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Abstract

The ever increasing amount of Semantic Web data gives rise
to the question: How complete is the data? Though generally
data on the Semantic Web is incomplete, many parts of data
are indeed complete, such as the children of Barack Obama
and the crew of Apollo 11. This thesis aims to study how
to manage and consume completeness information about Se-
mantic Web data. In particular, we first discuss how complete-
ness information can guarantee the completeness of query an-
swering. Next, we propose optimization techniques of com-
pleteness reasoning and conduct experimental evaluations to
show the feasibility of our approaches. We also provide a
technique to check the soundness of queries with negation
via reduction to query completeness checking. We further
enrich completeness information with timestamps, enabling
query answers to be checked up to when they are complete.
We then introduce two demonstrators, i.e., CORNER and
COOL-WD, to show how our completeness framework can
be realized. Finally, we investigate an automated method to
generate completeness statements from text on the Web via
relation cardinality extraction.
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INTRODUCTION

The increasing amount of structured data made available on the Web
is laying the foundation of a global-scale knowledge base. Projects like
Linked Open Data (LOD) [51], by inheriting some basic design princi-
ples of the Web (e.g, simplicity, decentralization), aim at making huge
volumes of data available via the Resource Description Framework
(RDF) standard data model [60]. RDF enables one to make statements
about resources in the form of triples, consisting of a subject, a predicate,
and an object. The common path to access such a huge amount of
structured data is via SPARQL endpoints, namely, network locations
that can be queried using the SPARQL query language [47].

With a large number of RDF data sources (i.e., 1139 data sources in
2017 as recorded by the LOD Cloud?), covering possibly overlapping
knowledge domains, itis natural to observe a wide range of data source
quality. Indeed, depending on the topics and aspects considered, RDF
data sources such as Wikidata [111], DBpedia [15], and YAGO [54],
may possess different quality characteristics. In this setting, the prob-
lem of providing high-level descriptions (in the form of metadata) of
their content becomes crucial. Such descriptions will connect data
publishers and consumers; publishers will advertise “what” is there
inside a data source so that specialized applications can be created for
data source discovering, cataloging, selection, analytics, and so forth.
Proposals like the VoID vocabulary [6] touch this aspect. With VoID
it is possible, among other things, to provide information about the
number of instances of a particular class, the SPARQL endpoint of a
source, and links to other data sources. However, VoID focuses on
providing quantitative information. We claim that toward comprehen-
sive descriptions of data sources, also qualitative information is crucial;
hence, the overall aim of this thesis is to study a specific aspect of data
quality for RDF data sources, that is, completeness.

1.1 DATA COMPLETENESS

Information about completeness is crucial for RDF data sources, where
each data source is generally considered incomplete due to the open-
world assumption (OWA) [50]. However, so far there is no approach to
characterizing data sources in terms of their completeness that is both
conceptually well-founded and practically applicable. For instance,
with the widely used metadata format VoID, it is not possible to ex-

1 http://lod-cloud.net/



INTRODUCTION

press that an RDF data source of the movie website IMDb? is complete
for all movies directed by Tarantino. The possibility to provide in a declar-
ative and machine-readable way such kind of completeness statements
paves the way toward a new generation of services for consuming data.
In this respect, the semantics of completeness statements interpreted
by a reasoning engine can, for instance, guarantee the completeness of
query answers.

Data completeness, as defined by Wang and Strong [112], is the
breadth, depth, and scope of information contained in the data. Batiniand
Scannapieco [12] considered data completeness to be one of the most
significant data quality dimensions. Like other quality dimensions
(e.g., accuracy, timeliness), the problem of data completeness may
occur in various application domains, such as biology, aviation, and
healthcare, as studied by Becker et al. [13].

In the field of relational databases, concerns about data (in-)complete-
ness can be traced back to 1979 [23], where Codd proposed a treatment
of nulls based on three-valued logic. Motro [81] developed an in-
tegrity model for databases that considers completeness (and validity).
Levy [65] introduced local completeness statements, by which one
can assert the completeness of parts of a database relation, and stud-
ied their relationship to relational query completeness. Razniewski
and Nutt [96] reduced the problem of query completeness to query
containment, and used this reduction to study the complexity of the
completeness problem in the relational setting.

In the Semantic Web area, the problem of completeness is particu-
larly challenging due to the OWA. Several researchers studied com-
pleteness in the broader context of data quality. Fiirber and Hepp [39]
developed a generic vocabulary for data quality management in the
Semantic Web. Their vocabulary can facilitate the standardized for-
mulation of data quality rules, data quality problems, and data quality
scores for RDF data sources. For example, one completeness-related
problem that can be described is ‘missing element”: schema elements,
instances, or property values are missing, when required. Mendes
et al. [74] proposed Sieve, a framework for Linked Data quality as-
sessment and fusion. Sieve enables users to define quality scoring
functions, and perform conflict-resolution tasks based on the quality
scores to combine RDF data from multiple sources. As an illustration,
users can define a completeness scoring function based on the average
number of properties of instances in a data source. A recent initiative
to improve RDF data quality is underway by the W3C’s RDF Data
Shapes group.® The group is developing SHACL, a language for vali-
dating RDF graphs against a set of conditions (called ‘shapes’) [61]. In
SHACL, one can formulate integrity constraints, e.g., by requiring that
every person has a gender. The lack of such required information indi-

2 http://www.imdb.com/
3 https://www.w3.org/2014/data-shapes



1.1 DATA COMPLETENESS

cates incompleteness of data. By this approach, however, one cannot
detect whether optional information, like a spouse, is missing.

Zaveri et al. [114] surveyed techniques to measure the completeness
(among other data quality aspects) of RDF data sources. It is common
to these techniques that they measure completeness of a data source as
the fraction of real-world information present in another data source
that is chosen as the gold standard. The surveyed techniques did not
concern how to express that a source is of gold-standard quality for
some type of information. In [48], Harth and Speiser discussed the
problem of assessing the completeness of Linked Data querying. They
regarded the whole web as the most ideal gold standard for evaluating
queries. To be more realistic, they weakened that to data that is reach-
able from authoritative data sources. In their work, no assumption
was made as to whether the whole web really captures all information
in the real world. Galdrraga et al. [42] stressed the need of complete
information for rule mining over RDF KBs. Since completeness cannot
be guaranteed, they introduced a “partial completeness assumption’
(PCA) as a substitute, which states that: if the KB knows some r-
attribute of x, then it knows all r-attributes of x. Such an assumption
is restricted in the sense that completeness is defined at the level of
atomic attributes.

In RDF, an existing way to state completeness is by using closed
lists (called ‘RDF collections’) [72]. Such lists, however, introduce a
new structure, that is different from the usual SPO-style of RDF triples,
hence hindering data access via querying. In description logics (DLs),
several proposals have been made for partial closed-world features.
OWL (i.e., the DL-based ontology language for the Semantic Web)
provides a functionality to describe a closed class by enumerating all
of its instances [53]. Seylan et al. [105] introduced DBoxes to capture
DB-style relations for DL ontologies. They developed procedures to
translate implicitly defined queries over DBoxes into explicitly defined
ones. A similar approach was proposed by Lutz et al. [68, 69] with
their closed predicates that allow one to draw more conclusions in
DL reasoning. However, they showed that this also leads to higher
complexity of the reasoning. Ahmetaj et al. [5] observed that a query
over a DL ontology can have more certain answers if some predicates
are assumed to be closed. They showed how to rewrite a simple kind
of queries, so-called instance queries, that ask for all instances of a class
or a property into a datalog query, so that the rewriting retrieves all
the certain answers of the original query. Ngo et al. [84] showed how
closed predicates increase the combined complexity even for simple
queries in some well-studied DL dialects. The problem of checking
query completeness was not considered in the above work, as they
were only interested in drawing more conclusions of reasoning with
closed predicates.
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Among the first proposals for a declarative, machine-readable spec-
ification of Semantic Web data completeness was the work by Darari
et al. [28], which enables us to close some parts of RDF data, and thus
SPARQL queries can be answered completely whenever they touch
only the closed parts. The impact of completeness statements on a
variety of SPARQL fragments, including the RDFS entailment regime
and the federated scenario, was studied. The reasoning technique they
developed is, however, agnostic of the content of RDF data sources,
that is, the query completeness checking considers only the complete-
ness statements, and the specifics of the graph to which the statements
are given do not play any role.

RESEARCH HYPOTHESES. As discussed above, previous approaches
dealt with limited settings of data completeness for RDF data sources.
This thesis aims to develop a comprehensive framework of managing
and consuming completeness information for RDF data sources. The
hypotheses of this thesis are as follows:

e Combining information about data completeness and the actual
data gives rise to a stronger and more fine-grained assessment
of the completeness of query answers.

e By applying and adapting existing indexing techniques, query
completeness analysis can be performed in a time that is compa-
rable to the execution time of a query.

e Completeness analysis can be leveraged to check whether an-
swers to queries with negation are sound.

e Completeness statements can be equipped with temporal infor-
mation in such a way that temporal completeness analysis can
be performed with little additional cost.

o Existing Semantic Web technologies can be used to develop com-
pleteness management tools with little development overhead.

e Natural language texts contain information about cardinalities
of sets in the real world that can be extracted automatically and
be used to assess the completeness of RDF data sources.

1.2 MOTIVATION

We provide motivating scenarios covering a broad range of aspects of
completeness for RDF data sources: data-aware completeness reason-
ing, optimizations of completeness reasoning, ensuring query sound-
ness using completeness statements, time-aware completeness reason-
ing, demonstrators of systems to create and consume completeness
statements, and extracting relation cardinalities from text as a way to
automatically generate completeness statements.
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DATA-AWARE COMPLETENESS REASONING. Consider Wikidata, a
crowdsourced KB with RDF support [111]. For data about the movie
Reservoir Dogs, Wikidata is incomplete, as it is missing the fact that
Michael Sottile was acting in the movie.* On the other hand, for data
about Apollo 11, it is the case that Neil Armstrong, Buzz Aldrin, and
Michael Collins, recorded as crew members on Wikidata, are indeed all
the crew (see Figure 1.1).> However, such completeness information
is not recorded and thus it is left to the reader to decide whether some
data on the Web is already complete.

Apollo 11 (Q43653)
United States manned spaceflight mission to the Earth's moon

Statements https://www.wikidata.org/wiki/Q43653
WIKIDATA | crew member & Neil Armstrong
Main page .
Community portal = Buzz Aldrin
e & Michael Coliins
Create a new item
Item by title time of spacecraft launch ‘: 16 July 1969

Figure 1.1: Wikidata is actually complete for all the Apollo 11 crew

Nevertheless, the availability of explicit completeness information
can benefit data access over RDF data sources, commonly done via
SPARQL queries. For example, suppose that in addition to the com-
plete data of the Apollo 11 crew, Wikidata is also complete for the
children of Neil Armstrong, Buzz Aldrin, and Michael Collins. Conse-
quently, a user asking the query “children of Apollo 11 crew” should
obtain not only query answers, but also the information that the query
can be answered completely. Observe that here data-specific reasoning
is employed: we first obtain who specifically are the complete crew
members of Apollo 11, and then for each of them, we check if we have
all the children.

Motivated by the above rationales, we argue that it is important to
describe the (partial) completeness of RDF data sources and provide
a technique to check query completeness based on RDF data sources
with completeness information. We call such a check completeness en-
tailment. In previous work, Darari et al. [28] proposed a framework to
provide completeness statements about RDF data sources and check
query completeness based on such statements. There is, however, one
fundamental limitation of the work: the completeness check is agnostic
of the content of the RDF data sources to which completeness state-
ments are given, which results in weaker inferences. For instance,
given the completeness information and the query “children of Apollo
11 crew” as in the Apollo 11 example above, the data-agnostic ap-

4 By comparing the data at https://www.wikidata.org/wiki/Q72962 (as of Sep 18,
2016) with the complete information at http://www.imdb.com/title/tt0105236/
fullcredits

5 http://www.space.com/16758-apollo-11-first-moon-landing.html

11
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proach fails to capture the query completeness. In Chapter 3, we
provide a formalization, and a sound and complete algorithm of data-
aware completeness checking. Moreover, we identify two fragments of
completeness statements: SP-statements, that are practically relevant
to entity-centric, crowdsourced RDF data sources like Wikidata, and
no-value statements, that are suited to capturing the non-existence of
information in RDFE.

OPTIMIZATION TECHNIQUES OF COMPLETENESS REASONING. Real-
world RDF data sources may contain a large amount of data. For
example, from the English Wikipedia, DBpedia extracted 580 million
RDF triples.6 Obviously, neither is all information from those triples
complete, nor is its completeness interesting. If 20% of those triples
were captured by completeness statements, where each statement ac-
counts for 100 triples, then there would be about 1 million statements
in total needed for DBpedia.

Now, the question is, how fast can we perform completeness reason-
ing with 1 million statements? Using a plain completeness reasoner
that employs all the completeness statements, we observed that rea-
soning time may take minutes. Obviously, this is not feasible as we
expect that in practice completeness reasoning would be performed
as often as query evaluation. Indeed, the reason why a plain reasoner
may take long is that it takes into account all the statements in the
reasoning. Yet, not all statements contribute to the entailment of query
completeness. For instance, the completeness statement “all football
players of Arsenal” does not contribute to the completeness of the
query “movies directed by Tarantino.”

In Chapter 4, we analyze the complexity of the completeness reason-
ing task in practical settings and propose a relevance principle, which
allows us to reduce the number of statements considered in the rea-
soning. Based on the relevance principle, we then develop retrieval
techniques of relevant statements with various index structures, and
conduct experimental evaluations to study the characteristics of those
index structures. Next, we experimentally evaluate completeness rea-
soning over a realistic setting based on SPARQL query logs of several
real-world RDF data sources, i.e., DBpedia, Semantic Web Dog Food
(SWDF), and LinkedGeoData (LGD).

Wrt. data-aware completeness reasoning, based on our observation
that natural-language completeness statements on the Web are gen-
erally about similar topics (e.g., completeness statements about cast
of movies on IMDb’ and about points of interest of cities on Open-
StreetMap®), we introduce completeness templates. Such templates pro-

http://lists.w3.org/Archives/Public/public-10d/2014Sep/0028.html

For instance, on the Reservoir Dogs page at http://www.imdb.com/title/
tt0105236/fullcredits

For instance, on the Abingdon page at http://wiki.openstreetmap.org/wiki/
Abingdon
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vide a compact representation of similar completeness statements, en-
abling multiple completeness statements to be processed simultane-
ously in the reasoning. We then evaluate the performance of data-
aware completeness reasoning using completeness templates, over a
Wikidata-based experimental setup.

ENSURING QUERY SOUNDNESS USING COMPLETENESS STATEMENTS.
The use of negation in SPARQL has always been problematic. RDF
generally follows the open-world assumption (OWA): information
recorded in an RDF dataset can be incomplete, that is, it might not
reflect all information valid in reality [50]. Consequently, SPARQL
queries with negation (which rely on the absence of some information)
cannot be guaranteed to deliver sound answers.

To illustrate this, consider asking for “countries that are not EU
founders” over the Wikidata SPARQL endpoint:’-'”

SELECT * WHERE {
?c wdt:P31 wd:Q6256 . # ?c a (= instanceof) country
FILTER NOT EXISTS {wd:Q458 wdt:P112 ?c} # EU founder ?c
}

The answers include Spain (= wd:Q29).!! We might wonder if this an-
swer is sound, that is, if Spain is indeed a country that is not an EU
founder. Without any completeness information about Wikidata, we
cannot be sure about this: assume Spain were indeed a founder of the
EU, but this information were missing from the data. Obviously, in
that case, Spain is not a correct answer to the above query. In reality,
the EU founders are exactly the countries Belgium, Germany, France,
Italy, Luxembourg, and the Netherlands.!” Knowing this complete-
ness information guarantees that Spain is a country that is not an EU
founder.

What we can observe here is that, without completeness information,
negation in SPARQL may lead to the problem of unsound answers.
This is due to the inherent non-monotonicity of answering queries with
negation: adding new information may invalidate an answer."®> Hav-
ing completeness information may then help ensure the soundness of an-
swers, thatis, we can be sure that specific answers will still be returned,
even if the data is completed. Chapter 5 describes our formalization of
the problem of query soundness in the presence of completeness state-
ments. We distinguish between the soundness of a specific answer of
a graph pattern and the soundness of a graph pattern as a whole. We

https://query.wikidata.org/

Prefix declarations are provided in Appendix A.

Wikidata uses internal identifiers for resources, as also shown in the SPARQL query
example.

https://europa.eu/european-union/about-eu/history/

Note that for the positive fragment of SPARQL, such a problem can never occur, as
the answers are always sound, thanks to monotonicity.

13
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further provide a characterization of the problem via reduction to com-
pleteness checking. Finally, we perform an experimental evaluation of
soundness checking in a realistic setup based on Wikidata.

TIME-AWARE COMPLETENESS REASONING. The notion of complete-
ness introduced in [28] is in a sense time-agnostic. It only allows one
to specify whether (a portion of) a data source is complete. However,
one may also be interested in having completeness guarantees up to
a certain time. To cope with this aspect we introduce timestamped
completeness statements. In defining such kind of statements, we were
inspired by Wikipedia which provides a template list for complete
information with timestamps, as shown in Figure 1.2.

TemplatE:Comp]Ete list Award recipients [edit] https:/en.wikipedia.org/wiki/Twenty-five_Year_Award
T 5 (a) The "Year awarded” column states the year the award was handed out, and
[ This Wl is complele and up-to-dafe as of ({{1)}} ] has a link to an article about the significant architectural events of that year.
This list is complele and up-to-date as of June 2014,
{{€}} Template documentation [view] [ei] [ristory] fporge] ] (b)
U foc b ® Butelogs) L I e Architect(s] ®
sage ie) e - mag )

Place {{Complete 1list|June 201%}} atihe top or bottom of a
section of list. The date field is open, and you can use any date format.

This is an example of usage in an anticla: Reinhard &

This kst is complele and up-to-dafe as of June 2015 1080 Rockefeller Center Hofmeister;
List of days of the woek MNaw York City Corbett, Harrison &

. - MacMurray

ey, R
» Monday v

n
ety P Perkins, Wheeler &
«Wed WikIPEDIA Crow Island School
= 1971 Will; Eliel & Eero

« Thursday ia.org/wiki/Te ompleYlist Winnatia, linols

Saarinen

« Friday
JSatwdsy e

Figure 1.2: A list template for complete information with timestamps on
Wikipedia (a) and its usage to state the completeness of the list
of the Twenty-five Year Award recipients (b).

