
Managing and Consuming Completeness Information
for RDF Data Sources

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
M.Sc. Fariz Darari

geboren am 5. Juli 1988 in Malang, Indonesien

verteidigt am 20. Juni 2017

Gutachter:
Prof. Dr. rer. nat. Sebastian Rudolph,

Technische Universität Dresden
Prof. Dr. Pascal Hitzler,
Wright State University

Dresden, im Juli 2017

PhD Thesis

Managing and Consuming

Completeness Information

for RDF Data Sources

Author:
Fariz Darari

Supervisors:
Prof. Werner Nutt

Prof. Sebastian Rudolph

Thesis reviewed by:
Prof. Bogdan Cautis, Université Paris-Sud
Prof. Pascal Hitzler, Wright State University

July 2017

A C K N O W L E D G E M E N T

Alhamdulillah, first of all I would like to thank my advisors, Werner
Nutt and Sebastian Rudolph, for their advice, guidance, and patience.
I wish to express my gratitude for Simon Razniewski for his research
feedback and PhD tips. My thanks to Sven Helmer, the second reader
of my Research and Study Plan (RSP), and Markus Krötzsch, the
Fachreferent (EN. subject specialist) of my PhD studies. I would also
thank my close colleagues and coauthors. I am thankful for the good
surrounding and support from my colleagues in the KRDB group and
the Faculty of Computer Science of FU Bolzano, and in the Computa-
tional Logic group and the Faculty of Computer Science of TU Dresden.
My thanks to my friends in Bolzano and Dresden. I am grateful to my
parents, brothers, and sisters. Special thanks to my wife, Fitri, and my
son, Muhammad “RDF” Rasya Danish Farizky, the most wonderful
gifts God has given me in life.

1

Abstract

The ever increasing amount of Semantic Web data gives rise
to the question: How complete is the data? Though generally
data on the Semantic Web is incomplete, many parts of data
are indeed complete, such as the children of Barack Obama
and the crew of Apollo 11. This thesis aims to study how
to manage and consume completeness information about Se-
mantic Web data. In particular, we first discuss how complete-
ness information can guarantee the completeness of query an-
swering. Next, we propose optimization techniques of com-
pleteness reasoning and conduct experimental evaluations to
show the feasibility of our approaches. We also provide a
technique to check the soundness of queries with negation
via reduction to query completeness checking. We further
enrich completeness information with timestamps, enabling
query answers to be checked up to when they are complete.
We then introduce two demonstrators, i.e., CORNER and
COOL-WD, to show how our completeness framework can
be realized. Finally, we investigate an automated method to
generate completeness statements from text on the Web via
relation cardinality extraction.

P U B L I C AT I O N O V E RV I E W

• Paramita Mirza, Simon Razniewski, Fariz Darari, Gerhard Weikum:
Cardinal Virtues: Extracting Relation Cardinalities from Text.
ACL Conference (Short Papers) 2017.

• Radityo Eko Prasojo, Fariz Darari, Simon Razniewski, Werner
Nutt: Managing and Consuming Completeness Information for
Wikidata Using COOL-WD. International Workshop on Consum-
ing Linked Data 2016.

• Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner
Nutt: Enabling Fine-grained RDF Data Completeness Assess-
ment. International Conference on Web Engineering 2016.

• Fariz Darari, Radityo Eko Prasojo, Werner Nutt: Expressing No-
Value Information in RDF. International Semantic Web Confer-
ence (Posters & Demos) 2015.

• Fariz Darari, Simon Razniewski, Werner Nutt: Bridging the Se-
mantic Gap between RDF and SPARQL Using Completeness
Statements. International Semantic Web Conference (Posters &
Demos) 2014.

• Fariz Darari, Radityo Eko Prasojo, Werner Nutt: CORNER: A
Completeness Reasoner for SPARQL Queries Over RDF Data
Sources. Extended Semantic Web Conference (Posters & Demos)
2014.

Potential Publications:

• Fariz Darari, Werner Nutt, Giuseppe Pirrò, Simon Razniewski:
Completeness Management for RDF Data Sources. Under revi-
sion for ACM Transactions on the Web.

• Paramita Mirza, Simon Razniewski, Fariz Darari, Gerhard Weikum:
Extracting Quantifications of Knowledge Base Facts from Text.
Submitted to EMNLP 2017.

• Fariz Darari, Werner Nutt, Simon Razniewski, Sebastian Rudolph:
Ensuring SPARQL Completeness and Soundness Using Com-
pleteness Information about RDF Data Sources. To be submitted
to Journal of Web Semantics.

3

C O N T E N T S

1 introduction 7
1.1 Data Completeness 7
1.2 Motivation 10
1.3 Contributions 17
1.4 Thesis Outline 17

2 formal framework 19
2.1 RDF and SPARQL 19
2.2 Completeness Statements 20
2.3 Query Completeness 23
2.4 Data-agnostic Completeness Entailment 24

3 data-aware completeness reasoning 27
3.1 Motivating Scenario 27
3.2 Checking Data-aware Completeness Entailment 30
3.3 SP-statements 44
3.4 No-value Statements 48
3.5 Related Work 53
3.6 Summary 54

4 optimizing completeness reasoning 55
4.1 Optimizing Data-agnostic Reasoning 55
4.2 Optimizing Data-aware Reasoning 73
4.3 Summary 80

5 soundness reasoning 81
5.1 SPARQL with Negation 81
5.2 Motivation and Formalization 81
5.3 Checking Answer Soundness 84
5.4 Checking Pattern Soundness 86
5.5 Experimental Evaluation 90
5.6 Related Work 97
5.7 Summary 98

6 time-aware completeness reasoning 101
6.1 Motivating Scenario 101
6.2 Time-extended Completeness Framework 102
6.3 Computing the Guaranteed Completeness Date 107
6.4 Related Work 109
6.5 Summary 110

7 completeness management demonstrators 111
7.1 CORNER: A Completeness Reasoner for RDF Data Sources 112
7.2 COOL-WD: A Completeness Demonstrator for Wiki-

data 117
7.3 Related Work 124
7.4 Summary 125

8 extracting relation cardinalities from text 127

5

6 Contents

8.1 Introduction 127
8.2 Relation Cardinalities 128
8.3 Relation Cardinality Extraction 129
8.4 Improving Relation Cardinality Extraction 131
8.5 Analysis 134
8.6 Large-scale Run of RCE 137
8.7 Related Work 138
8.8 Summary 139

9 discussion 141
9.1 Acquisition of Completeness Information 141
9.2 Compatibility with Advanced RDF Features 142

10 conclusions and future directions 145
10.1 Summary of the Results 145
10.2 Future Work 147

11 bibliography 149
a prefix declarations 161

1
I N T R O D U C T I O N

The increasing amount of structured data made available on the Web
is laying the foundation of a global-scale knowledge base. Projects like
Linked Open Data (LOD) [51], by inheriting some basic design princi-
ples of the Web (e.g, simplicity, decentralization), aim at making huge
volumes of data available via the Resource Description Framework
(RDF) standard data model [60]. RDF enables one to make statements
about resources in the form of triples, consisting of a subject, a predicate,
and an object. The common path to access such a huge amount of
structured data is via SPARQL endpoints, namely, network locations
that can be queried using the SPARQL query language [47].

With a large number of RDF data sources (i.e., 1139 data sources in
2017 as recorded by the LOD Cloud1), covering possibly overlapping
knowledge domains, it is natural to observe a wide range of data source
quality. Indeed, depending on the topics and aspects considered, RDF
data sources such as Wikidata [111], DBpedia [15], and YAGO [54],
may possess different quality characteristics. In this setting, the prob-
lem of providing high-level descriptions (in the form of metadata) of
their content becomes crucial. Such descriptions will connect data
publishers and consumers; publishers will advertise “what” is there
inside a data source so that specialized applications can be created for
data source discovering, cataloging, selection, analytics, and so forth.
Proposals like the VoID vocabulary [6] touch this aspect. With VoID
it is possible, among other things, to provide information about the
number of instances of a particular class, the SPARQL endpoint of a
source, and links to other data sources. However, VoID focuses on
providing quantitative information. We claim that toward comprehen-
sive descriptions of data sources, also qualitative information is crucial;
hence, the overall aim of this thesis is to study a specific aspect of data
quality for RDF data sources, that is, completeness.

1.1 data completeness

Information about completeness is crucial for RDF data sources, where
each data source is generally considered incomplete due to the open-
world assumption (OWA) [50]. However, so far there is no approach to
characterizing data sources in terms of their completeness that is both
conceptually well-founded and practically applicable. For instance,
with the widely used metadata format VoID, it is not possible to ex-

1 http://lod-cloud.net/

7

8 introduction

press that an RDF data source of the movie website IMDb2 is complete
for all movies directed by Tarantino. The possibility to provide in a declar-
ative and machine-readable way such kind of completeness statements
paves the way toward a new generation of services for consuming data.
In this respect, the semantics of completeness statements interpreted
by a reasoning engine can, for instance, guarantee the completeness of
query answers.

Data completeness, as defined by Wang and Strong [112], is the
breadth, depth, and scope of information contained in the data. Batini and
Scannapieco [12] considered data completeness to be one of the most
significant data quality dimensions. Like other quality dimensions
(e.g., accuracy, timeliness), the problem of data completeness may
occur in various application domains, such as biology, aviation, and
healthcare, as studied by Becker et al. [13].

In the field of relational databases, concerns about data (in-)complete-
ness can be traced back to 1979 [23], where Codd proposed a treatment
of nulls based on three-valued logic. Motro [81] developed an in-
tegrity model for databases that considers completeness (and validity).
Levy [65] introduced local completeness statements, by which one
can assert the completeness of parts of a database relation, and stud-
ied their relationship to relational query completeness. Razniewski
and Nutt [96] reduced the problem of query completeness to query
containment, and used this reduction to study the complexity of the
completeness problem in the relational setting.

In the Semantic Web area, the problem of completeness is particu-
larly challenging due to the OWA. Several researchers studied com-
pleteness in the broader context of data quality. Fürber and Hepp [39]
developed a generic vocabulary for data quality management in the
Semantic Web. Their vocabulary can facilitate the standardized for-
mulation of data quality rules, data quality problems, and data quality
scores for RDF data sources. For example, one completeness-related
problem that can be described is ‘missing element’: schema elements,
instances, or property values are missing, when required. Mendes
et al. [74] proposed Sieve, a framework for Linked Data quality as-
sessment and fusion. Sieve enables users to define quality scoring
functions, and perform conflict-resolution tasks based on the quality
scores to combine RDF data from multiple sources. As an illustration,
users can define a completeness scoring function based on the average
number of properties of instances in a data source. A recent initiative
to improve RDF data quality is underway by the W3C’s RDF Data
Shapes group.3 The group is developing SHACL, a language for vali-
dating RDF graphs against a set of conditions (called ‘shapes’) [61]. In
SHACL, one can formulate integrity constraints, e.g., by requiring that
every person has a gender. The lack of such required information indi-

2 http://www.imdb.com/
3 https://www.w3.org/2014/data-shapes

1.1 data completeness 9

cates incompleteness of data. By this approach, however, one cannot
detect whether optional information, like a spouse, is missing.

Zaveri et al. [114] surveyed techniques to measure the completeness
(among other data quality aspects) of RDF data sources. It is common
to these techniques that they measure completeness of a data source as
the fraction of real-world information present in another data source
that is chosen as the gold standard. The surveyed techniques did not
concern how to express that a source is of gold-standard quality for
some type of information. In [48], Harth and Speiser discussed the
problem of assessing the completeness of Linked Data querying. They
regarded the whole web as the most ideal gold standard for evaluating
queries. To be more realistic, they weakened that to data that is reach-
able from authoritative data sources. In their work, no assumption
was made as to whether the whole web really captures all information
in the real world. Galárraga et al. [42] stressed the need of complete
information for rule mining over RDF KBs. Since completeness cannot
be guaranteed, they introduced a ‘partial completeness assumption’
(PCA) as a substitute, which states that: if the KB knows some r-
attribute of x, then it knows all r-attributes of x. Such an assumption
is restricted in the sense that completeness is defined at the level of
atomic attributes.

In RDF, an existing way to state completeness is by using closed
lists (called ‘RDF collections’) [72]. Such lists, however, introduce a
new structure, that is different from the usual SPO-style of RDF triples,
hence hindering data access via querying. In description logics (DLs),
several proposals have been made for partial closed-world features.
OWL (i.e., the DL-based ontology language for the Semantic Web)
provides a functionality to describe a closed class by enumerating all
of its instances [53]. Seylan et al. [105] introduced DBoxes to capture
DB-style relations for DL ontologies. They developed procedures to
translate implicitly defined queries over DBoxes into explicitly defined
ones. A similar approach was proposed by Lutz et al. [68, 69] with
their closed predicates that allow one to draw more conclusions in
DL reasoning. However, they showed that this also leads to higher
complexity of the reasoning. Ahmetaj et al. [5] observed that a query
over a DL ontology can have more certain answers if some predicates
are assumed to be closed. They showed how to rewrite a simple kind
of queries, so-called instance queries, that ask for all instances of a class
or a property into a datalog query, so that the rewriting retrieves all
the certain answers of the original query. Ngo et al. [84] showed how
closed predicates increase the combined complexity even for simple
queries in some well-studied DL dialects. The problem of checking
query completeness was not considered in the above work, as they
were only interested in drawing more conclusions of reasoning with
closed predicates.

10 introduction

Among the first proposals for a declarative, machine-readable spec-
ification of Semantic Web data completeness was the work by Darari
et al. [28], which enables us to close some parts of RDF data, and thus
SPARQL queries can be answered completely whenever they touch
only the closed parts. The impact of completeness statements on a
variety of SPARQL fragments, including the RDFS entailment regime
and the federated scenario, was studied. The reasoning technique they
developed is, however, agnostic of the content of RDF data sources,
that is, the query completeness checking considers only the complete-
ness statements, and the specifics of the graph to which the statements
are given do not play any role.

research hypotheses . As discussed above, previous approaches
dealt with limited settings of data completeness for RDF data sources.
This thesis aims to develop a comprehensive framework of managing
and consuming completeness information for RDF data sources. The
hypotheses of this thesis are as follows:

• Combining information about data completeness and the actual
data gives rise to a stronger and more fine-grained assessment
of the completeness of query answers.

• By applying and adapting existing indexing techniques, query
completeness analysis can be performed in a time that is compa-
rable to the execution time of a query.

• Completeness analysis can be leveraged to check whether an-
swers to queries with negation are sound.

• Completeness statements can be equipped with temporal infor-
mation in such a way that temporal completeness analysis can
be performed with little additional cost.

• Existing Semantic Web technologies can be used to develop com-
pleteness management tools with little development overhead.

• Natural language texts contain information about cardinalities
of sets in the real world that can be extracted automatically and
be used to assess the completeness of RDF data sources.

1.2 motivation

We provide motivating scenarios covering a broad range of aspects of
completeness for RDF data sources: data-aware completeness reason-
ing, optimizations of completeness reasoning, ensuring query sound-
ness using completeness statements, time-aware completeness reason-
ing, demonstrators of systems to create and consume completeness
statements, and extracting relation cardinalities from text as a way to
automatically generate completeness statements.

1.2 motivation 11

data-aware completeness reasoning . Consider Wikidata, a
crowdsourced KB with RDF support [111]. For data about the movie
Reservoir Dogs, Wikidata is incomplete, as it is missing the fact that
Michael Sottile was acting in the movie.4 On the other hand, for data
about Apollo 11, it is the case that Neil Armstrong, Buzz Aldrin, and
Michael Collins, recorded as crew members on Wikidata, are indeed all
the crew (see Figure 1.1).5 However, such completeness information
is not recorded and thus it is left to the reader to decide whether some
data on the Web is already complete.

Figure 1.1: Wikidata is actually complete for all the Apollo 11 crew

Nevertheless, the availability of explicit completeness information
can benefit data access over RDF data sources, commonly done via
SPARQL queries. For example, suppose that in addition to the com-
plete data of the Apollo 11 crew, Wikidata is also complete for the
children of Neil Armstrong, Buzz Aldrin, and Michael Collins. Conse-
quently, a user asking the query “children of Apollo 11 crew” should
obtain not only query answers, but also the information that the query
can be answered completely. Observe that here data-specific reasoning
is employed: we first obtain who specifically are the complete crew
members of Apollo 11, and then for each of them, we check if we have
all the children.

Motivated by the above rationales, we argue that it is important to
describe the (partial) completeness of RDF data sources and provide
a technique to check query completeness based on RDF data sources
with completeness information. We call such a check completeness en-
tailment. In previous work, Darari et al. [28] proposed a framework to
provide completeness statements about RDF data sources and check
query completeness based on such statements. There is, however, one
fundamental limitation of the work: the completeness check is agnostic
of the content of the RDF data sources to which completeness state-
ments are given, which results in weaker inferences. For instance,
given the completeness information and the query “children of Apollo
11 crew” as in the Apollo 11 example above, the data-agnostic ap-

4 By comparing the data at https://www.wikidata.org/wiki/Q72962 (as of Sep 18,
2016) with the complete information at http://www.imdb.com/title/tt0105236/
fullcredits

5 http://www.space.com/16758-apollo-11-first-moon-landing.html

12 introduction

proach fails to capture the query completeness. In Chapter 3, we
provide a formalization, and a sound and complete algorithm of data-
aware completeness checking. Moreover, we identify two fragments of
completeness statements: SP-statements, that are practically relevant
to entity-centric, crowdsourced RDF data sources like Wikidata, and
no-value statements, that are suited to capturing the non-existence of
information in RDF.

optimization techniques of completeness reasoning . Real-
world RDF data sources may contain a large amount of data. For
example, from the English Wikipedia, DBpedia extracted 580 million
RDF triples.6 Obviously, neither is all information from those triples
complete, nor is its completeness interesting. If 20% of those triples
were captured by completeness statements, where each statement ac-
counts for 100 triples, then there would be about 1 million statements
in total needed for DBpedia.

Now, the question is, how fast can we perform completeness reason-
ing with 1 million statements? Using a plain completeness reasoner
that employs all the completeness statements, we observed that rea-
soning time may take minutes. Obviously, this is not feasible as we
expect that in practice completeness reasoning would be performed
as often as query evaluation. Indeed, the reason why a plain reasoner
may take long is that it takes into account all the statements in the
reasoning. Yet, not all statements contribute to the entailment of query
completeness. For instance, the completeness statement “all football
players of Arsenal” does not contribute to the completeness of the
query “movies directed by Tarantino.”

In Chapter 4, we analyze the complexity of the completeness reason-
ing task in practical settings and propose a relevance principle, which
allows us to reduce the number of statements considered in the rea-
soning. Based on the relevance principle, we then develop retrieval
techniques of relevant statements with various index structures, and
conduct experimental evaluations to study the characteristics of those
index structures. Next, we experimentally evaluate completeness rea-
soning over a realistic setting based on SPARQL query logs of several
real-world RDF data sources, i.e., DBpedia, Semantic Web Dog Food
(SWDF), and LinkedGeoData (LGD).

Wrt. data-aware completeness reasoning, based on our observation
that natural-language completeness statements on the Web are gen-
erally about similar topics (e.g., completeness statements about cast
of movies on IMDb7 and about points of interest of cities on Open-
StreetMap8), we introduce completeness templates. Such templates pro-

6 http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html
7 For instance, on the Reservoir Dogs page at http://www.imdb.com/title/
tt0105236/fullcredits

8 For instance, on the Abingdon page at http://wiki.openstreetmap.org/wiki/
Abingdon

1.2 motivation 13

vide a compact representation of similar completeness statements, en-
abling multiple completeness statements to be processed simultane-
ously in the reasoning. We then evaluate the performance of data-
aware completeness reasoning using completeness templates, over a
Wikidata-based experimental setup.

ensuring query soundness using completeness statements .
The use of negation in SPARQL has always been problematic. RDF
generally follows the open-world assumption (OWA): information
recorded in an RDF dataset can be incomplete, that is, it might not
reflect all information valid in reality [50]. Consequently, SPARQL
queries with negation (which rely on the absence of some information)
cannot be guaranteed to deliver sound answers.

To illustrate this, consider asking for “countries that are not EU
founders” over the Wikidata SPARQL endpoint:9,10

SELECT * WHERE {

?c wdt:P31 wd:Q6256 . # ?c a (= instanceof) country

FILTER NOT EXISTS {wd:Q458 wdt:P112 ?c} # EU founder ?c

}

The answers include Spain (= wd:Q29).11 We might wonder if this an-
swer is sound, that is, if Spain is indeed a country that is not an EU
founder. Without any completeness information about Wikidata, we
cannot be sure about this: assume Spain were indeed a founder of the
EU, but this information were missing from the data. Obviously, in
that case, Spain is not a correct answer to the above query. In reality,
the EU founders are exactly the countries Belgium, Germany, France,
Italy, Luxembourg, and the Netherlands.12 Knowing this complete-
ness information guarantees that Spain is a country that is not an EU
founder.

What we can observe here is that, without completeness information,
negation in SPARQL may lead to the problem of unsound answers.
This is due to the inherent non-monotonicity of answering queries with
negation: adding new information may invalidate an answer.13 Hav-
ing completeness information may then help ensure the soundness of an-
swers, that is, we can be sure that specific answers will still be returned,
even if the data is completed. Chapter 5 describes our formalization of
the problem of query soundness in the presence of completeness state-
ments. We distinguish between the soundness of a specific answer of
a graph pattern and the soundness of a graph pattern as a whole. We

9 https://query.wikidata.org/
10 Prefix declarations are provided in Appendix A.
11 Wikidata uses internal identifiers for resources, as also shown in the SPARQL query

example.
12 https://europa.eu/european-union/about-eu/history/
13 Note that for the positive fragment of SPARQL, such a problem can never occur, as

the answers are always sound, thanks to monotonicity.

14 introduction

further provide a characterization of the problem via reduction to com-
pleteness checking. Finally, we perform an experimental evaluation of
soundness checking in a realistic setup based on Wikidata.

time-aware completeness reasoning . The notion of complete-
ness introduced in [28] is in a sense time-agnostic. It only allows one
to specify whether (a portion of) a data source is complete. However,
one may also be interested in having completeness guarantees up to
a certain time. To cope with this aspect we introduce timestamped
completeness statements. In defining such kind of statements, we were
inspired by Wikipedia which provides a template list for complete
information with timestamps, as shown in Figure 1.2.

https://en.wikipedia.org/wiki/Template:Complete_list

https://en.wikipedia.org/wiki/Twenty-five_Year_Award

(a)

(b)

………………..

Figure 1.2: A list template for complete information with timestamps on
Wikipedia (a) and its usage to state the completeness of the list
of the Twenty-five Year Award recipients (b).

Figure 1.2 shows a list template taken from Wikipedia. The template
allows one to specify that a list is “complete and up-to-date as of {some
specific date}” with this information being shown on each page where
the list template is used. Such a statement differs from the previous
type of statement in so far as it specifies up to what time the complete-
ness holds. Wikipedia pages containing timestamped completeness
statements range from the page of buildings that have ever won the
Twenty-five Year Award14 (as shown in Figure 1.2) to the page of Italian
DOP cheeses.15

In Chapter 6, we provide a formalization of time-aware complete-
ness reasoning. Completeness statements now feature timestamps.
Consequently, query completeness must be approached differently.
For this reason, we introduce the guaranteed completeness date of a query,
that is, the latest date for which complete query results are guaranteed
to be contained in the actual query results. We then develop, given a
set of timestamped completeness statements, an algorithm to compute

14 https://en.wikipedia.org/wiki/Twenty-five_Year_Award
15 https://en.wikipedia.org/wiki/List_of_Italian_DOP_cheeses

1.2 motivation 15

the guaranteed completeness date of a query, which is optimal in the
sense that each timestamped completeness statement is considered at
most once in the reasoning.

completeness management demonstrators . The theoretical
foundations of completeness reasoning [28] so far have not reached
practice. Up to now, users can only write completeness information
manually in RDF, and would need to publish and link them on their
own, in order to make them available. Similarly, users interested in
making use of completeness statements have no central reference for
retrieving such information. We believe that the lack of systems sup-
porting both ends of the data pipeline, production and consumption,
is a major reason for the partial closed-world assumption (PCWA) not
being adapted on the Semantic Web so far.

In Chapter 7, we develop two demonstrators of systems to man-
age and consume completeness information, each of which serves
different purposes. The first one is CORNER. CORNER demonstrates
a completeness statement hub. With CORNER, users may provide
completeness statements over multiple RDF data sources and perform
data-agnostic completeness reasoning. CORNER supports SPARQL
Basic Graph Pattern (BGP) queries and can take RDFS ontologies into
account in its analysis. If a query can only be answered completely by
a combination of sources, CORNER rewrites the original query into
one with SPARQL SERVICE calls, which assigns each query part to a
suitable source, and executes it over those sources. CORNER can be
accessed at http://corner.inf.unibz.it/.

The second one is COOL-WD. In contrast to CORNER, COOL-WD
demonstrates how one can build a specialized completeness manage-
ment system over a single KB, in our case, Wikidata. With COOL-
WD, end users are provided with web interfaces (available both via
the COOL-WD external system and the COOL-WD integrated Wiki-
data gadget) to create and view completeness information about Wiki-
data facts. To consume completeness information, COOL-WD users
may perform data completion tracking, completeness analytics, or
data-aware query completeness assessment with diagnostics. Fig-
ure 1.3 shows the homepage of COOL-WD, which can be accessed
at http://cool-wd.inf.unibz.it/.

extracting relation cardinalities from text. While COR-
NER and COOL-WD provide a method to add completeness state-
ments manually, to improve the scalability, an automatic method of
generating completeness statements is thus crucial. Meanwhile, over
the Web, a wealth of information about relation cardinalities is pro-
vided, giving hints on the complete count information of a relation.
An example is shown in Figure 1.4 on how cardinality information
may produce completeness statements. In this regard, in Chapter 8

16 introduction

Figure 1.3: COOL-WD homepage

we introduce the novel problem of extracting cardinalities from text
and analyze specific challenges that set it apart from standard Infor-
mation Extraction (IE). We present a distant supervision method using
conditional random fields (CRF). Our evaluation results in precision
between 38% to 84% depending on the difficulty of relations. More-
over, we analyze the presence of cardinality information for over 200
relations in Wikidata.

Figure 1.4: By knowing that the children count on Wikidata’s Trump page
matches the cardinality information from Wikipedia, a complete-
ness statement can be generated.

1.3 contributions 17

1.3 contributions

The contributions of this thesis are as follows:

1. we develop a formalization, and a sound and complete algo-
rithm for data-aware completeness reasoning, and explore vari-
ous practical fragments of completeness statements;

2. we develop optimization techniques for both the data-agnostic
and data-aware completeness reasoning, and conduct experi-
mental evaluations based on realistic settings;

3. we formalize the problem of query soundness in the presence of
completeness statements, and provide a characterization of the
problem via reduction to completeness checking;

4. we introduce time to completeness reasoning;

5. we develop demonstration systems to manage and consume
completeness information, that is, CORNER (http://corner.inf.
unibz.it/) and COOL-WD (http://cool-wd.inf.unibz.it/); and

6. we provide a method for extracting relation cardinalities from
text on the Web, which can be leveraged to generate completeness
statements.

1.4 thesis outline

The thesis is structured as follows:
Chapter 2 provides some background about RDF and SPARQL, and

data-agnostic completeness reasoning for RDF data sources. Chap-
ter 3 discusses data-aware completeness reasoning. In Chapter 4 we
propose optimizations of completeness reasoning and report on ex-
perimental evaluations of the optimizations. In Chapter 5 we show
how our completeness framework can also be leveraged to deal with
the problem of query soundness. Chapter 6 extends completeness
reasoning with the time information, whereas Chapter 7 describes
completeness management demonstrators. Chapter 8 provides an au-
tomated approach for extracting relation cardinalities from text on the
Web, useful in generating completeness statements. In Chapter 9, we
discuss related aspects to our completeness framework. We conclude
our work and sketch future directions in Chapter 10.

2
F O R M A L F R A M E W O R K

In this chapter, we discuss concepts that are essential for the subsequent
content. We remind the reader of RDF and SPARQL in Section 2.1.
Section 2.2 formalizes completeness statements, metadata to specify
which parts of an RDF data source are complete. We next introduce in
Section 2.3 the notion of query completeness. Finally, we define and
characterize the completeness entailment problem in the data-agnostic
setting in Section 2.4. The results presented in this chapter have been
published in [28].

2.1 rdf and sparql

We assume three pairwise disjoint infinite sets I (IRIs), L (literals), and
V (variables). We collectively refer to IRIs and literals as RDF terms or
simply terms. A 3-tuple (s, p, o) ∈ I × I × (I ∪ L) is called an RDF triple
(or a triple), where s is the subject, p the predicate and o the object of
the triple.1 An RDF graph G consists of a finite set of triples [60]. For
simplicity, we omit namespaces for the abstract representation of RDF
graphs.

The standard query language for RDF is SPARQL [47]. The basic
building blocks of a SPARQL query are triple patterns, which resemble
RDF triples, except that in each position also variables are allowed.
We focus on the conjunctive fragment of SPARQL, which uses sets of
triple patterns, called basic graph patterns (BGPs).2 A mapping μ is a
partial function μ : V → I ∪ L. Given a BGP P, μP denotes the BGP
obtained by replacing variables in P with terms according to μ. The
evaluation of a BGP P over an RDF graph G, denoted as �P�G, results
in a set of mappings such that for every mapping μ ∈ �P�G, it holds
μP ⊆ G. For a BGP P, we define the freeze mapping ĩd as mapping
each variable ?v in P to a fresh IRI ṽ (that is, ṽ is a frozen variable).
From such a mapping, we construct the prototypical graph P̃ := ĩd P to
represent any possible graph that can satisfy the BGP P. Moreover, we
define the mapping with empty domain as the empty mapping μ∅.

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. A SELECT
query has the abstract form (W, P), where P is a BGP and W ⊆ var(P).
A SELECT query Q = (W, P) is evaluated over a graph G by project-
ing the mappings in �P�G to the variables in W, written as �Q�G =

πW(�P�G). Syntactically, an ASK query is a special case of a SELECT

1 We do not consider blank nodes in this thesis for the reasons as discussed later in
Section 9.2.

2 SPARQL with negation will be introduced later in Chapter 5 about soundness reason-
ing.

19

20 formal framework

query where W is empty. A CONSTRUCT query has the abstract form
(P1, P2), where both P1 and P2 are BGPs, and var(P1) ⊆ var(P2). Evalu-
ating a CONSTRUCT query over G yields a graph where P1 is instantiated
with all the mappings in �P2�G. In this thesis, the semantics consid-
ered in query evaluation is the bag semantics, which is the default of
SPARQL [47]. In bag semantics, duplicates of query answers are kept.

2.2 completeness statements

Let us formalize completeness information. We first define complete-
ness statements to capture which information is complete.

Definition 2.1 (Completeness Statement). A completeness statement C
is defined as Compl(PC) where PC is a non-empty BGP.

We use BGPs in order to have a flexibility for representing complex
completeness information which requires more than one triple pattern.
For example, we express that a source is complete for all pairs of triples
that say “?m is a movie (= Mov) and ?m is directed (= dir) by Tarantino”
using the statement3

Cdir = Compl((?m, a, Mov), (?m, dir, tarantino)), (1)

whose BGP matches all such pairs. To express that a source is complete
for all triples about actors (= act) in movies directed by Tarantino, we
use

Cact = Compl((?m, act, ?a), (?m, a, Mov), (?m, dir, tarantino)). (2)

Now to model the OWA of RDF data sources, we define an extension
pair.

Definition 2.2 (Extension Pair). We identify data sources with RDF
graphs. Then, adapting a notion introduced by Motro [81], we define
an extension pair as a pair (G, G′) of two graphs, where G ⊆ G′. We call
G the available graph and G′ the ideal graph.

Here, an available graph is the graph that we currently store, while
an ideal graph is a possible extension over the available graph, repre-
senting a version of ideal, complete information. Note that by nature,
ideal graphs are hypothetical, i.e., data providers or consumers do not
need to explicitly deal with G′. In an extension pair, the requirement
that G is included in G′ formalizes the intuition that the available graph
contains no more information than the ideal one (i.e., we assume that
available graphs are correct).

Without completeness statements, any graph extending the avail-
able graph can be an ideal graph. Having completeness statements

3 For the sake of readability, we slightly abuse the notation by removing the set brackets
of the BGPs of completeness statements.

2.2 completeness statements 21

restricts the possibilities of ideal graphs: for the parts captured by
completeness statements, they must contain no more information than
in the available graph. Later on in Section 2.4, we will see that con-
clusions about query completeness are drawn from these restrictions
imposed over ideal graphs. To a statement C = Compl(PC), we asso-
ciate the CONSTRUCT query QC = (PC, PC). Note that, given a graph G,
the query QC returns a graph consisting of those instantiations of the
pattern PC present in G. For example, the query QCact returns the cast
of the Tarantino movies in a graph G. We now define the semantics of
completeness statements.

Definition 2.3 (Satisfaction of Completeness Statements). An exten-
sion pair (G, G′) satisfies the statement C, written (G, G′) |= C, if
�QC�G′ ⊆ G.

Intuitively, an extension pair (G, G′) satisfies a completeness state-
ment C, if the subgraph of G′ captured by C is also present in G. The
above definition naturally extends to the satisfaction of a set C of com-
pleteness statements, that is, (G, G′) |= C iff for all C ∈ C, it is the case
that �QC�G′ ⊆ G.

Example 2.4. Consider the DBpedia data source which contains infor-
mation about Tarantino-related movies:

Gdbp = {(reservoirDogs, dir, tarantino), (pulpFiction, dir, tarantino),
(killBill, dir, tarantino), (desperado, act, tarantino),
(pulpFiction, act, tarantino), (desperado, a, Mov),
(reservoirDogs, a, Mov), (pulpFiction, a, Mov), (killBill, a, Mov)}.

A possible extension (among others) of the above graph is the graph
G′dbp, which additionally contains the information that Tarantino starred

in Reservoir Dogs:4

G′dbp = Gdbp ∪ { (reservoirDogs, act, tarantino) }.

Putting the above two graphs together forms the extension pair
(Gdbp, G′dbp). In this case, the statement Cdir (Eq. 1) is satisfied by
(Gdbp, G′dbp) since all triples from evaluating QCdir over G′dbp are in-
cluded in Gdbp. In contrast, the statement Cact (Eq. 2) is not satisfied
by (Gdbp, G′dbp) because evaluating QCact over G′dbp returns the triple
(reservoirDogs, act, tarantino) that is not in Gdbp.

An important tool for characterizing completeness entailment is the
transfer operator TC, which captures the complete parts of a graph
w.r.t. a set of completeness statements. Given a set C of completeness
statements and a graph G, the transfer operator is defined as

TC(G) =
⋃
C∈C

�QC�G. (3)

4 which is actually the case in the real world

22 formal framework

The transfer operator takes the union of evaluating over G all the
corresponding CONSTRUCT queries of the statements in C. In terms of
extension pairs, the transfer operator takes the parts of the ideal graph
that have to be present in the available graph. In a way, the operator
transfers complete information from the ideal graph to the available
graph. Crucial properties of the transfer operator are summarized in
the following proposition, which follows directly from the construction
of TC and the definition of the satisfaction of C.

Proposition 2.5 (Properties of TC). Let C be a set of completeness state-
ments. Then,

(1) For every extension pair (G, G′), (G, G′) |= C iff TC(G′) ⊆ G.

Consequently, for any graph G we have that

(2) the pair (TC(G), G) is an extension pair satisfying C, and

(3) TC(G) is the smallest graph for which this holds.

Note on completeness statements. In Darari et al. [28] completeness state-
ments are defined slightly differently. There completeness statements
may have conditions, which are more general than the unconditional
ones. For conditional statements, the instantiations of the conditions
are not necessarily included in the graph G. For example, the con-
ditional completeness statement “Complete for all movies under the
condition that the movies were directed by Tarantino” differs from
the statement Cdir above since in the former the graph needs only
to contain all such movies (?m, a, Mov) but not the director informa-
tion wrt. Tarantino (?m, dir, tarantino). We found that this might give
some confusion when creating completeness statements. In this thesis,
completeness statements generally refer to the unconditional ones (as
in Definition 2.1). Nevertheless, conditional completeness statements
are still used in Section 5.4 for characterizing a variant of the query
soundness problem, and in Section 7.1 about CORNER.

rdf representation of completeness statements . Practically,
completeness statements should be compliant with the existing ways
of giving metadata about data sources, for instance, by enriching cur-
rent proposals like VoID [6]. Hence, it becomes essential to be able to
express completeness statements in RDF. Suppose we want to express
that LinkedMDB,5 an RDF data source about movies, satisfies the fol-
lowing completeness statement about all actors in movies directed by
Tarantino, as introduced in Eq. (2),

Cact = Compl((?m, act, ?a), (?m, a, Mov), (?m, dir, tarantino)).

To this end, we need: (i) a vocabulary to say that this is a complete-
ness statement about LinkedMDB; (ii) a mechanism to state which

5 http://www.linkedmdb.org/

2.3 query completeness 23

triple patterns make up the statement’s BGP; (iii) a mechanism to
represent the constituents of the triple patterns, namely the subject,
predicate, and object of a triple pattern. We introduce the following
property names whose meaning is intuitive,

hasComplStmt, hasPattern, subject, predicate, object.

If a constituent of a triple pattern is a term (an IRI or a literal),
then it can be specified directly in RDF; as this is not possible for
variables, we represent a variable by a resource that has a literal value
for the property varName. In the light of these considerations, we can
represent Cact in RDF as the following resource lv:st1, using Turtle
serialization [14].6

lv:lmdbdataset a void:Dataset ;

c:hasComplStmt lv:st1 .

lv:st1 a c:CompletenessStatement ;

c:hasPattern [c:subject [c:varName "m"] ;

c:predicate s:actor ;

c:object [c:varName "a"]] ;

c:hasPattern [c:subject [c:varName "m"] ;

c:predicate rdf:type ;

c:object s:Movie] ;

c:hasPattern [c:subject [c:varName "m"] ;

c:predicate s:director ;

c:object dbp:Quentin_Tarantino] .

Note that in the Turtle serialization we use unlabeled blank nodes
(i.e., anonymous resources), denoted by [...], for reification pur-
poses [85] which do not relate to the semantics of completeness state-
ments.

More generally, consider a completeness statement Compl(t1, . . . , tn),
where each ti is a triple pattern. Then, we create a resource to represent
the statement, and a resource for each of the ti that is linked to the
statement-resource by the property hasPattern. The constituents of
each ti are linked to ti-resource in the same way via subject, predicate,
and object. Our vocabulary is available at http://completeness.inf.
unibz.it/ns.

2.3 query completeness

A usual way to access data is via queries. When querying a data
source, we want to know whether the data source provides sufficient
information to answer the query, that is, whether the query is complete
wrt. the real world. For instance, when querying DBpedia for movies
directed by Tarantino, it would be interesting to know whether we

6 We provide the prefix declarations in Appendix A.

24 formal framework

really get all such movies. Intuitively, over an extension pair a query is
complete whenever all answers we retrieve over the ideal state are also
retrieved over the available state. We now define query completeness
wrt. extension pairs.

Definition 2.6 (Query Completeness). Let Q be a SELECT query. To
express that Q is complete, we write Compl(Q). An extension pair
(G, G′) satisfies Compl(Q), if the result of Q evaluated over G′ also
appears in Q over G, that is, �Q�G′ ⊆ �Q�G.7 In this case we write
(G, G′) |= Compl(Q).

The above definition can be naturally adapted for the completeness
of a BGP P, written Compl(P), that is used in later chapters: An ex-
tension pair (G, G′) satisfies Compl(P), written (G, G′) |= Compl(P), if
�P�G′ ⊆ �P�G.

Example 2.7. Consider the extension pair (Gdbp, G′dbp) and the two
queries Qdir, asking for all movies directed by Tarantino, and Qdir+act,
asking for all movies both directed by and starring Tarantino,

Qdir = ({ ?m }, { (?m, a, Mov), (?m, dir, tarantino) }), and

Qdir+act = ({ ?m }, { (?m, a, Mov), (?m, dir, tarantino), (?m, act, tarantino) }).

