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Abstract

In this thesis, we investigate physical-layer network coding in an L×M ×K
relay network, where L source nodes want to transmit messages to K sink
nodes viaM relay nodes. We focus on the information processing at the relay
nodes and the compute-and-forward framework. Nested lattice codes are used,
which have the property that every linear combination of codewords is a valid
codeword. This property is essential for physical-layer network coding.
Because the actual network coding occurs on the physical layer, the network

coding coefficients are determined by the channel realizations. Finding the
optimal network coding coefficients for given channel realizations is a non-
trivial optimization problem. In this thesis, we provide an algorithm to find
network coding coefficients that result in the highest data rate at a chosen
relay. The solution of this optimization problem is only locally optimal, i.e., it is
optimal for a particular relay. If we consider a multi-hop network, each potential
receiver must get enough linear independent combinations to be able to decode
the individual messages. If this is not the case, outage occurs, which results in
data loss. In this thesis, we propose a new strategy for choosing the network
coding coefficients locally at the relays without solving the optimization problem
globally. We thereby reduce the solution space for the relays such that linear
independence between their decoded linear combinations is guaranteed. Further,
we discuss the influence of spatial correlation on the optimization problem.
Having solved the optimization problem, we combine physical-layer network

coding with physical-layer secrecy. This allows us to propose a coding scheme
to exploit untrusted relays in multi-user relay networks. We show that physical-
layer network coding, especially compute-and-forward, is a key technology
for simultaneous and secure communication of several users over an untrusted
relay. First, we derive the achievable secrecy rate for the two-way relay channel.
Then, we enhance this scenario to a multi-way relay channel with multiple
antennas.
We describe our implementation of the compute-and-forward framework

with software-defined radio and demonstrate the practical feasibility. We show
that it is possible to use the framework in real-life scenarios and demonstrate
a transmission from two users to a relay. We gain valuable insights into a real
transmission using the compute-and-forward framework. We discuss possible
improvements of the current implementation and point out further work.
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Zusammenfassung

In dieser Arbeit untersuchen wir Netzwerkcodierung auf der Übertragungs-
schicht in einem Relay-Netzwerk, in dem L Quellen-Knoten Nachrichten zuK
Senken-Knoten überM Relay-Knoten senden wollen. Der Fokus dieser Arbeit
liegt auf der Informationsverarbeitung an den Relay-Knoten und dem Compute-
and-Forward Framework. Es werden Nested Lattice Codes eingesetzt, welche die
Eigenschaft besitzen, dass jede Linearkombination zweier Codewörter wieder
ein gültiges Codewort ergibt. Dies ist eine Eigenschaft, die für die Netzwerkco-
dierung von entscheidender Bedeutung ist.
Da die eigentliche Netzwerkcodierung auf der Übertragungsschicht stattfin-

det, werden die Netzwerkcodierungskoeffizienten von den Kanalrealisierungen
bestimmt. Das Finden der optimalen Koeffizienten für gegebene Kanalreali-
sierungen ist ein nicht-triviales Optimierungsproblem. Wir schlagen in dieser
Arbeit einen Algorithmus vor, welcher Netzwerkcodierungskoeffizienten findet,
die in der höchsten Übertragungsrate an einem gewählten Relay resultieren.
Die Lösung dieses Optimierungsproblems ist zunächst nur lokal, d. h. für dieses
Relay, optimal. An jedem potentiellen Empfänger müssen ausreichend unab-
hängige Linearkombinationen vorhanden sein, um die einzelnen Nachrichten
decodieren zu können. Ist dies nicht der Fall, kommt es zu Datenverlusten. Um
dieses Problem zu umgehen, ohne dabei das Optimierungsproblem global lösen
zu müssen, schlagen wir eine neue Strategie vor, welche den Lösungsraum an
einem Relay soweit einschränkt, dass lineare Unabhängigkeit zwischen den deco-
dierten Linearkombinationen an den Relays garantiert ist. Außerdem diskutieren
wir den Einfluss von räumlicher Korrelation auf das Optimierungsproblem.
Wir kombinieren die Netzwerkcodierung mit dem Konzept von Sicherheit auf

der Übertragungsschicht, um ein Übertragungsschema zu entwickeln, welches
es ermöglicht, mit Hilfe nicht-vertrauenswürdiger Relays zu kommunizieren.
Wir zeigen, dass Compute-and-Forward ein wesentlicher Baustein ist, um solch
eine sichere und simultane Übertragung mehrerer Nutzer zu gewährleisten.
Wir starten mit dem einfachen Fall eines Relay-Kanals mit zwei Nutzern und
erweitern dieses Szenario auf einen Relay-Kanal mit mehreren Nutzern und
mehreren Antennen.
Die Arbeit wird abgerundet, indem wir eine Implementierung des Compute-

and-Forward Frameworks mit Software-Defined Radio demonstrieren. Wir zei-
gen am Beispiel von zwei Nutzern und einem Relay, dass sich das Framework
eignet, um in realen Szenarien eingesetzt zu werden. Wir diskutieren mögliche
Verbesserungen und zeigen Richtungen für weitere Forschungsarbeit auf.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication is a very important topic today. Mobile telecommuni-
cation, Internet access with mobile phones, car-to-car communication, device-
to-device communication, sensor networks, etc. are just a few examples where
wireless communication is used. Although each application has its own de-
mands and specifications, they have one thing in common: data exchange in a
wireless network. Up to now, the designers of such communication networks
have focused on each hop in the network separately. Consequently, it could be a
point-to-point channel with one transmitter and one receiver, a multiple-access
channel (MAC) with several transmitters and one receiver, or a broadcast chan-
nel (BC) with one transmitter and several receivers. In those models, interference
was an unwanted enemy, and the communication protocols were designed to
avoid interference. Techniques such as time-division multiple access (TDMA),
frequency-division multiple access (FDMA) or code-division multiple access
(CDMA) are used to achieve this. A couple of years ago, the way of thinking
about interference changed with the introduction of network coding [1] and
physical-layer network coding (PLNC) [49]. For wired networks, we can see a
paradigm shift from packet switched networks, where each data packet is routed
individually through the network, to code-centric networks, where data pack-
ets are combined by network coding, while transported through the network.
This resolves bottlenecks on frequently used routes. Network coding has been
introduced for multicast networks [1], but is no longer restricted to that [11].
With the introduction of random network coding [8], network coding has been
spread to a large number of research fields. But network coding is not limited
to wired networks. The concept can be applied to wireless networks, where
interference is no longer a disadvantage but can be exploited together with
multipath data distribution. With the help of PLNC approaches, it is possible to
significantly increase the achievable throughput in a network. An example for
the achievable sum-rate with different relaying strategies in a two-way relay
channel is shown in Fig. 1.1. The mathematical background can be found in
Appendix B. For the special parameter set we used, we can see that the sum-rate
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Figure 1.1: Achievable sum-rate in a two-way relay channel with unit channel
coefficients (details see Appendix B).

with the compute-and-forward relaying strategy (as a special case of PLNC)
converges to the upper bound in the high-signal-to-noise ratio (SNR) regime.
This bound is the sum of the single-user rates that are achievable if the users
transmit without interference in different time slots or frequency bands. With
compute-and-forward, both users can simultaneously transmit at this rate. In
general, the actual gain of PLNC depends on the system parameters and the
channel properties. Therefore, PLNC approaches have to be designed properly.
Within this thesis, we tackle some of those design criteria in Part II.

Network coding not only results in a possible increase in throughput, it can
also be advantageous for the confidentiality of the system. Since intermediate
nodes in a network do not need to decode each data packet individually, they
only receive a superposition of data packets, from which they might not be
able to calculate the original data. Of course, it needs some additional effort
to ensure that intermediate nodes will definitely not be able to get the original
data. But network coding and especially PLNC provide a kind of confidentiality
that would not be possible without it. One example is the communication in a
wireless network where the intermediate nodes are not trustworthy. We assume
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that the intermediate nodes are honest but curious, which means that they
comply to the communication protocol but try to eavesdrop the communication.
With PLNC, it is possible to use an untrusted node as a relay and still ensure
that this node will not get any of the original data. This would not be possible
without PLNC. We introduce this technique in Part III.

1.2 State of the Art

Network coding has been a promising topic in communications since it was
introduced by Ahlswede et al. in [1]. It was shown that network coding can
improve the throughput of a network and achieves the multicast capacity. Fur-
ther, the authors of [10] proved that linear codes are sufficient. For static wired
networks, network coding is very well investigated, and some frameworks are
developed that provide tools to design a network code [5, 9, 17–19]. The de-
velopment of random linear network coding in [8] made it more applicable in
practical setups, and first implementations for industrial usage are emerging
[4, 13]. Some examples are shown in Fig. 1.2 including the improvement of the
transmission control protocol (TCP) [15], device-to-device communication [7],
5G [6, 16] and cloud computing [14].
Wireless networks are still subject of intensive research. The properties of the

wireless channel allow network coding on different layers. Practical network
coding on the forwarding layer has been proposed in [38]. The superposition
property of thewireless channel also allows network coding on the physical layer,
where the actual network coding occurs in the channel. This is called PLNC.
Since the introduction of PLNC [49], different schemes have been developed
and presented, e.g., in [36, 37, 41, 48].
A framework that has drawn a lot of attention is compute-and-forward (CF)

[40]. It is based on structured codes like lattice codes that achieve the addi-
tive white Gaussian noise channel capacity with lattice decoding instead of
maximum-likelihood decoding [24]. CF uses lattice codes and exploits their
structure to allow the decoding of a superposition of codewords without decod-
ing the codewords themselves. This enables the relaying nodes to decode the
superposition at higher rates than it would be possible by decoding the indi-
vidual messages as it is done by other approaches like decode-and-forward. A
further important advantage compared to approaches like amplify-and-forward
is the possibility to avoid noise accumulation, which reduces the performance
in large networks. Although PLNC has a lot of advantages, and high rates are
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achievable, it comes with the need for network diversity. The final destination
needs to collect enough independent observations to be able to jointly decode
the transmitted data.
Over the past years, there has been some effort to apply PLNC in a practical

environment. First attempts have been presented in the context of analog
network coding [84–86, 90, 96, 102]. A first design and implementation approach
for PLNC was proposed in [95]. For the two-way relay channel, an analysis of
the performance of practical PLNC was published in [92]. The authors of [93,
94] went even further and showed a real-time implementation of PLNC. A little
later, a practical implementation of PLNC for cloud computing was proposed in
[89].
After the introduction of the compute-and-forward framework, there has

been some effort to make it applicable to practical systems [97]. Since the
compute-and-forward framework is based on lattice codes, it is essential that
the corresponding coding schemes can be efficiently implemented. Over the
last decades, there has been some effort to achieve this goal. In [31], the authors
designed and implemented lattice coding schemes using digital signal processing
techniques. Ten years later, the leech lattice was combined with the IEEE 802.11a
WLAN standard [33]. Over the last decade, there has been some research to
apply known techniques from channel codes to lattice codes, and low-density
lattice codes [32] as well as polar lattices [27] have been proposed. Lattice codes
are no longer just a theoretical topic. This is shown by ongoing studies to bring
lattice codes to the future 5G standard [26].
Beside reliable communication, secrecy demands have become more and

more important over recent years. Nowadays, the world is connected over
networks, and communication can be easily overheard. Therefore, protecting
the confidentiality of communication in networks is an important topic. In
cryptographically protected systems, the legitimate users have a secret key
and are able to encode and decode the secured messages in an easy manner.
In practical systems, the confidentiality is based on the time and complexity
needed by an adversary, who does not possess the secret key, to decrypt the
messages. If the time and complexity at the eavesdropper is sufficiently high in
terms of currently available computational power, the message is assumed to be
secure. This kind of security will become weaker with increasing computational
power in the years to come. Security which uses means of information-theoretic
secrecy on the physical layer offers the possibility that an eavesdropper cannot
get any information about the exchanged messages. Shannon introduced the
notion of perfect secrecy in his seminal paper [72] for the case in which an
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eavesdropper has direct access to the sent codeword. Almost thirty years later,
the theoretical basis for the ongoing research on information-theoretic security
in wireless communication systems was introduced first by Wyner [77] and then
by Csiszár and Körner [55], who proved in two seminal papers that there exist
codes for noisy communication channels that guarantee both reliability and a
prescribed degree of data confidentiality. The extension to continuous input and
output alphabets was developed in [62]. It took more than twenty years before
transceiver structures were available to support these wiretap setups. Extensive
analysis and designs have been conducted, parts of their results are reported in
[52, 63, 66] and recent tutorial papers [71, 73].
It has early been observed that decoding a linear combination of source mes-

sages at one network node does not automatically allow this node to decode
each message individually [67]. This makes network coding interesting for
communication via nodes that are not trustworthy. The achievable secrecy rate
in the presence of an untrusted relay was studied in several papers with slightly
different scenarios. An early work considering a relay channel with a direct
connection between source and destination, where the relay is also the wiretap-
per, was introduced in [69]. In [61], Huang et al. investigated different secure
transmission schemes in a similar scenario. The question whether an untrusted
relay is helpful if a direct connection between source and destination exists was
investigated in [57]. In [59], a Gaussian two-hop network was considered where
source and destination do not have a direct connection. The destination node
can help the source node by jamming the relay node with a random signal. This
model was extended to a multi-hop line network in [58].
The two-way wiretap channel, in which two nodes can only exchange mes-

sages via an untrusted relay, was first considered in [74, 75]. It was shown
that cooperative jamming, i.e., jamming with controlled interference between
codewords, could reduce the eavesdropper’s SNR and hence improve the level
of secrecy. In [70], it was shown that this result also holds for a stronger notion
of secrecy.
A lot of secrecy schemes are based on random codes, but there is also research

in the field of secrecy that can be achieved by structured codes, namely lattice
codes. Achievable rates for the lattice coded Gaussian wiretap channel were
derived in [54]. Theorem 1 in [54] proposes a lattice code construction that
achieves the weak secrecy capacity. Lattice codes for the Gaussian wiretap
channel were intensively studied by Oggier et al. in [68] and references therein.
They introduced the secrecy gain as a design criterion for good lattice codes
for wiretap channels in [51]. It was shown by Ling et al. that lattice codes can
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Figure 1.3: System model of a L×M ×K relay network.

achieve strong secrecy over the mod-Λ Gaussian channel [64]. In [65], Ling
et al. introduced the flatness factor [21] as the main tool to prove that nested
lattice codes can achieve semantic security and strong secrecy over the Gaussian
wiretap channel. Compute-and-forward network coding together with strong
physical-layer security based on universal hash functions were investigated
in [59]. All these authors focused either on a wiretap channel or on a two-
hop relay network, where a source node transmits via an untrusted relay to
a destination. The destination may help by jamming but does not transmit a
secure message itself. In [76], Vatedka et al. considered a two-way relay network
with an untrusted relay where two nodes simultaneously transmit one message
each via an untrusted relay. They provided an achievable power-rate region with
perfect secrecy as well as strong secrecy by applying the compute-and-forward
strategy at the relay.

1.3 System Model

Themost general systemmodel that is investigated in this thesis is theL×M×K
relay network consisting of L source nodes,M relay nodes, andK sink nodes as
depicted in Fig. 1.3. Each sink node wants to get an estimate of the transmitted
messages from all source nodes. We call this a multicast network. The first
hop from the source nodes to the relays is of special importance because this
is the part where the PLNC takes place. This hop can be characterized by the
following channel model.
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1.1 Definition (Channel Model). Each relay receives a noisy linear combina-
tion ym ∈ Rn with m ∈ {1, 2, . . . ,M} of the signals x� ∈ Rn with � ∈
{1, 2, . . . , L} transmitted over the wireless channel, i.e.,

ym =
L∑

�=1

hm�x� + zm, (1.1)

where hm� ∈ R are the channel coefficients, and zm ∈ Rn is white Gaussian
noise with zm ∼ N (0, In). Let hm = (hm1, . . . , hmL)

′ denote the vector of
channel coefficients to relay m, and let H = (hm�) with m ∈ {1, 2, . . . ,M}
and � ∈ {1, 2, . . . , L} denote the entire channel matrix. With this notation, the
m-th row in H is h′

m. �

Each source node � chooses a length-k� message vector w� ∈ Fk�
p from

a uniform distribution over the index set {1, 2, . . . , 2�nR��}, where R� is the
message rate of source node � and given by

R� =
k�
n

log2 p [bit/cu]. (1.2)

Usually, all messages from all L source nodes are zero-padded to a common
length k � max� k�. Therefore, we will drop the index � in the following and
assume length-k messages at all source nodes.
In order to ensure reliable communication the message is encoded by an

encoder E�.
1.2 Definition (Encoders). Each source node is equipped with an encoder

E� : Fk
p → Rn (1.3)

that maps length-k messages w� in the finite field Fk
p to length-n real-valued

codewords x�, i.e., x� = E�(w�). Each codeword is subject to the power con-
straint ‖x�‖2 ≤ nP . �

Since there are no direct links between the source nodes and the sink nodes,
the communication is supported by several relays. The relays can apply sev-
eral relaying strategies, which are common to all relays and a system design
parameter.
Throughout the thesis, we will investigate parts or special cases of the general

model in Fig. 1.3.
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Figure 1.4: System model of an inter-
ference channel.
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Figure 1.5: Systemmodel of a multiple-
access channel.

• Interference Channel (Fig. 1.4): This model is the main building block for
the application of PLNC and compute-and-forward. Therefore, it is used
in Chapter 3 to introduce the compute-and-forward framework.

• Multiple-Access Channel (Fig. 1.5): This well-known model can be obtained
by ignoring the last hop and concentrating on one relay node. It is used in
Chapter 5 to solve the optimization problem of finding the best network
coding coefficient vector for a certain channel realization.

• Multi-Way Relay Channel (Fig. 1.6): This model can be obtained by using
only one relay. Further, the source and sink nodes are physically identical
and therefore have side-information about their sent messages. This model
is used in Chapter 8 to investigate the communication via an untrusted
relay. The special case with only two source and sink nodes is called
Two-Way Relay Channel and is used in Chapter 7 to provide an example
for the more general case in Chapter 8.

1.4 Overview and Contribution

This thesis provides contributions to the field of PLNC, especially to the com-
pute-and-forward protocol. The preliminaries on network coding are closely
related to the lecture series “Netzwerkkodierungstheorie” (Network Coding
Theory) from the “Professur für Theoretische Nachrichtentechnik” (Communi-
cations Theory Group), and for which the author of this thesis developed and
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Source Nodes Relay Nodes Sink Nodes

MAC Phase BC Phases

1 1 1

...
...

L L

Figure 1.6: System model of a multi-way relay channel.

presented the corresponding exercises, problems, and solutions. This lecture
series also comprises an introduction to compute-and-forward. Those lectures
were prepared and taught by the author of this thesis.
Within this thesis, several techniques are applied and combined to enhance

PLNC as shown in Fig. 1.7. We solve and discuss some open problems for
the multi-hop relay network in combination with compute-and-forward in
Part II. This includes solving the optimization problem of finding the optimal
network coding coefficient vector. We show that the local optimization at the
network nodes can lead to significant outage in the network, especially when
the channels are correlated. We provide a solution to this problem without
global optimization.
In Part III, physical-layer secrecy is additionally considered to provide secure

communication over untrusted relay channels. We show that PLNC is the key
technology to enable a secure data transmission via untrusted nodes and provide
an achievable secrecy rate region. We see that adding multiple antennas to the
source nodes can significantly increase the secrecy rate.
In order to show that compute-and-forward is not only a theoretical frame-

work, an implementation with software-defined radio (SDR) is described in
Part IV.

Chapter 1 In this chapter, we introduce the motivation for this work and
provide a summary of the state of the art. Further, we introduce the
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system model and summarize the content of this thesis.

Chapter 2 In this chapter, we provide a short introduction to classical network
coding. A more detailed description can be found in:

C. Fragouli and E. Soljanin. Network Coding Fundamentals. Now Publishers,
2007

Chapter 3 In this chapter, we introduce the compute-and-forward framework
and provide the basic definitions and notation. Detailed explanations can
be found in the journal paper by Nazer and Gastpar:

B. Nazer and M. Gastpar. “Compute-and-Forward: Harnessing Interference
Through Structured Codes”. In: IEEE Transactions on Information Theory

57.10 (Oct. 2011), pp. 6463–6486

Chapter 4 In this chapter, we introduce the concept of physical-layer secrecy
and provide the definitions used in later chapters. The definitions are
taken from:

M. R. Bloch and J. Barros. Physical-Layer Security. From Information Theory

to Security Engineering. Cambridge University Press, 2011

Chapter 5 In this chapter, we solve the problem of finding the optimal network
coding coefficient vector for the compute-and-forward relaying strategy.
We solve a convex quadratic integer programming (CQIP) problem and
provide a branch-and-bound algorithm. This chapter is based on the
following paper:

J. Richter, C. Scheunert, and E. A. Jorswieck. “An efficient branch-and-
bound algorithm for compute-and-forward”. In: 23rd IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
Second Workshop on Network Coding in Wireless Relay Networks. Sept.
2012, pp. 77–82

Chapter 6 In this chapter, we discuss the problem of linear dependent super-
positions in a multi-hop network. We show that channel correlation is a
crucial problem and provide an alternative compute-and-forward strat-
egy to overcome this problem. This chapter is based on the following
paper:
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J. Richter, J. Hejtmánek, E. A. Jorswieck, and J. Sýkora. “Non-Cooperative
Compute-and-Forward Strategies in Gaussian Multi-Source Multi-Relay Net-
works”. In: IEEE 82nd Vehicular Technology Conference (VTC Fall). Sept. 2015,
pp. 1–5

Chapter 7 In this chapter, we combine the compute-and-forward framework
with physical-layer secrecy to provide a secure communication over a
two-way untrusted relay channel. This chapter is based on the following
paper:

J. Richter, C. Scheunert, S. Engelmann, and E. A. Jorswieck. “Secrecy in
the Two-Way Untrusted Relay Channel with Compute-and-Forward”. In:
International Conference on Communications (ICC). June 2015, pp. 4357–4362

Chapter 8 In this chapter, we extend the setup described in the previous chapter
by introducing multiple users and multiple antennas per user. It is based
on the following paper:

J. Richter, C. Scheunert, S. Engelmann, and E. A. Jorswieck. “Weak Secrecy
in the Multiway Untrusted Relay Channel with Compute-and-Forward”. In:
IEEE Transactions on Information Forensics and Security 10.6 (June 2015),
pp. 1262–1273

Chapter 9 In this chapter, we describe an implementation of the compute-and-
forward framework with SDR.

The following publications provide also a contribution to the field of physical-
layer network coding. However, they have not been included in this thesis.

[110] In this paper, wemake a transition from classical wired network coding to
wireless network coding. We discuss and describe achievable rate regions
in multicast networks.

J. Richter, A. Wolf, and E. A. Jorswieck. “Achievable rate regions in mul-
tiple-antenna networks with linear network coding”. In: 12th International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC).
2011, pp. 541–545
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[103] In this paper, we deal with the optimization of the beamforming vectors
at the relays in a multi-hop multi-antenna X-channel, where the compute-
and-forward framework is utilized. The optimization problem is solved
and the resulting rate region is characterized.

E. A. Jorswieck and J. Richter. “Compute-and-Forward in the Two-Hop Multi-
Antenna X-Channel”. In: 5th International Symposium on Communications

Control and Signal Processing (ISCCSP). May 2012, pp. 1–4

[105] + [104] In these two papers, we compare and discuss physical-layer
secrecy and packet-layer security in combination with network cod-
ing.

J. Richter, E. Franz, S. Engelmann, S. Pfennig, and E. A. Jorswieck. “Physical
layer security vs. network layer secrecy: Who wins on the untrusted two-
way relay channel?” In: 18th International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD). Sept.
2013, pp. 164–168

S. Pfennig, E. Franz, J. Richter, C. Scheunert, and E. A. Jorswieck. “Con-
fidential Network Coding: Physical Layer vs. Network Layer”. In: IEEE
International Conference on Ubiquitous Wireless Broadband (ICUWB). Oct.
2015, pp. 1–5
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Chapter 2

Network Coding

Network coding has been a promising topic in communications since it was
introduced by Ahlswede et al. [1]. It was shown that network coding can improve
the throughput of a network and achieves the multicast capacity. For static
wired networks, network coding is very well investigated, and some frameworks
are developed that provide tools to design a network code [5, 9, 17–19]. The
development of random linear network coding [8] made it more applicable in
practical setups, and first implementations for industrial usage are emerging [4,
13].
Nevertheless, there is still ongoing research in the field of network coding for

wireless networks. The properties of wireless channels provide the possibility for
network coding on different layers. Practical network coding on the forwarding
layer has been proposed in [38]. The superposition property of the wireless
channel also allows network coding on the physical layer [41], where the actual
network coding is provided by the channel.
In this chapter, we introduce the basic theory of network coding. The main

theorem and the most important results for network coding on the packet layer
can be found in Section 2.2. In Section 2.3, we discuss applications and extensions
of network coding. Since the theory of network coding relies on graph theory,
we introduce the most important definitions in Section 2.1.

2.1 Graph Theory

2.1 Definition (Graph). A Graph is a tuple G = (V,E) with E ⊆ V × V . The
set V is a finite set of nodes, and the set E is a finite set of edges. �

2.2 Definition (Directed Graph). A directed graph G(V,E) is a graph with
directed edges, i.e., every edge e ∈ E is an ordered tuple e = (u, v) of nodes.�

2.3 Definition (Parallel Edges). Two edges (u, v) and (x, y) in a directed graph
are called parallel if x = u and y = v. �

2.4 Definition (Incoming Edges). Let G(V,E) be a directed graph. The set of

incoming edges of a node v ∈ V is defined as In(v) � {(u, v) ∈ E, u ∈ V }. �
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2.5 Definition (Outgoing Edges). Let G(V,E) be a directed graph. The set of

outgoing edges of a node v ∈ V is defined as Out(v) � {(v, u) ∈ E, u ∈ V }.�

2.6 Definition (Path). Let G = (V,E) be a directed Graph. A path is an alter-
nating sequence P = (v0, e1, v1, . . . , ek, vk) of nodes and edges with k > 0
and ei = (vi−1, vi) ∈ E. Every path starts and ends with a node. �

2.7 Definition (Edge-disjoint Path). Let P = (v0, e1, v1, . . . , ek, vk) be a path.
Then, P is called edge-disjoint if ei �= ej for i �= j and 0 ≤ i, j ≤ k. �

2.8 Definition (Node-disjoint Path). Let P = (v0, e1, v1, . . . , ek, vk) be a path.
Then, P is called node-disjoint if vi �= vj for i �= j and 0 ≤ i, j ≤ k. �

2.9 Definition (Acyclic Graph). An acyclic graph G(V,E) is a directed graph
without cycles, i.e., there is no path (v, . . . , v) for every node v ∈ V . �

2.10 Definition (Flow). Let G = (V,E) be a directed graph. Further, let c(e)
be a map c : E → R that represents the capacity of the edge e. If (u, v) /∈ E,
then c(u, v) = 0. We select a node s as source and a node t as sink. A flow f on
a graphG is a real function f : V ×V → R with the following three properties
for all nodes u, v ∈ V :

• Capacity constraints: f(u, v) ≤ c(u, v). The flow along an edge cannot
exceed its capacity.

