper bound value must be greater than the lower bound value (corresponds to Listing 8.1).

183

CHAPTER 8. THE OGVIC APPROACH

.. continued from page 182

BIND (<http://example.org/rvl/graph/> AS ?mappingsGraph)
15 BIND (<http://example.org/rvl/generated/graph/> AS ?genRvlGraph)

BIND (afn:localname(?tgr) AS ?localNameTgr)
BIND (afn:localname(?rm) AS ?localNameRm)
GRAPH ?mappingsGraph {

?rm a rvl:ResourceMapping .
20 ?rm rvl:sourceValue ?sv .

?rm rvl:targetValue ?tv .
?rm rvl:targetGraphicRelation ?tgr .

}
GRAPH ?genRvlGraph {

25 BIND (smf:buildURI(":GenPropertyMappingForID2{?localNameTgr}") AS ?genPm)
BIND (smf:buildURI(":GenValueMappingForResourceMapping{?localNameRm}") AS ?genVm)

}
}

Listing 8.5: Transformation from rvl:ResourceMapping to rvl:PropertyMapping and rvl:ValueMapping in
SPIN (showing only the encapsulated SPARQL query of the spin:rule as plain text). We use the SPIN
function smf:buildURI to concatenate a name for the generated mappings.

rvl-gen:GenValueMappingForResourceMapping
2 a rvl:ValueMapping ;

rvl:sourceValue ex:exampleSourceValue ;
rvl:targetValue ex:exampleTargetValue .

rvl-gen:GenPropertyMappingForID2exampleGraphicRelation
7 a rvl:PropertyMapping ;

rvl:sourceProperty rdf:ID ;
rvl:targetGraphicRelation ex:exampleGraphicRelation ;
rvl:valueMapping rvl-gen:GenValueMappingForResourceMapping .

Listing 8.6: Generated property mapping and value mapping.

8.4 Prototype P2 (OntoWiki-based)

A second prototype (P2) is based on OntoWiki [DAR06], a generic ontology editor and infra-
structure (Fig. 8.7). It consists of two plugins for OntoWiki and a constraint checker.

The first plugin adds a Visualise view to the OntoWiki tabs (Fig. 8.8). The view allows for
filtering resources by type and for (de)activating single mappings. While mappings to graphic
attributes can be freely combined, mappings to other graphic relations like containment can
not, since the concept of RVL submappings is not yet supported in this prototype. Instead, the
mapping to complete graphic types like Collapsible tree is offered.

The second plugin adds a basic guidance mechanism to the generic editor of OntoWiki.
Whenever constraints defined in the RVL schema – including visual effectiveness and expres-
siveness constraints – are violated, a warning or error message gets displayed in the editor
(Fig. 8.9).

The constraint checker wraps the SPIN API, which can evaluate the SPIN-constraints
defined in the RVL schema. For the communication between OntoWiki (written in PHP) and
the constraint checker (Java), a REST interface is used.

P2 was built by Pooran Patel as part of his master thesis [Pat13] and works with a preliminary
version of RVL and VISO.

184

8.4. PROTOTYPE P2 (ONTOWIKI-BASED)

Figure 8.7: Architecture of the OntoWiki-based prototype: OntoWiki provides on-board data import (c)
and generic filtering (d). RVL mappings (h) can be edited with the OntoWiki editor, which was
extended to support basic VISO-based guidance functionality (g1–g4, i). Once the mappings are created,
a Visualisation Generator (e) processes mappings, data and an additional mapping from VISO graphic
relations to D3.js graphics (l) and prepares them for rendering with D3.js (m, j).

185

Figure 8.8: OntoWiki-based prototype – Visualise view: A simple filtering of resources by type is
realised (top right) and a list of Property Mappings and Value Mappings is shown (down right). Each
mapping can be (de)activated separately. The resulting graphic (left) combines mappings to lightness,
size (area) and shape. However, in P2 mappings to containment or Collapsible Tree cannot be combined
with the other mappings. Also a mixture of mappings to graphic types (Collapsible Tree) and mappings
to graphic relations (containment) is used.

Figure 8.9: OntoWiki-based prototype – Effectiveness warning: Warning icons are placed next to
properties that have been set to non-optimal values with respect to effectiveness.

186

8.5. PROTOTYPE P3 (JAVA IMPLEMENTATION OF RVL)

8.5 Prototype P3 (Java Implementation of RVL)

A third prototype (P3) does not focus on the guidance aspect but on interpreting as much
of the RVL specification as possible and on rendering graphics from the AVM (Fig. 8.11).
It combines an initial implementation of the RVL specification in Java with a generator for
D3-compatible JSON3 and a set of plugins (JavaScript) to bind the AVM »data« to D3 graphics.

Web-based	UI	with	D3	graphic

MappingHandler

OGVICProcess

Ba
ck
en

d

RVL	Server

RVLInterpreter

<<use>>

<<use>><<use>>

<<use>>

PropertyMappingX ValueMappingX

<<use>>
<<use>>

D3GeneratorSimpleRVLInterpreter

Generator

G
en

er
at
ed

	
AP

I	(
Ja
va
)

PropertyMapping ValueMapping

Communica�on	via	REST

<<use>> <<use>>

RDF2Go

(e.g.)	Jena

RVL,	AVM	and	VISO	models	as	RDF	graphs

<<use>>

<<modify,	read	models>>

<<
qu

er
y	
w
ith

	S
PA

RQ
L>
>

Query
<<use>>

API	for	RVL,	VISO	(Java)	generated	with	RDFReactor

StatementFilter

<<use>>

Figure 8.10: Prototype P3 – Detailed architecture
and selection of important classes.

To ease experimenting with the pro-
totype, a basic web front end was
built (Fig. 8.12), which allows for
rendering the use-cases defined in
the analysis chapter. Furthermore,
the user can enter RDF data, as it
may have been downloaded from a
SPARQL access point, and a set of
RVL mappings. After interpreting
the mappings, building the AVM
and generating JSON for the D3
graphics, the rendered graphic is
shown or updated.
Following the more detailed archi-
tecture shown in Fig. 8.10 from top
to bottom, we introduce the main
parts of this implementation: The
web-based UI can be used to pro-
cess projects from a visualisation li-
brary or create and execute ad hoc
projects. It communicates with the
RVL Server, which offers the process-
ing functionality via a REST4 inter-
face. The transformation pipeline
is represented by an OGVICProcess.
It can be fed with data and map-
ping files to provide a model of
the data as well as a model of the
RVL mappings. OGVICProcess or-
chestrates the classes RVLInterpreter
and Generator. When running the
process, the mappings are applied
to the data and finally the gener-
ated platform-specific code can be
retrieved from the process.

The RVLInterpreter manages the
transformation from RVL mappings
and data to the AVM and triggers
the interpretation for all mappings
in the mapping model, separated
by the type of mapping. The ac-
tual transformation of each mapping
is passed to MappingHandlers. Cur-
rently, the only implementation of

3 JavaScript Object Notation (JSON). http://json.org/, accessed: 06.07.2015.
4 Representational State Transfer (REST) is an architectural style for distributed systems.

187

http://json.org/

CHAPTER 8. THE OGVIC APPROACH

the RVLInterpreter interface is SimpleRVLInterpreter, which uses plain Java. Alternative imple-
mentations could use graph transformations described in SPIN or a similar language and work
directly on the graph (see Sect. 8.6.3). For each graphic relation, a MappingHandler exists that
performs the actual building of the AVM. Much of the functionality of the transformation can
be shared between superclasses. In case a submapping is found, handlers can call other handlers
to work on the submapping. Submappings will immediately be processed. The Query class eases
the generation of SPARQL queries that are frequently needed to select mappings or data objects.
Queries can be extended and configured to reduce redundancy. StatementFilter evaluates RVL
filters, such as rvl:subjectFilter. Filters are used to constrain the application of a mapping to a
limited set of subjects or objects as described in Sect. 7.2.

The class D3Generator implements a generator for D3.js-conform JSON data. It is meant
to be only one of several generators. For example, a further subclass of Generator could be
created to support X3D. We give an example of the JSON format in Listing. 8.7. Currently,
two different variants of the JSON format need to be generated and a graphic type needs to be
defined (cf. the discussion in Sect. 8.6.6).

We access the RDF graphs (representing the VISO, AVM and RVL models) in a domain-
specific way using generated Java classes. Instead of adding statements to a graph, get-, add-,

{
"nodes": [
{
"uri": "http://purl.org/rvl/example-data/Some_URI_of_some_resource",

5 "roles":[
"linkingDirected_startNode", "linking_node",
"labeling_base"

],
"shape": "circle",

10 "width": 17.0,
"labels": [
{
"text_value": "Some URI of some resource",
"width": 8.5,

15 "position": "centerRight",
"type": "text_label"

}
]

}, ...
20],

"links": [
{
"shape": "arrow",
"labels": [

25 {
"text_value": "partOf",
"width": 8.5,
"position": "centerRight",
"type": "text_label"

30 }
],
"uri": "http://purl.org/rvl/example-data/partOf",
"type": "LinkingDirected",
"source_uri": "http://purl.org/rvl/example-data/Some_URI_of_some_resource",

35 "target_uri": "http://purl.org/rvl/example-data/Another_URI_of_another_resource"
}

],
"graphic_type": "force-directed-graph"

}

Listing 8.7: Example of the JSON format used for processing the AVM with the OGVIC D3 plugins
(non-hierarchical variant as expected, for instance, by the graphic type Force-Directed Graph).

188

F
ig

u
re

8.
11

:
A

rc
hi

te
ct

ur
e

of
th

e
P

3
(J

av
a)

pr
ot

ot
yp

e:
Si

nc
e

th
e

fo
cu

s
of

th
is

pr
ot

ot
yp

e
is

on
im

pl
em

en
ti

ng
th

e
R
V

L
sp

ec
ifi

ca
ti

on
,i

t
off

er
s

no
bu

ilt
-in

da
ta

-im
po

rt
or

fil
te

ri
ng

fu
nc

ti
on

al
it
y.

A
ls

o,
w

e
do

no
t

off
er

a
gu

id
ed

(g
ra

ph
ic

al
)

ed
it

or
,b

ut
P

1
m

ay
be

us
ed

to
ed

it
an

ex
te

rn
al

R
V

L
m

ap
pi

ng
fil

e,
w

hi
ch

ca
n

th
en

be
im

po
rt

ed
(i

).
T

he
R
V

L
-I

nt
er

pr
et

er
(e

)
bu

ild
s

an
A
V

M
(A

bs
tr

ac
t

V
is

ua
lM

od
el

;f
)

ac
co

rd
in

g
to

th
e

de
cl

ar
at

iv
e

RV
L

m
ap

pi
ng

de
fin

it
io

ns
(h

),
an

d
co

ns
is

ti
ng

of
te

rm
s

fr
om

V
IS

O
/g

ra
ph

ic
(g

1)
.

T
he

A
V

M
is

pr
oc

es
se

d
by

th
e

D
3-

JS
O

N
-G

en
er

at
or

(j
)

to
pr

od
uc

e
a

D
3-

sp
ec

ifi
c

m
od

el
in

JS
O

N
no

ta
ti

on
(m

).
T

he
D

3-
ba

se
d

O
G

V
IC

-d
3.

js
lib

ra
ry

(n
)

is
th

en
us

ed
to

re
nd

er
th

is
m

od
el

to
an

in
te

ra
ct

iv
e

H
T

M
L
+

SV
G

+
Ja

va
Sc

ri
pt

re
pr

es
en

ta
ti

on
(k

).
D

ue
to

th
e

D
3

da
ta

bi
nd

in
g

m
ec

ha
ni

sm
(o

),
ch

an
ge

s
in

th
e

JS
O

N
m

od
el

ca
n

tr
ig

ge
r

in
cr

em
en

ta
l,

an
im

at
ed

up
da

te
s

of
th

e
gr

ap
hi

c.
A

ve
ry

ba
si

c
te

xt
ed

it
or

al
lo

w
s

fo
r

ch
an

gi
ng

th
e

un
de

rl
yi

ng
da

ta
an

d
m

ap
pi

ng
s

(t
hi

s
re

qu
ir

es
re

ge
ne

ra
ti

ng
th

e
A
V

M
an

d
JS

O
N

m
od

el
).

L
ik

e
in

th
e

V
is

ua
lis

at
io

n
R
ef

er
en

ce
M

od
el

(S
ec

t.
2.

1.
4)

,w
e

do
cu

m
en

t,
w

hi
ch

st
ep

s
ca

n
be

in
te

ra
ct

iv
el

y
m

od
ifi

ed
.

CHAPTER 8. THE OGVIC APPROACH

Process step P1 (TopBraid-Composer-
based)

P2 (OntoWiki-based) P3 (Java)

Filtering data – (–) –

Guided RVL editing x x –

Generating
RVL ↦→ AVM

partially, via graph
transformations with
SPIN+SPARQL Update

– x

Rendering
AVM ↦→ HTML+SVG

very basic, via UI-SPIN RVL directly evaluated x

View interactions (x) x x

Table 8.1: Coverage of the three prototypes P1, P2, P3 with respect to the process steps described by
the OGVIC approach.

and set-methods of Java classes representing the RDFS and OWL classes can be called. Instances
of these classes are stateless, i. e., changes are passed back and exclusively stored in the RDF
graph. For our specific case, this means, changes are stored exclusively in the AVM model. We
use a code generator based on RDFReactor [Vö06] for creating plain Java classes as wrappers
for the RVL (RDFS/OWL) classes. RDFReactor uses RDF2Go [Vö05] as an abstraction layer
over concrete RDF frameworks like Sesame [SES] or Jena5. In cases where a SPARQL query is
prefered to the generated API, the underlying graphs can still be directly accessed via RDF2Go.

8.6 Discussion: Lessons Learned from the Prototypes and
Future Work

Table 8.1 gives an overview of the coverage of the three prototypes with respect to the process
steps described by the overall OGVIC approach (also cf. Fig. 1.4 in the introduction). In summary,
we can say that none of the prototypes covers the whole functionality of the OGVIC approach.
However, many parts are covered by one of the three prototypes. For many aspects, a first step
in order to improve the presented prototypes would be to combine the features from P1, P2,
and P3 into one. In the following, we discuss various aspects, e. g., what are the differences
between the prototypes, what we can learn from the implementation, and which next steps
could be taken. Since all three prototypes use RVL as the mapping language, the RVL mapping
model as well as the AVM may be stored as a file to continue the processing in one of the other
prototypes.

8.6.1 Checking RVL Constraints and Visualisation Rules

The SPIN rules and constraints used in P1 have been reused in P2 (employing the freely available
SPIN API) and could easily be reused in P3 and future applications. Even if SPIN does not
evolve into a standard, the encapsulated SPARQL queries can still be reused.

8.6.2 A User Interface for Editing RVL Mappings

Fig. 8.12 shows the current web-based UI of the P3 (Java) prototype. While the other two
prototypes offer modelling the RVL with a generic graphical editor, P3 currently does not. Both
data and RVL mappings have to be entered as text and can only be edited in the textual (Turtle)

5 Apache Jena. http://jena.apache.org/, accessed: 12.2.2016.

190

http://jena.apache.org/

F
ig

u
re

8.
12

:
P

ro
to

ty
pe

P
3
(J

av
a)

–
W

eb
us

er
in

te
rf

ac
e

fo
r

ex
pe

ri
m

en
ti

ng
w

it
h

R
V

L
:
O

n
th

e
le

ft
,
st

or
ed

ex
am

pl
e

gr
ap

hi
cs

ca
n

be
se

le
ct

ed
fo

r
di

sp
la

y
or

ed
it

in
g.

Fo
r

ea
ch

di
sp

la
ye

d
gr

ap
hi

c
(c

en
tr

e
co

lu
m

n)
,t

he
A
V

M
ca

n
be

sh
ow

n
fo

r
de

m
on

st
ra

ti
on

pu
rp

os
es

.
O

n
th

e
ri

gh
t,

a
ru

di
m

en
ta

ry
ed

it
or

is
pr

ov
id

ed
,m

ai
nl

y
co

ns
is

ti
ng

of
tw

o
te

xt
fie

ld
s

fo
r

ed
it

in
g

R
V

L
m

ap
pi

ng
s

an
d

da
ta

.
C

ha
ng

es
in

da
ta

or
m

ap
pi

ng
s

ca
n

be
su

bm
it

te
d

to
up

da
te

th
e

gr
ap

hi
c

ac
co

rd
in

gl
y.

CHAPTER 8. THE OGVIC APPROACH

1 INSERT {
GRAPH <http://example.org/avm/graph/> {

?go ?tgr ?tv .
}

}
6 WHERE {

GRAPH <http://example.org/avm/graph/> {
?go avm:represents ?this .

}
GRAPH <http://example.org/rvl/graph/> {

11 ?pm a rvl:IdentityMapping .
?pm rvl:sourceProperty ?sp .
?pm rvl:targetGraphicRelation ?tgr .

}
GRAPH <http://example.org/source/data/graph/> {

16 ?this ?sp ?sv .
FILTER isLiteral(?sv)
BIND (?sv AS ?tv)

}
}

Listing 8.8: Processing an RVL Identity Mapping with a SPIN-rule, which wraps a SPARQL 1.1
Update request to manipulate an RDF graph. The rule expects that a graphic object representing the
resource has already been created (Line 8). Also, for clarity, parts of the rule have been removed that
clean up obsolete statements in the AVM model when running the rule multiple times.

representation. A (non-generic) graphical editor for RVL could look like the mockup in Fig. 8.14
(editing of submappings is not shown). Furthermore, while we describe, how a GUI for guiding
the user during the visual mapping process could be derived, this is not fully implemented by
the current prototypes. Only warnings and errors are shown. To avoid unfavourable settings in
advance, the GUI should adapt to syntactic and perceptual constraints (Sect. 5.7.3) in terms of
suggesting and sorting values and preventing constraint violations (cf. Sect. 8.1.2).

As an alternative to the development of a completely new RVL editor, one could try to
further customise OntoWiki to turn it into a more specific editor for RVL mappings or – at
least – reuse the constraint checker developed for P2. While the constraints underlying the
guided editor from P1 could be reused as well, the generic editor of P1 itself cannot easily be
developed into a full specific visualisation suite. Since TopBraid Composer is not open-source,
only some modification are possible based on a plug-in mechanism.

8.6.3 Graph Transformations with SPIN and SPARQL 1.1 Update
In P1, we directly worked on the various OGVIC RDF graphs with graph transformations that
we defined using SPIN-rules and SPARQL 1.1 Update requests (in Sect. 8.3 we already gave a
first example of a graph transformation with SPIN-rules). In P3, the transformations are so
far completely done by manipulating the graphs indirectly via Java POJOs (generated with
RDFReactor; Sect. 8.5). While some mapping cases cannot conveniently be handled by graph
transformations – such as complex mappings of value intervals, others are well suited for the
description by graph transformations. Therefore, we expect that a future implementation of
RVLInterpreter could benefit from a hybrid approach, using Java code and graph transformations
in combination. The use of graph transformations in the context of visual languages has been
discussed by Bardohl et. al [BTMS99]. Graph transformations on RDF models with and without
SPARQL have been discussed by Braatz and Brandt [BB10].

Listing 8.8 shows another graph transformation, demonstrating how RVL Identity Mappings
can be processed with SPIN. A SPARQL INSERT operation adds the resulting statements to the
graph containing the AVM model. The listing contains only a few lines, which suggests that using

192

8.6. LESSONS LEARNED FROM PROTOTYPES & FUTURE WORK

graph transformations could improve the conciseness and elegance of an RVL implementation.
To properly decide on a hybrid approach, the following aspects should be examined:

1. Clarity, elegance, conciseness – How precisely can transformations be specified?

2. Evolvability – How flexible can transformations be specified with respect to changes in the
VISO, domain data or even RVL?

3. Reusability and documentation – How well can parts of the implementation be documented
and reused?

4. Computational universality – Can all value mappings be calculated or do they have to be
specified in operational style (e. g., in Java)?

