
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

A FAMILY OF ROLE-BASED LANGUAGES

Thomas Kühn
Born on: 11.09.1985 in Karl-Marx-Stadt (now Chemnitz)

DISSERTATION
to achieve the academic degree

DOKTOR-INGENIEUR (DR.-ING.)

Referee
Prof. Dr. Colin Atkinson
Supervising professors
Prof. Dr. Uwe Aßmann
Prof. Dr.-Ing. Wolfgang Lehner

Submitted on: 3.3.2017
Defended on: 24.3.2017

For my loving children

Statement of authorship

I hereby certify that I have authored this Dissertation entitled A Family of Role-Based Languages in-
dependently and without undue assistance from third parties. No other than the resources and ref-
erences indicated in this thesis have been used. I have marked both literal and accordingly adopted
quotations as such. They were no additional persons involved in the spiritual preparation of the
present thesis. I am aware that violations of this declaration may lead to subsequent withdrawal of
the degree.

Dresden, 3.3.2017

Thomas Kühn

ABSTRACT
Role-based modeling has been proposed in 1977 by Charles W. Bachman [Bachman et al., 1977], as
a means to model complex and dynamic domains, because roles are able to capture both context-
dependent and collaborative behavior of objects. Consequently, they were introduced in various
fields of research ranging from data modeling via conceptual modeling through to programming
languages [Steimann, 2000a]. More importantly, because current software systems are character-
ized by increased complexity and context-dependence [Murer et al., 2008], there is a strong demand
for new concepts beyond object-oriented design. Although mainstream modeling languages, i.e.,
Entity-Relationship Model, Unified Modeling Language, are good at capturing a system’s structure,
they lack ways to model the system’s behavior, as it dynamically emerges through collaborating ob-
jects [Reenskaug and Coplien, 2009]. In turn, roles are a natural concept capturing the behavior of
participants in a collaboration. Moreover, roles permit the specification of interactions indepen-
dent from the interacting objects. Similarly, more recent approaches use roles to capture context-
dependent properties of objects. The notion of roles can help to tame the increased complexity
and context-dependence. Despite all that, these years of research had almost no influence on cur-
rent software development practice. To make things worse, until now there is no common under-
standing of roles in the research community and no approach fully incorporates both the context-
dependent and the relational nature of roles [Kühn et al., 2014]. In this thesis, I will devise a formal
model for a family of role-based modeling languages to capture the various notions of roles [Kühn
et al., 2015a]. Together with a software product line of Role Modeling Editors, this, in turn, enables
the generation of a role-based language family for Role-based Software Infrastructures (RoSI).

7

ACKNOWLEDGEMENTS
As any PhD students, I too stood on the shoulders of giants. Henceforth, I highlight some of them.
First of all, I thank my family, especially, my wife Josephine as well as my children Mira, Vincent
and Milan, who supported me and endured my repeated absence. Additionally, I thank my parents
Andrea and Peter, which allowed me to become the man I always wanted. Secondly, I thank Sebas-
tian Richly, who I consider my mentor, and Sebastian Götz. Both introduced me to the intricacies
of roles and role-based software development. My discussions with them significantly shaped my
understanding of roles in software systems. On the same level, I want to thank both my supervi-
sors Uwe Aßmann and Wolfgang Lehner, who guided my throughout my thesis, gave me focused
goals, and where always available when I had questions, even at 4 am in the morning. Similarly,
I thank Walter Cazzola, who hosted me during my research stay in Italy and opened up my per-
spective towards the development of Language Product Lines. Besides them, I am also grateful for
Colin Atkinson’s support, as he quickly and throughly reviewed my written thesis and provided in-
teresting suggestions for future research. In a broader sense, I consider both Friedrich Steimann
and Trygve Reenskaug paragons of thoroughness and curiosity in the research field on roles. Third,
I want to thank all the other RoSI students with whom I had great discussions on the notion and
usefulness of roles. Among others, I want to highlight Tobias Jäkel, Stephan Böhme, Steffen Hu-
ber, Max Leuthäuser, and İsmail İlkan Ceylan. Moreover, I am grateful for all the students I men-
tored. Because, despite the general assumption, I learned a lot from them. In particular, I want
to thank Kay Bierzynski, Duc Dung Dam, Christian Deussen, David Gollasch, Marc Kandler, Kevin
Ivo Kassin, and Paul Peschel, who contributed to the development of FRaMED. Fourth, I owe the
German Research Foundation (DFG) the funding of this thesis as well as a great experience within
the research training group (RTG: 1907) on Role-Based Software Infrastructures for continuous-
context-sensitive Systems (RoSI). Last but not least, I need to thank Eduard Graf and Andre Lange
from the zickzack GmbH as well as all members of the Café ASCII, because the former produced and
the latter distributed the beverage that fueled my writing, i.e., I found a strong correlation between
my beverage consumption and text output.

Thomas Kühn
3.3.2017

9

CONTENTS

I Review of Contemporary Role-based Languages 17

1 Introduction 19
1.1 Background . 19
1.2 Motivation . 20
1.3 Problem Definition . 21
1.4 Outline . 22

2 Nature of Roles 23
2.1 Running Example . 24
2.2 Behavioral Nature . 25
2.3 Relational Nature . 26
2.4 Context-Dependent Nature . 27
2.5 Constraints in Role-Based Languages . 29
2.6 Classification of Roles . 31

3 Systematic Literature Review 35
3.1 Method . 36
3.2 Results . 39
3.3 Discussion . 43

4 Contemporary Role-Based Modeling Languages 45
4.1 Behavioral and Relational Modeling Languages . 45

4.1.1 Lodwick . 46
4.1.2 The Generic Role Model . 47
4.1.3 Role-Based Metamodeling Language (RBML) . 48
4.1.4 Role-Based Pattern Specification . 49
4.1.5 Object-Role Modeling (ORM) 2 . 50
4.1.6 OntoUML . 52

4.2 Context-Dependent Modeling Languages . 53
4.2.1 Metamodel for Roles . 53
4.2.2 E-CARGO Model . 55
4.2.3 Data Context Interaction (DCI) . 57

11

4.3 Combined Modeling Languages . 58

4.3.1 Taming Agents and Objects (TAO) . 58

4.3.2 Information Networking Model (INM) . 60

4.3.3 Helena Approach . 61

5 Contemporary Role-based Programming Languages 65
5.1 Behavioral Programming Languages . 65

5.1.1 Chameleon . 66

5.1.2 Java with Roles (JAWIRO) . 67

5.1.3 Rava . 68

5.1.4 JavaStage . 70

5.2 Relational Programming Languages . 71

5.2.1 Rumer . 71

5.2.2 First Class Relationships . 73

5.2.3 Relations . 75

5.3 Context-Dependent Programming Languages . 76

5.3.1 EpsilonJ and NextEJ . 77

5.3.2 Role/Interaction/Communicative Action (RICA) 79

5.3.3 ObjectTeams/Java . 81

5.3.4 PowerJava . 83

5.3.5 Scala Roles . 85

6 Comparison of Role-based Languages 89
6.1 Comparison of Role-Based Modeling Languages . 89

6.2 Comparison of Role-Based Programming Languages . 92

6.3 Results and Findings . 94

II Family of Role-Based Modeling Languages 97

7 Foundations of Role-Based Modeling Languages 99
7.1 Ontological Foundation . 100

7.1.1 Metaproperties . 101

7.1.2 Classifying Modeling Concepts . 101

7.2 Graphical Notation . 103

7.2.1 Model Level Notation . 103

7.2.2 Graphical Modeling Constraints . 104

7.2.3 Instance Level Notation . 106

12 Contents

7.3 Formalization of Roles . 107
7.3.1 Model Level . 108
7.3.2 Instance Level . 110
7.3.3 Constraint Level . 112

7.4 Reintroducing Inheritance . 119
7.4.1 Extending the Banking Application . 119
7.4.2 Model Level Extensions . 121
7.4.3 Instance Level Extensions . 123
7.4.4 Constraint Level Extensions . 125

7.5 Reference Implementation . 128
7.5.1 Translation of Logical Formulae . 129
7.5.2 Structure of the Reference Implementation . 129
7.5.3 Specifying and Verifying Role Models . 130

7.6 Full-Fledged Role Modeling Editor . 131
7.6.1 Software Architecture . 132
7.6.2 Illustrative Example . 133
7.6.3 Additional Tool Support . 134

8 Family of Role-Based Modeling Languages 139
8.1 Family of Metamodels for Role-Based Modeling Languages 140

8.1.1 Feature Model for Role-Based Languages . 140
8.1.2 Feature Minimal Metamodel . 142
8.1.3 Feature Complete Metamodel . 142
8.1.4 Mapping Features to Variation Points . 144
8.1.5 Implementation of the Metamodel Generator . 145

8.2 First Family of Role Modeling Editors . 147
8.2.1 Dynamic Feature Configuration . 147
8.2.2 Architecture of the Dynamic Software Product Line 148
8.2.3 Applicability of the Language Family Within RoSI 150

9 Conclusion 153
9.1 Summary . 153
9.2 Contributions . 154
9.3 Comparison with Contemporary Role-Based Modeling Languages 156
9.4 Future Research . 156

Contents 13

LIST OF PUBLICATIONS
Primary publications featured in this thesis:

1. Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aßmann. A meta-
model family for role-based modeling and programming languages. In Software Language
Engineering, volume 8706 of Lecture Notes in Computer Science, pages 141–160. Springer,
2014.

2. Thomas Kühn, Böhme Stephan, Sebastian Götz, and Uwe Aßmann. A Combined Formal
Model for Relational Context-Dependent Roles. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, pages 113–124. ACM, 2015b.

3. Thomas Kühn, Böhme Stephan, Sebastian Götz, and Uwe Aßmann.A Combined Formal Model
for Relational Context-Dependent Roles (Extended). Technical Report TUD-FI15-04-Sept-
2015, Technische Universität Dresden, 2015.

4. Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. Choosy and picky: Configura-
tion of language product lines. In Proceedings of the 19th International Software Product Line
Conference (SPLC’15), 2015.

5. Thomas Kühn and Walter Cazzola. Apples and oranges: Comparing Top-Down and Bottom-
Up Language Product Lines. In Proceedings of the 20th International Systems and Software
Product Line Conference (SPLC’16), pages 50–59, ACM, 2016.

6. Thomas Kühn, Kay Bierzynski, Sebastian Richly, and Uwe Aßmann. Framed: Full-fledge role
modeling editor (tool demo). In Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Software Language Engineering, SLE 2016, pages 132–136, ACM, 2016.

Coauthored publications in related fields of research:

7. Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner. Rsql - A Query Language
for Dynamic Data Types. In Proceedings of the 18th International Database Engineering &
Applications Symposium, pages 185–194. ACM, 2014.

8. Tobias Jäkel, Thomas Kühn, Stefan Hinkel, Hannes Voigt, and Wolfgang Lehner. Relation-
ships for Dynamic Data Types in RSQL. In Datenbanksysteme für Business, Technologie und
Web (BTW), 2015.

9. Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner. Towards a Contextual Database.
In 20th East-European Conference on Advances in Databases and Information Systems, 2016.

15

Other coauthored publications:

10. Christian Piechnick, Georg Püschel, Sebastian Götz, Thomas Kühn, Ronny Kaiser, and Uwe
Aßmann. Towards context modeling in space and time. In MORSE 2014, The 1st Interna-
tional Workshop on Model-Driven Robot Software Engineering, pages 39–50. CEUR Workshop
Proceedings, 2014a.

11. Christian Piechnick, Sebastian Richly, Thomas Kühn, Sebastian Götz, Georg Püschel, and
Uwe Aßmann. Contextpoint: An Architecture for Extrinsic Meta-Adaptation in Smart En-
vironments. In ADAPTIVE 2014, The Sixth Interna- tional Conference on Adaptive and Self-
Adaptive Systems and Applications, pages 121–128, 2014b.

12. Sebastian Götz, Thomas Kühn, Christian Piechnick, Georg Püschel, and Uwe Aßmann. A
models@run.time Approach for Multi-Objective Self-Optimizing Software. In Adaptive and
Intelligent Systems, pages 100–109. Springer, 2014.

16 Contents

PART I

REVIEW OF CONTEMPORARY
ROLE-BASED LANGUAGES

17

“Modeling is one of the most fundamental
processes of the human mind.”

— Rothenberg et al. [1989]

1 INTRODUCTION
In other words, Jeff Rothenberg reminds us that, modeling is the basic ability of abstracting aspects
of reality to better comprehend and reason about certain aspects of reality avoiding its complexity,
danger and irreversibility [Rothenberg et al., 1989]. In detail, he characterized modeling as activity
“to represent a particular referent cost-effectively for a particular cognitive purpose”. This is partic-
ularly true for conceptual modeling, which is “the activity of formally describing some aspects of the
physical and social world around us for purposes of understanding and communication.” [Mylopou-
los, 1992]. By extension, a conceptual model is a formal description of parts of a subject domain by
means of concepts and their interrelations. In contrast to other models, such as street maps or floor
plans, conceptual models are not only required to be understood by humans, but also by comput-
ers. Thus, this enables their use not only for communication and problem-solving, but also for
formal validation and artifact generation. Although most would assume that classical conceptual
modeling languages, such as the Entity-Relationship Model (ER) [Chen, 1976] or the Unified Mod-
eling Language (UML) [Rumbaugh et al., 1999], are appropriate conceptual modeling languages,
several researchers, e.g., [Steimann, 2000c, Atkinson and Kühne, 2002, Guizzardi et al., 2004, Liu
and Hu, 2009a], have pointed out their deficiencies when used to model more complex, context-
dependent, and dynamic domains. This, in turn, makes these conceptual modeling languages in-
appropriate for such domains, and – in the words of Jeff Rothenberg – their use “can do considerable
harm” [Rothenberg et al., 1989].

This work contributes to the field of conceptual modeling by investigating role-based model-
ing languages (RMLs) as promising approach to more appropriately model nowadays complex,
context-dependent and dynamic domains.

1.1 BACKGROUND

The history of software systems is characterized by an increasing complexity, level of uncertainty,
and rate of change. From the early mainframe applications with limited inputs and outputs, over
desktop applications for personal computers up to distributed applications enabled by the ARPANET
and the later Internet. At each stage, application developers had to face increased complexity, un-
certainty, and rate of change of the application domain and execution environment. This trend
continues to today’s mobile, pervasive, and very large software systems that should be aware of
their execution context and be able to adapt themselves to cope with (un)anticipated situations.
Moreover, such systems require a continuous development process able to keep up with hourly
changes to the application domains and execution environments to incorporate new business op-

19

portunities or patch implementation errors. In the near future, more and more applications will
be such context-sensitive distributed software systems incorporating mobile and pervasive devices
that are continuously developed. This further challenges application developers and requires them
to adopt continuous development methodologies; more flexible, adaptive runtime environments;
and finally domain modeling languages able to capture context-dependent and collaborative be-
havior of objects. Accordingly, to lay the foundation for the development of these future systems the
Research Training School on Role-based Software Infrastructures for continuous-context-sensitive
Systems (RoSI) investigates whether the concept of roles can be feasibly employed to approach the
aforementioned challenges. In particular, this thesis studies roles as a promising addition to object-
oriented modeling languages able to model context-dependent, collaborative aspects of an appli-
cation domain. In sum, this thesis establishes the foundations of RML and provides the necessary
tools to feasibly use roles for conceptual modeling.

1.2 MOTIVATION

Both role-based modeling languages (RMLs) and role-based programming languages (RPLs) have
been investigated for several decades.1 The first account for the application of roles to modeling
dates back to 1977, when Bachman and Daya proposed the Role Data Model [Bachman et al., 1977].
They facilitate roles as “a defined behavior pattern which may be assumed by entities of different
kind” [Bachman et al., 1977, p.45] to handle different entity types playing the same role type co-
herently [Bachman et al., 1977]. Till the year 2000, the term “role” has occurred in multiple areas
within computer science, e.g., access control,2 knowledge representation, conceptual modeling,
data modeling, as well as object-oriented design and implementation [Steimann, 2000a]. How-
ever, after Steimann surveyed the contemporary literature on roles [Steimann, 2000b], he correctly
observes that by 2000 “the influence of the role data model on modelling has at best been mod-
est” [Steimann, 2000b, p.85]. While Steimann is right when he claims that roles as behavioral pat-
tern were not adopted in modeling, most modeling languages feature roles as named places at the
end of relationships, e.g., ER [Chen, 1976] and UML [Rumbaugh et al., 1999]. Thus, while roles
are well-established in modeling languages their semantics differ and their full potential is rarely
utilized. Since Steimann’s survey, more elaborate applications of the role concept have been pro-
posed ranging from knowledge representation [Loebe, 2005, Guarino and Welty, 2009], via data
modeling [Halpin, 2005, Liu and Hu, 2009a, Jäkel et al., 2015], and conceptual modeling [Guizzardi
and Wagner, 2012, Hennicker and Klarl, 2014] through to object-oriented design and implementa-
tion [Baldoni et al., 2006c, Herrmann, 2005, Balzer et al., 2007]. Although these approaches employ
roles to model, reason, and implement context-dependent behavior of objects to cope with the
requirements of mobile and pervasive applications [Herrmann, 2005, Liu and Hu, 2009a], their pro-
posals had almost no impact on mainstream modeling and programming languages. Reenskaug
and Coplien perfectly put this into perspective, when they emphasize that “Object-oriented pro-
gramming languages traditionally afford no way to capture collaborations between objects” [Reen-
skaug and Coplien, 2009] and that “roles [could] capture collections of behaviors that are about what
objects do” [Reenskaug and Coplien, 2009]. In other words, the past years of research on roles
had next to no influence on current software development practice, in spite of clear evidence that
roles can tame the increased complexity and context-dependence of current context-adaptive, dis-
tributed software systems.

1By the 8th of October 2017, it will be exactly 40 years.
2Throughout this thesis we consider Role-Based Access Control (RBAC) [Ferraiolo et al., 1995] as a special application

for roles with a rather narrow scope.

20 1 Introduction

1.3 PROBLEM DEFINITION

From the previous discussion, one could argue that the introduction of roles failed due to the in-
sufficiency of the role concept. While it is true that no big case study has shown the sufficiency of
role-based modeling and programming, it does not necessarily follow that the lack of adoption in
practice is a result of its insufficiency. In my opinion, there are four basic reasons why roles have
not been adopted by more researchers and practitioners. First, until now there is no common un-
derstanding of roles in the research community [Steimann, 2000b, Kühn et al., 2014]. Instead, each
approach focuses on certain features attributed to roles. Second, the research field itself suffers
from discontinuity and fragmentation of the various role definitions [Kühn et al., 2014]. In particu-
lar, most approaches did not take previous results into account and did not continuously improve
role-based modeling. Third, there are only few approaches, e.g., [Genovese, 2007, Zhu and Zhou,
2006, Hennicker and Klarl, 2014], that provide a formal foundation for their RML incorporating
most of the features of roles [Steimann, 2000b, Kühn et al., 2014]. Last but not least, most role-based
modeling and programming languages are not readily applicable, because of their complexity, level
of abstraction, and/or missing tool support. These issues not only hinder researchers improving
previous approaches, but also software practitioners exploring new modeling and programming
languages. The first two issues can be tackled by developing a family of role-based modeling lan-
guages by means of the features of roles. However, the third and fourth issue must be addressed by
providing a comprehensive formal foundation for roles, a role-based modeling language incorpo-
rating most features of roles, and, finally, readily applicable tools that support its use for the design
of future role-based software systems.

To achieve these goals, this thesis makes the following contributions to the research areas on
role-based modeling and programming languages:

1. It extends the initial list of features of roles by adding 12 new features retrieved from contem-
porary approaches, discussed in Chapter 2.

2. Based on these features a Systematic Literature Review (SLR) [Kitchenham, 2004] was con-
ducted to survey the contemporary literature on RMLs (Chapter 4) and RPLs (Chapter 5).

3. Next, it establishes the foundations of the RMLs (Chapter 7) by introducing the Compartment
Role Object Model (CROM), a framework for conceptual modeling that incorporates most of
the features of roles into a coherent, graphical modeling language and provides a set-based
formalization of roles.

4. Additionally, a corresponding graphical modeling editor, called Full-fledged Role Modeling
Editor (FRaMED), is presented that allows the creation, manipulation and provisioning of
CROM models.

5. To approach the discontinuity and fragmentation of the research area on roles, this thesis
proposes a metamodeling approach for the creation of a family of RMLs (Chapter 8).

In summary, these contributions propose CROM as new formal RML together with FRaMED as
readily usable graphical modeling editor. This, in turn, permits conceptual modeling practitioners
to apply role-based modeling to deal with nowadays complex, context-dependent, and dynamic
domains. In addition, this thesis facilitate a family of metamodels and corresponding family of
modeling languages that enables researchers to develop language variants for their individual ap-
proach. The latter, more importantly, harmonizes the various notions of roles by structuring them
with respect to the features of roles, to permit researchers to develop individual yet composable
role-based languages.

1.3 Problem Definition 21

Figure 1.1: Overview of this Dissertation.

1.4 OUTLINE

This thesis can be seen as a response to the excellent work of Friedrich Steimann, who studied the
notion of roles in 2000 and proposed a unifying model for roles [Steimann, 2000b,a]. Accordingly,
this thesis is divided into two parts, as shown in Figure 2.1.

The first part establishes the notion of roles by surveying the state of the art and comparing the
various contemporary RMLs and RPLs. Hence, Chapter 2 discusses the different notions found in
the literature and explains the features typically attributed to roles. These features of roles form the
prerequisite for the conducted SLR, outlined in Chapter 3 highlighting the methodology and selec-
tion process. Afterwards, Chapter 4 and Chapter 5 describe and evaluate the identified contempo-
rary role-based modeling and programming languages, respectively. The first part is concluded by
Chapter 6 comparing the role-based languages and discussing the result of the comparison.

The second part, in turn, introduces an approach to reconcile the different role-based languages,
namely the development of language families. First, Chapter 7 provides the foundations for RMLs
by providing an ontologically founded formal definition of the graphical modeling language CROM.
Build on this foundation, Chapter 8 describes how the family of RMLs was created highlighting the
established family of metamodels and the developed family of modeling editors. Finally, Chapter 9
concludes this thesis by summarizing its contributions, highlighting related approaches to family
engineering, and discussing prospects for future research. In conclusion, the first part highlights
the shortcomings in contemporary role-based research and the second part proposes a family of
role-based languages as solution to these issues.

22 1 Introduction

“All the world’s a stage,
And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts,
His acts being seven ages.”

— Shakespeare [1763]

2 NATURE OF ROLES

The notion of roles is very old. For linguists, the first definition of the notion dates way back to
Lodwick in 1647, who describes appelative nouns, as “a name by which a thing is named and distin-
guished, but not continually, only for the present, in relation to some action done or suffered” [Lod-
wick, 1647, p. 7–8]. Steimann [2000b] correctly infers that appelative nouns denote roles, which are
in relation by means of an action, e.g., the murderer and murder victim related by the murder [Lod-
wick, 1647, p. 7–8]. Later in 1763, Shakespeare’s famous quote, shown above, also captures another
core aspect of roles. It emphasizes that persons play multiple roles on various stages, simultane-
ously. On a closer look, he also implies that persons change their behavior, when they assume
and abandon roles by entering or exiting a stage.1 While there are many more definitions for roles
throughout history,2 these two suffice to convey the three fundamental natures of roles. In short,
the behavioral nature emphasizes the role’s ability to change the player’s behavior, the relational
nature highlights that roles are usually related to other roles, and finally the context-dependent na-
ture captures that roles are defined within a certain action, stage, or more generally context. These
three natures provide a simple yet sufficient classification scheme, as each nature focuses on an
orthogonal aspect. Here many readers would probably object that this classification is to narrow.
This is certainly true, if it were the only classification scheme employed. However, this classifica-
tion is accompanied by a list of 27 features that have been identified in role-based modeling and
programming languages. Thus, while the former is used to group similar approaches throughout
the thesis, the latter is employed for the detailed classification of each language.

This chapter is structured, accordingly. First, Section 2.1 introduces a small real world example
that is used as running example throughout this thesis. Afterwards, Section 2.2, 2.3, and 2.4 individ-
ually elucidate the behavioral, relational, and context-dependent nature of roles, respectively. After
introducing the natures of roles, Section 2.5 reviews the various constraints found in role-based
languages. Finally, Section 2.6 extends the list of features of roles introduced in [Steimann, 2000b]
to incorporate features found in the contemporary literature. Notably though, the natures of roles
have been published in [Kühn et al., 2015a] and the extended classification scheme in [Kühn et al.,
2014].

23

Figure 2.1: Scenario of an exemplary financial institution.

2.1 RUNNING EXAMPLE

Before further exploring the natures of roles, it is best to consider a concrete yet small scenario to
provide vivid examples. Accordingly, lets assume you are tasked to model and implement a small
banking application able to capture the scenario depicted in Figure 2.1. In detail, the scenario en-
compasses the AlphaBank containing both Peter and Doreen as consultants, serving Google, Beta-
Bank, Klaus, and Doreen as customers, and managing their various checking and savings accounts.
Following this scenario, a bank is described as a financial institution that employs consultants,
serves customers, manages their accounts, and performs money transferals. Furthermore, the sce-
nario indicates that consultants are persons who advise at least one customer. Customers, in turn,
can be either persons, companies or banks, can own several checking and savings accounts, and can
perform transactions. Accounts have a unique id and can be either savings or checking accounts.
Transactions are managed by the bank and represent the process of transferring money from one
source to one target account. In addition to these domain concepts, the domain model must also
include the following four domain constraints, as they are required by financial regulations. First,
consultants are prohibited to advise themselves as a customer. Second, checking accounts must
have exactly one owner whereas savings accounts can have multiple owners. Third, it is forbidden
to transfer money from one account back to itself within one transaction. Last but not least, each
account referenced in a transaction must be a valid account in a bank. In sum, this scenario is small
enough to serve as a comprehensive running example, however, it still imposes several design chal-
lenges for application designers. These challenges will be addressed in the following sections, to
motivate the different natures of roles.

1Obviously, not only persons but every thing can play roles.
2See [Steimann, 2000a, Sect. 1.2], for a thorough investigation on the origins of the role concept.

24 2 Nature of Roles

Figure 2.2: Example model highlighting the behavioral nature of roles.

2.2 BEHAVIORAL NATURE

The behavioral nature emphasizes that roles are able to change the behavior of their players. Fol-
lowing Shakespeare’s line of thought, a person’s or similarly an object’s behavior is affected by the
roles it currently plays. This entails that a role is able to adapt the behavior of its player [Steimann,
2000b]. In addition to this aspect, the behavioral nature of roles is further characterized by the
following key features. First, while a role (instance) has exactly one player, an object can play multi-
ple roles simultaneously [Bachman et al., 1977, Steimann, 2000b]. For instance, the person Doreen
(Figure 2.1) can be both a customer and a consultant at the same time. Second, unrelated objects
can play the same role (type) [Bachman et al., 1977, Steimann, 2000b]. Again, the customer role
can be played by persons, companies, and banks alike without requiring them to have a common
super type. Thus, the bank can handle all customers equally regardless of their actual player type.
Third, objects can assume and abandon roles dynamically and thus change their state and behav-
ior dynamically [Steimann, 2000b]. Considering our bank application, a person can dynamically
assume the customer role in the bank application. Later on, this person can also become a consul-
tant, as well as a customer in another bank. Last but not least, an object might play the same role
(type) multiple times [Steimann, 2000b]. This becomes clear when considering the many times an
account can be the source or target of a money transaction during its lifetime. In its core, the behav-
ioral nature highlights that multiple roles can be played by unrelated objects and that all assumed
roles of an object affect its state and behavior.

In modeling and programming languages, the behavioral nature is usually represented by role
types as addition to natural types [Sowa, 1984, Steimann, 2000b], as well as the fills relation between
natural types and role types on the type level. Granted that there are various other names for this
relation, e.g., role-filler [Steimann, 2000b], role-of [Loebe, 2005] or played-by [Baldoni et al., 2006c,
Herrmann, 2005], yet most authors agree that it denotes a many-to-many relation specifying that
instances of a certain natural type can play roles of a certain role type. Consider the bank scenario,
in which the entities Person, Company, and Bank could be modeled as natural type individually
filling the Customer role type. Additionally, the Person natural type could be defined to also fill
the Consultant role type. Thus, all persons (i.e., instances of the natural type Person) can play
instances of the Customer role type as well as instances of the Consultant role type. Similarly, the

2.2 Behavioral Nature 25

Figure 2.3: Example model highlighting the relational nature of roles.

entity Account can be modeled as natural type, whereas CheckingAccounts, SavingsAccounts,
Source and Target are role types the Account can fill. In sum, Figure 2.2 depicts an informal
model of the banking application incorporating the behavioral nature. For brevity, method defi-
nitions will be omitted henceforth. Notably, this model utilizes roles to express the dynamics of
customers, consultants, and bank accounts of the banking domain. While it is true that this do-
main could also be modeled with classical object-oriented modeling and programming languages,
the resulting domain model would require exponentially many types with redundant implemen-
tations, to model all combinations of natural types playing roles types by means of specialization
and generalization [Steimann, 2000b]. Moreover, such a design would entail that objects must be
reinstantiated whenever they assume or abandon a role. In sum, such a model would fail to capture
the dynamic aspect of the banking domain.

2.3 RELATIONAL NATURE

In contrast to the behavioral nature, the relational nature can be found in most current modeling
languages. Consider the modeling languages ER [Chen, 1976] and UML [Rumbaugh et al., 1999]
where roles denote the named ends of relationships and associations, respectively. Chen [1976]
himself writes, “[the] role of an entity in a relationship is the function that it performs in the rela-
tionship” [Chen, 1976]. In other words, Chen believes that roles are functionally dependent on the
relationship they are participating. However, as Steimann argues, roles as named places “[fail] to ac-
count for the fact that roles come with their own properties and behaviour” [Steimann, 2000b, p. 88].
As a result, the relational nature requires that both roles and relationships are first-class citizens,
that roles can depend on relationships [Steimann, 2000b], and that roles have their own proper-
ties [Steimann, 2000b]. Admittedly, this definition excludes the aforementioned classical modeling
languages, as well as some programming languages with first-class relationships, e.g. RelJ [Bier-
man and Wren, 2005], Relationship Aspects [Pearce and Noble, 2006]. However, these languages do
not treat roles as types, and thus cannot provide insight into the relation between roles and rela-
tionships. Nevertheless, multiple role-based modeling and programming languages embrace the
relational nature of roles, e.g. [Bachman et al., 1977, Steimann, 2000b, Halpin, 2005, Balzer et al.,
2007, Nelson et al., 2008, Jäkel et al., 2015]. In particular, those role-based languages typically de-

26 2 Nature of Roles

fine role types and their filling natural types within the definition of relationship types. On the
instance level, however, links connect the related role instances. In addition, [Balzer et al., 2007,
Nelson et al., 2008] collect all links of the same relationship type into a singleton instance, to per-
mit the representation of relationships as holistic entity on the instance level. Consequently, these
holistic relationship instances can play roles in other relationships, as well [Balzer and Gross, 2011].
As an illustration of the relational nature of roles, Figure 2.3 extends the behavioral model (Fig-
ure 2.2) with relationships between role types. In detail, the banking domain model is enriched by
four relationships showcased in the banking scenario (Figure 2.1). First, the advises relationship
type specifies the relation between consultants and customers they advise, basically, establishing
that some customers are advised by a consultant. Next, the fact that customers own savings and
checking accounts is modeled by two different relationship types, namely own_sa and own_ca, re-
spectively. While this separation appears to be superfluous, it actually accounts for the different
cardinalities and different semantics of the two relationships. As a reminder, saving accounts can
be owned by multiple customers whereas checking accounts by only one customer. Last but not
least, the process of transferring money between two accounts is also modeled as the relationship
type trans between the source and target role of account. Notably, all those relationships can be
further constraint by providing cardinalities. These and the various other modeling constraints will
be discussed in Chapter 2.5. In conclusion, the relational nature of roles underline the strong con-
nection between roles and relationships.

As can be seen from the domain model in Figure 2.3, languages solely focusing on the relational
nature of roles assume that all roles and relationships are equally relevant to an object’s properties.
In other words, there is no notion of context or scope on which both roles and relationships depend
on. This becomes apparent, if you reconsider that a money transaction can only be represented
as the trans relationship. Consequently, the transaction cannot be tied to the owning bank, and,
moreover, it is impossible to reuse the modeled money transaction, as it is tied to the modeled
scenario. To resolve this dilemma, it must be understood that roles can be context-dependent, as
well as relationships themselves.

2.4 CONTEXT-DEPENDENT NATURE

In the past ten years, computer scientists shifted their focus towards context-aware applications.
According to Piechnick et al. [2012], “[due] to the wide acceptance and distribution of mobile de-
vices, it has become increasingly important that an application is able to adapt to a changing en-
vironment” [Piechnick et al., 2012, p. 93]. In other words, Piechnick argues that distributed mobile
applications must be able to adapt themselves to an ever-changing context. As a result, more recent
role-based modeling and programming languages, e.g. [Genovese, 2007, Herrmann, 2005, Baldoni
et al., 2006c, Liu and Hu, 2009a, Hennicker and Klarl, 2014], have employed context-dependent
roles to simplify the design and implementation of context-aware applications. In general, all these
approaches have introduced new concepts to encapsulate those roles relevant to a certain context,
situation, interaction, or collaboration. However, different researchers have used different terms to
denote the semantic context of roles, e.g., stage [Shakespeare, 1763], organization [Da Silva et al.,
2003], institution [Baldoni et al., 2006c, Genovese, 2007], team [Herrmann, 2005], relations [Nelson
et al., 2008, Harkes and Visser, 2014], ensemble [Hennicker and Klarl, 2014], and context [Kamina
and Tamai, 2010]. Although one might argue that context is the most appropriate term to use when
denoting the entities roles should depend on, I would disagree. Not only is the term itself mas-
sively overloaded in computer science, but there exists a dichotomy between context in computer
science and context in role-based modeling and programming. On the one hand, consider one of

2.4 Context-Dependent Nature 27

Figure 2.4: Example model highlighting the context-dependent nature of roles.

the most cited definitions of context by Dey stating that “Context is any information that can be
used to characterise the situation of an entity” [Dey, 2001, p.5]. In essence, Dey classifies context as
any observable information (i.e. inferable from sensor data) relevant to classify a situation. Con-
sequently, context should have no identity, no existential parts, and an indefinite lifespan. On the
other hand, Kamina and Tamai, for instance, assume that “Each context consists of a set of roles
that represents collaborations performed in that context.” [Kamina and Tamai, 2010, p.15]. Further-
more, they describe context to have an identity, require roles as their parts, and have a defined
lifespan denoted by its activation scope [Kamina and Tamai, 2010]. Apparently, each quote referred
to a fundamentally different conceptual entities. To resolve this dichotomy, I propose to use the
term compartment to refer to the latter.3 Compartments are defined as an “objectified collaboration
with a limited number of participating roles and a fixed scope” [Kühn et al., 2014, p.146]. In par-
ticular, compartments have their own identity, properties, behaviors [Genovese, 2007, Herrmann,
2005, Baldoni et al., 2006c, Hennicker and Klarl, 2014], and might play roles like objects [Herrmann,
2005, Baldoni et al., 2006c]. Similar to classes and objects, researchers distinguish between com-
partment types and compartments as their instances [Genovese, 2007, Herrmann, 2005, Baldoni
et al., 2006c, Hennicker and Klarl, 2014]. Additionally, compartments represent the definitional
boundary and scope for the participating roles, i.e., they limit the object’s visibility and accessibil-
ity within a compartment instance to those who play a role in this compartment [Herrmann, 2013].
Furthermore, compartments are a generalization of the other notions of context found in role-based
languages, e.g., process, situation, institution, organization, group, ensemble, relation, and collab-
oration. Hence, compartments can not only enclose and specify context-dependent behavior, but
more generally any collaboration-dependent behavior. In the running example, both transactions
and the banks can be represented as compartments. The Transaction is modeled as a compart-
ment type with the two participating role types: Source and Target. This compartment represents

3Other researchers suggested to use semantical context or extrinsic context to denote compartments. However, their
semantics is misleading, as it either focuses on semantics or identity.

28 2 Nature of Roles

Figure 2.5: Example model highlighting various modeling constraints.

the process of transferring money from one account to another. Thus, each transaction is repre-
sented in an individual compartment instance, with individual state. Consequently, an account
can play the Source role in multiple compartment instance simultaneously. Similarly, the Bank is
modeled as a compartment type enclosing all role types relevant to the financial institution. As a
result, each instance of a Bank represents an individual financial institution with its own customers,
consultants, bank accounts and transactions it manages. Moreover, the Bank compartment is also
defined to fill the Customer role permitting banks to become customers of other banks. Notably,
to model that banks manage their transactions, the MoneyTransfer role type is introduced. Ac-
cordingly, this role is assumed by each transaction that is issued by a customer of a particular bank.
Conversely, a Bank collects and executes its money transferals by means of the MoneyTransfer
role that is played by individual Transaction compartment instances.4 The resulting model of the
banking application is depicted in Figure 2.4. In conclusion, the context-dependent nature of roles
enables the representation of the individual collaboration, process or compartment a set of roles
depends on. In short, it captures the existential dependency between roles and compartments.

2.5 CONSTRAINTS IN ROLE-BASED LANGUAGES

Although one would assume that the appropriateness of a modeling language is determined by the
number of concepts that can be captured by the model. Anyone familiar with conceptual modeling
should see that an appropriate domain model must not only include the domain concepts and rela-
tionships, but also the domain constraints. Consider, the banking domain modeled so far. While it
correctly reflects the dynamics of the domain, it does not capture the imposed financial regulations.
Hence, this section recollects the various kinds of constraints found in contemporary RMLs.

4This design has the additional benefit to allow for adding new kinds of money transactions easily, for instance transac-
tions to BitCoin.

2.5 Constraints in Role-Based Languages 29

Similar to classical modeling languages, like ER [Chen, 1976] and UML [Rumbaugh et al., 1999],
most RMLs and few RPLs include relationship constraints. These can be further divided into three
classes of constraints. First, cardinality constraints [Chen, 1976, Rumbaugh et al., 1999, Balzer et al.,
2007, Guizzardi and Wagner, 2012, Jäkel et al., 2015] limit the number of entities that can be related
by a relationship. In the banking example all relationships can be further restricted by adding car-
dinalities to their ends. The own_ca relationship type between customers and checking accounts,
for instance, should be constrained with the cardinality one-to-many, in order to ensure that each
checking account is owned by exactly one customer. Similarly, the other relationships in the banking
domain can be augmented with cardinalities, as depicted in Figure 2.5. In contrast to cardinalities,
intra-relationship constraints [Halpin, 2005, Balzer et al., 2007, Guizzardi and Wagner, 2012] impose
a certain structure over all links of a relationship. In particular, most of the constraints, in [Halpin,
2005, Balzer et al., 2007, Guizzardi, 2005], correspond to mathematical properties of binary rela-
tions, such as reflexivity, acyclicity, and total order. These can, for instance, be used to declare that
the advises relationship is an irreflexive relation, depicted in Figure 2.5 denoting that consultants
cannot advise themselves as customers. In detail, it prohibits that a link in the advises relationship
relates the same player objects. Notably, the parthood constraints introduced in [Guizzardi, 2005]
can be seen as special kinds of intra-relationship constraints. While the previous constraints are
imposed on one relationship, inter-relationship constraints are established between two relation-
ships, such as relationship implication [Halpin, 2005, Bierman and Wren, 2005] and relationship
exclusion [Halpin, 2005]. In particular, the former can be used to enforce that one relationship is
a subset of another relationship. As an example, let us assume we want to specialize the advises
relationship to serve premium customers. Consequently, the serve relationship would be specified
to imply the advises relationship guaranteeing that all served premium customers of a consultant
are also captured as advised customers. So far, these constraints refer to relationships rather than
roles. Nonetheless, three kinds of constraints for roles have been proposed in the literature. First,
role constraints restrict the roles that one object can simultaneously play. Introduced by Riehle
and Gross [1998], they include binary constraints between roles to either prohibit or require that
both roles are played at the same time [Riehle and Gross, 1998]. Specifically, the role prohibition
between the CheckingAccount and SavingsAccount, showcased in Figure 2.5, prohibits that an
account can play both roles at the same time. Second, [Zhu and Zhou, 2006, Kühn et al., 2014]
suggested employing notions to group roles and constrain them together. Accordingly, the banking
model (Figure 2.5) specifies the two role groups Participants and BankAccounts to collect the
role types filled by accounts in the Bank compartment type and Transaction compartment type,
respectively. As a result, to ensure that all transaction only involve valid bank accounts, the model
designer could simply specify a role implication from the Participants to the BankAccounts role
groups. In sum, both role groups and role constraints can only restrict the roles an object is permit-
ted to play simultaneously. However, to constrain the number of roles that can exist within a com-
partment, Zhu and Zhou [2006], as well as Hennicker and Klarl [2014] have introduced occurrence
constraints. In detail, they impose a lower and upper bound (or short cardinality) on the number
of instances of a given role type that can exist concurrently within one compartment instance. In
the banking application, both the Source and Target role type have an occurrence constraint of
1..1, Figure 2.5. This indicate that each transaction requires exactly one source and one target
account throughout its lifetime. Accordingly, while role constraints focus on one individual object,
occurrence constraints restrict roles contained in individual compartments. While the presented ex-
amples indicate the importance of these modeling constraints to appropriately model the banking
domain, none of the contemporary RMLs and RPLs have combined all of them into one coherent
modeling or programming language.

30 2 Nature of Roles

Table 2.1: Steimann’s 15 classifying features, extracted from [Steimann, 2000b].

1. Roles have properties and behaviors (M1, M0)

2. Roles depend on relationships (M1, M0)

3. Objects may play different roles simultaneously (M1, M0)

4. Objects may play the same role (type) several times (M0)

5. Objects may acquire and abandon roles dynamically (M0)

6. The sequence of role acquisition and removal may be restricted (M1, M0)

7. Unrelated objects can play the same role (M1)

8. Roles can play roles (M1, M0)

9. Roles can be transferred between objects (M0)

10. The state of an object can be role-specific (M0)

11. Features of an object can be role-specific (M1)

12. Roles restrict access (M0)

13. Different roles may share structure and behavior (M1)

14. An object and its roles share identity (M0)

15. An object and its roles have different identities (M0)

2.6 CLASSIFICATION OF ROLES

Fifteen years after Steimann’s attempt to unify the different definitions of roles, his observation
that “the divergence of definitions contradicts the evident generality and ubiquity of the role con-
cept” [Steimann, 2000b, p.84] still holds true. In particular, the focus on the context-dependent
nature has led to various new definitions for roles. Accordingly, the list of classifying features of
role, introduced by Steimann [2000b], is not sufficient anymore to account for the additional char-
acteristics associated to roles. As a result, this section reevaluates Steimann’s features and extends
this list by new features to incorporate the characteristics found in the contemporary literature. In
sum, the classification scheme, presented henceforth, was initially published in [Steimann, 2000b,
Sec.2] and extended in [Kühn et al., 2014, Sec.3].

The classification proposed by Steimann [2000b] encompasses a list of 15 features attributed to
roles. This list, enumerated in Table 2.1, mostly captures the behavioral and relational nature of
roles. In fact, only Feature 2 denotes that “roles depend on relationships” [Steimann, 2000b, p.86].
Hence, all the other features contribute to the behavioral nature of roles. Features 1 and Feature 13,
for instance, entail the existence of role types that can define fields and methods for the correspond-
ing role instances, as well as inheritance among role types [Steimann, 2000b]. Similarly, Features 3
and Feature 7, classifies the fills relation between natural types and role types as many-to-many
relation [Steimann, 2000b]. Features 4 and 5, in turn, describe the plays relation on the instance
level as a dynamic relation between objects and role instances such that an object may play dif-
ferent instances of the same role type multiple times [Steimann, 2000b]. Moreover, according to
Feature 6, the plays relation might be constrained to restrict the sequence of role acquisition and
relinquishment [Steimann, 2000b]. This also entails, that a role instance can be transferred from
one player to another player, captured in Feature 9. The actual effects of playing a role are cap-
tured in Feature 10, 11, and 12 stating that both the state and features (i.e., fields and methods) of
an object can depend on roles. In other words, a role can adapt both the state and the features of
its player. Conversely, a role can hide some of the object’s features, and thus facilitates access re-

2.6 Classification of Roles 31

strictions to the object. In the discussion of Steimann, one controversial issue has been, whether
roles themselves can play roles (Feature 8) and roles have an independent or shared identity (Fea-
ture 14 and 15, respectively). On the one hand, Steimann argues that “an object in a role is the
object itself” [Steimann, 2000b, p.99] and consequently cannot play roles themselves. On the other
hand, Boella and Van Der Torre [2007] contents that “[an] agent and its roles have different identi-
ties” [Boella and Van Der Torre, 2007, p.219] followed by the observation that “roles are defined as
agents and agents can play roles” [Boella and Van Der Torre, 2007, p.219]. Others even maintain
that the latter inadvertently results in object schizophrenia [Sekharaiah and Ram, 2002]. However,
by focusing on the role’s identity, both overlook that the question of identity is a question of per-
spective. To put it bluntly, the answer should depend on whether you look at the object playing a
role from the outside or the inside. From the outside, an object and its roles should be indistin-
guishable, as they form a conceptual unit. However, from within a role the program must be able
to discern between its own identity and the identities of both its player and the other played roles.
As a solution, Herrmann [2007] postulates that to avoid object schizophrenia “we only need to define
two separate operators: == will continue to distinguish a role from its base whereas a second operator
[. . .] considers all roles as identical to their base” [Herrmann, 2007, p.196]. While this resolves the
problem of object schizophrenia, it cannot avoid the ordering problem that occurs when roles play
roles. In detail, the sequence of roles and subroles influences not only the object’s behavior, but
also its overall type. Consider a person being an employee and a consultant of the same bank. Is the
employee playing the role of a consultant or is the consultant playing the employee role? Concep-
tually, there should be no difference as the person and its roles form a unit. However, as the subrole
individually adapt the role’s behavior both sequences might result in different behavior. As a re-
sult, if roles play roles the order of the roles that play other roles influences the behavior and thus
the type of the compound object. In sum, Steimann’s classification has proven to be useful and
has been employed to classify several contemporary approaches, e.g., [Herrmann, 2007, Boella and
Van Der Torre, 2007]. Nevertheless, his classification scheme has two major shortcomings. First,
several features concern either the type and/or the instance level. For instance, Features 4, 5, 9,
10, 12, 14, and 15 only apply to role instances [Kühn et al., 2014]. Especially, Feature 5 and 12 are
usually not applicable to modeling languages, as they do not provide an operational semantics. To
indicate the affected level, Table 2.1 appends M1 and M0 to each feature denoting whether the type
or the instance level is affected. Finally, it cannot fully distinguish contemporary RMLs and RPLs,
as it does not capture the context-dependent nature of roles and the various modeling constraints.
In conclusion, the following paragraph introduces the additional characteristics of roles found by
investigating the contemporary literature.

In accordance to Steimann’s pragmatic approach, the investigation of contemporary RMLs and
RPLs, published in [Kühn et al., 2014, Sec.3.2] has uncovered the following features of roles. As this
thesis studies the representation of roles and role models in role-based languages, we focused on
the type level representation of roles rather than their implementation.

“16. Relationships between roles can be constrained” [Kühn et al., 2014, p.145]. If roles depend
on relationships, these relationships might be further constrained by intra-relationship constraints,
i.e., a relationship can be additionally classified as, for instance, reflexive, acyclic, total or exclusive
parthood relation [Steimann, 2000b, Kim et al., 2003, Halpin, 2005, Genovese, 2007, Guizzardi and
Wagner, 2012, Balzer et al., 2007].

“17. There may be constraints between relationships” [Kühn et al., 2014, p.145]. In contrast to
the previous feature, this property indicates the existence of inter-relationship constraints in the
language, i.e., that constraints between relationship types can be specified, such as subset and ex-
clusion constraints [Halpin, 2005, Genovese, 2007, Guizzardi and Wagner, 2012].

32 2 Nature of Roles

Table 2.2: Additional classifying features, partially published in [Kühn et al., 2014].

16. Relationships between roles can be constrained (M1)

17. There may be constraints between relationships (M1)

18. Roles can be grouped and constrained together (M1)

19. Roles depend on compartments (M1, M0)

20. Compartments have properties and behaviors (M1, M0)

21. A role can be part of several compartments (M1, M0)

22. Compartments may play roles like objects (M1, M0)

23. Compartments may play roles which are part of themselves (M1, M0)

24. Compartments can contain other compartments (M1, M0)

25. Different compartments may share structure and behavior (M1)

26. Compartments have their own identity (M0)

27. The number of roles occurring in a compartment can be constrained (M1)

“18. Roles can be grouped and constrained together” [Kühn et al., 2014, p.145]. Although several
approaches restrict roles [Dahchour et al., 2002, Ferber et al., 2004, Herrmann, 2005, Baldoni et al.,
2006c], they usually omit grouping related roles and constraining the whole group of roles, as sug-
gested in [Ferber et al., 2004, Herrmann, 2005, Zhu and Zhou, 2006].

In sum, these properties reflect the different constraints for roles and relationships proposed in
contemporary RMLs. Nevertheless, to classify the context-dependent nature of roles, the following
features highlight the characteristics of compartments.

“19. Roles depend on compartments” [Kühn et al., 2014, p.146]. Most of the recent approaches
agree that roles are dependent on some sort of compartment, e.g., organization [Da Silva et al.,
2003], environment [Ubayashi and Tamai, 2001, Zhu and Zhou, 2006], ensemble [Hennicker and
Klarl, 2014], collaboration [Pradel and Odersky, 2009], institution [Baldoni et al., 2006c], or con-
text [Genovese, 2007, Hu and Liu, 2009, Reenskaug and Coplien, 2009, Kamina and Tamai, 2010,
Hennicker and Klarl, 2014]. By extension, a university represents the prototypical example of a com-
partment that defines student and teacher roles collaborating in Courses [Herrmann, 2007, Balzer
et al., 2008, Liu and Hu, 2009b].

“20. Compartments have properties and behaviors” [Kühn et al., 2014, p.146]. Like objects and
roles, compartments are sometimes considered as types with specified state and behavior [Serrano
and Ossowski, 2004, Herrmann, 2005, Baldoni et al., 2006c, Genovese, 2007, Liu and Hu, 2009a,
Pradel and Odersky, 2009, Kamina and Tamai, 2009, Hennicker and Klarl, 2014].

“21. A Role can be part of several compartments” [Kühn et al., 2014, p.146]. In detail, this property
describes that a role type can be part of multiple compartment types [Ferber et al., 2004, Zhu and
Zhou, 2006, Baldoni et al., 2006c, Genovese, 2007, Kamina and Tamai, 2009]. Consider again the
role type customer. It can be used in different compartments, e.g. a Bank or a Shop, where it might
be implemented and constrained differently.

“22. Compartments may play roles like objects” [Kühn et al., 2014, p.146]. Although, compart-
ments are usually employed to group context-dependent roles, several approaches treat compart-
ments like objects and permit them to play roles [Herrmann, 2005, Balzer et al., 2007, Genovese,
2007, Liu and Hu, 2009a, Pradel and Odersky, 2009, Harkes and Visser, 2014].

2.6 Classification of Roles 33

“23. Compartments may play roles which are part of themselves” [Kühn et al., 2014, p.146]. If
compartments might play roles, it might be permitted that a compartment plays a role belonging
to itself [Genovese, 2007, Herrmann, 2005].5 Consider the banking example, here the feature would
allow a bank compartment instance to become a customer of itself.

“24. Compartments can contain other compartments” [Kühn et al., 2014, p.146]. Independent of
the previous features, some approaches support the specification of compartments within com-
partments [Ubayashi and Tamai, 2001, Da Silva et al., 2003, Herrmann, 2005, Liu and Hu, 2009a,
Pradel and Odersky, 2009, Kamina and Tamai, 2009]. This, so called nesting, is introduced to permit
the subdivision of compartments into sub-compartments [Da Silva et al., 2003, Herrmann, 2005,
Kamina and Tamai, 2009]. The bank compartment type, for instance, could contain both a retail
banking and an investment banking sub-compartment types, to reflect the two different financial
services provided by a bank.

“25. Different compartments may share structure and behavior” [Kühn et al., 2014, p.146]. Similar
to classical types, compartment types might inherit properties, features, roles, and constraints from
each other [Herrmann, 2005, Genovese, 2007, Nelson et al., 2008, Liu and Hu, 2009a, Pradel and
Odersky, 2009]. As such, compartment inheritance is closely related to family polymorphism [Ernst,
2001, Igarashi et al., 2005] as recognized by Herrmann et al. [2004].

