
Expressing Context-Free Tree Languages

by Regular Tree Grammars

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Markus Teichmann

geboren am 15. September 1989 in Halle (Saale)

eingereicht am 28. Oktober 2016
verteidigt am 12. April 2017

Betreuer:
Prof. Dr.-Ing. habil. Dr. h.c./Univ. Szeged Heiko Vogler

Technische Universität Dresden

Gutachter:
Prof. Dr.-Ing. habil. Dr. h.c./Univ. Szeged Heiko Vogler

Technische Universität Dresden

Prof. Dr. Frank Drewes
Umeå University

Abstract

In this thesis, three methods are investigated to express context-free tree languages by
regular tree grammars. The first method is a characterization. We show restrictions
to context-free tree grammars such that, for each restricted context-free tree grammar,
a regular tree grammar can be constructed that induces the same tree language. The
other two methods are approximations. An arbitrary context-free tree language can be
approximated by a regular tree grammar with a restricted pushdown storage. Furthermore,
we approximate weighted context-free tree languages, induced by weighted linear nondeleting
context-free tree grammars, by showing how to approximate optimal weights for weighted
regular tree grammars.

Contents

1 Introduction 1
1.1 Tradeoff between Expressiveness and Computational Complexity 2
1.2 Characterization in a Less Expressive Formalism 6
1.3 Approximation . 7
1.4 Training . 8
1.5 The Structure of this Thesis . 10

2 Preliminaries 11
2.1 Foundations . 11
2.2 Context-Free Tree Grammars and Regular Tree Grammars 16

3 Non-Self-Embedding CFTGs 23
3.1 Characterization of Self-Embedding CFTGs 26
3.2 Movement of Values in Argument Positions 31

3.2.1 Position Graph . 31
3.2.2 Uniqueness in Argument Positions 33

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs 37
3.3.1 Transforming a Top-Recursive SCC into Bottom-Recursive SCCs . . 38
3.3.2 Transforming a Top-Recursion-Free lnCFTG into a RTG 49
3.3.3 Main Theorem . 51

3.4 Relationship to the String Case . 51
3.5 Alternative Proof of Regularity . 52

3.5.1 Construct a Family of RTGs . 52
3.5.2 Combine the Family of RTGs . 54

3.6 Non-Self-Embedding deleting lCFTGs . 63
3.7 Non-Weakly-Self-Embedding CFTGs . 64
3.8 Non-Self-Embedding MACs . 68
3.9 Overview . 72
3.10 Remarks on Non-Self-Embedding lnCFTGs 74

4 Approximation of Arbitrary CFTGs 77
4.1 Context-Free Tree Grammars with Storage 79
4.2 Approximation of a CFTG by a RTG . 81

5 Training of Regular Tree Grammars 91
5.1 Tree-Shaped Derivations . 93
5.2 Weighted lnCFTGs and Weighted RTGs . 94
5.3 Expected Frequencies . 95
5.4 Intersection of a (w)lnCFTG and a (w)RTG 97
5.5 Training of the Optimal Weight Assignment 102
5.6 Remarks . 109

6 Conclusion and Further Research 111

v

1 Introduction

The motivation for this thesis stems from the field of natural language processing. In
particular, we consider the area of machine translation. The goal of this area is to translate
sentences of a natural language as described in the following. An input sentence in one
natural language, e.g., English, is given. This input sentence is transformed into a sentence
of a second language, e.g., French. The machine translation process is split into three steps:

• Modeling : The data structure and algorithms used for the translation are specified.

• Training : The model is fitted to best suit given training data.

• Decoding : Given an input sentence, a translation is obtained.

Formal grammars can be used through all three steps. There are many ways to model
the structure of one language and to model the transformation of sentences into their
translation. There is the well-known source-channel model (cf., e.g. [7, Sec. 2]) which
considers the target sentence as a transformation of the source sentence through a noisy
channel. The goal is to retrieve the source sentence given the target sentence (effectively
reversing source and target language). Furthermore, the translation in this model is split
into (i) a translation model between the two natural languages and (ii) a language model of
the source side.

The translation model describes how sentences are translated. It can be realized as a
synchronous grammar which synchronously generates a pair of sentences; one in each lan-
guage. A prominent example is a synchronous context-free string grammar (cf. transduction
grammar in [42]). The language model determines the grammaticality of a given natural
language sentence. A variety of grammar formalisms have been proposed as the basis for a
language model.

In this work, we relate two specific formal grammars, viz. context-free tree grammars
and regular tree grammars. The choice in formalisms is motivated by the following two
contradicting objectives in natural language processing:

• Maximizing the expressive power of the applied formalisms to model complex linguistic
features, and

• minimizing the computational complexity to allow for efficient training and decoding.

Context-free tree grammars can express some interesting linguistic phenomena, e.g. cross-
serial dependencies or unbounded scrambling. Furthermore, they generalize existing for-
malisms. However, they cannot be used for efficient decoding. In contrast, regular tree
grammars are less expressive but require less computational effort for decoding. In Sec-
tion 1.1, the resulting tradeoff is explained by showing different grammar formalisms, their
ability to model language phenomena and the required computational power for decoding.
We will present methods how the language induced by an expressive grammar formalism can

1

1 Introduction

be expressed by a computational easier one. One possibility is to (automatically) analyze
whether a specific instance of a grammar formalism does indeed utilize its full expressive
capabilities. If this is not the case, the modeled formal language can be transformed into
one that can be handled more easily. This is outlined in more detail in Section 1.2. Fur-
thermore, in Section 1.3 we describe that a computationally favorable grammar formalism
can be used to approximate a more expressive one that is used to allow detailed modeling.
Lastly, we outline how weights for approximations can be obtained in Section 1.4. All three
methods have been investigated for string grammars. In this thesis, we lift the results to
tree-generating formalisms, viz. context-free tree grammars and regular tree grammars.

1.1 Tradeoff between Expressiveness and Computational
Complexity

We describe the tradeoff between expressiveness and computational complexity in the choice
of grammar formalisms. For this, we outline how grammar formalisms evolved in research,
show their limitations and their computational complexity. The resulting tradeoff motivates
the choice in formalisms for this thesis and why it is worthwhile to express context-free tree
languages by regular tree grammars.

Chomsky [11] defined a well-known hierarchy of grammar formalisms. Regular string
grammars (REGs) are the simplest proposed form of a grammar. They generate regular
string languages which can be parsed in linear time based on the size of the input (cf.
e.g. [30, Sec. 4.3.3]). Regular string grammars have a very restricted expressive power and
fail to describe certain languages with an unbounded number of long-distance relations
between symbols, e.g., the language of all palindromes (cf., e.g., [30, Sec. 5.1.1]). It has
been shown that English contains such non-local dependencies and thus, regular grammars
are not well-suited to describe natural languages [9].

Non-local dependencies can partly be modeled by context-free string grammars (CFGs).
For example, we present the CFG M1 with the rules

B0 → aB0a | bB0b | a | b | ε

where B0 is a nonterminal, a and b are terminals, and ε is the empty word (cf. Section 2.1
for a formal definition of CFGs). The CFG M1 generates all palindromes over the alphabet
containing a and b. The parsing time for CFGs is cubic in the size of the input (cf. e.g. [30,
Thm. 7.33]). There was a long-lasting discussion whether CFGs can be used to capture
all linguistic phenomena [56]. A final negative answer was found by showing features in
certain natural languages that cannot be captured by context-free string languages [64].
The example given in [64] is a Swiss-German sentence that has the structure akbℓakbℓ

where a and b are terminals, and k and ℓ are natural numbers. This language is not
context-free [30] and employs a linguistic phenomenon called cross-serial dependency. Thus,
research focused on grammar formalisms that can express more details of a sentence. There
are two orthogonal approaches. First, grammar formalisms are considered that induce
string languages which are more expressive than context-free string languages. Second,
tree-generating grammar formalisms that annotate a sentence with information about its
structure are employed. We will present examples of both approaches and show how the
computational complexity increases with improved modeling capabilities.

2

1.1 Tradeoff between Expressiveness and Computational Complexity

String Grammars Inducing Context-Sensitive String Languages

In the Hierarchy of Chomsky [9], context-sensitive string languages have an increased
expressive power compared to context-free string languages. Linear context-free rewriting
systems [69] and multiple context-free grammars (MCFG) [63] are two examples of string
grammar formalism that can induce string languages which are context-sensitive but not
context-free. However, their increased expressive power comes with higher computational
cost. For example, MCFGs can be parsed in time O

(
n(r(M)+1)·φ(M)

)
[63, 27] where n

denotes the size of the input, M is the grammar under consideration, r(M) denotes the
maximal rank of a nonterminal in M , and φ(M) is the maximal fan-out of a nonterminal
in M . We note that CFGs are special MCFGs with rank 2 and fan-out 1. This confirms
that the parsing time of CFGs is in O(n3). It has been shown that the higher the fan-
out of a MCFG, the more expressive is the corresponding grammar [63, Thm. 3.4] while
simultaneously the complexity of parsing grows.

Multiple context-free grammars and linear context-free rewriting systems are mildly
context-sensitive formalisms [69, 62]. Such formalisms allow modeling cross-serial dependen-
cies, have a constant growth, and can be parsed in polynomial time. This is an important
restriction for decoding [34, Sec. 6.3.3].

We illustrate how to generate the context-sensitive language containing all words of the
form akbℓakbℓ and simultaneously describe outside-in macro grammars (MACs) introduced
in [20] as another grammar formalism that can describe context-sensitive string languages.
We present the MAC M2 and let it contain the rules

A0 → A(ε, ε) , A(x1, x2)→ A(ax1, ax2) | B(x1, x2) ,

and B(x1, x2)→ B(x1b, x2b) | x1x2

where A0, A, and B are nonterminals, a and b are terminals, and x1 and x2 are variables
(cf. Section 3.8 for a formal description of macro grammars). We note that in a MAC,
nonterminals are considered as ranked symbols and may have arguments. A derivation
step of M2 applies to an outermost occurrence of A′(s1, . . . , sk) of a nonterminal A′ and its
arguments s1, . . . , sk as follows. We replace A′(s1, . . . , sk) by the right-hand side of a rule
with left-hand side A(x1, . . . , xk) where each variable xi is replaced by si. The MAC M2

generates the word aab aab via the derivation

A0 ⇒ A(ε, ε)⇒ A(a, a)⇒ A(aa, aa)⇒ B(aa, aa)⇒ B(aab, aab)⇒ aab aab .

We note that MACs are not mildly context-sensitive formalisms, since they can violate
the constant growth property by duplicating argument values, e.g., using the rule A(x1)→
A(x1x1). Furthermore, it has been shown that parsing of MAC is NP-complete, i.e., there
might be no polynomial parsing algorithm (cf., [57, Prop. 2] for indexed languages and [20,
Thm. 4.2.8] for equivalence of indexed languages and outside-in macro languages).

3

1 Introduction

Tree-Generating Grammars

We now describe grammar formalisms that augment a sentence with information about its
structure by utilizing trees. As an example, we consider the tree (cf. [45, Fig. 3.1])

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

N

door

that represents the sentence ’the boy saw the door’ together with its grammatical structure.
The sequence of leaves of a tree read from left to right is called the yield of that tree. Thus,
the sentence is the yield while each interior node is labeled by a syntactic category that is
associated with the subtree below the node. For example, the part of the tree rooted in
the node labeled VP is a verb phrase, and consists of a verb (V) and a noun phrase (NP).
Such structural and grammatical information can improve the language model and help to
resolve ambiguity within a sentence. In this thesis, we abstract from syntactic categories
and use Greek symbols as nodes of a tree, since we are interested in the capabilities of
formal grammars and not in specific details of one natural language.

A CFG can be used as a tree-generating formalism by considering the derivation trees
instead of the derived strings. However, using this approach, a CFG can only describe
local tree languages [26, p. 33]. Thus, it seems worthwhile to investigate tree-generating
formalisms that overcome this limitation. Regular tree grammars (RTGs) [6] generate
trees that can model non-local dependencies. The right-hand side of a rule in a RTG is
a tree whose leaves might contain nonterminals. The tree generated by each nonterminal
occurrence replaces the respective nonterminal occurrence. As an example, we present the
RTG H1 that uses nonterminals B0 and B1, terminals α, β, σ, and κ, and the rules

B0 →
κ

B1 B1
, B1 →

σ

α B2

⏐⏐⏐⏐⏐ σ

B2 β

⏐⏐⏐⏐⏐ α
⏐⏐⏐⏐⏐ β , and B2 →

σ

α B1

⏐⏐⏐⏐⏐ σ

B1 β
.

We refer to Section 2.2 for a formal definition of RTG. Informally, an occurrence of a
nonterminal B′ is replaced with the right-hand side of a rule whose left-hand side is B′.
A derivation starts from the initial nonterminal B0 and derives until there are no more
nonterminal occurrences. In each rule, nonterminals may only occur at the leaves of the
right-hand side. Hence, nonterminals cannot occur nested, i.e., below one another in rules
or in a derivation. By a close inspection of the rules of H1, it can be seen that the yield
of each tree in the induced tree language of H1 has the form αkβℓαmβn where k, ℓ, m,
and n are natural numbers such that k + ℓ+m+ n ≥ 2 and k + ℓ+m+ n is even. We
note that an even number of leaves requires an even number of σ’s in the tree. This is a
non-local tree property which cannot be modeled by CFGs considered as a tree-generating
formalism. However, it has been proved that the yield of the trees generated by a RTG can
also be generated by a CFG [26, Prop. 14.3]. Hence, concerning only the language at the

4

1.1 Tradeoff between Expressiveness and Computational Complexity

yield, RTGs are as expressive as CFGs. It is thus not surprising that parsing in a RTG, i.e.,
finding the set of trees that yield a certain string, can be done in the same time as parsing
of that string in a CFG, viz. O(n3) [44, Sec. 5.1].

As discussed before, a natural language is not context-free [64] and thus, tree-adjoining
grammars (TAGs) [35] were considered. They induce a tree language whose yield is a
context-sensitive language [35, 33] and they can be parsed in time O(n6) [68, Sec. 3.4].
Furthermore, TAGs are a mildly-context-sensitive formalism [34]. Tree adjoining grammars
correspond to a special subclass of context-free tree grammars. We will first informally
recall context-free tree grammars and then explain the connection to TAG. Context-free
tree grammars (CFTGs) [58, 18, 26] generalize RTGs by allowing nonterminals to have
arguments. Those arguments contain trees over nonterminals and terminals and thus,
nonterminals may occur nested. This generalization corresponds to the generalization of
CFGs by MACs. We present the CFTG G1 that uses nonterminals A0 and A, terminals α,
β, σ, and κ, variables x1, x2, x3, and x4, as well as the four rules

A0 →
A

α β α β
A(x1, x2, x3, x4)→

A

σ

α x1

x2 σ

x3 α

x4

⏐⏐⏐⏐⏐⏐⏐⏐
A

x1 δ

β x2

x3 δ

x4 β

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2 x3 x4

where A0 is the initial nonterminal. We refer to Section 2.2 for a formal definition of a
CFTG. Deriving a tree works similarly to the case for MACs. A rule with left-hand side
A′(x1, . . . , xk) can be applied at an occurrence of A′(ξ1, . . . , ξk) where A′ is a nonterminal
and ξ1, . . . , ξk are the trees in the argument positions of A. Then this occurrence is replaced
by the right-hand side of the rule and each xi is replaced by ξi. For example, the derivation

A0 ⇒
A

α β α β
⇒

A

σ

α α

β σ

α α

β ⇒

A

σ

α σ

α α

β σ

σ

α α

α

β
⇒

κ

σ

α σ

α α

β σ

σ

α α

α

β

generates a tree with the yield α3βα3β. By a close inspection of the rules of G1, it can
be seen that the yield of each tree in the tree language induced by G1 has the form
αk+1βℓ+1αk+1βℓ+1 where k and ℓ are natural numbers. This corresponds to the string
akbℓakbℓ from the Swiss-German example mentioned at the beginning of this section.
However, there is more information encoded in the tree. Each time two α’s are produced
by a rule application, they are linked due to their position in the tree, i.e., the tree encodes
that the leftmost α and the rightmost α in the yield correspond. This connection cannot be
represented at the level of the yield. Note that in G1 no argument positions are copied or
deleted, i.e., each variable from the left-hand side occurs exactly once in the right-hand side.
Thus, we say that G1 is a linear nondeleting CFTG (for short: lnCFTG) [36, 37]. We call a
CFTG linear monadic if all nonterminals use at most one variable and each variable occurs
at most once in the right-hand side of the rules. Monadic CFTGs have been investigated
in [22, 23, 43]. Linear monadic CFTGs can express the same tree languages as TAGs [21,
38] and there is a direct construction between both formalisms [24].

It can be seen that CFTGs combine both extensions of CFGs discussed before: The
yields of the tree languages induced by CFTGs go beyond context-free string languages and

5

1 Introduction

CFTGs can describe the grammatical structure of a natural language sentence by means
of a tree. From this viewpoint, they are well-suited as a formalism for a language model.
Furthermore, synchronous CFTGs can be used as a translation model [52, 53]. However,
since the yield of a context free tree language (using outside-in derivation mode) is an
outside-in macro language (cf. [58, p. 113] and [15, Thm. 7.17]), the NP-hardness result for
parsing transfers. This motivates to investigate how the tree languages induced by CFTGs
can be expressed by means of RTGs, which are computationally more feasible.

1.2 Characterization in a Less Expressive Formalism

The tradeoff between expressive power of a formalism and the rise in computational
complexity, explained in Section 1.1, motivates to investigate whether the expressive power
enabled by a formalism is indeed used by a given instance. As an example, we consider the
CFG M3 that contains the rules

B0 → aB0a | aB0b | bB0a | bB0b | ε .

It is clear that M3 is not a REG since there is a rule such that in its right-hand side there
is a terminal to the right of a nonterminal symbol. However, the language induced by M3

is the set of all strings s over a and b such that the number of letters in s is even. Trivially,
the REG M4 with the rules

B0 → aB1 | bB1 | ε B1 → aB0 | bB0

induces the same string language. Hence, M3 does not fully utilize the expressive power
enabled CFGs, since there is a REG that induces the same string language. We say that
we characterize the context-free language induced by M3 by the REG M4 and thus show
that the language induced by M3 is a regular string language.

In general, it is undecidable whether the language induced by a CFG can be recognized
by a REG [30, Thm. 8.15]. Thus, it is worthwhile to find a sufficient and decidable criterion
for CFGs such that CFGs fulfilling this criterion induce a regular string language. Such a
decidable criterion was found by Chomsky in [11]. A CFG is called self-embedding if there
is a derivation A⇒∗ sAt where A is a nonterminal, and s and t are arbitrary, nonempty
strings over terminals and nonterminals. Any CFG that does not fulfill this property
induces a regular language [11]. The undecidability result from [30] transfers directly to the
tree case, i.e, it is undecidable whether a given CFTG entails a regular tree grammar. In
this thesis, criteria for CFTG analogous to self-embedding in the string case are explored,
i.e., we investigate under which conditions the tree language induced by a CFTG can be
characterized by a RTG. A characterization is the strongest form of expressing a context-free
tree language by a RTG, since no information is lost.

Main Contributions. The following list enumerates the main contributions of this thesis
regarding the topic described in this section. The first four contributions are mainly based
on the article “Non-Self-Embedding Linear Context-Free Tree Grammars Generate Regular
Tree Languages” by Nederhof, Teichmann, and Vogler [51]. Thus, these contributions are
also attributed to my coauthors.

6

1.3 Approximation

• I define a decidable property for linear CFTGs called self-embedding (cf. Definition 3.1.1
and Corollary 3.1.8).

• I show that the tree language induced by a non-self-embedding linear CFTG can be
characterized by a RTG (cf. Theorem 3.3.11 for the case of lnCFTGs and Theorem 3.6.2
for the case of linear CFTGs).

• I define a decidable property for CFTGs called weakly-self-embedding (cf. Defini-
tion 3.7.8).

• I show that the tree languages induced by a non-weakly-self-embedding CFTG can
be characterized by a RTG (cf. Theorem 3.7.12).

The following three contributions are an extension to the work presented in [51].

• I present an alternative proof of regularity of the tree language induced by a non-self-
embedding lnCFTG (cf. Theorem 3.5.23).

• I show that there are regular tree languages induced by non-self-embedding lnCFTGs
such that, for each of those tree languages, the size of the inducing lnCFTG is
exponentially smaller than the size of the smallest equivalent RTG (cf. Lemma 3.10.2).

• I define the property self-embedding for linear MAC (cf. Definition 3.8.6) and the
property weakly-self-embedding for MAC (cf. Definition 3.8.10). Furthermore, I show
that the language induced by a non-self-embedding linear MAC or a weakly-non-self-
embedding MAC can be characterized by a CFG (cf. Corollary 3.8.9 and 3.8.13).

1.3 Approximation

For modeling a natural language it is beneficial to utilize an expressive grammar formal-
ism. However, for decoding it might suffice to approximate the induced language in a
computationally favorable grammar formalism. For decoding, it is not desired to reject
grammatical sentences. Hence, this thesis concentrates on superset approximations. A
superset approximation of a language L is a grammar G such that L(G) ⊇ L where L(G)
denotes the language induced by G. The approximation can be used either (i) to perform
the whole decoding on the approximation, or (ii) to narrow down the search space during
decoding and to perform a costly search only on the remaining elements.

As an example, we recall the CFG M1 from Section 1.1 that generates all palindromes
using the terminals a and b. We present the REG M5 with the rules

B0 → aB1 | bB2 | a | b | ε , B1 → aB1 | bB1 | a , and B2 → aB2 | bB2 | b .

It can be seen that each string in the language of M5 has the same terminal at the start
and at the end. For strings with at least two terminals, the first terminal is encoded
into the nonterminals of M5, i.e., B1 represents that the string starts with an a and B2

represents a b as the first terminal. Then, the nonterminal ensures that the string ends
with the respective terminal. Thus, each string with a length smaller than three is indeed a
palindrome. Furthermore, each string that can be generated by M1, can also be generated

7

1 Introduction

by M5. However, the REG M5 can generate strings that are not in the language of M1,
e.g., we have that abaa is a word in L(M5), but it is clearly not a palindrome. Hence, we
have L(M1) ⊆ L(M5).

In order to utilize the computational efficiency of REG, several approximations of context-
free languages by REG have been investigated (cf., e.g., [3, 4, 55, 28, 47]). In this thesis,
we lift the concept of approximation to tree-generating grammars and describe a method
to approximate the tree languages induced by a CFTG by means of a RTG. In this way, we
express a context-free tree language by a RTG. For this, we first employ the characterization
of the language induced by a CFTG in terms of a RTG extended by a pushdown [29,
17]. Intuitively, the characterization is obtained by traversing the rules of the CFTG and
storing information about the state of the traversal in the pushdown. The pushdown
contains a history of return addresses that describe in which rule and at which position of
its right-hand side the traversal concerning one nonterminal was started. Once the rules for
a nonterminal are explored, the traversal continues at the rule and position indicated in
the most recent return address.

Second, the characterization can be turned into an approximation by limiting the
pushdown of return addresses. Old return addresses on the pushdown are forgotten if the
pushdown exceeds a fixed height. Then, if a return address is needed while the pushdown
is empty, a possible return address is nondeterministically guessed. It is intuitively clear
that an increased bound on the pushdown improves the quality of the approximation. We
will show this by presenting a hierarchy of approximations.

Main Contributions. The following are the main contributions of this thesis regarding
approximation.

• I show that a superset approximation can be obtained from the already known charac-
terization of a CFTG by a RTG with associated pushdown storage (cf. Lemma 4.2.8).

• I develop a hierarchy of superset approximations by restricting the set of possible
pushdown configurations (cf. Theorem 4.2.16).

1.4 Training

We also contribute to the training step of machine translation. In this step, given a formal
grammar and training data, weights for the grammar are found such that the trained
grammar is suitable for translation or to measure the quality of a given sentence. The
result of the training step is a weighted grammar, which assigns a weight to each rule in
the grammar. Then a weighted grammar is used to assign a weight to each terminal object
(e.g., a string or a tree) as follows. A derivation is weighted by multiplying the weights of
all rule occurrences in the derivation. If there are multiple derivations for the same terminal
object, then the weights of all derivations for this object are summed up. For example,
recall the macro grammar M2 from Section 1.1. We note that for each word akbℓakbℓ, there
is only one derivation in M2. We assume a training set containing the words

aabaab , aaaabbaaaabb , and aaaaaabbbaaaaaabbb .

8

1.4 Training

Since M2 is a rather easy example, the best weights can be found by considering how often
the rules of M2 are used to derive the three training words and normalize this with the
count of all rules with the same nonterminal at the left-hand side. We obtain the following
weights, depicted in square brackets.

A0 → A(ε, ε) [
1

1
= 1]

A(x1, x2)→ A(ax1, ax2) [
12

15
=

4

5
] A(x1, x2)→ B(x1, x2) [

3

15
=

1

5
]

B(x1, x2)→ B(x1b, x2b) [
6

9
=

2

3
] B(x1, x2)→ x1x2 [

3

9
=

1

3
]

Since there is only one derivation for each word, M2 assigns the weight 1 · 45 ·
4
5 ·

1
5 ·

2
3 ·

1
3 =

32
1125 ≈ 0.028 to the word aabaab (cf. Section 1.1 for the corresponding derivation).

Usually, the training data is a finite set of samples [12]. However, it is also possible to train
a model using infinitely many samples given in the form of a grammar. For instance, in [12]
a weighted CFG is trained using a probability distribution over an infinite set of derivation
trees. In this thesis, we show another instance of training using infinitely many samples.
More precisely, we show how to obtain a weight assignment for the rules of a given RTG
such that the Kullback-Leibler (KL) divergence to a given weighted lnCFTG is minimal.
This serves two purposes as explained in the following. First, the weighted lnCFTG can
be seen as training data, the RTG as a model, and thus, the obtained weighted RTG is a
trained language model. Hence, a weighted context-free tree language is expressed by a
weighted RTG. Second, the weight training allows for qualified statements on the quality of
an approximation. Since an approximation, in general, generates an infinite amount of trees,
statements about the quality of an approximation based on language inclusions are often not
feasible. Several approximations might be incomparable based on their induced languages.
Using the KL divergence allows obtaining the best possible weighted approximation given
the fixed state behavior. The obtained minimal KL divergence can then also be used to
compare different approximations.

In more detail, a weighted RTG can be trained as described in the following. The
given weighted lnCFTG and unweighted RTG are combined into a weighted lnCFTG that
induces the tree language obtained by intersecting the tree languages induced by both given
grammars. During this process, the weights of the original lnCFTG are preserved. This
construction is a combination of existing results to intersect a lnCFTG and a RTG (cf.
[58, 59, 52, 53]). The intersection allows approximating expected rule frequencies for the
rules of the RTG. From the expected rule frequencies, we then obtain a weight assignment
and show that this is the optimal weight assignment regarding the KL divergence. This
approach is similar to the string case [12].

Main Contributions. The following list contains the main contributions of this thesis
regarding the training of weighted RTG. The work on this matter is mainly based on my
conference publication “Regular Approximation of Weighted Linear Nondeleting Context-
Free Tree Languages” [66].

• I present an adapted version of an existing construction to obtain a (weighted) lnCFTG
that induces the tree language obtained by intersecting the tree languages induced

9

1 Introduction

by, respectively, a (weighted) lnCFTG and a (weighted) RTG (cf. Theorem 5.4.2 for
the unweighted variant and Theorem 5.4.4 for the weighted case).

• Given a weighted lnCFTG and an unambiguous RTG, I show how to approximate
the best weights for the RTG according to the KL divergence (cf. Theorem 5.5.6).

1.5 The Structure of this Thesis

This thesis is structured as follows. Chapter 2 contains preliminaries and basic definitions
which are needed throughout different chapters. The main results of this thesis are found
in Chapters 3, 4, and 5. Chapter 3 describes in detail how to obtain tree properties similar
to self-embedding in the string case. It thus formalizes the idea described in Section 1.2.
Chapter 4 describes how a CFTG can be approximated by a RTG and thus implements
the idea discussed in Section 1.3. As the third and last main result, we show in Chapter 5
how to obtain the weight assignment for a RTG such that the weighted RTG is as close as
possible to a given weighted lnCFTG as described in Section 1.4.

Throughout this thesis, we try to use similar variable names or identifiers for similar
concepts. A table containing common names can be found in the naming scheme (cf.
Appendix 6). An index of important concepts can be found on page 118.

10

2 Preliminaries

In this chapter, we recall basic notions and introduce notation needed in this thesis.
Section 2.1 contains basic concepts. In Section 2.2, we recall the notions of context-free
tree grammars and regular tree grammars. Furthermore, we present known results centered
around these formalisms. These notions are crucial throughout the whole work and are
thus recalled in detail.

2.1 Foundations

A reader familiar with the basic notation, string grammars, graphs, and trees may skip this
section and consult it on demand.

Mathematical Notions

The set of natural numbers {0, 1, 2, . . .} is denoted by N and N+ = N \ {0}. The set of finite
sequences over N+ is denoted by N∗

+ (including the empty sequence). We let n ∈ N. Then
[n] = {1, . . . , n} and hence [0] = ∅. A permutation of [n] is a bijective function π : [n]→ [n]
and we denote π by its values as ⟨π(1), π(2), . . . , π(n)⟩. For a finite set A, we let |A| denote
the number of elements in A.

An alphabet is a non-empty finite set. The set of words over the alphabet Σ is denoted
by Σ∗ with ε being the empty word. Let v ∈ Σ∗, n ∈ N, i ∈ [n], and a1, . . . , an ∈ Σ such
that v = a1 . . . an. Then the i-th symbol of v, denoted by v(i), is v(i) = ai. The length
of v, denoted by |v|, is n. Any set L ⊆ Σ∗ is called a string language. The set of reals is
denoted by R and the set of positive reals by R≥0. The logarithm using base 2 is denoted
by log, and the natural logarithm is denoted by ln. Let U be a set. Then P(U) denotes
the powerset of U , i.e., the set of all subsets of U .

Let I and A be sets and f : I → A a function. We call f an I-indexed family over A (for
short: family), denoted by f = (fi | i ∈ I) with fi = f(i) ∈ A.

We fix an infinite list x1, x2, . . . of pairwise distinct variables, let X = {x1, x2, x3, . . .},
and let Xk = {x1, . . . , xk}. Furthermore, we abbreviate x1, . . . , xk to x1..k. We apply this
abbreviation also to sequences of other objects. Sometimes we will also use symbols different
from x1, x2, . . . to denote variables, such as z, z1, z2,

Context-Free String Grammars and Regular String Grammars

We recall context-free string grammars and regular string grammars [11].

Definition 2.1.1 A context free string grammar (CFG) is a tuple M = (N,Σ, B0, R)
where

• N is a finite set of nonterminals,

11

2 Preliminaries

• Σ is an alphabet of terminals such that N ∩ Σ = ∅,

• B0 ∈ N is the initial nonterminal, and

• R is a finite set of rules of the form B → s where B ∈ N and s ∈ (N ∪ Σ)∗. □

Definition 2.1.2 Let M = (N,Σ, B0, R) be a CFG. The derivation relation of M , denoted
by ⇒, is defined as follows. For strings s, t ∈ (N ∪ Σ)∗, we have s ⇒ t if there is a rule
of the form B → t′ such that s = s1Bs2 for some s1, s2 ∈ (N ∪ Σ)∗ and t = s1t

′s2. The
reflexive and transitive closure of ⇒ is denoted by ⇒∗.

The string language of M , denoted by L(M), is defined as L(M) = {s ∈ Σ∗ | B0 ⇒∗ s}.□

Definition 2.1.3 A regular string grammar (REG) is a CFG (N,Σ, B0, R) if, for each rule
B → s in R, we have that either s ∈ Σ∗, or s = tB for some t ∈ Σ∗ and B ∈ N . □

Graphs

We let Σ be an alphabet. A Σ-labeled directed graph (for short: graph) is a pair (V,E)
where V is a finite set of vertices and E is a finite set of edges satisfying E ⊆ V ×P(Σ)×V .
For each edge (v1, U, v2), we call U the label of (v1, U, v2). Let (V,E) be a graph. Sometimes
we denote the set of vertices by V(V,E) and the set of edges by E(V,E) or, if no confusion

arises, by →. Then (v1, U, v2) ∈ E(V,E) will also be abbreviated by v1
U→ v2 or just by

v1 → v2. We denote the reflexive closure of → by →∗. A path in (V,E) is a sequence
v1, v2, . . . , vn such that, for each i ∈ [n− 1], we have that vi → vi+1 is an edge in E. We
denote such a path by v1 → v2 → . . .→ vn.

We let (V,E) be a graph and V ′ ⊆ V . The V ′-fragment of (V,E), denoted by (V,E)|V ′ ,
is the graph (V ′, E ∩ (V ′ × P(Σ)× V ′)).

For each V ′ ⊆ V and P = (V,E)|V ′ , we say that P is strongly connected if, for each
v1, v2 ∈ V ′, we have v1 →∗ v2 and v2 →∗ v1 are paths in P . For each strongly connected
V ′-fragment P = (V ′, E′), we say that P is a maximal strongly connected component (SCC)
if there is no V ′′ ⊆ V such that V ′ ⊂ V ′′ and (V,E)|V ′′ is strongly connected. We denote
the set of maximal strongly connected components of (V,E) by scc((V,E)).

Trees

Definition 2.1.4 A ranked alphabet is a pair (∆, rk∆) where ∆ is an alphabet and
rk∆ : ∆→ N is a function. For every δ ∈ ∆, we call rk∆(δ) the rank of δ.

Sometimes, we write δ(k) to indicate that δ has rank k. We abbreviate the set rk−1
∆ (k) to

∆(k) and (∆, rk∆) to ∆, respectively, assuming that rk∆ is the rank function. □

In this work, ∆ denotes an arbitrary ranked alphabet. We assume that ∆ ∩X = ∅.

Definition 2.1.5 Let U be a set such that ∆ ∩ U = ∅. The set of trees over ∆ and U ,
denoted by T∆(U), is defined inductively as the smallest set T such that the following
conditions are satisfied.

• U ⊆ T .

12

2.1 Foundations

• For each k ∈ N, δ ∈ ∆(k), and ξ1..k ∈ T , we have δ(ξ1..k) ∈ T .

We abbreviate T∆(∅) by T∆. □

Definition 2.1.6 Any subset L ⊆ T∆(U) is called a tree language. □

Positions in trees are identified by Gorn addresses, represented by finite sequences over
N+. They allow addressing specific nodes in a tree.

Definition 2.1.7 We let ξ ∈ T∆(U). The set of positions of ξ, denoted by pos(ξ), is
defined inductively as follows:

(i) If ξ ∈ U , then pos(ξ) = {ε}, and

(ii) if ξ = δ(ξ1..k) for some δ ∈ ∆(k), k ∈ N, and ξ1..k ∈ T∆(U), then

pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ξi)} .

For W ⊆ pos(ξ) and w ∈W , we say that w is outermost in W if there is no w1 ∈W such
that w = w1w2 for some w2 ∈ N∗

+ \ {ε}. Since positions are finite sequences over N+, they
have a natural lexicographic ordering.

For a position w ∈ pos(ξ), the label of ξ at w and the subtree of ξ at w are denoted by
ξ(w) and ξ|w, respectively. For every U ′ ⊆ ∆∪U , we denote the set of positions of ξ labeled
by an element of U ′ by posU ′(ξ); if U ′ is a singleton {u}, then we simply write posu(ξ). □

Definition 2.1.8 Let U be a finite set with ∆ ∩ U = ∅. A context over ∆ and U is a tree
in T∆(U) in which each element u ∈ U occurs exactly once. The set of all such contexts is
denoted by C∆(U). □

Next, we introduce the property of a position to be variable dominating. Such a position
is a prefix of a position that is labeled by a variable.

Definition 2.1.9 Let ξ ∈ T∆(X), i ∈ N, xi ∈ X, and w ∈ pos(ξ). We say that w is
xi-dominating if ξ|w contains a position labeled xi. We call w variable dominating if it is
xi-dominating for some xi ∈ X. □

Tree concatenation. We recall the notion of tree concatenation that is similar to string
concatenation. Instead of adding another string to the right of an already existing one, we
replace nullary symbols in a tree and add trees in their place.

Definition 2.1.10 We let k ∈ N, u1..k ∈ U ∪∆(0) be pairwise distinct symbols, ξ ∈ T∆(U),
and ξ1..k ∈ T∆(U). We define the tree concatenation of ξ with ξ1..k at u1..k, denoted by
ξ[u1/ξ1, . . . , uk/ξk], as the tree obtained inductively on the structure of ξ as follows:

(i) ui[u1/ξ1, . . . , uk/ξk] = ξi for each i ∈ [k],

(ii) u[u1/ξ1, . . . , uk/ξk] = u for each u ∈ U \ {u1, . . . , uk}, and

(iii) δ(ζ1, . . . , ζℓ)[u1/ξ1, . . . , uk/ξk] = δ(ζ1[u1/ξ1, . . . , uk/ξk], . . . , ζℓ[u1/ξ1, . . . , Uk/ξk]) for
each ℓ ∈ N and δ ∈ ∆(ℓ) \ {u1, . . . , uk}.

13

2 Preliminaries

Furthermore, we let L1..k ⊆ T∆(U). Then the tree concatenation of ξ with tree languages
L1..k at u1..k is the tree language inductively defined by

(i′) ui[u1/L1, . . . , uk/Lk] = Li,

(ii′) u[u1/L1, . . . , uk/Lk] = {u} for each u \ {u1, . . . , uk}, and

(iii′) δ(ζ1, . . . , ζℓ)[u1/L1, . . . , uk/Lk] = {δ(ξ′1, . . . , ξ′ℓ) | ξ′1 ∈ ζ1[u1/ξ1, . . . , uk/ξk], . . . , ξ
′
ℓ ∈

ζℓ[u1/ξ1, . . . , uk/ξk]} for each ℓ ∈ N and δ ∈ ∆(ℓ) \ {u1, . . . , uk}.

Moreover, for each L ⊆ T∆(U), we define

L[u1/L1, . . . , uk/Lk] =
⋃

ξ∈L
ξ[u1/L1, . . . , uk/Lk] .

□

Tree concatenation is associative [18, Cor 2.4.2] and distributive over set union [18, p. 341].
Note that tree concatenation with trees yields a single tree, while tree concatenation with
tree languages yields a tree language. It is always clear from the context which tree
concatenation is used. Furthermore, note that we define tree concatenation with tree
languages in a way that multiple occurrences of the same ui (i ∈ [k]) are in general replaced
by different trees.

For convenience, we will use the following abbreviations. For every ξ ∈ T∆(Xk) and ξ1..k ∈
T∆(X), we abbreviate ξ[x1/ξ1, . . . , xk/ξk] by ξ[ξ1, . . . , ξk] or ξ[ξ1..k]. This abbreviation is
also used for ξ ∈ T∆(U) when U is a finite set other than Xk, provided elements in U are
ordered explicitly, or if U is a singleton. Moreover, we may write ξ[ui/ξi | i ∈ [k]] instead of
ξ[u1/ξ1, . . . , uk/ξk]. These abbreviations transfer directly to the case of tree concatenation
with tree languages.

Substitution. In the sequel, we also wish to substitute tree languages at symbols which
are not necessarily nullary. For this, we require the tree languages to be sets of contexts.
A more general version of this substitution is described in [5, pp. 195f]; the case here
corresponds to the special case using the Boolean semiring.