Then, it holds that Qdir is complete over (Gdbp, G′dbp) since it is the case
that �Qdir�Gdbp = { { ?m �→ reservoirDogs }, { ?m �→ pulpFiction }, { ?m �→
killBill } } = �Qdir�G′dbp

. On the other hand, Qdir+act is not complete
over (Gdbp, G′dbp) since �Qdir+act�Gdbp does not contain the result map-
ping { ?m �→ reservoirDogs }, which occurs in �Qdir+act�G′dbp

.

2.4 data-agnostic completeness entailment

From the notions above, a question naturally arises as to when some
meta-information about data completeness can provide a guarantee for
query completeness. In other words, the available state contains all
data, as guaranteed by the completeness statements, that is required for
computing the query answer, so one can trust the results of the query.
While previously we have looked at examples with concrete extension
pairs, in the following we formalize the completeness entailment prob-
lem in the data-agnostic setting, that is, when the available graph to
which completeness statements are given is also abstracted (recall that
ideal graphs are always abstracted). This way, we ‘quantify’ over all
extension pairs such that if an extension pair satisfies the completeness
statements, then it must also satisfy the query completeness.

Definition 2.8 (Data-agnostic Completeness Entailment). Let C be a
set of completeness statements and Q be a SELECT query. We say that

7 For monotonic queries, the other direction, that is, �Q�G′ ⊇ �Q�G, comes for free.
Hence, we sometimes use the ‘=’ condition when queries are monotonic.

2.4 data-agnostic completeness entailment 25

C entails the completeness of Q, written C |= Compl(Q), if any extension
pair satisfying C also satisfies Compl(Q).

Example 2.9. Consider Cdir from Eq. (1). Whenever an extension pair
(G, G′) satisfies Cdir, then G contains all triples about movies directed
by Tarantino, which is exactly the information needed to answer Qdir
from Example 2.7. Thus, {Cdir } |= Compl(Qdir). However, Cdir is not
enough to completely answer Qdir+act, thus {Cdir }
|= Compl(Qdir+act).

We want to provide a characterization of the entailment. To check
whether the completeness of a query Q = (W, P) is entailed by a set of
completeness statements, we evaluate all the corresponding CONSTRUCT
queries of the statements over the prototypical graph P̃ and check
whether in the evaluation result, we have P̃ back. Intuitively, this
means that over any possible graph instantiation for answering the
query, the completeness statements guarantee that we have back the
graph instantiation in our available data source. The following theo-
rem characterizes the completeness of SPARQL queries.

Theorem 2.10 (Completeness of SELECT Queries [28]). Let C be a set of
completeness statements and Q = (W, P) be a SELECT query. Then,

C |= Compl(Q) iff P̃ = TC(P̃).

The following complexity result [28] follows as the completeness
check is basically evaluating a linear number of CONSTRUCT queries over
the (frozen) conjunctive body of the query.

Corollary 2.11. Deciding whether C |= Compl(Q), given a set C of com-
pleteness statements and a SELECT query Q = (W, P), is NP-complete.

The result shows that the complexity of completeness reasoning is
no higher than that of conjunctive query evaluation, which is also
NP-complete [20].

3
D ATA - AWA R E C O M P L E T E N E S S R E A S O N I N G

In the previous chapter, we have formalized completeness information,
and characterized its use for checking query completeness in the data-
agnostic setting. Data-agnostic completeness checking takes a set of
completeness statements and a query as input parameters, and says
whether the query can be guaranteed to be complete. In such checking,
the available graph for which completeness statements are applied is
not taken into account. As a consequence, data-specific inferences
cannot be drawn. Yet, since completeness statements are generally
created within the context of an available graph, query completeness
may also depend on the graph.

In this chapter, we tackle the problem of completeness checking in
the data-aware setting, that is, given a set of completeness statements,
a query, and an RDF graph, we check whether the completeness of the
query can be guaranteed. This chapter is divided into the following
sections. Section 3.1 gives a motivating scenario of data-aware com-
pleteness reasoning. Section 3.2 formalizes the problem of data-aware
completeness entailment and provides a characterization of the prob-
lem. Section 3.3 introduces SP-statements, a fragment of completeness
statements that is suitable for entity-centric, crowdsourced RDF data
sources, while Section 3.4 introduces no-value statements, a fragment
of completeness statements that concerns the non-existence of infor-
mation in RDF. Related work is given in Section 3.5. We summarize
this chapter in Section 3.6.

The results of this chapter have been published in [34] for the parts of
formalizing and characterizing data-aware completeness entailment,
as well as SP-statements, and in [32] for the part of no-value statements.

3.1 motivating scenario

Let us consider a motivating scenario for the main problem of this
chapter, that is, the checking of query completeness based on RDF
data with completeness information. Consider an RDF graph G about
the crew of Apollo 99 (or for short, A99), a fictional space mission, and
the children of the crew, as displayed below.

27

28 data-aware completeness reasoning

Consider now the query Q0 asking for the crew of A99 and their
children:

Q0 = (W0, P0) = ({ ?crew, ?child }, { (a99, crew, ?crew),
(?crew, child, ?child) }).

Evaluating Q0 over the graph gives only one mapping result, where
the crew is mapped to Tony and the child is mapped to Toby. Up until
now, nothing can be said about the completeness of the query since:
(i) there can be another crew member of A99 with a child; (ii) Tony may
have another child; or (iii) Ted may have a child.

Let us consider the same graph as before, now enriched with com-
pleteness information, as shown below.

The above figure illustrates three completeness statements:

• C1 = Compl((a99, crew, ?c)), which states that the graph contains
all crew members of A99;

• C2 = Compl((tony, child, ?c)), which states the graph contains all
Tony’s children; and

• C3 = Compl((ted, child, ?c)), which states the graph contains all
Ted’s children (i.e., Ted has no children).

With the addition of this completeness information, let us see whether
we can answer our query completely.

First, from the completeness statement C1 about all A99 crew, we can
infer that the part (a99, crew, ?crew) of Q0 is complete. By evaluating
that part over G, we know that all the A99 crew members are Tony and
Ted. In terms of extension pairs, that means that no extension G′ ⊇ G
satisfying C1 has other A99 crew members than Tony and Ted. In
summary, this allows us to instantiate the query Q0 into the following
two queries that are intuitively equivalent with Q0 itself:

• Q1 = (W1, P1) = ({ ?child }, {(a99, crew, tony), (tony, child, ?child)})

• Q2 = (W2, P2) = ({ ?child }, {(a99, crew, ted), (ted, child, ?child)})

where we record that the variable ?crew has been assigned to Tony and
Ted, respectively.

Our task is now transformed to checking whether Q1 and Q2 can be
answered completely. As for Q2, we know that from the statement C3,

3.1 motivating scenario 29

we are complete for the part (ted, child, ?child). This again allows us to
instantiate the query Q2 wrt. the graph G. However, now we come to
the situation where there is no applicable part in G: instantiating the
part (ted, child, ?child) gives nothing (i.e., Ted has no children). In other
words, for any possible extension G′ of G, as guaranteed by C3, the
extension G′ is also empty for the part (ted, child, ?child). Thus, there is
no way that Q2 will return an answer, so Q2 can be safely removed. In
a way, we can also see that we are complete for Q2.

Now, only the query Q1 is left. Again, from the statement C2, we
know that we are complete for the part (tony, child, ?child) of Q1. This
allows us to instantiate the query Q1 into the query Q3 that is intuitively
equivalent with Q1 itself:

Q3 = (W3, P3) = ({ }, { (a99, crew, tony), (tony, child, toby) }),

where we record that the variable ?crew has been assigned to Tony and
?child to Toby. However, our graph is complete for Q3 as it contains the
whole ground body of Q3. In this case, no extension G′ of G can contain
more information about Q3. Now, tracing back our reasoning steps,
we know that our Q3 is in fact intuitively equivalent to our original
query Q0. Since we are complete for Q3, we are also complete for Q0,
wrt. our graph and completeness statements. In other words, our
statements and graph can guarantee the completeness of the query Q0.
Concretely, this means that Toby is the only child of Tony, the only
crew member of A99 with a child.

To generalize our example, we have reasoned about the complete-
ness of a query given a set of completeness statements and a graph. The
reasoning is basically done as follows: First we find parts of the query
that can be guaranteed to be complete by the completeness statements.
Then, we produce equivalent query instantiations by evaluating those
complete query parts over the graph and applying the obtained map-
pings to the query itself. Next, for all the query instantiations, we
repeat the above steps until no further complete parts can be found.
The original query is complete iff all the BGPs of the generated queries
are contained in the data graph.

Note that using the data-agnostic approach as in Section 2.4, it is not
possible to derive the same conclusion. Without looking at the actual
graph, we cannot conclude that Ted and Tony are all the crew members
of Apollo 99, that is, it can even be that all the crew members are
completely different people like Bob, John, and Romeo. Consequently,
just having the children of Tony and Ted complete does not help reason
about Apollo 99.

In the next section, we discuss how the intuitive, data-specific rea-
soning from above can be formalized.

30 data-aware completeness reasoning

3.2 checking data-aware completeness entailment

In contrast to data-agnostic completeness entailment, in data-aware
completeness entailment, the specifics of the graph matter, as formal-
ized below.

Definition 3.1 (Data-aware Completeness Entailment). Given a set C

of completeness statements, a graph G, and a query Q, we define that
C and G entail the completeness of Q, written as C, G |= Compl(Q), if for
all extension pairs (G, G′) |= C, it holds that (G, G′) |= Compl(Q).

As we assume bag semantics for query evaluation, we can therefore
focus on the BGPs used in the body of queries for completeness entail-
ment. The following proposition provides an initial characterization
of completeness entailment as a reference on how to develop formal
notions and an algorithm for completeness checking. Basically, for
a set of completeness statements, a graph, and a BGP, the complete-
ness entailment holds, iff extending the graph with a possible BGP
instantiation (wrt. some mapping) such that the extension satisfies the
statements, will always result in the inclusion of the BGP instantiation
in the graph itself.

Proposition 3.2. Let C be a set of completeness statements, G be a graph, and
P be a BGP. Then, it holds that: C, G |= Compl(P) iff for every mapping μ
such that dom(μ) = var(P) and (G, G∪μP) |= C, it is the case that μP ⊆ G.

Proof. (⇒) We prove by contrapositive. Suppose there is a mapping μ
where dom(μ) = var(P) and (G, G∪ μP) |= C, but μP � G. We want to
show C, G
|= Compl(P). For this, we need a counterexample extension
pair (G, G′) such that (G, G′) |= C but (G, G′)
|= Compl(P).

Take the extension pair (G, G ∪ μP). By assumption, we have that
(G, G∪ μP) |= C. Now let us see whether (G, G∪ μP) |= Compl(P) or
not. Again, by assumption we have that μP � G. This means that
μ � �P�G despite the obvious case that μ ∈ �P�G∪μP. This implies that
(G, G∪ μP)
|= Compl(P). Therefore, C, G
|= Compl(P) as witnessed by
the counterexample extension pair (G, G∪ μP).
(⇐) Assume that for all mappings μ such that dom(μ) = var(P) and
(G, G∪ μP) |= C, it is the case μP ⊆ G. We want to show that C, G |=
Compl(P). Take an extension pair (G, G′) such that (G, G′) |= C. We
need to prove that (G, G′) |= Compl(P). In other words, it has to be
shown that �P�G′ ⊆ �P�G.

Now take a mapping μ ∈ �P�G′ . By the semantics of BGP evaluation,
this implies μP ⊆ G′. We want to show μ ∈ �P�G. Again, by the
semantics of BGP evaluation it is sufficient to show μP ⊆ G. By the
assumption that (G, G′) |= C and the semantics of the TC operator, we
have that TC(G′) ⊆ G. From this and μP ⊆ G′ (and also G ⊆ G′ by the
definition of an extension pair), it holds that TC(G∪μP) ⊆ TC(G′) ⊆ G.
Therefore, it is the case that (G, G∪ μP) |= C. By assumption, it is the

3.2 checking data-aware completeness entailment 31

case μP ⊆ G. Since μ was arbitrary, we can therefore conclude that
�P�G′ ⊆ �P�G. �

In other words, the completeness entailment does not hold, iff we
can find a possible BGP instantiation (wrt. some mapping) such that
the extension satisfies the statements, but the BGP instantiation is not
contained in the graph. The idea here is that, as demonstrated in our
motivating example, by using completeness statements we always try
to find complete parts of the BGP and instantiate them over the graph,
until either all the instantiations are included in the graph (= the suc-
cess case), or there is one instantiation that is not included there (= the
failure case). In the following subsections, we provide formal notions
and an algorithm for checking data-aware completeness entailment.

3.2.1 Formal Notions

We now introduce formal notions to be used later in our algorithm for
checking data-aware completeness entailment.

First, we need a notion for a BGP with a stored mapping from
variable instantiations. This allows us to represent BGP instantiations
wrt. our completeness entailment procedure. Let P be a BGP and μ be
a mapping such that dom(μ)∩ var(P) = ∅. We define the pair (P,μ) as
a partially mapped BGP, which is a BGP with a stored mapping. Over
a graph G, the evaluation of (P,μ) is defined as �(P,μ)�G = {μ ∪ ν |
ν ∈ �P�G }. It is easy to see that P ≡ (P, ∅). Furthermore, we define
the evaluation of a set of partially mapped BGPs over a graph G as the
union of evaluating each of them over G.

Example 3.3. Consider our motivating scenario. Over the BGP P0 of
the query Q0, instantiating the variable ?crew to tony results in the
BGP P1 of the query Q1. Pairing P1 with this instantiation gives the
partially mapped BGP (P1, { ?crew �→ tony }). Moreover, it is the case
that �(P1, { ?crew �→ tony })�G = { { ?crew �→ tony, ?child �→ toby } }.

Next, we want to formalize the equivalence between partially mapped
BGPs wrt. a set C of completeness statements and a graph G. We need
this notion to ensure the equivalence of the BGP instantiations that
resulted from the evaluation of complete BGP parts.

Definition 3.4 (Equivalence under C and G). Let (P,μ) and (P′, ν) be
partially mapped BGPs, C be a set of completeness statements, and
G be a graph. We define that (P,μ) is equivalent to (P′, ν) wrt. C

and G, written (P,μ) ≡C,G (P′, ν), if for all (G, G′) |= C, it holds that
�(P,μ)�G′ = �(P′, ν)�G′ .

The above definition naturally extends to sets of partially mapped
BGPs.

32 data-aware completeness reasoning

Example 3.5. Consider all the queries in our motivating scenario. It
is the case that { (P0, ∅) } ≡C,G { (P1, { ?crew �→ tony }), (P2, { ?crew �→
ted }) } ≡C,G { (P3, { ?crew �→ tony, ?child �→ toby }) }.

Next, we would like to figure out which parts of a BGP contain
variables that can be instantiated completely. The idea is that, we
‘match’ completeness statements to the BGP and the graph, and return
the matched parts of the BGP. Note that in the matching we consider
also the graph since it might be the case that for a single completeness
statement, some parts of it have to be matched to the BGP, while the
other parts to the graph. For this reason, we define

crucC,G(P) = P∩ ĩd−1
(TC(P̃∪G)) (4)

as the crucial part of P wrt. C and G. It is the case that we are complete
for the crucial part, that is, C, G |= Compl(crucC,G(P)). Later on, we
will see that the crucial part is used to guide the instantiation process
during the completeness entailment check.

Example 3.6. Consider the query Q0 = (W0, P0) in our motivating
scenario. We have that

crucC,G(P0) = P0 ∩ ĩd−1
(TC(P̃0 ∪G)) = { (a99, crew, ?crew) }

with ĩd = { ?crew �→ c̃rew, ?child �→ c̃hild }. Consequently, we can have
a complete instantiation of the crew of A99.

The operator below implements the instantiations of a partially
mapped BGP wrt. its crucial part.

Definition 3.7 (Equivalent Partial Grounding). Let C be a set of com-
pleteness statements, G be a graph, and (P, ν) be a partially mapped
BGP. We define the operator equivalent partial grounding:

epg((P, ν), C, G) = { (μP, ν∪ μ) | μ ∈ �crucC,G(P)�G }.

The following shows that such instantiations produce a set of par-
tially mapped BGPs equivalent to the original partially mapped BGP,
hence the name equivalent partial grounding. Basically, it holds since
the instantiation is done over the crucial part, which is complete wrt.
C and G.

Proposition 3.8 (Equivalent Partial Grounding). Let C be a set of com-
pleteness statements, G be a graph, and (P, ν) be a partially mapped BGP.
Then,

{ (P, ν) } ≡C,G epg((P, ν), C, G).

Proof. Take any G′ such that (G, G′) |= C. We want to show that
�(P, ν)�G′ =

⋃
(μP,ν∪μ)∈epg((P,ν),C,G)�(μP, ν ∪ μ)�G′ . Since it is the case

dom(ν)∩var(P) = ∅ by the construction of a partially mapped BGP, it is

3.2 checking data-aware completeness entailment 33

sufficient to show that �(P, ∅)�G′ =
⋃

(μP,μ)∈epg((P,∅),C,G)�(μP,μ)�G′ . By
the construction of the epg operator, it is enough to show �(P, ∅)�G′ =⋃
μ∈�crucC,G(P)�G

�(μP,μ)�G′ .
Recall that the crucial part of P is complete wrt. C and G, that

is, C, G |= Compl(crucC,G(P)). This implies that �crucC,G(P)�G =

�crucC,G(P)�G′ . Therefore, it is the case that
⋃
μ∈�crucC,G(P)�G

�(μP,μ)�G′ =⋃
μ∈�crucC,G(P)�G′

�(μP,μ)�G′ . By construction, it is always the case that
crucC,G(P) ⊆ P. Given this fact and the semantics of evaluating
a partially mapped BGP, it holds that

⋃
μ∈�crucC,G(P)�G′

�(μP,μ)�G′ =

�(P, ∅)�G′ . Thus, we can conclude that
⋃
μ∈�crucC,G(P)�G

�(μP,μ)�G′ =⋃
μ∈�crucC,G(P)�G′

�(μP,μ)�G′ = �(P, ∅)�G′ .
�

Example 3.9. Consider our motivating scenario. We have that:

• epg((P2, { ?crew �→ ted }), C, G) = ∅

• epg((P3, { ?crew �→ tony, ?child �→ toby }), C, G) = {(P3, {?crew �→
tony, ?child �→ toby})}

• epg((P0, ∅), C, G) = { (P1, { ?crew �→ tony }), (P2, { ?crew �→ ted }) }

Generalizing from the example above, there are three cases of the
operator epg((P, ν), C, G):

• If �crucC,G(P)�G = ∅, it returns the empty set.

• If �crucC,G(P)�G = {μ∅ }, it returns {(P, ν)}.

• Otherwise, it returns a non-empty set of partially mapped BGPs
where some variables in P are instantiated.

From these three cases and the finite number of triple patterns with
variables of a BGP, it holds that the repeated applications of the epg
operator, with the first and second cases above as the base cases, are
terminating. Note that the difference between these two base cases
is in the effect of their corresponding epg operations, as illustrated in
Example 3.9: for the first case, the epg operation returns the empty set,
whereas for the second case, it returns back the input partially mapped
BGP. Also, intuitively the first case corresponds to the non-existence of
the query answer in any possible extension of the graph that satisfies
the set of completeness statements (e.g., the Ted’s children case).

As for the second case, we need a different treatment. We first
define that a partially mapped BGP (P, ν) is saturated wrt. C and G, if
epg((P, ν), C, G) = { (P, ν) }, that is, if the second case above applies.
Note that the notion of saturation is independent from the mapping in
a partially mapped BGP: given a mapping ν, a partially mapped BGP
(P, ν) is saturated wrt. C and G iff (P, ν′) is saturated wrt. C and G for
any mapping ν′. Thus, wrt. C and G we say that a BGP P is saturated
if (P, ∅) is saturated.

34 data-aware completeness reasoning

Saturated BGPs hold the key as to whether our completeness entail-
ment succeeds or not: the completeness checking of saturated BGPs is
simply by checking whether they are contained in the graph G.

Lemma 3.10 (Completeness Entailment of Saturated BGPs). Let P be a
BGP, C be a set of completeness statements, and G be a graph. Suppose P
is saturated wrt. C and G. Then, it is the case that: C, G |= Compl(P) iff
P̃ ⊆ G.

Proof. (⇒) We prove by contrapositive. Suppose P̃ � G. We want to
give a counterexample for C, G |= Compl(P). Let us take the extension
pair (G, G∪ P̃). Note that since P̃ � G, it is the case that �P�G∪P̃ � �P�G,
implying (G, G∪ P̃)
|= Compl(P).

It is left to show (G, G ∪ P̃) |= C. We would like to prove the fol-
lowing: If P is saturated wrt. C and G, then (G, G ∪ P̃) |= C. By
definition, wrt. C and G a BGP P is saturated iff (P, ∅) is saturated.
From our assumption that P is saturated, we therefore know that (P, ∅)
is also saturated. By the definition of saturation, this means that
epg((P, ∅), C, G) = { (P, ∅) }. This implies that �crucC,G(P)�G = {μ∅ }.
Consequently, μ∅(crucC,G(P)) = crucC,G(P) ⊆ G. Here we know that
crucC,G(P) is ground.

Now we want show that TC(P̃∪G) ⊆ G for the following reason: by
the definition of TC and the satisfaction of an extension pair wrt. C, it
is the case that TC(P̃∪G) ⊆ G implies (G, P̃∪G) |= C.

By construction, the TC operator always returns a subset of the input.
There are therefore two components of the results of TC(P̃∪G)we have
to check if they are included in G. The first is those included in G, that
is, G∩ TC(P̃∪G). Clearly, G∩ TC(P̃∪G) ⊆ G.

The second one is those included in P̃, that is, P̃∩TC(P̃∪G). We want
to show that P̃ ∩ TC(P̃ ∪G) ⊆ G. Recall that crucC,G(P) ⊆ G. By defi-
nition, crucC,G(P) = P ∩ ĩd−1

(TC(P̃ ∪G)). Since crucC,G(P) is ground,
we have that crucC,G(P) = P̃∩ ĩd−1

(TC(P̃∪G)), and the melting oper-
ator ĩd−1

does not have any effect, that is, P̃ ∩ ĩd−1
(TC(P̃ ∪G)) = P̃ ∩

(TC(P̃∪G)). Consequently, we have crucC,G(P) = P̃∩ (TC(P̃∪G)) ⊆
G.

Since both components are in G, we have that TC(P̃ ∪G) ⊆ G, and
therefore (G, P̃∪G) |= C.
(⇐) Assume P̃ ⊆ G. It is trivial to see that P is ground (i.e., has no
variables), and P ⊆ G. Therefore, it is the case that for all extension
pairs (G, G′), the inclusion �P�G′ ⊆ �P�G holds, implying (G, G′) |=
Compl(P). By definition, C, G |= Compl(P) holds if for all (G, G′) |= C,
we have (G, G′) |= Compl(P). Hence, C, G |= Compl(P) holds since
(G, G′) |= Compl(P) even for all possible extension pairs (G, G′). �

By consolidating all the above notions, we are ready to provide an
algorithm to check data-aware completeness entailment. The next
subsection presents the algorithm.

3.2 checking data-aware completeness entailment 35

3.2.2 Algorithm

From the above notions, we have defined the cruc operator, useful to
find parts of a BGP that can be instantiated completely. The instan-
tiation process wrt. the crucial part is facilitated by the epg operator.
We have also learned that repeating the application of the epg operator
results in saturated BGPs for which we have to check whether they
are contained in the graph or not, in order to know whether our orig-
inal BGP is complete. Let us now introduce an algorithm to compute,
given a set of completeness statements C, a graph G, and a BGP P,
all mappings that have two properties: each BGP instantiation of the
mappings constitutes a saturated BGP wrt. C and G; and the original
BGP is equivalent wrt. C and G with the BGP instantiations produced
from all the resulting mappings of the algorithm.

ALGORITHM 1: sat(Porig, C, G)

Input: A BGP Porig, a set C of completeness statements, a graph G
Output: A set Ω of mappings

1 Pworking ← { (Porig, ∅) }
2 Ω← ∅
3 while Pworking � ∅ do

4 (P, ν)← takeOne(Pworking)

5 Pequiv ← epg((P, ν), C, G)

6 if Pequiv = { (P, ν) } then

7 Ω← Ω ∪ ν
8 else

9 Pworking ← Pworking ∪ Pequiv

10 end

11 end

12 return Ω

Consider a BGP Porig, a set C of completeness statements, and a
graph G. The algorithm works as follows: First, we transform our
original BGP Porig into its equivalent partially mapped BGP (Porig, ∅)
and put it in Pworking. Then, in each iteration of the while loop, we take
and remove a partially mapped BGP (P, ν) from Pworking via the method
takeOne. Afterwards, we compute epg((P, ν), C, G). As discussed
above there might be three result cases here: (i) If epg((P, ν), C, G) = ∅,
then simply we remove (P, ν) and will not consider it anymore in the
later iteration; (ii) If epg((P, ν), C, G) = { (P, ν) }, that is, (P, ν) is satu-
rated, then we collect the mapping ν to the set Ω; and (iii) otherwise,
we add to Pworking a set of partially mapped BGPs instantiated from
(P, ν). We keep iterating until Pworking = ∅, and finally return the set Ω.

The following proposition follows from the construction of the above
algorithm and Proposition 3.8.

Proposition 3.11. Given a BGP P, a set C of completeness statements, and
a graph G, the following properties hold:

36 data-aware completeness reasoning

• For all μ ∈ sat(P, C, G), it is the case that μP is saturated wrt. C and
G.

• It holds that {(P, ∅)} ≡C,G { (μP,μ) | μ ∈ sat(P, C, G) }.

From the above proposition, we can derive the following theorem,
which shows the soundness and completeness of the algorithm to
check completeness entailment.

Theorem 3.12 (Completeness Entailment Check). Let P be a BGP, C be
a set of completeness statements, and G be a graph. It holds that

C, G |= Compl(P) iff for all μ ∈ sat(P, C, G) . μ̃P ⊆ G.

Proof. (⇒) We prove by contrapositive. Assume there exists a mapping
μ ∈ sat(P, C, G) such that μ̃P � G. From Proposition 3.11, we have
that μP is saturated wrt. C and G. From Lemma 3.10, it is the case
C, G
|= Compl(μP).

From Proposition 3.11, we have that (P, ∅) ≡C,G { (νP, ν) | ν ∈
sat(P, C, G) }. Note that by construction, each mapping in sat(P, C, G)

is not comparable to the others. Since C, G
|= Compl(μP), we have the
extension pair (G, G∪ μ̃P) as a counterexample for C, G |= Compl(P).
(⇐) By the first claim of Proposition 3.11, we have that μP is saturated
wrt. C and G for each μ ∈ sat(P, C, G). Thus, from the right-hand side
of Theorem 3.12 and Lemma 3.10, we have that C, G |= Compl(μP) for
each μ ∈ sat(P, C, G). Therefore, we have that C, G |= Compl(P) by the
second claim of Proposition 3.11. �

Example 3.13. Consider our motivating scenario. It is the case that
sat(P0, C, G) = { { ?crew �→ tony, ?child �→ toby } }. For every mapping
μ in sat(P0, C, G), it holds that μ̃P0 ⊆ G. Thus, by Theorem 3.12 the
entailment C, G |= Compl(P0) holds.

From looking back at the characterization of completeness entail-
ment in Proposition 3.2, it actually does not give us a concrete way to
compute a set of mappings to be used in checking completeness entail-
ment. Now, by Theorem 3.12 it is sufficient for checking completeness
entailment to consider only the mappings in sat(P, C, G) for which we
know how to compute.

simple practical optimizations . In what follows we provide
two simple optimization techniques of the algorithm: early failure
detection and completeness skip. More elaborate optimizations are
given in Chapter 4.

Early failure detection. In our algorithm, the containment checks for
saturated BGPs are done at the end. Indeed, if there is a single sat-
urated BGP not contained in the graph, we cannot guarantee query
completeness (recall Theorem 3.12). Thus, instead of having to collect

3.2 checking data-aware completeness entailment 37

all saturated BGPs and then check the containment later on, we can
improve the performance of the algorithm by performing the contain-
ment check right after the saturation check (Line 6 of the algorithm).
So, as soon as there is a failure in the containment check, we stop the
loop and conclude that the completeness entailment does not hold.

Completeness skip. Recall the definition of the operator

epg((P, ν), C, G) = { (μP, ν∪ μ) | μ ∈ �crucC,G(P)�G },

which relies on the cruc operator. Now, suppose that crucC,G(P) =

P, implying that we are complete for the whole part of the BGP P.
Thus, we actually do not have to instantiate P in the epg operator,
since we know that the instantiation results will be contained in G
anyway due to P’s completeness wrt. C and G. In conclusion, whenever
crucC,G(P) = P, we just remove (P, ν) from Pworking and thus skip its
instantiations.

3.2.3 Complexity

In this subsection, we analyze the complexity of the problem of data-
aware completeness entailment. Recall that the complexity of the
data-agnostic counterpart is NP-complete (as per Corollary 2.11). The
addition of the data graph to the entailment increases the complexity,
which is now ΠP

2 -complete. The hardness is by reduction from the
validity problem of a ∀∃3SAT formula.

Proposition 3.14. Deciding whether the entailment C, G |= Compl(P)
holds, given a set C of completeness statements, a graph G, and a BGP P, is
ΠP

2 -complete.

Proof. The membership proof is as follows. It is the case that C, G
|=
Compl(P) iff there exists a graph G′ containing G where:

• (G, G′) |= C, and

• (G, G′)
|= Compl(P).

We guess a mapping μ over P such that μP � G, which implies that
(G, G∪ μP)
|= Compl(P). Then, we check in CoNP that (G, G∪ μP) |=
C. If it holds, then C, G
|= Compl(P) by the counterexample G′ =
G∪ μP.

Next, we prove the hardness by reduction from the validity of a
∀∃3SAT formula. The general shape of a formula is as follows:

ψ = ∀x1, . . . , xm∃y1, . . . , yn γ1 ∧ . . .∧ γk,

where each γi is a disjunction of three literals over propositions from
vars∀ ∪ vars∃ where vars∀ = {x1, . . . , xm} and vars∃ = {y1, . . . , yn}. We
will construct a set C of completeness statements, a graph G, and a
BGP P such that the following claim holds:

38 data-aware completeness reasoning

C, G |= Compl(P) iff ψ is valid.

Our encoding is inspired by the following approach to check the
validity of ψ: Unfold the universally quantified variables x1, . . . , xm

in ψ, and then check if for every formula in the set Ψunfold of the un-
folding results, there is an assignment from the existentially quantified
variables y1, . . . , yn to make all the clauses evaluate to true.

(encoding) First, we construct1

G = { (0, varg, c), (1, varg, c) }

and the completeness statement

C∀ = Compl({ (?x, varg, ?y) }),

to denote all the assignment possibilities (i.e., 0 and 1) for the univer-
sally quantified variables.

Next, we define

Pground = { (?xi, varg, ?cxi), (?xi, varc, cxi) | xi ∈ vars∀ }.

The idea is that Pground via C∀ and G will later be instantiated with all
possible assignments for the universally quantified variables in ψ.

Now, we define

Pneg = { (0, neg, 1), (1, neg, 0) },

which says that 0 is the negation of 1, and vice versa. This BGP is used
later on to assign values for all the propositional variables and their
negations. Then, we define

Ptrue = { (1, 1, 1), . . . , (0, 0, 1) },

to denote the seven possible valid values for a clause. Our BGP P we
want to check for completeness is therefore as follows:

P = Ptrue ∪ Pneg ∪ Pground.

Now, we want to encode the structure of the formula ψ. For
each propositional variable pi, we encode the positive literal pi as
the variable var(pi) = ?pi and the negative literal ¬pi as the variable
var(¬pi) = ?¬pi. Given a clause γi = li1 ∨ li2 ∨ li3, the operator tp(γi)

maps γi to a triple pattern (var(li1), var(li2), var(li3)). We then define
the following BGP to encode the structure of ψ:

Pψ = { tp(γi) | γi occurring in ψ }.

1 Recall that we omit namespaces. With namespaces, for example, the ‘number’ 0 in
the encoding can be written as the IRI http://example.org/0.

3.2 checking data-aware completeness entailment 39

To encode the inverse relationship between a positive literal and a
negative literal, we use the following:

Pposs = { (?pi, neg, ?¬pi), (?¬pi, neg, ?pi) | pi ∈ vars∀ ∪ vars∃}.

This pattern will later be instantiated accordingly wrt. Pneg. Now, for
capturing the assignments of the universally quantified variables in P,
we use

P∀ = { (?xi, varc, cxi) | xi ∈ vars∀ }.

We are now ready to construct the following completeness state-
ment:

Cψ = Compl(Ptrue ∪ Pposs ∪ P∀ ∪ Pψ).

In summary, our encoding consists of the following ingredients: the
set C = {C∀, Cψ } of completeness statements, the graph G, and the
BGP P. Let us now prove the claim mentioned above.

(proof for encoding) Recall the approach we mentioned above
to check the validity of the formula ψ. To simulate the unfolding of
the universally quantified variables, we rely on the equivalent par-
tial grounding operator epg((P, ∅), C, G) as in Algorithm 1 which in-
volves the cruc operator. Accordingly, crucC,G(P) = P ∩ ĩd−1

(TC(P̃ ∪
G)) by definition. By construction, the statement C∀ captures the
(?xi, varg, ?cxi) part of the BGP P where xi ∈ vars∀. Thus, by the con-
struction of G, it is the case that epg((P, ∅), C, G) consists of 2m partially
mapped BGPs, where m is the number of the universally quantified
variables in ψ. Each of the partially mapped BGPs corresponds to an
assignment for the universally quantified variables in the set Ψunfold of
the unfolding results of ψ.

Now, we prove the simulation of the next step, the existential check-
ing. For each partially mapped BGP (μP,μ) in the unfolding results
epg((P, ∅), C, G), it is either epg((μP,μ), C, G) = ∅or epg((μP,μ), C, G) =

{ (μP,μ) }. Let us see what this means.
By construction, the former case happens whenever TC(μ̃P ∪G) =

μ̃P holds, from the fact that �μP�G = ∅. Furthermore, it is the case that
TC(μ̃P∪G) = μ̃P iff there is a mapping ν from the encoding ?yi of the
existentially quantified variables in Pψ such that ν(μPψ) ⊆ Ptrue. Note
that the mapping ν simulates a satisfying assignment for the corre-
sponding existentially quantified formula in the set Ψunfold. Whenever
this holds for all (μP,μ) ∈ epg((P, ∅), C, G), from Proposition 3.8 we
can conclude that (P, ∅) ≡C,G ∅, and therefore C, G |= Compl(P). Also,
because we have the satisfying assignments for all the correspond-
ing existentially quantified formulas in the set Ψunfold, the formula ψ
evaluates to true.

The latter case happens whenever TC(μ̃P ∪G) � μ̃P, since there is
no mapping ν from the encoding ?yi of the existentially quantified
variables in Pψ such that ν(μPψ) ⊆ Ptrue. This simulates the failure

40 data-aware completeness reasoning

in finding a satisfying assignment for the corresponding existentially
quantified formula in the set Ψunfold. This implies that ψ evaluates to
false. However, whenever the latter case happens, it means that (μP,μ)
is saturated. By construction, it is the case μ̃P � G. From Lemma 3.10
and Proposition 3.8, we conclude that C, G
|= Compl(P). �

One might wonder, if some parts of the inputs were fixed, what
would be the complexity of the entailment problem. We answer this
question in the following series of propositions.

First, let us fix the input graph G. This does not change the com-
plexity, that is, the problem is still ΠP

2 -complete. The reason is that, the
reduction from the validity problem of a ∀∃3SAT formula can be done
even with a fixed graph.

Proposition 3.15. Deciding whether the entailment C, G |= Compl(P)
holds, given a set C of completeness statements, a fixed graph G, and a
BGP P, is ΠP

2 -complete.

Proof. The membership follows immediately from Proposition 3.14,
while the hardness follows from the reduction proof of that proposition,
in which the graph is fixed. �

Now, we want to see the complexity when the BGP P is fixed. Recall
that in the algorithm, P dominates the complexity of the instantiation
process in the epg operator. When it is fixed, the size of the instantia-
tions is bounded polynomially, reducing the complexity of the entail-
ment problem to NP-complete. Note it is still NP-hard even when the
input graph G is fixed.

Proposition 3.16. Deciding whether the entailment C, G |= Compl(P)
holds, given a set C of completeness statements, a graph G, and a fixed
BGP P, is NP-complete.

Proof. The membership relies on Algorithm 1 and Theorem 3.12. Recall
that the algorithm contains the epg operator, which performs ground-
ing based on the crucial part over the graph G. However, now since
the BGP is fixed, the size of the grounding results is therefore bounded
polynomially. Consequently, the only source of complexity is from the
finding of the crucial part of BGPs, which can be done in NP (note that
here the completeness statements are not fixed).

The hardness follows immediately from Proposition 3.17. �

Proposition 3.17. Deciding whether the entailment C, G |= Compl(P)
holds, given a set C of completeness statements, a fixed graph G, and a
fixed BGP P, is NP-complete.

Proof. The membership follows immediately from Proposition 3.16.
The proof for NP-hardness is by means of reduction from the 3-

colorability problem of directed graphs, which is known to be NP-
hard [43]. We encode the problem graph Gp = (V, E), i.e., the directed

3.2 checking data-aware completeness entailment 41

graph we want to check whether it is 3-colorable, as a set triples(Gp)

of triple patterns. We associate to each vertex v ∈ V, a new variable
?v. Then, we define triples(Gp) as the union of all triple patterns
(?s, edge, ?o) created from each pair (s, o) ∈ E where ?s is the associated
variable of s, edge is an IRI and ?o is the associated variable of o. Let
the BGP Pcol be:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b), (b, edge, r), (b, edge, g) }

Next, we create the following completeness statement Cp:

Compl(triples(Gp) ∪ Pcol)

Let G be the empty set. Thus, the following claim holds:

The problem graph Gp is 3-colorable if and only if
{Cp }, G |= Compl(Pcol)

Proof of the claim: “⇒” Assume Gp is 3-colorable. Thus, there must
be a mapping μ from all the vertices in Gp to an element from the
set { r, g, b } such that no adjacent nodes have the same color. This
mapping can then be reused for mapping the CONSTRUCT query of the
statement Cp to the frozen version of the BGP Pcol, which then ensures
the completeness of Pcol.

“⇐” We will prove by contrapositive. Assume that Gp is not 3-colorable.
Thus, there is no mapping from the vertices in Gp to an element from
the set { r, g, b } such that any adjacent node has a different color. Sup-
pose that there is an extension pair (G, G′) such that G′ is the color
graph { (r, edge, g), . . . , (b, edge, g) }. From the construction of Cp, it is
the case that (G, G′) |= {Cp } but �Pcol�G � �Pcol�G′ . Thus, {Cp }, G
|=
Compl(Pcol). �

Let us now see the complexity when the set of statements C is fixed.
In the algorithm, C dominates the complexity of the TC operator used
in computing the crucial part. When it is fixed, the TC operator can
be done in PTIME, reducing the complexity of the entailment problem
to CoNP-complete. Again, fixing also the graph does not change the
complexity.

Proposition 3.18. Deciding whether the entailment C, G |= Compl(P)
holds, given a fixed set C of completeness statements, a graph G, and a
BGP P, is CoNP-complete.

Proof. The membership proof is as follows. It is the case that C, G
|=
Compl(P) iff there exists a graph G′ containing G where:

• (G, G′) |= C, and

• (G, G′)
|= Compl(P).

42 data-aware completeness reasoning

We guess a mapping μ over P such that μP � G, which implies
that (G, G ∪ μP)
|= Compl(P). Then, we check in PTIME (since C

is now fixed) the entailment (G, G ∪ μP) |= C. If it holds, then
C, G
|= Compl(P) by the counterexample G′ = G∪ μP.

The hardness follows immediately from Proposition 3.19. �

Proposition 3.19. Deciding whether the entailment C, G |= Compl(P)
holds, given a fixed set C of completeness statements, a fixed graph G, and a
BGP P, is CoNP-complete.