“26. Compartments have their own identity” [Kühn et al., 2014, p.146]. This property is acknowl-
edged by all approaches featuring compartments as first-class citizens [Ubayashi and Tamai, 2001,
Da Silva et al., 2003, Serrano and Ossowski, 2004, Ferber et al., 2004, Herrmann, 2005, Zhu and
Zhou, 2006, Liu and Hu, 2009a, Reenskaug and Coplien, 2009, Pradel and Odersky, 2009, Kamina
and Tamai, 2009, Hennicker and Klarl, 2014]. Moreover, compartments can only exist on the in-
stance level, if they have their own identity.6

27. The number of roles occurring in a compartment can be constrained. In particular, occurrence
constraints enforce and restrict the number of instances of a specific type that must exist within one
compartment instance throughout its lifetime [Kim et al., 2003, Zhu and Zhou, 2006, Hennicker and
Klarl, 2014, Harkes and Visser, 2014].

In sum, these additional features, summarized in Table 2.2, not only incorporate the context-
dependent nature of roles, but also the various constraints found in contemporary RMLs and RPLs.
Accordingly, Steimann’s initial list encompasses both the behavioral and relational nature of roles,
the additional features extend the relational nature and add the context-dependent nature to roles.
Consequently, while Steimann’s 15 features are still applicable, they need to be accompanied by 12
additional features to sufficiently assess the diversity of the contemporary role-based languages.
As a result, this list of 27 characteristic features allows for a fine-grained distinction of the various
definitions of roles presented in the contemporary literature. Henceforth, this classification scheme
is employed to review, compare and classify the various contemporary RMLs and RPLs.

5This feature is described in §2.1.2 (b) of Object Teams/Java’s language definition [Herrmann and Hundt, 2013]}.
6The question whether compartments have a unique or composite identity will be discussed in Chapter 7.1.

34 2 Nature of Roles

“A systematic literature review is a means of
identifying, evaluating and interpreting all
available research relevant to a particular
research question, or topic area, or phenomenon
of interest.”

— Kitchenham [2004]

3 SYSTEMATIC LITERATURE REVIEW

After establishing a suitable classification scheme, this chapter describes the Systematic Literature
Review (SLR) [Kitchenham, 2004] conducted to survey the contemporary literature on role-based
modeling and programming languages. Following Kitchenham’s definition above, an SLR is a struc-
tured process to gather, classify, and interpret published results related to a specific topic or area
of research. However, the main advantage of an SLR is that it not only identifies and evaluates re-
lated work, but also provides information on how and why related work has been selected and how
it has been evaluated [Kitchenham, 2004]. In general, a systematically performed literature review
has the following features. First, they define a precise review protocol that allows for evaluating in-
dividual publications [Kitchenham, 2004]. Second, systematic reviews specify a search strategy to
collect and select as much of the relevant literature as possible [Kitchenham, 2004]. Consequently,
SLRs additionally provide explicit inclusion and exclusion criteria to elucidate the selection pro-
cess [Kitchenham, 2004]. Last but not least, they stipulate the information that should be obtained
from each relevant approach [Kitchenham, 2004]. In conclusion, an SLR gives considerable insight
into the selection and evaluation process of the literature review. This, in turn, increases the com-
prehensibility, replicability, and quality of the performed literature review.

Even though SLRs are generally performed by a large group of researchers [Kitchenham, 2004],
the general process is also applicable by PhD students performing a literature review. Ultimately,
the review process has three distinct stages [Kitchenham, 2004]. The planning stage identifies
the need for a review and the underlying research question, as well as develops the review proto-
col [Kitchenham, 2004]. The second stage is tasked with conducting the review [Kitchenham, 2004].
At this stage, relevant publications are identified, appropriate approaches are picked, and relevant
information on each approach is extracted. Finally, the quality of the selected approaches is as-
sessed and the evaluation results are synthesized. The third stage, reporting the review, outlines the
research protocol, results, and limitations [Kitchenham, 2004]. The resulting process, however, is
not a strict sequence of actions. Kitchenham herself emphasizes that “many activities are initiated
during the protocol development stage, and refined when the review proper takes place.” [Kitchen-
ham, 2004, p.3]. In other words, she argues that this process should not be viewed as sequential but
as iterative, such that both the review protocol, the selection criteria, and the evaluation method
is refined with each iteration to improve the quality of the conducted SLR. Accordingly, the discus-
sion henceforth will not only describe the process and methods used to conduct the SLR, but also
highlight the various iterations and adjustments employed throughout the review process.

35

In conclusion, this chapter outlines the literature review performed throughout the writing of this
thesis. Following Kitchenham’s classification [Kitchenham, 2004], this SLR of contemporary RMLs
and RPLs is conducted “[to] provide a framework/background in order to appropriately position new
research activities” [Kitchenham, 2004, p.2]. More precisely, it presents a systematic review of all
role-based modeling and programming languages published since the year 2000 evaluating each
approach with respect to the 27 classifying features of roles, introduced in Chapter 2. However,
while Chapter 4 and Chapter 5 discusses the identified RMLs and RPLs, respectively; this chap-
ter describes the details of the conducted SLR by following the general structure of systematic re-
views [Kitchenham, 2004, Tab.9]. Therefore, Section 3.1 gives a detailed description of the employed
review process focusing on the collection and selection of relevant literature. Section 3.2, in turn,
summarizes the results of the collection process culminating in the selection of 25 contemporary
role-based modeling and programming languages. Last but not least, Section 3.3 assesses the qual-
ity of the performed SLR, discusses limitations in the collection process, and possible biases in the
paper selection process.

3.1 METHOD

Before starting a literature review, it is crucial to identify the need for an SLR and corresponding
research question first. In case of role-based modeling and programming languages, this need
arises from the fact that the latest major literature reviews date back to 2000 for conceptual mod-
eling [Steimann, 2000b] and 2008 for information systems [Zhu and Zhou, 2008b]. Hence, they
cannot account for more recent developments in the field. More importantly, while both survey’s
cover a huge body of literature, they do not provide any insight into their individual literature col-
lection, selection and evaluation procedures. As a result, neither of them can be easily reproduced
and/or extended to include more recent related works. Admittedly, this only explains the reason
to conduct an SLR on contemporary RMLs and RPLs but not the underlying research question the
literature review intends to answer. Basically, this SLR aims at evaluating the various definitions of
roles found in the literature since the year 2000 by applying the list of classifying features of roles.
Conversely, this evaluation should answer the following three research questions:

1. Is there a common subset of features all contemporary approaches satisfy?

2. How did Steimann’s seminal work influenced the research field?

3. Have advances in RMLs been adopted by later RPLs and vice versa?

To answer these questions, this survey aims at providing a thorough investigation and evaluation
of contemporary role-based modeling and programming languages. As already pointed out, there
exist two major surveys identifying various related publications [Steimann, 2000b, Zhu and Zhou,
2006], and providing a possible classification scheme. Steimann’s features of roles, for instance,
were derived from role-based modeling and programming languages. Zhu’s classification, in con-
trast, was developed with a much broader scope including both roles in access control, roles in
agent systems and roles in social psychology and management. As a result, Steimann’s 15 features
of roles represented a more suitable initial classification scheme for this SLR. However, this clas-
sification scheme was continuously augmented with 12 additional features identified during the
review (cf. Chapter 2.6).

The review process went through several iterations to identify a suitable search strategy and dis-
tinct inclusion/exclusion criteria for relevant publications. As a preliminary search, I looked through
those publications directly referencing and applying Steimann’s classifications [Steimann, 2000b].

36 3 Systematic Literature Review

Statistics &
Evaluation

Results

Q
ue

ry

Filter
Preselection

D
ow

nl
oa

d

Selection

Evaluation

Figure 3.1: Visualization of the review process

Unfortunately, from the 4421 publications referencing Steimann’s seminal paper, only few pub-
lished modeling and programming languages have applied his classification, e.g. [Herrmann, 2005,
Boella and Van Der Torre, 2007, Pradel and Odersky, 2009]. It follows, then that just focusing on the
publications referring to [Steimann, 2000b] is insufficient.2

Therefore, a more sophisticated review process was devised to identify as much of the related work
as possible. Figure 3.1 depicts the resulting process and its six phases. The full review process was
performed twice. The first iteration was conducted in the beginning of this thesis in April 2014 and
the second iteration at its end in September 2016. In the query phase, a suitable electronic database
is queried for all publications with respect to a given query string. Henceforth, Google Scholar3

was employed as one of the biggest bibliographic databases supporting full-text search of publica-
tions. Although I concede that there are many other electronic databases available, none of them
encompasses as many publications while still providing full-text search. To put it bluntly, Google
Scholar was estimated to encompass 87 percent of all English publications available on the web
in 2014 [Khabsa and Giles, 2014]. Therefore, Google Scholar was queried for all papers published
since 2000 containing the exact phrase “role based”4, the words “software”, “programming”, “lan-
guage”, and either “modeling” or “modelling” to account for the British spelling. However, as this
also included publications from unrelated research topics, e.g. psychology, sociology, and biology,
the query was augmented to exclude publications containing either of the following terms “rbac”,
“policy”, “sociology”, “bio”, and “psycho”. As a result, Google Scholar returned 3433 publications
in April 2014 and 4183 in September 2016. For each of these publications a BibTex entry was re-
trieved. This entry includes information on the authors, the title, its publisher, the citation count,
and a link to the publication’s website. After querying, the filter phase excludes all items that have
not been peer reviewed for publication, such as technical reports, master or PhD theses. While one
could retain all publications classified as article, incollection, inproceedings, and inbook,
this would also include arbitrary documents found on the web, as Google Scholar classifies these

1Estimated by Google Scholar on 29th of September 2016.
2A similar effect can be found following the citations of [Zhu and Zhou, 2006].
3https://scholar.google.com
4Note, this will also detect the form “role-based” as the dash is ignored by Google’s search engine.

3.1 Method 37

https://scholar.google.com

as article, as well. Hence, it is more reasonable to only consider literature published by the big
publishers, because they individually enforce peer review and scientific standards for their publi-
cations. Conversely, the filter phase automatically removed all entries that have not been published
by one of the following four publishers: Association for Computing Machinery (ACM),5 Institute of
Electrical and Electronics Engineers (IEEE),6 Springer,7 ScienceDirect.8 This, in turn, should ensure
that all considered publications follow scientific practices and have been peer reviewed. Admit-
tedly, there are several other options to automatically filter publication such as filter by citation
count, filter by class, filter by keywords, yet, none of them ensures peer review and include most of
the related publications. Filtering by citation count, for instance, assuming a citation count above
12 · l og 10(ag e), would have excluded 38 percent of the relevant approaches (18 of 47). As a result,
the filter phase retained 1311 publications in April 2014 and 1501 in September 2016. After lim-
iting the number of entries in the data set to a reasonable amount, the preselection phase further
reduced the number of publications by examining their abstract and occurrences of the word role
in the document. While the abstract not necessarily indicates the introduction of a role-based lan-
guage, looking through the occurrences of role permits to quickly discern publications that define
a role-based language from those that plainly use the form “role-based”. In sum, 133 publications
have been selected as relevant in the first iteration and 3 additional publications in the second it-
eration. Accordingly, each of these relevant publications have been retrieved during the download
phase in order to further evaluate each approach. Up to this point, the data set included role-based
languages and approaches from a wide variety of application domains, e.g. conceptual modeling,
Multi-Agent Systems (MAS), Business Process Modeling (BPM), Role-Based Access Control (RBAC),
Self-Adaptive Systems (SAS). Despite the fact that all these approaches provide definitions for roles
in their respective domain, this SLR solely focuses on conceptual modeling languages and pro-
gramming languages regardless of their use in a particular domain. In general, all publications that
either introduce a role-based modeling language (RML) or a role-based programming language
(RPL) (extension) have been selected. Furthermore, only those publications have been included
that provided enough information on their definition of roles to feasibly evaluate the 27 classify-
ing features of roles. Conversely, most of the formalisms and frameworks for MAS, as well as all
role-based workflow languages for BPM and specifications for RBAC have been excluded from the
data set. Besides, I also excluded all publications that have been published within the RoSI research
training group, to avoid a biased evaluation due to my affiliation to the project and authors. In
conclusion, after the preliminary search identified 6 publications of role-based modeling and pro-
gramming languages, the systematic selection process found 47 additional publications. Naturally,
most approaches are described and extended over multiple publications, however, each approach
is only evaluated once with respect to all the corresponding publications. Accordingly, the evalu-
ation phase evaluates, which of the 27 features of roles are supported by the selected approaches.
For each role-based language, the respective (formal) definition of the underlying role concept have
been investigated to evaluate whether they fully, partially or fail to support a given feature of roles.
In detail, a feature is considered fully supported if it is described in a corresponding publication or
implemented in a prototypical implementation. If an approach, for instance, explicitly states that
roles have their own identity or implement roles as adjunct instances [Steimann, 2000b], then this
approach clearly satisfies Feature 15. Conversely, a partially supported feature is not directly men-
tioned or implemented, but could be facilitated by using another feature of the given approach.
Consider an approach, that employees arbitrary logical formulas to specify constraints.

5https://www.acm.org
6https://www.ieee.org
7https://link.springer.com
8http://www.sciencedirect.com

38 3 Systematic Literature Review

https://www.acm.org
https://www.ieee.org
https://link.springer.com
http://www.sciencedirect.com

Table 3.1: Statistics of the paper selection process.
Year Query Filter Preselection Selection
2000 74 32 3 1
2001 93 34 3 1
2002 156 43 3 1
2003 177 57 9 2
2004 223 59 10 5
2005 277 95 11 4
2006 310 111 12 6
2007 343 143 9 4
2008 333 134 8 4
2009 334 137 12 4
2010 351 145 8 2
2011 353 117 9 1
2012 367 131 7 1
2013 303 101 15 1
2014 330 126 9 7
2015 133 61 9 3
2016 26 7 2 1
Sum 4183 1533 139 48

While this approach might not explicitly support intra-relationship constraints, it is still possible to
express them as logical formulas. Thus, intra-relationship constraints (Feature 16) are partially ful-
filled. Last but not least, a feature is considered not supported if it is either stated or implied as such
in the corresponding definition. Again, if an approach defines roles as specializations and/or gen-
eralizations [Steimann, 2000b] or implements them via static traits, then it can be inferred that this
approach does not feature roles with their own identity (Feature 15). In accordance, a question-
naire was established comprising the 27 features of roles that was completed for each approach.
The results of this evaluation have been collected in a spreadsheet. In addition to that, both the
included and the excluded BibTex entries have been retained to derive statistical information on
the number of publications excluded after each phase of the review process. In sum, the described
review process not only identified a broad spectrum of relevant role-based modeling and program-
ming languages, but also elucidated the employed selection and evaluation process. Furthermore,
this process is easily reproducible, especially, because the query, filter and download phase can be
automated.9 Hence, the resulting review process fulfills the main quality requirements for SLRs
established by Kitchenham [2004].

3.2 RESULTS

Up to this point the discription focused on the methodology of the conducted SLR. Hence, this sec-
tion discusses the results of the review process. In general, this SLR on contemporary RMLs and
RPLs identified 25 distinct approaches. By extension, the second iteration of the review process
retrieved 4183 entries from Google Scholar in the query phase. From them 1533 remained after fil-
tering for publications of the big four publishers. In the remaining data set 139 related publications

9https://github.com/Eden-06/gsresearch/tree/master/workflow

3.2 Results 39

https://github.com/Eden-06/gsresearch/tree/master/workflow

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

20160

100

200

300

400

Year

N
u

m
b

er
o

fP
u

b
li

ca
ti

o
n

s

Query Filter Preselection

Figure 3.2: Number of publications per year from the query to the preselection phase.

have been identified. After downloading and studying them, 48 publications have been selected for
further evaluation in addition to the 7 publications identified in the preliminary search. In sum,
these publications describe 25 distinct role-based modeling and programming languages. In turn,
Table 3.1 shows the number of publications that have been selected after the query, filter, preselec-
tion, and selection phase for each year from 2000 until 2016. Nevertheless, the evaluation of these
25 RMLs and RPLs will be deferred to Chapter 4 and Chapter 5, respectively. Thus, the discussion
henceforth concentrates on the data collected during the review process, such as the number of
publications per year, publications per phase, and overall distribution of relevant publications in
the given time frame. This is important, because it unveils the various intricacies of the research
field and allows for validating some assumptions present in the research field.

Steimann, for instance, noted that the “interest in roles has grown continuously” [Steimann,
2000b, p.84]. While this was true back then, the data set suggests that the interest has only grown
until the year 2007. Since then, the number of new publications found in the query phase remained
consistent at a mean of 339.25 (±19.1889) publications per year. Additionally, Figure 3.2 shows
that this pattern still persists after the filter phase only including publications of the four biggest
publishers. Notably, the last two years should be considered outliers as Google Scholar does not
immediately include all new publications into their database. In conclusion, it is still true that there
is a persistent interest in the notion of roles, although, it has not grown in the past 9 years. While
this is true for general role-based approaches, the situation is more complex when considering the
relevant role-based languages. This complexity is best illustrated by Figure 3.3 highlighting the
distribution of publications over the years for both the relevant and the selected publications. In
general, the number of publications increased until its peak of 12 publications in 2006, since then
the number of publications per year fluctuated around a mean of 9.625 with a rather high standard
deviation of 2.615. More surprisingly, the distribution of the selected publications indicates that
research on these languages is conducted in waves. In other words, there has been a boom of new
RMLs and RPLs between 2003 and 2006 resulting in several corresponding publications.

40 3 Systematic Literature Review

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

20160

5

10

15

Year

N
u

m
b

er
o

fP
u

b
li

ca
ti

o
n

s

Preselection Selection

Figure 3.3: Number of publications per year for the preselection and selection phase.

However, most of these languages are only introduced and described in one or two subsequent
publications and rarely picked up again afterwards. EpsilonJ [Ubayashi and Tamai, 2000], Object-
Role Modeling (ORM) [Halpin, 1998], and E-CARGO [Zhu and Zhou, 2006] represent the only ex-
ceptions to this apparent discontinuity in the field of role-based modeling and programming lan-
guages. Similarly, the influence of Steimann’s seminal paper [Steimann, 2000b] on these role-based
languages was rather limited. In fact, only few of the 25 selected approaches reference [Steimann,
2000b]. For instance, only [Herrmann, 2005], [Boella and Van Der Torre, 2007] and [Pradel and
Odersky, 2009] employ Steimann’s classification scheme. From all this, it becomes evident that the
research field on role-based modeling and programming languages suffers from discontinuity, i.e.,
none of the investigated approaches reused results of another related approach [Kühn et al., 2014].

Nevertheless, the main goal was not the examination of the research field, but the systematic
selection, identification, and evaluation of contemporary role-based languages. Essentially, this
SLR identified the following distinct role-based modeling languages:

• Lodwick is a formal RML unifying the behavioral and relational nature of roles and proposing
a lightweight extension to UML [Steimann, 2000b].

• The Generic Role Model is a modeling language incorporating the dynamic relation between
objects and roles [Dahchour et al., 2002].

• Taming Agents and Objects (TAO) is a conceptual framework for the design of MAS [Da Silva
et al., 2003, Da Silva and De Lucena, 2004, 2007, Adamzadeh et al., 2014].

• The Role-Based Metamodeling Language (RBML) is a conceptual metamodeling language
dedicated to the specification and identification of design patterns in UML [Kim et al., 2002,
2003, France et al., 2004, Kim and Whittle, 2005, Kim and Shen, 2007, Kim, 2008, Kim and Lu,
2008, Kim and Lee, 2015].

• The Role Concepts in Patterns establishes a formal role-based metamodeling language for
the specification of design patterns combining UML and Object-Z [Kim and Carrington, 2004,
2005, 2009].

3.2 Results 41

• The Object-Role Modeling (ORM) (Version: 2) is a well-established, fact-oriented data mod-
eling language including roles as places of relationships and a wide variety of modeling con-
straints [Halpin, 1998, 2005, 2006, Curland et al., 2009].

• E-CARGO is a formal model for role-based collaborative systems featuring environments,
agents, and roles. It manly focuses on the context-dependent nature of roles [Zhu and Zhou,
2006, Zhu, 2005, Liu and Zhu, 2006, Zhu, 2007, Zhu and Zhou, 2008a, 2009, Liu et al., 2014,
Sheng et al., 2014, Zhu, 2016, Sheng et al., 2016].

• The Metamodel for Roles is a formal model proposed to combine the various behavioral and
context-dependent definitions of roles [Genovese, 2007].

• The Information Networking Model (INM) is a data modeling language designed to store,
query, and manipulate context-dependent information [Liu and Hu, 2009a].

• The Data Context Interaction (DCI) architecture is a software development methodology in-
troducing roles to capture the context-dependent behavior of objects [Reenskaug and Coplien,
2009, Qing and Zhong, 2012, Zat’ko and Vranic, 2015].

• OntoUML is an ontologically well-founded extension of UML incorporating concepts such as
role types and relationship types [Guizzardi and Wagner, 2012].

• The Helena Approach is novel a methodology for the design of distributed autonomic sys-
tems based on a formal RML combining all natures of roles [Hennicker and Klarl, 2014, Klarl
et al., 2014].

Additionally, the SLR found the contemporary role-based programming languages listed below:

• EpsilonJ is a programming language for role-based evolutionary programming of context-
dependent applications [Ubayashi and Tamai, 2000, 2001, Tamai et al., 2005, 2007, Mon-
pratarnchai and Tetsuo, 2011, Tamai and Monpratarnchai, 2014].

• Chameleon is a programming language extension to Java solely focusing on the behavioral
nature and the dynamic dispatch of roles [Graversen and Østerbye, 2003].

• RICA-J is a role-based programming language (RPL) extension developed to support the im-
plementation of MAS by means of communicative roles and interactions [Serrano and Os-
sowski, 2004, Serrano et al., 2006].

• JAWIRO is a Java library for implementing role-based applications establishing behavioral
roles [Selçuk and Erdoğan, 2004, 2006].

• ObjectTeams/Java (OT/J) is a matured programming language extension adding teams and
roles to embrace both the behavioral and context-dependent nature of roles [Herrmann,
2005, 2007, Al-Zaghameem, 2010, Herrmann, 2010].

• Rava is a small preprocessor for Java introducing roles and role invocation to facilitate roles
encompassing the dynamic behavior of objects [He et al., 2006].

• PowerJava is another programming language extension incorporating roles and institutions
to bridge the gap from Java to MAS [boella2006ont; Baldoni et al., 2006c,a, 2008].

• Rumer is a formally defined programming language introducing first-class relationships, mem-
ber interposition, and invariants over shared state [Balzer et al., 2007].

• First Class Relationships proposes a new programming model combining objects and asso-
ciations with relationships and roles [Nelson et al., 2008, Pearce and Noble, 2006].

• Scala Roles is a lightweight language extension establishing both roles and collaborations as
first-class citizens [Pradel and Odersky, 2009].

• NextEJ is the successor of the EpsilonJ programming language improving the implementation
of context-dependent roles [Kamina and Tamai, 2009, 2010].

42 3 Systematic Literature Review

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Query

Filter

Preselection

Selection

2,650663

663

64

19

609

609

53

21

258

258

22

8

3

3

Percentage of Publications

ScienceDirect ACM IEEE Springer Other

Figure 3.4: Distribution of publications per publishers for particular phases.

• JavaStage is a role-based programming language (RPL) extension to Java only supporting
static binding of roles [Barbosa and Aguiar, 2012].

• Relations is a role-based data modeling language featuring first-class relationships and ele-
vates cardinalities to the type system [Harkes and Visser, 2014].

3.3 DISCUSSION

Although this SLR was carefully performed to identify, select, and evaluate as much of the relevant
literature as possible, this section assesses its quality and discusses its limitations. According to
Kitchenham [2004], the quality of a study is determined by “the extent to which the study minimises
bias and maximises internal and external validity” [Kitchenham, 2004, p.10]. Likewise, the quality
of an SLR corresponds to the means employed to avoid bias, as well as the methods facilitated to
ensure validity.

In general, bias refers to the “tendency to produce results that depart systematically from the ‘true’
results.” [Kitchenham, 2004, p.11]. Basically, bias is any influence that might invalidate or distort the
validity of the obtained results. Considering this literature review, the results can be biased in two
ways. First, relevant publications might be excluded from the dataset in the various phases. This
might be the case, if a publication did not contain the phrase “role-based”, such as [Dahchour et al.,
2002, Graversen and Østerbye, 2003, He et al., 2006]. Nonetheless, the aforementioned approaches
have been identified in the preliminary search and have also been considered for the evaluation.
Similarly, if a publication has not been published via one of the four publishers, the filter phase
would have automatically excluded it from the dataset. However, these four publishers guarantee
a minimum level of quality and, more importantly, peer review for their publications. Admittedly,
the review indicates that only ACM, IEEE, and Springer publish relevant role-based languages. As
case in point, Figure 3.4 shows the distribution of publications per publisher for particular phase.
In contrast to the query and filter phase, the preselection and selection phase have been performed
manually. Hence, the selection might be biased by the author’s prejudice. Unfortunately, the only
way to minimize the exclusion bias, would be to let multiple other researchers repeat both selection
phases with the same inclusion/exclusion criteria and combine the identified publications.

3.3 Discussion 43

Filter Preselection Selection
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
2,650 1,365 89

1,501

136

47

Pe
rc

en
ta

ge
of

P
ub

lic
at

io
ns

Included Excluded

Figure 3.5: Comparison of selectivity of the filter, preselection and selection phase.

Naturally, this is impractical for a literature review within a PhD thesis. As an overview of the pub-
lication selection, Figure 3.5 highlights the percentage of publications included and excluded dur-
ing the filter, preselection, and selection phase. In summary, the performed literature review could
identify most of the relevant contemporary literature. Second, different approaches might not be
evaluated objectively. Consequently, to ensure objectivity each approach is evaluated with respect
to a fixed classification scheme (cf. Section 2.6) taking all corresponding, available publications and
prototypical implementations into account. Granted, this only limits the possible evaluation bias
to the individual features of roles. However, the evaluation bias can only be avoided, if more re-
searchers are involved and approaches can be randomly assigned to researchers for evaluation.

In contrast to minimizing bias, ensuring internal validity means that “the design and conduct of
the study are likely to prevent systematic errors” [Kitchenham, 2004, p.11]. To facilitate internal va-
lidity, the review process was performed in a semi-automatic fashion. Basically, the whole review
process is implemented in a set of shell scripts that are available on GitHub.10 In particular, it was
possible to automate the query, filter, and download phase. Thus, it is very unlikely that publica-
tions have been missed or falsely excluded during these phases. Moreover, both the preselection
and selection phase are supported by an interactive tool. In fact, I strictly followed the inclusion/ex-
clusion criteria to grant validity of the selection method. Conversely, the questionnaire for the 27
features of roles was utilized in the evaluation phase, to collect and document the investigation of
individual approaches. After each phase, all the relevant statistics on the included BibTex entries
were automatically collected and stored in a dedicated file. This, in turn, allowed for monitoring
and adjusting the effects of the employed exclusion criteria. As a result, the implementation of the
semi-automatic review process and its disciplined execution facilitate internal validity of this SLR.
In conclusion, this report of the conducted SLR accompanied by the implementation of the em-
ployed review process not only grant its comprehensibility and reproducibility, but also its quality.

10https://github.com/Eden-06/gsresearch/tree/master/workflow

44 3 Systematic Literature Review

https://github.com/Eden-06/gsresearch/tree/master/workflow

“[The] role concept is a truly original one,
one that cannot be emulated by any of the better
established conceptual or object-oriented
modelling constructs.”

— Steimann [2000b]

4 CONTEMPORARY ROLE-BASED
MODELING LANGUAGES

Despite the fact that most modeling languages already feature roles as named association ends,
they cannot capture the full potential and nature of roles. According to Steimann [2000b] quoted
above, those languages fail to appropriately represent the role concept. Consequently, the survey
and the discussion henceforth focuses on those contemporary modeling languages that feature
roles as first-class citizens including both formal modeling languages, data modeling languages, and
conceptual modeling languages. Accordingly, each of the identified role-based modeling languages
(RMLs) is summarized, illustrated with an example, and evaluated by applying the 27 features of
roles (cf. Chapter 2.6). In general, this chapter is based on the results published in [Kühn et al.,
2014]. For the sake of consistency, however, this chapter is structured in accordance with the sup-
ported nature of roles. Thus, Section 4.1 emphasizes languages that feature the behavioral and/or
relational nature of roles. Section 4.2 comprises languages focusing on the context-dependent na-
ture of roles. Last but not least, Section 4.3 highlights the few languages combining both the rela-
tional and context-dependent nature of roles. In short, this chapter collects and reviews the state-
of-the-art in role-based modeling.

4.1 BEHAVIORAL AND RELATIONAL MODELING LANGUAGES

The following section discusses six RMLs that concentrate on the behavioral nature, the relational
nature of roles, or both. Specifically, the Generic Role Model [Dahchour et al., 2002] (Section 4.1.2) is
the only modeling language only incorporating the behavioral nature of roles, and ORM 2 [Halpin,
2005] (Section 4.1.5) is the only RML solely focusing on the relational nature of roles. Conversely,
the other modeling languages, such as Lodwick (Section 4.1.1), RBML (Section 4.1.3), Role-Based
Pattern Specification (Section 4.1.4), and OntoUML (Section 4.1.6), successfully combine both the
behavioral and relational nature of roles.

45

Listing 4.1: Bank example specified with Lodwick.

1 advises: Consultant Customer
2 Person <NR Consultant
3 Person <NR Customer Company <NR Customer Bank <NR Customer
4 own_ca: CA_Owner CheckingAccount
5 CA_Owner ≤RR Customer
6 Person <NR CA_Owner Company <NR CA_Owner Bank <NR CA_Owner
7 Account <NR CheckingAccount
8 own_sa: SA_Owner SavingsAccount
9 SA_Owner ≤RR Customer

10 Person <NR SA_Owner Company <NR SA_Owner Bank <NR SA_Owner
11 Account <NR SavingsAccount
12 transaction: Source Target
13 Account <NR Source Account <NR Target

Figure 4.1: Corresponding representation using the revised UML notation.

4.1.1 LODWICK

Lodwick [Steimann, 2000b] is one of the first formal modeling languages for behavioral and rela-
tional roles. It is designed by Friedrich Steimann as an attempt to consolidate the various notions of
roles in conceptual modeling. Its formal definition includes natural types filling role types, whereas
the latter are placeholders in n-ary relationships. While these types do not have properties or meth-
ods, they are modeled with an intention i nt (x), a logical formula for its behavior, an extension
ext (x), a set of instances of this type, as well as a disjoint inheritance hierarchy [Steimann, 2000b].
Hence, this limits the definition of the operational semantics to the behavior defined as proposi-
tional formulae. Moreover, roles are only represented on the conceptual model and do not carry
on to instances of that model [Steimann, 2000b]. In other words, although role types are first-class
citizens on the model level, role instances are not represented on the instance level. Consider, for
instance, the banking scenario modeled in Lodwick, depicted in Listing 4.1. In this model, the fills
relation is defined with Player <NR Role, individual relationships with rel: Role1 ... RoleN
and role inheritance with SuperRole ≤RR SubRole. Accordingly, this example defines the natural
types Account, Person, and Company as well as the relationships trans, advises, own_ca, and
own_sa. Notably, Lodwick enforces that a role type only belongs to one relationship [Steimann,
2000b]. Hence, to specify the various relationships of the Customer role type, two subrole types
CA_Owner and SA_Owner must be added for the relationships own_ca and own_sa, respectively.
In addition to the textual representation of Lodwick, Steimann [2000c] proposed a revised version
of UML class diagrams to allow for specifying role types at the end of UML associations and fills
relations between role types and UML classes. Figure 4.1 shows the corresponding graphical rep-
resentation of the banking example using the revised UML notation [Steimann, 2000c]. It depicts

46 4 Contemporary Role-Based Modeling Languages

Figure 4.2: Bank example depicted using the Generic Role Model.

role types as circles and the fills relation with dashed arrows. However, due to the missing opera-
tional semantics and missing tool support for its graphical notation, its influence stayed behind the
accompanied list of features of roles. Unsurprising, Steimann already applied the first 15 features
of roles to classify Lodwick [Steimann, 2000b, Sec. 4.2]. In short, Lodwick supports most of these
features either fully (Features 1–5, 7, 14) or partially (Features 6, 9–11, 13). Conversely, it only lacks
the support for roles playing roles (Feature 8) and roles carrying an identity (Feature 15). Regarding
the additional features of roles, Lodwick permits the specification of intra-relationship constraints
(Feature 16). Besides that, because relations can be n-ary, it is possible to model compartments as
relations (Feature 19). Similarly, due to the existence of role inheritance, a role type can be part of
multiple relationships (Feature 21) by deriving a subrole for each new relation. Specifically, this was
utilized to specify the various relationships of the Customer role type. In sum, Lodwick provides
a very concise formalization of the behavioral and relational nature of roles that can be quickly
adapted to different domains, e.g. UML [Steimann, 2000c] or MAS [Boella and Van Der Torre, 2007].

4.1.2 THE GENERIC ROLE MODEL

In contrast to Lodwick, the Generic Role Model proposed by Dahchour et al. [2002] embraces the
behavioral nature of roles. In short, they introduce role relationships as new inheritance relation.
Similar to object inheritance, the role relationship permits dynamically adapting classes, instan-
tiating multiple classes, and context-dependent access [Dahchour et al., 2002]. In essence, role
relationships correspond to the fills relationship and model that a given class can play the role rep-
resented by the subclass. However, this approach mingles the inheritance hierarchy of both natural
types and role types, as both are actually classes. Role instances, in turn, are represented as ad-
junct objects to their respective players that carry their own unique identity [Dahchour et al., 2002].
Nevertheless, their biggest contribution is the formal description of the fills relation and its interac-
tion with class-based inheritance. According to Dahchour et al., “[each] instance of a role class (e.g.,
Student) is related to exactly one instance of its object class (e.g., Person) but, unlike generalization,
each instance of the object class can be related to any number of instances of the role class” [Dah-
chour et al., 2002, p.649]. By extension, they establish that objects can dynamically change their
super class, if it is specified with a role relationship. As an illustration, Figure 4.2 shows the Generic
Role Model of the banking scenario. In this model both the role types and natural types are repre-
sented as classes. Role types, however, are those classes from which a role relationship starts, as for
instance Consultant, Source, and Target.

4.1 Behavioral and Relational Modeling Languages 47

Figure 4.3: Bank example specified as two patterns using the RBML.

Although it appears that the role relationship correspond to the fills relation, its definition does not
support that role types can be played by unrelated objects (Feature 7) [Dahchour et al., 2002, p.649].
Hence, the example model must contain individual subroles for each of the unrelated players of the
Customer role type to capture the intended semantics of the banking scenario. In conclusion, the
Generic Role Model embraces the behavioral nature of roles and supports all but four of the initial 15
features of roles, i.e.: Feature 2, 7, 9, 14, but none of the additional features of roles (Feature 16–27).

4.1.3 ROLE-BASED METAMODELING LANGUAGE (RBML)

While the previous approaches employed roles to dynamically extend objects, the Role-Based Meta-
modeling Language (RBML) introduces roles on the metamodel level to vary and extend model
elements [France et al., 2004]. Simply put, Kim et al. “define roles at the metamodel level to spec-
ify design patterns where a role is played by model elements (e.g., classes, associations)” [Kim et al.,
2003, p.1]. These roles, denoted model roles, are played by UML model elements, e.g.: classes, as-
sociations, attributes and methods [Kim et al., 2002]. Conversely, role types are specified on the
metamodel level, such that each role type can be played by a corresponding metaclass in the UML
metamodel [Rumbaugh et al., 1999]. Classifier roles, for instance, can be played by any Classifier,
class roles by any Class, association roles by any Association, and so forth. In particular, classi-
fier roles additionally define sets of structural and behavioral features, i.e., structural feature roles
and behavioral feature roles. As a result, model roles give rise to instances of the corresponding
metaclasses featuring the specified properties, behaviors and constraints. Moreover, they can be
played by multiple instances of a metaclass, however, each model role is specifically tied to one
metaclass as its player type [Kim et al., 2002]. Finally, all model roles are collected into a Role Hierar-
chy, which then can be used to verify if a given UML class diagram conforms to the given hierarchy,
i.e., whether the class diagram fulfills the structural constraints specified in the role hierarchy and

48 4 Contemporary Role-Based Modeling Languages

the model roles [Kim and Shen, 2007]. As an illustration, Figure 4.3 specifies both the Bank and the
Transaction as role hierarchies. In detail, the role types |Customer, |Source, and |Target are
defined as class roles to ensure that their methods are implemented in an UML class. In contrast,
the customer role is modeled as a classifier role permitting its player to be also an interface or ab-
stract class. Similarly, the relationships |advises, |own_ca, |own_sa, and |trans are specified
as association roles accompanied by individual association end roles. In the conforming UML class
diagram (below the dashed line), the various classes fulfill the various model roles. The Account
class, for instance, plays the roles |CheckingAccount, |SavingsAccount, |Source, and |Target;
whereas the classifier role |Customer is played by the classes Person, Company, and Bank as well
as the equally named interface. Actually, the occurrence constraint 1..* of the |Customer role not
only states that it must be played at least once. As a result, the depicted class diagram implements
the banking model specified as a design pattern on the metamodel level. Regardless of the missing
dynamics of roles, the RBML is a well-founded modeling language focusing on the behavioral and
relational nature of roles. Conversely, while those features of roles that assume dynamic binding
of roles are not applicable (i.e. Features 5, 6, 9, and 10), the behavioral features of roles are fully
supported, i.e., Features 1–4 and 12–14. Additionally, it allowed for specifying intra-relationship
constraints within association roles (Feature 16) and was one of the first RMLs featuring occurrence
constraints for roles (Feature 27). In conclusion, this RBML is best suited for the specification and
validation of Design Patterns [Gamma et al., 1994] including both structural design patterns [Kim
et al., 2002, 2003, France et al., 2004, Kim and Shen, 2007] as well as behavioral design patterns [Kim
and Lu, 2008, Kim and Lee, 2015]. Additionally, Kim [2008] showed the applicability of the RBML to
pattern-based model refactoring. Ultimately, its ongoing development led to the implementation
of the RBML Conformance Checker within the TrueRefactor software engineering tool suite.1

4.1.4 ROLE-BASED PATTERN SPECIFICATION

In the same way as RBML, the Role-based Pattern Specification proposed by Kim and Carrington
[2004] facilitates roles on the metamodel level. However, in contrast to RBML, their approach “de-
fines an innovative framework where generic pattern concepts based on roles are precisely defined as
a formal role metamodel using Object-Z” [Kim and Carrington, 2009, p.243]. Basically, they employ
the Object-Z specification language [Smith, 2012] to formalize both the employed role concept and
the individual design patterns.2 Nonetheless, like RBML, the roles of a design pattern are speci-
fied on the metamodel level to fill one of the corresponding metaclasses of UML class diagrams,
e.g. Classes, Operations, and Associations. In particular, both the class model and the role
model are specified separately [Kim and Carrington, 2009]. Afterwards, a role binding model speci-
fies which model elements of the class model play role instances of the role model. In addition, the
role binding model contains six constraints to ensure that the given class model fulfills the struc-
tural and behavioral constraints imposed by the role model. These constraints, for instance, en-
sure that each class role is bound to Class in accordance to its occurrence constraint, such that
each of its attribute roles and operation roles are bound consistently to the Class’s corresponding
features [Kim and Carrington, 2009]. Furthermore, the operations required by a class role can be
specified as operation role dependency to its playing class [Kim and Carrington, 2009]. Due to the
fact that the formal notation is rather long, Figure 4.4 depicts the financial transaction modeled
as an UML object diagram to enhance the readability, as suggested by Kim and Carrington [2009].
In detail, the diagram specifies two ClassRoles named Source and Target, as well as their cor-

1https://app.assembla.com/wiki/show/truerefactor/TrueRefactor
2Object-Z is an object oriented extension to the Z notation [Spivey, 1998] suitable for the formalization of UML class

diagrams [Kim and David, 1999].

4.1 Behavioral and Relational Modeling Languages 49

https://app.assembla.com/wiki/show/truerefactor/TrueRefactor

Figure 4.4: Financial transaction specified with the Role-based Pattern Specialization.

responding OperationRoles for the methods withdraw and deposit, respectively. Additionally,
this model contains an ObjectRoleRelationship to declare the trans relationship, as well as,
two OperationRoleDependency specifying that withdrawals and deposits invoke the decrease
and increase method of the respective player of the ClassRole. Finally, the various occurrence
constraints declared for each element of the role model define how often each role can be played.
In conclusion, then Kim and Carrington designed the Role-based Pattern Specification, as a formal
role-based metamodeling language focusing on the behavioral and relational nature. However, be-
cause they do not consider dynamic role binding, non of the dynamic features of roles could be
applied, i.e. Features 5, 9, and 12. Conversely, the Role-based Pattern Specification fully supports
the Features 1–3, 11, 13, and 14 facilitating roles as entities with behaviors that can be linked with
relationships and can inherit from one another, yet have no individual identity. Furthermore, it
incorporates the specification of role constraints (Feature 6), occurrence constraints (Feature 16)
and intra-relationship constraints (Feature 27). In sum, the Role-based Pattern Specification is able
to fully formalize the role-based metamodeling approach based on a well-founded formal theory.
However, a design pattern defined with the Role-based Pattern Specification can only be applied
once in a class model, as it does not provide compartments to distinguish different application con-
texts of individual design patterns. For instance, a composite pattern [Gamma et al., 1994] that
occurs twice in the class model of a graphical modeling editor can only be bound once.

4.1.5 OBJECT-ROLE MODELING (ORM) 2

Object-Role Modeling (ORM) [Halpin, 2009] is a well-established data modeling methodology. It is
an advancement of the Natural language Information Analysis Method (NIAM) into a fully fledged
data modeling language [Halpin, 1998] supported by an expressive query language [Bloesch and
Halpin, 1997] that is updated to ORM 2. Halpin [1998] elucidates that “ORM is so-called because it
pictures the world in terms of objects (entities or values) that play roles (parts in relationships)” [Halpin,
1998, p. 1]. In making this comment, Halpin emphasizes that ORM is fact-oriented, as it treats both
entities and values just as facts. Moreover, he establishes roles as parts of relationships played by
entities or values. Regardless, roles degenerate to unnamed ends of relationships filled by entity
and value types [Halpin, 1998] without properties. Despite that, ORM provide numerous avail-
able constraints for these relationships including intra- and inter-relationship constraints [Halpin,
2009]. On the downside, it did not encompass the possible flexibility provided by other role-based
approaches. This becomes evident when modeling the banking example with ORM 2, as shown

50 4 Contemporary Role-Based Modeling Languages

Figure 4.5: Bank example modeled with ORM 2.

in Figure 4.5. In particular, neither the role types customer and consultant nor savings account,
checking account, source, and target can be represented as roles in ORM, because their individ-
ual attributes and relationships would be hidden. Consequently, these role types must be mod-
eled as entity types, as well. Then, however, role types and their player types must be related with
generalization or specialization, which, in turn, cannot capture the semantics of roles, according
to [Steimann, 2000b]. In response, Halpin [2007] proposed to use a small design pattern for mod-
eling role types (cf. [Halpin, 2007, Fig. 11]). For example, the model contains PersonCustomer,
CompanyCustomer, and BankCustomer as subtype of both Customer and the respective player
type. Additionally, the individual subtype relations of the Customer entity type must be defined
as complete disjoint, as indicated with the exclusive or between the corresponding subtype rela-
tions. Similar to Customer, all the role types of the Account entity types are modeled as subtypes.
Moreover, the different relationships could be modeled appropriately including the various cardi-
nalities and the intra-relationship constraint Irreflexive for advises. Even though ORM does
not support compartments, it still allows for objectifying relationships. In this way, individual trans-
actions can be represented as a transferal entity type with individual properties [Halpin, 2009].
Unfortunately, objectification is limited to a single relationship. Hence, the bank cannot be modeled
as an objectified relationship. In sum, ORM is not only one of the oldest RMLs, but also a language
fulfilling a considerable amount of the features of roles. In detail, it fully supports Features 2–5, 14,
16, and 17 establishing roles dependent on relationships such that entities play roles whenever en-
tity or value are related to one another. Moreover, relationships feature a wide variety of intra- and
inter-relationship constraints (Feature 17). Still, roles cannot have individual properties (Feature 1)
and cannot be played by unrelated entities (Feature 7). However, if role types are modeled as an
entity type, their properties can be modeled as facts and they can be played by unrelated entities
using subtyping [Halpin, 2007]. While this facilitates the relational nature of roles, objectified rela-
tionships can partially establish context-dependent roles. Accordingly, Features 19 and 20 are only
partially fulfilled, as objectified relationships are limited to single relationships. Regardless, they
can play roles themselves (Feature 22) and as entities have their own identity (Feature 26). How-
ever, because ORM is a data modeling language, the dynamic features of roles, e.g. Feature 9, 10,
and 12 are not applicable. In conclusion, ORM 2 is a well-engineered data modeling language fully
incorporating the relational nature and various constraints of roles. Furthermore, Halpin et al. im-
plemented the graphical editor NORMA integrated into Microsoft Visual Studio [Halpin, 2005], as
well as the query engine Conquer–II to query ORM data models [Bloesch and Halpin, 1997].

4.1 Behavioral and Relational Modeling Languages 51

4.1.6 ONTOUML

OntoUML [Guizzardi and Wagner, 2012] is an ontologically founded conceptual modeling language
developed by Guizzardi et al. [2004] to overcome the syntactical and semantic shortcomings of
UML. Therefor, they developed a multi-layered Universal Foundational Ontology (UFO) [Guizzardi
and Wagner, 2005] that contains not only kinds and role types but also role mixins and relators to-
gether with rules to specify well-formed models. These types can be used within OntoUML to an-
notate UML classes with stereotypes and the inheritance relation with additional constraints [Guiz-
zardi and Wagner, 2012]. Surprisingly, they have two distinct notions of roles. Role types are sortals
inheriting their identity and role mixins are mixin types without any identity. Both are necessary
to model role types that can be played by unrelated types [Guizzardi et al., 2004, Fig. 5] by employ-
ing a design pattern not unlike the pattern proposed for ORM 2 in [Halpin, 2007, Fig. 11]. Along
the same lines, OntoUML introduces the concept of relators to specify objectified relationships. In
particular, Guarino and Guizzardi [2015] define that “when a relation R is derived from a relator
type T , then, for every x, y, R(x, y) holds if there is an instance t of T such that medi ates(t , x) and
medi ates(t , y) hold.” [Guarino and Guizzardi, 2015, p.283]. Basically, they describe that a relator
instance references all the related instances using the mediates association. In contrast to ORM,
however, OntoUML only supports binary relationships and hence can only model relator types as
objectification of binary relationships. Furthermore, relators cannot be used as superclass of a role
type and as such cannot play roles themselves. As a result, while relator types can be used to objec-
tify binary relations, it cannot be used to specify an objectified collaboration. In conclusion, when
specifying the financial application using OntoUML, shown in Figure 4.6, natural types are anno-
tated with the <<kind>> stereotype, role types with <<role>>, and relator types with <<relator>>.
Moreover, the Transaction and the Bank relator type can only mediate the trans and the advises
relation, respectively. Thus, both the own_ca and the own_sa relationships are not mediated by (or
dependent on) the Bank relator type. Moreover, as indicated earlier, OntoUML requires a design
pattern to model that the natural types Person, Company, and Bank can play the Customer role.
Consequently, the entity Customer is declared as a role mixin and thus, as abstract super type for
the concrete, disjoint role types PersonCustomer, CompanyCustomer, and BankCustomer. No-
tably though, OntoUML prohibits that kinds inherits from relators and vice versa. As a result, a
bank must be modeled with two different conceptual entities that are conceptually the same. It
follows, then that OntoUML is an ontologically founded RML incorporating the relational and be-
havioral nature of roles. In detail, it fully supports Feature 1, 2, 8, 10, 11, 14 and partially Features
3, 7, 13. On the one hand, roles are classified to have properties and behavior, may depend on
relationships, can play other roles (using multiple inheritance), and share their identity with the
player type. On the other hand, objects can play multiple roles only if overlapping subtyping is uti-
lized. Similarly, unrelated objects can play the same role only if a special design pattern is used. In
addition to that, OntoUML provides both intra- and inter-relationship constraints (Feature 16 and
17), as well as occurrence constraints that can be specified at the mediation relation of relator types
(Feature 27). Finally, relator types can model compartment types in OntoUML (Feature 19), as they
have properties and behaviors (Feature 20) and permit that a role type can be mediated by multiple
relator types (Feature 21). In sum, the modeling language focuses on the creation of ontologically
founded conceptual models, however, is not concerned with their realization on the instance level.
Hence, the dynamic features of roles are not applicable, i.e. Feature 4, 5, 9, and 12. In conclusion,
while OntoUML is a very expressive extension to UML introducing multiple new concepts, it does
not embrace the context-dependent nature of roles. Nonetheless, Benevides and Guizzardi [2009]
provided a proof-of-concept modeling editor for OntoUML that is now available on GitHub3.

3https://github.com/nemo-ufes/ontouml-lightweight-editor

52 4 Contemporary Role-Based Modeling Languages

https://github.com/nemo-ufes/ontouml-lightweight-editor

Figure 4.6: Bank example represented in OntoUML.

4.2 CONTEXT-DEPENDENT MODELING LANGUAGES

After the previous approaches only incorporated the behavioral and relational nature of roles, this
section elaborates on RMLs that combine the context-dependent and behavioral nature of roles,
yet do not feature the relational nature. Moreover, these approaches represent more formal mod-
eling languages that do not provide a graphical notation. In short, the Metamodel for Roles [Gen-
ovese, 2007] is a formal metamodel for roles proposed to unify the various RPLs (Section 4.2.1). The
E-CARGO Model [Zhu and Zhou, 2006] is a formal role-based model for computer-supported coop-
erative work (CSCW) (Section 4.2.2). In contrast to these formal models, the DCI approach [Reen-
skaug and Coplien, 2009] is a general paradigm for the role-based design of software systems (Sec-
tion 4.2.3). In sum, the section henceforth highlights the different attempts to reconcile the behav-
ioral and context-dependent nature of roles.

4.2.1 METAMODEL FOR ROLES

Similar to Lodwick, the Metamodel for Roles was proposed by Genovese [2007] in an attempt “to
provide a flexible formal model for roles, which is able to catch the basic primitives behind the dif-
ferent role’s accounts in the literature, rather than a definition” [Genovese, 2007, p.27–28]. In other
words, Genovese attempts to reconcile the various definitions of roles by providing a general formal
model for roles able to encompass the preceding RPLs. In particular, he introduces Players, Roles
and Institutions both on the model (M1) and the instance level (M0) [Genovese, 2007]. All these
entities can have attributes, operations and separate inheritance hierarchies. Moreover, the meta-
model includes the relation RO and PL representing which roles belongs to which institution and
which player can play them, respectively [Genovese, 2007].

4.2 Context-Dependent Modeling Languages 53

Listing 4.2: Bank example formalized using the Metamodel for Roles.

1 < D,Context s,Pl ayer s,Roles, At tr,Op,Constr ai nt s,PL,RO, AS,OS,RH ,PH ,C H >
2 D := {B ank,Tr ansacti on,Per son,Company,B ank, Account ,Customer, . . . }
3 Context s := {B ank,Tr ansacti on}
4 Pl ayer s := {Per son,Company,B ank, Account }
5 Roles := {Customer,Consul t ant ,C A,S A,Sour ce,Tar g et , Mone yTr ans f er }
6 At tr := {name, f i r st N ame, l ast N ame, phone, i d , l i mi t , tr ansacti onFee,bal ance, . . . }
7 Op := {i ncr ease,decr ease, wi thdr aw,deposi t ,execute}
8 Constr ai nt s := {. . . }
9 PL := {(Per son,Consul t ant), (Per son,Customer), (Company,Customer), (Account ,Sour ce),

10 (Account ,Tar g et), (Account ,C A), (Account ,S A), (Tr ansacti on, Mone yTr ans f er)}
11 RO := {(B ank,Consul t ant), (B ank,Customer), (B ank,C A), (B ank,S A), (B ank, Mone yTr ans f er),
12 (Tr ansacti on,Sour ce), (Tr ansacti on,Tar g et)}
13 AS := {(B ank,name), (Tr ansacti on, amount), (Per son, f i r st N ame), . . . }
14 OS := {(Account , i ncr ease), (Account ,decr ease), (Sour ce, wi thdr aw), . . . }
15 RH :=;
16 PH :=;
17 C H :=;

The only novel concept are Sessions that specify the binding of attributes when roles collaborate
with one another in an institution. On the downside, all the entities are collected from the same
set and thus allow both roles and institutions to play roles implicitly. Besides that, the only pos-
sibility to adjust the metamodel to a target language is to specify additional constraints to both
model and instance level as logical formulae [Genovese, 2007], e.g., Pl ayer s ∪Roles 6= ;, to en-
sure that the sets of players and roles are disjoint. Yet without these constraints, the formal model
would permit arbitrary combinations of types and interrelations, e.g., a person that is both a player
and a role and inherits from another institution. Nevertheless, when considering the banking ex-
ample, the resulting formal model appropriately captures the behavioral and context-dependent
aspects of the banking domain, as shown in Listing 4.2. In general, the model is specified as a tuple
of sets of classes and relations between them, whereas D contains all classes of the domain, At tr
all their attributes, and Op all their methods. Furthermore, the sets Context s and Roles collect
all institution types (e.g. B ank, Tr ansacti on) and role types (e.g. Customer , Consul t ant , etc.),
respectively. In contrast, the Pl ayer s set contains all classes able to play roles, such as Per son,
Company , Account , Tr ansacti on and B ank. After declaring all classes, the PL relation collects
which player type fills which role type, e.g., that Per son player type fills the Customer and the
Consul t ant role type. Similarly, the RO relation defines which role types participate in which in-
stitution, such that the B ank contains the Consul t ant , Customer , S A, and C A.4 Finally, because
the banking scenario does not feature inheritance, the corresponding inheritance relations PH ,
RH , and C H are left empty. As a result, the model appropriately captures the context-dependent
behavior in the banking domain, yet lacks the notion of relationships. Conversely, the Metamodel
for Roles fully embraces the context-dependent and behavioral nature of roles. Moreover, it is de-
signed to be tailored towards different variants of the role concept.