Figure 1.2 shows a list template taken from Wikipedia. The template
allows one to specify that a list is “complete and up-to-date as of {some
specific date}” with this information being shown on each page where
the list template is used. Such a statement differs from the previous
type of statement in so far as it specifies up to what time the complete-
ness holds. Wikipedia pages containing timestamped completeness
statements range from the page of buildings that have ever won the
Twenty-five Year Award'* (as shown in Figure 1.2) to the page of Italian
DOP cheeses."”

In Chapter 6, we provide a formalization of time-aware complete-
ness reasoning. Completeness statements now feature timestamps.
Consequently, query completeness must be approached differently.
For this reason, we introduce the guaranteed completeness date of a query,
that is, the latest date for which complete query results are guaranteed
to be contained in the actual query results. We then develop, given a
set of timestamped completeness statements, an algorithm to compute

14 https://en.wikipedia.org/wiki/Twenty-five_Year_Award
15 https://en.wikipedia.org/wiki/List_of_Italian_DOP_cheeses
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the guaranteed completeness date of a query, which is optimal in the
sense that each timestamped completeness statement is considered at
most once in the reasoning.

COMPLETENESS MANAGEMENT DEMONSTRATORS. The theoretical
foundations of completeness reasoning [28] so far have not reached
practice. Up to now, users can only write completeness information
manually in RDF, and would need to publish and link them on their
own, in order to make them available. Similarly, users interested in
making use of completeness statements have no central reference for
retrieving such information. We believe that the lack of systems sup-
porting both ends of the data pipeline, production and consumption,
is a major reason for the partial closed-world assumption (PCWA) not
being adapted on the Semantic Web so far.

In Chapter 7, we develop two demonstrators of systems to man-
age and consume completeness information, each of which serves
different purposes. The first one is CORNER. CORNER demonstrates
a completeness statement hub. With CORNER, users may provide
completeness statements over multiple RDF data sources and perform
data-agnostic completeness reasoning. CORNER supports SPARQL
Basic Graph Pattern (BGP) queries and can take RDFS ontologies into
account in its analysis. If a query can only be answered completely by
a combination of sources, CORNER rewrites the original query into
one with SPARQL SERVICE calls, which assigns each query part to a
suitable source, and executes it over those sources. CORNER can be
accessed at http://corner.inf.unibz.it/.

The second one is COOL-WD. In contrast to CORNER, COOL-WD
demonstrates how one can build a specialized completeness manage-
ment system over a single KB, in our case, Wikidata. With COOL-
WD, end users are provided with web interfaces (available both via
the COOL-WD external system and the COOL-WD integrated Wiki-
data gadget) to create and view completeness information about Wiki-
data facts. To consume completeness information, COOL-WD users
may perform data completion tracking, completeness analytics, or
data-aware query completeness assessment with diagnostics. Fig-
ure 1.3 shows the homepage of COOL-WD, which can be accessed
athttp://cool-wd.inf.unibz.it/.

EXTRACTING RELATION CARDINALITIES FROM TEXT. While COR-
NER and COOL-WD provide a method to add completeness state-
ments manually, to improve the scalability, an automatic method of
generating completeness statements is thus crucial. Meanwhile, over
the Web, a wealth of information about relation cardinalities is pro-
vided, giving hints on the complete count information of a relation.
An example is shown in Figure 1.4 on how cardinality information
may produce completeness statements. In this regard, in Chapter 8

15
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we introduce the novel problem of extracting cardinalities from text
and analyze specific challenges that set it apart from standard Infor-
mation Extraction (IE). We present a distant supervision method using
conditional random fields (CRF). Our evaluation results in precision
between 38% to 84% depending on the difficulty of relations. More-
over, we analyze the presence of cardinality information for over 200

relations in Wikidata.
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1.3 CONTRIBUTIONS

1.3 CONTRIBUTIONS

The contributions of this thesis are as follows:

1. we develop a formalization, and a sound and complete algo-
rithm for data-aware completeness reasoning, and explore vari-
ous practical fragments of completeness statements;

2. we develop optimization techniques for both the data-agnostic
and data-aware completeness reasoning, and conduct experi-
mental evaluations based on realistic settings;

3. we formalize the problem of query soundness in the presence of
completeness statements, and provide a characterization of the
problem via reduction to completeness checking;

4. we introduce time to completeness reasoning;

5. we develop demonstration systems to manage and consume
completeness information, that is, CORNER (http://corner.inf.
unibz.it/) and COOL-WD (http://cool-wd.inf.unibz.it/); and

6. we provide a method for extracting relation cardinalities from
text on the Web, which can be leveraged to generate completeness
statements.

1.4 THESIS OUTLINE

The thesis is structured as follows:

Chapter 2 provides some background about RDF and SPARQL, and
data-agnostic completeness reasoning for RDF data sources. Chap-
ter 3 discusses data-aware completeness reasoning. In Chapter 4 we
propose optimizations of completeness reasoning and report on ex-
perimental evaluations of the optimizations. In Chapter 5 we show
how our completeness framework can also be leveraged to deal with
the problem of query soundness. Chapter 6 extends completeness
reasoning with the time information, whereas Chapter 7 describes
completeness management demonstrators. Chapter 8 provides an au-
tomated approach for extracting relation cardinalities from text on the
Web, useful in generating completeness statements. In Chapter 9, we
discuss related aspects to our completeness framework. We conclude
our work and sketch future directions in Chapter 10.
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In this chapter, we discuss concepts that are essential for the subsequent
content. We remind the reader of RDF and SPARQL in Section 2.1.
Section 2.2 formalizes completeness statements, metadata to specify
which parts of an RDF data source are complete. We next introduce in
Section 2.3 the notion of query completeness. Finally, we define and
characterize the completeness entailment problem in the data-agnostic
setting in Section 2.4. The results presented in this chapter have been
published in [28].

2.1 RDF AND SPARQL

We assume three pairwise disjoint infinite sets I (IRIs), L (literals), and
V (variables). We collectively refer to IRIs and literals as RDF terms or
simply terms. A 3-tuple (s,p,0) € IXIXx (IUL) is called an RDF triple
(or a triple), where s is the subject, p the predicate and o the object of
the triple.! An RDF graph G consists of a finite set of triples [60]. For
simplicity, we omit namespaces for the abstract representation of RDF
graphs.

The standard query language for RDF is SPARQL [47]. The basic
building blocks of a SPARQL query are triple patterns, which resemble
RDF triples, except that in each position also variables are allowed.
We focus on the conjunctive fragment of SPARQL, which uses sets of
triple patterns, called basic graph patterns (BGPs).>? A mapping p is a
partial function yu: V. — IUL. Given a BGP P, uP denotes the BGP
obtained by replacing variables in P with terms according to u. The
evaluation of a BGP P over an RDF graph G, denoted as [P]g, results
in a set of mappings such that for every mapping p € [P]g, it holds
uP C G. For a BGP P, we define the freeze mapping id as mapping
each variable ?v in P to a fresh IRI 7 (that is, 7 is a frozen variable).
From such a mapping, we construct the prototypical graph P := id P to
represent any possible graph that can satisfy the BGP P. Moreover, we
define the mapping with empty domain as the empty mapping .

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. A SELECT
query has the abstract form (W, P), where P is a BGP and W C var(P).
A SELECT query Q = (W, P) is evaluated over a graph G by project-
ing the mappings in [P]l¢ to the variables in W, written as [Qllc =
ntw ([Plg). Syntactically, an ASK query is a special case of a SELECT

We do not consider blank nodes in this thesis for the reasons as discussed later in
Section 9.2.

SPARQL with negation will be introduced later in Chapter 5 about soundness reason-
ing.
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query where W is empty. A CONSTRUCT query has the abstract form
(Py, P2), where both P; and P; are BGPs, and var(P;) C var(P,). Evalu-
ating a CONSTRUCT query over G yields a graph where P; is instantiated
with all the mappings in [Pz2]lc. In this thesis, the semantics consid-
ered in query evaluation is the bag semantics, which is the default of
SPARQL [47]. In bag semantics, duplicates of query answers are kept.

2.2 COMPLETENESS STATEMENTS

Let us formalize completeness information. We first define complete-
ness statements to capture which information is complete.

Definition 2.1 (Completeness Statement). A completeness statement C
is defined as Compl(Pc) where Pc is a non-empty BGP.

We use BGPs in order to have a flexibility for representing complex
completeness information which requires more than one triple pattern.
For example, we express that a source is complete for all pairs of triples
that say “?m is a movie (= Mov) and ?m is directed (= dir) by Tarantino”
using the statement®

Cgir = Compl((?m,a, Mov), (?m, dir, tarantino)), 1)

whose BGP matches all such pairs. To express that a source is complete
for all triples about actors (= act) in movies directed by Tarantino, we
use

Cact = Compl((?m, act,?a), (?m,a, Mov), (?m, dir, tarantino)).  (2)

Now to model the OWA of RDF data sources, we define an extension
pair.

Definition 2.2 (Extension Pair). We identify data sources with RDF
graphs. Then, adapting a notion introduced by Motro [81], we define
an extension pair as a pair (G, G’) of two graphs, where G C G’. We call
G the available graph and G’ the ideal graph.

Here, an available graph is the graph that we currently store, while
an ideal graph is a possible extension over the available graph, repre-
senting a version of ideal, complete information. Note that by nature,
ideal graphs are hypothetical, i.e., data providers or consumers do not
need to explicitly deal with G’. In an extension pair, the requirement
that Gisincluded in G’ formalizes the intuition that the available graph
contains no more information than the ideal one (i.e., we assume that
available graphs are correct).

Without completeness statements, any graph extending the avail-
able graph can be an ideal graph. Having completeness statements

For the sake of readability, we slightly abuse the notation by removing the set brackets
of the BGPs of completeness statements.
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restricts the possibilities of ideal graphs: for the parts captured by
completeness statements, they must contain no more information than
in the available graph. Later on in Section 2.4, we will see that con-
clusions about query completeness are drawn from these restrictions
imposed over ideal graphs. To a statement C = Compl(Pc), we asso-
ciate the CONSTRUCT query Qc = (Pc, Pc). Note that, given a graph G,
the query Qc returns a graph consisting of those instantiations of the
pattern Pc present in G. For example, the query Qc,, returns the cast
of the Tarantino movies in a graph G. We now define the semantics of
completeness statements.

Definition 2.3 (Satisfaction of Completeness Statements). An exten-
sion pair (G,G’) satisfies the statement C, written (G,G’) = C, if
[Qcle < G.

Intuitively, an extension pair (G, G’) satisfies a completeness state-
ment C, if the subgraph of G’ captured by C is also present in G. The
above definition naturally extends to the satisfaction of a set C of com-
pleteness statements, that is, (G, G’) = C iff for all C € C, it is the case
that [Qclle € G.

Example 2.4. Consider the DBpedia data source which contains infor-
mation about Tarantino-related movies:

Gapy = {(reservoirDogs, dir, tarantino), (pulpFiction, dir, tarantino),
(killBill, dir, tarantino), (desperado, act, tarantino),
(pulpFiction, act, tarantino), (desperado,a, Mov),
(reservoirDogs, a, Mov), (pulpFiction,a, Mov), (killBill, a, Mov)}.

A possible extension (among others) of the above graph is the graph

Gz,ibp’ which additionally contains the information that Tarantino starred

in Reservoir Dogs:*
Gl’ibp = Ggpp U { (reservoirDogs, act, tarantino) }.

Putting the above two graphs together forms the extension pair
(Gdbp,G In this case, the statement Cy;, (Eq. 1) is satisfied by
(Gavp, G;bp) since all triples from evaluating Qc, over G{’jbp are in-
cluded in Ggpp. In contrast, the statement C,.+ (Eq. 2) is not satisfied
by (Gap, G(,ibp) because evaluating Qc,, over Gt/ibp returns the triple
(reservoirDogs, act, tarantino) that is not in Gy,

:‘lbp)'

An important tool for characterizing completeness entailment is the
transfer operator Tc, which captures the complete parts of a graph
w.r.t. a set of completeness statements. Given a set C of completeness
statements and a graph G, the transfer operator is defined as

Te(6) = [ JIQcle. 3)

CeC

4 which is actually the case in the real world
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The transfer operator takes the union of evaluating over G all the
corresponding CONSTRUCT queries of the statements in C. In terms of
extension pairs, the transfer operator takes the parts of the ideal graph
that have to be present in the available graph. In a way, the operator
transfers complete information from the ideal graph to the available
graph. Crucial properties of the transfer operator are summarized in
the following proposition, which follows directly from the construction
of Tc and the definition of the satisfaction of C.

Proposition 2.5 (Properties of Tc). Let C be a set of completeness state-
ments. Then,

(1) For every extension pair (G,G’), (G,G") = C iff Tc(G') CG.
Consequently, for any graph G we have that

(2) the pair (Tc(G), G) is an extension pair satisfying C, and

(3) Tc(G) is the smallest graph for which this holds.

Note on completeness statements. In Darari et al. [28] completeness state-
ments are defined slightly differently. There completeness statements
may have conditions, which are more general than the unconditional
ones. For conditional statements, the instantiations of the conditions
are not necessarily included in the graph G. For example, the con-
ditional completeness statement “Complete for all movies under the
condition that the movies were directed by Tarantino” differs from
the statement Cy;, above since in the former the graph needs only
to contain all such movies (?m,a, Mov) but not the director informa-
tion wrt. Tarantino (?m, dir, tarantino). We found that this might give
some confusion when creating completeness statements. In this thesis,
completeness statements generally refer to the unconditional ones (as
in Definition 2.1). Nevertheless, conditional completeness statements
are still used in Section 5.4 for characterizing a variant of the query
soundness problem, and in Section 7.1 about CORNER.

RDF REPRESENTATION OF COMPLETENESS STATEMENTS.  Practically,
completeness statements should be compliant with the existing ways
of giving metadata about data sources, for instance, by enriching cur-
rent proposals like VoID [6]. Hence, it becomes essential to be able to
express completeness statements in RDE. Suppose we want to express
that LinkedMDB,” an RDF data source about movies, satisfies the fol-
lowing completeness statement about all actors in movies directed by
Tarantino, as introduced in Eq. (2),

Cact = Compl((?m, act,?a), (?m,a, Mov), (?m, dir, tarantino)).

To this end, we need: (i) a vocabulary to say that this is a complete-
ness statement about LinkedMDB; (ii) a mechanism to state which

5 http://www.linkedmdb.org/
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triple patterns make up the statement’s BGP; (iii) a mechanism to
represent the constituents of the triple patterns, namely the subject,
predicate, and object of a triple pattern. We introduce the following
property names whose meaning is intuitive,

hasComplStmt, hasPattern, subject, predicate, object.

If a constituent of a triple pattern is a term (an IRI or a literal),
then it can be specified directly in RDF; as this is not possible for
variables, we represent a variable by a resource that has a literal value
for the property varName. In the light of these considerations, we can
represent C,+ in RDF as the following resource 1v:stl, using Turtle
serialization [14].°

lv:1Imdbdataset a void:Dataset ;
c:hasComplStmt lv:stl .

lv:stl a c:CompletenessStatement ;
c:hasPattern [c:subject [c:varName "m"] ;
c:predicate s:actor ;
c:object [c:varName "a"]] ;

(1 1}

c:hasPattern [c:subject [c:varName "m"] ;
c:predicate rdf:type ;
c:object s:Movie] ;
c:hasPattern [c:subject [c:varName "m"] ;
c:predicate s:director ;
c:object dbp:Quentin_Tarantino]

Note that in the Turtle serialization we use unlabeled blank nodes
(i.e., anonymous resources), denoted by [ ... 1], for reification pur-
poses [85] which do not relate to the semantics of completeness state-
ments.

More generally, consider a completeness statement Compl(ty, ..., t,),
where each t; is a triple pattern. Then, we create a resource to represent
the statement, and a resource for each of the t; that is linked to the
statement-resource by the property hasPattern. The constituents of
each t; are linked to t;-resource in the same way via subject, predicate,
and object. Our vocabulary is available at http://completeness.inf.
unibz.it/ns.

2.3 QUERY COMPLETENESS

A usual way to access data is via queries. When querying a data
source, we want to know whether the data source provides sufficient
information to answer the query, that is, whether the query is complete
wrt. the real world. For instance, when querying DBpedia for movies
directed by Tarantino, it would be interesting to know whether we

6 We provide the prefix declarations in Appendix A.
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really get all such movies. Intuitively, over an extension pair a query is
complete whenever all answers we retrieve over the ideal state are also
retrieved over the available state. We now define query completeness
wrt. extension pairs.

Definition 2.6 (Query Completeness). Let Q be a SELECT query. To
express that Q is complete, we write Compl(Q). An extension pair
(G,G’) satisfies Compl(Q), if the result of Q evaluated over G’ also
appears in Q over G, that is, [Q]lcr € [Qlc.” In this case we write

(G, &) | Compl(Q).

The above definition can be naturally adapted for the completeness
of a BGP P, written Compl(P), that is used in later chapters: An ex-
tension pair (G, G’) satisfies Compl(P), written (G, G’) = Compl(P), if
[Plc < [Plc.

Example 2.7. Consider the extension pair (Gayp, G"ibp) and the two
queries Qg;r, asking for all movies directed by Tarantino, and Qi act,
asking for all movies both directed by and starring Tarantino,

Quir = ({?m},{ (?m,a, Mov), (?m, dir, tarantino) }), and

Quirract = ({?m},{ (?m,a, Mov), (?m, dir, tarantino), (?m, act, tarantino) }).

Then, it holds that Q;, is complete over (G, G[’ibp) since it is the case
that [[Qdir]]Gdb,, = {{?m  reservoirDogs },{ ?m w— pulpFiction},{?m
killBill}} = l[QdiV]]G;bp' On the other hand, Qgiriq4+ is not complete

over (Gdbp, G since [Quir+actlc iy does not contain the result map-

4

dbp)

ping { ?m  reservoirDogs }, which occurs in ][de-,ﬂct]]c;b .
p

24 DATA-AGNOSTIC COMPLETENESS ENTAILMENT

From the notions above, a question naturally arises as to when some
meta-information about data completeness can provide a guarantee for
query completeness. In other words, the available state contains all
data, as guaranteed by the completeness statements, thatis required for
computing the query answer, so one can trust the results of the query.
While previously we have looked at examples with concrete extension
pairs, in the following we formalize the completeness entailment prob-
lem in the data-agnostic setting, that is, when the available graph to
which completeness statements are given is also abstracted (recall that
ideal graphs are always abstracted). This way, we ‘quantify” over all
extension pairs such that if an extension pair satisfies the completeness
statements, then it must also satisfy the query completeness.

Definition 2.8 (Data-agnostic Completeness Entailment). Let C be a
set of completeness statements and Q be a SELECT query. We say that

For monotonic queries, the other direction, that is, [Qllc: 2 [Qllg, comes for free.
Hence, we sometimes use the ‘=" condition when queries are monotonic.
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C entails the completeness of Q, written C = Compl(Q), if any extension
pair satisfying C also satisfies Compl(Q).