5. Performance – Which transformations are faster when realised as graph transformations
with SPARQL Update?

8.6.4 Selection and Filtering of Data

The current prototypes do not support the data selection and filtering steps, which are essential
for real-world scenarios. Hence, connecting to existing (web) data sources and querying these
sources to select data would be a further necessary step. Also with respect to an end-user
evaluation, a filtering component such as faceted browsing should be integrated with the system
to simplify the reduction of large data sets to the items of interest6. Work on the filtering of
RDF data has been described in detail by many other approaches (cf. Sect. 4.4.2). It is not
covered by the prototypes, except OntoWiki offers basic filtering support and the prototype
P2 (OntoWiki-based) allows for filtering resources by type.

8.6.5 Interactivity and Incremental Processing

The integration of information filtering into visualisation tools is recommended in order to avoid
task switches – at the same time there is a demand for presenting visualisation results »in a
just-in-time manner« [Bul08]. So far, our requirements for the OGVIC approach do only cover
interactivity on the view modifications level (Sect. 4.1.2) to allow for simple interactions. If
we want to extend interactivity to all steps of the visualisation process, i. e., to data selection,
filtering and the visual mapping, we need to review if and how short interaction times may
conflict with the model-driven, transformation-based approach we suggest. While many general-
purpose languages are not made for interaction [LCP+10], creating an interactive architecture
using graph transformations on various models may be even more challenging. Related work in
the context of behavioural models and animated visual languages [SMPV10] suggests that this
may still be feasible.

One option to overcome the long processing times that may result from the transformation
chains in a model-driven architecture is to try and implement the incremental processing of only
those parts that are effected by the changes. Another option also chosen by Bull [Bul08] in his
approach to Model Driven Visualisation is to use a Model-View-Controller (MVC) architecture,
partly generating Models, Views and Controllers. Also for future versions of Cytoscape a MVC
architecture was considered7, distinguishing between models, views and view-models.

Fig. 8.13 shows how a MVC architecture for the OGVIC approach may look like. The
following principle could be applied: Filtering and mapping views modify the data and mapping

6 Some filtering is possible already using the RVL subject and object filters, but these are not intended for
filtering data, but for refining the applicability of mappings.

7 http://web.archive.org/web/20110807204359/http:
//cytoscape.wodaklab.org/wiki/Outdated_Cytoscape_3.0, accessed: 07.08.2011.

193

http://web.archive.org/web/20110807204359/http://cytoscape.wodaklab.org/wiki/Outdated_Cytoscape_3.0
http://web.archive.org/web/20110807204359/http://cytoscape.wodaklab.org/wiki/Outdated_Cytoscape_3.0

CHAPTER 8. THE OGVIC APPROACH

models via the controller. For each registered change in the models, the controller triggers the
interpretation of the RVL mappings and applies them to the current (filtered) data model. Then
all views are notified to trigger the processing of the updated AVM. In more detail, the OGVIC.js
controller calls the generator to process the AVM to the format required by the D3.js graphics
(JSON) and starts the update mechanism of D3.js, as already implemented in prototype P3.
View transformations, like changes to the perspective, are handled by the OGVIC.js controller
and do not cause changes to the underlying models, but may affect other views. Changes in the
filtering will require the mapping view to refresh, if different mappings and example values are
suggested depending on the data. Since the draft of an MVC architecture as suggested above
cannot fully be aligned with the Reference Model pattern (Sect. 2.1.4) – also a variant of MVC
for visualisation – both approaches should be carefully compared. Differences emerge from the
fact that we describe multiple views (we add a filtering and editing view), but also from the fact
that we distinguish between the mapping model and the AVM. Prototype P3 (Java) already
partly implements a MVC architecture, e. g., the actual data graph is kept separately from the
view implemented with D3 and its view model.

SCENE	VIEW(S)

fish	body

fish	head

gills
le�	eye

(FILTERED)	DATA
MODEL

ABSTRACT	VISUAL
MODEL	(AVM)

RVL	MAPPING
MODEL

CONTROLLER	/
INTERPRETERMAPPING	EDITOR	

VIEW(S)

SUGGEST

green
yellow
red

hasResponseTime
hasID
hasTimingMetric
hasPriority
hasResponseTimeInMs

FILTERING	VIEW(S)

Proper�es
hasID
hasTimingMetric
hasPriority
hasResponseTimeInMs

Values
Europe
Asia
Amerika
Australia

Visual	Mapping	
changed

Perspec�ve	
changed		

Filters	
changed

CONTROLLER	/	
D3+OGVIC.js

CONTROLLER	/
GENERATOR

AVM	changed

Figure 8.13: Simplified representation (no distinction between control and data flow) of how the
OGVIC approach could be realised as a Model-View-Controller architecture.

194

M
AP

PI
N
G
S

PR
O
PE
RT

Y

CH
AR

AC
TE
RI
ST
IC
S

		T
yp
e	
			
			
			
			
			
			
			
			
			
			
			
			
	D
at
at
yp
e	
Pr
op

er
ty

		R
an
ge
:		
			
			
		
			
			
			
			
			
			
			
		x
sd
:in

te
ge
r

		C
ar
di
na
lit
y	
(U
sa
ge
):	
			
			
			
	1
:1 Q
ua
n�

ta
�v
e	
(d
er
iv
ed

)
Sc
al
e	
Ty
pe

m
s	
(M

ili
se
co
nd

s)
U
ni
t:

ha
sI
D

ha
sT
im

in
gM

et
ric

is
Re

fin
em

en
tO
f

is
Sp
ec
ia
liz
a�

on
O
f

la
be

l
is
Co

ex
ist
en
tW

ith
Is
In
Co

nfl
ic
tW

ith
	

ha
sM

an
da
te

ha
sS
ta
te

ha
sP
rio

rit
y

ha
sR
es
po

ns
eT
im

eI
nM

s

ha
sC
os
t	(
al
re
ad
y	
m
ap
pe

d)

Is
In
Co

nfl
ic
tW

ith
	

ha
sS
ta
te

G
RA

PH
IC
	M

EA
N
S

M
AP

PI
N
G
	D
ET
AI
LS

gr
ee
n

re
d

20
	

10
0

w
hi
te

SU
G
G
ES
T

SA
VE

	M
AP

PI
N
G

Li
nk
in
g	
by
	a
	c
on

ne
ct
or

Sp
a�

al
	c
lu
st
er
in
g

Se
pa
ra
�o

n	
by
	a
	s
ep

ar
at
or

Co
nt
ai
nm

en
t

Co
lo
r		
(h
ue

)

Sh
ap
e	
(n
am

ed
)

P o
si
�o

n	
(X
)

Si
ze
	(a
lre

ad
y	
in
	u
se
)

So
ur
ce
	p
ro
pe

rt
y

Ta
rg
et
	g
ra
ph

ic
	m

ea
ns

Sh
ow

	in
	le
ge
nd

?
ye
s

no

Ac
�v
e?

ye
s

ye
s

Co
lo
r	(
hu

e)

Sh
ow

	in
	le
ge
nd

Ac
�v
e

x x Li
gh
tn
es
s

Fa
ll	
ba
ck
	to

	a
lte

rn
a�

ve
	M

ap
pi
ng
:

m
s

m
s

F
ig

u
re

8.
14

:
M

oc
ku

p
of

a
us

er
in

te
rf

ac
e

fo
r

an
R
V

L
m

ap
pi

ng
ed

it
or

.
V

is
ua

lis
at

io
n

au
th

or
s

ca
n

cr
ea

te
an

d
ed

it
m

ap
pi

ng
s

by
se

le
ct

in
g

a
pr

op
er

ty
fr

om
th

e
le

ft
an

d
a

gr
ap

hi
c

re
la

ti
on

fr
om

th
e

ri
gh

t
lis

t.
C

lic
ki

ng
th

e
SU

G
G

E
ST

bu
tt

on
au

to
m

at
ic

al
ly

pi
ck

s
th

e
m

os
t

eff
ec

ti
ve

,n
ot

ye
t

us
ed

gr
ap

hi
c

re
la

ti
on

fo
r

th
e

se
le

ct
ed

pr
op

er
ty

.
T

he
se

se
tt

in
gs

ca
n

be
m

an
ua

lly
ch

an
ge

d
an

d
re

fin
ed

by
de

fin
in

g
va

lu
e

m
ap

pi
ng

s
in

th
e

M
ap

pi
ng

de
ta

ils
ar

ea
.

A
t

th
e

bo
tt

om
of

th
e

sc
re

en
a

lis
t

of
al

re
ad

y
cr

ea
te

d
m

ap
pi

ng
s

is
sh

ow
n.

A
w

ar
ni

ng
si

gn
is

de
pi

ct
ed

ne
xt

to
no

n-
op

ti
m

al
m

ap
pi

ng
s.

Fu
rt

he
r

th
in

gs
to

no
ti

ce
ar

e
th

e
op

ti
on

to
m

an
ua

lly
co

rr
ec

t
th

e
de

ri
ve

d
sc

al
e

ty
pe

an
d

un
it

(h
er

e
qu

an
ti
ta

ti
ve

an
d

m
il
lis

ec
on

ds
).

T
he

ha
nd

lin
g

of
su

bm
ap

pi
ng

s
is

no
t

sh
ow

n.

CHAPTER 8. THE OGVIC APPROACH

8.6.6 Rendering the Final Platform-Specific Code
Unlike the SPIN–constraints and -rules, the rendering implemented with UISPIN for prototype
P1, could not be transferred and reused in the other prototypes. Although not only an HTML,
but also a SVG vocabulary for UISPIN is available, neither of them is capable of generating
data-driven interactive graphics, as possible with D3. Furthermore, we would have had to write
our own UISPIN interpreters, since there is no open-source implementation by now. For these
reasons, in P2 and P3 we take the alternative approach of generating8 a JSON representation of
the AVM, which can then be used to drive D3 graphics.

In Listing 8.7, we already gave an example of the JSON format that we use in prototype
P3. In its current state it cannot yet express the complete AVM in a uniform way. Instead
we provide two variants of the AVM as JSON, one for graphic types expecting a flat structure
(such as Force-directed graph), and one for those expecting a hierarchical data structure (such
as Collapsible tree and Zoomable circle packing , cf. ListingD.3 in the appendix). To simplify
processing on the client side, we sometimes explicitly add information that is only implicitly
contained in the AVM (such as the type of labels). Future work on the AVM should include
defining a single »AVM in JSON« format that can be processed by all OGVIC D3 plugins.
Instead of generating multiple variants on the server side, it may be considered to transform
into a hierarchical representation on the client side (with JavaScript).

Additionally, it is currently required that a graphic type and layout is provided as part of
the JSON object. In later implementations, the system should assume a default graphic type
and layout (based on the graphic relations used in the AVM) so that this information becomes
optional.

One might argue that determining a concrete graphic type at all is against the principle
of OGVIC, since we claimed to focus on (composable) graphic relations instead of fix graphic
types in order to achieve a high degree of flexibility. This is true, and a solution without fix
graphic types is clearly preferable. While we already work directly on graphic relations on the
level of the AVM, the D3 interpretation in prototype P3 is currently built around predefined
graphic types such as Force-Directed Graph9, Collapsible Tree10 or Zoomable Circle Packing11.
However, also on the level of rendering, the use of D3 offers a good foundation to work directly
on graphic relations, since D3 is a flexible language rather than a visualisation toolkit. Already
now, we use »D3 plugins« (modifications of the selection prototype) to uniformly apply graphic
attributes and simple interactions across graphic types. We, therefore, consider building a single
(D3-based) interpreter for arbitrary AVM models a promising next step.

8 An alternative to writing the JSON with Java, as done in P2 and P3, could be to use SWON, a UISPIN
library for JSON. http://uispin.org/swon.html, accessed: 07.01.2016.

9 Based on an example from http://bl.ocks.org/mbostock/4062045/, accessed: 29.04.2016
10 Based on an example from http://bl.ocks.org/mbostock/4339083/, accessed: 29.04.2016
11 Based on an example from http://bl.ocks.org/mbostock/7607535/, accessed: 29.04.2016

196

http://uispin.org/swon.html
http://bl.ocks.org/mbostock/4062045/
http://bl.ocks.org/mbostock/4339083/
http://bl.ocks.org/mbostock/7607535/

Chapter 9

Applying the OGVIC Prototypes to
the Case Studies’ Ontologies

An evaluation of the general usefulness of the OGVIC approach for arbitrary domains is out of
scope of this thesis. Instead, in this chapter, we do a constructive evaluation and challenge both
the RVL language specification and the prototypical implementations of our approach by trying
to generate the sketches that we manually created during the requirements analysis (Sect. 9.1).
In a second and third step, we continue the coverage analysis for visualisation cases (Sect. 9.2)
and general requirements (Sect. 9.3). Finally, we give a full example of a guided visualisation
process using the OGVIC prototypes (Sect. 9.4).

:RO-4b
a rvl:PropertyMapping;
rvl:sourceProperty rdf:type;
rvl:targetAttribute vg:color_hsl_lightness;

5 rvl:valueMapping [
rvl:sourceValueOrderedSet (

ro:LowPriority
ro:MediumPriority
ro:HighPriority

10);
rvl:targetValueInterval [
rvl:lowerBoundIncl "0";
rvl:upperBoundIncl "100";

];
15].

Figure 9.1: RO-4b (rdf:type ↦→ lightness) – Generated graphic and the corresponding RVL mapping
for the example RO-4b from the Requirements Ont. (ro:). Priority was modelled as classes in the
Requirements Ontology (ro:LowPriority, ro:MediumPriority and ro:HighPriority), so we have to select
rdf:type as our source property and add a value mapping. Position (force-driven) and text color are
rendering defaults, not defined by RVL.

197

CHAPTER 9. APPLICATION

:CIT-1
a rvl:PropertyMapping;
rvl:sourceProperty cito:cites;

4 rvl:targetObjToObjRelation vg:Linking_Directed_Relation;
rvl:subMapping [
rvl:subMapping-onRole vg:linking_connector;
rvl:subMapping-onTriplePart rdf:predicate;
rvl:subMapping-mapping :ID2Color;

9].

:ID2Color
a rvl:PropertyMapping;
rvl:disabled "true";

14 rvl:sourceProperty rdf:ID;
rvl:targetAttribute vg:color_named;
rvl:valueMapping [
a rvl:ValueMapping;
rvl:sourceValueOrderedSet (

19 cito:confirms
cito:cites
cito:critiques

);
rvl:targetValueList rexc:ColorsTrafficLight;

24].

Figure 9.2: CIT-1 (cito:cites ↦→ directed linking + subproperties distinguished by a set of ordered
colours (rexc:ColorsTrafficLight)) – Generated graphic and the corresponding RVL mapping for the
example CIT-1 from the Citation Ont. (cito:).

9.1 Coverage of Sketches and Necessary Features
In the following, we first give a visual overview of the results by showing the generated graphics
for some of the sketches we created during the analysis (Fig. 9.1–9.7). Below each screenshot of
a rendered graphic, we list the corresponding RVL mapping. We sometimes exclude settings
that are only necessary due to the current implementations’ limited support of default values or
styles (see AppendixD.1 for listings including these settings). The seven listings demonstrate
the usage of property mappings to both graphic attributes (colour, shape, size, lightness and
text value) and graphic object-to-object relations (linking, containment, labelling, relative
distance). Furthermore, manual and automatic value mappings are used to map sets and ranges
of source values with various scales of measurement to target graphic values. Some listings
are supplemented by CSS style settings (here given as comments below the RVL code), which

198

9.1. COVERAGE OF CASE STUDY SKETCHES AND NECESSARY FEATURES

:CIT-5
a rvl:PropertyMapping;

3 rvl:sourceProperty cito:cites;
rvl:targetObjToObjRelation vg:Linking_Directed_Relation;
rvl:subMapping [
rvl:subMapping-onRole vg:linking_connector;
rvl:subMapping-onTriplePart rdf:predicate;

8 rvl:subMapping-mapping :IconLabelMapping;
].

:IconLabelMapping
a rvl:PropertyMapping ;

13 rvl:disabled "true";
rvl:sourceProperty rdf:ID;
rvl:targetObjToObjRelation vg:Labeling_Relation;
rvl:subMapping [
rvl:subMapping-onRole vg:labeling_label;

18 rvl:subMapping-onTriplePart rdf:predicate;
rvl:subMapping-mapping :IconLabelShapeMapping;

].

:IconLabelShapeMapping
23 a rvl:PropertyMapping;

rvl:disabled "true";
rvl:sourceProperty rdf:ID;
rvl:targetAttribute vg:shape_named;
rvl:valueMapping [

28 rvl:sourceValueOrderedSet (
cito:critiques cito:confirms);

rvl:targetValueList (
common-shapes:XMark common-shapes:Star18);

].

Figure 9.3: CIT-5 (cito:cites ↦→ linking + iconic labels on the connector to distinguish subprop-
erties of cites) – Generated graphic and the corresponding RVL mapping for the example CIT-5
from the Citation Ont. (cito:). The ordered set of subproperties is mapped to a list of shapes:
cito:critiques ↦→ common-shapes:XMark (exclamation mark), cito:confirms ↦→ common-shapes:Star18
(star-shape).

describe those graphic properties that do not encode meaning and hence are not part of the
visual mapping. For example, the default size of graphic objects and the default width of
connectors is set using CSS (e. g., AA-3, Fig. 9.4). We comment on each listing in the respective
caption in order to provide the explanation close to the RVL code. Therefore, in the following,
we only give a very brief overview of the seven listings and relate them to one another. Page
forward to compare the listings and figures. For details on the utilised language constructs refer
to Chapter 7.

We begin with mapping example RO-4b (Fig. 9.1), a compact example from the software
domain, which maps requirements to discrete greyscale values depending on their priority.
Although RVL does not introduce its own dedicated syntax, the two mappings (a property
mapping and a value mapping) can be concisely represented in Turtle. The second mapping

199

CHAPTER 9. APPLICATION

1 :AA-3
a rvl:PropertyMapping;
rvl:sourceProperty amino-acid:hasPolarity;
rvl:objectFilter "http://www.co-ode.org/../amino-acid../Polar^^rvl:classSelector;
rvl:inheritedBy owl:allValuesFrom;

6 rvl:targetObjToObjRelation vg:Labeling_Relation;
rvl:subMapping [
rvl:subMapping-onRole vg:labeling_label;
rvl:subMapping-onTriplePart rdf:object;
rvl:subMapping-mapping :Polar_to_CircleP;

11].

:Polar_to_CircleP a rvl:ResourceMapping;
rvl:disabled "true"; # only active in submappings
rvl:sourceValue amino-acid:Polar;

16 rvl:targetValue common-shapes:CircleP.

Additional CSS settings for constant values

#canvas.aa-3 .labeling_base {
21 transform:scale(3.0) ;

}

Figure 9.4: AA-3 (aa:hasPolarity ↦→ label with a compass shape but only if the value is aa:Polar)
– Generated graphic and the corresponding RVL mapping for the example AA-3 from the Amino Acid
Ont. (aa:). Setting the size of the objects to a higher constant value is done by CSS, since size does not
encode meaning in this example.

example, CIT-1 (Fig. 9.2), resembles the submapping example from Sect. 7.10, but is slightly
modified to define a specific set of target values replacing the default one. CIT-5 (Fig. 9.3)
again modifies the mapping by switching the colour-submapping to a submapping that labels
connectors with icons and distinguishes subproperties by icon shape instead of colour. This
demonstrates how small variations in an RVL mapping result in a different graphic. CIT-1 and
CIT-5 also illustrate how the rvl:submapping_onRole and rvl:submapping_onTriplePart properties
of RVL are used to define a context for the submappings. AA-3 (Fig. 9.4) is an example of
how to apply mappings only to a filtered set of resources. AA-4 (Fig. 9.5) shows how to extend
(rvl:inheritedBy) property mappings to indirectly stated relations that emerge from universal class
restrictions in the T-Box of ontologies. The mechanism of extending property mappings avoids
additional language constructs and keeps the set of necessary classes small. In PO-9 (Fig. 9.6),
we use resource mappings instead of property mappings, since this leads to more compact
mapping definitions if only few values need to be addressed. PO-5 (Fig. 9.7) is again a simple
property mapping of rdfs:subClassOf to containment. In order to achieve the desired structure
(a class contains its subclasses), we need to invert the source property, though.