Hence, the evaluation focuses on the most general variant representable within the Metamodel
for Roles, i.e., an unconstrained formal model. Accordingly, the most general variant fully supports
the behavioral Features 1,4–5,7,8, and 13 stating that role types have attributes and operations, can
be played by multiple unrelated objects, and can inherit properties from other role types. Further-
more, Features 9–11, 14, 15 are only partially supported, as additional constraints are required to
specify the desired semantics [Genovese, 2007], e.g., to decide whether role instances have their
own (Feature 15) or a shared identity (Feature 14). Besides that, the fact that an object can play

4For brevity, savings accounts and checking accounts are abbreviated to SA and CA, respectively.

54 4 Contemporary Role-Based Modeling Languages

multiple roles simultaneously (Feature 3) must be modeled using sessions, which can link different
role instances by means of their attributes and behaviors. Moreover, Genovese [2007] argued that
sessions can also be used to represent links of relationships, hence partially fulfilling Feature 2. In
contrast, most of the features of roles corresponding to compartments are fulfilled by the Meta-
model for Roles, i.e. Features 19-23, and 25 are fully supported, whereas Features 26 and 27 are
partially supported. On the one hand, Genovese’s institution types have attributes and operations,
can play roles, and can inherit properties from other institution types. On the other hand, addi-
tional constraints determine whether institutions have their own or a session-based identity and
can be employed to specify occurrence constraints as logical formula. In conclusion, the Metamodel
for Roles is designed to capture most of the features of roles. However, I would argue, that it is
to general to be useful, as it leaves the various assumptions and design decisions of the different
definitions of roles unspecified.

4.2.2 E-CARGO MODEL

The E-CARGO Model [Zhu, 2005] is another formal role-based model for computer-supported co-
operative work (CSCW). In particular, Zhu and Zhou emphasize that “roles are the key media for
human users to interact and collaborate” [Zhu and Zhou, 2006, p.580]. Hence, to facilitate the role
concept for the specification and design of CSCW systems, they argue that a formal model for role-
based CSCW is imperative, because “[it] supports the robustness, efficiency, and correctness of the en-
tire system.” [Zhu and Zhou, 2006, p.581]. Consequently, the E-CARGO Model encompasses agents
playing roles collaborating in groups working on objects in a defined environment [Zhu and Zhou,
2006].5 In particular, it provides two different representations of compartments: groups and envi-
ronments. Groups are used to arrange collaborating agents by first negotiating the roles assumed
by their players [Zhu and Zhou, 2006]. Environments, in turn, specifies the work space of several
groups and limits the number of roles playable simultaneously in the groups [Zhu and Zhou, 2006,
Appendix]. Thus, groups can be seen as collaborations and environments as their instantiation,
which, in turn, coincides with the notion of compartments. More recently, the formal model pro-
vided the foundation for a minimal role-playing logic [Liu et al., 2014], dynamic role assignment for
adaptive collaborations [Sheng et al., 2016], and a practical approach to resolve conflicting role as-
signments [Zhu, 2016]. In conclusion, the E-CARGO Model proves to be one of the more successful
role-based models. Although the target domain is cooperative work, their underlying formal model
is applicable to role-based software systems, as well. Admittedly, in contrast to typical modeling
languages, the formal model mixes both the type and instance level.

Consequently, only the natural types in the banking domain are defined as classes and collected
in C . The account class, for instance, is identified as Account , has two attributes i d and bal ance,
as well as implements at least the methods i ncr ease, and decr ease and exposes them as interface.
Moreover, objects and agents are instances of a class collected in the sets O and A, respectively.
However, because only agents can play roles, accounts, persons and companies must be modeled
as agents. Role types, in turn, are collected in R and specified as a tuple encompassing its identifier,
incoming and outgoing messages, the set of agents currently playing this role type, and the set of
classes, roles, and objects these players can access. Consider the definition of the consul t ant role
type, which adds the outgoing message ad vi se to its players and permits them access to customer
role types and the bank environment. Additionally, the definition collects all the agents currently
playing this role in its third component, e.g., person p1.

5E-CARGO is an acronym for Environment, Classes, Agents Roles Groups and Objects.

4.2 Context-Dependent Modeling Languages 55

Listing 4.3: Bank example defined using the E-CARGO model.

1
∑= 〈C ,O, A, M ,R,E ,G , s0, H〉

2 C := {account , per son,company}
3 O := {amount , phone, . . . } /* Object Instances */
4 A := {a1, a2, . . . , p1, p2, . . . ,c1,c2, . . . } /* Agent Instances */
5 M := {i ncr ease,decr ease, wi thdr aw,deposi t , ad vi se, . . . } /* Messages */
6 R := {consul t ant ,customer,ca, sa, sour ce, t ar g et ,mone y tr ans f er } /* Role Types */
7 E := {bank, tr ansacti on}
8 G := {bank1, . . . , t1, . . . }
9 H := {. . . } /* Users */

10 /* Natural Types */
11 account := 〈Account , {i d ,bal ance}, {i ncr ease,decr ease, . . . }, {i ncr ease,decr ease, . . . }〉
12 per son := 〈Per son, { f i r st N ame, l ast N ame, . . . }, . . . , . . .〉
13 company := 〈Company, {name, leg alFor m, . . . }, . . . , . . .〉
14 /* Role Types */
15 consul t ant := 〈Consul t ant ,〈. . . , {ad vi se}〉, {p1, . . . }, {customer,bank}〉
16 customer := 〈Customer,〈{ad vi se, . . . }, {i ncr ease,decr ease, . . . }〉, {p1, . . . ,c1, . . . }, {consul t ant , sa,ca}〉
17 ca := 〈Cecki ng Account ,〈{i ncr ease,decr ease},;〉, {a2, . . . }, {bank}〉
18 sa := 〈Savi ng s Account ,〈{i ncr ease,decr ease},;〉, {a1, . . . }, {bank}〉
19 sour ce := 〈Sour ce,〈{wi thdr aw},;〉, {a1, . . . }, {amount }〉
20 t ar g et := 〈Tar g et ,〈{deposi t },;〉, {a2, . . . }, {amount }〉
21 /* Environments */
22 bank := 〈B ank, {〈consul t ant , [1,∗], {phone}〉,〈costumer, [0,∗], . . .〉,〈ca, [0,∗], . . .〉,〈sa, [0,∗], . . .〉}〉
23 tr ansacti on = 〈Tr ansacti on, {〈sour ce, [1,1], . . .〉,〈Tar g et , [1,1], . . .〉}〉
24 /* Groups */
25 bank1 = 〈Al phaB ank,bank, {〈p1,consul t ant , phone〉,〈p1,customer, . . .〉 . . .}〉
26 t1 = 〈t042, tr ansacti on, {〈a1, sour ce, amount〉,〈a2, t ar g et , amount〉}〉

In contrast to role types, the bank and the tr ansacti on environments represent the type level def-
inition of compartments whereas the individual groups, such as t1 and bank1, represent the corre-
sponding collaborations instances. In particular, the definition of the bank environment specifies
that at least one agent plays the consul t ant role and that consultants have access to a phone ob-
ject. The group bank1 declares the Al phaB ank instance where the person p1 plays the consultant
and customer role. In conclusion, the modeled banking application σ represents both the domain
model and a possible instance in one model. Nonetheless, the E-CARGO Model combines the be-
havioral and context-dependent nature of roles into a concise formal modeling language. Basically,
it fully supports the behavioral Features 3–5, 9, 12, 14 and partially the Feature 1, 6, 7, 10, 15. On the
one hand, agents can play multiple roles simultaneously, acquire and abandon roles dynamically
and they share their identity with their roles. Moreover, a role restricts the environments, agents,
objects, and roles the corresponding agent can access. On the other hand, roles do not have prop-
erties and behaviors, however they extend the messages an agent can send and respond to, as well
as externalizes its state into an object. Furthermore, unrelated agents can only play the same role
type, if their interface provides the same messages as the role type specifies as incoming. Last but
not least, it is possible to specify all roles as role types duplicating their specification, then each role
instance has its own identity. Besides that, E-CARGO introduces both environments and groups
as representations of compartments and thus, supports the Features 19, 21, 26, and 27 fully. This
entails, that role instances depend on groups, their occurrence can be constrained, and groups de-
pend on environments and carry their own identity. In contrast to these features, only Feature 18
is partly fulfilled, as groups allow for combining roles and constrain them together, yet only with
occurrence constraints. In sum, the E-CARGO Model is a very concise formal model for behavioral
and context-dependent roles that proofed to be a valuable basis for multiple contributions to the
design of role-based systems, e.g. [Zhu, 2007, Zhu and Zhou, 2008a, Liu et al., 2014, Sheng et al.,
2016, Zhu, 2016].

56 4 Contemporary Role-Based Modeling Languages

Listing 4.4: Bank example implemented with Scala DCI.

1 case class Person(title: String , firstName: String , /*...*/)
2 case class Company(POBox: String , addresses: String , /*...*/)
3 case class Account(var balance: Money , id: Integer){/*...*/}
4 @context
5 case class Transaction(source:Account ,target:Account ,amount: Money){
6 role source{
7 def withdraw(amount:Money):Unit={ source.decrease(amount)} }
8 role target{
9 def deposite(amount:Money):Unit={ target.increase(amount)} }

10 def execute ():Boolean ={ source.withdraw(amount);/*...*/}
11 }
12 @context
13 case class Bank(name: String){
14 var customer = mutable.ListBuffer.empty[customer] /*...*/
15 role consultant{/*...*/} role customer{/*...*/}
16 role checkingsAccount{/*...*/} role moneyTransfer{/*...*/}
17 role savingsAccount{/*...*/
18 def decrease(amount:Money):Unit=
19 {savingsAccount.decrease(amount*transactionFee)} }
20 }

4.2.3 DATA CONTEXT INTERACTION (DCI)

In contrast to the previous approaches, Data Context Interaction (DCI) is a new paradigm brought
forward by Trygve Reenskaug to overcome the limitations of object-oriented design methodolo-
gies [Reenskaug and Coplien, 2009]. To put it bluntly, Reenskaug and Coplien argue that “[w]hile
objects capture structure well, they fail to capture system action. DCI is a vision to capture the end user
cognitive model of roles and interactions between them.” [Reenskaug and Coplien, 2009]. In other
words, they suggest changing the perspective of software development from objects with data and
behavior towards data which plays roles in interactions dynamically connected by a context [Reen-
skaug and Coplien, 2009]. In particular, objects degrade to data containers and the behavior is
specified in the roles defined in a specific context. The context itself manages and binds the role in-
stances to data objects and controls their interaction [Reenskaug and Coplien, 2009]. By employing
this paradigm, Coplien and Bjørnvig [2010] argues, that software developments becomes lean, i.e.,
less wasteful, because the DCI architecture allows for deferring implementations and more closely
resembles the end user’s mental model [Coplien and Bjørnvig, 2010]. They describe an agile soft-
ware development process that captures the structure of the domain in data classes, whereas the
behavior of algorithms and use cases are implemented in context classes containing the participat-
ing role mixins (or traits). Although Reenskaug and Coplien [2009] introduced a simple graphical
notation highlighting classes, objects, methodful roles, methodless roles and contexts [Reenskaug
and Coplien, 2009, Fig. 5], their notation only serves as an illustration of the underlying architec-
ture. Despite the lack of a modeling language, both Reenskaug and Coplien [2009] and Coplien
and Bjørnvig [2010] show that DCI is readily applicable employing state-of-the-art object-oriented
programming languages [Reenskaug, 2011], such as Scala, Python, C#, Ruby and Qi4j [Coplien and
Bjørnvig, 2010].6 Consequently, to model the banking domain using the DCI architecture, it was
implemented utilizing Scala DCI,7 outlined in Listing 4.4. Particularly, the data elements are imple-
mented as case classes, i.e., Account, Person, and Company. Conversely, both the transferal and
banking use case are implemented as the context classes Transaction and Bank, respectively.

6Qi4J was a Java framework for DCI now embedded in the Apache Zest™ composite oriented programming framework.
7https://github.com/DCI/scaladci

4.2 Context-Dependent Modeling Languages 57

https://github.com/DCI/scaladci

The interacting roles in these use cases are specified using the role keyword and are implicitly
bound to their player when the corresponding context is instantiated. The context object ultimately
manages their players either as a field, in the case of the Transaction, or lists, in case of the Bank.
As a result, this appropriately implements the behavioral and context-dependent aspects of the
banking application. Nonetheless, the features of roles supported by the various implementations
greatly vary. Hence, the evaluation only takes its proposal [Reenskaug and Coplien, 2009] and im-
plementation guideline [Reenskaug, 2011] into account. Henceforth, features are considered par-
tially fulfilled, if they depend on the implementation rather than the DCI paradigm. In general,
roles in DCI fulfill Feature 1,3,7, 10–12 completely. Accordingly, roles have their own properties and
behaviors that can be assumed by unrelated objects and used to restrict access to the players state.
Moreover, objects can play multiple role types simultaneously and used to employ access restric-
tions. While these features where described in [Reenskaug and Coplien, 2009, Reenskaug, 2011], the
fact that roles can be dynamically assigned, can inherit from another one, and have either a shared
or unique identity depend on the implementation of the DCI architecture. Thus, Feature 2, 5, 13–15
are considered partially fulfilled. In addition, the context classes in DCI directly correspond to com-
partment types. In turn, the DCI paradigm satisfies Feature 19, 20, 22, and 26. Like objects, contexts
can have properties and behavior, can play roles, and have their own identity, as well. Last but not
least, whether context classes can inherit from another one (Feature 25) is again implementation
dependent. In sum, DCI propagates a paradigm shift from object-orientation to role-orientation
by combining the behavioral and context-dependent nature of roles. Furthermore, the underlying
architecture is so simple that it spanned multiple implementations in various programming lan-
guages.

4.3 COMBINED MODELING LANGUAGES

Up to this point, none of the aforementioned RMLs have combined the behavioral, relational and
context-dependent natures of roles. Therefore, this section highlights those three modeling lan-
guages that accomplished to incorporate all of them. The Taming Agents and Objects (TAO) Ap-
proach is one of the first modeling languages for the specification of MAS that augments envi-
ronments by adding relationships (Section 4.3.1). In contrast to TAO, the Information Networking
Model (INM) is a data modeling language that introduces contexts to a relationship-based model to
model context-dependent information (Section 4.3.2). Most recently, the HELENA approach pro-
poses a role-based architecture description language that adds both roles and their relationships to
an ensemble-based modeling language (Section 4.3.3). Even though these approaches aim at dif-
ferent domains, they all combine the natures of roles to appropriately model the intrinsic context-
dependence and dynamics of the respective domains.

4.3.1 TAMING AGENTS AND OBJECTS (TAO)

One of the early approaches combining the natures of roles is called Taming Agents and Objects
(TAO). Da Silva et al. [2003] introduced TAO as a conceptual framework for the development of MAS.
In detail, Da Silva et al. [2003] aim to provide “a definition of an ontology that defines the essential
concepts, or abstractions, for developing MASs.” [Da Silva et al., 2003, p.2]. Basically, their goal is to
establish a formalization based on a unified terminology of the various MAS including objects and
agents collaborating in organizations by playing roles. Moreover, these elements can be related by
various kinds of relations, such as ownership, play, association and aggregation. While associations
and aggregations between objects, agents and roles correspond to the respective UML relations,
the play relation directly maps agents, objects, and organizations to their corresponding role types.

58 4 Contemporary Role-Based Modeling Languages

Figure 4.7: Bank example modeled in MAS-ML.

Similarly, the ownership relation between organizations and roles specifies which role types partic-
ipate in which type of organization. Additionally, it captures how an organization is structured into
sub-organizations. Nonetheless, TAO distinguishes between object roles and agent roles, that ei-
ther influence their player’s state and behavior or goals and beliefs, respectively. Finally, all objects,
agents, and organizations inhabit an environment that manages their interrelations. In conclusion,
TAO provides a comprehensive set of concepts and relations that not only permits formalizing MAS,
but also modeling them using a graphical modeling language. The multi-agent system modeling
language (MAS-ML) [Da Silva and De Lucena, 2004, 2007], in particular, provides a graphical repre-
sentation of MAS modeled using the TAO conceptual framework. Accordingly, Figure 4.7 shows the
corresponding MAS-ML model of the banking application. Here, both the natural types Person and
Company are modeled as agents, whereas the natural type Account as an object. Moreover, all com-
partment types in the running example are defined as organizations. First, the Bank organization
contains the agent roles Consultant and Customer, as well as the object roles CheckingAccount
and SavingsAccount denoted by a double line. Second, the Transaction organization owns the
Source and Target object roles. Additionally, for each ownership relation a simple line denotes the
agent types or object types able to play the corresponding role type. Last but not least, the MAS-ML
model specifies the various relationships, e.g. advises, own_ca, own_sa, including their cardinal-
ities. The own_ca relationship, for instance, between Customer and CheckingAccount is defined
as one-to-many relation, to state that a checking account has exactly one owner. In sum, this model
appropriately captures the behavioral, relational and context-dependent nature of the banking ap-
plication. However, as the conceptual framework only supports cardinality constraints, the more
complex financial regulations could not be specified in the model. Thus, while both TAO and MAS-
ML successfully combine the behavioral, relational and context-dependent nature of roles, they
only lack notions to constrain the modeled domain. In detail, both agent and object roles com-
pletely fulfill the behavioral Features 1, 3, 4, 7, 10, 11, 13, and 15 states, for instance, that roles have
their own properties, behavior, identity and can employ inheritance. Besides that, roles in TAO are
only transferred (Feature 9) when their player moves from one environment to another. Likewise,
agent roles only indirectly restrict access (Feature 12), as agents can only access those relation-
ships defined by the played roles. Thus, these features are considered partially fulfilled. Similar
to the behavioral nature, TAO also satisfies most of the relational and contextual features of roles,
i.e., Feature 2, 16, 19, 20, 22, and 24–26. Thus, roles depend at least on the ownership relationship
and can depend on various association and/or aggregation relationships. However, only associa-

4.3 Combined Modeling Languages 59

Figure 4.8: Bank example modeled in the INM.

tion and aggregation relationships can be constrained with cardinalities in MAS-ML. Ultimately,
roles depend on organizations (as notion of compartment) that can have rules, laws, and their own
identity. Finally, organization can play agent roles, can contain sub-organizations, and can inherit
properties from other organizations. As it turns out, TAO and MAS-ML already fulfills most of the
features of roles. In fact, MAS-ML supports more features than the succeeding approaches un-
til 2015. Nonetheless, Feature 5 and 6 could not be applied to TAO as the conceptual framework
did not provide an operational semantics. In conclusion, Da Silva and De Lucena [2004] not only
provided a solid conceptual foundation for MAS, but also one of the first combined RML for their
design. Regardless of its age, both are still applicable for nowadays complex and dynamic domains,
e.g., the mitigation phase of Emergency Response Environments [Adamzadeh et al., 2014].

4.3.2 INFORMATION NETWORKING MODEL (INM)

Similar to the data modeling language ORM 2, Information Networking Model (INM) [Liu and Hu,
2009a] is another data modeling approach developed by Liu and Hu [2009a]. It is designed to over-
come the limitations of classical data models, object-oriented models, and role models to capture
the various natural, complex and context-dependent relationships of real-world objects [Liu and
Hu, 2009a]. Specifically, Liu and Hu [2009a] proposed INM as a novel model “to represent not only
static but also dynamic context-dependent information regarding objects and various kinds of rela-
tionships between objects” [Liu and Hu, 2009a, p.132]. Hence, Liu and Hu [2009a] suggests enriching
the classical ER adding entity types for contexts and roles, as well as various kinds of relationships,
such as role relationships, context-dependent attributes, and context-dependent relationships. On
the one hand, role relationship links of a role type specifies both the context it is participating in
(with an incoming link) and the natural types able to play this role type (with outgoing arrows).
On the other hand, context-dependent attributes and context-dependent relationships specify the
individual properties and relationships of roles, respectively. In contrast to normal attributes and
relationships of entity types, these attributes and relationships can only originate from roles and
are only accessible in a given context. Nonetheless, context types are treated like classes, as they
can have arbitrary attributes, relationships, and super types. Thus, context types directly corre-
spond to the notion of compartment types. Moreover, a class becomes a context if it contains a
role, i.e. it has a role relationship to a role. While it is true that, this design decision leads to a very
flexible modeling language, I still maintain that mixing these conceptually different entities create a

60 4 Contemporary Role-Based Modeling Languages

non-lucid modeling language [Guizzardi et al., 2005]. To put it bluntly, the (graphical) notation be-
comes hard to comprehend, as both context types and classes are represented by the same language
construct. Hence, to distinguish the two entity types when modeling the banking application, Fig-
ure 4.8 uses rectangles to denote context types (compartment types) and parallelograms to denote
classes (natural types). In particular, both Bank and Transaction are modeled as context types
with individual attributes and the normal relationship transferal denoting the owner of a trans-
action. Conversely, role types, such as the Customer, have context-dependent attributes and three
context-dependent relationships, e.g., advises, own_sa and own_ca. Last but not least, persons,
companies and accounts are specified as classes with role relationship links denoting those role
types these classes can fulfill and refer to using the context-relationship name. In sum, INM is able
to sufficiently model the dynamics and context-dependent properties of the banking domain. Sim-
ilar to TAO, INM only lacks the constraints to capture the financial regulations, e.g. specifying single
ownership of checking accounts with cardinality constraints. It follows, then that INM supports the
behavioral, relational, and context-dependent nature of roles [Liu and Hu, 2009a]. By extension for
the behavioral nature, it supports Features 1, 3, 4, 8, 10, 11, 13, and 14 completely. As already dis-
cussed, roles have properties and can be played by unrelated entities. Moreover, objects may play
the same role (type) several times, however roles share their identity with their player. Conversely,
INM satisfies the relational Feature 2 and contextual Feature 19, 20, 22, and 24–26 completely, as
it provides both a notion for relationships and compartment types. In fact, context types directly
correspond to compartment types having properties, can inherit from a super type, can play roles
and have their own identity. By contrast, INM only partially provides that a role can be part of sev-
eral contexts (Feature 21) by utilizing inheritance. Indeed, only Feature 5, 9, and 12 could not be
applied, because a data modeling does not provide an operational semantics. In conclusion, INM
successfully combines the three natures into an expressive data modeling language, however, lacks
the various modeling constraints to be practical. Nevertheless, they not only provided a formal un-
derpinning [Hu and Liu, 2009], but also an implementation of a corresponding database based on
a Key-Value store and accessible with their own query language [Hu et al., 2010].

4.3.3 HELENA APPROACH

The most recent RML is the Helena Approach. Hennicker and Klarl [2014] proposed it as role-based
approach for the design of massively distributed systems by means of ensembles, i.e. collections of
autonomic collaborating entities [Hennicker and Klarl, 2014]. Their approach, in contrast to other
architecture modeling languages, introduce roles to provide “a rigorous formal foundation for en-
semble modeling that can be used during requirements elicitation and as a basis for the development
of designs” [Hennicker and Klarl, 2014, p.360]. In essence, they not only introduce a RML, but also its
formal foundation based on Labeled Transition Systems [Hennicker and Klarl, 2014]. This, in turn,
allows for verifying the correctness of the modeled architecture [Hennicker et al., 2015] as well as
generating the corresponding implementation [Klarl et al., 2015]. In particular, the modeling lan-
guage introduces ensembles to capture the dynamic collaborative behavior of distributed compo-
nents by means of roles. The Helena Approach utilizes ensemble structures as reification of collabo-
rations containing role types specifying the behavior of components playing these roles [Hennicker
and Klarl, 2014]. Additionally, role connectors define the communication between two role types,
i.e. they specify the role operations accessible by the role type. Similar to relationships, role con-
nectors represent simple directed channels between two role types. Last but not least, the Helena
Approach introduces occurrence constraints, to restrict the number of roles of a given type within
an ensemble. With these concepts, Helena’s modeling language is able to capture the complex, dy-
namic, and collaborative behavior of distributed components.

4.3 Combined Modeling Languages 61

Figure 4.9: Bank example specified with the Helena Approach.

Notably though, as components do not have intrinsic behavior, their behavior is solely dependent
on the roles they play. Although this simplifies the formalization of the model, I argue that this fails
to define how roles adapt the component’s behavior, as components are merely data containers.
Besides all that, the Helena Approach provides a graphical notation based on UML class diagrams
and stereotypes [Hennicker and Klarl, 2014] that is henceforth utilized to model the banking appli-
cation. From top to bottom, Figure 4.9 shows the definition of ensemble structures, role connectors,
role types and components. The Bank, for instance, contains the role types Consultant, Customer,
CheckingAccount and SavingsAccount, as well as the role connectors advises, own_ca, and
own_sa. Furthermore, the Consultant role type is constrained with a 1..* occurrence constraint
to state that any bank ensemble must have at least one component playing the Consultant role.
Next, the role connectors are defined as classes with the stereotype <<role connector type>>.
For instance, trans declares that the Source role can access the deposit method of the Target
role. Afterwards, the corresponding role types of each ensemble structures are defined with the
corresponding stereotype. Role types, such as Customer, denote the set of component types able
to fulfill them by listing their names after the role name, e.g. {Person,Company}. Last but not
least, it defines the natural types Person, Company, and Account as classes annotated with the
<<component type>> stereotype and the corresponding attributes. In sum, this model captures
the dynamics of the banking application, however also lacks more elaborate notions to restrict the
modeled domain. Although role connectors are directed relations between role types, they can-
not replace first-class relationships, as they suffer from the same problems as relationships imple-
mented with references [Rumbaugh, 1987]. Nevertheless, the Helena Approach successfully com-

62 4 Contemporary Role-Based Modeling Languages

bines the behavioral, relational, and context-dependent nature of roles [Hennicker and Klarl, 2014].
In particular, it supports Feature 1, 3–5, 7, 10, 11, 12, and 15 of the behavioral nature by introducing
roles with properties, behavior, and their own identity that can be played by unrelated components.
Moreover, components can acquire and abandon roles dynamically and play multiple roles simul-
taneously. Likewise, the Helena Approach supports the relational nature by including role connec-
tors between role types that can define relationships between roles (Feature 2). Finally, it embraces
the context-dependent nature of roles by facilitating ensembles as first-class citizens. The notion of
ensembles resemble compartments, as it fulfills Feature 19–21, 26, and 27. Specifically, ensembles
can have properties and behaviors in jHelena [Klarl et al., 2015] and, generally, have their own iden-
tity. Moreover, ensemble specifications permit the definition of occurrence constraints for role types
and containing role types of another ensemble specification. In conclusion, the Helena Approach
not only introduced a novel modeling language successfully combining the three natures of roles,
but also provided a rigorous formal foundation and operational semantics [Hennicker and Klarl,
2014], as well as tool support for its verification [Hennicker et al., 2015] and implementation [Klarl
et al., 2015].

In consequence, the presented RMLs utilize individual natures of roles to cope with the increased
complexity, dynamics and context-dependence of current domains. Even though, most approaches
focus on a particular modeling domain, e.g., conceptual modeling, data modeling or architecture
modeling, they all demonstrate the benefits of the role concept. One would assume that progress
in either of these domains would be transferred to another domain. However, after reviewing the
various contemporary RMLs, it becomes evident that most approaches simply introduce their own
definition for roles and did not build upon previous definition. In fact, Chapter 6 compares the
evaluation results of the various approaches and elucidates the apparent fragmentation and dis-
continuity in the research field on role-based modeling.

4.3 Combined Modeling Languages 63

“Roles are first-class components of the end user
cognitive model, so we want to reflect them in
the code.”

— Reenskaug and Coplien [2009]

5 CONTEMPORARY ROLE-BASED
PROGRAMMING LANGUAGES

Generally, computer scientists tend to believe that modeling and programming are separate pro-
cesses involving different concepts and constructs. Though I concede that both operate on differ-
ent levels of abstraction, I still insist that both are tasked to capture the cognitive model of a domain
expert and/or end user. Hence, both modeling and programming languages should provide con-
cepts of their user’s cognitive model. Undoubtedly, roles are an integral part of our cognitive model,
as argued by Reenskaug and Coplien [2009] above. Yet, up to this point the discussion mainly fo-
cused on the representation of roles in RMLs. Conversely, this chapter investigates how the var-
ious contemporary role-based programming languages (RPLs) define roles and encode the user’s
domain model. Additionally, the investigation focuses on the language constructs introduced to
specify role-based programs. Parts of this investigation have been published in [Kühn et al., 2014]
and [Kühn and Cazzola, 2016]. Similar to the previous chapter, the discussion is trisected in accor-
dance to the natures of roles supported by the contemporary RPLs. In detail, Section 5.1 emphasizes
those programming languages that only incorporate the behavioral nature of roles. Afterwards,
Section 5.2 considers languages that combine the behavioral and relational nature of roles. Finally,
Section 5.3 discusses RPLs that successfully combined the context-dependent and behavioral na-
ture of roles. Notably though, none of the contemporary programming languages fully combined
all the natures of roles.

5.1 BEHAVIORAL PROGRAMMING LANGUAGES

The first category to consider, is the category of behavioral RPLs – languages that exclusively es-
tablish roles as language constructs. In general, these contemporary RPLs extend the Java pro-
gramming language to permit the definition, creation, and binding of roles. In particular, this sec-
tion covers the following four behavioral RPLs. The first section discusses Chameleon [Graversen
and Østerbye, 2003], an early compiler and runtime that features aspect-like method overriding.
In contrast, Section 5.1.2 presents JAWIRO [Selçuk and Erdoğan, 2004], a programming library that
permits modeling with roles. Afterwards, Section 5.1.3 elaborates on Rava [He et al., 2006], a prepro-
cessor that provides syntactic constructs for easily implementing the Role-Object Pattern [Bäumer
et al., 1998]. Last but not least, Section 5.1.4 highlights JavaStage [Barbosa and Aguiar, 2012], a
preprocessor for Java that facilitates static roles.

65

Listing 5.1: Bank example implemented in Chameleon.

1 class Account { Money balance; void increase(amount:Money) /*...*/}
2 role Source roleifies Account{
3 void withdraw(Money amount){ intrinsic.decrease(amount) }
4 }
5 role Target roleifies Account{ void deposit(Money amount){/*...*/} }
6 class Transaction{
7 Source source; Target target; Money amount;
8 Transaction(Account s, Money a, Account t){
9 source=new Source(s); amount=a; target=new Target(t); }

10 void execute (){source.withdraw(amount); target.deposit(amount);}
11 }
12 class Person {String firstName; /*...*/}
13 class Company {String name; /*...*/}
14 role Consultant roleifies Person{/*...*/}
15 role Customer roleifies Object{
16 List <Checking > ca; List <Savings > sa; /*...*/
17 }
18 role Checking roleifies Account{Money limit;
19 constituent void increase(amount:Money){ /*...*/ }
20 }
21 role Savings roleifies Account{double transactionFee; /*...*/}
22 class Bank{ String name; List <Customer > customers; /*...*/}

5.1.1 CHAMELEON

Chameleon is a language extension developed by Graversen and Østerbye [2003] that introduces
roles to the Java programming language. The Chameleon compiler, implemented using the Open-
Java extensible compiler, is able to generate plain Java code accompanied by small runtime li-
brary [Graversen and Østerbye, 2003]. The language adds the keywords role and roleifies to
declare role types and their player type, respectively. As main contribution, Chameleon features
so called constituent methods. Similar to advices in aspect-oriented programming (AOP), these
methods are not allowed to be invoked directly, but hook into the natural’s method and are executed
before, after or instead of the actual method. While a constituent method is invoked, self always
refers to the most specific type available (the latest possible binding to self). The authors empha-
size that constituent methods are key to role-based programming, because a “role can be attached,
and even without being used, it can have some of its code executed.” [Graversen and Østerbye, 2003].
Basically, Graversen and Østerbye highlight that in order to adapt existing objects, roles must be
able to override methods of their player. In addition, Chameleon introduces life roles as roles that
are created and bound automatically whenever its player is instantiated [Graversen and Østerbye,
2003]. This enables dynamic aspects, i.e., applying aspects on the perspectives of objects. Gra-
versen and Østerbye [2003] argue that the implementation of aspects with united constituent meth-
ods (grouped in roles) makes no difference compared to defining them in separate blocks. However,
I would object that mixing aspects and roles is conceptually wrong, because aspects are crosscut-
ting by definition while roles are not. Nonetheless, the major drawback of Chameleon is the fact that
roles extend their player. While gaining access to protected properties, due to Javas restriction to
single inheritance, it is impossible that a role inherits from another role. Additionally, because roles
are implemented as adjunct instances [Steimann, 2000b], all state is kept redundantly in both the
player and its roles. Nonetheless, the Chameleon language is capable of implementing the banking
application, as shown in Listing 5.1. In detail, the natural types Account, Person, and Company
are implemented as regular Java class, whereas the role types Source, Target, Consultant and
Customer as role. For each role type, the roleifies keyword defines one natural type allowed
to play this role, e.g. that Source and Target can be played by Account objects. Of course, this

66 5 Contemporary Role-based Programming Languages

entails that a role type cannot be played by unrelated objects. Hence, to model that customers
can be either persons or companies, the Customer role type is filled by Object. However, this in-
cludes not only Person and Company objects, but also any other Java class. In addition to that,
Chameleon facilitates access to a role’s player object either explicitly using the intrinsic keyword
(Listing 5.1, Line 3) or implicitly using constituent methods (Listing 5.1, Line 19). Finally, both
the Transaction and Bank compartment types must be implemented as regular classes. In sum,
although Chameleon provides important language constructs to define roles and their dynamic be-
havior, its underlying role model is limited to the behavioral nature [Graversen and Østerbye, 2003].
Accordingly, the language extension supports most of the behavioral features of roles, such as Fea-
ture 1, 3–5, 9–12, and 15 completely and only Feature 14 partially. In general, Chameleon facili-
tates roles as first-class citizens of the programming language with individual properties, behavior,
and identity that can be attached, detached, and transferred dynamically. Besides that, constituent
methods grant roles the ability to adapt their player’s state and behavior and, thus, to restrict ac-
cess. Moreover, constituent methods can be utilized to avoid object schizophrenia by overriding the
equals method, as proposed in [Herrmann, 2007]. Consequently, both a role and its player object
would be considered equal and, therefore, would have a shared identity. In conclusion, Chameleon
is one of the earliest approaches that investigates the intricacies of dynamic dispatch in RPLs. Un-
fortunately, neither the grammar for their language extension nor a proof-of-concept implemen-
tation of their compiler has been made available [Graversen and Østerbye, 2002, 2003, Graverson,
2003]. Besides all that, Graversen [2006] later published a thorough investigation of the features of
compilers and runtime environments for RPLs in his PhD thesis, not unlike this thesis.

5.1.2 JAVA WITH ROLES (JAWIRO)

In contrast to Chameleon, Java with Roles (JAWIRO) does not rely on a compiler, as Selçuk and Er-
doğan [2004] provide the notion of roles and role hierarchies with a simple application library. Their
goal was “to implement an extendible, simple yet powerful role model without the restrictions [. . .]
imposed by previous work on role models.” [Selçuk and Erdoğan, 2004, p.928]. In particular, this role
model establishes that actors can dynamically assume, abandon, suspend, resume, and transfer
roles. Moreover, Selçuk and Erdoğan [2004] introduce aggregate roles to enable actors playing mul-
tiple roles of the same type simultaneously. In fact, they highlight that playing roles corresponds
to object-level inheritance. Hence, roles are able to dynamically intercept and either forward or
delegate messages to their player [Selçuk and Erdoğan, 2006]. Furthermore, their role model per-
mits that roles can play roles and that both object- and class-level inheritance can be mixed. This,
in turn, gives rise to role hierarchies for each actor. In fact, a role hierarchy is a tree of all roles
of an actor acquired directly or indirectly (via one of its roles). As a result, Selçuk and Erdoğan
[2004] provided the three super classes Actor, AggregateRole, and Role as well as the two in-
terfaces RoleInterface and ConstraintStrategy to establish their role model. Accordingly, all
types able to play roles must be implemented as subclass of Actor and all role types as subclass of
Role or AggregateRole. In the implementation of the banking application shown in Listing 5.2,
for instance, the classes Account, Person, Company and Bank inherit from Actor, whereas the role
types Source, Target, Savings, and Checking from Role. However, to ensure that a person can
be a customer multiple times, the Customer class is specified as an AggregateRole. Additionally,
the example highlights the delegation of the decrease method from the Source role to its actor
using executeMethod (Line 4) and accessing a specific aggregate role using the library method
as (Line 24). Nonetheless, neither the relationships (e.g. advises, own_ca) nor compartment types
(e.g. bank, transaction) can be represented as distinct entities.

5.1 Behavioral Programming Languages 67

Listing 5.2: Bank example implemented in JAWIRO.

1 class Account extends Actor{ Money balance; /*...*/}
2 class Source extends Role{
3 void withdraw(Money amount){
4 getActor ().executeMethod("decrease",amount);
5 }
6 }
7 class Target extends Role{ void deposit(Money amount){/*...*/} }
8 class Transaction{
9 Source source; Target target; Money amount;

10 Transaction(Account s, Money a, Account t){
11 source=new Source (); s.addRole(source); amount=a;
12 target=new Target (); t.addRole(target);
13 }
14 void execute (){source.withdraw(amount); target.deposit(amount);}
15 }
16 class Person extends Actor{String firstName; /*...*/}
17 class Company extends Actor{String name; /*...*/}
18 class Customer extends AggregateRole{String cid; /*...*/}
19 class Consultant extends Role{/*...*/}
20 class Checking extends Role{Money limit; /*...*/}
21 class Savings extends Role{double transactionFee; /*...*/}
22 class Bank extends Actor { String bank; /*...*/
23 Money getBalance(Actor a){
24 return ((Customer) a.as("Customer",bank)).balance ();
25 }
26 /*...*/}

Although this implementation sufficiently supports the behavioral aspects of the banking applica-
tion, both compartment types and relationships must be manually recreated using Java primitives.
Nonetheless, JAWIRO fully embraces the behavioral nature of roles [Selçuk and Erdoğan, 2004] by
establishing Feature 1, 3–5, 7–13, and 15. In short, roles have properties, behavior, inherit from
another and have their own object identity. Actors, in turn, can acquire, abandon, and transfer
roles dynamically and can play multiple instances of an aggregate role type simultaneously. Finally,
roles adapt their player’s behavior and state, and thus can be used to implement access restrictions.
Besides all that, to restrict the sequence of role acquisitions and removals (Feature 6), a custom
ConstraintStrategymust be implemented [Selçuk and Erdoğan, 2006].1 Similarly, to ensure that
an actor and its roles share identity (Feature 14), both Actor and Role classes must implement a
role agnostic equalsmethod [Herrmann, 2007]. In conclusion, JAWIRO presents an early approach
to a behavioral RPL introducing the notion of roles to the JAVA programming language without re-
quiring a custom compiler or preprocessor. Regardless of the promising results, JAWIRO’s imple-
mentation appears to be unavailable even upon personal request.

5.1.3 RAVA

Likewise, Rava [He et al., 2006] is a lightweight language extension to Java solely focusing on the
behavioral nature of roles. In contrast to theses, Rava employ the Role-Object Pattern [Bäumer
et al., 1998] to support forwarding and delegation and the Mediator Pattern [Gamma et al., 1994]
to manage the dynamic role bindings. He et al. [2006] believes that this “separates the binding re-
lationship from core object and role [. . .], which reduces the coupling between object and role, and
improves their reusability.” [He et al., 2006, p.7]. In making this comment, He et al. [2006] argues
that neither the player nor the role should manage the plays relationship, as this would lead to in-

1For brevity, the example omitted the definition of a ConstraintStrategy.

68 5 Contemporary Role-based Programming Languages

Listing 5.3: Bank example implemented in Rava.

1 class Account { Money balance; /*...*/}
2 ROLE Source roleof Account{
3 void withdraw(Money amount){ @core Account ().decrease(a); }
4 }
5 ROLE Target roleof Account{/*...*/}
6 class Transaction{ Account source ,target; Money amount;
7 Transaction(Account source , Money amount , Account target){/*...*/}
8 boolean execute (){
9 @INVOKEROLE(source ,"Account","Source","withdraw",amount); /*...*/

10 }
11 }
12 class Person extends Actor{String firstName; /*...*/}
13 class Company extends Actor{String name; /*...*/}
14 ROLE Consultant roleof Person{/*...*/}
15 ROLE Customer roleof Person ,Company ,Bank{/*...*/}
16 ROLE Savings roleof Account{ /*...*/
17 void decrease(double a){ @core Account ().decrease(a*fee); }
18 }
19 ROLE Checking roleof Account{ /*...*/
20 void decrease(double a){ if(a<limit)@core Account ().decrease(a); }
21 }
22 class Bank{ String bank; /*...*/
23 Money getBalance(Person p){
24 return (Money) @INVOKEROLE(p,"Person","Customer","balance");
25 }
26 /*...*/}

creased coupling of the two and would hinder reuse of either of them. In accordance, He et al. [2006]
proposes to use individual mediator objects to manage the dynamic bindings between objects and
roles. However, to reduce the implementation overhead of the two design pattern, they imple-
mented a preprocessor that transparently translates, 4 new keywords by means of 4 grammar rules
to plain Java code. In Listing 5.3, ROLE is a prefix indicating the definition of role types, e.g. Source,
Target, Customer, and Consultant, whereas roleof specifies the set of classes (including role
types) able to fulfill this role type. In addition, the keywords @core and @INVOKEROLE are avail-
able within role types to permit access to its player and explicitly invoke a method from a bound
role, respectively. Consider, for instance, the withdraw method (Line 3) use @core Account() to
obtain a reference to its player. Conversely, the getBalance method (Line 24) explicitly calls the
method balance of the Customer role attached to the Person p. Nonetheless, both natural types
(i.e. Account, Person, Company) and compartment types (i.e. Bank, Transaction) must be imple-
mented as regular classes. Moreover, to add and remove roles from a player object, the implemen-
tation has to consult the corresponding mediator object from a singleton MediatorFactory [He
et al., 2006, Fig.12]. Overall, the implementation in Listing 5.3 follows the syntax of Rava and covers
the behavioral nature of the banking application.

Even though there is no compiler available, the evaluation relies on the detailed description of
its implementation in [He et al., 2006]. In general, Rava supports the behavioral nature of roles [He
et al., 2006] by fulfilling Feature 1, 3, 5, 7, 10–13, and 15. Specifically, the language facilitates roles
with properties, behaviors, inheritance and independent identity. Furthermore, roles can modify
the state and behavior of their player and thus enforce access restrictions. Using the mediator ob-
ject, roles can be dynamically attached and detached to unrelated objects. Finally, in contrast to
JAWIRO, Rava also permits legacy objects to play roles. In conclusion, Rava is a very lightweight
approach introducing roles to Java. It focuses on the key aspects of the behavioral nature of roles,
namely definition of role types and the fills relation as well as access to its player and role methods.

5.1 Behavioral Programming Languages 69

Listing 5.4: Bank example implemented with JavaStage.

1 class Account {plays Source s; plays Target t;
2 Money balance; /*...*/
3 }
4 role Source {requires Perform implements void decrease(Money amount);
5 void withdraw(Money amount){performer.decrease(a); }
6 }
7 role Target {/*...*/}
8 class Transaction{Account source ,target; Money amount; /*...*/
9 void execute (){source.withdraw(amount); target.deposit(amount);}

10 }
11 class Savings extends Account {/*...*/
12 void decrease(double a){ super.decrease(a*fee); }
13 }
14 class Checking extends Account {/*...*/}
15 class Person {plays Customer <Bank > bc; plays Consultant con; /*...*/
16 String getName (){ return firstName +" "+ lastName; }
17 /*...*/}
18 class Company {plays Customer <Bank > bc; /*...*/
19 String getName (){ return name +" "+ legalForm; }
20 /*...*/}
21 role Consultant {/*...*/}
22 role Customer <T> {requires T implements String getName ();
23 Money balance () {/*...*/}
24 }
25 class Bank {plays Customer <Bank > bc; /*...*/
26 String getName (){ return name}; }
27 Money getBalance(Person p){ return p.bc.balance (); }
28 }

5.1.4 JAVASTAGE

While the previous RPLs mainly focused on dynamic roles, JavaStage features static roles, i.e., roles
that are statically bound to a class and played by all its instances at runtime. In particular, Barbosa
and Aguiar [2012] complain that “[even] the languages that deal with the dynamic aspects of roles
neglect this static nature” [Barbosa and Aguiar, 2012, p.125]. They argue that static roles already
benefit software engineers by fostering code reuse, comprehension, development and documen-
tation [Barbosa and Aguiar, 2012]. Accordingly, Barbosa and Aguiar [2012] propose a small exten-
sion to Java that adds the notion of roles. It adds five additional keywords as well as a renaming
mechanism (using the “#” character). First, the keyword role is introduced to declare static roles
similar to classes. However, role types can contain a requires clause specifying the method(s)
the classes playing this role must provide. Within this clause the keyword Performer refers to an
anonymous class playing this role type. Accordingly, within role methods performer permits ac-
cess to the actual player instance. Last but not least, the plays declaration is used within the class
body to declare and instantiate a given role type. Besides that, the renaming mechanism permits
the instantiation of generic roles, as it can be used to avoid naming conflicts.

To further elucidate these language constructs, the banking application is considered, again. As
shown in Listing 5.4, the role types Source, Target, Customer, and Consultant are declared with
the prefix role, however their players are only declared by specifying the required methods, e.g. any
class (noted as Performer) can play the Source role type, as long as it implements the proper
decrease method (Line 4). In contrast, Customer is a generic role type with the type parameter
T that only requires the getName method from its player (Line 22). While the list of requirements
avoids explicit declaration of the fills relation, generic role types allow for playing multiple kinds

70 5 Contemporary Role-based Programming Languages

of Customer, e.g. the customer of a bank Customer<Bank> and a shop Customer<Shop> simulta-
neously. Nonetheless, one needs to take special care to conceive unambiguous method names or
employ a sufficient renaming strategy. For instance, the requirement of the Customer role type is
far to broad, as it would permit any class with a proper getName method to play the customer role.
Afterwards, the classes Account, Savings, Checking, Person, Company and Bank use the play
declaration to bind a specific role type by providing its type parameter and a field name to access
its instance. The Person class, for instance, binds the Customer role type providing the Bank as
generic type parameter and bc as field name (Line 25). This field name can be used later to directly
access the role of a player, e.g. with p.bc in Line 27. Similarly, the performer keyword permits the
Source role type access to the instance of its player (Line 5). From the technical side, JavaStage is
implemented as a preprocessor that generates and compiles Java and JavaStage code to JVM com-
patible Java source code. Specifically, all role types are generated as inner classes of their corre-
sponding player class after applying the renaming. Moreover, all visible role methods are mirrored
to the player class forwarding their calls to the corresponding role instance. Although JavaStage
fails to model the dynamics of the banking application, it still manages to improve the reusability
of roles by facilitating both a requirements list and generic role types. Moreover, their case study
indicates the ability of roles to feasibly resolve crosscutting constraints [Barbosa and Aguiar, 2013].
Ultimately, JavaStage supports the behavioral nature of roles [Barbosa and Aguiar, 2012]. To put it
bluntly, its static roles support Feature 1, 3, 6–8, 10–13, and 15 completely. They have properties,
behavior, and their own identity. Moreover, they can use single inheritance and can be played by
unrelated classes. In contrast, JavaStage only partially fulfills Feature 4. While generic role types al-
low for binding similar role types to a class, it is still impossible to specify that a person is a customer
of multiple banks. In conclusion, Barbosa and Aguiar [2012] introduced the notion of static roles
to programming by providing a lightweight language extension to Java. They insist that JavaStage is
the only RPL supporting static roles [Barbosa and Aguiar, 2012]. Unfortunately, the authors made
neither a complete grammar nor the implementation of their language extension available.

5.2 RELATIONAL PROGRAMMING LANGUAGES

Undoubtedly there are a multiple programming languages that introduce relationships as first-class
citizens, e.g. RelJ [Bierman and Wren, 2005], Relationship Aspects [Pearce and Noble, 2006], yet only
few of them additionally establish roles, as well. Consequently, the literature review only considers
those approaches that support the relational nature of roles, i.e. RPLs that provide both relation-
ships and roles as first-class language constructs. Hence, the discussion revolves around the follow-
ing three relational programming languages. First, Rumer [Balzer et al., 2007] is a full-fledged pro-
gramming language for modular verification over shared state using relationships (Section 5.2.1).
In contrast, First-class Relationships [Nelson et al., 2008] proposes a three-tier programming model
encompassing objects, links, and relationships (Section 5.2.2). Last but not least, Relations [Harkes
and Visser, 2014] is a novel programming language for data models featuring entities and relation-
ships with roles (Section 5.2.3).

5.2.1 RUMER

While the previous RPLs have been developed as a language extension, Rumer [Balzer et al., 2007] is
a full-fledged programming language focusing on the relational nature of roles. Balzer et al. [2007]
argues that “an object-oriented programming language with explicit support for relationships enjoys
properties that facilitate the verification of real-world programs with invariants” [Balzer and Gross,

5.2 Relational Programming Languages 71

Listing 5.5: Bank example implemented in Rumer.

1 entity Account{float balance =0.0; /*...*/}
2 entity Person {string firstName; /*...*/}
3 relationship Transaction participants(Account source ,Account target){
4 extent boolean transfer(Account s, Account t){
5 return these.add(new Transaction(s,t));
6 }
7 boolean execute(float amount){ /*...*/ source.decrease(a); /*...*/}
8 /*...*/}
9 relationship Advises participants(Person consultant , Person customer){

10 extent invariant these.isIrreflexive ();
11 /*...*/}
12 relationship Own_ca participants(Person customer ,Account checking){
13 void > range limited(float a){ if(a<limit) this.decrease(a); }
14 /*...*/}
15 relationship Own_sa participants(Person customer ,Account savings){
16 float > range fee;
17 void > range withfee(float amount){ this.decrease(amount*fee); }
18 /*...*/}
19 application Bank{ Extent <Transaction > trans; Extent <Advises > advises;
20 main(){/*...*/}
21 /*...*/}

2011, p.360]. In accordance, they introduce binary relationships to capture the collaboration be-
tween objects [Balzer et al., 2007], as well as to allow for employing a visible states verification tech-
nique [Balzer and Gross, 2011]. Additionally, Rumer prohibits the use of references as attributes of
objects, such that every object collaboration must be implemented using relationships. In general,
Rumer is the only fully formally specified RPLs including a complete grammar with over 30 key-
words and 67 rules as well as a formal operational semantics that has been proven to be sound with
respect to the modular verification of multi-object invariants [Balzer, 2011].