• Skew symmetry: f(u, v) = −f(v, u). The flow from u to v must be the
opposite of the flow from v to u.

• Flow conservation:
∑

w∈V f(u,w) = 0, unless u = s or u = t. The flow
to a node is zero, except for the source, which “produces” flow, and the
sink, which “consumes” flow. �

2.11 Definition (Cut). Let G(V,E) be a directed graph. We choose two nodes
S,R ∈ V . A cut between S and R is a subset of E, whose removal from E
disconnects S from R. The value of a cut is the sum of the capacities of the
edges in the cut. �

2.12 Definition (Min-Cut). Let G = (V,E) be a directed graph. A min-cut
between two nodes S,R ∈ V is a cut with the smallest value. �
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Figure 2.1: Linear network coding.

2.2 Network Coding Fundamentals

This section follows the presentation in [5]. When Ahlswede et al. introduced
the concept of network coding in 2000, they assumed acyclic wired networks.
Based on fundamental tools of graph theory and linear algebra, they developed
a framework that allows to multicast packets from several source nodes to all
receivers at a rate equal to what is possible if one sender is transmitting alone.
The theory of network coding is based on the following theorem.

2.13 Theorem (Min-Cut Max-Flow Theorem). Consider a graphG(V,E)with
unit capacity edges, a source node S, and a receiver R. If the min-cut between
S andR equals L, then the maximum flow from S toR is L. Equivalently, there
exist exactly L edge-disjoint paths between S and R. �

From that theorem, Ahlswede et al. derived the following theorem, which
summarizes the main result of their paper.

2.14 Theorem (The Main Network Coding Theorem). LetG = (V,E) be a di-
rected acyclic graph with unit capacity edges, L unit rate sources located on the
same vertex of the graph andK receivers. Assume that the value of the min-cut
to each receiver is L. Then, there exists a multicast transmission scheme over a
large enough finite field Fp, in which intermediate network nodes linearly com-
bine their incoming information symbols over Fp, that delivers the information
from the sources simultaneously to each receiver at a rate equal to L. �

The main idea is that intermediate nodes in a network linearly combine their
incoming packets and transmit that combination to the following nodes as
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illustrated in Fig. 2.1. Let Out(v) ⊂ E denote the set of outgoing edges of a
node v ∈ V and let N = |In(v)| represent the number of incoming edges of a
node v. We associate a local encoding vector a(e) with each edge e ∈ Out(v),
i.e.,

a(e) = (a1(e), . . . , aN (e))′ (2.1)

with ai(e) ∈ Fp for all i ∈ {1, 2, . . . , N}. The symbols forwarded to edge e
are multiplied by this vector. The components ai(e) of each local encoding
vector are called network coding coefficients and are collected in the set {ak}.
In large networks, this linear combination will be performed several times.
The symbols σ1, . . . , σL will be multiplied by a global encoding vector c(e) =
(c1(e), . . . , cL(e))

′ on their way through the network. Namely, the symbol that
is transported over some edge e ∈ E in a graph G(V,E) is given by

c′(e)σ = (c1(e), . . . , cL(e))

⎛
⎜⎝
σ1

...
σL

⎞
⎟⎠ . (2.2)

Therein, every component ci(e) with i ∈ {1, 2, . . . , L} is a function of the
network coding coefficients in the set {ak}. For simplicity, we refer to the global
encoding vector as the coding vector of an edge e, which is the vector with
coefficients of the linear combination of source symbols on edge e.
Important is the flow through the last edge of a path to the receiver Rk.

Assume ρk� is the symbol on the last edge of the path (s�, . . . , Rk) and Ak ∈
FL×L

p is a matrix with the coding vector of the last edge of the path (s�, . . . , Rk)
in the �-th row, i.e.,

Ak =

⎛
⎜⎝
c′(e1)
...

c′(eL)

⎞
⎟⎠ (2.3)

with e1, . . . , eL ∈ In(Rk). Since the components of the coding vectors depend
on the network coding coefficients {ak}, the matrix Ak can be expressed in
terms of the network coding coefficients. Then, the receiver Rk has to solve the
following system of linear equations, i.e.,(

ρk1 , . . . , ρ
k
L

)′
= Ak (σ1, . . . , σL)

′ (2.4)

to get the source symbols σ1, . . . , σL. In order to solve the system of linear
equations uniquely, Ak has to be of full rank for all 1 ≤ k ≤ K . The network



2.2 Network Coding Fundamentals 21

code design problem is to select values for the coefficients {ak}, such that all
matricesAk have full rank. Theorem 2.14 can be expressed in algebraic language
as follows.

2.15 Theorem (Algebraic Statement). In linear network coding, there exist val-
ues in some large enough finite field Fp for the components {ak} of the local
coding vectors such that all matrices Ak with 1 ≤ k ≤ K , which define the
information that the receivers observe, are full rank. �

The requirement that all matrices Ak with 1 ≤ k ≤ K have full rank is
equivalent to the requirement that the product of the determinants of Ak is
different from zero, i.e.,

f({ak}) �
K∏

k=1

det(Ak) �= 0. (2.5)

The following lemma states that it is possible to find coefficients ak over a large
enough field that fulfill this requirement.

2.16 Lemma (Sparse Zeros Lemma). Let f(a1, . . . , aη) be a multivariate poly-
nomial in variables a1, . . . , aη with maximum degree in each variable of at most
d. Then, in every finite fieldFp of size p > d, on which f(a1, . . . , aη) is different
from zero, there exist values q1, . . . , qη such that f(a1 = q1, . . . , aη = qη) �= 0.�

There aremany assumptions in Theorem 2.14. Some of them are not restrictive
and can be dropped. The following list provides an overview of the assumptions
and whether they are restrictive or not.

• Unit capacity edges — not restrictive. We can relax this assumption to
rational numbers and allow parallel edges.

• Co-located sources — not restrictive. We can add an artificial common
source vertex to the graph and connect it to the L source vertices through
unit capacity edges.

• Directed graph — restrictive. We can construct an example where the main
theorem does not hold.

• Zero delay — not restrictive. From a theoretical point of view, delay intro-
duces a relationship between network coding and convolutional codes.
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Figure 2.2: Network coding example: Butterfly network.

• Acyclic graph — not restrictive. There exist network configurations where
we need to deal with the underlying cyclic graphs by taking special action,
for example by introducing memory.

• Same min-cut values — restrictive. If the receivers have different min-cuts,
we can multicast at the rate equal to the minimum of the min-cuts, but
cannot always transmit to each receiver at the rate equal to its min-cut.

2.17 Remark. There is a connection between network codes and channel codes:
The global encoding functions in a linear network are equal to the rows of the
generator matrix of a linear channel code. However, every encoding function
has to fulfill the law of information preservation (linear span). The choice of
the generator matrix for a linear channel code is arbitrary. �

2.3 Network Coding Extensions

Inter-Flow vs. Intra-Flow

In the first view of network coding as introduced above, we talk about inter-flow
network coding. This means, we have several source nodes that multicast their
messages to several receivers. However, it is also possible to use network coding
with a single source node. The packets of the source are encoded with each
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other and transmitted as a combination of a certain number of packets. This
is called intra-flow or intra-session network coding. It was shown that this is
especially useful in combination with the TCP because it significantly reduces
the latency [15].

Network Coding for Wireless Networks

In a wireless setup, network coding can be applied on several levels in the
protocol stack. Especially, it is possible to use the superposition property of
the wireless channel to obtain a superposition of the transmitted signals. The
benefit of exploiting this property is shown in Fig. 2.3 for the two-way relay
channel. Because the “network coding” is done on the physical layer, we call
those schemes that exploit this channel property physical-layer network coding
schemes. Sometimes, one can find the alternative name analog network coding
in literature. However, this usually refers to uncoded, analog signals and their
superposition [90].

Distributed Data Storage

Network coding has been shown to be an enabling technique for distributed data
storage systems (DDSS). The work by Dimakis et al. [2, 3] showed that there
is a trade-off between storage and repair bandwidth. The authors introduced
the concept of functional repair, which does not re-create the damaged data
but creates a new node such that the data can still be retrieved from any k
nodes. This is a known concept from network coding theory. An overview and
a summary on DDSS can be found in [12].
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Figure 2.3: Comparison of network coding schemes for the two-way relay chan-
nel.
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Compute-and-Forward

Physical-layer network coding has been an intensive field of research since the
introduction by Zhang et al. [49]. One of the main challenges is to provide
reliable communication over a noisy MAC. In 2011, Nazer and Gastpar showed
several ways to obtain that in [41]. At the same time, they developed a framework
in [40] that they called compute-and-forward. This framework uses well-known
tools from lattice theory and linear algebra to transform noisy Gaussian channels
into noiseless channels over finite fields (see Fig. 3.1). In this chapter, we provide
an introduction to the compute-and-forward framework, where we follow the
presentation in [40]. since lattice theory is the main tool and heavily used in the
sequel of this thesis, we provide a short summary of the most important results
in lattice theory in Appendix A.

3.1 Introduction

The wireless transmission of data from source to destination usually needs the
help of intermediate relays because of physical distance, interference or other
obstacles that reduce the signal quality. Whereas the relaying for one source
- destination pair is rather easy, it gets more complicated if there are several
source nodes and destination nodes involved, especially in a multicast setup.
From classical network coding (Chapter 2), we already know that it is optimal
to use network coding in a multicast network. In a wireless network, this leaves
us with several options for the relaying scheme.
In a decode-and-forward system, the received data is fully decoded and re-

encoded prior to re-transmission. This means that each users’ data has to be
decoded individually and then combined to form a superposition, which is then
forwarded to the next node in the network. This forms the well-known model of
the MAC and the achievable rate is limited by the MAC capacity region, which
is also the main disadvantage of this strategy. The relay is usually not interested
in the individual data. This scheme suffers from a loss in performance because
of the individual decoding.
In an amplify-and-forward system, the relay just amplifies the received signal

and forwards it to the next node in the network. While this is very simple
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Figure 3.2: System model of the first hop of a relay network.

and needs no decoding and encoding, the relay not only amplifies the users’
signals but also noise and interference. Especially in large networks, this can be
a problem because noise and interference are accumulated, which results in a
bad signal-to-interference-plus-noise ratio (SINR) at the receivers.
In order to overcome the drawbacks of decode-and-forward as well as amplify-

and-forward, a new scheme was proposed in [40], called compute-and-forward.
It uses lattice codes (nested lattice codes to be precise) that have a certain
structure. This allows the decoding of a superposition of codewords without
the need to decode the individual codewords, and a gain can be seen in the
achievable rate. Therefore, it combines the advantages of decode-and-forward
and amplify-and-forward without their drawbacks.

3.2 Encoding / Decoding

Compute-and-forward is a relaying scheme that allows to decode linear combi-
nations of messages without the need to decode the individual messages. The
main advantage is the gain in achievable rate without noise accumulation. The
system model that is investigated is depicted in Fig. 3.2. Let the channel model
be as defined in Definition 1.1.
A lattice with generator matrix B and Voronoi region VC is denoted by ΛC .

Further, we define a lattice ΛF with generator matrix G and Voronoi region VF .
The lattice ΛF is constructed such that ΛC ⊆ ΛF . This can be accomplished
for example by construction A as explained in detail in Appendix A.3.1. We
call ΛC the coarse lattice and ΛF the fine lattice. Based on the definitions in
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Appendix A.3, we define the nested lattice code L = ΛF ∩ VC . Each source
node encodes its messages by an encoder E� that is defined as follows.
3.1 Definition (Encoders). Each source node is equipped with an encoder,

E� : Fk
p → ΛF ∩ VC , (3.1)

that maps length-k messages over the finite field to length-n real-valued code-
words of a lattice code L = ΛF ∩ VC , i.e., x� = E�(w�). Each codeword is
subject to the power constraint ‖x�‖2 ≤ nP . Therefore, ΛC is chosen such that
the second moment of ΛC equals P . �

3.2 Remark. We assume that each source node uses the same nested lattice
code. However, this is not restrictive. Without loss of generality, we can assume
the message lengths are sorted in descending order, i.e., k1 ≥ k2 ≥ · · · ≥ kL.
Thus, we can build a nested lattice code chain according to the different message
lengths, i.e., ΛC ⊆ ΛL ⊆ · · · ⊆ Λ1. Using the nested lattice code Λ� = Λ� ∩VC

with the non-padded message is the same as using the nested lattice code
Λ1 = Λ1 ∩ VC with the zero-padded message. Therefore, we call the finest
lattice in the lattice chain fine lattice ΛF and assume that all source nodes use
the resulting nested lattice code. �

3.3 Definition (Desired Equations). The goal of each relay is to reliably recover
a linear combination of the messages, i.e.,

um =
L⊕

�=1

qm�w�, (3.2)

where qm� are coefficients taking values in Fp. �

3.4 Definition (Lattice Equation). A lattice equation v is an integral combina-
tion of lattice codewords t� ∈ L modulo the coarse lattice, i.e.,

v =

[
L∑

�=1

a�t�

]
mod ΛC (3.3)

for some coefficients a� ∈ Z. We call a = (a1, . . . , aL)
′ the lattice coefficient

vector. �
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Let the function g denote the map between the prime-sized finite-field Fp and
the corresponding subset of the integers {0, 1, . . . , p− 1}. This is essentially an
identity map except for a change of alphabet. The inverse function is denoted
by g−1. If g or its inverse are used on a vector or matrix, the operation is taken
element-wise.

3.5 Lemma (Encoder Function). Let w� be a message of length k� that is zero-
padded to length k. Each symbol of w� is taken from Fp and therefore w� ∈ Fk

p .
The function

Φ(w�) =
[
Bp−1g(Gw�)

]
mod ΛC (3.4)

is a one-to-one map between the set of such messages and the elements of the
nested lattice code L = ΛF ∩ VC . �

Further, the coefficients of the desired equation and the lattice equation are
linked by the following equation.

qm� = g−1([am�] mod p). (3.5)

3.6 Definition (Decoder). Each relay is equipped with a decoder Dm : Rn →
Fk

p that maps the received channel output ym to an estimate ûm = Dm(ym) of
the equation um. �

3.7 Lemma (Decoder Function). Let u =
⊕

� q�w� be the desired equation for
some coefficients q� ∈ Fp and messages w� ∈ Fk�

p zero-padded to length k.
Assume the messages are mapped to nested lattice codewords t� = Φ(w�), and
let v = [

∑
� a�t�] mod ΛC denote the lattice equation for some a� ∈ Z such

that q� = g−1([a�] mod p). Then, the desired equation can be obtained using
u = Φ−1(v), where

Φ−1(v) = (G′G)−1G′ · g−1(p[B−1v] mod Zn). (3.6)
�

The complete encoding and decoding operations are depicted in Fig. 3.3. Each
encoder E� uses the encoder function in Eq. (3.4) to obtain a lattice point t� in
the lattice code. Further, it dithers its lattice point with a dither vector d�, which
is generated independently according to a uniform distribution over the Voronoi
region VC . All dither vectors are made available to each relay. After dithering,
the encoder E� takes the lattice point modulo ΛC and transmits the resulting
vector x�, i.e.,

x� = [t� − d�] mod ΛC . (3.7)
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−d1 z1 α1
∑

a1�d�

w1 φ + modΛ + × + Q1 modΛ φ−1 û1

−d2 z2 α2
∑

a2�d�

w2 φ + modΛ + × + Q2 modΛ φ−1 û2

... −dL zM αM
∑

aM�d� ...
...

wL φ + modΛ + × + QM modΛ φ−1 ûM

H

t1

t2

tL

x1

x2

xL

y1

y2

yM

s1

s2

sM

v̂1

v̂2

v̂M

Figure 3.3: System diagram of the lattice encoding and decoding operations.

3.8 Remark (Dithering [40, Sec. V]). When a relay attempts to decode an in-
tegral combination of the lattice points, it faces two sources of noise. One is
the channel noise z. The other comes from the codewords themselves because
the channel coefficients are usually not exactly equal to the desired equation
coefficients. This is sometimes referred to as “self-noise” or “quantization noise”
(because the real-valued channel coefficients are quantized to integral values). In
order to overcome this issue, the transmitters will dither their lattice points using
common randomness that is also known to the relays. This dithering makes the
transmitted codewords independent from the underlying lattice points. It can
be shown that at least one set of good fixed dither vectors exists. This means
that no common randomness is actually necessary. The proof can be found in
[40, Appendix C] �

Relaym receives a noisy superposition of the transmitted codewords, i.e.,

ym =
L∑

�=1

hm�x� + zm. (3.8)

It scales the channel output with a scaling factor αm and removes the dither,
i.e.,

sm = αmym +

L∑
�=1

am�d�. (3.9)
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Transmitter 1

Transmitter 2

Noise

Receiver

+ +

Figure 3.4: Compute-and-forward transmission over an AWGN channel without
fading.

In order to get an estimate of the lattice equation vm, the vector sm is quantized
onto the fine lattice ΛF modulo the coarse lattice, i.e.,

v̂m = [QΛF
(sm)] mod ΛC . (3.10)

The relay uses the decoder function in Eq. (3.6) with the estimated lattice equa-
tion to get an estimate of the linear combination of the transmitted messages,
i.e., the desired equation um.
An example of a lattice encoded transmission used by compute-and-forward

is shown in Fig. 3.4 for an additive white Gaussian noise (AWGN) channel
without fading. Although, the example simplifies the transmission and ignores
the dithering, it shows the individual operations.

3.3 Achievable Rate Region

The following theorems are the main results of [40], and the proofs can be found
therein. We assume that the noise power is normalized to one.

3.9 Theorem. For real-valued AWGN networks with channel coefficient vec-
tors hm ∈ RL and equation vectors am ∈ ZL, the following computation rate
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region is achievable:

R(hm, am) = max
αm∈R

1

2
log+2

(
P

α2
m + P‖αmhm − am‖2

)
. (3.11)

�

From Eq. (3.11), one can already see that there are two noise terms: channel
noise and quantization noise. The first one is introduced by the channel and the
second one is due to the fact that we try to approximate the real-valued channel
coefficients with integer values. For this approximation, we need a scaling factor
αm, which tries to steer the channel vector closer to a certain lattice coefficient
vector. However, there is a trade-off because this scaling factor also amplifies
the channel noise. The optimal αm can be easily obtained by a derivation of
Eq. (3.11), which provides the following theorem.

3.10 Theorem. The computation rate given in Eq. (3.11) is uniquely maximized
by choosing αm to be the minimum mean square error (MMSE) coefficient

αMMSE =
Ph′

mam
1 + P‖hm‖2 , (3.12)

which results in a computation rate region of

R(hm, am) =
1

2
log+2

((
‖am‖2 − P (h′

mam)2

1 + P‖hm‖2
)−1

)
. (3.13)

�

The relays can simultaneously decode linear combinations with lattice coeffi-
cient vector am as long as the involved messages’ rates are within the computa-
tion rate region.

3.11 Definition (Computation Rate). We say that the computation rate region
R(hm, am) is achievable, if for any ε > 0 and n large enough, there exist
encoders and decoders such that all relays can recover their desired equations
with average probability of error ε as long as the underlying message rates R�

satisfy
∀� ∈ {1, . . . , L} : R� < min

m:am� �=0
R(hm, am). (3.14)

�

It is obvious that the achievable rate depends on the chosen lattice coefficient
vector. However, this depends on the channel coefficients. The resulting opti-
mization problem is not trivial and subject to ongoing research. An overview
and an algorithm to solve this problem is presented in Chapter 5.
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(b) Computation rate for channel h =
(2.1, 0.7)′ and different lattice coeffi-
cient vectors.

Figure 3.5: Computation rate for a two-user MAC with different channel vectors
and lattice coefficient vectors.

While the typical optimization problem tries to find the optimal lattice coeffi-
cient vector depending on the channel coefficients, it is also worth looking at
the achievable computation rate formula as a whole. As a starting point, one
can rewrite Eq. (3.13) as

R(hm, am) =
1

2
log+2

(
1 + P (h′

mam)2

‖am‖2 + P‖hm‖2‖am‖2 − P (h′
mam)2

)
. (3.15)

From Eq. (3.15), one can see that the computation rate reaches its maximum if

• ‖hm‖2‖am‖2 is equal to (h′
mam)2, which is achieved if hm = am, and

• ‖am‖ is as small as possible, i.e., am = (1, 1, . . . , 1)′, assuming that all
messages must be included in the decoded linear combination.

We can already conclude that the highest computation rates are achieved if the
channel coefficients are equal and close to one.
Further, we plot the computation rate for two examples of channel vectors

and some lattice coefficient vectors in Fig. 3.5. For low SNR, we can see that
it is best to decode only one message, i.e., for example a = (1, 0)′. When the
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Figure 3.6: Block diagram of data transmission.

channel coefficients are close to each other, the optimal coefficient vector is
a = (1, 1)′ as we have already seen from Eq. (3.15).
We see a very interesting example in Fig. 3.5b. In this case, the channel

coefficients are multiples of each other. This allows the compute-and-forward
framework to exactly steer the channel coefficients to the coefficient vector
a = (3, 1)′ by a scaling factor. This is only optimal for relatively high SNR
because the scaling amplifies the noise, too. However, if the SNR is high enough,
the channel noise does not play a crucial role, and quantization noise does not
occur in this case. In every other case, the computation rate saturates at a certain
point because of the quantization noise and the channel noise combined.

3.4 Lattice Points as Analog Signals

The following statements follow the description in [22, Chapter 3] and can be
found in more detail therein. We consider the simple system model of a com-
munication chain in Fig. 3.6. Messages are produced by an information source,
e.g., a person, an orchestra or a computer. The source coder converts those
messages into a digital form. In general, this means sampling and quantizing,
which is known as analog-to-digital conversion. The source produces messages
at a certain rate and wants to transmit those messages over a noisy channel.
Although the channel is not error-free, the source wants to transmit its messages
reliably and efficiently. In order to ensure this, we need a channel coder that
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exchanges the original messages from the source with signals that are easily
distinguishable even with additional noise. The signals that have this property
are called codewords of a code. Depending on the code and the amount of noise
on the channel, the transmitted signals can be recovered error-free with a certain
probability. Typically, one uses a digital model of the channel, which includes
digital-to-analog conversion, modulation, etc., when designing a channel code.
However, it is also possible to directly design the transmitted waveforms. This
might not be as convenient as working in the digital domain, but the theory is
similar.
As alreadymentioned, sampling plays an important role in the communication

chain. An important result is the Sampling Theorem, which states that if f(t) is
a signal, i.e., a function of the time t and does not contain a frequency larger
thanW Hz, then f is completely specified by its samples

. . . , f

(
− 1

2W

)
, f(0), f

(
1

2W

)
, f

(
2

2W

)
, . . . , (3.16)

which are produced every 1/(2W ) seconds. We can group n such samples into
a vector that is an element of the vector space Rn. This means that we can
describe the transmit signal by a sequence of vectors. In Fig. 3.7, there is an
example of the different abstraction levels.
As stated above, it is crucial to design the transmit signal properly to cope

with a noisy channel. Therefore, we will not use arbitrary signals but signals
with certain properties. One way to do so is to apply lattice codes that use
only a certain subset of Rn as transmit signals. Compute-and-forward exploits
that and uses the mathematical notation of lattices to create a simpler Gaussian
channel model.
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Figure 3.7: Arbitrary analog signal with sampling intervals. Samples are taken
every 1/(2W ) seconds from a function f . Within T seconds, a num-
ber of n = 2TW samples are taken and considered as the coordinates
of a point in the n-dimensional space Rn.



Chapter 4

Physical-Layer Secrecy

Security is an omnipresent topic nowadays. It is crucial to protect data and
systems from malicious attacks and unauthorized access. One very vulnerable
part of every system is the communication between different parts. Especially
in wireless communication, eavesdropping a communication is easy due to the
broadcast nature of the wireless channel. Therefore, protection mechanisms
are necessary to prevent an eavesdropper from obtaining the transmitted data.
The standard practice is to add authentication and encryption techniques to
the existing protocols at various layers in the communication stack. Those
cryptographical approaches rely on the computational power that an attacker
has at its disposal. Some decades ago, a new security paradigm has been intro-
duced, which is embedded at the physical layer. This so called physical-layer
secrecy exploits the randomness of noisy communication channels to ensure
that the malicious eavesdropper does not obtain any information about the sent
messages.
In this chapter, we introduce the fundamental concepts and notations of

physical-layer secrecy. Thereby, we follow the presentation in [53].