Example 2.9. Consider Cy;, from Eq. (1). Whenever an extension pair
(G, G’) satisfies Cgj;, then G contains all triples about movies directed
by Tarantino, which is exactly the information needed to answer Qg;,
from Example 2.7. Thus, {Cy;, } = Compl(Qgir). However, Cyj, is not
enough to completely answer Qgitqct, thus { Caiy } = Compl(Qgir+act)-

We want to provide a characterization of the entailment. To check
whether the completeness of a query Q = (W, P) is entailed by a set of
completeness statements, we evaluate all the corresponding CONSTRUCT
queries of the statements over the prototypical graph P and check
whether in the evaluation result, we have P back. Intuitively, this
means that over any possible graph instantiation for answering the
query, the completeness statements guarantee that we have back the
graph instantiation in our available data source. The following theo-
rem characterizes the completeness of SPARQL queries.

Theorem 2.10 (Completeness of SELECT Queries [28]). Let C be a set of
completeness statements and Q = (W, P) be a SELECT query. Then,

CE Compl(Q) iff P=Tc(P).

The following complexity result [28] follows as the completeness
check is basically evaluating a linear number of CONSTRUCT queries over
the (frozen) conjunctive body of the query.

Corollary 2.11. Deciding whether C = Compl(Q), given a set C of com-
pleteness statements and a SELECT query Q = (W, P), is NP-complete.

The result shows that the complexity of completeness reasoning is
no higher than that of conjunctive query evaluation, which is also
NP-complete [20].
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In the previous chapter, we have formalized completeness information,
and characterized its use for checking query completeness in the data-
agnostic setting. Data-agnostic completeness checking takes a set of
completeness statements and a query as input parameters, and says
whether the query can be guaranteed to be complete. In such checking,
the available graph for which completeness statements are applied is
not taken into account. As a consequence, data-specific inferences
cannot be drawn. Yet, since completeness statements are generally
created within the context of an available graph, query completeness
may also depend on the graph.

In this chapter, we tackle the problem of completeness checking in
the data-aware setting, that is, given a set of completeness statements,
a query, and an RDF graph, we check whether the completeness of the
query can be guaranteed. This chapter is divided into the following
sections. Section 3.1 gives a motivating scenario of data-aware com-
pleteness reasoning. Section 3.2 formalizes the problem of data-aware
completeness entailment and provides a characterization of the prob-
lem. Section 3.3 introduces SP-statements, a fragment of completeness
statements that is suitable for entity-centric, crowdsourced RDF data
sources, while Section 3.4 introduces no-value statements, a fragment
of completeness statements that concerns the non-existence of infor-
mation in RDF. Related work is given in Section 3.5. We summarize
this chapter in Section 3.6.

The results of this chapter have been published in [34] for the parts of
formalizing and characterizing data-aware completeness entailment,
as well as SP-statements, and in [32] for the part of no-value statements.

3.1 MOTIVATING SCENARIO

Let us consider a motivating scenario for the main problem of this
chapter, that is, the checking of query completeness based on RDF
data with completeness information. Consider an RDF graph G about
the crew of Apollo 99 (or for short, A99), a fictional space mission, and
the children of the crew, as displayed below.

[ Apollo 99
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Consider now the query Qg asking for the crew of A99 and their
children:

Qo = (Wo, Po) = ({ 2crew, 2child },{ (a99, crew, ?crew),
(?crew, child, ?child) }).

Evaluating Qo over the graph gives only one mapping result, where
the crew is mapped to Tony and the child is mapped to Toby. Up until
now, nothing can be said about the completeness of the query since:
(1) there can be another crew member of A99 with a child; (i7) Tony may
have another child; or (ii) Ted may have a child.

Let us consider the same graph as before, now enriched with com-
pleteness information, as shown below.

¢ el

The above figure illustrates three completeness statements:

e C; = Compl((a99, crew, ?c)), which states that the graph contains
all crew members of A99;

o Cy = Compl((tony, child,?c)), which states the graph contains all
Tony’s children; and

e C3 = Compl((ted,child,?c)), which states the graph contains all
Ted’s children (i.e., Ted has no children).

With the addition of this completeness information, let us see whether
we can answer our query completely.

First, from the completeness statement C; about all A99 crew, we can
infer that the part (a99, crew, ?crew) of Qp is complete. By evaluating
that part over G, we know that all the A99 crew members are Tony and
Ted. In terms of extension pairs, that means that no extension G’ 2 G
satisfying C; has other A99 crew members than Tony and Ted. In
summary, this allows us to instantiate the query Qo into the following
two queries that are intuitively equivalent with Q itself:

e Q1 = (Wy,Py) = ({2child},{(a99, crew, tony), (tony, child, ?child)})
o Q= (Wy, Py) = ({?child},{(a99, crew, ted), (ted, child, ?child)})

where we record that the variable ?crew has been assigned to Tony and
Ted, respectively.

Our task is now transformed to checking whether Q; and Q; can be
answered completely. As for Q,, we know that from the statement Cs,
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we are complete for the part (ted, child, ?child). This again allows us to
instantiate the query Q, wrt. the graph G. However, now we come to
the situation where there is no applicable part in G: instantiating the
part (ted, child, ?child) gives nothing (i.e., Ted has no children). In other
words, for any possible extension G’ of G, as guaranteed by Cs, the
extension G’ is also empty for the part (ted, child, ?child). Thus, there is
no way that Q, will return an answer, so Q> can be safely removed. In
a way, we can also see that we are complete for Q».

Now, only the query Q; is left. Again, from the statement C,, we
know that we are complete for the part (tony, child, ?child) of Q;. This
allows us to instantiate the query Q; into the query Qs thatis intuitively
equivalent with Q itself:

Q3 = (W3, P3) = ({},{(a99, crew, tony), (tony, child, toby) }),

where we record that the variable ?crew has been assigned to Tony and
?child to Toby. However, our graph is complete for Q3 as it contains the
whole ground body of Q3. In this case, no extension G’ of G can contain
more information about Q3. Now, tracing back our reasoning steps,
we know that our Qs is in fact intuitively equivalent to our original
query Qp. Since we are complete for Q3, we are also complete for Qo,
wrt. our graph and completeness statements. In other words, our
statements and graph can guarantee the completeness of the query Qp.
Concretely, this means that Toby is the only child of Tony, the only
crew member of A99 with a child.

To generalize our example, we have reasoned about the complete-
ness of a query given a set of completeness statements and a graph. The
reasoning is basically done as follows: First we find parts of the query
that can be guaranteed to be complete by the completeness statements.
Then, we produce equivalent query instantiations by evaluating those
complete query parts over the graph and applying the obtained map-
pings to the query itself. Next, for all the query instantiations, we
repeat the above steps until no further complete parts can be found.
The original query is complete iff all the BGPs of the generated queries
are contained in the data graph.

Note that using the data-agnostic approach as in Section 2.4, it is not
possible to derive the same conclusion. Without looking at the actual
graph, we cannot conclude that Ted and Tony are all the crew members
of Apollo 99, that is, it can even be that all the crew members are
completely different people like Bob, John, and Romeo. Consequently,
just having the children of Tony and Ted complete does not help reason
about Apollo 99.

In the next section, we discuss how the intuitive, data-specific rea-
soning from above can be formalized.
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3.2 CHECKING DATA-AWARE COMPLETENESS ENTAILMENT

In contrast to data-agnostic completeness entailment, in data-aware
completeness entailment, the specifics of the graph matter, as formal-
ized below.

Definition 3.1 (Data-aware Completeness Entailment). Given a set C
of completeness statements, a graph G, and a query Q, we define that
C and G entail the completeness of Q, written as C, G = Compl(Q), if for
all extension pairs (G, G’) = C, it holds that (G, G") = Compl(Q).

As we assume bag semantics for query evaluation, we can therefore
focus on the BGPs used in the body of queries for completeness entail-
ment. The following proposition provides an initial characterization
of completeness entailment as a reference on how to develop formal
notions and an algorithm for completeness checking. Basically, for
a set of completeness statements, a graph, and a BGP, the complete-
ness entailment holds, iff extending the graph with a possible BGP
instantiation (wrt. some mapping) such that the extension satisfies the
statements, will always result in the inclusion of the BGP instantiation
in the graph itself.

Proposition 3.2. Let C be a set of completeness statements, G be a graph, and
P be a BGP. Then, it holds that: C,G |= Compl(P) iff for every mapping
such that dom(u) = var(P) and (G, GU uP) |= C, it is the case that uP C G.

Proof. (=) We prove by contrapositive. Suppose there is a mapping u
where dom(u) = var(P) and (G, GU uP) = C, but uP ¢ G. We want to
show C, G [= Compl(P). For this, we need a counterexample extension
pair (G, G’) such that (G,G’) = Cbut (G,G’) = Compl(P).

Take the extension pair (G, G U uP). By assumption, we have that

(G,GU uP) = C. Now let us see whether (G, G U uP) |= Compl(P) or
not. Again, by assumption we have that uP ¢ G. This means that
¢ [Plc despite the obvious case that u € [P]guup- This implies that
(G,GU uP) f= Compl(P). Therefore, C, G [= Compl(P) as witnessed by
the counterexample extension pair (G, G U uP).
(&) Assume that for all mappings p such that dom(u) = var(P) and
(G,GU uP) = C, it is the case uP € G. We want to show that C,G =
Compl(P). Take an extension pair (G,G’) such that (G,G’) = C. We
need to prove that (G,G’) = Compl(P). In other words, it has to be
shown that [P]lgr € [[Plc.

Now take a mapping u € [Pll¢’. By the semantics of BGP evaluation,
this implies uP € G’. We want to show p € [P]c. Again, by the
semantics of BGP evaluation it is sufficient to show uP C G. By the
assumption that (G, G’) = C and the semantics of the T¢ operator, we
have that T¢(G’) € G. From this and pP € G’ (and also G C G’ by the
definition of an extension pair), it holds that Tc(GU uP) € T¢(G’) € G.
Therefore, it is the case that (G, GU uP) = C. By assumption, it is the
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case uP € G. Since u was arbitrary, we can therefore conclude that
[Plc < [Plc. O

In other words, the completeness entailment does not hold, iff we
can find a possible BGP instantiation (wrt. some mapping) such that
the extension satisfies the statements, but the BGP instantiation is not
contained in the graph. The idea here is that, as demonstrated in our
motivating example, by using completeness statements we always try
to find complete parts of the BGP and instantiate them over the graph,
until either all the instantiations are included in the graph (= the suc-
cess case), or there is one instantiation that is not included there (= the
failure case). In the following subsections, we provide formal notions
and an algorithm for checking data-aware completeness entailment.

3.2.1 Formal Notions

We now introduce formal notions to be used later in our algorithm for
checking data-aware completeness entailment.

First, we need a notion for a BGP with a stored mapping from
variable instantiations. This allows us to represent BGP instantiations
wrt. our completeness entailment procedure. Let P be a BGP and u be
a mapping such that dom(u) Nvar(P) = 0. We define the pair (P, 1) as
a partially mapped BGP, which is a BGP with a stored mapping. Over
a graph G, the evaluation of (P, ) is defined as [(P, u)llc = {uUv |
v € [Plg}. Itis easy to see that P = (P,0). Furthermore, we define
the evaluation of a set of partially mapped BGPs over a graph G as the
union of evaluating each of them over G.

Example 3.3. Consider our motivating scenario. Over the BGP P of
the query Qp, instantiating the variable ?crew to tony results in the
BGP P; of the query Q;. Pairing P; with this instantiation gives the
partially mapped BGP (P, { ?crew — tony}). Moreover, it is the case
that [(Py, { ?crew — tony })lc = {{ 2crew w tony, ?child — toby } }.

Next, we want to formalize the equivalence between partially mapped
BGPs wrt. a set C of completeness statements and a graph G. We need
this notion to ensure the equivalence of the BGP instantiations that
resulted from the evaluation of complete BGP parts.

Definition 3.4 (Equivalence under C and G). Let (P, ) and (P’,v) be
partially mapped BGPs, C be a set of completeness statements, and
G be a graph. We define that (P, u) is equivalent to (P’,v) wrt. C
and G, written (P, 1) =c (P’,v), if for all (G,G’) = C, it holds that
[(P, W)l = L(P",v)]c-

The above definition naturally extends to sets of partially mapped
BGPs.
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Example 3.5. Consider all the queries in our motivating scenario. It
is the case that {(Py,0)} =cg {(P1,{?crew — tony}), (Py,{?crew
ted})} =cc { (P3, { 2crew v tony, ?child — toby }) }.

Next, we would like to figure out which parts of a BGP contain
variables that can be instantiated completely. The idea is that, we
‘match’ completeness statements to the BGP and the graph, and return
the matched parts of the BGP. Note that in the matching we consider
also the graph since it might be the case that for a single completeness
statement, some parts of it have to be matched to the BGP, while the
other parts to the graph. For this reason, we define

cruccc(P) = Pnid ' (Te(PUG)) 4)

as the crucial part of P wrt. C and G. It is the case that we are complete
for the crucial part, that is, C,G = Compl(cruccc(P)). Later on, we
will see that the crucial part is used to guide the instantiation process
during the completeness entailment check.

Example 3.6. Consider the query Qy = (W, Pp) in our motivating
scenario. We have that

crucc,c(Po) = Po N id " (Tc(PoUG)) = {(a99, crew, 2crew) }

with id = {2crew — crew, 2child v child ). Consequently, we can have
a complete instantiation of the crew of A99.

The operator below implements the instantiations of a partially
mapped BGP wrt. its crucial part.

Definition 3.7 (Equivalent Partial Grounding). Let C be a set of com-
pleteness statements, G be a graph, and (P,v) be a partially mapped
BGP. We define the operator equivalent partial grounding:

epg((P,v),C,G) = {(uP,vUu) | p € [cruccc(P)lc }-

The following shows that such instantiations produce a set of par-
tially mapped BGPs equivalent to the original partially mapped BGP,
hence the name equivalent partial grounding. Basically, it holds since
the instantiation is done over the crucial part, which is complete wrt.
Cand G.

Proposition 3.8 (Equivalent Partial Grounding). Let C be a set of com-
pleteness statements, G be a graph, and (P,v) be a partially mapped BGP.
Then,

{(P,v)}=ccepg((P,v),C,G).

Proof. Take any G’ such that (G,G’) = C. We want to show that

[P v)le = Uppyup)eeps((py),co)l(pP,vU p)lle. Since it is the case
dom(v) Nvar(P) = @ by the construction of a partially mapped BGP, itis
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sufficient to show that [(P,0)lc' = Uup,u)eepg((p0),c.0) [(1P, 1)l By
the construction of the epg operator, it is enough to show [(P,0)]¢ =
U‘uellcrucclc(P)]]G[[(quI ”)]]G"

Recall that the crucial part of P is complete wrt. C and G, that
is, C,G = Compl(crucc(P)). This implies that [cruccc(P)lc =
[crucc,c(P)llc - Therefore, itis the case that U uefcruce ()1 [ (1P, ) e =
Ueteruce o (P)1e [(#P, 1)l By construction, it is always the case that
cruccg(P) € P. Given this fact and the semantics of evaluating
a partially mapped BGP, it holds that U efcruce o (p)1o [P, )ler =
[(P,0)lc- Thus, we can conclude that Ucperuce o (P [(1P t)ler =
Useteruce s (1o LP, )ler = [(P, 0)lc -

Example 3.9. Consider our motivating scenario. We have that:
o epg((Pa, {?crew v ted}),C,G) =0

e epg((Ps, {?crew v tony, ?child — toby}),C,G) = {(P3,{?crew —
tony, 2child +— toby})}

e ¢ep3((Po,0),C,G) = { (P1,{?crew v tony}), (P, { 2crew + ted }) }

Generalizing from the example above, there are three cases of the
operator epg((P,v),C,G):

o If [cruccg(P)llc = 0, it returns the empty set.
o If [cruccc(P)lc = { po }, it returns {(P,v)}.

e Otherwise, it returns a non-empty set of partially mapped BGPs
where some variables in P are instantiated.

From these three cases and the finite number of triple patterns with
variables of a BGP, it holds that the repeated applications of the epg
operator, with the first and second cases above as the base cases, are
terminating. Note that the difference between these two base cases
is in the effect of their corresponding epg operations, as illustrated in
Example 3.9: for the first case, the epg operation returns the empty set,
whereas for the second case, it returns back the input partially mapped
BGP. Also, intuitively the first case corresponds to the non-existence of
the query answer in any possible extension of the graph that satisfies
the set of completeness statements (e.g., the Ted’s children case).

As for the second case, we need a different treatment. We first
define that a partially mapped BGP (P, v) is saturated wrt. C and G, if
erg((P,v),C,G) = {(P,v)}, that is, if the second case above applies.
Note that the notion of saturation is independent from the mapping in
a partially mapped BGP: given a mapping v, a partially mapped BGP
(P,v) is saturated wrt. C and G iff (P,v’) is saturated wrt. C and G for
any mapping v'. Thus, wrt. C and G we say that a BGP P is saturated
if (P, 0) is saturated.
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Saturated BGPs hold the key as to whether our completeness entail-
ment succeeds or not: the completeness checking of saturated BGPs is
simply by checking whether they are contained in the graph G.

Lemma 3.10 (Completeness Entailment of Saturated BGPs). Let P be a
BGP, C be a set of completeness statements, and G be a graph. Suppose P
is saturated wrt. C and G. Then, it is the case that: C,G = Compl(P) iff
PcG.

Proof. (=) We prove by contrapositive. Suppose P ¢ G. We want to
give a counterexample for C, G = Compl(P). Let us take the extension
pair (G, GU P). Note that since P ¢ G, itis the case that [P p ¢ [Plc,
implying (G, G U P) = Compl(P).

It is left to show (G,GUP) = C. We would like to prove the fol-
lowing: If P is saturated wrt. C and G, then (G,GUP) = C. By
definition, wrt. C and G a BGP P is saturated iff (P,0) is saturated.
From our assumption that P is saturated, we therefore know that (P, 0)
is also saturated. By the definition of saturation, this means that
epg((P,0),C,G) = {(P,0)}. This implies that [cruccc(P)lc = {uo}-
Consequently, pg(cruccg(P)) = cruccc(P) € G. Here we know that
cruce,g(P) is ground.

Now we want show that Tc(P U G) C G for the following reason: by
the definition of T¢ and the satisfaction of an extension pair wrt. C, it
is the case that Tc(P U G) € G implies (G,PUG) | C.

By construction, the T¢ operator always returns a subset of the input.
There are therefore two components of the results of Tc (P U G) we have
to check if they are included in G. The first is those included in G, that
is, GNTc(PUG). Clearly, GNTc(PUG) CG.