To showcase its syntax, Listing 5.5 shows a partial implementation of the banking domain. The
natural types account and person, for instance, are declared with the entity keyword (Line 1–2),
similar to Java classes. Conversely, relationships, such as advises, own_ca and own_sa, are spec-
ified with the prefix relationship followed by a participants clause declaring the role types
played by the collaborating naturals types. The Advises relationship type, for example, is de-
clared between the consultant and customer role type, whereas both can be played by Person
objects (Line 9). Moreover, it is augmented with an extent invariant to declare that the set of
Advises links (referred to with these) is irreflexive. Besides, the transaction compartment type
is also declared as a relationship to collect the various money transferals (Line 3–8). Granted,
role types appear to be named places, so far. However, Balzer et al. [2007] proposed the concept
of member interposition to allow for adding fields and methods to the role types of a particular re-
lationship. Specifically, the member declaration with > domain and > range denote interposed
members of the first and the second role type, respectively. Accordingly, Line 15–18 add the field
fee and the method withfee to the savings role type of the Own_sa relationship. In addition
to member interposition, Rumer supports the specification of extent methods, for instance, to
add links to the relationship (cf. Line 5). These methods are available to the relationship extent,
e.g. Extent<Transaction>, an objectified relationship that collects and manages all its links. Last
but not least, the Bank itself is declared as application containing the various relationship extents,
e.g. the set of transactions, and the application entry point, i.e. the main method. Even though this
example showcases Rumer’s language constructs, it can only hint the languages rich syntax and se-
mantics. In sum, Rumer not only establishes the relational nature of roles by introducing relation-
ships and a wide variety of intra-relationship constraints, but also the behavioral nature of roles by

72 5 Contemporary Role-based Programming Languages

utilizing member interposition [Balzer et al., 2007]. By extension, it supports most of the behavioral
features, i.e. Feature 1, 3–6, 10–12, and 14. Specifically, role types are defined with properties and
behavior. Moreover, although objects can play multiple roles simultaneously (Feature 4), roles can
only be played by unrelated types, if the most common type is declared as player (Feature 7). Finally,
roles and their player share their identity (Feature 14), as Rumer transparently creates, attaches, and
removes roles. Even though member interposition implicitly declares role types, interposed mem-
bers cannot be shared across several relationship types. For instance, any member added to the
customer role type is only accessible within the declaring relationship type. Because Rumer sup-
ports almost arbitrary predicates as invariants, application invariants can be utilized to constrain
multiple role types at once (Feature 18). Furthermore, Rumer satisfies Features 2 and 16 of the rela-
tional nature, because roles depend on relationships and relationships can be constrained. Indeed,
Balzer et al. [2007] also incorporates parts of the contextual nature of roles by supporting Feature
19 partially and Feature 20, 22, 24, and 26 fully. In general, Rumer’s notion of relationship extents as
objectified relationship comes close to the notion of compartments. Although they are limited to
one binary relationship, they can partially establish the dependence between role types and rela-
tionship extents (Feature 19). Additionally, relationship extents can have properties, behaviors and
their own identity. Moreover, they can play roles like objects and can contain (own) other relation-
ship extents. It follows, then that Rumer not only combined the relational nature and behavioral
nature of roles, but also includes the essential features of the context-dependent nature of roles.
Notably though, Balzer et al. [2007] designed Rumer specifically to show the feasibility of modu-
lar verification and formally proving the correctness of programs [Balzer and Gross, 2011]. Hence,
providing a running compiler was none of their immediate goals.

5.2.2 FIRST CLASS RELATIONSHIPS

While the other RPLs discussed in this chapter introduce or extend a programming language, Nel-
son et al. [2008] argues that “[rather] than adding relationships to existing language models [. . .] ex-
isting language models should be re-factored to support relationships as a primary metaphor” [Nel-
son et al., 2008, p.34]. In particular, the First Class Relationships approach proposes a three-tier
relationship model as a novel foundation for object-oriented programming languages. The object
tier encompasses the definition of classes with fields and methods. These can be instantiated to
objects, however, their attributes can only carry values, i.e. instances of value types or classes that
exclusively belong to the carrying object [Nelson et al., 2008]. Moreover, each object has a unique
identity and has exactly one type. The link tier, in turn, uses objects and classes to define links
(tuples) between objects and associations between participating classes, respectively [Nelson et al.,
2008]. Simply put, links are immutable tuples of objects belonging to an association that repre-
sents a cross product of classes. While this tier collects the individual links between objects, the
relationship tier captures and models groups of links as relationships and relations. In particular,
each Relationship contains a subset of all links of an association. Moreover, a relationship is de-
fined by a relation that objectifies exactly one association and defines role types for each participant
of an association. In short, Nelson et al. [2008] augments the classical object model with links, re-
lationships, and roles to reconcile object-oriented design and implementation [Nelson et al., 2008].
Besides providing the relationship model, Nelson et al. [2008] additionally sketched a possible rela-
tional programming language by providing a partial grammar. This grammar features 14 keywords
to define classes, associations between classes and relationships for a particular association, as well
as separate inheritance relations for those types.

5.2 Relational Programming Languages 73

Listing 5.6: Bank example implemented using First Class Relationships.

1 /* object tier */
2 class Account {const int id; Money balance; /*...*/}
3 class Party {/*...*/}
4 class Person extends Party {const String firstName; /*...*/}
5 class Company extends Party {const String name; /*...*/}
6 /* link tier */
7 association trans {
8 participant Account Source; participant Account Target; }
9 association advises {

10 participant Person Consultant; participant Party Customer; }
11 association own_ca {
12 participant Party Customer; participant Account Checking; }
13 association own_sa {
14 participant Party Customer; participant Account Savings; }
15 /* relationship tier */
16 relation Transaction contains trans{
17 role Source as SourceRole{ void withdraw (){/*...*/} }
18 role Target as TargetRole{ void deposit (){/*...*/} }
19 role trans as TransRole { Money amount; /*...*/}
20 }
21 relation Bank contains advises{
22 role Consultant as ConsultantRole{String phone; /*...*/}
23 role Customer as CustomerRole {String name; /*...*/}
24 }

Listing 5.6 showcases the language constructs by specifying the banking domain with First Class Re-
lationships. Following the three tiers, the example first declares the natural types Account, Person,
Company as classes (Line 1–4). Afterwards, four associations are specified using the keyword
association, e.g. trans, advises, and own_sa. The advises association, for instance, is estab-
lished between the class Person as Consultant and the class Party as Customer (Line 7–8). The
Party class must be introduced to permit the otherwise unrelated classes Person and Company to
participate in the same associations. Finally, the relationship tier declares the Transaction and the
Bank relation derived from the trans and the advises association, respectively. Besides that, re-
lations have their own fields and methods, they can also declare additional members for individual
participants as well as links of the corresponding association. Consider the Transaction relation
that declares the participant Source as SourceRole type adding the withdraw method (Line 14).
Similarly, Line 15 attaches the field amount to the links of the trans association. As a result, the
presented implementation is able to appropriately model most of the banking domain.

Surprisingly, the relationship model not only captures the behavioral and relational nature of
roles, but also key features of the context-dependent nature [Nelson et al., 2008]. On the one hand,
it establishes both role types and relations with properties and behaviors. Roles depend on rela-
tionships and are dynamically assumed or discarded whenever an object enters or leaves an asso-
ciation in the corresponding relationship. Thus, an object can play multiple roles at the same time
and share its identity with all of them. However, unrelated objects cannot play the same role type
(Feature 7) and relationships cannot be constrained (Feature 16, 17) As a result, First Class Relation-
ships support Feature 1–5, 10–11, and 14 of both the behavioral and relational nature. On the other
hand, the context-dependent nature of roles is implicitly supported. Especially, when relations and
their relationships are considered as compartment types and compartment instances, respectively.
Similar to Rumer, relationships represent the extent set of an association and represent entities in
their own right. Relations, in particular, define the properties and behavior of a set of relationships,
just like compartment types do. Moreover, relations can inherit both members and roles from an-
other relation. Even though relationships can be seen as an objectification of a group of links, their

74 5 Contemporary Role-based Programming Languages

Listing 5.7: Bank example implemented in Relations.

1 module bank
2 model
3 entity Account {balance : int = 0 /*...*/}
4 entity Person {firstName: String /*...*/}
5 entity Company {name: String /*...*/}
6 relation Transaction{
7 Account 1 source Account 1 target
8 amount : int = 0
9 }

10 relation Bank{
11 Person * customer Person + consultant
12 Account * savings Account * checking
13 customer.adviser <-> consultant.advisee
14 customer.ca <-> checking.owner
15 customer.sa <-> savings.owner
16 }
17 data
18 Person p1{ firstName="Doreen" /*...*/ }
19 Account a1{ balance =1000 /*...*/ }
20 Transaction t1{ source:a1 target:a2 amount =100 }
21 Bank { customer:p1 consultant:p2 checking:a1 savings:a2 }
22 Bank { customer:p3 consultant:p2 checking:a3 }
23 /*...*/
24 execute sum(p2.advisee.ca.balance)

definition is limited to groups of exactly one association. In accordance to that, First Class Relation-
ships fulfills Feature 19 partially and Feature 20, 25, and 26 completely. In conclusion, Nelson et al.
[2008] emphasize that relational programming languages must provide links between objects as
well as relationships grouping individual links. Moreover, their notion that roles locally affect their
player within a particular relationship entails that roles are context-dependent with respect to a re-
lationship. Regardless of the power and simplicity of the proposed relationship model, apparently
none of the authors followed this research direction by publishing a proof-of-concept compiler or
an operational semantics for the proposed programming language.

5.2.3 RELATIONS

As one of the most recent approaches, Relations2 is an RPL developed by Harkes and Visser [2014].
However, in contrast to other RPLs, Relations is a role-based data modeling language featuring
first-class relations, native multiplicities, and a concise navigation language for derived attributes.
Although it is formally specified including its syntax, a multiplicity-aware type system, and opera-
tional semantics, Harkes and Visser [2014] additionally provided a running proof-of-concept imple-
mentation based on the language workbench Spoofax [Kats and Visser, 2010]. Compared to Rumer,
the syntax of Relations is rather concise introducing 17 keywords in 9 grammar rules [Harkes and
Visser, 2014]. However, Relations programs can be directly translated to executable Java source
code. Of course the language is still under active development [Harkes and Visser, 2014, Harkes
et al., 2016].3 However, because only [Harkes and Visser, 2014] featured roles, the discussion hence-
forth only takes the corresponding release v0.2.0 into account.4 Considering the underlying data
model, Relations encompasses entity types declared with entity and n-ary relationships defined
with relation [Harkes and Visser, 2014].

2Now called IceDust [Harkes et al., 2016].
3https://github.com/metaborg/relations
4https://github.com/metaborg/relations/releases/tag/v0.2.0

5.2 Relational Programming Languages 75

https://github.com/metaborg/relations
https://github.com/metaborg/relations/releases/tag/v0.2.0

Both entities and relations have fields, these however are limited to primitive types, i.e. boolean,
int, and string [Harkes and Visser, 2014]. Moreover, relations can define multiple participat-
ing role types, whereas each one is defined by stating its player type, its name, a multiplicity, and
the name of the inverse relation (from its player). In addition to that, relations can establish bidi-
rectional navigation between two participating role types by providing reference names for both
ends. Finally, the multiplicity given for each role type specifies the number of roles (of this type) a
corresponding relation instances can contain. Specifically, the following four multiplicities are sup-
ported: arbitrary *, at least one +, exactly one 1, and at most once ?. In sum, a Relations program
contains a model section providing the domain model, a data section adding an instance of this
model and finally an execute section querying this instance model.

Accordingly, Listing 5.7 outlines the banking application implemented as Relations program. For
each of the natural types account, person, and company the model section contains the declaration
of a corresponding entity type. Afterwards, the Transaction relation is declared between exactly
one Account as source and one Account as target and with the field amount (Line 6–9). More
importantly, the Bank relation is defined encompassing four participating role types, i.e. customer,
consultant, savings, and checking, whereas the former two are played by persons and the lat-
ter two by accounts. Additionally, navigations are defined for the three relationship in the banking
domain, such as advises, own_sa, and own_ca. Advises, for instance, is defined in Line 13 as bidi-
rectional navigation from customer with adviser to consultant with advisee. Undoubtedly,
Relations’ syntax leads to a very concise specification of the banking domain, however, it can only
support a limit number of features of roles. To put it bluntly, Relations only supports Feature 2,
3, 4, and 14 stating that roles depend on relations and that entities can assume multiple roles si-
multaneously. Still, roles have neither properties, behaviors, nor their own identity (Feature 1, 15)
and cannot be played by unrelated objects (Feature 7). Additionally, because Relations’ operational
semantics does not include operations to dynamically instantiate entities and relations, Feature 5
and 12 are not applicable. Regardless, it is still possible to restrict the sequence of role acquisition
using multiplicities (Feature 6). Besides all that, Relations features the context-dependent nature
of roles, as well. Granted one could argue that relations correspond to relationships and multiplic-
ities to cardinalities, yet an instance of a relation is not a tuple of objects rather than a group of
links. In fact, the bidirectional navigation established between two participants resembles a binary
relationship [Chen, 1976]. Accordingly, I would argue that relations denote compartment types and
multiplicities occurrence constraints. Following this argument, relations fulfill Feature 19, 20, 22, 26,
and 27; if they are considered as compartments. Like entities, relations have properties, their own
identity, and can play roles. It follows then, that Feature 24 is partially satisfied, because a relation
playing a role in another relation implicitly states that the latter contains the former. In conclusion,
Harkes and Visser [2014] designed a very lightweight role-based data modeling language that is not
only formally specified, but also publicly available. Granted Relations does not fully support the
natures of roles, yet it emphasizes the key connections between navigation links and binary rela-
tionships as well as n-ary relations and compartment types. In particular, this approach shows that
relationships and compartments are not synonymous, but can complement each other.

5.3 CONTEXT-DEPENDENT PROGRAMMING LANGUAGES

After highlighting both behavioral and relational programming languages, this section finally elab-
orates on RPLs that establish the context-dependent nature of roles. Basically, these languages
provide a notion of compartment to specify context- or collaboration-dependent behavior. First
and foremost, EpsilonJ [Ubayashi and Tamai, 2001] is the earliest programming language extension

76 5 Contemporary Role-based Programming Languages

featuring environments and roles as language constructs. Both EpsilonJ and its successor Nex-
tEJ [Kamina and Tamai, 2009] are discussed in Section 5.3.1. Afterwards, Section 5.3.2 describes
RICA-J [Serrano and Ossowski, 2004], a software framework designed for the development of Java-
based multi-agent applications. Third, Section 5.3.3 elucidates Object Teams / Java [Herrmann,
2007]. A language extension for Java that, in contrast to all other RPLs, matured to a stable program-
ming language providing a development environment, compiler, and debugger. Similar to RICA-J,
powerJava [Baldoni et al., 2006c] is designed to bridge the gap between MAS and programming
languages. However, powerJava is a programming language extension featuring both roles and in-
stitutions (Section 5.3.4). Last but not least, Section 5.3.5 presents Scala Roles [Pradel and Odersky,
2009], a small library that seamlessly adds both roles and collaborations to the Scala language.

5.3.1 EPSILONJ AND NEXTEJ

EpsilonJ is not only the oldest programming language included in this literature review, but also one
of the few that managed to continuously provide new results throughout the years, i.e. [Ubayashi
and Tamai, 2000, 2001, Tamai et al., 2005, 2007, Monpratarnchai and Tetsuo, 2011, Tamai and Mon-
pratarnchai, 2014]. Ubayashi and Tamai [2000] first introduced EpsilonJ as a software framework
for the flexible development of cooperative mobile agent applications. Their aim was to provide “1)
a mechanism for separating concerns about mobility/collaboration including traveling, task execu-
tions, coordination constraints, synchronization constraints, security-checking strategies and error-
checking strategies; 2) a systematic and dynamically evolvable programming style.” [Ubayashi and
Tamai, 2001, p.96]. Later on, Tamai et al. [2005] factored out the foundations of this framework into
the language independent Epsilon Model. The Epsilon Model specifies collaborations both on the
model and the programming level by means of objects, actors, roles and environments [Tamai et al.,
2007]. Similar to conventional object models, objects are instances of a class that has properties,
behavior, and a unique identity. However, an object can participant in an environment by playing
one of the defined roles as an actor. Conversely, environments declare a set of collaborating role
types. Roles, in turn, specify the collaboration-dependent properties and behaviors of their actors
and can only be accessed from within their environment. By entering and leaving an environment,
objects can dynamically acquire and lose roles, respectively. Based on this model, Tamai et al. [2005]
reintroduced EpsilonJ as an extension to the Java programming language. Thus, the authors man-
aged to overcome the verbosity of the original framework by providing both environments and roles
as language construct. In particular, it permits the declaration of environment types with the key-
word context and role types within an environment type using the keyword role [Tamai et al.,
2005]. Moreover, role types do not declare the type of their player directly. Similar to Rava’s re-
quirements, each role type provides a set of methods that a possible player type must implement.
Additionally, a role type can be specified as static to denote that only one object can play the
corresponding role in an environment instance. By default, however, an environment instance can
contain an arbitrary number of role instances. Moreover, the language features explicit operators
for binding objects to roles with newBind as well as for lifting an object to its role in a given envi-
ronment (context.RoleType)object. In sum, Monpratarnchai and Tetsuo [2008] presented the
implementation of the EpsilonJ language accompanied with a proof-of-concept preprocessor that
generates annotated Java source code.5

5http://tamai-lab.ws.hosei.ac.jp/pub/epsilon/epsilonj/index.html

5.3 Context-Dependent Programming Languages 77

http://tamai-lab.ws.hosei.ac.jp/pub/epsilon/epsilonj/index.html

Listing 5.8: Bank example implemented with NextEJ.

1 class Account { Money balance; /*...*/}
2 class Person { String firstName; /*...*/}
3 class Company { String name; /*...*/}
4 context Transaction{ Money amount; /*...*/
5 static role Source requires { void decrease(Money amount); }{
6 void withdraw (){ decrease(amount) }
7 }
8 static role Target requires { void increase(Money amount); }{
9 void deposit (){ increase(amount) }

10 }
11 void execute (){ Source.withdraw (); Target.deposite () }
12 }
13 context Bank{
14 role Consultant requires {/*...*/}{ String phone; /*...*/}
15 role Customer requires {String getName ();}{/*...*/}
16 role Savings requires {void decrease(Money amount);}{/*...*/}
17 role Checking requires {void decrease(Money amount);}{/*...*/} }
18 static int main(String args []){
19 final Transaction t1=new Transaction (100.0);
20 final Account a1=new Account (1000.0); /*...*/
21 bind a1 with bank1.Savings (), a2 with bank1.Checking (), /*...*/ {
22 bind a1 with t1.Source (), a2 with t1.Target () { t1.execute (); }
23 }
24 }
25 /*...*/}

More recently, Kamina and Tamai [2009] introduced NextEJ as an extension of EpsilonJ that incor-
porates common features of context-oriented programming, such as multiple context activation
and composite contexts, to develop context-aware adaptive applications more easily. In particular,
it introduces context activation scopes as lexical scopes of the program. In detail, they atomically
create an environment instance, bind the corresponding roles to the given objects, and perform
the enclosed operations. Afterwards the end of the scope is reached, the environment and all con-
tained roles are deactivated. Consequently, the context-dependent behavior of roles is only active
within its corresponding activation scope. Kamina and Tamai [2010] formalized NextEJ’s core calcu-
lus FEJ and proved its type soundness, Even though, FEJ’s syntax introduces 5 new keywords and 14
productions, neither of the authors have published a prototypical compiler for NextEJ yet. Despite
that, NextEJ clearly improves several features of EpsilonJ. Hence, Listing 5.8, employs the syntax of
NextEJ [Kamina and Tamai, 2009] to implement the running example. In detail, Line 1–3 defines the
natural types Account, Person, and Company, as regular classes, whereas the compartment types
Transaction and Bank are implemented as environments using the keyword context. In particu-
lar, the Transaction is defined in Line 4–12 and declares both Source and Target as static role
types, whereas the former requires a decrease and the latter an increase method. Consequently,
a transaction requires one source and one target role played by objects providing the required meth-
ods. In contrast, the Bank environment declares all roles without this occurrence restriction. Last
but not least, the main method (Line 21–23) showcases two nested context activation scopes de-
noted with the keyword bind. The outer scope activates the bank1 environment and binds, among
others, the account a1 to the Savings role and a2 to the Checking role. The inner scope, shown
in Line 22, activates a particular transaction t1 tasked to transfer money from account a1 to a2,
which is finally executed. Please note, that this activation order ensures that the Source role in-
vokes the decrease method of the Savings role before referring to the account’s implementation.
In sum, the implementation appropriately models the context-dependent behavior of the banking
application.

78 5 Contemporary Role-based Programming Languages

Like the example, the evaluation focuses on NextEJ as successor of EpsilonJ, as they equally com-
bine the behavioral and context-dependent nature of roles [Kamina and Tamai, 2009, 2010]. In case
of the behavioral nature, NextEJ fulfills Feature 1, 3–5, 7–12, and 15 completely. By extension, NextEJ
facilitates role types with properties, behavior, and individual identity. In general, objects can play
multiple different roles simultaneously and a role can be played by unrelated objects and roles, as
long as they provide the required methods. Moreover, a role can be transferred to another player
using the from keyword in a bind statement [Kamina and Tamai, 2010]. Although, NextEJ handles
roles as adjunct instance, it successfully hides this fact, within context activation scopes. Still, the
necessary equality operators must be implemented to avoid object schizophrenia [Herrmann, 2010]
and fulfill Feature 14. In case of the context-dependent nature of roles, NextEJ incorporates the
Feature 19–20, 22, 24, and 26 by establishing environments as first-class citizens. In short, roles de-
pend on environments as they are defined as inner classes. Regardless, environment instances are
objects with properties, behavior, and their own identity. Additionally, environment instances can
play roles, as well. However, the type system prevents that an environment can play a role in itself
(Feature 23) [Kamina and Tamai, 2010]. Moreover, the modifier static for role declarations can
be considered as occurrence constraint. Yet, as it only covers one case, Feature 27 is only partially
fulfilled. Furthermore, when comparing EpsilonJ and NextEJ, it becomes apparent that NextEJ only
adds nested environments (Feature 24) to the feature set of its predecessor. Besides that, it is pos-
sible to implement relationships as environments, partially satisfying Feature 2. However, such an
environment must solely contain static roles and must be bound using EpsilonJ’s newBind operator.
It follows then, that the environments in EpsilonJ and NextEJ directly correspond to the notion of
compartments and indirectly represent relationships. Consequently, EpsilonJ presents one of the
earliest approaches to successfully introduce compartments to implement the context-dependent
behavior of objects by means of roles. Since then, it has become an important research prototype
for the investigation and application of role-based programming to the creation of context-aware
SAS [Monpratarnchai and Tetsuo, 2011, Tamai and Monpratarnchai, 2014].

5.3.2 ROLE/INTERACTION/COMMUNICATIVE ACTION (RICA)

Similar to EpsilonJ, RICA-J [Serrano and Ossowski, 2004] is a framework for the development of
MAS. It is based on the Role/Interaction/Communicative Action (RICA) theory [Serrano and Os-
sowski, 2004], a conceptual framework for the design of agent application that combines the as-
pects of Agent Communication Languages and Organizational Models. In essence, RICA provides
the underlying metamodel for RICA-J. However, in contrast to EpsilonJ, it extends Java by means of
an application library rather than a preprocessor. In this way, Serrano and Ossowski [2004] empha-
sizes, it was possible “to reuse those middleware aspects required for supporting agent interactions,
as well as the different agent abstractions provided” [Serrano and Ossowski, 2004, p.97]. Specifically,
RICA-J employs the JADE framework [Bellifemine et al., 1999] – a well-established Java framework
for the design of MAS. It extends the framework by introducing communicative actions, roles and
interactions as first-class citizens. By extension, the RICA metamodel (cf. [Serrano and Ossowski
[2004],Fig. 1]) defines agent types that can play role types. Role types, in turn, declare a set of ac-
tion types to denote those actions a player of this role can perform. In contrast to standard MAS
metamodels, RICA further introduces social and communicative interaction types as main organi-
zational abstraction. On the one hand, social interactions encapsulate the functionality, protocol,
and actions performed by agents participating in this interaction, e.g. paper reviews, group meet-
ings [Serrano et al., 2006]. Additionally, each social interaction specifies dedicated engagement,
closing, joining, and leaving rules [Serrano and Ossowski, 2004] to declare when an interaction is
initiated, finished, joined by an agent, and left by a participating agent.

5.3 Context-Dependent Programming Languages 79

Listing 5.9: Bank example implemented in RICA.

1 class Account extends Agent { Money balance; /*...*/}
2 class Person extends Agent { String firstName; /*...*/}
3 class Company extends Agent { String name; /*...*/}
4 class Source extends InteractiveRole {
5 static final CommRoleType type=new CommRoleType(Source.class);
6 static final CommInteractionType interaction=Transaction.type;
7 static final Agent player=Agent.type;
8 static final CommActType withdraw=/*...*/
9 /*...*/}

10 class Target extends InteractiveRole {/*...*/}
11 abstract class Transaction extends CommunicativeInteraction{
12 static final CommInteractionType type=/*...*/
13 static final CommRoleType [] participants=
14 new CommRoleType []{ Source.type , Target.type};
15 Money amount;
16 /*...*/}
17 class FinancialTransaction extends Transaction{/*...*/}
18 class Customer extends SocialRole {/*...*/}
19 class Consultant extends SocialRole {/*...*/}
20 class Banking extends SocialInteraction {/*...*/
21 static final CommRoleType [] participants=new CommRoleType []{
22 Customer.type , Consultant.type , Savings.type , Checking.type };
23 /*...*/}

Accordingly, RICA facilitates both social role types and social action types to emphasize their depen-
dence on a social interaction. On the other hand, Serrano and Ossowski [2004] motivates commu-
nicative interactions as reusable abstraction from social interactions [Serrano et al., 2006]. In fact,
Serrano et al. argues that “communicative interactions provide the pragmatic features of application-
dependent social interactions, which basically differ at the semantic level” [Serrano et al., 2006, p.107].
Simply put, they define communicative interactions as application-independent abstractions of so-
cial interactions that define the common participants and actions as communicative role types and
communicative action types, respectively. However, communicative interactions omit application-
dependent features as well as management rules. As a result, the RICA metamodel features agent
types as natural types and interaction types as compartment types. [Serrano and Ossowski, 2004].
However, in order to integrate these concepts into a Java based framework, RICA-J separates the
declaration of classes from the declaration of metaclasses. Similar to the distinction between Object
and Class, RICA-J provides a base class for each instance, e.g. SocialInteraction, SocialRole,
and SocialAction, as well as a class representing the corresponding type, for instance,
SocialInteractionType, SocialRoleType, and SocialActionType. However, in contrast to
Java, the application developer must manually provide the corresponding metamodel definitions
as public static fields. Moreover, as Actions are the main abstraction of behavior, each opera-
tion must be specified in an individual class. Furthermore, the order of execution of these actions
is controlled by a Protocol associated to each Interaction. Notably though, an Agent does not
provide any Action on its own, rather than its behavior is solely determined by the actions provided
by the roles it is currently playing.

Although this model directly mirrors the RICA metamodel, it is very cumbersome to declare the
numerous entities of a concrete social application, such as the banking application. Thus, for the
sake of brevity, Listing 5.9 excludes the definition of the individual Action classes and the manage-
ment code required to implement a particular type. In short, the example shows the definition of so-
cial and communicative interactions and their corresponding role types. In general, the framework
provides individual base classes for each kind of the metamodel. The declaration of the Source
role (Line 4–9), for instance, extends the InteractiveRole class provided by RICA-J framework

80 5 Contemporary Role-based Programming Languages

for communicative role types. As mentioned above, the Source class must contain the specifica-
tion of its type, the type of its player, the type of the communicative interaction it belongs to, and
the communicative actions it provides to its players. Conversely, the Transaction class is mod-
eled as a communicative interaction (Line 11–16) by extending the CommunicativeInteraction,
declaring its type, and specifying the types of its participants, i.e. Source and Target. Due to
the fact that the Transaction is defined as a reusable interaction, it must be further refined to
the FinancialTransaction (Line 17) by specifying the engagement, closing, joining, and leav-
ing rules, not shown in the listing. In contrast, the role types Consultant, Customer, Savings
and Checking are all defined as subclass SocialRole that all participate in the social interaction
Banking. Admittedly, this example hides several fundamental aspects of an actual implementation
of the banking application, for instance, the implementation of the shouldBePlayed method of
role types or the protocol of the Transaction interaction. However, these aspects are buried in Java
source code and hence, not part of the implemented domain model. Thus, while RICA-J provides
an unconventional approach to define role-based applications, it captures the context-dependent
or rather organizational aspects of roles by introducing social interactions, social roles, and social
actions. To put it succinctly, the RICA-J framework supports the behavioral and context-dependent
nature of roles [Serrano and Ossowski, 2004]. In case of the behavioral nature, it supports Feature
1, 3, 5, 7, 10–13, and 15 completely.

In general, both social and communicative role types have properties, associated actions, and a
super type. Moreover, when instantiated, roles carry their own identity and can be played by un-
related agents or other roles. Agents, in turn, acquire and abandon roles dynamically whenever
they join or leave an interaction. Specifically, an agent can play multiple different roles simulta-
neously. Besides that, RICA-J only partially allows for restricting the sequence of role acquisition
and removal (Feature 6), as it must be implemented in both the shouldBePlayed method of the
role type and the joining respectively leaving rule of the corresponding interaction. Nonetheless, it
can be argued that RICA-J also incorporates Feature 19–20, 25 and 26. Especially, when considering
social interactions as compartments. In general, social roles depend on the social interaction they
participate in [Serrano and Ossowski, 2004] Moreover, the state of social interactions is stored in its
parameters, whereas its behavior is specified in the protocol controlling the execution of its partic-
ipants [Serrano et al., 2006]. Furthermore, social interaction implemented as Java classes automat-
ically enable (single) inheritance and guarantee a unique identity. In sum, RICA-J manages to aug-
ment the typical notion of roles in MAS with the notion of social interactions to model the various
organization- or collaboration-dependent behavior typically found in social application domains.
Although it is true that the RICA theory adequately models the behavioral and context-dependent
behavior of roles, the RICA-J framework imposes so much implementation overhead that it be-
comes infeasible to implement even small application. Granted, providing a custom language to
specify RICA models and a compiler to generate the corresponding source code, would solve this
problem immediately.

5.3.3 OBJECTTEAMS/JAVA

In contrast to all other RPLs, ObjectTeams/Java (OT/J) is the only RPL that matured from a research
prototype [Herrmann, 2002] to a featured extension of the Eclipse integrated development environ-
ment (IDE).6 As the name suggests, it is a heavy-weight extension to Java that introduces the notion
of teams to capture context- and collaboration-dependent behavior of objects. Specifically, it adds
16 keywords and 33 grammar rules to the Java syntax [Herrmann and Hundt, 2013].

6http://www.eclipse.org/objectteams

5.3 Context-Dependent Programming Languages 81

http://www.eclipse.org/objectteams

Listing 5.10: Bank example implemented in Object Teams/Java.

1 class Account { Money balance; /*...*/}
2 class Person { String firstName; /*...*/}
3 class Company { String name; /*...*/}
4 team class Transaction{ Money amount; /*...*/
5 class Source playedBy Account
6 when base(! hasRole(base ,Target)) {withdraw -> decrease}
7 class Target playedBy Account
8 when base(! hasRole(base ,Source)) {deposit -> increase}
9 boolean execute(Account as Source f,Account as Target t){

10 /*...*/ f.withdraw(amount); t.deposit(amount); /*...*/
11 }
12 }
13 team class Bank{
14 String name; /*...*/
15 class Checking playedBy Account{/*...*/
16 callin void limited(Money a){ if(a<limit) base.decrease(a); }
17 void limited(Money a) <- replace decrease(Money a);
18 }
19 class Savings playedBy Account{/*...*/ }
20 class Consultant playedBy Person{/*...*/}
21 abstract class Customer{/*...*/}
22 class PersonCustomer extends Customer playedBy Person{/*...*/}
23 class CompanyCustomer extends Customer playedBy Company{/*...*/}
24 class BankCustomer extends Customer playedBy Bank{/*...*/}
25 /*...*/}

Accordingly, Herrmann [2005] had to implement a custom compiler that translates an OT/J program
directly to Java-bytecode. However, unlike other language extensions, he employs an aspect weaver
to augment existing classes, e.g. legacy or third-party classes. Consequently, OT/J allows for adapt-
ing any Java application and library with roles. Conversely, the role types, their behavior and player
type must be declared within a team. In detail, the team keyword declares a special class, whose in-
ner classes become role declarations if their declaration contains the playedBy clause. This clause,
in turn, denotes exactly one class whose instances can play this role type. Within role declarations,
the language supports the declaration of callin and callout bindings. Comparable to constituent
methods [Graversen and Østerbye, 2003] or AOP advices, callin methods can be declared to be in-
voked before, after or instead (keyword replace) of a given player method. In contrast, callout
methods are directly forwarded to the player object. Moreover, OT/J permits the definition of guard
predicates using the keyword when to restrict the activation of teams, roles, and callin methods.
Although both role and team declarations can inherit properties and behavior from a super class, a
class cannot inherit from a role declaration. This ensures that a role declaration is confined within
the team declaration and only accessible within the corresponding team [Herrmann, 2013]. At run-
time, roles are implicitly created and bound whenever an object is passed to a method of an active
team. In detail, OT/J employs lifting [Herrmann, 2007] to detect whether the object already plays the
requested role or to instantiate and bind a suitable role type. Admittedly, these language constructs
represent a small fraction of the OT/J language definition [Herrmann and Hundt, 2013].

Nonetheless, they are sufficient to model the running example. After all, Listing 5.10 outlines
the implementation of the banking application. Basically, the natural types Account, Person and
Company are declared as regular Java classes (Line 1–3), whereas the compartment types Bank and
Transaction are specified as teams. Within each of the team declarations, the corresponding role
types have been declared. On the one hand, Transaction defines the two role types Source and
Target played by Account that declare a callout binding from withdraw to decrease and from
deposit to increase, respectively. Moreover, both role types specify a guard predicate with when

82 5 Contemporary Role-based Programming Languages

to prohibit a player of the Source role to assume a Target role in the same Transaction instance,
and vice versa. Finally, the execute method implicitly creates and binds the given Account ob-
jects as Source and Target before performing the actual money transferal. On the other hand,
the Bank declaration comprises the role declarations for Savings, Checking, Consultant and
a subclasses of Customer for each player type. Because a role declaration can only specify one
player type, the example defines a common base class Customer that is extended by three role
types PersonCustomer, CompanyCustomer, and BankCustomer, which are played by the corre-
sponding class (Line 21–23). Last but not least, the definition of the Savings role type, for instance,
demonstrates the use of callin methods, as it redirects any invocation of the decrease method to
the callin method limited (Line 15 and 16). In conclusion, OT/J is able to fully capture the context-
dependence and dynamics of the banking application.

Moreover, it successfully combines the behavioral and context-dependent nature of roles in an
unprecedented way. As evaluated by Herrmann [2007], Object Teams fully supports Feature 1, 3–6,
8, 10–13, 15 and only Feature 2 and 14 partially.7 In the same way, OT/J also satisfies most of the
contextual features of roles, i.e. Feature 19–20 and 22–26. Indeed, roles can only be declared and
exist within a team declaration and corresponding instance (Feature 19). Besides that, teams re-
semble objects in that they have properties, behavior, and their own identity. Moreover, they can
inherit from another class and play roles themselves (including its own). Despite all that, OT/J only
partially supports occurrence constraints (Feature 27). Granted, they could be implemented using
guard predicates, however, the compiler would not enforce the lower bounds. As a result, OT/J ful-
fills more features of roles than any other RPL considered in this literature review. Admittedly, it
does not provide a formalized metamodel, type system, or operational semantics like other role-
based languages, yet a real programming language has the additional benefit of practical applica-
bility [Herrmann, 2007]. In particular, Herrmann emphasizes that “[his] definition of roles can di-
rectly be validated by writing programs in ObjectTeams/Java and evaluating the results” [Herrmann,
2007, p.181]. In essence, Herrmann argues that a practical implementation of the role concept is
equally suitable for its formal specification, especially, when the language is open source and pub-
licly available via the Eclipse Foundation.8 Though I concede that a practical implementation is
crucial to show the applicability of roles, I still insist that only a formalization of the role concept
enables researchers to investigate and improve different variants of the role concept without being
tied to one implementation.

5.3.4 POWERJAVA

Like EpsilonJ and RICA-J, powerJava was developed by Baldoni et al. [2006a] to bridge the gap
between agent theory and its object-oriented implementation. Specifically, Baldoni et al. [2006a]
believes that “introducing theoretically attractive agent concepts in a widely used language can con-
tribute to the success of the Autonomous Agents and Multiagent Systems research in other fields” [Bal-
doni et al., 2006a, p.73]. Consequently, Baldoni et al. designed powerJava as a lightweight extension
to Java that introduces social roles and institutions as language constructs [Baldoni et al., 2006a]. In
general, Baldoni et al. [2006c] establish roles as entities that are existentially dependent on an insti-
tution and able to grant powers to their players, i.e. by providing methods that permit access to the
private state of the institution, as well as participating roles. To achieve this, powerJava augments
Java by adding 5 new keywords within 7 grammar rules [Baldoni et al., 2007]. In contrast to other
RPLs, however, powerJava separates the declaration of role types into an interface specification (in-
dependent of an institution) and a definition within a specific institution.

7In fact, OT/J suffers from object schizophrenia, although it can be easily cured [Herrmann, 2010].
8http://git.eclipse.org/c/objectteams/org.eclipse.objectteams.git

5.3 Context-Dependent Programming Languages 83

http://git.eclipse.org/c/objectteams/org.eclipse.objectteams.git

Listing 5.11: Bank example implemented in powerJava.

1 class Account { Money balance; /*...*/}
2 interface Party { String getName (); }
3 class Person implements Party {String firstName; /*...*/ }
4 class Company implements Party {String name; /*...*/ }
5 role Source playedby Account{ void withdraw(Money amount); }
6 role Target playedby Account{ void deposit(Money amount); }
7 class Transaction{ Money amount;
8 definerole S realizes Source{/*...*/}
9 definerole T realizes Target{

10 void deposit(Money amount){that.increase(a); }
11 }
12 boolean execute(Account f, Account t){
13 this.new S(f); this.new T(t); ((this.S) f).withdraw(a); /*...*/
14 }
15 }
16 role Customer playedby Party {/*...*/}
17 role Consultant playedby Person {/*...*/}
18 role Checking playedby Account{ void decrease(Money amount); }
19 role Savings playedby Account{ void decrease(Money amount); }
20 class Bank implements Party { String name; /*...*/
21 definerole Con realizes Consultant{String phone; /*...*/}
22 definerole Cus realizes Customer {List <CA > cas; /*...*/}
23 definerole CA realizes Checking {Customer owner; /*...*/}
24 definerole SA realizes Savings {/*...*/}
25 /*...*/}

While the prefix role specifies the methods (or powers) a role provides to the playedby class,
definerole and realize denote its implementation within an institution, granting its player ac-
cess to the institution’s private members. Additionally, powerJava introduces the notion of a role
cast as additional expression of the form (institution.RoleType)object to retrieve a specific
role, a given object plays in an institution. Conversely, the keyword that is available within role im-
plementations to refer to its current player. Regardless, the language does not introduce a keyword
for institutions. Hence, any class containing role definition implicitly declares an institution. Tech-
nically, powerJava utilizes a preprocessor implemented in Java that reads powerJava source code
and generates plain Java source code [Arnaudo et al., 2007] that is still publicly available.9 Notably
though, it injects the interface ObjectWithRoles and the corresponding management methods
into each class able to play a role. In addition, the preprocessor translates role definitions to inner
classes of the corresponding institution. Java’s type system, in turn, ensures the existential depen-
dence of role instances and grants access to the private members of the outer class. In conclusion,
Baldoni et al. demonstrate that powerJava is sufficient to implement MAS and, more generally, role-
based applications [Baldoni et al., 2006c,b, 2007].

To illustrate this, Listing 5.11 sketches the implementation of the banking application. The natu-
ral types Account, Person, and Company are implemented as regular Java classes (Line 1–4). Con-
versely, the role types Source and Target are first specified to be played by Account objects and to
provide the methods withdraw respectively deposit. Afterwards, both are implemented as S and
T within the Transaction institution. Specifically, the implementation of deposit utilizes that
to refer to its player, in Line 10. Moreover, the execute method of Transaction first binds new
role instances of S and T to the accounts f and t, respectively. Next, the role cast (this.S)f re-
trieves the newly bound Source role type and invokes the withdraw method. Likewise, the Bank
institution is implemented by defining and implementing the role types Customer, Consultant,
Savings, and Checking. Notably though, the Customer role type is played by the interface Party.

9http://www.di.unito.it/~guido/powerJava.zip

84 5 Contemporary Role-based Programming Languages

http://www.di.unito.it/~guido/powerJava.zip

Hence, persons, companies, and banks can play the Customer role, however, the role implemen-
tation Cus can only refer to methods defined by the Party interface. In sum, powerJava presents a
simple way to implement the collaboration- and context-dependent dynamics of the banking do-
main. By extension, it manages to combine the behavioral and context-dependent nature of roles
[Baldoni et al., 2006c], as it supports the corresponding features. On the one hand, powerJava fulfills
Feature 1, 3–5, 8–13, and 15 by introducing roles as objects with properties, behavior, inheritance,
and unique identity. Objects can play multiple roles at the same time including roles of the same
type, as long as each instance is tight to another institution. However, unrelated objects cannot
play the same role type (Feature 7), as at least a common interface is required. Likewise, power-
Java does not provide additional means to constrain roles (Feature 6). Nonetheless, role constraints
could be implemented easily by modifying the constructor of each role implementation. On the
other hand, powerJava’s institutions satisfy the contextual Feature 19–20, 22, 24, and 26. In gen-
eral, institutions are represented as classes with roles as inner classes. Thus, institutions can have
properties, behavior, and their own identity. Furthermore, nothing within powerJava prevents the
definition of institutions that contain another institution as inner class, which fulfills Feature 22.
Regardless, it only partially satisfies Feature 21, as only the interface defined by the role keyword
can be shared among institutions. Likewise, powerJava only lacks support for institution inheri-
tance, because Java does not directly support family polymorphism [Ernst, 2001]. Finally, Baldoni
et al. [2010] illustrate how relationships can be implemented with institutions and thus showing
that it partially fulfills Feature 2. Granted, powerJava lacks the support of constituent methods [Gra-
versen and Østerbye, 2002] or true delegation [Herrmann, 2005], yet it successfully introduces both
roles and institutions solely relying on features already provided by Java.

5.3.5 SCALA ROLES

As a more recent contextual RPL, Scala Roles introduces both roles and collaborations, to enable
the dynamic adaptation of objects as well as the description and reuse of object collaborations.
Specifically, Pradel and Odersky [2009] introduce dynamic collaborations to encapsulate the inter-
relations of objects in a certain context. Moreover, collaborations contain a set of roles that specify
the context-dependent behavior of objects [Pradel and Odersky, 2009]. In particular, collaborations
declare the behavior by means of roles that are later played by objects. As a result, a collaboration is
an object-level representation of the context-dependent behavior of collaborating objects that can
be individually instantiated and reused. Notably, most RPLs discussed so far chose Java as their host
language. However, Java’s lack of advanced language features, e.g. traits, dynamic proxies, and im-
plicit conversion, forced many researchers to implement custom compilers or preprocessors hiding
the required management code. To avoid this problem, Pradel and Odersky [2009] decided to im-
plement Scala Roles as an application library for the Scala programming language.10 In this way,
the authors emphasize that “the underlying programming language need not be changed and exist-
ing tools like compilers can be used without modifications” [Pradel and Odersky, 2009, p.27]. In fact,
Scala Roles mainly relies on two language features of Scala. First, the ability to dynamically gener-
ate proxies for player objects. Second, the notion of nested types to implement collaboration types
containing role types. Besides that, Scala Roles employs implicit conversions and dependent method
types to provide a more convenient syntax [Pradel and Odersky, 2009].

10https://www.scala-lang.org

5.3 Context-Dependent Programming Languages 85

https://www.scala-lang.org

Listing 5.12: Bank example implemented with Scala Roles.

1 class Account(val id:Int , var balance:Money){/*...*/}
2 class Person(val firstName:String , /*...*/){/*...*/}
3 class Company(val name:String , /*...*/){/*...*/}
4 trait Transaction(val amount: Money) extends Collaboration{
5 val source=new Source (); val target=new Target ()
6 trait Source extends Role[Account]{
7 def withdraw=core.decrease(amount)
8 }
9 trait Target extends Role[Account]{def deposit=/*...*/}

10 def execute ={ source.withdraw (); target.deposit ()}
11 /*...*/}
12 trait Bank extends Collaboration{
13 val customers = new HashMap[Integer ,Customer]()
14 val consultants = new HashMap[String , Consultant]()
15 /*...*/
16 trait Consultant(val phone:String) extends Role[Person]{/*...*/}
17 trait Checking extends Role[Account]{var limit:Money /*...*/}
18 trait Savings extends Role[Account]{var fee:Double /*...*/}
19 trait Customer extends Role[AnyRef] {var name:String /*...*/}
20 def transferal(val s:Account , val a:Money , val t:Account)={
21 val tr=new Transaction(a); (s as tr.source); (t as tr.target);
22 return tr.execute ();
23 }
24 /*...*/}

Granted, a full-fledged compiler, e.g. OT/J, is able to perform type checking and optimizations on a
role-based program, yet, a language extension provided as an application library is easier to deploy
by practitioners and more amenable to investigation by researcher. This holds true, in particular, as
Scala Roles is open source, publicly available and still working.11

Thus, the implementation of the running example not only demonstrates the use of Scala Roles,
but can actually be executed. As an illustration, Listing 5.12 shows an excerpt of the implemented
banking application. In general, all natural types are implemented as regular classes, such as Account,
Person, and Company (Line 1–3), whereas the compartment types Bank and Transaction are im-
plemented as trait. Traits are types defined by a set of methods including their implementation
that, in contrast to classes, can be partially defined [Pradel and Odersky, 2009]. In the Scala Roles
library, traits are used to declare both collaborations and roles. The Transaction collaboration, for
instance, is defined as a trait extending the Collaboration trait provided by the library. Likewise,
two role types Source and Target inherit from the Role trait. However, they are declared as inner
traits of the Transaction collaboration and provide the withdraw and deposit methods, respec-
tively. In this way, roles have access to the private members of their collaboration and their player
(using the core reference). Finally, the execute method specifies how the money transferal is per-
formed by referring to the role instances source and target of the Transaction collaboration
(Line 10). The Bank collaboration is defined similarly in Line 12–24, however it manages multiple
Customer and Consultant instances with a HashMap. After specifying a collaboration, it can be
instantiated like an ordinary object, and objects can be bound to roles contained in this collabora-
tion using the as expression. In Line 21, for instance, the as operator is used to bind the accounts
s and t to the role instances source and target of the transaction tr. Technically, the as operator
creates an implicit proxy around a player and its roles that is able to dispatch method invocations to
the responsible instance [Pradel and Odersky, 2009].12 Indeed, the created proxy establishes a com-

11https://github.com/tupshin/Scala-Roles
12On a closer examination it occurred that the as operator only binds roles within one statement. To overcome this

limitation, the library provides the StickyCollaboration trait to explicitly assign, retain, and remove roles.

86 5 Contemporary Role-based Programming Languages

https://github.com/tupshin/Scala-Roles

pound object that hides the fact that objects and its roles are distinct objects. In addition, Pradel
and Odersky [2009] implemented the equality operator of these compound objects to ultimately
prevent object schizophrenia [Pradel and Odersky, 2009, Sec. 3.1]. As such, this implementation
appropriately captures the context-dependent collaborations of the banking application.

Accordingly, Scala Roles supports the behavioral and context-dependent nature of roles. In case
of the behavioral nature, Pradel and Odersky [2009] already evaluated their role concept with re-
spect to Steimann’s features of roles and concluded that it fully satisfies Feature 1, 3–5, and 7–
15 [Pradel and Odersky, 2009]. Notably, only Feature 6 is not supported, as Scala Roles does not
constrain which roles can play which objects. Moreover, Scala Roles also incorporates a consider-
able amount of the additional features of roles. Specifically, the notion of dynamic collaborations
fulfills Feature 19, 20, 22, and 24–26. Basically, roles depend on collaborations both on the type-
and the instance-level. Moreover, collaborations are traits with properties, behavior, and multiple
inheritance that can be instantiated to objects. Thus like normal objects, they carry identity and can
play roles. Regardless, using Scala Roles collaborations cannot play roles that are part of themselves,
as this would create recursive types not allowed by the Scala type system. Besides all that, one could
argue that collaborations could be refined to represent relationships (Feature 2). Unfortunately, this
extension has not been investigated further by the authors. Nonetheless, Scala Roles is one of the
few RPLs able to seamlessly combine the context-dependent and behavioral nature of roles without
requiring a custom compiler. In fact, it utilizes advanced language features of Scala, i.e. dynamic
proxies, type nesting, implicit conversions, and dependent method types [Pradel and Odersky, 2009],
to establish a seamless language extension. In conclusion, Pradel and Odersky [2009] presented a
very small implementation of roles that could be easily adopted and extended by both researchers
and practitioners. Designed in this way, one would assume that Scala Roles is a successful RPL by
now. On the contrary, it was barely recognized by later researchers, except for the fellows at the RoSI
research training group.

5.3 Context-Dependent Programming Languages 87

“All definitions of roles discussed here have their
merits and drawbacks.”

— Steimann [2000b]

6 COMPARISON OF ROLE-BASED
LANGUAGES

Undoubtedly, all the 26 role-based modeling and programming languages investigated during this
SLR have their use cases. However, Steimann [2000b] would still be right today contending that all
the definitions of roles have their benefits and shortcomings. Arguably, this could be said about
almost everything. Nonetheless, it misses the point that all these languages share a common no-
tion, and thus should be treated as a family of languages rather than individual approaches. Conse-
quently, this chapter provides a broader perspective on both the RMLs and RPLs by directly compar-
ing them utilizing the classification scheme established in Chapter 2.6. In fact, this comparison will
provide insight into the research fields and practical applicability of role-based modeling and pro-
gramming languages. In particular, the discussion focuses on the commonalities, differences, and
chronological relations of the various approaches, to uncover the structure of the research fields.
Furthermore, the summary also compares the tool support available for each language, in order to
assess the practicality of the contemporary approaches. In conclusion, this chapter summarizes
the results of the conducted SLR by presenting and interpreting the results of the comparison. The
chapter is structured, accordingly. First, Section 6.1 compares the contemporary RMLs by means of
the supported features of roles, provided graphical notation, and published modeling editor. Con-
versely, Section 6.2 discusses the contemporary RPLs comparing the established features of roles,
the syntactic complexity, and the available tool support. Finally, Section 6.3 concludes the SLR by
answering the initial research questions and emphasizing the problems identified in the research
field on role-based modeling and programming languages. The majority of the presented compar-
ison and its results have been published in [Kühn et al., 2014, Kühn et al., 2015a, Kühn and Cazzola,
2016, Kühn et al., 2016].

6.1 COMPARISON OF ROLE-BASED MODELING LANGUAGES

Since Chapter 4 individually described each contemporary RML, this section provides an overview
on these modeling languages by evaluating the features of roles each of them supports. Granted,
these languages differ in their application domain, yet all provide a sufficient definition for roles
to apply the classification scheme. This, in turn, allows for directly comparing the contemporary
modeling languages regardless of their scope or application domain. This comparison provides
some indication whether there exists relations between approaches and whether researchers con-
tinuously improved the notion of roles, e.g., by extending existing RMLs.

89

Table 6.1 aligns the various contemporary RMLs in chronological order, as well as their correspond-
ing classification with respect to the 27 features of roles. In accordance to the evaluations in Chap-
ter 4, each feature can be either fulfilled (�), possible to fulfill (�) or not fulfilled (�). In fact, some
modeling languages lack operational semantics rendering some features not applicable (;), i.e.,
Feature 5, 9, 12 that require dynamic binding, transferring, and accessing role instances. At a first
glance, the reviewed research field appears to advance over the years, as the number of features
supported by each RML increased. On closer examination, however, the table indicates that the
research field suffers from fragmentation and discontinuity. Specifically, fragmentation denotes
that each modeling approach focuses solely on a specific use case or application domain and does
not take previous or related results into consideration [Kühn et al., 2014]. In fact, the conducted
SLR indicates that most approaches were unaware of or reluctant to apply Steimann’s features of
roles [Steimann, 2000b] to classify their notion of roles. To take a case in point, only half of the
RMLs referenced Steimann [2000b], i.e. [Dahchour et al., 2002, Kim et al., 2003, Zhu and Zhou,
2006, Genovese, 2007, Liu and Hu, 2009a, Hennicker and Klarl, 2014], only few actually utilized his
classification scheme, i.e. [Kim et al., 2003, Zhu and Zhou, 2006]. Granted, this might be the result
of the diversity in the research community, yet I would argue that negligence is the main reason for
the apparent fragmentation in this research field. In contrast, discontinuity, emphasizes that each
RML defines the role concept reusing and augmenting previous definitions [Kühn et al., 2014]. To
put it bluntly, none of the investigated approaches reused either formal models or metamodels as
basis for their approach. Similarly, solutions to the representation of roles were not carried one
from one approach to subsequent ones, but were just reinvented. As an illustration, consider the
feature rich notion of roles established by the TAO framework [Da Silva et al., 2003]. In spite of its
early proposal in 2003, it has neither been utilized to define the similar INM nor extended to de-
fine subsequent modeling languages. Even though the number of features increased in the past 16
years, however, there has been no continuous improvement or combination of previously proposed
role-based modeling languages. Furthermore, because the various RMLs neither share a common
underlying model nor a common understanding of roles, researcher are unable to combine the
behavioral, relational, and context-dependent modeling languages. Evidently, the research field
suffers from fragmentation and discontinuity [Kühn et al., 2014].