Proof. The membership follows immediately from Proposition 3.18.
The proof for CoNP-hardness is by means of reduction from the

3-incolorability problem of directed graphs. We encode the problem
graph Gp = (V, E), i.e., the directed graph we want to check whether
it is 3-incolorable, as a set triples(Gp) of triple patterns. We associate
to each vertex v ∈ V, a new variable ?v. Then, we define triples(Gp)

as the union of all triple patterns (?s, edge, ?o) created from each pair
(s, o) ∈ E where ?s is the associated variable of s, edge is an IRI and ?o
is the associated variable of o. Let the BGP P be:

triples(Gp) ∪ { (a, b, c) }

Let the graph G be the color graph:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b), (b, edge, r), (b, edge, g) }

Next, we create the following completeness statement C:

Compl((?x, edge, ?y))

Thus, the following claim holds:

The problem graph Gp is 3-incolorable if and only if
{C }, G |= Compl(P).

Proof of the claim: “⇒” The proof relies on Algorithm 1 and The-
orem 3.12. Assume Gp is 3-incolorable. By construction, the part
triples(Gp) of the BGP P can be grounded completely due to the state-
ment C, that is, the crucial part operator cruc returns exactly that part.
However, as Gp is 3-incolorable, there is no mapping μ from all the
vertices in Gp to an element from the set { r, g, b } such that no adja-
cent nodes have the same color. Thus, the epg operator returns the
empty set as evaluating triples(Gp) over G yields the empty answer.
This means that the grounding does not output any BGP that needs
to be checked anymore for its completeness. Hence, it is the case that
{C }, G |= Compl(P).

“⇐” We will prove by contrapositive. Assume that Gp is 3-colorable.
Thus, there must be a mapping μ from all the vertices in Gp to an
element from the set { r, g, b } such that no adjacent nodes have the
same color. Take such a mapping μ arbitrarily. By construction, the
part triples(Gp) of the BGP P can be grounded completely due to the
statement C, that is, the crucial part operator cruc returns exactly that

3.2 checking data-aware completeness entailment 43

part. Since the graph Gp is 3-colorable, we can then reuse the mappingμ
for mapping triples(Gp) to G. The epg operator results therefore include
that mapping, which is then applied to the remaining part of P, that is,
the triple pattern (a, b, c). Note that the triple pattern consists of only
constants, so the mapping application has no effect. Now we have
to check the completeness of (a, b, c). As no completeness statements
can be evaluated over that remaining part, it is then the case that we
are already saturated for (a, b, c). By Theorem 3.12, the BGP P can
be guaranteed to be complete iff all saturated instantiations wrt. {C }
are in G. However, clearly (a, b, c) is not in G. Thus, we have that
{C }, G
|= Compl(P). �

Finally, the following proposition tells us that fixing both the set of
statements C and the BGP P reduces the complexity to PTIME.

Proposition 3.20. Deciding whether the entailment C, G |= Compl(P)
holds, given a fixed set C of completeness statements, a graph G, and a
fixed BGP P, is in PTIME.

Proof. The proof relies on Algorithm 1 and Theorem 3.12. Recall that
the algorithm contains the epg operator, which performs grounding
based on the crucial part over the graph G. However, now since the
BGP is fixed, the size of the grounding results is therefore bounded
polynomially. Moreover, now that the completeness statements are
fixed, the finding of the crucial part can then be done in PTIME. Hence,
the overall procedure can be done in PTIME. �

This result corresponds to some practical cases when queries are as-
sumed to be of limited length2 and hence, so are completeness state-
ments (which are essentially also queries).

input complexity

C G P

� � � ΠP
2 -C

� × � ΠP
2 -C

� � × NP-C

� × × NP-C

× � � CoNP-C

× × � CoNP-C

× � × in PTIME

Table 3.1: Complexity table for the data-aware completeness entailment prob-
lem with various input fixes (× denotes ‘fixed’)

Our complexity results with various input fixes can be summarized
in Table 3.1. From this complexity study, it is therefore of our interest
to study how well the problem of completeness entailment for both

2 as also customary in the database theory when analyzing the data complexity of query
evaluation

44 data-aware completeness reasoning

the data-agnostic and data-aware cases may behave in practice. We
will later provide optimization techniques, as well as experimental
evaluations of the problem in Chapter 4.

3.3 sp-statements

In the previous section, we have provided completeness characteriza-
tions for queries by using generic completeness statements. Yet, in
some practical cases a simpler fragment of completeness statements
might be sufficient for the task at hand. This section identifies SP-
statements, a fragment of completeness statements having several
properties that are suitable for RDF data sources with the entity-centric,
crowdsourced basis.

3.3.1 Motivation

An SP-statement Compl((s, p, ?v)) is a completeness statement with only
one triple pattern in the statement’s BGP, where the subject and the
predicate are IRIs, and the object is a variable. In our motivating
scenario (see Section 3.1), all the completeness statements are in fact
SP-statements. The statements possess the following properties, which
make them suitable for practical use:

• Having a simple structure, completeness statements within this
fragment are easy to create and to be read. Thus, they are suitable
for crowdsourced KBs, where humans are involved.

• An SP-statement denotes the completeness of all the property
values of the entity which is the subject of the statement. This
fits entity-centric KBs like Wikidata, where data is organized ac-
cording to entities (i.e., each entity has its own data page).

• Despite their simplicity, SP-statements can be used to guarantee
the completeness of more complex queries such as queries whose
length is greater than one (as illustrated by our motivating sce-
nario).

3.3.2 SP-Indexing

We describe here how to optimize data-aware completeness entail-
ment check with SP-statements. Recall our generic algorithm to check
completeness entailment:
In the cruc operator within the epg operator (Line 5 of Algorithm 1),
we have to compute TC(P̃∪G), that is, evaluate all CONSTRUCT queries
of the completeness statements in C over the graph P̃ ∪G. This may
be problematic if there are a large number of completeness statements
in C. Thus, we want to avoid such costly TC applications. Given

3.3 sp-statements 45

that completeness statements are SP-statements, we may instead look
for the statements having the same subject and predicate of the triple
patterns in the BGP. The crucial part of the BGP P wrt. C and G are
the triple patterns for which there is an SP-statement with a matching
subject and predicate.

Proposition 3.21. Given a BGP P, a graph G, and a set C of SP-statements,
it is the case that crucC,G(P) = { (s, p, o) ∈ P | there exists a statement
Compl({ (s, p, ?v) }) ∈ C }.

From the above proposition, to get the crucial part, we only have to
find an SP-statement with the same subject and predicate for each triple
pattern of the BGP, and thus, the graph G does not play any role. In
practice, we can facilitate this search via a standard hashmap, provid-
ing constant-time performance, also for other basic operations such as
add and delete. The hashmap provides a mapping from the concate-
nation of the subject and the predicate of a statement to the statement
itself. To illustrate, the hashmap of the completeness statements in
our motivating scenario is as follows: { a99-crew �→ C1, tony-child �→
C2, ted-child �→ C3 }.

Complexity-wise, it is the case that when completeness statements
are only of 1 triple pattern (i.e., a close generalization of SP-statements),
the problem of data-aware completeness entailment is CoNP-complete.
This is in contrast to the complexity for general cases, which is ΠP

2 -
complete (as in Proposition 3.14).

Proposition 3.22. Deciding whether the entailment C, G |= Compl(P)
holds, given a set C of completeness statements of length 1, a graph G, and a
BGP P, is CoNP-complete.

Proof. The Co-NP membership proof is as follows. It is the case that
C, G
|= Compl(P) iff there exists a graph G′ containing G where:

• (G, G′) |= C, and

• (G, G′)
|= Compl(P).

We guess a mapping μ over P such that μP � G, implying that (G, G∪
μP)
|= Compl(P). Then, we check (G, G ∪ μP) |= C, which can now
be done in PTIME since completeness statements are of length 1. If it
holds, then C, G
|= Compl(P) by the counterexample G′ = G∪ μP.

The hardness proof is by reduction from the problem of graph 3-
incolorability. We refer to the CoNP hardness proof of Proposition 3.19,
in which the only completeness statement used is also of length 1.

�

3.3.3 Experimental Evaluation

Now that we have an indexing technique for SP-statements, we want
to investigate the performance of completeness checking using such

46 data-aware completeness reasoning

statements. To do so, we perform an experimental evaluation with a
realistic scenario, where we compare the runtime of completeness en-
tailment when query completeness can be guaranteed (i.e., the success
case), completeness entailment when query completeness cannot be
guaranteed (i.e., the failure case), and query evaluation.

experimental setup. Our reasoning algorithm and indexing mod-
ules were implemented in Java using the Apache Jena library.3 We
used Jena-TDB as the triple store of our experiment. The SP-indexing
was implemented using the standard Java hashmap, where the keys are
strings constructed from the concatenation of the subject and predicate
of completeness statements, and the values are Java objects represent-
ing completeness statements. All experiments were done on a standard
laptop with a 2.4 GHz Intel Core i5 and 8 GB of memory.

There were three ingredients for the experiment: a graph, com-
pleteness statements, and queries. For the graph, we used the direct-
statement fragment of the Wikidata graph, which does not include
qualifiers nor references (that is, only property-value pairs of entities)
and consists of 100 mio triples.4 For the queries and completeness
statements, we want to have a variety in the selectivity. Therefore, we
chose the following query templates (or pattern queries) over Wikidata,
which later will be used to generate the queries and statements:

1. Give all mothers (= P25) of mothers of mothers.

P1 = { (?v, P25, ?w), (?w, P25, ?x), (?x, P25, ?y) }

2. Give the crew (=P1029) of a thing, the astronaut missions (=P450)
of each such crew, and the operator (= P137) of the missions.

P2 = { (?v, P1029, ?w), (?w, P450, ?x), (?x, P137, ?y) }

3. Give the administrative divisions (= P150) of a thing, the admin-
istrative divisions of those divisions, and their area (= P2046).

P3 = { (?v, P150, ?w), (?w, P150, ?x), (?x, P2046, ?y) }

Let us describe how we generate the queries and completeness state-
ments. To generate queries, we simply evaluated each pattern query
over the graph, and instantiated the variable ?v of each pattern query
with the corresponding mappings from the evaluation. We recorded
5,200 queries instantiated from P1, 57 queries from P2, and 475 queries
from P3. Each pattern query had a different average number of query
results: the instantiations of P1 gave 1 result, those of P2 gave 4 results,
and those of P3 gave 108 results on average. So, we had a variety of
query selectivity.

To generate completeness statements, from each generated query,
we iteratively evaluated each triple pattern from left to right, and con-
structed SP-statements from the instantiated subject and the predicate

3 https://jena.apache.org/
4 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20151130/

3.3 sp-statements 47

of the triple patterns. This way, we guaranteed that all the queries
can be answered completely. We generated in total around 1.7 mio
statements, with 30,072 statements for P1, 484 statements for P2, and
1,682,263 statements for P3. Such a large number of completeness
statements would make completeness checks without indexing very
slow: Performing just a single application of the TC operator with all
these statements, which occurs inside the cruc operator of the algo-
rithm took around 20 minutes without SP-indexing. Note that in a
completeness check, there might be many TC applications.

Now we describe how to observe the behavior when queries cannot
be guaranteed to be complete, that is, the failure case. In this case,
we dropped randomly 20% of the completeness statements for each
pattern query. To make up the statements we dropped, we added
dummy statements with the number equal to the number of dropped
statements. This way, we ensured the same number of completeness
statements for both the success and failure case.

For each query pattern, we measured the runtime of completeness
checking for both the success case and the failure case, and then query
evaluation for the success case.5 We took 40 sample queries for each
pattern query, repeated each run 10 times, and reported the median of
these runs.

1 2 3

102

103

104

Pattern Query

R
un

ti
m

e
in
μ

s

Success Case Failure Case Query Evaluation

Figure 3.1: Experiment Results of Completeness Entailment

experimental results . The experimental results are shown in
Figure 3.1. Note that the runtime is in log scale. We can see that in
all cases, the runtime increases with the first pattern query having the
lowest runtime, and the third pattern query having the highest runtime.
This is likely due to the increased number of query results. We observe
that in all pattern queries, the completeness check when queries are
guaranteed to be complete is slower than when completeness cannot
be guaranteed. We suspect that this is because in the former case,
variable instantiations have to be performed much more often than in

5 We did not measure query evaluation time for failure case since query evaluation is
independent of the completeness of the query.

48 data-aware completeness reasoning

the latter case (that is, it has to generate all possible instantiations). In
the latter case, as soon as we find a saturated BGP not contained in the
graph, we stop the loop in the algorithm and return false, meaning
that the query completeness cannot be guaranteed. For queries with
large results, such a termination might be done much earlier than
when the queries are complete. This possibly explains the increasing
runtime gap between the success case and failure case in the figure.

In absolute scale, the completeness check runs relatively fast, with
796 μs for P1, 5,264 μs for P2, and 35,130 μs for P3 in success case; and
485 μs for P1, 903 μs for P2, and 1,209 μs for P3 in failure case. Note
that as mentioned before, completeness checking without indexing is
not feasible at all here, as there are a large number of completeness
statements, making the TC application very slow (i.e., 20 minutes for a
single application). For all pattern queries, however, query evaluation
runs faster than completeness checking. This is because completeness
checking may involve several query evaluations during the instantia-
tion process with the epg operator.

To conclude, we have observed that completeness checking with
a large number of SP-statements can be done reasonably fast, even
for large datasets, by employing indexing. Also, we observe a clear
positive correlation between the number of query results and the run-
time of completeness checking. Last, performing a completeness check
when a query is complete is slower than that when a query cannot be
guaranteed to be complete.

3.4 no-value statements

In this section, we focus on the problem of non-existent information:
stating that some parts of data do not exist in the real world. Non-
existent information is related to data completeness in the following
way: if we know that some parts of data do not exist, then any data
source is trivially complete for those parts. We introduce no-value
statements, a fragment of completeness statements that is suited to
expressing the non-existence of information in RDF. With no-value
statements, the problem of checking query completeness (i.e., query
answers are complete?) is now shifted to the problem of checking
query emptiness (i.e., query answer is truly empty?). We first motivate
no-value statements, then provide a formal characterization of query
emptiness entailment with no-value statements, and describe how one
can concretely represent no-value statements in RDF.

3.4.1 Motivation

RDF is mainly used to express positive information. However, rep-
resenting negative information is often of interest in practice. For in-

3.4 no-value statements 49

stance, Wikidata [111] has the following information about Elizabeth I
not having any children.6

Figure 3.2: No-value information on Wikidata

In the above figure, Wikidata explicitly states that Elizabeth I had
no children since the property child has “no value”.7 This is dif-
ferent than not recording anything at all which would imply pos-
sibly incomplete information for the children of Elizabeth I. To ex-
press this in RDF, one may be tempted to assign a special datatype
constant noValue to represent the no-value information of the chil-
dren of Elizabeth I, creating the triple (elizabethI, child, noValue). How-
ever, this creates a problem since executing the SPARQL ASK query
Q = ({ }, {(elizabethI, child, ?y)}) asking if Elizabeth I has a child, would
give the answer ‘yes’. Indeed, due to no formal definition, it is not
clear how to properly use noValue.

The notion of no-value information was first introduced in relational
databases [3]. There, the term ‘null value’ was used, which may have
different meanings: there exists no value (i.e., non-existence); there
exists a value but it is unknown; or it is unknown whether a value
exists. For the second case, we can leverage RDF blank nodes, whereas
for the third case, the open-world assumption (OWA) of RDF simply
permits it. However, RDF cannot represent the first case, which is the
one of no-value nulls, while in fact this no-value information is useful
to distinguish this case from incomplete information. Furthermore, by
having no-value information, an empty query answer can have two
different meanings: it may be empty because of possibly incomplete
information, or it may be truly empty because such information does
not exist in the real world. From the practical side, Wikidata itself
contains in total about 19,000 pieces of no-value information over 269
properties.8 Given such amount, it is therefore potentially beneficial
(e.g., for checking SPARQL query emptiness) if no-value information
can be formalized and represented in RDF in a standardized way.

6 https://www.wikidata.org/wiki/Q7207
7 For further information about no values on Wikidata, refer to https://www.wikidata.
org/wiki/Wikidata:Glossary.

8 as per Feb 18, 2017

50 data-aware completeness reasoning

3.4.2 Formalization

Let us formalize no-value information. We first define no-value state-
ments to capture which information is non-existent. Such statements
denote that a particular concept cannot exist wrt. the real world.

Definition 3.23 (No-Value Statement). A no-value statement N is de-
fined as No(P) where P is a BGP. To N, we associate the CONSTRUCT
query QN = (P, P).

We use BGPs to have a flexibility to represent complex no-values which
need more than one triple pattern. For example, one can state that
“Elizabeth I has no child” with Nel = No((elizabethI, child, ?c)), whereas
“Obama has no son” with Nob = No((obama, child, ?c), (?c, gender, male)).

Now, we want to give the semantics of no-value statements. As be-
fore, we use an extension pair to model the OWA of RDF graphs. Hav-
ing no-value statements restricts the possibilities of extension pairs
since they must not contain any instantiation of the information de-
noted by the statements. Over a graph G, we define the transfer op-
erator TN (G) =

⋃
N∈N�QN�G. We define the semantics of no-value

statements as follows.

Definition 3.24 (Satisfaction of No-Value Statements). An extension
pair (G, G′) satisfies a setN of no-value statements, written as (G, G′) |=
N , if and only if TN (G′) = ∅.

Note that since G ⊆ G′ holds by the definition of an extension pair,
TN (G′) = ∅ implies TN (G) = ∅. Next, we define the emptiness of a
query over an extension pair.

Definition 3.25 (Query Emptiness). Let (G, G′) be an extension pair
and Q a query. To express that Q is empty, we write Empty(Q). It is the
case that (G, G′) |= Empty(Q) if and only if �Q�G′ = ∅.

Query emptiness over one extension pair does not mean that it
always holds also over other extension pairs. For this reason, we
define the query emptiness entailment: that N |= Empty(Q) holds, if
for any extension pair (G, G′) |= N , we have that (G, G′) |= Empty(Q).
If the entailment holds, we can guarantee that the query will always
return an empty answer no matter which possible extensions of a
graph are considered. The next theorem characterizes query emptiness
entailment: whenever there is some part of the query that cannot return
any answer due to no-value information, then the whole query does
not return any answer. Via this theorem, we are able to distinguish
between empty query answers from possibly incomplete information,
and empty query answers from non-existent information.

Theorem 3.26 (Query Emptiness Entailment). LetN be a set of no-value
statements, Q be a query, and P̃ be the prototypical graph of Q. It is the case
thatN |= Empty(Q) if and only if TN (P̃) � ∅.

3.4 no-value statements 51

Proof. (⇒) We will prove by contrapositive. Assume TN (P̃) = ∅. We
will show that N
|= Empty(Q). Take the extension pair (∅, P̃). By the
assumption, it is the case that (∅, P̃) |= N . However, we have that
(∅, P̃)
|= Empty(Q) since �Q�P̃ is not empty by the definition of the
prototypical graph P̃.
(⇐) Assume TN (P̃) � ∅. Take any extension pair (G, G′) such that
(G, G′) |= N . We will show that (G, G′) |= Empty(Q). It is sufficient
to show that �Q�G′ = ∅. There must be a no-value statement N ∈ N
for a witness of our assumption that TN (P̃) � ∅. Thus, we have that
∅ � �QN�P̃ ⊆ P̃.

As (G, G′) |= N , it must be the case that �QN�G′ = ∅. Assume that
�Q�G′ � ∅. Thus, there must be a mapping μ ∈ �P�G′ . This implies
that μ(P) ⊆ G′. Thus, it is the case that ∅ � �QN�μĩd−1P̃

⊆ μĩd−1P̃. Since

μĩd−1P̃ = μP ⊆ G′, we have that ∅ � �QN�G′ , which contradicts our
assumption that (G, G′) |= N . Thus, �Q�G′ = ∅ holds. �

The complexity of the problem of query emptiness entailment is
NP-complete, in contrast to the complexity for general cases of data-
aware completeness entailment, which is ΠP

2 -complete (as in Proposi-
tion 3.14).

Proposition 3.27. Deciding whether the entailmentN |= Empty(Q) holds,
given a setN of no-value statements and a query Q, is NP-complete.

Proof. The NP membership is by means of Theorem 3.26. As stated
there, it is the case that N |= Empty(Q) iff TN (P̃) � ∅ where P̃ is the
prototypical graph of Q. By definition, TN (P̃) � ∅ iff there is a no-
value statement N = No(PN) in N such that �QN�P̃ is not empty, that
is, �QN�P̃ contains a mapping over var(PN), say, μ, such that μPN ⊆ P̃.
The NP entailment check can thus be done as follows: We guess such
a no-value statement N and a mapping μ, and then verify in PTIME
that μPN ⊆ P̃.

The NP hardness is by reduction from graph 3-colorability problem,
known to be NP-hard [43]. We encode the problem graph Gp = (V, E),
i.e., the directed graph we want to check whether it is 3-colorable, as
the set triples(Gp) of triple patterns. We associate to each vertex v ∈ V,
a new variable ?v. Then, we define triples(Gp) as the union of all triple
patterns (?s, edge, ?o) created from each pair (s, o) ∈ E where ?s is the
associated variable of s, edge is an IRI and ?o is the associated variable
of o. Let the BGP Pcol be:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b), (b, edge, r), (b, edge, g) }

Next, we create the following no-value statement Np:

No(triples(Gp) ∪ Pcol)

52 data-aware completeness reasoning

The following claim holds:

The problem graph Gp is 3-colorable if and only if
{Np } |= Empty(({}, Pcol))

Proof of the claim: “⇒” When the problem graph Gp is 3-colorable, we
can therefore reuse the color mapping from Gp to the 3 colors, in the
mapping from the CONSTRUCT query of NP to P̃col, which is a witness of
T{Np }(P̃col) � ∅ (recall Theorem 3.26).
“⇐” When the problem graph Gp is 3-incolorable, there is no color
mapping from Gp to the 3 colors. By construction of Np, it is the case
that T{Np }(P̃col) = ∅, implying {Np }
|= Empty(({}, Pcol)). �

Example 3.28. Consider the no-value statement

Nob = No((obama, child, ?c), (?c, gender, male))

as above and the query

Qsch = ({?c, ?s}, { (obama, child, ?c), (?c, gender, male), (?c, school, ?s) })
asking for the schools of Obama’s sons. We have that T{Nob}(P̃sch) � ∅.
Thus, from Theorem 3.26, it holds that {Nob} |= Empty(Qsch). This
means that Qsch returns the empty answer because of the non-existence
of the asked information, not by the incompleteness of the data source.
In contrast, suppose the constant male in the query Qsch were the
variable ?g. If Qsch returns the empty answer over the data source, that
may be due to the incompleteness of the data source.

rdf representation of no-value statements . To increase the
potential practical benefits of our no-value formalization, no-value
statements should be able to be represented in RDF. Such a repre-
sentation provides a structured and standardized way of processing
no-value statements. The representation of no-value statements fol-
lows a similar fashion as completeness statements (see Section 2.2).
Given a no-value statement

No((s1, p1, o1), . . . , (sn, pn, on)),

we represent the statement as a resource of the class NoValStatement,
while we represent each triple pattern in the similar way as triple pat-
terns in completeness statements. The no-value vocabulary is avail-
able at http://completeness.inf.unibz.it/no-value. For instance, we
represent the no-value statement “Obama has no sons” as follows:9

ex:sonsOfObama a no:NoValStatement ;

rdfs:comment "A no-value statement of Obama having no sons."@en ;

no:hasPattern [no:subject dbp:Barack_Obama ;

no:predicate dbo:child ;

no:object [no:varName "c"]] ;

no:hasPattern [no:subject [no:varName "c"] ;

no:predicate dbo:gender ;

no:object dbp:Male] .

9 Prefix declarations are provided in Appendix A.

3.5 related work 53

3.5 related work

Data completeness concerns the breadth, depth, and scope of informa-
tion [112]. In the area of relational databases, Motro [81] and Levy [65]
were among the first to investigate data completeness. Motro de-
veloped a sound technique to check query completeness based on
database views, while Levy introduced the notion of local complete-
ness statements to denote which parts of a database are complete.
Razniewski and Nutt [96] further extended their results by reducing
completeness reasoning to containment checking, for which many al-
gorithms are known, and characterizing the complexity of reasoning
for different classes of queries. In terms of their terminology, our com-
pleteness entailment problem is one of QC-QC entailment under bag
semantics, for which so far it was only known that it is in ΠP

3 [97].
In [95], Razniewski et al. proposed completeness patterns and defined
a pattern algebra to check the completeness of queries. The work in-
corporated database instances, yet provided only a sound algorithm
for completeness check.

We now move on to the Semantic Web. Fürber and Hepp [39] dis-
tinguished three types of completeness: ontology completeness, con-
cerning which ontology classes and properties are represented; popu-
lation completeness, referring to whether all objects of the real-world
are represented; and property completeness, measuring the missing
values of a specific property. Those three types of completeness to-
gether with the interlinking completeness, i.e., the degree to which
instances in the dataset are interlinked, are considered to be the bases
of the completeness dimension for RDF data sources [114]. Our work
considers completeness statements which are built upon BGPs, and
hence have more flexibility in expressing completeness (e.g., “com-
plete for all children of the US presidents who were born in Hawaii”).
Mendes et al. [74] proposed Sieve, a framework for expressing quality
assessment and fusion methods, where completeness is also consid-
ered. With Sieve, users can specify how to compute quality scores
and express a quality preference specifying which characteristics of
data indicate higher quality. Ermilov et al. [37] presented LODStats, a
statistics aggregation of RDF datasets published over various data por-
tals such as data.gov, publicdata.eu, and datahub.io. They discussed
several use cases that could be facilitated from such an aggregation,
including coverage analysis (e.g., most frequent properties and most
frequent namespaces of a dataset). As opposed to Sieve and LOD-
Stats, our work puts more focus on describing completeness of data
sources, and leveraging such completeness descriptions for checking
query completeness (and soundness).

Galárraga et al. [42] proposed a rule mining system that is able
to operate under the Open-World Assumption (OWA) by simulating
negative examples using the Partial Completeness Assumption (PCA).

54 data-aware completeness reasoning

The PCA assumes that if the dataset knows some r-attribute of x, then
it knows all r-attributes of x. This heuristic was also employed by
Dong et al. [36] (called Local Closed-World Assumption in their pa-
per) to develop Knowledge Vault, a Web-scale system for probabilistic
knowledge fusion. Our completeness statements, which are based on
BGPs, are in fact a generalization of the assumption used in the above
work.

3.6 summary

The availability of an enormous amount of RDF data on the Web calls
for better data quality management. Completeness is a crucial quality
aspect for RDF data, particularly due to RDF’s incomplete nature. In
this chapter, we have extended completeness reasoning to be aware
with the content of RDF data sources to which completeness state-
ments are given. We have formalized the problem of data-aware
completeness entailment and developed a sound and complete algo-
rithm to check the entailment. To increase the practical benefits of
our framework, we have identified two fragments of completeness
statements: SP-statements, suitable for entity-centric, crowdsourced
RDF data sources, and no-value statements, suitable for expressing
the non-existence of information in RDF.

In the next chapter, we show how we develop an efficient imple-
mentation of completeness reasoning, both in the data-agnostic and
data-aware settings.

4
O P T I M I Z I N G C O M P L E T E N E S S R E A S O N I N G

Real-world RDF data sources may contain a large amount of data,
which is then likely to correspond to a large number of statements
needed to describe the completeness of those data sources. Up to this
point, we have seen how completeness entailment is formalized and
characterized in the data-agnostic setting (see Chapter 2) and data-
aware setting (see Chapter 3). Now, the question is how in practice
we may perform completeness reasoning, in particular when there are
large sets of completeness statements. In this chapter, we develop op-
timization techniques for the data-agnostic and data-aware complete-
ness reasoning. We also conduct experimental evaluations to show
the feasibility of completeness reasoning using our optimizations. The
results of data-agnostic reasoning optimizations are under revision
for journal publication [29], whereas those of data-aware reasoning
optimizations are to be submitted in [30].

4.1 optimizing data-agnostic reasoning

Here we show how we develop our optimization techniques for data-
agnostic completeness reasoning. We first propose the notion of rele-
vant completeness statements wrt. a query, which is potentially useful
to reduce the number of completeness statements employed in the rea-
soning. Then, we describe and evaluate several indexing techniques
for the retrieval of relevant completeness statements. Finally, we show,
via an experimental evaluation with real query logs from DBpedia,
LinkedGeoData, and Semantic Web Dog Food, how the feasibility of
data-agnostic completeness reasoning can be improved using the rele-
vance principle.

4.1.1 Relevant Completeness Statements

Before formulating a principle to optimize data-agnostic complete-
ness reasoning, let us first estimate the complexity of the reasoning
task. Let Q = (W, P) be a query and C be a set of completeness state-
ments. According to Theorem 2.10, the task of completeness reason-
ing is to check whether TC(P̃) = P̃, where TC is the transfer operator
wrt. C, and P̃ is the prototypical graph of Q. While it is immediate
to check the ‘⊆’ direction of the equality, the interesting part is the ‘⊇’
direction. This corresponds to finding, for each triple (s, p, o) ∈ P̃, a
completeness statement C ∈ C such that (s, p, o) ∈ �QC�P̃ (recall that

55

56 optimizing completeness reasoning

TC(P̃) =
⋃

C∈C�QC�P̃). Hence, we only find statements that potentially
match such a triple (s, p, o).

Let Q = (W, P) be a query, C be a set of completeness statements,
and maxLn(C) be the maximum length (i.e., the maximum number
of triple patterns) of statements in C. Take any C ∈ C; to evaluate
the query QC over P̃, it is necessary to (consistently) map the triple
patterns of QC to triples in P̃. Note that there are at most |P̃||QC| possible
ways to map triple patterns to triples, where |QC| and |P̃| stand for
the number of triple patterns and triples in QC and P̃, respectively.
Therefore, applying this reasoning to each statement in C, leads to the
following overall runtime:

O(|C||P̃|maxLn(C)) (5)

As customary in the database theory when analyzing the data com-
plexity of query evaluation, we are assuming Q is given while the
set of completeness statements varies. Moreover, since completeness
statements are basically also queries, we assume the maximum length
of completeness statements to be bounded by a constant. Under these
assumptions, the complexity of reasoning is a function of the size of
the set of completeness statements. Using a plain completeness reasoner,
which evaluates the CONSTRUCT queries of all completeness statements,
can potentially lead to slow performance. Thus, we need to find an ap-
proach to reduce the number of completeness statements involved in
completeness reasoning. According to Theorem 2.10, which character-
izes the data-agnostic completeness entailment, for a complete query
with n triple patterns, there is a set of no more that n completeness
statements that already entails the completeness of that query. Never-
theless, there is no obvious way to identify a priori such a set. Despite
this, in the following we establish a principle that allows us to rule out
a significant number of irrelevant statements.

constant-relevance principle . Let us now introduce a rele-
vance principle for completeness statements. Consider the query ask-
ing for “Movies directed by Tarantino” and the statement “All cantons
of Switzerland.” Intuitively, one can see that the statement does not
contribute to the completeness of the query; in other words, the state-
ment is irrelevant to the query.

We shall now introduce the constant-relevance principle as a way to
distinguish between irrelevant and relevant completeness statements.
The principle states that a completeness statement C can contribute
to entailing query completeness only if all constants (or terms, which
consist of IRIs and literals) of the completeness statement occur also
in the query Q, that is, const(C) ⊆ const(Q). We say that a statement
satisfying this principle is constant-relevant. The following proposition
shows that if a statement is not constant-relevant, then it does not
contribute to completeness reasoning.

4.1 optimizing data-agnostic reasoning 57

Proposition 4.1. Let C be a completeness statement and Q = (W, P) be a
query. If C is not constant-relevant wrt. Q, then �QC�P̃ = ∅.

Proposition 4.1 opens up the problem of how to (efficiently) retrieve
constant-relevant statements. In the next subsection, we provide a
report of our investigation on retrieval techniques for constant-relevant
completeness statements.

4.1.2 Retrieval Techniques for Constant-Relevant Statements

For a set C of completeness statements, we want to know how to
retrieve as efficiently as possible those statements that are constant-
relevant wrt. a given query Q. Here, we give an overview of techniques
to retrieve such statements.

The statements in C that are constant-relevant to Q are those all of
whose constants appear in Q. We denote this set as CQ, that is,

CQ = {C ∈ C | const(C) ⊆ const(Q) }.

To compute CQ from C and Q, is an instance of the well-established
subset querying problem, which has been investigated by the database
and AI communities [52, 55, 102].

The subset querying problem itself is defined as follows: Given a
set S of sets, and a query set Sq, retrieve all sets in S that are contained
in Sq. In our setting, S consists of the constant sets const(C) of the com-
pleteness statements C, while the query set Sq consists of the constants
in Q, that is, Sq = const(Q).

We study two retrieval techniques based on specialized index struc-
tures for subset querying, namely, inverted indexes and tries. The for-
mer is inspired by the approach from the database communities [52],
while the latter is from the AI communities [55, 102]. Those ap-
proaches were empirically shown to be efficient for their respective
subset-querying-based problems. Additionally, we develop a baseline
technique using standard hashing. In Subsection 4.1.3, we present ex-
perimental evaluations comparing the retrieval time and scalability of
the three techniques.

running example . Throughout the description below, we will pro-
vide examples referring to a set C = {C1, C2, C3, C4 } of completeness
statements with

• const(C1) = { a, b },

• const(C2) = { a, b, c },

• const(C3) = { a, b, c },

• const(C4) = { d },

58 optimizing completeness reasoning

and a query Q with const(Q) = { a, b }. It is the case that CQ = {C1 }, as
C1 is the only statement in C all of whose constants are contained in
const(Q).

We now describe how these retrieval techniques work and how
we implemented them for our experiments. The implementation
language was Java. We represent completeness statements using a
class CompletenessStatement, while constants are simply represented
by standard Java strings.

Standard Hashing-based Retrieval

In this baseline approach, we translate the problem of subset querying
into one of evaluating exponentially many set equality queries. Hash-
ing supports equality queries by performing retrieval of objects based
on keys. We store completeness statements according to their constant
sets using a hash map. For each of the 2|const(Q)| − 1 non-empty subsets
of const(Q), we generate a set equality query using the hash map to
retrieve the statements with exactly those constants. In our example,
the non-empty subsets of const(Q) are {a}, {b}, and {a, b}. Querying for
both {a} and {b} returns the empty set, while querying for {a, b} returns
the set {C1}. Taking the union of these three results gives us {C1} as the
final result.

implementation . To index the statements, we use a standard Java
HashMap. To each statement, we associate a key that uniquely repre-
sents the set of its constants. We do that by creating a lexicographically
ordered sequence of the constants in the statement. We use the stan-
dard Java List to represent sequences and the sortmethod of the Java
Collections class for sorting. Then, for such a key, the value in the hash
map is the set of all statements having exactly the constants mentioned
in the key. To compute CQ, we generate all sequences corresponding
to the nonempty subsets of const(Q), retrieve the values to which they
are mapped using the get method of the HashMap, and take the union
of the values.

Inverted Indexing-based Retrieval

Inverted indexes have been originally developed by the information
retrieval community for search engine applications [116]. In the in-
formation retrieval domain, an inverted index is a data structure that
maps a word to the set of documents containing that word. Inverted
indexes are typically used for finding documents containing all words
in a search query, that is, for superset querying.

In database applications, inverted indexes are also used for subset
querying. In object-oriented databases, objects may have set-valued
attributes. Given an attribute and a query set, one may want to find all
the objects whose set of attribute values is contained in the query set.

4.1 optimizing data-agnostic reasoning 59

Helmer and Moerkotte [52] compared indexing techniques for an effi-
cient evaluation of set operation queries (i.e., subset, superset and set
equality) involving low-cardinality set-valued attributes. The index-
ing techniques they considered were inverted indexes and three other
techniques that are signature-based (i.e., sequential signature files, sig-
nature trees, and extendible signature hashing). There, an inverted
index maps each value to the objects whose set-valued attribute con-
tains that value. Their experimental evaluations showed that in terms
of retrieval costs, inverted indexes overall performed best.

formalization . Now we show how we develop our retrieval
technique based on inverted indexes, adapted from [52]. For a set
C of completeness statements, we let P =

⋃
C∈C const(C) be the set

of all constants in C. We define the map M : P → 2C such that
M(p) = {C ∈ C | p ∈ const(C) } for every constant p ∈ P. In other
words, M maps each constant occurring in C to the set of complete-
ness statements in C containing that constant. We call such a map an
inverted index. The inverted index M of our example is shown below.

Constants Completeness Statements

a C1, C2, C3

b C1, C2, C3

c C2, C3

d C4

We now want to retrieve constant-relevant statements using inverted
indexes. As a first attempt, for a query Q and the inverted index
M of a set C of completeness statements, we consider the set union⋃

p∈const(Q) M(p) of the mappings of the constants occurring in the query.
In our example, this is the set {C1, C2, C3 }. However, though the result-
ing set is smaller than the original set C, it is still bigger than Cq, since
it contains statements that are not constant-relevant (i.e., C2 and C3).

Now, instead of the set union, let us consider bag union. For a
start, assume that M(p) is now a bag that contains as many copies
of a statement C as there are occurrences of the constant p in C. In
our running example, each M(p) still contains at most one copy of a
statement. Next, we take

BQ =
⊎

p∈const(Q)

M(p),

which is the bag of all statements that have at least one constant in Q,
and where a statement occurs as many times as it has occurrences
of constants appearing in the query Q. With respect to our example,
BQ = M(a) �M(b) = {|C1, C1, C2, C2, C3, C3 |}. Let us analyze which

60 optimizing completeness reasoning

statements are constant-relevant. The statement C1 occurs twice in BQ

and has length 2, hence, all its constants appear in the query Q. How-
ever, the statements C2 and C3 both have length 3, but occur only twice
in BQ. This means that they have other constants that do not appear
in the query Q and thus, they are not constant-relevant. Therefore, we
conclude that CQ = {C1 }.

We can generalize our example to arrive at a characterization of the
set CQ. The example shows that we need to count the occurrences of
completeness statements in BQ. We denote the count of a statement C
in BQ by #C(BQ). As seen from the example, those statements whose
number of occurrences is the same as the number of constants are the
constant-relevant ones. In this case, for a statement C, we take the bag
version of const(C). Then, CQ satisfies the equation

CQ = {C ∈ BQ | #C(BQ) = |const(C)| }.

implementation . We observe from the formalization that the cru-
cial operations for the retrieval technique using inverted indexes are
bag union and count. We chose the Google Guava library1 as it pro-
vides a bag implementation in Java with the class HashMultiset, which
includes as methods the bag union and count. To implement the in-
verted index, we use the Java HashMap. The index maps each constant p
to the HashMultiset representing the bag of completeness statements
containing that constant (i.e., M(p)). As shown in the formalization
above, to retrieve BQ, we perform a bag union, using the addAllmethod
of the HashMultiset, of the map values of the constants in Q. Then, to
retrieve the set CQ of constant-relevant statements, we count the num-
ber of occurrences of the statements in BQ using the count method of
the HashMultiset and check if the count is the same as the size of the
statement.

Trie-based Retrieval

A trie, or a prefix tree, is an ordered tree for storing sequences, whose
nodes are shared between sequences with common prefixes. Tries
have been adopted for set-containment queries in the AI community
by Hoffmann and Koehler [55] and Savnik [102]. Both studies showed
by means of empirical evaluations that tries can be used to efficiently
index sets, and perform subset and superset queries upon those sets.
Set operations are essential in AI applications, including the match-
ing of a large number of production rules and the identification of
inconsistent subgoals during planning.

formalization . We show how to adapt tries as in [55, 102] to our
setting. The sequences we consider are sequences of constants that are
ordered lexicographically. For a set C of statements, we define SC as

1 https://github.com/google/guava

4.1 optimizing data-agnostic reasoning 61

the set containing for each statement in C the corresponding sequence
of constants. The trie TC over the set SC of sequences is the tree whose
nodes are the prefixes of SC, denoted as Pref (SC), where each node
s̄ ∈ Pref (SC) has a child s̄ · p iff s̄ · p ∈ Pref (SC), where p is a constant.
On top of this trie, we define M : Pref (SC) → 2C as the mapping that
maps each prefix to the set of statements whose constants are exactly
those in the prefix.