The second one is those included in P, thatis, PN Tc(PUG). We want
to show that PN Tc(PUG) C G. Recall that cruccg(P) € G. By defi-
nition, cruccg(P) = PN iEZ_l(TC(P UG)). Since crucc,c(P) is ground,
we have that cruccg(P) = Pn id ' (Tc(PUG)), and the melting oper-
ator id ' does not have any effect, that is, P N ia’ (Tc(PUG)) =Pn
(Tc(PUG)). Consequently, we have cruccg(P) = PN (Tc(PUG)) C
G.

Since both components are in G, we have that Tc(PUG) C G, and
therefore (G,PUG) = C.

(<) Assume P C G. It is trivial to see that P is ground (i.e., has no
variables), and P C G. Therefore, it is the case that for all extension
pairs (G,G’), the inclusion [P]lcc € [Pl holds, implying (G,G’)
Compl(P). By definition, C, G = Compl(P) holds if for all (G,G’) = C,
we have (G,G’) = Compl(P). Hence, C,G = Compl(P) holds since
(G,G’) = Compl(P) even for all possible extension pairs (G,G’). O

By consolidating all the above notions, we are ready to provide an
algorithm to check data-aware completeness entailment. The next
subsection presents the algorithm.
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3.2.2  Algorithm

From the above notions, we have defined the cruc operator, useful to
find parts of a BGP that can be instantiated completely. The instan-
tiation process wrt. the crucial part is facilitated by the epg operator.
We have also learned that repeating the application of the epg operator
results in saturated BGPs for which we have to check whether they
are contained in the graph or not, in order to know whether our orig-
inal BGP is complete. Let us now introduce an algorithm to compute,
given a set of completeness statements C, a graph G, and a BGP P,
all mappings that have two properties: each BGP instantiation of the
mappings constitutes a saturated BGP wrt. C and G; and the original
BGP is equivalent wrt. C and G with the BGP instantiations produced
from all the resulting mappings of the algorithm.

ALGORITHM 1: sat(Pyyig, C, G)

Input: A BGP Py, a set C of completeness statements, a graph G
Output: A set () of mappings
Pworking — (Porigr (Z)) }
Q<0
while Py 4ing # 0 do
(P,v) « takeOne (Pyorking)
Pequiv A ePg( (P/ V)' & G)
if Ppyiv = { (P,v) } then
O« QuUv

else

‘ Pworking — Pwarking U Pequiv
end

© 0 S U kR W N =

-
o

end
return ()

[N
N =

Consider a BGP Py, a set C of completeness statements, and a
graph G. The algorithm works as follows: First, we transform our
original BGP P, into its equivalent partially mapped BGP (P, 0)
and put it in Pygking. Then, in each iteration of the while loop, we take
and remove a partially mapped BGP (P, v) from Pyorking via the method
takeOne. Afterwards, we compute epg((P,v),C,G). As discussed
above there might be three result cases here: (i) If epg((P,v),C,G) = 0,
then simply we remove (P,v) and will not consider it anymore in the
later iteration; (ii) If epg((P,v),C,G) = {(P,v)}, thatis, (P,v) is satu-
rated, then we collect the mapping v to the set (); and (iii) otherwise,
we add to Pyging @ set of partially mapped BGPs instantiated from
(P,v). We keep iterating until Pyoking = @, and finally return the set Q).

The following proposition follows from the construction of the above
algorithm and Proposition 3.8.

Proposition 3.11. Given a BGP P, a set C of completeness statements, and
a graph G, the following properties hold:
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e Forall u € sat(P,C,G), it is the case that uP is saturated wrt. C and
G.

e It holds that {(P,0)} =cc { (uP, u) | u € sat(P,C,G) }.

From the above proposition, we can derive the following theorem,
which shows the soundness and completeness of the algorithm to
check completeness entailment.

Theorem 3.12 (Completeness Entailment Check). Let P be a BGP, C be
a set of completeness statements, and G be a graph. It holds that

C,G |= Compl(P) iff forall u € sat(P,C,G).uP CG.

Proof. (=) We prove by contrapositive. Assume there exists a mapping
p € sat(P,C,G) such that ﬁﬁ ¢ G. From Proposition 3.11, we have
that uP is saturated wrt. C and G. From Lemma 3.10, it is the case
C, G = Compl(uP).

From Proposition 3.11, we have that (P,0) =cc {(vP,v) | v €
sat(P,C,G) }. Note that by construction, each mapping in sat(P,C,G)
is not comparable to the others. Since C, G = Compl(uP), we have the
extension pair (G, G U uP) as a counterexample for C, G |= Compl(P).
(&) By the first claim of Proposition 3.11, we have that P is saturated
wrt. C and G for each p € sat(P,C,G). Thus, from the right-hand side
of Theorem 3.12 and Lemma 3.10, we have that C, G = Compl(uP) for
each u € sat(P,C,G). Therefore, we have that C, G = Compl(P) by the
second claim of Proposition 3.11. o

Example 3.13. Consider our motivating scenario. It is the case that
sat(Py,C,G) = {{?crew + tony, 2child — toby}}. For every mapping
p in sat(Py, C, G), it holds that [E;o C G. Thus, by Theorem 3.12 the
entailment C, G |= Compl(Py) holds.

From looking back at the characterization of completeness entail-
ment in Proposition 3.2, it actually does not give us a concrete way to
compute a set of mappings to be used in checking completeness entail-
ment. Now, by Theorem 3.12 it is sufficient for checking completeness
entailment to consider only the mappings in sat(P, C, G) for which we
know how to compute.

SIMPLE PRACTICAL OPTIMIZATIONS. In what follows we provide
two simple optimization techniques of the algorithm: early failure
detection and completeness skip. More elaborate optimizations are
given in Chapter 4.

Early failure detection. In our algorithm, the containment checks for
saturated BGPs are done at the end. Indeed, if there is a single sat-
urated BGP not contained in the graph, we cannot guarantee query
completeness (recall Theorem 3.12). Thus, instead of having to collect
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all saturated BGPs and then check the containment later on, we can
improve the performance of the algorithm by performing the contain-
ment check right after the saturation check (Line 6 of the algorithm).
So, as soon as there is a failure in the containment check, we stop the
loop and conclude that the completeness entailment does not hold.

Completeness skip. Recall the definition of the operator

epg((P,v),C,G) = {(uP,vUu) | pu € [eruccc(P)lc ),

which relies on the cruc operator. Now, suppose that cruccg(P) =
P, implying that we are complete for the whole part of the BGP P.
Thus, we actually do not have to instantiate P in the epg operator,
since we know that the instantiation results will be contained in G
anyway due to P’s completeness wrt. Cand G. In conclusion, whenever
crucc,g(P) = P, we just remove (P,v) from Pyping and thus skip its
instantiations.

3.2.3 Complexity

In this subsection, we analyze the complexity of the problem of data-
aware completeness entailment. Recall that the complexity of the
data-agnostic counterpart is NP-complete (as per Corollary 2.11). The
addition of the data graph to the entailment increases the complexity,
which is now IT5-complete. The hardness is by reduction from the
validity problem of a YA3SAT formula.

Proposition 3.14. Deciding whether the entailment C,G |= Compl(P)
holds, given a set C of completeness statements, a graph G, and a BGP P, is
I15-complete.

Proof. The membership proof is as follows. It is the case that C,G [=
Compl(P) iff there exists a graph G’ containing G where:

e (G,G)EC,and
e (G,G) f= Compl(P).

We guess a mapping u over P such that uP ¢ G, which implies that
(G,GU uP) f= Compl(P). Then, we check in CoNP that (G,GU uP) =
C. If it holds, then C,G [= Compl(P) by the counterexample G’ =
GU uP.

Next, we prove the hardness by reduction from the validity of a
VA3SAT formula. The general shape of a formula is as follows:

Y =Vx,..., XY, Y VIA LAY

where each y; is a disjunction of three literals over propositions from
varsy U varsy where varsy = {x1,...,x,} and varsg = {y1,...,ya}. We
will construct a set C of completeness statements, a graph G, and a
BGP P such that the following claim holds:
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C,G [= Compl(P) iff Y is valid.

Our encoding is inspired by the following approach to check the
validity of 1: Unfold the universally quantified variables x1,...,x,,
in ¢, and then check if for every formula in the set ¥4 of the un-
folding results, there is an assignment from the existentially quantified
variables vy, ..., y, to make all the clauses evaluate to true.

(ENcopinGg)  First, we construct!

G ={(0,varg,c), (1,varg,c) }
and the completeness statement

Cv = Compl({ (?x,varg,?y) }),

to denote all the assignment possibilities (i.e., 0 and 1) for the univer-
sally quantified variables.
Next, we define

Poround = { (?x,varg, ?cy,), (2x;, varc, cy,;) | x; € varsy }.

The idea is that Pgoyng via Cy and G will later be instantiated with all
possible assignments for the universally quantified variables in 1.
Now, we define

Pyeg = {(0,neg,1),(1,neg,0)},

which says that 0 is the negation of 1, and vice versa. This BGP is used
later on to assign values for all the propositional variables and their
negations. Then, we define

Ptrue :{(1/1/1)/~--/(0/0/1) }/

to denote the seven possible valid values for a clause. Our BGP P we
want to check for completeness is therefore as follows:

P = Piye U Pneg U Pgrozmd-

Now, we want to encode the structure of the formula ). For
each propositional variable p;, we encode the positive literal p; as
the variable var(p;) = ?p; and the negative literal —p; as the variable
var(—p;) = ?-p;. Given a clause y; = I;1 V I V Ij3, the operator tp(y;)
maps ; to a triple pattern (var(lj1),var(ljz),var(li3)). We then define
the following BGP to encode the structure of 1):

Py = {tp(yi) | yi occurring in ¢ }.

Recall that we omit namespaces. With namespaces, for example, the ‘number’ 0 in
the encoding can be written as the IR http://example.org/0.
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To encode the inverse relationship between a positive literal and a
negative literal, we use the following:

Pposs = { (?pi, neg, 2—p;), (2—pi, neg, ?p;) | pi € varsy U vars3}.

This pattern will later be instantiated accordingly wrt. P;,.;. Now, for
capturing the assignments of the universally quantified variables in P,
we use

Py = {(?x;,varc, cy,) | x; € varsy }.

We are now ready to construct the following completeness state-
ment:
C¢; - COmpl(Ptrug UPPOSS UPV UP[}D).

In summary, our encoding consists of the following ingredients: the
set C = {Cy,Cy } of completeness statements, the graph G, and the
BGP P. Let us now prove the claim mentioned above.

(PROOF FOR ENCODING) Recall the approach we mentioned above
to check the validity of the formula ¢. To simulate the unfolding of
the universally quantified variables, we rely on the equivalent par-
tial grounding operator epg((P,0),C,G) as in Algorithm 1 which in-
volves the cruc operator. Accordingly, cruccg(P) = PN izl_l(TC(P U
G)) by definition. By construction, the statement Cy captures the
(?xj,varg, ?cy,) part of the BGP P where x; € varsy. Thus, by the con-
struction of G, it is the case thatepg((P,0), C, G) consists of 2" partially
mapped BGPs, where m is the number of the universally quantified
variables in 1. Each of the partially mapped BGPs corresponds to an
assignment for the universally quantified variables in the set ¥4 of
the unfolding results of 1.

Now, we prove the simulation of the next step, the existential check-
ing. For each partially mapped BGP (uP, i) in the unfolding results
epg((P,0),C,G),itiseitherepg((uP, 1), C,G) = Qorepg((uP,u),C,G) =
{ (4P, 1) }. Let us see what this means.

By construction, the former case happens whenever Tc( ;713 UG) =
[;13 holds, from the fact that [uP]lc = 0. Furthermore, it is the case that
Tc(ﬁ UG) = ;[15 iff there is a mapping v from the encoding ?y; of the
existentially quantified variables in Py such that v([uPl;,) C Pyye. Note
that the mapping v simulates a satisfying assignment for the corre-
sponding existentially quantified formula in the set ¥,,14. Whenever
this holds for all (uP, u) € epg((P,0),C,G), from Proposition 3.8 we
can conclude that (P,0) =c 0, and therefore C, G = Compl(P). Also,
because we have the satisfying assignments for all the correspond-
ing existentially quantified formulas in the set ¥,,z14, the formula ¢
evaluates to true.

The latter case happens whenever T¢( ;J’ UG) # ;17’, since there is
no mapping v from the encoding ?y; of the existentially quantified
variables in Py such that v(uPy) C Pyye. This simulates the failure
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in finding a satisfying assignment for the corresponding existentially
quantified formula in the set ¥,,514. This implies that ¢ evaluates to
false. However, whenever the latter case happens, it means that (1P, pt)
is saturated. By construction, it is the case ;[13 ¢ G. From Lemma 3.10
and Proposition 3.8, we conclude that C, G {= Compl(P). O

One might wonder, if some parts of the inputs were fixed, what
would be the complexity of the entailment problem. We answer this
question in the following series of propositions.

First, let us fix the input graph G. This does not change the com-
plexity, that is, the problem is still Hl; -complete. The reason is that, the
reduction from the validity problem of a YA3SAT formula can be done
even with a fixed graph.

Proposition 3.15. Deciding whether the entailment C,G = Compl(P)
holds, given a set C of completeness statements, a fixed graph G, and a
BGP P, is Hg -complete.

Proof. The membership follows immediately from Proposition 3.14,
while the hardness follows from the reduction proof of that proposition,
in which the graph is fixed. m]

Now, we want to see the complexity when the BGP P is fixed. Recall
that in the algorithm, P dominates the complexity of the instantiation
process in the epg operator. When it is fixed, the size of the instantia-
tions is bounded polynomially, reducing the complexity of the entail-
ment problem to NP-complete. Note it is still NP-hard even when the
input graph G is fixed.

Proposition 3.16. Deciding whether the entailment C,G = Compl(P)
holds, given a set C of completeness statements, a graph G, and a fixed
BGP P, is NP-complete.

Proof. The membership relies on Algorithm 1 and Theorem 3.12. Recall
that the algorithm contains the epg operator, which performs ground-
ing based on the crucial part over the graph G. However, now since
the BGP is fixed, the size of the grounding results is therefore bounded
polynomially. Consequently, the only source of complexity is from the
finding of the crucial part of BGPs, which can be done in NP (note that
here the completeness statements are not fixed).

The hardness follows immediately from Proposition 3.17. O

Proposition 3.17. Deciding whether the entailment C,G |= Compl(P)
holds, given a set C of completeness statements, a fixed graph G, and a
fixed BGP P, is NP-complete.

Proof. The membership follows immediately from Proposition 3.16.
The proof for NP-hardness is by means of reduction from the 3-

colorability problem of directed graphs, which is known to be NP-

hard [43]. We encode the problem graph G, = (V, E), i.e., the directed
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graph we want to check whether it is 3-colorable, as a set triples(G,)
of triple patterns. We associate to each vertex v € V, a new variable
?0. Then, we define triples(G,) as the union of all triple patterns
(?s,edge, ?0) created from each pair (s, 0) € E where ?s is the associated
variable of s, edge is an IRI and ?0 is the associated variable of 0. Let
the BGP P, be:

{(r,edge,g), (r,edge,b), (g, edge, 1), (g, edge, b), (b,edge, ), (b, edge, ) }
Next, we create the following completeness statement Cp:
Compl(triples(Gp) U Peyp)
Let G be the empty set. Thus, the following claim holds:

The problem graph Gy, is 3-colorable  if and only if
{Cp 1, G I= Compl(Pey)

Proof of the claim: “=" Assume G, is 3-colorable. Thus, there must
be a mapping u from all the vertices in G, to an element from the
set {r,g,b} such that no adjacent nodes have the same color. This
mapping can then be reused for mapping the CONSTRUCT query of the
statement C, to the frozen version of the BGP P, which then ensures
the completeness of P.

“«<” We will prove by contrapositive. Assume that G, isnot 3-colorable.
Thus, there is no mapping from the vertices in G, to an element from
the set {r, g, b} such that any adjacent node has a different color. Sup-
pose that there is an extension pair (G, G’) such that G’ is the color
graph {(r,edge,g),..., (b, edge,g)}. From the construction of C,, it is
the case that (G,G’) = {C,} but [Peyllc # [Peotllcr- Thus, {Cy},G =
Compl(Py). |

Let us now see the complexity when the set of statements C is fixed.
In the algorithm, C dominates the complexity of the Tc operator used
in computing the crucial part. When it is fixed, the Tc operator can
be done in PTIME, reducing the complexity of the entailment problem
to CoNP-complete. Again, fixing also the graph does not change the
complexity.

Proposition 3.18. Deciding whether the entailment C,G = Compl(P)
holds, given a fixed set C of completeness statements, a graph G, and a
BGP P, is CoNP-complete.

Proof. The membership proof is as follows. It is the case that C,G [=
Compl(P) iff there exists a graph G’ containing G where:

e (G,G)EC,and

e (G,G’) I~ Compl(P).
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We guess a mapping u over P such that uP ¢ G, which implies
that (G,GU uP) = Compl(P). Then, we check in PTIME (since C
is now fixed) the entailment (G,GU uP) = C. If it holds, then
C, G = Compl(P) by the counterexample G’ = G U uP.

The hardness follows immediately from Proposition 3.19. O

Proposition 3.19. Deciding whether the entailment C,G |= Compl(P)
holds, given a fixed set C of completeness statements, a fixed graph G, and a
BGP P, is CoONP-complete.

Proof. The membership follows immediately from Proposition 3.18.

The proof for CoNP-hardness is by means of reduction from the
3-incolorability problem of directed graphs. We encode the problem
graph G, = (V,E), i.e,, the directed graph we want to check whether
it is 3-incolorable, as a set triples(G,) of triple patterns. We associate
to each vertex v € V, a new variable ?0. Then, we define triples(G,)
as the union of all triple patterns (?s,edge, 20) created from each pair
(s,0) € E where ?s is the associated variable of s, edge is an IRI and ?0
is the associated variable of 0. Let the BGP P be:

triples(Gp) U{ (a,b,c) }
Let the graph G be the color graph:
{(r,edge,g), (r,edge,b), (g, edge, 1), (g, edge, b), (b, edge, ), (b, edge, g) }

Next, we create the following completeness statement C:
Compl((?x, edge,?y))
Thus, the following claim holds:

The problem graph Gy, is 3-incolorable  if and only if
{C},G = Compl(P).