Definition 2.1.11 We let k ∈ N, δ1, . . . , δk ∈ ∆ be pairwise distinct, and L1, . . . , Lk ⊆
T∆(X) such that, for each i ∈ [k], we have Li ⊆ C∆(Xrk∆(δi)). We define the function
tr : T∆(X)→ P(T∆(X)) inductively on its argument as follows. For every ℓ ∈ N, δ ∈ ∆(ℓ),
and ξ1, . . . , ξℓ ∈ T∆(X) we have

tr(δ(ξ1, . . . , ξℓ)) =

{
Li[tr(ξ1), . . . , tr(ξℓ)] if δ = δi for some i ∈ [k],
δ(x1..ℓ)[tr(ξ1), . . . , tr(ξℓ)] otherwise,

and moreover, tr(x) = {x} for each x ∈ X. For each ξ ∈ T∆(X), we denote tr(ξ) by ξ ←
(δ1/L1, . . . , δk/Lk). We let L ⊆ T∆(X) and define the tree substitution of L1, . . . , Lk into L
at δ1, . . . , δk as the tree language L← (δ1/L1, . . . , δk/Lk) =

⋃
ξ∈L ξ ← (δ1/L1, . . . , δk/Lk).

Note that if δ1, . . . , δk ∈ ∆(0) ∪ X, then L ← (δ1/L1, . . . , δk/Lk) = L[δ1/L1, . . . , δk/Lk].
For k = 1, we abbreviate L← (δ1/L1) by L←δ1 L1. We may write L← (δi/Li | i ∈ [k])
instead of L← (δ1/L1, . . . , δk/Lk). Tree substitution is associative (cf. [5, Prop. 7] for the
Boolean semiring). □

14

2.1 Foundations

Strings as Unary Trees. We will compare some results for trees to corresponding results
in the string case. For this, we show how to represent a string as a tree.

Definition 2.1.12 Let Σ be an alphabet. The tree representation of Σ, denoted by Σ̃, is
the ranked alphabet Σ̃ = (Σ ∪ {♯}, rk

Σ̃
) where rk

Σ̃
(σ) = 1 for all σ ∈ Σ and rk

Σ̃
(♯) = 0.

Let s ∈ Σ∗ such that s = a1 . . . ak for some k ∈ N and a1, . . . , ak ∈ Σ. The tree
representation of s, denoted by s̃, is the tree s̃ = a1(a2(. . . ak−1(ak(♯)) . . .)) in T

Σ̃
. If s = ε,

then s̃ = ♯. □

If γ is a unary symbol, then we may write γn instead of the context γ(γ(. . . γ  
n times

(z) . . .)).

Furthermore, we write γn(ξ) instead of γn[ξ] for any tree ξ.

Yield and Path Language. We have shown how to represent a string as a tree. We note
that the tree representation of a string can be uniquely transformed into a string by reading
the symbols from the root to the single leaf ♯. In an arbitrary tree, there is one path from
the root to each leaf. These paths are the path language of that tree. In accordance with
[25, Def. 2.11.1], at each interior node we annotate at which child we continue.

Definition 2.1.13 Let L ⊆ T∆(U) be a tree language. The path language of L is the string
language L′ ⊆ (∆′ ∪ U)∗ obtained as follows where ∆′ =

⋃
δ∈∆{δ} × [rk∆(δ)] is considered

as an unranked alphabet. We let L′ =
⋃

ξ∈L f(ξ) where, for each ξ = δ(ξ1, . . . , ξk),

f(δ(ξ1, . . . , ξk)) =

{
{(δ, i)w | i ∈ [k], w ∈ f(ξi)} if δ ∈ ∆(k) and k > 0

{δ} if δ ∈ ∆(0) ∪ U
.

□

An alternative way of obtaining a string from a tree is taking the yield of a tree, i.e.,
reading the string of labels at its leaves (symbols in ∆(0) and U) from left to right.

Definition 2.1.14 Let ξ ∈ T∆(U). The yield of ξ, denoted by yield(ξ), is a string over
(∆(0) ∪ U)∗ inductively defined over the structure of the tree ξ = δ(ξ1, . . . , ξk) as

yield(δ(ξ1, . . . , ξk)) =

{
yield(ξ1) . . . yield(ξk) if δ ∈ ∆(k) and k > 0

δ if δ ∈ (∆(0) ∪ U)

Furthermore, we allow yield to be applied to tree languages by defining, for each L ⊆ T∆,
that yield(L) = {yield(ξ) | ξ ∈ L}. □

15

2 Preliminaries

2.2 Context-Free Tree Grammars and Regular Tree Grammars

We first formally define context-free tree grammars and regular tree grammars and then
recall closely connected results.

Definitions

Definition 2.2.1 A context-free tree grammar (CFTG) is a tuple G = (N,∆, A0, R) where

• N is a ranked alphabet of nonterminals,

• ∆ is a ranked alphabet of terminals such that N ∩∆ = ∅,

• A0 ∈ N (0) is the initial nonterminal, and

• R is a finite set of rules of the form A(x1..k) → ξ where k ∈ N, A ∈ N (k), and
ξ ∈ TN∪∆(Xk).

We let r : A(x1..k) → ξ be a rule. The left-hand side (LHS) of r is A(x1..k), the LHS-
nonterminal of r, denoted by lhn(r), is A, and the right-hand side (RHS) of r, denoted by
rhs(r), is ξ. For each k ∈ N and A ∈ N (k), we abbreviate A(x1..k) by A(x). □

For technical convenience, we allow rules to use any finite combination of distinct variables
instead of a prefix of the sequence x1, x2, x3, . . ., e.g., A(x2, x5)→ σ(x2, x5). Such a rule
can be transformed into the syntactically correct form by consistently renaming variables.

Throughout this work, we use capital letters from the start of the alphabet to denote
nonterminals (e.g., A or B), the initial nonterminal is indexed by a 0 (e.g., A0 or B0), and
terminals from ∆ are denoted by lowercase Greek letters (e.g. α, β, or γ). This convention
allows us to represent a CFTG by only presenting its rules; nonterminals and terminals can
be read off from the rules.

In the following six definitions, we let G = (N,∆, A0, R) be an arbitrary CFTG.

Definition 2.2.2 The derivation relation of G, denoted by ⇒, is defined as follows. For
trees ξ, ξ′ ∈ TN∪∆(X), a rule r : A(x1..k) → ζ in R, and w ∈ pos(ξ), we have ξ ⇒r,w ξ′

if (i) ξ(w) = A and (ii) ξ′ is obtained from ξ by replacing the subtree at position w by
ζ[ξ|w1, . . . , ξ|wk].

We write ξ ⇒r ξ′ if there is a position w ∈ pos(ξ) such that ξ ⇒r,w ξ′. Similarly, we
write ξ ⇒ ξ′ if there is an r ∈ R such that ξ ⇒r ξ

′.
Furthermore, we denote the reflexive, transitive closure of ⇒ by ⇒∗.
If there are n ∈ N, r1, r2, . . . , rn ∈ R, ξ0, ξ1, . . . , ξn ∈ TN∪∆(X), w1 ∈ pos(ξ0), w2 ∈

pos(ξ1) . . ., and wn ∈ pos(ξn−1) such that

ξ0 ⇒r1,w1 ξ1 ⇒r2,w2 ξ2 ⇒r3,w3 . . .⇒rn−1,wn−1 ξn−1 ⇒rn,wn ξn , (∗)

then we call (∗) a derivation starting in ξ0 in G. If ξ0 is clear from the context, we call (∗)
just a derivation. In many cases we refrain from explicitly denoting the positions at which
the rules are applied and assume that these are understood from the context. Then, we
denote (∗) by ξ0 ⇒d ξn where d ∈ R∗ such that d = r1r2 . . . rn.

The derivation ξ0 ⇒d ξn is called complete, if ξn ∈ T∆. □

16

2.2 Context-Free Tree Grammars and Regular Tree Grammars

In general, we do not impose any restriction on the order in which nonterminals are derived
(unrestricted derivation [20]). However, for the tree language induced by a CFTG, we fix
an order where, in each derivation step, one of the nonterminals at an outermost position is
derived.

Definition 2.2.3 Let ξ0 ⇒r1,w1 ξ1 ⇒r2,w2 ξ2 ⇒r3,w3 . . . ⇒rn−1,wn−1 ξn−1 ⇒rn,wn ξn be a
derivation. We call it an outside-in derivation (cf. [20, p. 2-15]), if, for each i ∈ [n], the
position wi is outermost in posN (ξi−1). □

In an outside-in derivation there is some nondeterminism in the choice of the nonterminal
that will be derived next, since any nonterminal at an outermost position can be chosen.
To completely remove the nondeterminism, we may choose to consider leftmost outermost
derivations where among all outermost nonterminals the leftmost one is chosen.

Definition 2.2.4 Let ξ0 ⇒r1,w1 ξ1 ⇒r2,w2 ξ2 ⇒r3,w3 . . . ⇒rn−1,wn−1 ξn−1 ⇒rn,wn ξn be a
derivation. We call it a leftmost outermost derivation, if, for each i ∈ [n], the position wi is
outermost in posN (ξi−1) and wi is the smallest with respect to the lexicographic ordering
of positions among all outermost positions in posN (ξi−1). □

Definition 2.2.5 For k ∈ N and ζ ∈ TN∪∆(Xk), the (outside-in) tree language induced
by ζ on G is

L(G, ζ) = {ξ ∈ T∆(Xk) | ζ ⇒d ξ, d is outside-in} .

The (outside-in) tree language induced by G, denoted by L(G), is defined as L(G) =
L(G,A0). Note that L(G) ⊆ T∆. Two lnCFTGs G and G′ are equivalent1 if L(G) = L(G′).

Since we only consider the outside-in tree languages induced by G, we drop the prefix
and call the outside-in tree language induced by G just the tree language induced by G.

A tree language L ⊆ T∆ is called context-free if there is a CFTG G = (N,∆, A0, R) such
that L(G) = L. □

Definition 2.2.6 We say that G is a linear CFTG (lCFTG) if, for each rule A(x) → ξ
in R and each i ∈ [rkN (A)], we have that xi appears at most once in ξ. We say that G
is a nondeleting CFTG if, for each rule A(x) → ξ in R and each i ∈ [rkN (A)], we have
that xi occurs at least once in ξ. Accordingly, each rule A(x)→ ξ in R such that there is
an i ∈ [rkN (A)] and posxi

(ξ) = ∅ is called a deleting rule. A CFTG that contains at least
one deleting rule is called deleting CFTG.

If G is a linear CFTG and a nondeleting CFTG, then we say that it is a linear nondeleting
CFTG (lnCFTG). □

Note that in a lnCFTG, the RHS of each rule A(x)→ ξ is a context over XrkN (A).

Example 2.2.7 Figure 2.1(a) presents the lnCFTG G2 and Figure 2.1(b) one derivation
of G2. It can be seen that L(G2) = {δn(σ(γn(α), β)) | n ∈ N}. ⃝

Later we wish to analyze derivations which, for some given subset N ′ ⊆ N , contain only
rules whose LHS-nonterminals are in N ′. This is achieved by considering all symbols from
N \N ′ as terminal symbols.

1in the NLP-community this is called strongly equivalent

17

2 Preliminaries

A0 →
A

α β
A(x1, x2)→

δ

B

x2 x1

⏐⏐⏐⏐⏐⏐⏐⏐
σ

x1 x2
B(x1, x2)→

A

γ

x2

x1

(a) Rules.

A0 ⇒
A

α β
⇒

δ

B

β α

⇒

δ

A

γ

α

β
⇒

δ

δ

B

β γ

α

⇒

δ

δ

A

γ

γ

α

β
⇒

δ

δ

σ

γ

γ

α

β

(b) Derivation.

Figure 2.1: The CFTG G2 and one of its derivations.

Definition 2.2.8 We let N ′ ⊆ N . The N ′-fragment of R, denoted by R|N ′ , is defined to
be the set {r ∈ R | lhn(r) ∈ N ′}. If N ′ = {A} for some A ∈ N , then we also denote R|{A}
by R|A.

The N ′-fragment of G is the CFTG

G|N ′ = (N ′,∆ ∪ (N \N ′), , R|N ′) .

where the initial nonterminal of G|N ′ is irrelevant, and we only address its tree language
using an explicitly given initial tree ζ via L(G|N ′ , ζ). Note that if N ′ does not contain a
nullary nonterminal symbol, then we may add a new nonterminal as a placeholder without
affecting the induced tree language. □

Example 2.2.9 As an example, we consider the lnCFTG G3 using the set of nonterminals
{A0, A,B}, the set of terminals ∆ = {σ(2), γ(1), α(0), β(0)}, and the rules R contain A0 →
A(α, β), A(x1, x2)→ A(B(x1), x2) | σ(x1, x2), and B(x1)→ γ(B(x1)). The {A}-fragment
of G3 has only the two rules (namely both rules of R with LHS-nonterminal A) and considers
A0 and B as terminal symbols. The tree language induced by A(x1, x2) on the fragment is
L(G|{A}, A(x1, x2)) = {σ(Bn(x1), x2) | n ∈ N} ⊆ T∆∪{B}(X2). ⃝

A regular tree grammar can be obtained from a CFTG by requiring that each nonterminal
has rank 0, i.e., nonterminals have no arguments and only appear as leaves of trees.

Definition 2.2.10 A regular tree grammar (RTG) is a CFTG in which each nonterminal
has rank 0, i.e., N = N (0). A tree language L ⊆ T∆ is regular if there is a RTG
G = (N,∆, A0, R) such that L(G) = L. □

We note that each RTG is also a lCFTG and a lnCFTG.

18

2.2 Context-Free Tree Grammars and Regular Tree Grammars

Known Results for lnCFTGs and RTGs

In this section, we recall results for lnCFTGs and RTGs that will help us later on at
multiple points throughout this work. First, we consider normal forms for lnCFTGs and
RTGs and then we recall that the order of rule application in the derivation of a lnCFTG
does not matter. Furthermore, we show that deleting rules can be removed from a lCFTG
and useless rules can be pruned from a lnCFTG. Lastly, we recall closure properties for
RTGs.

Normal Forms. In the following, we introduce two special forms; one for lnCFTGs and
one for RTGs, respectively. In the existing literature, the term normal form is used for both
special forms. Thus, we refrain from using the term normal form and rather use distinct
names that also describe the required feature.

For lnCFTGs we use the nonterminal form, i.e., the RHS of each rule either consists of a
tree over nonterminals and variables (and no terminals), or the RHS of a rule is a single
terminal with variables according to its rank. For RTGs, we specify the property of being
producing. A RTG fulfills this property if each RHS of rule created exactly one terminal
and continues deriving with nonterminals at every argument position of this terminal.

Definition 2.2.11 We let G = (N,∆, A0, R) be a lnCFTG. We say that G is in nonter-
minal form if every rule is of one of the following two forms:

• Type I: A(x1..k)→ ξ with ξ ∈ CN (Xk), or

• Type II: A(x1..k)→ δ(x1..k) for some δ ∈ ∆(k). □

Lemma 2.2.12 For every lnCFTG G, there is a lnCFTG G′ in nonterminal form such
that L(G) = L(G′).

Proof. G′ consists of all rules from G which are of Type I or II. Furthermore, each rule r
of G which is neither of Type I nor II can be transformed into a rule of Type I in G′ by
replacing each node labeled by δ ∈ ∆(k) in the RHS of r by a new nonterminal Aδ and
adding the Type II rule Aδ(x1..k)→ δ(x1..k). It is easy to see that G′ constructed in this
way is indeed in nonterminal form and that L(G) = L(G′). ■

Definition 2.2.13 We let H = (NH ,∆, B0, RH) be a RTG. We say that H is producing if
each rule is of the form B → δ(B1..k) for some δ ∈ ∆ and B,B1, . . . , Bk ∈ NH . □

Lemma 2.2.14 [25, Ch. II, Lm. 3.4] For each RTG H, there is a producing RTG H ′ such
that L(H) = L(H ′).

Reordering of Derivations in a lnCFTG. The following lemma formalizes that the order
of rule applications of a derivation in a lnCFTG can be changed without affecting the
resulting tree. It is based on the structural theorems for macro grammars as presented in
[20]. This property is also called confluence in the literature (cf., [14, Def. 2.10]).

Lemma 2.2.15 Let G = (N,∆, A0, R), ξ ∈ TN∪∆(X) be a lnCFTG and r1, r2 ∈ R such
that r1 and r2 can be applied to ξ at distinct positions. Then there is a ξ′ ∈ TN∪∆(X)
such that ξ ⇒r1r2 ξ′ and ξ ⇒r2r1 ξ′.

19

2 Preliminaries

Proof. The lemma is based on the structural theorems for macro grammars [20]. We let
w1, w2 ∈ posN (ξ) be distinct positions at which r1 and r2, respectively, can be applied. If
neither w1 is a prefix of w2 nor vice versa, then clearly r1 and r2 can be applied in any
order at w1 and w2, respectively. Without loss of generality, we let w1 be a prefix of w2,
i.e., w2 = w1 i u for some i ∈ N+ and u ∈ N∗

+, then there is a ξ′′ ∈ TN∪∆(X) such that
ξ ⇒r1 ξ′′ and ξ|w2 ̸= ξ′′|w2 , i.e., the application of r1 changes the position at which r2 has to
be applied. We let v ∈ posxi

(rhs(r1)) be the uniquely determined position of xi in rhs(r1).
Then the application of r1 at w1 followed by the application of r2 at w1 v u leads to the
same tree as the application of r2 at w2 followed by the application of r1 at w1. ■

Observation 2.2.16 For a lnCFTG G = (N,∆, A0, R), we have that L(G) = {ξ ∈ T∆ |
A0 ⇒∗ ξ}, i.e., we may consider any derivation instead of just outside-in derivations.

Deleting Rules of a lnCFTG. It is known that for each linear CFTG we can find an equiv-
alent linear nondeleting CFTG. The construction can be traced back to [20, Thm. 3.1.10]
(also cf., e.g., [65, Lm. 3.1]).

Theorem 2.2.17 For each linear CFTG G, there is a linear nondeleting CFTG G′ such
that L(G) = L(G′).

Proof. Let G = (N,∆, A0, R) be a lCFTG. We construct a lnCFTG G′ = (N ′,∆, A0, R
′)

as follows. We let N ′ = {Aα | k ∈ N, A ∈ N (k), α ⊆ [k]} where, for each Aα ∈ N ′, we
define rkN ′(Aα) = rkN (A) − |α|. Intuitively, the argument positions in subscript α are
those that will be removed.

The set R′ is defined as follows. Let A(x) → ξ be in R where k = rkN (A). We define
the set W = {(w, β) | w ∈ posN (ξ), β ⊆ [rkN (ξ(w))]} of nonterminal occurrences in ξ
together with a list of deleted argument positions. Then, for each W ′ ⊆ W such that
|W ′| = |posN (ξ)| and the first components of W ′ are pairwise distinct, we define ξW ′

to be the tree obtained from ξ as follows. We order the elements in W ′ descending
by their first component (the elements with outermost position come last) and obtain
(w1, β1), . . . , (wn, βn) where n = |W ′|. We let ξ0 = ξ and, for each i ∈ [n], we obtain ξi
from ξi−1 by replacing the subtree B(ζ1..ℓ) at position wi by the tree Bβi

(ζℓ1 , . . . , ζℓj) where
ℓ1, . . . , ℓj are the elements in [ℓ]\βi ordered increasingly. Then, we let ξW ′ = ξn. Intuitively,
each occurrence of a subtree B(ξ1..ℓ) in ξ is replaced by a subtree Bβ(ξ

′
1..ℓ′) where β is some

subset of [ℓ].
For each W ′ ⊆W as above, we let R′ contain the rule Aα(xk1 , . . . , xkq)→ ξW ′ where α

is the set of all variable indices of Xk that do not occur in ξW ′ and xk1 , . . . , xkq are the
variables of Xk that occur in ξW ′ in ascending order.

It can be shown that each tree which can be derived in G can also be derived in G′ and
vice versa [20, Thm. 3.1.10]. The lnCFTG G′ merely predicts the deletion that will happen
in G and refrains from creating the respective argument positions. ■

Useless Rules of a lnCFTG. There may be nonterminals in a lnCFTG G that cannot
contribute in a meaningful way to L(G). A nonterminal A may be unreachable from the
initial nonterminal, or it can be such that there is no terminal tree derivable from it.

20

2.2 Context-Free Tree Grammars and Regular Tree Grammars

Definition 2.2.18 A nonterminal A ∈ N is called reachable, if there is a ξ ∈ TN∪∆ such
that A0 ⇒∗ ξ and posA(ξ) ̸= ∅. We call A productive, if L(G,A(x)) ̸= ∅. If a nonterminal
is not reachable or not productive, we call it useless.

If a rule r has a useless nonterminal as its LHS-nonterminal or a useless nonterminal
occurs in its RHS, then the rule is said to be useless as well. Each nonterminal and,
respectively, each rule which is not useless is considered useful. □

In a lnCFTG, all useless nonterminals and useless rules can be eliminated without
changing the induced tree language. This is very similar to the case of CFG and is described
in [31, Thm. 4.3].

Corollary 2.2.19 For each lnCFTG G, there is an equivalent lnCFTG G′ that does not
contain useless rules or useless nonterminals.

Note that the concept of useless nonterminals is only defined for the restricted class of
lnCFTG rather than for the full class of CFTG. This is due to the fact that a CFTG could
delete the trees generated by a nonterminal. Checking for such phenomena requires a more
complicated algorithm. Since in this thesis, we utilize Corollary 2.2.19 only for lnCFTGs,
an algorithm that applies to an arbitrary CFTG is not investigated.

Closures of Regular Tree Languages. We recall three theorems summarizing closure
properties of regular tree languages.

Theorem 2.2.20 [26, Prop. 7.1 and 7.3] We let U be a set and L1, L2 ⊆ T∆(U) be regular
tree languages. Furthermore, we let u ∈ ∆(0)∪U . Then, the union L1∪L2, the intersection
L1 ∩L2, the set difference L1 \L2, the complement T∆(U) \L1, and the tree concatenation
L1[u/L2] are regular tree languages.

The following definition of the Kleene star is similar to the string case. Instead of
extending the string at its end, there is a designated nullary concatenation symbol u. Note
that u may occur multiple times in one tree.

Definition 2.2.21 Let U be a set, L ⊆ T∆(U) and u ∈ ∆(0) ∪ U . We define the Kleene
star of L, denoted by L∗u, to be the tree language L∗u =

⋃
i∈N Li where L0 = {u} and

Li = Li−1[u/L] for each i ∈ N+. □

Theorem 2.2.22 [26, Prop. 7.5] We let U be a set, L ⊆ T∆(U), and u ∈ ∆(0) ∪U . If L is
a regular tree language, then L∗u is a regular tree language.

The third and last theorem deals with tree substitution.

Theorem 2.2.23 We let k ∈ N+, δ1, . . . , δk ∈ ∆ be pairwise different, L ⊆ T∆(X),
and L1, . . . , Lk ⊆ T∆(X) such that, for each i ∈ [k], we have Li ⊆ C∆(Xrk∆(δi)). If L
and L1, . . . , Lk are regular tree languages, then L ← (δ1/L1, . . . , δk/Lk) is a regular tree
language.

Proof. This proof utilizes the notion of a tree transducer which is formally defined
in, e.g., [39]. Since L1, . . . , Lk are regular tree languages, there is a linear nondeleting

21

2 Preliminaries

recognizable tree transducerM [39, p. 146] over the Boolean semiring B such that, for each
input tree ξ, we have ⟨⟨M⟩⟩(ξ) = ξ ← (δ1/L1, . . . , δk/Lk) where ⟨⟨M⟩⟩ is the transduction
computed byM. We note that recognizable tree series over B coincide with regular tree
languages. It is clear that ⟨⟨M⟩⟩(L′) = L′ ← (δ1/L1, . . . , δk/Lk) for any tree language L′.

In [39, Cor. 14] it is shown that, for any commutative continuous semiring S, the class
of recognizable tree series over S is closed under linear nondeleting recognizable tree
transductions over S. Hence, by applying this closure result to M and the regular tree
language L, we obtain that L← (δ1/L1, . . . , δk/Lk) is a regular tree language. ■

Tree Representation of a CFG. Recall the tree representation s̃ of a string s ∈ Σ using
the unary alphabet Σ ∪ {♯} (cf. Definition 2.1.12). We let s̃[♯/x1] be the tree obtained from
s̃ by replacing the single occurrence of ♯ by x1. We show that the language induced by a
CFG can be represented by a lnCFTG which uses only unary nonterminals (except for the
nullary initial nonterminal) and unary terminals (except for the special nullary terminal ♯).
This result corresponds to [15, Thm. 7.13] for the special case of n = 1.

Definition 2.2.24 For each CFG M = (N,Σ, B0, R) we define the tree representation of
M , denoted by M̃ , as the lnCFTG M̃ = (N ′, Σ̃, A0, R

′) as follows. We let N ′ = N ∪ {A0}
where A0 is a new nonterminal, rkN ′(B) = 1 for each B ∈ N , and rkN ′(A0) = 0. For each
B → s in R, we let B(x1)→ s̃[♯/x1] be a rule in R′. Furthermore, we add A0 → B0(♯) to
R′. □

Observation 2.2.25 For each CFG M , we have that L(M̃) = {s̃ | s ∈ L(M)}.

It can be seen that M̃ is of a special form. Each lnCFTG G of this form can be turned
into a CFG recognizing the path language of L(G).

Definition 2.2.26 A lnCFTG G = (N,∆, A0, R) is called strongly monadic, if ∆ = Σ̃ for
some alphabet Σ, N = N (1) ∪ {A0

(0)}, and the only rule with LHS-nonterminal A0 is of
the form A0 → B0(♯) for some B0 ∈ N (1). □

The construction of the following observation is straightforward.

Observation 2.2.27 For each monadic lnCFTG G, there is a CFG M such that L(G) =
{s̃ | s ∈ L(M)}.

We note that the tree representation of M is a strongly monadic lnCFTG. Hence, the
following observation is intuitively clear.

Observation 2.2.28 There is a one-to-one correspondence between CFGs and strongly
monadic lnCFTGs.

22

3 Non-Self-Embedding CFTGs

This chapter is mainly based on the journal article “Non-Self-Embedding Linear Context-
Free Tree Grammars Generate Regular Tree Languages” which contains results I investigated
in cooperation with my coauthors Mark-Jan Nederhof and Heiko Vogler [51]. Some parts
are taken over verbatim, other parts are modified to fit the presentation of this thesis, and
some results are added.

In [11] it was proved that each context-free string grammar (CFG) which is non-self-
embedding generates a regular string language, where self-embedding means the existence
of a derivation of the form A⇒∗ sAt with s ̸= ε and t ̸= ε for some strings s and t over
terminals and nonterminals. In this chapter, we present a similar result for context-free
tree grammars (CFTGs). We present a definition for self-embedding CFTGs and show that
it is syntactically decidable. Note that we define the property of being self-embedding for
all CFTGs. However, copying of argument positions is a source of non-regularity, since
RTGs cannot copy trees. Hence, in Sections 3.2 to 3.5 we first consider restricted CFTGs,
viz. non-self-embedding linear nondeleting CFTGs (lnCFTGs). Afterwards, in Sections 3.6
to 3.10, we consider more general CFTGs. As our main result of this chapter, we construct
for each non-self-embedding lnCFTG an equivalent RTG, thus, in particular, we show that
each non-self-embedding lnCFTG induces a regular tree language.

To motivate our criterion for regularity of the tree language induced by a lnCFTG, we
illustrate potential sources of non-regularity using two examples. As a first example, we
present the lnCFTG G4 with the rules

A0 →
A

α α
, A(x1, x2)→

δ

B

x1 x2

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2
, and B(x1, x2)→

A

γ

x1

x2 .

By inspecting the rules, it can be seen that L(G4) = {δn(κ(γn(α), α)) | n ∈ N}. By a
pumping argument, it can be shown that L(G4) is not regular. Furthermore, the derivation

A

x1 x2
⇒

δ

B

x1 x2

⇒

δ

A

γ

x1

x2
⇒

δ

δ

B

γ

x1

x2

⇒

δ

δ

A

γ

γ

x1

x2
⇒

δ

δ

κ

γ

γ

x1

x2

of G4 starting from A(x1, x2) illustrates that δ’s and γ’s are synchronously generated
above and below a repeated occurrence of the nonterminal A. Such non-regular generation

23

3 Non-Self-Embedding CFTGs

corresponds to the string case as follows. Instead of generating symbols to the left and to the
right of repeated nonterminals, the symbols are generated above and below such nonterminal
occurrences (also confer to the tree representation of a string in Definition 2.1.12). It is
therefore tempting to try to define the notion of self-embedding for lnCFTGs in terms
of the familiar notion of self-embedding for CFGs, applied to the path language of the
trees derived from a lnCFTG. However, there is an additional source of non-regularity in
lnCFTG that cannot be captured solely in terms of path languages as seen in the next
example.

In the second example of this chapter, we present the lnCFTG G5 which has the rules

A0 →
A

α α
, A(x1, x2)→

B

γ

x2

x1

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2
, and B(x1, x2)→

A

x1 x2
.

By inspecting the rules it can be seen that

L(G5) = {κ(γn(α), γn(α)) | n ∈ N} ∪ {κ(γn+1(α), γn(α)) | n ∈ N} .

By a pumping argument, it can be shown that L(G5) is not regular. We consider the
derivation

A

x1 x2
⇒

B

γ

x2

x1 ⇒
A

γ

x2

x1 ⇒
B

γ

x1

γ

x2

⇒
A

γ

x1

γ

x2

⇒

κ

γ

x1

γ

x2

of G5 starting from A(x1, x2). We note that the numbers of γ’s in the two argument
positions of the repeated nonterminal A grow in a synchronized manner, viz. after four
derivation steps, both argument positions contain the same number of γ’s. Its noteworthy
that the tree language generated from A0 is not regular, even though the path language of
the tree language induced by G5 is a regular string language.

The lnCFTGs G4 and G5 are instances of the two types of potential non-regular behavior
within CFTGs. We want to capture both types using our notion of self-embedding. We say
that a CFTG is self-embedding if at least one of the two properties illustrated in Figure 3.1
is satisfied: Property (1) generalizes self-embedding from the string case (applied to paths),
while Property (2) captures potential non-regularity due to different branches growing in a
synchronized manner (cf. Section 3.1 for the formal definition).

Our main result of this chapter is the proof that a non-self-embedding lnCFTG generates
a regular tree language. Our use of the term ‘non-self-embedding’ may already suggest
this result, by analogy with the string case. However, due to the additional source of
non-regularity (as described above), novel proof techniques are needed, which involve
complications far beyond those of the string case. In the following, we describe the structure
of this chapter.

First, in Section 3.1, we give the formal definition of self-embedding CFTG and show
how this property can be decided. Then, we consider a restricted CFTG, viz. a non-self-
embedding lnCFTG G. In Section 3.2, we prepare the proof that G induces a regular
tree language. We transform G into an equivalent non-self-embedding lnCFTG G′ that

24

A(x1, . . . , xk)⇒∗

F

A

. . .

H

xi

. . .

i-th successor

(1): F and H are non-trivial trees.

A(x1, . . . , xk)⇒∗

F

A

. . .

H

xi

. . .

K

xj

. . .

i-th successor j-th successor

(2): H and K are non-trivial trees.

Figure 3.1: Properties for self-embedding (i, j ∈ {1, . . . , k}).

satisfies the novel property of being unique in argument positions. Roughly speaking, the
effect of this transformation is that generation of symbols in distinct argument positions
of one nonterminal of G is done through several newly introduced nonterminals in G′.
This transformation is possible because the negation of Property (2) guarantees that the
generation of symbols in distinct argument positions of one and the same nonterminal is
independent.

Next, in Section 3.3, we analyze a non-self-embedding lnCFTG G which is unique in
argument positions. We consider related nonterminals via the analysis of a certain graph.
We can see that, due to Property (1) of self-embedding, unboundedly many symbols can
never be created synchronously above and below a nonterminal. Hence, we can divide the
generation into two classes, namely top-recursion, which deals with unbounded generation
below a nonterminal, and bottom-recursion, which deals with unbounded generation above
a nonterminal.

Relying on the properties of non-self-embedding and uniqueness in argument positions,
top-recursion can be transformed to bottom-recursion. This is by a construction described
in detail in Section 3.3.1. Subsequently, in Section 3.3.2, we show that a non-self-embedding
lnCFTG which does not contain any top-recursion can be transformed into an equivalent
RTG. This relies on the observation that the number of distinct values that may appear
below a nonterminal is bounded. Summing up over Section 3.3, we prove our main theorem
in Section 3.3.3.

In Section 3.4 we relate the definition of self-embedding for lnCFTG to the one used
in the string case [47]. There is a close connection between the string approach and our
result restricted to the tree representation of strings. Furthermore, in the string case
(cf. [47, Sec. 3]), there is a conceptually different approach which is used to approximate
a self-embedding CFG. A CFG M is first split into parts, these are approximated by
individual REGs. The resulting family of REGs is then combined into one REG M ′ that
approximates M . In Section 3.5, we use a similar concept to give an alternative proof of
the regular characterization of non-self-embedding lnCFTG. This proof is an alternative to
the one in Section 3.3.2. We split a lnCFTG G that is unique in argument positions and
does not contain top-recursion into several parts and construct one equivalent RTG for each
part. This procedure is explained in detail in Section 3.5.1. Afterwards, in Section 3.5.2, we
describe how the obtained family of RTGs can be combined into one RTG H such that G

25

3 Non-Self-Embedding CFTGs

and H induce the same tree language.
Then we turn to more general CFTGs and further results centered around the property

of self-embedding. In Section 3.6, we show that non-self-embedding linear CFTGs which
may be deleting also induce regular tree languages. We recall another string generalization,
viz. a self-embedding property for indexed grammars [54] in Section 3.7. We will generalize
that property, called weakly-self-embedding, to CFTGs and show that each non-weakly-
self-embedding CFTG induces a regular tree language. Next, we describe in Section 3.8
how our results can be transferred to macro grammars. In Section 3.9, we give an overview
of the results obtained in the previous sections. Lastly, in Section 3.10, we show that
non-self-embedding lnCFTGs can express tree languages more succinctly than RTGs, and
we relate the self-embedding property to coregular languages.

3.1 Characterization of Self-Embedding CFTGs

We generalize Chomsky’s notion of self-embedding [11] to the tree case. We first give the
formal definition and then show a syntactic and decidable property such that a CFTG G
satisfies the property iff G is self-embedding. We furthermore show that the syntactic
property is decidable and thus our definition of self-embedding is decidable as well.

Definition 3.1.1 Let G = (N,∆, A0, R) be a CFTG. We say that G is self-embedding if
there is a k ∈ N+ and an A ∈ N (k) such that at least one of the following two properties
holds (viewing the variables in Xk as symbols with rank 0):

(1) There is an i ∈ [k] and there are F,A′, H ∈ CN∪∆∪Xk
({z}) such that

• A(x)⇒∗ F [A′[H[xi]]],

• A′(ε) = A, A′(i) = z, and

• F ̸= z and H ̸= z.

(2) There are i, j ∈ [k] with i ̸= j and there are F,H,K ∈ CN∪∆∪Xk
({z}) and A′ ∈

CN∪∆∪Xk
({z1, z2}) such that

• A(x)⇒∗ F [A′[H[xi],K[xj]]],

• A′(ε) = A, A′(i) = z1, and A′(j) = z2, and

• H ̸= z and K ̸= z. □

The two properties of Definition 3.1.1 are depicted in Figure 3.1 and we illustrate them by
three examples. Simultaneously, we will motivate the introduction of a particular finite
graph which allows checking of these properties. Recall that we focus on lnCFTGs and
thus, all examples will present lnCFTGs.

Example 3.1.2 As a first example, we recall the lnCFTG G4 from the beginning of
Chapter 3. To have all ingredients to the following arguments in one place, we repeat parts
of the rules of G4 in Figure 3.2(a). The derivation of G4 depicted in Figure 3.2(b) shows
that G4 satisfies Property (1) of self-embedding: terminals are created above and below
the repeated occurrence of the nonterminal A in a synchronized manner (the numbers of
δ’s and γ’s are equal). To detect this phenomenon, it suffices to consider a finite directed

26

3.1 Characterization of Self-Embedding CFTGs

A(x1, x2)→
δ

B

x1 x2

B(x1, x2)→
A

γ

x1

x2

(a) Rules.

A

x1 x2
⇒

δ

B

x1 x2

⇒

δ

A

γ

x1

x2
⇒

δ

δ

B

γ

x1

x2

⇒

δ

δ

A

γ

γ

x1

x2

(b) Derivation.

(A, 0, 1) (A, 0, 2) (A, 1, 2) (A, 2, 1)

(B, 0, 1) (B, 0, 2) (B, 1, 2) (B, 2, 1)

{1} {2} {1} {1} {2}

(c) Position pair graph.

Figure 3.2: Part of the lnCFTG G4.

graph, called position pair graph, of which each vertex is a triple: a nonterminal and
two of its argument positions. We include argument position 0, which represents the
generation happening above the nonterminal; it may only occur in the first of the two
argument positions. An edge from (A, 0, j) to (B, 0,m) indicates that there is a rule r with
LHS-nonterminal A such that xj appears in the argument position m of an occurrence of B
in the RHS of r. An edge can be labeled by any subset of {1, 2} (we drop the label ∅ in
the figures). If there is a symbol above the occurrence of B, then the label contains a 1;
if at least one symbol occurs between the occurrences of B and xj , then the label of this
edge contains a 2. The 1 pertains to the first of the two argument positions in (A, 0, j) and
(B, 0,m), which are both 0, while 2 pertains to the second argument positions, which are j
and m, respectively.

The leftmost two SCCs in Figure 3.2(c) show part of the position pair graph of G4

dealing with this combination of generation above and below a nonterminal. (The rightmost
two SCCs will be explained in Example 3.1.3.) The first two steps of the derivation in
Figure 3.2(b) correspond to the path

(A, 0, 1)
{1}−→ (B, 0, 1)

{2}−→ (A, 0, 1)

through the position pair graph. Since (i) this path is cyclic, (ii) the union of the edge
labels contains 1 and 2, and (iii) the argument position 0 is involved, Property (1) of
self-embedding is satisfied. ⃝

Example 3.1.3 As a second example, we recall two rules (cf. Figure 3.3(a)) of the
lnCFTG G5 from the beginning of Chapter 3. The derivation in Figure 3.3(b) shows

27

3 Non-Self-Embedding CFTGs

A(x1, x2)→
B

γ

x2

x1

B(x1, x2)→
A

x1 x2

(a) Rules.

A

x1 x2
⇒

B

γ

x2

x1 ⇒
A

γ

x2

x1 ⇒
B

γ

x1

γ

x2

⇒
A

γ

x1

γ

x2

(b) Derivation.

(A, 0, 1) (B, 0, 1) (A, 1, 2) (B, 1, 2)

(B, 0, 2) (A, 0, 2) (B, 2, 1) (A, 2, 1)

{2} {2} {1}

(c) Position pair graph.

Figure 3.3: Part of the lnCFTG G5.

that G5 generates terminals in a synchronized manner in two argument positions below a
nonterminal: the numbers of γ’s are equal after each fourth step. To capture this in the
position pair graph, we employ vertices with two argument positions different from 0. An
edge from (A, i, j) to (B, ℓ,m) (with i ≠ j and ℓ ̸= m) indicates that there is a rule r with
LHS-nonterminal A such that xi appears in the argument position ℓ of an occurrence of B
in the RHS and xj appears in the argument position m of the same occurrence of B. If at
least one symbol occurs between the occurrences of B and xi, then the edge label contains
a 1. Likewise, if at least one symbol occurs between the occurrence of B and xj , then the
edge label contains a 2.