4.1 Perfect, Strong, and Weak Secrecy

In 1949, the concept of information-theoretic secure communication was intro-
duced by Shannon [72]. Shannon’s model of secure communication, which is

W Alice
X

Eve

Bob Ŵ

secret keyK

Figure 4.1: Shannon’s cipher system.
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W Alice Channel
Y n

Bob Ŵ

Channel Eve

Xn

Zn

Figure 4.2: Wyner’s wiretap channel model.

often called Shannon’s cipher system, is illustrated in Fig. 4.1. It considers the
transmission from a transmitter to a legitimate receiver over a noiseless channel,
while an eavesdropper overhears all signals sent over the channel. In order
to prevent the eavesdropper from retrieving any information, the transmitter
encodes its messagesW ∈ W into codewords X ∈ X . This encoding is done
with a secret keyK ∈ K, which is known by the transmitter and the legitimate
receiver but unknown by the eavesdropper. We assume thatK is independent
of W . The encoding function is denoted by f : W × K → X , the decoding
function is denoted by g : X × K → W , and the pair (f, g) is called a coding
scheme.
In order tomeasure information-theoretic secrecy, we consider the conditional

entropy H(W | X), which is called the eavesdropper’s equivocation. The equi-
vocation represents the eavesdropper’s uncertainty about the message after
intercepting the codewords. A coding scheme is said to achieve perfect secrecy
if

H(W | X) = H(W ) or, equivalently, I(W ;X) = 0. (4.1)

The quantity I(W ;X) is called leakage of information to the eavesdropper. In
other words, perfect secrecy is achieved if the codewords X are statistically
independent of the messagesW .
Random noise is an intrinsic element of almost all physical communication

systems. In order to understand the role of noise in the context of secure
communication, Wyner introduced the wiretap channel model as illustrated in
Fig. 4.2. The main differences to Shannon’s original secrecy system are that

• the legitimate transmitter encodes a messageW into a codewordXn con-
sisting of n symbols, which is sent over a noisy channel to the legitimate
receiver;

• the eavesdropper observes a noisy version Zn of the signal Y n available
at the receiver.
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Additionally, Wyner suggested a new definition for the secrecy condition. It is
convenient to replace the requirement of exact statistical independence between
the messageW and the eavesdropper’s observation Zn by asymptotic statistical
independence as the codeword length n goes to infinity. In principle, this
asymptotic independence can be measured in terms of any distance defined on
the set of joint probability distributions onW ×Zn. Most often the Kullback-
Leibler divergence is used, which results in the following requirement

lim
n→∞ I(W ;Zn) = 0. (4.2)

This condition is called strong secrecy condition and requires the amount of
information leaked to the eavesdropper to vanish.

Further, it is also convenient to consider the condition

lim
n→∞

1

n
I(W ;Zn) = 0, (4.3)

which requires the rate of information leaked to the eavesdropper to vanish.
This condition is weaker than strong secrecy since it is satisfied as long as
I(W ;Zn) grows at most sub-linearly with n. It is called weak secrecy condition.

It can be shown that there exist channel codes that asymptotically guarantee
both an arbitrarily small probability of error at the intended receiver and a
prescribed level of secrecy. Such codes are known as wiretap codes. The supre-
mum of the transmission rates that are achievable under these premises is called
secrecy capacity.

4.2 Degraded Wiretap Channel

In 1975, Wyner introduced the wiretap channel [77], where a transmitter, Alice,
wants to send a confidential message to a receiver, Bob, in the presence of an
eavesdropper, Eve. This system model corresponds to wired transmissions,
where the eavesdropper is wiretapping the signal at the receiver and gets only
a degraded version of Bob’s receive signal. This channel model is depicted in
Fig. 4.2 and is called degraded wiretap channel (DWTC).

A discrete memoryless DWTC (X , pZ|Y pY |X ,Y,Z) consists of the finite in-
put alphabet X , the two finite output alphabets Y and Z , and the transition
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probabilities of two discrete memoryless channels (DMCs), such that

∀n ≥ 1 ∀(xn, yn, zn) ∈ Xn × Yn ×Zn :

pY nZn|Xn(yn, zn|xn) =

n∏
i=1

pY |X(yi|xi)pZ|Y (zi|yi).
(4.4)

The DMC (X , pY |X ,Y), which is characterized by the marginal transition prob-
abilities pY |X , is referred to as the main channel, while the DMC (X , pZ|X ,Z),
which is characterized by the marginal transition probabilities pZ|X , is referred
to as the eavesdropper’s channel.
Randomness in the encoding process enables secure communication. It is

convenient to represent this randomness by the realization of a discrete memo-
ryless source (DMS) (R, pR), which is independent of the channel and of the
transmitted messages. Because the source is available to Alice but neither to
Bob nor to Eve, we call it a source of local randomness.

4.1 Definition (Wiretap Code). A (2nRs , n) code Cn of a DWTC consists of

• a message setW =
{
1, . . . , 2nRs

}
,

• a source of local randomness (R, pR) at the encoder,

• an encoding function f : W ×R → Xn, which maps a message w and a
realization of the local randomness r to a codeword xn, and

• a decoding function g : Yn → W ∪ {e}, which maps each channel
observation yn to a message ŵ ∈ W or an error message e. �

The reliability of a code Cn is measured in terms of its average probability of
error

Pe(Cn) � Pr(Ŵ �= W | Cn). (4.5)

The secrecy performance of a code Cn is measured either in terms of the leakage
of information to the eavesdropper

L(Cn) � I(W ;Zn | Cn) (4.6)

or, equivalently, in terms of the equivocation, i.e., the uncertainty of the eaves-
dropper

E(Cn) � H(W | ZnCn). (4.7)
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4.2 Definition. A weak rate-equivocation pair (Rs, Re) is achievable for the
DWTC if there exists a sequence of (2nRs , n) codes {Cn}n≥1 such that

lim
n→∞P(Cn) = 0 (reliability condition), (4.8)

lim
n→∞

1

n
E(Cn) ≥ Re (weak secrecy condition). (4.9)

The weak rate-equivocation region of a DWTC is

Rs � cl{(Rs, Re) : (Rs, Re) is achievable}, (4.10)

and the weak secrecy capacity of a DWTC is

Cs � sup{Rs : (Rs, Rs) ∈ Rs}. (4.11)
�

4.3 Untrusted Relays

The models which were introduced so far assume a set of legitimate users and
one (or possibly more) eavesdroppers. When we assume a two- or multi-way
relay channel, the relay might be the eavesdropper. Despite being part of the
communication chain, the relay might not be trustworthy. This means that a
coding scheme is needed that prevents the relay from obtaining the transmitted
messages, but still allows the legitimate users to communicate with the help of
the relay. This might sound impossible at first sight, but with the help of network
coding theory, we can develop a coding scheme that fulfills the requirements.
It is already obvious that we can achieve secret message transmission only if
we apply a relaying scheme where the relay does not need to decode messages
individually. Further, we need to achieve a transmission rate tuple which is not
inside the MAC capacity region, otherwise the relay would be able to decode
the individual messages, for example by successive interference cancellation
(SIC). This is a necessary but not a sufficient condition. A relaying strategy that
allows to fulfill these requirements is compute-and-forward (see Chapter 3). In
Part III, we build a coding scheme based on compute-and-forward and wiretap
codes to allow reliable and secret message transmission via an untrusted relay.
In the following, we will formally describe the multi-way untrusted relay

channel and the respective secrecy criterion. Assume that there are L legitimate
users as illustrated in Fig. 4.3. Each user � with � ∈ {1, 2, . . . , L} transmits a
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Figure 4.3: L user untrusted relay channel.

messageW� to a relay, which is additionally considered as an eavesdropper. The
weak secrecy condition in Eq. (4.3) needs to be extended to L users. For any
Wp ∈ P({W1, . . . ,WL}), it can be formulated as

lim
n→∞

1
nI(Wp;Yr) = 0, (4.12)

where P denotes the power set. By using the chain rule for mutual information,
we see that

I(W1, . . . ,WL;Yr)− I(W1, . . . ,Wm;Yr) =
L∑

�=m

I(W�;Yr | W1, . . . ,W�−1).

Due to the non-negativity of mutual information, we have

I(W1, . . . ,WL;Yr)− I(W1, . . . ,Wm;Yr) ≥ 0 (4.13)

and therefore

∀m < L : I(W1, . . . ,WL;Yr) ≥ I(W1, . . . ,Wm;Yr). (4.14)

Hence, the following condition implies Eq. (4.12)

lim
n→∞

1
nI(W1, . . . ,WL;Yr) = 0. (4.15)

We call Eq. (4.15) the weak secrecy condition for the untrusted relay channel.
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4.3 Definition (Weak Secrecy Rate). We say that a secrecy rate Rs� is achiev-
able for user � if each userm withm ∈ {1, 2, . . . , L} gets the correct estimate
ŵ� of message w� with an arbitrarily small probability of error and if the weak
secrecy condition in Eq. (4.15) is fulfilled. The weak secrecy rate of user � is
defined as

Rs� = lim
n→∞

1
nH(W�). (4.16)

�
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Multi-Hop Relay Channels





Chapter 5

Finding the Best Equation

We introduced the compute-and-forward framework in Chapter 3 and showed
that the achievable rates depend on the channel coefficients and the decoded
linear combination. It is the task of the relays to optimize their achievable rates by
choosing the best linear combination. With our information-theoretic view, best
linear combination means the lattice coefficient vector that results in the highest
achievable computation rate. In general, this is an np-hard problem because the
lattice coefficient vector takes only elements in the set of integers. However, it
is possible to exploit the special structure of the optimization problem to reduce
the complexity. Up to the writing of this thesis, several algorithms have been
proposed to solve this optimization problem [109, 42, 44, 45, 50]. The algorithms
differ not only in speed and complexity but also in optimality. The work in
[45, 50] provides the fastest algorithms so far but does not necessarily find the
optimal coefficient vector. The algorithm proposed in [42] is faster than the
branch-and-bound algorithm in [109] and finds the optimal coefficient vector.
However, the branch-and-bound algorithm in [109] makes it very easy to add
additional constraints to the solutions such as non-zero coefficients. That makes
this algorithm especially valuable for enhanced compute-and-forward relaying
as it will be introduced in Chapter 6. Therefore, we provide a detailed description
of this algorithm in this chapter.

5.1 Problem Statement

We recall the computation rate of compute-and-forward from Eq. (3.13), i.e.,

R(h, a) =
1

2
log+2

((
‖a‖2 − P (h′a)2

1 + P‖h‖2
)−1

)
. (5.1)

The goal is to find an efficient method to calculate the coefficient vector a �= 0
such thatR(h, a) is maximized for a given channel vector h. Because a is the
only variable for the optimization problem, we define

Rh(a) � R(h, a). (5.2)
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The optimization problem can then be written as

max
a∈Zn\{0}

Rh(a). (5.3)

Before we start to investigate solutions of Eq. (5.3), we will transform it to an
equivalent standard problem. Therefore, at the first stage we define

x �
√

P

1 + P‖h‖2 h. (5.4)

Then, 0 < ‖x‖ < 1 so that we may call x the normalized channel vector. Next,
let A and B two matrices with

A � diag [sgn(x1), . . . , sgn(xn)] , (5.5)

B � permutation such that |Bx1| ≥ · · · ≥ |Bxn| (5.6)

Then, the vector ABx is called standard normalized channel vector. Without
loss of generality, we always assume x to be of this type, i.e.,

x1 ≥ · · · ≥ xn ≥ 0. (5.7)

For details regarding this assumption see Section 5.2.1. Now, with respect to x
we can write

Rx(a) �
1

2
log+

((
‖a‖2 − (x′a)2

)−1
)
. (5.8)

Then,Rx = Rh, and we have

max
a∈Zn\{0}

Rh(a) = max
a∈Zn\{0}

Rx(a). (5.9)

As a final stage of transformation, we consider

‖a‖2 − (x′a)2 = a′Xa, (5.10)

where X � I − xx′ is symmetric and positive definite. Then, the equivalent
standard problem is given by

argmax
a∈Zn\{0}

Rx(a) = argmin
a∈Zn\{0}

a′Xa. (5.11)
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5.2 Characterization of Solutions

Here, we will analyze properties of the solutions of Eq. (5.11). Since we are only
interested in positive rates, i.e. Rx = Rh > 0, and X is positive definite, we
must have

0 < a′Xa = ‖a‖2 − (x′a)2 < 1, a ∈ Zn \ {0}. (5.12)

Hence, first we have to make sure that such a solution exists.

5.1 Theorem. Problem Eq. (5.11) always has a solution. Moreover, if a∗ is a
solution then −a∗ is a solution as well. �

Proof. From 0 < ‖x‖ and x1 ≥ · · · ≥ xn ≥ 0, we observe that a = (1, 0, . . . , 0)
is always feasible for Eq. (5.11), as

0 < ‖a‖2 − (x′a)2 = 1− x2
1 < 1. (5.13)

Further, from [40, Lemma 1] and Eq. (5.4) we have

‖a‖ <
1√

1− ‖x‖2 . (5.14)

Hence, both relations Eq. (5.13) and Eq. (5.14) make sure that the feasible set of
Eq. (5.11) is non-empty, bounded, and finite. Therefore, a solution can be found
by complete search.
Now assume a∗ to be a solution of Eq. (5.11). Because of

(x′a∗)2 = (−1)2(x′a∗)2 = [x′(−a∗)]2, (5.15)

−a∗ is also a solution.

5.2.1 Solution Properties of the Equivalent Standard Problem

Next, we will investigate if the solutions of the original problem Eq. (5.3) and
the equivalent standard problem Eq. (5.11) considering Eq. (5.7) are truly the
same.

5.2 Lemma. Let x = (x1, . . . , xn)
′ be an arbitrary normalized channel vector

and a = (a1, . . . , an)
′ an optimal coefficient vector of Eq. (5.11). Then, either

sgn(ai) = sgn(xi) or sgn(ai) = − sgn(xi) holds for all i ∈ {1, 2, . . . , n}. �
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Proof. Assume that the statement does not hold. Then, there exist indices
k, l ∈ {1, 2, . . . , n} with k �= l such that sgn(ak) = sgn(xk) and sgn(al) =
− sgn(xl).
At the first stage, assume

sgn

⎛
⎝∑

i �=k,l

xiai

⎞
⎠ � 0. (5.16)

Due to sgn(ak) = sgn(xk), this implies

sgn

⎛
⎝∑

i �=l

xiai

⎞
⎠ ≥ 0. (5.17)

Next, let b = (b1, . . . , bn)
′ such that

bi �
{
−al if i = l

ai otherwise
. (5.18)

Then, we have ‖b‖ = ‖a‖. The optimality of a yields

(x′b)2 ≤ (x′a)2 (5.19)

⇒
⎛
⎝∑

i �=l

xiai − xlal

⎞
⎠

2

≤
⎛
⎝∑

i �=l

xiai + xlal

⎞
⎠

2

(5.20)

⇒ 0 ≤ 4xlal

⎛
⎝∑

i �=l

xiai

⎞
⎠ (5.21)

⇒ 0 ≤ sgn(xl) sgn(al), (5.22)

where the implications follow from Eq. (5.18), the binomial theorem, as well as
Eq. (5.17) together with r = sgn(r)|r| for any real-valued number r. This result
however contradicts sgn(al) = − sgn(xl).
Hence, consider the alternative to Eq. (5.16), i.e., assume

sgn

⎛
⎝∑

i �=k,l

xiai

⎞
⎠ < 0. (5.23)
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With sgn(al) = − sgn(xl), this clearly implies

sgn

⎛
⎝∑

i �=k

xiai

⎞
⎠ < 0. (5.24)

Now, let b = (b1, . . . , bn)
′ such that

bi �
{
−ak if i = k

ai otherwise
. (5.25)

Then, for the same reasons as before we find

(x′b)2 ≤ (x′a)2 ⇒ 0 ≤ − sgn(xk) sgn(ak), (5.26)

which contradicts sgn(ak) = sgn(xk).

5.3 Remark. Lemma 5.2 ensures both the solutions of Eq. (5.3) and Eq. (5.11)
to be the same even if the sign of the normalized channel vector was changed.
Consequently, a solution of Eq. (5.11) with respect to Ax instead of x gives an
optimal coefficient vector a∗, which multiplied by A or −A gives also optimal
coefficient vectors of Eq. (5.3). �

5.4 Lemma. Let x = (x1, x2, . . . , xn)
′ be an arbitrary normalized channel

vector and a = (a1, a2, . . . , an)
′ an optimal coefficient vector of Eq. (5.11).

If x1 > x2 > · · · > xn > 0, then either a1 ≥ a2 ≥ · · · ≥ an ≥ 0 or
−a1 ≥ −a2 ≥ · · · ≥ −an ≥ 0 holds. �

Proof. Due to Lemma 5.2, we have to consider two cases regarding the sign of a.
First, consider sgn(ai) = sgn(xi) for all i ∈ {1, 2, . . . , n}. Then, we have to

show that

x1 > x2 > · · · > xn > 0 ⇒ a1 ≥ a2 ≥ · · · ≥ an ≥ 0 (5.27)

holds. Assume that this statement does not hold. Then, there exist indices
k, l ∈ {1, 2, . . . , n} with k < l such that ak < al. Let b = (b1, . . . , bn)

′ with

bi �

⎧⎪⎨
⎪⎩
al if i = k

ak if i = l

ai otherwise

. (5.28)
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Then, we have ‖b‖ = ‖a‖. The optimality of a yields

(x′b)2 ≤ (x′a)2 ⇒ x′b ≤ x′a (5.29)

⇒ xkal + xlak ≤ xkak + xlal (5.30)

⇒ al(xk − xl) ≤ ak(xk − xl) (5.31)

⇒ al ≤ ak, (5.32)

which contradicts ak < al.
Now, consider sgn(ai) = − sgn(xi) for all i ∈ {1, 2, . . . , n}. Then, we have

to show the implication

x1 > x2 > · · · > xn > 0 ⇒ −a1 ≥ −a2 ≥ · · · ≥ −an ≥ 0. (5.33)

Again, assume that this statement does not hold. Then, there exist indices
k, l ∈ {1, 2, . . . , n} with k < l such that ak > al. Again, let b be given by
Eq. (5.28). From ‖b‖ = ‖a‖ and the optimality of a, we get

(x′b)2 ≤ (x′a)2 ⇒ x′b ≥ x′a (5.34)

⇒ xkal + xlak ≥ xkak + xlal (5.35)

⇒ al(xk − xl) ≥ ak(xk − xl) (5.36)

⇒ al ≥ ak, (5.37)

which contradicts ak > al.

5.5 Remark. Lemma 5.4 ensures both the solutions of Eq. (5.3) and Eq. (5.11)
to be the same even if the elements of the normalized channel vector have been
sorted. That is, a solution of Eq. (5.11) with respect to Bx instead of x gives an
optimal coefficient vector a∗, which multiplied by B′ or −B′ gives also optimal
coefficient vectors of Eq. (5.3). �

5.6 Remark. Lemma 5.4 assumes xi �= xj for i �= j. If otherwise, there exist
i, j ∈ {1, . . . , n} with i �= j such that hi = hj . Then, the optimal coefficient
vector a∗ as well as a∗∗ with

a∗∗i =

⎧⎪⎨
⎪⎩
a∗l if i = k

a∗k if i = l

a∗k otherwise

(5.38)

give the same solution. �
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5.7 Remark. Lemma 5.4 assumes xi > 0 for all i ∈ {1, . . . , n}. If xn = 0, then
problem Eq. (5.11) can be reduced with respect to x = (x1, . . . , xn−1)

′ as an
must also be zero. If otherwise, a would not be optimal as

‖a‖2 − (x′a)2 =
∑n

i=1
a2i −

[∑n−1

i=1
x1ai

]2
(5.39)

≥
∑n−1

i=1
a2i −

[∑n−1

i=1
x1ai

]2
. (5.40)

�

5.2.2 Geometric Interpretation of the Problem

From Eq. (5.11) and the properties ofX follows that we have to find the smallest
ellipsoid

E(y) = {u ∈ Rn : u′Xu = y}, (5.41)

which includes a non-zero integer point. In order to find such a point, we may
use properties of the ellipsoid. First, the eigenvectors ofX point in the direction
of the semiaxes of the ellipsoid. Second, the eigenvalues μi correspond to the
quadratic inverse of the length �i of the semiaxes,

�i =
1√
μi

, i = 1, . . . , n. (5.42)

Because of the special structure of the matrix X , we already know the eigen-
vectors and eigenvalues. All eigenvalues will be one except for one eigenvalue,
which is smaller than one, given by

μ1 = 1− ‖x‖2, (5.43)

with the corresponding eigenvector

v1 =
x

‖x‖ . (5.44)

The eigenvectors vi with i ∈ {1, 2, . . . , n} are linearly independent. It follows
that the ellipsoid is more like a sphere that is baggy in the direction of v1. The
set of possible ellipsoids is bounded by E(1), which follows from Eq. (5.12).
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5.3 Solving the Optimization Problem

5.3.1 Complete Search

In order to achieve a computation rateRh(a) > 0, the authors of [40] gave an
upper bound on the set of possible coefficient vectors a by [40, Lemma 1]

‖a‖ <
√
1 + P‖h‖2. (5.45)

This condition is necessary but not sufficient and corresponds to all integer
points inside a sphere

S(r) � {u : ‖u‖ = r}. (5.46)

The relation in Eq. (5.45) with respect to the normalized channel vector is given
by Eq. (5.14). Since the right-hand side of Eq. (5.14) equals the largest semiaxes
(there is only one different from one) of the ellipsoid E(1), the sphere S(�1)
upper bounds the ellipsoid E(1). Since the volume of the sphere is much larger
than the volume of the ellipsoid, searching over all points inside the sphere
can be very inefficient. It would be more efficient to search only over all points
inside the ellipsoid. However, finding all integer points inside an ellipsoid is a
non-trivial task. There are some publications available addressing the number
of lattice / integer points inside an ellipsoid, but as far as we know there are non
addressing the issue of finding the actual points. Since we do not need to search
over the whole ellipsoid in our case, this task might get even more complicated.
In the following, we provide a branch-and-bound algorithm that performs much
better than the search over all points inside the sphere.

5.3.2 Branch-and-Bound Algorithm

In [79], the authors proposed an efficient algorithm to solve CQIP problems

min f(a) � a′Xa+ L′a+ c

s.t. a ∈ Zn ∩B,
(5.47)

where X ∈ Rn×n is positive definite, L ∈ Rn, c ∈ R, and B ⊆ Rn is a convex
set. This corresponds to the optimization problem Eq. (5.11) with L = 0 and
c = 0.
Let X̄d be the submatrix of X given by rows and columns d+ 1, . . . , n. The

suggested algorithm is very fast because the matrices X̄d and X̄−1
d can be
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Algorithm 1 :Modified branch-and-bound algorithm.

Input : the normalized channel vector x
Output : a vector a ∈ Zn \ {0} minimizing f(a) = a′Xa

1 let x̃ = ABx (see Eq. (5.5) and Eq. (5.6));
2 calculate matrix X = I − x̃x̃′;
3 let X̄d be the submatrix of X given by rows and columns d+ 1, . . . , n;

4 compute the inverse matrices X̄−1
d for d = 1, . . . , n;

5 set d � 1, ub � X11, r = r∗ � (1, 0, . . . , 0)′;

6 while d ≥ 1 do

7 define f̄ : Rn−d → R by f̄(a) � f((r1, . . . , rd, a1, . . . , an−d)
′);

8 compute L̄ and c̄ s.t. f̄(a) = a′X̄da+ L̄′a+ c̄;
// compute lower bound

9 compute the continuous minimum ā � − 1
2

(
X̄−1

d L̄
) ∈ Rn−d of f̄ ;

10 set lb � f̄(ā);
// compute upper bound

11 set rj � �āj−d� for j = d+ 1, . . . , n to form r ∈ Zn;
// update solution

12 if f̄((rd+1, . . . , rn)
′) < ub then

13 set r∗ � r;

14 set ub � f̄((rd+1, . . . , rn)
′);

15 end

// prepare next node
16 if lb < ub then

17 set d � d+ 1;
18 else

19 set d � d− 1;
20 if d > 0 then
21 increment rd according to (2) or (3) in [79]
22 end

23 end

24 end

25 set a = (AB)′r∗;
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precomputed. Regarding the special structure of X , in particular the matrix
inversion of X̄d can be efficiently achieved by

X̄−1
d = − 1

1−∑n
i=d x̃

2
i

(
X̄d −

(
2−

n∑
i=d

x̃2
i

)
I

)
. (5.48)

The basic idea of the branch-and-bound algorithm is to compute the real-
valued minimum of the objective function as a lower bound while fixing the
first d components of the vector a to integers. An upper bound is obtained
with the rounded version of the real-valued minimum. As long as the upper
bound is greater than the lower bound, the current component is fixed to its
rounded integer value, and the computation continues with the next component.
If otherwise, the previous component will be incremented.

Without modification of the algorithm given by [79], the solution would be
zero, since L = 0 and c = 0. Without the constraint a �= 0, this will be the
optimal solution. However, with this additional constraint present, the first
component of a has to be at least one by Lemma 5.2 and Lemma 5.4. Hence, the
vector r = (1, 0, . . . , 0)′ is a possible solution, which also gives X11 = 1− x2

1

as an upper bound. Instead of searching in all directions, it is sufficient to search
only in positive direction, because we can transform the optimization problem
to standard form Eq. (5.11).

5.8 Example. Consider the normalized channel vector x = (0.95, 0.3)′. The
branch-and-bound algorithm will need four iterations to find the optimal co-
efficient vector a = (3, 1)′. All steps are given in Table 5.1 with the following
variables:

Variable Description

k number of iterations
d current vector component
ā the continuous minimum with the first d components fixed to

integers
lb the current lower bound
r the current coefficient vector
f̄(r) defined as in line 7 of Algorithm 1
ub current upper bound
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Table 5.1: Detailed iterations for normalized channel vector x = (0.95, 0.3)′.

k d ā lb r f̄(r) ub

0 1 - - (1, 0)′ - 0.0975
1 1 (1, 0.3132)′ 0.0082 (1, 0)′ 0.0975 0.0975
2 1 (2, 0.6264)′ 0.0330 (2, 1)′ 0.1600 0.0975
3 1 (3, 0.9396)′ 0.0742 (3, 1)′ 0.0775 0.0975
4 1 (4, 1.2527)′ 0.1319 (4, 1)′ 0.1900 0.0775

In this setting, the matrix X = I − xx′ is given by

X =

(
0.0975 −0.2850
−0.2850 0.9100

)
. (5.49)

Iteration 0 initializes the algorithmwith vector r = (1, 0)′ and the corresponding
upper bound, which is given by X11. Iteration 1 calculates the continuous
minimum with the first component fixed to one. Then, the vector r is given
by rounding the continuous minimum to the next integer, which results again
in r = (1, 0)′. So the same upper bound is obtained. Since this bound is not
better than the previous one and the algorithm is already at the last component,
the previous component is increased by one. Iteration 2 calculates again the
continuous minimum with the first component fixed to two. The vector r is
obtained as before and results in an higher upper bound, so the upper bound is
not updated and the previous component is increased by one. Iteration 3 gets
now a smaller upper bound and updates it. Since the algorithm is at the last
component, it increases the previous component. Iteration 4 now gets a lower
bound which is larger than the upper bound and therefore the algorithm stops.�

5.4 Simulation Results

In this section, we provide simulation results to compare the proposed branch-
and-bound algorithm with the complete search inside the sphere S(�1) as well
as inside the ellipsoid E(1). All values are averages taken over 1000 randomly
chosen vectors.
Fig. 5.1 shows that the number of iterations does not increase for ‖x‖ ≤ 0.7.