Proof of the claim: “=" The proof relies on Algorithm 1 and The-
orem 3.12. Assume G, is 3-incolorable. By construction, the part
triples(G,) of the BGP P can be grounded completely due to the state-
ment C, that is, the crucial part operator cruc returns exactly that part.
However, as G, is 3-incolorable, there is no mapping u from all the
vertices in G, to an element from the set {r, g, b} such that no adja-
cent nodes have the same color. Thus, the epg operator returns the
empty set as evaluating triples(G,) over G yields the empty answer.
This means that the grounding does not output any BGP that needs
to be checked anymore for its completeness. Hence, it is the case that
{C},G = Compl(P).

“«<” We will prove by contrapositive. Assume that G, is 3-colorable.
Thus, there must be a mapping u from all the vertices in G, to an
element from the set {r, g, b} such that no adjacent nodes have the
same color. Take such a mapping u arbitrarily. By construction, the
part triples(G,) of the BGP P can be grounded completely due to the
statement C, that is, the crucial part operator cruc returns exactly that
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part. Since the graph G, is 3-colorable, we can then reuse the mapping u
for mapping triples(G,) to G. The epg operator results therefore include
that mapping, which is then applied to the remaining part of P, that is,
the triple pattern (a,b,c). Note that the triple pattern consists of only
constants, so the mapping application has no effect. Now we have
to check the completeness of (a,b,c). As no completeness statements
can be evaluated over that remaining part, it is then the case that we
are already saturated for (a,b,c). By Theorem 3.12, the BGP P can
be guaranteed to be complete iff all saturated instantiations wrt. {C}
are in G. However, clearly (a,b,c) is not in G. Thus, we have that
{C}, G = Compl(P). O

Finally, the following proposition tells us that fixing both the set of
statements C and the BGP P reduces the complexity to PTIME.

Proposition 3.20. Deciding whether the entailment C,G = Compl(P)
holds, given a fixed set C of completeness statements, a graph G, and a
fixed BGP P, is in PTIME.

Proof. The proof relies on Algorithm 1 and Theorem 3.12. Recall that
the algorithm contains the epg operator, which performs grounding
based on the crucial part over the graph G. However, now since the
BGP is fixed, the size of the grounding results is therefore bounded
polynomially. Moreover, now that the completeness statements are
tixed, the finding of the crucial part can then be done in PTIME. Hence,
the overall procedure can be done in PTIME. |

This result corresponds to some practical cases when queries are as-
sumed to be of limited length? and hence, so are completeness state-
ments (which are essentially also queries).

input complexity
CcC G P
v v V| IEC
v x | 1-C
v vox NP-C
vooxooX NP-C
x v v | CoNP-C
x x v | CoNP-C
x v x| in PTIME

Table 3.1: Complexity table for the data-aware completeness entailment prob-
lem with various input fixes (X denotes ‘fixed)

Our complexity results with various input fixes can be summarized
in Table 3.1. From this complexity study, it is therefore of our interest
to study how well the problem of completeness entailment for both

as also customary in the database theory when analyzing the data complexity of query
evaluation
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the data-agnostic and data-aware cases may behave in practice. We
will later provide optimization techniques, as well as experimental
evaluations of the problem in Chapter 4.

3.3 SP-STATEMENTS

In the previous section, we have provided completeness characteriza-
tions for queries by using generic completeness statements. Yet, in
some practical cases a simpler fragment of completeness statements
might be sufficient for the task at hand. This section identifies SP-
statements, a fragment of completeness statements having several
properties that are suitable for RDF data sources with the entity-centric,
crowdsourced basis.

3.3.1 Motivation

An SP-statement Compl((s, p, ?v)) is a completeness statement with only
one triple pattern in the statement’s BGP, where the subject and the
predicate are IRIs, and the object is a variable. In our motivating
scenario (see Section 3.1), all the completeness statements are in fact
SP-statements. The statements possess the following properties, which
make them suitable for practical use:

e Having a simple structure, completeness statements within this
fragment are easy to create and to be read. Thus, they are suitable
for crowdsourced KBs, where humans are involved.

e An SP-statement denotes the completeness of all the property
values of the entity which is the subject of the statement. This
fits entity-centric KBs like Wikidata, where data is organized ac-
cording to entities (i.e., each entity has its own data page).

e Despite their simplicity, SP-statements can be used to guarantee
the completeness of more complex queries such as queries whose
length is greater than one (as illustrated by our motivating sce-
nario).

3.3.2 SP-Indexing

We describe here how to optimize data-aware completeness entail-
ment check with SP-statements. Recall our generic algorithm to check
completeness entailment:

In the cruc operator within the epg operator (Line 5 of Algorithm 1),
we have to compute Tc(P U G), that is, evaluate all CONSTRUCT queries
of the completeness statements in C over the graph PU G. This may
be problematic if there are a large number of completeness statements
in C. Thus, we want to avoid such costly T¢ applications. Given
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that completeness statements are SP-statements, we may instead look
for the statements having the same subject and predicate of the triple
patterns in the BGP. The crucial part of the BGP P wrt. C and G are
the triple patterns for which there is an SP-statement with a matching
subject and predicate.

Proposition 3.21. Given a BGP P, a graph G, and a set C of SP-statements,
itis the case that cruccc(P) = { (s,p,0) € P | there exists a statement
Compl({ (s,p,?v)}) € C}.

From the above proposition, to get the crucial part, we only have to
find an SP-statement with the same subject and predicate for each triple
pattern of the BGP, and thus, the graph G does not play any role. In
practice, we can facilitate this search via a standard hashmap, provid-
ing constant-time performance, also for other basic operations such as
add and delete. The hashmap provides a mapping from the concate-
nation of the subject and the predicate of a statement to the statement
itself. To illustrate, the hashmap of the completeness statements in
our motivating scenario is as follows: {a99-crew +— Cy,tony-child —
Cy, ted-child — Cs }.

Complexity-wise, it is the case that when completeness statements
are only of 1 triple pattern (i.e., a close generalization of SP-statements),
the problem of data-aware completeness entailment is CoNP-complete.
This is in contrast to the complexity for general cases, which is IT-
complete (as in Proposition 3.14).

Proposition 3.22. Deciding whether the entailment C,G |= Compl(P)
holds, given a set C of completeness statements of length 1, a graph G, and a
BGP P, is CoONP-complete.

Proof. The Co-NP membership proof is as follows. It is the case that
C, G [= Compl(P) iff there exists a graph G’ containing G where:

e (G,G)EC,and
e (G,G’) f= Compl(P).

We guess a mapping u over P such that uP ¢ G, implying that (G, GU
uP) = Compl(P). Then, we check (G,GU uP) = C, which can now
be done in PTIME since completeness statements are of length 1. If it

holds, then C, G [= Compl(P) by the counterexample G’ = G U uP.
The hardness proof is by reduction from the problem of graph 3-
incolorability. We refer to the CoNP hardness proof of Proposition 3.19,

in which the only completeness statement used is also of length 1.
O

3.3.3 Experimental Evaluation

Now that we have an indexing technique for SP-statements, we want
to investigate the performance of completeness checking using such
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statements. To do so, we perform an experimental evaluation with a
realistic scenario, where we compare the runtime of completeness en-
tailment when query completeness can be guaranteed (i.e., the success
case), completeness entailment when query completeness cannot be
guaranteed (i.e., the failure case), and query evaluation.

EXPERIMENTAL sETUP.  Our reasoning algorithm and indexing mod-
ules were implemented in Java using the Apache Jena library.®> We
used Jena-TDB as the triple store of our experiment. The SP-indexing
was implemented using the standard Java hashmap, where the keys are
strings constructed from the concatenation of the subject and predicate
of completeness statements, and the values are Java objects represent-
ing completeness statements. All experiments were done on a standard
laptop with a 2.4 GHz Intel Core i5 and 8 GB of memory.

There were three ingredients for the experiment: a graph, com-
pleteness statements, and queries. For the graph, we used the direct-
statement fragment of the Wikidata graph, which does not include
qualifiers nor references (that is, only property-value pairs of entities)
and consists of 100 mio triples.* For the queries and completeness
statements, we want to have a variety in the selectivity. Therefore, we
chose the following query templates (or pattern queries) over Wikidata,
which later will be used to generate the queries and statements:

1. Give all mothers (= P25) of mothers of mothers.
Py ={(?v,P25,?w), (?w, P25,?x), (?x,P25,?y) }

2. Give the crew (=P1029) of a thing, the astronaut missions (= P450)
of each such crew, and the operator (= P137) of the missions.

P, = {(?0,P1029,?w), (2w, P450,?x), (?x, P137,%y) }

3. Give the administrative divisions (= P150) of a thing, the admin-
istrative divisions of those divisions, and their area (= P2046).

Ps = {(?0, P150,?w), (2w, P150, ?x), (?x, P2046, ?y) }

Let us describe how we generate the queries and completeness state-
ments. To generate queries, we simply evaluated each pattern query
over the graph, and instantiated the variable ?v of each pattern query
with the corresponding mappings from the evaluation. We recorded
5,200 queries instantiated from Py, 57 queries from P, and 475 queries
from P3. Each pattern query had a different average number of query
results: the instantiations of P; gave 1 result, those of P, gave 4 results,
and those of P3 gave 108 results on average. So, we had a variety of
query selectivity.

To generate completeness statements, from each generated query,
we iteratively evaluated each triple pattern from left to right, and con-
structed SP-statements from the instantiated subject and the predicate

3 https://jena.apache.org/
4 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20151130/
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of the triple patterns. This way, we guaranteed that all the queries
can be answered completely. We generated in total around 1.7 mio
statements, with 30,072 statements for Py, 484 statements for P,, and
1,682,263 statements for P3. Such a large number of completeness
statements would make completeness checks without indexing very
slow: Performing just a single application of the T¢ operator with all
these statements, which occurs inside the cruc operator of the algo-
rithm took around 20 minutes without SP-indexing. Note that in a
completeness check, there might be many T¢ applications.

Now we describe how to observe the behavior when queries cannot
be guaranteed to be complete, that is, the failure case. In this case,
we dropped randomly 20% of the completeness statements for each
pattern query. To make up the statements we dropped, we added
dummy statements with the number equal to the number of dropped
statements. This way, we ensured the same number of completeness
statements for both the success and failure case.

For each query pattern, we measured the runtime of completeness
checking for both the success case and the failure case, and then query
evaluation for the success case.” We took 40 sample queries for each
pattern query, repeated each run 10 times, and reported the median of
these runs.

Runtime in us
—_
o
[6%)

102

1 2 3
Pattern Query

Success Case I Failure CaselQuery Evaluation

Figure 3.1: Experiment Results of Completeness Entailment

EXPERIMENTAL RESULTS. The experimental results are shown in
Figure 3.1. Note that the runtime is in log scale. We can see that in
all cases, the runtime increases with the first pattern query having the
lowest runtime, and the third pattern query having the highest runtime.
This is likely due to the increased number of query results. We observe
that in all pattern queries, the completeness check when queries are
guaranteed to be complete is slower than when completeness cannot
be guaranteed. We suspect that this is because in the former case,
variable instantiations have to be performed much more often than in

We did not measure query evaluation time for failure case since query evaluation is
independent of the completeness of the query.
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the latter case (that is, it has to generate all possible instantiations). In
the latter case, as soon as we find a saturated BGP not contained in the
graph, we stop the loop in the algorithm and return false, meaning
that the query completeness cannot be guaranteed. For queries with
large results, such a termination might be done much earlier than
when the queries are complete. This possibly explains the increasing
runtime gap between the success case and failure case in the figure.

In absolute scale, the completeness check runs relatively fast, with
796 us for Py, 5,264 us for P», and 35,130 us for P3 in success case; and
485 us for Py, 903 us for Py, and 1,209 us for P3 in failure case. Note
that as mentioned before, completeness checking without indexing is
not feasible at all here, as there are a large number of completeness
statements, making the T¢ application very slow (i.e., 20 minutes for a
single application). For all pattern queries, however, query evaluation
runs faster than completeness checking. This is because completeness
checking may involve several query evaluations during the instantia-
tion process with the epg operator.

To conclude, we have observed that completeness checking with
a large number of SP-statements can be done reasonably fast, even
for large datasets, by employing indexing. Also, we observe a clear
positive correlation between the number of query results and the run-
time of completeness checking. Last, performing a completeness check
when a query is complete is slower than that when a query cannot be
guaranteed to be complete.

34 NO-VALUE STATEMENTS

In this section, we focus on the problem of non-existent information:
stating that some parts of data do not exist in the real world. Non-
existent information is related to data completeness in the following
way: if we know that some parts of data do not exist, then any data
source is trivially complete for those parts. We introduce no-value
statements, a fragment of completeness statements that is suited to
expressing the non-existence of information in RDF. With no-value
statements, the problem of checking query completeness (i.e., query
answers are complete?) is now shifted to the problem of checking
query emptiness (i.e., query answer is truly empty?). We first motivate
no-value statements, then provide a formal characterization of query
emptiness entailment with no-value statements, and describe how one
can concretely represent no-value statements in RDF.

3.4.1 Motivation

RDF is mainly used to express positive information. However, rep-
resenting negative information is often of interest in practice. For in-
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stance, Wikidata [111] has the following information about Elizabeth I
not having any children.®

WIKIDATA

Elizabeth I of England 720

Queen regnant of England and Ireland from 17 Nover
The Virgin Queen | Gloriana | Good Queen Bess | El

Statements

2 no value
Main page | S 2

Community portal

- 0 references

Figure 3.2: No-value information on Wikidata

In the above figure, Wikidata explicitly states that Elizabeth I had
no children since the property child has “no value”.” This is dif-
ferent than not recording anything at all which would imply pos-
sibly incomplete information for the children of Elizabeth I. To ex-
press this in RDF, one may be tempted to assign a special datatype
constant noValue to represent the no-value information of the chil-
dren of Elizabeth I, creating the triple (elizabethl, child, noValue). How-
ever, this creates a problem since executing the SPARQL ASK query
Q = (1}, {(elizabethl, child, ?y)}) asking if Elizabeth I has a child, would
give the answer ‘yes’. Indeed, due to no formal definition, it is not
clear how to properly use noValue.

The notion of no-value information was first introduced in relational
databases [3]. There, the term ‘null value” was used, which may have
different meanings: there exists no value (i.e., non-existence); there
exists a value but it is unknown; or it is unknown whether a value
exists. For the second case, we can leverage RDF blank nodes, whereas
for the third case, the open-world assumption (OWA) of RDF simply
permits it. However, RDF cannot represent the first case, which is the
one of no-value nulls, while in fact this no-value information is useful
to distinguish this case from incomplete information. Furthermore, by
having no-value information, an empty query answer can have two
different meanings: it may be empty because of possibly incomplete
information, or it may be truly empty because such information does
not exist in the real world. From the practical side, Wikidata itself
contains in total about 19,000 pieces of no-value information over 269
properties.® Given such amount, it is therefore potentially beneficial
(e.g., for checking SPARQL query emptiness) if no-value information
can be formalized and represented in RDF in a standardized way:.

6 https://www.wikidata.org/wiki/Q7207

7 For further information about no values on Wikidata, refer tohttps://www.wikidata.

org/wiki/Wikidata:Glossary.
8 as per Feb 18, 2017
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3.4.2 Formalization

Let us formalize no-value information. We first define no-value state-
ments to capture which information is non-existent. Such statements
denote that a particular concept cannot exist wrt. the real world.

Definition 3.23 (No-Value Statement). A no-value statement N is de-
fined as No(P) where P is a BGP. To N, we associate the CONSTRUCT

query Qn = (P, P).

We use BGPs to have a flexibility to represent complex no-values which
need more than one triple pattern. For example, one can state that
“Elizabeth I has no child” with N,; = No((elizabethl, child, ?c) ), whereas
“Obama hasno son” with Ny, = No((obama, child, ?c), (?c, gender, male)).

Now, we want to give the semantics of no-value statements. As be-
fore, we use an extension pair to model the OWA of RDF graphs. Hav-
ing no-value statements restricts the possibilities of extension pairs
since they must not contain any instantiation of the information de-
noted by the statements. Over a graph G, we define the transfer op-
erator Ty (G) = Unen[Qnlc. We define the semantics of no-value
statements as follows.

Definition 3.24 (Satisfaction of No-Value Statements). An extension
pair (G, G’) satisfies a set N of no-value statements, writtenas (G, G’) =
N, if and only if Ty/(G") = 0.

Note that since G € G’ holds by the definition of an extension pair,
Tn(G') = 0 implies Ty (G) = 0. Next, we define the emptiness of a
query over an extension pair.

Definition 3.25 (Query Emptiness). Let (G,G’) be an extension pair
and Q a query. To express that Q is empty, we write Empty(Q). Itis the
case that (G, G’) = Empty(Q) if and only if [Qlc = 0.

Query emptiness over one extension pair does not mean that it
always holds also over other extension pairs. For this reason, we
define the query emptiness entailment: that N' = Empty(Q) holds, if
for any extension pair (G,G’) = N, we have that (G, G’) = Empty(Q).
If the entailment holds, we can guarantee that the query will always
return an empty answer no matter which possible extensions of a
graph are considered. The next theorem characterizes query emptiness
entailment: whenever there is some part of the query that cannot return
any answer due to no-value information, then the whole query does
not return any answer. Via this theorem, we are able to distinguish
between empty query answers from possibly incomplete information,
and empty query answers from non-existent information.

Theorem 3.26 (Query Emptiness Entailment). Let N be a set of no-value
statements, Q be a query, and P be the prototypical graph of Q. It is the case
that N = Empty(Q) if and only if T (P) # 0.
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Proof. (=) We will prove by contrapositive. Assume Ty/(P) = 0. We
will show that N = Empty(Q). Take the extension pair (0, P). By the
assumption, it is the case that (0, P) = N. However, we have that
(0,P) = Empty(Q) since [Q]lp is not empty by the definition of the
prototypical graph P.
(<) Assume Ty (P) # 0. Take any extension pair (G,G’) such that
(G,G") = N. We will show that (G,G’) = Empty(Q). It is sufficient
to show that [Q]lg = 0. There must be a no-value statement N € N
for a witness of our assumption that Ty/(P) # 0. Thus, we have that
0 # [Onlp € P.

As (G,G’) = N, it must be the case that [Qn]c: = 0. Assume that
[Qllc: # 0. Thus, there must be a mapping p € [P]c. This implies

that y(P) € G'. Thus, it is the case that 0 # [[QN]]#ia—l 5 S yz’?i_lp. Since

[uiZl_lp = uP € G’, we have that 0 # [Qn]lc’, which contradicts our
assumption that (G, G’) = N. Thus, [Q]lc: = 0 holds. |

The complexity of the problem of query emptiness entailment is
NP-complete, in contrast to the complexity for general cases of data-
aware completeness entailment, which is ITb-complete (as in Proposi-
tion 3.14).

Proposition 3.27. Deciding whether the entailment N = Empty(Q) holds,
given a set N of no-value statements and a query Q, is NP-complete.