Table 9.1 gives an overview of how many sketches from our case studies can be described
based on the current specifications of RVL, VISO, and the AVM and how many sketches can
be implemented with prototype P3. We distinguish between the overall set of sketches we did
during the problem analysis and the subset of sketches we selected as examples in Chapter 3.
The complete list of sketches is given in AppendixA. To consider also those sketches that are
missing some of multiple necessary features, we state to what amount the necessary set of
features can be described / has been implemented (100% / at least 75% / at least 50%, and less
than 50%).

200

9.2. COVERAGE OF VISUALISATION CASES

1 :AA-4
a rvl:PropertyMapping ;
rvl:sourceProperty amino-acid:hasSideChainStructure ;
rvl:inheritedBy owl:allValuesFrom ;
rvl:targetAttribute vg:shape_named ;

6 rvl:valueMapping
[rvl:sourceValue amino-acid:Aliphatic ;
rvl:targetValue bio-shapes:Aliphatic_Shape],

[rvl:sourceValue amino-acid:Aromatic ;
rvl:targetValue bio-shapes:Aromatic_Shape].

11

Additional CSS settings for constant values

#canvas.aa-4 .labeling_base {
transform:scale(3.0) ;

16 }

Figure 9.5: AA-4 (aa:hasSideChainStructure ↦→ shape) – Generated graphic and the corresponding
RVL mapping for the example AA-4 from the Amino Acid Ont. (aa:). Setting the size of the objects to
a higher constant value is done by CSS, since size does not encode meaning in this example.

A large amount, but not all sketches from our three case studies can be described based on the
current RVL/VISO/AVM specification. The overall set of sketches consists of 37 sketches. Over
two thirds of them (26 sketches) can be almost completely specified (at least by 75%); another 5
sketches can be specified by at least 50%. With respect to the technical implementation with
our prototypes, prototype P3 is the one that covers most of the RVL specification. About half
of the sketches (19), we can implement with P3 by at least 75%; another 8 sketches can be
implemented by at least 50%. The main reason why sketches could not yet be described, is the
missing support for the complex graphic relation types used in these sketches (e. g., adjacency
and builds-on; especially ZFO-3x and ZFO-5). For PO-5, containment needs to be implemented
for arbitrary shapes.

For the subset of characteristic sketches we focused on in Chapter 3, the coverage is a little
higher. The subset consists of 12 sketches, of which 10 can be almost completely specified (at
least by 75%). AA-5 and PO-9 require further conceptual work – for instance, we need to decide
on a concept for describing tables and flow-diagram-like connectors. Except for three sketches
(AA-5, PO-9, RO-7), we can also implement them with P3 by at least 75%.

This can only be a rough estimation of the coverage, since we do not weight features and
features are used in multiple sketches. A list of the features that are missing to completely
reproduce the subset of sketches from Chapter 3 can be found in AppendixD.2. In TableD.1,
we list the total set of features that we identified as necessary to recreate all sketches. From
these features, 53% are covered by the current specifications of RVL, VISO, and the AVM.
Additional 9% can partly be specified, but require further conceptual work. 57% of the sketches
are implemented by prototype P3 and additional 4% are partly implemented.

9.2 Coverage of Visualisation Cases

We proceed with the coverage analysis on the level of visualisation cases (VC) that we identified
in Chapter 3. As listed in Sect. 7.12, some VC are not yet covered by the specification of RVL.
In continuation of the comparison, Table 9.2 provides an overview of which prototype (P1, P2

201

CHAPTER 9. APPLICATION

1 :PO-9
a rvl:PropertyMapping;
rvl:sourceProperty obo:develops_from;
rvl:invertSourceProperty "true";
rvl:passedTo owl:someValuesFrom;

6 rvl:targetObjToObjRelation vg:Linking_Directed_Relation;
rvl:subMapping [
rvl:subMapping-onRole vg:linking_connector;
rvl:subMapping-onTriplePart rdf:predicate;
rvl:subMapping-mapping :ArrowShapeMapping;

11].

:ShapeMapping a rvl:ResourceMapping;
rvl:sourceValue <http://purl.org/obo/owl/PO#PO_0025059>;
rvl:targetValue common-shapes:FlowArrow;

16 rvl:passedTo rdfs:subClassOf.

:ArrowShapeMapping a rvl:ResourceMapping;
rvl:disabled "true";
rvl:sourceValue obo:develops_from;

21 rvl:targetValue common-shapes:Line.

Additional CSS settings for constant values

#canvas.po-9 .linking_connector {
26 stroke-width: 23;

}

Figure 9.6: PO-9 (po:develops_from–1 ↦→ linking (with specially shaped connectors) + highlighting
of direct neigbors when hovering) – Generated graphic and the corresponding RVL mapping for the
example PO-9 from the Plant Ont. (po:). Setting the width of the connector to a higher constant value
is done by CSS, since it does not encode meaning in this example.

or P3) implements a given visualisation case. (x) means that the visualisation case is basically
fulfiled, but some aspects are missing. (-) means the visualisation case is basically not supported,
with some exceptions.

All prototypes support the creation of a graphic object per resource (VC-1) and the mapping
to graphic attributes (VC-2). The latter is only supported in a basic form, since rendering is
implemented for a subset of attributes, not all attributes defined in VISO. Also the mapping
to graphic object-to-object relations (VC-3) is implemented in P1 and P2 for containment
and linking . P3 differentiates between undirected and directed linking and adds labelling as
well as relative distance (clustering). As required for labelling, also the creation of additional
graphic objects – not directly representing a resource – is supported, but not for arbitrary
graphic relations (VC-4). Some simple interactions (VC-5) are implemented in P1 and P3,
however, these interactions are currently applied by default in P3 and need to be (de)activated
according to the RVL settings. The simplification mechanisms (VC-6) suggested as part of
RVL have not yet been in the focus of implementation. Reuse and composition (VC-7) are
supported with P3. However, P3 supports only a subset of the composition cases that we
described and the applicability of compositions with respect to the underlying data cannot yet
be determined with P3. As a prerequisite for composition, P3 also supports referring to parts
of the graphic (VC-9) by the role of a graphic object. Standard graphics (VC-8) are not yet
covered by the RVL specification, but experimentally implemented in the prototypes P2 and

202

9.2. COVERAGE OF VISUALISATION CASES

set of sketches all sketches subset from Sect. 3.6
number of sketches 37 12

described implemented described implemented
completely (100%) 21 10 6 3
by [75%, 100%) 5 9 4 6
by [50%, 75%) 5 8 1 2
by less than 50% 6 10 1 1

Table 9.1: Number of sketches that can be implemented with prototype P3, respectively described
based on the current specification of RVL, VISO and AVM. The subset of sketches refers to the selection
of sketches that we introduced in Sect. 3.6. Where the number of implemented sketches is higher than
those described, this is due to the fact that some features are covered by default settings implemented
in P3 that did not yet become part of the specification of RVL, VISO or the AVM or are not intended
to become part of these specifications.

R
V

L

P
1

(»
T
op

B
ra

id
C

om
po

se
r«

)

P
2

(»
O

nt
oW

ik
i«

)

P
3

(»
Ja

va
«)

VC–1 Create a graphic object per resource x x x x
VC–2 Map to graphic attributes x (x) (x) (x)
VC–3 Map to graphic object-to-object relations x (-) (-) (x)
VC–4 Create additional graphic objects (x) (-) (-) (x)
VC–5 Define simple interactions (x) (x) (-) (x)
VC–6 Simplify the ontological model x (x) - -
VC–7 Reuse/extend/compose mappings (x) (-) (-) (x)
VC–8 Use complex standard graphics - - (x) (x)
VC–9 Refer to parts of the graphic x - - x
VC–10 Draw legends and labelled axes (x) - (x) -
VC–11 Define styles - (-) (-) (x)
VC–12 Benefit from good defaults x - - (x)

Table 9.2: Visualisation cases covered by the prototypes. Additionally, for comparison, the coverage of
RVL is repeated.

203

CHAPTER 9. APPLICATION

:PO-5
a rvl:PropertyMapping;

3 rvl:sourceProperty rdfs:subClassOf;
rvl:invertSourceProperty "true";
rvl:targetObjToObjRelation vg:Containment_Relation.

Figure 9.7: PO-5 (rdfs:subClassOf–1 ↦→ containment) – Generated graphic and the corresponding RVL
mapping for the example PO-5 from the Plant Ont. (po:). Labels abbreviated with ». . . «.

P3. Drawing legends (VC-10) is explicitly supported by the rvl:includeInLegend flag, but only
implemented by P2. Deriving legends from RVL mappings seems to be straightforward, though.
The labelling of axes is not yet covered. Styling as a complement of visual mapping (VC-11) did
not become part of RVL. Instead Fresnel and CSS are intended to be reused for this purpose.

While none of the prototypes supports Fresnel, global CSS styles such as the default colour
of paths and texts can be used in all prototypes. Since SVG and HTML are the final platforms
targeted by the prototypes, CSS styles can simply be interpreted by the browser and are
overridden by local style values generated from the visual mappings where necessary. P3
automatically assigns CSS classes based on the role that graphic objects play, e. g., .linking_-
connector. These classes can be used to define a style for all graphic objects with a specific role.
For example, in mapping PO-9 (Fig. 9.6) the stroke-width is defined for all connectors using
CSS (here the style rule is additionally limited to the generated graphic with the ID po-9):

canvas.po-9 .linking_connector {
stroke-width: 23;

}

Also other attributes, such as the size of graphic objects can be defined by styles using trans-
form:scale(). However, shape cannot be set by CSS, since it is not considered an attribute. As a
workaround for these cases, we currently have to assign a constant value with an RVL mapping
(e. g., the :ShapeMapping in mapping PO-9).

Some of the defaults (VC-12) specified in RVL are implemented by P3, for example, the
default labelling of graphic objects, default graphic attribute value sets, and the defaults assumed
during the process of determining the source values for a mapping. An important default that
lacks implementation, though, are default value mappings (Sect. 7.7) that would allow for defining
property mappings without dealing with the details of explicit value mappings. Furthermore, P3
implements defaults that are not specified in RVL, but rather concern the styling. For instance,
text colour is always set to a value that is readable on the given background colour (unless the
text colour encodes meaning). More defaults are hardcoded to define a concrete rendering for
directed connectors (↦→ arrows) and undirected connectors (↦→ lines). Some defaults, such as

204

9.3. COVERAGE OF REQUIREMENTS

P
1

(»
T
op

B
ra

id
C

om
p.

«)

P
2

(»
O

nt
oW

ik
i«

)

P
3

(»
Ja

va
«)

A
pp

ro
ac

h

R-1 Dynamic and value-dependent visual mapping (x) x x x
R-2 Variety of graphic relations - (-) (x) x
R-3 Interaction with the visualisation (x) (-) (x) x
R-4 Ontology-aware (A/T-Box) x (x) x x
R-4a Terminological ontology relations (T-Box) supported (x) - x x
R-5 RDF supported x x x x
R-6 Domain agnostic x (x) x x
R-7 Reusability of the defined mappings (x) (x) x x
R-8 Composability of the defined mappings (-) (-) (x) (x)
R-9 Explicit mapping definitions x x x x
R-10 Platform variability - - (x) x
R-11 Visual structure variability - - x x
R-12 Domain experts can visualise their data without progr. or vis. skills (-) (-) - x
R-13 Visualisation settings configurable with a GUI (x) x (-) x
R-14 Interactions configurable with a GUI (x) - - x
R-15 Guidance for visual mapping with a GUI (x) (x) - x
R-16 Consider complex semantics of an ontology for visual mapping (x) (-) - x

O-1 Configuration results instantly shown - (x) (x) (x)
O-2 Data filtering - (x) - (x)
O-3 Guidance for data selection - - - -
O-4 Guidance for view transformations - - - -

Table 9.3: Requirements and optional features covered by the prototypes.

the colour used for highlighting, can already be specified using CSS. For others, not covered by
CSS, it has to be investigated how they could be defined in a similarly flexible way.

While we defined the creation of a graphic object per resource (VC-1) as our first visualisation
case, it turned out that there are also many cases where we do not want this behaviour. Exceptions
to this general principle can be handled with the submapping mechanism, since submappings
allow for constraining the application of mappings to a specific context.

In summary, prototype P3 covers ten of twelve visualisation cases, like the RVL specification.
However these cases are not the same covered by the specification. Some are covered by
specification while not being implemented or only implemented with restrictions. Some cases
are implemented, but not yet described in the RVL specification. The visualisation cases not
covered by P3 are partly covered by the other two prototypes.

9.3 Coverage of Requirements

As the last part of the coverage analysis, let us recall the requirements we set. Table 9.3
gives an overview of which prototype meets which requirement. The OGVIC approach (last
column) meets all requirements, except for some limitations concerning the generalisation of
the composition of graphic relations (Sect. 6.6). Compositions, such as the construction of a
tabular representation from graphic relations, require further conceptualisation and testing.
We experimented with multiple variants of expressing table structures with the AVM, but
did not decide on a recommended approach. With respect to the optional requirements, the
instant feedback for configuration results (O-1) and data filtering (O-2) have been briefly
discussed. No conceptual work was done in the field of guidance for data selection (O-3) and
view transformations (O-4).

To summarise the coverage by the prototypes, we focus on the last prototype P3 and only

205

CHAPTER 9. APPLICATION

refer to P1 and P2 where requirements are not met. P3 interprets visual mappings (R-1) defined
with RVL for a number of graphic relations (R-2), though not for all the graphic relations defined
in the VISO ontology. Interactivity (R-3) is so far provided on the level of view transformations,
e. g., for highlighting graphic elements. No interactions have yet been implemented on the level
of visual mapping and data filtering. Prototype P3 is aware of ontologies (R-4), including
that it can handle T-Box relations (R-4a). Thereby, the implementation is specific to the
RDF technical space (R-5) but agnostic to the domain of knowledge (R-6), i. e., it can be used
to visualise any RDF-based ontologies and instance data. Since P3 can handle the concept
of submappings, reuse (R-7) and composability (R-8) of mappings are generally supported.
However, as already mentioned with respect to the visualisation case coverage, work has to be
done to cover a larger amount of possible composition cases. Some compositions of graphic
relations, such as the composition of linking and containment , can be easily described with the
AVM, but require a more complex rendering and layouting than we currently implemented in
our prototypes. Since not all graphic relations can be freely composed without paying attention
to syntactical and perceptual constraints (Sect. 5.7.3), additional rules have to be created and
evaluated during the mapping process. This is not accomplished by the current prototypes.
The explicit definition of mappings (R-9) and the AVM build the foundation for the support of
variability. Switching to another platform (R-10), e. g., from a D3-based SVG rendering to X3D
output, is supported by the current architecture, but only the rendering to SVG is implemented.
Visual structures emerge from the combination of various graphic relations, which allows for a
high degree of variability (R-11). While P3 is the prototype that interprets the largest fraction
of the RVL specification, it lacks user interface and guidance features to actually enable the
visualisation by domain experts without programming or visualisation skills (R-12). Here the
other prototypes, P1 and P2, offer more functionality: Both the TopBraid-Composer-based and
the OntoWiki-based prototype let the user configure RVL mappings based on the tools’ graphical
editors (R-13). In the case of TopBraid Composer, it was possible to customise the generic RDF
editing UI to be RVL-specific and thereby simplify the handling of mappings including basic
interactions (R-14). In the case of OntoWiki, a plugin was built to enable and disable mappings.
Similarly, both P1 and P2 offer basic guidance functionality for the visual mapping (R-15) as
described in Sect. 8.1.3. P1 is also considering the specifics of complex ontologies (R-16) for
guidance, e. g., by evaluating class restrictions and subproperty hierarchies.

From the optional »requirements«, P2 and P3 already support the instant representation of
changes to the visualisation settings (O-1). The advanced update mechanism of D3.js, allows for
keeping layout information, while applying (animated) changes to the modified graphic values.
Finally, P2 offers generic data filtering based on the OntoWiki infrastructure (O-2).

To summarise, while the OGVIC approach covers almost all requirements (15 out of 17), P3
fulfils about two thirds of them (12) of which four are only partly fulfilled. From the five not
fulfilled requirements, four are at least partially covered by prototype P1 or P2. However, none
of the prototypes is yet in a state to allow domain experts without programming or visualisation
skills to visualise their data.

9.4 Full Example

In the following, we revisit the introductory example, which described a guided visualisation
process for visualising requirements specified with the Requirements Ontology (Fig. 1.3). We
demonstrate, to which amount the scenario can already be implemented and where are the
weaknesses of the current prototypes. Compared to the larger example we already gave at the
end of the RVL chapter, which focused on the submapping mechanism, in this example, we
illustrate how a complex mapping can be created step by step. For each intermediate step, we
provide a listing of the added mapping or a screenshot of the editing UI as well as the resulting
graphic.

Since we are using prototype P1 for editing our mappings, but P3 for interpreting and
rendering the AVM, we cannot instantly see the results of our changes, but have to save the

206

9.4. FULL EXAMPLE

mapping files with P1 and reload them in P3. The figure below shows the graphic resulting
from an initial mapping from rdf:type1 to lightness; this equals mapping RO-4b, Fig. 9.1.

There is not yet a mechanism to guide the user in a way that important relations and suitable
visual mappings would be suggested in a stepwise manner. However, when using P1 to create
the mappings, detected non-optimal mapping choices will generate warnings and alternatives
will be suggested. For example, if we change the attribute lightness to colour hue, which is less
effective for encoding the ordinal priority values, a warning is generated, telling us that three
other more effective graphic attributes are still available (screenshot below). Additionally, a
quickfix allows us to remove the non-optimal graphic relation setting (quickfixes could also be
extended to replace the non-optimal setting with the suggested alternative). Having selected
lightness, there is still one more effective attribute – position, which we do not select, but reserve
for layout purposes, though.

The corresponding SPIN-constraint is similar to the one shown in Listing 8.3. However, in this
case, we cannot determine the scale of measurement from the source property directly (stating
globally that rdf:type is ordinal obviously makes no sense). The system can still derive the

1 Recall that priority was modelled in the Requirements Ontology as classes (ro:LowPriority,
ro:MediumPriority . . .) therefore, we are mapping rdf:type.

207

CHAPTER 9. APPLICATION

ordinal scale of the priority values from the value mapping (which uses rvl:sourceValueOrderedSet
to define a set of ordered priority values). In order to calculate the scale of measurement from
the value mapping, we had to extend the effectiveness constraint from Listing 8.3 following the
decision diagram from Sect. 7.4.1.
Next, we add a further mapping from ro:hasResponseTimeInMs to labelling , i. e., whenever
information on the response time is available, a label is attached to the graphic object representing
the requirement.
:IconLabelMappingForHasResponseTime
a rvl:PropertyMapping ;
rvl:sourceProperty ro:hasResponseTime ;
rvl:targetObjToObjRelation vg:Labeling_Relation .

This label is an iconic label and has in turn a textual label stating the value of the response
time. Labelling of labels can be achieved by combining multiple mappings using the submapping
mechanism of RVL. The three labelling steps are shown below:

First, resources are assigned a graphic object playing the role of a label. This object has a default
shape (here a square). By applying two submappings to the label, we refine its appearance.
With the first submapping, an rvl:ResourceMapping, we change its shape to the clock symbol.

1 :IconLabelMappingForHasResponseTime
a rvl:PropertyMapping ;
rvl:sourceProperty ro:hasResponseTime ;
rvl:targetObjToObjRelation vg:Labeling_Relation ;
rvl:subMapping

6 [rvl:subMapping-mapping :IconShapeMapping ;
rvl:subMapping-onRole vg:labelling_label ;
rvl:subMapping-onTriplePart rdf:predicate],

[rvl:subMapping-mapping :TextLabelingOfLabel ;
rvl:subMapping-onRole vg:labelling_label ;

11 rvl:subMapping-onTriplePart rdf:subject] .