This is due to the fact that vectors with small norm correspond to the low-SNR
regime at the relay or a bad channel. This results in an optimal coefficient vector
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Figure 5.1: Number of iterations for the branch-and-bound algorithm (BnB) and
the complete search (CS) with n = 4.

a = (1, 0, . . . , 0)′, which equals the initial vector r. Hence, only two iterations
are required to find the solution of the problem, one to test the vector and one
to stop the algorithm. With increasing ‖x‖, the feasible set of points inside E(1)
increases.
We can see in Tables 5.3a and 5.3b that the proposed branch-and-bound

algorithm (BnB) needs less iterations than a complete search over the ellipsoid
(CS-EL). However, from Table 5.3c follows that the branch-and-bound algorithm
performs worse when n > 5. This is due to the fact that the volume of the
ellipsoid is decreasing. Nevertheless, the branch-and-bound algorithm performs
significantly better than a complete search over the sphere (CS-SP), especially
for ‖x‖ close to 1.
Fig. 5.3a shows the best coefficient vector a in terms of computation rate

for a grid of normalized channel vectors x = (x1, x2)
′. Fig. 5.3b shows the

computation rate corresponding to the best choice of coefficient vector a. These
results were obtained by trying all different vectors a between (0, 0)′ and (4, 4)′

and choosing the vector which results in the highest rate. As you can see, the plot
is symmetric in terms of the vector components, which illustrates Lemma 5.4.
It is interesting to observe that for small ‖x‖ the coefficient vector is either
(1, 0)′ or (0, 1)′, which means that only a single message is decoded. Therefore,
network coding with compute-and-forward is only good for ‖x‖ close to one.
Remember that a norm of x close to one means either high SNR or good channels
to the relay.
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Figure 5.2: Number of iterations for the branch-and-bound algorithm (BnB) and
the complete search (CS) with ‖x‖ = 0.99.
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Table 5.2: Average number of iterations.

(a) n = 2.

‖x‖ BnB CS-EL CS-SP

0.1 2 1 1
0.7 2 1 1
0.8 2 1.718 2
0.9 2 2.437 5
0.92 2 2.87 5
0.94 2 3.375 6
0.96 2 4.389 9
0.98 2.165 6.616 20
0.99 2.44 9.883 40

(b) n = 4.

‖x‖ BnB CS-EL CS-SP

0.1 2 1 1
0.7 2 1 1
0.8 2 1.501 4
0.9 3.777 3.194 15
0.92 4.211 3.781 24
0.94 4.457 4.564 31
0.96 4.662 6.061 69
0.98 6.486 9.597 258
0.99 8.348 14.732 972

(c) n = 9.

‖x‖ BnB CS-EL CS-SP

0.1 2 1 1
0.7 2 1 1
0.8 2 1.007 9
0.9 3.136 1.19 180
0.92 5.806 1.333 320
0.94 8.346 1.704 938
0.96 9.964 2.549 3857
0.98 16.41 4.891 58023
0.99 24.888 7.995 8.6287e+05



Chapter 6

Non-Cooperative Compute-and-Forward

Strategies

The performance of the compute-and-forward framework highly depends on
the alignment of the channel coefficients with the coefficients of the decoded
equation. Several algorithms have been proposed to find the optimal equation
in terms of achievable computation rate (see Chapter 5 for an overview). Most
of these algorithms perform a local optimization. They ignore the network
structure and the possible linear dependence of the equations at the sink nodes.
This results in outages since a sink node is not able to decode the messages if it
has not enough linear independent equations. This is a very serious problem
in real applications, especially in large networks with several hops because
re-transmissions from all source nodes to the sink nodes are not applicable. The
delay might be extremely large, and the necessary signaling will pollute the
network. This problem can be overcome by allowing cooperation between nodes
[44]. In realistic setups, this might not be applicable due to the large signaling
overhead, which would be necessary to allow this kind of cooperation. Further,
it is not very robust against channel state changes. Therefore, the question
arises if it is possible to exploit the network structure such that no cooperation
between nodes is needed, where the network initialization phase is the only
exception.

In this chapter, we introduce some non-cooperative schemes that enforce
linear independence of the decoded equations at the sink nodes. We compare
the performance of these schemes in multi-source multi-relay networks and
show that correlation between channel coefficients plays a crucial role. Our
simulation results show that correlation can decrease the achievable sum-rate of
the classical compute-and-forward scheme by 1.5 bit/cu, whereas our proposed
schemes are robust against correlation and can achieve twice the sum-rate.

The results in this chapter were developed in collaboration with Jan Hejt-
mánek and Jan Sýkora at “České vysoké učení technické v Praze” (Czech Tech-
nical University in Prague). They have been published in [106] and presented at
VTC-Fall in 2015.
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Figure 6.1: System model of an L×M × 1 relay network.

6.1 System Model

We investigate an L×M × 1 relay network consisting of L source nodes,M
relay nodes, and one sink node as depicted in Fig. 6.1. Each source node � has a
message w� that has to be transmitted to the sink node. The communication has
to be supported by several relay nodes since there are no direct links between the
source nodes and the sink node. For simplicity, we assume that allM relay nodes
are used. The system designer can choose between several relaying schemes,
which are explained in detail in Section 6.2. All relaying strategies are based
on the compute-and-forward framework as introduced in Chapter 3 and differ
only in the optimization problem regarding the lattice coefficient vector am.
The optimization problem for the classical CF strategy is explained in detail in
Chapter 5. All relay nodes use the same relaying strategy, and we will investigate
which relaying strategy is the best for certain system parameters.

6.1 Remark. We want to stress that we assume no cooperation between the
relay nodes since this would drastically increase the complexity in realistic
scenarios. The cost for network providers in terms of infrastructure complexity
is much less when the nodes act independently. For example, we have less
signaling overhead without cooperation. Further, node independence increases
the robustness of the network against topology changes. �

In this thesis, we will focus on the communication between source and relay
nodes and the decoding at the relay nodes. There might be other layers or
networks after the relay nodes, which are beyond the scope of our investigation.
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Therefore, we assume that the channels between the relay nodes and the sink
node are bit-pipes, whose capacity is large enough. They are error-free and
do not interfere with each other. This might be achieved by FDMA or similar
techniques.
The sink node receivesM linear combinations of the lattice codewords from

the relay nodes, i.e.,
yD = Ax, (6.1)

where x = (x1, . . . , xL)
′ is the vector of transmitted lattice codewords from

all source nodes, and A = (aij) with i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , L}
is the coefficient matrix of the linear combinations. Please note that them-th
row in A is equal to the coefficient vector am of the linear combination decoded
at relaym. The sink node can solve the system of linear equations in Eq. (6.1)
via matrix inversion if the coefficient matrix A has full rank, i.e., rank(A) = m.
Otherwise, an outage occurs.

6.2 Definition (Outage Probability). The outage probability Pout is the proba-
bility that the sink node is not able to decode each single codewordx� transmitted
by source node � with � ∈ {1, 2, . . . , L}. �

6.3 Definition (Achievable Sum-rate). The achievable sum-rate is defined as
the goodput of all source nodes to the sink node, i.e.,

Rsum = (1− Pout)
L∑

�=1

R�, (6.2)

where Pout is the outage probability. �

6.2 Relaying Strategies

In this section, we introduce the relaying strategies. All of them are based
on CF as introduced in Chapter 3. Each relay m with m ∈ {1, 2, . . . ,M}
decodes a linear combination of lattice codewords with coefficient vector am.
The achievable computation rate at relaym is given by

R(hm, am) =
1

2
log+2

(
1

a′mGCFam

)
(6.3)

with

GCF = IL − P

1 + P‖hm‖2hmh′
m. (6.4)
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Figure 6.2: Probability of rank failure with the classical compute-and-forward
scheme for 3 source nodes andM relay nodes.

The CF strategy is able to achieve a high computation rate due to the fact
that the relay nodes decode a linear combination of messages and not each
single message like for example the decode-and-forward strategy. However, the
network structure is not taken into account. In a large network with multiple
hops, we get outages due to linear dependent equations at the sink node. Even for
a single hop with multiple relay nodes, the outage probability is very high (see
Fig. 6.2). This motivates us tomodify the optimization problem of finding the best
equation such that the network structure is exploited. Therefore, we introduce
some modified CF schemes, which differ in the way the lattice coefficient vector
am is chosen.

6.2.1 Classical Compute-and-Forward

With the term classical CF, we refer to the unaltered scheme introduced in Chap-
ter 3. In the classical CF scheme, each relay solves the following optimization
problem individually to maximize the achievable computation rate

RCCF
CF,m = max

am∈ZL\{0}
R(hm, am). (6.5)

This can be solved by several algorithms, which are presented for example in
[109, 42, 44].
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Since we assume no cooperation between the relay nodes, it is not guaranteed
that the relay nodes decode linearly independent combinations of codewords.
Therefore, the sink node cannot always decode all codewords. In this case, the
outage probability Pout is the probability that the coefficient matrix A does not
have full rank, i.e.,

Pout � Pr{rank(A) < L}. (6.6)

A possible method to reduce the outage probability is to decode only non-zero
equations with coefficient vector am [40, Sec. X]. However, this will significantly
reduce the achievable rate and does not guarantee zero outage probability.

6.4 Remark. In real-world applications, we have to ensure that the transmitted
data is decodable at the sink node. In a point-to-point channel with outages,
this is usually done by an automatic repeat request (ARQ) protocol. In the CF
framework, one would have to re-transmit the codewords from all source nodes.
In multi-hop networks this is usually not applicable due to large delays and
large overhead. �

6.2.2 Single-User Decoding

With the term single-user decoding, we refer to a special case of CF, where
relaym decodes the linear combination am = em. This means that each relay
decodes only a single codeword and treats all other signals as noise. Since each
relay decodes a different codeword, it is guaranteed that the coefficient matrixA
at the sink node has full rank. Therefore, we do not have outages, i.e., Pout = 0.
However, this comes at the cost of achievable computation rate because we
choose a suboptimal coefficient vector in Eq. (6.5). The achievable computation
rate at relaym is given by

RSU
CF,m = R(hm, em). (6.7)

6.2.3 Subspace Compute-and-Forward

In the following, we introduce the subspace CF scheme. We reduce the feasible
set of possible coefficient vectors in the optimization problem in Eq. (6.5) for
each relay such that the subsets are linearly independent. We get the following
optimization problem at relaym:

RSCF
CF,m = max

am∈Sm

R(hm, am) (6.8)
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with Sm ⊂ ZL. For the construction of the subsets, we restrict ourselves to
the case L = M , i.e., the number of relay nodes equals the number of source
nodes. In the case ofM > L, it is obvious that we getM − L linear dependent
equations at the sink nodes, which are not necessary for decoding. This becomes
a problem of relay selection and is beyond the scope of this thesis.
Let B ∈ ZL×L be a basis matrix for ZL. We define Bm to be a sliced version

of B containing only the firstm rows of B. The subset Sm is then constructed
by

Sm = {B′
mβm : βm ∈ Zm, βmm �= 0}. (6.9)

The achievable computation rate at relay m is the solution of the following
optimization problem

RSCF
CF,m = max

βm∈Zm

βmm �=0

R(hm, B′
mβm), (6.10)

which can be written as

RSCF
CF,m = max

βm∈Zm

βmm �=0

1

2
log+2

(
1

β′
mGSCFβm

)
(6.11)

with

GSCF = BmB′
m − P

1 + P‖hm‖2Bmhmh′
mB′

m. (6.12)

6.5 Remark. Please note that the optimization problem has the same structure
as the one for classical CF (see Eq. (6.5)). If a sorted channel vector hm is assumed,
the constraint sets are also equivalent (see Chapter 5 for details). Therefore, we
can use the same algorithms to solve this optimization problem. �

6.2.4 Hierarchical Compute-and-Forward

Hierarchical CF has been introduced independently and from different points
of view in [39, 43]. This scheme fixes the equations that are decoded at each
relay independently from the channel realizations. Therefore, the equation
coefficients can be chosen such that linear independence at the sink node is
guaranteed. This comes at the prize of a lower performance since the channel
coefficients and the equation coefficients are not well aligned in general. The
key technique used to improve the performance is interference cancellation.
The decoder at relaym decodes an auxiliary equation with coefficient vector
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ãm and subtracts this from the received signal to create a new virtual channel
h̃m = hm − ηãm.

The auxiliary equation has to be chosen such that the decoding performance
of the desired equation with coefficient vector am is increased for this virtual
channel. The coefficient η ∈ R has to be chosen such that themean squared error
between the virtual channel h̃m and the desired coefficients am is minimized.
In order to obtain the optimal auxiliary equation, one has to solve the following
optimization problem at relaym:

RHCF
CF,m = max

ã∈Am

min{R(hm, ãm),R(h̃m, am)}, (6.13)

where Am = {ãm : R(hm, ãm) > R(hm, am)} is the set of all auxiliary
equations that improve the performance. So far the optimization problem in
Eq. (6.13) lacks an efficient algorithm to solve this problem. It is basically a
combinatorial problem, which can be solved by an exhaustive search with high
complexity.

6.6 Remark. Please note that the hierarchical CF scheme can be combined
with the single-user decoding scheme as well as subspace CF scheme to improve
the performance of the respective scheme. However, one has to keep in mind
that this will dramatically increase the computational complexity for solving
the respective optimization problems. The performance increase might not be
worth the effort. �

6.3 Simulation Results

In this section, we provide simulation results showing the performance of
the relaying schemes introduced above. We use Algorithm 1 to obtain the
coefficients for classical and subspace CF. Further, we use an exhaustive search
for hierarchical CF. Please note that we measure the performance solely in terms
of achievable sum-rate. Some practical concerns about signaling overhead and
delay have already been raised at the beginning of the chapter. In addition to
the non-cooperative schemes, we also plot the achievable sum-rate for CF with
cooperation between the relay nodes as an upper bound. For that, we use the
algorithm provided in [44].
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Figure 6.3: Achievable sum-rate for i.i.d. Gaussian channel coefficients. 10 000
channel matrices per SNR value.

6.3.1 No Correlation

In the following, we compare the achievable sum-rate of the different schemes
in a 3× 3× 1 relay network, where the channel coefficients are independent
and identically distributed (i.i.d.) according to a standard Gaussian distribution,
i.e., hm� ∼ N (0, 1). As one can see in Fig. 6.3, the classical non-cooperative CF
scheme achieves approximately half a bit less sum-rate than the cooperative
scheme. The subspace CF strategy performs well for low SNR but looses its
performance benefit in the high-SNR regime.
The performance of hierarchical CF mainly depends on the chosen equations

as one can see in Fig. 6.3, where we plotted the achievable sum-rate for two
different coefficient matrices, which are A = I3 and

A = AHCF =

⎛
⎝1 1 0
0 1 1
1 0 1

⎞
⎠ . (6.14)

A good choice for the coefficient matrix is A = IM . One might think that this
should result at least in the same achievable sum-rate as single-user decoding.
Unfortunately, this is not true as one can see from Eq. (3.14). The achievable
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computation rate of relaym only constrains the rate of the source nodes whose
codewords are decoded with a non-zero coefficient. If relay m decodes with
am = ei, it will only affect the achievable rate of source node i. If relay m
additionally decodes an auxiliary equation with more non-zero entries, the
computation rate of that auxiliary equation affects more relay nodes. Since each
source node is constrained by the minimum achievable computation rate of all
relay nodes, it is possible that the sum-rate is reduced by using an auxiliary
equation at a relay although the individual computation rate at the relay benefits
from using an auxiliary equation. This is one side-effect of having no cooperation
between the relay nodes.

6.7 Remark. For hierarchical CF, deriving the optimal desired coefficient ma-
trix A for a given channel distribution is still an open problem and needs to be
investigated in future research. �

6.3.2 Spatial Correlation

In this section, we want to show the influence of spatial correlation on the
achievable sum-rate. Therefore, we model the channel between source nodes
and relay nodes by the Kronecker model, i.e.,

H = R
1
2

RWR
1
2

T , (6.15)

whereRR andRT are the receive and transmit correlation matrices, respectively,
and the entries wm� with m ∈ {1, 2, . . . ,M} and � ∈ {1, 2, . . . , L} of the
matrixW = (wm�) are chosen i.i.d. from a standard Gaussian distribution, i.e.,
wm� ∼ N (0, 1). For the simulations, we generate 10 000 channel matrices per
SNR value and assume a 3 × 3 × 1 relay network with different correlation
scenarios:

• strong correlation between two source nodes as well as two relay nodes:

RR =

⎛
⎝1.0 0.9 0.1
0.9 1.0 0.1
0.1 0.1 1.0

⎞
⎠ RT =

⎛
⎝1.0 0.9 0.1
0.9 1.0 0.1
0.1 0.1 1.0

⎞
⎠ , (6.16)

• weak correlation between all three source nodes and strong correlation
between two relay nodes:

RR =

⎛
⎝1.0 0.9 0.1
0.9 1.0 0.1
0.1 0.1 1.0

⎞
⎠ RT =

⎛
⎝1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

⎞
⎠ . (6.17)
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Figure 6.4: Achievable sum-rate in a correlated environment.

As one can see in Fig. 6.4, the correlation in the network plays an important
role. Strong correlation even between only two source or relay nodes signifi-
cantly decreases the achievable sum-rate of the classical CF scheme compared
to the case without correlation in Fig. 6.3. This is due to the fact that a strong
correlation increases the probability that the relay nodes will decode a linear
dependent equation. Subspace CF and single-user decoding are robust against
correlation and do not show a decrease in performance. In fact, subspace CF
shows a superior performance for high correlation.

In order to get a better impression on the dependency between achievable
sum-rate and correlation, we plot one in dependence of the other in Fig. 6.5.
Again, we assume a 3 × 3 × 1 relay network and generate 10 000 channel
matrices per correlation value at an SNR of 10 dB. We consider two scenarios:

• receive correlation between relay 1 and relay 2, i.e.,

RR =

⎛
⎝1.0 ρ 0.1

ρ 1.0 0.1
0.1 0.1 1.0

⎞
⎠ RT =

⎛
⎝1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

⎞
⎠ , (6.18)
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Figure 6.5: Achievable sum-rate at SNR = 10 dB depending on the correlation ρ.

• transmit correlation between source 1 and source 2, i.e.,

RR =

⎛
⎝1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

⎞
⎠ RT =

⎛
⎝1.0 ρ 0.1

ρ 1.0 0.1
0.1 0.1 1.0

⎞
⎠ . (6.19)

One can see in Fig. 6.5 that a large correlation factor decreases the performance
of classical CF drastically. Furthermore, it can be seen that the non-cooperative
schemes show a stable performance.
One can see from the figures that the choice of the lattice equation that is

decoded at the relay nodes is essential for the performance of the complete
network. Especially, correlated signals have a huge impact on the achievable
sum-rate. The results can be summarized as follows:

• In networks with several hops, where re-transmissions from source to
sink nodes are not applicable, one should use subspace CF. The decrease
of achievable sum-rate compared to classical CF is approximately 1 bit/cu
for an SNR of 10 dB.

• Hierarchical CF can increase the performance of subspace CF as well as
single-user decoding in the high-SNR regime but has high computational
complexity.
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• Spatial correlation plays an important role on the performance of clas-
sical CF and can reduce the achievable sum-rate to 0 bit/cu. Subspace
CF, hierarchical CF as well as single-user decoding are robust against
correlation.

• If a high spatial correlation between several nodes in the network occurs,
subspace CF will show a superior performance.

We can conclude that subspace CF should be preferred over the other schemes
if spatial correlation is an issue. It has no increase in computational complexity
compared to classical CF. It is robust against spatial correlation and has a good
performance in almost all scenarios.



Part III

Untrusted Relay Channels





Chapter 7

Two-Way Untrusted Relay Channel

In this chapter, we investigate the two-way relay channel as depicted in Fig. 7.1.
The two-way relay channel can be derived from the general system model
introduced in Section 1.3. Physically, there are only three nodes. Source node
1 and sink node 1 are physically the same, and therefore sink node 1 has side
information about the transmitted message. The same holds for source node 2
and sink node 2. Since the source and sink nodes are identical, we omit the suffix
“source” or “sink” in the following. All nodes allow half-duplex transmission.
Nodes 1 and 2 have messages for each other but have no direct connection.

They transmit messages with the help of a relay in two phases. In practice, it
often happens that such a transmission between two nodes has to use a relay
that cannot be trusted. Therefore, the messages have to be encoded at nodes
1 and 2 such that the relay cannot decode the messages separately. Since the
relay is the intended receiver of the messages and the eavesdropper at the
same time, we need a relaying strategy which does not decode the messages
separately. Further, we need to achieve a transmission rate larger than the MAC
capacity, otherwise the relay might be able to decode the single messages. A
relaying scheme which provides the necessary features is compute-and-forward
as introduced in Chapter 3. In the following, we assume that the relay is an
honest but curious eavesdropper. It does not interfere with the data transmission
and sticks to the communication protocol but tries to eavesdrop the data sent
by the source nodes.

7.1 Channel Model

In the first phase, the relay receives a superposition yr ∈ Rn of both signals
x1 ∈ Rn and x2 ∈ Rn from nodes 1 and 2, respectively, and tries to decode a
linear combination of the original messages. In the second phase, this linear
combination is encoded with a capacity achieving code and sent to nodes 1 and
2 simultaneously. The links are AWGN channels with fading coefficients h1

and h2. We assume that the channels are reciprocal and constant over both
phases. Each node has a transmit power constraint ‖xj‖2 ≤ nP , where n is the
number of channel uses and j ∈ {1, 2, r}. The noise is distributed according to
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Source Nodes Relay Nodes Sink Nodes

MAC Phase BC Phase

1 1 1

2 2

(a) System model derived from the general model
in Section 1.3.

1. Phase: MAC

1 R 2
h1 h2

2. Phase: BC

1 R 2
h1 h2

(b) Classical system model repre-
sentation.

Figure 7.1: System model of a two-way relay channel.

a Gaussian distribution with zj ∼ N (0, In) and j ∈ {1, 2, r}. We can write the
channel model for the first phase as follows

yr = h1x1 + h2x2 + zr. (7.1)

And for the second phase, it is given by

y1 = h1xr + z1, (7.2a)

y2 = h2xr + z2. (7.2b)

In order to ensure reliable transmission, we have to fulfill

lim
n→∞Pr(Ŵi �= Wi) = 0, i = 1, 2 (7.3)

at nodes 1 and 2, whereWi is the random variable modeling the transmitted
message from node i, and Ŵi is the random variable modeling the estimate of
the former at the receiver. The received signal at the relay will be modeled by
the random variable Yr . The secrecy requirement follows from Eq. (4.15), i.e.,

lim
n→∞

1

n
I(W1,W2;Yr) = 0. (7.4)
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For the analysis of the secrecy condition, we will also use the following alterna-
tive representation of Eq. (7.4)

lim
n→∞H(W1,W2) = lim

n→∞H(W1,W2 | Yr). (7.5)

The achievable secrecy rate Rs can be obtained by choosing H(W1) = 2nRs

and H(W2) = 2nRs such that

lim
n→∞

1

n
log2 H(W1) = Rs, (7.6a)

lim
n→∞

1

n
log2 H(W2) = Rs. (7.6b)

7.2 Encoding

Each node i with i ∈ {1, 2} chooses a message wi ∈ Fk
p i.i.d. from a uniform

distribution over the index set {1, 2, . . . , 2�nRs�}. For simplicity, we assume an
equal message length k at all nodes. Messages with length smaller k will be
zero-padded.
Each message is mapped to a lattice codeword in L = ΛF ∩ VC , where

the second moment of ΛC equals P , i.e., the power constraint is satisfied. In
order to fulfill the secrecy requirement in Eq. (7.4), some additional effort is
required. Each node i with i ∈ {1, 2} uses the same codebook L = ΛF ∩ VC

with |ΛF ∩ VC | = 2�n(Rs+Rd)�. Like wiretap codes, this codebook is randomly
binned into several bins, where each bin contains 2�nRd� codewords. The secret
message wi is mapped to the bins. The actual transmitted codeword ti is chosen
from that bin according to a uniform distribution.
Further, we add some dither ui that is uniformly distributed over VC and

known by the relay. This dithering provides stochastic properties of the transmit-
ted signal that are needed to achieve the compute-and-forward rate [40]. It was
shown in [40, Appendix C] that this dither might be chosen in a deterministic
way. In order to ensure that the transmitted signal fulfills the power constraint,
we build the modulo with respect to the coarse lattice. We get the following
n-dimensional transmit vector at node i

xi = [ti + ui] mod ΛC . (7.7)

With this encoding, we obtain the following rates:
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• Rd is the rate of the randomly chosen messages within a bin,

• Rs is the secret message rate, and

• Rs +Rd = 1
n log2

Vol(VC)
Vol(VF ) is the transmit rate of the user nodes.

7.3 Relay Strategy

The relay receives the random vector

yr = h1x1 + h2x2 + zr, (7.8)

where zr ∼ N (0, In) is AWGN. It tries to decode a linear combination of trans-
mitted lattice points with coefficient vector a = (a1, a2)

′ using the compute-
and-forward framework, i.e.,

ŷr = [a1t1 + a2t2] mod ΛC . (7.9)

The decoding is successful if the transmission rate of nodes 1 and 2 is below the
computation rate [40, Theorem 2], i.e.,

RCF =
1

2
log+2

((
‖a‖2 − (h′a)2P

1 + P‖h‖2
)−1

)
(7.10)

with h = (h1, h2)
′. We assume that the relay will choose the coefficient vector

a such that the computation rate is maximized. This can be done by several
algorithms [109, 44].
For the first phase, we get the following rate constraint

Rs +Rd ≤ RCF . (7.11)

In the second phase, the relay maps the decoded lattice point to an index of the
set {1, 2, . . . , 2nRr} and uses a capacity achieving code to encode and transmit
to nodes 1 and 2 with rate Rr .