The position pair graph of G5 is the one shown in Figure 3.3(c). The derivation in
Figure 3.3(b) corresponds to the path

(A, 1, 2)
{2}−→ (B, 2, 1) −→ (A, 2, 1)

{1}−→ (B, 1, 2) −→ (A, 1, 2)

through the rightmost SCC of the position pair graph. Since (i) this path is cyclic, (ii) its
union of edge labels contains 1 and 2, and (iii) the position 0 is not involved, Property (2)
of self-embedding is satisfied. ⃝

Example 3.1.4 In the third and last example, we recall the lnCFTG G2 from Exam-
ple 2.2.7. In this example, we only consider the two rules of G2 repeated in Figure 3.4(a).
The lnCFTG G2 simultaneously satisfies Properties (1) and (2) of self-embedding. It com-
bines the non-regular behavior of G4 and G5 (cf. Examples 3.1.2 and 3.1.3). Considering the
derivation of G2 from Figure 3.4(b) it can be seen that symbols are synchronously produced
above and below the repeated nonterminal A as well as in both arguments positions of A.
In Figure 3.4(c) we depict the position pair graph of G2. Note that there are two SCCs
and in each SCC there is a cycle whose union of edge labels contains 1 and 2. ⃝

28

3.1 Characterization of Self-Embedding CFTGs

A(x1, x2)→
δ

B

x2 x1

B(x1, x2)→
A

γ

x1

x2

(a) Rules.

A

x1 x2
⇒

δ

B

x2 x1

⇒

δ

A

γ

x2

x1
⇒

δ

δ

B

x1 γ

x2

⇒

δ

δ

A

γ

x1

γ

x2

(b) Derivation.

(A, 0, 1) (B, 0, 1) (A, 1, 2) (B, 1, 2)

(B, 0, 2) (A, 0, 2) (B, 2, 1) (A, 2, 1)

{2}

{1} {1}

{2}

{1}

(c) Position pair graph.

Figure 3.4: Part of a lnCFTG G2.

Next we formally define the notion of position pair graph.

Definition 3.1.5 Let G = (N,∆, A0, R) be a CFTG. The position pair graph of G is the
{1, 2}-labeled directed graph ppg(G) = (V,E) where

V = {(A, i, j) | A ∈ N (k), i ∈ ([k] ∪ {0}), j ∈ [k], i ̸= j}

and E is defined as follows. We let (A, 0, j), (B, 0,m) ∈ V and r ∈ R|A such that there is a
w ∈ posB(rhs(r)) for which wm is xj-dominating. Then ((A, 0, j), U, (B, 0,m)) ∈ E where
U ⊆ {1, 2} is defined as follows:

• w ̸= ε iff 1 ∈ U ,

• rhs(r)(wm) ̸= xj iff 2 ∈ U .

Furthermore, we let (A, i, j), (B, ℓ,m) ∈ V with i ̸= 0, ℓ ̸= 0, and we let r ∈ R|A be such
that there exists a w ∈ posB(rhs(r)) for which wℓ is xi-dominating and wm is xj-dominating.
Then ((A, i, j), U, (B, ℓ,m)) ∈ E where U ⊆ {1, 2} is defined as follows:

• rhs(r)(wℓ) ̸= xi iff 1 ∈ U ,

• rhs(r)(wm) ̸= xj iff 2 ∈ U . □

29

3 Non-Self-Embedding CFTGs

Observation 3.1.6 Let P ∈ scc(ppg(G)). Then exactly one of the following two state-
ments holds:

• For each vertex (A, i, j) ∈ VP , we have i = 0.

• For each vertex (A, i, j) ∈ VP , we have i ̸= 0.

Now we formally characterize the property of the position pair graph of G that allows
detecting whether a CFTG G is self-embedding or non-self-embedding.

Theorem 3.1.7 A CFTG G is self-embedding iff ppg(G) contains a vertex (A, i, j) and a
path from (A, i, j) to (A, i, j) such that the union of all its labels contains 1 and 2.

Proof. [⇒]: If G is self-embedding, then Property (1) or (2) holds. If Property (1) holds,
there is a derivation starting from A(x) resulting in a tree with an xi-dominating occurrence
of A which is not at the root, and xi occurs in its i-th argument position but not as its
direct descendant. This derivation corresponds to a cycle in ppg(G) of the same length.
Since symbols are generated both above A and between A and xi, the union of the edge
labels contains 1 and 2.

Similarly, if Property (2) holds, there is a derivation that corresponds to a cycle in
ppg(G). The union of the edge labels of this path contains 1 and 2, because symbols are
synchronously generated under two different argument positions.
[⇐]: Suppose that there is a cycle in the position pair graph and the union of its

edge labels contains 1 and 2. Then we can construct a derivation in G which satisfies
Property (1) or (2): For each edge in the cycle, we apply a rule that gave rise to this edge
in the construction of ppg(G). ■

Corollary 3.1.8 It is decidable in polynomial time whether a CFTG G is self-embedding.

Proof. The position graph of G can be constructed in polynomial time in the following
parameters of G: number of nonterminals, the maximal rank of the nonterminals, the
number of rules, and the maximal number of occurrences of nonterminals in the RHS of
any rule. All SCCs of ppg(G) can be enumerated in linear time [13, p. 617]. For each SCC
in ppg(G) it can be determined in linear time whether the union of all its edge labels is
{1, 2}. By Theorem 3.1.7 this is all that is required to decide whether G is self-embedding.■

We note that by Definition 3.1.5, for each RTG H, we have ppg(H) = (∅, ∅). Thus, the
following observations follows from Theorem 3.1.7.

Observation 3.1.9 Each RTG H is non-self-embedding.

The reader might have realized that none of the examples presented so far contains nested
nonterminals. This choice is reasonable, because each grammar remains self-embedding
even if one replaces any occurrence of a terminal by a nonterminal (with arbitrary rules).
However, applying this replacement to a non-self-embedding CFTG might lead to a non-
self-embedding CFTG or a self-embedding CFTG. For instance, if we replace in the
non-self-embedding lnCFTG with the rules

A(x)→ A(B(x)) B(x)→ γ(x)

the second rule by B(x)→ A(x), then the resulting grammar is self-embedding. The formal
investigation allows for nested nonterminals; however, to present examples in a compact
and intuitive way, they will not contain nested nonterminals.

30

3.2 Movement of Values in Argument Positions

3.2 Movement of Values in Argument Positions

In this section, we introduce two concepts. First, we define the position graph of a CFTG
in Section 3.2.1. This graph allows tracking of how the values in the argument positions
of a nonterminal are moved during a derivation. In particular, we are interested whether
the tree in an argument position of one nonterminal is moved into an argument position of
another nonterminal.

Second, in Section 3.2.2, we consider a property for linear nondeleting CFTGs called
unique in argument positions. We prove that each non-self-embedding lnCFTG can be
transformed into an equivalent non-self-embedding lnCFTG which is unique in argument
positions. This syntactic restriction will turn out to be useful to construct an equivalent
RTG to each non-self-embedding lnCFTG.

3.2.1 Position Graph

In this section, we let G = (N,∆, A0, R) be a CFTG.
The position graph contains one vertex for each pair of nonterminal and argument position

(including the special argument position 0 as in the case of the position pair graph). Its edges
represent the movement of values across argument positions of nonterminal occurrences.
An edge is labeled with {g} if new symbols are generated during movement, and with ∅
otherwise.

Example 3.2.1 As an example, we present some rules of the lnCFTG G7 in Figure 3.5(a).
The position graph of that part of G7 is shown in Figure 3.5(b). We explain the two
edges going out of (A, 1). The rules of Figure 3.5(a) are denoted by r1, r2, and r3 in order
of appearance. Since we are interested in edges from (A, 1), we inspect the variable x1
in all rules with LHS-nonterminal A. In r1, the variable x1 occurs in the first argument
position of the occurrence of A. Furthermore, the rule generates the symbol γ in between

the occurrence of A and x1. Hence, pg(G7) contains the edge (A, 1)
{g}→ (A, 1). Similarly,

in r2, the variable x1 occurs in the second argument position of A and the symbol δ is

produced in between. Thus, (A, 1)
{g}→ (A, 2) is an edge in pg(G7). The variable x1 also

occurs in r3; however, it is not in the argument position of any nonterminal and thus, no
edge is induced. ⃝

A(x1, x2)→
A

γ

x1 x2

α

⏐⏐⏐⏐⏐⏐⏐⏐
A

β δ

x1 x2

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2

(a) Rules.

(A, 0) (A, 1) (A, 2)

{g} {g}

{g}

{g}

(b) Position graph.

Figure 3.5: Part of the lnCFTG G7.

31

3 Non-Self-Embedding CFTGs

Definition 3.2.2 The position graph of G is the {g}-labeled directed graph pg(G) = (V,E)
where

V = {(A, i) | A ∈ N (k), i ∈ ([k] ∪ {0})} .

In order to obtain E, we first define the auxiliary mapping edg : R→ P(V × P({g})× V)
as follows. Let A,B ∈ N and r ∈ R|A such that there exists a variable dominating position
w ∈ posB(rhs(r)).

• If w ̸= ε, then edg(r) contains the edge ((A, 0), {g}, (B, 0)) and

• if w = ε, then edg(r) contains the edge ((A, 0), ∅, (B, 0)).

Moreover, for each i ∈ [rkN (A)] and j ∈ [rkN (B)] such that wj is xi-dominating we have
that

• if rhs(r)(wj) ̸= xi, then edg(r) contains the edge ((A, i), {g}, (B, j)) and

• if rhs(r)(wj) = xi, then edg(r) contains the edge ((A, i), ∅, (B, j)).

Furthermore, edg(r) does not contain any other elements. We define E =
⋃

r∈R edg(r). □

If an edge is labeled by {g}, then we call it generating. We call P ∈ scc(pg(G)) generating
if P contains a generating edge. Sometimes we will also be interested in the set of rules
which have induced edges in P . Formally, for each P ∈ scc(pg(G)), we define the set of
rules of P , denoted by rules(P), to be the set

rules(P) = {r ∈ R | EP ∩ edg(r) ̸= ∅} .

Let n ∈ N and r1, r2, . . . , rn ∈ R. We say that the sequence r1r2 . . . rn induces a path

(A1, i1)→ (A2, i2)→ . . .→ (An+1, in+1)

in pg(G) if, for each k ∈ [n], the set edg(rk) contains the edge (Ak, ik)→ (Ak+1, ik+1). For
instance consider the rules in Figure 3.5(a), which we denote by r1, r2, and r3, respectively.
The sequence of rules d = r1r2r2 induces the paths

p1 : (A, 0)
∅→ (A, 0)

∅→ (A, 0)
∅→ (A, 0) ,

p2 : (A, 1)
{g}→ (A, 1)

{g}→ (A, 2)
{g}→ (A, 2) , and

p3 : (A, 2)
{g}→ (A, 1)

{g}→ (A, 2)
{g}→ (A, 2) .

We make three observations concerning the position graph, which will help us later.

Observation 3.2.3 Let P ∈ scc(pg(G)). Then exactly one of the following two statements
holds:

• For each vertex (A, i) ∈ VP , we have i = 0.

• For each vertex (A, i) ∈ VP , we have i ̸= 0.

32

3.2 Movement of Values in Argument Positions

Observation 3.2.4 Let A,B ∈ N and r ∈ R|A. Then (A, i) → (B, j) is in edg(r) for
some i ∈ [rkN (A)] and j ∈ [rkN (B)] iff (A, 0)→ (B, 0) is in edg(r).

Observation 3.2.5 Let M ⊆ N and M ′ = {(A, i) | A ∈ M, i ∈ ([rkN (A)] ∪ {0})}. By
definition of the respective fragments, we have that pg(G|M) = pg(G)|M ′ .

For P ∈ scc(pg(G)), we denote the set of all nonterminals occurring in P by MP , i.e.,
MP = {A | k ∈ N, (A, k) ∈ VP }.

If G is non-self-embedding, then the rules of a generating SCC of pg(G) that does not
contain references to 0 have a particular form. This will be crucial while transforming the
grammar.

Lemma 3.2.6 We let G be a non-self-embedding CFTG and P ∈ scc(pg(G)) be generating
such that (C, 0) /∈ VP for each C ∈ N . Then each rule in rules(P) has the form A(x)→
B(ζ1..ℓ) for some A,B ∈MP and ζ1..ℓ ∈ TN∪∆(Xk).

Proof. We prove this lemma by contradiction. Assume that there is a rule r in rules(P)
such that rhs(r)(ε) /∈ MP . Since r ∈ rules(P) and (C, 0) /∈ VP for each C ∈ N , it
follows that there are A,B ∈ MP , i ∈ [rkN (A)], j ∈ [rkN (B)], and U ⊆ {g} such that
((A, i), U, (B, j)) ∈ EP ∩edg(r). From Definition 3.2.2, we get that there is an xi-dominating
position w ∈ posB(rhs(r)). By the assumption, we have that w ̸= ε.

Since (A, i) and (B, j) are vertices in the same generating SCC P , there are C,D ∈MP ,
m ∈ [rkN (C)], and n ∈ [rkN (D)] such that ((C,m), {g}, (D,n)) ∈ EP and thus, the
following path exists in P :

p : (A, i)→ (B, j)→ . . .→ (C,m)
{g}→ (D,n)→ . . .→ (A, i)

where the first edge is induced by r.
We will now use p and construct a cycle in ppg(G). For each edge (A′, i′)→ (B′, j′) in p,

there are r′ ∈ rules(P) and w′ ∈ posB′(rhs(r′)) such that w′j′ is xi′-dominating. Then, by
Definition 3.1.5, there is an edge ((A′, 0, i′), U ′, (B′, 0, j′)) in ppg(G) for some U ′ ⊆ {1, 2}.
Hence, we obtain the cycle

p′ : (A, 0, i)
U1→ (B, 0, j)→ . . .→ (C, 0,m)

U2→ (D, 0, n)→ . . .→ (A, 0, i) .

Now we investigate U1 and U2. First consider the edge ((A, 0, i), U1, (B, 0, j)). This
edge is induced using the rule r at position w in rhs(r). By Definition 3.1.5, we have
that 1 ∈ U1, because w ̸= ε. Second, consider the edge ((C, 0,m), U2, (D, 0, n)). Since
((C,m), {g}, (D,n)) is in pg(G), there is a rule r′ ∈ rules(P) that induced this edge and a
position w′ ∈ rhs(r′) such that w′n is xm-dominating, and rhs(r′)(w′n) ̸= xm. Hence, by
Definition 3.1.5, we have 2 ∈ U2.

Since p′ is a cycle in ppg(G) such that the union of its labels contains 1 and 2, the
CFTG G is self-embedding by Theorem 3.1.7. This contradicts the assumption on G. ■

3.2.2 Uniqueness in Argument Positions

Throughout this section, we let G = (N,∆, A0, R) be a non-self-embedding lnCFTG.
Using the position graph and the related results, we now introduce the novel property

uniqueness in argument positions. Note that this section only applies to linear nondeleting
CFTG. We start by presenting an example and give a formal definition afterwards.

33

3 Non-Self-Embedding CFTGs

Example 3.2.7 Recall the rules of the lnCFTG G7 from Figure 3.5(a). It can be seen
that G7 can generate arbitrarily large trees, involving both the first and the second argument
position of A. At first sight, this seems difficult to rhyme with the fact that G7 is non-
self-embedding, which we can prove using Theorem 3.1.7. Upon closer inspection however,
we see that generation of γ’s and δ’s in different argument positions is not synchronized.
Using the first rule repeatedly, an unbounded number of γ’s can be generated in the first
argument position. Likewise, using the second rule repeatedly, an unbounded number of
δ’s can be generated in the second argument position. However, by switching from the
generation in argument position i (with i ∈ {1, 2}) to the generation in the other argument
position, the value of argument position i is reset to a constant tree (β if i = 1; α if i = 2).
Hence, there is no synchronized generation of symbols in different argument positions of
one nonterminal. ⃝

In the following, we transform a non-self-embedding lnCFTG in such a way that the
unsynchronized generation below one nonterminal explained in Example 3.2.7 is distributed
over distinct nonterminals. After applying the transformation, each nonterminal of the
transformed grammar generates unbounded material in at most one argument position.
Before we present our method of transformation, we first give a formal characterization of
the desired property.

Definition 3.2.8 Let P ∈ scc(pg(G)) be generating. We call P unique in argument
positions if (A, j), (A, j′) ∈ VP implies j = j′. We call G unique in argument positions if
each generating P ∈ scc(pg(G)) is unique in argument positions. □

The transformation involves the notion of relative age of an argument position. For an
occurrence of a nonterminal A with rank k, the relative ages of the argument positions are
expressed by a permutation of [k]. For example, if k = 2, then the sequence ⟨2, 1⟩, which is
a permutation of [2], states that the first position has relative age 2 and the second one has
relative age 1. The intuition is that the value in the second position was ‘born’ after the
value in the first position.

Upon applying a rule, the variables determine how relative ages are transferred from
the LHS to positions of the root nonterminal in the RHS, say an occurrence of B with
rank ℓ. This is subject to the following two constraints. First, if a new value is ‘born’
in argument position j of B, which is when there are no variables in that position, it
receives a unique relative age that is smaller than any position that does have variables;
we assign 0 as a preliminary value. This is exemplified by 0 in ⟨2, 0⟩ in the preliminary
RHS in Figure 3.6(a) and 0 in ⟨0, 2⟩ in Figure 3.6(c). Second, if an argument position of B
contains several variables, we take the maximum of the relative ages of the corresponding
LHS positions as preliminary value. This is exemplified by 2 in ⟨2, 0⟩ in the preliminary
RHS of Figure 3.6(a), where 2 = max{2, 1}, and similarly 2 in ⟨0, 2⟩ in Figure 3.6(c). We
then assign the relative ages represented as a permutation according to the following rules.
The higher the preliminary value of an argument position is, the higher its final relative age
will be. The argument positions with preliminary value 0 are assigned decreasing values
from left to right. Thus, the newly born argument positions are the youngest while the
argument positions that contain older subtrees are older. Hence, ⟨0, 2⟩ is turned into ⟨1, 2⟩.
This transformation yields the RHS of the newly constructed rule, as depicted in Figure 3.6.

34

3.2 Movement of Values in Argument Positions

LHS preliminary
RHS

ordering the
argument positions RHS

(a)
A⟨2, 1⟩
x1 x2

→

A⟨2, 0⟩
γ

x1 x2

α

A⟨2, 1⟩
γ

x1 x2

α

(b)
A⟨1, 2⟩
x1 x2

→

A⟨2, 0⟩
γ

x1 x2

α

A⟨2, 1⟩
γ

x1 x2

α

(c)
A⟨2, 1⟩
x1 x2

→

A⟨0, 2⟩

β δ

x1 x2

A⟨1, 2⟩

β δ

x1 x2

(d)
A⟨1, 2⟩
x1 x2

→

A⟨0, 2⟩

β δ

x1 x2

A⟨1, 2⟩

β δ

x1 x2

Figure 3.6: Rules from G7 with annotated relative ages.

Lemma 3.2.9 For each non-self-embedding lnCFTG G, there is an equivalent lnCFTG G′

that is non-self-embedding and unique in argument positions.

Proof. We assume that G is not unique in argument positions, and thus, there is a
generating P ∈ scc(pg(G)) such that P is not unique in argument positions. We note that,
for each A ∈ N , the vertex (A, 0) is not in P (cf. Observation 3.2.3).

The following construction splits each nonterminal involved in P into new nonterminals
of the form A⟨π⟩ where π is a permutation of the argument positions of A. Each number
in π represents the relative age of the corresponding argument with respect to the other
arguments. The lower the number of an argument, the more recently its corresponding
value was introduced, as explained above Lemma 3.2.9.

Formally, we let r : A(x) → B(ζ1..ℓ) be a rule in rules(P) for some A,B ∈ MP (cf.
Lemma 3.2.6). Furthermore, we let k = rkN (A) and π be a permutation of [k]. These
ingredients determine a permutation πr of the argument positions of B. For this, we define
the auxiliary mapping ρ : [ℓ]→ N as follows. For each j ∈ [ℓ], let Uj denote the set of all
i ∈ [k] such that xi occurs in ζj and let ρ(j) = max({π(i) | i ∈ Uj}) where max(∅) = 0.
Then, we define the permutation πr of [ℓ] as the unique permutation such that πr(j) < πr(j

′)
if

(i) ρ(j) < ρ(j′), or

(ii) ρ(j) = ρ(j′) and j > j′.

35

3 Non-Self-Embedding CFTGs

Note that, in case (ii), we have that ρ(j) = ρ(j′) = 0 because of linearity.
We construct the lnCFTG G′ = (N ′,∆, A0, R

′) where

• N ′ = (N \MP) ∪ Ñ and Ñ = {A⟨π⟩(k) | A ∈M
(k)
P , π is a permutation of [k]},

• R′ = enr((R \R|MP
)∪ R̃1 ∪ R̃2), and R̃1, R̃2, and enr are defined as follows. For each

rule r : A(x1..k) → B(ζ1..ℓ) in rules(P) and for each permutation π of [k] and πr as
constructed above, we let A⟨π⟩(x1..k)→ B⟨πr⟩(ζ1..ℓ) be in R̃1. Furthermore, for each
rule r ∈ (R|MP

\ rules(P)) with lhn(r) = A(k), let A⟨π⟩(x1..k)→ rhs(r) be in R̃2 for
each permutation π.

The set of rules (R \R|MP
)∪ R̃1 ∪ R̃2 is ‘enriched’ by the function enr, which replaces

each occurrence of a nonterminal A ∈M
(k)
P in the RHS of each rule by A⟨π̃⟩ where π̃

is the reversal of [k], i.e., for each i ∈ [k] we have π(i) = k − i+ 1.

Due to the use of the maximum in the definition of the permutations, we have that if there
is a path from (B⟨π⟩(k), i) to (B′⟨π′⟩(ℓ), i′) in pg(G′), then k − π(i) ≥ ℓ− π′(i′) holds.

Claim 1: G and G′ are equivalent. Moreover, G′ is non-self-embedding.
Proof of Claim 1: For each derivation of G, there is precisely one way to add permutations to
turn it into a derivation of G′, since for each rule, the permutations at the LHS-nonterminal
uniquely determine the permutations at the root of the RHS, an initial occurrence of
a nonterminal from MP is annotated by the fixed permutation π̃, and all permutations
are incorporated, i.e., no annotation blocks the derivation process. Thus, G and G′ are
equivalent.

Furthermore, since each derivation in G′ can be mapped onto a derivation in G, the
lnCFTG G′ is non-self-embedding. □

Claim 2: G′|Ñ is unique in argument positions.
Proof of Claim 2: We already stated that if there is a path from (B⟨π⟩(k), i) to (B⟨π′⟩(ℓ), i′),
then we have that k − π(i) ≥ ℓ− π′(i′). Recall that this property holds due to the use of
the maximum in the construction of π′.

Consider any generating P ′ ∈ scc(pg(G′|Ñ)), A(k) ∈ MP , a permutation π of [k], and
i, j ∈ [k] such that (A⟨π⟩, i) ∈ VP ′ and (A⟨π⟩, j) ∈ VP ′ . Since (A⟨π⟩, i) and (A⟨π⟩, j) are
in the same SCC P ′ we can deduce that (i) there is a path from (A⟨π⟩, i) to (A⟨π⟩, j) and
(ii) there is a path in the other direction. We can thus conclude that k − π(i) ≥ k − π(j)
and k−π(j) ≥ k−π(i). Since π is a permutation, we have i = j. Therefore, G′|Ñ is unique
in argument positions. □

The above process can be repeated until the resulting grammar is unique in argument
positions. Termination is guaranteed, because in the transformation we only introduce
SCCs which are unique in argument positions and thus, the total number of SCCs which
are not unique in argument positions decreases in each step. ■

Example 3.2.10 As an example, we apply the construction of Lemma 3.2.9 to the rules
of G7 in Figure 3.5(a). We obtain the lnCFTG depicted in Figure 3.7(a). Figure 3.7(b)
shows the relevant part of the corresponding position graph where each edge is generating
(edge labels were omitted). The non-trivial SCC of Figure 3.7(b) is marked by a dashed
box. It can be seen that each generating SCC contains, for each involved nonterminal, a
unique argument position. ⃝

36

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

A⟨2, 1⟩(x1, x2)→

A⟨2, 1⟩

γ

x1 x2

α

⏐⏐⏐⏐⏐⏐⏐⏐⏐
A⟨1, 2⟩

β δ

x1 x2

⏐⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2

A⟨1, 2⟩(x1, x2)→

A⟨2, 1⟩

γ

x1 x2

α

⏐⏐⏐⏐⏐⏐⏐⏐⏐
A⟨1, 2⟩

β δ

x1 x2

⏐⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2

(a) Rules.

(A⟨2, 1⟩,1)

(A⟨2, 1⟩, 2)

(A⟨1, 2⟩, 1)

(A⟨1, 2⟩, 2)

(b) Part of the position graph.

Figure 3.7: The lnCFTG obtained by applying the construction of Lemma 3.2.9 to G7.

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

In this section, we outline how to obtain a RTG H that is equivalent to a given non-self-
embedding lnCFTG G. For this, we investigate two different ways in which a lnCFTG
can repeatedly produce symbols. As discussed at the beginning of Chapter 3, symbols
may be either produced above repeated nonterminals or below. To show regularity of G,
we first transform all generation below nonterminals into generation above nonterminals
(cf. Section 3.3.1) and afterwards, we can apply a saturation approach to obtain H (cf.
Section 3.3.2). Our main result can be found in Section 3.3.3.

Throughout this section, we let G = (N,∆, A0, R) be a non-self-embedding lnCFTG
which is unique in argument positions.

Consider the position graph of G. We classify a generating SCC P ∈ scc(pg(G)) according
to whether nonterminals involved in P generate unbounded material below them, or above
them. Formally, for each SCC P ∈ scc(pg(G)) we say that P is

• bottom-recursive if P is generating and contains (A, 0) for some A ∈ N ,

• top-recursive if P is generating and does not contain (A, 0) for each A ∈ N .

Example 3.3.1 As a running example, we consider the non-self-embedding lnCFTG

G8 = ({A0
(0), A(3), B(2)}, {α(0), β(0), σ(2), κ(2)}, A0, R)

where R contains the rules depicted in Figure 3.8(a).
Figure 3.8(b) depicts the position graph of G8, which shows that G8 is unique in argument

positions. We note that pg(G8) contains five SCCs, from which three are non-trivial. The
non-trivial SCCs are marked by dashed boxes. Furthermore, the SCC P is top-recursive,
since it is generating and does not contain (A, 0), (B, 0), or (A0, 0). All other SCCs are not
generating and thus neither top-recursive nor bottom-recursive. ⃝

37

3 Non-Self-Embedding CFTGs

A0 → A(α, α, α)

A(x1, x2, x3)→
B

σ

x1 x2

x3

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2 x3
B(x1, x2)→

A

β x1 x2

(a) Rules.

(A0, 0) (A, 0)

(B, 0)

(A, 1) (A, 2) (A, 3)

(B, 1) (B, 2)

{g} {g}

P

(b) Position graph.

Figure 3.8: The lnCFTG G8.

3.3.1 Transforming a Top-Recursive SCC into Bottom-Recursive SCCs

We present a construction which transforms a top-recursive SCC into at least one bottom-
recursive SCC and a number (possibly 0) of non-generating SCCs. We repeat this process,
until no more top-recursive SCCs remain in the position graph of the grammar. To be able
to reason about termination of the process, we count the number of vertices in top-recursive
SCCs.

Definition 3.3.2 The top-recursion rank of G, denoted by topRank(G), is the number of
vertices in top-recursive SCCs in pg(G), or formally

topRank(G) =
∑

P∈scc(pg(G))
P is top-recursive

|VP | . □

Example 3.3.3 Recall the running example, i.e., the lnCFTG G8 and its position graph
(cf. Figure 3.8(b)). We have topRank(G8) = 2, since (A, 2) and (B, 1) are in the only
top-recursive SCC P . ⃝

We recall Lemma 3.2.6 stating that, for each top-recursive SCC P , each rule r ∈ rules(P)
has the form A(x) → B(ξ1..ℓ) where A,B ∈ MP . The following two observations will be
needed later.

Observation 3.3.4 We let r ∈ R be of the form A(x1..k)→ B(ξ1..ℓ). Then, for each i ∈ [k],
there is a unique ji ∈ [ℓ] such that xi occurs in ξji . Thus, there is an edge (A, i)→ (B, ji)
in edg(r).

38

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

Given an outside-in derivation d consisting exclusively of rules from a top-recursive
SCC P and given a vertex (A, i) ∈ Vpg(G) where A ∈ MP and A(x) ⇒d ξ for some
ξ ∈ TN∪∆(XrkN (A)), there are uniquely determined B ∈MP , j ∈ [rkN (B)], and p : (A, i)→∗

(B, j) such that each edge along the path p is determined by d according to Observation 3.3.4.
In this case, we say that d top-induces the path p.

Observation 3.3.5 Let r ∈ R be of the form A(x)→ B(ξ1..ℓ). If there are i, j ∈ [rkN (A)]
with i ̸= j and k ∈ [ℓ] such that xi and xj both occur in ξk, then edg(r) contains the edges
((A, i), {g}, (B, k)) and ((A, j), {g}, (B, k)).

The proof of the following lemma incorporates two constructions and is rather lengthy.
A full example can be found after the proof and may be consulted alongside.

Lemma 3.3.6 Let G be a non-self-embedding lnCFTG which is unique in argument
positions and topRank(G) ≥ 1. Then we can construct a non-self-embedding lnCFTG G′

which is unique in argument positions such that L(G′) = L(G) and topRank(G′) <
topRank(G).

Proof. Since topRank(G) ≥ 1, there is a P ∈ scc(pg(G)) which is top-recursive and not
reachable from any other top-recursive SCC. Let P now be fixed. For each B ∈MP , we
denote the unique index j ∈ [rkN (B)] such that (B, j) ∈ VP by jB.

We will construct a set K of items of the form ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩. Each item
represents the fact that there is a ξjB such that A(x) ⇒∗ B(ξ1..ℓ). Intuitively, an item
in K captures a context in which trees ξjB can be generated. We use d as a placeholder
for the dynamic position. We will show that K is finite and use the elements of K as
nonterminals for new rules that will replace the rules from rules(P) and thereby decrease
the top-recursion rank.

Formally, we define K through a family (Ki | i ∈ N) as follows.

• K0 = {⟨A,A, x1..(jA−1),d, x(jA+1)..k⟩ | k ∈ N, A ∈M
(k)
P }.

• We let i ∈ N. Then Ki+1 is the smallest set K ′ satisfying the following condition.
If there are ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ Ki, r ∈ rules(P)|B, m ∈ N, C ∈ M

(m)
P

and ξ′1..m ∈ TN∪∆(XrkN (A)) such that B(ξ1..(jB−1), xjB , ξ(jB+1)..ℓ) ⇒r C(ξ′1..m) is an
outside-in derivation, then ⟨A,C, ξ′1..(jC−1),d, ξ

′
(jC+1)..m⟩ is in K ′.

• K =
⋃

i∈NKi.

Claim 1: Let n ∈ N. Furthermore, let A ∈ N (k) and B ∈ N (ℓ) with k, ℓ ∈ N+, and
ξ1..(jB−1), ξ(jB+1)..ℓ ∈ TN∪∆(Xk). The following are equivalent.

(i) There are a ξjB ∈ TN∪∆(Xk) and an outside-in derivation d such that |d| = n and
A(x)⇒d B(ξ1..ℓ).

(ii) ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ Kn.

Proof of Claim 1: (i) ⇒ (ii): We can show Claim 1 by well-founded induction on n.
Clearly, for each A ∈MP , we have that A(x) derives to A(x) within zero rule application

steps and, by definition, ⟨A,A, x1..(jA−1),d, x(jA+1)..k⟩ ∈ K0.

39

3 Non-Self-Embedding CFTGs

Now assume that Claim 1 holds for derivations of length n for some n ∈ N. Assume a
derivation d of length n and a rule r ∈ R such that A(x) ⇒d B(ξ1..ℓ) ⇒r C(ξ′1..m) is an
outside-in derivation. By the induction hypothesis, we have ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈
Kn and thus, by definition of Kn+1, it follows that ⟨A,C, ξ′1..(jC−1),d, ξ

′
(jC+1)..m⟩ ∈ Kn+1.

(ii) ⇒ (i): For each A ∈ MP we have ⟨A,A, x1..(jA−1),d, x(jA+1)..k⟩ ∈ K0 and it holds
that A(x) derives to A(x) within zero rule application steps. Now let n ∈ N and assume that
Claim 1 holds for each element in Kn. Furthermore, assume ⟨A,C, ξ′1..(jC−1),d, ξ

′
(jC+1)..m⟩ ∈

Kn+1. By definition of Kn+1, there are

• ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ Kn,

• a rule r : B(x)→ C(ζ1..m), and

• some ξ′jC ∈ TN∪∆(Xk)

such that B(ξ1..(jB−1), xjB , ξ(jB+1)..ℓ) ⇒r C(ξ′1..m) is an outside-in derivation. By the
induction hypothesis, there are ξjB ∈ TN∪∆(Xk) and a derivation A(x) ⇒d B(ξ1..ℓ) of
length n. Then, we extend d with r and obtain

A(x)⇒d B(ξ1..ℓ)⇒r C(ξ′1..(jC−1), ξ
′
jC
[xjB/ξjB], ξ

′
(jC+1)..m) .

□

Claim 2: The set K is finite.
Proof of Claim 2: In this proof let n1 = max{|pos∆∪(N\MP)(rhs(r))| | r ∈ rules(P)},
n2 = |MP |, and n3 = max{rkN (C) | C ∈MP }. We prove Claim 2 by contradiction.

Assume that K is an infinite set. Then there are ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K,
i,m ∈ [ℓ] \ {jB}, and rule sequences d, d1, and d2 of rules in rules(P) such that

(1) |pos(ξi)| > n1 · n2 · n3,
(since ∆ and N are finite sets, there is such a tree ξi)

(2) d is an outside-in derivation and there is a ξjB with A(x)⇒d B(ξ1..ℓ),
(cf. Claim 1)

(3) d1 is a subsequence of d such that d1 top-induces a generating cycle p1 : (B,m)→∗

(B,m) in a SCC of pg(G) different from P
(since ξi is sufficiently large, there must be a generating cycle)

(4) d2 is an outside-in derivation and it top-induces a generating cycle p2 : (B, jB)→∗

(B, jB) in P .
(since P is a top-recursive SCC, there must be such a generating cycle)

We show the following statement by induction.

Statement (†): For each n ∈ N, there is an mn ∈ [rkN (B)] such that

(i) for each i ∈ [n], the sequence d1d2 top-induces a path (B,mi−1)→∗ (B,mi), and

(ii) mn /∈ {jB,m0, . . . ,mn−1}.

40

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

For the induction base (n = 0), we let m0 = m and recall that m ̸= jB. For the induction
step, we assume that (†) holds for n ∈ N. A consequence of Observation 3.3.4 is that there
is a unique m′ such that d1d2 top-induces the path (B,mn)→∗ (B,m′). We let mn+1 = m′.
Then, (i) holds for mn+1. Now, we show that mn+1 satisfies (ii). If mn+1 = jB, then
(B,m)→∗ (B, jB), but because (B,m) is in a generating SCC, this would contradict the
assumption that P is not reachable from any other generating SCC. It remains to prove
mn+1 /∈ {m0, . . . ,mn}.

Assume that mn+1 = mj for some j ∈ {0, 1, . . . , n}. The sequence (d1d2)
n−j+1 top-

induces

p : (B,mj)→(d1d2)n−j (B,mn)→d1d2 (B,mj)

p′ : (B, jB)→(d1d2)n−j (B, jB) →d1d2 (B, jB) .

We show that p and p′ are generating. If j = 0, then the cycle p is generating, be-
cause it contains p1. If j ̸= 0, then d1d2 top-induces p′′ : (B,mn) →d1d2 (B,mj) and
p′′′ : (B,mj−1)→d1d2 (B,mj), and, by Observation 3.3.5, p′′ is generating and therefore p
is generating. Thus, p is generating regardless of the choice of j. The path p′ is generating,
because it contains p2.

We will now combine p and p′ into one cycle in ppg(G). For this, we consider each
step simultaneously in both paths. We let k ∈ [|d1d2| · (n− j + 1)] and consider the k-th
step. We let ((B1, i1), U1, (B2, i2)) be the k-th edge in p and ((B1, j1), U2, (B2, j2)) be the
k-th edge in p′. Both edges are top-induced by the same rule r. Hence, we have that xi1
and xj1 occur in the subtrees rhs(r)|i2 and rhs(r)|j2 , respectively. By Observation 3.3.4
and since mj ̸= jB, we have that i1 ̸= j1 and i2 ̸= j2. By Definition 3.1.5, there is an edge
((B1, i1, j1), U

′, (B2, i2, j2)) in ppg(G). Furthermore, we have that 1 ∈ U ′ if U1 = {g} and
2 ∈ U ′ if U2 = {g}.

Hence, from p and p′, we obtain the following path p̃ in ppg(G):

p̃ : (B,mj , jB)→(d1d2)n−j (B,mn, jB)→d1d2 (B,mj , jB) .

Since p and p′ are both generating, p̃ is a cycle such that the union of all its path labels
contains 1 and 2. By Theorem 3.1.7, this contradicts G being non-self-embedding and thus,
(ii) holds for mn+1. This proves (†).

However, (†) conflicts with the finiteness of rkN (B) and thus, K is a finite set. □

We modify G with the help of K to construct a lnCFTG G′. We let G′ contain all
original rules, except the ones of rules(P). We further transform the rules from rules(P)
into bottom-recursive rules and add the transformed rules to G′. This transformation is
achieved by reversing the rules, i.e., if G applies r1 and afterwards r2 (r1, r2 ∈ rules(P)),
then G′ applies first r2 and then r1.

Reversing a rule is achieved by considering the rule in the context of a derivation. This
context is represented by using the elements from K as nonterminals for G′.

As an example, consider the rule r : A(x1, x2, x3)→ B(σ(x1, x2), x3) from G8 (cf. Exam-
ple 3.3.1). We have jA = 2 and jB = 1 and we consider the context k1 = ⟨A,A, β,d, x3⟩
in K. If we consider r in the context of k1 we obtain

A(β, x2, x3)→ B(σ(β, x2), x3) .

41

3 Non-Self-Embedding CFTGs

In the RHS, we obtain the context k2 = ⟨A,B,d, x3⟩. We reverse the rule and construct a
new rule with LHS k2(x1, x2) where x1 and x2 are those variables of XrkN (A) not present
in k2. The RHS of the new rule is obtained from the subtree of rhs(r) at position jB as
follows. We replace xjA by k1(x1, x2) where again, x1 and x2 are the variables of XrkN (A)

not present in k1. Hence, r is turned into the rule

⟨A,B,d, x3⟩(x1, x2)→ σ(β, ⟨A,A, β,d, x3⟩(x1, x2), x3) .

Furthermore, we add some rules which handle the connection to rules outside of rules(P).
For each ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K and each rule r : B(x)→ ζ in R|MP

\ rules(P),
we create the rule

A(x)→ ζ[ξ1..(jB−1), ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq), ξ(jB+1)..ℓ] .

Intuitively, the nonterminal from K generates all symbols that would have been generated
by an iteration of rules in rules(P) below the dynamic position of B. By the substitution
into ζ, we ensure that the result of the recursion is placed outside of the nonterminal and
argument position participating in P .

Formally, we construct G′ = (N ′,∆, A0, R
′) as follows. We let N ′ = N ∪K where, for

each ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K, we define its rank to be the number of variables
from XrkN (A) not present in ξ1..(jB−1), ξ(jB+1)..ℓ. We define R′ using the following rules.