Proof. The NP membership is by means of Theorem 3.26. As stated
there, it is the case that N' = Empty(Q) iff Ty/(P) # 0 where P is the
prototypical graph of Q. By definition, Ty/(P) # 0 iff there is a no-
value statement N = No(Py) in N such that [Qn] is not empty, that
is, [Qn]lp contains a mapping over var(Py), say, , such that uPy C p.
The NP entailment check can thus be done as follows: We guess such
a no-value statement N and a mapping p, and then verify in PTIME
that uPy C P.

The NP hardness is by reduction from graph 3-colorability problem,
known to be NP-hard [43]. We encode the problem graph G, = (V, E),
i.e., the directed graph we want to check whether it is 3-colorable, as
the set triples(G,) of triple patterns. We associate to each vertex v € V,
anew variable ?v. Then, we define triples(G,) as the union of all triple
patterns (?s, edge, ?0) created from each pair (s,0) € E where ?s is the
associated variable of s, edge is an IRI and ?0 is the associated variable
of 0. Let the BGP P, be:

{(r,edge,g), (r,edge,b), (g, edge,r), (g, edge, b), (b,edge, ), (b, edge, ) }
Next, we create the following no-value statement N:

No(triples(Gp) U Py )
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The following claim holds:

The problem graph Gy, is 3-colorable if and only if
{Np } ': EMPt]/(({},PCOl))

Proof of the claim: “=" When the problem graph G, is 3-colorable, we
can therefore reuse the color mapping from G, to the 3 colors, in the
mapping from the CONSTRUCT query of Np to Py, which is a witness of
Tin,)(Peo) # 0 (recall Theorem 3.26).

“<” When the problem graph G, is 3-incolorable, there is no color
mapping from G, to the 3 colors. By construction of N, it is the case

that T(n;,)(Peor) = 0, implying { N, } = Empty(({}, Peor))- m
Example 3.28. Consider the no-value statement
N,y = No((obama, child, ?c), (?c, gender, male))
as above and the query
Qsen = ({2¢, ?s}, { (obama, child, ?c), (?c, gender, male), (?c, school, ?s) })

asking for the schools of Obama’s sons. We have that Tiy,,;(Psc) # 0.
Thus, from Theorem 3.26, it holds that {N,,} = Empty(Qse). This
means that Q,, returns the empty answer because of the non-existence
of the asked information, not by the incompleteness of the data source.
In contrast, suppose the constant male in the query Q,; were the
variable ?g. If Qg returns the empty answer over the data source, that
may be due to the incompleteness of the data source.

RDF REPRESENTATION OF NO-VALUE STATEMENTS. To increase the
potential practical benefits of our no-value formalization, no-value
statements should be able to be represented in RDF. Such a repre-
sentation provides a structured and standardized way of processing
no-value statements. The representation of no-value statements fol-
lows a similar fashion as completeness statements (see Section 2.2).
Given a no-value statement

NO((S], plrol)/ cecy (Sl’l/ Pn/ On))/

we represent the statement as a resource of the class NovalStatement,
while we represent each triple pattern in the similar way as triple pat-
terns in completeness statements. The no-value vocabulary is avail-
able at http://completeness.inf.unibz.it/no-value. For instance, we
represent the no-value statement “Obama has no sons” as follows:’

ex:sonsOfObama a no:NoValStatement ;
rdfs:comment "A no-value statement of Obama having no sons."@en ;
no:hasPattern [ no:subject dbp:Barack_Obama ;
no:predicate dbo:child ;
no:object [no:varName "c"] ] ;
no:hasPattern [ no:subject [no:varName "c"] ;
no:predicate dbo:gender ;
no:object dbp:Male] .

9 Prefix declarations are provided in Appendix A.
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3.5 RELATED WORK

Data completeness concerns the breadth, depth, and scope of informa-
tion [112]. In the area of relational databases, Motro [81] and Levy [65]
were among the first to investigate data completeness. Motro de-
veloped a sound technique to check query completeness based on
database views, while Levy introduced the notion of local complete-
ness statements to denote which parts of a database are complete.
Razniewski and Nutt [96] further extended their results by reducing
completeness reasoning to containment checking, for which many al-
gorithms are known, and characterizing the complexity of reasoning
for different classes of queries. In terms of their terminology, our com-
pleteness entailment problem is one of QC-QC entailment under bag
semantics, for which so far it was only known that it is in HI; [97].
In [95], Razniewski et al. proposed completeness patterns and defined
a pattern algebra to check the completeness of queries. The work in-
corporated database instances, yet provided only a sound algorithm
for completeness check.

We now move on to the Semantic Web. Fiirber and Hepp [39] dis-
tinguished three types of completeness: ontology completeness, con-
cerning which ontology classes and properties are represented; popu-
lation completeness, referring to whether all objects of the real-world
are represented; and property completeness, measuring the missing
values of a specific property. Those three types of completeness to-
gether with the interlinking completeness, i.e., the degree to which
instances in the dataset are interlinked, are considered to be the bases
of the completeness dimension for RDF data sources [114]. Our work
considers completeness statements which are built upon BGPs, and
hence have more flexibility in expressing completeness (e.g., “com-
plete for all children of the US presidents who were born in Hawaii”).
Mendes et al. [74] proposed Sieve, a framework for expressing quality
assessment and fusion methods, where completeness is also consid-
ered. With Sieve, users can specify how to compute quality scores
and express a quality preference specifying which characteristics of
data indicate higher quality. Ermilov et al. [37] presented LODStats, a
statistics aggregation of RDF datasets published over various data por-
tals such as data.gov, publicdata.eu, and datahub.io. They discussed
several use cases that could be facilitated from such an aggregation,
including coverage analysis (e.g., most frequent properties and most
frequent namespaces of a dataset). As opposed to Sieve and LOD-
Stats, our work puts more focus on describing completeness of data
sources, and leveraging such completeness descriptions for checking
query completeness (and soundness).

Galdrraga et al. [42] proposed a rule mining system that is able
to operate under the Open-World Assumption (OWA) by simulating
negative examples using the Partial Completeness Assumption (PCA).
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The PCA assumes that if the dataset knows some r-attribute of x, then
it knows all r-attributes of x. This heuristic was also employed by
Dong et al. [36] (called Local Closed-World Assumption in their pa-
per) to develop Knowledge Vault, a Web-scale system for probabilistic
knowledge fusion. Our completeness statements, which are based on
BGPs, are in fact a generalization of the assumption used in the above
work.

3.6 SUMMARY

The availability of an enormous amount of RDF data on the Web calls
for better data quality management. Completeness is a crucial quality
aspect for RDF data, particularly due to RDF’s incomplete nature. In
this chapter, we have extended completeness reasoning to be aware
with the content of RDF data sources to which completeness state-
ments are given. We have formalized the problem of data-aware
completeness entailment and developed a sound and complete algo-
rithm to check the entailment. To increase the practical benefits of
our framework, we have identified two fragments of completeness
statements: SP-statements, suitable for entity-centric, crowdsourced
RDF data sources, and no-value statements, suitable for expressing
the non-existence of information in RDF.

In the next chapter, we show how we develop an efficient imple-
mentation of completeness reasoning, both in the data-agnostic and
data-aware settings.
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Real-world RDF data sources may contain a large amount of data,
which is then likely to correspond to a large number of statements
needed to describe the completeness of those data sources. Up to this
point, we have seen how completeness entailment is formalized and
characterized in the data-agnostic setting (see Chapter 2) and data-
aware setting (see Chapter 3). Now, the question is how in practice
we may perform completeness reasoning, in particular when there are
large sets of completeness statements. In this chapter, we develop op-
timization techniques for the data-agnostic and data-aware complete-
ness reasoning. We also conduct experimental evaluations to show
the feasibility of completeness reasoning using our optimizations. The
results of data-agnostic reasoning optimizations are under revision
for journal publication [29], whereas those of data-aware reasoning
optimizations are to be submitted in [30].

4.1 OPTIMIZING DATA-AGNOSTIC REASONING

Here we show how we develop our optimization techniques for data-
agnostic completeness reasoning. We first propose the notion of rele-
vant completeness statements wrt. a query, which is potentially useful
to reduce the number of completeness statements employed in the rea-
soning. Then, we describe and evaluate several indexing techniques
for the retrieval of relevant completeness statements. Finally, we show,
via an experimental evaluation with real query logs from DBpedia,
LinkedGeoData, and Semantic Web Dog Food, how the feasibility of
data-agnostic completeness reasoning can be improved using the rele-
vance principle.

4.1.1 Relevant Completeness Statements

Before formulating a principle to optimize data-agnostic complete-
ness reasoning, let us first estimate the complexity of the reasoning
task. Let Q = (W, P) be a query and C be a set of completeness state-
ments. According to Theorem 2.10, the task of completeness reason-
ing is to check whether Tc(P) = P, where Tc is the transfer operator
wrt. C, and P is the prototypical graph of Q. While it is immediate
to check the ‘C” direction of the equality, the interesting part is the ‘2’
direction. This corresponds to finding, for each triple (s,p,0) € D, a
completeness statement C € C such that (s,p,0) € [Qcllp (recall that
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Tc(P) = UceclQcllp)- Hence, we only find statements that potentially
match such a triple (s, p,0).

Let Q = (W, P) be a query, C be a set of completeness statements,
and maxLn(C) be the maximum length (i.e., the maximum number
of triple patterns) of statements in C. Take any C € C; to evaluate
the query Qc over P, it is necessary to (consistently) map the triple
patterns of Qc to triples in P. Note that there are at most |P|IQcl possible
ways to map triple patterns to triples, where |Qc| and |P| stand for
the number of triple patterns and triples in Qc and P, respectively.
Therefore, applying this reasoning to each statement in C, leads to the
following overall runtime:

O(lcllplmuan(C)> (5)

As customary in the database theory when analyzing the data com-
plexity of query evaluation, we are assuming Q is given while the
set of completeness statements varies. Moreover, since completeness
statements are basically also queries, we assume the maximum length
of completeness statements to be bounded by a constant. Under these
assumptions, the complexity of reasoning is a function of the size of
the set of completeness statements. Using a plain completeness reasoner,
which evaluates the CONSTRUCT queries of all completeness statements,
can potentially lead to slow performance. Thus, we need to find an ap-
proach to reduce the number of completeness statements involved in
completeness reasoning. According to Theorem 2.10, which character-
izes the data-agnostic completeness entailment, for a complete query
with n triple patterns, there is a set of no more that n completeness
statements that already entails the completeness of that query. Never-
theless, there is no obvious way to identify a priori such a set. Despite
this, in the following we establish a principle that allows us to rule out
a significant number of irrelevant statements.

CONSTANT-RELEVANCE PRINCIPLE. Let us now introduce a rele-
vance principle for completeness statements. Consider the query ask-
ing for “Movies directed by Tarantino” and the statement “All cantons
of Switzerland.” Intuitively, one can see that the statement does not
contribute to the completeness of the query; in other words, the state-
ment is irrelevant to the query.

We shall now introduce the constant-relevance principle as a way to
distinguish between irrelevant and relevant completeness statements.
The principle states that a completeness statement C can contribute
to entailing query completeness only if all constants (or terms, which
consist of IRIs and literals) of the completeness statement occur also
in the query Q, that is, const(C) C const(Q). We say that a statement
satisfying this principle is constant-relevant. The following proposition
shows that if a statement is not constant-relevant, then it does not
contribute to completeness reasoning.
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Proposition 4.1. Let C be a completeness statement and Q = (W, P) be a
query. If C is not constant-relevant wrt. Q, then [Qcllz = 0.

Proposition 4.1 opens up the problem of how to (efficiently) retrieve
constant-relevant statements. In the next subsection, we provide a
report of our investigation on retrieval techniques for constant-relevant
completeness statements.

4.1.2  Retrieval Techniques for Constant-Relevant Statements

For a set C of completeness statements, we want to know how to
retrieve as efficiently as possible those statements that are constant-
relevant wrt. a given query Q. Here, we give an overview of techniques
to retrieve such statements.

The statements in C that are constant-relevant to Q are those all of
whose constants appear in Q. We denote this set as Cg, that is,

Co ={C e C|const(C) C const(Q) }.

To compute Cp from C and Q, is an instance of the well-established
subset querying problem, which has been investigated by the database
and Al communities [52, 55, 102].

The subset querying problem itself is defined as follows: Given a
set S of sets, and a query set G, retrieve all sets in S that are contained
in §;. In our setting, S consists of the constant sets const(C) of the com-
pleteness statements C, while the query set §; consists of the constants
in Q, that is, §; = const(Q).

We study two retrieval techniques based on specialized index struc-
tures for subset querying, namely, inverted indexes and tries. The for-
mer is inspired by the approach from the database communities [52],
while the latter is from the AI communities [55, 102]. Those ap-
proaches were empirically shown to be efficient for their respective
subset-querying-based problems. Additionally, we develop a baseline
technique using standard hashing. In Subsection 4.1.3, we present ex-
perimental evaluations comparing the retrieval time and scalability of
the three techniques.

RUNNING EXAMPLE.  Throughout the description below, we will pro-
vide examples referring to a set C = {Cy, Cy, C3, C4} of completeness
statements with

e const(Cy) = {a,b},
e const(Cp) ={a,b,c},
e const(C3) = {a,b,c},

e const(Cy) = {d},
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and a query Q with const(Q) = {a,b}. Itis the case that Co = {C; }, as
C; is the only statement in C all of whose constants are contained in

const(Q).

We now describe how these retrieval techniques work and how
we implemented them for our experiments. The implementation
language was Java. We represent completeness statements using a
class CompletenessStatement, while constants are simply represented
by standard Java strings.

Standard Hashing-based Retrieval

In this baseline approach, we translate the problem of subset querying
into one of evaluating exponentially many set equality queries. Hash-
ing supports equality queries by performing retrieval of objects based
on keys. We store completeness statements according to their constant
sets using a hash map. For each of the 2/°"(Q)l — 1 non-empty subsets
of const(Q), we generate a set equality query using the hash map to
retrieve the statements with exactly those constants. In our example,
the non-empty subsets of const(Q) are {a}, {b}, and {a, b}. Querying for
both {a} and {b} returns the empty set, while querying for {a, b} returns
the set {C}. Taking the union of these three results gives us {C;} as the
final result.

IMPLEMENTATION. Toindex the statements, we use a standard Java
HashMap. To each statement, we associate a key that uniquely repre-
sents the set of its constants. We do that by creating a lexicographically
ordered sequence of the constants in the statement. We use the stan-
dard Java List to represent sequences and the sort method of the Java
Collections class for sorting. Then, for such a key, the value in the hash
map is the set of all statements having exactly the constants mentioned
in the key. To compute Cp, we generate all sequences corresponding
to the nonempty subsets of const(Q), retrieve the values to which they
are mapped using the get method of the HashMap, and take the union
of the values.

Inverted Indexing-based Retrieval

Inverted indexes have been originally developed by the information
retrieval community for search engine applications [116]. In the in-
formation retrieval domain, an inverted index is a data structure that
maps a word to the set of documents containing that word. Inverted
indexes are typically used for finding documents containing all words
in a search query, that is, for superset querying.

In database applications, inverted indexes are also used for subset
querying. In object-oriented databases, objects may have set-valued
attributes. Given an attribute and a query set, one may want to find all
the objects whose set of attribute values is contained in the query set.
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Helmer and Moerkotte [52] compared indexing techniques for an effi-
cient evaluation of set operation queries (i.e., subset, superset and set
equality) involving low-cardinality set-valued attributes. The index-
ing techniques they considered were inverted indexes and three other
techniques that are signature-based (i.e., sequential signature files, sig-
nature trees, and extendible signature hashing). There, an inverted
index maps each value to the objects whose set-valued attribute con-
tains that value. Their experimental evaluations showed that in terms
of retrieval costs, inverted indexes overall performed best.

FORMALIZATION. Now we show how we develop our retrieval
technique based on inverted indexes, adapted from [52]. For a set
C of completeness statements, we let P = (Jccc const(C) be the set
of all constants in C. We define the map M: P — 2€ such that
M(p) = {C € C | p € const(C)} for every constant p € P. In other
words, M maps each constant occurring in C to the set of complete-
ness statements in C containing that constant. We call such a map an
inverted index. The inverted index M of our example is shown below.

Constants Completeness Statements

a Cl, Cz, C3
b C1,Cy,Cs
c Cz, C3

d Cy

We now want to retrieve constant-relevant statements using inverted
indexes. As a first attempt, for a query Q and the inverted index
M of a set C of completeness statements, we consider the set union
Upeconst(o) M(p) of the mappings of the constants occurring in the query.
In our example, this is the set { C1, Cy, C3 }. However, though the result-
ing set is smaller than the original set C, it is still bigger than C, since
it contains statements that are not constant-relevant (i.e., C, and Cj3).

Now, instead of the set union, let us consider bag union. For a
start, assume that M(p) is now a bag that contains as many copies
of a statement C as there are occurrences of the constant p in C. In
our running example, each M(p) still contains at most one copy of a
statement. Next, we take

Bo= |4 M),

peconst(Q)

which is the bag of all statements that have at least one constant in Q,
and where a statement occurs as many times as it has occurrences
of constants appearing in the query Q. With respect to our example,
Bo = M(a) W M(b) = {Cy,Cy,Cy,Co,C3,C3 ). Let us analyze which
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statements are constant-relevant. The statement C; occurs twice in By
and has length 2, hence, all its constants appear in the query Q. How-
ever, the statements C, and Cz both have length 3, but occur only twice
in Bg. This means that they have other constants that do not appear
in the query Q and thus, they are not constant-relevant. Therefore, we
conclude that Co = {Cy }.

We can generalize our example to arrive at a characterization of the
set Cg. The example shows that we need to count the occurrences of
completeness statements in Bo. We denote the count of a statement C
in Bg by #c(Bg). As seen from the example, those statements whose
number of occurrences is the same as the number of constants are the
constant-relevant ones. In this case, for a statement C, we take the bag
version of const(C). Then, Cg satisfies the equation

Cq = (C € B | #c(Bg) = leonst(C)] .

IMPLEMENTATION. We observe from the formalization that the cru-
cial operations for the retrieval technique using inverted indexes are
bag union and count. We chose the Google Guava library1 as it pro-
vides a bag implementation in Java with the class HashMultiset, which
includes as methods the bag union and count. To implement the in-
verted index, we use the Java HashMap. The index maps each constant p
to the HashMultiset representing the bag of completeness statements
containing that constant (i.e., M(p)). As shown in the formalization
above, toretrieve By, we perform a bag union, using the addA11 method
of the HashMultiset, of the map values of the constants in Q. Then, to
retrieve the set Cg of constant-relevant statements, we count the num-
ber of occurrences of the statements in By using the count method of
the HashMultiset and check if the count is the same as the size of the
statement.