7.4 Decoding

Nodes 1 and 2 receive an index of the message set {1, 2, . . . , 2nRr}. They can
decode as long as the transmission rate from the relay to the destination is less
than the point-to-point capacity of the channels, which is a special case of [81],

Rr ≤ min
{

1
2 log2(1 + Ph2

1),
1
2 log2(1 + Ph2

2)
}
. (7.12)
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If nodes 1 and 2 decode successfully, they know the lattice point ŷr ∈ ΛF ∩ VC

transmitted by the relay. Each user can obtain the lattice point of the other user
by subtracting its own lattice point. A lattice point uniquely determines the
underlying message. Hence, each user gets the message of the other user.
From phases one and two, we obtain a rate constraint for nodes 1 and 2 given

by

Rs +Rd ≤ min {RCF , Rr} = RCF . (7.13)

This results in the following constraint for the secure communication rate Rs

Rs ≤ RCF −Rd. (7.14)

We get the same constraint for both nodes because both use the same nested
lattice chain. In order to ensure that the relay will not get any information about
individual messages, the rate Rd has to be chosen appropriately. This will be
addressed in the next section.

7.5 Achievable Secrecy Rate Region

In this section, we provide an achievable secrecy rate region and give the proof
of achievability.

7.1 Theorem (Achievable Secrecy Rate). Assume a two-way relay channel as
shown in Fig. 7.1 with fading coefficients h1 and h2. Each node has a transmit
power constraint ‖xj‖2 ≤ nP with j ∈ {1, 2, r}. Then, the weak secrecy rate
region is given by

2Rs ≤ max
{
0, 2RCF − 1

2 log2(1 + Ph2
1 + Ph2

2)
}
,

where

RCF = max
a �=0

1

2
log+2

((
‖a‖2 − (h′a)2P

1 + P‖h‖2
)−1

)

is the computation rate of compute-and-forward. �

Proof. An overview of all random variables is provided in Table 7.1. For the
achievability of the secrecy rate region, we must show that the weak secrecy
condition in Eq. (7.4) holds, i.e.,

lim
n→∞

1
nI(W1,W2;Yr | U1, U2) = 0. (7.15)
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Table 7.1: Variable overview.

variable distribution comment
Wi ∼ U({1, 2, . . . , 2nRs}) message of length k
Ti ∼ U(ΛF ∩ VC) encoded message in L
Ui ∼ U(VC) dither
Xi ∼ U(VC) transmit vector of node i
Zr ∼ N (0, In) AWGN
Yr continuous received vector at relay

For the ease of readability, we omit the condition on U1 and U2 in the following,
since it is present for every mutual information and entropy and does not change
the equations. The condition in Eq. (7.15) is equivalent to

lim
n→∞

1

n
H(W1,W2) = lim

n→∞
1

n
H(W1,W2 | Yr). (7.16)

We can explicitly write the left-hand side and get

2 ·Rs = lim
n→∞

1
nH(W1,W2 | Yr). (7.17)

Now, we need a lower bound on the right-hand side.

lim
n→∞

1
nH(W1,W2 | Yr) (7.18)

= lim
n→∞

1
n [H(W1,W2 | X1, X2, Yr) (7.19)

+H(X1, X2 | Yr)

−H(X1, X2 | W1,W2, Yr)]

≥ lim
n→∞

1
n [H(X1, X2 | Yr) (7.20)

−H(X1, X2 | W1,W2, Yr)]

a)

≥ lim
n→∞

1
n [H(X1, X2 | Yr)− nδ(n)] (7.21)

= lim
n→∞

1
n [H(X1, X2 | Yr) (7.22)

−H(X1, X2) +H(X1, X2)− nδ(n)]

= lim
n→∞

1
n [H(X1, X2)− I(X1, X2;Yr)− nδ(n)] (7.23)
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b)

≥ lim
n→∞

1
n [H(X1, X2) (7.24)

− n · 1
2 log2(1 + Ph2

1 + Ph2
2)− nδ(n)]

c)
= 2 · (Rs +Rd)− 1

2 log2(1 + Ph2
1 + Ph2

2) (7.25)

We used the following arguments:

a) We used Fano’s inequality to bound the last term. The size of each bin
is kept small enough such that the eavesdropper can determine X1, X2

from the received signals for givenW1,W2.

b) We rewrite the mutual information in terms of entropy and obtain

I(X1, X2;Yr) = h(Yr)− h(Yr | X1, X2). (7.26)

In the following, we use the fact that the conditional entropy is smaller
than the unconditioned entropy. Furthermore, the normal distribution
maximizes the entropy for an average power constraint. This yields

h(Yr) =

n∑
k=1

h(Yr,k | Yr,k−1, Yr,k−2, . . . , Yr,1)

≤
n∑

k=1

h(Yr,k)

≤ n · 1
2 log2(2πe(Ph2

1 + Ph2
2 + 1)). (7.27)

If the transmitted signals X1 and X2 are known, the only remaining un-
certainty in the received signal Yr is due to the noise Zr . The components
of the noise vector are i.i.d. according to a normal distribution, which
results in the following entropy

h(Yr | X1, X2) = h(Zr)

=
n∑

k=1

h(Zr,k)

= n · h(Zr,k)

= n · 1
2 log2(2πe). (7.28)

When we combine Eqs. (7.27) and (7.28), we get an upper bound on the
mutual information I(X1, X2;Yr) ≤ n · 1

2 log2(1 + Ph2
1 + Ph2

2).
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c) We used the fact that X1 and X2 are i.i.d.

Since all rates are symmetric and Rs +Rd ≤ RCF, we get the following weak
secrecy rate

2 ·Rs ≤ 2 ·RCF − 1
2 log2(1 + Ph2

1 + Ph2
2). (7.29)

This concludes the proof.

7.6 Discussion

In this section, we discuss and illustrate Theorem 7.1. It is interesting to note that
the achievable secrecy rate is the difference between the achievable compute-
and-forward sum-rate and the sum-capacity of the MAC. This means that we get
a secrecy rate greater than zero if the compute-and-forward rate region is larger
than the MAC capacity region. This is illustrated in Fig. 7.2, where we plotted the
achievable rate regions for the channel coefficients (0.9, 0.8)′ and a transmit SNR
of P/σ2 = 10dB. The dots in Fig. 7.2 mark the corner points of the achievable
compute-and-forward rate regions for different coefficient vectors. The solid line
illustrates the border of the MAC capacity region. As one can see, a rate greater
than the MAC sum-capacity is only achievable for a single coefficient vector,
in this example a = (1, 1)′. In general, there is at most one point or there are
several linear dependent points outside the MAC capacity region. Otherwise, the
relay would be able to decode the single messages by solving a linear equation
system, which contradicts the MAC capacity definition. From this illustration,
we see that it is only possible to transmit secure messages via the relay, if nodes
1 and 2 transmit at a higher rate than the MAC capacity. This ensures that
the relay cannot decode the single messages but a linear combination if the
compute-and-forward rate is higher than the MAC sum-capacity.
The achievable computation rate mainly depends on the channel coefficients

because the compute-and-forward framework tries to approximate the real-
valued channel coefficients with integer-valued network coding coefficients.
This means that there does not always exist a network coding coefficient vector
with an achievable computation rate which is outside of the MAC capacity
region. In Figs. 7.3 and 7.4, we show the achievable secrecy rate for different
channel realizations. One can see that the achievable secrecy rate reaches its
highest values if the channel coefficients are equal. This is not surprising because
the computation rate of compute-and-forward reaches its highest values for
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Figure 7.2: MAC capacity region (blue line) with achievable compute-and-
forward rates for different coefficient vectors a (red dots) for h =
(0.9, 0.8)′ and P/σ2 = 10dB.
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Figure 7.3: Existence of a compute-and-forward rate tuple outside of the MAC
capacity region. P/σ2 = 5dB.
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Figure 7.4: Existence of a compute-and-forward rate tuple outside of the MAC
capacity region. P/σ2 = 20dB.
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equal channel coefficients (see Section 3.3). One can also see that small channel
coefficient values do not achieve positive secrecy rates. This behavior can be
compensated in part by adjusting the power allocation such that the effective
channel coefficients are close to each other. Unfortunately, if we assume that the
channel coefficients are distributed according to a standard Gaussian distribution,
i.e., hi ∼ N (0, 1), then small channel coefficients occur with higher probability.
This might be a depressing result, but we can improve the performance by
optimizing the transmit power and introducing multiple antennas. We will
discuss that in a more general setup in Chapter 8.
In the following, we compare the performance of our scheme to schemes

presented in the literature. The two-way relay channel is often modeled as a
wiretap channel where the second user is helping the first user by jamming the
eavesdropper, i.e., the relay [56, 60]. This differs from our work because we
assume that both users transmit a secure message simultaneously. In literature,
the two-way relay channel is often investigated without fading, and those results
cannot directly be extended to fading channels. However, in order to be able
to compare our scheme to existing schemes, we relax our model to match the
one assumed in [56]. In this case, user 1 transmits a secure message to user 2
via an untrusted relay. User 2 helps by sending a jamming signal to the relay.
The main difference to our original model is the fact that the message of the
second user does not need to be secure. Further, we assume that the channel
coefficients are equal and set to 1. With this relaxed model, we get the following
corollary, which follows directly from Theorem 7.1.

7.2 Corollary. Assume a two-way relay channel with fading coefficients h1 =
h2 = 1 and equal power constraint P . The following secrecy rate is achievable
with a cooperative jammer

Rs ≤ max

{
0,

1

2
log2

(
1

2
+ P

)
− 1

2
log2

(
1 +

P

1 + P

)}
� RCF

s . (7.30)
�

We compare this result to several results available in the literature. The first
approach is a scheme by He and Yener, which provides a weak secrecy result
[56], i.e.,

Rs ≤ max{0, 1
2 log2(

1
2 + P )− 1} � RHS

s . (7.31)

This result is extended in [59] for strong secrecy. The achievable secrecy rate is
shown to be the same as for weak secrecy by utilizing a hash function. Please
note that we can extend our result as well with a hash function to get a result



86 Chapter 7 Two-Way Untrusted Relay Channel

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

5
5.2
5.4
5.6
5.8

6

P/σ2 [dB]

A
ch
ie
va
bl
e
se
cr
ec
y
ra
te

R
s
[b
it
/c
u
] Nazer and Gastpar (no secrecy)

Our scheme (weak secrecy)

Scheme by He et al. (strong secrecy)

Scheme by Vatedka et al. (strong secrecy)

Scheme by Vatedka et al. (perfect secrecy)

Figure 7.5: Achievable secrecy rate of the two-way relay channel with h =
(1, 1)′ and σ2 = 1 for different schemes. The second user works as a
cooperative jammer.

for strong secrecy. The second scheme is provided by Vatedka et al. in [76]. The
achievable secrecy rates are

Rs ≤ max{0, 1
2 log2(P )− 1− log2(e)} � RVP

s (7.32)

and
Rs ≤ max{0, 1

2 log2(
1
2 + P )− log2(2e)} � RVS

s (7.33)

for perfect and strong secrecy, respectively. Observe thatRCF ≥ RCF
s ≥ RHS

s ≥
RVS

s ≥ RVP
s . The comparison is visualized in Fig. 7.5.



Chapter 8

Multi-Way Untrusted Relay Channel

In this chapter, we extend themodel of the two-way relay channel fromChapter 7
to the L-user relay channel as depicted in Fig. 8.1a. Each user node � with
� ∈ {1, 2, . . . , L} has a message w� ∈ Fk

p , which it wants to broadcast to all
other user nodes. The user nodes do not have direct connections and their
communication is supported by relay R. They exchange the messages within L
phases. In the first phase, all user nodes transmit their messages to the relay,
which tries to decode L− 1 linear combinations of the messages (MAC phase).
The relay sends these linear combinations in the remaining L − 1 phases to
the user nodes (BC phases). After all L phases, the user nodes have L − 1
linear combinations and their own message. If we assume that these linear
combinations are linearly independent, the user nodes can solve a system of
linear equations to get the estimates ŵ1, ŵ2, . . . , ŵL of all messages.

In order to ensure a secret communication between all nodes, the weak secrecy
condition in Eq. (4.15) has to be fulfilled. The achievable secrecy rate is defined
in Definition 4.3.

Further, we allow the nodes to have multiple antennas. Depending on the
number of antennas at the nodes, we differentiate between three scenarios:

• single-input multiple-output (SIMO): single antenna at the source nodes
and multiple antennas at the relay,

• single-input single-output (SISO): single antenna at the source nodes and
the relay, and

• multiple-input single-output (MISO):multiple antennas at the source nodes
and single antenna at the relay.

First, we will focus on the SIMO case because we will show later that the results
for the SISO and the MISO case can be derived from the results of the SIMO
case. We will not investigate the multiple-input multiple-output (MIMO) case in
this thesis. This is left for further research.
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(a) System model derived from the general model
in Section 1.3.
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(b) Classical system model repre-
sentation.

Figure 8.1: System model of a multi-way relay channel.

8.1 System Model

In the following, we investigate the SIMO channel, i.e., only the relay is equipped
with multiple antennas. The system model for the first phase, where the user
nodes transmit their messages to the relay, is shown in Fig. 8.2. Each user node
� has a message w�, which it maps with an encoder

E� : Fk
p → Rn (8.1)

to a real-valued vector signal, which is transmitted over the channel. The relay
uses a pre-processing matrix B to get L− 1 different signals ỹ1, ỹ2, . . . , ỹL−1

from its ηR ≥ L− 1 antennas. Each signal ỹ� is processed by a decoder D� to
get an estimate of a linear combination of lattice codewords. We will elaborate
on the details in the following subsections.

8.1.1 MAC Phase

Let x� ∈ Rn denote the transmit signal of user node � with � ∈ {1, 2, . . . , L}, in
the first phase. Each user node has a transmit power constraint ‖x�‖2 ≤ nP . We
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Figure 8.2: System model of a SIMO L-user relay channel (MAC phase).

assume that the relay is equipped with ηR antennas and therefore receives ηR
signals y(1)r , y

(2)
r , . . . , y

(ηR)
r . The channel is an AWGN channel with quasi-static

block flat fading and is characterized by the channel matrixH ∈ RηR×L, whose
entries hij are the fading coefficients from the j-th user to the i-th antenna at
the relay. Note that the i-th row of H , denoted by hi, represents the channel
from user i to the relay. The channel model for the first phase is then given by

Y = HX + Z, (8.2)

where X ∈ RL×n is a matrix whose �-th row is the transpose transmit vector
x′
� of user �. Further, Y ∈ RηR×n is a matrix whose i-th row represents the

received data stream y
(i)
r at the i-th antenna, and Z ∈ RηR×n is white Gaussian

noise. The rows of Z are denoted by zi and are i.i.d. according to a normal
distribution with zero mean and unit variance, i.e., zi ∼ N (0, In).

The relay decodes L − 1 linear combinations of the original messages and
encodes them with a capacity achieving code. Then, the L− 1 codewords are
sent to all users in the remaining L− 1 phases simultaneously. For these phases,
we have a BC and we assume reciprocal channels, which are constant over all L
phases. Therefore, the rate constraints for the last L− 1 phases are given by the
capacity of the individual point-to-point channels. Due to the uplink-downlink
duality for reciprocal channels and equal power constraints [83, Chapter 10.3],
these are always larger or equal to the MAC rate region, and the first phase
will be the limiting one. Therefore, we will focus on that phase for deriving the
achievable rate of the whole system.
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8.1.2 BC Phases

Let x(1)
r , x

(2)
r , . . . , x

(L)
r ∈ Rn denote the transmit signals of the relay in phases

1 to L, respectively. The relay has a transmit power constraint ||x(i)
r ||2 ≤ nP

for all i ∈ {1, 2, . . . , L}. Please note that the relay does not send anything in the
first phase, and therefore x(1)

r = 0. We assume that all channels are reciprocal
and constant over all L phases. Each user node � receives a signal

y
(i)
� = ω′

rh�x
(i)
r + z

(i)
� (8.3)

in the i-th phase, where ωr is the beamforming vector at the relay, and z
(i)
� ∼

N (0, In) is white Gaussian noise. Please note that the user nodes do not receive

anything in the first phase, and therefore y(1)� = 0 because we assume no direct
connection between the user nodes.

8.1.3 Channel State Information

The relay needs to know all channels between itself and the user nodes. The
user nodes only need to know the effective channel between themselves and
the relay, i.e., user � needs to know ω′

rh�.

8.2 Encoding

Each user node � chooses a message w� ∈ Fk
p i.i.d. from a uniform distribu-

tion over the index set {1, 2, . . . , 2�nRs�}. For simplicity, we assume an equal
message length k for all users, which implies an equal secrecy rate for all
users. If this is not the case, we would have to extend the nested lattice code
chain as described in [40]. Each message is mapped to a lattice codeword in
L = ΛF ∩ VC , where the second moment of ΛC equals P , i.e., the power con-
straint is satisfied. Each user node � uses the same codebook L = ΛF ∩VC with
|ΛF ∩ VC | = 2�n(Rs+Rd)�. Similar to wiretap codes, this codebook is randomly
binned into 2�nRs� bins, where each bin contains 2�nRd� codewords. The secret
message w� is mapped to the bins, and the lattice codeword t� is chosen from
that bin according to a uniform distribution. Further, we add some dither u�

that is uniformly distributed over VC and known by the relay. This dithering
provides the statistical properties of the transmitted signal that are needed to
achieve the compute-and-forward rate [40]. In order to make sure that the
transmit signal fulfills the power constraint, we build the modulo with respect
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to the coarse lattice. We get the following n-dimensional transmit vector at
node �

x� = [t� + u�] mod ΛC . (8.4)

With this encoding scheme, we get the following rates:

• Rd is the rate of the randomly chosen messages within a bin,

• Rs is the secret message rate, and

• Rs +Rd = 1
n log2

Vol(VC)
Vol(VF ) is the transmit rate of the user nodes.

Note that compute-and-forward implies the same rate at allL user nodes because
a maximum rate equal to the computation rate is achievable. It will turn out by
the secrecy analysis that the information leakage is symmetric for all L user
nodes. Therefore, Rs = Rs1 = Rs2 = · · · = RsL .

8.3 Relay Strategy

The relay uses compute-and-forward [40] as relaying strategy and tries to decode
L− 1 linear combinations v̂1, v̂2, . . . , v̂L−1 of the transmitted lattice codewords
as shown in Fig. 8.2. It uses a preprocessing matrix B to get the optimal signals
prior to decoding. The achievable computation rate is then given by [40, 46]

R(H, a�, b�) =
1

2
log2

(
P

‖b�‖2 + P‖H ′b� − a�‖2
)
, (8.5)

where a� is the coefficient vector for the �-th linear combination, and b� is
the preprocessing vector corresponding to the �-th row in B. The optimal
preprocessing matrix for a given coefficient matrix A = (a′1, a

′
2, . . . , a

′
L−1)

′

and the resulting rates have been derived in [46]. In the following, we use these
results and provide them for completeness.
The optimal preprocessing matrix is given by

B = AH ′(HH ′ + 1
P IηR

)−1. (8.6)

When we plug Eq. (8.6) into Eq. (8.5), we get

R(H, a�) = −1

2
log2(a

′
�V DV ′a�), (8.7)
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where V ∈ RL×L is the right eigenmatrix of H , and D ∈ RL×L is a diagonal
matrix with elements

Dii =

{
1

Pλi+1 i ≤ rank(H)

1 i > rank(H)
, (8.8)

where λi is the i-th eigenvalue of H ′H .
All L − 1 linear combinations have to be decodable at the relay in order

to allow all L users to decode all original messages. Therefore, the resulting
achievable rate of all L users is

RCF = min
�∈{1,2,...,L−1}

R(H, a�). (8.9)

In order to get the highest possible rates, we need to find a set of full-rank
coefficient matrices A� ∈ ZL−1×L. Since all L users need to be able to decode
all messages, we additionally require the rows of A� to be linearly independent
of any vector e�, where e� is the unit vector with a one at the �-th position and
zeros elsewhere. This results in the following optimization problem

max
A�

min
�∈{1,2,...,L−1}

(
−1

2
log2(a

′
�V DV ′a�)

)
s.t. rank(A�) = L for all � ∈ {1, 2, . . . , L}

(8.10)

with

A� =

⎛
⎜⎜⎜⎝

a′1
...

a′L−1

e′�

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1,1 a1,2 . . . a1,L
...

...
. . .

...
aL−1,1 aL−1,2 . . . aL−1,L

0 0 1 0

⎞
⎟⎟⎟⎠ .

There are several algorithms which find the best coefficient vector, e.g., [109, 42,
44, 45]. These algorithms need to be extended to fulfill the following additional
constraints:

• for all � ∈ {1, 2, . . . , L}, all L− 1 coefficient vectors need to be linearly
independent of e�.

• we need to find the L− 1 best coefficient vectors and not only the best
one.
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For example, the algorithm of [44] can be easily extended to solve Eq. (8.10). We
used this algorithm to provide the simulation results in Section 8.7.
In [40], it was shown that reliable communication can be achieved as long as

Rs +Rd ≤ RCF . (8.11)

In the second phase, the relay maps all decoded linear combinations v̂� ∈
ΛF ∩VC to an index of the set {1, 2, . . . , 2�nRr�} and uses a capacity achieving
code to encode these messages. Further, it uses an optimal beamforming vector
to transmit to the user nodes with rate

Rr = max
‖ωr‖2≤1

min
�∈{1,2,...,L}

1
2 log2(1 + P (ω′

rh�)
2), (8.12)

where ωr is the multicast beamforming vector at the relay. An efficient way to
obtain the optimal beamforming vector can be found in [80].

8.4 Decoding at the User Nodes

In each of the L− 1 phases, each user node receives an index of the index set
{1, 2, . . . , 2�nRr�}. The user nodes can decode as long as the transmission rate
from the relay to the user is less than the point-to-point capacity of the channels,
which is given in Eq. (8.12). If they decode successfully, they know the lattice
point v̂� ∈ ΛF ∩ VC that was transmitted by the relay.
User � can decode the original lattice points from the other users by solving

the following system of linear equations

A�T = Ṽ� (8.13)

with

Ṽ� =

⎛
⎜⎜⎜⎝

v̂1,1 v̂1,2 . . . v̂1,n
...

...
. . .

...
v̂L−1,1 v̂L−1,2 . . . v̂L−1,n

t�,1 t�,2 . . . t�,n

⎞
⎟⎟⎟⎠ (8.14)

and

T =

⎛
⎜⎝
t1,1 t1,2 . . . t1,n
...

...
. . .

...
tL,1 tL,2 . . . tL,n

⎞
⎟⎠ . (8.15)



94 Chapter 8 Multi-Way Untrusted Relay Channel

User � already knows t� because this is its own message. Please note that
the users get the lattice points without the dither because the relay already
subtracted it. User � obtains an estimate of all lattice points ti for all i ∈
{1, 2, . . . , L} by

T̂� = A−1
� Ṽ�, (8.16)

where

T̂� =

⎛
⎜⎝
t̂′1
...
t̂′L

⎞
⎟⎠ (8.17)

contains all estimates of the transmitted lattice codewords received by user �.
Having solved this with respect to T̂�, each user knows all L lattice points.

If a lattice point is known, the message and the bin are known, too. Therefore,
each user gets all L messages.
The rate constraint for the user nodes, given by

Rd +Rs ≤ min{RCF , Rr} = RCF , (8.18)

ensures reliable communication within all L phases. From the lattice code
construction in Section 8.2 and the constraint in Eq. (8.18), we get the following
constraint for the weak secrecy rate Rs

Rs ≤ RCF −Rd. (8.19)

In order to ensure that the relay will not get any information about individual
messages, the rate Rd has to be chosen appropriately. This will be addressed in
the next section.

8.5 Achievable Secrecy Rate Region

In this section we provide an achievable secrecy rate region for the following
cases:

• SIMO: single antenna at the source nodes and multiple antennas at the
relay,

• SISO: single antenna at the source nodes and the relay, and

• MISO: multiple antennas at the source nodes and single antenna at the
relay.
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The result for the SISO case can directly be derived from the SIMO case. In
Section 8.5.3, we show that the result for the MISO case can be derived from the
SISO case.

8.5.1 SIMO

8.1 Theorem (Achievable Secrecy Rate). Consider a multi-way relay channel
with L users and ηR antennas at the relay. The channel is characterized by the
matrixH whose entries hij represent the fading coefficient from the j-th user to
the i-th antenna at the relay. All nodes can only communicate via the relay and
have no direct links. Each node has a transmit power constraint ‖xi‖2 ≤ nP
for all i ∈ {1, 2, . . . , L, r}. Then, the weak secrecy rate region is given by

LRs ≤ max
{
0, LRCF − 1

2 log2 det(IηR
+ PHH ′)

}
,

where
RCF = min

i∈{1,2,...,L−1}
R(H, ai)

is the achievable computation rate. The coefficient vector ai is chosen according
to the programming problem in Eq. (8.10). �

8.2 Remark. We provide a detailed interpretation and discussion of the theo-
rem in Section 8.7. �

Every user node has a power constraint ‖x�‖2 ≤ nP . However, it is not
always optimal to send with full power. Therefore, the transmit power for
each user node needs to be optimized. We define a diagonal matrix Ptr =
diag(

√
P1,

√
P2, . . . ,

√
PL) which contains the square roots of the individual

transmit powers of the user nodes. Further, we define the effective channel as
H̃ = HPtr. This results in the following optimization problem

max
P�≤P

LRCF − 1
2 log2 det(IηR

+HPtrP
′
trH

′), (8.20)

where
RCF = min

�∈{1,2,...,L−1}
− 1

2 log2(a
′
�V DV ′a�) (8.21)

is the achievable computation rate. The matrix V is the right eigenmatrix of H̃ ,
and D is a diagonal matrix with elements

Dii =

{
1

λi+1 i ≤ rank(H̃)

1 i > rank(H̃)
, (8.22)
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where λi is the i-th eigenvalue of H̃ ′H̃ .
This problem is hard to solve because of its non-linearity and non-convexity.

The scope of this thesis does not include an analytic result nor the design of
an efficient algorithm. For the simulations, we used a grid search algorithm to
obtain the optimal power allocation.