:IconShapeMapping
a rvl:ResourceMapping ;
rvl:sourceValue ro:hasResponseTime ;

16 rvl:targetValue common-shapes:Clock .

The second submapping attaches another labelling relation to produce the textual label (for the
concrete time value).

:TextLabelingOfLabel
a rvl:PropertyMapping ;

4 rvl:sourceProperty ro:hasResponseTime ;
rvl:targetObjToObjRelation vg:Labeling_Relation ;
rvl:subMapping [
rvl:subMapping-mapping :LabelingTextIdentityMapping ;
rvl:subMapping-onRole vg:labelling_label ;

9 rvl:subMapping-onTriplePart rdf:subject] .

:LabelingTextIdentityMapping

208

9.4. FULL EXAMPLE

a rvl:IdentityMapping ;
rvl:sourceProperty ro:hasResponseTime ;

14 rvl:targetAttribute vg:text_value .

Now, we need to add a further mapping to encode ro:isInConflictWith. If we try to add a
mapping from this property to directed linking , this will issue another warning, since the system
evaluates the property characteristics defined with OWL, stating that ro:isInConflictWith is an
owl:SymmetricProperty. Based on a SPIN constraint defining that the symmetry of properties
cannot be expressed by directed linking , the system suggests to choose undirected linking instead.
The corresponding warning and quickfix as suggested by prototype P1 is given below:

Adding a mapping to undirected linking results in the graphic below. Unlike in the introductory
example (Fig. 1.3), the graphic relation undirected linking is not rendered as a double-headed
arrow, but as a simple line without arrow-heads, since we do not yet offer a mechanism to select
from multiple options for rendering the same graphic relation.

For completeness, we also give the brief listing of this mapping:
:IsInConflictWithMapping
a rvl:PropertyMapping ;
rvl:sourceProperty ro:isInConflictWith ;
rvl:targetObjToObjRelation vg:Linking_Undirected_Relation .

Finally, in order to completely recreate the graphic from the introductory example, we would
need to add a last mapping from ro:isRefinentOf to containment . While this is supported by
RVL and can be represented as an AVM (cf. Fig. 6.6), we do not yet provide a corresponding D3
rendering. Things to consider when implementing such a rendering include attachment-points
for connectors and repositioning container labels.

209

CHAPTER 9. APPLICATION

210

Chapter 10

Conclusions

In this last chapter, we summarise the contributions of this thesis and the results of the
constructive evaluation. Finally, we review the research questions, conclude to what extent they
can be answered by our results, and point to future work.

10.1 Contributions

In this thesis, we make the following main contributions:

C-1 The OGVIC approach to Ontology-Driven, Guided Visualisation Supporting
Explicit and Composable Mappings

C-2 A formalisation of graphic terms and knowledge in the Visualisation Ontology
(VISO) [PV13, VP11]

C-3 The principle of the platform-independent Abstract Visual Model (AVM), support-
ing a fine-grained, role-based description of the composed graphics

C-4 The declarative RDFS/OWL Visualisation Language (RVL) [Pol13]

C-5 A detailed analysis of the state of the art in the field of visualisation approaches
and languages used for visualisation and RDF-presentation

C-6 Three prototypical implementations, which cover the essential parts of the OGVIC
approach and show its feasibility [Pol15]

The first contribution of this thesis (C-1) is the description of OGVIC, an approach to ontology-
driven visualisation that not only allows for visualising ontologies, but also uses ontologies to guide
users when visualising ontological data (Sect. 8.1). We realise guidance by evaluating constraints
defined by the mapping language (RVL) as well as an external fact base, the VISO module
VISO/facts/empiric. Based on the constraints and the formalised visualisation knowledge,
warnings are issued and mapping options are suggested. That means, we discourage the
construction of mappings that are »non-optimal« according to perceptual rankings formalised in
the fact base and suggest better, e. g., more effective mappings instead. The VISO/facts/empiric
module is part of our second contribution, the VISO ontology:

With the VISO ontology (C-2), a comprehensive, collaborative collection of visualisation
knowledge has been created (Chapter 5). Work on this ontology included a detailed survey of
existing ontologies, classifications and other models in the field of visualisation and graphics.

211

CHAPTER 10. CONCLUSIONS

Besides for the OGVIC approach, VISO is also the foundation for an approach to recommend
visualisation components [VPGM12] implemented as part of VizBoard [VPM13].

The Abstract Visual Model (AVM; Chapter 6) is the third contribution of this thesis (C-3).
It is novel, since it is the first approach to formally represent and »synthesise« a graphic following
a role-based approach, inspired by the one used by Engelhardt for the analysis of graphics. The
justification for the AVM – which, at first glance, may appear as an unnecessary indirection –
is threefold: First, in the terminology of the model-driven paradigm, it plays the role of a
platform-independent model and thereby supports platform variability. Second, it enables
introspection on the level of graphic relations and supports tracing back to the represented data,
unlike, for example, SVG does. This paves the ground for guidance as we suggest it with the
OGVIC approach. Third, the role-based composition of graphics in the AVM allows for defining
the submapping mechanism for the composition of visual mappings in RVL.

The declarative RDFS/OWL Visualisation Language (RVL; Chapter 7) is the fourth contri-
bution (C-4). Being specific to RDFS and OWL concepts, it is focused on the visualisation of
knowledge specified in these languages. An important aspect of RVL is that the mappings from
the relations in the data to the graphic relations are made explicit. Further, we ease reuse and
sharing of visual mappings by two means; the composability of the mappings and the fact that
RVL mappings are RDF data themselves. Hence they can be conveniently stored, published,
documented and dereferenced just like the data they are meant to visualise.

To distinguish OGVIC and RVL from existing approaches and languages, a detailed analysis
of the state of the art in visualisation systems, visualisation languages and RDF presentation
languages was done (Chapter 4), which can be seen as an additional contribution (C-5). Com-
paring ten approaches by 29 criteria, we showed that the uniqueness of the approach emerges
from the fact that we combine ontology-driven guidance with a concept for composable visual
mappings.

As a last contribution (C-6), we presented three prototypical implementations1. The
prototypes have been built with technologies within the RDF technical space (Sect. 8.3, 8.4,
and 8.5). The development of three prototypes was due to technical reasons and the platform
diversity is a side-effect. However, the experiments also confirm that we achieved some degree of
platform variability – artefacts, like the RVL mappings or the AVM, can be exchanged between
all three prototypes, which allows for combining their strengths. While none of the prototypes
implements the complete architecture proposed by the OGVIC approach, each process step is
covered by at least one of the prototypes (except for advanced filtering and selection). The
prototypes do not implement a wizard-like step-by-step guidance process as we suggested with
the introductory example. However, adding such behavior to P3 is possible based on existing
models – the AVM, the mapping model and the VISO ontology. Only the option to choose
between multiple renderings of the same graphic relation would require to extend the current
modelling, since currently we assume that this choice is left to the system. Prototype P3 includes
a Java implementation of the RVL language showing that it is automatable.

10.2 Constructive Evaluation

In Chapter 9, we documented the visualisation cases and requirements that are covered by
the current specifications and prototypes. We also documented the results of a constructive
evaluation of both the RVL/VISO/AVM specifications and prototype P3 against the sketches
that we did as part of our case studies. We see the constructive evaluation as a first step to
ensure that our approach meets our requirements and is able to cover a large number of the
visualisation cases and sketches that we did. In summary, although many visualisation cases
are not yet completely covered and no prototype meets all our requirements, we can already
generate a large portion of the sketches from our case studies. Two thirds of the 37 sketches can

1 One of the prototypes was developed as student work, supervised by the author, cf. Sect. 8.4.

212

10.3. RESEARCH QUESTIONS

be almost completely or completely specified; half of the sketches can be almost implemented or
completely implemented with prototype P3.

Although OGVIC is intended to be domain-agnostic, only a user study in various domains
could proof the general usefulness of the approach. However, the fact that we derived our
requirements from use cases of various domains, suggests that OGVIC is applicable to other
domains as well.

10.3 Research Questions

Let us recall the research questions formulated in Sect. 3.2. Research question Q-1 asked for
a way to »define composable and shareable mappings from ontological data to visual means«.
This has been answered to a large extent: RVL can be used to define composable, shareable
mappings. The high degree of composability we aim at, and already achieve up to the level of
the AVM model, is limited, though, by how the prototypes render the AVM, since they use fix
graphic types in their current state (see future work on the prototypes described in Sect. 8.6.6).
The requested target model (Q-1.2), is provided by the VISO/graphic ontology. A further
subquestion (Q-1.1) was: »Which ontology constructs do we want to map and onto which visual
means?« This has been answered for the scope of the example ontologies from our case studies
(Chapter 3) and deserves a further requirement analysis for additional domains. However, with
the rich palette of graphic relations formalised in VISO/graphic, a good foundation has been
laid for covering additional visual means on demand.

Research question Q-2 asked for a way to »guide the visual mapping of ontological data«
and has mostly been answered. The guidance process is flexible, since it is based on single
exchangeable rules. With our prototypes, we showed how the composition of visual mappings
can be supported by tools that display warnings and error messages for non-optimal mappings.
However, none of the prototypes reaches the guidance level of »recommendations«. One
subquestion (Q-2.2) was on how we can »formalise expert visualisation knowledge«. In the
OGVIC approach, visualisation knowledge is formalised with the VISO/facts ontology and the
corresponding example knowledge base VISO/facts/empiric. The other subquestion (Q-2.1)
asked whether visualisation could »benefit from the rich semantics of ontological data« and
whether the rich semantics of ontological data could »help to allow for other visual paradigms than
the node-link paradigm«. While we describe a guidance mechanism based on rules, constraints
and VISO-based facts, we cannot say with certainty, whether the semantics of ontological data
facilitate the use of visual paradigms beyond node-link diagrams. Nevertheless, we showed that
it is possible to benefit from relation characteristics such as »symmetry« (cf. Sect. 9.4). In
Chapter 3 we listed more characteristics of ontological data that can be used to derive visual
mapping suggestions.

With respect to the main question of how to support the tailor-made, effective and reusable
visualisation of ontologies, the OGVIC approach offers the option to synthesise tailor-made
graphics based on reusable components. In the previous chapter, we demonstrated how graphics
can be varied, if complex mappings are composed from simple ones. Also the effectiveness of the
employed visual means is considered for guiding the user. The efficiency of the OGVIC approach,
including the suggested guidance process, needs to be measured in future user studies.

10.4 Transfer to Other Models and Constraint Languages

While we picked RDF-based ontological data as our concrete data model, the general principles
described in this thesis are, to a large extent, applicable to other data models, such as
Ecore-based models as they are common in the software modelling community. Similarly,
the formally stored visualisation knowledge in VISO – and partly also the RVL mappings –
may be used in non-Semantic-Web contexts, if adapters are built that relate existing systems
to the concepts defined in VISO and RVL. For example, RVL mappings could be used as an

213

CHAPTER 10. CONCLUSIONS

exchange format by non-Semantic-Web visualisation design systems. It could also be considered
to extend or generalise RVL to define visual mappings for other graph models than the RDF
model, for example, property graphs as they are used in databases like Neo4j2 [Mil13]. Also
Wikidata [Vra12], which could become an important source of knowledge, uses graphs that offer
temporal context. Alternatively, RVL can always be applied to an RDF export that represents
a »snapshot« of these richer graphs. Using property graphs could even simplify some aspects
of OGVIC, for example n-ary, weighted graphic relations in the AVM could more elegantly be
represented by a property graph – at the cost of a technological break. In this context, the
hypergraph approach of Minas [Min00] should also be taken into account (cf. Sect. 6.11).

In our approach, guidance is realised by evaluating constraints that are currently defined by
SPIN constraints. This has the benefit that we can easily refer to both domain concepts and
graphic concepts and infer new visualisation knowledge in the ontology technological space. Even
if SPIN does not succeed on the long run and is replaced by other formalisms, the constraints
that we defined may easily be reused, since they are internally based on the well-established W3C
standard SPARQL. Our decision to use a mechanism like SPIN, instead of OWL, is supported by
the fact that currently two groups, the W3C RDF Data Shapes Working Group3 and the Dublin
Core »RDF Application Profiles« Task Group4 (focus on requirements of such a language) work
on the standardisation of technologies that are similar to SPIN. A SPARQL-based language
called Shapes Constraint Language (SHACL) is discussed by the RDF Data Shapes Working
Group, which has many similarities with SPIN [SHA15, SHA16].

In the following, we briefly note what the OGVIC approach does not cover. We differentiate
between issues that are generally out of scope and those that have not been in the focus of this
thesis but could be done as future work.

10.5 Limitations

No focus on tabular and statistical data. We do not focus on homogeneous, tabular data
and common graphic types such as bar and pie charts, which are often used for this kind of
homogeneous data. Also, we do not cover the integration of statistic functions as they are often
applied on tabular data such as measurements. As we have shown in Chapter 4, there are already
many approaches for these scenarios.

No visual language. We do not define a graphic syntax for RVL itself. That means, we do
not use advanced visualisations to define the mappings (unlike a graphical query language such
as RDF-GL [HMFK10]).

10.6 Future Work

Extension and combination of prototypes. The prototypes need to be combined and
should be extended to allow for real world scenarios and user-studies. This includes the extension
to further process steps such as data selection and filtering and the implementation of better
tools supporting higher levels of guidance (Sect. 8.1.2). Furthermore, a hybrid imple-
mentation of an RVL interpreter should be considered, which uses graph transformations
for some of the necessary transformations. Details on future work concerning the implementation
of a comprehensive prototype were given in Sect. 8.6.

2 Neo4j. http://neo4j.com, accessed: 12.12.2015.
3 RDF Data Shapes Working Group. http://www.w3.org/2014/data-shapes/wiki/Main_Page,

accessed: 10.06.2015.
4 RDF Application Profiles Task Group at the Dublin Core Metadata Initiative.

http://wiki.dublincore.org/index.php/RDF_Application_Profiles/, accessed: 10.06.2015.

214

http://neo4j.com
http://www.w3.org/2014/data-shapes/wiki/Main_Page
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/

10.6. FUTURE WORK

Advanced, topology-aware composition. We support a basic composition of mappings.
Still, there are composition cases (Sect. 8.2.1) that cannot be defined with RVL or will not be con-
sidered for guidance. To decide, which graphic relations may be used in combination, the system
could further benefit from an advanced analysis of the instance data’s topology (cf. Sect. 5.7.3).
Characteristics such as planarity or the occurrence of cycles should be offered by an additional
graph analysis module. Here, collaboration with graph topology experts could be beneficial.
With the AVM, we offer a model that is rich enough to support running such an analysis also for
the generated graphic. The topological results can then be used to decide on the applicability of
graphic relations that put specific constraints on the data, such as building, or the composition
of containment and linking.

Fresnel and CSS integration. The Fresnel vocabulary for structuring document-like parts
of the graphics should be integrated with the OGVIC approach, particularly with the RVL
language. A basic CSS support was implemented (roles of graphic objects are provided as hooks),
but the use of CSS for styling texts and graphics needs to be further integrated with RVL. For
example, all named colours in RVL should be replaced by their CSS equivalents.

Reduced interaction times. It has to be further investigated, how the model-driven ar-
chitecture of OGVIC can be modified to further support interaction with quick responses of
the GUI. Users will benefit from instantly seeing changes in the graphic as a response to their
changes to the configuration. This has been described in the context of visual analytics by
Kerren and Schreiber [KS12]. Using iterative and incremental transformations could be one
concept towards shorter interaction times for complex graphics. Transforming OGVIC towards
a full MVC architecture has been discussed as future work in Sect. 8.6.5.

Guided configuration of rendering. At the moment, the rendering of the graphics cannot
be configured by end-users. As rendering is just another step in the visualisation process, also
the rendering could be configured at runtime. This could be used to switch between different
target platforms (e. g., switch from 2D SVG-rendering to X3D-rendering). Also for this process
step, guidance could be provided to help mapping abstract graphic relations and attribute values
to concrete parameters of the output platform. Guidance for this process step is also required
to implement the last system interaction from our example dialogue that we used to motivate a
guided visualisation system in the introduction.

Editing source data. The editing of the source data is another case of interaction in the
visualisation process, which we excluded from the requirements (L-1) for the scope of this thesis.
Further investigation will be necessary to enable the »back-transformation« of changes to the
graphic representation back to the data that it represents. However, the fact that we aim at
unambiguous visual mappings – each mapping should be bidirectional in the sense that it must
be clearly decodeable by human perception – may be a good basis for editing. It has to be
investigated, whether experiences and ideas from round-trip engineering [Aß03a], e. g., [Sei11],
can be applied to visualisations and whether the mapping definitions need to be prepared in
order to allow for bidirectional transformations. Round-trip engineering has already been applied
in the context of model-driven development of 3D web-applications by Lenk et al. [LVJ12]. Also
our general architecture promotes editing, e. g., trace links can easily be created to the underlying
data for each graphic element. Among the examined related work, only Protovis by Bostock
and Heer (Sect. 4.2.1) and the RDF Editing Metamodel (REMM; Sect. 4.3.1) by Rauschmeyer
offer a mapping description that explicitly supports editing.

Support the sharing of mappings. To foster the use of RVL for describing visualisation
mappings, a platform for sharing and reusing recommended visualisation settings in RVL could
be built by a community project.

215

CHAPTER 10. CONCLUSIONS

Extension to other senses. We did not take other senses such as audio or tactile into
consideration, and limited ourselves to the visual sense. However, graphic has a broader meaning
as Wilkinson [Wil05] states: »there is nothing in the definition of a graphic [..] to limit it to
vision« and »touch, hearing, and other senses can be used to convey information with as much
as detail and sensitivity as can vision«. Therefore, to allow for future extensions to other senses,
we use the term »graphic« instead of »visual« wherever possible (e. g., this is the reason, we use
»graphic attribute« instead of »visual attribute«).

216

Appendices

217

Appendix A

Case Study Sketches

The following sketches have been done in order to identify mapping cases that occur, when
data from the case studies’ ontologies is visualised using graphic representation types that are
common in the respective domains.

219

APPENDIX A. CASE STUDY SKETCHES

(a) RO-1 – rdf:type ↦→ shape. (b) RO-2 – rdf:type ↦→ transparency
(for subclasses of ro:Priority), with
HighPriority ↦→ no transparency
LowPriority ↦→ medium transparency.

(c) RO-3 – rdf:type ↦→ symbol/shape
ro:Requirement ↦→ checked
ro:Stakeholder ↦→ person
ro:Problem ↦→ flash.

(d) RO-4a – rdf:type ↦→ y-position
(for subclasses of ro:Priority) with
HighPriority ↦→ maximum y-position
LowPriority ↦→ minimum y-position.

R0

R2

R3

R1

(e) RO-4b – rdf:type ↦→ lightness
(for subclasses of ro:Priority) with
HighPriority ↦→ maximum lightness
LowPriority ↦→ minimum lightness.

R2

R3

R1

100 €

70 €

10 € expensive
cheap

(f) RO-5 – ro:hasCost ↦→ color (named)
50 or more EUR ↦→ red (labelled »expensive«)
less than 50 EUR ↦→ green (labelled »cheap«).

Figure A.1: Sketches for the case studies’ ontologies – Domain of software technology I.

220

(a) RO-8 – A label, composed from a static clock symbol and a text
value encodes ro:hasResponseTimeInMs.

(b) RO-6 – Like Fig. A.1f + ro:refines + ro:isInConflictWith ↦→ linking
with differently shaped and coloured arrows. Labelling as in (RO-8).

(c) RO-7 – Like Fig. A.2b, but ro:refines is now mapped to containment
instead of linking.

Figure A.2: Sketches for the case studies’ ontologies – Domain of software technology II.