(1) R \R|MP
⊆ R′;

(2) for each ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K and each B(x)→ ζ in R|MP
\ rules(P), we

let

A(x)→ ζ[ξ1..(jB−1), ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq), ξ(jB+1)..ℓ]

be in R′ where xℓ1 , . . . , xℓq are those variables of XrkN (A) that do not occur in
ξ1..(jB−1), ξ(jB+1)..ℓ in ascending order;

(3) for each A ∈MP , we let

⟨A,A, x1..(jA−1),d, x(jA+1)..rkN (A)⟩(xjA)→ xjA

be a rule in R′;

(4) for each ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K and r ∈ rules(P)|B of the form B(x) →
C(ζ1..m) such that B(ξ1..(jB−1), xjB , ξ(jB+1)..ℓ)⇒r C(ξ′1..m) is an outside-in derivation,
we let

⟨A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m⟩(xm1 , . . . , xmq′)

→ ζjC [ξ1..(jB−1), ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq), ξ(jB+1)..ℓ]

be in R′ where xm1 , . . . , xmq′ and xℓ1 , . . . , xℓq are those variables of XrkN (A) which are
not present in ξ′1..(jC−1), ξ(jC+1)..m and ξ1..(jB−1), ξ(jB+1)..ℓ, respectively, in ascending
order of their indices;

(5) no other rules are in R′.

42

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

By inspecting all newly introduced rules, it can be verified that G′ is non-self-embedding.

Claim 3: Let A,B ∈ MP , ℓ = rkN (B), and ξ1..ℓ ∈ TN∪∆(XrkN (A)). Then the following
are equivalent.

(i) There is an outside-in derivation d consisting exclusively of rules in rules(P) such
that A(x)⇒d B(ξ1..ℓ).

(ii) There is a derivation d′ of rules in G′ created due to (4) such that

⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq)
⇒d′ ξjB [xjA/⟨A,A, x1..(jA−1),d, x(jA+1)..rkN (A)⟩(xjA)]

where xℓ1 , . . . , xℓq are those variables of XrkN (A) that do not occur in the sequence of
trees ξ1..(jB−1), ξ(jB+1)..ℓ.

Proof of Claim 3: We abbreviate x1..(jA−1),d, x(jA+1)..rkN (A) by xd.
(i)⇒(ii): We prove Claim 3 by induction on the length of d. For |d| = 0, we trivially

get |d′| = 0. Now we assume that d = d1r for some sequence d1 of rules from rules(P)
and r : B(x)→ C(ζ1..m) in rules(P)|B (cf. Lemma 3.2.6) such that A(x)⇒d1 B(ξ1..ℓ)⇒r

C(ξ′1..m). Note that ξ′jC = ζjC [ξ1..ℓ]. By the induction hypothesis, there is a derivation d′1
such that

⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq)⇒d′1
ξjB [xjA/⟨A,A, xd⟩(xjA)] .

Furthermore, by Claim 1, we have ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K. Then, by (4), there
is a rule

r′ : ⟨A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m⟩(xm1 , . . . , xmq′)

→ ζjC [ξ1..(jB−1), ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq), ξ(jB+1)..ℓ] .

It can be seen that

⟨A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m⟩(xm1 , . . . , xmq′)

⇒r′d′1
ζjC [ξ1..(jB−1), ξjB [xjA/⟨A,A, xd⟩(xjA)], ξ(jB+1)..ℓ]

= ζjC [ξ1..ℓ][xjA/⟨A,A, xd⟩(xjA)] .

Hence, d′ = r′d′1 is the desired derivation of rules created due to (4).
(ii)⇒(i): We prove this by induction on the length of d′. For the base case |d′| = 0, we

trivially get |d| = 0. For |d′| ≥ 1, we let d′ = r′d′1 and

⟨A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m⟩(xm1 , . . . , xmq′)⇒r′d′1

ξ′jC [xjA/⟨A,A, xd⟩(xjA)]

where r′ is a rule due to (4) of the form

r′ : ⟨A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m⟩(xm1 , . . . , xmq′)

→ ζ[z/⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq)]

43

3 Non-Self-Embedding CFTGs

for some ζ ∈ CN∪∆∪X({z}), ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈ K, and r : B(x) → C(ζ1..m)
in R such that B(ξ1..(jB−1), xjB , ξ(jB+1)..ℓ) ⇒r C(ξ′1..(jC−1), ξ

′, ξ′(jC+1)..m) is an outside-in
derivation. We note that ξ′ = ζ[z/xjB] and ξ′ = ζjC [ξ1..(jB−1), xjB , ξ(jB+1)..ℓ].

Furthermore, there is some ξjB ∈ TN∪∆(XrkN (A)) such that

⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq)⇒d′1
ξjB [xjA/⟨A,A, xd⟩(xjA)] .

By the induction hypothesis, there is an outside-in derivation d1 such that A(x)⇒d1 B(ξ1..ℓ).
Consider the outside-in derivation A(x)⇒d1 B(ξ1..ℓ)⇒r C(ξ′′1..m). It can be seen that, for
each i ∈ [m] \ {jC}, we have ξ′′i = ξ′i. We furthermore have ξ′′jC = ζjC [ξ1..ℓ] = ζ[z/ξjB] = ξ′jC .
Hence, d1r is the desired outside-in derivation. □

Claim 4: Let A,B ∈ MP , ℓ = rkN (B), and ξ1..ℓ ∈ TN∪∆(XrkN (A)). Then the following
are equivalent.

(i) There is an outside-in derivation d consisting exclusively of rules in rules(P) such
that A(x)⇒d B(ξ1..ℓ).

(ii) There is a derivation d′ of rules in G′ created due to (3) and (4) such that

⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq)⇒q′ ξjB

where xℓ1 , . . . , xℓq are those variables of XrkN (A) that do not occur in the sequence of
trees ξ1..(jB−1), ξ(jB+1)..ℓ.

Proof of Claim 4: Claim 4 follows directly from Claim 3 by using exactly one rule due
to (3) at the end of d′. □

Claim 5: L(G) = L(G′).
Proof of Claim 5: L(G) ⊆ L(G′): We let ξ̃ ∈ T∆ and d be a derivation such that A0 ⇒d ξ̃
holds in G. If d contains no rules from R|MP

, then A0 ⇒d ξ̃ holds in G′ as well, since
all rules are in R′ due to (1). Now we assume that a rule from R|MP

occurs in d. Then
we may reorder d such that rules of R|MP

are executed in sequence as follows. There are
A,B ∈MP and some ζ ∈ C∆({z}) such that

A0 ⇒d0 ζ[A(ξ1..k)]⇒d1 ζ[B(ξ′1..ℓ)]⇒r ζ
[
ζ ′[ξ′1..ℓ]

]
⇒d2 ξ̃

where d0 is a sequence of rules such that A0 ⇒d0 ζ[A(ξ1..k)] holds in both G and G′, d1
is an outside-in derivation consisting of rules from rules(P), r : B(x) → ζ ′ is a rule in
R|B \ rules(P), and d2 is the remaining sequence of rules in R. Note that rules in d0 can
be due to (1) or they can be chosen recursively by the following argument.

We consider the outside-in derivation A(x)⇒d1 B(ζ1..ℓ). We note that ξ′i = ζi[ξ1..k] for
each i ∈ [ℓ], i.e., the derivation is independent from its context. By Claim 1, we have
⟨A,B, ζ1..(jB−1),d, ζ(jB+1)..ℓ⟩ ∈ K. Note that r has LHS-nonterminal B and thus, there is
a rule due to (2) using ⟨A,B, ζ1..(jB−1),d, ζ(jB+1)..ℓ⟩ and r.

By Claim 4, there is a derivation ⟨A,B, ζ1..(jB−1),d, ζ(jB+1)..ℓ⟩(x) ⇒d′1
ζjB . Hence, we

replace d0d1r by

A0 ⇒d0 ζ[A(ξ1..k)] = ζ[A(x1..k)][ξ1..k]

⇒ ζ
[
ζ ′[ζ1..(jB−1), ⟨A,B, ζ1..(jB−1),d, ζ(jB+1)..ℓ⟩(xℓ1 , . . . , xℓq), ζ(jB+1)..ℓ]

]
[ξ1..k] (2)

⇒d′1
ζ
[
ζ ′[ζ1..ℓ]

]
[ξ1..k] (Claim 4)

= ζ
[
ζ ′[ξ′1..ℓ]] .

44

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

Note that the above derivation does not use any rules from rules(P). By applying the above
method repeatedly, we can replace the remaining rules from rules(P) in d2 and obtain a
derivation in G′.
L(G) ⊇ L(G′): A derivation in G′ consists either of rules also present in G or can be

reordered to contain rule sequences described by the following regular expression

(1)∗
(
(2) (4)∗ (3)  
use Claim 4

(1)∗
)∗

where (i) stands for a rule due to the item (i) in the construction of R′. Using Claim 4, it
can be seen that we can replace each underbraced sequence by a sequence of rules in G
with the same effect. □

Next we prove that the top-recursion rank of G′ is smaller than the top-recursion rank
of G and show that G′ is unique in argument positions. For this, we observe two properties
of pg(G′), based on the construction of the rules of G′.

(P1) For each top-recursive P ′ ∈ scc(pg(G′)), we have MP ′ ∩K = ∅.
(Intuition: A generating cycle p : (A, i)→∗ (A, i) in pg(G′) where A ∈ N can be trans-
lated into a generating cycle in pg(G). Note that all vertices on p belong to one top-
recursive SCC. If p contains an edge from a nonterminal ⟨A,B, ξ1..(jB−1),d, ξ(jB+1)..ℓ⟩ ∈
K to a nonterminal C ∈ N , then symbols are generated above a corresponding non-
terminal occurrence of A in G (cf. rules due to (4)). In this case, by Definition 3.1.1,
the translated path is a witness for G being self-embedding. This is a contradiction
to the assumption of this section and thus, each top-recursive SCC cannot contain
vertices with nonterminals from K.)

(P2) We let (A, i), (B, j) ∈ Vpg(G). If (A, i) ̸→∗ (B, j) in pg(G), then (A, i) ̸→∗ (B, j) in
pg(G′).

Claim 6: For each top-recursive SCC P ′ ∈ scc(pg(G′)) and each (A, i) ∈ VP ′ , there is a
top-recursive SCC P̃ ∈ scc(G) such that (A, i) ∈ V

P̃
.

Proof of Claim 6: Let P ′ ∈ scc(pg(G′)) be top-recursive and (A, i) ∈ VP ′ . By (P1), A ∈ N
and thus, there is a uniquely determined P̃ ∈ scc(pg(G)) such that (A, i) ∈ P̃ . We show
that P̃ is top-recursive.

There is a rule sequence d′ of rules from R′ such that d′ induces a generating path
p′ : (A, i) →s′ (A, i) in P ′. We transform p′ into a path p : (A, i) →∗ (A, i) in pg(G) with
the following case distinction on rules in d′. Let r′ be a rule in d′.

If r′ ∈ R, then the induced edge is not changed. Trivially, if r′ induces a generating edge
in p′, then it induces a generating edge in p. Now assume that r′ ∈ R′ \R and r′ induces
the edge (B1, i1) →r′ (B2, i2) in p where B1, B2 ∈ N , i1 ∈ [rkN (B1)], and i2 ∈ [rkN (B2)].
In this case, r′ is due to (2). By Claim 1 and 4, there is a sequence d of rules in R such
that p1 : (B1, i1)→d (B2, i2). Furthermore, it can be seen that d is generating if r′ is. We
replace (B1, i1)→r′ (B2, i2) by p1.

We transform d′ rule by rule as described above and obtain the path p : (A, i)→p (A, i)

in pg(G). We have that p is generating, because p′ is. Thus, P̃ is top-recursive. □

45

3 Non-Self-Embedding CFTGs

Claim 7: For each (A, i) ∈ VP and P ′ ∈ scc(pg(G′)) such that (A, i) ∈ VP ′ , we have that
P ′ is not top-recursive.
Proof of Claim 7: Let (A, i) ∈ VP and P ′ ∈ scc(pg(G′)) such that (A, i) ∈ VP ′ . We
assume that P ′ is top-recursive. Then there is a generating path p′ : (A, i)→∗ (A, i) in P ′.
Furthermore, there are (B, j) ∈ Vpg(G′) and r′ ∈ R′ such that (A, i)→r′ (B, j) is the first
edge of p′. By (P1), we have B ∈ N . Since A ∈ MP , we have that r′ is due to (2) and,
by the construction of G′, we have (B, j) /∈ VP . Thus, we have (B, j) ̸→∗ (A, i) in pg(G)
and thus, by (P2), (B, j) ̸→∗ (A, i) in pg(G′). This contradicts the existence of p′. Since
there is no generating path (A, i)→ (A, i) in pg(G), we obtain a contradiction to P ′ being
top-recursive. □

Claim 8: topRank(G′) < topRank(G).
Proof of Claim 8: This is a consequence of Claims 6 and 7. □

Claim 9: The lnCFTG G′ is unique in argument positions.
Proof of Claim 9: We analyze newly introduced generating SCCs. Let P ′ ∈ scc(pg(G′)) be
generating. If P ′ is bottom-recursive, then by Observation 3.2.3, P ′ is trivially unique in
argument positions.

If P ′ is top-recursive, then we analyze the rules from rules(P ′). We note that, by (P1),
there are no rules due to (3) or (4). Hence, we consider rules due to (1) and (2). We
let (A, i), (A, j) ∈ VP ′ and p′ : (A, i) →∗ (A, j) →∗ (A, i) be a generating path in pg(G′).
Then, we construct the path p in pg(G) by modifying p′ as follows. Edges induced by rules
due to (1) are taken over without modification. Each edge induced by a rule due to (2)
is replaced by the path induced by the corresponding sequence of rules in rules(P) (cf.
Claim 1) followed by the single rule outside of rules(P). Hence, p : (A, i)→∗ (A, j)→∗ (A, i)
is a path in pg(G). Since G is unique in argument positions, we have i = j and thus, G′ is
unique in argument positions. □

■

We illustrate the constructions from the proof of Lemma 3.3.6 in the following example.

Example 3.3.7 Recall the lnCFTG G8 from Example 3.3.1. It is clear that P (cf. Fig-
ure 3.8(b)) is the selected SCC since it is the only top-recursive SCC. We note that P is
reachable from one other SCC, which is not top-recursive.

The set K contains the contexts of trees that can be generated in the generating argument
positions using rules from rules(P). We note that jA = 2 and jB = 1. The set K contains
the following items:

K = { ⟨A,A, x1,d, x3⟩ ⟨A,B,d, x3⟩ ⟨A,A, β,d, x3⟩
⟨B,B,d, x2⟩ ⟨B,A, β,d, x2⟩ }

Figure 3.9 presents the rules of the transformed grammar G8
′ constructed by (3) and (4).

With the help of these rules we can illustrate Claim 3 and 4. Consider the two derivations
from G8 and G8

′ in Figure 3.10. For easier comparison we denote the derivation of G8 from
left to right and the derivation of G8

′ from right to left. The two occurrences of the terminal
symbol σ are created in different stages of the derivations. We link the corresponding
creations by dashed curves.

46

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

(3) ⟨A,A, x1,d, x3⟩(x2)→ x2 (3) ⟨B,B,d, x2⟩(x1)→ x1

(4) ⟨B,A, β,d, x2⟩(x1)→
⟨B,B,d, x2⟩

x1

(4) ⟨A,B,d, x3⟩(x1, x2)→

σ

x1 ⟨A,A, x1,d, x3⟩
x2

(4) ⟨A,A, β,d, x3⟩(x1, x2)→
⟨A,B,d, x3⟩

x1 x2

(4) ⟨A,B,d, x3⟩(x1, x2)→

σ

β ⟨A,A, β,d, x3⟩
x1 x2

(4) ⟨B,B,d, x2⟩(x1)→

σ

β ⟨B,A, β,d, x2⟩
x1

Figure 3.9: The rules of G8
′ created due to (3) and (4).

G8 :
A

x1 x2 x3
⇒

B

σ

x1 x2

x3 ⇒
A

β σ

x1 x2

x3 ⇒

B

σ

β σ

x1 x2

x3

G8
′ :

σ

β σ

x1 x2

⇐

σ

β σ

x1 E

x2

⇐

σ

β C

x1 x2

⇐

σ

β D

x1 x2

⇐
C

x1 x2

Figure 3.10: Derivations from G8 and G8
′ (Abbreviations: C = ⟨A,B,d, x3⟩, D =

⟨A,A, β,d, x3⟩, and E = ⟨A,A, x1,d, x3⟩).

47

3 Non-Self-Embedding CFTGs

(A0, 0) (A, 0) (A, 1) (A, 2) (A, 3)

(E, 0) (E, 1)

(D, 0) (D, 1) (D, 2)

(C, 0) (C, 1) (C, 2)

{g}

{g}

{g}

Figure 3.11: Part of the position graph of G8
′ (Abbreviations: C = ⟨A,B,d, x3⟩, D =

⟨A,A, β,d, x3⟩, and E = ⟨A,A, x1,d, x3⟩).

We will now present the rules of G8
′ created due to (1) and (2).

(1) There is only one rule not in R \R|MP
: A0 → A(α, α, α).

(2) There is only one rule in R|MP
\ rules(P), viz. r : A(x1, x2, x3) → κ(x1, x2, x3).

Hence, we create one rule for each item in K where the second component is A,
viz. ⟨A,A, x1,d, x3⟩, ⟨A,A, β,d, x3⟩, and ⟨B,A, β,d, x2⟩. The contextual information
from each of these elements is incorporated into r.

A(x1, x2, x3)→

κ

x1 ⟨A,A, x1,d, x3⟩

x2

x3

⏐⏐⏐⏐⏐⏐⏐⏐⏐
κ

β ⟨A,A, β,d, x3⟩

x1 x2

x3

B(x1, x2)→

κ

β ⟨B,A, β,d, x2⟩

x1

x2

Figure 3.11 shows part of pg(G8
′). The SCC formed by nonterminals from K is bottom-

recursive. We observe that the resulting lnCFTG G8
′ does not have any top-recursive SCC

and thus, topRank(G8
′) = 0. Claim 6 and 7 are trivial for this example and Claim 8 is

illustrated. It can be seen that pg(G8
′) is unique in argument positions and this is an

example of Claim 9. ⃝

Theorem 3.3.8 Let G be a non-self-embedding lnCFTG which is unique in argument posi-
tions. Then there is a non-self-embedding lnCFTG G′ which is unique in argument positions,
L(G′) = L(G), and pg(G′) does not contain top-recursive SCCs, i.e., topRank(G′) = 0.

Proof. This theorem follows immediately from the repeated application of Lemma 3.3.6
to G. Since topRank(G) is finite and decreases strictly with every application of the lemma,
the construction terminates. ■

48

3.3 Proving Regularity of Non-Self-Embedding lnCFTGs

3.3.2 Transforming a Top-Recursion-Free lnCFTG into a RTG

In this section, we consider a non-self-embedding lnCFTG G such that pg(G) does not
contain a top-recursive SCC. Hence, for each rule r in G, exactly one of the following three
cases holds:

• r ∈ rules(P) for some bottom-recursive SCC P ,

• r ∈ rules(P) for some SCC P which is not generating, and r is of the form A(x1..k)→
B(xj1 , . . . , xjk) where j1, . . . , jk is a permutation of [k],

• r ∈ R \ (
⋃

P∈scc(pg(G)) rules(P)), i.e., r is not in the rules of any SCC and thus, r is
not involved in any recursion.

We note that each non-self-embedding lnCFTG G such that pg(G) does not contain a
top-recursive SCC, is unique in argument positions.

Lemma 3.3.9 We let G be a non-self-embedding lnCFTG and topRank(G) = 0. We can
construct a RTG H such that L(G) = L(H).

Proof. Let G = (N,∆, A0, R). We will show that, since G contains no top-recursion, in
any outside-in derivation, no unboundedly large trees will occur in any argument position
of any nonterminal. In other words, the set

K = {⟨ξ|w⟩ | A0 ⇒d ξ, w ∈ posN (ξ), d is outside-in}

is finite.
We will construct K and use its elements as nonterminals of the RTG H. The trees in K

are used to construct rules that mimic rules of G, but only use nullary nonterminals.
As an auxiliary tool we define, for each ξ ∈ TN∪∆(X),

cutN (ξ) = {⟨ξ|w⟩ | w ∈ posN (ξ), w outermost in posN (ξ)} .

We let P0 = {⟨A0⟩} and define inductively, for each i ∈ N,

Pi+1 = Pi ∪
⋃

⟨ξ⟩∈Pi

r∈R|ξ(ε)
cutN (rhs(r)[ξ|1, . . . , ξ|ℓ])

where in each case ℓ = rkN (ξ(ε)). Note that Pi is finite for every i ∈ N.

Claim 1: There is an n ∈ N such that K = Pn = Pn+1.
Proof of Claim 1: Since no SCC in G is top-recursive, each SCC P ∈ scc(pg(G)) involving
(A, j), for some j ∈ [rkN (A)], is not generating, i.e., considering all outside-in derivations
using rules from rules(P), the set of nonterminals generated below a nonterminal is finite.
Hence, an item in K is a nonterminal plus a choice of argument values drawn from a finite
set. We use a saturation process to find all relevant argument values.

Furthermore, since P0 = {⟨A0⟩}, it can be seen that Pn = K. □

Now we let n ∈ N be such that Pn = Pn+1. We construct the RTG H = (Pn,∆, ⟨A0⟩, R′)
where R′ is defined as follows. For each ⟨ξ⟩ ∈ Pn with ℓ = rkN (ξ(ε)) and r ∈ R|ξ(ε), let
⟨ξ⟩ → ζ be in R′ where ζ is obtained from rhs(r)[ξ|1, . . . , ξ|ℓ] by replacing the subtree at

49

3 Non-Self-Embedding CFTGs

each outermost position w ∈ posN (rhs(r)) by ⟨rhs(r)[ξ|1, . . . , ξ|ℓ]|w⟩. We denote the rule
constructed in this way by [r, ⟨ξ⟩].

Claim 2: For each m ∈ N and ξ ∈ TN∪∆, the following are equivalent.

(i) There is an outside-in derivation d of G such that |d| = m and A0 ⇒d ξ.

(ii) There is a ξ′ ∈ T∆(K) and a derivation d′ of H such that |d′| = m, ⟨A0⟩ ⇒d′ ξ
′, and

ξ = removeBrackets(ξ′) where removeBrackets(ξ′) is obtained from ξ′ by replacing
each position labeled ⟨B(ξ1..ℓ)⟩ by the tree B(ξ1..ℓ).

Proof of Claim 2: We assume that d and d′ are of the form

d : A0 =ζ0 ⇒r1 ζ1 ⇒r2 . . .⇒rm−1 ζm−1 ⇒rm ξ and
d′ : ⟨A0⟩ =ζ ′0 ⇒r̃1,⟨ξ1⟩ζ

′
1 ⇒r̃2,⟨ξ2⟩ . . .⇒r̃m−1,⟨ξm−1⟩ζ

′
m−1 ⇒r̃m,⟨ξm⟩ξ

′ .

(i)⇒(ii): Assume that, for each i ∈ [m], the rule ri is applied at position wi in ζi−1. We
obtain d′ by defining, for each i ∈ [m], that [r̃i, ⟨ξi⟩] = [ri, ζ

′
i−1(wi)]. Then, we can show by

induction that, for each i ∈ [m], we have ζi−1 = removeBrackets(ζ ′i−1). Furthermore, since
A0 ⇒r1..(i−1)

ζi−1 holds, we have by Claim 1 that ⟨ζi−1|wi⟩ ∈ Pn and it can be seen that
⟨ζi−1|wi⟩ = ζ ′i−1(wi).

(ii)⇒(i): For each i ∈ [m], we let ri = r̃i. It can be shown by induction on m that, for
each i ∈ [m], we have ζi−1 = removeBrackets(ζ ′i−1). □

Recall from Definition 2.2.5 that L(G) is defined in terms of outside-in derivations. Thus,
by Claim 2, we have L(H) = L(G). ■

Example 3.3.10 We illustrate the construction in the proof of Lemma 3.3.9 by considering
the lnCFTG

G9 = ({A0
(0), A(2)}, {α(0), β(0), γ(0), δ(2), κ(2)}, A0, R)

where R contains the rules

A0 → A(α, β) and A(x1, x2)→
δ

x1 A

x2 γ

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2
.

Applying the construction from the proof of Lemma 3.3.9 to G9 yields the RTG H2 with
the rules

⟨A0⟩ →
⟨

A

α β

⟩
,

⟨
A

α β

⟩
→

δ

α

⟨
A

β γ

⟩ ⏐⏐⏐⏐⏐⏐⏐
κ

α β
,

⟨
A

β γ

⟩
→

δ

β

⟨
A

γ γ

⟩ ⏐⏐⏐⏐⏐⏐⏐
κ

β γ
, and

⟨
A

γ γ

⟩
→

δ

γ

⟨
A

γ γ

⟩ ⏐⏐⏐⏐⏐⏐⏐
κ

γ γ
.

It can be seen that G9 and H2 are equivalent. ⃝

50

3.4 Relationship to the String Case

3.3.3 Main Theorem

Theorem 3.3.11 For each non-self-embedding lnCFTG G, we can construct a RTG H
such that L(G) = L(H), i.e., the tree language L(G) is regular.

Proof. By Lemma 3.2.9 we may assume that G is non-self-embedding and unique
in argument positions. Furthermore, according to Theorem 3.3.8 we can assume that
topRank(G) = 0. The application of Lemma 3.3.9 yields an equivalent RTG H. Hence,
L(H) is regular. ■

3.4 Relationship to the String Case

We relate our result to the corresponding result for the string case. In [10, 11] it was
proved that each non-self-embedding context-free (string) grammar (CFG) generates a
regular string language. In [47] self-embedding was expressed as a syntactic criterion,
accompanied by a direct construction of a regular string grammar (REG) starting from a
non-self-embedding CFG.

Recall that CFGs and strongly monadic lnCFTGs are in a one-to-one correspondence (cf.
Observation 2.2.28). For strongly monadic lnCFTGs, Property (2) of the definition of self-
embedding is false. Moreover, Property (1) of that definition corresponds to the definition
of self-embedding of CFG given in [11, 47]. Thus, there is a one-to-one correspondence
between non-self-embedding CFGs and non-self-embedding strongly monadic lnCFTGs.

A REG can be viewed as a strongly monadic lnCFTG (N,∆, A0, R) in which the RHS
of each rule satisfies the property that the subtree below a nonterminal only consists of
x1. Let us call such grammars strongly monadic RTG. There is an obvious one-to-one
correspondence between REGs and strongly monadic RTGs: it is the restriction of the
above mentioned one-to-one correspondence between CFGs and strongly monadic lnCFTGs
(to REGs and strongly monadic RTGs, respectively).

We will now analyze the proof of Theorem 3.3.11 when G is a non-self-embedding strongly
monadic lnCFTG. Note that in a strongly monadic lnCFTG, every position in the RHS is
variable dominating. Hence, each occurrence of a nonterminal in the RHS of a rule induces
an edge in the position graph. We compare our construction to the function make_fa
(cf. [47, Figure 1.3]) of the string case.

The first part of the proof is concerned with the property of being unique in argument
positions. In case of a strongly monadic lnCFTG, there are only two argument positions,
viz. 0 and 1. By Observation 3.2.3, we have that those two argument positions are never in
the same SCC. Hence, every strongly monadic lnCFTG is unique in argument positions.

The second part of the proof removes top-recursive SCCs. We discuss it for an example
rule of a top-recursive SCC P . Let r be a rule A(x1)→ B(γ(C(x1))) in rules(P) where A
and B are both nonterminals in MP . Removing top-recursion in a strongly monadic
lnCFTG is similar to handling left-recursion in the string case. According to (4) from the
proof of Lemma 3.3.6, we reverse r to the rule r′ : ⟨A,B,d⟩(x1)→ γ(C(⟨A,A,d⟩(x1))). We
compare r′ to the output of make_fa applied to the rule A → BγC. This yields a rule
qB → γCqA, which corresponds to r′.

Lastly, we consider the transformation of a strongly monadic non-self-embedding lnCFTG
which does not contain top-recursive SCCs into a RTG. This construction corresponds to

51

3 Non-Self-Embedding CFTGs

the application of make_fa to A0 and uses the case for right-recursion.

3.5 Alternative Proof of Regularity

In this section, we explore a different way of transforming a top-recursion free, non-self-
embedding lnCFTG G into a RTG. It is an alternative to the construction in the proof
of Lemma 3.3.9. The alternative proof is inspired from the approach taken for CFG [47].
We consider the SCCs of pg(G)|N×{0}. The paths between these SCCs encode the calling
structure of nonterminals in H. A nonterminal A calls a nonterminal B if B occurs variable
dominating in the RHS of an A-rule. In this case, there is a path from (A, 0) to (B, 0) in
pg(G)|N×{0}.

The alternative proof proceeds as follows. Consider a SCC P from pg(G)|N×{0}. First,
we construct, for each A ∈ MP , the RTG HA such that L(HA) = L(box(G)|MP

, A(x))
where box(G) is a restriction of G that only derives variable dominating occurrences
of nonterminals. This step is similar to the construction in the proof of Lemma 3.3.9.
Instead of deriving all nonterminals, only the nonterminals in MP are considered. All other
nonterminals are treated as terminals. Second, we join any family of RTG with the property
mentioned in the first step via closure properties of regular tree languages (cf. Section 2.2)
and obtain a RTG H such that L(H) = L(G). Thus, regularity of L(G) is proven.

The alternative proof has two main advantages. First, each RTG HA which is obtained
by the alternative approach can be minimized individually. Since minimization of RTG
is PSPACE-complete [32, Thm. 3.2], it is beneficial to minimize multiple smaller RTGs
instead of one large RTG. Second, this alternative proof allows substituting the construction
in Section 3.5.1 by other methods. The characterization can also be replaced by an
approximation of each RTG. Thus, the alternative proof for Lemma 3.3.9 yields the
justification for an approximation.

3.5.1 Construct a Family of RTGs

In this section, we let G = (N,∆, A0, R) be a non-self-embedding lnCFTG that is unique in
argument positions and such that topRank(G) = 0.

We construct, for each P ∈ scc(pg(G)|N×{0}) and each A ∈ MP , a RTG HA such
that L(HA) = L(box(G)|MP

, A(x)) where box(G) will be defined in Definition 3.5.2. We
differentiate variable dominating occurrences of nonterminals from those occurrences of
nonterminals that are not variable dominating. Since the latter play no part in recursion,
we postpone the derivation of those nonterminals in box(G) as follows. Each subtree ξ
rooted in a nonterminal that is not variable dominating, is replaced by a new symbol LξM.

Definition 3.5.1 Let ξ ∈ TN∪∆(X) and

Bξ = {Lξ|wM | w ∈ posN\N(0)(ξ), w is not variable dominating} .

Then the variable dominating fragment of ξ, denoted by box(ξ), is the tree ξ′ ∈ TN∪∆(B)
which is obtained from ξ by replacing the subtree at each outermost position w ∈
posN\N(0)(ξ) which is not variable dominating by the new terminal Lξ|wM. □

52

3.5 Alternative Proof of Regularity

If we represent a tree ξ as the symbol LξM, we say that we box the tree. Note that
Definition 3.5.1 only targets nonterminals with a rank larger than zero. Since nullary
nonterminals can only occur not variable dominating, we choose to allow them here rather
than handling the symbols LBM (for B ∈ N (0)) later. We furthermore note that while this
decision helps the intuition, it does not influence the proofs in a major way.

The variable dominating fragment of G is obtained by applying box(·) to the right-hand
side of each rule.

Definition 3.5.2 We define the variable dominating fragment of G, denoted by box(G),
as the lnCFTG box(G) = (N,∆ ∪ B, A0, RB) where

• B =
⋃

ξ∈rhs(R) Bξ and each LξM ∈ B has rank 0, and

• RB = {A(x)→ box(ξ) | A(x)→ ξ ∈ R}. □

In the following, we let box(G) = (N,∆ ∪ B, A0, RB).

Observation 3.5.3 Since the edges in pg(G) only depend on variable dominating nonter-
minal occurrences, we have that pg(G) = pg(box(G)). Thus, we also have topRank(G) =
topRank(box(G)) = 0.

The proof of the following lemma is very similar to the proof of Lemma 3.3.9. We fix one
SCC P of pg(box(G))|N×{0} and one nonterminal A ∈MP . Then, we construct the RTG
HA as follows. We start with the new nonterminal ⟨A(x)⟩ and create new nonterminals
of the form ⟨ξ⟩ where ξ(ε) ∈ MP as follows. Assume a new nonterminal ⟨ξ⟩ such that
ξ(ε) = B. Then we use each rule r ∈ R|B to create new rules for ⟨ξ⟩: In rhs(r), we replace
each variable xi by the subtree ξ|i. Furthermore, we replace each subtree ξ′ that is rooted
in a nonterminal from MP by the new nonterminal ⟨ξ′⟩. Let ζ be the tree obtained in this
way. Then we create the rule ⟨ξ⟩ → ζ.

We create rules for each newly introduced nonterminal ⟨ξ⟩ as described above. Termination
of this saturation process is guaranteed, since topRank(G) = 0. Note that while Lemma 3.3.9
considers all nonterminal occurrences, this lemma uses only subtrees rooted in nonterminals
from MP as new nonterminals for HA. Furthermore, we note that the terminals from HA

contain ∆, B, as well as XrkN (A) and N \MP .

Lemma 3.5.4 Let G = (N,∆, A0, R) be a non-self-embedding lnCFTG that is unique in
argument positions and topRank(G) = 0. For each P ∈ scc(pg(G)|N×{0}) and (A, 0) ∈ VP ,
we can construct a RTG HA such that L(HA) = L(box(G)|MP

, A(x)).

Proof. We let P ∈ scc(pg(G)|N×{0}), (A, 0) ∈ VP , and construct the RTG HA =
(NA,∆A, A

′, RA). As an auxiliary tool, we define the function cutMP
very similar to the

function cutN from the proof of Lemma 3.3.9. For every ξ ∈ TN∪∆(X ∪ B), we have

cutMP
(ξ) = {⟨ξ|w⟩ | w ∈ posMP

(ξ), w outermost in posMP
(ξ)} .

We let P0 = {⟨A(x)⟩} and define inductively, for each i ∈ N,

Pi+1 = Pi ∪
⋃

⟨ξ⟩∈Pi

r∈RB|ξ(ε)
cutMP

(rhs(r)[ξ|1, . . . , ξ|ℓ])

53

3 Non-Self-Embedding CFTGs

where in each case ℓ = rkN (ξ(ε)).
Claim 1: There is an n ∈ N such that Pn = Pn+1.
Claim 1 follows as a special case from Claim 1 of Lemma 3.3.9.

Now we let n ∈ N be such that Pn = Pn+1. We construct the desired RTG HA =
(NA,∆A, A

′, RA) as follows. We let

• NA = Pn;

• ∆A = ∆ ∪ (N \MP) ∪ B ∪Xk where each symbol in B and Xk is nullary;

• A′ = ⟨A(x)⟩; and

• for each ⟨ξ⟩ ∈ Pn and r ∈ RB|ξ(ε), we let ⟨ξ⟩ → ζ be in RA where ζ is obtained
from rhs(r)[ξ|1, . . . , ξ|ℓ] by replacing the subtree at each outermost position w ∈
posMP

(rhs(r)) by ⟨rhs(r)[ξ|1, . . . , ξ|ℓ]|w⟩ where ℓ = rkN (ξ(ε)).

Claim 2: L(box(G)|MP
, A(x)) = L(HA).

The proof of Claim 2 is analogous to the proof of Claim 2 of Lemma 3.3.9. ■

Note that in the case of a nullary nonterminal B ∈ N (0), we have MP = {B} and
Pn = {⟨B⟩}. Thus, RB is obtained from R|B by replacing each B by ⟨B⟩.

Example 3.5.5 As an example, consider Figure 3.12(a) displaying the lnCFTG G10 that
is unique in argument positions and topRank(G10) = 0. Figures 3.12(b), (c), and (d) show
the RTGs HA0 , HB, and HA, respectively. Note that HA and HB generate variables as
terminals. Furthermore, L(HA) contains the symbol B as a terminal and L(HB) contains
the boxed tree LA(α, α)M, since the corresponding occurrence of A in G10 is not variable
dominating.

3.5.2 Combine the Family of RTGs

In this section, we assume that an N -indexed family of RTGs is given that generate the
tree languages induced by each nonterminal in N . We show how to combine this family
and obtain one RTG that starts from the initial nonterminal A0 ∈ N .

Throughout this section, we let (HA | A ∈ N) be a family of RTGs HA = (NA,∆A, A
′, RA)

such that, for each P ∈ scc(pg(G)|N×{0}) and A ∈MP , the condition

L(box(G)|MP
, A(x)) = L(HA)

is satisfied where ∆A is defined as in Section 3.5.1.
It is noteworthy that this family is not required to be the one constructed in Section 3.5.1,

but it can be any family which satisfies the condition.

54

3.5 Alternative Proof of Regularity

A0 → A(α, α) A(x1, x2)→

σ

B

x1

A

x2 α

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2
B(x1)→

σ

B

x1

A

α α

⏐⏐⏐⏐⏐⏐⏐⏐
γ

x1

(a) The lnCFTG G10

⟨A0⟩ →
A

α α

(b) The RTG HA0

⟨B(x1)⟩ →
σ

⟨B(x1)⟩ LA(α, α)M

⏐⏐⏐⏐⏐ γ

x1

(c) The RTG HB

⟨A(x1, x2)⟩ →

σ

B

x1

⟨A(x2, α)⟩ ⟨A(x2, α)⟩ →

σ

B

x2

⟨A(α, α)⟩ ⟨A(α, α)⟩ →

σ

B

α

⟨A(α, α)⟩

⟨A(x1, x2)⟩ →
κ

x1 x2
⟨A(x2, α)⟩ →

κ

x2 α
⟨A(α, α)⟩ →

κ

α α
⃝

(d) The RTG HA

Figure 3.12: Example of the construction of (HA | A ∈ N)

55

3 Non-Self-Embedding CFTGs

Since we only consider linear nondeleting context free tree grammars, we can reorder
any derivation in an arbitrary fashion (cf. Observation 2.2.16). Hence, we can observe the
following.

Observation 3.5.6 L(G) = L(box(G))←
(
LξM/L(G, ξ) | LξM ∈ B

)
.

To prove regularity of L(G) it thus suffices, by Theorem 2.2.23, to independently prove
regularity of L(box(G)) and L(G, ξ) for each LξM ∈ B. In particular, we will prove that the
tree language induced by A(x) on box(G) is regular (cf. Lemma 3.5.13) and that unboxing
preserves regularity (cf. Lemma 3.5.22).

We will now show the regularity of L(box(G)). For this, we observe another decomposition
result, which is related to Observation 3.5.6.

Observation 3.5.7 For each P ∈ scc(pg(G)|N×{0}) and A ∈MP , we have that

L(box(G), A(x)) = L(box(G)|MP
, A(x))← (B/L(box(G), B(x)) | B ∈ N \MP) .

We will show the regularity of L(box(G), B(x)) for each B ∈ N .
We observe that the SCCs in pg(G)|N×{0} can be ordered w.r.t. their calling structure. A

SCC P calls a SCC P ′ if there are (A, 0) ∈ VP and (B, 0) ∈ VP ′ such that (A, 0)→ (B, 0)
holds in pg(G).

Definition 3.5.8 For each P, P ′ ∈ scc(pg(G)|N×{0}), we say P ′ precedes P , denoted by
P ′ < P , iff

(i) P ̸= P ′ and

(ii) there are (A, 0) ∈ VP and (B, 0) ∈ VP ′ such that (A, 0)→pg(G) (B, 0).