Although the research field’s condition is important for researchers, it hardly tells anything about
the practical applicability of contemporary RMLs. Henceforth, the discussion focuses on those
modeling languages that provide a graphical modeling editor and/or introduce a graphical nota-
tion. Up to my best knowledge, ORM 2 [Halpin, 2005] and OntoUML [Benevides and Guizzardi,
2009] are the only RMLs that provide a dedicated graphical editor that is publicly available. How-
ever, they only support the relational and behavioral nature of roles. Besides that, most contempo-
rary RMLs introduce a graphical notation for roles by either providing their own notation or utilizing
UML. On the one hand, both ORM 2 [Halpin, 2005] and INM [Liu and Hu, 2009a] propose new nota-
tions based on ER. While ORM 2 provides a very concise notation for relational roles featuring a vast
amount of modeling constraints, INM’s notation is cluttered mixing entities, context-dependent
roles, and multiple kinds of relations [Kühn et al., 2016]. On the other hand, the following model-
ing languages extend UML and/or employ UML stereotypes to establish their graphical notation.
Specifically, the revised UML [Steimann, 2000c] and the Generic Role Model [Dahchour et al., 2002]
both extend UML class diagrams. While Steimann [2000c] adds roles, relationships, and fills re-
lations, Dahchour et al. [2002] only introduces the fills-relation as a special inheritance relation.
Accordingly, RBML [Kim et al., 2002], OntoUML [Guizzardi and Wagner, 2012], and the Helena Ap-
proach [Hennicker and Klarl, 2014] define dedicated UML stereotypes to distinguish between the
various model elements, e.g. natural types, role types, and ensemble types.

90 6 Comparison of Role-based Languages

Table 6.1: Comparison of role-based modeling languages, extended from [Kühn et al., 2014]
F e

at
u

re
s

[K
ü

h
n

et
al

.,
20

14
]

L
o

d
w

ic
k

[S
te

im
an

n
,2

00
0b

]

G
en

er
ic

R
o

le
M

o
d

el
[D

ah
ch

o
u

r
et

al
.,

20
02

]

T A
O

[D
a

Si
lv

a
et

al
.,

20
03

]

R
B

M
L

[K
im

et
al

.,
20

03
]

R
o

le
-B

as
ed

P
at

te
rn

s
[K

im
an

d
C

ar
ri

n
gt

o
n

,2
00

4]

O
R

M
2

[H
al

p
in

,2
00

5]

E
-C

A
R

G
O

[Z
h

u
an

d
Z

h
o

u
,2

00
6]

M
et

am
o

d
el

fo
r

R
o

le
s

[G
en

ov
es

e,
20

07
]

IN
M

[L
iu

an
d

H
u

,2
00

9a
]

D
C

I
[R

ee
n

sk
au

g
an

d
C

o
p

li
en

,2
00

9]

O
n

to
U

M
L

[G
u

iz
za

rd
ia

n
d

W
ag

n
er

,2
01

2]

H
el

en
a

A
p

p
ro

ac
h

[H
en

n
ic

ke
r

an
d

K
la

rl
,2

01
4]

1 � � � � � � � � � � � �

2 � � � � � � � � � � � �

3 � � � � � � � � � � � �

4 � � � � � � � � � � ∅ �

5 � � ∅ ∅ ∅ � � � ∅ � ∅ �

6 � � ∅ ∅ � � � ∅ � � � �

7 � � � � � � � � � � � �

8 � � � � � � � � � � � �

9 � � � ∅ ∅ ∅ � � ∅ � ∅ �

10 � � � ∅ � ∅ � � � � � �

11 � � � � � � � � � � � �

12 ∅ � � � ∅ ∅ � ∅ ∅ � ∅ �

13 � � � � � � � � � � � �

14 � � � � � � � � � � � �

15 � � � � � � � � � � � �

16 � � � � � � � � � � � �

17 � � � � � � � � � � � �

18 � � � � � � � � � � � �

19 � � � � � � � � � � � �

20 � � � � � � � � � � � �

21 � � � � � � � � � � � �

22 � � � � � � � � � � � �

23 � � � � � � � � � � � �

24 � � � � � � � � � � � �

25 � � � � � � � � � � � �

26 � � � � � � � � � � � �

27 � � � � � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

6.1 Comparison of Role-Based Modeling Languages 91

Nonetheless, each of them needed to extend UML, for instance, to add occurrence constraints or ad-
ditional formal relations. While the above languages are usable with any UML editor, they are hard
to comprehend as they require reading the stereotype annotations [Moody, 2009]. In conclusion,
due to the discontinuity and the fragmentation of the research field, only few RMLs published since
2000 matured to be extensible and applicable by researchers and practitioners, alike.

6.2 COMPARISON OF ROLE-BASED PROGRAMMING LANGUAGES

After comparing the contemporary RMLs, this section provides a similar comparison of the con-
temporary RPL to assess the structure and progress in this research field. In addition to that, the
discussion focuses on the practical applicability and extensibility of the various by taking their syn-
tactic complexity, host language, and compiler availability into account. Ultimately, this compari-
son indicates whether the research field on RPLs also suffers from fragmentation and discontinuity
and whether RPLs can be employed in practice.

Hence, Table 6.2 shows the corresponding comparison of the thirteen contemporary RPLs with
respect to the 27 features of roles. In contrast to modeling languages, all features are applicable, as
programming languages operate on both the model- and instance-level. Accordingly, most RPLs
treat roles as objects featuring their own properties and behavior (Feature 1). The only exception
is the data programming language Relations [Harkes and Visser, 2014], which lacks operations to
dynamically bind or unbind roles rendering Feature 5 and 12 not applicable. Nonetheless, the table
generally evinces the presence of fragmentation and discontinuity in the research field on RPLs.
In case of fragmentation, the diversity of the application domains and features supported by the
various RPLs already hints that only few approach take previous modeling or programming lan-
guages into account. Specifically, the literature review elucidated that only one third (4 of 13) of
the programming languages referred to Steimann’s unifying definition of roles [Steimann, 2000b],
i.e. OT/J [Herrmann, 2005], powerJava [Boella and Van Der Torre, 2007], Scala Roles [Pradel and
Odersky, 2009], and JavaStage [Barbosa and Aguiar, 2012]. Nevertheless, three of them (except
JavaStage) applied his features to delineate their approach. Yet, most approaches published since
2005 at least reference OT/J as related work, except for Rava [He et al., 2006] and Relations [Harkes
and Visser, 2014]. In general, however, most approaches considered only a limited number of RPLs
as related approaches, usually excluding RMLs. Clearly, this effect cannot only be attributed to the
diversity of the application domains.1 Conversely, discontinuity becomes apparent when regarding
the improvements in the research field. Generally, programming languages included more features
over time. However, if one considers that OT/J [Herrmann, 2005] already managed to support most
features of roles by the year 2005, it is rather surprising, that none of the subsequent RPL were able
exceed its number of features. Even though Scala Roles [Pradel and Odersky, 2009] came close to
OT/J, both languages have not been employed and/or improved by more recent approaches. More-
over, each language provides its own syntax for the definition of roles, compartments, and rela-
tionships without using a common terminology or common semantics [Kühn and Cazzola, 2016].
Basically, the various languages reimplemented the required language constructs, such as a role
definition, both syntactically and semantically. Furthermore, most of the contemporary RPLs were
only explored in up to three subsequent publications and then abandoned completely. In fact, only
EpsilonJ [Ubayashi and Tamai, 2001] and OT/J [Herrmann, 2005] have been continuously utilized,
extended or improved by the authors. As a result, most of the research field on RPLs suffers from
fragmentation and discontinuity.

1Consider Barbosa and Aguiar [2012] claim that “[this] is the first language to tackle the static role use” [Barbosa and
Aguiar, 2012, p.143]

92 6 Comparison of Role-based Languages

Table 6.2: Comparison of role-based programming languages, extended from [Kühn et al., 2014]

F e
at

u
re

s
[K

ü
h

n
et

al
.,

20
14

]

E
p

si
lo

n
J

[U
b

ay
as

h
ia

n
d

Ta
m

ai
,2

00
1]

C
h

am
el

eo
n

[G
ra

ve
rs

en
an

d
Ø

st
er

b
ye

,2
00

3]

R
IC

A
-J

[S
er

ra
n

o
an

d
O

ss
ow

sk
i,

20
04

]

JA
W

IR
O

[S
el

çu
k

an
d

E
rd

o
ğa

n
,2

00
4]

O
T

/J
[H

er
rm

an
n

,2
00

5]

R
av

a
[H

e
et

al
.,

20
06

]

p
ow

er
Ja

va
[B

al
d

o
n

ie
ta

l.,
20

06
c]

R
u

m
er

[B
al

ze
r

et
al

.,
20

07
]

Fi
rs

t-
C

la
ss

R
el

at
io

n
sh

ip
s

[N
el

so
n

et
al

.,
20

08
]

Sc
al

a
R

o
le

s
[P

ra
d

el
an

d
O

d
er

sk
y,

20
09

]

N
ex

tE
J

[K
am

in
a

an
d

Ta
m

ai
,2

00
9]

Ja
va

St
ag

e
[B

ar
b

o
sa

an
d

A
gu

ia
r,

20
12

]

R
el

at
io

n
s

[H
ar

ke
s

an
d

V
is

se
r,

20
14

]

1 � � � � � � � � � � � � �

2 � � � � � � � � � � � � �

3 � � � � � � � � � � � � �

4 � � � � � � � � � � � � �

5 � � � � � � � � � � � � ∅
6 � � � � � � � � � � � � �

7 � � � � � � � � � � � � �

8 � � � � � � � � � � � � �

9 � � � � � � � � � � � � �

10 � � � � � � � � � � � � �

11 � � � � � � � � � � � � �

12 � � � � � � � � � � � � ∅
13 � � � � � � � � � � � � �

14 � � � � � � � � � � � � �

15 � � � � � � � � � � � � �

16 � � � � � � � � � � � � �

17 � � � � � � � � � � � � �

18 � � � � � � � � � � � � �

19 � � � � � � � � � � � � �

20 � � � � � � � � � � � � �

21 � � � � � � � � � � � � �

22 � � � � � � � � � � � � �

23 � � � � � � � � � � � � �

24 � � � � � � � � � � � � �

25 � � � � � � � � � � � � �

26 � � � � � � � � � � � � �

27 � � � � � � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

6.2 Comparison of Role-Based Programming Languages 93

One might argue that Graversen [2006] provides a more suitable classification of RPLs. Though
I concede that Graversen’s feature model is more suitable to compare the different runtime envi-
ronments, I still insist that our classification scheme provides useful insights into the constructs,
concepts, and relations introduced by RPLs to encode the different natures of roles.

After discussing the research field on RPLs, it is important to evaluate the practical applicability
and extensibility of the various approaches by both researchers and practitioners. In accordance,
the programming languages are henceforth compared by means of their host language, availability
of their grammar, and viability of their implementation. For instance, eight of the contemporary
RPLs extend the Java programming language by adding multiple syntactic language constructs,
whereas both JAWIRO [Selçuk and Erdoğan, 2004] and RICA-J [Serrano and Ossowski, 2004] intro-
duce the notion of roles to Java by providing an application library. Similarly, Scala Roles presents
a very lightweight application library for Scala that introduces roles utilizing Scala’s flexible syn-
tax. Last but not least, Rumer [Balzer, 2011] and Relations [Harkes and Visser, 2014] are full-fledged
programming languages that define a complete syntax, type system, and semantics. By contrast,
only five of the language extensions actually provided a partial grammar, i.e. OT/J [Herrmann and
Hundt, 2013], Rava [He et al., 2006], powerJava [Arnaudo et al., 2007], NextEJ [Kamina and Tamai,
2010], and JavaStage [Barbosa and Aguiar, 2012]. More important than the availability of partial
grammars, is the availability of actual implementations. Unfortunately, only five of the thirteen
contemporary RPLs made their compilers or libraries publicly available, i.e. EpsilonJ,2 OT/J,3 pow-
erJava,4 Scala Roles,5 Relations,6 even though the other authors were contacted and asked for their
implementation. Indeed, its is possible to still run these compilers, when compiled and executed
in the corresponding environment. Despite that, only OT/J is fully integrated into the Eclipse IDE.
This not only includes an editor, a compiler, and a debugger; but also the support of a small commu-
nity of role-based programmers. While this makes it very easy for practitioners to give role-based
programming a try, the compiler is to complex to be easily extensible by researchers. Arguably, a
lightweight approach like Scala Roles would be a better choice for them. In conclusion, there are at
least two viable RPLs available to both researchers and practitioners, however, this did not lead to a
wide spread use of either of them. This raises the question, why researchers develop new languages
from scratch rather than improve upon an existing programming language?

6.3 RESULTS AND FINDINGS

After evaluating and comparing the contemporary role-based languages, this section elucidates
the findings and results of the conducted SLR. In general, the survey provides evidence that both
the research field on role-based modeling and role-based programming languages suffer from frag-
mentation and discontinuity [Kühn et al., 2014]. Especially, as most approaches reinvent the notion
of roles without taking previous definitions into account. Although this might be the result of neg-
ligence, I argue that this is due to a lack of a common understanding of roles among researchers. In
fact, researchers attribute different features to roles that fit their particular use case or application
domain without being aware of the relations to features of related works. This becomes evident
when answering the research questions.

2http://tamai-lab.ws.hosei.ac.jp/pub/epsilon/epsilonj/index.html
3http://git.eclipse.org/c/objectteams/org.eclipse.objectteams.git
4http://www.di.unito.it/~guido/powerJava.zip
5https://github.com/tupshin/Scala-Roles
6https://github.com/metaborg/relations

94 6 Comparison of Role-based Languages

http://tamai-lab.ws.hosei.ac.jp/pub/epsilon/epsilonj/index.html
http://git.eclipse.org/c/objectteams/org.eclipse.objectteams.git
http://www.di.unito.it/~guido/powerJava.zip
https://github.com/tupshin/Scala-Roles
https://github.com/metaborg/relations

First, is there a common subset of features all contemporary approaches satisfy? Yes, but it only
consists of Feature 1 stating that roles have properties and behaviors, as well as Feature 3 declaring
that objects can play multiple roles simultaneously. Besides these two, the investigation of the rows
of both tables indicate that neither the set of RMLs nor the set of RPLs share a significant amount of
common features. This, in turn, is surprising due to the fact that Steimann [2000b] already estab-
lished such a set by defining Lodwick as the lowest common denominator.

Second, how did Steimann’s seminal work influenced the research field? In fact, his work had only
a limited influence on contemporary RMLs and RPLs. In particular, only few role-based languages
actually applied his classification scheme [Kim et al., 2003, Herrmann, 2005, Zhu and Zhou, 2006,
Boella and Van Der Torre, 2007, Pradel and Odersky, 2009]. Nonetheless, none of the role-based
languages used or extended Lodwick’s definition of roles. In sum, less than half (11 of 26) of the
approaches referenced [Steimann, 2000b] as related work. Evidently, his work did not harmonize
and foster the research on role-based languages as he intended [Steimann, 2000b].

Finally, have advances in RMLs been adopted by later RPLs and vice versa? In the same way as
Lodwick was overlooked, most RMLs only considered other modeling languages as related work.
Conversely, most RPLs relate themselves to other programming languages, but, at least OT/J [Her-
rmann, 2005], powerJava [Boella and Van Der Torre, 2007], and Scala Roles [Pradel and Odersky,
2009] founded their notion of roles on the conceptual framework provided by Steimann [2000b]. In
consequence, the SLR uncovered the following problems in the research fields on RMLs and RPLs:

• There is neither a common understanding nor common feature set shared among the different
contemporary role-based modeling and programming languages.

• The research fields on RMLs and RPLs are characterized by an ongoing discontinuity and
fragmentation. Specifically, most approaches reinvent the role concept without taking the
definitions of preceding related approaches into account.

• Only four RMLs provide a sufficient formal foundation for roles able to incorporate all natures
of roles, i.e. [Da Silva et al., 2003, Genovese, 2007, Liu and Hu, 2009a, Hennicker and Klarl,
2014]. Regardless, none of them is able to support all features of roles.

• Last but not least, most role-based modeling and programming languages are not readily
applicable, due to their complexity, ambiguous terminology, and/or missing tool support.
Even though OT/J represents a feature rich, practically usable programming language, there
is no corresponding readily applicable modeling language.

To approach these problems, the second part of this thesis aims at harmonizing both research fields
by providing the formal foundations of combined role-based modeling languages, as well as a fam-
ily of RMLs supported by a flexible modeling editor.

6.3 Results and Findings 95

PART II

FAMILY OF ROLE-BASED MODELING
LANGUAGES

97

“All models are wrong, but some are useful.”
— Box [1979]

7 FOUNDATIONS OF ROLE-BASED
MODELING LANGUAGES

Following the argument of George E. P. Box, every model used to represent a system under study
is deemed wrong, however, as history proofs, models can simplify, abstract, and focus the real
world [Murer et al., 2008]. These useful models share four important properties [Henderson-Sellers,
2012]. First, they provide clarity, about the concepts, relations, and their properties for all users of
the model. Second, all users must be committed to the model, the representation, and possible con-
sequences. Third, useful models sufficiently represent the system under study and can be used for
communication. Last but not least, the same model must be used to control the specification, de-
sign, implementation, and verification throughout the development process. As a result, everyone
should focus on modeling languages capable of producing useful models.

In case of role-based modeling languages (RMLs), three blocking factors have to be addressed
to enable both researchers and practitioners to produce useful role models. First, besides the intu-
itive semantics underlying the role concept, its notions must be ontologically founded and formally
specified to create a coherent understanding of roles. Moreover, the formalization must combine
the behavioral, relational, and context-dependent nature of roles into a comprehensive framework,
especially, since most preceding formalizations focus either on the relational or context-dependent
nature of roles, such as [Steimann, 2000b, Kim and Carrington, 2004, Balzer and Gross, 2011] and
[Zhu and Zhou, 2006, Genovese, 2007], respectively. Furthermore, the formal framework must in-
corporate most of the modeling constraints of RMLs. In sum, this formal foundation provides clar-
ity to both researchers and practitioners, alike. Second, there is no common graphical notation for
role models that includes the various kinds of concepts. While most RMLs proposed a graphical no-
tation based on UML, they usually resort to textual differentiation of concepts by means of stereo-
types. This, however, is a “cognitively inefficient way of dealing with excessive graphic complexity,
[. . .] as text processing relies on less efficient cognitive processes” [Moody, 2009, p.764]. Thus, to tame
the graphic complexity of role models, a concise and comprehensive graphical notation must be
provided for their specification. This, in turn, permits researchers and software designers to use
role models to communicate their ideas, domain models, and software designs. Last but not least,
there is a lack of tools that support the design, validation, and generation of role-based software
systems. Although Halpin [2005] as well as Benevides and Guizzardi [2009] developed dedicated
graphical editors, there exists no graphical editor for role models supporting all natures of roles and
the various modeling constraints.

99

Along the same lines, only few approaches provide means to verify the well-formedness of a model
or the consistency of its instances, e.g. [Kim and Carrington, 2004, Halpin, 2005, Benevides and
Guizzardi, 2009, Hennicker et al., 2015]. In fact, to permit the scalability of an RML, automatic
mechanisms to validate the well-formedness and consistency are required. Moreover, in order to
design role-based systems in practice, additional tools must be provided to generate corresponding
(partial) implementations from a given role model. This permits a fluent transition from a role-
based design of an application to its implementation. As a result, additional tool support permits
the use of the formal model to control the specification, design, verification, and implementation
of role-based software systems.1

To overcome the first deficiency, this chapter provides both the ontological foundation and a
comprehensive formal model for roles, denoted Compartment Role Object Model (CROM), that
combines all natures of roles as well as various modeling constraints [Kühn et al., 2015a,b]. To
address the second issue accordingly, a corresponding graphical notation is introduced that stan-
dardizes the various visual representations of roles [Kühn et al., 2015a,b]. Finally, the third blocking
factor is addressed in two ways. On the one hand, a reference implementation of the formal model
is provided that is viable for both formal and automatic verification of well-formedness of mod-
els at design time and the consistency of their instances at runtime [Kühn et al., 2015a,b]. On the
other hand, a corresponding Full-fledged Role Modeling Editor (FRaMED) is presented [Kühn et al.,
2016]. FRaMED is a fully functional modeling editor that includes all natures and proposed model-
ing constraints. Moreover, it features distinct code generators generating either a formal represen-
tation based on the reference implementation, a model of the context description logic [Böhme and
Lippmann, 2015], an RSQL schema [Jäkel et al., 2016], or a partial implementation in the Scala Roles
Language (SCROLL) [Leuthäuser and Aßmann, 2015]. In conclusion, both CROM and FRaMED pro-
vide all means necessary to allow both researchers and practitioners to model, reason about, and
implement role-based software systems. To put it bluntly, FRaMED is a graphical editor designed
to establish CROM as a useful RML.

This chapter is structured accordingly. Section 7.1 provides the ontological foundation for RMLs,
and Section 7.2 illustrates the graphical notation for role models. Afterwards, Section 7.3 highlights
the formalization of CROM without inheritance, as published in [Kühn et al., 2015a]. Accordingly,
Section 7.4 augments the formalization of CROM to include inheritance, as well. Using the former
formalization, Section 7.5 outlines the main aspects of reference implementation. In addition to
that, Section 7.6 highlights the tool support provided by the graphical modeling editor FRaMED.

7.1 ONTOLOGICAL FOUNDATION

Before providing any formal definition, it is crucial to classify the different kinds of concepts em-
ployed by the foundational RML introduced henceforth. Without this distinction, designers of role-
based software systems are unable to decide whether a concept should be modeled as either natural
type, role type, compartment type, or relationship type. Hence, this section provides the ontological
foundation for role-based modeling by utilizing established metaproperties to classify the afore-
mentioned kinds of concepts. The presented ontological foundation has been published in [Kühn
et al., 2015a,b, Jäkel et al., 2016].

1Notably though, only commitment must be provided by the users of the RML to facilitate useful role models.

100 7 Foundations of Role-Based Modeling Languages

7.1.1 METAPROPERTIES

In order to provide a clear ontological distinction for the various concepts, three well-established
ontological metaproperties are employed: rigidity, identity and foundedness (dependence).

First, rigidity [Guarino and Welty, 2000, 2009, Guizzardi, 2005] denotes that “a property is rigid
if it is essential to all its possible instances; an instance of a rigid property cannot stop being an in-
stance of that property in a different world.” [Guarino and Welty, 2009, p.203]. Accordingly, if a type
is a property of an instance, then instances of a rigid type belong to that type until they cease to
exist [Guizzardi, 2005]. A person, for instance, can be considered a rigid type, because you can only
stop being a person if you die. In contrast, instances of a non-rigid type can start and stop belong-
ing to that type multiple times throughout their lifetime.2 For example, the instance Doreen can
start and stop to be of type customer depending on the situation, while still being the same person.
Simply put, an instance of a non-rigid type can lose this type without losing its identity.

In accordance, the metaproperty identity [Guarino and Welty, 2000, 2009] distinguishes “between
properties that carry an identity criterion and properties that do not” [Guarino and Welty, 2009,
p.204]. In case of two instances of a certain type, the identity criterion determines whether both
are considered equal. In consequence, a distinction is made between instances that have no, a
unique (owned) or a derived (supplied) identity [Guarino and Welty, 2009]. A person, for instance,
has a unique identity throughout its live time, whereas a consultant derives its identity from the
person in that role. In addition, the notion of composite identity denotes the composition of the
identities of two instances. An instance (tuple) of the trans relationship, for instance, is identified
by the combined identities of the source and target accounts.

The third metaproperty, foundedness (dependence) [Guarino and Welty, 2000, 2009, Mizoguchi
et al., 2012] defines that a “property ϕ is externally dependent on a property ψ if, for all its instances
x, necessarily some instance of ψ must exist, which is not a part nor a constituent of x” [Guarino and
Welty, 2000, p.103]. With respect to types, this entails that instances of a founded type (dependent
type) can only exist when also an instance of another type exists at the same time. Again, the cus-
tomer of our bank application is such a founded type, as instances of bank customers depend on
the existence of the corresponding bank. Notably though, a type might be existentially-dependent
on multiple different types.

In conclusion, these three metaproperties are sufficient to distinguish the concepts found in
RMLs. However, in contrast to Guarino and Welty [2009], who favor the term property to classify
sets of instances to avoid confusion, both Steimann [2000b] and Guizzardi [2005] argue that a dis-
tinction between types and instances respectively universals and individuals is more suitable for
the specification of conceptual modeling languages, as it corresponds to the metalevel hierarchy.
Following their argument, this thesis strictly separates the model level containing types from the
instance level containing instances, whereas each instance belongs to at least one type.

7.1.2 CLASSIFYING MODELING CONCEPTS

By applying the metalevel hierarchy and the three ontological properties, it is possible to discern
the following four kinds of concepts on the model level [Kühn et al., 2015a].

Natural Types are rigid, not founded, and their instances carry their own unique identity. Thus,
instances of natural types, denoted naturals, have an immutable, independent type and identity.
The entities person, company, and account are natural types in the banking application.

2For simplicity, we do not distinguish between semi-rigid and anti-rigid properties [Guarino and Welty, 2009].

7.1 Ontological Foundation 101

Table 7.1: Ontological classification of concepts

Concept Rigidity Foundedness Identity Examples
Natural Types yes no unique person, account
Role Types no yes derived customer, consultant
Compartment Types yes yes unique rransaction, bank
Relationship Types yes yes composite advises, own_ca

Role Types, in contrast, are not rigid,3 founded, and their instances only derive their identity from
their players. In fact, instances of role types, simply called roles, depend on the identity of their
player as well as a foundational relation to their context [Mizoguchi et al., 2012], i.e. the participate
relation to instances of compartment types. Consequently, instances of a rigid type can dynamically
adopt role types by playing one of its instances. In accordance to that, most entities in the banking
domain become role types, e.g. consultants, customer, source, and target.

Compartment Types are rigid, founded, and their instances have a unique identity. Hence, in-
stances of compartment types, henceforth denoted compartments, are founded on the existence of
participating roles. For example, both banks and transactions are considered compartment types,
as they are existentially-dependent on consultant respectively source and target role types.

Relationship Types are rigid, founded, and have a composed identity. They represent binary rela-
tionships between two distinct role types.4 Specifically, the identity of links (relationship instances)
is composed from the identities of the players of the participating roles. Consider, for instance, the
advises link between the consultant Doreen and the customer Google whose identity is a composi-
tion of the identity of Doreen and Google.

Table 7.1 summarizes the ontological classification of natural types, role types, compartment types,
and relationship types with respect to the introduced metaproperties.5 Though I concede that more
complex ontological classifications for roles, compartments and relationships exist, e.g. [Guizzardi,
2005, Masolo et al., 2004, Loebe, 2005, Boella and Van Der Torre, 2007], I still insist that the presented
classification is sufficient and appropriate to distinguish the various concepts found in typical ap-
plication domains. In fact, one only needs to ask the following three questions to classify a given
domain concept as either a natural type, role type, compartment type or relationship type:

• Do instances of the concept belong to this type throughout their lifetime?

• Do instances of the concept depend on the existence of another instance to exist?

• Do instances of the concept carry a unique, derived or composite identity criterion?

Please note, however, that the answers to these question greatly depend on the modeled domain.
Specifically, while in one domain student might be a role type in a university, it might be a natural
type when modeling exam regulations. In conclusion, the presented ontological foundation pro-
vides a tool for both researchers and domain engineers to classify the concepts found in a given
system under study.

3According to Guizzardi [2005] role types are classified as anti-rigid.
4Notably though, n-ary relationships can be represented with n binary relationships.
5Likewise, data types, such as money, temperature, or integer, can be classified as rigid, not founded, and have an

identity derived from its state.

102 7 Foundations of Role-Based Modeling Languages

Fulfilment (fills-Relation)

RigidTypeRoleType

cardA cardBA B

Binary Relationship

CompType

Participation (participates-Relation)

RoleType1 RoleTypeN
...

Rigid Type Inheritance

RigidType SubType

RelType

RelationsEntities

Natural Types

Role Types

NaturalType
fields

methods()

fields
methods()

RoleType

Data Types

DataType
fields

methods()

fields
methods()
RoleTypes

Compartment Types

CompType

Figure 7.1: Graphical notation for role models.

7.2 GRAPHICAL NOTATION

After discussing the ontological foundation, this section facilitates a common graphical notation
for RMLs by outlining its visualization and illustrating its use. In accordance with the distinction
between types and instances, this section first illustrates the notation for entities and their relations
on the model level, before exemplifying the corresponding notation on the instance level. Last
but not least, visual representations for the various modeling constraints found in contemporary
RMLs are introduced. In general, the graphical notation was introduced in [Kühn et al., 2015a] and
is greatly inspired by UML as well as the notations presented in [Riehle and Gross, 1998, Balzer
et al., 2007, Halpin, 2005, Herrmann, 2005]. However, in contrast to most contemporary graphical
models, the proposed graphical notation follows the guidelines for visual languages proposed by
Moody [2009].

7.2.1 MODEL LEVEL NOTATION

The design of a superior visual notation for RMLs is challenging, due to the increased number of
modeling concepts and interrelations to incorporate. In contrast to UML class diagrams that only
deals with classes, associations, and inheritance relations, a visual language for role models is more
complex. It must provided different graphical symbols to visual distinguish natural types, compart-
ment types and role types as well as their interrelations, e.g. fills and participates relations [Moody,
2009]. Like in UML, all types are represented as boxes with three segments containing the corre-
sponding name, attributes and operations. However, to make role types easily distinguishable, they
are drawn as boxes with rounded edges and with a gray background. In turn, all rigid types, i.e. nat-
ural, data and compartment types, are drawn as white boxes to visually associate their shape to
the ability to fill role types. By extension, only compartment types have an additional segment that
contains its participating role types, and relationship types. Similar to UML, relationship types are
depicted as labeled lines between two role types, inheritance between rigid types is drawn with a
white headed arrow from the subtype to the supertype, and the fills relation is denoted by a black
headed arrow from a rigid type to the filled role type. In contrast to these relations depicted as a
line, the participates relation (from compartment types to its role types) is directly represented as
visually containment of role types within a compartment type. This, in turn, reflects the strong
existentially dependency of role types to their compartment types. In sum, Figure 7.1 presents a
common visual syntax for RMLs that not only provides a clear distinction between the modeling
concepts and relations, but also corroborates their ontological foundation.

7.2 Graphical Notation 103

name:String creationtime:DateTime
amount:Money

Bank Transaction

Account
id:int
balance: Money

trans

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

own_sa

advises

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

execution:DateTime

MoneyTransfer

phone:String

Consultant

Figure 7.2: Role model of the banking application without constraints.

As an illustration, Figure 7.2 shows the corresponding model of the banking application showcasing
the proposed visual language. Arguably, this representation of the banking domain is more concise
and comprehensive than the corresponding representations of the contemporary combined mod-
eling languages (cf. Section 4.3). Indeed, it omits the use of stereotypes as visual classifier, like in the
Helena Approach [Hennicker and Klarl, 2014], or an overload of indistinguishable visual shapes and
relations, as in TAO [Da Silva and De Lucena, 2007] or INM [Hu and Liu, 2009].6 In consequence,
this visual language for RMLs is able to tame the inherent complexity of the role concept by follow-
ing the Principles for Designing Effective Visual Notations [Moody, 2009]. In essence, the graphical
notations provide easily distinguishable graphical representations for each modeling concept and
relation that reflects their intended semantics.

7.2.2 GRAPHICAL MODELING CONSTRAINTS

Even though the presented graphical notation captures the structure of role models, it lacks vi-
sual representations for the various modeling constraints, e.g. role constraints, intra-, and inter-
relationship constraints, introduced in the contemporary literature. This is of particular impor-
tance, as the specification of constraints are a crucial aspect of domain modeling. Moreover, repre-
senting them visually makes them more accessible and recognizable, especially, when compared to
their textual counterparts, e.g. OCL constraints added to UML class diagrams [Warmer and Kleppe,
1998]. However, to distinguish the modeling constraints from the other model elements, all con-
straints are drawn using dashed lines. In consequence, the graphical notation is augmented by
adding visual representations for various modeling constraints, as shown in Figure 7.3. In general,
these constraints range from typical local role constraints [Riehle and Gross, 1998] and relationships
constraints [Balzer et al., 2007, Halpin, 2005] to global role constraints.

6See Figure 4.7, 4.8, and 4.9 for a direct comparison of their representations.

104 7 Foundations of Role-Based Modeling Languages

A B

Intra-Relationship Constraints

irreflexive, acyclic, total, ...

Local Role Constraints

RoleGroup (n..m)

Role Groups

...

cardA cardB

Inter-Relationship Constraints

A

B

cardA

cardB

CcardC cardD

card = (n...m)
where n is lower and m upper bound

RG

∃CT

RGRG

∀CT ∇CT

Global Role Constraints

Universal Existential Relevant

RG_kRG_1

Occurence Constraints

Compartment Type
card1 cardk

RG_1 RG_k

D

cardE

cardF

CT_A

Global Implications / Prohibition

A

CT_B

B

∀

∃

∇

A B

Role Implication

Role Prohibition

Role Equivalence

Relationship Constraints

Role Constraints

Universal

Existential

Relevant

Prohibition

Rel. Implication

Rel. Exclusion

Figure 7.3: Graphical notation for various modeling constraints.

Firstly, local role constraints cover all constraints imposed on roles within a particular compart-
ment instance. In detail, role constraints are represented by dashed boxes denoting role groups
and dashed arrows between role types (and role groups) denoting role dependency relations. While
role groups are a novel construct to impose a cardinality constraint on the players of a set of roles in-
spired by the cardinality operator [Van Hentenryck and Deville, 1990], role dependencies have been
proposed by Riehle [1997] to requires or prohibits playing a role when another role is already played
by an object. Specifically, the graphical notation follows Riehle’s notation [Riehle and Gross, 1998]
indicating role implications and role equivalence with a white arrow head and role prohibition with
a horizontal line at both ends of the arrow. Finally, occurrence constraints [Kim et al., 2003, Zhu and
Zhou, 2006, Hennicker and Klarl, 2014] are indicated by placing cardinalities above role types. Rela-
tionship constraints, in turn, includes cardinality constraints as well as intra- and inter-relationship
constraints [Halpin, 2005, Balzer et al., 2007]. Cardinality constraints imposed on relationship types
are noted at the corresponding relationship ends, whereas the intra-relationship constraints are
drawn as a dashed line besides that relationship type and inter-relationship constraints as a curved
dashed arrow between two relationship types. Yet, because intra-relationship constraints corre-
spond to the properties of mathematical relations [Balzer et al., 2007], e.g. reflexive, cyclic, or to-
tal, they are written alongside the relationship. By contrast, the two inter-relationship constraints
relationship implication and relationship exclusion correspond to the set-comparison constraints
subset and disjunction, respectively [Halpin, 2005]. Last but not least, global role constraints are the
logical consequence of the introduction of compartment types, as they permit denoting role con-
straints spanning multiple compartment types. In detail, they permit the quantification of a role
group over all compartments of the given type by adding either the universal ∀, existential ∃, or
relevanceO quantifier and the compartment type above a role group. In the same way, Riehle’s role
constraints can be extended to span multiple compartments leading to the notation of universal,
existential, and relevant global role implication as well as the global role prohibition.7

All together, these modeling constraints allows for visually specifying the domain constraints im-
posed on the banking application. For instance, the constraint that no person playing the customer
role is able to advises himself is expressed as an irreflexive constraint imposed on the advises re-
lationship. Moreover, both the BankAccounts and the Participants role group with cardinality

7The semantics of global role constraints will be clarified in Section 7.3.3.

7.2 Graphical Notation 105

name:String creationtime:DateTime
amount:Money

Bank Transaction

Account
id:int
balance: Money

trans1 1

BankAccounts (1..1)

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

1

0..*

own_sa1..* 0..*

2..20..*
Participants (1..1)

0..*

0..*

1..*

advises

0..*

1..*

irreflexive

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

execution:DateTime

MoneyTransfer

phone:String

Consultant

∃

Figure 7.4: Role model of the banking application with additional constraints.

constraint 1..1 denote that no account can be both a savings and a checking account in the same
bank compartment respectively both a source and target in the same transaction. Furthermore,
the existential role implication from the Participants to the BankAccounts denotes that for each
account participating in a transaction there exists a corresponding bank compartment where it is
a bank account. Besides, the occurrence constraints above the Consultant role type of 1..* and
the Participants role group of 2..2 declares that there exists at least one consultant per bank
compartment and exactly two participants per transaction compartment, respectively. By adding
these constraints this banking model is able to capture all the financial regulations imposed on the
banking application. In conclusion, the visual language, presented thus far, encompasses both the
three natures of roles and the various modeling constraints creating a suitable graphical notation
for role models.

7.2.3 INSTANCE LEVEL NOTATION

After presenting the graphical notation for role models, it is useful to additionally provide a nota-
tion for corresponding instances of these models. Hence, this subsection outlines the notation of
role instance models in Figure 7.5. In accordance to the model level, objects are depicted as boxes
with an underlined label indicating its name and type, whereas roles are drawn as rounded boxes
with gray background. Adopting the notation used by Riehle and Gross [1998], role instances are
drawn at the border of objects to indicate that they are played by the corresponding object. Notably
though, a role can only be played by one player object at a time. Similar to relationship types, rela-
tionship instances are drawn as curved edge between roles of different types. In contrast, to denote
that an object plays a role within a certain compartment instance, the objects playing roles in this
compartment are drawn within the role instance model segment. Moreover, it is possible that a
compartment contains another compartment playing a role in the outer compartment. Arguably,
this leads to a clean design where containment denotes participation or fulfillment in case of roles.
However, as objects can play multiple roles in multiple compartments, the same object might occur

106 7 Foundations of Role-Based Modeling Languages

attributes
role instance model

Objects

Roles

o:RigidType

attributes

:RoleType

Compartment

c:CompType

RelationsEntities

attributes

rigid:RigidType

:RoleType

Plays Relation Participates Relation

obj1:Class

:RoleA

obj2:Class

:RoleB

comp:ComType

Relationship

:RoleA

:RoleB

:RoleB

Figure 7.5: Graphical notation for role instance models.

Google:Company

Klaus:Person

Peter:Person

Con:Consultant

Cu1:Customer

Cu2:Customer

Account1:Account

Account2:Account

Sa:SavingsAccount

Ca:CheckingAccount

own_ca

own_saadvises
Account1:Account Account2:Account

S:Source T:Target

trans

t:Transaction

M:MoneyTransfer

bank:Bank

Figure 7.6: One possible role instance model of the modeled banking application.

several times within one role instance model.8

Consider, for example, the possible instance of the modeled banking application (cf. Figure 7.4)
shown in Figure 7.5, where the accounts Account1 and Account2 appear two times, because both
play roles in two different compartments. By extension, this role instance model comprises two per-
sons Peter and Klaus, as well as a company Google that play roles in the bank compartment. Both
Klaus and Google play a customer role owning a CheckingAccount and a SavingsAccount, re-
spectively. Besides that, Google is advised by Peter playing the Consultant role. Additionally, the
bank contains one transaction compartment tplaying the MoneyTransfer role, where Account1 is
the source and Account2 the target of the transaction. Basically, t represents the transaction from
Google’s savings account to Klaus’s checking account. For brevity, the individual attributes of the
compartments, objects, and roles have been omitted. Nonetheless, the presented instance of the
modeled banking application clearly reflects its intended structure and, henceforth, serves as our
running example of an instance of the bank model.

7.3 FORMALIZATION OF ROLES

After introducing both the ontological foundation and the graphical notation for RMLs, this section
describes the initial formalization of the Compartment Role Object Model (CROM) that combines
the behavioral, relational, and context-dependent nature of roles into a comprehensive and coher-
ent formal framework [Kühn et al., 2015a]. Additionally, this formalization incorporates most of the
modeling constraints found in the literature as well as global role constraints as additional class of
role constraints. By extension, the framework is easy to comprehend and implement as it is only
based on set theory and first-order logic.

8To avoid infinite recursion, a compartment playing a role in itself can be depicted as an object instead.

7.3 Formalization of Roles 107

Type Level

Instance
Level

Constraint
Level

Model
M

Instance
i

Con-
straints

C

well-
formed

compliant to

compliant to

valid wrt.

Meta-
model

Figure 7.7: Overview of the presented formal model

For the sake of clarity, the formal framework is separated into three parts, as outlined in Figure 7.7.
First, the model level encompasses the definition of Compartment Role Object Models (CROMs) and
the notion of well-formedness. Second, the instance level formalizes Compartment Role Object In-
stances (CROIs) and defines when a CROI is compliant to a CROM. Finally, the constraint level spec-
ifies supported modeling constraints and combines them into a Constraint Model. In addition, it
defines when a CROI is valid with respect to a Constraint Model. In conclusion, the presented for-
mal framework is not only more comprehensive, but also easier to extend and specialize.

Even though, the formalization of roles, presented henceforth, has been published in [Kühn et al.,
2015a,b], its formal definitions have been further refined in three major aspects. First and foremost,
the definitions have been simplified by removing the need for ε roles, representing empty counter
roles [Kühn et al., 2015a]. Secondly, the formalized modeling constraints additionally include def-
initions for inter-relationship constraints. Finally, to resolve the lack of role constraints spanning
multiple compartments, the notion of quantified role groups is introduced as a novel modeling
constraint. Still, for simplicity, both fields and methods have been omitted from the following defi-
nitions, however, the necessary additions are presented, later on, in Section 7.4.

7.3.1 MODEL LEVEL

The core aspects of a modeling language are captured on the model level. In case of RMLs, this in-
cludes the definition of natural types, compartment types, and role types as well as the declaration
of the fulfillment relation and relationship types.

Definition 7.1 (Compartment Role Object Model). Let N T , RT , C T , and RST be mutual disjoint sets
of natural types, role types, compartment types, and relationship types, respectively. Then a Compart-
ment Role Object Model (CROM) is a tuple M= (N T,RT,C T,RST,fills,rel) where fills ⊆ T ×C T ×RT
is a relation and rel : RST ×C T → (RT ×RT) is a partial function. Here, T := N T ∪C T denotes the set
of all rigid types, i.e. all natural and compartment types.

A CROM is denoted well-formed if the following axioms hold:

∀r t ∈ RT ∃!ct ∈C T ∃t ∈ T : (t ,ct ,r t) ∈ fills (7.1)

∀ct ∈C T ∃(t ,ct ,r t) ∈ fills (7.2)

∀r st ∈ RST ∃ct ∈C T : (r st ,ct) ∈ domain(rel) (7.3)

∀(r t1,r t2) ∈ codomain(rel): r t1 6= r t2 (7.4)

∀(r st ,ct) ∈ domain(rel): rel(r st ,ct) = (r t1,r t2)∧ (_,ct ,r t1), (_,ct ,r t2) ∈ fills (7.5)

108 7 Foundations of Role-Based Modeling Languages

In this definition, fills denotes that rigid types can play roles of a certain role type in a given com-
partment type and rel captures the two role types at the respective ends of a relationship type de-
fined in a compartment type.9 Accordingly, the well-formedness rules restrict both the fills relation
and the rel function. On the one hand, the first two axioms ensure that each role type participates in
exactly one compartment type and is filled by at least one rigid type (7.1) as well as that each com-
partment type defines at least one participating role type (7.2). On the other hand, the other axioms
make sure that each relationship type is defined at least in on compartment type (7.3). Moreover,
the rel function is restricted to an irreflexive codomain (7.3), such that the two related role types
participate in the same compartment type the relationship is defined in (7.5). Notably though,
although a relationship type can occur in multiple compartment types with different definitions,
each role type belongs to exactly one compartment type. Using this definition, a formal model of
our running example can be created, as follows:

Example 7.1 (Compartment Role Object Model). Let B = (N T,RT,C T,RST,fills,rel) be the model of
the bank (Figure 7.2), where the individual components are defined as follows:

N T := {Person,Company,Account}

RT := {Customer,Consultant,CA,SA,Source,Target,MoneyTransfer}

C T := {Bank,Transaction}

RST := {own_ca,own_sa,advises, trans}

fills := {(Person,Bank,Customer), (Company,Bank,Customer), (Bank,Bank,Customer),

(Person,Bank,Consultant), (Account,Bank,CA), (Account,Bank,SA),

(Transaction,Bank,MoneyTransfer),

(Account,Transaction,Source), (Account,Transaction,Target)}

rel := {(own_ca,Bank) → (Customer,CA), (own_sa,Bank) → (Customer,SA),

(advises,Bank) → (Consultant,Customer), (trans,Transaction) → (Source,Target)}

The bank model B is simply created from Figure 7.2 in three steps. First, all the natural types, com-
partment types, role types, and relationship types are collected into the corresponding set.10 Sec-
ond, the set of role types contained in each compartment type and the corresponding player types
are collected in the fills relation. Finally, the rel function is defined for the role types at the ends
of each relationship type in each compartment type, accordingly. Thus, a CROM model can be
retrieved from its graphical representation.

In addition, the presented bank model B is well-formed, because each defined role type is filled
by at least one natural type or compartment type and participates in exactly one compartment
type (7.1), each compartment type contains at least one role type, and each relationship type is
established (7.3) between two distinct role types (7.4) in the same compartment type (7.5). Besides
well-formedness, the model has no meaning without taking its instances into account.

9For a given function f : A → B , domain(f) = A returns the domain and codomain(f) = B the range of f .
10Henceforth, SA and CA are abbreviations for savings account and checking account, respectively.

7.3 Formalization of Roles 109

7.3.2 INSTANCE LEVEL

The instance level, in turn, is inhabited by naturals, roles, compartments and links, as instances of
their respective types. Thus, it encompasses the definition of the instances of a given CROM.

Definition 7.2 (Compartment Role Object Instance). Let M= (N T,RT,C T,RST,fills,rel) be a well-
formed CROM and N , R, and C be mutual disjoint sets of naturals, roles and compartments, respec-
tively. Then a Compartment Role Object Instance (CROI) ofM is a tuple i= (N ,R,C , type,plays, links),
where type : (N → N T)∪(R → RT)∪(C →C T) is a labeling function, plays ⊆ (N∪C)×C×R a relation,
and links : RST ×C → 2R×R is a total function.

To be compliant to the model M the instance i must satisfy the following conditions:

∀(o,c,r) ∈ plays : (type(o), type(c), type(r)) ∈ fills (7.6)

∀(o,c,r), (o,c,r ′) ∈ plays : r 6= r ′ ⇒ type(r) 6= type(r ′) (7.7)

∀r ∈ R ∃!o ∈O ∃!c ∈C : (o,c,r) ∈ plays (7.8)

∀r st ∈ RST ∀c ∈C ∀(r1,r2) ∈ links(r st ,c): (r st , type(c)) ∈ domain(rel)∧ (_,c,r1), (_,c,r2) ∈ plays∧
rel(r st , type(c)) = (type(r1), type(r2)) (7.9)

In addition, O := N ∪C denotes the set of all objects in i, Oc := {o ∈ O | ∃r ∈ R : (o,c,r) ∈ plays} the
set of objects played in compartment c, and Oc

r t := {o ∈O | ∃r ∈ R : (o,c,r) ∈ plays∧ type(r) = r t } only
those objects playing a certain type of role in c. Similarly, Rc

r t := {r ∈ R | (o,c,r) ∈ plays∧ type(r) = r t }
collects all roles of type r t played in the compartment c.

In detail, the type function assigns a distinct type to each instance, whereas plays identifies the ob-
jects (either natural or compartment) playing a certain role in a specific compartment. In contrast,
links captures the roles currently linked by a relationship type in a certain compartment. Addition-
ally, a compliant CROI satisfies the given four axioms that guarantee the consistency of both the
plays relation and the links function to the model M. In case of the former, three axioms restrict
the plays relation, such that the plays relation is consistent to the types defined in fills relation (7.6),
an object is prohibited to play instances of the same role type multiple times in the same compart-
ment (7.7), and each role has one distinct player in one distinct compartment (7.8). In contrast, the
last axiom ensures that the links function only contains those roles, which participate in the same
compartment c as the relationship and whose types are consistent to the relationship’s definition
in the rel function (7.9). In contrast to the published definition of CROM in [Kühn et al., 2015a, Def-
inition 2], Definition 7.2 circumvents the use of empty counter roles ε in the definition of the links
function by calculating the set of roles without a relationship before verifying the cardinality con-
straints. This, in turn, further simplifys the formal model. Still, one might come to the conclusion
that links(r st ,c) can contain tuples for compartments c whose type does not define the relation-
ship type r st . Even though this can be argued against, the above definitions allows for proving it
wrong formally.

Theorem 7.1 (Completeness of Links). For a compliant CROI i of a wellformed CROM M it holds
for all r st ∈ RST and c ∈C that from (r st , type(c)) ∉ domain(rel) it follows that links(r st ,c) =;.

Proof. Assume that (r1,r2) ∈ l i nks(r st ,c). Then, it follows from axiom (7.9) that (r st , t y pe(c)) ∈
domain(r el), which is a contradiction.

Besides all that, it is now possible to specify instances of the modeled banking application.

110 7 Foundations of Role-Based Modeling Languages

Example 7.2 (Compartment Role Object Instance). Let B = (N T,RT,C T,RST,fills,rel) be the well-
formed CROM defined in Example 7.1; then b= (N ,R,C , type,plays, links) is an instance of that model
(Figure 7.6), where the components are defined as follows:

N := {Peter,Klaus,Google,Account1,Account2}

R := {Cu1,Cu2,Con,Ca,Sa,S,T,M}

C := {bank, t}

type := {(Cu1 → Customer), (Cu2 → Customer), (Con → Consultant), (Ca → CA), (Sa → SA),

(S → Source), (T → Target), (M → MoneyTransfer), (bank → Bank), (t → Transaction), . . . }

plays := {(Klaus,bank,Cu1), (Google,bank,Cu2), (Peter,bank,Con), (Account1,bank,Sa),

(Account2,bank,Ca), (t,bank,M), (Account1, t,S), (Account2, t,T)}

links := {(own_ca,bank) → {(Cu1,Ca)}, (own_sa,bank) → {((Cu2,Sa)},

(advises,bank) → {(Con,Cu2)}, (trans, t) → {(S,T)}}

The CROI b is created, from Figure 7.6, by collecting all the naturals, compartments, and roles ac-
cordingly; mapping their respective types; linking the roles to their players; and assigning a tuple
for each depicted relationship.11 Additionally, it can be shown that the CROI b is compliant to the
CROM B, i.e. it satisfies the four compliance conditions. First, the plays relation conforms to the
types defined in the fills relation of the CROM B (7.6). Second, no object plays two roles of the same
type in the two compartments bank and t (7.7). Third, for each role in b there is exactly one object
playing it in exactly one compartment (7.8). Finally, each of the four tuples in the codomain of the
links function corresponds to the definition of the relationship type in the rel function. Moreover,
the roles in own_ca, own_sa, advises participate in the bank compartment, whereas the roles in
trans participate in t. In conclusion, the CROI b is compliant to the CROM B.

In addition to the former definition, three auxiliary functions are defined that are utilized later to
validate the various relationship constraints.

Definition 7.3 (Auxiliary Functions). Let RST be the set of relationship types of a well-formed CROM
M, and i= (N ,R,C , type,plays, links) a CROI compliant to that model M. Then the auxiliary func-
tions pred and succ, as well as the inverse of the plays relation for roles · : R →O and its extension to
the links function are defined for r ∈ R, r st ∈ RST , and c ∈C :

pred(r st ,c,r) :={r ′ | (r ′,r) ∈ links(rst,c)}

succ(r st ,c,r) :={r ′ | (r,r ′) ∈ links(rst,c)}

r :=o with (o,_,r) ∈ plays

links(r st ,c) :={(r1,r2) | (r1,r2) ∈ links(r st ,c)}

The first two functions collect the predecessors respectively successors of a given role in a relation-
ship within a specific compartment instance. For the CROI b (Example 8.2) pred(own_ca,bank,C a)
would return the set containing Cu1. The existence of the next two functions, i.e., the inverse
plays and inverse links function, is assured by (7.8) requiring a unique player and compartment for
each role instance. In case of the bank instance b, links(trans, t) would return a singleton set with
(Account1, Account2). In particular, this function is used on the constraint level to evaluate whether
a relationship is irreflexive, surjective, acyclic, and so forth [Balzer and Gross, 2011, Halpin, 2005].
However, up to this point the formal framework only asserts whether an instance complies to a
given model without taking any modeling constraints into consideration.