In our example, we have that SC = { (a, b), (a, b, c), (d) } and M =

{ (a, b) �→ {C1 }, (a, b, c) �→ {C2, C3 }, (d) �→ {C4 } }. For simplicity, we left
out mappings with the empty value in M. A graphical representation
of the trie TC is shown below, which also shows the map value of each
node wrt. M.

()

(d) : {C4 }(a)

(a, b) : {C1 }

(a, b, c) : {C2, C3 }

Having built a trie from completeness statements, we now want to
retrieve the constant-relevant statements wrt. a query. Let us do that
for our example. Consider the trie TC as above. As const(Q) = { a, b },
the sequence of const(Q) is therefore s̄Q = (a, b). The key idea behind
our retrieval is that we visit nodes that are subsequences of the query
sequence and collect the map values of the visited nodes wrt. M. We
start at the root of TC with the query sequence (a, b) and an empty set of
constant-relevant statements. The root node is trivially a subsequence
of s̄Q and the mapping of the root obviously returns the empty set.
Thus, our set of constant-relevant statements is still empty.

At this position, we have two options. The first is to retrieve from TC

all the subsequences containing the head of the current query sequence,
that is, the constant a. By the trie structure, all such subsequences reside
in the subtree of TC rooted at the concatenation of the root of the current
trie and the head of the current query sequence. We then proceed down
that subtree. To proceed down, the head of the query sequence has
to be removed. Therefore, our current query sequence is now (b). As
the map value of the root (a) of the current trie is empty, we still have
an empty set of constant-relevant statements. From this position, we
try to visit the subsequences in TC that not only contain a, but also
one additional constant from the current query sequence. Therefore,
we continue proceeding down the subtree rooted at (a, b), which is the
concatenation of the root of the current trie and the head of the current
query sequence. From the mapping result of the root (a, b), the set

62 optimizing completeness reasoning

of constant-relevant statements is now {C1 }. Since our current query
sequence is now the empty sequence, we do not proceed further.

Now, let us pursue the second option. We stay at the position at
the root of TC, while simplifying s̄Q by removing the head of the
query sequence, making it now (b). In this case, we want to visit all
the subsequences in the trie TC that do not contain the constant a, if
they exist. Now, we try to proceed down the subtree rooted at the
concatenation of the root of the current trie and the head of the current
query sequence. This means we have to proceed down the subtree
rooted at (b). Since it does not exist, we stay with the current trie and
remove again the head of the query sequence. As the query sequence
is now the empty sequence, we do not go further and finish our whole
tree traversal. As a final result, we have our set of constant-relevant
statements which contains only C1.

From our example, we now formalize the retrieval of constant-
relevant statements using tries. We can decompose a non-empty se-
quence s̄ = (p1, . . . , pn) into the head p1 and the tail (p2, . . . , pn). For
a sequence s̄ and a trie T, we define T/s̄ as the subtree in T rooted at
the node s̄. Note that T/s̄ is the empty tree ⊥ if such a subtree does
not exist. We define cov(s̄Q, TC) as the set of completeness statements
in C whose sequences of their constants are subsequences of s̄Q, which
are not necessarily contiguous. It follows from this definition that
cov(s̄Q, TC) = CQ. Given a subsequence s̄ = p · s̄′ of s̄Q and a sub-
tree T of TC, we observe that the function cov satisfies the following
recurrence property:

cov(s̄, T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if T = ⊥

M(root(T)) if s̄ = ()

M(root(T)) ∪ cov(s̄′, T/(root(T) · p)) ∪
cov(s̄′, T)

otherwise.

The recurrence property has two base cases: when the trie is empty,
then simply the empty set is returned; and when there is no element
left in the sequence s̄ (i.e., the trie traversal stops), the cov function
returns the set of completeness statements associated with the se-
quence root(T). Now for the recursive case, there are three components
involved. The first one is simply returning the set of completeness
statements associated with root(T). The second and third ones corre-
spond to how the trie is traversed: both make the cov calls with the
tail s̄′ of s̄ as the call’s sequence, but the second case is over the subtree
T/(root(T) · p) while the third one is over the same trie T.

Note that in the above property, as also observed in [55], the function
cov performs pruning: when a subtree in the call cov(s̄, T/(root(T) · p))
does not exist, we cut out all the recursion call possibilities if the
subtree existed. Let us give an illustration. For a query sequence

4.1 optimizing data-agnostic reasoning 63

s̄Q = (p1, . . . , pn) of length n, there are at most 2n possible subsequences.
However, half of them (those containing p1) lie in the tree rooted at
the node (p1). If there is no node (p1), the size of the search space is
immediately reduced to 2n−1.

implementation . We represent sequences of constants in Pref (SC)

using the Java List<String> class. For implementing the trie TC, we
create a class Trie. For the trie nodes, we create TrieNodeobjects labeled
with sequences of constants. A TrieNode has a hash map that maps the
sequences of constants of the TrieNode’s children to the corresponding
TrieNode objects. Initially, a Trie has a TrieNode object as its root with
an empty sequence as the label. For every insertion of a sequence
of the constants of a completeness statement, we recursively generate
children of TrieNode objects starting from the root to the leaf node with
that sequence as the label. This generates a path of TrieNode objects
labeled with the prefixes of that sequence. TrieNode objects are shared
between sequences with the same prefixes. To implement the map M
for the trie, a Java HashMap similar to the one in the implementation of
the standard hashing technique is created.

For the retrieval, we implemented a recursive method based on
the recurrence property of the cov function. In the method, for each
visited node, we use the HashMap of M to map the label of the node
to its corresponding set of completeness statements. All the mapping
results are collected in a standard Java set which at the end of the
method call will be our set CQ of constant-relevant statements.

4.1.3 Experimental Evaluation of the Retrieval Techniques

We have discussed the constant-relevance principle as a means to
prune the set of completeness statements. We have also introduced
three retrieval techniques of constant-relevant statements, based on
standard hashmaps, inverted indexes, and tries as the underlying in-
dex structures. We now report on experiments that comparatively
evaluated those three techniques. More specifically, the experiments
aim to analyze: the runtime and scalability of the retrieval techniques
according to various parameters that contribute to the overall runtime
of completeness reasoning, as analyzed in Eq. (5) (i.e., number of com-
pleteness statements, length of completeness statements, and length
of queries); and the cost of completeness reasoning without vs. with
the optimization technique.

Experimental Setup

We created a framework for the experiments consisting of two com-
ponents: a completeness reasoner and a generator of statements and

64 optimizing completeness reasoning

queries. We implemented the framework in Java using the Jena li-
brary.2

The completeness reasoner includes implementations of the three
retrieval techniques as described before and supports reasoning opti-
mizations based on the constant-relevance (that is, instead of consid-
ering all statements in C, the optimized technique considers only the
statements in CQ).

To gain flexibility in setting the experiment parameters, we ran-
domly generate queries and sets of completeness statements. In our
experiment, we would expect that the bigger a data source, the more
completeness statements are declared over that source. We want to
consider also the sensitivity of each retrieval technique to the length
of the completeness statements and the query. Thus, we choose the
following experiment parameters:

• number of completeness statements (Nc),

• maximum length of completeness statements (Lc), and

• length of queries (Lq).

To evaluate the retrieval techniques, we want to observe the influ-
ence of each parameter on the retrieval time. Thus, we set up three
scenarios, where in each we keep two of the parameters fixed and vary
the remaining one. As our reference for setting the default values for
the parameters, we take DBpedia [10], one of the most popular and
largest RDF data sources, as an approximation of the realistic param-
eter values. From English Wikipedia, DBpedia extracted around 580
million RDF triples.3 If we assume that 1

5 of the triples are captured by
completeness statements, and that each statement covers 100 triples,
then DBpedia would have 1,160,000 completeness statements. There-
fore, we set the default value Nc = 1,000,000. The length of queries is
chosen based on the statistics of SPARQL queries over DBpedia. Arias
et al. [8] found that 97% of DBpedia queries are of length less than
or equal to 3. Therefore, we choose 3 as the default length for short
queries. On the other hand, 99.9% of queries over DBpedia had length
less than or equal to 6, so a length of 6 stands for relatively long queries.
So, there are two default values for query length: Lq = 3 for the short
ones, and Lq = 6 for the long ones. As for the default value of Lc, we
set it to 6, to have a variation of completeness statement length from 1
to 6, which covers the query length.

The experiments were run on a standard laptop under Windows 8
with Intel Core i5 2.5 GHz processor and 8 GB RAM. For each combi-
nation of parameter values, we ran the experiment 20 times to obtain
reliable results (i.e., low variance if we performed the experiments
again), and took the median of the runtimes.

2 http://jena.apache.org/
3 http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html

4.1 optimizing data-agnostic reasoning 65

random generation of statements and queries . The state-
ments and queries for the experiments have been generated randomly
with a uniform distribution of the IRIs for constants. Again, we take
DBpedia as our reference. DBpedia has about 2,700 properties and
4.5 million entities, We approximate the number of constant IRIs in
the predicate position from the number of properties of DBpedia, that
is, 2,500, and the number of constant IRIs in the subject or object posi-
tion from about 1

5 of the number of DBpedia entities, that is, 1,000,000.
The generated statements were of the form Compl(P), while the gen-
erated queries were of the form (var(P), P), that is, all variables in
the body were distinguished. Generating the statements and queries
is essentially generating triple patterns, which serve as their building
blocks.

The triple patterns of a statement are generated as follows. First, we
pick a random length between 1 and Lc. Then we randomly choose
the predicates of the triple patterns, where repetitions are allowed.
Next, for this collection of predicates, we generate fully-formed triple
patterns. To do that, we instantiate the subjects and objects of triple
patterns, by constants or variables. For the instantiation by constants,
we randomly take IRIs, and the constants can be reused across triple
patterns. We do not limit the possibility to introduce new variables,
but again variables can be reused among triple patterns. We generate
variables in such a way that there is no cross-product join between
triple patterns of the statement, that is, the triple patterns with vari-
ables form one connected component. Together, the generated triple
patterns become the pattern P for that statement. We repeat this pro-
cess until there are Nc randomly generated statements. We generate
triple patterns for the query of length Lq in the similar way.

Results and Discussion

We now show the experimental results comparing the retrieval time of
the three techniques. In each scenario, we vary one of these parameters:
number of statements, maximum length of completeness statements,
and query length. Moreover, we also compare the runtime of com-
pleteness reasoning with vs. without the constant-relevance principle.

influence of the number of completeness statements . In
this scenario, we vary the parameter Nc within the range of 100,000 –
1,000,000. Figure 4.1 shows the resulting retrieval times. The left figure
is for short queries and the right figure for long ones. The y-axis is in
log-scale. As can be clearly seen, inverted indexing is generally slower
and less scalable than the other techniques. It is on average 53× slower
than tries for short queries and 3× slower than standard hashing for
long queries. The performance comparison of standard hashing and
tries, however, depends on the length of the queries. For short queries,

66 optimizing completeness reasoning

standard hashing is slightly faster. For long queries, the tries technique
is faster.

One possible reason why inverted indexing is slow is that at an inter-
mediate step it has to process all statements whose constants overlap
with the constants of the query. Hence, with inverted indexing the
probability for a completeness statement to be processed in the re-
trieval is much larger than for other retrieval techniques. The other
techniques only process statements whose constants are clearly con-
tained in the query constants. For long queries, the tries perform
better than the standard hashing. This is likely due to the subsequence
pruning of tries as described in Subsection 4.1.2.

100 250 400 550 700 850 1,000

102

103

Number of CS’s in Thousands

R
et

ri
ev

al
Ti

m
e

in
μ

s

100 250 400 550 700 850 1,000

102

103

104

Number of CS’s in Thousands

R
et

ri
ev

al
Ti

m
e

in
μ

s

Standard Hashing Inverted Trie

Figure 4.1: Increasing the number of completeness statements for short (left)
and long queries (right)

influence of the length of completeness statements . In
this scenario, we vary the maximum length Lc of completeness state-
ments from 1 to 6. Figure 4.2 shows the resulting retrieval times.
Interestingly, the retrieval time for inverted indexing increases, while
the time for tries even decreases. Basically, the retrieval time for stan-
dard hashing remains constant, though showing a little oscillation with
no clear pattern. We notice that for short queries, standard hashing
performs best, whereas for long queries, tries perform best. Again, in-
verted indexing performs the worst among all the retrieval techniques.

These graphs demonstrate the fundamental difference between the
inverted indexes and the tries. In the inverted indexes, a completeness
statement with just a single constant overlapping with the query is
included in the bag union, to be checked if the statement’s occurrences
in the union are the same as its length. Thus, the longer the complete-
ness statement, the more probable it is for the statement to be included
in the bag union. This does not happen with the trie-based technique
as it only processes statements all of whose constants are contained
in the query. When a statement becomes longer, the probability of
the statement to be processed by the tries technique decreases. That

4.1 optimizing data-agnostic reasoning 67

the growth is nearly constant for standard hashing, is likely due to
evaluating always the same set equality queries.

1 2 3 4 5 6

102

103

Max Length of CSs

R
et

ri
ev

al
Ti

m
e

in
μ

s

1 2 3 4 5 6

102

103

104

Max Length of CSs

R
et

ri
ev

al
Ti

m
e

in
μ

s

Standard Hashing Inverted Trie

Figure 4.2: Increasing maximum length of completeness statements for short
(left) and long queries (right)

influence of the query length . In this scenario, we vary the
query length Lq from 1 to 6. Figure 4.3 shows the results of this experi-
ment. From the graph, we can see that for all techniques, the retrieval
time increases with the query length, though at different rates. For
standard hashing, it grows exponentially, whereas for the other tech-
niques, it only grows linearly.4 In the beginning, the standard hashing
technique performs better than the tries one. However, from Lq = 4
the standard hashing technique starts to perform worse. At Lq = 6,
standard hashing is about 14× slower than tries. We observe a simi-
larity between the asymptotic growth of inverted indexing and tries,
though on an absolute scale the tries technique clearly performs better.

As expected, standard hashing does not perform well for long
queries due to its exponentially many set equality queries. The tries
technique, though potentially having exponential growth in the worst
case, performs better than standard hashing. This is most likely due
to its pruning ability over subsequences of query constants.

reasoning with the constant-relevant filtering . This sce-
nario differs from the above in that now we compare the cost of com-
pleteness reasoning without and with the optimization technique. We
show that applying the constant-relevance principle can considerably
reduce the overhead incurred by completeness reasoning.

To measure this overhead, we perform experiments that compare
the runtimes of plain completeness reasoning and of reasoning based
on constant-relevance. For the reasoning based on constant-relevance,
we use the standard hashing retrieval technique as it shows relatively
good performance in our previous experiments. All the parameter

4 Note that the graph is displayed in log-scale on y-axis.

68 optimizing completeness reasoning

1 2 3 4 5 6

101

102

103

104

Query Length

R
et

ri
ev

al
Ti

m
e

in
μ

s

Standard Hashing Inverted Trie

Figure 4.3: Increasing the query length

values are the default ones: Nc = 1,000,000, and Lc = 6, while we still
distinguish between short queries (Lq = 3) and long queries (Lq = 6).
In the experiments we measure the reasoning time for plain complete-
ness reasoning and the reasoning plus the retrieval time for the com-
pleteness reasoning based on constant-relevance.

Table 4.1: Comparison of the runtime median for plain completeness reason-
ing and constant-relevance based (optimized) reasoning

Query Types Plain Reasoning Optimized Reasoning

Short 145,773 ms 1.3 ms

Long 146,095 ms 4.1 ms

Now we discuss the experimental results. Table 4.1 lists the median
of runtimes of plain completeness reasoning and constant-relevance
based completeness reasoning. We note that completeness reasoning
based on constant-relevance is considerably faster than the plain one
(i.e., milliseconds vs. minutes, respectively).

Completeness reasoning with the constant-relevance principle is
fast, with runtimes between 110,000 times (for short queries) and 35,000
times (for long queries) faster than that without constant-relevance.
This is due to the fact that much fewer completeness statements are
considered for the reasoning using the constant-relevance principle.
For short queries, there are on average about 49 constant-relevant
completeness statements, whereas for long queries, there are on aver-
age about 105 constant-relevant statements. On the other hand, the
original set contains 1 million completeness statements.

conclusions of the experiments . From the experiments we
conclude that for short queries, our baseline approach, the standard

4.1 optimizing data-agnostic reasoning 69

hashing, shows the best performance despite its simplicity. However,
for long queries, the tries technique performs better. The baseline
approach suffers from its exponential blow up for long queries. The
inverted indexes are not suitable for the retrieval task for both short
and long queries. Moreover, on an absolute scale, the retrieval time of
the retrieval techniques only takes up to about a few milliseconds. This
shows that the retrieval process does not add a significant overhead to
completeness reasoning. Also, we have seen that using the constant-
relevance principle can considerably speed up completeness reasoning,
as demonstrated in Table 4.1.

4.1.4 Experimental Evaluation of Data-agnostic Reasoning

In this subsection, we aim to investigate the performance of complete-
ness reasoning for realistic cases based on several RDF data sources:
DBpedia (DBP), Semantic Web Dog Food (SWDF), and Linked Geo
Data (LGD). Our investigation in finding a retrieval technique for
constant-relevant completeness statements showed that despite its
simplicity, standard hashing can outperform the inverted indexing [52]
and the tries [55, 102] technique for queries with the length of up to 3, ac-
counting for 97% of real-world queries on DBpedia [8], with the worst
case of retrieval time of only 2 ms. Thus, we concentrate our analysis
on standard hashing. We can break down the process of complete-
ness reasoning into two main components: (i) the hashmap lookup
to retrieve constant-relevant statements; and (ii) the TC-application of
all constant-relevant statements over the prototypical graph P̃ as per
Theorem 2.10. Our experimental evaluation was conducted with the
aim to answer the following questions: (i) What is the overhead of
completeness reasoning over querying? (ii) How do the two main
components, the hashmap lookup and the TC-application, influence
the overall completeness reasoning time?

experimental setup. We created a framework for the experiments
in Java using the Apache Jena library, an open source Semantic Web
library.5 To implement completeness reasoning, we particularly re-
lied on the ARQ module of Jena, which provides functionalities for
SPARQL query processing. The retrieval of constant-relevant state-
ments was implemented using a standard Java HashMap. The two in-
gredients that characterize our setting were queries and completeness
statements.

As for the queries, we used openly available real query logs of RDF
data sources across various domains, i.e., DBpedia, Semantic Web Dog
Food, and LinkedGeoData, provided in the Linked SPARQL Queries
(LSQ) dataset [100]. We extracted SELECT queries in the conjunctive

5 http://jena.apache.org/

70 optimizing completeness reasoning

fragment, which account for about 40% of the total number of SELECT
queries, giving us around 465,000 queries in total.6

As for the completeness statements, for each query we took its full
BGP P and constructed a completeness statement Compl(P). Via query
homomorphism techniques [20], we removed redundant complete-
ness statements, that is, completeness statements whose CONSTRUCT
query representations are equivalent. In total, there were about 400,000
completeness statements generated. Observe that by construction, all
queries are guaranteed to be complete. The experiment framework
(incl. the source code) is available online at http://completeness.inf.
unibz.it/completeness-experiment/.

We distinguished between three cases of the experiments, depend-
ing on the endpoint of the queries: DBP, SWDF, or LGD. We measured
completeness reasoning time of the queries of each case. The experi-
ments were run on a standard laptop under Windows 8.1 with Intel
Core i5-2435M 2.4 GHz processor and 8 GB RAM. Furthermore, for
each query we also took the query evaluation time, which is already
provided by the LSQ dataset. The experiment machine for query eval-
uation was with 16 GB RAM and a 6-Core i7 3.40 GHz CPU running
Ubuntu 14.04.2 using Virtuoso 7.1 [100]. Note that the machine for
query evaluation was relatively better than our machine for complete-
ness reasoning.

results and discussion . Table 4.2 summarizes the results of the
experiments. The number of queries varies greatly with SWDF hav-
ing the lowest and DBP having the highest. For the completeness
statements, there are not many redundancies for DBP and SWDF, as
opposed to LGD. What is interesting is that most queries are short,
close to 1 triple pattern, with a slight exception of LGD queries whose
average length is in the middle between 1 and 2 triple patterns. The av-
erage of completeness reasoning time for all cases is always below 0.2
ms.

To get an idea on the performance comparison with plain complete-
ness reasoning (where all completeness statements are considered in
reasoning), we took the first query for each case and performed com-
pleteness reasoning, measuring 4,600 ms, 700 ms, and 600 ms for DBP,
LGD, and SWDF, respectively.7 Thus, we have a considerable speed-
up by using the constant-relevance principle, up to 50,000 times faster.
While for the plain reasoning, the number of all completeness state-
ments positively correlates with reasoning time, for the reasoning with
the constant-relevance principle, this is not the case, as observed from
the average reasoning time between DBP and LGD. With respect to

6 As of May 22, 2016
7 Note that for the other queries, all statements also have to be considered, hence

reasoning time would not be much different.

4.1 optimizing data-agnostic reasoning 71

Table 4.2: Overview of the experiment results, where NQ is the number of
queries, NC is the number of completeness statements, |Q| is the
average query length (i.e., number of triple patterns), tCR is the
average completeness reasoning time, and tQE is the average query
evaluation time

Endpoint NQ NC |Q| tCR tQE

DBP 334,304 331,294 1.13 0.086 ms 18.8 ms

LGD 108,611 44,505 1.54 0.127 ms 36.2 ms

SWDF 22,590 21,616 1.22 0.056 ms 8.3 ms

0 2 4 6 8 10 12 14

102

103

104

105

106

107

Query length

R
un

ti
m

e
(i

n
μ

s)

DBP-CR
LGD-CR

SWDF-CR
DBP-QE
LGD-QE

SWDF-QE

Figure 4.4: Comparison of query length to completeness reasoning (CR) time
and query evaluation (QE) time

query evaluation, completeness reasoning overall only adds a little
overhead to query evaluation time, that is, 0.5% on average.

Figure 4.4 shows how the overhead varies depending on query
length. Note that the y-axis is in log scale. We can see that the data
for query evaluation time shows no clear trend, whereas completeness
reasoning time positively correlates with query length. Yet, in all cases,
clearly query evaluation takes much longer than completeness reason-
ing by several orders of magnitude. Note that in all three query logs
we used, most queries have short length, for instance, there are only
fewer than 10 queries for each group of DBpedia queries with length
greater than 6. Also, the worst case of completeness reasoning time in
the figure is only 5.6 ms (where the query length equals 13), which we
consider very reasonable.

Regarding the runtime for completeness reasoning with the constant-
relevance principle, we can break this up into the time needed for the
hashmap lookup for constant-relevant statements, and the time for
the TC-application of those constant-relevant statements. Figure 4.5
shows how they distribute. As seen from the figure, the growth of

72 optimizing completeness reasoning

0 2 4 6 8 10 12 14
100

101

102

103

104

Query length
R

un
ti

m
e

(i
n
μ

s)

DBP-H
LGD-H

SWDF-H
DBP-TC
LGD-TC

SWDF-TC

Figure 4.5: Distribution of hashmap lookup time (H) and TC-application time
(TC) in completeness reasoning across different query length

0 2 4 6 8 10 12 14
0

5

10

15

Query length

N
um

be
r

of
co

ns
ta

nt
s

0 2 4 6 8 10 12 14

0

10

20

30

40

Query length

N
um

be
r

of
re

le
va

nt
st

at
em

en
ts

DBP LGD SWDF

Figure 4.6: Comparison of query length to number of constants (upper) and
number of relevant statements (lower)

the hashmap lookup time is exponential in the query length, whereas
the growth of the TC-application time appears to be roughly linear.
We also observe that while initially TC-application takes longer, when
queries become longer, the hashmap lookup time starts to dominate the

4.2 optimizing data-aware reasoning 73

completeness reasoning time, that is, starting from queries of length
11 for the DBpedia case (but such queries are a few). This means that
from short- to medium-length queries, the fact that the time for the
lookup is exponential is of little importance.

Finally, Figure 4.6 (with linear scale on y-axis) provides an idea
on how query length relates with the number of constants in queries
and the number of constant-relevant statements, respectively. In the
upper figure, it can be seen that the number of constants grows linearly
with respect to query length with a few exceptions. This is likely to
be the reason for the exponential growth of hashmap lookup time in
Figure 4.5, since the hashmap lookup depends exponentially on the
number of constants. From the lower figure, we can infer that the
query logs contain relatively many similar (sub)-queries since there
are quite a number of relevant completeness statements. Still, the
number of relevant statements drops drastically from the number of
all completeness statements, thanks to the constant-relevance principle.
For queries up to length 6, there are at most 25 relevant statements,
and this number does not grow much, as the maximum number is 45.
There is a weak positive correlation between the query length and the
number of relevant statements. By and large, the trend of this figure
matches the trend of the TC-application time in Figure 4.5, due to the
linear relationship between the number of relevant statements and the
TC-application time.

conclusions of the experiments . We have evaluated complete-
ness reasoning in practical settings based on real query logs from DB-
pedia, SWDF, and Linked Geo Data SPARQL endpoints. We observed
that completeness reasoning with the constant-relevance principle can
be done quickly, with the worst case of 5.6 ms. Compared with query
evaluation time, completeness reasoning only adds a little overhead,
just about 0.5% on average. Also, the performance of completeness
reasoning tends to be positively correlated with query length. Further-
more, for short- to medium-length queries, the TC-application time,
which grows linearly, dominates the completeness reasoning time,
whereas for long queries, the hashmap lookup time, which grows
exponentially, dominates the reasoning time. Hypothetically, a possi-
ble weakness of this constant-relevance approach might occur when
there are a large number of constants in a query (e.g., 32 constants) due
to the exponential blowup of the set-equality queries generated. From
the query logs, however, long queries are rare and also, queries have
at most 14 constants, which are still manageable.

4.2 optimizing data-aware reasoning

For the data-aware setting, reasoning needs access to the data graph.
The previous approach to optimization of data-agnostic reasoning,

74 optimizing completeness reasoning

which leaves out statements whose terms are not among the terms
of the query, is no more applicable, since parts of the statements can
now be mapped to the data graph. We present a new algorithm, which
improves upon an earlier one for completeness checking in Chapter 3.

4.2.1 Completeness Templates and Partial Matching

In this subsection, we introduce completeness templates, template-
based transfer operator, and partial matching as techniques to opti-
mize data-aware completeness reasoning. Completeness templates
are inspired by natural language completeness statements available
on the Web, which are usually about similar topics. Then, by exploit-
ing that a template represents many statements, we can leverage query
evaluation for simultaneous processing of statements. Finally, partial
matching is crucial for filtering out irrelevant templates wrt. the query
we want to check for completeness.

completeness templates . We represent similar completeness sta-
tements by so-called completeness templates. Such templates support
users in creating completeness statements of similar topics, as they
occur for instance in IMDb, which reports completeness for movie
cast and crew8 or in OpenStreetMap, which uses a wiki to record the
completeness of objects in different areas.9 A completeness template
is a 3-tuple τ = (C, Vτ, Ω), where C is a completeness statement, Vτ ⊆
var(C) is a set of variables, called meta-variables, and Ω is a set of
mappings from Vτ to terms (i.e., IRIs or literals). We also refer to the
BGP of the completeness statement C of the template τ as Pτ. As an
example of a completeness template, we generalize the statement set

{Compl((ger, lang, ?l)), . . . , Compl((spa, lang, ?l)) },

to the template (Compl((?c, lang, ?l)), {?c}, Ω), where Ω = { { ?c �→
ger }, . . . , { ?c �→ spa } }. A template τ = (C, Vτ, Ω) represents the state-
ment set Cτ = {Compl(μPC) | μ ∈ Ω }, obtained by instantiating C
with the mappings in Ω. This definition naturally extends to sets of
completeness templates. Note that a completeness statement C can
be expressed as the completeness template (C, ∅, {μ∅}) where μ∅ is the
mapping with the empty domain.

template-based transfer operator . A key part of the algo-
rithm for checking completeness, given a statement set C and a data
graph G, is to identify the crucial part P0 of P, that is, the maximal
subset P0 ⊆ P such that P̃0 ⊆ TC(P̃∪G). Given a setT of completeness
templates, analogously to Eq. (4), such a part satisfies the equation

P0 = P∩ ĩd−1
(TCT (P̃∪G)). (6)

8 See e.g., http://www.imdb.com/title/tt0105236/fullcredits
9 See e.g., http://wiki.openstreetmap.org/wiki/Abingdon

4.2 optimizing data-aware reasoning 75

A baseline approach to compute P0 in Eq. (6) is to instantiate templates
to yield completeness statements, and then apply the TC-operator wrt.
the statements. This may be costly if there are many instances of those
templates. Now, templates allow us to leverage query evaluation
for data-aware completeness reasoning by exploiting that a template
represents many statements. Essentially, to check whether the TC-
operator maps a triple in P̃ by an instantiation of a template τ, we
first evaluate Pτ (by treating the meta-variables like variables) over the
union graph P̃ ∪G, with the condition that at least one triple pattern
in Pτ is mapped to a triple in P̃ (since otherwise the mapping does not
contribute to P0), and verify in a second step which of the resulting
mappings are compatible with the instantiations of the template τ. In
this way, all instances of τ can be processed simultaneously.

To formalize the above idea, we first define prioritized evaluation of
a BGP over a pair of graphs (G1, G2). In such an evaluation, we consider
the first graph G1 as the mandatory and the second as the optional graph,
which means that at least one triple pattern of the BGP is mapped to
a triple of G1, while there is no need to map any triple pattern to G2.
Formally, prioritized evaluation of a BGP P over (G1, G2) is defined as
�P�(G1,G2) = {μ | μ ∈ �P�G1∪G2 and μP′ ⊆ G1 for some P′ ⊆ P, P′ � ∅ }.
So, in our case of completeness checking, the mandatory graph will be
the frozen BGP P̃ and the optional graph will be the data graph G.

Example 4.2. Consider the BGP Pusa = {(usa, lang, ?l)}, the graph

Gorg = {(org1, founder, ger), (ger, lang, de),

(org2, founder, usa), (org2, founder, ger)},

and the completeness template τorg = (C, {?org}, Ω), where

C = Compl((?c, lang, ?lang), (?org, founder, ?c))

and Ω = {{?org �→ org1}, {?org �→ org2}, {?org �→ org3}}. It is the case
that �Pτorg�(P̃usa,Gorg)

= {{ ?c �→ usa, ?lang �→ l̃, ?org �→ org2 }}, where Pτorg

is the BGP of the statement C of the template τorg.

Next, in the prioritized evaluation of a BGP Pτ over (P̃, G), we apply
a pruning technique based on the following observation. Each answer
mapping μ ∈ �Pτ�(P̃,G) determines a nonempty subset P′τ ⊆ Pτ such
that μP′τ ⊆ P̃ and μP′′τ ⊆ G for its complement P′′τ := Pτ \ P′τ. Since
frozen variables only occur in P̃ and not in G, we conclude that for
every variable ?v that occurs both in P′τ and P′′τ it must be the case that
μ(?v) is not a frozen variable.

The algorithm with pruning proceeds as follows. For each non-
empty subset P′τ ⊆ Pτ, we first evaluate P′τ over P̃, which yields partial
answers ν. We try to complete each such partial answer ν by evaluating
the instantiated complement ν(P′′τ) over G and joining the answers
resulting from this with ν itself. We prune the answers ν of the first

76 optimizing completeness reasoning

evaluation step by keeping only those mappings for which no term
ν(?v), ?v ∈ var(P′′τ), is a frozen variable. We call such a ν pure. Clearly,
for non-pure mappings the subsequent evaluation over G can only
result in the empty set. Formally, we compute the union

⋃
P′τ ⊆ Pτ
P′τ � ∅

⋃
ν ∈ �P′τ�P̃

ν is pure

{ ν } � �ν(Pτ \ P′τ)�G,

which equals �Pτ�(P̃,G) as just explained.
We denote the projection of a mapping μ wrt. a set W of variables

as πW(μ). Given a set T of completeness templates, a frozen BGP P̃,
and a graph G, we now define the template-based transfer operator TT as
follows:

TT (P̃, G) =
⋃
τ ∈ T

τ = (C, Vτ, Ω)

{μPτ | μ ∈ �Pτ�(P̃,G) and πVτ(μ) ∈ Ω}.

The above operator computes for each template τ the prioritized evalu-
ation of the BGP Pτ over (P̃, G), keeps only those mappings compatible
with Ω, and then takes the union. The crucial point here is that we
first evaluate the BGP of the template, and only after that we check
which answers correspond to instantiations by Ω. By the definition of
completeness templates and the prioritized evaluation of BGPs, it is
the case that P0 as in Eq. (6) can alternatively be computed using TT ,
as stated in Proposition 4.3.

Proposition 4.3. Given a BGP P, a graph G, and a set T of completeness
templates, it is the case that

P0 = P∩ ĩd−1
(TCT (P̃∪G)) = P∩ ĩd−1

(TT (P̃, G)).

partial matching . As there can be many completeness templates,
we want to rule out the irrelevant ones, that is, those templates that do
not contribute to query completeness. Basically, they are the templates
with no overlapping triple patterns (modulo variable generalization)
over the query.

Let us first sketch the idea of partial matching. Here, we rely on
hashmaps. We use each triple pattern of a template as a hashkey,
by which the template can be retrieved. Thus, a template with three
triple patterns, for example, can be retrieved in three different ways.
To find templates that are potentially applicable to a frozen BGP P̃,
we perform a hashmap lookup for each triple pattern of P and for
all possible generalizations of that triple pattern where non-predicate
terms are replaced by a variable.

Let us formalize the above idea. Our main goal here is partial match-
ing: retrieving only completeness templates having a triple pattern

4.2 optimizing data-aware reasoning 77

that can potentially be mapped to a triple in a frozen BGP P̃. To this
end, we first introduce a signature operator that abstracts away concrete
variables by replacing every occurrence of a variable with the reserved
IRI _var. The signature of an element t ∈ I ∪ L∪V is defined as

σ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t, if t ∈ I ∪ L

_var, if t ∈ V.

The signature of a triple pattern (s, p, o) is defined as σ((s, p, o)) =

(σ(s), σ(p), σ(o)). Furthermore, the signature of a BGP P is defined as
σ(P) = { σ((s, p, o)) | (s, p, o) ∈ P }. As an illustration, the signature of
the BGP Pusa = {(usa, lang, ?l)} is σ(Pusa) = { (usa, lang, _var) }.

Next, we index completeness templates according to (the signatures
of) their triple patterns. For this purpose, we define a mapping M
from signature triples to sets of completeness templates such that the
signature triple is in the signature of the template’s BGP:

M((s, p, o)) = { τ ∈ T | (s, p, o) ∈ σ(Pτ) }.

In practice, such a mapping can be realized by standard hashmaps,
providing fast retrieval operations. Given a signature triple (s, p, o),
the generalization operator gen((s, p, o)) computes the set of all gener-
alizations where non-predicate terms can become variables. As an
illustration, the generalization of the signature triple (usa, lang, _var)
is the set {(usa, lang, _var), (_var, lang, _var)}.

Now, we are ready to define an operator to get completeness tem-
plates that can potentially ‘transfer’ at least one triple in the frozen
BGP P̃. The operator pmatch(P,T) computes the set of partially matched
completeness templates wrt. P and T , and is defined as

⋃
(s,p,o)∈σ(P)

{M((s′, p′, o′)) | (s′, p′, o′) ∈ gen((s, p, o))}.

The operator computes the union of the mapping results over signature
generalization of all triple patterns in the BGP P. By the construction
of the mapping M and the generalization operator, it is the case that
pmatch(P,T) preserves P0 in Eq. (6), as stated in Proposition 4.4.

Proposition 4.4. Given a BGP P, a graph G, and a set T of completeness
templates, it is the case that

P0 = P∩ ĩd−1
(TCT (P̃∪G)) = P∩ ĩd−1

(TCpmatch(P,T) (P̃∪G)).

This means that instead of taking all the templates in T , it is enough
to consider only the subset pmatch(P,T), which is potentially much
smaller than T .

78 optimizing completeness reasoning

4.2.2 Experimental Evaluation of Data-aware Completeness Reasoning

Having described our optimization techniques for data-aware com-
pleteness reasoning, we now would like to analyze how well the tech-
niques can provide speed-up, in particular wrt. a realistic scenario, and
how feasible it is to perform data-aware completeness reasoning at all.
This subsection reports on our evaluation of Wikidata-based complete-
ness reasoning experiments. First, we describe our experimental setup,
and then discuss the results of the experiments.

experimental setup. The reasoning program and experiment fra-
mework were implemented in Java using the Apache Jena library.10

We used the direct-statement fragment (i.e., the fragment with no qual-
ifiers nor references) of Wikidata as our data graph, consisting of around
110 mio triples.11 We chose Wikidata mainly due to its relatively large
size, recent popularity, and good quality, making it suitable for our
data-aware experiment. The graph was loaded into a Jena TDB triple
store.

Our queries were generated based on human-made, openly available
queries on the Wikidata query page.12 We extracted the BGPs of the
queries and transformed the vocabulary of the queries to the direct
statements vocabulary. These BGPs acted as a ‘base’ for generating
our experiment queries: (i) for each base, we evaluated it over the
Wikidata graph; (ii) we took randomly 20 of the result mappings of the
base, projected on the first variable of the base;13 and (iii) we generated
queries by instantiating the query bases with these projected mappings.
The completeness statements are generated in a similar way: (i) for each
base, we evaluated it over the Wikidata graph; (ii) from the answer
mappings, we took randomly 50% of them, projected to the first vari-
able of the base; and (iii) we generated completeness statements by
instantiating the base with the respective mappings as the statements’
BGPs. In this setting, we also naturally represent completeness state-
ments by completeness templates as follows: we took the base BGP
as the template’s BGP, and the projected mappings as the template’s
mappings.

We measured the runtime of completeness reasoning with optimiza-
tions and query evaluation. Each measurement was repeated 10 times
and we took the median. The experiments were done on a laptop with
Intel Core i5 2.50 GHz-processor and 8 GB memory.

results and discussion . In the experiments, we observed the
query evaluation time and completeness reasoning time from 1,160

10 http://jena.apache.org/
11 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160201/
12 https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_
Query_Examples&oldid=2099085

13 We imposed some ordering over the triple patterns in the BGPs.

4.2 optimizing data-aware reasoning 79

Table 4.3: Average runtime comparison of query evaluation and completeness
reasoning grouped by query length, where |Q| is the query length,
NQ is the number of queries, tQ is the average of query evaluation
time, and tC is the average of completeness reasoning time.

|Q| NQ tQ tC

1 228 2.82 ms 5.43 ms

2 355 1.86 ms 131.51 ms

3 387 2.53 ms 138.22 ms

4 125 1.63 ms 326.45 ms

5 42 1.36 ms 155.45 ms

6 3 2.41 ms 114.26 ms

8 20 1.93 ms 670.66 ms

queries, with the average query length of 2.58. There were 445,628
completeness statements generated, with the average completeness
statement length (i.e., the number of triple patterns in the BGP of
completeness statements) of 2.43. Furthermore, those statements were
represented by 66 completeness templates, corresponding to the num-
ber of base BGPs to generate the queries. On average, query evaluation
took 2.23 ms, whereas completeness reasoning took 140.09 ms, which
was still relatively fast.