We let <+ denote the transitive closure of < and call <+ the calling order. If P ′ <+ P ,
then we say that P ′ is smaller than P , or P is larger than P ′. □

Intuitively, larger SCCs call smaller ones.

Lemma 3.5.9 The binary relation <+ is a strict order, i.e., irreflexive (P <+ P does not
hold for any P ∈ scc(pg(G)|N×{0})), transitive (P1 <

+ P2 and P2 <
+ P3 implies P1 <

+ P3),
and asymmetric (if P ′ <+ P , then P <+ P ′ does not hold).

Proof. Irreflexivity follows from Condition (i) of Definition 3.5.8. The relation <+ is
transitive by definition. It remains to show that <+ is asymmetric. We prove this
by contradiction. Assume P, P ′ ∈ scc(pg(G)|N×{0}) such that P ′ <+ P and P <+ P ′.
Then, by Condition (ii) we have that there are (A, 0) ∈ VP and (B, 0) ∈ VP ′ such
that (A, 0) →∗

pg(G) (B, 0) and (B, 0) →∗
pg(G) (A, 0) and thus, P = P ′. This contradicts

Condition (i). ■

The calling order induces an enumeration of the set scc(pg(G)|N×{0}) of nonterminals. Let
us now consider minimal SCCs w.r.t. the calling order. The tree language generated by each
nonterminal in such a minimal SCC P ′ does not depend on nonterminals from SCCs which
are larger than P ′. In other words, for each B ∈MP ′ , the tree language L(box(G)|MP ′ , B(x))

56

3.5 Alternative Proof of Regularity

does not contain any symbol from N (Recall that ∆B contains N \MP ′). We show that
the tree language L(box(G), B(x)) is regular for each nonterminal B in a minimal SCC P ′.
Then we proceed by induction and show that, for each larger SCC P and each nonterminal
A ∈MP , the tree language L(box(G), A(x)) is regular. This is done by substituting each
nonterminal B from smaller SCCs by L(box(G), B(x)).

Formally, we choose an enumeration P1, . . ., Pn where n = |scc(pg(G)|N×{0})| such that,
for each i, j ∈ [n], we have that Pi <

+ Pj implies i < j. Thus, the enumeration starts with
the smaller SCCs and progresses to the larger ones. Such an enumeration exists, since the
SCCs of pg(G)|N×{0} have a topological ordering.

For the rest of this section, we fix such an enumeration P1, . . . , Pn.

We observe two intermediate properties. First, if Pi <
+ Pℓ, then no symbols from MPℓ

occur in the language of the (
⋃

j∈[i]MPj)-fragment of box(G) induced by some nonterminal
from Pi.

Observation 3.5.10 We let i ∈ [n] and A ∈MPi . We have that

L(box(G)|⋃
j∈[i] MPj

, A(x)) ⊆ T∆(XrkN (A) ∪ B)

and thus, for each 0 ≤ m ≤ n− i, it holds that

L(box(G)|⋃
j∈[i] MPj

, A(x)) = L(box(G)|⋃
j∈[i+m] MPj

, A(x)) .

Since the nonterminals and rules of box(G)|⋃
j∈[n] MPj

and box(G) are equal, we obtain for
m = n− i that

L(box(G)|⋃
j∈[i] MPj

, A(x)) = L(box(G), A(x)) .

Second, we can extend Observation 3.5.7 and obtain the following.

Observation 3.5.11 We let i ∈ [n]. Since

posMPi

(⋃
ℓ∈[i−1]

⋃
A∈MPℓ

L(box(G)|⋃
j∈[i−1] MPj

, A(x))

)
= ∅ ,

we get for each A ∈MPi

L(box(G)|⋃
j∈[i] MPj

, A(x))

= L(box(G)|MPi
, A(x))

←
(
B/L(box(G)|⋃

j∈[i−1] MPj
, B(x)) | B ∈

⋃
j∈[i−1]

MPj

)
.

Combining Observations 3.5.10 and 3.5.11, we can show that it is sufficient to substitute
only nonterminals from smaller SCCs w.r.t. the calling order.

Lemma 3.5.12 For each i ∈ [n] and A ∈MPi , we have that

L(box(G), A(x)) = L(box(G)|MPi
, A(x))

←
(
B/L(box(G), B(x)) | B ∈

⋃
j∈[i−1]

MPj

)
.

57

3 Non-Self-Embedding CFTGs

Proof. Let i ∈ [n] and A ∈MPi .

L(box(G), A(x)) = L(box(G)|⋃
j∈[i] MPj

, A(x)) (Obs. 3.5.10)

= L(box(G)|MPi
, A(x))←

(
B/L(box(G)|⋃

j∈[i−1] MPj
, B(x)) | B ∈

⋃
j∈[i−1]

MPj

)
(Obs. 3.5.11)

= L(box(G)|MPi
, A(x))←

(
B/L(box(G), B(x)) | B ∈

⋃
j∈[i−1]

MPj

)
(Obs. 3.5.10)

■

Based on the fixed enumeration we can now show the desired lemma.

Lemma 3.5.13 For each A ∈ N , the tree language L(box(G), A(x)) is regular.

Proof. For each i ∈ [n] and A ∈MPi we have

L(box(G), A(x)) = L(box(G)|MPi
, A(x))

←
(
B/L(box(G), B(x)) | B ∈

⋃
j∈[i−1]

MPj

)
(Lemma 3.5.12)

= L(HA)←
(
B/L(box(G), B(x)) | B ∈

⋃
j∈[i−1]

MPj

)
.

We prove the lemma by induction on i ∈ [n]. Let i = 1 and A ∈ MP1 . Then, the above
equation reduces to L(box(G), A(x)) = L(HA) and thus, L(box(G), A(x)) is regular. Now,
we let i ∈ [n], A ∈ MPi and assume that, for each j ∈ [i − 1] and B ∈ MPj , we have
that L(box(G), B(x)) is regular. Since the substitution of regular tree languages is again a
regular tree language (cf. Theorem 2.2.23), we have that L(box(G), A(x)) is regular. ■

We have captured all variable dominating parts of G. It remains to show that unboxing
preserves regularity, i.e., the tree language induced by ξi on G is regular for each LξiM ∈ B.
We recall that

B = {Bξ | ξ ∈ rhs(R)}
= {Lξ|wM | ξ ∈ rhs(R), w ∈ posN\N(0)(ξ), w not variable dominating} .

Assume that LξM ∈ B with ξ = B(ξ1..k) for some B ∈ N (k) and ξ1, . . . , ξk ∈ T∆. The
grammar box(G) regards LξM as a terminal of rank 0. We want to substitute each such
symbol LξM by the tree language L(G, ξ) and show that it is regular. Since LξM is rooted
in B we use the tree language L(box(G), B(x)) as basis and replace the variables xi
by box(ξi). Note that L(box(G), B(box(ξ1), . . . ,box(ξℓ))) might itself contain LξM and
hence, this substitution has to be applied repeatedly. We can achieve this by using
the Kleene star ∗LξM. Remaining occurrences of LξM are eliminated by substituting trees
from L(box(G), B(box(ξ1), . . . ,box(ξℓ))) intersected with all trees not containing LξM. In
a general setting, ξ might contain other nonterminal occurrences (not at the root) which
are thus also not variable dominating. In this case, we need to substitute tree languages
for those occurrences as well. To show the regularity of the tree language L(G, ξi), for
each LξiM ∈ B, we utilize a suitable order: We start with trees of a minimal size. Such a

58

3.5 Alternative Proof of Regularity

minimal tree ξi cannot contain an occurrences of another tree ξj where LξjM ∈ B. Then,
we propagate the obtained regular tree languages upwards (in terms of tree size) and thus
show regularity for the tree languages induced by trees with multiple, nested nonterminal
occurrences.

We fix an enumeration of the elements of B which is not descending in the size of its
trees. Formally, if |B| = m, then such an enumeration Lξ1M, . . ., LξmM satisfies that, for every
i, j, we have that i < j implies |pos(ξi)| ≤ |pos(ξj)|.

For the rest of this section, we fix one such enumeration Lξ1M, . . . , LξmM.

We want to undo the isolation of not variable dominating nonterminal occurrences. For
this, we need a dual operation to box(·).

Definition 3.5.14 For each j ∈ [m] and ζ ∈ TN∪∆(X ∪ B), we define unboxj(ζ) = ζ ′

where ζ ′ is obtained from ζ by replacing, for each i ∈ [j], each occurrence of LξiM by the
tree ξi.

We let unboxj(G) denote the lnCFTG G′ which is obtained from G by applying unboxj(·)
to the RHS of each rule in G. Furthermore, we let unbox0(·) be the identity. □

If we replace the symbol LξM by the tree ξ, we say that we unbox LξM.
In the following, we provide intermediate results that will prove useful for showing

regularity of L(G, ξi). These results describe the relationship between the boxed and
unboxed trees.

Observation 3.5.15 L(unboxm(box(G))) = L(G).

Observation 3.5.16 For every i, i′ ∈ [m], if there is a w ∈ pos(ξi′) \ {ε} such that
ξi = ξi′ |w, then i < i′. Hence, for each j ∈ [m], k ∈ N, B ∈ N (k), and ζ1..k ∈ TN∪∆ where
LξjM = LB(ζ1..ℓ)M, we have that

unboxj−1(B(box(ζ1), . . . ,box(ζℓ))) = B(ζ1, . . . , ζℓ) = ξj .

As a generalization of Observation 3.5.6, we obtain the following observation.

Observation 3.5.17 For each j ∈ [m] and ξ ∈ TN∪∆(X ∪ B), we have

L(unboxj(box(G)),unboxj(ξ))

= L(unboxj−1(box(G)),unboxj−1(ξ))←LξjM (L(unboxj(box(G)), ξj))

= L(box(G), ξ)← (LξℓM/L(unboxj(box(G)), ξℓ) | ℓ ∈ [j]) .

The next step is similar to an idea in [67, proof of Thm. 9] which deals with the elimination
of a state in computations of a finite-state tree automaton or, equivalently, elimination of a
nonterminal in the derivations of a RTG. Note that since we are only considering linear
nondeleting CFTGs, these derivations can be reordered arbitrarily (cf. Lemma 2.2.15).

The idea behind the proof is to eliminate the symbol LξjM (considered as nonterminal) from
the grammar unboxj−1(box(G)). If only Lξ1M, . . . , Lξj−1M are unboxed, then a derivation
in unboxj−1(box(G)) is stopped at the symbol LξjM, which has rank 0. We replace this
symbol by trees derived from ξj in unboxj−1(box(G)). However, the replacement may in

59

3 Non-Self-Embedding CFTGs

turn contain LξjM and thus, this process must be repeated. We get, for each ξ ∈ TN∪∆(X),
that

L(unboxj−1(box(G)), ξ)←LξjM

(
L(unboxj−1(box(G)), ξj)

∗LξjM
)

may contain LξjM, . . . , LξmM. To eliminate all occurrences of LξjM, we lastly replace each
remaining occurrence by trees from

L(unboxj−1(box(G)), ξj) ∩ T∆({Lξj+1M, . . . , LξmM}) .

Note that the resulting tree language does not contain Lξ1M, . . . , LξjM and thus, we successfully
eliminated LξjM. The above description is formalized in the following lemma.

Lemma 3.5.18 For each ξ ∈ TN∪∆(X) and j ∈ [m], we have that

L(unboxj(box(G)), ξ)

= L(unboxj−1(box(G)), ξ)

←LξjM

(
L(unboxj−1(box(G)), ξj)

∗LξjM
)

←LξjM
(
L(unboxj−1(box(G)), ξj) ∩ T∆({Lξj+1M, . . . , LξmM})

)
.

We will use Lemma 3.5.18 for the special case where ξ = ξj , and thus, the right-hand
side of the equation in Lemma 3.5.18 can be simplified. This is formalized in the following
lemma using arbitrary tree languages and a nullary symbol instead of LξjM.

Lemma 3.5.19 Let Σ be an arbitrary ranked alphabet, δ /∈ Σ be a nullary symbol, and
L ⊆ TΣ({δ}). Then

L←δ L
∗δ ←δ (L ∩ TΣ) = L∗δ ∩ TΣ .

Proof. We prove the lemma in three steps:
Claim 1: L∗δ = (L←δ L

∗δ) ∪ {δ}.
Proof of Claim 1: Claim 1 follows directly from the definition of L∗δ, the associativity of
←δ, and the distributivity of ←δ over ∪. □

Claim 2: L←δ L
∗δ ←δ (L ∩ TΣ) = L∗δ ←δ (L ∩ TΣ).

Proof of Claim 2: By Claim 1, L∗δ ←δ (L ∩ TΣ) = ((L←δ L
∗δ) ∪ {δ})←δ (L ∩ TΣ) holds.

Distributivity of ←δ over ∪ yields

((L←δ L
∗δ) ∪ {δ})←δ (L ∩ TΣ) = (L←δ L

∗δ ←δ (L ∩ TΣ)) ∪ ({δ} ←δ (L ∩ TΣ)) .

We observe that L ∩ TΣ ⊆ L←δ L
∗δ ←δ (L ∩ TΣ), since trees without occurrences of δ are

not altered by the substitution. This proves Claim 2. □

Claim 3: L∗δ ←δ (L ∩ TΣ) = L∗δ ∩ TΣ

Proof of Claim 3: [⊆]: We replace each δ in L∗δ by a tree from L which does not contain
occurrences of δ. This yields a tree in TΣ.
[⊇]: We assume a tree ξ ∈ L∗δ ∩ TΣ, i.e., there is a minimal j ∈ N such that ξ ∈ {δ} ←δ

L ←δ . . . ←δ L (the substitution is applied j times). We do a case distinction on j. If
j = 0, then ξ = δ, which contradicts ξ ∈ TΣ. Hence, we have j ≥ 1. Consider the last
substitution. Since ξ ∈ TΣ, the trees substituted in the last step need to be in TΣ, and
hence, ξ ∈ L∗δ ←δ (L ∩ TΣ). □

The lemma follows from Claims 2 and 3. ■

60

3.5 Alternative Proof of Regularity

Now we prove that, for each j ∈ [m] and i ∈ [j], the tree language induced by ξi on the
lnCFTG unboxj(box(G)) is regular. Then, in particular, for each i ∈ [m], we have that
L(G, ξi) is regular. For this, for each j ∈ [m] and i ∈ [j], we define as an abbreviation

Lj
i = L(unboxj(box(G)), ξi) .

Intuitively, in the term Lj
i , the upper index j denotes the number of already unboxed

symbols in the sequence Lξ1M, . . . , LξmM, and the lower index i refers to the index of the
element LξiM. Using this abbreviation, we provide the following decomposition result.

Lemma 3.5.20 For each j ∈ [m], k ∈ N, B ∈ N (k) and ζ1, . . . , ζk ∈ TN∪∆ where
LξjM = LB(ζ1..k)M, we have

(i) Lj
j =

(
(L(box(G), B(x))[xℓ/box(ζℓ) | ℓ ∈ [k]])

←
(
LξiM/L

j−1
i | i ∈ [j − 1]

))∗LξjM
∩ T∆({Lξj+1M, . . . , LξmM}) and

(ii) for each i ∈ [j − 1], it holds that Lj
i = Lj−1

i ←LξjM L
j
j .

Proof. We let j ∈ [m]. For Case (i), we let B ∈ N and ζ1..k ∈ TN∪∆ such that
LξjM = LB(ζ1..k)M, and we abbreviate T∆({Lξj+1M, . . . , LξmM}) by Tj .(

(L(box(G), B(x))[xℓ/box(ζℓ) | ℓ ∈ [k]])← (LξiM/L
j−1
i | i ∈ [j − 1])

)∗LξjM ∩ Tj

=
(
L(box(G), B(box(ζ1), . . . ,box(ζk)))← (LξiM/L

j−1
i | i ∈ [j − 1])

)∗LξjM ∩ Tj

=
(
L(unboxj−1(box(G)),unboxj−1(B(box(ζ1), . . . ,box(ζk))))

)∗LξjM ∩ Tj (Obs. 3.5.17)

=
(
L(unboxj−1(box(G)), ξj)

)∗LξjM ∩ Tj (Obs. 3.5.16)
=

(
L(unboxj−1(box(G)), ξj)

)
←

(
L(unboxj−1(box(G)), ξj)

∗LξjM)
←

(
L(unboxj−1(box(G)), ξj) ∩ Tj

)
(Lm. 3.5.19)

= L(unboxj(box(G)), ξj)(= Lj
j) (Lm. 3.5.18)

For Case (ii), we have, for each i ∈ [j − 1], that

Lj−1
i ←LξjM L

j
j = L(unboxj−1(box(G)), ξi)←LξjM L(unboxj(box(G)), ξj)

= L(unboxj(box(G)),unboxj(ξi)) (Obs. 3.5.17)
= L(unboxj(box(G)), ξi)

■

Example 3.5.21 As an example, we consider the part of the lnCFTG G11 depicted in
Figure 3.13(a). In pg(G11), the vertex (A, 0) is in a trivial SCC, since there are no variable
dominating occurrences of nonterminals in the RHSs. The corresponding RTG HA is
depicted in Figure 3.13(b). We have B = {Lξ1M, Lξ2M} where ξ1 = A(α) and ξ2 = A(A(α))
and thus, m = 2. In this simple scenario, Figure 3.13(c) depicts L1

1 completely, since it is
finite. In Figure 3.13(d) we indicate how L2

2 is obtained from L(HA) and L1
1. ⃝

61

3 Non-Self-Embedding CFTGs

A(x1)→

σ

x1 A

A

α

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
γ

x1

(a) Two rules of G11.

A′ →
σ

x1 LA(A(α))M

⏐⏐⏐⏐⏐ γ

x1

(b) RTG HA.

L1
1 = {

σ

α LA(A(α))M ,
γ

α
}

(c) The tree language L1
1.

L2
2 =

{ σ

σ

α LA(A(α))M

LA(A(α))M ,

σ

γ

α

LA(A(α))M ,

γ

σ

α LA(A(α))M
,

γ

γ

α

}∗LA(A(α))M ∩ T{σ,γ,α}

(d) The tree language L2
2.

Figure 3.13: Unboxing box(G11).

Lemma 3.5.22 The tree language L(unboxj(box(G)), ξi) is regular for every j ∈ [m] and
i ∈ [j].

Proof. By induction on j ∈ [m] we can prove the following claim: For each i ∈ [j], the tree
language L(unboxj(box(G)), ξi) is regular. We start with i = j and use Lemma 3.5.20 (i).
Then, we apply the decomposition result from Lemma 3.5.13 and the closure properties
of regular tree languages, i.e., we apply Theorems 2.2.20, 2.2.22, and 2.2.23. Then, with
decreasing i ∈ [j], we employ Lemma 3.5.20 (ii) and again use the closure of regular tree
languages under substitution (cf. Theorem 2.2.23). ■

We summarize the findings of this section in the following theorem. Combined with
Lemma 3.5.4, it is an alternative proof of Theorem 3.3.11.

Theorem 3.5.23 Let G = (N,∆, A0, R) be a non-self-embedding lnCFTG that is unique
in argument positions and topRank(G) = 0. Given a family (HA | A ∈ N) of RTGs such
that, for each P ∈ scc(pg(G)|N×{0}) and A ∈MP , we have L(box(G)|MP

, A(x)) = L(HA),
we can construct a RTG H such that L(G) = L(H), i.e., L(G) is a regular tree language.

Proof. We let (HA | A ∈ N) be a family of RTG as required in the theorem. Furthermore,
we let m = |B| where B is defined in Definition 3.5.2. We get the following:

L(G) = L(G,A0) (Def. of L(·))
= L(unboxm(box(G)),unboxm(box(A0))) (Def. of box(·), and unbox(·))
= L(box(G), box(A0))← (LξiM/L(unboxm(box(G)), ξi) | i ∈ [m]) (Obs. 3.5.17)

Since A0 is nullary, box(A0) = A0. Using Lemma 3.5.13, L(box(G), A0) is a regular tree
language. By Lemma 3.5.22, for each i ∈ [m], we have that L(unboxm(box(G)), ξi) is a
regular tree language. Hence, using Theorem 2.2.23, the substitution is regular as well. ■

62

3.6 Non-Self-Embedding deleting lCFTGs

3.6 Non-Self-Embedding deleting lCFTGs

Since each linear (and deleting) CFTG can be transformed into an equivalent lnCFTG
(cf. Theorem 2.2.17), an obvious question is whether the tree language induced by non-
self-embedding linear and deleting CFTG can be expressed by a RTG. We recall that
Definition 3.1.1 applies to all CFTG and thus, the notion of non-self-embedding lCFTG is
defined. Furthermore, the position pair graph (cf. Definition 3.1.5) and the position graph
(cf. Definition 3.2.2) are also defined on lCFTG. Hence, according to Corollary 3.1.8 it can
be decided in polynomial time whether a lCFTG is self-embedding or non-self-embedding.

To show that the tree language induced by a non-self-embedding lCFTG can be expressed
by a RTG, it suffices to show that the construction in the proof of Theorem 2.2.17, which
replaces deleting rules, preserves the property of being non-self-embedding.

Lemma 3.6.1 For each non-self-embedding lCFTG G, there is an equivalent non-self-
embedding lnCFTG G′.

Proof. We show that the transformation described in the proof of Theorem 2.2.17 preserves
the property of non-self-embedding by contraposition. Assume that the transformation
applied on a lCFTG G results in a lnCFTG G′ that is self-embedding. Then we have a
cycle in ppg(G′) from a vertex (Aα, i, j) to (Aα, i, j) such that the union of all labels in
the cycle contains 1 and 2. Due to the nature of the transformation, which does no more
than systematically remove argument positions, we must then have a cycle in ppg(G) from
some vertex (A, i′, j′) to (A, i′, j′) such that the union of all labels in the cycle once more
contains 1 and 2. The argument positions i′ ≥ i and j′ ≥ j are straightforwardly obtained
from i and j by accounting for the removed positions as recorded in α. Thereby G must be
self-embedding as well. ■

Theorem 3.6.2 Each non-self-embedding lCFTG induces a regular tree language.

Proof. By Lemma 3.6.1 for each non-self-embedding lCFTG G, there is a non-self-
embedding lnCFTG G′ such that L(G) = L(G′) and by Theorem 3.3.11 we have that L(G′)
and thus, L(G) is a regular tree language. ■

Note, that applying the construction to remove deletion from a lCFTG G (cf. Theo-
rem 2.2.17) combined with the removal of useless rules (Corollary 2.2.19) may transform a
self-embedding lCFTG into a non-self-embedding lnCFTG. This also holds if G contained
no useless rules before the removal as the following example shows.

Example 3.6.3 We define the lCFTG G12 = ({A0
(0), A(2)}, {γ(1), α(0)}, A0, R) where R

contains the following rules.

A0 →
A

α α
A(x1, x2)→

A

γ

x1

γ

x2

⏐⏐⏐⏐⏐⏐⏐⏐ x1
Note that G12 is self-embedding since A produces symbols synchronously in two of its
argument positions. Intuitively, it is clear that the second argument position of A does

63

3 Non-Self-Embedding CFTGs

not contribute to any terminal tree and thus, G12 can easily be modified to obtain a
non-self-embedding lnCFTG.

Applying the construction of Theorem 2.2.17 yields the lnCFTG G13 with nonterminals
A0, A∅, A{1}, A{2}, and A{1,2} and the following rules.

A0 →
A∅

α α

⏐⏐⏐⏐⏐ A{1}

α

⏐⏐⏐⏐⏐ A{2}

α

⏐⏐⏐⏐⏐ A{1,2} A∅(x1, x2)→

A∅

γ

x1

γ

x2

A{1}(x2)→

A{1}

γ

x2

A{2}(x1)→

A{2}

γ

x1

⏐⏐⏐⏐⏐⏐⏐⏐ x1 A{1,2} → A{1,2}

Note that G13 is self-embedding. However, it is clear that A∅, A{1}, and A{1,2} cannot be
used to derive any terminal tree. Hence, if we prune all useless rules (cf. Corollary 2.2.19),
we see that the remaining part of G13 is non-self-embedding. ⃝

Observation 3.6.4 Example 3.6.3 and Lemma 3.6.1 suggest that testing for the property of
being non-self-embedding should be done after applying Theorem 2.2.17 and Corollary 2.2.19.

3.7 Non-Weakly-Self-Embedding CFTGs

Theorems 3.3.11 and 3.6.2 only apply to lnCFTG and lCFTG, respectively, but the proofs
cannot be applied to an unrestricted CFTG. We illustrate this by using the following
example.

Example 3.7.1 Let G14 = ({A0
(0), A(1)}, {κ(2), γ(1), α(0)}, A0, R) be a CFTG where R

contains the rules

A0 →
A

α
and A(x1)→

A

γ

x1

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x1
.

We note that G14 is not linear. By considering ppg(G14), it can be seen that G14 is non-
self-embedding (cf. Theorem 3.1.7). However, we have L(G14) = {κ(γn(α), γn(α)) | n ∈ N}
which is not a regular tree language. ⃝

In the light of Example 3.7.1, it is interesting to find a criterion that guarantees regularity
of the induced tree language for the full class of CFTGs.

In [54], a self-embedding property for indexed grammars is defined that guarantees
that a non-self-embedding indexed grammar induces a context-free string language. We
describe this property and compare it to our definition of non-self-embedding lnCFTG.
Furthermore, we indicate how the property of indexed grammars can be transferred to
(unrestricted) CFTGs. For this, we define weakly-self-embedding CFTGs and show that
each non-weakly-self-embedding CFTG induces a regular tree language.

64

3.7 Non-Weakly-Self-Embedding CFTGs

Indexed grammars are introduced in [1, Ch. 2]. For notational convenience, we use
the characterization of indexed grammars as CFG with pushdown storage [19]. CFTG
with storage will be recalled in Section 4.1. Here, we use grammars with storage for CFG
instead of CFTG. Since the required changes to the definitions in Section 4.1 are minimal,
we refrain from giving a formal definition for CFG with pushdown storage (denoted by
CF(PD(Γ))-grammar). Intuitively, each nonterminal in the derivation is associated with
a pushdown containing symbols from the pushdown alphabet Γ. A rule may test for the
pushdown and modify it at nonterminals in the RHS of the rule.

Definition 3.7.2 An indexed grammar M is a CF(PD(Γ))-grammar using a finite push-
down alphabet Γ.1

The string language induced by an indexed grammar M , denoted by L(M), is defined as
the language of the extended CFG G(M) associated with M (similar to Definition 4.1.5).□

Example 3.7.3 Consider the indexed grammar M6 where

• the set of nonterminals is {A,B},

• the set of terminals is {a, b, ♯},

• the initial nonterminal is A

• the pushdown alphabet is Γ = {γ}, and

• M6 uses the rules

A→ A(push(γ)) | B(id) , B → if top = γ then aB(pop)b , and
B → if top = ε then ♯

The nonterminal A pushes a number of γ’s onto the pushdown. Each such γ is then popped
by the nonterminal B while a and b are synchronously generated to the left and right of B,
respectively. The derivation

A(ε)⇒ A(γ)⇒ A(γγ)⇒ B(γγ)⇒ aB(γ)b⇒ aaB(ε)bb⇒ aa♯bb

exemplifies how the pushdown is used in a derivation. It can be seen that the string
language induced by M6 is L(M6) = {an♯bn | n ∈ N}. ⃝

1The original definition in [1, pp. 648f] requires the rules of an indexed grammar to be of a special form.
This restriction is not necessary (cf. [19, p. 281, Rm. (v)], [17, p. 18]).

65

3 Non-Self-Embedding CFTGs

The following definition is based on [54, Def. 2.5].

Definition 3.7.4 An indexed grammar M is weakly-self-embedding2, if there are γ ∈ Γ,
v ∈ Γ+, and arbitrary words s and t over terminals and nonterminals with associated
pushdown configurations such that

• A(ε)⇒∗ sA(v)t or

• A(γ)⇒∗ sA(vγ)t

is a derivation in G(M). □

It is decidable whether an indexed grammar M is weakly-self-embedding by constructing,
for each nonterminal A and each pushdown symbol γ ∈ Γ ∪ {ε}, an indexed grammar MA,γ

such that L(MA,γ) ̸= ∅ iff A(γ)⇒∗ sA(vγ)t holds for some v ∈ Γ+ and arbitrary words s, t
over terminals and nonterminals with associated pushdown configuration [54, Remark (2)].
Since emptiness of indexed grammars is decidable [1, Thm. 4.1], weakly-self-embedding for
indexed grammars is decidable.

Example 3.7.5 The indexed grammar M6 (cf. Example 3.7.3) is weakly-self-embedding,
since A pushes arbitrarily many symbols onto the pushdown. Formally, A(ε)⇒ A(γ) is a
derivation in G(M6) and is a witness for M6 being weakly-self-embedding. Note that M6 is
weakly-self-embedding, although L(M6) is a context-free string language. ⃝

Intuitively, an indexed grammar is weakly-self-embedding if there is a cycle from a
nonterminal A to another occurrence of A such that the pushdown associated with the
nonterminal occurrences grows and has the same top-most symbol. Hence, if this is not the
case, then there are only finitely many pushdown configurations reachable from the initial
nonterminal. This finite information can be encoded into the nonterminals of a CFG.

Theorem 3.7.6 [54, Thm. 3.1] If an indexed grammar is non-weakly-self-embedding, then
it induces a context-free string language.

Note that since any CFG can be seen as an indexed grammar with an empty pushdown
alphabet (i.e., CF(PD(∅)))-grammars, each CFG is trivially an indexed grammar which is
non-weakly-self-embedding.

Since the yield of a (outside-in) context-free tree language is an outside-in macro lan-
guage [58, pp. 113] (cf. Section 3.8 for details) which in turn is an indexed language [20,
Thm. 4.2.8], it seems worthwhile to compare weakly-self-embedding indexed grammars and
self-embedding lnCFTG. In [20, Thm. 4.2.8] the equivalence between indexed grammars
and outside-in macro grammars is shown. The constructions rely on normal forms and
introduce copying and deletion. Thus, our definition of self-embedding for the special case
of lnCFTG cannot be transferred directly. To give an intuition about the difference between
the properties, we relate them on an informal level using the indexed grammar M6 and the
lnCFTG G15 which is defined in the following example.

2In [54] this property is called self-embedding. Since our property of self-embedding lnCFTG is different
(in the sense discussed later in this section), we chose another name here.

66

3.7 Non-Weakly-Self-Embedding CFTGs

Example 3.7.7 We let G15 = (N,∆, A0, R) be a lnCFTG where N = {A0
(0), A(1), B(1)},

∆ = {σ(3), α(0), β(0), ♯(0)}, and R contains the rules

A0 → A(♯) , A(x)→ A(B(x)) | x , and B(x)→ σ(α, x, β) .

It can be seen that yield(L(G15)) = {αn♯βn | n ∈ N}. The nonterminal A accumulates a
tower of B’s in its argument position. Each B is then derived into a synchronized α and β
using σ as concatenation symbol. The σ’s are removed by taking the yield. ⃝

Intuitively, M6 (cf. Example 3.7.3) and G15 (cf. Example 3.7.7) have a similar derivation
behavior. The indexed grammar M6 accumulates a tower of γ’s while G15 accumulates the
same number of B’s. Then these symbols are derived into the corresponding number of a’s
and b’s, or α’s and β’s, respectively. Concerning the induced string languages, we have that
L(M6) is equal to yield(L(G15)) if each α is replaced by an a and each β by b. We note that
L(M6) is a context-free string language and L(G15) is a regular tree language. Due to our
definition of self-embedding for lnCFTG, we can detect the regularity of L(G15), since G15

is a non-self-embedding lnCFTG. In contrast, the property of weakly-self-embedding for
indexed grammars is not sufficient to detect that M6 induces a context-free string language.

There is a conceptual difference between the property of weakly-self-embedding for
indexed languages which applies to arbitrary indexed grammars and the property of self-
embedding lnCFTG which only applies to linear nondeleting CFTGs. This motivates the
definition of a weakly-self-embedding property for arbitrary CFTGs. Its idea is very similar
to the idea of weakly-self-embedding indexed grammars.

Definition 3.7.8 A CFTG G = (N,∆, A0, R) is called weakly-self-embedding, if there are
k ∈ N, A ∈ N (k), i ∈ [k], ξ ∈ CN∪∆∪Xk

({z}), and ξ1..k ∈ TN∪∆(Xk) such that

• A(x)⇒∗ ξ[A(ξ1..k)],

• ξi contains xi, and

• ξi ̸= xi. □

Intuitively, a CFTG is weakly-self-embedding if an unbounded number of symbols can be
generated below a repeated occurrence of a nonterminal. Note that weakly-self-embedding
is a semantic property. Checking for generation below a nonterminal corresponds to
determining whether topRank(G) = 0.

Lemma 3.7.9 For a CFTG G, we have that G is weakly-self-embedding iff there is a
top-recursive SCC in pg(G).

Proof. The proof is very similar to the proof of Theorem 3.1.7, but only considers one
argument position (instead of two in parallel) and thus operates on the position graph
instead of the position pair graph. Let G be weakly-self-embedding. Then there are
ξ ∈ CN∪∆∪Xk

(z) and ξ1..k ∈ TN∪∆(Xk) such that A(x) ⇒∗ ξ[A(ξ1..k)], xi occurs in ξi,
and ξi ̸= xi. This derivation gives rise to a cycle in pg(G) from (A, i) to (A, i) which is
top-recursive, since ξi ̸= xi.

It can be seen that a generating cycle from (A, i) to (A, i) in a top-recursive SCC of
pg(G) has to be induced by a derivation as specified in Definition 3.7.8. ■

67

3 Non-Self-Embedding CFTGs

The following two observations follow directly from the definitions of the properties of
self-embedding CFTG and weakly-self-embedding CFTG.

Observation 3.7.10 Each self-embedding CFTG is also weakly-self-embedding, since each
self-embedding CFTG has at least one top-recursive SCC (cf. Lemma 3.7.9). However, there
are non-self-embedding CFTG which are weakly-self-embedding, e.g., the lnCFTG G15 (cf.
Example 3.7.7).

Observation 3.7.11 Each RTG H is non-weakly-self-embedding.

We will now present the main theorem of this section.

Theorem 3.7.12 For each CFTG G which is non-weakly-self-embedding, we can construct
a RTG H such that L(G) = L(H), i.e., L(G) is a regular tree language.

Proof. By Lemma 3.7.9 we have that pg(G) does not contain a top-recursive SCC. Thus,
we can use the exact same proof as for Lemma 3.3.9, since the proof of Lemma 3.3.9 does
not make use of G being linear nondeleting and solely relies on topRank(G) = 0. Thus, it
applies to G in the setting of this lemma and we can construct the desired RTG H which
is equivalent to G. ■

3.8 Non-Self-Embedding MACs

The yield of a context free tree language (using outside-in derivation mode) is an outside-in
macro language (cf. [58, p. 113] and [15, Thm. 7.17]). Thus, it seems natural that the
results from Sections 3.3 and 3.7 can be transferred to linear nondeleting macro grammars
and arbitrary macro grammars (MACs), respectively. In this section, we recall MACs and
show that non-self-embedding linear MACs and non-weakly-self-embedding MACs induce
context-free string languages.

Macro grammars were first introduced by Fischer [20]. They use nested terms [20,
Def. 2.2.1] as right-hand sides. We recall the definition here.

Definition 3.8.1 Let Σ be an alphabet, N be a ranked alphabet, and U be a set. The
set of nested terms over Σ and N using variables from U is defined as the smallest set T
satisfying that

(i) Σ ∪ U ⊆ T ,

(ii) for each k ∈ N and t1, . . . , tk ∈ T , we have t1 . . . tk ∈ T , and

(iii) for each k ∈ N, t1, . . . , tk ∈ T , and A ∈ N (k), we have A(t1, . . . , tk) ∈ T .

If Σ, N , and U are understood from the context, then we call a nested term over Σ and N
using variables from U just a nested term.

The width of a nested term t, denoted by |t| is inductively defined by (i) |t| = 1 if
t ∈ Σ ∪ U , (ii) |t| = |t1|+ . . .+ |tk| if t = t1 . . . tk for nested terms t1..k, and (iii) |t| = 1 if
t = A(t1, . . . , tk) for some A ∈ N and nested terms t1..k.

A nested context is a nested term using variables from U such that it contains each
element in U exactly once. If t is a nested term using variables from a finite set U , k = |U |,
U = {u1, . . . , uk}, and t1, . . . , tk are nested terms, then t[t1, . . . , tk] denotes the nested term
obtained by simultaneously replacing, for each i ∈ [k], each occurrence of ui in t by ti. □

68

3.8 Non-Self-Embedding MACs

As a preliminary tool, we extend the notion of the yield of a tree in such a way that we
keep all (possibly ranked) symbols in a set Σ.

Definition 3.8.2 Let ∆ be a ranked alphabet, U be a finite set, ξ ∈ T∆(U), and Σ ⊆ ∆∪U
where ∆ ∩ U = ∅, we consider each element in U as a symbol of rank 0, and Σ as a ranked
alphabet inheriting the ranks of ∆ and U . The Σ-yield of ξ, denoted by yieldΣ(ξ), is a
nested term over Σ \ U using variables from U ∩ Σ defined by induction over the structure
of ξ as

yieldΣ(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u if ξ = u for some u ∈ (Σ ∩ U),
ε if ξ = u for some u ∈ U \ Σ,
δ(yieldΣ(ξ1), . . . , yieldΣ(ξk)) if ξ = δ(ξ1..k) for some δ ∈ Σ(k) ∩∆

and ξ1..k ∈ T∆(U), and
yieldΣ(ξ1) . . . yieldΣ(ξk) if ξ = δ(ξ1..k) for some δ ∈ ∆(k) \ Σ. □

Note that if Σ = ∆(0) ∪ U , then, for each ξ ∈ T∆(U), we have yieldΣ(ξ) = yield(ξ).
Now we recall the definition of a macro grammar [20, Def. 2.2.12].

Definition 3.8.3 An outside-in macro grammar (MAC) is a tuple M = (N,Σ, A0, R)
where

• N is a ranked alphabet (nonterminals),

• Σ is an alphabet (terminals),

• A0 ∈ N (0) (initial nonterminal), and

• R is a finite set of rules of the form A(x1..k)→ t where k ∈ N, A ∈ N (k), and t is a
nested term over Σ and N using variables Xk.

Let M = (N,Σ, A0, R) be a MAC. We say that M is a linear MAC (lMAC) if, for each
rule A(x1..k)→ t in R, we have that, for each i ∈ [k], the variable xi occurs at most once
in t. We say that M is a nondeleting MAC if, for each rule A(x1..k)→ t in R, we have that,
for each i ∈ [k], the variable xi occurs at least once in t. If M is a linear and nondeleting
MAC, then we say it is a linear nondeleting MAC (lnMAC).

The outside-in derivation relation of M , denoted by ⇒, is defined in the following
similarly to the definition of the derivation relation for CFTG (cf. Definition 2.2.2). For
nested terms t1, t2, we have t1 ⇒r t2 if there are a rule r : A(x1..k) → t in R, a nested
context s using the variable {z}, and nested terms s1, . . . , sk such that

• t1 = s[A(s1, . . . , sk)],

• s does not contain a nonterminal occurrence that is z-dominating, and

• t2 = s[t[s1, . . . , sk]].

We let ⇒∗ denote the reflexive closure of ⇒.
The string language induced by M , denoted by L(M), is defined as

L(M) = {s ∈ Σ∗|A0 ⇒∗ s} . □

69

3 Non-Self-Embedding CFTGs

We will explicitly prove the following lemma here by giving the corresponding construc-
tions, since we rely on them later. The idea is taken from [58, p. 113] and formalized in [15,
Thm. 7.17].

Lemma 3.8.4 The following two statements hold.