11For brevity, the types of the naturals were omitted from the type function.

7.3 Formalization of Roles 111

7.3.3 CONSTRAINT LEVEL

In accordance, the constraint level augments the formal model to represent the various constraints
found in the literature review. In detail, this section presents Role Groups [Kühn et al., 2015a] as
a novel construct to specify local role constraints and Quantified Role Groups as a corresponding
global role constraint. Afterwards, Constraint Models are defined to encompass the various mod-
eling constraints of CROM. Last but not least, the notion of validity is introduced for CROIs with
respect to a given Constraint Model to specifying when a given instances fulfills the imposed con-
straints. Nonetheless, the notion of Cardinality has to be defined beforehand.

Definition 7.4 (Cardinality). Let N be the set of natural numbers including 0. Then Card ⊂N× (N∪
{∞}) is the set of cardinalities represented as i .. j with i ≤ j .

LOCAL ROLE GROUPS

The notion of role groups [Kühn et al., 2015a] have been introduced, after the formalization of
Riehle’s role constraints [Riehle and Gross, 1998] revealed their shortcomings. In fact, his role con-
straints cannot represent all conceivable combinations of constraints [Kühn et al., 2015b]. In con-
sequence, role groups were introduced specifically to overcome their limitations. However, they ul-
timately replaced them altogether, due to the fact that all role constraints can be represented solely
using role groups. This is not surprising, when considering that role groups are inspired by the car-
dinality operator [Van Hentenryck and Deville, 1990]. In accordance, the syntax and semantics of
role groups is defined, as follows:

Definition 7.5 (Syntax of Role Groups). Let RT be the set of role types; then the set of Role Groups
RG is defined inductively:

• If r t ∈ RT , then r t ∈ RG, and

• If B ⊆ RG and n..m ∈ Card, then (B ,n..m) ∈ RG.

Definition 7.6 (Semantics of Role Groups). Let RT be the set of role types of a well-formed CROM
M, i= (N ,R,C , type,plays, links) a CROI compliant to M, c ∈C a compartment, and o ∈O an object.
Then the semantics of Role Groups is defined by the evaluation function (·)Ic

o : RG → {0,1}:

aIc
o :=

1 if a ∈ RT ∧∃(o,c,r) ∈ plays : t y pe(r) = a

1 if a ≡ (B ,n..m)∧n ≤∑
b∈B bIc

o ≤ m

0 otherwise

For simplicity, an object o ∈O satisfies a role group a ∈ RG in a compartment c ∈C iff aIc
o = 1.

In general, role groups constrain the set of roles an object o is allowed to play simultaneously in a
certain compartment c. In case a is a role type, r tI

c
o checks whether o plays a role of type r t in c.

If a is a role group (B ,n,m), it checks whether the sum of the evaluations for all b ∈ B is between
n and m. For simplicity, an object o is said to satisfy a role group a ∈ RG in a compartment c ∈ C
iff the evaluation function I returns one, i.e. aIc

o = 1. Basically, role groups put a lower and upper
bound on the types of roles an object can assume in one compartment instance.

Example 7.3 (Local Role Groups). The following two role groups can be extracted from Figure 7.4:

bankaccounts :=({CA,SA},1..1)

participants :=({Source,Target},1..1)

112 7 Foundations of Role-Based Modeling Languages

The formal representation of role groups directly correspond to their graphical representation. In-
deed, it can be shown that both Riehle’s role constraints [Riehle and Gross, 1998] and any proposi-
tional formula are representable with role groups. As such, both role groups represent role-prohibitions,
as they model an exclusive-or. Likewise, a role-implication, for instance, from consultant to cus-
tomer could be specified as: ({({Consultant},0,0),Customer},1,2). This, in turn, is equivalent to the
formula ¬Consultant∨Customer and thus to the intended semantics of the role-implication. Simi-
larly, all role constraints can be expressed by role groups, as showcased henceforth.

Definition 7.7 (Shorthand Notations for Role Groups). Let a,b ∈ RG be arbitrary role groups; then
following shorthand is defined:

¬a :=({a},0..0) a ∨b :=({a,b},1..2)

a ∧b :=({a,b},2..2) a ⇒ b :=({{a},0..0),b},1..2)

Notably, it is easy to show the these definition follow the semantics of the corresponding proposi-
tional logic formulae. Besides all that, the following function enumerates the role types occurring
in a given (nested) role group.

Definition 7.8 (Atoms of Role Groups). LetM= (N T, RT, C T, RST,fills,rel) be a well-formed CROM;
then atoms : RG → 2RT is a function, defined as:

atoms(a) :=
{

{a} if a ∈ RT⋃
b∈B atoms(b) if a ≡ (B ,n..m)

Simply put, the atoms function recursively collects all role types within a given role group. Consider,
for instance, the participants role group for which atoms(participants) yields the set {Sour ce,Tar g et }.

GLOBAL ROLE GROUPS

Even though role groups can constrain the types of roles an object is able to play in a particular
type of compartment, they cannot express constraints ranging over multiple compartment types.
After all, it is impossible to declare that each account participating in a transaction compartment
must also play the role of either a savings or checking account in a bank compartment. To inte-
grate global constraints like these, the notion of role groups and their evaluation must be extended
by permitting the quantification over multiple compartment instances within one role constraint.
Consequently, the syntax and semantics of quantified role groups are defined as an extension to the
local role groups.

Definition 7.9 (Syntax of Quantified Role Groups). Let RT be the set of role types, C T compartment
types, and RG the set of role groups; then the set of Quantified Role Groups QRG is defined induc-
tively:

• If a ∈ RG, ct ∈C T and n..m ∈ Card, then Q〈ct ,n..m〉.a ∈QRG, and

• If B ⊆QRG and n..m ∈ Card, then 〈B ,n..m〉 ∈QRG.

Definition 7.10 (Semantics of Quantified Role Groups). Let RT be the set of role types of a well-
formed CROM M, i = (N ,R,C , type,plays, links) a CROI compliant to M and o ∈ O an object. Then
the semantics of Quantified Role Groups is defined as the evaluation function (·)Jo : QRG → {0,1}:

aIo :=

1 if a ≡Q〈ct ,m..n〉.b ∧ ct ∈C T ∧m ≤∑

d∈Cct
bId

o ≤ n

1 if a ≡ 〈B ,m..n〉∧m ≤∑
b∈B bJo ≤ n

0 otherwise

7.3 Formalization of Roles 113

In general, quantified role groups constrain the number of compartment instances where an object
must satisfy a specific local role constraint (i.e. role group). In detail, a quantificationQ〈ct ,n..m〉.aIo

over a role group a ∈ RG checks whether o satisfies the role group a in at least n and at most m
compartments c ∈ C of type ct . Furthermore, these quantifications can be combined just like role
groups, however, using quantified role groups instead. Notably though, local role groups and quan-
tified role groups cannot be combined arbitrarily. In fact, only quantified role groups can refer to
role groups local to a compartment type by quantifying over the number of corresponding com-
partment instances. Accordingly, local role groups can only encompass to role types or other local
role groups. Even though quantified role groups are a proper subset of first-order logic, they are easy
to implement and expressive enough to represent the following typical global role constraints. In
sum, an object o satisfies a quantified role groupϕ ∈QRG iff the evaluation function J returns one,
i.e. ϕJo = 1.

Definition 7.11 (Shorthand Notations for Quantified Role Groups). Let a ∈ RG be an arbitrary role
group and ϕ,ψ ∈QRG arbitrary quantified role groups; then we define the following shorthand:

¬ϕ :=〈{ϕ},0..0〉 ϕ∨q :=〈{ϕ,ψ},1..2〉
ϕ∧q :=〈{ϕ,ψ},2..2〉 ϕ⇒ q :=〈{〈{ϕ},0..0〉,ψ},1..2〉
∀ct .a :=¬〈∃ct .¬a〉 ∃ct .a :=Q〈ct ,1..∞〉.a
Oct .a :=∀ct .((atoms(a),1..∞) ⇒ a) ∃!ct .a :=Q〈ct ,1..1〉.a

While the first four definitions correspond to typical logical expressions, the latter four definitions
correspond to quantifiers in first-order logic. Specifically, existential (∃ct .a) and universal (∀ct .a)
quantification specify that each object o ∈ O satisfies the role group a in at least one respectively
all instances of the compartment type ct . Similarly, the exactly once quantifier (∃!ct .a) denotes
that each object o ∈ O satisfies a in exactly one instance of the corresponding compartment type.
In contrast to these global role constraints affecting all objects in a CROI, the relevance quantifier
(Oct .a) ensures that only objects that play a relevant role in a compartment of type ct must satisfy
the role group a. Simply put, an object is relevant for a compartment if it plays a role in that com-
partment. More precisely, an object is considered relevant in a compartment of type ct , if it plays
a role of type r t contained in the atoms of the role group, i.e. r t ∈ atoms(a). In consequence, the
existential role implication depict in Figure 7.4 can now be formally specified, as follows:

Example 7.4 (Quantified Role Group). The following quantified role group is depicted in Figure 7.4:

accounti mpl :=〈OTransaction.participants ⇒∃Bank.bankaccounts〉
In general, this global role constraint denotes that for each object o ∈ O relevant in a Transaction
satisfying the participants role group there must also be a compartment of type Bank where o sat-
isfies the bankaccounts role group. On one hand, the relevance quantifier ensures that the global
role constraint is only applied to those objects that currently play either a Source or a Target role in
a Transaction compartment, because atoms(par ti ci pant s) = {Source,Target}. On the other hand,
the existential quantifier checks that for all relevant objects there is at least on Bank compartment
that also satisfy the bankaccounts role group. In short, this global role constraint specifies that each
object participating in a transaction either plays a savings or a checking account role in at least
one bank. In case of the instance b of the bank model B, only account1 and account2 are rele-
vant for the constraint, as account1 plays the role T of type Target and account2 the role S of type
Source. Moreover, both accounts satisfy the participants role group in the Transaction t as well as
the bankaccounts role group in the compartment bank. Consequently, both account1 and account2

satisfy this global role constraint.

114 7 Foundations of Role-Based Modeling Languages

CONSTRAINT MODEL

After formalizing both the local and quantified role groups, the following definition combines the
various modeling constraints into a dedicated model. In general, a constraint model defines local
role constraint, intra- and inter-relationship constraints declared for a specific compartment type,
as well as global role constraints declared for a whole CROM.

Definition 7.12 (Constraint Model). Let M = (N T,RT, C T,RST,fills,rel) be a well-formed CROM
and IRC := {E,⊗} the set of inter-relationship constraints. Then C = (rolec,card, intra, inter,grolec) is
a Constraint Model over M, where rolec : C T → 2Card×RG , and card : RST ×C T → (C ar d ×C ar d) are
partial functions, as well as intra ⊆ RST ×C T ×E and inter ⊆ RST ×C T × I RC ×RST are relations
with E as the set of functions e : 2O ×2O ×2O×O → {0,1} ranging over the set of objects O. Additionally,
grolec ⊆ QRG is a finite set of quantified role groups. A Constraint Model is compliant to the CROM
M if the following axioms hold:

∀ct ∈ domain(r ol ec)∀(_, a) ∈ rolec(ct): atoms(a) ⊆ parts(ct) (7.10)

domain(card) ⊆ domain(rel) (7.11)

∀(r st ,ct ,_) ∈ intra: (r st ,ct) ∈ domain(rel) (7.12)

∀(r st1,ct ,_,r st2) ∈ inter : (r st1,ct), (r st2,ct) ∈ domain(rel)∧ r st1 6=r st2 (7.13)

Here, parts(ct) := {r t | (t ,ct ,r t) ∈ fills} collects all role types defined within a compartment type.

Specifically, rolec collects all local role constraints imposed on specific compartment types. Each
local role constraint, in turn, defines both a cardinality and a role group, such that the cardinal-
ity specifies the occurrence of objects satisfying the given role group. In accordance to that, card
assigns a cardinality to a relationship type defined in a compartment type. Additionally, intra de-
fines a set of intra-relationship constraint imposed on a relationship type in a compartment type,
such that each constraint is given as an evaluation function. This function takes the domain A,
range B , and the tuple set R ⊆ A ×B of a relationship and returns either zero or one. For instance,
to define that the advises relationship type is irreflexive, a corresponding evaluation function re-
turns one if ∀x ∈ A∪B : (x, x) 6∈R and zero otherwise. Of course, these evaluation functions directly
correspond to mathematical properties of relations, e.g., reflexive, total, cyclic, and acyclic. In the
same way, inter denotes a set of relationship implications and exclusions declared between two re-
lationship types defined in the same compartment type. In particular, a relationship implication
imposes a subset relation upon the two relationships, whereas a relationship exclusion enforces
their disjointness. Notably, all these constraints are defined locally to a compartment type, i.e., no
constraint crosses the boundary of a compartment type. Finally, grolec declares a set of quantified
role groups that each object in a given CROI must satisfy. Besides all that, constraint models are
denoted compliant to a CROM if they only constrain well-defined role and relationship types. Role
groups defined in a compartment type, for instance, can only refer to role types defined in that
compartment type (7.10). Similarly, cardinalities, intra-, and inter-relationship constraints must be
declared for relationship types defined in the rel function (7.11–7.13). Moreover, (7.13) guarantees
that inter-relationship constraints are specified between (two) distinct relationship types defined
in the same compartment type. In conclusion, the constraint model captures not only most model-
ing constraints introduced in RMLs, but also global role constraints as novel kind of role constraint.
Naturally, a constraint model can be easily defined for the constraints of the banking application,
depicted in Figure 7.4.

7.3 Formalization of Roles 115

Example 7.5 (Constraint Model). Let B be the bank model from Example 7.1 and i r r e f lexi ve an
evaluation function for relationships. Then CB = (rolec,card, intra, inter,grolec) is the constraint
model, where the components are defined as:

rolec := {Bank → {(1..∞,Consultant), (0..∞,bankaccounts)},

(Transaction → {(2..2,participants)}}

card := {(own_ca,Bank) → (1..1,0..∞), (own_sa,Bank) → (1..∞,0..∞),

(advises,Bank) → (0..∞,1..∞), (trans,Transaction) → (1..1,1..1)}

intra := {(advises,Bank, irreflexive)}

inter := {(own_ca,Bank,⊗,own_sa)}

grolec := {accounti mpl }

A constraint model can be obtained by basically mapping the graphical constraints to their formal
counterparts. Within each compartment type, role groups with cardinalities are added to the rolec
mapping, relationship cardinality to the card function, intra-relationship constraints to the intra
relation, and relationship implications/exclusions to the inter relation. Afterwards, the global role
constraints are translated to quantified role groups, e.g., the accountimpl, and added to rolec. For
the sake of argument, the example additionally introduces a relationship exclusion between own_ca
and own_sa to the constraint model. Regardless, because each role group contains only role types
of the same compartment type (7.10) and relationship constraints refer to relationship types in the
correct compartment types (7.11–7.13), CB is compliant to the CROM B. After separately defining
the constraint model, the last step to verify the consistency of a given CROI is to validate whether it
fulfill all the defined constraints. Accordingly, the notion of validity is formally defined, as:12

Definition 7.13 (Validity). Let M = (N T,RT,C T, RST,fills,rel) be a well-formed CROM, C = (rolec,
card, intra, inter,grolec) a constraint model compliant to M, and i = (N ,R,C , type,plays, links) a
CROI compliant to M. Then i is valid with respect to C iff the following conditions hold:

∀ct ∈C T ∀(i .. j , a) ∈ rolec(ct) ∀c ∈Cct : i ≤
(∑

o∈Oc aIc
o

)
≤ j (7.14)

∀(o,c,r) ∈ plays ∀(cr d , a) ∈ rolec(type(c)): type(r) ∈ atoms(a) ⇒ aIc
o = 1 (7.15)

∀c ∈C ∀(r st , t y pe(c)) ∈ domain(car d):

rel(r st , t y pe(c)) = (r t1,r t2)∧ card(r st , t y pe(c)) = (i .. j ,k..l)∧(∀r2 ∈ Rc
r t2

: i ≤ |pred(r st ,c,r2)| ≤ j
)∧(∀r1 ∈ Rc

r t1
: k ≤ |succ(r st ,c,r1)| ≤ l

)
(7.16)

∀c ∈C ∀(r st , type(c), f) ∈ i ntr a : rel(r st , type(c)) = (r t1,r t2)∧
f (Oc

r t1
,Oc

r t2
, links(r st ,c)) = 1 (7.17)

∀c ∈C ∀(r st1, type(c),⊗,r st2) ∈ i nter : links(r st1,c)∩ links(r st2,c) =; (7.18)

∀c ∈C ∀(r st1, type(c),E,r st2) ∈ i nter : links(r st1,c) ⊆ links(r st2,c) (7.19)

∀o ∈O ∀ϕ ∈ grolec :ϕJo = 1 (7.20)

Here, Oc := {o ∈ O | ∃r ∈ R : (o,c,r) ∈ plays} retrieves the set of objects played in compartment c,
Oc

r t := {o ∈ O | ∃r ∈ R : (o,c,r) ∈ plays ∧ type(r) = r t } only those objects playing a certain type of
role in c, and Rc

r t := {r ∈ R | (o,c,r) ∈ plays∧ type(r) = r t } collects all roles of type r t played in the
compartment c.

12Here,
∣∣A

∣∣ denotes the size of the set A, i.e., the number of elements in A.

116 7 Foundations of Role-Based Modeling Languages

Google:Company

Klaus:Person

Relationship

Peter:Person

Con:Consultant

Cu1:Customer

Cu2:Customer

Account1:Account

Account2:Account

Sa:SavingsAccount

Ca:CheckingAccount

own_ca

own_saadvises

Role:RoleTypeNatural:NaturalType

Account1:Account Account2:Account

S:Source T:Target

trans

Comp:CompartmentType

t:Transaction

M:MoneyTransfer

bank:Bank

Player

Figure 7.8: Graphical representation of the instance of the bank model.

In short, each axiom verifies a particular kind of constraint. The first two validate the occurrence
constraint and local role groups. While (7.15) guarantees that only objects that play a relevant role in
the constrained compartment must satisfy the corresponding role group, (7.14) checks whether the
number of objects satisfying that role group is within the boundaries of the occurrence constraint.

In contrast to them, (7.16) verifies whether relationships respect the imposed cardinality con-
straints. However, due to the removal of the empty counter roles ε (cf. [Kühn et al., 2015a, Jäkel et al.,
2015]), the links function only captures roles related by the relationship. Thus, to consistently check
the cardinality of a relationship, its domain and range must be determined including all roles of the
correct type in the given compartment c. In fact, this is done with Rc

r t that returns all roles in the
compartment c of type r t . In case of the advises relation, shown in Figure 7.8, between Consultant
and Customer within the bank compartment instance, the domain would be Rbank

Consul t ant = {Con}

and the range Rbank
Customer = {Cu1,Cu2}. Nonetheless, the cardinality of relationships is evaluated by

counting the successors and predecessors of roles in its domain and range, respectively. In addi-
tion, (7.7) ensures the semantics of cardinality constraints, as it prevents an object to be related by
multiple relationships (i.e., tuples in links) in the same compartment instance.

In the same way, (7.17) evaluates the various intra-relationship constraints by determining the
domain and range of a relationship. Yet, to ascertain the that the player identity is used for the
evaluation functions (e.g., reflexive, cyclic), the domain, range, and set of links of a relationship type
rst must be lifted to objects, i.e., the domain is determined with Oc

r t , the range with Oc
r t , and links

with links(r st ,ct).

Accordingly, (7.18) and (7.19) ensure that each inter-relationship constraint is satisfied, i.e., rela-
tionship implications and relationship prohibitions. Conversely, both lift links to the corresponding
objects with links(r st ,ct) before evaluating the subset relation respectively the disjointness of both
tuple sets.

Last but not least, (7.20) verifies that all objects (naturals or compartments) in a given CROI sat-
isfy all global role constraint defined in grolec. As an illustration of the above definition, the bank
instance b (Example 8.2) is validated with respect to the constraints defined in CB (Example 8.3). For
the sake comprehensibility, Figure 7.8 shows the role instance model corresponding to the CROI b.

7.3 Formalization of Roles 117

Example 7.6 (Validity). To prove that the instance b (Example 8.2) of the bank model B is valid with
respect to the constraint model CB, the axioms (7.14–7.20) must be fulfilled.

Proof. To fulfill (7.14), at least one person must play a consultant role in the compartment bank,
as well as exactly two distinct accounts must fulfill the par ti ci pant s role group in the transaction
t . Indeed, Peter plays the consultant role Con in the bank. Moreover, Account1 and Account2 play
the respective source role S and target role T in the transaction t , such that each account object
individual fulfills the par ti ci pant s role group. Accordingly, (7.14) holds for the CROI b.

For (7.15), each object playing a role in a compartment must fulfill all role groups that contain a
relevant role type. In b, Peter fulfills the Consul t ant role group and both accounts, i.e., Account1

and Account2, individually satisfy both the par ti ci pant s and the bankaccount s role group. Thus,
(7.15) also holds.

In case of (7.16), the number of successors for the domain and predecessors for the range of each
link (relationship instance) is computed and checked against the limits imposed by the cardinality
constraints. In case of the CROI b, the number of successors and predecessors ranges from zero,
i.e., for Cu1 in the own_sa and the ad vi ses relationship and Cu2 in the own_ca relationship, to
one, i.e. for all other roles and relationships. As it turns out, the former cases all correspond to
zero-to-many cardinality. As a result, (7.16) is satisfied, as well.

In contrast, (7.17) validates the other intra-relationship constraints, specifically, that the ad vi ses
relationship is irreflexive in b, i.e.:

i r r e f lexi ve(Obank
Consul t ant ,Obank

Customer , links(advises,bank)) = 1

Trivially, links(advises,bank) = {(Peter,Google)} is irreflexive. Hence, the CROI b fulfills (7.17).

Likewise, (7.18) and (7.19) check the relationship exclusion and relationship implication, respec-
tively. However, because the constraint model CB only features a relationship exclusion between
own_ca and own_sa, (7.18) only checks that links(own_ca,bank)∩ links(own_sa,bank) =;. Ob-
viously, this holds in b, as each account is either a savings or a checking account, as ensured by the
bankaccount s role group.

Finally, the global role constraints are evaluated by (7.19). In the CROI b, for example, every object
must fulfill the accounti mpl quantified role group. In fact, only the objects Account1 and Account2

play relevant roles in Tr ansacti on compartment types. Moreover, because these accounts already
satisfy the bankaccount s role group in the bank compartment, they also satisfy the global role
group 〈∃Bank.bankaccount s〉.

It follows, then that all axioms hold and, thus, b is a valid instance of the model B with respect to
the constraints specified in CB.

In essence, this example shows that a given CROI is consistent with a modeled domain if it is com-
pliant to the corresponding CROM and valid with respect to the given constraint model. In spite of
this informal validation, the idea of the formal framework is to support both formal and automated
validation of well-formedness, compliance, and validity [Kühn et al., 2015a]. In fact, the presented
formalization is easy to implemented and, thus, enables automatic validation of the formal models,
as discussed in Section 7.5.

118 7 Foundations of Role-Based Modeling Languages

7.4 REINTRODUCING INHERITANCE

Up to this point, the presented formalization excluded the notion of inheritance for all types. Even
though this made the initial formalization easier and more comprehensible, it presents a serious
limitation to the Compartment Role Object Model (CROM). An anonymous reviewer puts this into
perspective, when she argued that “[it] seems by not supporting inheritance the baby is thrown out
with the bath water”. While inheritance can limit the extensibility of an object-oriented applica-
tion, especially when considering the fragile base class problem [Mikhajlov and Sekerinski, 1998,
Aßmann, 2003], it is still regarded the most suitable feature of object-oriented languages to fos-
ter code reuse. Thus, to save the “baby”, this section reintroduces the notion of inheritance to
the formal Compartment Role Object Model (CROM). To be precise, the goal of this section is to
reestablish subtyping of natural types and to formalize subtyping of both compartment types and
role types.13 Although natural inheritance corresponds to classical single inheritance of object-
oriented languages, e.g., Java, Scala, both role inheritance and compartment inheritance closely
resembles family polymorphism, i.e., “a feature that allows us to express and manage multi-object
relations” [Ernst, 2001, p.303]. By extension, Dahchour et al. [2002] formally described the interac-
tion of both natural and role inheritance with the plays relations. He concluded that all subtypes of
a role type rt fulfill the same natural types as rt, whereas all supertypes of a natural type nt can play
the same role types type as nt [Dahchour et al., 2002, Sec. 4.3]. By extension, Herrmann et al. [2004]
outlined a methodology to reconcile role inheritance and compartment inheritance by introducing
family polymorphism for compartment types and limiting role inheritance. In accordance with his
approach, the presented extension to CROM facilitates compartment inheritance by means of fam-
ily polymorphism. However, to avoid the introduction of dependent types [Ernst, 2001, Herrmann
et al., 2004], the presented formalization employs lightweight family polymorphism [Igarashi et al.,
2005] for compartment types and further restricts role inheritance to coincide with compartment
inheritance. To put it succinctly, CROMI incorporates both natural and compartment inheritance
ensuring the subtyping relation as well as enabling the extension of both role types and compart-
ment types. Furthermore, to illustrate the effects of inheritance, the notion of attributes and fields
of the various entity types is added.

In accordance with the structure of the previous sections, the following discussion first introduces
an extension to the banking application and then extends the various definitions on the model, in-
stance, and constraint level. However, as the general aspects of the formal framework have already
been described, the discussion focuses on the influence of subtyping on the definitions of well-
formedness, compliance, and validity.

7.4.1 EXTENDING THE BANKING APPLICATION

Typically, the need for extension of a software system arises when the application domain is changed
or extended. In case of our running example (cf. Chapter 2.1), the banking scenario additionally in-
troduces two distinct kinds of financial institutions: retail banks and business banks. On the one
hand, retail banks are banks that specialize on individual persons as customers. They have a several
local affiliates and additionally provide credit cards to customers after assessing their liquidity. In
short, customers of a retail bank can own at most one credit card, such that each one belongs to
exactly one customer. Moreover, credit cards are bank account that store the interest charge and
current debt, in addition to its id and balance.

13Subtyping ensures that if s is a subtype of t then s can safely occur wherever t would be expected.

7.4 Reintroducing Inheritance 119

Account
id:int
balance: Money

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

affiliates: String[]

RetailBank

RetailAccounts (1..1)0..*

0..*

SavingsAccount

interest:Money
debt:Money

CreditCard

own_cc1 0..1

CheckingAccount

liquidity:Boolean

Customer

bankReserves:Money

BusinessBank

advises

1

1..*

benefits:Money

PremiumCustomer

2..*

office:String

Consultant

Customer

0..*

Natural Type Role Type

Fills-Relation

Compartment Type

RSTCardN CardM

RoleGroup (n..m)

Card

Data Type

RST Constraint

Sub Role Type

Inheritance

name:String

...

Bank

Figure 7.9: Extension of the banking application using compartment inheritance.

On the other hand, Business banks are financial institutions that solely focus on companies as cus-
tomers. Specifically, they introduce premium customers as special customers, who will receive ben-
efits worth a particular amount. Furthermore, business banks have a certain amount of money
on reserve, must employ at least 2 consultants to be operational and require that each customer
is advised by their own dedicated consultant.14 To model these extensions of the banking appli-
cation, accordingly, the Bank compartment (Figure 7.4) is specialized into two subcompartment
types, as depicted in Figure 7.9. In particular, the RetailBank adds a CreditCard role type re-
lated to Customer by a own_cc relationship type. Moreover, the role group RetailAccount with
1..1 ensures that the credit card, savings account, and checking account are mutual exclusive. In
contrast, the BusinessBank only introduces the PremiumCustomer as additional role type with a
role implication to Customer, such that only companies who are already customers can become
premium customers. Furthermore, the occurrence constraint above the Counsultant role type is
increased to 2..*, such that business banks employ at least two consultants. Similarly, the cardi-
nality of the advises relationship type is updated to 1 on the consultant side indicating the each
customer has exactly one consultant. Finally, the definition of the formal CROM can be augmented
to appropriately model this extended banking application.

14Please note, that these constraints are for illustration purpose only and do not reflect actual financial regulations.

120 7 Foundations of Role-Based Modeling Languages

7.4.2 MODEL LEVEL EXTENSIONS

Unsurprisingly, the introduction of subtyping mostly influences the model level, as it entails the
introduction of individual subtyping relations for both natural and compartment types as well as
fields and methods for natural, compartment, and role types. In detail, the following definition
introduces ¹ as subtyping relation, such that s ¹ t denotes that s is a subtype of t and, conversely,
that t is a supertype of s.

Definition 7.14 (Compartment Role Object Model with Inheritance). Let N T , RT , C T , and RST be
mutual disjoint sets of natural types, role types, compartment types, and relationship types, respec-
tively, as well as F and M the set of field and method names. Then a Compartment Role Object Model
with Inheritance (CROMI) is a tuple N = (N T,RT,C T,RST,F, M ,fills,rel,fields,methods,≺N T ,≺C T)
denotes the CROMI, where fills ⊆ T ×C T ×RT is a relation, rel : RST ×C T → (RT ×RT) a partial func-
tions, as well as fields : T ∪(C T ×RT) → MM(F ×T) and methods : T ∪(C T ×RT) → MM(M×(T → T))
total functions assigning a finite multiset to rigid types or role types (noted as ct .r t). Moreover,
≺N T ⊂ N T ×N T and ≺C T ⊂C T ×C T represent irreflexive, asymmetric and functional relations over
natural types and compartment types, respectively. For brevity, ¹N T , ¹C T and ¹T denotes the reflex-
ive, transitive closure of ≺N T , ≺C T and ≺T :=≺N T ∪≺C T , respectively.

Additionally, a CROMI is denoted well-formed if (7.2–7.5) hold as well as the following axioms:

∀r t ∈ RT ∃ct ∈C T ∃t ∈ T : (t ,ct ,r t) ∈ fills (7.21)

∀(t1, t2) ∈¹T: fields(t2) ⊆ fields(t1)∧methods(t2) ⊆ methods(t1) (7.22)

∀(ct1,ct2) ∈¹C T ∀r t ∈ parts(ct2) : fields(ct2.r t) ⊆ fields(ct1.r t)∧
methods(ct2.r t) ⊆ methods(ct1.r t) (7.23)

∀(ct1,ct2) ∈¹C T parts(ct2) ⊆ parts(ct1) (7.24)

∀(ct1,ct2) ∈¹C T ∀(r st ,ct2) ∈ domain(rel): (r st ,ct1) ∈ domain(rel)∧
rel(r st ,ct2) = rel(r st ,ct1) (7.25)

∀(ct1,ct2) ∈¹C T ∀r t ∈ parts(ct2) ∀(s,ct1,r t) ∈ fills ∃(t ,ct2,r t) ∈ fills : s ¹T t (7.26)

Here, T := N T ∪C T denotes the set of all rigid types (i.e. natural and compartment types), MM(S)
the set of all finite multisets over S, and parts(ct) := {r t | (t ,ct ,r t) ∈ fills} the set of role types defined
within a compartment type.

In general, CROMI introduces distinct subtyping relations for natural and compartment types, the
notion of fields and methods, and additional well-formedness rules. In particular, ≺N T and ≺C T

represent two disjoint inheritance hierarchies with single inheritance. Nonetheless, they induce the
corresponding subtyping relations ¹N T and ¹C T for natural and compartment types, respectively.
Besides that, the model includes the functions fields and methods to assign a set of fields (f : t) and
method definitions (m : T → T) to each type. However, due to the fact that role types r t depend
on a specific compartment type ct , their fields and methods functions are assigned to a path type
from compartment type to role type, denoted as ct .r t . Nonetheless, it is assumed that fields(t) =;
and methods(t) = ;, if there is no field respectively method defined for type t ∈ T ∪ (C T ×RT). In
accordance with these additions, a well-formed CROMI must fulfill six axioms in addition to the
four axioms (7.2), (7.3), (7.4) and (7.5) of Definition 7.1. Notably though, it must also fulfill a weaker
form of (7.1) that permits role types to participate in multiple compartments (7.21), such that a role
type can be redefined in different compartment types. This, for instance, allows for defining distinct
customer role types for a bank and a shop compartment type. In fact, these types are considered
different, as they have different properties and behavior.

7.4 Reintroducing Inheritance 121

Besides that, the rest of the axioms validate that the type definitions adhere to the subtyping rela-
tion. For instance, (7.22) guarantees that all subtypes of a rigid type inherit all fields and methods
from its supertype. Similarly, (7.23) ensures that all fields and methods of a role type r t defined
in a compartment type ct2 are passed down to all corresponding definitions in subcompartment
types of ct1. Basically, this axiom establishes that role inheritance coincides with compartment in-
heritance, such that the definition of a role type can be extended in a sub compartment type of its
original definition. In the same way, (7.24) and (7.25) establishes that a sub compartment type in-
herits all role types and relationship types from its supercompartment type. Even though the above
axioms handle subtyping of individual types, only (7.26) captures the interaction of natural inher-
itance, compartment inheritance, and plays relations. In particular, this axiom ensures that a sub
compartment type can only restrict the types able to play an inherited role type by either limiting
the players or requiring a sub type of a player type instead. Conversely, an inherited role type can-
not be filled by more player types then its definition in the supercompartment type would permit.
Consider, for instance, the retail bank as specialization of a bank compartment type. While the
bank permits both persons, companies, and banks to be customers, the retail bank can restrict this
set of players to persons only, however, cannot introduce a car as potential player of the customer
role type. Notably though, there must be at least one compatible type filling an inherited role type,
because (7.24) would be violated otherwise. In summary, compartment inheritance not only allows
for adding new fields, methods, and role types but also enables the specialization of both the inher-
ited role types and the types of their players.15 Hence, it permits us to extend the modeled banking
application by means of compartment inheritance.

Example 7.7 (Compartment Role Object Model with Inheritance). LetB = (N T,RT,C T,RST,fills,rel)
be the CROM of the bank (Example 7.1). Then a CROM with Inheritance of the extended bank (Fig-
ure 7.9) is defined as A= (N T ′,RT ′,C T ′,RST ′,F ′, M ′,fills’,rel’,fields’,methods’,≺N T ,≺C T), where the
individual components are defined as follows:

N T ′ := N T ∪ {Money,Boolean, . . . }

RT ′ := RT ∪ {CC,PremiumCustomer}

C T ′ :=C T ∪ {RetailBank,BusinessBank}

RST ′ := RST ∪ {own_cc}

F ′ := {liquidity, interest,debt,benefits, . . . }

M ′ := {increase,decrease, . . . }

fills′ := fills∪ {(Person,RetailBank,Customer), (Account,RetailBank,CC), . . .

(Company,BusinessBank,Customer), (Company,BusinessBank,PremiumCustomer),

(Bank,BusinessBank,Customer), (Bank,BusinessBank,PremiumCustomer), . . . }

rel′ := rel∪ {(own_cc,RetailBank) → (Customer,CreditCard), . . . }

fields′ := {RetailBank.Customer → {(l i qui di t y,Boolean), . . . },

RetailBank.CC → {(i nter est , Mone y), (debt , Mone y), . . . },

BusinessBank.PremiumCustomer → {(bene f i t s, Mone y)}, . . . }

methods′ := {RetailBank.CC → {decreas : Mone y → Boolean, . . . }}

≺N T := ;
≺C T := {(RetailBank,Bank), (BusinessBank,Bank)}

15Only single inheritance is introduced, as all cases of multiple classifications of objects can and should be modeled
using roles and compartments instead.

122 7 Foundations of Role-Based Modeling Languages

Even though this model can be derived from Figure 7.9 as easily as Example 7.2, it only presents an
incomplete CROMI. Due to the fact that compartment inheritance relies on redefining fields, meth-
ods, and role types for each subtype, a complete model CROMI would be significantly larger. For
the sake of brevity and comprehensibility, however, only the definition of the additional role types
introduced within the subcompartment types RetailBank and the BusinessBank is highlighted. For
instance, the RetailBank includes a credit card role types, named as CC, such that it is filled by
Account types and owned by exactly one customer of the retail bank. Likewise, the BusinessBank
adds the role type PremiumCustomer, such that only Company natural type and Bank compart-
ment types can play the Customer role type and, by extension, the PremiumCustomer role type.
Moreover, fields’ shows the definition of the fields of Customer and CreditCard within the Retail-
Bank, e.g., the liquidity added to the Customer role type, as well as the benefits field of the Premi-
umCustomer within the BusinessBank. Furthermore, both Money and Boolean actually represent
data types, for simplicity, the example defines them as natural types, instead. Finally, even though
the above example cannot be shown to be a well-formed CROMI, it is trivial to complete the ex-
tended bank model A, such that the well-formedness rules hold. Consequently, A is assumed to be
well-formed, henceforth.

7.4.3 INSTANCE LEVEL EXTENSIONS

So far, CROMI ensures the conformance of natural and compartment inheritance only on the model
level, however, subtyping is usually utilized on the instance level, to permit the save substitution of
an object of a supertype with an object of a subtype. Consequently, the definition of Compartment
Role Object Instance with inheritance is extended to take the subtyping relation of natural and com-
partment types into account. In short, the following definition guarantees the substitutability of
objects of a type t with objects of a subtype of t for both attributes and plays relations.

Definition 7.15 (Compartment Role Object Instance with Inheritance). Let N be a well-formed
CROMI with N = (N T,RT,C T,RST,F, M ,fills,rel,fields,methods,≺N T ,≺C T), as well as N , R, and C
be mutual disjoint sets of Naturals, Roles and Compartments, respectively. Henceforth, O := N ∪C
denotes the set of all objects. Then a Compartment Role Object Instance with Inheritance (CROII)
of N is a tuple n = (N ,R,C , type,plays, links,attr), where type : (N → N T)∪ (R → RT)∪ (C → C T)
is a labeling function, plays ⊆ O ×C ×R a relation, links : RST ×C → 2R×R a partial function, and
attr : (N ∪R ∪C) → 2F×O a total function.

Moreover, n is compliant to N if it satisfies (7.7–7.9) and the following axioms:

∀(o,c,r) ∈ plays ∃(t , type(c), type(r)) ∈ fills : type(o) ¹T t (7.27)

∀o ∈O ∀(f , v) ∈ attr(o) ∃(f , t) ∈ fields(type(o)): type(v) ¹T t (7.28)

∀(o,c,r) ∈ plays ∀(f , v) ∈ attr(r) ∃(f , t) ∈ fields(type(c).type(r)): type(v) ¹T t (7.29)

In general, this extension adds the attr function, which maps each natural, compartment, and role
instance to its state, i.e. a set of assignments of objects to field names. Beyond that, a compliant
CROII satisfies the compliance rules (7.7), (7.8), (7.9) of Definition 7.2. In addition to these, the
above definition extends axiom (7.6) to permit objects of a subtype s ¹T t as players of a role, if
fills declares t as the corresponding player type (7.27). Simply put, this axiom facilitates the substi-
tutability of the role players in accordance with the subtyping relation. Similarly, (7.28) and (7.29)
guarantee that the objects assigned to an attribute have the same or a subtype of the type defined
in fields. In short, CROII introduces attributes and compliance rules, such that substitutability for
both attributes and role players is permitted.

7.4 Reintroducing Inheritance 123

Google:CompanyKlaus:Person

Relationship

Peter:Person

Con3:Consultant

Con4:Consultant

Cu4:Customer

Pc:PremiumCustomer

advises

advises

Role:RoleTypeNatural:NaturalType

Klaus:Person Account3:Account

Cu3:Customer Cc:CreditCard

own_cc

Comp:CompartmentType

rb:RetailBank

Cu5:Customer

bb:BusinessBank

Player

Peter:Person

Con2:Consultant

advises

Figure 7.10: A possible role instance model of the extended banking application.

Applying this definition, in turn, allows for easily extending the instance b of the bank model B
to include the newly defined retail and business banks, in accordance to the role instance model
depicted in Figure 7.10.

Example 7.8 (Compartment Role Object Instance with Inheritance). Let b= (N ,R,C , type,plays, links)
be the CROI from Example 7.2 and A = (N T ′,RT ′,C T ′,RST ′,F ′, M ′,fills’,rel’,fields’,methods’,≺N T ,
≺C T) the CROMI defined previously (Example 7.8); then a= (N ′,R ′,C ′, type′,plays′, links′,attr′) is an
instance of the extended bank model, where the components are derived as follows:

N ′ := N ∪ {Account3}

R ′ := R ∪ {Cu3,Cu4,Cu5,Con2,Con3,Con4,Cc,Pc}

C ′ :=C ∪ {rb,bb}

type′ := type∪ {(Cc → CC), (Pc → PremiumCustomer),

(rb → RetailBank), (bb → BusinessBank), . . . }

plays′ := plays∪ {(Klaus,rb,Cu3), (Peter,rb,Con2), (Account3,rb,Cc),

(Klaus,bb,Con3), (Peter,bb,Con4), (Google,bb,Cu4), (rb,bb,Cu5)}

links′ := links∪ {(own_cc,rb) → {(Cu3,Cc)},

(advises,rb) → {(Con2,Cu3), (Con4,Cu5)},

(advises,bb) → {(Con3,Cu4), (Con4,Cu5)}}

attr′ := {Cu3 → {(l i qui di t y,true), . . . },

Cc → {(i nter est ,100$), (debt ,1000$)},

Pc → {(bene f i t s,1mi o.$)}, . . . }

In addition to the instance b, the extended CROII a additionally features a retail bank r b and a
business bank bb. Specifically, the person Klaus is a customer Cu3 in the retail bank r b who owns
the credit card Cc played by Account3. Moreover, Peter also plays the role of a Consultant in the
retail bank rb, which, in turn, advises Klaus. Likewise, the business bank bb is specified to contain
two customers Cu4 and Cu5 played by the company Google and the retail bank r b, respectively.
However, only Google plays the role of a premium customer Pc. Besides that, both persons Klaus
and Peter also play the consultant role Con3 and Con4 in the business bank bb, such that Klaus
advises Google and Peter advises the retail bank r b. Last but not least, a captures the state of the

124 7 Foundations of Role-Based Modeling Languages

various objects and roles, as well. Regardless, the example only specifies the attributes attr′ of some
of the roles, i.e. the customer Cu3, the credit card Cc, and the premium customer Pc, and the type′

function for roles and compartments whose type would be ambiguous otherwise. In conclusion,
the instance a of the extended bank model A represents simple example of a CROII. Nonetheless,
the compliance of a can only be argued, due to its partial definition. Even though, because the plays′

relation is completely defined, it is at least possible to validate Axiom (7.26). Yet, most roles are
played by objects whose type equals to the player type in the fills relation. In fact, only the customer
role Cu5 is played by an object with the divergent player type RetailBank. However, because Bank
fills the Customer role type in the BusinessBank compartment type and RetailBank is a subtype of
the Bank compartment type, (7.26) still holds. Similar to the extended bank model A, its extended
instance a can be completed to be compliant to A.

7.4.4 CONSTRAINT LEVEL EXTENSIONS

After introducing both natural and compartment inheritance on the model level and the instance
level, the last step is to modify the semantics of the modeling constraints and their evaluation. How-
ever, while compartment inheritance affects the evaluation of the validity of a CROII, the semantics
of most modeling constraints is unaffected. Indeed, both local role constraints and relationship
constraints are evaluated for each individual compartment instance, even though their validation
must adhere to subtyping, as well. To be precise, a constraint defined for a compartment type must
also hold in all its subtypes. Thus, only the definition of validity must be extended without changing
the semantics of the local constraints. In contrast, however, global role constraints must be refined,
in order to take the subtypes of the quantified compartment types into account.

Definition 7.16 (Semantics of Quantified Role Groups with Inheritance). Let RT be the set of role
types of a well-formed CROMI N , n= (N ,R,C , type,plays, links,attr) a CROII compliant to N and o ∈
O an object. Then the semantics of Quantified Role Groups that handle compartment inheritance is
defined by the evaluation function (·)Ho : QRG → {0,1}:

aHo :=

1 if a ≡ (B ,m..n)∧m ≤∑

b∈B bHo ≤ n

1 if a ≡Q(ct ,m..n).b∧ : m ≤∑
d∈Ĉct

bId
o ≤ n

0 otherwise

Here, Cct is extended to Ĉct := {c ∈ C | type(c) ¹C T ct } to select all compartment instances of a type
t ¹C T ct .

Admittedly, this definition only adapts the evaluation of quantifications Q〈ct ,n..m〉.aHo , in order
to range over all compartment instances of the given type ct and all its subtypes. Defined in this
way, the accounti mpl := 〈OTransaction.participants ⇒ ∃Bank.bankaccounts〉 (Example 7.4), for
instance, now entails that an account participating in a transaction must also be a bank account
in at least one instance of Bank including instances of RetailBank and BusinessBank. Without this
extension, the quantified role group would be violated for all transactions from or to accounts of
retail and business bank. In fact, although accounti mpl ranges over all subtypes of Bank, it does
not incorporate the added CreditCard role type. However, because the bankaccount s role group
does not include the CreditCard role type, the quantified role group is violated whenever a credit
card (i.e., an account playing a CreditCard role) participates in a transaction. It follows, then that
this global role constraint must be refined, as follows.

7.4 Reintroducing Inheritance 125

Example 7.9 (Extended Quantified Role Group). The following quantified role group is an extension
of the accounti mpl of Example 7.4:

existentialimpl :=〈∃Transaction.(Source∨Target) ⇒∃Bank.(CC∨SA∨CA)〉

After all, the definition of the constraint model is still appropriate to specify the modeling con-
straints. Hence, the example constraint model can be simply extended, as follows:

Example 7.10 (Extended Constraint Model). Let A be the extended bank model from Example 7.7
and CB = (rolec,card, intra, inter,grolec) the constraint model from Example 7.5; then CA = (rolec′,
card′, intra′, inter′,grolec′) is the extended constraint model derived from Figure 7.9, where the com-
ponents are defined as:

rolec′ :=rolec∪ {RetailBank → {(0..∞, ({CC,SA,CA},1..1)},BusinessBank → {(2..∞,Consultant)}}

card′ :=card∪ {(own_cc,RetailBank) → (1..1,0..1)}

intra′ :=intra′

inter′ :=inter′

grolec′ :={existentialimpl)}

Basically, the constraint model includes the additional modeling constraints depicted in Figure 7.9.
Specifically, it adds the occurrence constraint of 2..∞ for consultants of the business bank, the
RetailAccount role group, as well as the cardinality of the own_cc relationship type. In addition
to that, the model includes the previously refined global role constraint to guarantee that trans-
actions can only be performed between bank accounts, i.e., accounts that play a role in either a
Bank, RetailBank or BusinessBank compartment. In short, the extended constraint model CA is a
straightforward extension of the constraint model CB. For the sake of completeness, the compliance
of constraint models is broadened towards CROMI, as well.

Definition 7.17 (Extended Compliance). LetN = (N T,RT,C T,RST,F, M ,fills,rel,fields,methods,≺N T

,≺C T) be a well-formed CROMI and C = (rolec,card, intra, inter,grolec) be a Constraint Model. Then
C is denoted compliant to N iff (7.10–7.13) hold for N .

In general, a compliant constraint model C of a CROMI N satisfies the same four axioms as the
original definition (cf. Definition 7.12). Especially, since these axioms only depend on the fills re-
lation (via parts(ct) and the rel function, and compartment inheritance entails the redefinition of
role types and relationship types in all subcompartment types, they can be applied immediately.
Furthermore, it easy to show that the constraint model CA is compliant to the CROMI A. In fact, the
additional role groups and cardinality constraints only refer to role types and relationship types de-
fined in the respective compartment type. Finally, the last definition extends the notion of validity
to incorporate compartment inheritance and facilitate substitutability of compartment types, i.e.,
that each subtype of a compartment type can be safely used instead of its supertype.

126 7 Foundations of Role-Based Modeling Languages

Definition 7.18 (Extended Validity). Let N = (N T,RT,C T,RST,F, M ,fills,rel,fields,methods,≺N T ,
≺C T) be a well-formed CROMI, C = (rolec,card, intra, inter,grolec) a constraint model compliant to
N , and n= (N ,R,C , type,plays, links,attr) a CROII compliant to N .

Then the CROII n is valid with respect to D iff the following conditions hold:

∀c ∈C ∀(type(c),ct) ∈¹C T ∀(i .. j , a) ∈ rolec(ct): i ≤
(∑

o∈Oc aIc
o

)
≤ j (7.30)

∀(o,c,r) ∈ plays ∀(type(c),ct) ∈¹C T ∀(cr d , a) ∈ rolec(ct): type(r) ∈ atoms(a) ⇒ aIc
o = 1 (7.31)

∀c ∈C ∀(type(c),ct) ∈¹C T ∀(r st ,ct) ∈ domain(car d):

rel(r st ,ct) = (r t1,r t2)∧ card(r st ,ct) = (i .. j ,k..l)∧(∀r2 ∈ Rc
r t2

: i ≤ |pred(r st ,c,r2)| ≤ j
)∧(∀r1 ∈ Rc

r t1
: k ≤ |succ(r st ,c,r1)| ≤ l

)
(7.32)

∀c ∈C ∀(type(c),ct) ∈¹C T ∀(r st ,ct , f) ∈ i ntr a : rel(r st ,ct) = (r t1,r t2)∧
f (Oc

r t1
,Oc

r t2
, links(r st ,c)) = 1 (7.33)

∀c ∈C ∀(type(c),ct) ∈¹C T ∀(r st1,ct ,⊗,r st2) ∈ i nter :

links(r st1,c)∩ links(r st2,c) =; (7.34)

∀c ∈C ∀(type(c),ct) ∈¹C T ∀(r st1,ct ,E,r st2) ∈ i nter : links(r st1,c) ⊆ links(r st2,c) (7.35)

∀o ∈O ∀ϕ ∈ grolec : ϕHo = 1 (7.36)

Here, Oc
r t := {o ∈ O | ∃r ∈ R : (o,c,r) ∈ plays∧ type(r) = r t } retrieves all objects playing a certain type

of role in c, and Rc
r t := {r ∈ R | (o,c,r) ∈ plays∧ type(r) = r t } collects all roles of type r t played in the

compartment c.

Indeed, the extended validity of CROII refined all axioms, to account for the introduction of com-
partment inheritance. That is, all local role constraints and local relationship constraints imposed
on a compartment type are also imposed on all its subtypes. Conversely, the axioms (7.30–7.35) not
only validate the constraints defined for the exact type of compartment instance, but also validates
the constraints defined by its supertypes. Accordingly, (7.36) is adapted to utilize the previously
extended evaluation function (·)H. In sum, these definition guarantees that all constraints defined
for a compartment type are passed on to its subtypes. Moreover, it ensures that a sub compart-
ment type can only further restrict the previously defined constraints, however, never weaken a
constraint of a supertype. In essence, this reflects the notion of subtyping, i.e., that any instance
of a subtype of a given compartment type ct can safely substitute an instance of ct . In conclusion,
this definition defines the validity of CROII in the presence of both natural and compartment in-
heritance. Consequently, Definition 7.18 is appropriate to verify the validity of the extended CROII

of our extended banking application, as follows:

Example 7.11 (Extended Validity). To prove that the instance a (Example 7.8) of the bank model A
is valid with respect to the constraint model CA, the axioms (7.30–7.36) must be fulfilled.

Proof. Due to the fact that both the instance a and the constraint model CA extend the valid in-
stance b and the constraint model CB, respectively, it suffices to validate the additional compart-
ment instances r b and bb, as well as the additional and global role constraint.

7.4 Reintroducing Inheritance 127

In case of the compartment r b of type RetailBank, each local role constraint and relationship con-
straint defined for the RetailBank and the Bank compartment type must be verified. It is easy to
see, that the participants of r b satisfies all constraint specified for Bank compartment type. No-
tably, while r b contains the Account3 that would not fulfill the bankaccount s role group, (7.31)
still holds, because CreditCard ∉ atoms(bankaccount s). Similarly, the role group ({CC,SA,CA},1..1)
and the cardinality of the *own_cc* relationship are satisfied for the compartment r b. Thus, the re-
tail bank r b fulfills all local constraints, i.e., satisfies (3.30–3.36).

In the same way, each local constraint imposed on the BusinessBank or the Bank must be eval-
uated for the compartment bb. Indeed, bb fulfills the role and relationship constraints specified
for the Bank compartment type, i.e. there is at least on consultant (7.30), each consultant advises
a customer (7.32), and advises is irreflexive (7.33). Nonetheless, it also satisfies the much stronger
occurrence constraint requiring two consultants within RetailBank compartments. Accordingly,
business bank bb satisfies the imposed local constraints, as well.