Trie-based Retrieval

A trie, or a prefix tree, is an ordered tree for storing sequences, whose
nodes are shared between sequences with common prefixes. Tries
have been adopted for set-containment queries in the AI community
by Hoffmann and Koehler [55] and Savnik [102]. Both studies showed
by means of empirical evaluations that tries can be used to efficiently
index sets, and perform subset and superset queries upon those sets.
Set operations are essential in Al applications, including the match-
ing of a large number of production rules and the identification of
inconsistent subgoals during planning.

FORMALIZATION. We show how to adapt tries as in [55, 102] to our
setting. The sequences we consider are sequences of constants that are
ordered lexicographically. For a set C of statements, we define Sc as

1 https://github.com/google/guava
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the set containing for each statement in C the corresponding sequence
of constants. The trie Tc over the set Sc of sequences is the tree whose
nodes are the prefixes of S¢, denoted as Pref (Sc), where each node
§ € Pref(Sc) has a child 5-p iff - p € Pref(Sc), where p is a constant.
On top of this trie, we define M: Pref (Sc) — 2€ as the mapping that
maps each prefix to the set of statements whose constants are exactly
those in the prefix.

In our example, we have that S¢ = {(a,b), (a,b,¢),(d)} and M =
{(a,b) » {C1},(a,b,c) » {Cy,C3},(d) = {Ca}}. Forsimplicity, we left
out mappings with the empty value in M. A graphical representation
of the trie T¢ is shown below, which also shows the map value of each
node wrt. M.

9
/\
(a) (d):{Cq}
|

(a,b):{C1}

(a/ b/ C) : { CZ/ C3 }

Having built a trie from completeness statements, we now want to
retrieve the constant-relevant statements wrt. a query. Let us do that
for our example. Consider the trie T¢ as above. As const(Q) = {a, b},
the sequence of const(Q) is therefore 55 = (a,b). The key idea behind
our retrieval is that we visit nodes that are subsequences of the query
sequence and collect the map values of the visited nodes wrt. M. We
start at the root of T¢ with the query sequence (a,b) and an empty set of
constant-relevant statements. The root node is trivially a subsequence
of 55 and the mapping of the root obviously returns the empty set.
Thus, our set of constant-relevant statements is still empty.

At this position, we have two options. The firstis to retrieve from T¢
all the subsequences containing the head of the current query sequence,
thatis, the constanta. By the trie structure, all such subsequences reside
in the subtree of T¢ rooted at the concatenation of the root of the current
trie and the head of the current query sequence. We then proceed down
that subtree. To proceed down, the head of the query sequence has
to be removed. Therefore, our current query sequence is now (b). As
the map value of the root (a) of the current trie is empty, we still have
an empty set of constant-relevant statements. From this position, we
try to visit the subsequences in Tc¢ that not only contain a, but also
one additional constant from the current query sequence. Therefore,
we continue proceeding down the subtree rooted at (a,b), which is the
concatenation of the root of the current trie and the head of the current
query sequence. From the mapping result of the root (a,b), the set
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of constant-relevant statements is now { C; }. Since our current query
sequence is now the empty sequence, we do not proceed further.

Now, let us pursue the second option. We stay at the position at
the root of Tc, while simplifying 55 by removing the head of the
query sequence, making it now (b). In this case, we want to visit all
the subsequences in the trie T¢ that do not contain the constant g, if
they exist. Now, we try to proceed down the subtree rooted at the
concatenation of the root of the current trie and the head of the current
query sequence. This means we have to proceed down the subtree
rooted at (b). Since it does not exist, we stay with the current trie and
remove again the head of the query sequence. As the query sequence
is now the empty sequence, we do not go further and finish our whole
tree traversal. As a final result, we have our set of constant-relevant
statements which contains only Cj.

From our example, we now formalize the retrieval of constant-
relevant statements using tries. We can decompose a non-empty se-
quence 5 = (py,...,pn) into the head p; and the tail (p,...,pn). For
a sequence 5 and a trie T, we define T /35 as the subtree in T rooted at
the node 5. Note that T/5 is the empty tree L if such a subtree does
not exist. We define cov(5o, Tc) as the set of completeness statements
in C whose sequences of their constants are subsequences of 55, which
are not necessarily contiguous. It follows from this definition that
cov(50, Tc) = Cgp. Given a subsequence 5 = p -5 of 5o and a sub-
tree T of Tc, we observe that the function cov satisfies the following
recurrence property:

0 ifT=1
cov(3,T) = M(root(T)) if 5= ()
M(root(T)) U cou(5’,T/(root(T) - p)) U otherwise.
cov(s’,T)

The recurrence property has two base cases: when the trie is empty,
then simply the empty set is returned; and when there is no element
left in the sequence 5 (i.e., the trie traversal stops), the cov function
returns the set of completeness statements associated with the se-
quence root(T). Now for the recursive case, there are three components
involved. The first one is simply returning the set of completeness
statements associated with roof(T). The second and third ones corre-
spond to how the trie is traversed: both make the cov calls with the
tail 5’ of 5 as the call’s sequence, but the second case is over the subtree
T/ (ro0t(T) - p) while the third one is over the same trie T.

Note that in the above property, as also observed in [55], the function
cov performs pruning: when a subtree in the call cov(s, T/ (ro0t(T) - p))
does not exist, we cut out all the recursion call possibilities if the
subtree existed. Let us give an illustration. For a query sequence
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50 = (p1,...,pn) of length n, there are at most 2" possible subsequences.
However, half of them (those containing p1) lie in the tree rooted at
the node (p1). If there is no node (p;), the size of the search space is
immediately reduced to 2"~

IMPLEMENTATION.  We represent sequences of constants in Pref (Sc)
using the Java List<String> class. For implementing the trie Tc, we
create a class Trie. For the trie nodes, we create TrieNode objects labeled
with sequences of constants. A TrieNode has a hash map that maps the
sequences of constants of the TrieNode’s children to the corresponding
TrieNode objects. Initially, a Trie has a TrieNode object as its root with
an empty sequence as the label. For every insertion of a sequence
of the constants of a completeness statement, we recursively generate
children of TrieNode objects starting from the root to the leaf node with
that sequence as the label. This generates a path of TrieNode objects
labeled with the prefixes of that sequence. TrieNode objects are shared
between sequences with the same prefixes. To implement the map M
for the trie, a Java HashMap similar to the one in the implementation of
the standard hashing technique is created.

For the retrieval, we implemented a recursive method based on
the recurrence property of the cov function. In the method, for each
visited node, we use the HashMap of M to map the label of the node
to its corresponding set of completeness statements. All the mapping
results are collected in a standard Java set which at the end of the
method call will be our set C of constant-relevant statements.

4.1.3 Experimental Evaluation of the Retrieval Techniques

We have discussed the constant-relevance principle as a means to
prune the set of completeness statements. We have also introduced
three retrieval techniques of constant-relevant statements, based on
standard hashmaps, inverted indexes, and tries as the underlying in-
dex structures. We now report on experiments that comparatively
evaluated those three techniques. More specifically, the experiments
aim to analyze: the runtime and scalability of the retrieval techniques
according to various parameters that contribute to the overall runtime
of completeness reasoning, as analyzed in Eq. (5) (i.e., number of com-
pleteness statements, length of completeness statements, and length
of queries); and the cost of completeness reasoning without vs. with
the optimization technique.

Experimental Setup

We created a framework for the experiments consisting of two com-
ponents: a completeness reasoner and a generator of statements and
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queries. We implemented the framework in Java using the Jena li-
brary.”

The completeness reasoner includes implementations of the three
retrieval techniques as described before and supports reasoning opti-
mizations based on the constant-relevance (that is, instead of consid-
ering all statements in C, the optimized technique considers only the
statements in Cp).

To gain flexibility in setting the experiment parameters, we ran-
domly generate queries and sets of completeness statements. In our
experiment, we would expect that the bigger a data source, the more
completeness statements are declared over that source. We want to
consider also the sensitivity of each retrieval technique to the length
of the completeness statements and the query. Thus, we choose the
following experiment parameters:

e number of completeness statements (N,),
e maximum length of completeness statements (L.), and
e length of queries (L;).

To evaluate the retrieval techniques, we want to observe the influ-
ence of each parameter on the retrieval time. Thus, we set up three
scenarios, where in each we keep two of the parameters fixed and vary
the remaining one. As our reference for setting the default values for
the parameters, we take DBpedia [10], one of the most popular and
largest RDF data sources, as an approximation of the realistic param-
eter values. From English Wikipedia, DBpedia extracted around 580
million RDF triples.? If we assume that  of the triples are captured by
completeness statements, and that each statement covers 100 triples,
then DBpedia would have 1,160,000 completeness statements. There-
fore, we set the default value N. = 1,000,000. The length of queries is
chosen based on the statistics of SPARQL queries over DBpedia. Arias
et al. [8] found that 97% of DBpedia queries are of length less than
or equal to 3. Therefore, we choose 3 as the default length for short
queries. On the other hand, 99.9% of queries over DBpedia had length
less than or equal to 6, so a length of 6 stands for relatively long queries.
So, there are two default values for query length: L; = 3 for the short
ones, and L, =6 for the long ones. As for the default value of L., we
set it to 6, to have a variation of completeness statement length from 1
to 6, which covers the query length.

The experiments were run on a standard laptop under Windows 8
with Intel Core i5 2.5 GHz processor and 8 GB RAM. For each combi-
nation of parameter values, we ran the experiment 20 times to obtain
reliable results (i.e., low variance if we performed the experiments
again), and took the median of the runtimes.

2 http://jena.apache.org/
3 http://lists.w3.org/Archives/Public/public-1lod/2014Sep/0028.html
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RANDOM GENERATION OF STATEMENTS AND QUERIES. The state-
ments and queries for the experiments have been generated randomly
with a uniform distribution of the IRIs for constants. Again, we take
DBpedia as our reference. DBpedia has about 2,700 properties and
4.5 million entities, We approximate the number of constant IRIs in
the predicate position from the number of properties of DBpedia, that
is, 2,500, and the number of constant IRIs in the subject or object posi-
tion from about % of the number of DBpedia entities, that is, 1,000,000.
The generated statements were of the form Compl(P), while the gen-
erated queries were of the form (var(P),P), that is, all variables in
the body were distinguished. Generating the statements and queries
is essentially generating triple patterns, which serve as their building
blocks.

The triple patterns of a statement are generated as follows. First, we
pick a random length between 1 and L.. Then we randomly choose
the predicates of the triple patterns, where repetitions are allowed.
Next, for this collection of predicates, we generate fully-formed triple
patterns. To do that, we instantiate the subjects and objects of triple
patterns, by constants or variables. For the instantiation by constants,
we randomly take IRIs, and the constants can be reused across triple
patterns. We do not limit the possibility to introduce new variables,
but again variables can be reused among triple patterns. We generate
variables in such a way that there is no cross-product join between
triple patterns of the statement, that is, the triple patterns with vari-
ables form one connected component. Together, the generated triple
patterns become the pattern P for that statement. We repeat this pro-
cess until there are N, randomly generated statements. We generate
triple patterns for the query of length L, in the similar way.

Results and Discussion

We now show the experimental results comparing the retrieval time of
the three techniques. In each scenario, we vary one of these parameters:
number of statements, maximum length of completeness statements,
and query length. Moreover, we also compare the runtime of com-
pleteness reasoning with vs. without the constant-relevance principle.

INFLUENCE OF THE NUMBER OF COMPLETENESS STATEMENTS. In
this scenario, we vary the parameter N, within the range of 100,000 -
1,000,000. Figure 4.1 shows the resulting retrieval times. The left figure
is for short queries and the right figure for long ones. The y-axis is in
log-scale. As can be clearly seen, inverted indexing is generally slower
and less scalable than the other techniques. It is on average 53x slower
than tries for short queries and 3x slower than standard hashing for
long queries. The performance comparison of standard hashing and
tries, however, depends on the length of the queries. For short queries,
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standard hashing is slightly faster. For long queries, the tries technique
is faster.

One possible reason why inverted indexing is slow is that at an inter-
mediate step it has to process all statements whose constants overlap
with the constants of the query. Hence, with inverted indexing the
probability for a completeness statement to be processed in the re-
trieval is much larger than for other retrieval techniques. The other
techniques only process statements whose constants are clearly con-
tained in the query constants. For long queries, the tries perform
better than the standard hashing. This is likely due to the subsequence
pruning of tries as described in Subsection 4.1.2.
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Figure 4.1: Increasing the number of completeness statements for short (left)
and long queries (right)

INFLUENCE OF THE LENGTH OF COMPLETENESS STATEMENTS. In
this scenario, we vary the maximum length L, of completeness state-
ments from 1 to 6. Figure 4.2 shows the resulting retrieval times.
Interestingly, the retrieval time for inverted indexing increases, while
the time for tries even decreases. Basically, the retrieval time for stan-
dard hashing remains constant, though showing a little oscillation with
no clear pattern. We notice that for short queries, standard hashing
performs best, whereas for long queries, tries perform best. Again, in-
verted indexing performs the worst among all the retrieval techniques.

These graphs demonstrate the fundamental difference between the
inverted indexes and the tries. In the inverted indexes, a completeness
statement with just a single constant overlapping with the query is
included in the bag union, to be checked if the statement’s occurrences
in the union are the same as its length. Thus, the longer the complete-
ness statement, the more probable it is for the statement to be included
in the bag union. This does not happen with the trie-based technique
as it only processes statements all of whose constants are contained
in the query. When a statement becomes longer, the probability of
the statement to be processed by the tries technique decreases. That
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the growth is nearly constant for standard hashing, is likely due to
evaluating always the same set equality queries.
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Figure 4.2: Increasing maximum length of completeness statements for short
(left) and long queries (right)

INFLUENCE OF THE QUERY LENGTH. In this scenario, we vary the
query length L; from 1 to 6. Figure 4.3 shows the results of this experi-
ment. From the graph, we can see that for all techniques, the retrieval
time increases with the query length, though at different rates. For
standard hashing, it grows exponentially, whereas for the other tech-
niques, it only grows linearly.* In the beginning, the standard hashing
technique performs better than the tries one. However, from L, = 4
the standard hashing technique starts to perform worse. At L; = 6,
standard hashing is about 14X slower than tries. We observe a simi-
larity between the asymptotic growth of inverted indexing and tries,
though on an absolute scale the tries technique clearly performs better.

As expected, standard hashing does not perform well for long
queries due to its exponentially many set equality queries. The tries
technique, though potentially having exponential growth in the worst
case, performs better than standard hashing. This is most likely due
to its pruning ability over subsequences of query constants.

REASONING WITH THE CONSTANT-RELEVANT FILTERING. This sce-
nario differs from the above in that now we compare the cost of com-
pleteness reasoning without and with the optimization technique. We
show that applying the constant-relevance principle can considerably
reduce the overhead incurred by completeness reasoning.

To measure this overhead, we perform experiments that compare
the runtimes of plain completeness reasoning and of reasoning based
on constant-relevance. For the reasoning based on constant-relevance,
we use the standard hashing retrieval technique as it shows relatively
good performance in our previous experiments. All the parameter

4 Note that the graph is displayed in log-scale on y-axis.
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Figure 4.3: Increasing the query length

values are the default ones: N, = 1,000,000, and L. = 6, while we still
distinguish between short queries (L, = 3) and long queries (L; = 6).
In the experiments we measure the reasoning time for plain complete-
ness reasoning and the reasoning plus the retrieval time for the com-
pleteness reasoning based on constant-relevance.

Table 4.1: Comparison of the runtime median for plain completeness reason-
ing and constant-relevance based (optimized) reasoning

Query Types Plain Reasoning Optimized Reasoning

Short 145,773 ms 1.3 ms
Long 146,095 ms 4.1 ms

Now we discuss the experimental results. Table 4.1 lists the median
of runtimes of plain completeness reasoning and constant-relevance
based completeness reasoning. We note that completeness reasoning
based on constant-relevance is considerably faster than the plain one
(i.e., milliseconds vs. minutes, respectively).

Completeness reasoning with the constant-relevance principle is
fast, with runtimes between 110,000 times (for short queries) and 35,000
times (for long queries) faster than that without constant-relevance.
This is due to the fact that much fewer completeness statements are
considered for the reasoning using the constant-relevance principle.
For short queries, there are on average about 49 constant-relevant
completeness statements, whereas for long queries, there are on aver-
age about 105 constant-relevant statements. On the other hand, the
original set contains 1 million completeness statements.

CONCLUSIONS OF THE EXPERIMENTS. From the experiments we
conclude that for short queries, our baseline approach, the standard



4.1 OPTIMIZING DATA-AGNOSTIC REASONING

hashing, shows the best performance despite its simplicity. However,
for long queries, the tries technique performs better. The baseline
approach suffers from its exponential blow up for long queries. The
inverted indexes are not suitable for the retrieval task for both short
and long queries. Moreover, on an absolute scale, the retrieval time of
the retrieval techniques only takes up to about a few milliseconds. This
shows that the retrieval process does not add a significant overhead to
completeness reasoning. Also, we have seen that using the constant-
relevance principle can considerably speed up completeness reasoning,
as demonstrated in Table 4.1.

4.1.4 Experimental Evaluation of Data-agnostic Reasoning

In this subsection, we aim to investigate the performance of complete-
ness reasoning for realistic cases based on several RDF data sources:
DBpedia (DBP), Semantic Web Dog Food (SWDF), and Linked Geo
Data (LGD). Our investigation in finding a retrieval technique for
constant-relevant completeness statements showed that despite its
simplicity, standard hashing can outperform the inverted indexing [52]
and the tries [55, 102] technique for queries with the length of up to 3, ac-
counting for 97% of real-world queries on DBpedia [8], with the worst
case of retrieval time of only 2 ms. Thus, we concentrate our analysis
on standard hashing. We can break down the process of complete-
ness reasoning into two main components: (i) the hashmap lookup
to retrieve constant-relevant statements; and (i) the Tc-application of
all constant-relevant statements over the prototypical graph P as per
Theorem 2.10. Our experimental evaluation was conducted with the
aim to answer the following questions: (i) What is the overhead of
completeness reasoning over querying? (ii) How do the two main
components, the hashmap lookup and the Tc-application, influence
the overall completeness reasoning time?

EXPERIMENTAL SETUP. We created a framework for the experiments
in Java using the Apache Jena library, an open source Semantic Web
library.5 To implement completeness reasoning, we particularly re-
lied on the ARQ module of Jena, which provides functionalities for
SPARQL query processing. The retrieval of constant-relevant state-
ments was implemented using a standard Java HashMap. The two in-
gredients that characterize our setting were queries and completeness
statements.