221

APPENDIX A. CASE STUDY SKETCHES

Paper	A

Paper	B

Paper	C

(a) CIT-1 – cito:cites ↦→ directed linking +
subproperties distinguished by a set of ordered
colours (traffic light set).

(b) CIT-2 – cito:cites ↦→ builds-on (complex
relation, involving line-up and (relative) y-position;
between Publication A and B as well as A and C
additional (plane) connectors are used whose color
depends on the type of citation like in CIT-1:
cito:confirms ↦→ green
cito:critiques ↦→ orange.

(c) CIT-3 – cito:cites ↦→ linking (directed) +
cito:citesAsRelatedTo ↦→ low relative distance
(resulting in a clustering).

(d) CIT-4 – cito:updates ↦→ iconic labelling with a
star (whenever Publication A updates some other
publication, mark A as the more recent one).

(e) CIT-5 – cito:cites ↦→ directed linking + iconic
labels on the connector to distinguish subproperties
of cites:
cito:updates ↦→ star
cito:disagreedBy ↦→ note of exclamation.

(f) CIT-6 – cito:sharesAuthorWith ↦→ co-highlight
publications having at least one author in common
with the selected publication are highlighted.

Figure A.3: Sketches for the case studies’ ontologies – Domain of publishing.

222

(a) PO-1 – all (object) properties ↦→ linking
(directed) + distinguish properties by color of
connector.

(b) PO-2 – rdfs:subClassOf ↦→ indented tree
(+ co-highlighting those resources that had to be
duplicated to »treeify« the subClassOf-graph).

(c) PO-3 – rdfs:subClassOf ↦→ linking (directed). (d) PO-4 – rdfs:subClassOf ↦→ linking (directed)
(+ co-highlighting those resources that had to be
duplicated to »treeify« the subClassOf-graph).

(e) PO-5 – rdfs:subClassOf ↦→ containment
(+ co-highlighting those resources that had to be
duplicated to »treeify« the subClassOf-graph).

Figure A.4: Sketches for the case studies’ ontologies – Domain of biology (Plant Ontology) II. PO-6
and PO-7 are not shown, since they use the same graphics as PO-2 resp. PO-3 but for the po:part_of
relation.

223

APPENDIX A. CASE STUDY SKETCHES

corkcambrium

phelloderm

phellem

(a) PO-8 – obo:develops_from ↦→ linking
(directed), horizontal, reading direction.

phellodermc.cambrium

phelem

(b) PO-9 – obo:develops_from–1 ↦→ linking
(directed), like PO-8, but with specially
shaped connectors + highlighting of direct
neighbours when hovering.

(c) PO-10 – Attempt to interactively connect two linking-structures,
one representing the obo:develops_from relation (PO-9) and the other
representing a hierarchy of plant parts (PO-7; not shown).

Figure A.5: Sketches for the case studies’ ontologies – Domain of biology (Plant Ontology) II. PO-6
and PO-7 are not shown, since they use the same graphics as PO-2 resp. PO-3 but for the po:part_of
relation.

224

Larval	Stage	Days	7-13

Le�	Eye
Indiv	X

Le�	Eye

Head

(a) ZFO-1 – rdfs:subClassOf ↦→ shape, with
zfo:Fish_Part ↦→ rhomb, zfo:Stage ↦→ arrow .
Settings are inherited by subclasses and
instances, see Sect. 7.2.5.

fish body

eye
head

gills

(b) ZFO-2a – obo-rel:part_of ↦→ containment.

fish body

eye

head

gills tailcen
ter

(c) ZFO-2b – obo-rel:part_of ↦→ containment
+ relative position of the fish parts or adjacency
information (not included in the ontological
data) ↦→ relative position (x and y).

(d) ZFO-3a – obo-rel:part_of ↦→ »satellite« repre-
sentation – a complex graphic relation, where the
correspondence between the base object and the
»satellites« is established by adjacency.

(e) ZFO-3a1 – Same as ZFO-3a, but the cor-
respondence between the base object and the
»satellites« is established by a low relative dis-
tance.

(f) ZFO-3b – Part-whole relation in the Zebrafish’s
anatomy visualised by a shape emerging from multi-
ple clustered graphic objects. (Similar to a tree-map,
but area does not encode information. Additionally,
(here) limited to a depth of one obo-rel:part_of rela-
tion.)

Figure A.6: Sketches for the case studies’ ontologies – Domain of biology (Zebra Fish Anatomy
Ontology) I.

225

APPENDIX A. CASE STUDY SKETCHES

(a) ZFO-4 – obo:start + obo:end ↦→ x-position + width + line-up (unordered). A swifted
rectangle represents the lifespan of each anatomical part. The rhomb shape (used to encode
parts before) is applied as a label. (We initially assumed here that start and end are given in
days, but the timestamp is only indirectly given at the stage.)

(b) ZFO-5 – obo-rel:part_of ↦→ builds-on (complex relation, involving line-up and (relative)
y-position. To obtain an ordered line-up as shown, we must assume that it is possible to
derive information on which of the stages in the zebra-fish development follows which other
stage, since this is not explicitly stated in the ontology.

(c) ZFO-6 – Combination of ZFO-4 and ZFO-5 in a multipanel display. On selecting one of
the time spans in the upper graphic, the corresponding start to end development stages in
the hierarchy of stages are highlighted.

Figure A.7: Sketches for the case studies’ ontologies – Domain of biology (Zebra Fish Anatomy
Ontology) II.

226

(a) AA-2 – aa:hasPolarity ↦→ iconic labelling.
aa:Positive ↦→ +
aa:Negative ↦→ -

P

(b) AA-3 – aa:hasPolarity ↦→ labelling with a
»circled P« shape if the value is aa:Polar, otherwise
no label is shown at all.

(c) AA-4 – aa:hasSideChainStructure ↦→ shape.

Charge

H
yd
ro
ph

ob
ic
ity

P

P

P

(d) AA-5 – Tabular representation of amino acids
using two spatial dimensions to segregate amino
acids by aa:hasCharge and aa:hasHydrophobicity. Ad-
ditionally, mappings from aa:hasSideChainStructure
and aa:hasPolarity to shape (Fig. 3.2b) and labelling
(Fig. 3.3d) are reused.

Figure A.8: Sketches for the case studies’ ontologies – Domain of biology (Amino Acids Ontology).

227

APPENDIX A. CASE STUDY SKETCHES

228

Appendix B

VISO – Comparison of
Visualisation Literature

229

APPENDIX B. VISO – COMPARISON OF VISUALISATION LITERATURE

Author(s) Da Do Vo Re Ac Us Sy
Allen [All97] x Terminology
Amar et al. [AES05] x Terminology
Amar, Stasko [AS04] x Terminology
Andrienko, Andrienko [AA06] x x Terminology
Bernhard et al. [BDW05] x x Taxonomy
Bertin [Ber83] x x x Terminology
Brodlie, Noor [BN07] x Taxonomy
Burkhard [Bur04] x x x Taxonomy
Card, Mackinlay [CM97] x x Taxonomy
Card et al. [CMS99] x x x x x Taxonomy
Chi [Chi00] x x Taxonomy
Chuah, Roth [CR96] x Taxonomy
Daassi et al. [DNF05] x Taxonomy
Duke et al. [DBD04] x x x x Ontology
Engelhardt [vE02] x x Taxonomy
Espinosa [EHG99] x x x Terminology
Fikkert et al. [FDBJK07] x x Terminology
Foni et al. [FPMT10] x x Taxonomy
Freitas et al. [FLC+02] x x x Taxonomy
Gilson et al. [GSGC08] x x x x Ontology
Heer et al. [HHC+08] x x x x Terminology
Herman et al. [HMM00] x x Terminology
Keim [Kei02] x x x Taxonomy
Lau, Vande Moere [LVM07] x x x Terminology
Le Grande, Soto [LGS02] x x x Terminology
Lee et al. [LPP+06] x x Taxonomy
Lengler, Eppler [LE07] x x Taxonomy
Limbourg, Vanderdonckt [LV03] x Terminology
Lohse et al. [LBWR94] x Taxonomy
Mackinlay [Mac86a] x Terminology
Norman [Nor86] x x Terminology
Otjacques et al. [OF05] x x Taxonomy
Pfitzner et al. [PHP03] x x x x x x Taxonomy
Potter and Wright [PW07] x x Ontology
Qin et al. [QZP03] x x x x Taxonomy
Rhodes et al. [RKR06] x x x x x x Ontology
Risch [Ris08] x Terminology
Robertson [Rob91] x x Taxonomy
Shneiderman [Shn96] x x Taxonomy
Shu et al. [SAR08] x x x Ontology
Spence [Spe07] x x x x Terminology
Stolte [Sto03] x x x x Taxonomy
Tory, Möller [TM04a] x x Taxonomy
Tory, Möller [TM04b] x Terminology
Tweedie [Twe97] x x Taxonomy
Valiati [VPF06] x Taxonomy
Wehrend, Lewis [WL90] x x x Taxonomy
Wilkinson [Wil05] x x x Terminology
Wiss, Carr [WC98] x x Terminology
Yi et al. [YaKSJ07] x Taxonomy
Zhang [Zha96] x x x Taxonomy
Zhou, Feiner [ZF98] x Taxonomy
Zudilova-Seinstra [ZS07] x Terminology
count 24 12 11 32 30 10 7

Table B.1: Studied literature on visualisation. We distinguish the fields of data (Da), domain (Do),
graphical vocabulary (Vo), graphic representation (Re), activity (Ac), user (Us), and system (Sy). The
last column states the level of formalisation (terminology, taxonomy or ontology). This table has been
published before at http://mmt.inf.tu-dresden.de/VO.

230

http://mmt.inf.tu-dresden.de/VO

Appendix C

RVL

231

APPENDIX C. RVL

Figure C.1: Mappings in RVL can be refined with filters: An implicit filtering to statements having
the predicate defined by rvl:sourceProperty is done for all property mappings (a). This can be refined
by rvl:objectFilter (b,c) and rvl:subjectFilter (d). Filter expressions can be SPARQL or (as shown here)
FSL selectors (Sect. 4.3.1). Constraining the mapping to statements with a specific object value (b) is
similar to what can be achieved using rvl:ValueMapping. However, a value mapping only ensures that
selected source values will be mapped to selected graphic values while it does not limit the property
mapping to a subset of statements.

232

Appendix D

RVL Example Mappings and
Application

D.1 Listings of RVL Example Mappings as Required by
Prototype P3

While the mappings given in Chapter 9 are complete with respect to the defined visual mappings,
sometimes additional settings are necessary, because the current implementation (P3) has a
limited support of default settings or styles. In the following, we give the listings for the example
mappings RO-4b und CIT-5, including these additional settings.

1 :RO-4b
a rvl:PropertyMapping;
rvl:subjectFilter "http://purl.org/ro/ont#Requirement"^^rvl:classSelector;
rvl:sourceProperty rdf:type;
rvl:targetAttribute vg:color_hsl_lightness;

6 rvl:valueMapping [
rvl:sourceValueOrderedSet (
ro:LowPriority
ro:MediumPriority
ro:HighPriority

11);
rvl:discretize "true";
rvl:targetValueInterval [
a rvl:Interval;
rvl:lowerBoundIncl "0";

16 rvl:upperBoundIncl "100";
];

].

21 :ShapeMapping
a rvl:PropertyMapping;
rvl:sourceProperty rdf:type;
rvl:subjectFilter "http://purl.org/ro/ont#Requirement"^^rvl:classSelector;
rvl:targetAttribute vg:shape_named;

26 rvl:valueMapping [
a rvl:ValueMapping;
rvl:sourceValue ro:Requirement;
rvl:targetValue common-shapes:Square;

].
31

:LabelMapping
a rvl:PropertyToGraphicObjToObjRelationMapping;
rvl:sourceProperty rdf:ID;
rvl:subjectFilter "http://purl.org/ro/ont#Requirement"^^rvl:classSelector;

36 rvl:targetObjToObjRelation vg:Labeling_Relation;

233

APPENDIX D. RVL EXAMPLE MAPPINGS AND APPLICATION

rvl:subMapping [
rvl:subMapping-onRole vg:labeling_label;
rvl:subMapping-onTriplePart rdf:subject;
rvl:subMapping-mapping :LabelTextIdentity;

41],[
rvl:subMapping-onRole vg:this;
rvl:subMapping-onTriplePart rdf:subject;
rvl:subMapping-mapping :TypeToLabelStyle;

],[
46 rvl:subMapping-onRole vg:labeling_base;

rvl:subMapping-onTriplePart rdf:subject;
rvl:subMapping-mapping :Type2Width;

].

51 :LabelTextIdentity
rvl:disabled "true";
a rvl:IdentityMapping;
rvl:sourceProperty rvl:label;
rvl:targetAttribute vg:text_value.

56

:TypeToLabelStyle
a rvl:PropertyMapping;
rvl:disabled "true";
rvl:sourceProperty rdf:type ;

61 rvl:targetAttribute vg:labeling_attachedBy;
rvl:valueMapping [
rvl:sourceValue ro:Requirement;
rvl:targetValue vg:Containment_Relation;

].
66

:Type2Width
a rvl:PropertyMapping;
rvl:disabled "true";
rvl:sourceProperty rdf:type;

71 rvl:targetAttribute vg:width;
rvl:valueMapping [
a rvl:ValueMapping;
rvl:sourceValue ro:Requirement;
create some space for contained labels:

76 rvl:targetValue "100"^^xsd:float;
].

Listing D.1: RO-4b – RVL mappings.

:CIT-5
2 a rvl:PropertyMapping;

rvl:sourceProperty cito:cites;
rvl:targetObjToObjRelation vg:Linking_Directed_Relation;
rvl:subMapping [
rvl:subMapping-onRole vg:linking_connector;

7 rvl:subMapping-onTriplePart rdf:predicate;
rvl:subMapping-mapping :IconLabelMapping;

].

:IconLabelMapping
12 a rvl:PropertyMapping ;

rvl:disabled "true";
rvl:sourceProperty rdf:ID;
rvl:targetObjToObjRelation vg:Labeling_Relation;
rvl:subMapping [

17 rvl:subMapping-onRole vg:labeling_label;
rvl:subMapping-onTriplePart rdf:predicate;
rvl:subMapping-mapping :IconLabelShapeMapping;

],[
rvl:subMapping-onRole vg:labeling_label;

22 rvl:subMapping-onTriplePart rdf:predicate;
rvl:subMapping-mapping :ID2ColorNamed;

].

234

D.2. FEATURES REQUIRED FOR IMPLEMENTING ALL SKETCHES

:IconLabelShapeMapping
27 a rvl:PropertyMapping;

rvl:disabled "true";
rvl:sourceProperty rdf:ID;
rvl:targetAttribute vg:shape_named;
rvl:valueMapping [

32 rvl:sourceValueOrderedSet (
cito:critiques
cito:confirms);

rvl:targetValueList (
common-shapes:XMark

37 common-shapes:Star18);
].

only necessary, since the icons we use here are not yet colored
:ID2ColorNamed

42 a rvl:PropertyMapping ;
rvl:disabled "true" ;
rvl:sourceProperty rdf:ID ;
rvl:targetAttribute vg:color_named;
rvl:valueMapping [

47 rvl:sourceValueOrderedSet (
cito:critiques
cito:confirms);

rvl:targetValueList (
vg:Red

52 vg:Yellow);
].

Listing D.2: CIT-5 – RVL mappings.

D.2 Features Required for Implementing all Sketches

In summary, the following features need to be implemented in order to completely reproduce
the subset of sketches from Sect. 3.6:

• Dereference URIs of symbols to allow for arbitrary SVG graphics as shapes including
marker shapes, e. g., arrow heads (AA-4/CIT-5/RO-6).

• Improved positioning of labels (RO-5).

• Generate legends (RO-5).

• Defaults – for example, adapt the shape width to the width of labels if the labels are
attached by containment, i. e., placed »inside« the shape (PO-9).

• Reflexive edges cannot yet be rendered (not covered by the sketches).

The following features also require conceptual work, e. g., changes or extensions to the RVL
specification:

• For handling text values and units such as cost and currency literals, a concept for
concatenating texts is needed. Since handling text touches existing technologies like
Fresnel, the focus was not yet on this problem (RO-5).

• Set the marker width to line width by default for specific graphic representation types (PO-9).

• Support further graphic representation types such as indented list. As a concept for
describing indented lists, multiple options exist – e. g., the composition of ordered line-up
and position. Similarly, a concept for describing tables is required. Describing tables solely
as a product of combining graphic-relations can be challenging. Again multiple options
exist according to Engelhardt [vE02] (PO-7).

235

APPENDIX D. RVL EXAMPLE MAPPINGS AND APPLICATION

• A concept of name-value pairs to simplify frequently used label positioning tasks: Name-
value pairs are frequently used in the context of labelling (e. g., for the representation of
attributes in UML-like diagrams). Both key and value may be represented as graphic or
as text (RO-6).

• A concept of rendering the combined usage of containment and linking – including the
identification and handling of impossible composition cases. Using multiple graphic
object-to-object relations that are not orthogonal in the same graphic, requires calculating
whether the combination is possible for the concrete given instance data. Here, algorithms
from the graph topology could help to spot those cases that allow for composition and
those that do not (similar to planarity checks). The AVM is a rich enough model to
support running such checks (RO-7).

• The colouring of arrow heads is not yet possible. One option could be to use more
fine-grained roles to allow for referencing such parts. A workaround is to define an arrow
style that determines the colour of the head (RO-6).

In order to specify and implement not only the subset of sketches from Sect. 3.6, but all sketches
presented in AppendixA, some additional features are required. In TableD.1, we give an
overview of the overall set of features and the current status of implementation in prototype P3
as well as the current status of specification in RVL, VISO and the AVM. Some features are not
intended to be specified in one of the vocabularies. These are marked as N/A. In some cases
there is an implementation by prototype P3, but no specification. This mainly applies to features
concerning style and defaults, which need to be properly described in the RVL specification.

236

Feature Implemented in P3 Specified
Property mapping

Position x x
Relative position - -
Relative distance x x
Size x x
Width x x
Shape (incl. complex shapes, consisting of multiple objects) x x

Arbitrary shapes / dereference SVG shapes from URL - x
Colour (named) for all CSS colour names should be supported (x) (x)
Colour HSL lightness x x
Linking x x

Directed linking x x
Undirected linking x x
Reflexive edges - N/A

Line-up
Ordered line-up - -
Unordered line-up - -

Containment
Containment for arbitrary shapes - x
Containment for circles x x

Adjacency - -
Multipanels - N/A

Display partial graphics - N/A
Complex (composed) graphic relations

Builds-on - -
Plane connectors - -

Co-highlighting (x) x
Composed shapes - -
Composition of linking and containment - (x)
„Satellite“ relation - -
Graphic representation types

Indented list - (x)
Table

Tabular representation with ordinal/nominal axis (or alternatively
support a composition of position/line-up and containment)

- (x)

Colouring of table cells / container background - (x)
Inherit property mappings x x
Submapping x x
Resource mapping x x
Value mapping

Explicit value mappings x x
Calculation of value mappings x x

Continuous to continuous x x
Discretisation x x

Continuous to nominal x x
Nominal to nominal x x
Ordinal to continuous x x

Legends for property mappings and value mappings - x
Axes - -
Labelling

Support multiple labels x x
Support labels that are name-value pairs (textual or iconic) - (x)
Of connectors x x
Of nodes x x
Of labels x x
Of graphic objects with arbitrary roles - x
Icon labelling x x
Text labelling x x
Attaching labels via ...

Superimposition x x
Containment (breaking the label text to the shape of the container) x x
Use a table for multiple contained labels - -
Alignment (x) x

Layouting
Graph layout (e. g., force-driven) x N/A
DAG layout - N/A
Tree layout x N/A

Treefication x -
Concat values and units - -
Style settings and defaults x -

Shadows x N/A
Set connector width (and marker width) to node width - -
Markers shape x -
Default colour x -
Default labelling x -
Centre text, if label positioned centered x -
Invert text label colour by default x -
Default marker shape x -
Marker width adapts to line width by default - -
Highlight neighbour nodes by default x -
Highlight duplicated graphic objects by default x -
Width adapts to label width by default - -
Container width adapts to containees by default - -

Amount of implemented/specified features 57%
(and additional 4%
partially)

53%
(and additional 9%
partially)

Table D.1: Features required to realise the case studies’ sketches as implemented by prototype P3,
respectively specified/conceptualised in RVL, VISO and the AVM.