To get more detailed observations, we broke down the experiment
results by query length (as shown in Table 4.3). There is no clear
pattern for both query evaluation and completeness reasoning as it
is not always the case that the longer the query gets, the longer the
runtime becomes. Interestingly though, the completeness reasoning
time for queries of length 1 is much faster than the others. This is likely
due to smaller partial matches with templates and easier prioritized
evaluation in the reasoning, in the sense that processing such queries
does not even need to see the data graph whenever the corresponding
templates’ BGPs are also of length 1 (recall Subsection 4.2.1). Overall,
though completeness reasoning is slower than query evaluation, it is
still relatively fast in absolute scale (i.e., always below 700 ms). To get
an idea of how long plain completeness reasoning is (i.e., without opti-
mizations), we took randomly 10 queries for each query length group
and measured the reasoning time. We then computed the average
reasoning time with a weighting scheme that respects the query dis-
tribution as in Table 4.3. The average reasoning time was 15 s, which
is relatively slow. A possible explanation is that for plain complete-
ness reasoning, all the statements were applied repeatedly over the
union of the frozen BGP P̃ and the data graph G. We then measured
the reasoning time for those queries using only the partial matching

80 optimizing completeness reasoning

technique, where we constructed a single completeness template for
every completeness statement. In this case, the average reasoning time
was 401.8 ms, as opposed to 140.09 ms, where completeness templates
to represent multiple statements were additionally used. Without us-
ing templates, partial matching might still get many completeness
statements that have to be individually evaluated over P̃ ∪ G, as op-
posed to the template’s simultaneous processing. This shows that both
optimization techniques, that is, completeness templates and partial
matching, may help speed up the reasoning.

4.3 summary

In this chapter, we have provided optimization techniques for the
problem of completeness entailment both in the data-agnostic and
data-aware settings.

For the data-agnostic setting, we proposed the constant-relevance
principle, to reduce the number of completeness statements employed
in the reasoning about query completeness. Then, we developed tech-
niques for the retrieval of constant-relevant statements, based on sev-
eral index structures: standard hashing, inverted indexes, and tries,
and performed a comparative performance evaluation over those in-
dexes. Finally, we have experimentally shown that our proposed tech-
niques can improve the feasibility of data-agnostic reasoning.

For the data-aware case, we have developed optimization tech-
niques based on completeness templates and partial matching. Our
Wikidata-based experimental evaluation has shown that completeness
reasoning with the optimized techniques can be performed relatively
fast, taking on average 140.09 ms, much faster than plain completeness
reasoning which took around 15 s.

5
S O U N D N E S S R E A S O N I N G

As RDF generally follows the open-world assumption, the use of nega-
tion in SPARQL queries can lead to unsound answers (as exemplified in
Section 1.2). We have proposed completeness statements as metadata
specifying that certain kinds of information are entirely recorded in
an RDF dataset. In this chapter, we leverage completeness statements
to check whether we can guarantee the soundness of SPARQL query
answers when negation is used. We distinguish between the sound-
ness of a specific answer of a graph pattern and the soundness of a
graph pattern as a whole. We provide a formalization and character-
ize the problem of soundness checking via reduction to completeness
checking. We further conduct an experimental evaluation based on
Wikidata, to demonstrate the feasibility of our framework. Partial,
preliminary results of this chapter have been published in [33], while
the full results are to be submitted in [30].

5.1 sparql with negation

Here, we define SPARQL queries with negation, by extending our
definition of the positive fragment of SPARQL as in Section 2.1. We
introduce notations that are concise and more convenient for our pur-
poses than the original syntax [47]. Recall that a basic graph pattern
(BGP) is a set of triple patterns. A NOT-EXISTS pattern is constructed by
negating a BGP via ‘¬∃’. A graph pattern P, as used throughout this
chapter, is defined as a set of triple patterns and NOT-EXISTS patterns.
The positive part of P, denoted P+, consists of all triple patterns in P, and
the negative part of P, denoted P−, consists of the BGPs of all NOT-EXISTS
patterns in P. A mapping μ is a partial function μ : V → I ∪ L. The
evaluation �P�G of a graph pattern P over a graph G produces a set of
mappings and is defined in [47] as:

{μ ∈ �P+�G | ∀Pi ∈ P− . �μ(Pi)�G = ∅ }.

We assume that graph patterns are consistent, i.e., �P�G � ∅ for some
graph G.

5.2 motivation and formalization

We next introduce our two core problems, answer soundness and
pattern soundness.

81

82 soundness reasoning

5.2.1 Answer Soundness

Consider the following graph pattern, asking for countries where en
is no official language and whose official languages (if any) do not
include an official language of an EU founder:

Pl = {(?c, a, country),¬∃{ (?c, lang, en) },
¬∃{ (?c, lang, ?l), (?f , lang, ?l), (EU, founder, ?f) }}.

For the sake of example, consider the following graph about countries:

Gl = {(ger, a, country), (usa, a, country), (sgp, a, country),

(spa, a, country), (ger, lang, de), (spa, lang, es),

(EU, founder, ger)}.

For this graph, consider also the set Cl of the following four complete-
ness statements:

• Cger = Compl((ger, lang, ?l)), for all official languages of Ger-
many;

• Cusa = Compl((usa, lang, ?l)), for all official languages of the USA
(i.e., the USA has no official language1);

• Cspa = Compl((spa, lang, ?l)), for all official languages of Spain;
and

• Ceu = Compl((EU, founder, ?f)), for all EU founders.

Note that we do not claim anything about the completeness of the
official languages of Singapore.

Evaluating the graph pattern over the graph in the standard way
gives

�Pl�Gl = {{?c �→ usa}, {?c �→ sgp}, {?c �→ spa}}.
We want to verify whether these answers are sound, that is, whether
they cannot have been returned due to possibly incomplete infor-
mation. This amounts to checking that there is no valid extension
of Gl wrt. Cl over which the answers are not returned. Let us ana-
lyze {?c �→ usa}. First, we check if (usa, lang, en) is certainly not true.
Indeed, since we know by the graph and the statement Cusa that the
USA has no official language, the (usa, lang, en) must not be true. Sec-
ond, we check if {(usa, lang, ?l), (?f , lang, ?l), (EU, founder, ?f)} surely
fails. This is clearly the case for the same reason as before, namely
that there is no official language of the USA. From this reasoning, we
conclude that the answer {?c �→ usa} is sound.

Next, let us analyze {?c �→ sgp}. We check if (sgp, lang, en) is indeed
not true, that is, if there is no valid extension where (sgp, lang, en) is true.

1 As it is the case in reality, see also: https://www.cia.gov/library/publications/
the-world-factbook/geos/us.html

5.2 motivation and formalization 83

Now we have a problem: due to the lack of completeness information,
it might be that in reality, en is an official language of Singapore, but the
fact is missing in our data. Thus, we cannot guarantee the soundness
of the answer {?c �→ sgp}.

Last, let us analyze {?c �→ spa}. First, we check if (spa, lang, en) is not
true. Since we know by the statement Cspa and the graph that Spain’s
official language is only es, then (spa, lang, en) must not be true. Sec-
ond, we check if the BGP {(spa, lang, ?l), (?f , lang, ?l), (EU, founder, ?f)}
evaluates to false. From the graph and the statements Cger and Ceu, we
know that de is the only official language of Germany as the only EU
founder, which is different from es. Thus, the pattern must evaluate
to false. We conclude that the answer {?c �→ spa} is sound.

In summary, given answers of a graph pattern over a graph with
completeness statements, we have reasoned by case analysis whether
each answer is sound.

5.2.2 Pattern Soundness

Consider now the following graph pattern asking for countries where
en is no official language and that are not EU founders:

P f = {(?c, a, country),¬∃{ (?c, lang, en) },
¬∃{ (EU, founder, ?c) }}.

Consider also the set C f of two completeness statements:

• Clang = Compl((?c, a, country), (?c, lang, ?l)), for all languages of
countries and

• Ceu = Compl((EU, founder, ?f)), for all EU founders.

It is actually the case that the statements guarantee the soundness of
the graph pattern P f alone, i.e., all answers returned by P f are sound,
independently of the queried graph. In other words, given P f and C f ,
the soundness of all answers is guaranteed for any possible graph,
even with totally different languages and EU founders. Let us see why.
Consider an arbitrary graph G and suppose the pattern evaluation
over G returns an answer {?c �→ c̃} for an IRI c̃. To be sure that {?c �→ c̃}
is sound, we must make sure that c̃ does not have en as an official
language and is not an EU founder. By the statement Clang, it is the
case that G is complete for all languages of countries. Therefore, G is
also complete for all languages of c̃. The fact that c̃ is returned means
that en is not among its official languages. Now, due to Ceu, it is the
case that G is complete for all EU founders. Again, the fact that c̃ is
returned means that c̃ is not an EU founders. Thus we can be sure
that the answer {?c �→ c̃} is sound. Since the answer and the graph
were arbitrary, we conclude that the set C f of completeness statements
entails the soundness of P f .

84 soundness reasoning

In this scenario, as opposed to answer soundness, we have reasoned
whether the soundness of an arbitrary answer of a graph pattern over
an arbitrary graph can be guaranteed by a set of completeness state-
ments.

5.2.3 Formalization

Let us first formally define what soundness of an answer means. Con-
sider a graph pattern P, a mapping μ, and an extension pair (G, G′).
We say that (G, G′) entails the soundness of μ for P, written Sound(μ, P)
if, whenever μ ∈ �P�G, then it is the case that μ ∈ �P�G′ . Note that
for μ � �P�G, it is trivial that (G, G′) |= Sound(μ, P). Therefore, we are
only interested in the soundness of answers occurring in �P�G. Given
a set C of completeness statements, a graph G, a graph pattern P, and
a mapping μ ∈ �P�G, we say that C and G entail the soundness of the
mapping μ of P, written as C, G |= Sound(μ, P), if for all extension pairs
(G, G′) |= C it holds that (G, G′) |= Sound(μ, P). In our motivating
scenario we saw that usa is a sound answer while sgp is not, thus
Cl, Gl |= Sound({?c �→ usa}, Pl), while Cl, Gl
|= Sound({?c �→ sgp}, Pl).

Now let us define the soundness of a graph pattern as a whole,
called pattern soundness. As opposed to answer soundness, here we
abstract over all possible answers of a graph pattern. For a graph pat-
tern P, the soundness of P is expressed as Sound(P). Given an extension
pair (G, G′), we define that (G, G′) satisfies the soundness of P, written
(G, G′) |= Sound(P), if �P�G ⊆ �P�G′ . Given a set C of completeness
statements and a graph pattern P, we say that C entails the soundness
of P, written as C |= Sound(P), if for all extension pairs (G, G′) |= C,
it holds that (G, G′) |= Sound(P). In our motivating scenario, it is the
case that Cf |= Sound(Pf).

It follows immediately from the definitions that all answers to a
sound pattern are sound.

Proposition 5.1. Let C be a set of completeness statements and P be a graph
pattern. Then, C |= Sound(P) iff C, G |= Sound(μ, P) for every graph G
and mapping μ.

5.3 checking answer soundness

In this section, we show how completeness statements over a graph
can be used to judge whether an answer obtained by evaluating a
graph pattern over the graph is sound. The idea is to reduce the
problem of soundness checking to that of completeness checking. Let
us first recall the definition of completeness entailment. Given a set
C of completeness statements, a graph G, and a BGP P, the data-aware
completeness entailment C, G |= Compl(P) is defined as follows: for all
extension pairs (G, G′) |= C, it holds that (G, G′) |= Compl(P).

5.3 checking answer soundness 85

Now, the main theorem of this section intuitively states the follow-
ing: the soundness of some answer-mapping of a graph pattern over a
graph is achieved exactly if all the graph pattern’s NOT-EXISTS-BGPs, af-
ter applying the answer-mapping to them, are complete for the graph.

Theorem 5.2. (Answer SoundnessCharacterization) Let G be a graph,
C be a set of completeness statements, P be a graph pattern, and μ ∈ �P�G be
a mapping. Then, it is the case that

C, G |= Sound(μ, P) iff for all Pi ∈ P−. C, G |= Compl(μPi).

Proof. (⇐) Let μ ∈ �P�G be a mapping. Suppose that for all Pi ∈ P−,
we have C, G |= Compl(μPi). Take an extension pair (G, G′) satisfying
C. We will show that μ ∈ �P�G′ . Since μ ∈ �P�G and G ⊆ G′, it
holds that μ ∈ �P+�G′ . It is left to show that for all Pi ∈ P−, we have
�μPi�G′ = ∅. Take an arbitrary Pi ∈ P−. The inclusion �μPi�G′ ⊆ �μPi�G

holds because C, G |= Compl(μPi). Moreover, the equality �μPi�G = ∅
holds because μ ∈ �P�G. Hence, it is the case that �μPi�G′ = ∅.
(⇒) We give a proof by contrapositive. Suppose there is a BGP Pw ∈ P−

(‘w’ for witness) such that C, G
|= Compl(μPw). We will show that
C, G
|= Sound(μ, P). Since it is the case that C, G
|= Compl(μPw), there
must be a mapping ν such that: (i) dom(ν) = var(μPw); (ii) (G, G ∪
νμPw) |= C; and (iii) νμPw � G. This implies that ν � �μPw�G and
ν ∈ �μPw�G∪νμPw . Now, we will show that (G, G∪νμPw)
|= Sound(μ, P).
Since ν ∈ �μPw�G∪νμPw , it holds that μ � �P�G∪νμPw . On the other hand,
it is the case thatμ ∈ �P�G from our assumption. Thus, (G, G∪νμPw)
|=
Sound(μ, P). �

Example 5.3. Consider the motivating scenario of answer soundness.
Take the mapping {?c �→ usa} ∈ �Pl�Gl . Both the entailment Cl, Gl |=
Compl((usa, lang, en)) and the entailment

Cl, Gl |= Compl((usa, lang, ?l), (?f , lang, ?l), (EU, founder, ?f))

hold. By Theorem 5.2, it is the case that Cl, Gl |= Sound({?c �→ usa}, Pl).
In contrast, take the mapping {?c �→ sgp} ∈ �Pl�Gl . It is the case

that Cl, Gl
|= Compl((sgp, lang, en)) with the extension pair (Gl, Gl ∪
{(sgp, lang, en)}) as a counterexample. Thus, it holds that Cl, Gl
|=
Sound({?c �→ sgp}, Pl).

In fact, Theorem 5.2 holds for a wider class of graph patterns than
defined in this chapter. We only need that the positive part of the
pattern be monotonic, that is, a mapping remains a solution over all
extensions of the graph G. We do not make this formal to keep the
exposition simple.

complexity. From Theorem 5.2, the check whether an answer is
sound wrt. a set of completeness statements and a graph can be re-
duced to a linear number of data-aware completeness checks (as dis-
cussed in Chapter 3). From this, it follows that the complexity of the

86 soundness reasoning

answer soundness entailment problem is inΠP
2 . Moreover, the answer

soundness problem is also ΠP
2 -hard as the completeness problem can

be reduced to it by using Theorem 5.2. Nevertheless, from a practical
perspective, one may expect graph patterns (including BGPs used to
construct completeness statements) to be short, giving us a potentially
manageable answer soundness check. Section 5.5 reports an experi-
mental study of answer soundness checking in practical settings.

5.4 checking pattern soundness

As demonstrated in our motivating scenario, it might be the case that
completeness statements guarantee the soundness of a graph pattern
as such, that is, all answers returned by the graph pattern are known
to be sound, no matter the specifics of the graph. To characterize
pattern soundness, we follow the same strategy as before: we reduce
the problem of soundness checking to completeness checking.

First, we generalize completeness statements to conditional complete-
ness statements, which express the completeness of a BGP under the
condition of another BGP. Given two BGPs P and P′, the completeness
of P wrt. P′ is denoted as Compl(P | P′). Given an extension pair (G, G′),
we define that (G, G′) |= Compl(P | P′) if �(var(P), P∪ P′)�G′ ⊆s �P�G.2

This means that the conditional completeness statement is satisfied
by the extension pair, whenever the evaluation of the BGP P over the
graph G contains the evaluation of P under the condition of P′ over
the graph G′. For example, the conditional completeness statement
Compl((?c, lang, en) | (?c, a, country)) denotes the completeness of all
things having English as their language, provided that the things are of
type country. Note that conditional completeness statements are more
general than completeness statements as introduced in Section 2.2,
since a completeness statement Compl(P) can be expressed as a condi-
tional completeness statement with the empty condition Compl(P | ∅).
We define that the entailment C |= Compl(P | P′) holds if for all exten-
sion pairs (G, G′) satisfying C, it is the case that (G, G′) |= Compl(P | P′).
The following proposition states that such entailment holds iff the TC

application over the prototypical graph P̃∪ P̃′ includes P̃. Recall that
the prototypical graph represents any possible graph that satisfies a
BGP.

Proposition 5.4. For a set C of completeness statements and BGPs P and P′,
it is the case that

C |= Compl(P | P′) iff P̃ ⊆ TC(P̃∪ P̃′).

Proof. (⇒) Suppose that C |= Compl(P | P′). By definition of the en-
tailment, for all (G, G′) |= C, the inclusion �(var(P), P∪P′)�G′ ⊆s �P�G

holds. Consider the extension pair (G, G′) where G = TC(P̃ ∪ P̃′)

2 We use ‘⊆s’ for set inclusion.

5.4 checking pattern soundness 87

and G′ = P̃ ∪ P̃′. By construction, (G, G′) |= C holds. From our
assumption, it follows that �(var(P), P ∪ P′)�G′ ⊆s �P�G. By construc-
tion, we have that πvar(P)(ĩd) ∈ �(var(P), P ∪ P′)�G′ where ĩd is the
freeze mapping of the BGP P ∪ P′ (as defined in Section 2.1). From
the set inclusion, it follows that πvar(P)(ĩd) ∈ �P�G. This implies that
πvar(P)(ĩd)P = P̃ ⊆ G = TC(P̃∪ P̃′).
(⇐) Assume P̃ ⊆ TC(P̃∪ P̃′). By this assumption and the prototypical-
ity of P̃∪ P̃′, which represents any possible graph satisfying P∪ P′, it
is the case that C |= Compl(P | P′). �

In the motivating scenario of pattern soundness, it holds that C f |=
Compl((?c, lang, en) | (?c, a, country)) due to the inclusions {(c̃, lang, en)}
⊆ {(c̃, lang, en), (c̃, a, country)} ⊆ TC f ({(c̃, lang, en), (c̃, a, country)})}. This
means that the set C f of statements guarantees the completeness of
all things whose official language is English, under the condition that
those things are of type country.

The following lemma states that the soundness of a graph pattern
can be guaranteed if each BGP of the NOT-EXISTS patterns is complete
under the condition of the positive part of the graph pattern.

Lemma 5.5. Given a set C of completeness statements and a graph pattern P,
it is the case that

C |= Sound(P) if for all Pi ∈ P− . C |= Compl(Pi | P+).

Proof. Assume that for all Pi ∈ P−, it is the case that C |= Compl(Pi | P+).
Take any extension pair (G, G′) |= C and suppose there is a mapping
μ ∈ �P�G. We want to show that μ ∈ �P�G′ . By G ⊆ G′, it holds that
μ ∈ �P+�G′ . Thus, it is left to show that for all Pi ∈ P−, it is the case that
�μPi�G′ = ∅.

Take any negation part Pi. By C |= Compl(Pi | P+) and (G, G′) |=
C, it is the case that (G, G′) |= Compl(Pi | P+). Consequently, by
�(var(Pi), Pi ∪P+)�G′ ⊆s �Pi�G and �μPi�G = ∅, it must be the case that
�μPi�G′ = ∅. As Pi was arbitrary, it is the case that μ ∈ �P�G′ . �

One might wonder whether the converse of the above lemma also
holds. However, the following counterexample shows that it does not.

Example 5.6. Consider the following graph patterns:

• P1 = {(?c, a, country),¬∃{(?c, lang, en)},
¬∃{(?c, lang, en), (?c, lang, fr)}}

• P2 = {(?c, a, country),¬∃{(?c, lang, en), (?c, lang, ?l)}}

Consider also the singleton set C = {Compl((?c, lang, en))}. It is the
case that C |= Sound(P1) and C |= Sound(P2) despite the violation of
the right-hand side of Lemma 5.5.

88 soundness reasoning

Taking a closer look, one notices that both graph patterns in fact
contain redundancies, which can be checked via query containment
under set semantics (written�s). For P1, the second NOT-EXISTS pattern
is superfluous due to the first one being more general; whereas for P2,
the triple pattern (?c, lang, ?l) is superfluous since the emptiness of
the BGP of the NOT-EXISTS pattern only depends on the triple pattern
(?c, lang, en). Consequently, for both cases having only the statement
Compl((?c, lang, en)) is sufficient to guarantee their soundness.

To avoid such redundancies, we propose a normal form for graph
patterns, called Non-Redundant Form (NRF). A graph pattern P is in
NRF if it satisfies that: there is no containment between any distinct
BGPs of the negative parts; and every single BGP of the negative parts
is minimal. This can be formalized as follows:

• No redundant negations: for any distinct BGPs Pi, Pj ∈ P−, it is the
case that:

(var(P+), P+ ∪ Pi) �s (var(P+), P+ ∪ Pj).

• No redundant parts in a negation: for every Pi ∈ P−, there is no
non-empty P′i ⊂ Pi such that:

(var(P+), P+ ∪ P′i) �s (var(P+), P+ ∪ Pi).

A non-NRF graph pattern can be transformed into an equivalent
NRF graph pattern with a polynomial number of NP-checks, by repeat-
ing the containment check and redundant part removal until the two
conditions above are satisfied. As graph patterns tend to be relatively
small in practice, we expect that such a transformation is feasible.

With this notion in place, we can obtain the main theorem of this
section. The theorem states that given an NRF graph pattern, the check
whether it is sound can be reduced to the check whether each BGP of
the NOT-EXISTS patterns is complete under the condition of the positive
part. Thus, the theorem ensures that the converse of Lemma 5.5 holds
for NRF graph patterns.

Theorem 5.7. (Pattern Soundness Characterization) Given a set C of
completeness statements and a graph pattern P in Non-Redundant Form
(NRF), it is the case that

C |= Sound(P) iff for all Pi ∈ P− . C |= Compl(Pi | P+).

Proof. (⇐) This is a direct consequence of Lemma 5.5.
(⇒) We give a proof by contrapositive. Suppose there is a BGP Pw ∈ P−

(‘w’ for witness) such that C
|= Compl(Pw | P+). By Proposition 5.4, it is
the case that P̃w � TC(P̃w∪ P̃+). Let us prove that for the extension pair
(G, G′) = (P̃+ ∪ TC(P̃w ∪ P̃+), P̃w ∪ P̃+), it is the case that (G, G′) |= C,
but (G, G′)
|= Sound(P).

5.4 checking pattern soundness 89

By the definition of TC, it holds that (G, G′) |= C. We now have
to show that (G, G′)
|= Sound(P). By construction, ĩd � �P�P̃w∪P̃+ =

�P�G′ where ĩd is the freeze mapping wrt. P+. We will show that
ĩd ∈ �P�P̃+∪TC(P̃w∪P̃+) = �P�G.

By construction, ĩd ∈ �P+�P̃+∪TC(P̃w∪P̃+). Thus, it is left to show that
for every BGP Pi ∈ P−, it is the case �ĩdPi�P̃+∪TC(P̃w∪P̃+) = ∅. Due to the
consistency of P and the non-containment property between different
negation parts from the ‘no redundant negations’ condition of an NRF
graph pattern, there is no negation part Pj � Pw such that:

�ĩdPj�P̃+∪TC(P̃w∪P̃+) � ∅.

Now, it is left to show that for the BGP Pw, it also holds

�ĩdPw�P̃+∪TC(P̃w∪P̃+) = ∅.

However, this holds from the consistency of P and the minimality
property from the ‘no redundant parts in a negation’ condition of an
NRF graph pattern. Thus, we have shown that ĩd � �P�G′ but ĩd ∈ �P�G,
serving as a counterexample for (G, G′) |= Sound(P). �

Example 5.8. In the motivating scenario of pattern soundness, it holds
that C f |= Compl((?c, lang, en) | (?c, a, country)) and also

C f |= Compl((EU, founder, ?c) | (?c, a, country)).

By Theorem 5.7, it is the case C f |= Sound(P f).

complexity. From Theorem 5.7 and Proposition 5.4, it follows that
the check whether a graph pattern is sound can be reduced to a linear
number of TC applications, which are basically evaluations of conjunc-
tive CONSTRUCT queries. Hence, deciding whether a graph pattern is
sound wrt. a set of completeness statements is in NP (and also NP-hard,
as checking completeness can also be reduced to checking soundness).
From a practical viewpoint, one may expect graph patterns of queries
and BGPs of completeness statements to be short, potentially allowing
for a feasible soundness check. As in our optimization of data-agnostic
completeness checking that uses the constant-relevance principle, our
TC applications here for conditional completeness statements can im-
mediately adopt the principle by indexing all constants appearing in
the whole body of the conditional statements. Section 5.5 reports an
experimental investigation of pattern soundness checking in practical
cases.

soundness of queries with projections . One may wonder
whether our characterization here can also be used for queries with
negation that involve projections. The next example shows that in
general, the condition from Theorem 5.7 is not a necessary condition
for pattern soundness entailment of queries with projection.

90 soundness reasoning

Example 5.9. Consider the following boolean query, which asks whether
it is impossible to right-shift any triple:

Q = ({}, {(?x, ?y, ?z),¬∃{ (?z, ?x, ?y) }}).

Consider also the singleton set of a completeness statement of three
possible shifts of triples:

C = {Compl((?x, ?y, ?z), (?z, ?x, ?y), (?y, ?z, ?x))}.

By case analysis over the availability of triple shifts, one can show
that whenever (G, G′) |= C, it holds that all answers of Q over G are
contained in those over G′, and thus, C entails the pattern completeness
of Q, even though C does not entail Compl((?z, ?x, ?y) | (?x, ?y, ?z)).

We do not know a characterization of pattern soundness for queries
involving projections. Nevertheless, Theorem 5.7 still gives a sufficient
condition for soundness of this case.

combining soundness and completeness reasoning . A graph
pattern with negation can be both sound and complete. Theorem 5.7
characterizes when a graph pattern P in NNF is sound wrt. a set C of
completeness statements. One can show that P is complete if and only
if the positive part P+ is complete. Via both characterizations, we can
then check whether a graph pattern is sound and/or complete.

5.5 experimental evaluation

From the above characterizations, we are now able to check query
soundness by reducing it to query completeness checks. For this
reason, we can therefore reuse the optimization techniques of com-
pleteness reasoning as described in Chapter 4. More specifically, we
reuse the constant-relevance technique for optimizing pattern sound-
ness checking, and the completeness templates and partial matching
techniques for optimizing answer soundness checking. In this section,
we analyze how soundness reasoning behaves in a realistic scenario,
in particular: how feasible it is to perform soundness reasoning, how
much speed-up can be gained with the optimization techniques, and
how does pattern soundness checking compare to answer soundness
checking. This section reports on our experimental evaluation based
on Wikidata. First, we describe our experimental setup, and then
discuss the results of the experiments.

5.5.1 Experimental Setup

The reasoning program and experiment framework were implemented
in Java using the Apache Jena library3 and are available online.4 As it

3 http://jena.apache.org/
4 http://completeness.inf.unibz.it/soundness-experiment/

5.5 experimental evaluation 91

was the case for the data-aware completeness reasoning experiment in
Subsection 4.2.2, we used the direct statements fragment of Wikidata
as our data graph, consisting of around 110 mio triples.5 The graph
was loaded into a Jena TDB triple store.

queries . Wikidata has openly available, human-made queries which
are available online.6 We took these queries as templates to generate
queries with negation. We extracted the BGPs of the queries and
transformed the vocabulary of the queries to the direct statements vo-
cabulary. We wanted to have queries with negation of various shapes.
For this reason, from the BGPs of the queries we generated different
sets of queries with negation, differing in the triple patterns that are
negated:

• QoneTP, the last triple pattern is negated;

• QoneTPoneTP, the last two triple patterns are independently negated,
forming two NOT-EXISTS patterns;

• QtwoTPs, the last two triple patterns are negated together, forming
one NOT-EXISTS pattern; and

• QthreeTPs, the last three triple patterns are negated together, form-
ing one NOT-EXISTS pattern.

The number of triple patterns negated was set to at most three, which
was reasonable, since most real-world queries are of length up to
three [8]. We projected out all variables in the positive part to cor-
respond to graph pattern evaluation.

completeness statements . We used two different methods of
generating completeness statements depending on whether we wanted
to perform either answer soundness or pattern soundness checking.
As for the generation of statements for answer soundness, we wanted to
perform it in such a way that there will be a variety of sound and pos-
sibly unsound answers. So, we generated the statements as follows:
(i) given a query, we evaluated the query and obtained all the answer-
mappings; (ii) for 25% of these answer-mappings, we applied them
to the BGP of each NOT-EXISTS pattern of the query and constructed
completeness statements out of these instantiated BGPs. This way, we
can guarantee that these 25% answer-mappings are sound, while the
remainder mappings are possibly unsound.

In this setting, we can naturally represent completeness statements
by completeness templates (see Subsection 4.2.1). We took the BGP of
the NOT-EXISTS patterns as the templates’ BGP and the sound answer
mappings as the templates’ mappings.

5 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160201/
6 https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_
Query_Examples&oldid=2099085

92 soundness reasoning

In the particular case of QtwoTPs, however, we also performed an
additional way of generating completeness statements, which differs
on how we get BGPs for completeness statements: instead of taking the
whole instantiated BGP of the NOT-EXISTS pattern, we also generated
completeness statements separately per triple pattern in the instantiated
BGP. The first triple pattern7 in the instantiated BGP was taken as is,
and the second was (again) instantiated with the answer-mappings
from the evaluation of the first triple pattern over the graph.

For the generation of statements for checking pattern soundness, we sim-
ply transformed the union of the positive part and each BGP of the
NOT-EXISTS patterns to a completeness statement.

We had five different cases for our experimental evaluation by com-
bining different query sets and completeness statements:

• oneTP is where the last triple pattern is negated;

• oneTPoneTP is where the last two triple patterns are indepen-
dently negated;

• twoTPsTO (‘TO’ for together) is where the last two triple patterns
are negated together and the statements are for the whole BGP;

• twoTPsSE (‘SE’ for separate) is where the last two triple patterns
are negated together, but the statements are obtained separately
per triple pattern; and

• threeTPsTO (‘TO’ for together) is where the last three triple pat-
terns are negated together and the statements are for the whole
BGP.

In each case, to perform answer soundness checking, we did not
use the statements generated based on pattern soundness since that
would have made all the answers sound. On the other hand, to perform
pattern soundness checking, we also used all the statements generated
based on answer soundness, as otherwise there would have been too
few statements (= the number of queries per case). We measured the
runtime of soundness reasoning for both pattern and answer, and also
that of query evaluation. For each case, we removed the measurements
where the query evaluation returned 0 answers, as answer soundness
checking would have become trivial. Each measurement was repeated
10 times and we took the median. Moreover, to get the result summary
of each experiment case, we also took the median over the case’s results.
We used median to avoid the effect of extreme values (that is, some
queries returned a large number of results, up to about 120,000 results).
The experiments were done on a laptop with Intel Core i7 2.50 GHz-
processor and 16 GB memory.

7 We fixed an ordering.

5.5 experimental evaluation 93

Table 5.1: The number of statements |C|, and the median of query length |Q|,
of query answers |�Q�G|, of query evaluation time tQ, of answer
soundness checking time tAS, of answer soundness checking time
per answer tAS/a, and of pattern soundness checking time tPS for
different cases. All times are in milliseconds.

Case |C| |Q| |�Q�G| tQ tAS tAS/a tPS

oneTP 37,769 3 24 14 1.57 0.069 0.19

oneTPoneTP 119,462 3 82 47 5.8 0.073 0.37

twoTPsTO 126,320 3 180 12.7 43.3 0.27 0.21

twoTPsSE 138,705 3 180 12.7 17.3 0.1 0.21

threeTPsTO 93,080 4 12,099 114 3,873 0.68 0.23

5.5.2 Experimental Results and Discussion

To get an idea of how soundness checking performs without our op-
timization techniques, we ran preliminary experiments to measure the
runtime of pattern soundness and answer soundness checking with no
optimization of the twoTPsTO and threeTPsTO cases. Here, we set the
timeout to 5 minutes. For pattern soundness checking, the median run-
time for the twoTPsTO case was about 1.5 s and for the threeTPsTO case
about 1.2 s. For answer soundness checking, however, we experienced
many timeouts, 22 timeouts out of 39 queries for the twoTPsTO case and
11 timeouts out of 13 queries for the threeTPsTO case. Timeouts still
occurred even when we performed answer soundness checking with
partial matching as the only optimization, where we translated each
completeness statement trivially into an individual template, without
generalization. We experienced 6 timeouts out of 39 queries for the
twoTPsTO case and 6 timeouts out of 13 queries for the threeTPsTO case.
This indicates that without the usage of templates, checking answer
soundness is hardly feasible.

Now let us see the performance of soundness checking with all our
optimizations. Table 5.1 summarizes the results of the experiments
for all the five cases. Among those cases, the number of statements
generated varies, with around 37,000 for Case oneTP, and over 93,000
for the others. The median length of queries is either 3 or 4, and the
median size of query results varies from around 24 to 12,099. Median
query evaluation time ranges from 12 ms to 114 ms.

Median pattern soundness checking always takes less than a millisec-
ond, which is more than 1000× faster than the check without optimiza-
tion. This is likely due to the fact that pattern soundness checking need
not see the data graph, and depends solely on the query and complete-

94 soundness reasoning

0 10 20 30 40 50 60

100

102

104

106

108

1010

oneTP: Query rank (from the lowest
to the highest of number of query answers)

N
um

be
r

of
an

sw
er

s
or

ru
nt

im
e

in
ns

0 5 10 15 20 25

100

102

104

106

108

1010

oneTPoneTP: Query rank (from the lowest
to the highest of number of query answers)

N
um

be
r

of
an

sw
er

s
or

ru
nt

im
e

in
ns

|�Q�G| tQ tAS

Figure 5.1: Comparison between the number of query answers (|�Q�G|), query
evaluation time (tQ), and answer soundness checking time (tAS)
for cases oneTP and oneTPoneTP

5.5 experimental evaluation 95

0 10 20 30 40
10−1

102

105

108

1011

twoTPsTO: Query rank (from the lowest
to the highest of number of query answers)

N
um

be
r

of
an

sw
er

s
or

ru
nt

im
e

in
ns

0 10 20 30 40
10−1

102

105

108

1011

twoTPsSE: Query rank (from the lowest
to the highest of number of query answers)

N
um

be
r

of
an

sw
er

s
or

ru
nt

im
e

in
ns

|�Q�G| tQ tAS

Figure 5.2: Comparison between the number of query answers (|�Q�G|), query
evaluation time (tQ), and answer soundness checking time (tAS)
for cases twoTPsTO and twoTPsSE

96 soundness reasoning

0 2 4 6 8 10 12 14
10−1

102

105

108

1011

threeTPsTO: Query rank (from the lowest
to the highest of number of query answers)

N
um

be
r

of
an

sw
er

s
or

ru
nt

im
e

in
ns

|�Q�G| tQ tAS

Figure 5.3: Comparison between the number of query answers (|�Q�G|), query
evaluation time (tQ), and answer soundness checking time (tAS)
for case threeTPsTO

ness statements. Also, the constant-relevance principle probably helps
rule out irrelevant statements before performing the actual check.

As for answer soundness checking, we experienced no timeouts, and
the runtime is quite comparable with query evaluation time, except for
Case threeTPsTO. This is possibly due to the large number of answers
returned, all of which have to be checked for soundness. This suggests
that with templates and partial matching, answer soundness checking can
be done relatively quickly, especially when there are low-to-medium
number of query answers. When we break down the time per answer,
the computation is less than a millisecond, with the worst case of 0.68
ms for the threeTPsTO case. It is likely that the more the triple patterns
are in the negation part, the longer the soundness checking per answer
is.

Let us look more closely at answer soundness checking. Figures 5.1,
5.2, and 5.3 show the comparison between the number of query an-
swers, query evaluation time, and answer soundness checking time
for all the cases. The x-axis is the query order based on the number
of query answers in an ascending manner. The y-axis is in log-scale
and shows the respective unit (number for the query answers, and
ns for the runtime). There is strong evidence of a positive correla-
tion between the number of query answers and the answer soundness
checking time. Moreover, we also see the following trend for the first
two cases (that is, Figure 5.1): At first, when query answers are not
many, query evaluation tends to be slower than answer soundness

5.6 related work 97

checking. When the number of query answers increases, the answer
soundness checking time outgrows the query evaluation time, for in-
stance, as witnessed by the queries from rank 20 onwards for the case
oneTPoneTP. For the last three cases, the cross-over point happens ear-
lier than that in the first two cases. This probably has to do with the
increasing soundness checking time per answer whenever the number
of negated triple patterns increases, as discussed above.

To summarize, we have performed an experiment over a realistic
setting based on Wikidata. We have optimized reasoning by repre-
senting sets of completeness statements using templates and by using
hashmaps to apply only potentially useful statements and templates.
As a result, pattern soundness checking can be done quickly, whereas
answer soundness checking, though slower than pattern soundness
checking, can still be done relatively fast. Moreover, the performance
of answer soundness checking positively correlates with the number
of query answers. Our optimization techniques have been shown to
give a significant speed-up over both reasoning problems. We would
also recommend that in practice, before applying answer soundness
checking, pattern soundness checking should be done first since it
takes less time, and by Proposition 5.1, if pattern soundness holds,
then all answers are sound.

5.6 related work

The use of negation in querying can be traced back to Codd’s relational
calculus [24], where a tuple is included in the complement of a rela-
tion if not explicitly given in the relation. Reiter [99] and Clark [22]
generalized this notion to rule-based systems. They assumed that the
failure to find a proof of a fact implies that the negation is true, and
called this the closed-world assumption (CWA). SPARQL, the standard
query language for RDF, supports negation by such a non-existence
check [93, 47]. However, since the semantics of RDF imposes the open-
world assumption (OWA) [50], there remains a conceptual mismatch when
SPARQL negation is evaluated in a closed-world style. In other words,
there is a gap between the normative semantics of negation in SPARQL,
and the classical negation (‘the negated fact truly holds’) [44] due to
RDF’s openness. The fact that RDF is a positive language, means
that one viable way of having negated facts in RDF is by imposing
some (partial) completeness assumption over RDF data: whenever P
is complete, then all facts not in P are false.

In the Semantic Web, Polleres et al. [89] first observed this mis-
match. They proposed to restrict the scope of negation to particular
data sources, thus limiting the search for negative information. In
their work, no assumption was made as to whether the knowledge
in these data sources is complete. Analyti et al. [7] proposed ERDF,
an extended RDF that supports negation, as well as derivation rules.

98 soundness reasoning

ERDF allows one to have local closed-world information via default
closure rules for properties and classes. As opposed to their work
which considered only a simple partial CWA over atomic classes and
properties (e.g., all cars, all child relationships, . . .), our work supports
more expressive completeness information, thanks to the flexibility of
BGPs. From the practical side, negation is featured in test queries of
many popular SPARQL benchmarks such as SP2Bench [104], Berlin
SPARQL Benchmark (BSBM) [16], and FedBench [103], in which the
CWA is employed. As for our work, not only does it provide formal-
izations, but also optimization techniques for checking the soundness
of queries with negation, for which we have shown to improve the
feasibility of the checking in Wikidata-based experiment settings.

More recently, Gutierrez et al. [45] proposed an alternative semantics
for SPARQL based on certain answers. They argued that the proposed
semantics is more suitable to capture RDF peculiarities, such as OWA,
unique name assumption (UNA), and blank nodes. For queries with
negation, they showed that the queries do not have certain answers,
since more facts can be arbitrarily added to falsify the query answers.
In our work, we combine between open- and closed-information in
RDF, enabling SPARQL queries with negation to have answers that
are guaranteed to remain. That is, when queries are guaranteed to be
sound by completeness statements, new data that might be added to
the graph is restricted by the statements, hence the answers will not
be falsified.

5.7 summary

This chapter introduced the problems of pattern soundness and an-
swer soundness for SPARQL queries involving negation. We have
shown how to decide both problems in the presence of completeness
information, and provided experimental evidence that our techniques
are feasible in realistic settings, where queries and completeness state-
ments are of limited length. While in the presentation we have focused
on negation via NOT EXISTS, our results apply also to queries with the
MINUSnegation as long as there is a shared variable between the positive
part and each of the negative parts.