(i) For each CFTG G, we can construct a MAC M such that L(M) = yield(L(G)).

(ii) Let Σ be an alphabet. For each MAC M using terminals in Σ, we can construct a
CFTG G such that yieldΣ(L(G)) = L(M).

Furthermore, both constructions preserve the properties of each formalism being linear and
being nondeleting.

Proof. (i): We let G = (N,∆, A0, R) be a CFTG and Σ = N∪∆(0)∪X where each variable
x ∈ X is considered to be nullary. Then we construct the MAC M = (N,∆(0), A0, R

′)
by letting R′ contain the rule A(x) → yieldΣ(ξ) for each rule A(x) → ξ in R. Note that
the construction preserves the properties of being linear and being nondeleting. It can be
shown that A0 ⇒∗ ξ is a derivation in G iff A0 ⇒∗ yieldΣ(ξ) is a derivation in M . Hence,
L(M) = yield(L(G)).

(ii): We let M = (N,Σ, A0, R) be a MAC. Furthermore, we let m be the maximal width
of any nested term in the right-hand side of a rule in R. Then we construct a CFTG
G = (N,∆, A0, R

′) where ∆ = Σ ∪∆′ ∪ {e} where ∆′ = {δi | i ∈ [m]}, for each i ∈ [m],
rk∆(δi) = i, ∆′ ∩ Σ = ∅, e /∈ Σ ∪∆′, rk∆(e) = 0, and R′ is defined in the following. If
A(x)→ t is in R, then we let A(x)→ f(t) be in R′ where f is the recursive function

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(f(t1), . . . , f(tk)) if t = A(t1, . . . , tk) for some A ∈ N and nested terms t1..k,
δk(f(t1), . . . , f(tk)) if t = t1 . . . tk and k ≥ 2 for some nested terms t1..k,
t if t ∈ Σ ∪XrkN (A), and

e if t = ε.

Note that the construction preserves the properties of being linear and being nondeleting. As
in the previous case, it can be shown that A0 ⇒∗ ξ is a derivation in G iff A0 ⇒∗ yieldΣ∪N (ξ)
is a derivation in M . Hence, L(M) = yieldΣ(L(G)). ■

Observation 3.8.5 Note that a MAC where each nonterminal has rank 0 is a CFG. Thus,
Lemma 3.8.4 (i) applied to a RTG yields a CFG.

Now we define self-embedding for MAC very similar to Definition 3.1.1.

Definition 3.8.6 We let M = (N,Σ, A0, R) be a MAC. Then M is self-embedding if there
are k ∈ N+, A ∈ N (k), nested terms t1..k, and a nested context t using the variable z such
that A(x)⇒∗ t[A(t1..k)] and at least one of the following two properties holds:

(1) t ̸= z, and there is an i ∈ [k] such that ti contains xi and ti ̸= xi.

(2) There are i, j ∈ [k] with i ̸= j such that ti contains xi and ti ̸= xi, and tj contains xj
and tj ̸= xj . □

70

3.8 Non-Self-Embedding MACs

Definition 3.8.6 and Definition 3.1.1 are very similar on a syntactic level. Hence, we
observe the following.

Observation 3.8.7 We let M be a MAC and G be the CFTG G constructed for M
as in the proof of Lemma 3.8.4 (ii). If M is self-embedding, then G is self-embedding.
Furthermore, if M is non-self-embedding, then G is also non-self-embedding.

Note that Observation 3.8.7 only holds in this direction as demonstrated in the following
example.

Example 3.8.8 We let G16 = (N,∆, A0, R) be a lnCFTG where N = {A0, A}, ∆ =
{δ(2), γ(1), α(0)}, and R contains the rules

A0 →
A

α α
A(x1, x2)→

A

γ

x1

γ

x2

⏐⏐⏐⏐⏐⏐⏐⏐
δ

x1 x2
.

By inspecting the rules, we can see that L(G16) = {δ(γn(α), γn(α)) | n ∈ N}.
It is clear that G16 is self-embedding since γ’s are synchronously generated in the first

and second argument position of A. However, if we apply the construction of the proof of
Lemma 3.8.4 (i) to G16, we obtain the lnMAC M7 = (N,∆(0), A0, R

′) where R′ contains
the rules

A0 → A(α, α) A(x1, x2)→ A(x1, x2) | x1x2 .

We have L(M7) = yield(L(G16)) = {αα} and note that M7 is non-self-embedding. ⃝

Let M be a non-self-embedding lMAC and G be the lCFTG such that L(M) = yield(L(G))
(cf. Lemma 3.8.4 (ii)). By Observation 3.8.7, G is non-self-embedding. Using Theorem 3.6.2,
we can construct a RTG H such that L(G) = L(H). By Observation 3.8.5, we can
transform H into a CFG M ′ such that L(M ′) = yield(L(H)). Hence, the following
corollary holds.

Corollary 3.8.9 For each non-self-embedding lMAC M , we can construct a CFG M ′ such
that L(M) = L(M ′), i.e., M induces a context-free string language.

Corollary 3.8.9 makes use of Theorem 3.6.2 and the fact that we only consider linear
MACs. We will now obtain a property for arbitrary MACs similar to non-weakly-self-
embedding CFTG. We can straightforwardly give the definition of a weakly-self-embedding
MAC very similar to Definition 3.7.8.

Definition 3.8.10 A MAC M = (N,Σ, A0, R) is weakly-self-embedding if there are A ∈ N ,
a nested term t, and nested terms t1..k such that A(x)⇒∗ t and t contains an occurrence
of A(t1..k) such that xi occurs in ti and ti ̸= xi. □

The definition of weakly-self-embedding CFTG and weakly-self-embedding MAC are very
similar. The relation is formalized in the following observation.

71

3 Non-Self-Embedding CFTGs

Observation 3.8.11 Let M be a MAC and G be the CFTG constructed for M using
the construction in the proof of Lemma 3.8.4 (ii). If M is weakly-self-embedding, then G
is weakly-self-embedding. Furthermore, if M is non-weakly-self-embedding, then G is
non-weakly-self-embedding.

Note that reverse direction does not hold, i.e., there is a weakly-self-embedding lnCFTG G
such that the MAC M obtained by applying the construction in the proof of Lemma 3.8.4 is
non-weakly-self-embedding. As an illustration recall the lnCFTG G16 and the lnMAC M7

from Example 3.8.8. Clearly, G16 is weakly-self-embedding whereas M7 is non-weakly-self-
embedding.

It is easy to see that each lMAC that is self-embedding is also weakly-self-embedding.
However, the reverse is not true, i.e., there is a lMAC that is weakly-self-embedding but
non-self-embedding. We illustrate this using the following example.

Example 3.8.12 We define the lnMAC M8 = (N,Σ, A0, R) where N = {A0, A
(1), B(1)},

Σ = {α, β, ♯}, and R contains the rules

A0 → A(♯) , A(x1)→ A(B(x1)) , and B(x1)→ αx1β .

Note that M8 and G15 are connected via Lemma 3.8.4. ⃝

Using Observation 3.8.11, the following corollary follows from Theorem 3.7.12 and
Observation 3.8.5.

Corollary 3.8.13 For each non-weakly-self-embedding MAC M , we can construct a
CFG M ′ such that L(M) = L(M ′), i.e., the language induced by M is context-free.

3.9 Overview

We visualize all results concerning CFTGs that induce regular tree languages in Fig-
ure 3.14(a). Context-free tree grammars belonging into the hatched areas induce a regular
tree language. The pattern denotes which theorems prove the regularity of the induced
language. For each CFTG G which is not in the hatched areas, our results cannot determine
whether L(G) is regular or not. Furthermore, for each area in Figure 3.14(a), we give a very
easy example in Figure 3.14(b). We use nonterminals A0

(0), A(2), and B(1), and terminals
α(0), γ(1), σ(1), δ(2), and κ(2).

Figure 3.14(a) can also be seen as an overview for MACs. We consider non-weakly-self-
embedding MACs, lMACs, lnMACs, non-self-embedding lMACs, and non-self-embedding
lnMACs instead of the corresponding CFTG areas. In this setting, Theorems 3.3.11 and 3.6.2
are both replaced by Corollary 3.8.9 and Theorem 3.7.12 is replaced by Corollary 3.8.13.

72

3.9 Overview

CFTG

lCFTG

lnCFTG

non-self-embedding

non-weakly-self-embedding

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Applicable Theorem(s):

Theorem 3.3.11

Theorem 3.7.12

Theorem 3.6.2

(a) Overview of self-embedding relations for CFTG.

(1) A0 →
B

α
B(x1)→

σ

B

γ

x1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x1

(2) A0 →
B

α
B(x1)→

B

γ

x1

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x1

(3) A0 →
B

α
B(x1)→

δ

B

x1

B

x1

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x1

(4) A0 →
A

α α

A(x1, x2)→

σ

A

γ

x1

α

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
σ

x1

(5) A0 →
A

α α

A(x1, x2)→
A

γ

x1

α

⏐⏐⏐⏐⏐⏐⏐⏐
σ

x1

(6) A0 →
A

α α

A(x1, x2)→

σ

A

x1 α

⏐⏐⏐⏐⏐⏐⏐⏐
σ

x1

(7) A0 →
A

α α

A(x1, x2)→

σ

A

γ

x1

γ

x2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2

(8) A0 →
B

α
B(x1)→

B

γ

x1

⏐⏐⏐⏐⏐⏐⏐⏐
σ

x1

(9) A0 →
A

α α

A(x1, x2)→

σ

A

x1 x2

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2

(b) Examples for each area of Figure 3.14(a).

Figure 3.14: An overview over the classes of CFTG.

73

3 Non-Self-Embedding CFTGs

3.10 Remarks on Non-Self-Embedding lnCFTGs

In this section, we present two results related to non-self-embedding lnCFTG. First, the
succinctness of non-self-embedding lnCFTGs is compared to RTGs which induce the same
tree language. It turns out that non-self-embedding lnCFTGs can express certain tree
languages exponentially smaller than RTGs. Second, we instantiate Theorem 3.3.11 in the
light of coregular grammars as introduced in [2].

Non-Self-Embedding lnCFTGs may Represent Regular Tree Languages More
Succinctly than RTG

In this section, we outline that there is a regular tree language L that is induced by a
non-self-embedding lnCFTG G such that each RTG H inducing L is exponentially larger
than G. The lnCFTG G derives trees using a fixed amount of nondeterministic choices as
follows. Each choice synchronously generates two copies of either a γ or a δ in two separate
argument positions of a nonterminal. We use different nonterminals to ensure that each
choice is only taken once and there is no recursion. This very limited nondeterminism
can be encoded into the nonterminals and rules of a RTG. However, since the generation
happens in different argument positions, this requires exponentially more nonterminals or
rules and the size of the RTG grows. We will actually present an infinite family of regular
tree languages induced by non-self-embedding lnCFTG that have the succinctness property
explained before.

First, we formally define the size of a CFTG and then present the key lemma showing
the exponential blow-up.

Definition 3.10.1 Let G = (N,∆, A0, R) be a CFTG. Then the size of G, denoted by |G|
is defined as |G| = |N |+ |R|. □

The proof of the following lemma contains the formal definition of the lnCFTGs outlined
at the beginning of this section. They illustrate the blow-up. The first part of the proof
may thus be considered as an example.

Lemma 3.10.2 There is a family of non-self-embedding lnCFTG (Gn | n ∈ N+) such that
for each n ∈ N+ and each RTG H with L(H) = L(Gn), we have that |H| > 2|Gn|.

Proof. We let ∆ = {κ(2), γ(1), δ(1), α(0)}. The family of lnCFTG (Gn | n ∈ N+) is
defined as follows. For each n ∈ N+, we define Gn = (Nn,∆, A0, Rn) where Nn =

{A0
(0)} ∪ {A(2)

i | i ∈ [n]} and the rules in Rn are depicted in Figure 3.15(a). For each
i ∈ N, the nonterminal Ai offers the choice between γ or δ. The chosen terminal is then
synchronously produced in both argument positions of the next nonterminal Ai+1 (or κ in
the case of i = n).

We fix an n ∈ N+ and note |Nn| = n + 1, |Rn| = 2n + 1, and thus, |Gn| = 3n + 2.
Furthermore, we let µ : [n] → {γ, δ} be a function that represents the choice we took in
each nonterminal Ai. Figure 3.15(b) depicts the general structure of a tree in L(Gn) for µ.

By a close inspection of L(Gn), we can see that |L(Gn)| = 2n and that L(G) has ex-
actly 2n Nerode equivalence classes3. Thus, the minimal deterministic finite tree automaton

3The Nerode equivalence describes two trees ξ1, ξ2 ∈ T∆ as equivalent if, for each context ζ ∈ C∆({z}), we

74

3.10 Remarks on Non-Self-Embedding lnCFTGs

A0 → A1(α, α),

Ai(x1, x2)→

Ai+1

γ

x1

γ

x2

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ai+1

δ

x1

δ

x2

(i ∈ [n− 1]),

An(x1, x2)→

κ

γ

x1

γ

x2

⏐⏐⏐⏐⏐⏐⏐⏐⏐
κ

δ

x1

δ

x2

.

(a) Rules of the lnCFTG Gn.

κ

µ(n)

µ(n− 1)

. . .

µ(1)

α

µ(n)

µ(n− 1)

. . .

µ(1)

α

(b) Abstract shape of a tree in L(Gn).

Figure 3.15: A lnCFTG showing the succinctness of non-self-embedding lnCFTG.

recognizing this tree language has at least 2n states [25, Theorem 2.7.1]. We note that this
result only yields a minimal size for deterministic finite tree automata.

Now we show that each RTG H which is equivalent to Gn has at least size 2n + 1. For
this, we first show a RTG Hen such that L(Gn) = L(Hen) and |Hen| = 2n+1, and then
show that there cannot be a smaller one. Since L(Gn) is finite, it can be enumerated by a
RTG Hen with 2n rules. Each rule produces exactly one terminal tree. Thus, using the
initial nonterminal as only nonterminal, we have |Hen| = 2n +1. Now we assume that there
is a RTG H = (NH ,∆, B0, RH) such that L(Gn) = L(H) and |H| ≤ 2n. Furthermore, we
assume that H is the smallest such grammar and thus, each nonterminal and each rule are
useful. It can be seen that H cannot enumerate all trees from L(Gn) in individual rules
similar to Hen, since then |H| > 2n.

We prove that the B0-rules of H have the form B0 → κ(ξ1, ξ2) for some ξ1, ξ2 ∈ TNH∪∆.
For this, we assume that there is a rule B0 → B for some B ∈ NH . Then, for each B′ ∈ NH

such that B0 ⇒∗ B′ ⇒ κ(ξ1, ξ2) for some ξ1, ξ2 ∈ TNH∪∆, we have that B′ cannot occur in
derivations starting from ξ1 and ξ2. Hence, we may omit all those nonterminals B′ and
their rules and directly add the rules B0 → κ(ξ1, ξ2). The obtained grammar is equivalent
to H, but has a smaller size than H. This contradicts the minimality of H and thus, each
B0-rule has the form B0 → κ(ξ1, ξ2).

Since |H| ≤ 2n, there is a rule B0 → κ(ξ1, ξ2) with ξ1, ξ2 ∈ TNH∪∆ such that we
have |L(H,κ(ξ1, ξ2))| > 1. We assume that |L(H, ξ1)| > 1. We consider the derivation
B0 ⇒ κ(ξ1, ξ2)⇒∗ κ(ξ1, ξ

′
2) where ξ′2 ∈ T∆. The tree ξ′2 uniquely determines the tree that

is derived from ξ1. This contradicts |L(H, ξ1)| > 1. Hence, we have |H| > 2n for each RTG
H that is equivalent to Gn. ■

We note that the non-self-embedding lnCFTGs shown in the proof of Lemma 3.10.2 can be
extended to induce infinite tree languages or to induce different tree shapes. The blowup
explained in this section stems from the synchronous nondeterministic choice.

have ζ[ξ1] ∈ L(G) iff ζ[ξ2] ∈ L(G). In other words, ξ1 and ξ2 are indistinguishable in terms of inclusion
in L(G). For a detailed definition we refer to, e.g., [25, p. 86].

75

3 Non-Self-Embedding CFTGs

A0 →
A

α α
A(x1, x2)→

A

γ

x1

x2

⏐⏐⏐⏐⏐⏐⏐⏐
A

x1 γ

x2

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2

(a) The coregular lnCFTG G17.

B0 → κ(B,B)

B → γ(B) | α

(b) A RTG equivalent to G17.

Figure 3.16: A coregular lnCFTG that induces a regular tree language.

Non-self-embedding coregular lnCFTG

When considering regularity of the languages induced by lnCFTGs, another restriction
of CFTGs comes to mind, viz. coregular grammars. In a coregular CFTG a nonterminal
may only occur at the root of the right-hand side of a rule. As the name coregular CFTG
might suggest, this restriction might be related to non-self-embedding lnCFTG. We will
investigate the relationship between coregular lnCFTG and non-self-embedding lnCFTG.
For this, we recall the notion of coregular CFTG from [2, p. 21].

Definition 3.10.3 A CFTG G = (N,∆, A0, R) is coregular if, for each rule r ∈ R, we
have posN (rhs(r)) ⊆ {ε}. □

In this chapter, we focus on linear nondeleting CFTG. We apply the same restrictions
to coregular CFTG and obtain coregular lnCFTG. Since each coregular lnCFTG is also a
lnCFTG, we can apply Theorem 3.3.11 and immediately obtain the following corollary.

Corollary 3.10.4 Each non-self-embedding coregular lnCFTG induces a regular tree
language.

A natural question is whether for coregular lnCFTG the property of being non-self-
embedding is a necessary criterion for the regularity of the induced tree language. The
following lemma answers this question negatively.

Lemma 3.10.5 There is a self-embedding coregular lnCFTG that induces a regular tree
language.

Proof. Consider the coregular lnCFTG G17 given in Figure 3.16(a). By Theorem 3.1.7 it
can be verified that G17 is self-embedding, since it fulfills Property (2) of self-embedding.
However, L(G17) is regular. An equivalent RTG can be found in Figure 3.16(b). ■

76

4 Approximation of Arbitrary CFTGs

In Chapter 3 we have shown that there are tree languages induced by CFTGs that can be
characterized by RTGs. However, it is clear that there are context-free tree languages where
such a characterization is not possible. Furthermore, the potential exponential blowup
similar to the phenomenon described in Lemma 3.10.2 may be undesired. Since RTGs
can be parsed efficiently, it is worthwhile to investigate how the tree languages induced
by arbitrary CFTGs can be expressed by RTG. This can be achieved by means of an
approximation, i.e., some precision on the language model is waived for a better parsing
time.

Approximation of languages includes in particular subset approximation (generating only
parts of the language) and superset approximation (generating all elements of the language
and potentially more). We focus on superset approximation and call it just approximation.
By definition, T∆ is an approximation for each tree language. This motivates to talk
about the quality of an approximation. We use the subset relation as partial order on
approximations as follows. If L ⊆ T∆ and L1, L2 ⊇ L are approximations of L, then we
say that L1 is better than L2 if L ⊆ L1 ⊆ L2. In this sense, an approximation improves
compared to another approximation, if less trees are wrongly generated. We note that there
are incomparable approximations regarding our quality measure.

In the literature, there are similar investigations that show how to express the language
induced by a CFG using a finite state formalism, e.g., a REG. The research is closely
linked to parsing of CFG and the results include LR-parsing [3, 55], recursive transition
networks [48], and the direct construction of an approximating REG [28, 47]. An overview
of these results can be found in [47, Sec. 6].

In this chapter we present a method to approximate the tree language induced by
an arbitrary CFTG by a RTG inspired by a similar result for the string case [55]. For
this, we utilize the concept of a pushdown storage as introduced by [17] and the known
characterization that each context-free tree language can be generated by a RTG using
a pushdown storage [29, 17]. We describe how to characterize the language induced by
a CFTG G by a RTG H using a pushdown in the following. The RHS of a rule r in G
is traversed from top to bottom. We distinguish three different cases depending on the
label of the current position. A terminal symbol is just output by the RTG and the
traversal continues at the arguments of that terminal. If a nonterminal B occurs at the
current position w in rhs(r), then we store r and w onto the pushdown as a return address
and continue the traversal at the root of a nondeterministically chosen rule with LHS-
nonterminal B. Lastly, if a variable xi occurs, then we pop a return address (r′, w′) from
the top of the pushdown and continue the derivation process in rhs(r′) at position w′i.

This characterization can be turned into an approximation by restricting the number of
pushdown configurations that can occur in derivations. We obtain a (superset) approxi-
mation by forgetting the return addresses at the bottom of the stack. Then, whenever an
empty stack occurs and a variable is met, we know that a symbol was forgotten. In this

77

4 Approximation of Arbitrary CFTGs

case, we nondeterministically choose one of the possible return addresses.
As an example, we consider the CFTG G18 = ({A0

(0), A(2)},∆, A0, R) where ∆ =
{κ(3), δ(1), γ(1), α(0)} and R contains the rules

A0 →
A

α α
and A(x1, x2)→

A

γ

x1

δ

x2

⏐⏐⏐⏐⏐⏐⏐⏐
κ

x1 x2 x1
.

We call the rules from left to right r1, r2, and r3 and note that r3 is copying. The derivation

A0 ⇒
A

α α
⇒

A

γ

α

δ

α

⇒

κ

γ

α

δ

α

γ

α

of G18 shows that γ’s and δ’s are synchronously generated. By generalizing this derivation,
we can see that L(G18) = {κ(γj(α), δj(α), γj(α) | j ∈ N}.

We will illustrate the rule traversal and show how to approximate the language induced
by G18 by a RTG without a pushdown storage, i.e. the pushdown is restricted to contain
only the empty configuration (not depicted here). Furthermore, we outline at which points
a less restricted pushdown would be used to improve the approximation regarding the
subset relation. We define the RTG H3 = ({B0, B1, B2},∆, B0, R

′) where R′ contains the
rules

B0 → BA , BA → BA

⏐⏐⏐⏐⏐ κ

B1 B2 B1
, B1 →

γ

B1

⏐⏐⏐⏐⏐ α , and B2 →
δ

B2

⏐⏐⏐⏐⏐ α .

We note that in this example, we use simplified rules which do not correspond to the
formal construction that will be presented in Definition 4.2.2. The simplifications allow
for a compact representation of H3 and more intuitive explanations. The nonterminal B0

symbolizes the root of the RHS of r1. The label at this position is the nonterminal A, hence,
traversal must continue at the RHS of either r2 or r3. The nonterminal BA represents the
roots of the RHS of r2 and r3, respectively. Hence, there are two possibilities. First, the
nonterminal BA might be called again, which corresponds to the recursive rule application
by r2. Since H3 does not utilize a pushdown, information about the number of recursive
calls is lost in this step. Second, the nonterminal BA might produce the terminal κ
and traversal continues in its argument positions at positions below an occurrence of the
nonterminal A. For this, the nonterminal B1 symbolizes to continue in the first argument
position, and B2 to continue in the second argument position of an occurrence of A. We
note that the position of B1 and B2 correspond to the position of the variables x1 and x2,
respectively, in r3. Hence, B1 and B2 either recursively generate γ’s and δ’s, respectively,
or abort recursion by producing an α. If a pushdown is used, then the number of required
γ’s or δ’s can be tracked up to a certain bound. Considering the rules, we can see that
L(H3) = {κ(γj(α), δk(α), γℓ(α)) | j, k, ℓ ∈ N}. Thus, we have L(G18) ⊆ L(H3) and H3 is
indeed a (superset) approximation.

In this chapter, we first recall the definitions related to CFTGs with storage (cf. Sec-
tion 4.1). Afterwards, we present the actual approximation that gives rise to an infinite
hierarchy of improving approximations (cf. Section 4.2).

78

4.1 Context-Free Tree Grammars with Storage

4.1 Context-Free Tree Grammars with Storage

In this section, we recall basic notions required to equip a CFTG with a notion of storage.
For this, we recall storage types as a simplification of the definitions in [17]. Furthermore,
we recall the special storage type that describes a pushdown and show how the pushdown
storage type can be used within the rules of a CFTG.

As a preliminary definition, we need to extend the definition of a CFTG to allow for
infinite sets of nonterminals and rules, because nonterminals will be paired with a possibly
infinite amount of storage configurations (also cf. Definition 4.1.5).

Definition 4.1.1 An extended CFTG is a tuple (N,∆, A0, R) where

• N is a (possibly infinite) set (nonterminals),

• ∆ is a ranked alphabet such that N ∩∆ = ∅,

• A0 ∈ N (0) (initial nonterminal), and

• R is a (possibly infinite) set (rules), such that for every A ∈ N we have that R|A is
finite.

Let Gex be an extended CFTG. We denote the derivation relation of Gex by ⇒ and
define it as for CFTG. The tree language of Gex, denoted by L(Gex), is obtained as in the
case of CFTG by L(Gex) = {ξ ∈ T∆ | A0 ⇒d ξ, d is outside-in}. □

We note that if N is finite, then R is finite as well and the definition of an extended CFTG
matches the definition of a CFTG. We observe the following.

Observation 4.1.2 Let Gex be an extended CFTG. Then, for each ζ ∈ TN∪∆(X), we
have that {ξ ∈ TN∪∆(X) | ζ ⇒ ξ} is finite (note that we only consider a single derivation
step). Thus, for each n ∈ N, we have that {ξ ∈ TN∪∆(X) | A0 ⇒n ξ} is a finite set.

The idea of grammar with storage, inspired by [60], was introduced in and generalized
by [17] (see also [19]). We recall their definitions and adapt them to our scenario.

Definition 4.1.3 A storage type is a tuple S = (C,CP , CF , cin, µ) where

• C is a set (configurations)

• CP is a finite set (predicates)

• CF is a finite set (functions)

• cin ∈ C (initial configuration)

• µ is a mapping (meaning function) which interprets every predicate and function as
follows. For p ∈ CP we have a total function µ(p) : C → {true, false}. For f ∈ CF we
have a partial function µ(f) : C ↦→ C.

We call S a finite storage type if C is finite. □

79

4 Approximation of Arbitrary CFTGs

Note that this definition is close to the definition of a “datatype” in [19, Definition 3.1], but
more restrictive in the following sense. We do not allow for arbitrary Boolean combinations
of predicates. Furthermore, a storage type includes the initial configuration as a special
instance of [19, Definition 2.3]. This simplifies notation for the particular case handled here.

In the following let S = (C,CP , CF , cin, µ) be an arbitrary but fixed storage type.

Definition 4.1.4 A CFT(S)-grammar (read: context-free tree grammar using the stor-
age S) is a tuple GS = (N,∆, A0, RS) where

• N , ∆, and A0 are defined as for CFTGs, and

• RS is a finite set of rules of the form A(x) → if p then ξ′ where A(x) → ξ is a
CFTG rule, p ∈ CP , and ξ′ is obtained from ξ by replacing every occurrence of a
nonterminal B in ξ by B(f) for some f ∈ CF .

A RT(S)-grammar (read: regular tree grammar using storage S) is a CFT(S)-grammar
where N = N (0). □

We define the ranked alphabet N(C) = {A(c) | A ∈ N, c ∈ C} where for each A(c) ∈
N(C) we define rkN(C)(A(c)) = rkN (A).

Definition 4.1.5 Let GS = (N,∆, A0, RS) be a CFT(S)-grammar. We define the CFTG
associated with GS , denoted by G(GS), as the extended CFTG

G(GS) = (N(C),∆, A0(cin), R
′)

where R′ is obtained as follows: If A(x)→ if p then ξ is in RS , then, for every c ∈ C, such
that µ(p)(c) = true and µ(f)(c) is defined for each f ∈ CF that occurs in ξ, we let the rule
A(c)(x)→ ξ′ be in R′ where ξ′ is obtained from ξ by replacing every occurrence of B(f)
for some nonterminal B ∈ N and function f ∈ CF by B(µ(f)(c)). □

Note that the requirement of extended CFTGs is met: For every nonterminal of G(GS), i.e.,
every nonterminal A ∈ N from GS and every configuration c ∈ C, the set R′|A(c) is finite.

Definition 4.1.6 Let GS be a CFT(S)-grammar. The derivation relation of GS , denoted
by ⇒GS

, is defined by ⇒GS
= ⇒G(GS). The tree language of GS , denoted by L(GS), is

defined as L(GS) = L(G(GS)). □

We observe the special case when S is a finite storage type.

Lemma 4.1.7 Let GS be a CFT(S)-grammar. If S is a finite storage type, then G(GS) is
a CFTG. If additionally G is an RT(S)-grammar, then G(G) is a RTG.

Proof. Clearly, N(C) is finite if N and C are finite. Moreover, since, for each A ∈ N , the
set R|A is finite, we have that the set of rules from G(GS) is finite as well. ■

Note that in Definition 4.1.5 and consequently in the proof of Lemma 4.1.7 we incorporate
all pushdown configurations into the nonterminals of G(GS). This can be optimized by
only considering reachable pushdown configurations in the construction.

In the following we recall a special storage type, namely the pushdown storage [19,
Def. 3.28]. Note that, in contrast to the original definition in [19], we allow the pushdown
to be empty.

80

4.2 Approximation of a CFTG by a RTG

Definition 4.1.8 Let Γ be an alphabet. We define the Γ-pushdown storage, denoted by
PD(Γ), as the storage type PD(Γ) = (C,CP , CF , c0, µ) where

• C = Γ∗,

• CP = {top = γ | γ ∈ Γ ∪ {ε}},

• CF = {push(γ) | γ ∈ Γ} ∪ {pop, id},

• c0 = ε, and

• µ is defined, for each c ∈ C, as

– µ(top = ε)(c) =

{
true if c = ε,
false otherwise,

– µ(pop)(c) =

{
w if c = wγ with w ∈ Γ∗ and γ ∈ Γ,
undefined otherwise,

– µ(id)(c) = c.

and for each γ ∈ Γ, as

– µ(top = γ)(c) =

{
true if c = wγ for some w ∈ Γ∗,
false otherwise,

– µ(push(γ))(c) = cγ, □

The configurations of PD(Γ) are denoted as strings. The symbol at the right end of such a
configuration is considered the topmost symbol on the pushdown.

4.2 Approximation of a CFTG by a RTG

In this section, we will see how the language induced by an arbitrary CFTG can be expressed
by an RTG by means of an approximation. The approximation result is split into two parts.
First, we show that any CFTG is equivalent to a RTG with pushdown storage. Second, we
present restrictions to the storage such that the number of possible storage configurations
becomes finite. This finite information can be incorporated into the nonterminals of the
RTG. We obtain a hierarchy of approximations that improve concerning the subset relation.
Lastly, we relate this approximation result to the string case, i.e., the approximation of
context-free languages by REG.

Throughout this section, we let G = (N,∆, A0, R) be an arbitrary, but fixed CFTG.

Characterization of a CFTG by a RTG with Pushdown Storage

As a first step on the way to an approximation we characterize the CFTG G by a RT(SPD(Γ))-
grammar H where Γ is the pushdown alphabet of a lnCFTG defined in the following.

Definition 4.2.1 We define the pushdown alphabet of G, denoted by ΓG, as the set ΓG =
{⟨r, w⟩ | r ∈ R,w ∈ posN\N(0)(rhs(r))}. We abbreviate PD(ΓG) to PD(G) and call it the
pushdown storage associated with G. □

81

4 Approximation of Arbitrary CFTGs

In the following, we let PD(G) = (C,CP , CF , c0, µ) be the pushdown storage associated
with G. Furthermore, we let ΓG be defined as in Definition 4.2.1 and we call elements in ΓG
return addresses of G. Return addresses are used as pushdown symbols in the following
construction, which is based on [29, Thm. 3, p. 257].

Definition 4.2.2 We define the pushdown characterization of G, denoted by pd(G), as
the RT(PD(G))-grammar pd(G) = (N ′,∆, A0

′, R′) where N ′, A0
′, and R′ are defined as

follows. We let N ′ = {A0
′}∪{⟨r, w⟩ | r ∈ R,w ∈ pos(rhs(r))} and define R′ as the smallest

set satisfying the following five properties.

(1) For each rin ∈ R|A0 , we let A0
′ → ⟨rin, ε⟩(id) be in R′.

Let r ∈ R be of the form A(x)→ ξ and w ∈ pos(ξ).

(2) If ξ(w) = δ for some k ∈ N and δ ∈ ∆(k), then we let, for each predicate p ∈ CP

⟨r, w⟩ → if p then δ(⟨r, w1⟩(id), . . . , ⟨r, wk⟩(id))

be in R′.

(3) If ξ(w) = B for some B ∈ N (0), then, for each r′ ∈ R|B and predicate p ∈ CP , we let

⟨r, w⟩ → if p then ⟨r′, ε⟩(id)

be in R′.

(4) If ξ(w) = B for some B ∈ N with rkN (B) > 0, then, for each r′ ∈ R|B and predicate
p ∈ CP , we let

⟨r, w⟩ → if p then ⟨r′, ε⟩(push(⟨r, w⟩))

be in R′.

(5) If ξ(w) = xi, for some i ∈ [rkN (A)], then, for each r′ ∈ R and v ∈ posA(rhs(r
′)), we

let

⟨r, w⟩ → if top = ⟨r′, v⟩ then ⟨r′, vi⟩(pop)

be in R′.

Each rule that is created using case i ∈ [5] is called a Type (i) rule. □

Note that, for each rule r ∈ R′, we have that lhn(r) determines the type of the rule. For
each rule r′ in G(pd(G)) such that lhn(r′) = B(c) for some B ∈ N ′ and c ∈ C, we say
that r′ is a Type (i) rule (i ∈ [5]) if this is the type determined by the nonterminal B
in pd(G). There is a connection between the nonterminals in N ′ and the return addresses
used in Type (4) and (5) rules.

Intuitively, we traverse the RHSs of the rules of G from top to bottom. For this, we
consider a rule r together with a position in its RHS. This information is encoded into
the nonterminals of pd(G). A rule in pd(G) with LHS-nonterminal ⟨r, w⟩ corresponds to
the symbol rhs(r)(w). We make a case analysis of the different types of symbols. If we

82

4.2 Approximation of a CFTG by a RTG

encounter a terminal (Type (2) rule), then it is output as usual and the processing continues
in each subtree. If we encounter a nonterminal A (Type (4)), then we put the current rule
and position onto the pushdown as a return address and continue at the root of an A-rule.
If A is nullary (Type (3)), the return address is not needed. On meeting an xi, we continue
at the i-th successor of the return address encoded in the topmost pushdown symbol.

Observation 4.2.3 In each rule of pd(G), the predicate of the rules only refers to the
topmost symbol of the pushdown configuration. More precisely, if A(cγ)(x) ⇒ ζ is a
derivation in pd(G), then A(c′γ)(x) ⇒ ζ ′ is a derivation in pd(G) where c′ ∈ Γ∗

G such
that c′γ ∈ C, ζ ′ is obtained as defined in Definition 4.1.5, and ζ and ζ ′ only differ in the
associated configurations.

We relate derivations in G(pd(G)) and derivations in G by considering a rule r ∈ R and
a position w ∈ rhs(r). If we start a derivation with ⟨r, w⟩(ε) and apply rules from pd(G) as
long as any rule is applicable, the resulting tree consists of terminals and nonterminals of
the form ⟨r, w′⟩(ε) for some w′ ∈ pos(rhs(r)). A similar tree can be obtained by starting a
derivation with rhs(r)|w, but instead of the nonterminals, variables occur. This is formalized
in the following observation, where we use a variable zj (j is a unique index) for each
occurrence of a variable xi (i ∈ [rkN (lhn(r))]) in rhs(r).

Observation 4.2.4 [29, p. 258] We let r ∈ R, rhs(r) = ζ, m = |posX(ζ)|, and Zm =
{z1, . . . , zm}. Furthermore, we let w1, . . . , wm ∈ posX(ζ) be pairwise disjoint, ξ =
ζ[w1/z1, . . . , wm/zm], w ∈ pos(ξ), and ξ′ ∈ C∆(Zm). We modify G to treat elements
from Zm as terminals. Then it holds that

⟨r, w⟩(ε)⇒∗ ξ′[zi/⟨r, wi⟩(ε) | i ∈ [m]] holds in G(pd(G)) iff ξ|w ⇒∗ ξ′ holds in G .

Theorem 4.2.5 It holds that L(G) = L(pd(G)).

Proof. L(G) ⊆ L(pd(G)): We let r ∈ R|A0 be of the form A0 → ζ, ξ ∈ T∆, and consider
a derivation A0 ⇒r ζ ⇒∗ ξ in G. Note that any derivation of G has this form. There is a
Type (1) rule A0

′ → ⟨r, ε⟩(id) in pd(G). Furthermore, note that ξ and ζ do not contain
any variables. By Observation 4.2.4, we have ⟨r, ε⟩(ε)⇒∗ ξ is a derivation in G(pd(G)) and
thus, ξ ∈ L(pd(G)).
L(G) ⊇ L(pd(G)): Let ξ ∈ T∆, r ∈ R|A0 , and consider a derivation A0

′(ε) ⇒r1

⟨r, ε⟩(ε) ⇒∗ ξ in G(pd(G)). Note that each derivation in G(pd(G)) has this form. Since
r1 is a Type (1) rule and by Definition 4.2.2, the rule r has the form A0 → ζ for some
ζ ∈ TN∪∆. By Observation 4.2.4, there is a derivation ζ ⇒∗ ξ in G and thus, ξ ∈ L(G). ■

Approximation of a CFTG by a RTG with a Restricted Pushdown

We will now restrict the pushdown storage to only use finitely many configurations. Then,
we can incorporate the set of configurations into the state space of a RTG. Thus, we get
an approximation for G. We introduce a depth-limited pushdown and then define an
approximation RTG. The depths of the pushdown is limited to a natural number m and if
a push occurs such that the pushdown configuration would become larger than m, then the
pushdown forgets the oldest symbol.

83

4 Approximation of Arbitrary CFTGs

Afterwards, we will consider the special case of the trivial pushdown storage (m = 0), i.e.,
no pushdown is used at all. Then, we formally show the intuitive fact that the pushdown
approximation improves if m increases, i.e., more return addresses can be stored. For this,
an infinite hierarchy of pushdown approximations is considered.

In the following, we let m ∈ N.

Definition 4.2.6 Let PD(G) = (C,CP , CF , ε, µ). We define the m-depth limited push-
down storage associated with G, denoted by PDm(G), as the storage type PDm(G) =
(Cm, CP , CF , ε, µ

m) where Cm and µm are defined as follows.

• Cm = {c ∈ Γ∗
G | |c| ≤ m}.

• The meaning function µm is defined as in Definition 4.1.8 for all but the following
case: For each c ∈ Cm where c = γ1 . . . γ|c| with γi ∈ ΓG, for all i ∈ [|c|], and for each
γ ∈ ΓG we define

– µm(push(γ))(c) =

⎧⎪⎨⎪⎩
cγ if |cγ| ≤ m,
γ2 . . . γ|c|γ if |γ2 . . . γ|c|γ| ≤ m,

ε if m = 0.

□

Note that Cm is a finite set.
In the following, we let PDm(G) = (Cm, CP , CF , ε, µ

m) be the m-depth limited pushdown
storage associated with G.

We can use the m-depth limited pushdown to obtain a pushdown approximation of G.
Since PDm(G) forgets pushdown symbols, the approximation needs to guess the forgotten
symbols if it wants to read from an empty pushdown as follows.

Definition 4.2.7 We define the m-pushdown RTG associated with G, denoted by pdm(G),
as the RT(PDm(G))-grammar pdm(G) = (N ′,∆, A0

′, R′′) where N ′ is defined as in Defi-
nition 4.2.2 and R′′ contains all rules of R′ from Definition 4.2.2 as well as the following
additional rules: Let r ∈ R be of the form A(x)→ ζ, i ∈ [rkN (A)], and w ∈ posxi

(ζ).