As for the queries, we used openly available real query logs of RDF
data sources across various domains, i.e., DBpedia, Semantic Web Dog
Food, and LinkedGeoData, provided in the Linked SPARQL Queries
(LSQ) dataset [100]. We extracted SELECT queries in the conjunctive

5 http://jena.apache.org/
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fragment, which account for about 40% of the total number of SELECT
queries, giving us around 465,000 queries in total.®

As for the completeness statements, for each query we took its full
BGP P and constructed a completeness statement Compl(P). Via query
homomorphism techniques [20], we removed redundant complete-
ness statements, that is, completeness statements whose CONSTRUCT
query representations are equivalent. In total, there were about 400,000
completeness statements generated. Observe that by construction, all
queries are guaranteed to be complete. The experiment framework
(incl. the source code) is available online at http://completeness.inf.
unibz.it/completeness-experiment/.

We distinguished between three cases of the experiments, depend-
ing on the endpoint of the queries: DBP, SWDEF, or LGD. We measured
completeness reasoning time of the queries of each case. The experi-
ments were run on a standard laptop under Windows 8.1 with Intel
Core i5-2435M 2.4 GHz processor and 8 GB RAM. Furthermore, for
each query we also took the query evaluation time, which is already
provided by the LSQ dataset. The experiment machine for query eval-
uation was with 16 GB RAM and a 6-Core i7 3.40 GHz CPU running
Ubuntu 14.04.2 using Virtuoso 7.1 [100]. Note that the machine for
query evaluation was relatively better than our machine for complete-
ness reasoning.

RESULTS AND DIsCUSSION. Table 4.2 summarizes the results of the
experiments. The number of queries varies greatly with SWDF hav-
ing the lowest and DBP having the highest. For the completeness
statements, there are not many redundancies for DBP and SWDEF, as
opposed to LGD. What is interesting is that most queries are short,
close to 1 triple pattern, with a slight exception of LGD queries whose
average length is in the middle between 1 and 2 triple patterns. The av-
erage of completeness reasoning time for all cases is always below 0.2
ms.

To get an idea on the performance comparison with plain complete-
ness reasoning (where all completeness statements are considered in
reasoning), we took the first query for each case and performed com-
pleteness reasoning, measuring 4,600 ms, 700 ms, and 600 ms for DBP,
LGD, and SWDF, 1respective1y.7 Thus, we have a considerable speed-
up by using the constant-relevance principle, up to 50,000 times faster.
While for the plain reasoning, the number of all completeness state-
ments positively correlates with reasoning time, for the reasoning with
the constant-relevance principle, this is not the case, as observed from
the average reasoning time between DBP and LGD. With respect to

As of May 22,2016
Note that for the other queries, all statements also have to be considered, hence
reasoning time would not be much different.
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Table 4.2: Overview of the experiment results, where N is the number of
queries, N¢ is the number of completeness statements, |Q] is the
average query length (i.e., number of triple patterns), tcg is the
average completeness reasoning time, and tnf is the average query
evaluation time

Endpoint No Nc Q| tcr tQE

DBP 334,304 331,294 1.13 0.086ms 18.8 ms
LGD 108,611 44,505 154 0.127ms 36.2ms
SWDF 22,590 21,616 122 0.056ms 8.3 ms
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Figure 4.4: Comparison of query length to completeness reasoning (CR) time
and query evaluation (QE) time

query evaluation, completeness reasoning overall only adds a little
overhead to query evaluation time, that is, 0.5% on average.

Figure 4.4 shows how the overhead varies depending on query
length. Note that the y-axis is in log scale. We can see that the data
for query evaluation time shows no clear trend, whereas completeness
reasoning time positively correlates with query length. Yet, in all cases,
clearly query evaluation takes much longer than completeness reason-
ing by several orders of magnitude. Note that in all three query logs
we used, most queries have short length, for instance, there are only
fewer than 10 queries for each group of DBpedia queries with length
greater than 6. Also, the worst case of completeness reasoning time in
the figure is only 5.6 ms (where the query length equals 13), which we
consider very reasonable.

Regarding the runtime for completeness reasoning with the constant-
relevance principle, we can break this up into the time needed for the
hashmap lookup for constant-relevant statements, and the time for
the Tc-application of those constant-relevant statements. Figure 4.5
shows how they distribute. As seen from the figure, the growth of
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number of relevant statements (lower)

the hashmap lookup time is exponential in the query length, whereas
the growth of the Tc-application time appears to be roughly linear.
We also observe that while initially Tc-application takes longer, when
queries become longer, the hashmap lookup time starts to dominate the
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completeness reasoning time, that is, starting from queries of length
11 for the DBpedia case (but such queries are a few). This means that
from short- to medium-length queries, the fact that the time for the
lookup is exponential is of little importance.

Finally, Figure 4.6 (with linear scale on y-axis) provides an idea
on how query length relates with the number of constants in queries
and the number of constant-relevant statements, respectively. In the
upper figure, it can be seen that the number of constants grows linearly
with respect to query length with a few exceptions. This is likely to
be the reason for the exponential growth of hashmap lookup time in
Figure 4.5, since the hashmap lookup depends exponentially on the
number of constants. From the lower figure, we can infer that the
query logs contain relatively many similar (sub)-queries since there
are quite a number of relevant completeness statements. Still, the
number of relevant statements drops drastically from the number of
all completeness statements, thanks to the constant-relevance principle.
For queries up to length 6, there are at most 25 relevant statements,
and this number does not grow much, as the maximum number is 45.
There is a weak positive correlation between the query length and the
number of relevant statements. By and large, the trend of this figure
matches the trend of the Tc-application time in Figure 4.5, due to the
linear relationship between the number of relevant statements and the
Tc-application time.

CONCLUSIONS OF THE EXPERIMENTS.  We have evaluated complete-
ness reasoning in practical settings based on real query logs from DB-
pedia, SWDF, and Linked Geo Data SPARQL endpoints. We observed
that completeness reasoning with the constant-relevance principle can
be done quickly, with the worst case of 5.6 ms. Compared with query
evaluation time, completeness reasoning only adds a little overhead,
just about 0.5% on average. Also, the performance of completeness
reasoning tends to be positively correlated with query length. Further-
more, for short- to medium-length queries, the Tc-application time,
which grows linearly, dominates the completeness reasoning time,
whereas for long queries, the hashmap lookup time, which grows
exponentially, dominates the reasoning time. Hypothetically, a possi-
ble weakness of this constant-relevance approach might occur when
there are a large number of constants in a query (e.g., 32 constants) due
to the exponential blowup of the set-equality queries generated. From
the query logs, however, long queries are rare and also, queries have
at most 14 constants, which are still manageable.

4.2 OPTIMIZING DATA-AWARE REASONING

For the data-aware setting, reasoning needs access to the data graph.
The previous approach to optimization of data-agnostic reasoning,
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which leaves out statements whose terms are not among the terms
of the query, is no more applicable, since parts of the statements can
now be mapped to the data graph. We present a new algorithm, which
improves upon an earlier one for completeness checking in Chapter 3.

42.1 Completeness Templates and Partial Matching

In this subsection, we introduce completeness templates, template-
based transfer operator, and partial matching as techniques to opti-
mize data-aware completeness reasoning. Completeness templates
are inspired by natural language completeness statements available
on the Web, which are usually about similar topics. Then, by exploit-
ing that a template represents many statements, we can leverage query
evaluation for simultaneous processing of statements. Finally, partial
matching is crucial for filtering out irrelevant templates wrt. the query
we want to check for completeness.

COMPLETENESS TEMPLATES.  Werepresentsimilar completeness sta-
tements by so-called completeness templates. Such templates support
users in creating completeness statements of similar topics, as they
occur for instance in IMDb, which reports completeness for movie
cast and crew® or in OpenStreetMap, which uses a wiki to record the
completeness of objects in different areas.” A completeness template
is a 3-tuple 1 = (C, V,Q)), where C is a completeness statement, V C
var(C) is a set of variables, called meta-variables, and () is a set of
mappings from V; to terms (i.e., IRIs or literals). We also refer to the
BGP of the completeness statement C of the template 7 as P;. As an
example of a completeness template, we generalize the statement set

{ Compl((ger,lang,?1)), ..., Compl((spa,lang,?l))},

to the template (Compl((?c,lang,?1)),{?c},Q?), where Q = {{?%c —
ger},...,{?2c > spa}}. Atemplate T = (C, Vi, Q) represents the state-
ment set C; = {Compl(uPc) | u € Q}, obtained by instantiating C
with the mappings in (). This definition naturally extends to sets of
completeness templates. Note that a completeness statement C can
be expressed as the completeness template (C, 0, {ig}) where pig is the
mapping with the empty domain.

TEMPLATE-BASED TRANSFER OPERATOR. A key part of the algo-
rithm for checking completeness, given a statement set C and a data
graph G, is to identify the crucial part Py of P, that is, the maximal
subset Py C P such that Py € Tc(PUG). Given a set 7~ of completeness
templates, analogously to Eq. (4), such a part satisfies the equation

Py =Pnid (Tc, (PUG)). 6)

8 Seee.g., http://www.imdb.com/title/tt0105236/fullcredits
9 Seee.g., http://wiki.openstreetmap.org/wiki/Abingdon
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A baseline approach to compute Py in Eq. (6) is to instantiate templates
to yield completeness statements, and then apply the Tc-operator wrt.
the statements. This may be costly if there are many instances of those
templates. Now, templates allow us to leverage query evaluation
for data-aware completeness reasoning by exploiting that a template
represents many statements. Essentially, to check whether the Tc-
operator maps a triple in P by an instantiation of a template 7, we
tirst evaluate P; (by treating the meta-variables like variables) over the
union graph P U G, with the condition that at least one triple pattern
in P, is mapped to a triple in P (since otherwise the mapping does not
contribute to Pp), and verify in a second step which of the resulting
mappings are compatible with the instantiations of the template 7. In
this way, all instances of 7 can be processed simultaneously.

To formalize the above idea, we first define prioritized evaluation of
aBGP over a pair of graphs (G1, Gz). Insuch an evaluation, we consider
the first graph Gy as the mandatory and the second as the optional graph,
which means that at least one triple pattern of the BGP is mapped to
a triple of Gy, while there is no need to map any triple pattern to G,.
Formally, prioritized evaluation of a BGP P over (Gy,Gy) is defined as
[Plc,c,) = {u | u € [Plg,uc, and uP” C Gy for some P* C P,P" # Q}.
So, in our case of completeness checking, the mandatory graph will be
the frozen BGP P and the optional graph will be the data graph G.

Example 4.2. Consider the BGP P, = {(usa, lang,?1)}, the graph

Gorg = {(0rg1, founder, ger), (ger, lang, de),
(orgy, founder, usa), (orgy, founder, ger)},

and the completeness template 7., = (C, {?0rg}, Q3), where
C = Compl((?c, lang, ?lang), (?0rg, founder, ?c))

and QO = {{?org — org1},{?0rg +— orgo}, {?org = orgsz}}. It is the case
that IIPTO,g]] (Pusa/Gorg) = {{?c = usa, ?lang T,?org > org> }}, where P
is the BGP of the statement C of the template To/,.

Torg

Next, in the prioritized evaluation of a BGP P, over (P,G), we apply
a pruning technique based on the following observation. Each answer
mapping i € [P<]lp ) determines a nonempty subset P; C P; such
that uP, € P and uP? C G for its complement P := P, \ P.. Since
frozen variables only occur in P and not in G, we conclude that for
every variable ?v that occurs both in P, and P} it must be the case that
p(?v) is not a frozen variable.

The algorithm with pruning proceeds as follows. For each non-
empty subset P, C P, we first evaluate P} over P, which yields partial
answers v. We try to complete each such partial answer v by evaluating
the instantiated complement v(P}) over G and joining the answers
resulting from this with v itself. We prune the answers v of the first
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evaluation step by keeping only those mappings for which no term
v(?v), ?v € var(PY), is a frozen variable. We call such a v pure. Clearly,
for non-pure mappings the subsequent evaluation over G can only
result in the empty set. Formally, we compute the union

U U @ Pyl
P,cP, velPlp
PL#0 v is pure

which equals [P<]| 5 ) as just explained.

We denote the projection of a mapping u wrt. a set W of variables
as tw(p). Given a set 7~ of completeness templates, a frozen BGP P,
and a graph G, we now define the template-based transfer operator Tq as
follows:

Tr(P,G) = U {uP- | p € [[Pr]](p,c) and mty, (u) € Q.
TeT
= (C, V. Q)

The above operator computes for each template 7 the prioritized evalu-
ation of the BGP P over (P, G), keeps only those mappings compatible
with ), and then takes the union. The crucial point here is that we
tirst evaluate the BGP of the template, and only after that we check
which answers correspond to instantiations by ). By the definition of
completeness templates and the prioritized evaluation of BGPs, it is
the case that Py as in Eq. (6) can alternatively be computed using T,
as stated in Proposition 4.3.

Proposition 4.3. Given a BGP P, a graph G, and a set T of completeness
templates, it is the case that

Py=Pnid (Tc,(PUG)) =Pnid " (Tr(B,G)).

PARTIAL MATCHING. As there can be many completeness templates,
we want to rule out the irrelevant ones, that is, those templates that do
not contribute to query completeness. Basically, they are the templates
with no overlapping triple patterns (modulo variable generalization)
over the query.

Let us first sketch the idea of partial matching. Here, we rely on
hashmaps. We use each triple pattern of a template as a hashkey,
by which the template can be retrieved. Thus, a template with three
triple patterns, for example, can be retrieved in three different ways.
To find templates that are potentially applicable to a frozen BGP P,
we perform a hashmap lookup for each triple pattern of P and for
all possible generalizations of that triple pattern where non-predicate
terms are replaced by a variable.

Let us formalize the above idea. Our main goal here is partial match-
ing: retrieving only completeness templates having a triple pattern
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that can potentially be mapped to a triple in a frozen BGP P. To this
end, we first introduce a signature operator that abstracts away concrete
variables by replacing every occurrence of a variable with the reserved
IRI _var. The signature of an element t € UL U V is defined as

t, ifte UL
a(t) =

_var, ifteV.

The signature of a triple pattern (s, p,0) is defined as o((s,p,0)) =
((s),a(p),0(0)). Furthermore, the signature of a BGP P is defined as
a(P) =1{o((s,p,0)) | (s,p,0) € P}. As an illustration, the signature of
the BGP Pys, = {(usa,lang, ?1)} is 0(Pysa) = { (usa, lang, _var) }.

Next, we index completeness templates according to (the signatures
of) their triple patterns. For this purpose, we define a mapping M
from signature triples to sets of completeness templates such that the
signature triple is in the signature of the template’s BGP:

M((s,p,0)) ={teT |(s,p,0) €a(P)}.

In practice, such a mapping can be realized by standard hashmaps,
providing fast retrieval operations. Given a signature triple (s,p,0),
the generalization operator gen((s,p,0)) computes the set of all gener-
alizations where non-predicate terms can become variables. As an
illustration, the generalization of the signature triple (usa, lang, _var)
is the set {(usa, lang, _var), (_var, lang, _var)}.

Now, we are ready to define an operator to get completeness tem-
plates that can potentially ‘transfer” at least one triple in the frozen
BGP P. The operator pmatch(P,7") computes the set of partially matched
completeness templates wrt. P and 7, and is defined as

U IM((s",p",0")) 1 (s",p", 0") € gen((s, p,0))}-

(s,p0)€a(P)

The operator computes the union of the mapping results over signature
generalization of all triple patterns in the BGP P. By the construction
of the mapping M and the generalization operator, it is the case that
pmatch(P,7") preserves Py in Eq. (6), as stated in Proposition 4.4.

Proposition 4.4. Given a BGP P, a graph G, and a set 7 of completeness
templates, it is the case that

Py=Pnid (Te,(PUG)) = Pnid ' (Tc PUG)).

pmatch(P,7) (

This means that instead of taking all the templates in 77, it is enough
to consider only the subset pmatch(P, 7" ), which is potentially much
smaller than 7.
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42.2  Experimental Evaluation of Data-aware Completeness Reasoning

Having described our optimization techniques for data-aware com-
pleteness reasoning, we now would like to analyze how well the tech-
niques can provide speed-up, in particular wrt. a realistic scenario, and
how feasible it is to perform data-aware completeness reasoning at all.
This subsection reports on our evaluation of Wikidata-based complete-
ness reasoning experiments. First, we describe our experimental setup,
and then discuss the results of the experiments.

EXPERIMENTAL SETUP. The reasoning program and experiment fra-
mework were implemented in Java using the Apache Jena library.!’
We used the direct-statement fragment (i.e., the fragment with no qual-
ifiers nor references) of Wikidata as our data graph, consisting of around
110 mio triples.!’ We chose Wikidata mainly due to its relatively large
size, recent popularity, and good quality, making it suitable for our
data-aware experiment. The graph was loaded into a Jena TDB triple
store.

Our queries were generated based on human-made, openly available
queries on the Wikidata query page.!> We extracted the BGPs of the
queries and transformed the vocabulary of the queries to the direct
statements vocabulary. These BGPs acted as a ‘base’ for generating
our experiment queries: (i) for each base, we evaluated it over the
Wikidata graph; (i7) we took randomly 20 of the result mappings of the
base, projected on the first variable of the base;'® and (iii) we generated
queries by instantiating the query bases with these projected mappings.
The completeness statements are generated in a similar way: (i) for each
base, we evaluated it over the Wikidata graph; (ii) from the answer
mappings, we took randomly 50% of them, projected to the first vari-
able of the base; and (iii) we generated completeness statements by
instantiating the base with the respective mappings as the statements’
BGPs. In this setting, we also naturally represent completeness state-
ments by completeness templates as follows: we took the base BGP
as the template’s BGP, and the projected mappings as the template’s
mappings.

We measured the runtime of completeness reasoning with optimiza-
tions and query evaluation. Each measurement was repeated 10 times
and we took the median. The experiments were done on a laptop with
Intel Core i5 2.50 GHz-processor and 8 GB memory.

RESULTS AND DISCUSSION. In the experiments, we observed the
query evaluation time and completeness reasoning time from 1,160

10 http://jena.apache.org/

11 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160201/

12 https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_
Query_Examples&oldid=2099085

13 We imposed some ordering over the triple patterns in the BGPs.
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Table 4.3: Average runtime comparison of query evaluation and completeness
reasoning grouped by query length, where |Q] is the query length,
Ng is the number of queries, tg is the average of query evaluation
time, and ¢ is the average of completeness reasoning time.

QI No to tc

1 228 282ms 543 ms
2 355 1.86ms 131.51 ms
3 387 253ms 138.22ms
4 125 1.63ms 326.45ms
5 42 136ms 15545 ms
6 3 241ms 11426 ms
8 20 193ms 670.66 ms

queries, with the average query length of 2.58. There were 445,628
completeness statements generated, with the average 