Our work leaves several issues open. Full characterizations of sound-
ness checking for richer queries that involve selection, union, or arith-
metic filter operators are of our interest. In this regard, the current
results, which concern the fragment of BGPs with several NOT EXISTS
patterns, provide a reasonable basis for future investigation. That is,
this work already gives sufficient characterizations for richer queries,
e.g., queries with selection are sound if the selection-free version of the
queries are sound. We also plan to investigate soundness reasoning in
the presence of explicit negative information in RDF (e.g., as proposed
in [27]). On the practical side, the availability of structured complete-

5.7 summary 99

ness information remains a core issue. We hope that our work provides
a further incentive for standardization and data publication efforts in
this area, since now not only can completeness statements guarantee
query completeness, but also query soundness.

6
T I M E - AWA R E C O M P L E T E N E S S R E A S O N I N G

When creating completeness statements about a data source, one might
make the assumption that the data source, regardless of time, is always
complete for the parts of data captured by the statements. Indeed, this
is true under the following circumstances: the data by nature will not
change anymore (e.g., all movies starring Charlie Chaplin and all ac-
tors of Reservoir Dogs) or, if the data may still change, the data source
has a synchronization mechanism to immediately capture new facts
in the real world. However, there might be situations in which such
a synchronization is unlikely, like when the data provider is not an
authority, or the data originates from crowdsourcing. Consequently,
completeness statements can be out-of-date, i.e., the data in the source
captured by the statements does not reflect the complete facts in the
real world that include new facts. Inspired by natural language com-
pleteness statements on Wikipedia, completeness statements can be
extended by timestamps. Wikipedia provides a template allowing one
to specify that a list is “complete and up-to-date as of {some specific date}”,
as exemplified by the complete list of Twenty-five Year Award win-
ners and Italian DOP cheeses (as previously mentioned in Chapter 1).
In this chapter, we discuss how to extend completeness statements to
cope with data dynamicity over time, and reason about query com-
pleteness given such time-extended statements. The results in this
chapter are under revision for journal publication [29].

6.1 motivating scenario

To deal with data dynamicity, a time extension to completeness state-
ments is a necessity. Here, by dynamicity we refer to any addition
of data, that is, new information is added without invalidating old
information. Many domains of information typically follow this char-
acteristic, for instance publications of a researcher, movies of an actor,
and children of a person. Consider the statement “Crew of Tarantino
movies are complete” over a data source. Given the fact that Tarantino
is currently an active director, the data captured by the statement is
likely to grow. However, suppose that the data source fails to capture
an update of the data. What then happens is that the completeness
statement over the source provides a false claim. On the other hand,
consider the statement “Crew of Tarantino movies up to 2012 are com-
plete,” which is the statement as before, now with a date. The date
represents the temporal scope of the statement, giving a boundary up
to when it is complete, i.e., up to 2012. Thus, the statement is still cor-

101

102 time-aware completeness reasoning

rect, even if there are new Tarantino movies released after 2012 whose
crew are not captured by the data source. We call such a statement a
bounded completeness statement.

Now, consider the statement “Movies starring Chaplin are complete
and there will not be any updates.” This statement is plausible since
Chaplin passed away in 1977. A data source with the statement is
therefore always complete for movies starring Chaplin regardless of
time, since the data cannot grow anymore. We call such a statement
an unbounded completeness statement.

Indeed, reasoning about query completeness based on statements
with a time extension must be approached differently. For this reason,
we introduce the notion of the guaranteed completeness date of a query,
that is the latest date on which complete query results are guaranteed
to be contained in the actual query results.

Consider again the statement “Crew of Tarantino movies up to 2012
are complete.” Suppose we also have another statement “Cast of
Tarantino movies up to 2016 are complete.” If we query for people
who are both cast and crew of Tarantino movies, we can be certain
that the query answers will be complete up to 2012, since the crew
of Tarantino movies are complete up to that time and even further
for the cast. However, from 2013 onwards, the query completeness
cannot be guaranteed as we might be missing some crew of Tarantino
movies released after 2012. We therefore call 2012 the guaranteed
completeness date of the query.

In contrast, let us consider again the statement “Movies starring
Chaplin are complete and there will not be any updates.” If we are
now querying for movies starring Chaplin, the results of this query
will be complete and will be so, for query results at any time in the
future. Therefore, the guaranteed completeness date of the query is
the infinity.

Not all queries have a guaranteed completeness date, depending
on the statements we have. Consider again the statement “Cast of
Tarantino movies up to 2016 are complete” and consider the query
asking for all spouses of the cast of Tarantino movies. Since we do not
have any completeness assertion about the spouses, the completeness
of that query cannot be guaranteed wrt. any date, and thus, there is no
guaranteed completeness date for the query.

6.2 time-extended completeness framework

We now formalize the extended completeness framework and its se-
mantics. We define a date as an element d ∈N ∪ {∞ }.1 We use natural
numbers as we can reduce dates of various granularities (e.g., years,

1 W.l.o.g. our framework also supports continuous domains (e.g., R), given that the
discretization of all known timestamps gives again a discrete space.

6.2 time-extended completeness framework 103

seconds, and calendar dates) to them. We assume a fixed constant
now ∈N.

timestamped completeness statements . The first step is to in-
corporate timestamps in completeness statements.

Definition 6.1 (Timestamped Completeness Statement). A timestamped
completeness statement is of the form

Ĉ = Compl(PĈ, d),

where Compl(PĈ) is a completeness statement as seen before, now ex-
tended with a date date(Ĉ) = d, such that either date(Ĉ) ≤ now or
date(Ĉ) = ∞ where date returns the date of a timestamped complete-
ness statement. In the first case, we say that Ĉ is bounded, whereas in
the second case, Ĉ is unbounded.

Example 6.2. Consider the statements “Crew of Tarantino movies up to
2012 are complete,” “Cast of Tarantino movies up to 2016 are complete”
and “Movies starring Chaplin are complete and there will not be any
updates” as above. They can be represented formally as:

Ĉcrew = Compl({ (?m, crew, ?c), (?m, a, TarantinoMov) }, 2012)

Ĉcast = Compl({ (?m, cast, ?c), (?m, a, TarantinoMov) }, 2016)

Ĉchap = Compl({ (?m, a, ChaplinMov) },∞)

To select timestamped completeness statements based on their dates,
we define the selection Ĉ≥d as

Ĉ≥d = { Ĉ ∈ Ĉ | date(Ĉ) ≥ d }.

The selection Ĉ=d is defined analogously. As before, we associate to
a statement Ĉ, the CONSTRUCT query QĈ = (PĈ, PĈ). Over a graph G,
the transfer operator TĈ(G) is defined similarly to that in Eq. (3) in
Section 2.2 where we take the union of the results of the evaluation
�QĈ�G of all Ĉ ∈ Ĉ.

rdf representation . To represent timestamped completeness sta-
tements in RDF, we propose to use the datatype representation from
the XML Schema Definition (XSD) namespace to represent non-infinity
dates, which can also be of various granularities such as years and cal-
endar dates.2 To represent the infinity, we introduce in our vocabulary3

the term infinity. We also create the property hasTimestamp that links
between completeness statements and their timestamps.

2 http://www.w3.org/2001/XMLSchema
3 http://completeness.inf.unibz.it/ns

104 time-aware completeness reasoning

incomplete data series . The models of timestamped complete-
ness statements are incomplete data series. An incomplete data series (or
for short, a series) S is a pair of a graph and a sequence of graphs, of
the form

S = (Gnow, (G′1, G′2, . . . , G′now, . . .)),

such that (Gnow, G′now) is an extension pair and it holds that G′d ⊆ G′d+1
for all pairs G′d, G′d+1 in S. We have one base graph only (i.e., Gnow)
to reflect the state of the available graph we have now. On the other
hand, we have a sequence of extensions to represent data dynamicity
over time wrt. the real world.

Example 6.3 (Incomplete Data Series). Let now = 2016 and

Smov = (Gnow, (G′1, . . . , G′2012, . . . , G′now, . . .))

be a series about Tarantino and Chaplin movies which can be graph-
ically represented as in Figure 6.1.4 Note that in this example the set
of movies starring Chaplin will not grow anymore (i.e., The Kid) and
any other extension G′k not shown in the figure is defined accordingly.

Figure 6.1: An incomplete data series about Tarantino and Chaplin movies

We now formalize when a series satisfies a timestamped complete-
ness statement. A series S satisfies a bounded timestamped complete-
ness statement Ĉ = Compl(P, d), written as S |= Ĉ, if all the triples
constructed by evaluating QĈ over the extension at date d are in the
actual graph, formalized as �QĈ�G′d

⊆ Gnow. Note that this implies
�QĈ�G′d′

⊆ Gnow for all d′ ≤ d by the definition of a series. If the state-
ment is unbounded, then the comparison for completeness is made
over all extensions: for all d ∈ N, it must hold that S |= Compl(P, d).
Given a set Ĉ of timestamped completeness statements and a series S,
we define that S |= Ĉ, if for all Ĉ ∈ Ĉ, it holds that S |= Ĉ.

4 For the sake of example, we only use toy data.

6.2 time-extended completeness framework 105

Example 6.4. Consider the seriesSmov in Figure 6.1 and the statements
Ĉcrew, Ĉcast, and Ĉchap in Example 6.2. Then, it holds thatSmov |= Ĉcrew be-
cause it is the case that the result of the evaluation �QĈcrew

�G′2012
, which is

the graph, { (killBill, crew, john), (killBill, a, TarantinoMov) }, is contained
in Gnow. For a similar reason, Smov |= Ĉcast also holds. Moreover, it is
the case that Smov |= Ĉchap since for G′2012, G′2016, and any other ideal
graph G′k in Smov, the result (i.e., the graph { (theKid, a, ChaplinMov) })
of the query QĈchap

evaluated over them is contained in Gnow.

query completeness at a date . To describe query completeness
at date d, we use Compl(Q, d). A series S satisfies Compl(Q, d) with d ∈
N, written as S |= Compl(Q, d), if evaluating Q over the extension at d
gives results that are all contained in the results of evaluating Q over the
actual graph, formalized as �Q�G′d

⊆ �Q�Gnow . Furthermore, a series S
satisfies the unbounded version of query completeness, written as
S |= Compl(Q,∞), if for all d ∈N, it holds that S |= Compl(Q, d).

Example 6.5. To say that the query asking for all people who were si-
multaneously cast and crew of Tarantino movies up to 2012 is complete,
we can use Compl(Qcc, 2012) where

Qcc = ({ ?m, ?c }, { (?m, cast, ?c), (?m, crew, ?c), (?m, a, TarantinoMov) }).

As we can see, �Qcc�G′2012
returns (?m �→ killBill, ?c �→ john) and is

contained in �Qcc�Gnow , therefore Smov |= Compl(Qcc, 2012). On the
contrary, �Qcc�G′2016

returns additionally (?m �→ sinCity, ?c �→ tom),
which is not in �Qcc�Gnow , therefore Smov
|= Compl(Qcc, 2016).

Having defined timestamped completeness statements and query
completeness at a date, the question arises as how to actually check
the entailment between them. Given a set Ĉ of timestamped complete-
ness statements, a query Q, and a date d, we say that Ĉ entails query
completeness at d, written as Ĉ |= Compl(Q, d), if for all S |= Ĉ, it is the
case that S |= Compl(Q, d). The following lemma gives us a syntactic
characterization to decide whether Ĉ |= Compl(Q, d). It says that the
query completeness at d is entailed by Ĉ iff the prototypical graph P̃
of Q is contained in the result of the transfer operator applied to P̃,
using only the statements Ĉ ∈ Ĉ such that date(Ĉ) ≥ d.

Lemma 6.6 (Entailment of Query Completeness at a Date). Let Ĉ be a
set of timestamped completeness statements, Q = (W, P) be a query, and d
be a date. Then,

Ĉ |= Compl(Q, d) iff P̃ ⊆ TĈ≥d
(P̃).

Proof. (⇒) We prove by contrapositive. We first consider the case
where d ∈ N. Assume that P̃ � TĈ≥d

(P̃). We show that Ĉ
|=
Compl(Q, d) by giving a counterexample series S such that S |= Ĉ

but S
|= Compl(Q, d), which can be constructed as follows:

S = (Gnow, (∅, . . . , ∅, G′d, G′d+1, . . .)),

106 time-aware completeness reasoning

where now is any date such that now ≥ max(date(Ĉ) \ {∞ }), Gnow =

TĈ≥d
(P̃), and G′d = G′d+1 = . . . = P̃. By construction, we have that

S |= Ĉ. However, by the assumption that P̃ � TĈ≥d
(P̃), it is the case that

�Q�G′d
= �Q�P̃ � �Q�TĈ≥d

(P̃) = �Q�Gnow , because the freeze mapping ĩd

in �P�P̃ is missing in �P�TĈ≥d
(P̃). Therefore, S
|= Compl(Q, d).

The proof for the case where d = ∞ can be done analogously. In
this case, we take a date now > max(date(Ĉ) \ {∞ }) to show that
Ĉ
|= Compl(Q, d).

(⇐) We first prove the case where d ∈ N. Assume P̃ ⊆ TĈ≥d
(P̃). We

will show that Ĉ |= Compl(Q, d).
Take a series S |= Ĉ. We have to show that S |= Compl(Q, d), that is,
�Q�G′d

⊆ �Q�Gnow . Suppose there is a mapping μ ∈ �Q�G′d
. Thus, there

must be a mapping μext ⊇ μ, where μext ∈ �P�G′d
. We will prove that

μext ∈ �P�Gnow . By the assumption that P̃ ⊆ TĈ≥d
(P̃) and the prototypi-

cality of P̃, it holds that μextĩd
−1
(P̃) ⊆ TĈ≥d

(μextĩd
−1
(P̃)). The inclusion

can be further extended to μextĩd
−1
(P̃) ⊆ TĈ≥d

(μextĩd
−1
(P̃)) ⊆ TĈ≥d

(G′d),
where the last subsumption holds due to μext ∈ �P�G′d

. By S |= Ĉ, it

must be the case that TĈ≥d
(G′d) ⊆ Gnow. Therefore, μextĩd

−1
(P̃) ⊆ Gnow,

which implies that μext ∈ �P�Gnow .
The proof for the case where d = ∞ can be done analogously. In this

case, the assumption P̃ ⊆ TĈ≥∞
(P̃) is used to show that Ĉ |= Compl(Q, d)

for any date d ∈N. �

guaranteed completeness date . We now formalize the notion
of guaranteed completeness date, introduced in the preceding exam-
ples. The guaranteed completeness date of a query Q wrt. a set Ĉ of
timestamped completeness statements is the latest date d such that the
entailment Ĉ |= Compl(Q, d) holds, formally:

gcd(Q, Ĉ) = max{ d ∈N ∪ {∞ } | Ĉ |= Compl(Q, d) }.

We also define max{} = −∞, and note that cases where gcd(Q, Ĉ) =

−∞ correspond to the query Q not having any completeness date.

Example 6.7. Consider the set of statements Ĉ = { Ĉcrew, Ĉcast, Ĉchap }
and the query Qcc as above. It is the case that gcd(Qcc, Ĉ) = 2012 for
the following reasons. While the statement Ĉchap obviously does not
contribute at all to the guaranteed completeness date of the query, the
statements Ĉcrew and Ĉcast do contribute. If we execute the query, we
can be complete up to 2012, since the crew of Tarantino movies are com-
plete up to that time, as guaranteed by Ĉcrew, and even further for the
cast, as guaranteed by Ĉcast. From 2013 onwards, however, the query
completeness cannot be guaranteed as some crew of Tarantino movies
might be missing. Therefore, 2012 is the guaranteed completeness
date.

6.3 computing the guaranteed completeness date 107

6.3 computing the guaranteed completeness date

We now analyze how the guaranteed completeness date of a query
can be computed. By Lemma 6.6, we can replace the entailment Ĉ |=
Compl(Q, d) in the definition of the guaranteed completeness date by
its syntactic characterization P̃ ⊆ TĈ≥d

(P̃). In this way, we compute the
maximum date from all the dates d in Ĉ such that query completeness
can be guaranteed by using only the statements having a date d′ ≥ d,
as shown in the following theorem.

Theorem 6.8 (Computing the Guaranteed Completeness Date). Let
Q = (W, P) be a query and Ĉ be a set of timestamped completeness statements.
Then,

gcd(Q, Ĉ) = max{ d ∈ date(Ĉ) | P̃ ⊆ TĈ≥d
(P̃) }.

In the following example, we apply the above theorem to compute
the guaranteed completeness date of our running example.

Example 6.9. Consider the statements Ĉ = { Ĉcrew, Ĉcast, Ĉchap } and the
query Qcc = (Wcc, Pcc) as above. The set of the dates is date(Ĉ) =

{ 2012, 2014,∞}. Then, we have that:

• P̃cc ⊆ { (m̃, cast, c̃), (m̃, crew, c̃), (m̃, a, TarantinoMov) } = TĈ≥2012
(P̃cc)

• P̃cc � { (m̃, cast, c̃), (m̃, a, TarantinoMov) } = TĈ≥2014
(P̃cc)

Thus, we can conclude that gcd(Qcc, Ĉ) = 2012.

From the theorem above, we observe the following complexity of
the decision version of computing the guaranteed completeness date.
It shows that adding a time extension does not increase the complexity
of data-agnostic completeness reasoning as it is still NP-complete.

Corollary 6.10 (Complexity of Deciding the Guaranteed Completeness
Date). Deciding whether gcd(Q, Ĉ) ≥ d, given a query Q, a set Ĉ of times-
tamped completeness statements, and a date d, is NP-complete.

Proof. From Theorem 6.8, there exists an NP procedure to check if
gcd(Q, Ĉ) ≥ d: we guess a date d′ ≥ d, and guess the timestamped
statements and the mappings over the BGPs of the statements such that
P̃ ⊆ TĈ≥d′

(P̃). It is NP-hard by reduction from the NP-hard problem of
data-agnostic completeness entailment (as per Theorem 2.10). �

algorithm for finding the guaranteed completeness date .
Based on Theorem 6.8, a naive way to compute the guaranteed com-
pleteness date is, for every d ∈ date(Ĉ), to repeatedly compute TĈ≥d

(P̃),
and then take the maximum of the dates d such that P̃ ⊆ TĈ≥d

(P̃). This
has a drawback since we may be reevaluating the CONSTRUCT query
of a statement over P̃ several times, though the result is always the
same. We could improve the computation by using binary search as

108 time-aware completeness reasoning

date(Ĉ) has a natural order and TĈ≥d
(P̃) is monotonic in d. As a con-

sequence, the checking P̃ ⊆ TĈ≥d
(P̃) would be done only log(|date(Ĉ)|)

times instead of |date(Ĉ)| times.
Now, we observe the following. For a date d, the result of TĈ≥d

(P̃)
is in fact the union of all TĈ=d′

(P̃) where d ≤ d′ ≤ max(date(Ĉ)). Con-
sequently, we can compute TĈ≥d

(P̃) in an incremental way from the
latest d′. Thus, we can develop an algorithm to find the guaranteed
completeness date where we incrementally compute the union from
the latest date in date(Ĉ) to the earliest date in date(Ĉ), while on the
way checking if P̃ is already included. If that is the case, we can just
stop and return the current date in the iteration as the guaranteed com-
pleteness date. In this way, each corresponding CONSTRUCT query of
a timestamped completeness statement only needs to be executed at
most once over P̃. This means that completeness checking with time
is no more complex than completeness checking without time. We
formalize this as the algorithm findGCD in Figure 6.2.

ALGORITHM 2: FindGCD
Input: The prototypical graph P̃ of a query, a set of timestamped

completeness statements Ĉ

Output: The guaranteed completeness date d
1 P′ ← ∅
2 D← date(Ĉ) ∪ {−∞ }
3 while P̃ � P′ and D � ∅ do

4 d← extractMax(D)
5 P′ ← P′ ∪ TĈ=d

(P̃)
6 end

7 return d

Figure 6.2: Algorithm for finding the guaranteed completeness date

The algorithm takes as input the prototypical graph P̃ of Q and a
set of timestamped completeness statements Ĉ. At first, we assign the
empty set to P′, which will store the application results of the transfer
operator TĈ=d

(P̃), and assign all the dates in Ĉ and −∞ to D. We then
perform a while loop with the conditions “P̃ � P′” to check that P̃ has
not been included in the accumulation, and “D � ∅” to ensure that we
still have some dates in D. For every loop, we execute extractMax(D) to
return the latest date d in D and remove it from D. Next, we add to P′

the result of TĈ=d
(P̃). At the end of the algorithm, we will return d,

which is the guaranteed completeness date of Q wrt. Ĉ. Note that
when d = −∞, the transfer operator TĈ=−∞

(P̃) would return the empty
set, since Ĉ=−∞ = ∅ by definition.

For the algorithm, the following proposition holds, which says that
the algorithm is correct, and the CONSTRUCT query of a timestamped
completeness statement is evaluated at most once in finding the guar-

6.4 related work 109

anteed completeness date, therefore it is as costly as the standard check
of query completeness.

Proposition 6.11. Let Ĉ be a set of timestamped completeness statements
and Q = (W, P) be a query. Then,

• FindGCD(P̃, Ĉ) = gcd(Q, Ĉ), and

• FindGCD(P̃, Ĉ) computes �QĈ�P̃ at most once for every Ĉ ∈ Ĉ.

6.4 related work

Several papers dealt with the incorporation of time into RDF data.
Gutierrez et al. [46] was among the first to introduce time annota-
tions over RDF data. They formalized the semantics of temporal RDF
graphs, and sketched a temporal query language for RDF. In [67],
Lopes et al. developed AnQL, a query language for RDF with anno-
tations, which considers also temporality. Indexing methods for tem-
poral querying were investigated by Pugliese et al. [94], and Tappolet
and Bernstein [110]. In our work, RDF graphs are not annotated with
timestamps, that is, only completeness statements can be time-aware.
As such, a limitation of our work is that it applies only to invariable
facts, i.e., facts that hold eternally. The time incorporation into RDF
graphs can potentially lift the limitation of our approach. As an illustra-
tion, suppose that facts about people being a student are timestamped.
Then, we can say that we are complete for all UniBZ students until
2016, in the sense that we have a complete record of people who were
UniBZ students from the time until 2016. This would make little sense
for triples without timestamps, since say after graduation, people are
no longer a student.

Recently, there have been initiatives to combine Linked Data and
stream processing. In stream processing, data is produced and queried
continuously over time, as opposed to only static data processing. As
one of the first RDF stream processors, C-SPARQL [11] used a sim-
ple, modular architecture that combines between a SPARQL engine,
for dealing with the static part of queries, and a stream processor, for
the streaming part of queries. SPARQLStream [18] focused on ontology-
based querying over heterogeneous stream data sources. CQELS [88]
concentrated on developing a Linked Data streaming engine from
scratch in order to enable low-level optimizations. In the position
paper of Keskisärkkä and Blomqvist [59], the authors presented the
issue of dynamic boundaries over streams. If events have predictable,
uniform boundaries, one can simply set a fixed-size window for every
stream query evaluation. However, in some cases, the event bound-
aries might be unpredictable, e.g., the event might take minutes or
hours. Thus, a ‘dynamic window’ is needed, which is like a win-
dow but with adaptable size, in order for query evaluation to have a
complete view of the event. Timestamped completeness statements

110 time-aware completeness reasoning

can be potentially leveraged to address this problem: whenever an
event is over, a completeness statement can be sent to notify the query
processor that data about that event is already streamed completely.

6.5 summary

In this chapter, we have motivated, formalized, and developed a tech-
nique for completeness reasoning with time in the data-agnostic set-
ting. We have introduced timestamped completeness statements, and
the guaranteed completeness date, to say that a query is guaranteed
to be complete up to a certain point of time. Despite the time addition,
time-aware completeness reasoning is no more complex than that with-
out time, in the sense that each timestamped completeness statement
is considered at most once in the reasoning. For future work, we plan
to develop a technique for time-aware completeness reasoning in the
data-aware setting, and also for time-aware soundness reasoning (e.g.,
the answer ‘Arsenal’ to the query “Which football club has never won
the Champions League?” can be guaranteed to be sound only up to
2017).

7
C O M P L E T E N E S S M A N A G E M E N T
D E M O N S T R AT O R S

In previous chapters we have formalized metadata about the partial
completeness of RDF data sources. We have also characterized query
completeness entailment and developed optimization techniques for
checking the entailment. Nevertheless, it is still unclear how systems
for managing completeness of RDF data sources can be built. In this
chapter, we explore what are the requirements and functionalities of
such systems, and demonstrate how such systems can be realized.

In practice, when talking about completeness statements of RDF
data sources, we conceive that the statements go through a life cy-
cle. First, completeness statements about RDF data sources are created.
Next, the created statements are available for viewing, so that one can
see the completeness state of RDF data sources. Then, completeness
statements are updated (i.e, edited and deleted), for instance, if they
are no longer valid. Finally, completeness statements are used for
various consumption tasks such as checking query completeness and
performing completeness analytics. This completeness life cycle can
be illustrated as in Figure 7.1.

Figure 7.1: Completeness Life Cycle

The completeness life cycle serves as a basis for developing complete-
ness management systems, which we imagine can be of various types.
One possible type is a completeness statement hub. Such a hub stores
completeness information across multiple data sources, and supports
the check of query completeness based on that completeness infor-
mation. When query completeness can be guaranteed, the hub can
provide a federated rewriting of the query such that parts of the query
are evaluated over the data sources that can guarantee their complete-
ness. Another possibility is a specialized completeness management
system for a single knowledge base (KB). For such a system, a tighter

111

112 completeness management demonstrators

connection between completeness statements and the parts of data for
which the statements are intended is crucial. Hence, one should be
able to directly view which parts of data are annotated with complete-
ness statements. Moreover, data-aware query completeness checking
would be more suitable here. Section 7.1 reports CORNER, a demon-
strator of a completeness hub, whereas Section 7.2 reports COOL-WD,
a demonstrator of a specialized completeness management system for
a single KB. For both demonstrators, we focus on practical require-
ments and functionalities, but not efficiency, which has been inves-
tigated in Chapter 4 about optimizations of completeness reasoning.
Moreover, both demonstrators support the BGP fragment of SPARQL
queries for completeness checking. The description of CORNER has
been published in [31] and that of COOL-WD in [91].

7.1 corner : a completeness reasoner for rdf data sources

In this section, we introduce CORNER, a demonstrator of a com-
pleteness management hub for RDF data sources. We analyze the
practical requirements to build such a hub. Then, we describe the
architecture of CORNER. Finally, we describe the functionalities of
CORNER from its user interface (UI). Our system is accessible at
http://corner.inf.unibz.it.

7.1.1 Motivating Example

In this subsection, we give a motivating example for CORNER. This
motivating example is about how a user has a query he wants to answer
completely. He therefore has to consult a system with completeness
information over multiple data sources. Since multiple data sources
are involved, mappings between classes and properties need to be
supported by the system. Then, when he asks his query, the system
should be able to check the query completeness, and also to suggest
a query rewriting where parts of the query are distributed over the
complete sources. This motivating example is set up on CORNER so
that one can try it out live.

Marty, a moviegoer, is interested in finding all movies starring
Quentin Tarantino. This information need can be expressed by the
SPARQL BGP query:1

SELECT * WHERE { ?m actor Tarantino }

CORNER has meta-information about parts of LinkedMDB, an RDF
data source about movies, and DBpedia, a general purpose RDF data
source, that for the sake of example, are supposed to be complete.
Completeness statements can be represented in two ways: a human-
readable abstract syntax, or an RDF syntax, which implements the

1 For simplicity, we omit namespaces.

7.1 corner : a completeness reasoner for rdf data sources 113

abstract syntax. Both syntaxes are accepted by CORNER. Abstract
completeness statements have the form Compl(P1|P2), consisting of two
parts: the pattern P1 and the condition P2. Here we use a general version
of completeness statements that may have conditions (as defined in
Section 5.4). The completeness statement specifies that the source
contains all data with the pattern shape, provided that in addition
they satisfy the condition. We argue that completeness statements
with conditions are suitable for the multiple data sources scenario
since it can be the case that a source is complete under some condition,
where the condition is satisfied by some other sources. To express that
a source is complete for “all movies starring Tarantino”, we write in
the abstract syntax

Compl(?m actor Tarantino | true).

We attach this statement to LinkedMDB but not to DBpedia, since
some information that Tarantino was starred in some movies is actu-
ally missing in DBpedia. CORNER then analyzes the query and the
statement, and concludes that the query over LinkedMDB can be an-
swered completely, while it cannot give such a guarantee for DBpedia.

Suppose now Marty would also like to see the budget and box-office
gross of the movies. This is expressed by the SPARQL BGP query:

SELECT *

WHERE { ?m actor Tarantino . ?m budget ?b .

?m gross ?g }

Suppose we also have a statement asserting that DBpedia is complete
for “the budget and gross of movies starring Tarantino”, or in the
abstract syntax:

Compl(?m budget ?b . ?m gross ?g | ?m actor Tarantino)

Note that by the condition, we can express that DBpedia has complete
data about budget and box-office gross of movies starring Tarantino,
even if in DBpedia Tarantino may not be listed as actor of all such
movies. Now, none of the two sources alone is sufficient to answer this
new query completely. Suppose as well that we have mappings using
the RDFS predicates subclass and subproperty that associate terms in
DBpedia to their LinkedMDB counterparts, if they exist, and vice versa.
In this situation, CORNER can rewrite the original query in such a way,
using SPARQL SERVICE calls [92], that each source contributes parts of
a query for which they are complete. In our example, CORNER sends
the subquery asking for movies starring Tarantino to LinkedMDB and
the subquery asking for the budget and box-office gross to DBpedia:

SELECT *

WHERE {

SERVICE <http://linkedmdb.org/sparql>

{ ?m actor Tarantino }

SERVICE <http://dbpedia.org/sparql>

{ ?m budget ?b . ?m gross ?g } }

114 completeness management demonstrators

practical requirements . In the beginning of this chapter, we
introduced the completeness life cycle (as in Figure 7.1). We have
also seen how CORNER could be used in the motivating scenario
above. We now translate the above considerations into the following
requirements, that CORNER should be able to:

1. Create and view completeness statements, as well as import and
export completeness statements in RDF;

2. Set RDFS ontologies that may contain mappings between classes
and properties of multiple data sources;

3. Check query completeness, and support federated rewriting where
query parts are sent to the sources that can give complete results;
and

4. Additionally as a demonstrator, switch on and off the complete-
ness statements and RDFS mappings for giving ideas how com-
pleteness reasoning works.

7.1.2 System Architecture

Here we show how CORNER is built to satisfy the requirements above.
As shown in Figure 7.2, CORNER consists of two main components,
and is connected to the Linked Data layer (for query evaluation).

Figure 7.2: CORNER Architecture

The first component is the user interface (UI), which is developed
using the Google Web Toolkit (GWT).2 The UI provides users with
the possibility to create and view completeness statements over data
sources, as well as RDFS ontologies and queries. With the UI, it is also
possible to switch on and off those elements, for instance, which com-
pleteness statements a user wants to consider in query completeness
checking.

The second component is the reasoner, the backend of CORNER.
The reasoner is implemented using Apache Jena.3 The backend sup-
ports importing and exporting statements in RDF, and performs data-
agnostic completeness reasoning based on the inputs. The RDFS rea-

2 http://www.gwtproject.org/
3 http://jena.apache.org/

7.1 corner : a completeness reasoner for rdf data sources 115

soner is needed since CORNER takes into account RDFS ontologies. If
a query can be ensured to be complete, CORNER rewrites the query
into a complete federated version and executes it over Linked Data.
For this, the SPARQL engine is necessary. The query results along
with the completeness information are given back to the users via the
UI. The processes inside the backend are controlled by the CORNER
business logic, which implements the data-agnostic completeness rea-
soning technique (as in Section 2.4), extended with the RDFS and
federated features [28]. To take into account RDFS inferences, one
needs to apply the RDFS closure computation [82] before and after
the TC operation, and check if the prototypical graph P̃ is included in
the RDFS-enriched TC application results. For the federated extension,
basically the TC operation needs to be modified such that it gives data
source annotations to parts of the prototypical graph captured by the
data source’s statements. Then, those parts can be evaluated over the
respective data sources according to the annotations using the SERVICE
operator.

reasoner implementation using jena . We describe how Java
with the Apache Jena library4 can be used to develop the CORNER
reasoner. As described in Section 2.4, the core of the data-agnostic
completeness reasoning is the containment checking P̃ = TC(P̃) where
P̃ is the prototypical graph of a query Q = (W, P) and C is a set
of completeness statements. For completeness statements, we create
the class CompletenessStatement with the field pattern and condition.
Each completeness statement has an associated CONSTRUCTquery, which
can be realized in Java using the Jena class Query. The input query to
be checked for completeness is also an instance of the class Query. Now
for the reasoning, we create the method freeze to get the prototypical
graph of the query, where we use the Jena class Model to realize the
graph. From the resulting prototypical graph, we build the method
tcOperator that evaluates all CONSTRUCT queries of the statements over
the graph. Then, we decide query completeness by checking if the
original prototypical graph is contained in the evaluation results. For
the RDFS extension, we rely on Jena’s Reasoner class which supports
RDFS inferences, whereas the SERVICE operator is supported by the
Jena class QueryExecution. Note that though our implementation uses
Apache Jena, any other off-the-shelf Semantic Web library like RDF4J
(http://rdf4j.org/) can also be utilized.

7.1.3 UI Description

From the CORNER Web UI, to support the practical requirements,
users may add RDFS ontologies, data sources, completeness state-
ments of a specific data source, and queries, in addition to those already

4 http://jena.apache.org/

116 completeness management demonstrators

there. There is a panel in CORNER for each type of information. There
are also the options to upload and download CORNER completeness
statements in RDF in order to embed them into some existing metadata
descriptions of data sources like VoID. When adding a new complete-
ness statement, users see a pop-up window where they can specify
patterns, conditions, the data source where the statement holds, the
author and a description of the completeness statement. When check-
ing the completeness of a query, CORNER displays a pop-up window
comprising completeness information about the query, the query re-
sults, the debugging information, the ontologies used in the reasoning,
a federated rewriting of the query, and the author information for each
completeness statement.

Figure 7.3: CORNER Homepage

Figure 7.3 shows the example of the query about budget and box-
office gross of movies starring Quentin Tarantino, mentioned above.
We first specify the SPARQL query in the query panel of the Web UI.
Then, in the ontology panel, we specify which ontologies we want to
use. In this case, we need to use the mapping ontology for Linked-
MDB and DBpedia. After that, in the completeness statements panel,
we select the statements about data sources to be used for query com-
pleteness checking. The figure shows the two completeness statements
we mentioned above.

To start completeness reasoning, the user has to click the execution
button at the bottom of the UI. Now, CORNER returns to the user
the query results and information stating that the completeness of the
query can be guaranteed. CORNER also provides debugging informa-
tion about the completeness reasoning and the federated rewriting of
the query that was executed over the data sources.

7.2 cool-wd : a completeness demonstrator for wikidata 117

7.2 cool-wd : a completeness demonstrator for wikidata

In the previous section, we have seen how CORNER demonstrates a
completeness hub to manage and consume completeness statements
across multiple data sources. Now we explore how to build a sys-
tem to support the management and consumption of completeness
statements over a single data source. We chose Wikidata, which is
entity-centric and crowdsourced, as a case study for our demonstration
system, due to its recent popularity and relatively good quality. We
first provide a motivating scenario and analyze practical requirements
to build such a system. Then, we describe how SP-statements can be
a suitable fragment of completeness statements for Wikidata. Next,
we explore various sources of completeness statements that can be im-
ported into our system. We provide a description of our system archi-
tecture, and then of how our system supports the consumption of com-
pleteness statements. Our demonstration system, called COOL-WD, is
accessible at http://cool-wd.inf.unibz.it/ and currently stores over
10,000 SP-statements.

7.2.1 Motivating Scenario

As a motivating scenario, let us consider the data about Switzerland
(https://www.wikidata.org/wiki/Q39) on Wikidata as shown in Fig-
ure 7.4. The page mentions the two properties “contains administrative
territorial entity” and “public holiday”.

Figure 7.4: Wikidata page of Switzerland

At the moment of the writing, Wikidata contains 26 cantons of
Switzerland from Appenzell Ausserrhoden to Canton of Zürich. Ac-
cording to the official page of the Swiss government,5 there are exactly
these 26 Swiss cantons and they are all stored in Wikidata. Therefore,
as opposed to the public holidays, which are not complete,6 the data
about Swiss cantons in Wikidata is actually complete. However, Wiki-
data currently lacks support for expressing completeness information,.
thus limiting the potential consumption of its data (e.g., assessing

5 https://www.admin.ch/opc/de/classified-compilation/13.html
6 There are at least 10 public holidays in Switzerland according to https://www.
zuerich.com/en/visit/public-holidays.

118 completeness management demonstrators

query completeness or performing completeness analytics). In gen-
eral, not only Wikidata, but also other entity-centric KBs (e.g., DBpedia,
YAGO) have such a limitation. We identify the following requirements
of a completeness management system for Wikidata, which are in line
with the completeness life cycle as in Figure 7.1. The system should be
able to:

1. Create and update completeness statements, where the state-
ments fit with the entity-centric, crowdsourced nature of Wiki-
data;

2. Make available the completeness statements in a machine-readable
format;

3. View completeness statements together with the respective parts
of data stated to be complete; and

4. Consume completeness statements such as by checking query
completeness or performing completeness analytics.

7.2.2 SP-statements for Wikidata

Wikidata provides its information in an entity-centric way, that is, in-
formation is grouped into entities such that each entity has its own
(data) page, showing the entity’s property-value pairs. Furthermore,
the data in Wikidata is curated by Wikidata users. In Section 3.3, we
introduced SP-statements, that is, statements about the completeness
of the set of values of a property of an entity. SP-statements are suitable
for Wikidata due to its similarity wrt. the SPO-structure of Wikidata,
and its simplicity. Having SP-statements over Wikidata provides struc-
tured, explicit information about the completeness of Wikidata.

sp-statements in rdf . To make SP-statements machine-readable,
we want to make them available in practice by following the Linked
Data principles:7 SP-statements should be identifiable by URIs and
accessible in RDF. To improve usability, URIs for SP-statements should
indicate which entity is complete for what property. As an illustration,
for our system we identify the SP-statement (Switzerland, canton)8 with
the URI http://cool-wd.inf.unibz.it/resource/statement-Q39-P150,
indicating the entity Switzerland (Wikidata ID: Q39) and the property
“contains administrative territorial entities” (Wikidata ID: P150).

Next, looking up an SP-statement’s URI must give a description
of the statement. Thus, we provide RDF modeling of SP-statements.
We divide the modeling into two aspects: core and provenance. The
core aspect concerns the intrinsic aspect of the statement, whereas

7 https://www.w3.org/DesignIssues/LinkedData.html
8 For readability purposes, we represent SP-statements as pairs (S, P) instead of the full

representation Compl((S, P, ?v)).

7.2 cool-wd : a completeness demonstrator for wikidata 119

the provenance aspect deals with the extrinsic aspect of the statement,
providing information about the generation of the statement. The
provenance aspect of SP-statements can also serve as a basis for trust
determination over query completeness checking (e.g., “this query is
complete based on the completeness assertions X, Y and Z, given by
A and B on date D, with references to R and S”). The core aspect
consists of the type of the resource, the subject and predicate of the
SP-statement, and the dataset to which the statement is given (in the
scope of this work, the dataset is Wikidata). This dataset information
is particularly useful in, e.g., metadata integration. The provenance
aspect consists of the author of the statement, the timestamp when the
statement is generated, and the primary reference of the statement. For
the core aspect, we developed our own vocabulary, available at http:
//completeness.inf.unibz.it/sp-vocab. For the provenance aspect,
to maximize interoperability we reused the W3C PROV ontology.9

The following is RDF modeling of the SP-statement “Complete for all
cantons in Switzerland” for Wikidata.10

wd:Q2013 spv:hasSPStatement coolwd:statement-Q39-P150 . # Q2013 = Wikidata
coolwd:statement-Q39-P150 a spv:SPStatement ;
spv:subject wd:Q39 ; # Q39 = Switzerland
spv:predicate wdt:P150 ; # P150 = canton
prov:wasAttributedTo [foaf:name "Fariz Darari" ;

foaf:mbox <mailto:fariz.darari@stud-inf.unibz.it>] ;
prov:generatedAtTime "2016-05-19T10:45:52"^^xsd:dateTime ;
prov:hadPrimarySource
<https://www.admin.ch/opc/en/classified-compilation/19995395/index.html#a1>.