(6) For each r′ ∈ R and w′ ∈ posA(rhs(r
′)), we let

⟨r, w⟩ → if top = ε then ⟨r′, w′i⟩(id)

be in R′′. A rule created by this case is called a Type (6) rule. □

Since PDm(G) is a finite storage type, we have that G(pdm(G)) is a RTG (cf. Lemma 4.1.7).
Recall that the LHS-nonterminal of a rule in pd(G) determines the type of that rule.
This property is no longer true for rules in pdm(G), because rules of Type (5) and (6)
have the same kind of LHS-nonterminals, viz. ⟨r, w⟩ where r ∈ R and w ∈ posX(rhs(r)).
However, we can differentiate such rules as follows. In a derivation of pdm(G) and thus
in G(pdm(G)), we consider a rule r′ in G(pdm(G)) such that lhn(r′) = ⟨r, w⟩(c) for some
r ∈ R, w ∈ posX(rhs(r)), and c ∈ Cm. Then r′ is of Type (5), if c ̸= ε and r′ is of Type (6)
if c = ε. This holds, because Type (5) rules require the pushdown to be nonempty.

Now we want to prove that pdm(G) is indeed an approximation of pd(G) and thus of
G. For this, we relate derivations in G(pdm(G)) to derivations in G(pd(G)). Consider a
derivation d in G(pd(G)). Intuitively, if no pushdown symbol is forgotten, i.e., the size of
each pushdown is less than m, then d is also a derivation in G(pdm(G)). If a symbol is
forgotten, then we can use the corresponding Type (6) rule.

84

4.2 Approximation of a CFTG by a RTG

Lemma 4.2.8 L(pd(G)) ⊆ L(pdm(G))

Proof. We let ξ ∈ TN ′∪∆, n ∈ N, ξ0..n ∈ T∆(N
′(C)), and r1..n ∈ R′. If there is a

derivation
d : A0

′(ε) = ξ0 ⇒r1 ξ1 ⇒r2 . . .⇒rn ξn = ξ

in G(pd(G)), then there are ξ′0..n ∈ T∆(N
′(Cm)) and r′1..n ∈ R′′ such that

d′ : A0
′(ε) = ξ0 ⇒r′1

ξ′1 ⇒r′2
. . .⇒r′n ξ′n = ξ

is a derivation in G(pdm(G)) where, for each i ∈ [n], r′i and ξ′i are defined by induction
in the following. For each i ∈ [n], we assume that ri is applied at wi. We let r′1 = r1, we
obtain ξ′1 from ξ0 by applying r′1 at w1, and for each i ∈ [n] \ {1}, we define

r′i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1(c
′)→ δ(B2(c

′), . . . , Bk(c
′)) if ri is B1(c)→ δ(B2(c), . . . , Bk(c))

B1(c
′)→ B2(c

′) if ri is B1(c)→ B2(c)

B1(c
′)→ B2(µ

m(push(γ))(c′)) if ri is B1(c)→ B2(cγ)

B1(c
′)→ B2(c

′
1) if ri is B1(c)→ B2(c1), c = c1γ, c′ = c′1γ

for some c1 ∈ C, c′1 ∈ Cm, and γ ∈ ΓG

B1(ε)→ B2(ε) if ri is B1(c)→ B2(c1), c = c1γ

for some c1 ∈ C and γ ∈ ΓG

where in each case c′ is such that ξ′i−1(wi) = B1(c
′). Furthermore, we define ξ′i such that

ξ′i−1 ⇒r′i
ξ′i holds where r′i is applied at wi. Note that the case distinction for r′i covers each

rule type not concerning the initial nonterminal, i.e. Types (2) to (5), where Type (5) is
split into two cases.

By Observation 4.2.3, only the topmost symbol on the pushdown determines the applicable
rules. Hence, disregarding the pushdown at each nonterminal, the only difference between
a derivation in G(pd(G)) and a derivation in G(pdm(G)) may occur when the pushdown
is empty. In this case, we can find an appropriate Type (6) rule. It remains to adapt the
pushdown configurations. It can be seen that the construction of r′i does exactly that. ■

No Pushdown. To illustrate the concept of a pushdown approximation, we consider the
special case of using no pushdown at all. We present an example, show the connection of a
RTG H to pd0(H), and relate this setting to the case for strings.

Here, we let m = 0 and hence we get C0 = {ε}. Thus, in pd0(G) the predicate of a
Type (5) rules is never satisfied, since the pushdown is always empty. If a return address is
needed, it is guessed from all valid possibilities using Type (6) rules.

Example 4.2.9 We construct the CFTG G19 = ({A0, A},∆, A0, R) as follows. We let
∆ = {γ(1), δ(1), α(0), β(0)} and we let R contain the rules

r1 : A0 → γ(A(α, α)), r3 : A(x1, x2)→ γ(A(γ(x1), γ(x2))),

r2 : A0 → δ(A(β, β)), r4 : A(x1, x2)→ κ(x1, x2) .

85

4 Approximation of Arbitrary CFTGs

We want to highlight some properties of this grammar. First, we note that G19 is linear
nondeleting. Second, it can be seen that

L(G19) = {

γ

γn

κ

γn

α

γn

α

,

δ

γn

κ

γn

β

γn

β

| n ∈ N} .

Third, we observe that trees in L(G19) are either rooted in γ and have an α at each leaf, or
they are rooted in δ and have a β at each leaf.

We construct the 0-pushdown RTG pd0(G19) = (N ′,∆, A0
′, R′) as follows. Since C0 =

{ε}, only one predicate is satisfiable, viz. the predicate (top = ε). Hence, all rules testing for
other predicates are not relevant. Consequently, Type (5) rules cannot be used in pd0(G19).
Furthermore, all push instructions result in the configuration ε and are thus omitted in the
following. In Type (6) rules, the predicate is always true. Thus, we omit the predicate as
well as the function. We define

N ′ = {⟨r1, ε⟩, ⟨r1, 1⟩, ⟨r1, 11⟩, ⟨r1, 12⟩, A0
′}

∪ {⟨r2, ε⟩, ⟨r2, 1⟩, ⟨r2, 11⟩, ⟨r2, 12⟩}
∪ {⟨r3, ε⟩, ⟨r3, 1⟩, ⟨r3, 11⟩, ⟨r3, 111⟩, ⟨r3, 12⟩, ⟨r3, 121⟩}
∪ {⟨r4, ε⟩, ⟨r4, 1⟩, ⟨r4, 2⟩}

and point out some of the rules of R′ which are of interest:

Type (1) rules:

A0
′ → ⟨r1, ε⟩ A0

′ → ⟨r2, ε⟩
Type (2) rules:

⟨r1, ε⟩ → γ(⟨r1, 1⟩) ⟨r1, 11⟩ → α ⟨r2, 11⟩ → β

⟨r4, ε⟩ → κ(⟨r4, 1⟩, ⟨r4, 2⟩) ⟨r1, 12⟩ → α ⟨r2, 12⟩ → β

Type (4) rules:

⟨r1, 1⟩ → ⟨r3, ε⟩ ⟨r2, 1⟩ → ⟨r3, ε⟩ ⟨r3, 1⟩ → ⟨r3, ε⟩
⟨r1, 1⟩ → ⟨r4, ε⟩ ⟨r2, 1⟩ → ⟨r4, ε⟩ ⟨r3, 1⟩ → ⟨r4, ε⟩

Type (6) rules:

⟨r3, 111⟩ → ⟨r1, 11⟩ ⟨r3, 111⟩ → ⟨r2, 11⟩ ⟨r3, 111⟩ → ⟨r3, 11⟩
⟨r3, 121⟩ → ⟨r1, 12⟩ ⟨r3, 121⟩ → ⟨r2, 12⟩ ⟨r3, 121⟩ → ⟨r3, 12⟩
⟨r4, 1⟩ → ⟨r1, 11⟩ ⟨r4, 1⟩ → ⟨r2, 11⟩ ⟨r4, 1⟩ → ⟨r3, 11⟩
⟨r4, 2⟩ → ⟨r1, 12⟩ ⟨r4, 2⟩ → ⟨r2, 12⟩ ⟨r4, 2⟩ → ⟨r3, 12⟩

Note that by using Type (6) rules, information is lost since the grammar nondeterministically
chooses a possible return address. We illustrate this using the tree ξ = γ(κ(α, β)) with

86

4.2 Approximation of a CFTG by a RTG

the following derivation in G(pd0(G19)) (recall that the only configuration c = ε is not
depicted):

A0
′ ⇒ ⟨r1, ε⟩ ⇒ γ(⟨r1, 1⟩)⇒ γ(⟨r4, ε⟩)⇒ γ(κ(⟨r4, 1⟩, ⟨r4, 2⟩))
⇒2 γ(κ(⟨r1, 11⟩, ⟨r2, 12⟩))⇒2 γ(κ(α, β)) .

Thus, we have ξ ∈ L(pd0(G19)), but ξ /∈ L(G19). Recall from Theorem 4.2.5 that L(G19) =
L(pd(G19)). It is easy to see that for each derivation of pd(G19), there is a corresponding
one in pd0(G19) where each return address is correctly guessed (cf. Lemma 4.2.8). Hence,
we get that L(pd0(G19)) ⊃ L(G19). ⃝

It is intuitively clear, that the pushdown is only needed if return addresses must be
stored. Since RTGs contain no variables, return addresses are not needed in a derivation.
Hence, we obtain the following lemma.

Lemma 4.2.10 For each RTG H, we have L(H) = L(pd0(H)).

Proof. To prove this lemma, we analyze the rules of pd(H). Since H is a RTG, pd(H)
does not contain Type (4) or Type (5) rules and pd0(H) does not contain Type (6) rules.

Hence, derivations in both pd(H) and pd0(H) only contain the configuration ε and only
use the function id. Since the meaning functions of PD(H) and PD0(H) applied to id
behave in the same way concerning the configuration ε, each derivation in G(pd(H)) is a
derivation of G(pd0(H)) and vice versa. Thus, we get that L(pd(H)) = L(pd0(H)) and,
by Theorem 4.2.5, it holds that L(H) = L(pd(H)). ■

Restricted Pushdown. Now, we consider non-trivial pushdown storages, i.e., we choose
m > 0. We investigate how this effects the m-pushdown RTG. We give an example and
show how increasing the pushdown limit improves the approximation.

Example 4.2.11 Recall the lnCFTG G19 from Example 4.2.9. By using the 1-pushdown
RTG pd1(G19), we can observe that γ(κ(α, β)) /∈ L(pd1(G19)) since one return address
is stored. This can be illustrated using the following rules from pd1(G19) (rules without
predicate are shortcuts for the rules with all possible predicates):

⟨r1, ε⟩ → γ(⟨r1, 1⟩(id)) ⟨r3, 111⟩ → if top = ⟨r1, 1⟩ then ⟨r1, 11⟩(pop)
⟨r1, 1⟩ → ⟨r3, ε⟩(push(⟨r1, 1⟩)) ⟨r3, 121⟩ → if top = ⟨r1, 1⟩ then ⟨r1, 12⟩(pop)
⟨r1, 1⟩ → ⟨r4, ε⟩(push(⟨r1, 1⟩)) ⟨r3, 111⟩ → if top = ⟨r2, 1⟩ then ⟨r2, 11⟩(pop)
⟨r2, ε⟩ → δ(⟨r2, 1⟩(id)) ⟨r3, 121⟩ → if top = ⟨r2, 1⟩ then ⟨r2, 12⟩(pop)
⟨r2, 1⟩ → ⟨r3, ε⟩(push(⟨r2, 1⟩))
⟨r2, 1⟩ → ⟨r4, ε⟩(push(⟨r2, 1⟩))

A derivation in pd1(G19) contains non-trivial pushdown configurations as for example in
the derivation of the tree ξ = γ(κ(α, α)) depicted in Figure 4.1 Since ξ /∈ L(pd1(G19))
and ξ ∈ L(pd0(G19)), we conclude that pd1(G19) is a better approximation of G19 than
pd0(G19) from Example 4.2.9. ⃝

87

4 Approximation of Arbitrary CFTGs

A0
′(ε)⇒ ⟨r1, ε⟩(ε)⇒

γ

⟨r1, 1⟩(ε)
⇒

γ

⟨r4, ε⟩(r1, 1)

⇒

γ

κ

⟨r4, 1⟩(r1, 1) ⟨r4, 2⟩(r1, 1)

⇒

γ

κ

⟨r1, 11⟩(ε) ⟨r1, 12⟩(ε)

⇒

γ

κ

α α

.

Figure 4.1: A derivation in pd1(G19).

There are CFTGs that use only finitely many return addresses. If G is such a CFTG,
the m-limited pushdown approximation of G is equivalent to G, since all needed pushdown
approximations can be stored. We formalize this in the following observation.

Observation 4.2.12 We let G be a CFTG and mG ∈ N. Furthermore, we let d be
a derivation in G(pd(G)), n = |d|, ξ1..(n−1) ∈ T∆(N(C)), and ξn ∈ T∆ be such that
d : A0

′(ε)⇒ ξ1 ⇒ . . .⇒ ξn. If, for each i ∈ [n] and c ∈ C with posN({c})(ξi) ̸= ∅, we have
|c| ≤ mG, then d is a derivation of G(pdmG(G)).

If the above holds for each derivation d of G(pd(G)), then L(pd(G)) = L(pdmG(G)).

The following lemma connects Observation 4.2.12 to the notion of a self-embedding
lnCFTG as introduced in Chapter 3.

Lemma 4.2.13 We let m ∈ N, and G be a CFTG such that, for each derivation of
G(pd(G)) of the form d : A0

′(ε) ⇒ ξ1 ⇒ . . . ⇒ ξn where n = |d|, ξ1..(n−1) ∈ T∆(N(C)),
and ξn ∈ T∆ the following holds. For each i ∈ [n] and c ∈ C with posN({c})(ξi) ̸= ∅ we
have |c| ≤ m. If G is linear nondeleting, then G is non-self-embedding.

Proof. We assume that G is self-embedding. Then, there are a rule r in G(pd(G)) with
lhn(r) = A(c1), c′ ∈ Γ∗

G \ {ε}, and ξ ∈ C∆({z}) such that ⟨r, ε⟩(c1) ⇒∗ ξ[⟨r, ε⟩(c1c′)] is a
derivation in G(pd(G)). By Observation 4.2.3, for each n ∈ N, we have that ⟨r, ε⟩(c1)⇒∗

ξn[⟨r, ε⟩(c1(c′)n)] is a derivation in G(pd(G)). Since c′ ≠ ε, we have |c1(c′)n| > mG for some
n ∈ N. This contradicts the requirement of this lemma and thus, by contradiction, G is
non-self-embedding. ■

We examine the effect of increasing the pushdown limit. Intuitively, the more return
addresses a pushdown approximation can store, the less trees are wrongly generated. We
show this intuition formally in the following lemma.

Lemma 4.2.14 For each CFTG G and every m ∈ N we have

L(pdm+1(G)) ⊆ L(pdm(G)) .

Proof (sketch). Let ξ ∈ L(pdm+1(G)) and d be a derivation in G(pdm+1(G)) that
derives ξ. We consider each configuration c occurring in d and do a case distinction on |c|.

88

4.2 Approximation of a CFTG by a RTG

If |c| ≤ m, then it is clear that d is a derivation in G(pdm(G)) and hence, ξ ∈ L(pdm(G)).
If |c| > m, then there is at least one configuration c occurring in d such that |c| = m+ 1.

Following Observation 4.2.3, it can be seen that we can construct a derivation d′ of
G(pdm(G)) shortening each configuration c1 occurring in a sentential form of d and propagate
this change through the derivation. If a nonempty configuration c2 occurs in d and the
associated configuration in d′ is empty, then we can use a Type (6) rule to continue the
derivation. The adaption of configurations in d′ can be achieved very similar as in the proof
of Lemma 4.2.8. ■

The inclusion of Lemma 4.2.14 becomes strict if the considered CFTG is complex enough.
However, a formal definition of such grammars is very technical while the intuition is
easily described. A CFTG is complex in this sense, if there are derivations that use
pushdown configurations of arbitrary size and furthermore, forgetting some pushdown
symbols changes the induced tree language. The following lemma states that there are such
complex grammars.

Lemma 4.2.15 There is a CFTG G such that, for each m ∈ N, we have

L(pdm(G)) \ L(pd(G)) ̸= ∅ and

L(pdm(G)) \ L(pdm+1(G)) ̸= ∅ .

Proof. It is easy to see that the CFTG G19 from Example 4.2.9 can be used to show that,
for each m ∈ N and tree ξm = γ(γm+1(κ(γm+1(α), γm+1(β)))), we have ξm ∈ L(pdm(G19)),
but ξm /∈ L(pdm+1(G19)). Furthermore, it is clear that ξm /∈ L(pd(G19)) = L(G19). ■

Example 4.2.11 is an illustration of Lemma 4.2.15 for the case m = 0.
We combine results regarding approximation of context-free tree languages by RTGs and

obtain the following theorem.

Theorem 4.2.16 Let G be a CFTG. The following holds:

L(G) = L(pd(G)) ⊆ . . . ⊆ L(pdm+1(G)) ⊆ L(pdm(G)) ⊆ . . .

⊆ L(pd1(G)) ⊆ L(pd0(G))

Furthermore, there are CFTGs G′ for which each of the inclusions is strict.

Proof. The first part of the theorem is a consequence of Theorem 4.2.5 and Lemmas 4.2.8
and 4.2.14. The second part follows from Lemma 4.2.15. ■

Relation to the String Case

To conclude this section, we relate Theorem 4.2.16 to the string case. It turns out that our
approximation of a context-free tree language by a RTG with pushdown corresponds to an
already existing result in which the string language of a CFG is approximated by a finite
state automata using a pushdown [4, 55]. We note that the way in which return addresses
are forgotten in [55] is different from the approach taken here. Instead of just forgetting the
oldest return address, the authors of [55] drop reoccurring sequences of return addresses.
This approach allows for a better approximation of synchronized symbols at the beginning

89

4 Approximation of Arbitrary CFTGs

r1 : A0
′ ⟨r1, ε⟩ ⟨r1, 1⟩

r2 : ⟨r2, ε⟩′ ⟨r2, 1⟩ ⟨r2, 11⟩ ⟨r2, 13⟩ ⟨r2, 14⟩ ⟨r2, 15⟩

r3 : ⟨r3, ε⟩ ⟨r3, 1⟩

♯

a b c

d

Figure 4.2: Example in the String case.

and end of a string. However, deleting only repeating return addresses restricts the control
over the size of the state space, since the pushdown may grow very large before a return
address is repeated.

Furthermore, we want to exemplarily show that the special case of our result with
m = 0, restricted to the tree representations of a REG, corresponds to an approximation
of context-free string languages by REG described in [46]. For this, we recall the tree
representation of a CFG (cf. Definition 2.2.24) and that each CFG M can be seen as a
lnCFTG M̃ (cf. Observation 2.2.25). If we consider the tree representation of strings, then
our definition, using a 0-depth limited pushdown storage, corresponds to [46, Section 9.3.2].
This can be seen in the following example.

Example 4.2.17 We let M = ({B0}, {a, b, c, d}, B0, R) be a CFG where R contains the
two rules B0 → aB0bB0c and B0 → d. The CFTG M̃ = ({A0

(0), B(1)}, Σ̃, A0, R
′) contains

the rules

r1 : A0 → B0(♯) ,

r2 : B0(x1)→ a(B0(b(B0(c(x1))))) , and
r3 : B0(x1)→ d(x1) .

Constructing the associated RTG G(pd0(M̃)) results in the state behavior depicted in
Figure 4.2. The resulting RTG is illustrated in the form of a finite state string automaton,
although it formally recognizes unary trees. Dashed lines symbolize ε-transitions. ⃝

90

5 Training of Regular Tree Grammars

This chapter is mainly based on my conference publication “Regular Approximation of
Weighted Linear Nondeleting Context-Free Tree Languages” [66]. Some parts are taken
over verbatim.

In machine translation, a language model can be extended with weights to measure the
grammaticality of sentences. The task of obtaining suitable weights is called training. The
weights can be extracted from finite sets of samples, called corpora. Well-known linguistic
corpora stem from, e.g., sentences found in newspapers, transcriptions of speeches held in
the European parliament, or just a collection of sentences found in the world wide web.
Alternatively, one grammar can be trained based on an infinite language, e.g., based on the
induced language of another grammar. The latter possibility corresponds to expressing the
weighted language of one grammar by means of another grammar. For example, Nederhof
describes a method to approximate weights for a given finite automaton using a given
weighted CFG such that the Kullback-Leibler divergence between the induced weighted
string languages is minimal [49]. Another approach is, considering the derivation trees
of a CFG as its induced tree language, to find a weight assignment for a CFG such that
its induced weighted tree language is close to an arbitrary, infinite tree distribution [12].
Concerning more expressive tree-generating grammars, it has been shown how to obtain a
weight assignment for a given RTG to approximate the weighted tree language induced by
a weighed tree adjoining grammar [50].

In this chapter, we show how weighted context-free tree languages can be expressed by
weighted RTGs (wRTGs). More concretely, we focus on weighted tree languages induced
by weighted lnCFTGs (wlnCFTGs) and show how to approximate optimal weights for
a given RTG. An optimal weight assignment in this sense is determined by minimizing
the Kullback-Leibler (KL) divergence between the weighted tree languages induced by the
wlnCFTG and the wRTG. The choice of utilizing the KL divergence is motivated by its
broad use in the existing literature (cf., e.g., [49, 12, 50]).

Before explaining the details on how to express the weighted tree language induced by
a wlnCFTG by means of a wRTG, we illustrate the involved weighted tree grammars.
The following example describes the wlnCFTG (G20, pG20) and the RTG H4 (we refer to
Section 5.2 for a formal definition of wlnCFTGs and wRTGs). These two grammars are
used as a running example throughout this chapter. We let ∆ = {κ(2), γ(1), α(0)} and define
the lnCFTG G20 = (NG20 ,∆, A0, RG20) where NG20 = {A0, A} and the rules in RG20 are
depicted in Figure 5.1(a) where we ignore the annotated weights above each RHS. By
inspecting the rules, it can be seen that L(G20) = {κ(γ2n(α), γn(α)) | n ∈ N}. A weight
assignment for G20 is a mapping pG20 that assigns a value, called weight to each rule. The
weight assignment pG20 is depicted in Figure 5.1 as an annotation above the RHS of each
rule. The pair (G20, pG20) is a weighted lnCFTG (wlnCFTG). It induces a weighted tree
language, i.e., a mapping from T∆ into R≥0 as follows. The weight of a tree ξ ∈ T∆ is the
sum of the weight of each derivation resulting in ξ. The weight of a derivation is obtained

91

5 Training of Regular Tree Grammars

A0 →
A

Aα Aα

1.0

A(x1, x2)→

A

Aγ

Aγ

x1

Aγ

x2

0.3
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

Aκ

x1 x2

0.7

B0 →
κ

B1 B1

Aκ(x1, x2)→
κ

x1 x2

1.0

Aγ(x1)→
γ

x1

1.0

Aα → α
1.0 B1 →

γ

B1

⏐⏐⏐⏐⏐ α
Figure 5.1: (a) The wlnCFTG (G20, pG20). (b) The RTG H4.

by multiplying the weight of a rule upon its application during the derivation. As an
illustration, the derivation

A0 ⇒
A

Aα Aα
⇒

A

Aγ

Aγ

Aα

Aγ

Aα

⇒

Aκ

Aγ

Aγ

Aα

Aγ

Aα

⇒6

κ

γ

γ

α

γ

α

is assigned the weight 1 · 0.3 · 0.7 · 16 = 0.21. Each factor in the product corresponds to
one application of a rule. By inspecting the rules of G20, it can be seen that, for each
n ∈ N and tree ξn = κ(γ2n(α), γn(α)), there is exactly one derivation for ξn and thus,
pG20(ξn) = 0.3n · 0.7. For each tree ξ′ of a different shape, we have pG20(ξ

′) = 0.
We want to approximate the weighted tree language induced by (G20, pG20) by a

wRTG (H4, pH4) where H4 = (NH4 ,∆, B0, RH4), NH4 = {B0, B1}, and RH4 is given
in Figure 5.1(b). It can be seen that L(H4) = {κ(γk(α), γℓ(α)) | k, ℓ ∈ N} and thus,
L(GH4) ⊆ L(H4). We will show how to approximate the best weight assignment for H4

regarding the KL divergence.
In more detail, we proceed as follows. Given a wlnCFTG (G, pG) and a RTG H, we

intersect (G, pG) and H enriched by a trivial weight assignment. In the obtained wlnCFTG
(K, pK), we determine the expected frequencies of some rules of K by fixpoint iteration
up to an arbitrary precision. Then, we use these expected frequencies to find an optimal
weight assignment pH for H such that the KL divergence between (G, pG) and (H, pH) is
minimized.

The chapter is structured as follows. We first introduce the notion of tree shaped
derivations (cf. Section 5.1), followed by a formal definition of wlnCFTGs and wRTGs
(cf. Section 5.2). Furthermore, for each rule r of a wlnCFTG, we formalize the concept
of the expected frequency of r and three characterizations of this value (cf. Section 5.3).
Afterwards, we describe the intersection of a lnCFTG and a RTG in the unweighted case
and lift the result to the weighted case (cf. Section 5.4). Then, we describe how the best
weight assignment for H can be approximated (cf. Section 5.5).

92

5.1 Tree-Shaped Derivations

5.1 Tree-Shaped Derivations

In this section we develop an alternative representation of the derivations of a lnCFTG. We
let r be a rule of the lnCFTG with RHS ζ. For each nonterminal occurrence in ζ, one tree
needs to be substituted. Each such tree is obtained by a derivation starting with a rule
from the respective LHS-nonterminal. We encode this information in a tree over the rules,
by considering the rules of a lnCFTG as a ranked alphabet. Each rule’s rank is determined
by the number of nonterminal occurrences in its RHS.

Throughout this section, we let G = (N,∆, A0, R) be an arbitrary lnCFTG.

Definition 5.1.1 We consider R as a ranked alphabet by letting, for each r ∈ R, the rank
of r be defined as rkR(r) = |posN (rhs(r))|.

Let r ∈ R, ξ = rhs(r), n = |posN (ξ)|, and w1, . . . , wn ∈ posN (ξ) be pairwise distinct and
ordered lexicographically. We define the nonterminal word of r, denoted by ntw(r), as the
string ξ(w1) . . . ξ(wn). We note, for each r ∈ R, that ntw(r) ∈ N∗ and rkR(r) = |ntw(r)|.

We will define an N -indexed family over P(TR), denoted by (DG(A) | A ∈ N), by
simultaneously defining the sets DG(A) as follows. Let A ∈ N , d ∈ TR, and r = d(ε). Then
d ∈ DG(A) if

(i) lhn(r) = A and,

(ii) for each i ∈ [rkR(r)], we have d|i ∈ DG(Ai) where Ai = ntw(r)(i).

We call each element in DG(A) a tree-shaped derivation starting in A. For each A ∈ N and
d ∈ DG(A), the size of d, denoted by |d|, is defined as |d| = |pos(d)|. □

Observation 5.1.2 Let A ∈ N . There is a one-to-one correspondence between DG(A)
and the set of complete leftmost outermost derivations starting in A(x).

Let d ∈ DG(A) and d′ be the corresponding complete leftmost outermost derivation starting
in A(x) according to Obs. 5.1.2. We write A(x)⇒d ξ instead of A(x)⇒d′ ξ. Furthermore,
DG(A0) is abbreviated by DG.

Observation 5.1.2 states the connection between a complete leftmost outermost derivation
and the tree representation of a derivation. It is however not necessary to use the leftmost
outermost ordering of rules. In fact, complete derivations using any fixed order on the
rules have the one-to-one correspondence to tree shaped derivations as mentioned in
Observation 5.1.2. Thus, the tree representation of the derivations of a lnCFTG abstracts
from the derivation mode (cf. unrestricted derivation from Section 2.2).

The next definition describes sets of specific derivations that will help us later. We define
the set of derivations that derive a specific tree, the subset of derivations starting with a
specific rule, and we define derivations where exactly one nonterminal occurrence is not
derived.

Definition 5.1.3 For each ξ ∈ T∆ and r ∈ R, we define the sets

• DG(ξ) of derivations ending in ξ as DG(ξ) = {d ∈ DG | A0 ⇒d ξ} and

• DG(r) of derivations starting with r as DG(r) = {d ∈ DG(lhn(r)) | r = d(ε)}.

93

5 Training of Regular Tree Grammars

For A,B ∈ N , we define the set of B-partial derivations starting in A, denoted by DB
G(A),

as follows. For each d ∈ CR({z}), we let d ∈ DB
G(A) if there is a derivation dB ∈ DG(B)

such that d[dB] ∈ DG(A). □

As mentioned before, we abstract from the order in which nonterminals are derived.
However, there is still some nondeterminism in the choice of rules which are applied at each
nonterminal occurrence during the derivation process. Consider two distinct derivations.
Either the derivations end in different trees, or both derivations end in the same tree. In
the literature, the latter phenomenon is called the ambiguity of a grammar. The following
definition disallows such ambiguity. Intuitively, if a terminal tree is in the tree language
of G, then there is exactly one (tree-shaped) derivation for it.

Definition 5.1.4 We say that the lnCFTG G is unambiguous if, for each ξ ∈ T∆, we have
that |DG(ξ)| ∈ {0, 1}. □

5.2 Weighted lnCFTGs and Weighted RTGs

In this section, we introduce weighted lnCFTGs and weighted RTGs as a special case. We
utilize weights from R≥0. A weighted CFTG is obtained from a CFTG by assigning a
weight to each rule. The weight of a derivation is obtained taking, for each occurrence of a
rule in the derivation, the weight of that rule and multiplying those weights. Then, the
weight of a tree is the sum of the weights of all derivations for this tree. We give formal
definitions in the following.

Definition 5.2.1 A weighted lnCFTG over R≥0 (wlnCFTG) is a tuple (G, pG) where
G = (N,∆, A0, R) is a lnCFTG and pG is a mapping pG : R→ R≥0, which we call weight
assignment for G. □

In this section, we let (G, pG) be a wlnCFTG where G = (N,∆, A0, R).

A weighted wlnCFTG assigns weights to each derived tree. Thus, in analogy to a tree
language, we define the concept of a weighted tree language. As a technical tool, we use
weights from the positive reals R≥0 extended by the value ∞, denoted by R∞

≥0. We utilize
the complete semiring (R∞

≥0,+, ·, 0, 1) with an infinitary sum operation that allows to sum
over infinite index sets (cf., e.g., [16, Sec. 2] for detailed definitions).

Definition 5.2.2 A weighted tree language (over ∆) is a mapping p : T∆ → R∞
≥0. □

We now formally define the weight of a derivation in a wlnCFTG and the weight of a
tree in a wlnCFTG. Furthermore, the concept is extended to partial derivations by not
considering the gap in the derivation.

Definition 5.2.3 We let A,B ∈ N and d ∈ DG(A) ∪ DB
G(A). Then the weight of d in

(G, pG), denoted by pG(d), is defined as

pG(d) =
∏

w∈posR(d)
pG(d(w)) .

For each ξ ∈ T∆, we define the weight of ξ in (G, pG), denoted by pG(ξ), as

pG(ξ) =
∑

d∈DG(ξ)
pG(d) .

94

5.3 Expected Frequencies

We call pG the weighted tree language induced by (G, pG). □

We note that if ξ ∈ T∆ \ L(G), then pG(ξ) = 0, because DG(ξ) = ∅. Furthermore, we
remark that pG denotes the weight assignment for G as well as the weighted tree language
induced by (G, pG). However, a distinction is always possible from the context.

Definition 5.2.4 Let p be a weighted tree language. We call p

• proper if for each A ∈ N we have
∑

r∈R|A pG(r) = 1, and

• consistent if
∑

ξ∈T∆
pG(ξ) = 1.

We call (G, pG) proper (consistent) if pG is proper (consistent).
The support of (G, pG), denoted by supp(G, pG), is defined as

supp(G, pG) = {ξ ∈ T∆ | pG(ξ) ̸= 0} . □

Definition 5.2.5 A weighted regular tree grammar (wRTG) is a wlnCFTG (H, pH) where
H is a RTG. □

The normal forms of CFTGs and RTGs are described in Section 2.2. These can easily be
extended to the weighted case.

Definition 5.2.6 A wlnCFTG (G, pG) is in nonterminal form if G is. □

The following lemma follows as a simple extension from the unweighted case proven in [58,
p. 113].

Lemma 5.2.7 For every wlnCFTG (G, pG), there is a wlnCFTG (G′, pG′) in nonterminal
form such that, for each ξ ∈ T∆, we have pG(ξ) = pG′(ξ). The construction preserves
properness and consistency.

Definition 5.2.8 A wRTG (H, pH) is producing if H is. □

5.3 Expected Frequencies

In this section, we recall the concept of the expected frequency of a rule similarly to the
case for weighted CFG [49, Sec. 3]. Intuitively, this is the number of times, a rule occurs
in a derivation discounted by the weight of the derivation. Thus, the expected frequency
does not need to be a natural number. We present an example, and then give the formal
definition of the expected frequency of a rule.

Example 5.3.1 This example uses the lnCFTG G20 from the running example at the
beginning of this chapter. It is easy to see that, in each derivation, the rule rκ : A(x1, x2)→
κ(x1, x2) occurs exactly once. Hence, the expected frequency of rκ is 1, denoted by E(rκ) = 1.
We let n ∈ N and let ξn denote the tree κ(γ2n(α), γn(α)). The rule rγ : A(x1) → γ(x1)
occurs 3n times in a derivation of ξn. We obtain the expected frequency of rγ by summing

95

5 Training of Regular Tree Grammars

over all derivations and discounting each summand by the weight of the respective derivation.
Thus, we have that

E(rγ) =
∑

n∈N  
all derivations

0.3n · 0.7  
weight of derivation

· 3n
occurrences of rγ

=
9

7
.

Note that for each n ∈ N, there is a unique derivation in G20 deriving ξn. ⃝

Throughout this section, we let (G, pG) be a consistent wlnCFTG where G = (N,∆, A0, R),
A ∈ N , and r ∈ R|A.

Definition 5.3.2 We define the expected rule frequency of r as

E(r) =
∑

d1∈DA
G(A0)

d2∈DG(r)

pG(d1[d2]) . (5.1)
□

In the following we present three characterizations of the expected rule frequency of r.
From Definition 5.1.3, we recall that A-partial derivations are those partial derivations that
can be completed by using a derivation starting from A. In (5.1), the gap in the A-partial
derivation d1 is closed using derivations starting specifically with r. Hence, Equation (5.1)
enumerates all the distinct ways the rule r can be used in a derivation. Each such way
is discounted by the weight of the respective derivation. This intuition can be used to
characterize the expected rule frequency of r by the number of occurrences of r in all
derivations. We first define this number and then formally state the observation.

Definition 5.3.3 For each r′ ∈ R and d ∈ DG, the number of occurrences of r′ in d,
denoted by ♯r′(d), is defined as

♯r′(d) = |posr′(d)| . □

Observation 5.3.4

E(r) =
∑

d∈DG

pG(d) · ♯r(d) . (5.2)

The second characterization of the expected rule frequency is obtained by using inner
and outer values (cf. [41]). We consider the nonterminal A′ ∈ N . The outer value of A′ is
the sum of the weights of all A′-partial derivations starting in A0. The inner value of A′ in
turn is the weight of all derivations starting from A′.

Definition 5.3.5 For each A′ ∈ N , we define the outer value of A′, denoted by outer(A′),
and the inner value of A′, denoted by inner(A′), as

outer(A′) =
∑

d∈DA′
G (A0)

pG(d) and inner(A′) =
∑

d∈DG(A′)
pG(d) . □

Inner and outer values allow to rephrase the expected frequency of r. We consider the
outer value of A. This is the weight of all partial derivations that can continue with A.
Instead of continuing the derivation with any A-rule, we continue exclusively using the
rule r. Thus, we multiply the outer value of A by the weight of r. In order to obtain a
complete derivation, we then multiply with the inner value of each nonterminal occurrence
in the RHS of r, i.e., the inner weight of each nonterminal in ntw(r).

96

5.4 Intersection of a (w)lnCFTG and a (w)RTG

Observation 5.3.6 Assume that ntw(r) = A1 . . . Ak. Then it holds that

E(r) = outer(A) · pG(r) ·
∏

i∈[k]
inner(Ai) . (5.3)

The third characterization of the expected rule frequency of r is obtained using the second
one and rephrasing inner and outer values. We first give an alternative for the outer value
of a nonterminal A′ ∈ N . Instead of considering the weight of an A′-partial derivation, we
consider all rules r′ such that A′ occurs in the nonterminal word of r′. For each such r′, we
take the outer value of lhn(r′) and multiply it with the weight of the rule as well as the
product of the inner weights of all other nonterminal occurrences in ntw(r′). Intuitively,
these two approaches yield the same result. However, we need to consider the special case
of the initial nonterminal A0. In the string case discussed in [49], the initial nonterminal
may not occur in any right-hand side and, by definition, outer(A0) = 1. We do not impose
this restriction and allow for A0 to occur in right-hand sides. Since G is proper, the outer
value of the initial nonterminal is at least one, even if it does not occur on any RHS. We
define, for every A′ ∈ N , the value d(A′ = A0) to be 1 if A′ = A0 and 0 otherwise. We add
d(A′ = A0) to the outer value of A′. Thus, if A0 does not occur in any right-hand side, then
outer(A0) = 1. Otherwise, outer(A0) ≥ 1. We reword the inner value of A′ by considering
again the sum of all rules r′ where A′ occurs in the nonterminal word of r′ and multiply
the weight of r′ with the product of the inner value of each nonterminal in ntw(r′).

Observation 5.3.7

outer(A′) = d(A′ = A0) +
∑

ℓ∈N, r′∈R, j∈[ℓ]
ntw(r′)=A′

1...A
′
ℓ, A

′=A′
j

outer(lhn
(
r′
)
) · pG(r′)

·
∏

i∈([ℓ]\{j})
inner(A′

i) and (5.4)

inner(A′) =
∑

r′∈R|A′
ntw(r′)=A′

1...A
′
ℓ

pG(r
′) ·

∏
i∈[ℓ]

inner(A′
i) .

As in the string case (cf. [49, p. 5]), the values for inner(A) and outer(A) can be approximated
by fixed-point iteration. Thus, using Observation 5.3.6, we can approximate E(r).

5.4 Intersection of a (w)lnCFTG and a (w)RTG

In this section, we recall how a lnCFTG can be constructed that induces the intersection
of the tree language induced by another lnCFTG and the tree language induced by a
RTG. Furthermore, we recall the same construction for the case that both grammars are
weighted. In the latter case, the intersection is replaced by the pointwise multiplication of
the respective tree languages. Details of the construction will be used later for the main
result of the chapter (cf. Section 5.5). Thus, we present the construction in full detail.

The intersection of a context-free tree language with a regular tree language is again a
context-free tree language (cf. [58, p. 114] and [59, Thm. 7]). The original proof of Thm. 7
in [59] introduces copying and deleting rules. It is possible to exchange Thm. 7 of [59]
by a construction which preserves linearity and nondeletion (cf., e.g., [53, Lm. 3] for the
more general case of linear and nondeleting one-state weighted pushdown-extended tree
transducers). A complete construction for the intersection is described in [52, p. 60], which,

97

5 Training of Regular Tree Grammars

given a (synchronous) lnCFTG G and RTG H, yields a (synchronous) lnCFTG K such
that the tree language of K is the intersection of the tree languages of G and H.