8.5.2 SISO

The results for the SISO case can directly be derived from Theorem 8.1, where
the channel matrix reduces to a vector.

8.3 Corollary. Consider a multi-way relay channel with L users and single
antennas at all nodes. The channel from user � to the relay is characterized by the
coefficient h� ∈ Rwith h = (h1, h2, . . . , hL)

′. All nodes can only communicate
via the relay and have no direct links. Each node has a transmit power constraint
‖xi‖2 ≤ nP for all i ∈ {1, 2, . . . , L, r}. Then, the weak secrecy rate region is
given by

LRs ≤ max
{
0, LRCF − 1

2 log2(1 + ‖h̃‖2)
}
,

where

RCF = min
i∈{1,2,...,L−1}

log+2

((
‖ai‖2 − (h̃′ai)2

1 + ‖h̃‖2
)−1)

is the achievable computation rate. Further, h̃ = diag(
√
P1,

√
P2, . . . ,

√
PL) · h

is the effective channel, and P� ≤ P is the transmit power of user �. �

8.5.3 MISO

For the MISO case, we assume no cooperation at the source nodes in order
to choose the beamforming vectors. Therefore, it is optimal to use maximum-
ratio transmission (MRT) in the direction of the channel. This leaves us with
a reduced optimization problem, where we only have to choose the optimal
power allocation. The effective channel is

h̃ = diag(
√
P1,
√
P2, . . . ,

√
PL) · (h′

1ω1, h
′
2ω2, . . . , h

′
LωL)

′, (8.23)

where h� is the channel vector from user � to the relay, andω� is the beamforming
vector with ‖ω�‖ ≤ 1 for user �. If we use MRT, we get

ω� =
h�

‖h�‖ and h
′
�ω� = ‖h�‖. (8.24)
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Table 8.1: Overview of variables and symbols.

variable distribution comment
Wi ∼ U({1, 2, . . . , �2nRs�}) secret message of length k
Ui ∼ U(VC) dither at node i
Xi ∼ U(VC) transmit vector at node i
Zj ∼ N (0, In) AWGN at relay antenna j
Yj continuous received vector at relay antenna j

The secrecy rate is now equivalent to the one in the SISO case, and we get the
following corollary.

8.4 Corollary. Consider a multi-way relay channel with L users and ηT anten-
nas at the user nodes. The relay is equipped with a single antenna. The channel
from user � to the relay is characterized by the vector h� ∈ RηT . All nodes
can only communicate via the relay and have no direct links. Each node has a
transmit power constraint ‖xi‖2 ≤ nP for all i ∈ {1, 2, . . . , L, r}. Then, the
weak secrecy rate region is given by

LRs ≤ max
{
0, LRCF − 1

2 log2(1 + ‖h̃‖2)
}
,

where

RCF = min
i∈{1,2,...,L−1}

log+2

((
‖ai‖2 − (h̃′ai)2

1 + ‖h̃‖2
)−1)

is the achievable computation rate. Further, the effective channel is

h̃ = diag(
√
P1,
√

P2, . . . ,
√
PL) · (‖h1‖, ‖h2‖, . . . , ‖hL‖)′, (8.25)

and P� ≤ P is the transmit power of user �. �

8.6 Proof of the Achievable Secrecy Rate Region

In this section, we provide the proof of Theorem 8.1. An overview of all random
variables is provided in Table 8.1.

Proof. For the achievability of the secrecy rate region, we must show that the
weak secrecy condition in Eq. (4.15) holds for all signals Y1, Y2, . . . , YηR

received
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at all ηR relay antennas in the first phase. Since the relay knows the dither,
Eq. (4.15) transforms to

lim
n→∞

1
nH(W1,W2, . . . ,WL | U1, U2, . . . , UL)

= lim
n→∞

1
nH(W1,W2, . . . ,WL | Y1, Y2, . . . , YηR

, U1, U2, . . . , UL).
(8.26)

For the ease of readability, we define the following vectors of random variables:

• X = (X1, X2, . . . , XL),

• U = (U1, U2, . . . , UL),

• W = (W1,W2, . . . ,WL),

• Y = (Y1, Y2, . . . , YηR
).

With this notation, we can write Eq. (8.26) as

lim
n→∞

1
nH(W | U) = lim

n→∞
1
nH(W | Y, U). (8.27)

Please note thatW is independent of U , and therefore

H(W | U) = H(W ). (8.28)

The messages W1,W2, . . . ,WL are i.i.d. according to a uniform distribution
over a discrete set with 2nRs items. Thus, we can rewrite the left-hand side of
Eq. (8.27) and get

LRs = lim
n→∞

1
nH(W | Y, U). (8.29)

Now, we need a lower bound on the right-hand side. We defineXΣ � HX and
notice that X , XΣ, and Y form a Markov chain X → XΣ → Y . The idea to
define a new random variable for the received signal without noise is inspired
by the proof of Theorem 1 in [74]. We start to expressH(W | Y, U) as follows

H(W | Y, U)

= H(W | U)− I(W ;Y | U)

= H(W | U)− I(W ;Y | U) + I(W ;Y | XΣ, U)

= H(W | U)− h(Y | U) + h(Y | W,U)

+ h(Y | XΣ, U)− h(Y | W,XΣ, U)
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= H(W | U)− I(XΣ;Y | U) + I(XΣ;Y | W,U). (8.30)

First, we calculate I(XΣ;Y | W,U) = H(XΣ | W,U)−H(XΣ | Y,W,U).
When the messagesW are known, the only uncertainty that remains inX is due
to the binning. Since each user node � ∈ {1, 2, . . . , L} independently chooses a
codeword out of a bin of size 2nRd equally likely for each secret message, we
have

H(XΣ | W,U) = nLRd. (8.31)

Further, we obtain
H(XΣ | Y,W,U) ≤ nδ(n) (8.32)

if LRd ≥ 1
2 log det(I + PHH ′) due to Fano’s inequality.

Next, we calculate I(XΣ;Y | U), which can be expressed in terms of entropy,
i.e.,

I(XΣ;Y | U) = h(Y | U)− h(Y | XΣ, U). (8.33)

We use the fact that the normal distribution maximizes the entropy for an
average power constraint in order to get an upper bound on the first term. From
[82, Section 3.2], we know: IfX is distributed according to a normal distribution
with zero-mean and covariance E[xx′] = PIL, then Y = HX + Z is also
distributed according to a normal distribution with zero-mean and covariance
E[yy′] = PHH ′ + IηR

. This yields

h(Y | U) = h(Y1,1, . . . , Y1,n, . . . , YηR,1, . . . , YηR,n | U)

= h(Y1,1, . . . , YηR,1, . . . , Y1,n, . . . , YηR,n | U)

≤
n∑

i=1

h(Y1,i, . . . , YηR,i | U)

≤ n · 1
2 log2((2πe)

L det(PHH ′ + IηR
)). (8.34)

If XΣ is known, the only uncertainty in the received signals Y1, Y2, . . . , YηR

is due to the noise Z1, Z2, . . . , ZηR
. The noise is i.i.d. according to a normal

distribution, which results in the following entropy:

h(Y | XΣ, U) = h(Z1, Z2, . . . , ZηR
)

=
n∑

i=1

h(Z1,i, Z2,i, . . . , ZηR,i)

= n · 1
2 log2((2πe)

L det(IηR
)). (8.35)
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Putting Eq. (8.34) and Eq. (8.35) into Eq. (8.33) yields

I(XΣ;Y | U) ≤ n · 1
2 log2((2πe)

L det(PHH ′ + IηR
))

− n · 1
2 log2((2πe)

L det(IηR
))

= n · 1
2 log2

(2πe)L det(PHH ′ + IηR
)

(2πe)L det(IηR
)

= n · 1
2 log2 det(IηR

+ PHH ′). (8.36)

Putting all together, we obtain the following lower bound:

lim
n→∞

1
nH(W | Y, U)

= lim
n→∞

1
n [H(W | U)− I(XΣ;Y | U) + I(XΣ;Y | W,U)]

≥ L(Rs +Rd)− 1
2 log2 det(IηR

+ PHH ′). (8.37)

With Eq. (8.37), we have a lower bound on the right-hand side of Eq. (8.29). We
can use this bound to obtain the following rate constraint:

LRs ≤ L(Rs +Rd)− 1
2 log2 det(IηR

+ PHH ′). (8.38)

We know from Eq. (8.18) that in order to have reliable communication, we have
to ensure that Rs +Rd ≤ RCF . Therefore, we get the following weak secrecy
rate

LRs ≤ LRCF − 1
2 log2 det(IηR

+ PHH ′). (8.39)

This concludes the proof.

8.7 Discussion

In this section, we discuss and illustrate Theorem 8.1 and Corollaries 8.3 and 8.4.
A lot of the characteristics of the achievable secrecy rate region have already
been discussed for the special case of the two-way relay channel in Section 7.6. In
this section, we want to extend the insight to more than two users and multiple
antennas.
In Fig. 7.2, we saw an example of the achievable secrecy rate for a two-way

relay channel. In that case, it is optimal to transmit at full power. In Fig. 8.3, we
show that this is not always the case. Therefore, we plotted the achievable rate
regions for the channel coefficients (0.8, 0.5)′ and a transmit power constraint
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2 = 10.0 (blue solid line and red dots) for h = (0.8, 0.5)′ and
P/σ2 = 10dB.
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of P/σ2 = 10dB. As one can see, optimizing the power means reducing the
transmit power for one user node. Since the channel coefficients of the effective
channel are then closer to each other, we achieve a higher computation rate for
the coefficient vector a = (1, 1)′, while reducing the MAC sum-capacity at the
same time. Here, we want to stress the uncommon behavior that it is possible
to increase the secrecy rate by reducing the transmit power.
We already know that not all channel vectors achieve a positive secrecy rate

(see Section 7.6). If we draw the channel coefficients from a normal distribution
with zeromean and unit variance, the question arises what percentage of channel
realizations result in a positive secrecy rate. The result for the SISO case without
optimized power allocation is shown in Fig. 8.4, where we used 10 000 i.i.d.
channel realizations from a normal distribution N (0, 1). One can see that we
achieve positive secrecy rates for a reasonable amount of channel realizations
only in the two-way relay channel. This might be a depressing result, but we
can improve the performance by optimizing the transmit power and introducing
multiple antennas. The result for an SNR of 5 dB is shown in Fig. 8.5. In the SISO
case, one can see that we increase the share of the channel realizations resulting
in a positive secrecy rate from 18.19% to 52.1% by only optimizing the power
allocation. Introducing multiple antennas at the source nodes ensures that a
positive secrecy rate can be achieved with high probability. Introducing multiple
antennas at the relay is contra-beneficial because we give the eavesdropper
more degrees of freedom.
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Compute-and-Forward Implementation





Chapter 9

Implementing PLNC – From Theory to Practice

In this chapter, we show the results of a first implementation of the compute-and-
forward framework using SDR. We focus on the feasibility of a communication
with lattice encoding and decoding. Therefore, we try to minimize as many
sources of error as possible, e.g., synchronization errors. The first step is to make
it work within a limited time period. Hence, we do not optimize algorithms or
make them robust. This will be subject to further research and development.
Although this leads to a very basic implementation, we gain important insights
on how theory and practice go together. We pinpoint certain pitfalls and show
the main challenges.

9.1 Pyncsim

Everything related to lattice coding is implemented within the python package
pyncsim, which stands for Python Network Simulator. It has been developed
by the author of this thesis to simulate the compute-and-forward protocol and
compare it to other approaches. Pyncsim is embedded within the SageMath
framework [101] and makes use of some of its classes, especially its linear and
abstract algebra system. The main features of pyncsim are:

• a lattice class that provides several properties of a lattice,

• an interface to all lattices available in [29],

• a nested lattice code class with encoding and decoding algorithms,

• a compute-and-forward module with all compute-and-forward related
algorithms, such as “search for optimal coefficient vector”, “calculate
computation rate”, etc.

The content of the package is shown in Fig. 9.1, and the modules used later
are highlighted. Under the supervision of the author of the thesis, part of this
code has been written by Thomas Frank while he was a student assistant, by
Sascha Neumann as part of a diploma thesis [98], by Hannes Ellinger as part of
a student research project [87], and by Lennart Schierling as part of a diploma
thesis [99].
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pyncsim

basic_elements.py

codes

lattice_codes.py

events.py

mathematics

lattice.py

lattices.py

models

channels.py

encoder.py

decoder.py

relays

computeandforward.py

decodeandforward.py
sources.py

simple_blocks.py

traces.py

utils.py

Figure 9.1: Content of python package pyncsim.
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Source Nodes Relay Nodes

1 1

2

h1

h2

Figure 9.2: Two-user MAC model.

Table 9.1: Hardware specification of the USRPs.

Device Version USRP2
Motherboard N210r4
Daughterboard CBX
Firmware Version 12.4
FPGA Version 11.1
Frequency Range 1.2GHz to 6.0GHz
Master Clock Rate Fixed 100MHz
FPGA bandwidth 25MHz of RF BW with 16-bit samples
ADCs 14-bits 100MS/s
DACs 16-bits 400MS/s

9.2 Hardware Setup

In Fig. 1.3, we show the general system model that is used throughout the
thesis. However, the most relevant part for compute-and-forward is the data
transmission from the source nodes to the relay nodes. Therefore, the focus
of the implementation was on the two-user MAC as depicted in Fig. 9.2. The
communication that happens afterwards can be realized by standard schemes,
which are not subject of this thesis. The setup consists of four different compo-
nents as shown in Fig. 9.3. There are a host computer for the baseband signal
processing, a box that provides a reference signal and a synchronization pulse,
three universal software radio peripherals (USRPs), and an Ethernet switch to
connect the USRPs to the host computer. The hardware specifications for the
USRPs are summarized in Table 9.1.
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Host

Switch

PPS 10MHz

Figure 9.3: USRP setup.

Two of the three USRPs are used to transmit data, while the third USRP
receives a noisy superposition of their data. The host computer deals with the
baseband signal processing of all three USRPs. It sends the transmit signals via
Ethernet to the two transmitters and receives the digital baseband signal also
via Ethernet from the receiver.

9.1 Remark. All data has to be transported via Ethernet to the host computer.
This is limiting our transmission rate and our sampling rate. We could reduce
the limitation by using one host computer for each USRP. However, this does
not allow cooperative processing of the data. Although that is not a requirement
for the setup to work, it makes it easier to evaluate the communication process.�

Since we want to focus on the implementation of the compute-and-forward
framework, we try to remove as many sources of error as possible. One of these
sources of error are the oscillators in the USRPs. In order to prevent frequency
and phase shifting over time, all three USRPs get the same reference signal, i.e.,
a 10MHz signal and a pulse every second. This synchronizes the oscillators
of all USRPs and provides synchronized data processing at the USRPs. For a
real-life application, we have to deal with synchronization errors, but this is left
for further research.
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Multiplex RRC Filter Normalize USRP

Figure 9.4: Transmitter.

USRP RRC Filter Receive Data

Figure 9.5: Receiver.

The baseband signal processing as well as the communication with the USRPs
are done with the help of the GNU Radio Framework [100]. This framework
provides the drivers to communicate with the USRPs and a lot of signal pro-
cessing algorithms. However, lattice coded communication is not available in
GNU Radio. Therefore, all signal processing algorithms have to be implemented
except for the impulse shaping and the matched filters, which are taken from
the existing GNU Radio blocks.

In order to avoid under- and overflows during the data transmission due to
slow algorithms, we divide the communication into three separate phases, i.e.,

1. calculate baseband signal (encoding),

2. transmit data, and

3. decode data.

Only the second phase is done in real-time. The other two phases are done
offline before and after the actual data transmission. Therefore, the GNU Radio
flowgraph consists only of a few basic blocks. The transmitter as depicted in
Fig. 9.4 reads the baseband signal from a file, which contains the multiplexed
parts of the data as it will be described in Section 9.3. The baseband signal is
processed by a root raised cosine (RRC) filter and normalized. The RRC filter
is an interpolating filter with an interpolation factor of 10. This provides the
impulse shaping of the transmit signal. Afterwards, it is sent to the USRP and
transmitted.

The receiver as depicted in Fig. 9.5 is as simple as the transmitter. The
received signal is processed by the matching RRC filter and saved to a file for
later processing.
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File Byte to Symbol
Byte

235 : 1
F28

Encode RS Code
F235
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1 : 255

F255
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Encode Lattice Code
F4

2
Normalize

R5

Transmit Data

R5

Figure 9.6: File encoding.

9.3 Encoding

In this section, we describe the encoding process of an input file that has to be
transmitted via the compute-and-forward protocol. The encoding process is
shown in Fig. 9.6.

9.2 Remark. The terminology of dimension and code length might be a bit
confusing. As typical in coding theory, the length of the messages is the dimen-

sion of a code, whereas the codeword length is the length of the code. However,
for a lattice code we use lattices of a certain dimension. The code length is
therefore the dimension of the lattice, which should not be confused with the
dimension of the code. �

The data that should be transmitted is read from a file and encoded with a
python script. The following python modules are used:

1 import numpy as np
2 from sage.all import GF, matrix, vector, ceil, codes, dumps
3

4 from pyncsim.mathematics import lattices
5 from pyncsim.codes import lattice_codes
6 from grncsim.utils import conversion, io
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Now, we can create the inner and outer code that are used to encode the data.
We use a Reed-Solomon code as outer code because there is an implementation
included in SageMath. The inner code is a lattice code, namely a nested lattice
code as introduced in [40]. In order to create the lattice code, we need a coarse
lattice (here we choose A5) and a code generator matrix. With these two ingre-
dients, the nested lattice code is created with the help of construction A (see
Appendix A.3.1). The details are hidden from the end user to provide a clean
application programming interface (API).

1 # Inner Lattice Code
2 p, n, k = 2, 5, 4
3 F = GF(p)
4

5 G = matrix(F,k,n,[
6 [1,0,0,0,1],
7 [0,1,0,0,1],
8 [0,0,1,0,1],
9 [0,0,0,1,1]
10 ])
11 C = codes.LinearCode(G)
12 lattice = lattices.create_lattice("A5")
13 inner_code = lattice_codes.NestedLatticeCodeNazer(lattice, C)
14

15 # Outer RS Code: (255,235,21)-Code
16 F1 = GF(2**8, 'a')
17 outer_code = codes.GeneralizedReedSolomonCode(F1.list()[1:], 235)

The choice of the parameters is more or less arbitrary and should be subject
to further investigation. However, we choose the dimension of the lattice code
such that the algorithms for decoding run within an acceptable time. Further,
we use the Reed-Solomon Code over F28 , because this aligns very well with
the bytes we read from the input file. This also justifies the field size of 2 for
the elements of the messages for the lattice code, because we can easily convert
fromF28 toF2. The message length of the lattice code is chosen to be 4, because
this aligns perfectly with the symbol size of the outer code, i.e., two messages
of the inner code represent one symbol of a codeword from the outer code.

9.3 Remark. Although the choice of the parameters and codes are arbitrary,
it is favorable to design all parts such that the lengths of the codewords and
messages in each stage of the encoding process align. This avoids zero-padding
and the corresponding overhead. �

Having created the codes, we can read and encode the data. Therefore, we
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iterate over the read bytes, which are already converted to elements in F28 . We
group an appropriate number of symbols corresponding to the dimension of
the outer Reed-Solomon code and encode it to get the codeword of the outer
code. The symbols of the codeword of the outer code are converted to elements
in F2. These symbols provide the input for the inner lattice code. Again, we
iterate over groups of these symbols, where the number of symbols matches the
dimension of the inner code.

1 outer_dimension = outer_code.dimension()
2 inner_dimension = inner_code.dimension()
3

4 coded_input = []
5

6 # read symbols in GF(2**8) from file
7 symbol_array = io.read_from_file(source_file, output="symbol")
8

9 # encode outer code
10 cws = len(symbol_array) / outer_dimension
11 for x in xrange(cws):
12 pointer_o = x*outer_dimension
13

14 wo = symbol_array[pointer_o:pointer_o+outer_dimension]
15 co = outer_code.encode(vector(wo))
16

17 bit_array = []
18 for s in co:
19 bit_array += conversion.symbol_to_bit(s)
20

21 # encode inner/lattice code
22 cwb = len(bit_array) / inner_dimension
23 for y in xrange(cwb):
24 pointer_i = y*inner_dimension
25

26 wi = vector(bit_array[pointer_i:pointer_i+inner_dimension])
27 ci = inner_code.encode(wi)
28 coded_input += ci.list()

The encoded data is now available as a numpy array with real-valued entries.
Basically, this is the baseband signal that will be transmitted. However, the US-
RPs accept only signal amplitudes less or equal to one. Higher signal amplitudes
will be cut off. Therefore, we normalize the baseband signal according to the
largest amplitude of any lattice point in the lattice code.

9.4 Remark. We normalize all codewords using the same factor. This might
be a disadvantage for codewords that have only small amplitudes. However,
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Figure 9.7: Global frame structure.

Table 9.2: Parts of the data transmission.

Part Explanation

R random elements from {−1,+1} by user 1 and user 2
T1 training sequence from user 1 and zeros from user 2
T2 training sequence from user 2 and zeros from user 1
T3 zeros from both users
P preamble from user 1 and user 2
Di payload data from user 1 and user 2, i ∈ {1, . . . , n}

it allows us to easily revoke the normalization at the receiver because the
normalization factor depends only on the code and not on the sent codeword.
For further research, it might be of interest to develop nested lattice codes such
that the codewords are uniquely determined by the relative values of the samples
and not the absolute values. �

Having encoded the input file, we need to multiplex the data to a global frame
structure because the transmit data consists not only of the encoded input file
but also of training sequences, preambles, etc. The frame structure is depicted in
Fig. 9.7, where the numbers represent the samples within each part. A summary
of all parts is shown in Table 9.2.

R This part consists of 1000 random samples chosen from the set {−1,+1}.
This is used to adjust and train the receive amplifier. It can be randomly
chosen for each transmission, and the receiver does not need to know it.
This is different to the training sequence, which is chosen once and needs
to be known by the receiver.
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T1 In this time slot, the first user sends its training sequence, whereas the
second user is silent. The training sequence is generated by a pseudo-
random number generator over the set {−1,+1}. The goal is to have a
sequence that provides good correlation properties such that it can easily be
found within the data stream. A pseudo-random number generator provides
a sequence with these properties. However, the training sequence is chosen
prior to transmission and needs to be known by the receiver.

T2 In this time slot, the second user sends its training sequence, whereas the
first user is silent. For simplicity, the second user uses the same training
sequence as the first user.

T3 In this time slot, both users are silent. This allows the measurement of the
noise power at the receiver.

P This is the preamble, which is sent right before the payload. The preamble
is a Barker code of length 13 and is used to mark the start of the actual data.

Di Those time slots contain the transmit data. One time slot contains exactly
one codeword from the outer code. Because we have an outer code length
of 255 symbols with a symbol size of 8 bit, we get the following number of
samples:

255 · 8 · 5
4
= 2550, (9.1)

where the inner code length is 5 samples, and we encode 4 bit into one
codeword.

9.4 Transmission

The data transmission is done with the tools of GNU Radio. Hence, we need to
create a flowgraph that represents the communication chain. This is realized by
creating a class and inheriting a GNU Radio top block, which can be run later.

1 import sys, os
2 from gnuradio import gr
3 from grncsim.blocks.transceiver import TransceiverFactory
4

5 class LatticeMacTransmission(gr.top_block):
6

7 def __init__(self, sample_rate, sps, channel,
8 directory, pre_wait_time=1.0):



9.4 Transmission 117

9 gr.top_block.__init__(self, "Lattice MAC Transmission")
10

11 # create transmitter and receiver
12 transceiver = TransceiverFactory(sample_rate, sps, debug=False)
13 tx1 = transceiver.create_transmitter(
14 os.path.join(directory, "transmit1.data"), 0, 2)
15 tx2 = transceiver.create_transmitter(
16 os.path.join(directory, "transmit2.data"), 1, 2)
17 rx = transceiver.create_receiver(
18 os.path.join(directory, "receive.data"))
19

20 # connect flow graph
21 self.connect(tx1, (channel,0))
22 self.connect(tx2, (channel,1))
23 self.connect(channel, rx)
24

25 # Start USRPs with delay
26 channel.set_tx_delay(pre_wait_time)

We keep the flowgraph as simple as possible because we define a transmitter
class and a receiver class that can be created by a transceiver factory. Having
created the flowgraph, we are almost ready to start the transmission. Before
we can do that, we need to load the settings from a configuration file. After
that, we create a new channel and a new top block with the flowgraph of our
communication chain.

1 from grncsim.blocks.channels import UsrpMacChannel
2 from grncsim.settings import settings
3

4 # Create new channel
5 channel = UsrpMacChannel(
6 int(settings['HARDWARE']['sample_rate']),
7 int(settings['HARDWARE']['carrier_frequency']),
8 settings['HARDWARE']['ip_terminal_0'],
9 settings['HARDWARE']['ip_terminal_1'],
10 settings['HARDWARE']['ip_relay'],
11 )
12

13 tb = LatticeMacTransmission(
14 int(settings['HARDWARE']['sample_rate']),
15 int(settings['FILTER']['sps']),
16 channel,
17 args.output,
18 pre_wait_time=0.5
19 )
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20

21 tb.start()
22 transmitted_samples = 0
23 while transmitted_samples < transmit_samples:
24 time.sleep(0.5)
25 transmitted_samples = tb.tx1.samples_transmitted()
26 tb.stop()
27 tb.wait()

The samples are filtered by an interpolating RRC filter and then sent to the
USRPs. The receiver gets a superposition of the transmitted samples and filters
them using the matching RRC filter. The interpolation of the transmit filter is
not revoked at the receiver. The received and filtered samples are saved to a
numpy file for further processing.

9.5 Decoding and Analysis

The signal processing at the receiver consists of the following steps:

1. find the training sequences,

2. estimate the channel coefficients,

3. find optimal network coding coefficients,

4. find preambles,

5. decode payload.

We use the following python modules in the sequel of this section.