Last but not least, the modified global role constraint exi stenti al i mpl must be evaluated for all
object in a (7.36). Similar to accounti mpl quantified role group, it states that every object partic-
ipating in a transaction compartment (playing either a Source or a Target) must also participate in
a compartment of type Bank, RetailBank or BusinessBank (as either a CC, CA, or SA). Still, only the
objects Account1 and Account2 play relevant roles in the Transaction t . Conversely, these accounts
must also participate in a (subtype of) Bank as either a credit card, savings account, or checking
account, i.e., playing a role of type CC, CA, or SA. Unsurprisingly, both accounts satisfy this role
constraint within the compartment instance bank. From all this follows, that all axioms hold and,
thus, a is a valid instance of the model A with respect to the constraints specified in CA.

In conclusion, the presented formal framework CROMI not only captures the behavioral, relational,
and context-dependent nature of roles as well as various modeling constraints imposed on these
models, but also supports the use of both natural and compartment inheritance. Furthermore,
the formal framework is designed to support both formal and automated validation of the well-
formedness, compliance, and validity. However, in order to permit automated validation of CROMs,
CROIs, and Constraint Models; the development of a reference implementation is indispensable.

7.5 REFERENCE IMPLEMENTATION

Due to the fact, that the presented formal framework solely relies on set semantics and first-order
logic, it is readily applicable for implementation and, by extension, for automated verification.
To prove this, two reference implementations have been developed, whereas formalCROM16 is
based on Python17 and ScalaFormalCROM18 based on Scala19. In general, these implementations
can be used to create CROMs, CROIs, and Constraint Models, and automatically check their well-
formedness, compliance, and validity [Kühn et al., 2015a]. In particular, the goal was to provide
implementations that directly corresponds to the formal definitions. Henceforth, this section outlines
the Python* based implementation of the formal Compartment Role Object Model (CROM) without
inheritance, as presented in Chapter 7.3 by first discussing the representation of logical formulae
in Python, then presenting the architecture of the reference implementation, and finally illustrating
its application for automatic verification.

16https://github.com/Eden-06/formalCROM
17https://www.python.org
18https://github.com/max-leuthaeuser/ScalaFormalCROM
19http://www.scala-lang.org

128 7 Foundations of Role-Based Modeling Languages

7.5.1 TRANSLATION OF LOGICAL FORMULAE

Though I concede that a logic programming language, e.g. Prolog [Clocksin and Mellish, 2003],
seams to be a better choice, it is rather difficult to implement the additional set semantics with
Prolog, for instance, to ensure that the ≺N T relation is asymmetric or that links is a left total func-
tion. Python, by contrast, supports most of the set operations directly or via the itertools module.
More importantly, however, the combination of generator expressions and the build-in functions
all and any permit the representation of most quantified first-order logic formulae. In fact, all
and any directly correspond to universal and existential quantification in first-order logic. Simi-
larly, all relations are represented as a python set containing tuples and functions as hash maps
(python dict). Consider, for instance, the following axiom, extracted from Definition 7.1:

∀r st ∈ RST ∃ct ∈C T : (r st ,ct) ∈ domain(rel) (7.3)

This axiom can be implemented, as follows:

1 all(any((rst ,ct) in M.rel.keys() for ct in M.ct) for rst in M.rst)

To put it succinctly, the universal quantification ∀r st ∈ RST is written as all(... for rst
in M.rst) and the existential quantification ∃ct ∈C T as any(... for ct in M.ct), where
crom.rst and M.ct refer to the set of relationship types and set of compartment types, respectively.
The final test (rst,ct)\in M.rel.keys() is then embedded into these generator expressions and
checks that the given tuple (rst,ct) is a key of the hash map rel, i.e. that (r st ,ct) is in the domain
of the rel function. Similarly, each of the 20 axioms presented in the initial formalization (Sec-
tion 7.3) have been implemented. In conclusion, Python provides sufficient language constructs to
implement the specified axioms, such that each axiom closely resemble its formal definition. This,
in turn, makes this reference implementation more comprehensible, then a corresponding Prolog
implementation could.

7.5.2 STRUCTURE OF THE REFERENCE IMPLEMENTATION

While the underlying formalization should directly correspond to its formal specification, the ar-
chitecture of the reference implementation should reflect the partitioning of the formal framework
(cf. Figure 7.7) into a model, instance, and constraint level. Additionally, to permit later refinement
of the various definitions, the definition of CROM, CROI, and the constraint model have been im-
plemented as classes. Listing 7.1 shows an excerpt of the reference implementation. In detail, these
provide a constructor declaring the corresponding, sets, relations, and functions as immutable at-
tributes, as well as implement the relevant axioms as methods. Moreover, the class CROM imple-
ments the well-formedness criterion with the method wellformed that returns true if the axioms
(7.1–7.5) return true, as well. Similarly, the class CROI and ConstraintModel each encode the com-
pliance property as a method taking a CROM object as additional parameter. Finally, the notion of
validity is defined as a method within the ConstraintModel class, which takes both a CROI ob-
ject and a CROM object to check whether the instance is valid with respect to the given constraints.
Notably though, the valid method first verifies that both the constraint model and the instance
model are compliant to the given CROM. In sum, each class implements a corresponding defini-
tion. Thus, each definition can be specialized or extended by simply using inheritance and method
overriding.20 The reference implementation not only reflects the structure of the formal framework,
but also permits researchers to easily apply and extend the presented formalization.

20Indeed, it is a mere technicality to implement the CROM with Inheritance as extension of the reference implementa-
tion.

7.5 Reference Implementation 129

Listing 7.1: Extract of the reference implementation.

1 class CROM:
2 def __init__(self ,nt,rt,ct,rst ,fills ,rel):
3 # initialization
4 def wellformed(self):
5 return self.axiom1 () and self.axiom2 () and self.axiom3 ()
6 and self.axiom4 () and self.axiom5 ()
7 # axioms ...
8
9 class CROI:

10 def __init__(self ,n,r,c,type1 ,plays ,links):
11 # initialization
12 def compliant(self ,crom):
13 return crom.wellformed () and self.axiom6(crom) and

self.axiom7(crom)
14 and self.axiom8(crom) and self.axiom9(crom)
15 # axioms ...
16
17 class ConstraintModel:
18 def __init__(self ,rolec ,card ,intra ,inter ,grolec):
19 # initialization
20 def compliant(self ,crom):
21 return crom.wellformed ()
22 and self.axiom10(crom) and self.axiom11(crom)
23 and self.axiom12(crom) and self.axiom13(crom)
24 def validity(self ,crom ,croi):
25 return self.compliant(crom) and croi.compliant(crom)
26 and self.axiom14(crom ,croi) and self.axiom15(crom ,croi)
27 and self.axiom16(crom ,croi) and self.axiom17(crom ,croi)
28 and self.axiom18(crom ,croi) and self.axiom19(crom ,croi)
29 and self.axiom20(crom ,croi)
30 # axioms ...

7.5.3 SPECIFYING AND VERIFYING ROLE MODELS

Having a complete implementation of a formal framework grants the ability to automatically com-
pute the properties of a specification. In case of the formal CROM framework, the reference imple-
mentation allows for specifying CROMs, constraint models, and CROIs, as well as the programmatic
verification of their properties, e.g. well-formedness, compliance, and validity. To illustrate the use
of the reference implementation, Listing 7.2 showcases the specification and automatic evaluation
of the banking application, as modeled in Figure 7.4. In detail, it creates a CROM object m on the
model level by providing the set of natural types, compartment types, role types, as well as set of
tuples and a dictionary representing the fills relation and the rel function, respectively. Afterwards,
the CROI i is constructed on the instance level by passing the set of naturals, compartments, and
roles, as well as the type function, the plays relation, and the links function. This CROI, in turn,
corresponds to the role instance model of the banking application depicted in Figure 7.6. Finally,
the corresponding ConstraintModel cm is instantiated with the dictionaries rolec and card de-
noting the local role constraints and the cardinality constraints, as well as the sets intra, inter,
grolec of intra-relationship constraints, inter-relationship constraints, and global role constraints.
Once these three objects have been created, their methods can be used to automatically validate
the specification. Line 27, for instance, verifies whether the specified model m simply by calling the
wellformed method. Ultimately, to check if the specified instance i of the modeled banking ap-
plication m is valid with respect to the constraint model cm, one simply needs to invoke the valid
method of the constraint model with the model m and instance i as parameter. Similarly, each of
the implemented axioms can be individually evaluated by calling the corresponding method.

130 7 Foundations of Role-Based Modeling Languages

Listing 7.2: Specification of banking application using the reference implementation.

1 #Model Level
2 NT =["Person","Company","Account"]
3 RT =["Source","Target","Consultant","Customer","CA","SA", ...]
4 CT =["Transaction","Bank"]
5 RST =["trans","own_ca","advises","own_sa"]
6 fills =[("Company","Bank","Customer") ,("Person","Bank","Customer") ,...]
7 rel ={("trans","Transaction"): ("Source","Target"), ...}
8 m=CROM(NT,RT,CT ,RST ,fills ,rel)
9 #Instance Level

10 n =["Peter","Klaus","Google","Account_1","Account_2"]
11 r =["Con","Cu_1","Cu_2","Ca","Sa","S","T","M"]
12 c =["bank","transaction"]
13 type1 ={"Peter": "Person", "Klaus":"Person", "Google":"Company", ...}
14 plays =[("Klaus","bank","Cu_1"), ("Google","bank","Cu_2"), ...]
15 links ={("own_ca","bank"): [("Cu_1","Ca")], ...}
16 i=CROI(n,r,c,type1 ,plays ,links)
17 #Constraint Level
18 rolec ={"Transaction":[((2 ,2),RoleGroup (["Source","Target"],1,1))],
19 "Bank":[((1,inf),"Consultant"),
20 ((0,inf),RoleGroup (["CA","SA"],1,1))]}
21 card ={("trans","Transaction"): ((1,1) ,(1,1)), ... }
22 intra =[("advises","Bank",irreflexive)]
23 inter =[("own_sa","Bank",exclusion ,"own_ca")]
24 grolec =[...]
25 cm=ConstraintModel(rolec ,card ,intra ,inter ,grolec)
26
27 if (m.wellformed): print "The bank model M is a wellformed CROM"
28 if (i.compliant(m)): print "The bank instance i is compliant to M"
29 if (cm.compliant(m)):print "The constraint model C is compliant to M"
30 if (cm.valid(m.i)): print "The bank instance i is valid wrt. to C"

Notably though, these specifications directly correspond to the formal specifications presented in
Example 7.1, Example 7.2, and Example 7.5. This as well as the previously described translation of
the axioms, gives a strong indication of the soundness and completeness of the reference imple-
mentation. In conclusion, this reference implementation can be utilized by researchers to develop
and test other implementations of the presented framework, as well as to investigate specializations
and extensions of the Compartment Role Object Model.

7.6 FULL-FLEDGED ROLE MODELING EDITOR

Up to this point, the discussion mainly focused on formal foundation and representation of role
models. While their definition copes with major blocking factors for researchers to investigate and
improve RML, formal specifications are generally not regarded useful by practitioners. For them
the major blocking factor is the lack of a graphical modeling editor for the creation, manipulation,
and provisioning of role models. Moreover, to enable them to design role-based software systems,
additional means for validation and code generation are mandatory. To address these issues, this
section highlights the first Full-fledged Role Modeling Editor (FRaMED), a graphical modeling editor
for the design of Compartment Role Object Models. Introduced in [Kühn et al., 2016], the editor em-
braces all natures of roles as well as most of the presented modeling constraints. Besides providing
a full-fledged modeling editor, FRaMED also features distinction code generators generating formal
representations of CROM, data definitions for a role-based database or source code of role-based
programming languages. Consequently, FRaMED is able to provide all means necessary to allow
practitioners to model, reason about, and implement role-based software systems.

7.6 Full-Fledged Role Modeling Editor 131

Figure 7.11: Architecture of FRaMED, extracted from tep@kuehn2016framed.

7.6.1 SOFTWARE ARCHITECTURE

Generally, FRaMED is built on the Eclipse platform21 and is available on GitHub.22 The editor
was implemented using a model-driven approach and employs the Eclipse Modeling Framework
(EMF)23 and most of the following discussion has been published in [Kühn et al., 2016]. Figure 7.11
provides an overview of its software architecture.

Prior to its development, both the formalization of CROMs and constraint models have been en-
coded into a single corresponding Ecore metamodel. The resulting CROM metamodel is maintained
in a separate plugin24 and represents the central artifact for the editor and adjunct tools. How-
ever, this metamodel only represents the structure of CROMs and is void of any layout information,
e.g. positions, rectangles, and bend points. To further decouple FRaMED from this metamodel, the
editor represents a separate plugin, which only emits instances of the CROM metamodel. Within
the FRaMED plugin, the Editor UI handles all user interactions and is implemented employing the
Graphical Editing Framework (GEF).25 Internally, the plugin uses a custom Ecore metamodel for the
graphical representation of CROM, denoted Graphical Object Relation Model (GORM). This meta-
model is tailored towards the graphical aspects of role models, such as shapes, relations, segments,
and bend points. As a result, FRaMED’s implementation only depends on the GORM, simplifying
the development and extension of the editor. Nonetheless, whenever a GORM instance is saved (as
a *.crom_dia file), another plugin is tasked with its transformation to the corresponding CROM
(saved as *.crom file). The Transformation plugin, in turn, utilizes the Epsilon framework,26 a rule-
based model-to-model transformation engine, to declaratively specify the translation of GORM files
to CROM files. In addition to that, JUnit 427 and EMF Compare28 are employed to perform a series of
transformation test cases, in order to at least partially guarantee that the transformation is sound,
i.e., that each valid graphical model is transformed properly to a valid CROM.

21https://eclipse.org
22https://github.com/leondart/FRaMED/releases/tag/v2.0.3
23https://eclipse.org/modeling/emf
24https://github.com/Eden-06/CROM
25https://eclipse.org/gef
26http://www.eclipse.org/epsilon
27http://junit.org/junit4
28https://www.eclipse.org/emf/compare

132 7 Foundations of Role-Based Modeling Languages

https://eclipse.org
https://github.com/leondart/FRaMED/releases/tag/v2.0.3
https://eclipse.org/modeling/emf
https://github.com/Eden-06/CROM
https://eclipse.org/gef
http://www.eclipse.org/epsilon
http://junit.org/junit4
https://www.eclipse.org/emf/compare

Figure 7.12: Banking application modeled in FRaMED, from [Kühn et al., 2016].

Finally, once a CROM file is created, a user can trigger the Code Generator plugin to either generate
a formal representation of the role model or generate corresponding source code. While the former
can be used to validate the designed CROM, the latter can be completed to a working role-based
application or a role-based database. Granted, this architecture is rather complex, however, it facil-
itates separation of concerns by establishing the CROM metamodel as central representation of the
foundation for RMLs. This permits the separate evolution of the metamodel, editor, and code gen-
erators, as well as the development of additional tools, while assuring that all adhere to the structure
and terminology defined in the CROM metamodel and, by extension, the presented formalization.

7.6.2 ILLUSTRATIVE EXAMPLE

In general, FRaMED supports the graphical notation for RMLs, as introduced in Section 7.2. How-
ever, the visual representation of CROMs is separated into two distinct levels: the top-level view
and focus view. In the top-level view of FRaMED, shown in Figure 7.12, the user can create natural,
data, and compartment types; specify their inheritance relation; as well as create and refine the fills
relation [Kühn et al., 2016]. Model elements are added by selecting them in the palette, dragging
them to the canvas, and naming them accordingly. In contrast to the common graphical notation,
the fills relation is drawn from the player type to the compartment type, first. Afterwards, the role
types filled by a fills relation can be selected using the “Fulfill Roles” dialog (accessible via its context
menu) and are then listed adjacent to the fills relation. Finally, the user is able to step into a selected
compartment type by clicking on the “Step In” context menu item. As a result, the focus view is
opened showing the internals of the selected compartment type, as depicted in Figure 7.13. Here,
one can create role types, role groups, and relationship types between two role types, as well as
specify various role constraints, intra-relationship constraints, and inter-relationship constraints.
While most of these model elements are selected and drawn from the palette, intra-relationship
constraints are added by selecting the relationship type to constrain and opening the “Relationship
Constraints . . . ” dialog via the context menu. Last but not least, to exit the focus view the user sim-
ply clicks on the “step out” context menu item. Besides all that, whenever the current role model is
saved, the corresponding crom file is generated. In sum, FRaMED provides all means necessary to
create, manipulate and provision role models.

7.6 Full-Fledged Role Modeling Editor 133

Figure 7.13: Focus view of the Transaction compartment type, from [Kühn et al., 2016].

To further illustrate its use, the banking application is modeled (cf. Figure 7.4) again, but now us-
ing FRaMED. In the top-level, the natural types Person, Company and Account are defined, as well
as the compartment types Transaction and Bank. Afterwards, each compartment type is further
specified by stepping into the corresponding focus view. Within the Bank compartment type, the
role types Consultant, Customer, SavingsAccount, and CheckingAccount are added as well as
their relationship types advises, own_sa and own_ca. Similarly, the Transaction is refined by
adding the role types Source and Target, the trans relationship type, as well as the local con-
straints. Moreover, the various constraints, e.g. the Participants role group and the cardinality
constraints, are added in accordance to the modeled banking application (Figure 7.4). The resulting
role model of the Transaction compartment type is shown in Figure 7.13. Last but not least, after
returning to the top-level view the rigid types Person, Company, Account and Transaction are
declared to fill role types in the Bank compartment type. Likewise, the Account fills the role group
Participants of the Transaction compartment type. Figure 7.12 depicts the resulting model
from the top-level view.29

In conclusion, FRaMED represents by far the most convenient way to specify Compartment Role
Object Models. Moreover, the enforced separation of top-level and focus view further tame the vi-
sual complexity of role models. Following the argument of Moody [2009], both perspectives suc-
cessfully modularizes the graphical model by providing a structural overview in the top-level, as
well as a detailed view on a particular compartment type in the focus view. To put it succinctly,
FRaMED reduces the complex of role models by modularizing its specification.

7.6.3 ADDITIONAL TOOL SUPPORT

While it is true that a modeling editor alone is useful for domain analysts and researchers, soft-
ware practitioners strive for more tool supported integrated into the development environment.
In particular, practitioners require code generators for various target languages to quickly validate
or implement their domain model. To gratify their needs, FRaMED comes equipped with a set of
code generators, as illustrated in Figure 7.14. These are available upon right-clicking on a CROM
file (*.crom) and expanding the “Generate” context menu item to “RSQL Data Definition”, “SCROLL
Code”, “OWL Ontology”, and “Formal CROM”, which triggers the corresponding code generator.
Henceforth, each of these code generators is briefly introduced.

The first, code generator translates the given CROM to RSQL data definition statements for the
Role-based Contextual Database [Jäkel et al., 2016]. In general, RSQL is role-based extension to SQL

29The presented bank model can be found at: https://github.com/Eden-06/FRaMED-Example

134 7 Foundations of Role-Based Modeling Languages

https://github.com/Eden-06/FRaMED-Example

Figure 7.14: Overview of tool support for CROM.

Listing 7.3: Excerpt of the RSQL data definition of the bank model.

1 CREATE NATURALTYPE Account(oid BIGINT IDENTITY ,id INT ,/*...*/);
2 CREATE COMPARTMENTTYPE Transaction (cid BIGINT IDENTITY ,/*...*/);
3 CREATE ROLETYPE Source () PLAYED BY (Account) PART OF Transaction;
4 CREATE ROLETYPE Target () PLAYED BY (Account) PART OF Transaction;
5 CREATE RELATIONSHIPTYPE trans CONSISTING OF Source AND Target;

that fully incorporates the behavioral, relational, and context-dependent nature of roles, however,
lacks direct support for the specification of most constraints, except cardinalities [Jäkel et al., 2015].
Nonetheless, Jäkel et al. [2016] provides a functional role-based database that can be initialized by
providing the generated RSQL data definitions. For instance, Listing 7.3 showcases the definition
of the Transaction compartment type including its role types and relationship type, as it would
be generated for the previously modeled banking application. Similarly, the second code generator
emits class and method definitions for the role-based programming language SCROLL [Leuthäuser,
2015]. SCROLL is a library for Scala that introduces compartments, roles, and relationships to its
host language. Moreover, the language supports the definition of local role constraints as well as
cardinalities.30 Accordingly, Listing 7.4 outlines a small portion of the SCROLL code generated for
the bank model. It shows the definition of the Transaction compartment as Scala case class.
While the generator creates complete classes with both fields and methods, the method implemen-
tations must still be provided by a software engineering.31 In contrast to the previous generators,
the latter two translate a specified CROM to a formal representation, to validate its consistency,
well-formedness, and compliance. The third generator, for instance, generates a corresponding
ontology based on a two-dimensional contextualized description language (ConDL) [Böhme and
Lippmann, 2015]. This family of description logics are designed to model and reason about contex-
tual knowledge and context-dependent properties. In fact, this description logic allows for verifying
the consistency of a given CROM, i.e., whether the specified model has at least one valid instance.
For brevity, Listing 7.5 only shows a small portion of the generated ontology. Specifically, it outlines
the definition of the Transaction including its participating role types and relationship type.

30https://github.com/max-leuthaeuser/SCROLL
31The generator for Object Teams/Java code had been implemented by a student, however, does not work reliably.

7.6 Full-Fledged Role Modeling Editor 135

https://github.com/max-leuthaeuser/SCROLL

Listing 7.4: Slice of the generated SCROLL source code.

1 case class Account(balance: Money , id: Integer) { /*...*/ }
2 case class Transaction(amount: Money , creationTime: DateTime)
3 extends Compartment {
4 /*...*/
5 @Role case class Source (){def withdraw(amount:Money):Unit={/*...*/}}
6 @Role case class Target (){def deposite(amount:Money):Unit={/*...*/}}
7 RoleGroup("Participants").containing[Source , Target](1, 1)(2, 2)
8 val trans = Relationship("trans").from[Source](1).to[Target](1)
9 RoleRestriction[Account , Source]

10 RoleRestriction[Account , Target]
11 }

Listing 7.5: Extract from the generated context description logic.

1 Class: rosi:CompartmentTypes
2 SubClassOf: Annotations: rdfs:label "objectGlobal" owl:Nothing
3 DisjointUnionOf: rosi:Transaction , rosi:Bank
4 Class: rosi:Transaction
5 SubClassOf: rosi:PlaysSourceInTransaction
6 SubClassOf: rosi:PlaysTargetInTransaction
7 #...
8 SubClassOf: rosi:transDomainInTransaction
9 SubClassOf: rosi:transRangeInTransaction

10 #...

The last generator emits the formal representation of the given CROM based on the reference imple-
mentation, described in Section 7.5. This representation, in turn, can be utilized to automatically
evaluate the well-formedness and compliance of the generated CROM object and ConstraintModel
object, respectively, by simply executing the generated formal specification with a suitable Python
interpreter. Indeed, the Python code, generated for the banking application, resembles the exam-
ple outlined in Listing 7.2, excluding the definition of the CROI. In sum, these generators should
satisfy both researchers and practitioners and permit both to investigate, model, and implement
role-based software systems. However, because programmers always want to code rather than
model, Textual Role Modeling Language (TRoML) provides a textual representation and editor for
the specification of CROM files.32 To summarize the various tools, formal frameworks, and lan-
guages supported by the CROM modeling language, Table 7.2 compares and evaluates each of them
by applying the 27 classifying features of roles (Chapter 2.6). Arguably, The only feature the CROM
metamodel disregards, is Feature 8, denoting the roles can play roles. In fact, this feature only af-
fects the instance level, as it imposes a partial order on the played roles, to resolve the ambiguities
in method dispatch. This partial order, however, can be specified with the dispatch description lan-
guage in SCROLL [Leuthäuser, 2015].

In conclusion, FRaMED is not just a graphical modeling editor for the CROM modeling language,
but also the first role modeling editor that supports all natures of roles and the various constraints
presented in the literature. Moreover, it enables the design of role-based software systems by pro-
viding additional means for validation and code generation. Furthermore, FRaMED is open source
and freely available, in order to let both researchers and practitioners harness the power of role-
based modeling. Additionally, FRaMED (v2.0.3) has been packaged as a virtual machine,33 to guar-
antee simple installation for practitioners and reproducibility for researchers.

32https://github.com/Eden-06/TRoML
33http://st.inf.tu-dresden.de/intern/framed/framed-ubuntu.ova

136 7 Foundations of Role-Based Modeling Languages

https://github.com/Eden-06/TRoML
http://st.inf.tu-dresden.de/intern/framed/framed-ubuntu.ova

Table 7.2: Comparison of the languages supported by the CROM modeling language.

F e
at

u
re

s
[K

ü
h

n
et

al
.,

20
14

]

O
T

/J
[H

er
rm

an
n

,2
00

5]
SC

R
O

L
L

[L
eu

th
äu

se
r

an
d

A
ß

m
an

n
,2

01
5]

C
o

n
te

xt
D

L
[B

ö
h

m
e

an
d

Li
p

p
m

an
n

,2
01

5]

R
SQ

L
[J

äk
el

et
al

.,
20

16
]

fo
rm

al
C

R
O

M
[K

ü
h

n
et

al
.,

20
15

a]

fo
r m

al
C

R
O

M
I

(w
it

h
in

h
er

it
an

ce
)

T
R

o
M

L

F
R

aM
E

D
[K

ü
h

n
et

al
.,

20
16

]

1 � � � � � � � �

2 � � � � � � � �

3 � � � � � � � �

4 � � � � � � � �

5 � � � ∅ ∅ ∅ ∅ ∅
6 � � � � � � � �

7 � � � � � � � �

8 � � � � � � � �

9 � � � ∅ ∅ ∅ ∅ ∅
10 � � � � � � � �

11 � � � � � � � �

12 � � ∅ � ∅ ∅ ∅ ∅
13 � � � � � � � �

14 � � � � � � � �

15 � � � � � � � �

16 � � � � � � � �

17 � � � � � � � �

18 � � � � � � � �

19 � � � � � � � �

20 � � � � � � � �

21 � � � � � � � �

22 � � � � � � � �

23 � � � � � � � �

24 � � � � � � � �

25 � � � � � � � �

26 � � � � � � � �

27 � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

7.6 Full-Fledged Role Modeling Editor 137

“As one might expect there is not one ideal way of
defining such a concept, but a number of
competing approaches.”

— Steimann [2000b]

8 FAMILY OF ROLE-BASED MODELING
LANGUAGES

Thus far, one would assume that the introduction of a foundational role-based modeling language
able to fulfill most of the features of roles is sufficient (cf. Table 7.2), to convince other researchers
to adopt and utilize the modeling language. However, when considering the history of RMLs and
RPLs, it becomes evident that this is, generally, not the case. In fact, both TAO [Da Silva et al.,
2003] and Scala Roles [Pradel and Odersky, 2009] serve as counter example, i.e., role-based lan-
guages that have not been adopted, in spite of their superior feature set. Indeed, Steimann’s quote
above, reminds us that providing one role definition is not enough to accommodate the various
needs and divergent definitions of different researchers. To put it bluntly, after introducing yet an-
other RML, there is still no common RML able to capture these divergent definitions of roles. In
fact, this appears to be one of the main reasons for the apparent fragmentation and discontinuity
within the research fields on RMLs and RPLs. Furthermore, these issues become a major blocking
factor, when different researchers working on role-based approaches are supposed to collaborate
with one another. In fact, the research training group on Role-based Software Infrastructures for
continuous-context-sensitive Systems (RoSI) faced the same problem in the beginning, as each fel-
low researcher had a different understanding of roles. Thus, instead of requiring all researcher to
agree on a common definition of roles, the solution is to introduce a family of role-based modeling
languages that harmonizes and reconciles their divergent views. In particular, the 27 classifying
features of roles were utilized to identify the commonalities and differences of the contemporary
role-based languages. Moreover, to directly address the discontinuity among contemporary role-
based approaches, the family of metamodels for role-based languages was introduced in [Kühn et al.,
2014]. Specifically, it is able to generate compatible metamodel variants for arbitrary role-based lan-
guages. Thus, researchers can simply generate a metamodel for their specific approach and, more
importantly, for previous approaches they intend to combine or reuse [Kühn et al., 2014]. Further-
more, to tackle the fragmentation of the various contemporary RMLs, FRaMED is upgraded to a
fully dynamic Software Product Line (SPL) for the family of RMLs. As a result, researchers can tailor
FRaMED to support their particular language variant. In conclusion, the family of RMLs addresses
both the fragmentation and discontinuity, present in the research on roles.

This chapter is structured, accordingly. Section 8.1 describes the family of metamodels for RMLs
highlighting its use and implementation. Afterwards, Section 8.2 facilitates the family of RMLs by
illustrating the extension of FRaMED to a dynamic SPL. Finally, Section 8.2.3 discusses the applica-
bility of both the metamodel family and the language family within RoSI.

139

8.1 FAMILY OF METAMODELS FOR ROLE-BASED MODELING
LANGUAGES

Arguably, the discontinuity in the research field stems from the incompatibility of the various ap-
proaches. However, to be able to freely combine the various contemporary RMLs and RPLs, they re-
quire compatible metamodels. Unfortunately, only few approaches actually defined and published
their underlying metamodel, e.g., [Da Silva and De Lucena [2004];Kim and Carrington [2004];Her-
rmann [2007];[Genovese, 2007]. As a result, it becomes infeasible to create or combine the meta-
models of two role-based languages. To approach this, the family of metamodels for role-based lan-
guages has been proposed in [Kühn et al., 2014], such that each member of the family corresponds
to the 27 classifying features. Accordingly, a feature modeling approach [Kang et al., 1990] has been
employed to implement a feature-oriented metamodel generator. In this way, it becomes feasible to
generate metamodels for two different approaches, which can then be combined by mapping their
sibling metamodels to a merged metamodel. This allows for combining and improving the various
contemporary RMLs and, furthermore, paves the way to reconcile the research fields on RPLs and
RPLs [Kühn et al., 2014].

8.1.1 FEATURE MODEL FOR ROLE-BASED LANGUAGES

The first step of feature modeling is to generate a feature model as a hierarchical representation
of the 27 identified features of roles (cf. Chapter 2.6). This, in turn, elucidates the various implicit
dependencies of the classifying features of roles.

Figure 8.1 depicts the resulting feature model for RMLs, published in [Kühn et al., 2014]. To bet-
ter trace, how the classifying features of roles have been mapped to the feature model, the fea-
ture nodes have been annotated with the corresponding number in the feature list (cf. Figure 2.1
and Figure 2.2). In detail, the feature model specifies three main feature arcs, e.g., Role Types,
Relationships, and Compartment Types, to group all features dependent on the existence of
these modeling concepts. Notably though, those features that are essential for the existence of
a concept, are marked as mandatory. The mandatory feature Naturals of Player, for instance,
denotes that role types can always be played by naturals. In conclusion, the feature model encom-
passes all 27 classifying features of roles. Besides that, the model additionally includes features
for Riehle’s role constraints [Riehle and Gross, 1998], i.e., Role Implication, Role Exclusion,
and Role Equivalence, and two options for compartment identity, i.e., Composite Identitiy,
and Own Compartment Identity. In conclusion, the feature model manages to arrange all 27
features of roles with respect to their dependencies to roles, relationships, and compartments. In
addition to the dependencies of features visible in the feature model, four additional cross-tree con-
straints [Thüm et al., 2014] have been defined, as shown in Figure 8.2. Conversely, these constraints
ensure that a configuration contains all entities on which the Role Type depends (8.1 and 8.2),
that Role Equivalence is included, whenever the Role Implication is selected (8.3), and that
Compartment types are supported, if Compartments can be players (8.4).

It follows, then that the presented feature model faithfully captures and elucidates the depen-
dencies of the 27 classifying features of roles. Henceforth, the feature model is used to define a con-
figuration by selecting the various features. For simplicity, two particular configurations (of over
7200 possible configurations) serve as examples, namely the feature minimal configuration and the
feature complete configuration.

140 8 Family of Role-Based Modeling Languages

1

1

5

13

8

22

11

3

4

7

19

6

14

15

16

26

23

21

24

25

20

20

17

2

9

10

12

18

27

Figure 8.1: Feature model for role-based modeling languages, extended from [Kühn et al., 2014].

RoleT y pes.Dependent .OnRel ati onshi ps ⇔ Rel ati onshi ps (8.1)

RoleT y pes.Dependent .OnCompar tment s ⇔ Compar tmentT y pes (8.2)

RoleImpli cati on ⇒ RoleE qui valence (8.3)

RoleT y pes.Pl ay able.Pl ayer s.Compar tment s ⇒ Compar tmentT y pes (8.4)

Figure 8.2: Cross-tree constraints of the feature model for RMLs.

8.1 Family of Metamodels for Role-Based Modeling Languages 141

Figure 8.3: Ecore metamodel of a feature minimal metamodel.

8.1.2 FEATURE MINIMAL METAMODEL

In a feature minimal configuration, only mandatory features are selected. Thus, only natural types
(with structures and inheritance), which can play role types, exist. Role types, however, are merely
annotations, because they only have a name and lack structure, inheritance, and relationships.

In accordance with the minimal configuration of the feature model, Figure 8.3 depicts the meta-
model of a minimal RML. Besides the general definition of types, attributes, and operations, this
metamodel features a specific RoleModel class that represents the default container for all role
types (and possibly relationships and constraints). In fact, it is included if the configuration does
not include compartment types. Moreover, the metamodel denotes theRoleType asNamedElement
implementing the AbstractRole interface. Furthermore, the model specifies the Fulfillment

class represents fills relation from Type class to AbstractRoles. Finally, the Part class links the
role model to its participants and holds the lower and upper bound if OccurrenceConstraint
have been selected. Of course, this model resembles a standard object-oriented metamodel, how-
ever, with the additional ability to mark classes with role types.

8.1.3 FEATURE COMPLETE METAMODEL

In contrast to the minimal configuration, a feature complete configuration selects as many features
as possible without violating the feature model. However, due to the fact that a metamodel can only
reflect features of the model level (M1), all features solely affecting the instance level (M0), have
been omitted. As a result, the feature complete metamodel incorporates natural types, role types,
relationships, and compartment types as classes. Furthermore, roles can be played by naturals,
other roles, and compartments.

142 8 Family of Role-Based Modeling Languages

Figure 8.4: Ecore metamodel of a feature complete metamodel.

Figure 8.4 shows the corresponding feature complete metamodel. To illustrate how the three na-
tures of roles are reflected in the metamodel, all classes that contribute to a particular nature of
roles are colored accordingly. In detail, blue classes correspond to the behavioral nature, green
classes to the relational nature, and orange classes to the context-dependent nature. The classes
RoleType and RoleInheritance, for example, correspond to the behavioral nature, whereas the
classes CompartmentType and CompartmentInheritance contribute to the context-dependent
nature of roles. Furthermore, the metamodel encompasses the various relations between the dif-
ferent types, e.g., the fills relation, and the various inheritance relations, as well as the several lo-
cal role and relationship constraints. Additionally, this metamodel includes a typical list of intra-
relationship constraints and the two inter-relationship constraints, as well as the RoleGroup class
for the specification of local role groups. In conclusion, the feature complete metamodel represents
the unification of the 27 features of roles proposed in the contemporary literature.

8.1 Family of Metamodels for Role-Based Modeling Languages 143

8.1.4 MAPPING FEATURES TO VARIATION POINTS

After showcasing both the feature minimal (Figure 8.3) and the feature complete metamodel (Fig-
ure 8.4), this section describes how variants can be derived by adding and modifying either classes
or references from the feature minimal metamodel. Henceforth, this section describes the mapping
from features to the corresponding variation points.

In general, there are five kinds of variation points in the metamodel family. The first kind of
variation point directly corresponds to classes (highlighted in Figure 8.4), i.e., their existence in the
metamodel is directly linked to the selection of a specific feature. To put it bluntly, the following
classes directly correspond to a selected feature:

• On Relationships (Feature 2),

• RoleConstraint (Feature 6),

• RoleInheritance (Feature 13),

• IntraRelationshipConstraint (Feature 16),

• InterRelationshipConstraint (Feature 17),

• RoleGroup (Feature 18), and

• CompartmentInheritance (Feature 25).

Conversely, the selection of one of these features leads to the addition of the corresponding class
together with the respective incoming and outgoing references. The only exception to this rule is
the CompartmentType class corresponding to Feature 19, which is replaced by a RoleModel class,
if the feature is deselected.

The second kind of variation point correlates with creation or modification of particular refer-
ences in the metamodel. For instance, the filler reference of Fulfillment class either points to
NaturalType, RigidTypes, Type or to a generic Player interface depending on the selected com-
bination of the Features 8 and 22, which declare whether compartments and/or roles can play roles,
as well. Similarly, the references contains and fulfillments are only included in the metamodel
if the configuration includes Feature 24 and Feature 8, respectively.

By contrast, the third kind of variation point changes the inheritance relation of specific classes
to change their properties or implemented interfaces. Consider, for instance, the classes RoleType
and CompartmentType, which only inherit (indirectly) from Type, if Feature 1 respectively 20 is
selected. In other words, they only inherit attributes and operations from Type, if the corre-
sponding feature has been selected. Otherwise, they would inherit from RelationTarget and, in
case of the CompartmentType, also from ModelElement. The fourth kind of variation point corre-
sponds to the presence of attributes with a specific class. In fact, the attributes lower and upper
are added to the Part class, if occurrence constraints (Feature 27) is selected.

The last kind of variation points cannot be captured by standard Ecore models, because they cor-
respond to invariants that must be satisfied by instances of that particular metamodel. This holds
true for Feature 3, 7, 11, and 23, which broaden the number of valid models. Arguably, an axiom
could be added to the well-formedness rules, whenever one of these features is deselected. For in-
stance, the axiom∀o ∈O∃!r ∈ R : (o,c,r) ∈ plays could be added whenever Feature 3 is not present in
the configuration. Altogether, these variation points are sufficient to generate each member of the
metamodel family for a given configuration by iteratively transforming the feature minimal meta-
model.

144 8 Family of Role-Based Modeling Languages

Figure 8.5: Overview of the generator for the metamodel family.

Listing 8.1: Excerpt of the feature mapping for the family of metamodels.

1 /*...*/

2 !On_Compartments:

3 <deltas/NotOnCompartments.decore >

4 On_Compartments:

5 <deltas/OnCompartments.decore >

6
7 On_Relationships && On_Compartments :

8 <deltas/OnCompartmentsAndOnRelationships.decore >

9 On_Relationships && !On_Compartments :

10 <deltas/NotOnCompartmentsAndOnRelationships.decore >

11 /*...*/

8.1.5 IMPLEMENTATION OF THE METAMODEL GENERATOR

To facilitate the generation of metamodel variants, a corresponding feature-oriented metamodel
generator, denoted RoSI CROM, has been implemented and published in [Kühn et al., 2014]. In
general, the generator was developed utilizing two Eclipse plugins designed to support feature-
oriented software design: FeatureIDE and DeltaEcore. In particular, FeatureIDE1 [Thüm et al., 2014]
provided the foundation for the metamodel generator by offering dedicated editors for the specifi-
cation of feature models and configurations. In fact, the feature model, depicted in Figure 8.1, was
designed within the FeatureIDE. However, the RoSI CROM was implemented following a delta mod-
eling approach using DeltaEcore2 [Seidl et al., 2014]. Specifically, DeltaEcore allows for declaring the
changes associated with selecting a feature within delta modules. These modules, in turn, manip-
ulate a given base model by adding, modifying, or removing model elements. Additionally, the fea-
ture mapping connects features to delta modules by specifying their application conditions.3 Con-
sequently, RoSI CROM employs the feature minimal metamodel (cf. Figure 8.3) as its base model;
features 34 distinct delta modules; and implements the feature mapping, accordingly. Figure 8.5
establishes the general architecture of the metamodel generator RoSI CROM.

1http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide
2http://deltaecore.org
3https://github.com/Eden-06/RoSI_CROM

8.1 Family of Metamodels for Role-Based Modeling Languages 145

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide
http://deltaecore.org
https://github.com/Eden-06/RoSI_CROM

Listing 8.2: Delta module for the introduction of comparment types.

1 configuration delta "OnCompartments"
2
3 dialect <http://www.eclipse.org/emf /2002/ Ecore >
4 requires <../model/crom_l1.ecore >, <Parts.decore > {
5 EClass compartmentTypeEClass = new EClass(name:"CompartmentType");
6 addEClass(compartmentTypeEClass ,<crom_l1 >);
7 EReference partsEReference = new EReference(
8 eType:<Part >, name:"parts", lowerBound :0, upperBound:-1,
9 containment:true , ordered:true

10);
11 addEReference(partsEReference , compartmentTypeEClass);
12 EReference wholeEReference= new EReference(
13 eType: compartmentTypeEClass , name: "whole",
14 lowerBound :1, upperBound :1, containment:false
15);
16 addEReference(wholeEReference , <Part >);
17 makeEReferencesOpposite(partsEReference , wholeEReference);
18 }

To further illustrate the implementation of the metamodel generator, Listing 8.1 shows an extract
of the specified feature mapping. Here, each mapping consists of a Boolean expression ranging
over the set of features and a delta module that is applied, when a given configuration satisfies
the Boolean expression. Consider, for instance, a configuration that includes the features depen-
dent on compartments and on relationships. When providing this configuration to RoSI CROM,
DeltaEcore would apply the delta modules OnCompartments (Line 5) and OnCompartmentsAnd-
OnRelationships (Line 8) to the base model, as the configuration satisfies the corresponding
Boolean expressions. The application of the delta module OnCompartments, outlined in Listing 8.2,
adds compartment type to the metamodel. Specifically, it creates the CompartmentType class
(Line 5) as well as the references parts (Line 7–10) and whole (Line 12–15) between the classes
CompartmentType and Part, such that whole is the opposite relation of parts. Notably though,
most of the other delta modules specify only minor modifications, as most of them only add one
model element to the base model.

In conclusion, RoSI CROM is a feature-oriented generator able to generate all variants of the fam-
ily of metamodels. Moreover, due to the good integration of DeltaEcore into FeatureIDE, the meta-
model generator is incredibly easy to use, once the RoSI CROM project is imported. Furthermore,
the employed delta modeling approach ensures the scalability and evolvability of the metamodel
family, as it permits researchers to easily add new features to the metamodel family by providing
corresponding delta modules and modifying the feature mapping. Finally, RoSI CROM makes it vi-
able for researchers to generate metamodels for arbitrary role-based modeling and programming
languages simply by providing the corresponding configuration to the metamodel generator. Be-
sides all that, RoSI CROM is open source and available on GitHub,4 as well.

4https://github.com/Eden-06/RoSI_CROM

146 8 Family of Role-Based Modeling Languages

https://github.com/Eden-06/RoSI_CROM

8.2 FIRST FAMILY OF ROLE MODELING EDITORS

While the family of metamodels mostly addressed the discontinuity among the contemporary role-
based languages, this section addresses the fragmentation within the research community. In par-
ticular, this section facilitates a family of role-based modeling languages based on the feature model
for RMLs to harmonizes and reconcile the divergent definitions of roles found in contemporary
RMLs. Indeed, this family of modeling languages not only embodies the various RML using a com-
mon graphical notation, but also permits researchers to choose and pick new language variants
with respect to the desired features of roles. Yet, what constitutes a family of modeling languages
and what makes it useful? Similar to modeling languages [Harel and Rumpe, 2004], a family of
modeling languages provides a common syntax defining the graphical notation and multiple vari-
ations of its semantics each defining the structure and meaning of individual language variants.
Conversely, the family of RMLs employs the graphical notation for RMLs (Chapter 7.2) to denote its
underlying syntax, as well as the family of metamodels for RMLs to represent the variants of its static
semantics (i.e., its abstract syntax). While this would suffice to establish a language family for CROM
models, this family of languages could not be considered useful when reconsidering the properties
of useful models, such as clarity, commitment, communication, control [Henderson-Sellers, 2012].
Granted, both ontological foundation for roles and the common graphical notation ensure clar-
ity and foster communication among researcher using the language family. Nonetheless, without
proper tool support it is impossible to use the models of a particular RML variant to control the
design, verification, and implementation of a corresponding role-based software systems.

Up to my best knowledge, there exists no graphical modeling editor able to support the family of
role-based modeling languages. Thus, this section proposes the development of the first family of
role modeling editors. That is a feature-oriented, dynamic SPL of graphical modeling editors that
enables the flexible configuration of RML variants, as well as the creation, manipulation, validation,
and code generation of the corresponding CROM models. To achieve these goals, the Full-fledged
Role Modeling Editor (FRaMED) is upgraded to a dynamic, feature-oriented SPL, accordingly. As a
result of this extension, researchers will be able to tailor the FRaMED SPL to support their particular
RML variant that corresponds to their understanding of roles.

8.2.1 DYNAMIC FEATURE CONFIGURATION

Before discussing the underlying architecture of the FRaMED SPL, it is important to conceptualize
the user’s interaction with the modeling editor. In general, it should behave just like the original
role modeling editor, FRaMED, however, it must permit its users to change the configuration of the
underlying RML at any point in time. Additionally, it is conceivable that a user wants to edit multi-
ple CROM models simultaneously, wheres each can belong to a different RMLs, i.e., with different
feature configurations. It follows, then that each GORM model must additionally carry the config-
uration of the corresponding RML. By extensions, the modeling editor must change its behavior
dynamically in accordance with the configuration of the currently opened GORM instance. As a
result, the FRaMED SPL includes a “Configuration” tab for each opened editor canvas that allows
for modifying the configuration of the underlying RML. As an example, Figure 8.6 showcases the
integrated configuration editor highlighting the current configuration of the BankFamily model.
The implementation of the FRaMED SPL, presented henceforth, follows these use cases.

8.2 First Family of Role Modeling Editors 147

Figure 8.6: Runtime reconfiguration of the FRaMED software product line.

Although the complete feature model for RMLs (Section 8.1) could be included, this would also in-
clude useless configuration options. This is the case, because not every feature of roles affects the
model level and, by extension, the modeling language. Therefore, all features that solely affect the
instance level, i.e., Feature 3, 4, 5, 10, 12, 14, 15, and 26, can be omitted from the feature model, as
they do not influence the behavior of the modeling editor.5 The resulting feature model for the fam-
ily of role modeling editors is depicted in Figure 8.7. In addition to that, Figure 8.8 outlines the cross-
tree constraints additionally imposed on this feature model. Notably, the constraint (8.9) declares
an additional dependency between the feature Roles as Players and the ContainsCompartments
feature. In other words, this dependency entails that roles can only play roles (Feature 8) if compart-
ments can contain compartments (Feature 24) and vice versa. The underlying rational is that a role
type defined in a compartment type can only play role types of a contained compartment type.
Though I concede that this may be a viable combination of features, I still insist that this would vi-
olate the ontological foundation of roles, as, otherwise, the outer role type would be both rigid and
anti-rigid at the same time.

8.2.2 ARCHITECTURE OF THE DYNAMIC SOFTWARE PRODUCT LINE

After describing the intended use of the family of role modeling editors, this section describes the
necessary extensions to upgrade FRaMED to a dynamic SPL. As it turns out, the previously estab-
lished architecture (cf. Figure 7.11) makes it a viable target for the creation of an SPL. In fact, most
of the original implementation can be reused as is, whereas only key modules had to be replaced or
extended. Accordingly, Figure 8.9 provides an overview on the modified architecture of FRaMED.
Basically, the editor has been modified in four ways. First and foremost, the editor now loads the
effective feature model for RMLs and the edit policy mapping upon startup. Secondly, the GORM
model is extended to incorporate the current configuration of the language variant. Thus, when
loading a graphical model (*.crom_dia), the editor also loads its feature configuration. Internally,

5Table 2.1 and 2.2 indicates the affected meta level for each feature on the right-hand side.

148 8 Family of Role-Based Modeling Languages

Figure 8.7: Effective feature model for the family of role modeling editors.

RoleT y pes.Dependent .OnRel ati onshi ps ⇔ Rel ati onshi ps (8.5)

RoleT y pes.Dependent .OnCompar tment s ⇔ Compar tmentT y pes (8.6)

RoleImpli cati on ⇒ RoleE qui valence (8.7)

RoleT y pes.Pl ay able.Pl ayer s.Compar tment s ⇒ Compar tmentT y pes (8.8)

RoleT y pes.Pl ay able.Pl ayer s.Roles ⇔ Cont ai nsCompar tment s (8.9)

Figure 8.8: Cross-tree constraints of the effective feature model for RMLs.

8.2 First Family of Role Modeling Editors 149

Figure 8.9: Architecture of the family of modeling editors.

each feature configuration is managed by a Configuration object (provided by the FeatureIDE)
that verifies and ensures its validity. Third, the transformation rules have been adapted to take the
feature configuration of the given GORM instance into account. Finally, FRaMED SPL includes the
RoSI CROM generator as additional plugin to create the corresponding metamodel for a given fea-
ture configuration. Accordingly, whenever a GORM instance is saved, the metamodel generator is
triggered first to create the corresponding metamodel variant, if not already present. Afterwards,
the transformation plugin uses this metamodel variant as target to generate the corresponding
model.

In general, these modifications suffice to upgrade FRaMED to an SPL. However, in order to es-
tablish the FRaMED SPL as a dynamic product line, the editor must able to dynamically adapt its
palette and its edit policies in accordance with the current feature configuration. While it is feasible
to implement dynamically changing palette entries, it is impractical to modify each and every previ-
ously implemented edit policy manually. Therefore, an edit policy handler is introduced that loads
the edit policy mapping and adapts the static edit policies, accordingly. The edit policy mapping, in
turn, maps features to specific edit policies, for instance, to prohibit inheritance relations between
compartment types if compartment inheritance is not selected. In conclusion, FRaMED could be
easily extended to a dynamic SPL that, in turn, establishes and supports the family of RML.

8.2.3 APPLICABILITY OF THE LANGUAGE FAMILY WITHIN ROSI

According to its proposal, the main goal of the research training school RoSI is “to prove the fea-
sibility of consistent role modeling and its applicability,”6 whereas consistency entails that role-
based models are utilized throughout the software development process. Consequently, while each
RoSI student has a different understanding of roles, the family of RML and, especially, the family of
role modeling editors will allow them to easily select the most suitable RML for their particular do-
main. Arguably, the family of RMLs can enable consistent role modeling among the RoSI students.
However, to assess its applicability, it basically important to compare their published role-based ap-
proaches, i.e., [Kühn et al., 2015a, Leuthäuser, 2015, Böhme and Lippmann, 2015, Jäkel et al., 2016,
Chrszon et al., 2016, Taing et al., 2016], with respect to the classifying features of roles. Table 8.1
depicts the results of the comparison and highlights those features that are covered by the effective
feature model (cf. Figure 8.7).

6https://wwwdb.inf.tu-dresden.de/rosiproject/rosi-vision

150 8 Family of Role-Based Modeling Languages

https://wwwdb.inf.tu-dresden.de/rosiproject/rosi-vision

Table 8.1: Comparison of role-based approaches within RoSI.

Fe
at

u
re

s
[K

ü
h

n
et

al
.,

20
14

]

fo
rm

al
C

R
O

M
[K

ü
h

n
et

al
.,

20
15

a]

SC
R

O
L

L
[L

eu
th

äu
se

r
an

d
A

ß
m

an
n

,2
01

5]

C
o

n
D

L
[B

ö
h

m
e

an
d

Li
p

p
m

an
n

,2
01

5]

R
SQ

L
[J

äk
el

et
al

.,
20

16
]

R
R

N
[C

h
rs

zo
n

et
al

.,
20

16
]

L y
R

T
[T

ai
n

g
et

al
.,

20
16

]

fo
r m

al
C

R
O

M
I

(w
it

h
in

h
er

it
an

ce
)

F
R

aM
E

D
[K

ü
h

n
et

al
.,

20
16

]

F
R

aM
E

D
SP

L
(O

n
G

it
H

u
b)

1 � � � � � � � � �

2 � � � � � � � � �

3 � � � � � � � � �

4 � � � � � � � � �

5 ∅ � ∅ � � � ∅ ∅ ∅
6 � � � � � � � � �

7 � � � � � � � � �

8 � � � � � � � � �

9 ∅ � ∅ � � � ∅ ∅ ∅
10 � � � � � � � � �

11 � � � � � � � � �

12 ∅ � � ∅ � � ∅ ∅ ∅
13 � � � � � � � � �

14 � � � � � � � � �

15 � � � � � � � � �

16 � � � � � � � � �

17 � � � � � � � � �

18 � � � � � � � � �

19 � � � � � � � � �

20 � � � � � � � � �

21 � � � � � � � � �

22 � � � � � � � � �

23 � � � � � � � � �

24 � � � � � � � � �

25 � � � � � � � � �

26 � � � � � � � � �

27 � � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

8.2 First Family of Role Modeling Editors 151

Evidently, each of the RoSI students has a slightly different perspective and understanding of roles.
Consequently, it is impractical to impose one common RML on all of them, just for the sake of
consistent role modeling. On the contrary, if each of them used the FRaMED SPL to configure his
individual RML, the resulting models could still be shared, reused, and extended.