In the RDF snippet above, we see all the core and provenance
aspects of the SP-statement for Wikidata of all cantons in Switzer-
land. The data source Wikidata is identified by wd:Q2013, having the
SP-statement about the completeness of the cantons of Switzerland.
The statement is of type spv:SPStatement, and has the spv:subject of
Switzerland, and the spv:predicate of canton (or “contains adminis-
trative territorial entity”). The author attribution, timestamp, and ref-
erence use the property prov:wasAttributedTo, prov:generatedAtTime,
and prov:hadPrimarySource, respectively.

Having such snippets would also provide the possibility to export
SP-statements about a dataset into an RDF dump, which may then be
useful for data quality auditing or completeness analytics purposes.

7.2.3 Creating Completeness Information

In general, one can imagine that SP-statements could either originate
from (i) KB contributors, (ii) paid crowd workers, or (iii) web extraction.
While our focus with COOL-WD is to provide a system for the first
purpose, we used also other methods to pre-populate COOL-WD with
completeness information.

9 http://www.w3.org/ns/prov
10 As always, the prefix declarations are provided in Appendix A.

120 completeness management demonstrators

kb contributors . Wikidata already provides a limited form of
completeness statements: no-value statements, as described in Sec-
tion 3.4. SP-statements can be used to capture no-value statements,
with the condition that the respective data stated in SP-statements is
empty in the data graph. We imported about 7600 no-value statements
from Wikidata.11 The top-three properties used in no-value statements
are “member of political party” (12%), “taxon rank” (11%), and “fol-
lows” (11%). The properties “spouse”, “country of citizenship”, and
“child” are among the top-15.

paid crowd workers . Given the simplicity of SP-statements, it is
natural to think of crowdsourcing as a way to generate SP-statements.
We imported around 900 SP-statements from the crowdsourced state-
ments in the work of Galárraga et al. [40], originally used for complete-
ness rule mining. Regarding the crowdsourcing done in that work, it
is noteworthy that it comes with issues. The first is the price, about
10 cents per statement. The other is, that crowd workers did not truly
provide completeness assertions, instead, they were asked, whether
they could find additional facts on a limited set of webpages. Truly
asking crowd workers for checking for evidence for completeness was
deemed too difficult in that work.

web extraction . From Mirza et al. [79], we imported about 2200
completeness assertions for the child relation, that were created via
web extraction. These statements are all about the “child” property in
Wikidata, and were generated as follows: 30 regular expressions were
manually created and were used to extract information about the num-
ber of children from biographical articles in Wikipedia. For instance,
the pattern “X has Y children” would match the phrase “Obama has
two children and lives in Washington”, and can thus be used to con-
struct the assertion that Obama should have exactly two children. In
total, they found about 124,000 matching phrases, of which, after fil-
tering some low-quality information, about 84,000 phrases that had a
precision of 94% were retained. For each of these 84,000 assertions, it
was then checked whether the asserted cardinality matched the one
found in Wikidata. If that is the case, it was then concluded that
Wikidata is complete wrt. the children of the person. For instance, for
Obama one truly finds two children in Wikidata, and thus, assuming
the correctness of the phrase in Wikipedia, can conclude that Wikidata
is complete. Later in Chapter 8, we provide a generalization over
this work, by providing an automated method of relation cardinality
extraction from text.

11 https://www.wikidata.org/wiki/Help:Statements#Unknown_or_no_values

7.2 cool-wd : a completeness demonstrator for wikidata 121

7.2.4 COOL-WD Architecture

COOL-WD is a web-based completeness demonstrator for Wikidata,
that provides a way to annotate complete parts of Wikidata in the form
of SP-statements. COOL-WD focuses on the direct-statement fragment
of Wikidata, in which neither references nor qualifiers are being used.
A COOL-WD user is able to view data of Wikidata entities that has
been annotated with SP-statements. A complete property of an entity
is denoted by a green checkmark, while a possibly incomplete one is
denoted by a gray question mark. A user can add a new SP-statement
for a property of an entity by clicking on the gray question mark. In
Subsection 7.2.5, we discuss several ways to consume completeness
statements in COOL-WD.

In providing its features, COOL-WD maintains real time commu-
nication with Wikidata. On the client side, user action like entity
search is serviced by MediaWiki API12 calls towards Wikidata, while
on the server side the COOL-WD engine retrieves entity and prop-
erty information via SPARQL queries over the live Wikidata SPARQL
endpoint.13 User-provided SP-statements are stored in a specialized
database. The engine retrieves SP-statements from the database to an-
notate the entities and properties obtained from the Wikidata SPARQL
endpoint with completeness information, and then sends them to the
user via a HTTP connection. The engine also manipulates the DB
whenever a user adds a new SP-statement, and supports the data-
aware completeness reasoning algorithm as described in Section 3.2.

hardware and system specification . Our web server and data-
base server run on separate machines. The web server is loaded with
16GB of virtual memory and 1 vCPU of 2.67GHz Intel Xeon X5650.
It runs on Ubuntu 14 and uses Tomcat 7 and Java 7 for the web ser-
vices. The database server has 8GB of virtual memory and 1 vCPU
of 2.67GHz Intel Xeon CPU X5650, running on Ubuntu 12 and using
PostgreSQL 9.1.

cool-wd gadget. Our external system of COOL-WD provides the
full functionality of managing and consuming completeness informa-
tion over Wikidata. Nevertheless, a Wikidata user might prefer to view
and add completeness statements directly inside Wikidata. Here we
present a Wikidata user script that enables such a functionality.14 To ac-
tivate the script, a user needs a Wikimedia account. Then, she has to im-
port it to her common.js page at https://www.wikidata.org/wiki/User:
[wikidata_username]/common.js. Basically, the script makes API re-

12 https://www.wikidata.org/w/api.php
13 https://query.wikidata.org/bigdata/namespace/wdq/sparql
14 https://www.wikidata.org/wiki/User:Fadirra/coolwd.js

122 completeness management demonstrators

Figure 7.5: System architecture of COOL-WD

quests to our own completeness server that provides a storage service
for completeness statements.

Figure 7.6 shows that the property box of “contains administrative
territorial entity” for Switzerland is colored green, which indicates
completeness. The information icon “(i)”, when clicked, provides
the reference URL, the Wikidata username, and the timestamp of the
completeness statement. Note that for properties not yet known to
be complete, they will be colored yellow. To add a completeness
statement one simply clicks the yellow property box. By clicking the
information icon, one can add the reference URL of the statement in
the provided pop-up form.

7.2.5 Consuming SP-Statements

The availability of completeness information in the form of SP-statements
opens up novel ways to consume data on Wikidata, realized in COOL-
WD.

data completion tracking . The most straightforward impact of
completeness statements is that creators and consumers of data become
aware of its completeness. Thus, creators know where to focus their
efforts, while consumers become aware of whether consumed data is

Figure 7.6: COOL-WD Gadget: The green box indicates completeness, while
the yellow box indicates potential incompleteness

7.2 cool-wd : a completeness demonstrator for wikidata 123

complete, or whether they should take into account that data may be
missing, and possibly should do their own verification, or contact other
sources. Figure 7.7 illustrates the progress in completing information
about Barack Obama in Wikidata via COOL-WD.

Figure 7.7: Via COOL-WD, we know that Wikidata is complete for 7 out
of 35 known non-functional properties of Barack Obama (http:
//cool-wd.inf.unibz.it/?p=Q76).

completeness analytics . Having completeness statements al-
lows us to analyze how complete an entity is compared to other simi-
lar entities. For example, Wikidata might have complete information
about the official languages of some cantons of Switzerland, but not
all. A Wikidata contributor could exploit this kind of information to
spot some entities that are less complete than other similar ones, then
focus their effort on completing them.

Here we give a possible use case of completeness analyics. In COOL-
WD, a class of similar entities is identified by a SPARQL query. For
example, the class of all cantons of Switzerland consists of the entities
returned by the query

SELECT * WHERE { wd:Q39 wdt:P150 ?c }

where Q39 is the Wikidata entity of Switzerland and P150 is the Wiki-
data property “contains administrative territorial entity.” A user may
add a new class by specifying a valid SPARQL query for the class.
Then, COOL-WD would list all possible properties of the class by tak-
ing the union of the properties of each entity of the class. The user
would then be asked to pick some properties that they feel important
for the class.

Now, suppose we pick “official language” and “head of government”
as important properties for the cantons of Switzerland, and suppose
that we have only the following SP-statements: (Bern, lang), (Geneva,
lang), (Ticino, lang), (Zurich, lang), (Bern, headOfGov). Figure 7.8 shows
how COOL-WD displays such analytics information. A user then
can see that Wikidata is verified to have complete information about
official languages only for 4 out of 26 cantons of Switzerland (15.38 %),
which means that the remaining 22 cantons are possibly less complete
than the four. Wikidata has also complete information for the head
of government of Canton of Bern, only one out of the 26 cantons.
Using this information, a contributor is able to focus on checking and
completing the languages of the remaining 22 cantons and the head of
government of the other 25 cantons.

124 completeness management demonstrators

Class name #Objects Property Completeness
percentage Complete entities

Figure 7.8: An overview of the completeness analytics feature. Clicking on
the class name shows a more detailed analytics of the class.

query completeness assessment. With explicit completeness in-
formation over data comes the possibility to assess query complete-
ness. In COOL-WD, it is possible to perform data-aware completeness
checking, as discussed in Chapter 3. Here obviously the data graph
is Wikidata. We further extend the query checking feature with a di-
agnostics feature: depending on whether a query can be guaranteed
to be complete or not, users may also see either all SP-statements, in-
cluding their provenance (i.e., author, timestamp, and reference URL),
contributing to the query completeness, or a missing SP-statement as
a cause of no completeness-guarantee. Wrt. our data-aware reasoning
algorithm as in Section 3.2, the finding of such a cause is by taking a
saturated part that is not contained in the data graph.

Let us give an illustration on how query completeness diagnostics
works. Consider the query “give all languages of all cantons in Switzer-
land.” Suppose we have the following SP-statements:

(Switzerland, canton), (Aargau, lang), . . . , (Zurich, lang).

The statements ensure the completeness of all cantons in Switzerland,
and for each canton of Switzerland from Aargau to Zurich, the com-
pleteness of all languages. The diagnostics feature enables that: in ad-
dition to the information that the query is complete, users see all those
SP-statements (and their provenance) that contribute to the query com-
pleteness. In contrast, suppose that we do not have the SP-statement
(Zurich, lang). In this case, the query cannot be guaranteed to be com-
plete, and the diagnostics feature reports that (Zurich, lang) is missing.

7.3 related work

One of the systems related to our work is MAGIK [101], which allows
one to collect completeness information about relational databases,
and to use it in query answering. The system was based on the
work in [96] about completeness reasoning over relational databases.
MAGIK implemented the reasoning by translating completeness rea-
soning tasks into logic programs, which are evaluated using an answer
set engine. Our work focuses more on Semantic Web data and queries,

7.4 summary 125

as opposed to MAGIK. Chu et al. [21] developed KATARA, a hybrid
data cleaning system, which not only cleans data, but may also add
new facts to increase the completeness of the KB. KATARA performed
data cleaning by establishing some correspondence between the pos-
sible dirty database with the available knowledge bases (KBs), and
leveraging human involvement for data verification when the KBs
lack coverage. Acosta et al. [4] developed HARE, a hybrid SPARQL
engine to enhance answer completeness. HARE implemented query
execution techniques that can identify portions of queries that yield
missing values. Then, in order to resolve missing values, HARE per-
formed microtask crowdsourcing. As opposed to our work, KATARA
and HARE cannot be used to check whether queries are complete in the
sense that all answers are returned, as they focus more on increasing
the degree of KB and query completeness.

7.4 summary

In this chapter, we have identified practical requirements and demon-
strated how systems to support the completeness life cycle of RDF
data sources can be built. The first demonstration system is CORNER.
CORNER serves as a hub of completeness statements over multiple
data sources. CORNER supports data-agnostic completeness reason-
ing, with the RDFS inference and federated rewriting features. The
second demonstrator is COOL-WD. COOL-WD showcases a complete-
ness management functionality over Wikidata. With COOL-WD, users
can add and view SP-statements of Wikidata entities. SP-statements
in COOL-WD are available also via a Linked Data API. Moreover,
the COOL-WD consumption functionalities consist of data completion
tracking, completeness analytics, and data-aware query completeness
assessment. For flexibility, COOL-WD comes in two variants: as an
external system, or as a gadget where edits of completeness statements
can be performed directly over Wikidata.

An open, practical issue is the semantics of completeness for less
well-defined predicates such as “medical condition” or “educated at,”
as detailed in [98]. When it is unclear what counts as a fact for a
predicate, it is also not obvious how to assert completeness. A possi-
ble solution is to devise a consensus or guidelines on what it means
by a (complete) property, for instance: IMDb guidelines on complete
cast or crew at https://contribute.imdb.com/updates/guide/complete.
Further, the subjectivity of completeness along with potential im-
pacts of COOL-WD has been discussed with the Wikidata commu-
nity at https://lists.wikimedia.org/pipermail/wikidata/2016-March/
008319.html and at https://lists.wikimedia.org/pipermail/wikidata/
2016-August/009388.html.

8
E X T R A C T I N G R E L AT I O N C A R D I N A L I T I E S F R O M
T E X T

In the previous chapter, we have demonstrated how completeness
statements can be created manually. To improve the scalability, an
automated method of generating completeness statements is thus im-
portant. Meanwhile, the Web contains a wealth of information about
relation cardinalities, as exemplified by the sentence “Trump has five
children” on Trump’s Wikipedia page.1 Intuitively, such information
gives a hint on the complete count of the respective relation, which
can be leveraged to assess the completeness of a knowledge base (KB)
in the following way: Whenever the cardinality information matches
the number of relation values of the entity in the KB, then this indi-
cates that the KB is complete for that relation of the entity. Hence, a
completeness statement can be generated.

Motivated by this rationale, in this chapter we introduce the novel
problem of extracting cardinalities from text on the Web, and develop
a CRF-based method for the problem. We employ distant supervision
using fact counts in the KB as training data, encountering incomplete-
ness as a new challenge wrt. classical fact extraction. We analyze
linguistic particularities of cardinality information, and show that our
method can achieve between 38% and 84% of precision on four human-
evaluated relations. We also analyze the presence of cardinality infor-
mation for more than 200 relations in Wikidata.

Preliminary results of this chapter have been published in [77], while
the full results have been submitted in [78].

8.1 introduction

General-purpose RDF knowledge bases such as Wikidata [111], DB-
pedia [10], or YAGO [108] find increasing use in applications such as
question answering, structured search, or document enrichment, and
their automated construction from text has received considerable at-
tention. So far, construction techniques are focused on the extraction
of fully qualified facts, but more often than not texts only contain rela-
tion cardinality information, i.e., the number of objects that stand in a
relation with a certain subject, such as “John has two children" or “Mary
wrote 5 books", without mentioning the actual objects.

Extracting such relation cardinality information can hugely extend
the scope of knowledge bases, thus allowing more accurate answers
for queries that involve counts or existential quantification. For the

1 https://en.wikipedia.org/wiki/Donald_Trump (as of May 29, 2017)

127

128 extracting relation cardinalities from text

child relation, for instance, simple manual patterns could reveal the
existence of 178% more children from Wikipedia, than are currently
contained in Wikidata [79].

Another important use of relation cardinalities is KB curation [87,
115]. KBs are notoriously incomplete, contain erroneous triples, and
are limited in keeping up with the pace of real-world changes. For
instance, even for a person of importance like U.S. president James
A. Garfield, while the Wikipedia text mentions 7 children, Wikidata
contains only 4. Similarly, DBpedia contains an erroneous child of
Judy Moran called “Moran_family”, leading to a total children count
of 3, while all other sources speak only of 2 children. Extracting the
cardinalities of relations could help addressing both issues.

Extracting relation cardinalities is more difficult than classical fact
extraction for several reasons. For instance, one can observe that cardi-
nality information can be compositional, as in the following sentences:

“Trump has three children with Ivana, a daughter with Marla,
and a 10-year-old son with his current wife, Melania.”

Here, the total children count of 5, is split across three different predi-
cates: children, daughter, and son.

Another challenge lies in the training data. Relation extraction usu-
ally relies on distant supervision, i.e., uses facts already contained in
a KB as positive examples for identifying further patterns. In the case
of relation cardinalities, however, knowledge bases frequently contain
counts that are lower than what is correct.

Relation cardinalities are not extracted by state-of-the-art informa-
tion extraction systems. ClausIE [35], for example extracts from the
sentence “Donald Trump has five children” the triple 〈DonaldTrump, has,
fiveChildren〉, i.e., it fails to recognize that ‘five’ should be treated as pa-
rameter, not as part of the predicate. While IE methods that hinge on
pre-specified relations for KB population (e.g., NELL [80]) can already
capture numeric values for a few attributes such as 〈Berlin2016attack,
hasNumOfVictims, 32〉, they are currently not able to learn them.

8.2 relation cardinalities

We define a mention of relation cardinality as follows:

“A cardinal number or a number-related term that characterizes
the cardinality of a set of objects that stand in a specific relation
with a certain subject.”

For example, in “Mary has one son and identical twin daughters,” ‘one’
and ‘twin’ are the expressions we try to identify to determine the
hasChild cardinality for Mary, which is 3.

Our analysis on random numbers from Wikipedia articles revealed
that around 19% numbers express relation cardinalities, most frequently

8.3 relation cardinality extraction 129

for topics such as sport (e.g., matches played, goals scored), creative work
(e.g., books written, seasons in an episode), organization (e.g., number
of members) and family relations. At present, tools such as the Stanford
Named Entity (NE) tagger [71] only label such numbers unspecifically
as number. Identifying which relations these expressions quantify
would give them semantics.

Given the substantial occurrences of relation cardinalities, one may
also wonder whether cardinality extraction can improve the existential
coverage of KBs, i.e., the number of facts known to exist. To answer
this question, we analyzed Wikipedia articles of 200 random persons,
comparing the amount of existential information for the hasChild rela-
tion that can be retrieved by the following three methods: (i) cardinality
extraction, where we focus on the relation cardinalities in the article;
(ii) counting names, where we focus on the names of the children in the
article; (iii) and Wikidata triples, where we count the children facts from
the respective Wikidata pages. Note that the second method above
corresponds to what standard relation extraction aims to achieve.

Source subjects objects

Wikipedia articles

cardinality information .120 .350

names .070 .175

Wikidata triples .025 .030

Table 8.1: Fraction of persons (n=200) whose Wikipedia articles contain chil-
dren cardinality information, children names, or who have children
on Wikidata, and number of children per each method.

As shown in Table 8.1, cardinality information allows to find children
counts for 12% of all people, while names are only mentioned for 7%,
and Wikidata contains children for only 2.5%. Similarly, with respect to
the number of children in total, cardinality information allows learning
of the existence of twice as many children as information extraction,
and eleven times as many children as Wikidata knows of.

We conjecture that cardinality information can benefit both standard
relation extraction, i.e., reducing false positives by extracting facts with
high confidence only until a certain number of facts is reached, and
question answering, as many questions such as “Which US presidents
were married thrice?” only require knowledge of counts.

8.3 relation cardinality extraction

problem statement. Given a relation/predicate p, a subject s and
a corresponding text about s, we aim to extract the relation cardinality,
i.e., the count of 〈s, p, ∗〉 triples, from relation cardinality mentions in
the text.

130 extracting relation cardinalities from text

methodology. We approach the problem via sequence labeling,
i.e., given a sentence containing at least one number, we employ a
classifier to determine for each number in the sentence whether it is a
mention of the cardinality of the relation of interest. We use CRF++ [63]
to build a Conditional Random Field (CRF) based classification model
for each relation, taking as features the context lemmas (window size
of 5) around the observed token t, along with bigrams and trigrams
containing t. Note that we use _num_ as the lemma of each cardinal
number found in the text, and multi-word numbers such as ‘twenty
one’ are collapsed into single tokens.

The relation cardinality of a given 〈s, p〉 pair is predicted by selecting
the number in the text positively annotated by the classifier, which
has marginal probability–resulting from forward-backward inference–
higher than 0.1. If there are several such numbers in the text, the one
having the highest probability is chosen.

distant supervision . We rely on distant supervision to generate
training data. Given a knowledge base predicate p, for each entity s
that appears as subject of p, we retrieve the triple count 〈s, p, ∗〉 from the
knowledge base and a text about s. In particular, we use Wikidata as
knowledge base and the Wikipedia page of each entity as text source,
both in their version as of March 20, 2017.

We generate training data by annotating candidate numbers2 in the
text as correct cardinalities whenever (i) they correspond to the exact
triple count and (ii) if they modify a noun,3 i.e., there is an incoming
dependency relation of label nummod according to the Stanford Depen-
dency Parser [71]. Otherwise, they are labelled as O (for Others), like
the rest of non-number tokens.

dataset. We chose four Wikidata predicates that span various do-
mains: child (P40), spouse (P26), has part (P527) and contains administra-
tive territorial entity (P150)–for brevity henceforth called contains admin.
While the subjects of contains admin, child and spouse relations are of
fairly uniform type (mostly administrative territorial entity and human),
the has part relation is used in highly diverse domains, ranging from
chemical substances and groups of buildings to organizations. We de-
cided to focus on two classes of subjects for has part, which are series of
creative works (e.g., film series, novel) and musical ensemble (e.g., band,
orchestra).

Considering only subjects of the abovementioned predicates that
have links to English Wikipedia pages, we set aside 200 random sub-
jects for each predicate as test set; 100 instances of each class for has part
relation. The remaining subjects that have at least one 〈s, p, ∗〉 triple are

2 Numbers that are not labelled as date, time, duration, set, money and percent by the
Stanford NE-tagger.

3 This is to exclude numbers as in “one of the reasons...” from positive training examples.

8.4 improving relation cardinality extraction 131

p #s

has part

- series of creative works 614

- musical ensemble 8,750

contains admin 6,118

child 38,496

spouse 43,668

Table 8.2: Number of Wikidata instances as subjects (#s) of each predicate (p)
in the training set.

used as training set. Furthermore, we set aside 200 random subjects per
predicate from the training set as validation set. Table 8.2 reports the
number of subjects (#s) for each considered predicate (p) in the training
set.

evaluation . We report in the first rows of Table 8.3, the perfor-
mance of our CRF-based method (vanilla) in predicting relation cardi-
nalities, evaluated on the validation set. While we initially wanted to
use knowledge base counts for the evaluation, it turned out that these
were too often too low, thus we manually annotated the validation
set with the true relation counts. Moreover, whenever the predicted
number and the relation count matches, we manually check whether
the textual evidence, i.e., sentence containing the predicted number,
truly expresses the relation of interest.

We initially built one classifier for each predicate. However, we
noticed that if we use distinct classifiers for each class in has part,
i.e. one for creative works and another for musical ensemble, the perfor-
mance improved considerably, particularly for creative works (.222 vs
.372 F1-score). The method works reasonably well for creative works
and contains admin, with .372 and .325 F1-scores, respectively. For mu-
sical ensemble and spouse, on the other hand, both precision and recall
suffer, resulting in an overall performance of only around 2% F1-score.

We next discuss major limitations of the vanilla approach as revealed
by the qualitative evaluation, and how to tackle them.

8.4 improving relation cardinality extraction

8.4.1 Training Data Quality

Unlike training data for normal fact extraction, which is generally
highly correct (e.g., YAGO claims 95% precision [108]), taking triple
counts found in knowledge bases as ground truth generally gives
wrong results. For example, our manual annotation of the validation

132 extracting relation cardinalities from text

has part
contains admin child spouse

creative works musical ensemble

P R F1 P R F1 P R F1 P R F1 P R F1

combined .238 .208 .222 .030 .023 .026

vanilla .421 .333 .372 .016 .011 .013 .660 .216 .325 .200 .159 .177 .028 .017 .021

Training Data Quality

ignore n > c -.04 0 -.02 +.02 +.02 +.02 -.09 +.01 -.01 +.01 +.03 +.02 -.00 +.01 +.00

c < n ≤ c + 1 -.01 0 -.00 -.00 0 0 0 0 0 +.01 +.01 +.01 -.01 -.01 -.01

c < n ≤ c + 2 +.00 +.01 +.01 +.01 +.01 +.01 0 0 0 +.02 +.02 +.02 +.00 +.01 +.01

c < n ≤ c + 3 -.00 +.01 +.01 +.01 +.01 +.01 0 0 0 +.03 +.03 +.03 -.01 0 -.00

exclude freq. n +.07 -.02 +.01 +.03 +.01 +.02 +.04 -.01 -.00 +.10 +.06 +.08 -.03 -.02 -.02

n ≤ 1 +.01 +.01 +.01 +.44 +.05 +.09 +.03 0 +.00 +.07 +.04 +.05 +.03 -.01 -.00

n ≤ 2 +.06 +.02 +.04 +.70 +.05 +.09 +.14 -.01 +.01 +.16 -.07 -.03 +.97 0 +.01

n ≤ 3 +.02 -.09 -.06 +.58 +.02 +.05 +.16 -.01 +.01 +.60 -.14 -.13 -.03 -.02 -.02

top 25% 0 0 0 0 0 0 0 0 0 -.01 -.01 -.01 -.00 0 -.00

50% +.01 0 +.00 -.00 0 -.00 0 0 0 -.01 -.01 -.01 -.01 -.01 -.01

75% 0 0 0 -.00 0 -.00 0 0 0 -.00 -.01 -.01 -.00 0 -.00

best train .525 .323 .400 .714 .056 .104 .800 .209 .332 .377 .278 .320 1.00 .046 .087

Compositionality

comp -.06 +.01 -.01 0 0 0 +.06 +.18 +.20 +.01 +.01 +.01 -.33 0 -.00

Linguistic Variance

transform +.06 +.13 +.11 +.09 +.03 +.05 0 0 0 -.01 -.01 -.01 -.15 +.02 +.03

transform ‘a’ -.12 -.02 -.06 -.26 -.01 -.01 -.11 -.04 -.06 -.12 -.06 -.08 -.67 -.01 -.02

best final .587 .449 .509 .800 .087 .157 .855 .386 .532 .384 .290 .330 .846 .063 .116

Table 8.3: Evaluation results on the validation set.

set for child shows that about 50% of the KB counts are incorrect wrt.
the knowledge one can derive from Wikipedia texts.

In [77], we showed that manually generated training data can hugely
boost performance, however, obtaining sufficient quantities of manu-
ally annotated data is generally costly. We see several avenues to tackle
the training data quality issue.

incompleteness-resilient distant supervision . Triple counts
in the knowledge base are often lower than what is correct, but rarely
too high. During the training data generation, these incorrect counts
will generate spurious negative examples. For example, recalling Pres-
ident Garfield, for whom Wikidata knows only 4 out of his 7 children,
the number “seven” in the sentence “In 1858, he married Lucretia; they
would have seven children...” on his Wikipedia page4 would be labelled
as negative example, leading to a lower probability for numbers ap-
pearing in similar contexts to be labelled as correct cardinalities.

Since there is no way to know whether higher numbers in the text
are actually positive examples, one possible approach is to treat them
as neither positive nor negative examples, but simply remove them
from the training set. We test two variations of this approach:

4 https://en.wikipedia.org/wiki/James_A._Garfield

8.4 improving relation cardinality extraction 133

• Ignore n > c, i.e., we remove sentences that only contain numbers
(n) that are higher than the triple count (c).

• Ignore c < n ≤ c + d, i.e., we remove sentences that only contain
numbers slightly higher than the triple count, for values of d
between 1 and 3.

excluding uninformative numbers . The more frequent a cer-
tain number occurs in a text, the more probable it is to occur in various
contexts. As a way to give the classifier less noisy training examples,
one might wish to filter out frequently occurring numbers irrespective
of whether they match the triple count or not. Specifically, we experi-
ment with labeling numbers that occur more than 5 times in a text as
negative examples.

By Benford’s law, lower numbers are more frequent than higher
numbers. As a very simple heuristic, we thus also experiment with
excluding all n, 1 ≤ n ≤ 3 from the training examples.

filtering ground truth . Instead of taking the triple counts for
all subjects of a predicate as ground truth, one might trade size for
quality. We rank the subjects according to their popularity, i.e., the
number of triples/facts about them stored in the knowledge graph. We
then experiment with using only the 25%, 50% and 75% most popular
subjects as training data.

8.4.2 Compositionality

We observed that cardinalities for contains admin were often mentioned
as a composition of several numbers, e.g., “The Qidong county has 4
subdistricts, 17 towns and 3 townships under its juridiction.” This phe-
nomenon is also observed for child, as exemplified at the beginning of
Section 8.2.

In this work, we focus on number compositionality when a sequence
of numbers occurs in the same sentence. In training data generation,
if the sum of such a number sequence is equal to the triple count, we
label all numbers in the sequence as positive examples.

In the prediction step, we predict the relation cardinality by sum-
ming up consecutive numbers labeled as positive with sufficient prob-
abilities by the classifier. To avoid predicting the wrong cardinality in
“He had four children: two sons and two daughters” we check the number
sequence as follows: for a predicted number p labeled as positive, if
the sum of the following numbers, that are also labeled as positives, is
equal to p, we simply choose p as the correct relation cardinality. In the
previous example, our method will predict four as the children count
instead of eight.

134 extracting relation cardinalities from text

8.4.3 Linguistic Variance

Our initial motivation was to make sense of the so far ignored large
fraction of numbers that express relation cardinalities. However, we
noticed quickly that relation cardinalities are frequently also expressed
with other concepts related to numbers such as trilogy or duo.

We used the relatedTo relation in ConceptNet [106] for collecting
terms related to numbers. We split the terms into two groups, those
having Latin/Greek prefixes5 and those not having them. For the first
group, we generated a list of Latin/Greek prefixes, e.g., tri-, quart-, and
a list of possible suffixes, e.g., -logy, -et. We manually checked the
latter group to select only terms that were strongly associated with
cardinalities, e.g., twin, thrice and dozen.

In a pre-processing step, a Latin/Greek number found in the text is
represented with only its suffix as the lemma, and labelled as a positive
example if its prefix corresponds to the relation count. For example,
when we found ‘triplet’ in the text, its lemma will be converted to
plet and it will be labelled as a positive example if the relation
count is equal to 3. For other terms, we simply replace them with the
correct terms containing cardinal numbers, e.g., twin → two children,
thrice→ three times and dozen→ twelve.

We also observed that the relation cardinality of one is frequently rep-
resented with indefinite articles, for instance, “They had a son together”
or “It has a residential community and 7 villages under its adminstration.”
Therefore, we also experiment with converting indefinite articles a and
an in the test/validation set into one.

8.5 analysis

8.5.1 Evaluation on the Validation Set

We performed an ablation study to identify the impact of each idea
from above wrt. the vanilla approach. The results are reported in Ta-
ble 8.3, based on the same evaluation methodology used in Section 8.3.

training data quality. Ignoring numbers larger than KB counts
was found to slightly improve the performance, except for contains
admin. We presume the reason for this is that Wikidata is already highly
complete for this relation. For other relations, the varying degree of
deviation d that improves the performances hints at how many 〈s, p, ∗〉
triples per subject s are usually missing from the knowledge graph,
i.e., d = 3 for child, and d = 2 for creative works and spouse. For musical
ensemble, ignoring all higher numbers is the best approach, which
suggests that Wikidata is remarkably incomplete for that relation.

5 http://phrontistery.info/numbers.html

8.5 analysis 135

Excluding numbers frequently occurring in the text turns out to
considerably improve precision (except for spouse), for instance by
10% for child. Excluding low numbers has a similar effect, although
the effect appears very much dependent on the nature of the predicates,
i.e., the average number of 〈s, p, ∗〉 triples that are often mentioned as
cardinality assertions for the observed predicate p in the text about s.
For instance, when excluding n ≤ 1 is the best setting for child, then
that means that two children are frequently mentioned in texts, hence,
excluding n ≤ 2 would filter more positive than negative examples.

Somewhat surprisingly, taking smaller but more complete subsets
for training did not have any effect on performance. We conjecture
that for these instances, a more complete knowledge base is offset by
longer and thus more noisy articles.

In Table 8.3, we report the extraction performance after our attempts
to improve the training data quality (best train) by using the corre-
sponding best setting (shown in bold) for each predicate. The best train
scores are then used to further show the impact of tackling composi-
tionality and linguistic variance discussed below.

compositionality and linguistic variance . The results on
tackling the compositionality and linguistic variance issues shed fur-
ther light on the nature of each relation. Cardinality assertions for
contains admin are very often compositional, as shown by the improve-
ment of 20% in F1-score, seldom for child with 1% F1-score increase,
and not at all for the others.

Instead, the other relations benefited from considering concepts re-
lated to numbers as candidates for relation cardinality. We observe
significant improvements of both precision and recall for has part, and
of recall for spouse. This approach allows the extraction method to infer
the relation count from terms such as ‘pentalogy’, ‘duo’ and ‘(married)
twice’.

Transforming all indefinite articles ‘a’ and ‘an’ into ‘one’ in the test
data, in turn, results in a great increase of false positives, and reduces
precision considerably.

The final performance of our extraction method for each relation on
the validation set is shown in the last row (best final) of Table 8.3. The
method works quite well for contains admin, spouse and musical ensemble
with 85.5%, 84.6% and 80% precision scores respectively. The low
recall for musical ensemble and spouse reflects the rarity of cardinality
assertions containing cardinal numbers (or number-related terms) for
those relations. Average performance with 50.9% F1-score on has part
for creative works might be due to the comparably small training data
set. Meanwhile, we attribute an observed lower precision on child to
three factors:

136 extracting relation cardinalities from text

1. The classifier often confuses the number of children with, for
instance, number of siblings, spouses, or (political) terms served.

2. The number-of-children assertions found in the text (about a
person) are actually about someone else, e.g., his/her parent or
sibling.

3. The total number of children can be inferred from numbers men-
tioned in several sentences, as in “John married Jane in 1983. They
have two children together. After their divorce in 1995, he married
Jamie, with whom he has two sons and one daughter.”

8.5.2 Evaluation on the Test Set

We also evaluated the performance of our method on the test data,
which contains crowd-annotated 200 random entities per relation. We
used the CrowdFlower6 platform for annotating (i) whether the num-
ber of objects could be inferred from the Wikipedia page of a certain
subject, and (ii) what that number was, taking in each case the majority
vote among three crowdworkers. Quality was ensured via unambigu-
ous test questions. It turns out that the task was not trivial, as on the
random entities, annotators voted unanimously in only 83% of cases.
Frequent reasons for disagreement were for instance for has part, when
different granularities like ”3 seasons and 12 episodes” were mentioned,
or when for a band, a vocalist, two guitarists and a drummer were
mentioned, but it was left unclear whether these were all members.

In Table 8.4, we report the performance of our method on the crowd-
annotated dataset. The recall (RCE, R) was computed by using the total
number of subjects of which the crowd could infer their object cardi-
nality from Wikipedia articles. Our method could extract cardinality
information with precision (RCE, P) ranging from 40% to 62.5%.

We also report in the next columns the percentage of subjects (%sub-
ject) for which (i) our method could extract the relation counts correctly
(RCE), (ii) Wikidata contains at least one fact in the respective relation,
and (iii) the crowd workers said one could infer the relation count by
any means from the Wikipedia article. As one can see, for contains
admin and child the percentage of subjects of which our method suc-
ceed in extracting the cardinalities is reasonably close to the ones of
Wikipedia. For creative works, musical ensemble and spouse, the large
gap stems from the facts that Wikipedia articles more often mention
the individual objects, which allows crowd workers to infer the cardi-
nality by counting, a technique that is currently not accessible by our
method.

In the existential knowledge increase column we report the impact of
relation cardinality extraction towards enlarging the existential knowl-
edge of KBs, in this case Wikidata. For creative works and child, the

6 https://www.crowdflower.com/

8.6 large-scale run of rce 137

number of facts known to exist increased significantly, by 17.3 and 7.6
times respectively. Meanwhile, for musical ensemble, Wikidata usually
already contains the ensemble member names, so extracting cardinal-
ity information does not help much.

p
RCE %subject existential knowledge increase

P R F1 RCE Wikidata Wikipedia (Wikidata+RCE) /Wikidata

has part

- creative works .545 .279 .369 .120 .020 .550 17.3

- musical ensemble .400 .026 .049 .020 .280 .770 1.1

contains admin .571 .308 .400 .020 .060 .065 1.8

child .625 .750 .682 .070 .020 .095 7.6

spouse .500 .026 .050 .005 .020 .019 1.8

Table 8.4: Evaluation results on the test set; RCE denotes Relation Cardinality
Extraction.

8.6 large-scale run of rce

We collected all Wikidata properties that were not asserted to be
single-value7, had a functionality degree (#subjects/#triples) of less
than 0.98 [41], and were used by at least 500 subjects, obtaining 267
properties in total.

For each property/relation, we set aside the 200 of the 400 most
popular entities as test set, while using the rest (limited to 10k most
popular entities) as training data. Note that we only considered entities
of the most frequent type for each class, e.g., human for sibling, to
ensure domain homogeneity. We then ran our Relation Cardinality
Extraction (RCE) system for each property, using the setting we assume
to generally work well for all relations (vanilla + ignore c < n ≤ c + 2
+ exclude freq. n + exclude n ≤ 1). We evaluated the precision wrt. the
triple counts for the entities in the test set, assuming that for the most
popular entities, these are usually correct.

There were a total of 147 for which RCE could identify relation
cardinalities with more than 5% precision. While some are spurious
results due to low variance, in Figure 8.1 we show some properties
where the results were manually found to be not mere coincidences.
These properties are used, for instance, for humans (e.g., sibling, award
received), games/software (e.g., designed by, software version), companies
(e.g., founded by, subsidiary) and transportation-related buildings (e.g.,
platform, runway). Our method also achieves an impressively high
precision of 97.8% on contains settlement, which is a relation similar to
contains admin.

7 Properties having the property constraint type
https://www.wikidata.org/wiki/Q19474404

138 extracting relation cardinalities from text

Figure 8.1: Precision results on some notable Wikidata relations, along with
their corresponding functionality degrees.

8.7 related work

Advances on the automated construction of large-scale KBs have been
largely influenced by prevalent relation extraction works, focusing
either on structured data [108, 10] or on unstructured contents over
the web. For the latter, directions include extracting arbitrary facts
without predefined schema, called Open IE [73, 35, 80], and extracting
triples based on well-defined knowledge base relations [109, 62, 86], in
which the distant supervision approach is widely used [25, 76]. There
has also been work on reducing noise in distantly-supervised training
data via learning only from positive examples [75] or by expanding
the knowledge base with information retrieval techniques [113].

Most relation extraction works have focused on non-numeric in-
formation. [70] explored relation extraction where one of the argu-
ments is a number or a quantity (e.g., 〈Aluminium, atomicNumber,
13〉). In general, most works on making sense of numbers in texts
or semi-structured data (e.g., web tables) have been largely focused
on temporal information [66, 107] and physical quantities or mea-
sures [19, 58, 83].

In contrast, numbers that express relation cardinalities have received
little attention so far. State-of-the-art Open-IE systems either hardly ex-
tract cardinality information or fail to extract cardinalities at all. While
NELL, for instance, knows 13 relations about the number of casualties
and injuries in disasters, they all contain only seed facts and no learned
facts. The only prior work we are aware of is by [79], who use man-
ually created patterns to mine children cardinalities from Wikipedia.
They showed that with 30 manually crafted patterns and simple filters
it is possible to extract 86,227 children-cardinality-assertions with a

8.8 summary 139

precision of 94.3%. Our work generalizes upon this, developing an
automated technique for extracting relation cardinalities.

8.8 summary

In Chapter 7, we have discussed how completeness statements can be
created manually via CORNER and COOL-WD. To improve the scal-
ability, one may rely on an automated method of extracting relation
cardinalities from text, which can then be matched with the number
of relation values in a KB to generate completeness statements. In this
chapter, we have introduced the problem of extracting relation cardi-
nalities from text, discussed the challenges that set it apart from stan-
dard information extraction, and developed a CRF-based distantly-
supervised technique for the extraction. There are several avenues to
extend this work. On the technical side, the present work does not
consider instances with no facts in training (due to their overwhelm-
ing proportion), and is thus not suited to predict zero cardinality (like
Angela Merkel having no children).