APPENDIX D. RVL EXAMPLE MAPPINGS AND APPLICATION

D.3 JSON Format for Processing the AVM with D3
– Hierarchical Variant

{
"children":[
{
"uri":"http://purl.org/rvl/example-data/Some_URI_of_some_resource",

5 "roles":[
"containment_container"
],

"shape":"circle",
"width":17.0,

10 "labels":[
{
"text_value":"Some URI of some resource",
"width":8.5,
"position":"centerRight",

15 "type":"text_label"
}

],
"type":"Containment",
"children":[

20 {
"uri":"http://purl.org/rvl/example-data/Another_URI_of_another_resource",
"roles":[
"containment_containee"
],

25 "color_rgb_hex_combined":"#ff9900",
"shape":"circle",
"width":17.0

}
]

30 }
],
"graphic_type":"circle-packing-zoomable"

}

Listing D.3: Example of the hierarchical variant of the JSON format used for the communication
between the RVL server and the OGVIC D3 plugins. Hierarchically structured data is, for instance,
expected by the D3 layouts tree and pack , which are applied by the graphic types Collapsible Tree1 and
Zoomable Circle Packing2 that we use in prototype P3 (cf. Sect. 8.5).

2 Based on an example from http://bl.ocks.org/mbostock/4339083/, accessed: 29.04.2016
2 Based on an example from http://bl.ocks.org/mbostock/7607535/, accessed: 29.04.2016

238

http://bl.ocks.org/mbostock/4339083/
http://bl.ocks.org/mbostock/7607535/

Bibliography

[AA06] N. Andrienko and G. Andrienko. Exploratory Analysis of Spatial and Temporal Data: A
Systematic Approach. Springer, 2006. 104, 107, 113, 114, 230

[Abi97] S. Abiteboul. Querying semi-structured data. Database Theory – ICDT ’97, pages 1–18,
1997. 17

[ABK+07] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. The Semantic
Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference,
ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007. Proc., volume 4825 of
LNCS, chapter DBpedia: A Nucleus for a Web of Open Data, pages 722–735. Springer,
Berlin, Heidelberg, 2007. 20

[Ack89] R. L. Ackoff. From data to wisdom. Journal of Applied Systems Analysis, 16(1):3–9, 1989.
17

[ADD10] S. Auer, R. Doehring, and S. Dietzold. Less – template-based syndication and presentation
of linked data. The Semantic Web: Research and Applications, pages 211–224, 2010. 44,
75

[AES05] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic activity in information
visualization. In Proc. of the IEEE Symposium on Information Visualization, 2005 (InfoVis
2005), pages 111–117, 2005. 230

[AEWW13a] U. Aßmann, J. Ebert, T. Walter, and C. Wende. Ontology-Driven Software Development,
chapter Ontology and Bridging Technologies, pages 179–192. Springer, 2013. 9

[AEWW13b] U. Aßmann, J. Ebert, T. Walter, and C. Wende. Ontology-Driven Software Development,
chapter Ontology-Driven Metamodelling for Ontology-Integrated Modelling, pages 257–
274. Springer, Berlin, Heidelberg, 2013. 95

[All97] R. B. Allen. Handbook of Human-Computer Interaction, chapter Mental Models and User
Models, pages 49–63. Elsevier Science Inc., New York, NY, USA, 1997. 230

[AS04] R. Amar and J. Stasko. A knowledge task-based framework for design and evaluation of
information visualizations. In Proc. of IEEE Symposium on Information Visualization,
pages 143–150, 2004. 230

[AZW06] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies, metamodels, and the model-driven
paradigm. Ontologies for Software Engineering and Software Technology, 2006. 92

[Aß03a] U. Aßmann. Automatic roundtrip engineering. Electronic Notes in Theoretical Computer
Science, 82(5):33–41, 2003. SC 2003, Workshop on Software Composition (Satellite Event
for ETAPS 2003). 140, 215

[Aß03b] U. Aßmann. Invasive Software Composition. Springer, 2003. 54

[BAB+93] D. M. Butler, J. C. Almond, R. D. Bergeron, K. W. Brodlie, and R. B. Haber. Visualization
reference models. In Proc. of the 4th conference on Visualization ’93, pages 337–342, San
Jose, California, 1993. IEEE Computer Society. 13

[BANE15] T. Bosch, E. Acar, A. Nolle, and K. Eckert. The role of reasoning for RDF validation.
In Proc. of the 11th International Conference on Semantic Systems, pages 33–40. ACM,
2015. 174

[BB08] C. Becker and C. Bizer. DBpedia Mobile: A location-aware Semantic Web client. In Proc.
of the Semantic Web Challenge at ISWC2008, 2008. 74

239

BIBLIOGRAPHY

[BB10] B. Braatz and C. Brandt. How to modify on the Semantic Web? In Current Trends in
Web Engineering, volume 6385, pages 187–198. Springer, Berlin, Heidelberg, 2010. 192

[BCE+92] K. W. Brodlie, L. Carpenter, R. A. Earnshaw, J. R. Gallop, R. J. Hubbold, A. M.
Mumford, C. D. Osland, and P. Quarendon. Scientific Visualization: Techniques and
Applications. Springer, 1992. 102

[BDD+04] K. W. Brodlie, D. A. Duce, D. J. Duke, et al. Visualization ontologies: Report of a
workshop held at the national e-Science centre. Technical report, e-Science Institute,
Edinburgh, Scotland, 2004. 102

[BDW05] J. Bernhard, M. Dragan, and S. Wenzel. Evaluation und Erweiterung der Kriterien zur
Klassifizierung von Visualisierungsverfahren für GNL. Technical Report 05001, Fraunhofer
IML and Universität Kassel, 2005. 230

[Ber83] J. Bertin. Semiology of Graphics. University of Wisconsin Press, 1983. 107, 115, 230

[BGH+08] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-Koifman,
D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev. Beyond basic faceted search. In
Proc. of the International Conference on Web Search and Web Data Mining (WSDM08),
pages 33–44. ACM, 2008. 22

[BH09] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1121–1128, 2009. 42, 50, 65, 68, 69, 143

[BH10] M. Brophy and J. Heflin. OWL-PL: a presentation language for displaying semantic data
on the web. Technical Report LU-CSE-09-002, Lehigh University, 2010. 75, 137, 139

[BHBL09] C. Bizer, T. Heath, and T. Berners-Lee. Linked data – the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(3):1–22, 2009. 20

[BK05] J. Bézivin and I. Kurtev. Model-based technology integration with the technical space
concept. In Proc. of the Metainformatics Symposium. Springer, 2005. 103

[BK12] N. Barnickel and J. Klessmann. Open Initiatives: Offenheit in der digitalen Welt und
Wissenschaft, chapter Open Data – Am Beispiel von Informationen des öffentlichen Sektors,
pages 127–158. universaar, 2012. 20

[BLP05] C. Bizer, R. Lee, and E. Pietriga. Fresnel – display vocabulary for RDF. User Manual.
http://www.w3.org/2005/04/fresnel-info/manual/, 2005. 73

[BM04] P. V. Biron and A. Malhotra. XML Schema part 2: Datatypes second edition. W3C
Recommendation. http://www.w3.org/TR/xmlschema-2/, 2004. 115

[BN07] K. Brodlie and N. M. Noor. Visualization notations, models and taxonomies. EG UK
Theory and Practice of Computer Graphics, pages 207–212, 2007. 103, 230

[BOH11] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2301–2309, 2011. 43

[Bor97] W. N. Borst. Construction of Engineering Ontologies for Knowledge Sharing and Reuse.
PhD thesis, Universiteit Twente, Netherlands, 1997. 19

[BRR03] N. Boukhelifa, J. Roberts, and P. Rodgers. A coordination model for exploratory multi-
view visualization. In Proc. of the conference on Coordinated and Multiple Views In
Exploratory Visualization, pages 76–85. IEEE, 2003. 12

[BTMS99] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Handbook of Graph Grammars
and Computing by Graph Transformation: Applications, Languages and Tools, volume 2,
chapter Application of Graph Transformation to Visual Languages, pages 105–180. World
Scientific, 1999. 139, 192

[Bul08] R. I. Bull. Model driven visualization: towards a model driven engineering approach for
information visualization. PhD thesis, University of Victoria, 2008. 14, 22, 36, 41, 48, 51,
53, 58, 71, 193

[Bun97] P. Buneman. Semistructured data. In Proc. of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems (PODS ’97), pages 117–121, 1997.
17

[Bur92] S. Burbeck. Applications programming in Smalltalk-80 (TM): How to use Model-View-
Controller (MVC). http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html, ac-
cessed: 12.07.2016, 1992. 14, 41

240

BIBLIOGRAPHY

[Bur04] R. A. Burkhard. Learning from architects: the difference between knowledge visualiza-
tion and information visualization. In Proc. of the Eighth International Conference on
Information Visualisation, pages 519–524. IEEE, 2004. 230

[CCKT83] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphical methods for
data analysis. Duxbury Press, Boston, Massachusetts, 1983. 117, 119

[CDC+07] M. Cammarano, X. Dong, B. Chan, J. Klingner, J. Talbot, A. Halevy, and P. Hanrahan.
Visualization of heterogeneous data. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1200–1207, 2007. 45

[CE00] K. Czarnecki and U. W. Eisenecker. Generative Programming–Methods, Tools, and
Applications. Addison-Wesley, 2000. 169

[CEH+09] M. Chen, D. Ebert, H. Hagen, R. S. Laramee, R. van Liere, K. L. Ma, W. Ribarsky,
G. Scheuermann, and D. Silver. Data, information, and knowledge in visualization.
Computer Graphics and Applications, 29(1):12–19, 2009. 17

[Cha09] P. A. Champin. Tal4Rdf: lightweight presentation for the Semantic Web. In Proc. of the
5th Workshop on Scripting and Development for the Semantic Web (ESWC2009), 2009.
75, 87

[Che76] P. P.-S. Chen. The entity-relationship model – toward a unified view of data. Transactions
on Database Systems (TODS), 1(1):9–36, 1976. 131

[Chi00] E. H. Chi. A taxonomy of visualization techniques using the data state reference model.
In Proc. of the IEEE Symposium on Information Visualization, pages 69–75, 2000. 12, 13,
230

[Chr95] N. R. Chrisman. Beyond Stevens: a revised approach to measurement for geographic
information. In Proc. of the International Symposium on Computer-Assisted Cartography,
1995. 113

[CM84] W. S. Cleveland and R. McGill. Graphical perception: Theory, experimentation, and
application to the development of graphical methods. Journal of the American Statistical
Association, 79(387):531–554, 1984. 107, 115, 118

[CM97] S. Card and J. Mackinlay. The structure of the information visualization design space.
volume 0, page 92, Los Alamitos, CA, USA, 1997. IEEE. 52, 230

[CMS99] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.
12, 13, 113, 230

[CMS09] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Human-Computer Interaction: Design
Issues, Solutions, and Applications, chapter Information visualization. CRC Press, 2009.
13, 67, 105, 109

[CR96] M. C. Chuah and S. F. Roth. On the semantics of interactive visualizations. In Proc. of
the IEEE Symposium on Information Visualization, pages 29–36. IEEE, 1996. 230

[CTW+09] B. Chan, J. Talbot, L. Wu, N. Sakunkoo, M. Cammarano, and P. Hanrahan. Vispedia:
on-demand data integration for interactive visualization and exploration. In Proc. of
the 35th SIGMOD international conference on Management of data, pages 1139–1142,
Providence, Rhode Island, USA, 2009. ACM. 1, 3, 45

[CWT+08] B. Chan, L. Wu, J. Talbot, M. Cammarano, and P. Hanrahan. Vispedia: Interactive
visual exploration of wikipedia data via search-based integration. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1213–1220, 2008. 45

[DAR06] S. Dietzold, S. Auer, and T. Riechert. Kollaborative Wissensarbeit mit OntoWiki. In GI
Jahrestagung, pages 498–508, 2006. 184

[DBD04] D. Duke, K. Brodlie, and D. Duce. Building an ontology of visualization. In Proc. of the
IEEE Conference on Visualization. IEEE, IEEE, 2004. 102, 230

[DBDH05] D. Duke, K. Brodlie, D. Duce, and I. Herman. Do you see what I mean? [Data
visualization]. Computer Graphics and Applications, IEEE, 25(3):6–9, 2005. 101

[DNF05] C. Daassi, L. Nigay, and M.-C. Fauvet. A taxonomy of temporal data visualization
techniques. Information-Interaction-Intelligence, 5(2):41–63, 2005. 230

241

BIBLIOGRAPHY

[DOD06] R. Delbru, E. Oren, and S. Decker. Automatic facet construction from Semantic Web
data. In Proc. of the 29th Annual International ACM SIGIR Conference on Research &
Development on Information Retrieval, 2006 Seattle, WA, USA. ACM, 2006. 92

[EHG99] O. Espinosa, C. Hendrickson, and J. Garrett, J.H. Domain analysis: a technique to design
a user-centered visualization framework. In Proc. of the IEEE Symposium on Information
Visualization (Info Vis ’99), pages 44–52, 1999. 230

[FBGS09] S. M. Falconer, R. I. Bull, L. Grammel, and M. A. Storey. Creating visualizations through
ontology mapping. In Proc. of the International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS ’09), pages 688–693. IEEE, 2009. 41, 42

[FDBJK07] W. Fikkert, M. D’Ambros, T. Bierz, and T. J. Jankun-Kelly. Interacting with visualizations.
In Human-Centered Visualization Environments, volume 4417 of LNCS, pages 77–162.
Springer, 2007. 230

[Few04] S. Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten. Analytics
Press, 2004. 115

[Few09] S. Few. Now You See It: Simple Visualization Techniques for Quantitative Analysis.
Analytics Press, 2009. 48

[FGJ97] M. Fernandez, A. Gomez-Perez, and N. Juristo. Methontology: From ontological art
towards ontological engineering. In Proc. of the Spring Symposium Series on Ontological
Engineering, pages 33–40. American Asociation for Artificial Intelligence, 1997. 100

[FLB+06] T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF querying: Language
constructs and evaluation methods compared. In Reasoning Web, volume 4126 of LNCS,
pages 1–52. Springer, 2006. 75

[FLC+02] C. M. D. S. Freitas, P. R. G. Luzzardi, R. A. Cava, M. A. Winckler, M. S. Pimenta, and
L. P. Nedel. Evaluating usability of information visualization techniques. In Proc. of the
5th Workshop on Human Factors in Computer Systems (IHC 2002). Brazilian Computer
Society Press, 2002. 230

[FPMT10] A. E. Foni, G. Papagiannakis, and N. Magnenat-Thalmann. A taxonomy of visualization
strategies for cultural heritage applications. Journal on Computing and Cultural Heritage
(JOCCH), 3(1):1–21, 2010. 230

[FS07] S. Falconer and M. Storey. A cognitive support framework for ontology mapping. In The
Semantic Web, volume 4825 of LNCS, pages 114–127. Springer, 2007. 41

[GDD05] D. Gašević, D. Djurić, and V. Devedžić. Bridging MDA and OWL ontologies. Journal of
Web Engineering, 4(2):118–143, 2005. 9

[GH05] H. Gassert and A. Harth. From graph to GUI: displaying RDF data from the web with
Arago. In In Proc. of the Workshop on Scripting for the Semantic Web (ESCW 2005),
2005. 74

[GHH+07] C. Golbreich, M. Horridge, I. Horrocks, B. Motik, and R. Shearer. OBO and OWL:
leveraging semantic web technologies for the life sciences. In The Semantic Web, number
4825 in LNCS, pages 169–182. Springer, 2007. 20

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994. 14, 105

[GO94] T. R. Gruber and G. R. Olsen. An ontology for engineering mathematics. In Proc. of 4th
International Conference on Principles of Knowledge Representation and Reasoning (KR
’94), pages 258–269. Morgan Kaufmann, 1994. 115

[GOS09] N. Guarino, D. Oberle, and S. Staab. What is an ontology? In Handbook on Ontologies,
International Handbooks on Information Systems, pages 1–17. Springer, 2009. 19

[Gru93] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199–220, 1993. 19

[Gru09] T. R. Gruber. ”ontology”. Encyclopedia of Database Systems. Springer, 2009. 19

[GSGC08] O. Gilson, N. Silva, P. W. Grant, and M. Chen. From web data to visualization via
ontology mapping. In Computer Graphics Forum, volume 27, pages 959–966, 2008. 1, 43,
44, 55, 102, 126, 230

242

BIBLIOGRAPHY

[Gua98] N. Guarino. Formal ontology an information systems. In Proc. of the First International
Conference on Formal Ontology in Information Systems (FOIS ’98), volume 46. IOS Press,
1998. 58

[HA06] J. Heer and M. Agrawala. Software design patterns for information visualization. IEEE
Transactions on Visualization and Computer Graphics, 12(5):853–860, 2006. 14

[Hal01] T. Halpin. Object role modeling: An overview. White paper. http://www.orm.net/,
accessed: 12.02.2016., 2001. 129

[Hal05] T. Halpin. ORM 2 Graphical Notation. Technical Report ORM2-01, Neumont University,
2005. 129

[Hau09] M. Hausenblas. Exploiting linked data to build web applications. IEEE Internet Computing,
13(4):68–73, 2009. 20

[HB10] J. Heer and M. Bostock. Declarative language design for interactive visualization. IEEE
Transactions on Visualization and Computer Graphics, pages 1149–1156, 2010. 35, 43, 50,
65, 66, 68, 69, 143

[HHC+08] J. Heer, F. Ham, S. Carpendale, C. Weaver, and P. Isenberg. Creation and collaboration:
Engaging new audiences for information visualization. In Information Visualization,
volume 4950 of LNCS, pages 92–133. Springer, 2008. 110, 230

[HM90] R. Haber and D. A. McNabb. Visualization idioms: A conceptual model for scientific
visualization systems. Visualization in Scientific Computing, pages 74–93, 1990. 12, 13

[HMFK10] F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RDF-GL: a SPARQL-based
graphical query language for RDF. In Emergent Web Intelligence: Advanced Information
Retrieval, pages 87–116. Springer, 2010. 214

[HMM00] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000. 230

[HPVH03] I. Horrocks, P. Patel-Schneider, and F. Van Harmelen. From SHIQ and RDF to OWL:
the making of a web ontology language. Web semantics: science, services and agents on
the World Wide Web, 1(1):7–26, 2003. 93

[HSM07] P. Hanrahan, C. Stolte, and J. Mackinlay. Visual analysis for everyone: Understanding
data exploration and visualization. Whitepaper, Tableau Software Inc., 2007. 65, 67

[Huy07] D. F. Huynh. User interfaces supporting casual data-centric interactions on the Web.
PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and
Computer Science, 2007. 35

[HZL08] P. Heim, J. Ziegler, and S. Lohmann. gFacet: A browser for the web of data. In Proc. of
the International Workshop on Interacting with Multimedia Content in the Social Semantic
Web (IMC-SSW’08), Aachen, 2008. CEUR-WS. 5, 170

[JS91] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to the visualization
of hierarchical information structures. In Proc. of the IEEE Conference on Visualization
(Visualization’91), pages 284–291. IEEE, 1991. 106

[Kar13] D. Karger. Standards opportunities around data-bearing web pages. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
371(1987), 2013. 17

[Kei02] D. A. Keim. Information visualization and visual data mining. IEEE Transactions on
Visualization and Computer Graphics, 8(1):1–8, 2002. 48, 110, 114, 230