1 import numpy as np
2 from scipy import signal
3 from scipy import optimize
4 from scipy import linalg

Find Training Sequences

We start with the search for the training sequences. This can be realized by
correlating the received signal with the expected training sequence. Special care
needs to be taken because we search for several occurrences of the training se-
quence. Therefore, we do not only care for the maximum of the cross-correlation
but also for the second largest peak. This peak can be positioned before the
maximum peak or after the maximum peak depending on the channels.
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1 def find_training_sequences(recv_data, search_data, number=1):
2

3 # calculate cross-correlation
4 corr = np.abs(signal.fftconvolve(recv_data,
5 search_data[::-1], mode='valid'))
6

7 index = np.argmax(corr)
8 indices = [index,]
9 length = len(search_data)
10 skip_range = [ int(index-length/2), int(index+length/2) ]
11 found_number = 1
12

13 while ( (found_number < number) ):
14

15 before = np.argmax(corr[skip_range[0]-length:skip_range[0]])
16 before += skip_range[0]-length
17 after = np.argmax(corr[skip_range[1]:skip_range[1]+length])
18 after += skip_range[1]
19

20 if corr[before] > corr[after]:
21 skip_range[0] = int(before-length/2)
22 indices.append(before)
23 else:
24 skip_range[1] = int(after+length/2)
25 indices.append(after)
26

27 found_number += 1
28

29 return indices

An example of the cross-correlation is shown in Fig. 9.8. We can see that the
start of the two training sequences can be obtained clearly. This also justifies
the use of a pseudo-random sequence as training sequence, which obviously
provides good correlation properties.

Estimate Channel Coefficients

Having obtained the training sequences from each user, we can use them to
estimate the channel coefficients. Although many different channel estimation
procedures can be applied, we restrict ourselves to maximum-likelihood (ML)
channel estimation. The advantage is that this procedure requires neither knowl-
edge of the noise variance nor any statistical information about the channel
(see [91] for a summary of channel estimation techniques). The optimization
problem for ML channel estimation is given by

min
h

‖y − hxt‖2, (9.2)
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Figure 9.8: Cross-correlation of the training sequence and the received signal.

where y is the received signal, xt is the transmitted signal, i.e., the training
sequence, and h is the channel coefficient. We use a real representation of the
complex signal to perform the optimization, i.e.,

min
x

‖Ax+ b‖2, (9.3)

where A is a 2000× 2 matrix containing the transmitted training sequence, b is
a vector of length 2000 containing the received training sequence, and x is a
length-2 vector containing the real and imaginary part of the channel coefficient.
Explicitly, that is

A =

(−�(xt) �(xt)
−�(xt) −�(xt)

)
, b =

(�(y)
�(y)

)
, x =

(�(h)
�(h)

)
. (9.4)

The problem is a continuous quadratic programming problem, and we use the
optimize package from scipy to perform the optimization.

1 def f(x):
2 return linalg.norm(np.dot(A,x) + b)
3

4 res = optimize.fmin(f,x0=np.array([0,0]))
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5 channel_real = res[0]
6 channel_imag = res[1]

Find Optimal Network Coding Coefficients

From the channel coefficients, we can calculate the optimal network coding
coefficients as described in Chapter 5. Further, we can calculate the optimal
scaling coefficient α according to the channel coefficients and the network
coding coefficients, i.e.,

α =
Ph′a

1 + P‖h‖2 . (9.5)

Find Preambles

Now, we have all the meta information that we need to decode the actual data.
We correlate the remaining received signal with the transmitted preamble to find
the start of the payload. As for the training sequences, we also have multiple
occurrences of the preamble. Therefore, we search for peaks in the correlation
function that are above a certain threshold. This threshold can be an absolute
value or an value that is relative to the maximum peak.
When we return all indices of correlation values that are above the threshold,

we get consecutive indices because the peaks are not narrow enough. There
are basically two reasons for that. Firstly, we correlate against the interpolated
signal from the RRC filter. Therefore, we stretch the peaks by the interpolation
factor. Secondly, it depends on the threshold value we use. If we choose it too
high, we get narrower peaks but might also miss a peak. This highly depends on
the channel quality. In order to cope with this, all consecutive indices need to
be reduced to the index where the correlation function has its local maximum.

1 def find_signal_multiple(recv_data, search_data, tolerance=0.3,
2 relative_tolerance=True):
3

4 # calculate cross-correlation
5 corr = signal.fftconvolve(recv_data, search_data[::-1], mode='valid')
6

7 # tolerance relative to maximum correlation value
8 if relative_tolerance:
9 index = np.argmax(corr)
10 index_inv = np.argmin(corr)
11 if np.abs(corr[index]) < np.abs(corr[index_inv]):
12 inverted = True
13 max_corr = corr[index_inv]
14 indices = np.where(corr <= max_corr - tolerance*max_corr)[0]
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15 else:
16 inverted = False
17 max_corr = corr[index]
18 indices = np.where(corr >= max_corr - tolerance*max_corr)[0]
19

20 # tolerance relative to expected correlation
21 else:
22 max_corr = sum(map(lambda x: x**2, search_data))
23 indices = np.where(corr >= max_corr - tolerance*max_corr)[0]
24

25 maxcorr_index = []
26

27 if len(indices) > 0:
28

29 # split consecutive maxima
30 prev = indices[0]
31 temparray = [prev,]
32 for index in indices[1:]:
33 if index - prev <= 3:
34 temparray.append(index)
35 else:
36 corr_array = np.asarray([corr[i] for i in temparray])
37 maxcorr_index.append(temparray[np.argmax(corr_array)])
38 temparray = [index,]
39 prev = index
40

41 # last entry
42 corr_array = np.asarray([corr[i] for i in temparray])
43 maxcorr_index.append(temparray[np.argmax(corr_array)])
44

45 return maxcorr_index

Decode Payload

Now, we can split the data into several parts as depicted in Fig. 9.7 and obtain
multiple payload blocks. Since we do not revoke the interpolation of the transmit
filter, each block should have a length of 25 500 samples, which is the length
at the encoder multiplied by the interpolation factor of 10. The decoding of
each payload block follows the encoding procedure in reverse order. Firstly, we
revoke the normalization according to the maximum amplitude of all codeword
samples in the lattice code. Secondly, we scale the payload with the optimal
scaling factor α, which is provided in Eq. (9.5). Thirdly, we take every tenth
sample to revoke the interpolation, starting at the preamble index obtained in
the previous step. This yields an estimate of the superposition of the lattice
codewords that the two users have sent.
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Figure 9.9: Decoding stages of a lattice codeword.

Now, we divide the payload block into blocks whose size corresponds to the
inner code length, i.e., five samples in the current implementation. We iterate
over these blocks to decode the lattice codewords and obtain the original bits.
First of all, we need an estimate of the lattice codeword, which is obtained by
the following equation

v̂ = [QΛF
(αy)] mod ΛC . (9.6)

Therefore, the scaled receive signal is quantized with respect to the fine lattice
and then taken modulo by the coarse lattice. The individual steps are shown for
the second lattice codeword in an example payload block in Fig. 9.9.

9.5 Remark. The quantization as well as the modulo operation require to solve
a closest-vector problem (CVP). It has been shown [23, 28] that this is in general
an np-complete problem. An overview of different algorithms can be found for
example in [25]. Our implementation uses the algorithm proposed by Agrell
et al. [20]. So far, this is a substantial bottleneck for the performance of our
decoding procedure. Choosing a certain lattice, where the CVP can efficiently
be solved by an adapted algorithm, could be subject to further research. �
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Figure 9.10: Effective noise for each lattice codeword over time.

1 decoded_inner = []
2 ilength = inner_code.length()
3 c_inner = len(payload) / ilength
4 for x in xrange(c_inner):
5 c = payload[x*ilength:x*ilength+ilength]
6 qc = inner_code.fine_lattice.quantize(c)
7 mc = inner_code.coarse_lattice.mod(qc)
8 w = inner_code.decode(mc)
9

10 decoded_inner += w.list()

A correct lattice codeword is obtained as long as the noise does not leave
the Voronoi region of the fine lattice, i.e., the quantization results in a correct
lattice point. As typical for block codes, the minimal distance between any
two codewords is a figure-of-merit on how much noise is acceptable for error-
free decoding. The same holds for lattice codes, where the minimal distance
corresponds to half of the packing radius. We show the distance of the received
lattice codewords from the expected lattice codewords of one payload block in
Fig. 9.10. The distance corresponds to the noise power. As long as the noise
power is less than half of the minimal distance of the nested lattice code, the
lattice codewords are obtained without error. We can see in Fig. 9.10 that all
lattice codewords are correctly obtained in this particular example.

Having decoded the lattice codewords, we have a sequence of bits. Those
bits will be re-packed to symbols in F28 and then can be decoded by the outer
Reed-Solomon code.
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1 # bit to symbols
2 symbols = []
3 c_symbols = len(decoded_inner) / 8
4 F = outer_code.base_ring()
5 for x in xrange(c_symbols):
6 l = decoded_inner[x*8:x*8+8]
7 symbols.append(F(l))
8

9 # decode outer code
10 symbols = sagelib.vector(symbols)
11 message = outer_code.decode_to_message(symbols)

9.6 Challenges and Pitfalls

A lot of challenges occurred during the implementation. Some of them have
been solved but others are still open. We want to stress that the goal of this
chapter is a proof of concept. That means, we want to show that it is possible
to realize a communication with compute-and-forward. Therefore, we leave
the optimization of algorithms and the evaluation of parameter sets to further
research. In the following, we explain the most important challenges.

Maximum Amplitude

The hardware we used accepts only samples with a maximum amplitude of one.
Higher amplitudes are cut off. Therefore, the signal needs to be normalized.
There are basically two ways to normalize the amplitude. We can either

normalize each codeword according to its highest amplitude, or we can normalize
each codeword according the highest amplitude of the code. Normalizing each
codeword separately has the advantage that the maximal possible amplitude of
that codeword is utilized. This is beneficial in terms of SNR because the whole
amplitude range is utilized. However, the normalization has to be revoked at the
receiver. Therefore, we would need to guess the normalization factor somehow
from the received codeword. This is not possible with the current encoding
scheme. One might overcome this issue by choosing a lattice coding scheme
such that the normalization factor can be recovered from the relative sample
values. However, the easiest solution is to normalize each codeword by the same
normalization factor, which is chosen to be the largest possible amplitude for
all codewords in the codebook. This will possibly waste SNR for codewords
that only have samples with small amplitudes, but it has the advantage that the
receiver knows the normalization factor and can revoke it. However, the receiver
would not even need to revoke the normalization because the normalization
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factor is equal for all codewords and could be interpreted as part of the channel.
Since we estimate the channel values from the training sequences, which are
not normalized by the same factor, we have to revoke the normalization at the
receiver in our setup.

Hardware Parameters

There are many hardware parameters that can be adjusted and need to be set
correctly. The most important ones are the carrier frequency and the sample
rate, which we choose to be 2.45GHz and 625 kHz, respectively. The carrier fre-
quency needs to be within a range that is supported by the USRPs (see Table 9.1).
However, the sample rate has to be chosen according to several hardware param-
eters. Since all three USRPs are connected to the host computer by Ethernet, they
share the bandwidth of the Ethernet interface, which is approximately 1Gbit/s.
Further, there are some hardware limitations as stated in the Application Notes
on the Ettus Research website:

It is important to understand that strictly-integer decimation and
interpolation are used within USRP hardware to meet the requested
sample-rate requirements of the application at hand. That means
that the desired sample rate must meet the requirement that master-
clock-rate / desired-sample-rate be an integer ratio. Further, it is
strongly desirable for that ratio to be even.

There are further constraints on the desired sample rate, such that
if the required decimation or interpolation exceeds 128, then the
resulting decimation must be evenly divisible by 2, and that if the
required decimation exceeds 256, the resulting decimation must be
evenly divisible by 4. [88]

The complex signal that is sent to the USRPs consists of 32-bit samples (16 bit
for the real part and 16 bit for the imaginary part). With a sample rate of
625 kHz, we get a data rate of 20Mbit/s. That is the data rate without package
overhead for one device that has to be provided by the host computer. If the
host computer is not able to provide that data rate because of limited Ethernet
bandwidth or its own limited computational performance, underflow errors will
occur. Since we have three devices, we get a total data rate of 60Mbit/s over
the Ethernet interface. This is below the maximum Ethernet bandwidth. But
keep in mind that there will be additional overhead for packaging the samples.
We find that a sample rate of 625 kHz is the maximum in our hardware setup in
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order to avoiding overflows and underflows. It also fulfills the requirement that
the decimation is evenly divisible by two, since we have

100MHz

625 kHz
= 160. (9.7)

But sample rate and carrier frequency are not the only parameters that need
to be adjusted. Two very important parameters are the transmit and receive
gain, which can be chosen from 0 dB to 30 dB. An obvious choice is to chose
the transmit gain as high as possible to provide a good receive SNR. However,
the path loss in our setup is not very high. If we set the transmit gain to the
maximum value, the receiver get into a state of overdrive because both transmit
signals will get superposed and their powers add up.

Floating Point Arithmetic

Due to the fact that most decimal fractions cannot be represented by binary
fractions, all decimal fractions are stored as approximations in the system. In
most cases, the approximation is close enough to not bother the programmer. It
becomes interesting for algorithms that rely on comparisons. In our case, the
CVP falls in this category. When we design the nested lattice code, it is possible
that lattice points in the fine lattice lay on the border of the Voronoi region
of the coarse lattice. This is valid but the lattice points have to be assigned to
the Voronoi regions in a systematic manner. A systematic manner is already
provided by the algorithm, which compares the distances of the lattice points
always in the same order and manner. However, depending on the previous
calculations and the floating point approximations therein, we will not get a
lattice point that exactly lays on the border of a Voronoi region. A very small
floating point approximation error will result in a serious decoding error. This
can be overcome by limiting the number of significant digits for the comparisons
or using different python modules such as decimal or fraction.

Time Consumption

The focus of the current implementation is not on efficiency. As already men-
tioned, the used algorithms for encoding and decoding are not optimized. The
bottleneck in performance is the lattice quantization and the modulo operation.
Both require to solve a CVP, which is np-complete in general. Therefore, the
implementation is relatively slow. A possible improvement is the optimization of
the algorithm for a certain lattice code. However, that is left for further research.
Since we use very short lattice codes, we need quite a lot of iterations to

encode a frame with the inner code. This results in a large total time for the



128 Chapter 9 Implementing PLNC – From Theory to Practice

lattice encoding. As an example, we encode a bitmap with 22 400 pixels. The
average time needed for encoding one lattice codeword is 1.05ms. However,
we do this 148 410 times, which results in a total time of 156.48 s. The average
encoding time for a codeword of the Reed-Solomon code is 3.00ms. Due to the
larger field size and the larger code dimension, it takes only 291 iterations to
encode all frames, which results in a total time of 0.87 s. Although increasing
the dimension of the lattice code might reduce the number of iterations needed
for encoding, the time needed by the encoding algorithm will increase in a non-
linear way. Therefore, there will be a trade-off between the number of iterations
and the code dimension. One promising parameter is the field size. Increasing it
will reduce the number of iterations. However, there will be additional overhead
due to more complex operations over the larger field, which will result in a
higher time consumption, and there will be a trade-off again.
Further, finding the optimal network coding coefficients is also very slow for

a large amount of users. However, this needs to be done only at the beginning
of a transmission if we assume that the channel is constant for a certain amount
of time.
We also find that the overhead introduced by SageMath is significant. It

is a very convenient tool for developing and testing algorithms, because it
provides a lot of functionality like vector and matrix operations, etc. However,
it is not designed to handle real-time applications. In order to bring the signal
processing closer to real-world applications, a native implementation of all the
signal processing steps is necessary.
We measured the encoding and decoding rates on an Intel i5 Quad-Core CPU

with 3.1GHz. However, our implementation is not designed for multithread-
ing. Therefore, it uses only one core. With these preconditions, we get an
encoding rate of approximately 3.4 kbit/s and a decoding rate of approximately
1.5 kbit/s.

9.7 Example Transmission

In the following, we show an example transmission of two pictures to a relay
and the received superposition at the relay. The respective pictures are shown
in Fig. 9.11. We do not transmit the files as a whole but use only the pixel data
of the pictures. Therefore, we do not have to deal with an unreadable file if the
meta or header information of the file are not decoded correctly. Further, we
can directly see the superposition of the pixels, which would not be possible if
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(a) Picture transmitted by
user 1.

(b) Picture received by the
relay.

(c) Picture transmitted by
user 2.

Figure 9.11: Decoded superposition of two pictures.

the meta information of the files are also superposed because this would result
in an invalid file.
The files are bitmaps with 8 bit RGB encoding, which fits perfectly in our

encoding scheme since we use a symbol size of 28 for the outer code. The pixel
data is sequentially read line by line. Since we have a multi-band image, we
flatten the input stream such that every third symbol contains the value of the R
band, followed by the G band and the B band. In order to avoid zero-padding in
the outer code, we use a (255, 231) Reed-Solomon code instead of a (255, 235)
code. However, any code with a dimension divisible by three is a good choice.
In the example transmission, the channel coefficients are measured to be 0.131

and 0.133 for user 1 and user 2, respectively. Since the channel coefficients are
almost identical, the relay can decode a superposition with coefficients (1, 1).
This equals an XOR of the bits, and we can see the result in Fig. 9.11b.

9.6 Remark. We chose the encoding such that we can see the result as an XOR
combination of the image data. If we choose different finite fields for the inner
and outer codes, the result would be different and not as nicely visible as shown
in Fig. 9.11. Further, we could treat the image file as a binary file and transmit
its data. Again, we would not be able to visualize the superposition as nicely.�

As alreadymentioned, a lot of time is spent for encoding and decoding the data.
We show the 30most time consuming python methods in Figs. 9.12 and 9.13. For
better comparison, we normalize the time to the most time consuming method.
We can see that the lattice encoding and decoding take the most time. However,
a very significant amount of time is spent in methods that just provide data
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models for finite fields, vector and matrix arithmetic, etc. Therefore, we can
conclude that it is not sufficient to optimize the algorithms, we additionally need
a more efficient implementation of the methods provided by SageMath.
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Chapter 10

Open Topics

In this thesis, we combine different techniques to solve problems related to
physical-layer network coding. During the research for this thesis, we came
across some problems and interesting topics that we did not investigate. In the
following sections, we describe some of those topics to provide a starting point
for further research. We also discuss possible improvements and enhancements
for the topics we described in this thesis.

10.1 Optimizing Network Coding Coefficients

The problem of finding the optimal network coding coefficients for a lattice
encoded superposition has been discussed in Part II. Thereby, we focused on
the lattice equations to find the optimal coefficients. But in the end, we are
interested in a linear combination in the message space, which is usually a
finite field. The requirement of linear independent lattice equations is only
a necessary but not a sufficient condition to fulfill the requirement of linear
independent equations in the message space. Because two linear independent
vectors with elements in Z are not necessarily independent if the elements
are transformed to elements in Fp. Take the example of messages from Fk

2 ,
where the coefficients are within F2. Two lattice equations with coefficients
(1, 1) ∈ Z2 and (1, 3) ∈ Z2 are linearly independent. However, both vectors
transform to (1, 1) in F2

2 and are consequently linearly dependent. If the field
size is large enough, the probability that this happens vanishes. For practical
systems however, the field size cannot be arbitrarily large. Therefore, studies
are needed that investigate the decoding error probability on the message level.
Further, the field size could be an additional constraint for the algorithms that
optimize the coefficient vector. Since a finite field contains only a finite number
of elements, it will be more efficient to solve the shortest-vector problem (SVP)
over the finite field instead of solving it over Z. However, the objective function
of the optimization problem has to be adjusted because the computation rate
depends on the lattice coefficients and not on the message coefficients.
Another question arises regarding the optimization criterion. All algorithms

optimize the coefficient vector with respect to the maximal computation rate.
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However, this computation rate is derived using infinite block length and will
not be achieved in practical systems. Therefore, one might ask if this is the right
optimization criterion for real-life applications. Another criterion could be the
outage probability.

10.2 Untrusted Relay Channel

In Part III, we discussed untrusted relay channels and the achievable secrecy
rate. Therein, we looked at multi-antenna scenarios but did not investigate the
MIMO case. From the results for the SIMO case, we concluded that multiple
antennas at the relay decrease the secrecy rate since the eavesdropper has more
degrees of freedom. However, providing the legitimate users with an equal or
higher amount of antennas might be beneficial again. This could be subject to
further investigations.

10.3 Two-Way Relay Channel with External Eavesdropper

It is also possible to extend the scheme proposed in Chapter 7 to two-way relay
channels with an external eavesdropper. This means that the relay is a trust-
worthy node but somewhere in the communication range there is a malicious
node, which eavesdrops the communication. This eavesdropper has ηe antennas
and is passive, which means it does not interfere with the communication. It
receives the following signals in the MAC and BC phase, respectively,

ye1 = g1x1 + g2x2 + ze1, (10.1)

ye2 = g3xr + ze2, (10.2)

where g1, g2, g3 ∈ Rηe and ze1, ze2 ∼ N (0, Iηe
). In the first phase, the eaves-

dropper has two decoding options:

• aiming for the individual messages, or

• aiming for the linear combination of the messages.

In the second phase, it might get the linear combination that the relay decoded in
the first phase. If the eavesdropper can decode two different linear combinations
in the two phases, it is able to obtain the individual messages. The first phase
can be protected by following the approach in Chapter 7. In the second phase,
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the relay sees a classical wiretap channel, for which the secrecy capacity is well
known [55, 77] and given by

RCF
BC,s � RCF

BC − 1
2 log2(1 + ‖g3‖2P ). (10.3)

Therefore, there are two possible protection strategies:

• We could allow the eavesdropper to decode a linear combination in the
MAC phase and use a wiretap code in the BC phase to ensure that the
eavesdropper does not get the linear combination decoded by the relay.

• We could alter the wiretap coding scheme in the MAC phase such that the
eavesdropper is not able to decode a linear combination nor the individual
messages. Thus, it is not necessary to protect the BC phase.

The interesting part is the MAC phase, where we need to secure the transmission.
The following definitions correspond to the two strategies, respectively.

10.1 Definition (Weak Joint Secrecy). A transmission of two messages w1, w2

from two users to a relay is said to be weakly secure for joint secrecy if the
following condition is met:

lim
n→∞

1
nI(W1,W2;Y

n
e ) = 0, (10.4)

where Y n
e is a random variable representing the received signal at the eaves-

dropper. �

10.2 Definition (Weak Sum Secrecy). A transmission of two messages w1, w2

from two users to a relay is said to be weakly secure for sum secrecy if the
following conditions are met simultaneously:

lim
n→∞

1
nI(W1,W2;Y

n
e ) = 0, (10.5a)

lim
n→∞

1
nI(WΣ;Y

n
e ) = 0, (10.5b)

where Y n
e is a random variable representing the received signal at the eaves-

dropper, andWΣ = W1 ⊕W2 is a random variable representing the sum of the
transmitted messages. �

How to ensure weak joint secrecy can directly be derived from the proof in
Section 8.6, which results in the following theorem.
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10.3 Theorem. In a MAC with an external eavesdropper, the following joint
secrecy sum-rate

Rs1 +Rs2 ≤ RCF,I
MAC � 2RCF(h, a)− 1

2 log2 det(I +GMACP ) (10.6)

is achievable under an average transmit power constraint ‖xj‖2 ≤ nP with
j ∈ {1, 2, r} and GMAC � g1g

′
1 + g2g

′
2. �

If the eavesdropper aims for a linear combination wΣ in the first phase, it
tries to decode a linear combination ve of lattice codewords, from which it can
determine the linear combination of messages. The linear combination of lattice
codewords is given by

ve = [b1x1 + b2x2] mod ΛC . (10.7)

The eavesdropper can successfully decode ve if the communication rates of the
user nodes are below the achievable computation rate at the eavesdropper, i.e.,

R1 ≤ RCF(GCF, b), (10.8a)

R2 ≤ RCF(GCF, b), (10.8b)

where

RCF(GCF, b) = −1

2
log2(b

′V DV ′b) (10.9)

with V ∈ R2×2 being the right matrix of eigenvectors of GCF, and D ∈ R2×2

being a diagonal matrix with elements

Dii =

{
1

Pλi+1 i ≤ rank(GCF)

1 i > rank(GCF)
, (10.10)

where λi is the i-th eigenvalue of G′
CFGCF, and GCF is the channel matrix

from the users to the eavesdropper (see [46, 47] for details). Intuitively, this
results in the following conjecture.

10.4 Conjecture. In a MAC with an external eavesdropper, the following se-
crecy sum-rate

Rs1 +Rs2 ≤ min
{
RCF,I

MAC, R
CF,II
MAC

}
(10.11)

is achievable under an average transmit power constraint ‖xj‖2 ≤ nP with
j ∈ {1, 2, r} and

RCF,I
MAC � 2RCF(h, a)− 1

2 log2 det(I +GMACP ),

RCF,II
MAC � 2RCF(h, a)− 2RCF(GCF, b). �
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Figure 10.1: Achievable secrecy sum-rate with the proposed CF scheme for dif-
ferent eavesdropper locations.

The two rates RCF,I
MAC and R

CF,II
MAC correspond to the strategies of decoding the

individual codewords or a linear combination of codewords at the eavesdropper,
respectively. However, proving this conjecture is not trivial. Although, the steps
are the same as in Section 8.6, we need to calculate the mutual information
between the sum codeword Xn

Σ and the received signal Y
n
e . In order to be able

to calculate this mutual information, we need the probability density function
of Y n

e , which is hard to calculate. Using a Gaussian distribution as an upper
bound is not helpful because the bound is too loose. Therefore, the proof of
Conjecture 10.4 remains an open topic.

If we assume that it is possible to prove Conjecture 10.4, we can investigate
the achievable secrecy sum-rate depending on the positions of the nodes. This
is shown in Fig. 10.1, where the user nodes and the relay are positioned in
a line and the eavesdropper takes an arbitrary position. All simulations are
performed with a transmit SNR equal to 10 dB for all users. The channel gains
are proportional to 1/d2, where d denotes the distance between the users (large
scale fading). The user nodes are positioned at (−1, 0) and (1, 0), whereas the
relay is located at (0, 0). The eavesdropper has one antenna.

It is interesting to note that around the user nodes there is an area where no
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(a) Amplify-and-forward.
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(b) Decode-and-forward.

Figure 10.2: Achievable secrecy sum-rate for different eavesdropper locations.

secure transmission is possible or only at a very low rate. In contrast, it is still
possible to transmit data securely if the eavesdropper is close to the relay. This
is similar to the results in Chapter 7.