Furthermore, compositionality is only explored within sentences,
while in reality it appears also spread over multiple sentences. Taking
this even further, one might even look at multiple sources, which may
have different timestamps, and use techniques from truth discovery
and data fusion to retrieve most likely values in the case of conflicts.

A third direction is to go towards constraints and statistical rea-
soning. Ordinal number like in “His second wife” are ignored by our
method, but are valuable clues as they set lower bounds on relation car-
dinalities. Similarly, the number of brothers and sisters should add up
to the number of siblings, having 80 band members is uncommon, or
sports teams normally have fewer coaches than players. Learning such
constraints, or exploiting them in the consolidation part of relation car-
dinality extraction, could be fruitful to further improve precision and
recall of the present method.

9
D I S C U S S I O N

Here we discuss issues related to our completeness management frame-
work: acquisition of completeness information and compatibility with
advanced RDF features.

9.1 acquisition of completeness information

sources of completeness information . Our framework relies
on the availability of machine-readable completeness information. We
found a widespread interest in collecting completeness information
in various forms. For instance, Wikipedia provides a template for
adding completeness statements1 and contains over 14,000 pages with
the keywords ‘complete list of’ and ‘list is complete;’ IMDb has at least
24,000 verified statements about the completeness of cast and crew;2

and OpenStreetMap has around 2,200 pages featuring completeness
status.3 The techniques we develop may serve as an incentive to
standardize such information and to make it available in RDF, since
then not only is such information useful for managing data quality,
but also for assessing query quality in terms of completeness and
soundness.

Ideas for approaches to automating the generation of complete-
ness information are collected in [98], in addition to our idea that
is based on relation cardinality extraction as in Chapter 8. Our COOL-
WD demonstrator (see Chapter 7) for managing and consuming stan-
dardized completeness information of Wikidata is available at http:
//cool-wd.inf.unibz.it, which currently stores over 10,000 real com-
pleteness statements.

correctness of completeness statements . Any inference is
only as correct as the used antecedents. If owners of data sources can
add completeness annotations by themselves, incorrect completeness
annotations can occur, which in turn, may lead to incorrect conclusions.
This issue cannot be avoided, but can be made more transparent, by
annotating conclusions with information about the antecedents used
(e.g., “conclusion based on the completeness assertions X, Y and Z
over the data source W, given by agents A and B on date D”). Such
provenance information can then serve as a basis for trust determina-

1 https://en.wikipedia.org/wiki/Template:Complete_list
2 http://www.imdb.com/interfaces
3 For instance, see http://wiki.openstreetmap.org/wiki/Abingdon

141

142 discussion

tion over conclusions. We refer e.g., to [9, 49, 64] for work about trust
and provenance.

Another view on correctness is that analogously to completeness
statements, one can also formulate correctness statements, and use
them for annotating query answers with correctness information. This
was already observed by Motro [81]. While both completeness and
correctness are important issues on the Semantic Web, we focus here
on completeness. We believe that people in general publish data that
they think is correct, while they are aware that not all data is complete.

9.2 compatibility with advanced rdf features

blank nodes . The use of blank nodes in RDF has been a contro-
versial topic in the Semantic Web community [2, 1]. In Linked Data
applications, blank nodes add complexity to data processing and data
interlinking due to the local scope of their labels [51, 38]. With respect
to SPARQL, there are semantic mismatches with the RDF semantics
of blank nodes, e.g., when COUNT and NOT-EXISTS features are em-
ployed [57]. Nevertheless, blank nodes are used in practice to some
degree: (i) for modeling unknown nulls [57, 32], and (ii) for modeling
n-ary relations as auxiliary instances in reification [85].

For the former usage, it will be a contradiction if something is com-
plete but unknown, as we argue that completeness statements should
capture only “known and complete” information. For instance, one
may state that a graph is complete for triples of the form (john, child, ?y),
while the graph contains the triple (john, child, _:b), indicating that
John is complete for his unknown child, which does not really make
sense. Nevertheless, a graph with completeness statements may still
have blank nodes as long as they are not captured by the statements.

For the latter case, skolemization as a way to systematically replace
blank nodes with fresh, skolem IRIs may be leveraged with almost
interchangeable behavior [26, 50, 56], except that skolem IRIs have a
global scope instead of a local scope. This way, completeness state-
ments can capture n-ary relation information encoded originally with
blank nodes, and completeness reasoning (which involves SPARQL
queries) behaves well (i.e., no semantic mismatches as per [57]). Nev-
ertheless, in practice Semantic Web developers tend to directly use
IRIs instead of blank nodes for representing auxiliary resources, as
demonstrated by Wikidata [38].4

rdfs extension . RDFS [17] adds light-weight semantics to de-
scribe the structure and interlinking of data, usually sufficient for
Linked Data publishers [51]. Main RDFS inference capabilities con-

4 For instance, the resource IRI of Wikidata for the marriage between Don-
ald Trump and Ivana Trump is http://www.wikidata.org/entity/statement/
q22686-f813c208-48b2-9a72-3c53-cdaed80518d2.

9.2 compatibility with advanced rdf features 143

sist of class and property hierarchies, as well as property domains
and ranges [51, 82], which are widely used in practice [90]. Darari
et al. [28] formalized the incorporation of RDFS in data-agnostic com-
pleteness reasoning. Moreover, our CORNER system (see Section 7.1)
demonstrates such RDFS incorporation in the data-agnostic settings.

Using a similar technique as in [28], it is also relatively easy to extend
our data-aware completeness reasoning framework with the RDFS se-
mantics. The idea is that we strengthen our syntactic characterization
of computing the epg operator (see Subsection 3.2.1) via the closure op-
eration wrt. RDFS ontologies [82]. More precisely, in the crucial part,
the closure has to be computed before and after the TC operation over
P̃ ∪G. Also, the evaluation of the crucial part needs to be done over
the materialized graph G wrt. the RDFS ontology. As for query sound-
ness checking, a similar procedure based on RDFS closure needs to be
employed as well. For pattern soundness reasoning, we include the
closure computation in the query set containment checking for Non-
Redundant Form (NRF), and in the query completeness checking (as in
Proposition 5.4). For answer soundness checking, we can simply rely
on the data-aware completeness checking with RDFS incorporation
we just sketched. In summary, the addition of the closure computation
ensures that the semantics of RDFS is incorporated in the reasoning,
while not increasing the complexity as the RDFS closure computation
can be done in PTIME [82].

10
C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

The objective of this thesis is to study the problem of completeness
for RDF data sources. We conclude by summing up the results, relat-
ing them with the research hypotheses (as given in Section 1.1), and
discussing future work.

10.1 summary of the results

Our study was motivated by the question: How complete is Semantic
Web data? In Chapter 2, we formalized the notion of completeness
over parts of RDF data, and introduced completeness statements as
a means to capture partial completeness. Having completeness state-
ments opens up the possibility of checking query completeness. We
distinguished between two problems of query completeness entail-
ment, depending on whether the data graph is taken into account:
data-agnostic completeness entailment and data-aware completeness
entailment.

In Chapter 3, we motivated and formalized data-aware complete-
ness entailment. Furthermore, we devised a technique to check whether
such entailment holds and studied the complexity of the entailment
problem. We identified two different fragments of completeness state-
ments: SP-statements and no-value statements. While SP-statements
are more suited to capturing completeness for entity-centric, crowd-
sourced RDF data sources, no-value statements can be leveraged to
tackle the problem of non-existent information and query emptiness.
With data-aware reasoning, we have shown that previously incom-
plete queries by data-agnostic reasoning can become complete. We
verified our research hypothesis that the incorporation of available
graphs gives a stronger, fine-grained query completeness assessment.

In Chapter 4, we developed optimization techniques for complete-
ness reasoning and conducted experimental evaluations to show its
feasibility. As for data-agnostic completeness reasoning, we identified
the constant-relevance principle to reduce the number of completeness
statements in the reasoning, and investigated various index structures
for the retrieval of constant-relevant statements. As for data-aware
completeness reasoning, we relied on completeness templates to or-
ganize completeness statements, enabling simultaneous processing of
the statements, and partial matching that is used to rule out irrele-
vant completeness templates. Our experimental evaluations over both
reasoning problems showed that our optimizations provided a speed-
up over unoptimized ones, where the average runtime was below a

145

146 conclusions and future directions

millisecond for data-agnostic reasoning, and 140 ms for data-aware
reasoning in realistic cases. Wrt. the research hypothesis, not only
is query completeness checking time comparable to query evaluation
time, but it is even faster for data-agnostic settings, thanks to our
optimizations. For data-aware settings, however, the completeness
checking was slower than query evaluation, though in absolute scale
still relatively fast.

In Chapter 5, we studied the problem of soundness for SPARQL
queries with negation. We distinguished between two variants of the
problem, that is, pattern soundness and answer soundness, differing
in whether query answers have to be treated as a whole, or individ-
ually: “Is my query sound” vs. “Is some query answer sound?” We
approached the problem via reduction to completeness entailment,
and thus confirmed our research hypothesis. We also provided exper-
imental evidence of the feasibility of our soundness reasoning.

In Chapter 6, we extended completeness statements with time. More
specifically, we formalized the notion of completeness of parts of data
up to some point of time, and query completeness with time. We in-
troduced the guaranteed completeness date (GCD): the latest date on
which complete query results are ensured to be included in the actual
query results. We developed an algorithm to find such GCD, which
is optimal in the sense that timestamped completeness statements are
considered at most once. In this regard, temporal completeness analy-
sis can be performed with just little additional cost (in comparison to
non-temporal completeness analysis), which confirmed our hypothe-
sis.

To show how our theoretical completeness framework can be used
in practice, in Chapter 7 we developed two demonstration systems:
CORNER and COOL-WD. They showcased how the completeness life
cycle, consisting of the creation, view, update, and consumption of
completeness statements, can be facilitated. CORNER demonstrated
a completeness statement hub over multiple RDF data sources, that
supports data-agnostic query completeness checking with RDFS on-
tologies and federated rewriting. COOL-WD demonstrated function-
alities for managing and consuming completeness information over
Wikidata. With COOL-WD one can create SP-statements about Wiki-
data entities. On the consumption side, COOL-WD provided features
such as data completion tracking, completeness analytics, and query
completeness assessment with diagnostics. As also discussed in the
chapter, the development of the above systems made use of existing
Semantic Web libraries (e.g., Apache Jena). Hence, there was only little
development overhead, and our research hypothesis was verified.

As an alternative to collecting completeness statements, we investi-
gated an automated method for relation cardinality extraction in Chap-
ter 8. Such cardinality information can be leveraged to generate com-
pleteness statements in the following way: when the value count of

10.2 future work 147

an entity’s relation in a KB matches the cardinality information of the
entity’s relation found in text, then a completeness statement of the en-
tity’s relation for that KB can be generated. We focused on extracting re-
lation cardinalities on Wikipedia, and developed an extraction method
based on conditional random fields (CRF) with distant-supervision.
We analyzed three aspects that make relation cardinality extraction
challenging: quality of training data, compositionality, and linguistic
variance, and showed that our method can achieve precision scores
of up to 84%. Given this effectiveness, our research hypothesis was
largely confirmed: cardinality information in natural language texts
can be extracted to provide hints about completeness information for
RDF data sources.

In Chapter 9 we discussed two crucial aspects of our completeness
management framework. For the aspect of acquisition of completeness
information, we outlined possible sources of completeness statements
and raised the issue of correctness of completeness statements. For
the aspect of compatibility with advanced RDF features, we discussed
how our completeness framework deals with blank nodes and RDFS.

10.2 future work

The results of this thesis can be extended in several ways. First, it is
of interest to see how our completeness management framework can
be extended with OWL [53]. OWL provides inferences that go beyond
RDFS such as class disjointness, existential and universal quantifica-
tion of property restrictions, and property chains. Furthermore, there
is also the enumeration of individuals which is similar to completeness
statements. We are interested to know to which extent OWL features
can enrich our completeness framework, and also, which OWL pro-
files (i.e., OWL 2 EL, OWL 2 QL, OWL 2 RL) are the most suitable to
extend our work.

Next, while we have addressed the BGP fragment of SPARQL for
the completeness problem and the BGP fragment with several NOT
EXISTS negations for the soundness problem, we are curious about
enriching our query fragments with more constructors. The OPTIONAL
constructor, for instance, allows parts of graph patterns to be optionally
matched to graphs. For data-agnostic completeness reasoning, Darari
et al. [28] have investigated the inclusion of the OPTIONAL constructor.
Nevertheless, it is still open how the OPTIONAL constructor may behave
in data-aware completeness reasoning and soundness reasoning. Also,
while the current completeness statements are constructed using BGPs,
one might wonder what happens if richer constructors are added, to
enable statements like “Complete for all UniBZ students who were
born after 1991 and who do not speak German.”

From the practical side, one future direction is to study how (Seman-
tic) Web data publishers and users perceive the problem of complete-

148 conclusions and future directions

ness, and how they want to benefit from data completeness. Exten-
sive case studies may be conducted in various application domains
like healthcare, economics, or education. The purpose is to analyze
whether our completeness framework is sufficient or not for their re-
quirements, and if not, on which side it can be improved. In regard
to completeness statement availability, usability evaluations over our
completeness demonstration systems can be conducted, with the aim
to increase potential user engagement. Moreover, our automated tech-
nique for relation cardinality extraction may be reinforced to handle
more relations with a better precision, by considering, for instance,
named entity recognition, coreference resolution, and knowledge base
integration.

11
B I B L I O G R A P H Y

[1] Richard Cyganiak: Blank nodes considered harm-
ful. http://richard.cyganiak.de/blog/2011/03/

blank-nodes-considered-harmful/. Accessed: 2017-01-
15. (Cited on page 142.)

[2] semantic-web@w3.org Mail Archives: a blank node issue.
https://lists.w3.org/Archives/Public/semantic-web/

2011Mar/0017.html. Accessed: 2017-01-15. (Cited on page 142.)

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995. (Cited on page 49.)

[4] Maribel Acosta, Elena Simperl, Fabian Flöck, and Maria-Esther
Vidal. HARE: A hybrid SPARQL engine to enhance query an-
swers via crowdsourcing. In K-CAP, 2015. (Cited on page 125.)

[5] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus. Poly-
nomial datalog rewritings for ontology mediated queries with
closed predicates. In Proceedings of the 10th Alberto Mendelzon In-
ternational Workshop on Foundations of Data Management, Panama
City, Panama, May 8-10, 2016, 2016. (Cited on page 9.)

[6] Keith Alexander, Richard Cyganiak, Michael Hausenblas,
and Jun Zhao. Describing Linked Datasets with the VoID
Vocabulary. W3C Interest Group Note, 3 March 2011.
Retrieved Feb 1, 2015 from http://www.w3.org/TR/2011/

NOTE-void-20110303/. (Cited on pages 7 and 22.)

[7] Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damásio,
and Gerd Wagner. Extended RDF as a semantic foundation of
rule markup languages. J. Artif. Intell. Res. (JAIR), 32:37–94, 2008.
(Cited on page 97.)

[8] Mario Arias, Javier D. Fernández, Miguel A. Martínez-Prieto,
and Pablo de la Fuente. An Empirical Study of Real-World
SPARQL Queries. In Proceedings of the 1st International Workshop
on Usage Analysis and the Web of Data (USEWOD’11), 2011. (Cited
on pages 64, 69, and 91.)

[9] Donovan Artz and Yolanda Gil. A survey of trust in computer
science and the Semantic Web. J. Web Sem., 5(2):58–71, 2007.
(Cited on page 142.)

149

150 bibliography

[10] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. DBpedia: A nucleus for a
web of open data. Springer, 2007. (Cited on pages 64, 127, and 138.)

[11] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri,
Emanuele Della Valle, and Michael Grossniklaus. Querying RDF
streams with C-SPARQL. SIGMOD Record, 39(1):20–26, 2010.
(Cited on page 109.)

[12] Carlo Batini and Monica Scannapieco. Data and Information Qual-
ity - Dimensions, Principles and Techniques. Data-Centric Systems
and Applications. Springer, 2016. (Cited on page 8.)

[13] David Becker, Trish Dunn King, and Bill McMullen. Big data,
big data quality problem. In 2015 IEEE International Conference
on Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 -
November 1, 2015, pages 2644–2653, 2015. (Cited on page 8.)

[14] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and
Gavin Carothers. RDF 1.1 Turtle. W3C Recommendation, 25
February 2014. Retrieved Jan 1, 2017 from https://www.w3.

org/TR/turtle/. (Cited on pages 23 and 161.)

[15] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer,
Christian Becker, Richard Cyganiak, and Sebastian Hellmann.
DBpedia – A Crystallization Point for the Web of Data. Journal of
Web Semantics, 7(3), 2009. (Cited on page 7.)

[16] Christian Bizer and Andreas Schultz. The Berlin SPARQL Bench-
mark. Int. J. Semantic Web Inf. Syst., 5(2):1–24, 2009. (Cited on
page 98.)

[17] Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C Recommen-
dation, 25 February 2014. Retrieved Jan 10, 2017 from http://
www.w3.org/TR/2014/REC-rdf-schema-20140225/. (Cited on
page 142.)

[18] Jean-Paul Calbimonte, Óscar Corcho, and Alasdair J. G. Gray.
Enabling ontology-based access to streaming data sources. In
International Semantic Web Conference, pages 96–111, 2010. (Cited
on page 109.)

[19] Arun Chaganty and Percy Liang. How Much is 131 Million
Dollars? Putting Numbers in Perspective with Compositional
Descriptions. In ACL, pages 578–587, August 2016. (Cited on
page 138.)

[20] Ashok K. Chandra and Philip M. Merlin. Optimal implemen-
tation of conjunctive queries in relational data bases. In STOC,
pages 77–90, 1977. (Cited on pages 25 and 70.)

bibliography 151

[21] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo
Papotti, Nan Tang, and Yin Ye. KATARA: A data cleaning sys-
tem powered by knowledge bases and crowdsourcing. In ACM
SIGMOD, 2015. (Cited on page 125.)

[22] Keith L. Clark. Negation as Failure. In Logic and Data Bases,
pages 113–141, 1978. (Cited on page 97.)

[23] E. F. Codd. Extending the database relational model to capture
more meaning. ACM Trans. Database Syst., 4(4):397–434, 1979.
(Cited on page 8.)

[24] Edgar F. Codd. Relational completeness of data base sublan-
guages. In: R. Rustin (ed.): Database Systems: 65-98, Prentice Hall
and IBM Research Report RJ 987, San Jose, California, 1972. (Cited
on page 97.)

[25] Mark Craven and Johan Kumlien. Constructing biological
knowledge bases by extracting information from text sources. In
Proceedings of the Seventh International Conference on Intelligent Sys-
tems for Molecular Biology, pages 77–86, 1999. (Cited on page 138.)

[26] Richard Cyganiak, David Wood, and Markus Lanthaler, editors.
RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation,
25 February 2014. Retrieved Jan 15, 2017 from https://www.
w3.org/TR/2014/REC-rdf11-concepts-20140225/. (Cited on
page 142.)

[27] Fariz Darari. Representing and querying negative knowledge in
RDF. In The Semantic Web: ESWC 2013 Satellite Events - ESWC
2013 Satellite Events, Montpellier, France, May 26-30, 2013, Revised
Selected Papers, pages 275–276, 2013. (Cited on page 98.)

[28] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon
Razniewski. Completeness statements about RDF data sources
and their use for query answering. In ISWC, 2013. (Cited on
pages 10, 11, 14, 15, 19, 22, 25, 115, 143, and 147.)

[29] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon
Razniewski. Completeness Management for RDF Data Sources.
Under revision for ACM TWEB, 2016. (Cited on pages 55 and 101.)

[30] Fariz Darari, Werner Nutt, Simon Razniewski, and Sebastian
Rudolph. Ensuring SPARQL Completeness and Soundness Us-
ing Completeness Information about RDF Data Sources. To be
submitted to Journal of Web Semantics, 2017. (Cited on pages 55
and 81.)

[31] Fariz Darari, Radityo Eko Prasojo, and Werner Nutt. CORNER:
A completeness reasoner for SPARQL queries over RDF data
sources. In ESWC Demos, 2014. (Cited on page 112.)

152 bibliography

[32] Fariz Darari, Radityo Eko Prasojo, and Werner Nutt. Express-
ing no-value information in RDF. In Proceedings of the ISWC 2015
Posters & Demonstrations Track co-located with the 14th International
Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA, Octo-
ber 11, 2015., 2015. (Cited on pages 27 and 142.)

[33] Fariz Darari, Simon Razniewski, and Werner Nutt. Bridging the
semantic gap between RDF and SPARQL using completeness
statements. In Proceedings of the ISWC 2014 Posters & Demon-
strations Track a track within the 13th International Semantic Web
Conference, ISWC 2014, Riva del Garda, Italy, October 21, 2014.,
pages 269–272, 2014. (Cited on page 81.)

[34] Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, and
Werner Nutt. Enabling fine-grained RDF data completeness as-
sessment. In ICWE, 2016. (Cited on page 27.)

[35] Luciano Del Corro and Rainer Gemulla. ClausIE: clause-based
open information extraction. In WWW, pages 355–366. ACM,
2013. (Cited on pages 128 and 138.)

[36] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and
Wei Zhang. Knowledge vault: a web-scale approach to proba-
bilistic knowledge fusion. In ACM SIGKDD 2014, pages 601–610,
2014. (Cited on page 54.)

[37] Ivan Ermilov, Jens Lehmann, Michael Martin, and Sören Auer.
LODStats: The Data Web Census Dataset. In The Semantic Web
- ISWC 2016 - 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, Proceedings, Part II, pages 38–46, 2016.
(Cited on page 53.)

[38] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian
Mendez, and Denny Vrandecic. Introducing Wikidata to the
Linked Data Web. In The Semantic Web - ISWC 2014 - 13th Interna-
tional Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part I, pages 50–65, 2014. (Cited on page 142.)

[39] Christian Fürber and Martin Hepp. Towards a vocabulary for
data quality management in semantic web architectures. In Pro-
ceedings of the 2011 EDBT/ICDT Workshop on Linked Web Data
Management, Uppsala, Sweden, March 25, 2011, pages 1–8, 2011.
(Cited on pages 8 and 53.)

[40] Luis Galárraga, Simon Razniewski, Antoine Amarilli, and
Fabian M. Suchanek. Predicting completeness in knowledge
bases. In Conference on Web Search and Data Mining (WSDM),
2017. (Cited on page 120.)

bibliography 153

[41] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M
Suchanek. Fast rule mining in ontological knowledge bases with
AMIE+. VLDB Journal, 24(6):707–730, 2015. (Cited on page 137.)

[42] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and
Fabian M. Suchanek. AMIE: Association Rule Mining under
Incomplete Evidence in Ontological Knowledge Bases. In WWW
2013, pages 413–422, 2013. (Cited on pages 9 and 53.)

[43] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, USA, 1990. (Cited on pages 40 and 51.)

[44] Michael Gelfond and Vladimir Lifschitz. Classical negation in
logic programs and disjunctive databases. New Generation Com-
put., 9(3/4):365–386, 1991. (Cited on page 97.)

[45] Claudio Gutierrez, Daniel Hernández, Aidan Hogan, and Axel
Polleres. Certain Answers for SPARQL? In Proceedings of the 10th
Alberto Mendelzon International Workshop on Foundations of Data
Management, Panama City, Panama, May 8-10, 2016, 2016. (Cited
on page 98.)

[46] Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A. Vais-
man. Temporal RDF. In The Semantic Web: Research and Ap-
plications, Second European Semantic Web Conference, ESWC 2005,
Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings, pages
93–107, 2005. (Cited on page 109.)

[47] Steve Harris and Andy Seaborne, editors. SPARQL 1.1
Query Language. W3C Recommendation, 21 March 2013.
Retrieved Feb 1, 2015 from http://www.w3.org/TR/2013/

REC-sparql11-query-20130321/. (Cited on pages 7, 19, 20, 81,
and 97.)

[48] Andreas Harth and Sebastian Speiser. On Completeness Classes
for Query Evaluation on Linked Data. In Proceedings of the 26th

AAAI Conference on Artificial Intelligence (AAAI’12), 2012. (Cited
on page 9.)

[49] Olaf Hartig. Provenance information in the web of data. In Pro-
ceedings of the WWW2009 Workshop on Linked Data on the Web,
LDOW 2009, Madrid, Spain, April 20, 2009., 2009. (Cited on
page 142.)

[50] Patrick J. Hayes and Peter F. Patel-Schneider, editors. RDF
1.1 Semantics. W3C Recommendation, 25 February 2014.
Retrieved Jan 15, 2017 from https://www.w3.org/TR/2014/

REC-rdf11-mt-20140225/. (Cited on pages 7, 13, 97, and 142.)

154 bibliography

[51] Tom Heath and Christian Bizer. Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the Semantic Web:
Theory and Technology. Morgan & Claypool, 2011. (Cited on
pages 7, 142, and 143.)

[52] Sven Helmer and Guido Moerkotte. A Performance Study of
Four Index Structures for Set-Valued Attributes of Low Cardi-
nality. VLDB Journal, 12(3), 2003. (Cited on pages 57, 59, and 69.)

[53] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph, editors. OWL 2 Web On-
tology Language Primer (Second Edition). W3C Recommenda-
tion, 11 December 2012. Retrieved Jan 1, 2017 from https:

//www.w3.org/TR/owl2-primer/. (Cited on pages 9 and 147.)

[54] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin
Lewis-Kelham, Gerard de Melo, and Gerhard Weikum. YAGO2:
Exploring and Querying World Knowledge in Time, Space, Con-
text, and Many Languages. In Proceedings of the 20th International
Conference on World Wide Web (WWW’11), 2011. (Cited on page 7.)

[55] Jörg Hoffmann and Jana Koehler. A New Method to Index and
Query Sets. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI’99), 1999. (Cited on pages 57, 60,
62, and 69.)

[56] Aidan Hogan. Skolemising blank nodes while preserving iso-
morphism. In Proceedings of the 24th International Conference on
World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015,
pages 430–440, 2015. (Cited on page 142.)

[57] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel
Polleres. Everything you always wanted to know about blank
nodes. J. Web Sem., 27:42–69, 2014. (Cited on page 142.)

[58] Yusra Ibrahim, Mirek Riedewald, and Gerhard Weikum. Making
sense of entities and quantities in web tables. In CIKM, pages
1703–1712, 2016. (Cited on page 138.)

[59] Robin Keskisärkkä and Eva Blomqvist. Event object boundaries
in RDF streams. In Proceedings of the 2nd International Workshop
on Ordering and Reasoning, OrdRing 2013, Co-located with the 12th
International Semantic Web Conference (ISWC 2013), Sydney, Aus-
tralia, October 22nd, 2013, pages 37–42, 2013. (Cited on page 109.)

[60] Graham Klyne and Jeremy J. Carroll, editors. Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syntax. W3C Recom-
mendation, 10 February 2004. Retrieved Feb 1, 2015 from http:
//www.w3.org/TR/2004/REC-rdf-concepts-20040210/. (Cited
on pages 7 and 19.)

bibliography 155

[61] Holger Knublauch and Dimitris Kontokostas, editors. Shapes
Constraint Language (SHACL). W3C Candidate Recommen-
dation, 11 April 2017. Retrieved May 20, 2017 from
https://www.w3.org/TR/2017/CR-shacl-20170411/. (Cited on
page 8.)

[62] Mitchell Koch, John Gilmer, Stephen Soderland, and Daniel S.
Weld. Type-aware distantly supervised relation extraction with
linked arguments. In EMNLP, pages 1891–1901, 2014. (Cited on
page 138.)

[63] Taku Kudo. CRF++: Yet another CRF toolkit. Software available
at http://crfpp. sourceforge.net, 2005. (Cited on page 130.)

[64] Timothy Lebo, Satya Sahoo, and Deborah McGuinness, edi-
tors. PROV-O: The PROV Ontology. W3C Candidate Recom-
mendation, 11 December 2012. Retrieved May 27, 2016 from
https://www.w3.org/TR/2012/CR-prov-o-20121211/. (Cited
on page 142.)

[65] Alon Y. Levy. Obtaining complete answers from incomplete
databases. In VLDB, 1996. (Cited on pages 8 and 53.)

[66] Xiao Ling and Daniel S Weld. Temporal information extraction.
In AAAI, volume 10, pages 1385–1390, 2010. (Cited on page 138.)

[67] Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine Zim-
mermann. AnQL: SPARQLing Up Annotated RDFS. In The
Semantic Web - ISWC 2010 - 9th International Semantic Web Con-
ference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised
Selected Papers, Part I, pages 518–533, 2010. (Cited on page 109.)

[68] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based
data access with closed predicates is inherently intractable (some-
times). In IJCAI, 2013. (Cited on page 9.)

[69] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-
mediated queries with closed predicates. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
3120–3126, 2015. (Cited on page 9.)

[70] Aman Madaan, Ashish Mittal, G Ramakrishnan Mausam,
Ganesh Ramakrishnan, and Sunita Sarawagi. Numerical relation
extraction with minimal supervision. In AAAI, pages 2764–2771,
2016. (Cited on page 138.)

[71] Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David McClosky. The
Stanford CoreNLP natural language processing toolkit. ACL

156 bibliography

(System Demonstrations), pages 55–60, 2014. (Cited on pages 129
and 130.)

[72] Frank Manola and Eric Miller, editors. RDF Primer. W3C Recom-
mendation, 10 February 2004. Retrieved Jul 31, 2016 from https:
//www.w3.org/TR/2004/REC-rdf-primer-20040210/. (Cited
on page 9.)

[73] Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and
Oren Etzioni. Open language learning for information extraction.
In EMNLP, pages 523–534, 2012. (Cited on page 138.)

[74] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. Sieve:
Linked Data quality assessment and fusion. In Joint EDBT/ICDT
Workshops, 2012. (Cited on pages 8 and 53.)

[75] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David
Gondek. Distant supervision for relation extraction with an in-
complete knowledge base. In NAACL, pages 777–782, June 2013.
(Cited on page 138.)

[76] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Dis-
tant supervision for relation extraction without labeled data. In
ACL, pages 1003–1011, 2009. (Cited on page 138.)

[77] Paramita Mirza, Simon Razniewski, Fariz Darari, and Gerhard
Weikum. Cardinal virtues: Extracting relation cardinalities from
text. In ACL (Short Papers), 2017. (Cited on pages 127 and 132.)

[78] Paramita Mirza, Simon Razniewski, Fariz Darari, and Gerhard
Weikum. Extracting quantifications of knowledge base facts
from text. In Submitted to EMNLP, 2017. (Cited on page 127.)

[79] Paramita Mirza, Simon Razniewski, and Werner Nutt. Expand-
ing Wikidata’s parenthood information by 178%, or how to mine
relation cardinalities. ISWC Posters & Demos, 2016. (Cited on
pages 120, 128, and 138.)

[80] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr.,
Partha Pratim Talukdar, Justin Betteridge, Andrew Carlson, Bha-
vana Dalvi Mishra, Matthew Gardner, Bryan Kisiel, Jayant Kr-
ishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Nda-
pandula Nakashole, Emmanouil Antonios Platanios, Alan Ritter,
Mehdi Samadi, Burr Settles, Richard C. Wang, Derry Tanti Wi-
jaya, Abhinav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm
Greaves, and Joel Welling. Never-ending learning. In AAAI,
pages 2302–2310, 2015. (Cited on pages 128 and 138.)

[81] Amihai Motro. Integrity =Validity +Completeness. ACM Trans.
Database Syst., 14(4), 1989. (Cited on pages 8, 20, 53, and 142.)

bibliography 157

[82] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Simple and
efficient minimal RDFS. J. Web Sem., 7(3):220–234, 2009. (Cited
on pages 115 and 143.)

[83] Sebastian Neumaier, Jürgen Umbrich, Josiane Xavier Parreira,
and Axel Polleres. Multi-level semantic labelling of numerical
values. In ISWC, pages 428–445, 2016. (Cited on page 138.)

[84] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. Closed pred-
icates in description logics: Results on combined complexity. In
Principles of Knowledge Representation and Reasoning: Proceedings
of the Fifteenth International Conference, KR 2016, Cape Town, South
Africa, April 25-29, 2016., pages 237–246, 2016. (Cited on page 9.)

[85] Natasha Noy and Alan Rector, editors. Defining N-ary Relations
on the Semantic Web. W3C Working Group Note, 12 April 2006.
Retrieved Jan 10, 2017 from https://www.w3.org/TR/2006/

NOTE-swbp-n-aryRelations-20060412/. (Cited on pages 23
and 142.)

[86] Thomas Palomares, Youssef Ahres, Juhana Kangaspunta, and
Christopher Ré. Wikipedia knowledge graph with DeepDive.
In ICWSM, pages 65–71, 2016. (Cited on page 138.)

[87] Heiko Paulheim. Identifying wrong links between datasets by
multi-dimensional outlier detection. In WoDOOM, pages 27–38,
2014. (Cited on page 128.)

[88] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and
Manfred Hauswirth. A Native and Adaptive Approach for Uni-
fied Processing of Linked Streams and Linked Data. In Interna-
tional Semantic Web Conference, pages 370–388, 2011. (Cited on
page 109.)

[89] Axel Polleres, Cristina Feier, and Andreas Harth. Rules with
contextually scoped negation. In ESWC, 2006. (Cited on page 97.)

[90] Axel Polleres, Aidan Hogan, Renaud Delbru, and Jürgen Um-
brich. RDFS and OWL reasoning for linked data. In Reasoning
Web. Semantic Technologies for Intelligent Data Access - 9th Interna-
tional Summer School 2013, Mannheim, Germany, July 30 - August
2, 2013. Proceedings, pages 91–149, 2013. (Cited on page 143.)

[91] Radityo Eko Prasojo, Fariz Darari, Simon Razniewski, and
Werner Nutt. Managing and Consuming Completeness Infor-
mation for Wikidata Using COOL-WD. In Proceedings of the 7th
International Workshop on Consuming Linked Data co-located with
15th International Semantic Web Conference, COLD@ISWC 2015,
Kobe, Japan, October 18, 2016., 2016. (Cited on page 112.)

158 bibliography

[92] Eric Prud’hommeaux and Carlos Buil-Aranda, editors. SPARQL
1.1 Federated Query. W3C Recommendation, 21 March
2013. Retrieved Jan 10, 2017 from https://www.w3.org/TR/

sparql11-federated-query/. (Cited on page 113.)

[93] Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL
Query Language for RDF. W3C Recommendation, 15 January
2008. (Cited on page 97.)

[94] Andrea Pugliese, Octavian Udrea, and V. S. Subrahmanian. Scal-
ing RDF with time. In Proceedings of the 17th International Confer-
ence on World Wide Web, WWW 2008, Beijing, China, April 21-25,
2008, pages 605–614, 2008. (Cited on page 109.)

[95] Simon Razniewski, Flip Korn, Werner Nutt, and Divesh Srivas-
tava. Identifying the extent of completeness of query answers
over partially complete databases. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 561–
576, 2015. (Cited on page 53.)

[96] Simon Razniewski and Werner Nutt. Completeness of queries
over incomplete databases. PVLDB, 4(11):749–760, 2011. (Cited
on pages 8, 53, and 124.)

[97] Simon Razniewski and Werner Nutt. Assessing Query Com-
pleteness over Incomplete Databases. In Unpublished manuscript,
2015. (Cited on page 53.)

[98] Simon Razniewski, Fabian M. Suchanek, and Werner Nutt. But
what do we actually know? In AKBC Workshop at NAACL, 2016.
(Cited on pages 125 and 141.)

[99] Raymond Reiter. On closed world data bases. In Hervé Gal-
laire and Jack Minker, editors, Logic and Data Bases, pages 55–76.
Springer US, Boston, MA, 1978. (Cited on page 97.)

[100] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan,
Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. LSQ: The
Linked SPARQL Queries Dataset. In ISWC, 2015. (Cited on
pages 69 and 70.)

[101] Ognjen Savkovic, Paramita Mirza, Sergey Paramonov, and
Werner Nutt. MAGIK: managing completeness of data. In CIKM
Demos, 2012. (Cited on page 124.)

[102] Iztok Savnik. Index Data Structure for Fast Subset and Superset
Queries. In International Cross Domain Conference and Workshop
(CD-ARES’13), 2013. (Cited on pages 57, 60, and 69.)

bibliography 159

[103] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, An-
dreas Schwarte, and Thanh Tran. FedBench: A Benchmark Suite
for Federated Semantic Data Query Processing. In ISWC, 2011.
(Cited on page 98.)

[104] Michael Schmidt, Thomas Hornung, Michael Meier, Christoph
Pinkel, and Georg Lausen. SP2Bench: A SPARQL Performance
Benchmark. In Semantic Web Information Management - A Model-
Based Perspective, 2009. (Cited on page 98.)

[105] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective Query
Rewriting with Ontologies over DBoxes. In IJCAI 2009, Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 923–925, 2009.
(Cited on page 9.)

[106] Robert Speer and Catherine Havasi. Representing General Re-
lational Knowledge in ConceptNet 5. In LREC, 2012. (Cited on
page 134.)

[107] Jannik Strötgen and Michael Gertz. Heideltime: High quality
rule-based extraction and normalization of temporal expressions.
In SemEval Workshop, pages 321–324, 2010. (Cited on page 138.)

[108] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum.
YAGO: a core of semantic knowledge. WWW, pages 697–706,
2007. (Cited on pages 127, 131, and 138.)

[109] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christo-
pher D. Manning. Multi-instance multi-label learning for rela-
tion extraction. In ACL, pages 455–465, 2012. (Cited on page 138.)

[110] Jonas Tappolet and Abraham Bernstein. Applied temporal RDF:
efficient temporal querying of RDF data with SPARQL. In The
Semantic Web: Research and Applications, 6th European Semantic
Web Conference, ESWC 2009, Heraklion, Crete, Greece, May 31-June
4, 2009, Proceedings, pages 308–322, 2009. (Cited on page 109.)

[111] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collabo-
rative knowledgebase. Communications of the ACM, 57(10):78–85,
2014. (Cited on pages 7, 11, 49, and 127.)

[112] Richard Y. Wang and Diane M. Strong. Beyond accuracy: What
data quality means to data consumers. J. of Management Informa-
tion Systems, 12(4):5–33, 1996. (Cited on pages 8 and 53.)

[113] Wei Xu, Raphael Hoffmann, Le Zhao, and Ralph Grishman. Fill-
ing knowledge base gaps for distant supervision of relation ex-
traction. In ACL (short paper), pages 665–670, August 2013. (Cited
on page 138.)

160 bibliography

[114] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo
Pietrobon, Jens Lehmann, and Sören Auer. Quality assessment
for Linked Data: A Survey. Semantic Web, 7(1):63–93, 2016. (Cited
on pages 9 and 53.)

[115] Jiawei Zhang, Jianhui Chen, Junxing Zhu, Yi Chang, and Philip S
Yu. Link prediction with cardinality constraint. In WSDM, 2017.
(Cited on page 128.)

[116] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An Efficient
Indexing Technique for Full-Text Databases. In Proceedings of the
18th International Conference on Very Large Data Bases (VLDB’92),
1992. (Cited on page 58.)

A
P R E F I X D E C L A R AT I O N S

Here we provide in Turtle syntax [14] the prefix declarations of the
RDF snippets in this thesis. The prefixes can be adapted accordingly
for the SPARQL snippets in this thesis.

@prefix c: <http://completeness.inf.unibz.it/ns#> .

@prefix coolwd: <http://cool-wd.inf.unibz.it/resource/> .

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/resource/> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix ex: <http://example.org/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix lv: <http://linkedmdb.org/void/> .

@prefix no: <http://completeness.inf.unibz.it/no-value#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix s: <http://schema.org/> .

@prefix sp: <http://spinrdf.org/sp#> .

@prefix spv: <http://completeness.inf.unibz.it/sp-vocab#> .

@prefix void: <http://rdfs.org/ns/void#> .

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

161

Compl((farizPhDThesis, hasPage, ?page)).