[KFS08] J. Koch, T. Franz, and S. Staab. Lena-browsing RDF data more complex than FOAF. In
Proc. of the 7th International Semantic Web Conference (ISWC), Demo Session, 2008. 74

[KHI11] H. Knublauch, J. A. Hendler, and K. Idehen. SPIN – Overview and Motivation. W3C Mem-
ber Submission. http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/,
accessed: 10.02.2016, 2011. 21

[KHL+07] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Giannopoulou. Ontology
visualization methods – a survey. ACM Computing Surveys (CSUR), 39(4):10, 2007. 1

243

BIBLIOGRAPHY

[Knu10] H. Knublauch. SPARQL Web Pages (SWP). Website.
http://www.topquadrant.com/uispin/, accessed: 10.12.2016., 2010. 76

[KPSP83] S. Kosslyn, S. Pinker, W. Simcox, and L. Parkin. Understanding Charts and Graphs: A
Project in Applied Cognitive Science. ERIC Document Reproduction Service ED, 1983.
117

[KS93] A. Khurshid and H. Sahai. Scales of measurements: an introduction and a selected
bibliography. Quality and Quantity, 27(3):303–324, 1993. 113

[KS12] A. Kerren and F. Schreiber. Toward the role of interaction in visual analytics. In Proc.
of the 2012 Winter Simulation Conference (WSC’12). ACM, 2012. 36, 215

[KV98] K. Kemp and A. Vckovski. Towards an ontology of fields. In Proc. of the 3rd International
Conference on GeoComputation. University of Bristol, 1998. 110, 113, 114

[LBWR94] G. L. Lohse, K. Biolsi, N. Walker, and H. H. Rueter. A classification of visual representa-
tions. Communications of the ACM, 37(12):36–49, 1994. 230

[LCP+10] C. Letondal, S. Chatty, G. Philips, F. André, and S. Conversy. Usability requirements for
interaction-oriented development tools. In 22nd Annual Workshop on the Psychology of
Programming Interest Group (PPIG 2010), Madrid, Spain, 2010. 193

[LE07] R. Lengler and M. J. Eppler. Towards a periodic table of visualization methods for
management. In Proc. of the Conference on Graphics and Visualization in Engineering
(GVE 2007), pages 1–6, Clearwater, Florida, USA, 2007. IASTED. 230

[LGS02] B. Le Grand and M. Soto. Visualizing the Semantic Web: Xml-Based Internet and
Information Visualization, chapter Topic Maps, RDF Graphs, and Ontologies Visualization,
pages 59–79. Springer Science & Business Media, London, 2nd edition, 2002. 230

[Lie05] H. W. Lie. Cascading Style Sheets. PhD thesis, University of Oslo, Oslo, Norway, 2005.
16, 35, 143

[LNB14] S. Lohmann, S. Negru, and D. Bold. The ProtégéVOWL plugin: Ontology visualization
for everyone. In Proc. of ESWC 2014 Satellite Events, volume 8798 of LNCS, pages
395–400. Springer, 2014. 2

[LNHE14] S. Lohmann, S. Negru, F. Haag, and T. Ertl. VOWL 2: User-oriented visualization of
ontologies. In Proc. of the 19th International Conference on Knowledge Engineering and
Knowledge Management (EKAW ’14), volume 8876 of LNAI, pages 266–281. Springer,
2014. 1, 2

[LNS06] S. Lange, T. Nocke, and H. Schumann. Visualisierungsdesign – ein systematischer
Überblick. Proc. SimVis’ 06, pages 113–128, 2006. 2, 14

[LPP+06] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy for graph
visualization. In Proc. of the 2006 AVI Workshop on BEyond Time and Errors: Novel
Evaluation Methods for Information Visualization (BELIV ’06), pages 1–5, New York,
NY, USA, 2006. ACM. 230

[LV03] Q. Limbourg and J. Vanderdonckt. Comparing task models for user interface design. In
D. Diaper and N. Stanton, editors, The handbook of task analysis for human-computer
interaction, chapter Comparing Task Models for User Interface Design, pages 135–154.
Lawrence Erlbaum Associates, 2003. 230

[LVJ12] M. Lenk, A. Vitzthum, and B. Jung. Model-driven iterative development of 3d web-
applications using SSIML, X3d and JavaScript. In Proc. of the 17th International
Conference on 3D Web Technology, pages 161–169. ACM, 2012. 215

[LVM07] A. Lau and A. Vande Moere. Towards a model of information aesthetics in information
visualization. In Proc. of the 11th International Conference on Information Visualiza-
tion (IV ’07), pages 87–92, Washington, DC, USA, 2007. IEEE. 230

[Mac86a] J. Mackinlay. Automating the design of graphical presentations of relational information.
ACM Transactions on Graphics, 5(2):110–141, 1986. 12, 13, 14, 52, 65, 97, 99, 101, 103,
104, 105, 107, 115, 116, 117, 118, 119, 121, 123, 126, 153, 230

[Mac86b] J. D. Mackinlay. Automatic Design of Graphical Presentations. PhD thesis, Stanford
Univ., CA, USA, 1986. 118

244

BIBLIOGRAPHY

[Mar74] L. E. Marks. Sensory Processes: The New Psychophysics. Academic Press, New York,
NY, USA, 1974. 113

[Maz09] R. Mazza. Introduction to information visualization. Springer, 2009. 107, 113, 114

[MHK10] J. Masters, R. Hodgson, and P. J. Keller. QUDT – quantities, units, dimensions and
types. http://www.qudt.org/, accessed: 12.02.2016., 2010. 115

[MHS07] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for visual
analysis. IEEE Transactions on Visualization and Computer Graphics, 13(6):1137–1144,
2007. 54, 65

[Mil13] J. J. Miller. Graph Database Applications and Concepts with Neo4j. In Proc. of the
Southern Association for Information Systems Conference, Atlanta, GA, USA, 2013. 214

[Min00] M. Minas. Hypergraphs as a uniform diagram representation model. Theory and Applica-
tion of Graph Transformations, pages 405–411, 2000. 136, 139, 140, 214

[MKSE11] R. Müller, P. Kovacs, J. Schilbach, and U. Eisenecker. Generative software visualization:
Automatic generation of user-specific visualisations. In 2nd International ACM/GI
Workshop on Digital Engineering (IWDE), pages 45–49, 2011. 42

[MWa] ”guidance”, ”guide”. Merriam-Webster.com. Merriam-Webster, 2016. Web. 12.2.2016. 22

[Nar96] B. A. Nardi. Context and Consciousness: Activity Theory and Human-Computer Interac-
tion. The MIT Press, 1996. 126

[Nor86] D. A. Norman. Cognitive engineering. In User Centered System Design – New Perspectives
on Human-Computer Interaction, pages 31–61. Lawrence Erlbaum, Hillsdale, NJ, USA,
1986. 230

[OAS09] OASIS quantities and units of measure ontology standard (QUOMOS) TC. OASIS QUO-
MOS TC. Website of the Technical Committee (closed by 13.08.2014). https://www.oasis-
open.org/committees/quomos/, accessed: 12.02.2016., 2009. 115

[OBO] The open biological and biomedical ontologies. http://obofoundry.org/, accessed:
12.02.2016. 20

[ODD06] E. Oren, R. Delbru, and S. Decker. Extending faceted navigation for RDF data. In The
Semantic Web – ISWC 2006, volume 4273 of LNCS, pages 559–572. Springer, 2006. 5, 36,
92, 170

[OF05] B. Otjacques and F. Feltz. Characterizing the visualization techniques of project-related
interactions. In Proc. of the 22nd CIB W78 International Conference on Information
Technology for Construction, volume 11 of Special Issue Process Modelling, Process
Management and Collaboration, pages 113–120. ITcon, 2005. 230

[OMG09] Ontology Definition Metamodel Version 1.0. Object Management Group. OMG Document.
http://www.omg.org/spec/ODM/1.0/, accessed: 12.02.2016., 2009. 95

[OWL04] OWL Web Ontology Language reference. W3C Recommendation.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/, 2004. 19, 97

[Pat13] P. Patel. A constraint-based visualisation framework for linked data in the RDF technical
space. Master thesis. TU Dresden, Germany, 2013. 163, 184

[PBKL06a] E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel: A browser-independent presentation
vocabulary for RDF. Presentation slides use at the 5th International Semantic Web
Conference (ISWC 2006), Athens, GA, USA, 2006. 74, 82, 83

[PBKL06b] E. Pietriga, C. Bizer, D. Karger, and R. Lee. The Semantic Web – ISWC 2006: Proc.
of the 5th International Semantic Web Conference (ISWC 2006), Athens, GA, USA.,
chapter Fresnel: A Browser-Independent Presentation Vocabulary for RDF, pages 158–171.
Springer, 2006. 52, 73

[PENN07] M. Palmér, F. Enoksson, M. Nilsson, and A. Naeve. Annotation profiles: Configuring
forms to edit RDF. International Conference on Dublin Core and Metadata Applications,
pages 10–21, 2007. 94

[PHP03] D. Pfitzner, V. Hobbs, and D. Powers. A unified taxonomic framework for informa-
tion visualization. In Proc. of the Asia-Pacific Symposium on Information Visualisa-
tion (APVis ’03), pages 57–66, Darlinghurst, Australia, 2003. Australian Computer Society,
Inc. 230

245

BIBLIOGRAPHY

[Pie05] E. Pietriga. Fresnel Selector Language for RDF. http://www.w3.org/2005/04/fresnel-
info/fsl/, accessed:12.12.2015., 2005. 73

[Pie07] E. Pietriga. IsaViz: A visual authoring tool for RDF. http://www.w3.org/2001/11/IsaViz/,
accessed: 12.12.2015., 2001–2007. 72

[PMWM08] S. Pietschmann, A. Mitschick, R. Winkler, and K. Meißner. CroCo: ontology-based,
cross-application context management. In Proc. of the 2008 Third International Workshop
on Semantic Media Adaptation and Personalization, pages 88–93, 2008. 126

[Pol13] J. Polowinski. Towards RVL: a declarative language for visualizing RDFS/OWL data. In
Proc. of the 3rd International Conference on Web Intelligence, Mining and Semantics.
ACM, 2013. 6, 141, 166, 211

[Pol15] J. Polowinski. RVL GitHub repository. https://github.com/semvis/rvl/, accessed:
12.2.2016., 2015. 211

[PP10] H. Paulheim and F. Probst. Ontology-enhanced user interfaces: A survey. International
Journal on Semantic Web & Information Systems, 6(2):36–59, 2010. 1, 92

[Pry75] L. S. Prytulak. Critique of S. S. stevens’ theory of measurement scale classification.
Perceptual and Motor Skills, 41(1):3–28, 1975. 113

[PSA+12] J. Z. Pan, S. Staab, U. Aßmann, J. Ebert, and Y. Zhao. Ontology-Driven Software
Development. Springer Science & Business Media, 2012. 94, 163

[PV13] J. Polowinski and M. Voigt. VISO: a shared, formal knowledge base as a foundation for
semi-automatic InfoVis systems. In CHI ’13 Extended Abstracts on Human Factors in
Computing Systems, CHI WIP ’13, Paris, France, 2013. ACM. 6, 97, 211

[PW07] R. Potter and H. Wright. Interactive Systems. Design, Specification, and Verification:
13th International Workshop, DSVIS 2006, Dublin, Ireland. Revised Papers, chapter An
Ontological Approach to Visualization Resource Management, pages 151–156. Springer,
Berlin, Heidelberg, 2007. 102, 230

[QK05] D. Quan and D. Karger. Xenon: An RDF stylesheet ontology. In Proc. of the 14th
International Conference on World Wide Web (WWW 2005), Chiba, Japan. ACM, 2005.
75

[QZP03] C. Qin, C. Zhou, and T. Pei. Taxonomy of visualization techniques and systems – concerns
between users and developers are different. In Proc. of the Asia GIS Conference 2003,
2003. 230

[Rau05] A. Rauschmayer. An RDF editing platform for software engineering. Workshop on
Semantic Web Enabled Software Engineering (SWESE), ISWC 2005, 2005. 74

[Rau10] A. Rauschmayer. Connected Information Management. PhD thesis, LMU München,
Germany, 2010. 17, 74

[RCC09] M. Rico, D. Camacho, and O. Corcho. Macros vs. scripting in VPOET. In Proc. of 5th
Scripting for the Semantic Web Workshop at the ESWC (SFSW 2009). CEUR Workshop
Proceedings, 2009. 73, 137

[RDF04a] RDF primer. W3C Recommendation. http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/, 2004. 19

[RDF04b] RDF vocabulary description language 1.0: RDF schema. W3C Recommendation.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, 2004. 19, 97

[Ris08] J. S. Risch. On the role of metaphor in information visualization. arXiv.org,
arXiv:0809.0884, September 2008. 230

[RK08] A. Rauschmayer and M. Kiesel. Emerging Technologies for Semantic Work Environments:
Techniques, Methods, and Applications: Techniques, Methods, and Applications, chapter
Lightweight data modeling in RDF. Premier reference source. IGI Global, 2008. 94

[RKR06] P. Rhodes, E. Kraemer, and B. Reed. VisIOn: An interactive visualization ontology. In
Proc. of the 44th Annual Southeast Regional Conference, ACM-SE 44, pages 405–410,
New York, NY, USA, 2006. ACM. 102, 230

[Rob91] P. K. Robertson. A methodology for choosing data representations. IEEE Computer
Graphics and Applications, 11(3):56–67, 1991. 230

246

BIBLIOGRAPHY

[RS96] J. Rekers and A. Schürr. A graph based framework for the implementation of visual
environments. In Proc. of the IEEE Symposium on Visual Languages, pages 148–155.
IEEE, 1996. 139

[San04] S. R. d. Santos. A Framework for the Visualization of Multidimensional and Multivariate
Data. PhD thesis, University of Leeds, England, 2004. 114

[SAR08] G. Shu, N. J. Avis, and O. F. Rana. Bringing semantics to visualization services. Advances
in Engineering Software, 39(6):514–520, 2008. 102, 230

[SBF98] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: principles and
methods. Data & Knowledge Engineering, 25(1-2):161–197, 1998. 19

[SBLH06] N. Shadbolt, T. Berners-Lee, and W. Hall. The Semantic Web revisited. IEEE Intelligent
Systems, 21(3):96–101, 2006. 1

[SC02] J. L. Sourrouille and G. Caplat. Constraint checking in UML modeling. In Proc. of the
14th international conference on Software engineering and knowledge engineering (SEKE
’02), pages 217–224, New York, NY, USA, 2002. ACM. 172

[Sei03] E. Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003. 21

[Sei11] M. Seifert. Designing round-trip systems by change propagation and model partitioning.
PhD thesis, Technische Universität Dresden, Germany, 2011. 215

[SES] Sesame. http://rdf4j.org/, accessed: 04.05.2015. 190

[SHA15] SHACL use cases and requirements. W3C First Public Working Draft.
http://www.w3.org/TR/2015/WD-shacl-ucr-20150414/, April 2015. 214

[SHA16] Shapes Constraint Language (SHACL). W3C Working Draft.
https://www.w3.org/TR/shacl/, January 2016. 214

[Shn96] B. Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proc. of the IEEE Symposium on Visual Languages, pages 364–371.
IEEE, 1996. 48, 110, 230

[SI90] H. Senay and E. Ignatius. Rules and principles of scientific data visualization. Technical
Report GWU-IIST-90-13, Institute for Information Science and Technology, Department
of Electrical Engineering and Computer Science, School of Engineering and Applied
Science, George Washington University, 1990. 115, 117, 119, 124

[SI94] H. Senay and E. Ignatius. A knowledge-based system for visualization design. Computer
Graphics and Applications, IEEE, 14(6):36–47, 1994. 115, 119, 126

[SMO+03] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome research, 13(11):2498, 2003. 39

[SMPV10] T. Strobl, M. Minas, A. Pleuss, and A. Vitzthum. From the behavior model of an
animated visual language to its editing environment based on graph transformation. In
Proc. of the 17th International Conference on 3D Web Technology, volume 32 of Electronic
Communications of the EASST, page 13, 2010. 193

[SPA08] SPARQL Query language for RDF. W3C Recommendation.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, 2008. 20

[SPA13] SPARQL 1.1 Update. W3C Recommendation. http://www.w3.org/TR/2013/REC-
sparql11-update-20130321/, 2013. 20

[Spe07] R. Spence. Information Visualization: Design for Interaction. Prentice-Hall, Inc., 2nd
edition, 2007. 112, 230

[Spl08] A. Splendiani. RDFScape: Semantic Web meets systems biology. BMC Bioinformatics,
9(4):1–14, 2008. 39, 146, 149

[SSR98] S. Si-Said and C. Rolland. Formalising Guidance for the CREWS Goal-Scenario Ap-
proach to Requirements Engineering. In Proc. of the European-Japanese Conference
on Information Modelling and Knowledge Bases, pages 1–19, Finland, 1998. Université
Panthéon-Sorbonne, Paris, France. 22

[Sta06] J. Stasko. Information visualization. Lecture slides CS 7450. Georgia Institute of
Technology, Atlanta, USA, 2006. 48

247

BIBLIOGRAPHY

[Ste46] S. S. Stevens. On the theory of scales of measurement. Science, 103(2684):677–680, June
1946. 113

[Ste00] F. Steimann. On the representation of roles in object-oriented and conceptual modelling.
Data & Knowledge Engineering, 35(1):83–106, 2000. 132

[Ste03] D. Steer. TreeHugger 0.1. http://rdfweb.org/people/damian/treehugger/, accessed:
03.01.2011., 2003. 75

[STH02] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and
visualization of multidimensional relational databases. IEEE Transactions on Visualization
and Computer Graphics, 8(1):52–65, 2002. 38

[Sto03] C. R. Stolte. Query, Analysis, and Visualization of Multidimensional Databases. PhD
thesis, Stanford University, 2003. 230

[STZ+11] K. Siegemund, E. J. Thomas, Y. Zhao, J. Pan, and U. Aßmann. Towards ontology-driven
requirements engineering. In Proc. of the Workshop on Semantic Web Enabled Software
Engineering, 10th International Semantic Web Conference (ISWC), Bonn, 2011. 3, 27

[Szy97] C. Szyperski. Component Software: Beyond Object-Oriented Programming. SEI Series in
Software Engineering. ACM Press, 1997. 54

[TAB] Tableau software. http://www.tableausoftware.com, accessed: 12.07.2015. 1

[Tay86] W. R. Taylor. The classification of amino acid conservation. Journal of Theoretical
Biology, 119(2):205–218, 1986. 26

[TM04a] M. Tory and T. Möller. Human factors in visualization research. IEEE Transactions on
Visualization and Computer Graphics, 10(1):72–84, 2004. 230

[TM04b] M. Tory and T. Möller. Rethinking visualization: A High-Level taxonomy. In IEEE
Symposium on Information Visualization (INFOVIS 2004), pages 151–158, 2004. 102,
103, 114, 230

[Tru06] F. Truyen. The fast guide to model driven architecture: The basics of model driven
architecture. Whitepaper, Cephas Consulting Corp., 2006. 58, 169

[TT01] B. N. Taylor and A. Thompson. The international system of units (SI). US Dept. of
Commerce, Technology Administration, National Institute of Standards and Technology,
2001. 113, 115

[Tuf83] E. R. Tufte. The visual display of quantitative information, volume 7. Graphics Press
Cheshire, CT, USA, 1983. 12, 115

[Twe97] L. Tweedie. Characterizing interactive externalizations. In Proc. of the ACM SIGCHI
Conference on Human Factors in Computing Systems, CHI ’97, pages 375–382, New York,
NY, USA, 1997. ACM. 230

[Tü99] C. Türker. Semantic Integrity Constraints in Federated Database Schemata. Dissertationen
zu Datenbanken und Informationssystemen. Ios PressInc, 1999. 172

[UG04] M. Uschold and M. Gruninger. Ontologies and semantics for seamless connectivity.
SIGMOD Rec., 33(4):58–64, 2004. 17, 18, 19