In almost all cases, our simulations show that the eavesdropper is either
not able to decode a linear combination or can only decode the same linear
combination as the relay. Therefore, it is not necessary to protect the BC phase,
and the sum secrecy constraint in the MAC phase can be removed. Only at a
very few positions between the relay and the user nodes, the eavesdropper can
decode a different linear combination than the relay and therefore either the BC
phase needs to be protected or the sum secrecy constraint has to be used in the
MAC phase such that the eavesdropper does not get a linear combination. Of
course, this behavior depends on the concrete setup and the topology and has
to be investigated for different positions of the user nodes and the relay.

In Fig. 10.2a, we show the achievable secrecy sum-rate with an amplify-and-
forward (AF) scheme. When we compare Fig. 10.1 and Fig. 10.2a, we can see that
the CF scheme outperforms the AF scheme. In Fig. 10.2b, we show the achievable
secrecy sum-rate with a decode-and-forward (DF) scheme. This scheme is again
outperformed by our CF scheme.
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10.4 Implementation

In Part IV, we described a compute-and-forward implementation. Therein,
we have already discussed a lot of possible improvements, such as algorithm
optimization, implementation optimizations, etc. Nevertheless, we have a setup
that allows us to evaluate certain system parameters. Especially the used codes
can be varied, and their performance can be investigated. Table 10.1 lists some
lattices up to dimension 5 and their properties, which are computed by the lattice
implementation of pyncsim. Since we primarily choose the coarse lattice, which
is responsible for shaping the nested lattice code, it is beneficial to choose a
lattice with a shaping gain γS larger than one. However, the influence of the
lattice properties in a real-life system needs to be evaluated.
Further, we have a concatenation of an inner and an outer code. Certainly,

there will be a trade-off between the error correction properties of both codes.
If there mostly are sample errors that are equally distributed over the received
signal, it might be beneficial to correct those errors by the lattice code and
therefore use a lattice code with a large Voronoi region. However, if the errors
occur in bursts, it might be beneficial to correct them on the outer code level since
the size of a symbol might be larger than the burst. Therefore, one burst error
might result in only one symbol error but will affect a lot of lattice codewords.
The influence of the combination of both codes should be further investigated.
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Table 10.1: Some lattices and their properties.

Name n Δ dmin Vol det γS γC

A1* 1 0.5 1 1 1 1 1
A1 1 0.5 1.4142 1.4142 2 1 1
D1 1 0.5 1 1 1 1 1
Z 1 0.5 1 1 1 1 1
HZ40 2 0.7854 1 1 1 1 1
D2 2 0.7854 1.4142 2 4 1 1
D2* 2 0.7854 0.7071 0.5 0.25 1 1
Z2 2 0.7854 1 1 1 1 1
BGF.2.414 2 0.8112 2 3.873 15 0.851 1.0328
A2* 2 0.9069 1.4142 1.7321 3 1.0393 1.1547
A2 2 0.9069 1.4142 1.7321 3 1.0393 1.1547
D3* 3 0.5101 0.866 0.5 0.25 0.8296 1.1906
A3* 3 0.5101 1.7321 4 16 0.8296 1.1906
mcc 3 0.5208 1.0987 1 1 0.7644 1.2071
zcc 3 0.5236 2 6 36 0.9718 1.2114
D3 3 0.5554 1.4142 2 4 1.0583 1.2599
A3 3 0.5554 1.4142 2 4 1.0582 1.2599
Z4 4 0.3084 1 1 1 1 1
E(14) 4 0.3525 2 14 196 0.6267 1.069
S(7) 4 0.3965 1.7321 7 49 0.415 1.1339
A4* 4 0.4414 2 11.1803 125 0.7449 1.1963
QQF.4.b 4 0.4486 2 11 121 0.7664 1.206
QQF.4.f 4 0.4828 2.4495 23 529 0.5929 1.2511
A4 4 0.5517 1.4142 2.2361 5 1.0681 1.3375
D4* 4 0.6169 1 0.5 0.25 0.9376 1.4142
D4 4 0.6169 1.4142 2 4 0.9376 1.4142
F4 4 0.6169 1.4142 2 4 0.9376 1.4142
A5* 5 0.2395 2.2361 36 1296 0.6794 1.1925
A5 5 0.3561 1.4142 2.4495 6 1.0733 1.3977
D5 5 0.4362 1.4142 2 4 0.8046 1.5157
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Conclusion

This thesis provides a contribution to the field of physical-layer network coding.
We investigated an L×M ×K relay network with L source nodes,M relay
nodes, and K sink nodes, where the relay nodes perform network coding on
the physical layer. We focused on the compute-and-forward framework, which
provides a coding scheme based on nested lattice codes to enable physical-
layer network coding. We showed that physical-layer network coding and
compute-and-forward in particular are key enabling technologies to allow secure
communication in the information-theoretic sense via an untrusted relay. We
derived an achievable secrecy rate region and showed that this secrecy rate
region is the difference between the MAC capacity region and the achievable
compute-and-forward rate region. Further, it is interesting that reducing the
transmit power can increase the achievable secrecy rate. We investigated the
influence of multiple antennas on the achievable secrecy rate and concluded
that multiple antennas at the user nodes increase the achievable secrecy rate
significantly, whereas multiple antennas at the relay are counter-beneficial.

Within the compute-and-forward framework, it is crucial to find the optimal
network coding coefficients, which depend on the channel realizations. In this
thesis, we proposed a branch-and-bound algorithm to solve this problem. We
studied the optimization problem and characterized the solution set. Although
faster algorithms have been developed after the first publication of our algorithm
[109], the branch-and-bound structure of our proposed algorithm makes it
easy to adapt it to additional constraints on the solution set, e.g., non-zero
coefficients. Therefore, we used this algorithm in our studies on the global
optimization of the network coding coefficients. We described the problem of
local optimization, i.e., the linear dependence of codeword combinations at the
sink nodes in a larger network. We proposed different strategies that guarantee
enough linear independent combinations such that the sink nodes can decode
the individual codewords. We investigated the influence of spatial correlation
on the outage probability of these schemes and showed that spatial correlation
plays a crucial role in the performance of the different schemes. However, our
proposed schemes are robust against spatial correlation and perform well under
these conditions.



144 Chapter 11 Conclusion

We implemented the compute-and-forward framework with software-defined
radio and demonstrated the practical feasibility. Although the performance can
significantly be enhanced if we improve the implementation, we gained valuable
insights into the encoding and decoding in a realistic setup. We highlighted the
most time-consuming steps in the encoding and decoding process and pointed
out possible improvements.
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Appendix A

Lattices and Lattice Codes

In this chapter, we introduce the basic definitions used in lattice theory. A very
exhaustive overview of lattices and their properties is given by Conway and
Sloane in [22]. A list of all known lattices can be found in [29]. There is a good
introduction to lattice codes given by Zamir in his journal paper [34]. More
recently, he wrote a very good book on lattice coding for signals and networks
[35]. The most important definitions that are used to introduce the compute-and-
forward framework can also be found in [40]. The following sections provide a
summary of the previously mentioned references.

A.1 Lattices

A.1 Definition (Lattice). An n-dimensional lattice Λ is defined by a set of n
basis (column) vectors g1, . . . , gn ∈ Rm. The latticeΛ is composed of all integral
combinations of the basis vectors, i.e.,

Λ = {G′z : z ∈ Zm}, (A.1)

where the n×m generator matrix G is given by G = (g1, . . . , gn). �

A.2 Remark. The generator matrix G is not unique for a given lattice Λ. �

Definition A.1 implies lattice properties that are important for channel codes,
i.e.,

• Λ ⊂ Rn,

• if s, t ∈ Λ, then s+ t ∈ Λ,

• if s ∈ Λ, then −s ∈ Λ,

• if λ ∈ Λ, then Λ = λ+ Λ, i.e., lattices are shift-invariant,

• Λ is an algebraic group, and

• 0 ∈ Λ, i.e., the null vector is always a lattice point.
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1

1

G

1

1

Figure A.1: Linear transformation of point (1, 1).

A lattice is spanned by the n basis vectors gi ∈ Rm as stated in Definition A.1.
Therefore, a lattice is an image of the integer lattice Zn according to a linear
transformation of the vector space Rn with the linear operator G. This trans-
formation is visualized in Fig. A.1. The parallelotope that consists of all points

a1g1 + · · ·+ angn, with ai ∈ [0, 1), for all i ∈ {1, 2, . . . , n} (A.2)

is called a fundamental parallelotope. A fundamental parallelotope is one example
of a fundamental region of a lattice. If such a region is repeated throughout the
n-dimensional space, it covers the whole space, and each copy contains only
one lattice point.
Another example of a fundamental region is the fundamental Voronoi region.

We define a quantizer that maps all points in R to the nearest lattice point with
respect to the Euclidean distance.

A.3 Definition (Nearest-Neighbor Quantizer). Let Λ be a lattice in n-dimen-
sional space and x ∈ Rn. The nearest-neighbor quantizer Q is defined as

Q(x) � argmin
λ∈Λ

‖x− λ‖. (A.3)
�

A.4 Definition (Quantization Error). The quantization error can be expressed
by the modulo-Λ operation with respect to the lattice, which is defined as

x mod Λ = x−Q(x). (A.4)
�

For all s, t ∈ Rn and Λ ⊆ Λ1, the modΛ operation satisfies:

[s+ t] mod Λ = [[s] mod Λ + t] mod Λ, (A.5)
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(a) Lattice.
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Figure A.2: The plane is divided into fundamental parallelotopes of a two-
dimensional lattice.

[QΛ1
(s)] mod Λ = [QΛ1

([s] mod Λ)] mod Λ, (A.6)

[as] mod Λ = [a[s] mod Λ] mod Λ for all a ∈ Z, (A.7)

β[s] mod Λ = [βs] mod βΛ for all β ∈ R. (A.8)

Now, we can define the Voronoi region as follows.

A.5 Definition (Voronoi Region). The basic or fundamental Voronoi region of
a lattice Λ is the set of all points in Rn closest to the zero point, i.e., V0 = {x :
Q(x) = 0}. The Voronoi region associated with each � ∈ Λ is the set of all
points x such that Q(x) = �, and it is given by a shift of V0 by �. �

There are several possible ways to define a basis and a fundamental region
of a lattice Λ. However, the volume of the fundamental region is unique for a
given lattice. The square of the volume of the fundamental region is called the
determinant of the lattice and is an important characterization of the lattice.
The matrix

M � GG′ (A.9)

is called Gram matrix of the lattice. The (i, j)-th entry is the inner product of
the basis vectors gigj of the lattice. Thus, the determinant of a lattice Λ is the
determinant of the matrixM ,

det(Λ) = det(M). (A.10)
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Figure A.3: Integer Lattice Z2.

If G is a square matrix, this simplifies to

det(Λ) = [det(G)]2. (A.11)

A.6 Example (Integer Lattice Z2). The integer lattice Z2 has the identity ma-
trix as a generator matrix, i.e.,

ΛZ2 = {I2z | z ∈ Z2}. (A.12)

Therefore, the determinant is

det(ΛZ2) = [det(I2)]
2 = 1, (A.13)

and the volume of the fundamental region is also 1. �

A.7 Example (Root latticeA2). The root lattice A2 has the following genera-
tor matrix

GΛA2
=

(
1 0
1
2

1
2

√
3

)
. (A.14)

The Gram matrix is

M = GG′ =
(
1 1

2
1
2 1

)
, (A.15)
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Figure A.4: Root lattice A2.

and the determinant is

det(ΛA2
) = [det(GΛA2

)]2 = 3
4 . (A.16)

Therefore, the volume of the fundamental region is
√

3
4 . �

The generator matrix in Example A.7 looks not very nice, and sometimes it is
beneficial to use the following generator matrix:

G̃ΛA2
=

(
1 −1 0
0 1 −1

)
. (A.17)

The Gram matrix is then given by

M̃ = G̃G̃′ =
(

2 −1
−1 2

)
, (A.18)

and the determinant is now det(ΛA2
) = 3. Both Eqs. (A.14) and (A.17) describe

the hexagonal lattice A2 but with different coordinates and a different scaling.
Equation (A.17) describes a two-dimensional lattice in a three-dimensional space
that lies in the plane x + y + z = 0. We call both lattices equivalent. It can
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be shown that any lattices generated by generator matrices G1 and G2 are
equivalent if and only if there exist matricesW and U such that

G2 =

(
V2

V1

) 1
n

WG1U, (A.19)

where all elements of W are integers, W has determinant ±1, and U is or-
thonormal. V1 and V2 represent the volume of the lattices generated by G1 and

G2, respectively. The coefficient (V2/V1)
1/n takes care of scaling,W of basis

change, and U of rotation and / or reflection.

A.8 Definition (Packing). The set Λ+ rB is called a packing for a given radius
r if

(x+ rB) ∩ (y + rB) = ∅ (A.20)

holds for all lattice points x, y ∈ Λ with x �= y, where B is the unit ball in
Euclidean space. �

This means that the balls do not overlap.

A.9 Definition (Packing Radius). The packing radius rpackΛ of a lattice is defined
as

r
pack
Λ � sup{r : Λ + rB is a packing}. (A.21)

�

The packing radius rpackΛ is the radius of the largest n-dimensional ball in Eu-
clidean space that lays completely within the Voronoi region V0.

A.10 Definition (Covering). The set rB consisting of balls centered at a lattice
point is called a covering of Euclidean space if

R ⊆ Λ + rB. (A.22)
�

This means that every point in space is covered by at least one ball.

A.11 Definition (Covering Radius). The covering radius rcovΛ of a lattice is de-
fined as

rcovΛ � min{r : Λ + rB is a covering} (A.23)
�
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r
pack
Λ

reffΛ

rcovΛ

Figure A.5: Lattice point with Voronoi region and the respective radii.

The covering radius rcovΛ is the radius of the smallest n-dimensional ball in
Euclidean space that covers the complete Voronoi region V0.

A.12 Definition (Effective Radius). We call reffΛ the effictive radius of a lattice
if

VB(reffΛ ) = Vol (V) , (A.24)

where VB(r) is the volume of a ball with radius r. �

There are several figure-of-merits to characterize a lattice. The following are
related to the Voronoi region.

• The volume Vol (Λ) of a lattice Λ is defined to be the volume of the
fundamental region of the lattice and can be calculated by

Vol (Λ) =
√

det(GG′) =
√
det(Λ). (A.25)

• The density Δ(Λ) of a lattice Λ is the proportion of space that is occupied
by the balls that form a packing and can be calculated by

Δ(Λ) =
volume of one ball

volume of the fundamental region
. (A.26)

• The packing efficiency is the ratio of the packing radius and the effective
radius, i.e.,

ρpack(Λ) �
r
pack
Λ

reffΛ
. (A.27)

It follows that 0 ≤ ρpack(Λ) ≤ 1.
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• The covering efficiency is the ratio of the covering radius and the effective
radius, i.e.,

ρcov(Λ) �
rcovΛ

reffΛ
. (A.28)

It follows that ρcov(Λ) ≥ 1.

A.2 Lattice Constellations

Lattices are infinite. For coding however, we need a finite number of codewords
that meet the power constraint. Therefore, we cut a finite number of lattice
points out of the lattice and form a lattice constellation.

A.13 Definition (Lattice Constellation). A lattice constellation C(Λ, R) is a
countable number of points of a lattice Λ (or a shifted version Λ + x with
x ∈ Rn) which lay within a closed and bounded region R of the n-dimensional
space, i.e.,

C(Λ, R) = (Λ + x) ∩R, x ∈ Rn. (A.29)
�

A.14 Remark. The region R is called shaping region. �

A.15 Example (4-PAM). The 4-ary pulse amplitude modulation is an example
of a lattice constellation with the following values:

Λ + λ = Z+ 1
2 ,

R = [−2, 2].

− 3
2 − 1

2
1
2

3
2

−2 20
�

A.16 Example (16-QAM). The 16-ary quadrature amplitude modulation is an
example for a lattice constellation with the following values:

Λ + λ = Z2 +
(
1
2 ,

1
2

)
,

R = [−2, 2]2.

−2 2

−2

2

�
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A.17 Definition (Minimal Distance). The minimal distance dmin of a lattice
constellation C is the minimal distance between any two points in the constel-
lation, i.e.,

dmin = min
x∈C
y∈C

‖x− y‖. (A.30)
�

Let x ∈ C be a point in the lattice constellationC , and let |C| be the cardinality
of C . The average energy of all constellation points is

E
[‖x‖2] = 1

|C| ‖x‖
2. (A.31)

We assume a uniform distribution of the lattice points within the shaping region
R, i.e.,

Pr(x) =

{
1

Vol(R) x ∈ R

0 otherwise
, (A.32)

where Vol (R) specifies the volume of the shaping region R. Then, we can
calculate the average energy per dimension of the region R as

P (R) =

∫
R

1

Vol (R)

‖x‖2
n

dx.

probability distribution

normalize by dimension

energy of x

(A.33)

This is equivalent to the second moment of the region. Therefore, it is often
denoted by σ2. We define the normalized second moment of a shaping region
R as follows

G(R) =
P (R)

Vol (R)
2/n

. (A.34)

A.18 Remark. Assume that the shaping region is scaled by α. Then, P (R)
scales with α2 and Vol (R) with αn. It follows that G(R) is independent of the
scaling. �



156 Appendix A Lattices and Lattice Codes

A.19 Example. Lets have a look at the 1-dimensional space and the region
R = [−1, 1]. The volume of this region is Vol (R) = 2 and the average energy
per dimension or the second moment of the region can be calculated as follows

P (R) =

∫ 1

−1

1

2
x2dx =

[
1

6
x3

]1
−1

=
1

3
. (A.35)

The normalized second moment is given by

G([−1, 1]) =
1
3

22
=

1

12
. (A.36)

�

A.20 Remark. The normalized second moment of am-cube that is centered
at the origin is independent from its scaling and namely

G([−1, 1]m) =
1

12
. (A.37)

�

With the previous definitions, we can define two figure-of-merits of a lattice
constellation, which are especially important for coding. The first one is the
shaping gain, which provides a statement regarding the shaping region of the
constellation. It quantifies the average reduction in energy with respect to the
m-cube and is defined as follows

γS(R) =
1
12

G(R)
. (A.38)

The second figure-of-merit refers to the lattice of the constellation. The (nominal)

coding gain indicates the increase of the density of the lattice with respect to
the integer lattice Zn and is defined as follows

γC(Λ) =
d2min(Λ)

V (Λ)2/n
. (A.39)

A.21 Remark. The nominal coding gain is invariant regarding scaling. Lets
assume that the lattice is scaled by α. Then, dmin is scaled by α and Vol (Λ) is
scaled by αn. It is easy to see that γC(Λ) is independent of the scaling α. �
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Figure A.6: A lattice constellation and two alternative constellations that illus-
trate the shaping and coding gain. All three constellations have the
same minimal distance, and each has 256 points [78].

A.3 Nested Lattice Codes

In Appendix A.2, we showed how to use lattices for coding. So far, a lattice
constellation consists of a lattice and an arbitrary shaping region. However, the
shaping region can be chosen to be the fundamental Voronoi region of another
lattice. This leads to the concept of nested lattices and nested lattice codes.

A.22 Definition (Nested Lattice). A pair of n-dimensional lattices (Λ1,Λ2) is
called nested if Λ2 ⊂ Λ1, i.e., there exist corresponding generator matrices G1

and G2 such that
G2 = G1J, (A.40)

where J ∈ Zn×n and det(J) > 1. �

The volumes of the Voronoi regions of Λ1 and Λ2 satisfy

V2 = det(J)V1, (A.41)

where V2 = Vol (V0,2) and V1 = Vol (V0,1). We call
n
√
det(J) = n

√
V2/V1 the

nesting ratio.

A.23 Definition (Coset Leader). The points of the set

Λ1 mod Λ2 � Λ1 ∩ V0,2 (A.42)

are called the coset leaders of Λ2 relative to Λ1. �
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For each v ∈ {Λ1 mod Λ2}, the shifted lattice Λ2,v = v + Λ2 is called a coset
of Λ2 relative to Λ1. There are V2/V1 = det(J) different cosets.

A.24 Definition (Nested Lattice Code). A nested lattice code L is the set of all
points of a fine lattice Λ1 that are within the fundamental Voronoi region V of
a coarse lattice Λ, i.e.,

L = Λ1 ∩ V = {λ mod Λ, λ ∈ Λ1}. (A.43)
�

The probability of decoding error is the probability that the noise leaves the
Voronoi region of the transmitted lattice point, i.e.,

Pe = Pr{z /∈ V0}. (A.44)

A.25 Definition (Volume-to-Noise Ratio). The volume-to-noise ratio (VNR) of
a lattice at probability of error Pe is defined as

μ(Λ, Pe) =
Vol (V)2/n

σ2
, (A.45)

where σ2 is chosen such that Eq. (A.44) is satisfied with equality. �

The minimum possible value of μ(Λ, Pe) over all lattices in Rn is denoted by
μn(Pe). It follows from a paper by Poltyrev [30] that

lim
n→∞μn(Pe) = 2πe, ∀ 0 < Pe < 1. (A.46)

A.3.1 Construction A

There have been several algebraic constructions proposed to obtain lattice codes.
The one used throughout the thesis is called Construction A. For more detailed
information on algebraic constructions for lattices, we refer the reader to [22,
Ch.8]. In the following, we provide a summary of Construction A, where we
follow the presentation in [40].

1. Use a coarse lattice Λ of dimension n scaled such that its second moment
is equal to P . Let B ∈ Rn×n denote the generator matrix of this lattice.

2. Draw a matrix GL ∈ Fn×kL
p with every element chosen i.i.d. according

to the uniform distribution over {0, 1, . . . , p− 1}. Recall that p is prime.



A.3 Nested Lattice Codes 159

3. Define the codebook CL as follows:

CL = {GLw : w ∈ FkL
p }. (A.47)

All operations in this step are over Fp.

4. Form the lattice Λ̃ by projecting the codebook into the reals by

g : Fp → {0, 1, . . . , p− 1}, (A.48)

scale it down by a factor of p, and place a copy at every integer vector.
This tiles the codebook over Rn, i.e.,

Λ̃ = p−1g(C) +Zn. (A.49)

5. Rotate Λ̃L by the generator matrix of the coarse lattice to get the fine
lattice for transmitter L, i.e.,

ΛL = BΛ̃L. (A.50)

6. Repeat all steps for each transmitter � = L− 1, L− 2, . . . , 1 by replacing
GL with G�, which is defined to be the first k� columns of GL.

A.26 Remark. The generator matrix B of the coarse lattice is the transforma-
tion matrix of the coarse lattice regarding the integer lattice. �
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Two-Way Relay Channel Sum-Rate

In this chapter, we provide the mathematical background for Fig. 1.1. We inves-
tigate a two-way relay channel as depicted in Fig. B.1. All channel coefficients
are assumed to be one as well as the noise power. The SNR, which is defined as
the ratio of transmit and noise power, is equal for all nodes. The compute-and-
forward scheme decodes a linear combination with coefficients a = (1, 1). The
achievable rates are obtained as stated below.

1. Phase: MAC

1 R 2
h1 h2

2. Phase: BC

1 R 2
h1 h2

Figure B.1: Two-way relay channel.

B.1 Upper Bound

As an upper bound, we assume the interference-free communication, i.e., only
one node sends at a time. It can be derived as follows.

Phase 1

R1 =
1

2
log2(1 + h2

1P1) (B.1)

R2 =
1

2
log2(1 + h2

2P2) (B.2)

Phase 2

Rr1 =
1

2
log2(1 + h2

1Pr) (B.3)

Rr2 =
1

2
log2(1 + h2

2Pr) (B.4)
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Sum-rate

R1 +R2 = min{R1, Rr1}+min{R2, Rr2} (B.5)

B.2 Decode-and-Forward

A relay that uses the Decode-and-forward strategy decodes both transmitted
symbols in the MAC phase. Therefore, it uses SIC. The decoded messages are
linearly combined to a new codeword and broadcasted to the receivers. The
receivers can subtract their own messages to get the message of the other user.

Phase 1

R1 =
1

2
log2

(
1 +

h2
1P1

1 + h2
2P2

)
(B.6)

R2 =
1

2
log2(1 + h2

2P2) (B.7)

or

R1 =
1

2
log2(1 + h2

1P1) (B.8)

R2 =
1

2
log2

(
1 +

h2
2P2

1 + h2
1P1

)
(B.9)

Phase 2

Rr =
1

2
log2(1 + min{h2

1, h
2
2}Pr) (B.10)

Sum-rate

R1 +R2 =
min{R1, Rr}+min{R2, Rr}

2
(B.11)

B.3 Amplify-and-Forward

A relay that uses the Amplify-and-forward strategy forwards the received signal
after amplifying it. The user nodes can subtract their own signal and decode the
signal of the other user. The noise at the relay is also amplified and forwarded.

Phase 1

yr = h1x1 + h2x2 + zr (B.12)
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α =

√
Pr

h2
1P1 + h2

2P2 + nr
(Amplification Factor) (B.13)

Phase 2

y1 = h1 α yr + z1 (B.14)

y2 = h2 α yr + z2 (B.15)

Sum-rate

y1 = h1 α (h1x1 + h2x2 + zr) + z1 (B.16)

x̂2 = h1 αh2x2 + h1 α zr + z1 (B.17)

SNR1 =
h2
1h

2
2α

2P2

h2
1α

2nr + n1
(B.18)

SNR2 =
h2
1h

2
2α

2P1

h2
2α

2nr + n2
(B.19)

R1 +R2 =
1
2 log2(1 + SNR1) +

1
2 log2(1 + SNR2)

2
(B.20)

B.4 Compute-and-Forward

A relay that uses the Compute-and-forward strategy decodes a linear combina-
tion of the transmitted symbols with the help of lattice codes. It does not need
to decode the individual symbols.

Phase 1

RCF =
1

2
log+2

((
‖a‖2 − P (h′a)2

1 + P‖h‖2
)−1

)
(B.21)

Phase 2

Rr = min

{
1

2
log2(1 + h2

1Pr),
1

2
log2(1 + h2

2Pr)

}
(B.22)

Sum-rate

R1 +R2 =
min{2RCF , 2Rr}

2
(B.23)
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