Naturally, this is true for the approaches formalCROM [Kühn et al., 2014], ConDL [Böhme and
Lippmann, 2015], and RSQL [Jäkel et al., 2016], as they mostly operate on the model level and share
most of the features. Hence, the models of their individual RMLs are generally compatible. Like-
wise, the RML variants for both SCROLL [Leuthäuser, 2015] and LyRT [Taing et al., 2016] would
have compatible models. In contrast, only Roles and Relationships in Reo (RRN) [Chrszon et al.,
2016] would have a rather minimal RML variant. Even though all others could easily reuse his
models, it would be difficult to translate a model of one of the other RML variants to RRN. This is
not surprising, as Chrszon et al. [2016] investigates verification techniques for role-based systems,
whereas Leuthäuser and Aßmann [2015] develops a role-based programming language. Nonethe-
less, it would be feasible to employ the FRaMED SPL to create individual RMLs for all RoSI students.
This would not only elucidate the different understanding of roles among the students, but also
foster their collaboration.

In conclusion, the family of RMLs and its implementation within the FRaMED SPL permits re-
searchers to design role models tailor to their use case. In fact, the FRaMED SPL is not only the first
family of role modeling editors, but also the first role modeling editor able to embody all contempo-
rary role-based modeling languages. Moreover, it tames fragmentation by enabling researchers to
design individual role-based approaches with different features of roles, while maintaining that the
models can be shared, combined, reused, and extended by others. Furthermore, the FRaMED SPL
still provides the necessary tool support for validation and code generation. Although, the FRaMED
SPL is a research prototype, it is made open source and freely available on GitHub.7

7https://github.com/leondart/FRaMED/tree/develop_branch

152 8 Family of Role-Based Modeling Languages

https://github.com/leondart/FRaMED/tree/develop_branch

“After all, role is one of the most elementary terms
not only in modelling [...], and it is difficult, if not
impossible, to get along without it.”

— Steimann [2000c]

9 CONCLUSION

Of course, Steimann is right, when he acknowledges that the notion of roles is so fundamental, so
ubiquitous that most people cannot properly define what a role actually is. Throughout the course
of this thesis, it became evident that although roles have been used for conceptual modeling for
almost 40 years, their underlying nature and formal foundations have not been fully uncovered.
Besides Steimann’s seminal paper on the representation of roles [Steimann, 2000b], this thesis fi-
nally establishes the underlying natures of roles, as well as their formal foundation. However, in-
stead of providing yet another role-based modeling language (RML) for conceptual modeling, this
thesis established a complete and coherent family of role-based modeling language, as well as the
corresponding family of modeling editors.

9.1 SUMMARY

In particular, this thesis surveyed the contemporary literature on roles in the first part and pre-
sented the foundations for RML, as well as the Family of RMLs in the second part. In detail, Chap-
ter 2 introduced the behavioral, relational, and context-dependent natures of roles; as well as ex-
tended Steimann’s list of classifying features of roles by including 12 new features that have been
retrieved from contemporary role-based languages. Based on these 27 features, a Systematic Lit-
erature Review (SLR) was designed and conducted to survey contemporary role-based languages
(Chapter 3). In fact, this literature review identified 12 distinct RMLs and 14 RPL published be-
tween the year 2000 and 2016. Afterwards, Chapter 4 and Chapter 5 discussed and evaluated each
of the contemporary RMLs and RPLs. Finally, Chapter 6 presented the results of the conducted
SLR and the corresponding evaluation of contemporary role-based languages. This evaluation, in
particular, identified four problems in the research fields on RMLs and RPLs.

1. There is neither a common understanding nor common feature set shared among the different
contemporary role-based modeling and programming languages.

2. The research fields on RMLs and RPLs are characterized by an ongoing discontinuity and
fragmentation. Specifically, most approaches reinvent the role concept without taking the
definitions of preceding related approaches into account.

3. Only four RMLs provide a sufficient formal foundation for roles able to incorporate all natures
of roles, i.e. [Da Silva et al., 2003, Genovese, 2007, Liu and Hu, 2009a, Hennicker and Klarl,
2014]. Regardless, none of them is able to support all classifying features of roles.

153

4. Finally, most RMLs and RPLs are not readily applicable, due to their complexity, ambiguous
terminology, and/or missing tool support. Especially, there exists no feature rich, practically
usable graphical modeling editor for an RML.

Consequently, the second part addressed these issues by first providing the foundations for RMLs
and then introducing a the family of RMLs. Specifically, Chapter 7 established the foundations of
RMLs by providing both a comprehensive ontological foundation for roles (Chapter 7.1) and a com-
mon graphical notation for RMLs. Above all, this chapter introduced and extended the Compart-
ment Role Object Model (CROM) (Chapter 7.3 and 7.4), a formal framework for conceptual mod-
eling that incorporated the three natures of roles and the modeling constraints. Besides that, Sec-
tion 7.6 additionally presented Full-fledged Role Modeling Editor (FRaMED) as a readily applicable
graphical modeling editor for CROM. In contrast, Chapter 8 addressed both the apparent discon-
tinuity and fragmentation in the research fields on RMLs and RPLs. On the one hand, Chapter 8.1
established the family of metamodels for role-based languages that permits researchers to easily
generate metamodels for arbitrary role-based languages they intend to combine and/or reuse. On
the other hand, Chapter 8.2 finally introduced the family of RMLs and upgraded FRaMED to a fully
dynamic SPL to support the language family. Ultimately, both the metamodel family and family
of RMLs have been introduced to tackle the apparent fragmentation and discontinuity within the
research community.

9.2 CONTRIBUTIONS

This thesis presented the following contributions to the field of conceptual modeling, in general,
and the field of role-based modeling and programming languages, in particular:

• A thorough literature survey on contemporary RMLs and RPLs published since the year 2000
(Chapter 3).

• The extension of the list of classifying features of roles [Steimann, 2000b] introducing 12 ad-
ditional features of roles (Chapter 2) [Kühn et al., 2014].

• The introduction of concise ontological foundation for RMLs (Chapter 7.1) [Kühn et al., 2015a].

• The design of a common graphical notation for RMLs (Chapter 7.2) [Kühn et al., 2015a].

• The formalization of both CROM [Kühn et al., 2015a,b] and CROMI as a comprehensive for-
mal foundation for RMLs (Chapter 7.3 and 7.3).

• The development of an award winning1 Full-fledged Role Modeling Editor (FRaMED) (Chap-
ter 7.6) [Kühn et al., 2016].

• Introduction of the family of RMLs based on the feature model for RMLs (Chapter 8.1.1)

• The implementation of the RoSI CROM metamodel generator to facilitate the family of meta-
models for role-based languages (Chapter 8.1) [Kühn et al., 2014].

• The extension of FRaMED to a dynamic SPL supporting the creation of language variants of
the family of RML, and thus introducing the first family of role modeling editors (Chapter 8.2).

1Distinguished Artefact Award of the 9th ACM SIGPLAN Conference on Software Language Engineering.

154 9 Conclusion

Table 9.1: Comparison with contemporary role-based modeling languages, extended from [Kühn
et al., 2014, 2016].

F e
at

u
re

s
[K

ü
h

n
et

al
.,

20
14

]
L

o
d

w
ic

k
[S

te
im

an
n

,2
00

0b
]

G
en

e r
ic

R
o

le
M

o
d

el
[D

ah
ch

o
u

r
et

al
.,

20
02

]
TA

O
[D

a
Si

lv
a

et
al

.,
20

03
]

R
B

M
L

[K
im

et
al

.,
20

03
]

R
o

le
-B

as
ed

P
at

te
rn

s
[K

im
an

d
C

ar
ri

n
gt

o
n

,2
00

4]
O

R
M

2
[H

al
p

in
,2

00
5]

E
-C

A
R

G
O

[Z
h

u
an

d
Z

h
o

u
,2

00
6]

M
et

am
o

d
el

fo
r

R
o

le
s

[G
en

ov
es

e,
20

07
]

IN
M

[L
iu

an
d

H
u

,2
00

9a
]

D
C

I
[R

ee
n

sk
au

g
an

d
C

o
p

li
en

,2
00

9]
O

n
to

U
M

L
[G

u
iz

za
rd

ia
n

d
W

ag
n

er
,2

01
2]

H
el

en
a

A
p

p
ro

ac
h

[H
en

n
ic

ke
r

an
d

K
la

rl
,2

01
4]

fo
r m

al
C

R
O

M
[K

ü
h

n
et

al
.,

20
15

a]
fo

rm
al

C
R

O
M

I
(w

it
h

in
h

er
it

an
ce

)
F

R
aM

E
D

[K
ü

h
n

et
al

.,
20

16
]

F
R

aM
E

D
SP

L
(O

n
G

it
H

u
b)

1 � � � � � � � � � � � � � � � �

2 � � � � � � � � � � � � � � � �

3 � � � � � � � � � � � � � � � �

4 � � � � � � � � � � ∅ � � � � �

5 � � ∅ ∅ ∅ � � � ∅ � ∅ � ∅ ∅ ∅ ∅
6 � � ∅ ∅ � � � ∅ � � � � � � � �

7 � � � � � � � � � � � � � � � �

8 � � � � � � � � � � � � � � � �

9 � � � ∅ ∅ ∅ � � ∅ � ∅ � ∅ ∅ ∅ ∅
10 � � � ∅ � ∅ � � � � � � � � � �

11 � � � � � � � � � � � � � � � �

12 ∅ � � � ∅ ∅ � ∅ ∅ � ∅ � ∅ ∅ ∅ ∅
13 � � � � � � � � � � � � � � � �

14 � � � � � � � � � � � � � � � �

15 � � � � � � � � � � � � � � � �

16 � � � � � � � � � � � � � � � �

17 � � � � � � � � � � � � � � � �

18 � � � � � � � � � � � � � � � �

19 � � � � � � � � � � � � � � � �

20 � � � � � � � � � � � � � � � �

21 � � � � � � � � � � � � � � � �

22 � � � � � � � � � � � � � � � �

23 � � � � � � � � � � � � � � � �

24 � � � � � � � � � � � � � � � �

25 � � � � � � � � � � � � � � � �

26 � � � � � � � � � � � � � � � �

27 � � � � � � � � � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

9.2 Contributions 155

9.3 COMPARISON WITH CONTEMPORARY ROLE-BASED MODELING
LANGUAGES

This section, finally, compares the RML introduced throughout this thesis by applying the 27 fea-
tures of roles (cf. Chapter 2.6).

Table 9.1 summarizes the classification of the introduced RMLs approach and compares it to the
contemporary RML. In fact, only 23 features apply to modeling languages without operational se-
mantics [Kühn et al., 2014]. As a result, the formal CROM supports 18 features of roles, whereas
both the formal CROMI with inheritance and FRaMED support 20 features of roles. Moreover, only
one feature is considered possible to represent, namely Feature 24, stating that compartments can
contain compartments. However, this can be simulated by letting the contained compartment play
a role in the container compartment. For instance, the transaction compartment is contained in-
side the bank compartment, because it is playing the MoneyTransfer role in the bank (Figure 7.6).
In turn, only Feature 8 is not supported by both formal CROM, CROMI and FRaMED stating that
roles can play roles. Although, this could have been modeled within our formalization, I argue that
there is no difference between a football player playing the role of a striker or a person playing both
roles at the same time. As it turns out, the underlying rationale that only football players can be
strikers would simply be modeled as a role constraint. Consequently, only the FRaMED SPL fulfills
all 23 applicable features of roles.

At large, the introduced RMLs managed to fulfill significantly more features than any other of the
contemporary RMLs.

9.4 FUTURE RESEARCH

Before concluding this thesis, the last section highlights three directions and prospects of future
research. First, while this thesis established a family of RMLs, it will be important in the future to
introduce a family of RPLs, as well. In this regard, Walter Cazzola and myself proposed a bottom-
up approach for the development of Language Product Lines (LPLs) [Kühn et al., 2015c]. In detail,
we found that a typical top-down approach, like it has been employed in this thesis, is insufficient
for an LPL for RPLs [Kühn and Cazzola, 2016]. Notably though, these were only preliminary re-
sults and a more thorough investigation of the family of RPLs is advised. Secondly, although this
thesis introduced a novel formal modeling language, its suitability and applicability must still be
evaluated. In particular, I want to investigate, whether CROM provides a more suitable graphical
representation for design patterns, when compared to UML in [Gamma et al., 1994] or role mod-
els in [Riehle and Gross, 1998]. An initial comparison conducted by Kassin [2015], indicated that
the use of CROM could improve the number of visually representable properties of at least nine
design patterns. However, further studies including both standard and advanced design patterns
must be conducted to establish significant results. Along the same lines, I intend to formalize the
design pattern composition [Riehle and Gross, 1998]. Naturally, the introduction of compartment
types and role groups, establishes a solid formal foundation for this endeavor, especially, since role
groups are more expressive then Riehle’s role constraints [Kühn et al., 2015b]. Last but not least,
the effects of the introduced family of RMLs on the research field must be studied, i.e., whether
this family of languages can actually foster collaboration and reuse among the researchers. This,
however, requires a continuous examination of the generated CROM variants and their use among
researchers, e.g., other RoSI PhD students. In fact, this entails a continuous extension and reeval-
uation of the FRaMED SPL. In conclusion, only time can show the suitability of the presented ap-
proach, to reconcile and harmonize the research field on role-based languages.

156 9 Conclusion

LIST OF FIGURES

1.1 Overview of this Dissertation. 22

2.1 Scenario of an exemplary financial institution. 24
2.2 Example model highlighting the behavioral nature of roles. 25
2.3 Example model highlighting the relational nature of roles. 26
2.4 Example model highlighting the context-dependent nature of roles. 28
2.5 Example model highlighting various modeling constraints. 29

3.1 Visualization of the review process . 37
3.2 Number of publications per year from the query to the preselection phase. 40
3.3 Number of publications per year for the preselection and selection phase. 41
3.4 Distribution of publications per publishers for particular phases. 43
3.5 Comparison of selectivity of the filter, preselection and selection phase. 44

4.1 Corresponding representation using the revised UML notation. 46
4.2 Bank example depicted using the Generic Role Model. 47
4.3 Bank example specified as two patterns using the RBML. 48
4.4 Financial transaction specified with the Role-based Pattern Specialization. 50
4.5 Bank example modeled with ORM 2. 51
4.6 Bank example represented in OntoUML. 53
4.7 Bank example modeled in MAS-ML. 59
4.8 Bank example modeled in the INM. 60
4.9 Bank example specified with the Helena Approach. 62

7.1 Graphical notation for role models. 103
7.2 Role model of the banking application without constraints. 104
7.3 Graphical notation for various modeling constraints. 105
7.4 Role model of the banking application with additional constraints. 106
7.5 Graphical notation for role instance models. 107
7.6 One possible role instance model of the modeled banking application. 107
7.7 Overview of the presented formal model . 108
7.8 Graphical representation of the instance of the bank model. 117
7.9 Extension of the banking application using compartment inheritance. 120
7.10 A possible role instance model of the extended banking application. 124

157

7.11 Architecture of FRaMED, extracted from tep@kuehn2016framed. 132
7.12 Banking application modeled in FRaMED, from [Kühn et al., 2016]. 133
7.13 Focus view of the Transaction compartment type, from [Kühn et al., 2016]. 134
7.14 Overview of tool support for CROM. 135

8.1 Feature model for role-based modeling languages, extended from [Kühn et al., 2014]. 141
8.2 Cross-tree constraints of the feature model for RMLs. 141
8.3 Ecore metamodel of a feature minimal metamodel. 142
8.4 Ecore metamodel of a feature complete metamodel. 143
8.5 Overview of the generator for the metamodel family. 145
8.6 Runtime reconfiguration of the FRaMED software product line. 148
8.7 Effective feature model for the family of role modeling editors. 149
8.8 Cross-tree constraints of the effective feature model for RMLs. 149
8.9 Architecture of the family of modeling editors. 150

158 List of Figures

LIST OF TABLES
2.1 Steimann’s 15 classifying features, extracted from [Steimann, 2000b]. 31
2.2 Additional classifying features, partially published in [Kühn et al., 2014]. 33

3.1 Statistics of the paper selection process. 39

6.1 Comparison of role-based modeling languages, extended from [Kühn et al., 2014] . . 91
6.2 Comparison of role-based programming languages, extended from [Kühn et al., 2014] 93

7.1 Ontological classification of concepts . 102
7.2 Comparison of the languages supported by the CROM modeling language. 137

8.1 Comparison of role-based approaches within RoSI. 151

9.1 Comparison with contemporary role-based modeling languages, extended from [Kühn
et al., 2014, 2016]. 155

159

LIST OF LISTINGS
4.1 Bank example specified with Lodwick. 46
4.2 Bank example formalized using the Metamodel for Roles. 54
4.3 Bank example defined using the E-CARGO model. 56
4.4 Bank example implemented with Scala DCI. 57

5.1 Bank example implemented in Chameleon. 66
5.2 Bank example implemented in JAWIRO. 68
5.3 Bank example implemented in Rava. 69
5.4 Bank example implemented with JavaStage. 70
5.5 Bank example implemented in Rumer. 72
5.6 Bank example implemented using First Class Relationships. 74
5.7 Bank example implemented in Relations. 75
5.8 Bank example implemented with NextEJ. 78
5.9 Bank example implemented in RICA. 80
5.10 Bank example implemented in Object Teams/Java. 82
5.11 Bank example implemented in powerJava. 84
5.12 Bank example implemented with Scala Roles. 86

7.1 Extract of the reference implementation. 130
7.2 Specification of banking application using the reference implementation. 131
7.3 Excerpt of the RSQL data definition of the bank model. 135
7.4 Slice of the generated SCROLL source code. 136
7.5 Extract from the generated context description logic. 136

8.1 Excerpt of the feature mapping for the family of metamodels. 145
8.2 Delta module for the introduction of comparment types. 146

161

LIST OF ABBREVIATIONS
ACM Association for Computing Machinery
AOP aspect-oriented programming
BPM Business Process Modeling
CROI Compartment Role Object Instance
CROM Compartment Role Object Model
CSCW computer-supported cooperative work
DCI Data Context Interaction
ER Entity-Relationship Model
FRaMED Full-fledged Role Modeling Editor
GORM Graphical Object Relation Model
IDE integrated development environment
IEEE Institute of Electrical and Electronics Engineers
INM Information Networking Model
JAWIRO Java with Roles
LPL Language Product Line
MAS Multi-Agent Systems
MAS-ML multi-agent system modeling language
ORM Object-Role Modeling
OT/J ObjectTeams/Java
RBAC Role-Based Access Control
RBML Role-Based Metamodeling Language
RICA Role/Interaction/Communicative Action
RML role-based modeling language
RoSI Role-based Software Infrastructures for continuous-context-sensitive

Systems
RPL role-based programming language
RRN Roles and Relationships in Reo
SAS Self-Adaptive Systems
SCROLL Scala Roles Language
SLR Systematic Literature Review
SPL Software Product Line
TAO Taming Agents and Objects
UML Unified Modeling Language

163

REFERENCES
Adamzadeh, T., Zamani, B., and Fatemi, A. (2014). A Modeling Language to Model Mitigation in

Emergency Response Environments. In Computer and Knowledge Engineering (ICCKE), 2014 4th
International eConference on, pages 302–307. IEEE.

Al-Zaghameem, A. O. (2010). Extending the Model of ObjectTeams/Java Programming Language to
Distributed Environments. In Proceedings of the 7th Workshop on Reflection, AOP and Meta-Data
for Software Evolution, page 8. ACM.

Arnaudo, E., Baldoni, M., Boella, G., Genovese, V., and Grenna, R. (2007). An Implementation of
Roles as Affordances: powerJava. In WOA 2007: Dagli Oggetti agli Agenti. 8th AI*IA/TABOO Joint
Workshop "From Objects to Agents": Agents and Industry: Technological Applications of Software
Agents, 24-25 September 2007, Genova, Italy, pages 8–13.

Aßmann, U. (2003). Invasive Software Composition. Springer-Verlag.

Atkinson, C. and Kühne, T. (2002). Rearchitecting the UML Infrastructure. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 12(4):290–321.

Bachman, C. W., Daya, M., Bachman, C. W., and Daya, M. (1977). The Role Concept in Data Models.
In Proceedings of the Third International Conference on Very Large Data Bases, volume 3, pages
464–476.

Baldoni, M., Boella, G., Genovese, V., Grenna, R., and Van Der Torre, L. (2008). How to Program
Organizations and Roles in the JADE Framework. In Multiagent System Technologies, pages 25–
36. Springer.

Baldoni, M., Boella, G., and Van Der Torre, L. (2006a). Bridging Agent Theory and Object Orienta-
tion: Importing Social Roles in Object Oriented Languages. In Programming Multi-Agent Systems,
pages 57–75. Springer.

Baldoni, M., Boella, G., and Van Der Torre, L. (2006b). powerJava: Ontologically Founded Roles in
Object Oriented Programming Languages. In Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 1414–1418. ACM.

Baldoni, M., Boella, G., and Van Der Torre, L. (2006c). Roles as a Coordination Construct: Introduc-
ing powerJava. Electronic Notes in Theoretical Computer Science, 150(1):9–29.

165

Baldoni, M., Boella, G., and Van Der Torre, L. (2010). The Interplay Between Relationships, Roles
and Objects. In Fundamentals of Software Engineering, pages 402–415. Springer.

Baldoni, M., Boella, I. G., and van der Torre, I. L. (2007). Interaction Between Objects in powerJava.
Journal of Object Technology, 6(2):5–30.

Balzer, S. (2011). Rumer: a Programming Language and Modular Verification Technique Based on
Relationships. PhD thesis, ETH Zürich.

Balzer, S., Eugster, P., and Gross, T. (2008). Relations: Abstracting Object Collaborations.

Balzer, S. and Gross, T. (2011). Verifying Multi-Object Invariants with Relationships. In Mezini, M.,
editor, Lecture Notes in Computer Science, volume 6813 of 25th European Conference on Object-
Oriented Programming, pages 359–383. Springer.

Balzer, S., Gross, T., and Eugster, P. (2007). A Relational Model of Object Collaborations and Its Use
in Reasoning About Relationships. In Ernst, E., editor, ECOOP, volume 4609 of Lecture Notes in
Computer Science, pages 323–346. Springer.

Barbosa, F. S. and Aguiar, A. (2012). Modeling and Programming with Roles: Introducing JavaStage.
Frontiers in Artificial Intelligence and Applications, 246:124–145.

Barbosa, F. S. and Aguiar, A. (2013). Using Roles to Model Crosscutting Concerns. In Proceedings of
the 12th Annual International Conference on Aspect-Oriented Software Development, pages 97–
108. ACM.

Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. (1998). The Role Object Pattern. In Washington
University Dept. of Computer Science.

Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE– A FIPA-Compliant Agent Framework. In
Proceedings of PAAM, volume 99, page 33. London.

Benevides, A. B. and Guizzardi, G. (2009). A Model-Based Tool for Conceptual Modeling and Do-
main Ontology Engineering in OntoUML. In Enterprise Information Systems, pages 528–538.
Springer.

Bierman, G. and Wren, A. (2005). First-Class Relationships in an Object-Oriented Language. In
ECOOP 2005 - Object-Oriented Programming, pages 262–286. Springer-Verlag.

Bloesch, A. C. and Halpin, T. A. (1997). Conceptual Queries Using ConQuer-II. In Conceptual Mod-
eling—ER’97, pages 113–126. Springer.

Boella, G. and Van Der Torre, L. (2007). The Ontological Properties of Social Roles in Multi-Agent
Systems: Definitional Dependence, Powers and Roles Playing Roles. Artificial Intelligence and
Law, 15(3):201–221.

Böhme, S. and Lippmann, M. (2015). Decidable Description Logics of Context with Rigid Roles. In
International Symposium on Frontiers of Combining Systems, pages 17–32. Springer.

Box, G. E. (1979). Robustness in the Strategy of Scientific Model Building. Technical report, DTIC
Document.

Chen, P. (1976). The Entity-Relationship Model - Toward a Unified View of Data. ACM Transactions
on Database Systems, 1(1):9–36.

166 References

Chrszon, P., Dubslaff, C., Baier, C., Klein, J., and Klüppelholz, S. (2016). Modeling Role-Based Sys-
tems with Exogenous Coordination. In Theory and Practice of Formal Methods, pages 122–139.
Springer.

Clocksin, W. F. and Mellish, C. S. (2003). Programming in PROLOG. Springer Science & Business
Media.

Coplien, J. and Bjørnvig, G. (2010). Lean Architecture for Agile Software Development. John Wiley &
Sons.

Curland, M., Halpin, T., and Stirewalt, K. (2009). A Role Calculus for ORM. In On the Move to Mean-
ingful Internet Systems: OTM 2009 Workshops, pages 692–703. Springer.

Da Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena, C., and Alencar, P. (2003). Taming Agents
and Objects in Software Engineering. In International Workshop on Software Engineering for
Large-Scale Multi-agent Systems, pages 1–26. Springer.

Da Silva, V. T. and De Lucena, C. J. (2004). From a Conceptual Framework for Agents and Objects
to a Multi-Agent System Modeling Language. Autonomous Agents and Multi-Agent Systems, 9(1-
2):145–189.

Da Silva, V. T. and De Lucena, C. J. (2007). Modeling Multi-Agent Systems. Communications of the
ACM, 50(5):103–108.

Dahchour, M., Pirotte, A., and Zimányi, E. (2002). A Generic Role Model for Dynamic Objects. In
Advanced Information Systems Engineering, pages 643–658. Springer.

Dey, A. K. (2001). Understanding and Using Context. Personal and ubiquitous computing, 5(1):4–7.

Ernst, E. (2001). Family Polymorphism. In ECOOP 2001—Object-Oriented Programming, pages
303–326. Springer.

Ferber, J., Gutknecht, O., and Michel, F. (2004). From Agents to Organizations: An Organizational
View of Multi-Agent Systems. In International Workshop on Agent-Oriented Software Engineering,
pages 214–230. Springer.

Ferraiolo, D., Cugini, J., and Kuhn, D. R. (1995). Role-Based Access Control (RBAC): Features and
Motivations. In Proceedings of 11th Annual Computer Security Application Conference, pages
241–48.

France, R. B., Kim, D.-K., Ghosh, S., and Song, E. (2004). A UML-Based Pattern Specification Tech-
nique. Software Engineering, IEEE Transactions on, 30(3):193–206.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: Elements of Reusable
Object-Oriented Software. Pearson Education.

Genovese, V. (2007). A Meta-Model for Roles: Introducing Sessions. In Proceedings of the 2nd Work-
shop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and On-
tologies, pages 27–38. Technische Universität Berlin.

Graversen, K. B. (2006). The Nature of Roles. PhD thesis, PhD thesis:/Kasper Bilsted Graversen.–
Copenhagen, IT University of Copenhagen Copenhagen.

References 167

Graversen, K. B. and Østerbye, K. (2002). Aspect Modelling as Role Modelling. In OOPSLA’02 Work-
shop on Tool Support for Aspect Oriented Software Development.

Graversen, K. B. and Østerbye, K. (2003). Implementation of a Role Language for Object-Specific
Dynamic Separation of Concerns. In AOSD03 Workshop on Software-engineering Properties of
Languages for Aspect Technologies.

Graverson, K. B. (2003). The Successes and Failures of a Language as a Language Extension. In
ECOOP Workshop on Object-Oriented Language Engineering for the Post-Java Era, Darmstadt,
Germany.

Guarino, N. and Guizzardi, G. (2015). We Need to Discuss the Relationship: Revisiting Relationships
as Modeling Constructs. In Advanced Information Systems Engineering, pages 279–294. Springer.

Guarino, N. and Welty, C. (2000). A Formal Ontology of Properties. In Knowledge Engineering and
Knowledge Management Methods, Models, and Tools, pages 97–112. Springer.

Guarino, N. and Welty, C. A. (2009). An Overview of OntoClean. In Handbook on Ontologies, pages
201–220. Springer.

Guizzardi, G. (2005). Ontological Foundations for Structure Conceptual Models. PhD thesis, Centre
for Telematics and Information Technology, Enschede, Netherlands.

Guizzardi, G., Pires, L. F., and Van Sinderen, M. (2005). An Ontology-Based Approach for Evaluating
the Domain Appropriateness and Comprehensibility Appropriateness of Modeling Languages. In
International Conference on Model Driven Engineering Languages and Systems, pages 691–705.
Springer.

Guizzardi, G. and Wagner, G. (2005). Towards Ontological Foundations for Agent Modelling Concepts
Using the Unified Fundational Ontology (UFO). Springer.

Guizzardi, G. and Wagner, G. (2012). Conceptual Simulation Modeling with Onto-UML. In Proceed-
ings of the Winter Simulation Conference, page 5. Winter Simulation Conference.

Guizzardi, G., Wagner, G., Guarino, N., and van Sinderen, M. (2004). An Ontologically Well-Founded
Profile for UML Conceptual Models. In Advanced Information Systems Engineering, pages 112–
126. Springer.

Halpin, T. (2005). ORM 2. In On the Move to Meaningful Internet Systems 2005: OTM 2005 Work-
shops, pages 676–687. Springer.

Halpin, T. (2006). Object-Role Modeling (ORM/NIAM). In Handbook on Architectures of Information
Systems, pages 81–103. Springer.

Halpin, T. (2007). Subtyping Revisited. In Proc. CAiSE, pages 131–141.

Halpin, T. (2009). Object-Role Modeling. Encyclopedia of Database Systems, pages 1941–1946.

Halpin, T. A. (1998). Object-Role Modeling (ORM/NIAM). In Handbook on Architectures of Infor-
mation Systems, pages 81–102. Springer.

Harel, D. and Rumpe, B. (2004). Modeling Languages: Syntax, Semantics and all that Stuff. Technical
report, Technische Universität Braunschweig.

168 References

Harkes, D. and Visser, E. (2014). Unifying and Generalizing Relations in Role-Based Data Modeling
and Navigation. In International Conference on Software Language Engineering, pages 241–260.
Springer.

Harkes, D. C., Groenewegen, D. M., and Visser, E. (2016). IceDust: Incremental and Eventual Com-
putation of Derived Values in Persistent Object Graphs. In Krishnamurthi, S. and Lerner, B. S.,
editors, 30th European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:26, Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

He, C., Nie, Z., Li, B., Cao, L., and He, K. (2006). Rava: Designing a Java Extension with Dynamic
Object Roles. In Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE
International Symposium and Workshop on, pages 7–pp. IEEE.

Henderson-Sellers, B. (2012). On the Mathematics of Modelling, Metamodelling, Ontologies and
Modelling Languages. Springer Science & Business Media.

Hennicker, R. and Klarl, A. (2014). Foundations for Ensemble Modeling – The Helena Approach. In
Specification, Algebra, and Software, pages 359–381. Springer.

Hennicker, R., Klarl, A., and Wirsing, M. (2015). Model-Checking Helena Ensembles with Spin, pages
331–360. Springer International Publishing, Cham.

Herrmann, S. (2002). Object Teams: Improving Modularity for Crosscutting Collaborations. In
Akşit, M. and Mezini, M., editors, Net. ObjectDays: International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Applications for a Networked World, pages 248–
264.

Herrmann, S. (2005). Programming with Roles in ObjectTeams/Java. AAAI Fall Symposium Roles,
an interdisciplinary perspective, (FS-05-08):73–80.

Herrmann, S. (2007). A Precise Model for Contextual Roles: The Programming Language Object-
Teams/Java. Applied Ontology, 2(2):181–207.

Herrmann, S. (2010). Demystifying Object Schizophrenia. In Proceedings of the 4th Workshop on
MechAnisms for SPEcialization, Generalization and inHerItance, page 2. ACM.

Herrmann, S. (2013). Confined Roles and Decapsulation in Object Teams Contradiction or Syn-
ergy? In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, pages 443–
470. Springer.

Herrmann, S. and Hundt, C. (2013). ObjectTeams/Java Language Definition (OTJLD) Version 1.3.1.
http://www.objectteams.org/def/1.3.1. [Online; accessed 28-May-2014].

Herrmann, S., Hundt, C., and Mehner, K. (2004). Translation Polymorphism in Object Teams. Tech-
nical report, TU Berlin.

Hu, J., Fu, Q., and Liu, M. (2010). Query Processing in INM Database System. In Web-Age Informa-
tion Management, pages 525–536. Springer.

Hu, J. and Liu, M. (2009). Modeling Context-Dependent Information. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management, pages 1669–1672. ACM.

References 169

http://www.objectteams.org/def/1.3.1

Igarashi, A., Saito, C., and Viroli, M. (2005). Lightweight Family Polymorphism. In Programming
Languages and Systems, pages 161–177. Springer.

Jäkel, T., Kühn, T., Hinkel, S., Voigt, H., and Lehner, W. (2015). Relationships for Dynamic Data Types
in RSQL. In Datenbanksysteme für Business, Technologie und Web (BTW).

Jäkel, T., Kühn, T., Voigt, H., and Lehner, W. (2016). Towards a Contextual Database. In 20th East-
European Conference on Advances in Databases and Information Systems.

Jäkel, T., Weißbach, M., Herrmann, K., Voigt, H., and Leuthäuser, M. (2016). Position Paper: Runtime
Model for Role-Based Software Systems. In 2016 IEEE International Conference on Autonomic
Computing (ICAC), pages 380–387.

Kamina, T. and Tamai, T. (2009). Towards Safe and Flexible Object Adaptation. In International
Workshop on Context-Oriented Programming, page 4. ACM.

Kamina, T. and Tamai, T. (2010). A Smooth Combination of Role-based Language and Context Ac-
tivation. In Leavens, G. T., Katz, S., and Mezini, M., editors, Ninth Workshop on Foundations of
Aspect-Oriented Languages (FOAL), pages 15–24.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990). Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA.

Kassin, K. I. (2015). Aktualisierung des Rollenbasierten Entwurfsmusterkatalogs. bechalor thesis,
Technische Universität Dresden, Fakultät Informatik, Nöthnitzer Str. 46, 01187 Dresden, Ger-
many.

Kats, L. C. L. and Visser, E. (2010). The Spoofax Language Workbench: Rules for Declarative Specifi-
cation of Languages and IDEs. In Rinard, M., Sullivan, K. J., and Steinberg, D. H., editors, Proceed-
ings of the ACM International Conference on Object-Oriented Programming Systems Languages
and Applications (OOPSLA’10), pages 444–463, Reno, Nevada, USA. ACM.

Khabsa, M. and Giles, C. L. (2014). The Number of Scholarly Documents on the Public Web. PloS
one, 9(5):e93949.

Kim, D.-K. (2008). Software Quality Improvement via Pattern-Based Model Refactoring. In High
Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE, pages 293–302. IEEE.

Kim, D.-K., France, R., Ghosh, S., and Song, E. (2002). Using Role-Based Modeling Language (RBML)
to Characterize Model Families. In Engineering of Complex Computer Systems, 2002. Proceedings.
Eighth IEEE International Conference on, pages 107–116. IEEE.

Kim, D.-K., France, R., Ghosh, S., and Song, E. (2003). A Role-Based Metamodeling Approach to
Specifying Design Patterns. In Computer Software and Applications Conference, 2003. COMPSAC
2003. Proceedings. 27th Annual International, pages 452–457. IEEE.

Kim, D.-K. and Lee, B. (2015). Pattern-based Transformation of Sequence Diagrams Using QVT. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages 1492–1497. ACM.

Kim, D.-K. and Lu, L. (2008). Pattern-Based Transformation Rules for Developing Interaction Mod-
els of Access Control Systems. In High Confidence Software Reuse in Large Systems, pages 306–317.
Springer.

170 References

Kim, D.-K. and Shen, W. (2007). An Approach to Evaluating Structural Pattern Conformance of UML
Models. In Proceedings of the 2007 ACM Symposium on Applied Computing, pages 1404–1408.
ACM.

Kim, D.-K. and Whittle, J. (2005). Generating UML Models from Domain Patterns. In Software
Engineering Research, Management and Applications, 2005. Third ACIS International Conference
on, pages 166–173. IEEE.

Kim, S.-K. and Carrington, D. (2004). Using Integrated Metamodeling to Define OO Design Patterns
with Object-Z and UML. In Software Engineering Conference, 2004. 11th Asia-Pacific, pages 257–
264. IEEE.

Kim, S.-K. and Carrington, D. (2005). A Rigorous Foundation for Pattern-Based Design Models. In
ZB 2005: Formal Specification and Development in Z and B, pages 242–261. Springer.

Kim, S.-K. and Carrington, D. (2009). A Formalism to Describe Design Patterns Based on Role Con-
cepts. Formal aspects of computing, 21(5):397–420.

Kim, S.-K. and David, C. (1999). Formalizing the UML Class Diagram Using Object-Z. In Interna-
tional Conference on the Unified Modeling Language, pages 83–98. Springer.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele, UK, Keele University,
33(2004):1–26.

Klarl, A., Cichella, L., and Hennicker, R. (2015). From Helena Ensemble Specifications to Executable
Code, pages 183–190. Springer International Publishing, Cham.

Klarl, A., Mayer, P., and Hennicker, R. (2014). Helena@work: Modeling the Science Cloud Platform.
In International Symposium On Leveraging Applications of Formal Methods, Verification and Val-
idation, pages 99–116. Springer.

Kühn, T., Bierzynski, K., Richly, S., and Aßmann, U. (2016). FRaMED: Full-Fledge Role Modeling Ed-
itor (Tool Demo). In Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2016, pages 132–136, New York, NY, USA. ACM.

Kühn, T., Böhme, S., Götz, S., and Aßmann, U. (2015a). A Combined Formal Model for Relational
Context-Dependent Roles. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Software Language Engineering, pages 113–124. ACM.

Kühn, T., Böhme, S., Götz, S., and Aßmann, U. (2015b). A Combined Formal Model for Relational
Context-Dependent Roles (Extended). Technical Report TUD-FI15-04-Sept-2015, Technische
Universität Dresden.

Kühn, T. and Cazzola, W. (2016). Apples and Oranges: Comparing Top-down and Bottom-up Lan-
guage Product Lines. In Proceedings of the 20th International Systems and Software Product Line
Conference, SPLC ’16, pages 50–59, New York, NY, USA. ACM.

Kühn, T., Cazzola, W., and Olivares, D. M. (2015c). Choosy and Picky: Configuration of Language
Product Lines. In Botterweck, G. and White, J., editors, Proceedings of the 19th International
Software Product Line Conference(SPLC’15), Nashville, TN, USA. ACM.

Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., and Aßmann, U. (2014). A Metamodel Family for Role-
Based Modeling and Programming Languages. In Software Language Engineering, volume 8706
of Lecture Notes in Computer Science, pages 141–160. Springer.

References 171

Leuthäuser, M. (2015). SCROLL - A Scala-Based Library for Roles at Runtime. In van der Storm, Tijs
and Erdweg, Sebastian., editor, Proceedings of the 3rd Workshop on Domain-Specific Language
Design and Implementation (DSLDI 2015), volume abs/1508.03536, pages 7–8. van der Storm,
Tijs and Erdweg, Sebastian.

Leuthäuser, M. and Aßmann, U. (2015). Enabling View-Based Programming with SCROLL: Using
Roles and Dynamic Dispatch for Establishing View-Based Programming. In Proceedings of the
2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software Engineering and View-based
Software-Engineering, pages 25–33. ACM.

Liu, D., Teng, S., Zhu, H., and Tang, Y. (2014). Minimal Role Playing Logic in Role-Based Collab-
oration. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
1420–1425. IEEE.

Liu, L. and Zhu, H. (2006). Implementing Agent Evolution with Roles in Collaborative Systems.
In Networking, Sensing and Control, 2006. ICNSC’06. Proceedings of the 2006 IEEE International
Conference on, pages 819–824. IEEE.

Liu, M. and Hu, J. (2009a). Information Networking Model. In Conceptual Modeling-ER 2009, pages
131–144. Springer.

Liu, M. and Hu, J. (2009b). Modeling Complex Relationships. In Database and Expert Systems Ap-
plications, pages 719–726. Springer.

Lodwick, F. (1647). A Common Writing. Longman Publishing Group. Printed in The Works of Francis
Lodwick: A study of his writings in the intellectual context of the seventeenth century. Vivian
Salmon, Longman Publishing Group, 1972.

Loebe, F. (2005). Abstract vs. Social Roles – A Refined Top-Level Ontological Analysis. In In Procs. of
AAAI Fall Symposium Roles, an interdisciplinary perspective. Citeseer.

Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., and Guarino, N. (2004).
Social Roles and Their Descriptions. In KR, pages 267–277.

Mikhajlov, L. and Sekerinski, E. (1998). A Study of the Fragile Base Class Problem, pages 355–382.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Mizoguchi, R., Kozaki, K., and Kitamura, Y. (2012). Ontological Analyses of Roles. In Computer
Science and Information Systems (FedCSIS), 2012 Federated Conference on, pages 489–496. IEEE.

Monpratarnchai, S. and Tetsuo, T. (2008). The Design and Implementation of a Role Model Based
Language, EpsilonJ. In 5th International Conference on Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology (ECTI-CON 2008), volume 1, pages 37–
40. IEEE.

Monpratarnchai, S. and Tetsuo, T. (2011). Applying Adaptive Role-Based Model to Self-Adaptive
System Constructing Problems: A Case Study. In Engineering of Autonomic and Autonomous
Systems (EASe), 2011 8th IEEE International Conference and Workshops on, pages 69–78. IEEE.

Moody, D. (2009). The Physics of Notations: Toward a Scientific Basis for Constructing Visual Nota-
tions in Software Engineering. Software Engineering, IEEE Transactions on, 35(6):756–779.

172 References

Murer, S., Worms, C., and Furrer, F. J. (2008). Managed Evolution. Informatik-Spektrum, 31(6):537–
547.

Mylopoulos, J. (1992). Conceptual Modelling and Telos. In Loucopoulos, P. and Zicari, R., editors,
Conceptual Modeling, Databases, and Case: An Integrated View of Information Systems Develop-
ment, pages 49–68. John Wiley & Sons, Inc.

Nelson, S., Pearce, D. J., and Noble, J. (2008). First Class Relationships for OO Languages. In Pro-
ceedings of the 6th International Workshop on Multiparadigm Programming with Object-Oriented
Languages (MPOOL 2008).

Pearce, D. J. and Noble, J. (2006). Relationship Aspects. In Proceedings of the 5th International
Conference on Aspect-Oriented Software Development, pages 75–86. ACM.

Piechnick, C., Richly, S., Götz, S., Wilke, C., and Aßmann, U. (2012). Using Role-Based Composition
to Support Unanticipated, Dynamic Adaptation-Smart Application Grids. In ADAPTIVE 2012, The
Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications, pages
93–102.

Pradel, M. and Odersky, M. (2009). Scala Roles: Reusable Object Collaborations in a Library. In
Software and Data Technologies, pages 23–36. Springer.

Qing, C. and Zhong, Y. (2012). A Seamless Software Development Approach Using DCI. In 2012
IEEE International Conference on Computer Science and Automation Engineering, pages 139–142.
IEEE.

Reenskaug, T. (2011). A DCI Execution Model. Trygve’s Webpage.

Reenskaug, T. and Coplien, J. O. (2009). The DCI Architecture: A New Vision of Object-Oriented
Programming. An article starting a new blog:(14pp) http://www. artima. com/articles/dci_vision.
html.

Riehle, D. (1997). A Role-Based Design Pattern Catalog of Atomic and Composite Patterns Struc-
tured by Pattern Purpose. Technical report, Ubilab, Union Bank of Switzerland.

Riehle, D. and Gross, T. (1998). Role Model Based Framework Design and Integration. In Proceedings
OOPSLA ’98, ACM SIGPLAN Notices, pages 117–133.

Rothenberg, J., Widman, L. E., Loparo, K. A., and Nielsen, N. R. (1989). The Nature of Modeling,
volume 3027. Rand.

Rumbaugh, J., Jacobson, R., and Booch, G. (1999). The Unified Modelling Language Reference Man-
ual. Addison-Wesley, 1st edition.

Rumbaugh, J. E. (1987). Relations as Semantic Constructs in an Object-Oriented Language. In
OOPSLA, pages 466–481.

Seidl, C., Schaefer, I., and Aßmann, U. (2014). DeltaEcore–A Model-Based Delta Language Genera-
tion Framework. In Modellierung, pages 81–96.

Sekharaiah, K. C. and Ram, D. J. (2002). Object Schizophrenia Problem in Object Role System
Design. In International Conference on Object-Oriented Information Systems, pages 494–506.
Springer.

References 173

Selçuk, Y. E. and Erdoğan, N. (2004). JAWIRO: Enhancing Java with Roles. In International Sympo-
sium on Computer and Information Sciences, pages 927–934. Springer.

Selçuk, Y. E. and Erdoğan, N. (2006). A Role Model for Description of Agent Behavior and Coordina-
tion. In Engineering Societies in the Agents World VI, pages 29–48. Springer.

Serrano, J. M. and Ossowski, S. (2004). On the Impact of Agent Communication Languages on the
Implementation of Agent Systems. In International Workshop on Cooperative Information Agents,
pages 92–106. Springer.

Serrano, J. M., Ossowski, S., and Saugar, S. (2006). Reusable Components for Implementing Agent
Interactions. In Programming Multi-Agent Systems, pages 101–119. Springer.

Shakespeare, W. (1763). Mr. William Shakespeare’s Comedies, Histories, & Tragedies. Edward Blount
and William Jaggard and Isaac Jaggard, London.

Sheng, Y., Zhu, H., Zhou, X., and Hu, W. (2016). Effective Approaches to Adaptive Collaboration
via Dynamic Role Assignment. Systems, Man, and Cybernetics: Systems, IEEE Transactions on,
46(1):76–92.

Sheng, Y., Zhu, H., Zhou, X., and Wang, Y. (2014). Effective Approaches to Group Role Assignment
with a Flexible Formation. In 2014 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC), pages 1426–1431. IEEE.

Smith, G. (2012). The Object-Z Specification Language, volume 1. Springer Science & Business
Media.

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley, Reading, MA.

Spivey, J. M. (1998). The Z Notation: A Reference Manual. Prentice Hall Hemel Hempstead, Oriel
College, Oxford, OX1 4EW, England, 2 edition.

Steimann, F. (2000a). Formale Modellierung mit Rollen. PhD thesis, Universität Hannover. Habili-
tation thesis.

Steimann, F. (2000b). On the Representation of Roles in Object-Oriented and Conceptual Modelling.
Data & Knowledge Engineering, 35(1):83–106.

Steimann, F. (2000c). A Radical Revision of UMLś Role Concept. In UML 2000 - The Unified Modeling
Language, pages 194–209. Springer.

Taing, N., Springer, T., Cardozo, N., and Schill, A. (2016). A Dynamic Instance Binding Mechanism
Supporting Run-Time Variability of Role-Based Software Systems. In Companion Proceedings of
the 15th International Conference on Modularity, pages 137–142. ACM.

Tamai, T. and Monpratarnchai, S. (2014). A Context-Role Based Modeling Framework for Engi-
neering Adaptive Software Systems. In 2014 21st Asia-Pacific Software Engineering Conference,
volume 1, pages 103–110. IEEE.

Tamai, T., Ubayashi, N., and Ichiyama, R. (2005). An Adaptive Object Model with Dynamic Role
Binding. In Proceedings of the 27th International Conference on Software Engineering, pages 166–
175. ACM.

174 References

Tamai, T., Ubayashi, N., and Ichiyama, R. (2007). Objects as Actors Assuming Roles in the Environ-
ment. In Software Engineering for Multi-Agent Systems V, pages 185–203. Springer.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014). FeatureIDE: An
Extensible Framework for Feature-Oriented Software Development. Science of Computer Pro-
gramming, 79:70–85.

Ubayashi, N. and Tamai, T. (2000). RoleEP: Role-Based Evolutionary Programming for Cooperative
Mobile Agent Applications. In Principles of Software Evolution, 2000. Proceedings. International
Symposium on, pages 232–240. IEEE.

Ubayashi, N. and Tamai, T. (2001). Separation of Concerns in Mobile Agent Applications. In Inter-
national Conference on Metalevel Architectures and Reflection, pages 89–109. Springer.

Van Hentenryck, P. and Deville, Y. (1990). The Cardinality Operator: A New Logical Connective for
Constraint Logic Programming. Brown University, Department of Computer Science.

Warmer, J. B. and Kleppe, A. G. (1998). The Object Constraint Language: Precise Modeling with Uml
(Addison-Wesley Object Technology Series). Addison-Wesley Professional.

Zat’ko, J. and Vranic, V. (2015). Assessing the DCI Approach to Preserving Use Cases in Code: Qi4J
and Beyond. In Intelligent Engineering Systems (INES), 2015 IEEE 19th International Conference
on, pages 51–56. IEEE.

Zhu, H. (2005). Encourage Participants&# 8217; Contributions by Roles. In Systems, Man and Cy-
bernetics, 2005 IEEE International Conference on, volume 2, pages 1574–1579. IEEE.

Zhu, H. (2007). Improving Object-Oriented Analysis with Roles. In Cognitive Informatics, 6th IEEE
International Conference on, pages 430–439. IEEE.

Zhu, H. (2016). Avoiding Conflicts by Group Role Assignment. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 46(4):535–547.

Zhu, H. and Zhou, M. (2006). Role-Based Collaboration and Its Kernel Mechanisms. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 36(4):578–589.

Zhu, H. and Zhou, M. (2008a). Role Transfer Problems and Algorithms. Systems, Man and Cybernet-
ics, Part A: Systems and Humans, IEEE Transactions on, 38(6):1442–1450.

Zhu, H. and Zhou, M. (2008b). Roles in Information Systems: A Survey. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on, 38(3):377–396.

Zhu, H. and Zhou, M. (2009). M–M Role-Transfer Problems and Their Solutions. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39(2):448–459.

References 175

	Title page
	Contents
	Review of Contemporary Role-based Languages
	Introduction
	Background
	Motivation
	Problem Definition
	Outline

	Nature of Roles
	Running Example
	Behavioral Nature
	Relational Nature
	Context-Dependent Nature
	Constraints in Role-Based Languages
	Classification of Roles

	Systematic Literature Review
	Method
	Results
	Discussion

	Contemporary Role-Based Modeling Languages
	Behavioral and Relational Modeling Languages
	Lodwick
	The Generic Role Model
	Role-Based Metamodeling Language (RBML)
	Role-Based Pattern Specification
	Object-Role Modeling (ORM) 2
	OntoUML

	Context-Dependent Modeling Languages
	Metamodel for Roles
	E-CARGO Model
	Data Context Interaction (DCI)

	Combined Modeling Languages
	Taming Agents and Objects (TAO)
	Information Networking Model (INM)
	Helena Approach

	Contemporary Role-based Programming Languages
	Behavioral Programming Languages
	Chameleon
	Java with Roles (JAWIRO)
	Rava
	JavaStage

	Relational Programming Languages
	Rumer
	First Class Relationships
	Relations

	Context-Dependent Programming Languages
	EpsilonJ and NextEJ
	Role/Interaction/Communicative Action (RICA)
	ObjectTeams/Java
	PowerJava
	Scala Roles

	Comparison of Role-based Languages
	Comparison of Role-Based Modeling Languages
	Comparison of Role-Based Programming Languages
	Results and Findings

	Family of Role-Based Modeling Languages
	Foundations of Role-Based Modeling Languages
	Ontological Foundation
	Metaproperties
	Classifying Modeling Concepts

	Graphical Notation
	Model Level Notation
	Graphical Modeling Constraints
	Instance Level Notation

	Formalization of Roles
	Model Level
	Instance Level
	Constraint Level

	Reintroducing Inheritance
	Extending the Banking Application
	Model Level Extensions
	Instance Level Extensions
	Constraint Level Extensions

	Reference Implementation
	Translation of Logical Formulae
	Structure of the Reference Implementation
	Specifying and Verifying Role Models

	Full-Fledged Role Modeling Editor
	Software Architecture
	Illustrative Example
	Additional Tool Support

	Family of Role-Based Modeling Languages
	Family of Metamodels for Role-Based Modeling Languages
	Feature Model for Role-Based Languages
	Feature Minimal Metamodel
	Feature Complete Metamodel
	Mapping Features to Variation Points
	Implementation of the Metamodel Generator

	First Family of Role Modeling Editors
	Dynamic Feature Configuration
	Architecture of the Dynamic Software Product Line
	Applicability of the Language Family Within RoSI

	Conclusion
	Summary
	Contributions
	Comparison with Contemporary Role-Based Modeling Languages
	Future Research