[vE02] J. von Engelhardt. The Language of Graphics. PhD thesis, Institute for Logic, Language
& Computation, University of Amsterdam, 2002. 6, 30, 52, 99, 104, 105, 107, 109, 113,
120, 132, 133, 178, 230, 235

[Ven48] F. A. Veniar. Difference Thresholds for Shape Distortion of Geometrical Squares. The
Journal of Psychology, 26(2):461–476, 1948. 119

[VP11] M. Voigt and J. Polowinski. Towards a unifying visualization ontology. Technical
Report TUD-FI11-01, TU Dresden, Institut für Software und Multimediatechnik, Dresden,
Germany, 2011. ISSN: 1430-211X. 6, 97, 126, 211

[VPF06] E. R. A. Valiati, M. S. Pimenta, and C. M. D. S. Freitas. A taxonomy of tasks for
guiding the evaluation of multidimensional visualizations. In Proc. of the 2006 AVI
Workshop on BEyond Time and Errors: Novel Evaluation Methods for Information
Visualization (BELIV ’06), BELIV ’06, pages 1–6, New York, NY, USA, 2006. ACM. 230

248

BIBLIOGRAPHY

[VPGM12] M. Voigt, S. Pietschmann, L. Grammel, and K. Meißner. Context-aware recommendation
of visualization components. In Proc. of the 4th International Conference on Information,
Process, and Knowledge Management (eKNOW 2012). XPS, 2012. 127, 212

[VPM13] M. Voigt, S. Pietschmann, and K. Meißner. A semantics-based, end-user-centered infor-
mation visualization process for semantic web data. In Semantic Models for Adaptive
Interactive Systems, pages 83–107. Springer, 2013. 1, 3, 212

[Vra12] D. Vrandečić. Wikidata: A new platform for collaborative data collection. In Proc. of the
21st international conference companion on World Wide Web, pages 1063–1064. ACM,
2012. 214

[VW93] P. F. Velleman and L. Wilkinson. Nominal, ordinal, interval, and ratio typologies are
misleading. American Statistician, 47(1):65–72, 1993. 112

[VWPM12] M. Voigt, A. Werstler, J. Polowinski, and K. Meißner. Weighted faceted browsing for
characteristics-based visualization selection through end users. In Proc. of the 4th ACM
SIGCHI symposium on Engineering interactive computing systems (EICS ’12), pages
151–156, New York, NY, USA, 2012. ACM. 5, 92, 170

[Vö05] M. Völkel. Writing the Semantic Web with Java. Technical report, DERI Galway, Ireland,
2005. 190

[Vö06] M. Völkel. RDFReactor – From ontologies to programmatic data access. In Proc. of the
Jena User Conference 2006. HP Bristol, Online, 2006. 190

[W3C13] Web Style Sheets home page. W3C. http://www.w3.org/Style/, accessed: 12.12.2015.,
2013. 15, 16

[Wal03] N. Walsh. RDF twig: accessing RDF graphs in XSLT. In Proc. of Extreme Markup
Languages. Citeseer, 2003. 75

[War04] C. Ware. Information visualization: perception for design. Morgan Kaufmann, 2004. 113

[WC98] U. Wiss and D. Carr. A cognitive classification framework for 3-dimensional information
visualization. Technical Report LTU-TR–1998/4–SE, Luleå University of Technology,
Sweden, 1998. 230

[WE09] T. Walter and J. Ebert. Combining DSLs and ontologies using metamodel integration. In
Domain-Specific Languages, pages 148–169. Springer, 2009. 90

[Wil05] L. Wilkinson. The grammar of graphics. Springer, 2005. 52, 54, 55, 62, 70, 103, 104, 109,
112, 113, 117, 120, 124, 127, 216, 230

[WL90] S. Wehrend and C. Lewis. A problem-oriented classification of visualization techniques.
In Proc. of the 1st conference on Visualization (VIS ’90), pages 139–143, Los Alamitos,
CA, USA, 1990. IEEE. 230

[WRRN01] L. Wilkinson, M. Rubin, D. Rope, and A. Norton. nViZn: an algebra-based visualization
system. In Proc. of the 1st International Symposium on Smart Graphics, pages 76–82,
2001. 38

[Wu07] H. Wu. Grammar-driven generation of domain-specific language testing tools using aspects.
PhD thesis, The University of Alabama, USA, 2007. 67

[WW10] G. Wills and L. Wilkinson. AutoVis: automatic visualization. Information Visualization,
9(1):47–69, 2010. 54

[YaKSJ07] J. Yi, Y. ah Kang, J. Stasko, and J. Jacko. Toward a deeper understanding of the role
of interaction in information visualization. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1224–1231, 2007. 48, 230

[YWR03] J. Yang, M. O. Ward, and E. A. Rundensteiner. Data Visualization: The State of the
Art, chapter Hierarchical Exploration of Large Multivariate Data Sets, pages 201–212.
Springer, Boston, MA, USA, 2003. 114

[ZF98] M. X. Zhou and S. K. Feiner. Visual task characterization for automated visual discourse
synthesis. In Proc. of the SIGCHI conference on Human factors in computing systems,
pages 392–399. ACM Press/Addison-Wesley Publishing Co., 1998. 230

[Zha96] J. Zhang. A representational analysis of relational information displays. International
Journal of Human-Computer Studies, 45(1):59–74, 1996. 230

249

BIBLIOGRAPHY

[Zhu07] Y. Zhu. Proc. of the conference of Advances in Visual Computing: Third International
Symposium (ISVC2007), Part II, chapter Measuring Effective Data Visualization, pages
652–661. Springer, 2007. 118

[ZS07] E. Zudilova-Seinstra. On the role of individual human abilities in the design of adaptive
user interfaces for scientific problem solving environments. Knowledge Information Systems,
13(2):243–270, 2007. 230

250

List of Figures

1.1 Example of a node-link representation for the Zebrafish Anatomy Ontology . . . 2
1.2 Example of a tailor-made visualisation for the Zebrafish Anatomy Ontology . . . 3
1.3 Motivating example: An iterative, guided visualisation process 4
1.4 The principle of the OGVIC approach . 7
1.5 Unique selling points of the OGVIC approach . 8

2.1 Example of a pipeline model for visualisation . 12
2.2 Visualisation Reference Model . 13
2.3 The Reference Model pattern . 14
2.4 Continuum of data modelling languages . 18

3.1 Identified ontological concepts and relations for visual mapping 28
3.2 First set of sketches for the case studies’ ontologies 30
3.3 Second set of sketches for the case studies’ ontologies 31
3.4 Third set of sketches for the case studies’ ontologies 32
3.5 Sketch of a tabular representation as an example for a composed graphic 33

4.1 Cytoscape – Visual Mapper view . 40
4.2 ZEST – Static Graph Viewer . 41
4.3 CogZ+MDV – Mapping View . 42
4.4 Protovis – Bar chart example . 43
4.5 SemViz – Semantic Bridging Ontology . 44
4.6 Vispedia – Interactive mapping interface . 45
4.7 Overview of visualisation approaches . 61
4.8 GPL – Example of a grouped bar graph . 64
4.9 Tableau – User interface for VizQL . 65
4.10 GSS – Examplary styling result . 72
4.11 Fresnel – Foundational concepts . 73
4.12 UISPIN – Example . 77
4.13 Visual mapping on instance level vs. class level 79
4.14 Extended Editing Framework (EEF) – Example 91
4.15 Graphical Modelling Framework (GMF) – Architecture 91
4.16 TopBraid Composer – Inference engine configuration 96

5.1 VISO modules . 98
5.2 Example of using VISO . 99
5.3 Summary of visualisation literature reviewed for VISO 102
5.4 VISO/graphic module – Main classes . 104
5.5 Graphic representations – Examples . 106
5.6 Graphic attributes – Examples . 108
5.7 Graphic relations – Overview . 111
5.8 VISO/data module – Main classes . 112

251

LIST OF FIGURES

5.9 Tabular data model . 114
5.10 VISO/facts module – Main properties . 116
5.11 Cleveland and McGill’s ranking of perceptual tasks 118
5.12 Mackinlay’s ranking of perceptual tasks . 119
5.13 Syntactic interaction . 122
5.14 Perceptual interaction . 123
5.15 Conflicts in composing graphic objects . 125
5.16 Documentation of VISO . 128

6.1 Example AVM – Linking (default graphical RDF notation) 130
6.2 Example AVM – Linking (graphical role notation) 130
6.3 Example AVM – Containment relation . 131
6.4 Syntactic roles in the work of Engelhardt . 133
6.5 Classification of the composition of graphic objects 134
6.6 Example AVM – Two graphic relations used in combination 134

7.1 Principle of RVL . 142
7.2 RVL – Main classes . 145
7.3 rvl:PropertyMapping – Overview . 146
7.4 Property mappings – Examples . 147
7.5 rvl:ValueMapping – Overview . 150
7.6 Calculation of value mappings . 151
7.7 Determining the scale of measurement of source values (decision diagram) 155
7.8 Determining source values addressed by a value mapping (decision diagram) . . . 156
7.9 Determining target values addressed by a value mapping (decision diagram) . . . 157
7.10 Submappings – Example . 161

8.1 Architecture OGVIC visualisation design system 171
8.2 Effectiveness constraint – Warning . 176
8.3 Effectiveness constraint – Quickfix . 177
8.4 Simultaneous composition – Confluence . 179
8.5 Prototype P1 – Architecture . 183
8.6 Prototype P1 – Bounds constraint . 183
8.7 Prototype P2 – Architecture . 185
8.8 Prototype P2 – Visualise view . 186
8.9 Prototype P2 – Effectiveness warning . 186
8.10 Prototype P3 – Detailed architecture and main classes 187
8.11 Prototype P3 – Architecture . 189
8.12 Prototype P3 – Web UI . 191
8.13 Suggested Model-View-Controller architecture . 194
8.14 RVL mapping editor – Mockup . 195

9.1 RVL example RO-4b . 197
9.2 RVL example CIT-1 . 198
9.3 RVL example CIT-5 . 199
9.4 RVL example AA-3 . 200
9.5 RVL example AA-4 . 201
9.6 RVL example PO-9 . 202
9.7 RVL example PO-5 . 204

A.1 Sketches for the case studies’ ontologies – Software technology I 220
A.2 Sketches for the case studies’ ontologies – Software technology II 221
A.3 Sketches for the case studies’ ontologies – Publishing 222
A.4 Sketches for the case studies’ ontologies – Plant Ontology I 223

252

LIST OF FIGURES

A.5 Sketches for the case studies’ ontologies – Plant Ontology II 224
A.6 Sketches for the case studies’ ontologies – Zebra Fish Anatomy Ontology I 225
A.7 Sketches for the case studies’ ontologies – Zebra Fish Anatomy Ontology II . . . 226
A.8 Sketches for the case studies’ ontologies – Amino Acids Ontology 227

C.1 Filters in RVL property mappings – Overview . 232

253

LIST OF FIGURES

254

List of Tables

2.1 Comparison of XSL and CSS . 16

3.1 Characteristics of relations by occurrence . 29

4.1 Comparison of vis. approaches – Data . 47
4.2 Comparison of vis. approaches – Visualisation and interaction 49
4.3 Comparison of vis. approaches – Configurability 51
4.4 Comparison of vis. approaches – Explicit presentation definition & variability . . 53
4.5 Comparison of vis. approaches – Composition . 54
4.6 Comparison of vis. approaches – Level of automation 55
4.7 Comparison of vis. approaches – Use of data semantics & vis. knowledge 57
4.8 Comparison of vis. approaches – Guidance . 58
4.9 Comparison of vis. approaches – Ontology usage 59
4.10 Comparison of vis. languages – Supported data models & constructs 67
4.11 Comparison of vis. languages – Interactivity . 68
4.12 Comparison of vis. languages – Language paradigm 68
4.13 Comparison of vis. languages – Platform and visual structure independence . . . 69
4.14 Comparison of vis. languages – Extensibility, shareability and composability . . . 70
4.15 Comparison of vis. languages – Editor construction & user familiarity 71
4.16 Applications using Fresnel. 74
4.17 Comparison of RDF display languages – Supported data models & constructs . . 78
4.18 Comparison of RDF display languages – Visual mapping and interactivity 79
4.19 Comparison of RDF display languages – Language paradigm 80
4.20 Comparison of RDF display languages – Variability, shareability and composability 81
4.21 Fresnel’s context-independent presentation knowledge – Selection and ordering . 82
4.22 Fresnel’s context-independent presentation knowledge – Formatting 83
4.23 Comparison of RDF display languages – Editor construction & user familiarity . 85
4.24 Comparison of RDF display languages – Resource display, sorting, and formatting 86
4.25 Comparison of RDF display languages – Details of display and formatting abilities 88

5.1 Expressiveness of retinal techniques after Mackinlay 117
5.2 Expressiveness criteria for primitive languages after Mackinlay 117

6.1 Comparison of AVM and SVG . 138

7.1 Language levels in the context of RVL . 162
7.2 Comparison of techniques to define schemata and derive tooling 164
7.3 Visualisation case coverage – RVL . 167

8.1 Process step coverage – Prototypes . 190

9.1 Sketches coverage – Implementation and specification 203
9.2 Visualisation case coverage – Prototypes . 203

255

LIST OF TABLES

9.3 Requirements coverage – Prototypes . 205

B.1 Overview of studied literature . 230

D.1 Realised features . 237

256

Listings

4.2 ViZml – Example of a mapping to a colour range 62
4.1 ViZml – Example of a line chart . 63
4.3 GPL – Example of a grouped bar graph . 63
4.4 Protovis – Example of a bar chart . 66
4.5 GSS – Example of a style . 72
4.6 REMM – Example of an editing instruction . 74
8.1 SPIN – Intra-object constraint (error) . 174
8.2 SPIN – Expressiveness constraint (error) . 175
8.3 SPIN – Effectiveness constraint (warning and quickfix) 175
8.4 Example of a resource mapping . 182
8.5 SPIN – Transformation of resource mappings . 182
8.6 Generated property mapping and value mapping 184
8.7 JSON format for processing the AVM with D3 188
8.8 SPIN – Processing an RVL identity mapping . 192
D.1 RO-4b – RVL mappings . 233
D.2 CIT-5 – RVL mappings . 234
D.3 JSON format for processing the AVM with D3 (hierarchical variant) 238

257

	Legend and Overview of Prefixes
	Introduction
	Background
	Visualisation
	What is Visualisation?
	What are the Benefits of Visualisation?
	Visualisation Related Terms Used in this Thesis
	Visualisation Models and Architectural Patterns
	Visualisation Design Systems
	What is the Difference between Visual Mapping and Styling?
	Lessons Learned from Style Sheet Languages

	Data
	Data – Information – Knowledge
	Structured Data
	Ontologies in Computer Science
	The Semantic Web and its Languages
	Linked Data and Open Data
	The Metamodelling Technological Space
	SPIN

	Guidance
	Guidance in Visualisation

	Problem Analysis
	Problems of Ontology Visualisation Approaches
	Research Questions
	Set up of the Case Studies
	Case Studies in the Life Sciences Domain
	Case Studies in the Publishing Domain
	Case Studies in the Software Technology Domain

	Analysis of the Case Studies' Ontologies
	Manual Sketching of Graphics
	Analysis of the Graphics for Typical Visualisation Cases
	Requirements
	Requirements for Visualisation and Interaction
	Requirements for Data Awareness
	Requirements for Reuse and Composition
	Requirements for Variability
	Requirements for Tooling Support and Guidance
	Optional Features and Limitations

	Analysis of the State of the Art
	Related Visualisation Approaches
	Short Overview of the Approaches
	Detailed Comparison by Criteria
	Conclusion – What Is Still Missing?

	Visualisation Languages
	Short Overview of the Compared Languages
	Detailed Comparison by Language Criteria
	Conclusion – What Is Still Missing?

	RDF Presentation Languages
	Short Overview of the Compared Languages
	Detailed Comparison by Language Criteria
	Additional Criteria for RDF Display Languages
	Conclusion – What Is Still Missing?

	Model-Driven Interfaces
	Metamodel-Driven Interfaces
	Ontology-Driven Interfaces
	Combined Usage of the Metamodelling and Ontology Technological Space

	A Visualisation Ontology – VISO
	Methodology Used for Ontology Creation
	Requirements for a Visualisation Ontology
	Existing Approaches to Modelling in the Field of Visualisation
	Terminologies and Taxonomies
	Existing Visualisation Ontologies
	Other Visualisation Models and Approaches to Formalisation
	Summary

	Technical Aspects of VISO
	VISO/graphic Module – Graphic Vocabulary
	Graphic Representations and Graphic Objects
	Graphic Relations and Syntactic Structures

	VISO/data Module – Characterising Data
	Data Structure and Characteristics of Relations
	The Scale of Measurement and Units
	Properties for Characterising Data Variables in Statistical Data

	VISO/facts Module – Facts for Vis. Constraints and Rules
	Expressiveness of Graphic Relations
	Effectiveness Ranking of Graphic Relations
	Rules for Composing Graphics
	Other Rules to Consider for Visual Mapping
	Providing Named Value Collections
	Existing Approaches to the Formalisation of Visualisation Knowledge
	The VISO/facts/empiric Example Knowledge Base

	Other VISO Modules
	Conclusions and Future Work
	Further Use Cases for VISO
	VISO on the Web – Sharing the Vocabulary to Build a Community

	A VISO-Based Abstract Visual Model – AVM
	Graphical Notation Used in this Chapter
	Elementary Graphic Objects and Graphic Attributes
	N-Ary Relations
	Binary Relations
	Composition of Graphic Objects Using Roles
	Composition of Graphic Relations Using Roles
	Composition of Visual Mappings Using the AVM
	Tracing
	Is it Worth Having an Abstract Visual Model?
	Discussion of Fresnel as a Related Language
	Related Work
	Limitations
	Conclusions

	A Language for RDFS/OWL Visualisation – RVL
	Language Requirements
	Main RVL Constructs
	Mapping
	Property Mapping
	Identity Mapping
	Value Mapping
	Inheriting RVL Settings
	Resource Mapping
	Simplifications

	Calculating Value Mappings
	Defining Scale of Measurement
	Determining the Scale of Measurement

	Addressing Values in Value Mappings
	Determining the Set of Addressed Source Values
	Determining the Set of Addressed Target Values

	Overlapping Value Mappings
	Default Value Mapping
	Default Labelling
	Defining Interaction
	Mapping Composition and Submappings
	A Schema Language for RVL
	Concrete Examples of the RVL Schema

	Conclusions and Future Work

	The OGVIC Approach
	Ontology-Driven, Guided Editing of Visual Mappings
	Classification of Constraints
	Levels of Guidance
	Implementing Constraint-Based Guidance

	Support of Explicit and Composable Visual Mappings
	Mapping Composition Cases
	Selecting a Context
	Using the Same Graphic Relation Multiple Times

	Prototype P1 (TopBraid-Composer-based)
	Prototype P2 (OntoWiki-based)
	Prototype P3 (Java Implementation of RVL)
	Lessons Learned from Prototypes & Future Work
	Checking RVL Constraints and Visualisation Rules
	A User Interface for Editing RVL Mappings
	Graph Transformations with SPIN and SPARQL 1.1 Update
	Selection and Filtering of Data
	Interactivity and Incremental Processing
	Rendering the Final Platform-Specific Code

	Application
	Coverage of Case Study Sketches and Necessary Features
	Coverage of Visualisation Cases
	Coverage of Requirements
	Full Example

	Conclusions
	Contributions
	Constructive Evaluation
	Research Questions
	Transfer to Other Models and Constraint Languages
	Limitations
	Future Work

	Appendices
	Case Study Sketches
	VISO – Comparison of Visualisation Literature
	RVL
	RVL Example Mappings and Application
	Listings of RVL Example Mappings as Required by Prototype P3
	Features Required for Implementing all Sketches
	JSON Format for Processing the AVM with D3 – Hierarchical Variant

	Bibliography
	List of Figures
	List of Tables
	List of Listings