Here, we show a slightly modified version of the construction in [52] and identify properties
of the constructed grammar which will prove useful in the remainder of this chapter. The
main idea is, as in both [52] and [53], to annotate nonterminals of G with nonterminals
of H. Since we require G to be in nonterminal form and H to be producing, we can describe
the intersection similar to the string case [49]. Each nonterminal in G is annotated with all
possible combinations of nonterminals from H. Terminal symbols can only be generated if
the guess was correct. In [52], this checking is partly done using additional RTGs.

We first present an example and then formally define the intersection. The example can
then be reconsidered while reading the proof.

Example 5.4.1 We recall the lnCFTG G20 and the RTG H4 from the beginning of this
chapter. We construct the lnCFTG K = (N ′,∆, A0

′, R′) such that L(K) = L(G20) ∩
L(H4) as follows. Each nonterminal of K consists of a nonterminal of G20 annotated by
nonterminals of H4. For example, N ′ contains the nonterminal symbol (B0, A,B1B1). The
intuition behind the name of the nonterminal is that G20 can derive a tree ξ ∈ C∆(X2)
starting from A(x1, x2), and that B0 can derive the tree ξ[B1, B1], i.e., the variables of ξ
are replaced by the respective nonterminal symbols from H4. Following the intuition, the
initial nonterminal for K is (B0, A0, ε) since A0 is nullary and both initial nonterminals
should derive the same tree for the intersection.

The rules of K are build in one of two cases for each rule r ∈ R of G20:

(1) If r is a Type I rule, then we obtain a set of new rules where each nonterminal in r (in
both the LHS and RHS) is annotated by nonterminals from H4. The annotations must
be compatible in the following way. Consider the annotated nonterminal (B,A,B1B2)
at position w in the RHS of a newly created rule. Then the nonterminal at position w1
needs to be such that its first component is B1. Similarly, the first component of
the nonterminal at w2 needs to be B2. If w = ε, then B must occur as the first
component of the LHS-nonterminal of the newly constructed rule. If w1 is labeled by
the variable x1, then the first element of the third component of the LHS-nonterminal
is B1. For example, the following rule is created (dashed lines symbolize compatible
parts):

(B0, A,B1B1)

x1 x2
→

(B0, A,B1B1)

(B1, Aγ , B1)

(B1, Aγ , B1)

x1

(B1, Aγ , B1)

x2

(2) If r is a Type II rule, then it produces exactly one terminal, say δ. Since H4 is
producing, all rules in H4 also produce exactly one terminal. For each rule from H4

of the form B → δ(B1, . . . , Bk), we let A = lhn(r) and construct the rule

(B,A,B1 . . . Bk)(x)→ δ(x1, . . . , xk) .

98

5.4 Intersection of a (w)lnCFTG and a (w)RTG

(B0, A0, ε)
r′1→

(B0, A,B1B1)

(B1, Aα, ε) (B1, Aα, ε)

(B0, A,B1B1)

x1 x2

r′2→
(B0, Aκ, B1B1)

x1 x2

(B0, A,B1B1)

x1 x2

r′3→

(B0, A,B1B1)

(B1, Aγ , B1)

(B1, Aγ , B1)

x1

(B1, Aγ , B1)

x2

(B1, Aγ , B1)

x1

r′4→
γ

x1

(B1, Aα, ε)
r′5→ α

Figure 5.2: Some rules of the lnCFTG K which is the intersection of G20 and H4.

Figure 5.2 depicts some of the useful rules of K. A shorthand for each rule is annotated
above the arrow separating LHS and RHS. We note that we also construct some useless rules,
e.g., the rule (B0, A,B0B1)(x1, x2) → (B0, Aκ, B0B1)(x1, x2). These can be eliminated
after the construction (cf. Corollary 2.2.19).

It is easy to see that there is a close connection between the rules in K and the rules
of G20 as well as the rules in H4. For example, we say that r′2 from Figure 5.2 corresponds
to the rule A(x1, x2)→ κ(x1, x2) from G20. Furthermore, the rule r′4 corresponds to both
Aγ(x1)→ γ(x1) from G20 and B1 → γ(B1) from H4. ⃝

The proof of the following theorem contains the formal construction of the idea outlined
in Example 5.4.1 as well as the proof of correctness.

Theorem 5.4.2 For each lnCFTG G and RTG H, there is a lnCFTG K in nonterminal
form such that L(K) = L(G) ∩ L(H).

Proof. By Lemmas 2.2.12 and 2.2.14, we can assume that G is in nonterminal form and
H is producing. We proceed by constructing the lnCFTG K and then prove that L(K) is
the intersection of L(G) and L(H).

We let G = (NG,∆, A0, RG), H = (NH ,∆, B0, RH), and define

N ′ =
⋃

k∈N
NH ×N

(k)
G × (NH)k

as a ranked alphabet where rkN ′((B,A,B1 . . . Bk)) = rkNG
(A) = k.

For each right hand side ζ of a rule from G of Type I, we represent the selection of
nonterminals from H that are assigned to nonterminals in ζ by an assignment τ that assigns
one nonterminal from H to each position in ζ. Formally, for each ζ ∈ TNG

(X) and function
τ : pos(ζ)→ NH , we define ζτ ∈ TN ′(X) as follows. We let pos(ζτ) = pos(ζ) and, for each
w ∈ pos(ζ), we let

ζτ (w) =

{(
τ(w), ζ(w), τ(w1) . . . τ(wℓ)

)
if ζ(w) ∈ N

(ℓ)
G ,

ζ(w) if ζ(w) ∈ X.

We define the lnCFTG K = (N ′,∆, A0
′, R′) where A0

′ = (B0, A0, ε) and R′ is defined
as follows. For each Type I rule rG ∈ RG of the form A(x1..k) → ζ, B,B1, . . . , Bk ∈ NH ,

99

5 Training of Regular Tree Grammars

and τ : pos(ζ)→ NH such that (i) τ(ε) = B and (ii) for each i ∈ [k] and wi ∈ posxi
(ζ), it

holds that τ(wi) = Bi, we let

r′ : (B,A,B1 . . . Bk)(x1..k)→ ζτ (5.5)

be in R′. Note that r′ is a rule of Type I. We call rG the rule corresponding to r′, denoted
by cor(r′) = rG.

For each Type II rule rG ∈ RG of the form A(x1..k)→ δ(x1..k) and each rH ∈ RH of the
form B → δ(B1..k), we let

r′ : (B,A,B1 . . . Bk)(x1..k)→ δ(x1..k) (5.6)

be in R′. Note that r′ is a rule of Type II. We call rG and rH the rules corresponding to r′,
denoted by cor(r′) = (rG, rH).

We note that, for each r′ ∈ R′, we denote different objects by cor(r′) depending on the
type of r. If r′ is of Type-I, then cor(r′) denotes one rule from RG. If r′ is of Type II, then
cor(r′) denotes the pair (rG, rH) of corresponding rules. We do not explicitly distinguish
between the two cases, since the choice is clear from the context.

We prove L(K) = L(G) ∩ L(H) by relating the derivations of K, G, and H in the
following two claims.
Claim 1: Let ξ ∈ T∆ and n = |pos(ξ)|. For each d ∈ DK(ξ), there are unique derivations
dG ∈ DG(ξ) and dH ∈ DH(ξ) such that

• pos(d) = pos(dG),

• for each w ∈ pos(d) where w is not a leaf, we have that cor(d(w)) = dG(w),

• n = |pos(ξ)| = |dH | = |yield(d)|, and

• there is a one-to-one correspondence φ between the positions in yield(d) and positions
in dH such that, for each i ∈ [n], we have that

cor
(
yield(d)(i)

)
=

(
yield(dG)(i), dH(φ(i))

)
.

Proof of Claim 1: It can be seen that for each rule r′ ∈ R′, there is exactly one corresponding
rule rG ∈ RG. We can obtain dG from d by replacing each nonterminal (B,A,B1 . . . Bk)
occurring in d by the projection to its second component A and thus, pos(d) = pos(dG).
Since in each position w ∈ pos(d) the shape of the RHSs of d(w) and dG(w), the nonterminal
structure, and the terminals in the RHSs coincide, we have that dG ∈ DG(ξ). Hence, d
uniquely determines dG.

Now we show how to obtain dH . For this, we consider how terminals of the tree ξ are
derived in K and H, respectively. Since K is in nonterminal form, each terminal of ξ is
generated by exactly one rule of Type II, i.e., a leaf of d. Since H is producing, each terminal
of ξ corresponds to exactly one position in dH . Hence, we let |dH | = |pos(ξ)| = |yield(d)|.
Furthermore, there is a unique bijection φ between the positions of yield(d) and the
positions of dH . It follows that cor

(
yield(d)(i)

)
=

(
yield(dG)(i), dH(φ(i))

)
. This uniquely

determines dH . □

We let d ∈ DK and we uniquely obtain dG ∈ DG and dH ∈ DH according to Claim 1.
We denote this fact by cor(d) = (dG, dH).

100

5.4 Intersection of a (w)lnCFTG and a (w)RTG

Claim 2: Let ξ ∈ T∆, dG ∈ DG(ξ), and dH ∈ DH(ξ). There is a unique d ∈ DK(ξ) such
that cor(d) = (dG, dH).
Proof of Claim 2: We construct d as follows. By Claim 1, it holds that pos(d) = pos(dG).
The shape of each rule in d is uniquely determined by the rule in dG at the same position.
It remains to consider the annotated nonterminals from NH . For each position w ∈ pos(d)
with d(w) = r, we let lhn(r) = (B,A,B1 . . . Bk) and

ntw(r) = (B1, A1, B1
1 . . . B

1
k1) . . . (B

ℓ, Aℓ, Bℓ
1 . . . B

ℓ
kℓ
)

where B,B1, . . . , Bk, B
1
1 , . . . , B

1
k1
, . . . , Bℓ

1, . . . , B
ℓ
kℓ
∈ NH are determined by dH as described

in the following. If w = ε, then B = B0, A = A0, and k = 0. By definition of ζτ , we have
that, for each i ∈ [ℓ], the nonterminals Bi,Ai, and Bi

1 . . . B
i
ki

are uniquely determined by
lhn(d(wi)). Hence, it remains to assign the left hand side nonterminals of every leaf in d.
Note that if w is a leaf, then ℓ = 0. By Claim 1, for each w ∈ pos(d) such that w is a leaf
and lhn(d(w)) = (B,A,B1 . . . Bk), we have that B,B1, . . . , Bk are uniquely determined
by dH . Furthermore, the nonterminal A is uniquely determined by lhn(dG(w)). Thus, d
is completely determined by rules from G and H, and we get from the construction that
d ∈ DK(ξ). □

The set inclusion L(K) ⊆ L(G) ∩ L(H) follows from Claim 1. The other direction
L(K) ⊆ L(G) ∩ L(H) is a consequence of Claim 2. Considering (5.5) and (5.6), it can be
seen that K is in nonterminal form. ■

Weighted Intersection

We extend Theorem 5.4.2 to the weighted case, i.e., for a wlnCFTG (G, pG) and a wRTG
(H, pH), we construct a wlnCFTG (K, pK) such that, for each tree ξ, it holds that pK(ξ) =
pG(ξ) · pH(ξ). For this, we use the same construction as in the proof of Theorem 5.4.2 and
first obtain the lnCFTG K. We extend K with a suitable weight assignment pK to the
wlnCFTG (K, pK). The weight assignment pK can be obtained by considering the weight
of the corresponding rules. We illustrate the construction by an example.

Example 5.4.3 Recall the lnCFTG G20 and the RTG H4 from the beginning of the
chapter as well as the constructed lnCFTG K from Example 5.4.1. We consider three
related derivations as shown in Figure 5.3. All three derivations generate the same tree
ξ = κ(γ2(α), γ(α)).

The first derivation, dG20 , is a derivation of (G20, pG20). The first three derivation steps
use Type I rules and create the structure of ξ, where each terminal δ ∈ ∆ is replaced by the
nonterminal Aδ. These three rule applications also determine the weight of the derivation,
as the following six derivation steps (condensed into one depicted step) are just creating
the terminals with weight 1.

The second derivation, dH4 , is a derivation of (H4, p
′) where p′ is a weight assignment for

the rules of H4 defined as follows. The B0-rule has weight 1, B1 → γ(B1) has weight 0.3
and B1 → α has weight 0.7. We note that p′ is not the optimal weight assignment pH4 that
we are trying to approximate. The derivation of the tree ξ takes six derivation steps (some
are condensed into one depicted step). These six steps are closely related to the six last
steps of dG20 .

101

5 Training of Regular Tree Grammars

The last derivation, dK , is a derivation of (K, pK) that corresponds to dG20 and dH4 . It
shows how the weights of pG20 and p′ need to be combined such that pK(ξ) = pG20(ξ) · p′(ξ).
Since dK corresponds in each step to dG20 , it is clear that pK should take over all the
weights of pG20 . Since the last six steps of dK correspond to the entire derivation dH4 , the
weight of those rules in pK are multiplied by the corresponding weights of p′.

The following theorem formalizes the intuition of weighted intersection described in
Example 5.4.3.

Theorem 5.4.4 For each wlnCFTG (G, pG) and producing wRTG (H, pH), there is a
wlnCFTG (K, pK) in nonterminal form such that pK(ξ) = pG(ξ) · pH(ξ) for each ξ ∈ T∆.

Proof. By Lemma 5.2.7, we can assume that (G, pG) is in nonterminal form. We let K be
the lnCFTG obtained by intersecting G and H according to Theorem 5.4.2. We extend K
to a wlnCFTG (K, pK) as follows. For each r′ ∈ R′, we define

pK(r′) =

{
pG(cor(r

′)) if r′ is of Type I, and
pG(rG) · pH(rH) if r′ is of Type II and cor(r′) = (rG, rH).

By Theorem 5.4.2, we have L(K) = L(G) ∩ L(H) and K is in nonterminal form. For
each ξ ∈ T∆ \ L(K), it holds that pK(ξ) = 0 by definition. Hence, it remains to prove that,
for each ξ ∈ L(K), we have pK(ξ) = pG(ξ) · pH(ξ).

From Claims 1 and 2 of the proof of Theorem 5.4.2, we get that there is a one-to-one
connection between each d ∈ DK(ξ) and (dG, dH) where dG ∈ DG(ξ) and dH ∈ DH(ξ) such
that cor(d) = (dG, dH). From the proof of Claim 2 in the proof of Theorem 5.4.2, we get
the connection between the rule occurrences in the three derivations. Since multiplication
is commutative, the order of weight multiplication does not matter. Hence, the lemma
holds. ■

In the proof of Theorem 5.4.4 we used the fact that corresponding derivations are closely
linked. We separate this fact here, since we will need it later on.

Corollary 5.4.5 For each ξ ∈ T∆ and each d ∈ DK(ξ) such that cor(d) = (dG, dH) we
have pK(d) = pG(dG) · pH(dH).

5.5 Training of the Optimal Weight Assignment

In [12] it is shown how to train a weighted CFG based on an infinite set of derivation trees
or an infinite set of strings. We use the result in the realm of trees similar to [50] as follows.
Given an unambiguous and producing RTG H, our goal is to approximate the weighted
tree language induced by a wlnCFTG (G, pG) by means of the wRTG (H, pH). For this, we
construct the intersection wlnCFTG (K, pK) of (G, pG) and (H,1) where 1 is the trivial
weight assignment assigning 1 to each rule. Then, the training data is the set of derivations
of K. From this set, we will approximate expected frequencies for the rules in K and use
them to obtain an optimal pH .

We note that each RTG can be made unambiguous by the following steps. First, we
construct the associated nondeterministic finite tree automaton, then determinize it using
standard techniques [25, Ch. II, Thm. 2.6] and finally transform it back to an RTG. The
determinization might lead to an exponential blowup of the size of the finite automaton.

102

5.5 Training of the Optimal Weight Assignment

dG20 : A0 ⇒
A

Aα Aα

1.0

⇒

A

Aγ

Aγ

Aα

Aγ

Aα

0.3

⇒

Aκ

Aγ

Aγ

Aα

Aγ

Aα

0.21

⇒6

κ

γ

γ

α

γ

α

0.21

dH4 : B0 ⇒
κ

B1 B1

1.0

⇒2

κ

γ

B1

γ

B1

0.09

⇒

κ

γ

γ

B1

γ

B1

0.027

⇒2

κ

γ

γ

α

γ

α

0.01323

dK : (B0, A0, ε)⇒
(B0, A,B1B1)

(B1, Aα, ε) (B1, Aα, ε)

1.0

⇒

(B0, A,B1B1)

(B1, Aγ , B1)

(B1, Aγ , B1)

(B1, Aα, ε)

(B1, Aγ , B1)

(B1, Aα, ε)

0.3

⇒

(B0, Aκ, B1B1)

(B1, Aγ , B1)

(B1, Aγ , B1)

(B1, Aα, ε)

(B1, Aγ , B1)

(B1, Aα, ε)

0.21

⇒6

κ

γ

γ

α

γ

α

0.0027783

⃝

Figure 5.3: Derivations of (G20, pG20), (H4, p
′), and their intersection wlnCFTG (K, pK).

103

5 Training of Regular Tree Grammars

Throughout this section, we let (G, pG) be a consistent wlnCFTG where G = (NG,∆, A0, RG),
and we let H = (NH ,∆, B0, RH) be an unambiguous and producing RTG such that
supp(G, pG) ∩ L(H) ̸= ∅.

According to Theorem 5.4.4, we choose (K, pK) to be the wlnCFTG obtained by intersect-
ing (G, pG) and (H,1) where 1(rH) = 1 for each rH ∈ RH . We let K = (NK ,∆, A0

′, R′) and
according to Theorem 5.4.4, we have, for each ξ ∈ L(G) ∩ L(H), that pK(ξ) = pG(ξ) · 1(ξ),
i.e., pK(ξ) = pG(ξ). Since not all trees of L(G) need to occur in L(H), we normalize pG
such that only trees in L(H) are assigned a non-null weight.

Definition 5.5.1 We define the L(H)-restriction of pG, denoted by pG|H , for each ξ ∈ T∆,
as

pG|H(ξ) =

⎧⎪⎨⎪⎩
pG(ξ)∑

ξ′∈L(H) pG(ξ
′)

if ξ ∈ L(H),

0 otherwise. □

We note that, since (G, pG) is consistent, pG|H is well-defined and Definition 5.5.1 implies
that pG|H is consistent. Furthermore, if supp(G, pG) ⊆ L(H), then pG|H = pG.

Lemma 5.5.2 For each ξ ∈ T∆, we have pG|H(ξ) = pK(ξ)∑
ξ′∈T∆

pK(ξ′) .

Proof. We observe that
∑

ξ′∈T∆
pK(ξ′) > 0 since in this section we required that

supp(G, pG) ∩ L(H) ̸= ∅ holds. We show the following for each ξ ∈ L(H).

pG(ξ) =
∑

dG∈DG(ξ)
pG(dG)

=
∑

dG∈DG(ξ),dH∈DH(ξ)
pG(dG) · 1(dH) (H is unambiguous)

=
∑

d∈DK(ξ)
pK(d) (Clm. 2 of Thm. 5.4.2, Cor. 5.4.5)

= pK(ξ)

Let ξ ∈ T∆. If ξ /∈ L(H), then we have pG|H(ξ) = 0 and, since DH(ξ) = ∅ and thus
1(ξ) = 0, we also have pK(ξ)∑

ξ′∈T∆
pK(ξ′) = 0. Hence, for each ξ ∈ T∆, we have

pG|H(ξ) =
pG(ξ)∑

ξ′∈TL(H)
pG(ξ′)

=
pK(ξ)∑

ξ′∈TL(H)
pK(ξ′)

=
pK(ξ)∑

ξ′∈T∆
pK(ξ′)

. ■

In the following we will obtain a weight assignment pH such that (H, pH) best approxi-
mates the weighted tree language induced by (G, pG). We measure the quality of such an
approximation using the Kullback-Leibler divergence (cf. [40, Eq. 2.4]).

Definition 5.5.3 Let p and p′ be two arbitrary consistent weighted tree languages. The
Kullback-Leibler (KL) divergence of p and p′, denoted by KL(p || p′), is given by

KL(p || p′) =
∑

ξ∈T∆

p(ξ) · log p(ξ)

p′(ξ)
.

□

104

5.5 Training of the Optimal Weight Assignment

Note that the KL divergence is closely connected to the notion of cross-entropy. In fact,
the KL divergence of p and p′ is equal to the difference of the cross-entropy of p and p′,
and the entropy of p.

We will now formally define our goal. For this, we let PH be the set of all proper and
consistent weight assignments for H, i.e.,

PH = {p′H | p′H : RH → R≥0, p′H is proper and consistent}

and determine pH such that we have

pH = argminp′H∈PH
KL(pG|H || p′H) .

We rephrase the KL divergence using the cross-entropy since this will help us later. We
abbreviate

∑
ξ′∈T∆

pK(ξ′) to Z and obtain the following equations.

argminp′H∈PH
KL(pG|H || p′H) = argminp′H∈PH

∑
ξ∈T∆

pG|H(ξ) · log pG|H(ξ)

p′H(ξ)

= argminp′H∈PH

∑
ξ∈T∆

pK(ξ)

Z
· log pK(ξ)

p′H(ξ) · Z
(Lm. 5.5.2)

= argminp′H∈PH

(∑
ξ∈T∆

pK(ξ)

Z
· log pK(ξ)

Z

)
−
(1

Z
·
∑

ξ∈T∆

pK(ξ) · log p′H(ξ)
)

= argminp′H∈PH
−
∑

ξ∈T∆

pK(ξ) · log p′H(ξ) (5.7)

Equation (5.7) holds, since Z and pK are independent of p′H .
In [12] it is shown how to use a weighted CFG to approximate an infinite corpus of

trees. The corpus is regarded as set of derivations of the weighted CFG and is given
as a probability distribution pT over the derivations. Using the technique of Lagrange
multipliers, it is shown how to choose a weight assignment pmin such that the cross-entropy
between pT and pmin is minimized. The cross-entropy corresponds to (5.7). Informally,
pmin is defined for every rule r of the CFG as (cf. Eq. (9) of [12])

pmin(r) =

∑
derivation tree d pT (d) · ♯r(d)∑

derivation tree d

∑
r′ with lhn(r′)=lhn(r) pT (d) · ♯r′(d)

. (5.8)

This result cannot be straightforwardly applied to our scenario for two reasons. First, we are
not given a distribution over derivations of H and second, in contrast to (5.8), our setting
would require an unsupervised training (similar to [12, Sec. 7.2]). However, we can use the
intersection grammar (K, pK) and infer derivations for H. This approach corresponds to
the string case [49] and the case of TAGs [50].

From Claim 2 of Theorem 5.4.2, we get that for each derivation in H there are multiple
derivations in K, viz. one derivation d ∈ DK(ξ) for each derivation dG ∈ DG(ξ) discounted
by the weight of the corresponding dG. We can thus infer the expected frequencies of rules
in H by analyzing the expected frequencies of rules in K. For this to work, we need to
define the following restriction of the rules in K.

105

5 Training of Regular Tree Grammars

Definition 5.5.4 For each rH ∈ RH , we define the subset of R′ corresponding to rH as

R′|rH = {r′ ∈ R′ | cor(r′) = (rG, rH) for some rG ∈ RG} . □

Using the set of corresponding rules allows instantiating the Lagrange multipliers in [12,
Sec. 3] for our scenario. They will be used in the proof of the following lemma.

Lemma 5.5.5 We define pH , for each rH ∈ RH , as

pH(rH) =

∑
r′∈R′|rH

E(r′)∑
r∈RH |lhn(rH)

∑
r′∈R′|r E(r′)

. (5.9)

Then it holds that pH = argminp′H∈PH
KL(pG|H || p′H).

Proof. Recall that H is unambiguous, i.e., for each tree ξ ∈ L(H) there is exactly one
derivation in DH(ξ). This single element of DH(ξ) is denoted by dξ.

We want to obtain p′ = argminp′H∈PH
KL(pG|H || p′H) using the constraint that for each

A ∈ N , we have
∑

rH∈RH |A p′(rH) = 1. By using the technique of Lagrange multipliers
with the side condition of properness, we minimize (5.7) and thus define

∇ =
∑

A∈N
λA ·

((∑
r∈RH |A

p′(r)
)
− 1

)
−
∑

ξ∈T∆

pK(ξ) · log p′(ξ) .

For each A ∈ N , we obtain the derivative ∂∇
∂λA

=
∑

r∈RH |A p′(r)− 1. Furthermore, for each
rH ∈ RH |A, we obtain the derivative

∂∇
∂p′(rH)

= λA −
∂

∂p′(rH)

∑
ξ∈T∆

pK(ξ) · log p′(ξ)

= λA −
∑

ξ∈T∆

pK(ξ) · ∂

∂p′(rH)
log

∏
r∈RH

p′(r)♯r(dξ)

= λA −
∑

ξ∈T∆

pK(ξ) ·
∑

r∈RH

∂

∂p′(rH)
♯r(dξ) · log p′(r)

= λA −
∑

ξ∈T∆

pK(ξ) · ♯rH (dξ) ·
1

ln 2
· 1

p′(rH)

= λA −
1

ln 2
· 1

p′(rH)
·
∑

ξ∈T∆

pK(ξ) · ♯rH (dξ) (5.10)

Setting these derivatives to 0, we obtain∑
ξ∈T∆

pK(ξ) · ♯rH (dξ) = λA · ln 2 · p′(rH) . (5.11)

Summing over all rules r in RH |A then yields∑
r∈RH |A

∑
ξ∈T∆

pK(ξ) · ♯r(dξ) = λA · ln 2 ·
∑

r∈RH |A
p′(r)

and, using the constraint
∑

rH∈RH |A p′(rH) = 1, we obtain∑
r∈RH |A

∑
ξ∈T∆

pK(ξ) · ♯r(dξ) = λA · ln 2 . (5.12)

106

5.5 Training of the Optimal Weight Assignment

Replacing λA · ln 2 in (5.11) with the value obtained in (5.12), we get∑
ξ∈T∆

pK(ξ) · ♯rH (dξ) =
∑

r∈RH |A

∑
ξ∈T∆

pK(ξ) · ♯r(dξ) · p′(rH) .

Solving this equation for p′(rH), we obtain

p′(rH) =

∑
ξ∈T∆

pK(ξ) · ♯rH (dξ)∑
r∈RH |A

∑
ξ∈T∆

pK(ξ) · ♯r(dξ)
.

Since, for each r ∈ RH , we have that
∑

ξ∈T∆
pK(ξ) · ♯r(dξ) =

∑
d∈DK

∑
r′∈R′|r pK(d) · ♯r′(d),

we obtain

p′(rH) =

∑
d∈DK

∑
r′∈R′|rH

pK(d) · ♯r′(d)∑
r∈RH |A

∑
d∈DK

∑
r′∈R′|r pK(d) · ♯r′(d)

. (5.13)

If we use the characterization of the expected frequency of a rule from (5.2), we see
that (5.13) is equal to (5.9), because the sums can be reordered.

It remains to show that (5.9) is consistent. We follow the argument of the string case
described in [8] for finite sample sets and [12] for infinite samples and transfer the reasoning
to the tree case. We recall from Claim 1 in the proof of Theorem 5.4.2 that there is
a one-to-one correspondence between positions in yield(d) and positions in dH . As an
intermediate step, we express specific counts of nonterminal occurrences in a derivation dH
of H by the corresponding derivation d of K as follows. We let d ∈ DK be a tree-shaped
derivation, B ∈ NH , and v = yield(d) be of the form v = r1 . . . rn where for each i ∈ [n],
we let lhn(ri) = (Bi, Ai, Bi

1 . . . B
i
ℓi
). Then we let

• B♯(d) = |{i ∈ [n] | Bi = B}| (number of leaves of d such that B is the first component
of its LHS-nonterminal),

• ♯B′(d) = |{(i, j) | i ∈ [n], j ∈ [ℓi], Bi
j = B′}| (number of occurrences of B′ in the

third component of a LHS-nonterminal in a leaf of d), and

• B♯B′(d) = |{(i, j) | i ∈ [n], Bi = B, j ∈ [ℓi], Bi
j = B′}| (number of occurrences

of B′ in the third component of a LHS-nonterminal in a leaf of d where B is the first
component).

Furthermore, for each B ∈ NH , we let qB denote the probability that derivations starting
in B will not finish. Hence, if qA0 = 0, then pH is consistent. We can estimate qB in terms
of occurrences of nonterminals in the RHS of each rule in RH |B using the inequality

qB ≤
∑

rH∈RH |B
pH(rH) ·

∑
i∈[ℓ]

ntw(rH)=B1...Bℓ

qBi . (5.14)

We combine (5.9) and (5.14) and obtain

qB ≤
∑

rH∈RH |B

∑
r′∈R′|rH

E(r′)∑
r∈RH |lhn(rH)

∑
r′∈R′|r E(r′)

·
∑

i∈[ℓ]
ntw(rH)=B1...Bℓ

qBi .

107

5 Training of Regular Tree Grammars

Since, for each rH ∈ RH |B, we trivially have lhn(rH) = B, we get

qB ·
∑

r∈RH |B

∑
r′∈R′|r

E(r′) ≤
∑

rH∈RH |B

∑
r′∈R′|rH

E(r′) ·
∑

i∈[ℓ]
ntw(rH)=B1...Bℓ

qBi .

Recall from (5.2) that E(r′) counts the occurrences of r in all derivations. Since we sum
over all leaves where B is the first component of the LHS-nonterminal, we can simplify the
inequality and obtain

qB ·
∑

d∈DK

pK(d) · B♯(d) ≤
∑

B′∈NH

qB′ ·
∑

d∈DK

pK(d) · B♯B′(d) .

By summing over all nonterminals B ∈ NH we obtain∑
B∈NH

qB ·
∑

d∈DK

pK(d) · B♯(d) ≤
∑

B′∈NH

qB′ ·
∑

d∈DK

pK(d) ·
∑

B∈NH
B♯B′(d)

=
∑

B′∈NH

qB′ ·
∑

d∈DK

pK(d) · ♯B′(d) . (5.15)

We let B ∈ NH \ {B0} and d ∈ DK . It is intuitively clear that the number of occurrences
of B’s in the LHSs of rules in d equals the number of occurrences of B’s in the RHSs of the
rules in d. The only exception is the initial nonterminal B0, which occurs exactly one time
more is the LHSs. Thus, we observe the equations

B♯(d) = ♯B(d) and B0♯(d) = ♯B0(d) + 1 . (5.16)

If we use (5.16) in (5.15) and subtract all summands except for B0, then we obtain

qB0 ·
∑

d∈DK

pK(d) · B0♯(d) ≤ qB0 ·
∑

d∈DK

pK(d) · (B0♯(d)− 1)

and thus

qB0 ·
∑

d∈DK

pK(d) ≤ 0 .

Since (G, pG) is consistent and thus
∑

d∈DK
pK(d) = 1, we get that qB0 = 0. Hence, pH is

a consistent weighted tree language.
This completes the proof. ■

Note that (5.13) corresponds to (5.8) and thus gives the connection to the string case.
Furthermore, note that since RH and R′ are finite sets, we obtain pH based on E(r′) for
each rH ∈ RH and r′ ∈ R′|rH . Since, for each rH ∈ RH and each r′ ∈ R′|rH , the rule r′ is
of Type II, we have E(r′) = outer(lhn(r′)) · pK(r′). Furthermore, because inner and outer
values can be approximated to an arbitrary precision (cf. Sec. 5.3), we can effectively obtain
an approximation of pH .

Theorem 5.5.6 For each proper and consistent wlnCFTG (G, pG) and each unambiguous
and producing RTG H such that L(G) ∩ L(H) ̸= ∅, the weight assignment pH from (5.9)
is such that pH = argminp′H∈PH

KL(pG|H || p′H) holds.

Proof. By Theorem 5.4.4, we obtain (K, pK) as intersection of (G, pG) and (H,1). Then
Lemma 5.5.5 applies and defines the minimal pH .

108

5.6 Remarks

Example 5.5.7 Recall G20 and H4 from the beginning of this chapter as well as their
intersection K from Example 5.4.1. Consider some rules of K depicted in Figure 5.2. It
is easy to see that r′1 and r′2 occur exactly once in each derivation and thus, E(r′1) =
E(r′2) = 1. The rule r′3 occurs n times in a derivation of κ(γ(2n)(α), γn(α)) and we get
E(r′3) =

∑
n∈N 0.3n · 0.7 · n = 3

7 . Since r′4 occurs three times as often as r′3, we get
E(r′4) = 3 · E(r′3) =

9
7 . The rule r′5 occurs exactly twice, so E(r′5) = 2. Note that these

expected frequencies of the rules from K correspond to the expected frequencies of the
rules of G20 as discussed in Example 5.3.1.

We denote the rules of H4 from Figure 5.1(b) by r1, r2, and r3. We note that r2 and r3
correspond to r′3 and r′5, respectively. Hence, we obtain an optimal pH4 as

pH4(r1) = 1, pH4(r2) =
9
7

2 + 9
7

=
9

23
≈ 0.39, pH4(r3) =

2

2 + 9
7

=
14

23
≈ 0.61 .

Although pH4 is the optimal weight assignment for H4 concerning the KL divergence to the
weighted tree language induced by (G20, pG20), there is a considerable approximation error
since probability mass is lost on trees of shape κ(γn1(α), γn2(α)) where n1 ̸= 2·n2. Improved
approximation results can be obtained by considering other RTGs with a nonterminal
structure that better approximates the structure of trees in L(G20). Such RTGs usually
have an increased parsing time, since they contain more nonterminals and rules. ⃝

5.6 Remarks

The results in this chapter rely on a given unambiguous RTG. A natural question is how
such a grammar can be obtained. This question brings together the results of this chapter
with the results in Chapters 3 and 4. Each of the latter chapters describes a method that
allows to obtain a RTG given a lnCFTG.

For the first method, we let (G, pG) be a wlnCFTG such that G is a non-self-embedding
lnCFTG. In this case, by Theorem 3.3.11, we obtain a RTG H such that L(G) = L(H).
Then H can be made unambiguous if needed through the determinization of the associated
finite tree automaton (cf. [25, Ch. II, Thm. 2.6]). Since L(G) ∩ L(H) = L(G), we can
apply Theorem 5.5.6 if L(G) ̸= ∅. Thus, we obtain a weight assignment pH such that the
KL divergence between (G, pG) and (H, pH) is minimal.

Since our proofs in Chapter 3 are constructive, it might alternatively be possible to extend
the result to the weighted case and, given a consistent (G, pG), obtain a RTG (H, pH) such
that pG and pH induce the same weighted tree language. Whether this is possible for all
non-self-embedding lnCFTG with a consistent and proper weight assignment, remains an
open problem.

We note that the property L(G) = L(H) does not imply equality of the weighted tree
languages induced by (G, pG) and the trained (H, pH), respectively. This is demonstrated
in the following example.

Example 5.6.1 Let (G21, pG21) be a wlnCFTG such that G21 = ({A0, A}, {γ, α}, A0, R)
where R contains the rules

A0 → A(α) A(x1)→ A(γ(γ(x1))) | γ(x1) | x1

109

5 Training of Regular Tree Grammars

and pG21 assigns the weights 1, 0.7, 0.2, and 0.1 to the rules (in the order of their depiction
from left to right). By inspecting the rules it is clear that L(G21) = {γn(α) | n ∈ N} and,
for each tree γn(α) ∈ L(G), we have

pG(γ
n(α)) =

{
0.7⌊

n
2
⌋ · 0.2 if n is odd and

0.7⌊
n
2
⌋ · 0.1 if n is even

where ⌊n2 ⌋ is the natural number obtained by rounding n
2 downwards.

We want to characterize G21 by the unambiguous RTG H5 = ({B0}, {γ, α}, B0, R
′)

where R′ contains the two rules

B0 → γ(B0) | α .

We denote the rules of R′ by r1 and r2. It is easy to see that L(G21) = L(H5). However,
there is no weight assignment pH5 for H5 such that pG21 and pH5 induce the same weighted
tree language. This can be seen by considering the trees α, γ(α), and γ2(α). We have
pG21(α) = 0.1, pG21(γ(α)) = 0.2, and pG21(γ

2(α)) = 0.07. All three trees have a unique
derivation in H5 and thus, if pG21 = pH5 , then the equations

pH5(r2) = 0.1 , pH5(r1) · pH5(r2) = 0.2 , and pH5(r1)
2 · pH5(r2) = 0.07

must be true. It can be seen that there is no solution to this system of equations. Hence,
there is no weight assignment pH5 for H5 such that (H5, pH5) induces the same weighted tree
language as (G21, pG21). However, by using Lemma 5.5.5, the best possible pH5 according
to the KL divergence can be approximated.

We note that, for this example, there is a wRTG (H5
′, p′H5

) such that pG21 = p′H5
. We

leave the question open, whether there is such a wRTG for all CFTGs that induce a regular
tree language. ⃝

The second method to obtain a suitable RTG H given the wlnCFTG (G, pG) stems from
Chapter 4. This method is applicable to arbitrary wlnCFTG, even if G self-embedding.
Furthermore, depending on the requirements on the quality of the approximation, using the
pushdown approximation from Chapter 4 might yield a smaller (and thus more efficient)
result than the characterization described in Chapter 3. The method described in Chapter 4
applied to (G, pG) results in a pushdown approximation H. The RTG H can be made
unambiguous using again determinization of the associated finite state tree automaton.
Since L(H) ⊇ L(G), Theorem 5.5.6 applies if L(G) ̸= ∅. As explained in Lemma 4.2.15,
choosing a suitable pushdown limit allows adjusting the tradeoff between expressiveness
and computational cost.

As a final remark, we consider the described method to make a RTG unambiguous. The
standard construction for determinizing the equivalent finite tree automaton [25, Ch. II,
Thm. 2.6] might lead to an exponential blowup, because it involves a powerset construction.
Hence, this construction should only be applied if necessary. Checking, whether a finite tree
automaton is unambiguous can be done in time quadratic in the size of the automaton [61,
Prop. 1.2]. Furthermore, it might be worthwhile to investigate other methods how a RTG
can be made unambiguous. This is not considered in this thesis.

110

6 Conclusion and Further Research

In the introduction, the classical tradeoff in machine translation between the expressiveness
of a formal grammar and its computational complexity was described (cf. Section 1.1). It
was argued that this tradeoff explicitly applies to CFTGs, since they generalize multiple
formal grammars used in machine translation, but are difficult to parse. To investigate the
tradeoff, this thesis offered three methods to express context-free tree languages by RTG.
The general idea of each method was described in Sections 1.2, 1.3, and 1.4, respectively.
In the following, the results obtained for each methods are broadly summarized and further
research opportunities are addressed.

A detailed list of the main contributions presented in this thesis can be found in the
corresponding sections of the introduction (cf. Sections 1.2, 1.3, and 1.4).

Characterization by RTG

In Chapter 3, the tree languages induced by restricted CFTGs were characterized by
RTGs. It was shown that non-regular phenomena in trees may occur (i) above and below
repeated nonterminal occurrences, or (ii) in two argument positions of recursive nonterminal
occurrences. By excluding both possible sources of non-regularity, two restrictions for
CFTGs were obtained that imply regularity of the induced tree languages. In more detail,
it was shown that non-self-embedding linear CFTGs (cf. Theorem 3.6.2) and non-weakly-
self-embedding CFTGs (cf. Theorem 3.7.12) induce regular tree languages. Furthermore,
the involved proofs are constructive, i.e., for each restricted CFTG, an equivalent RTG
can be obtained effectively. As an extension of this thesis, it is interesting to investigate
whether such a characterization is also possible if weighted CFTGs are given. While doing
this, it might be worthwhile to study whether the same properties of non-self-embedding
lCFTG and non-weakly-self-embedding CFTG can be used.

As a main analysis tool, the position graph of a CFTG was introduced. This graph can be
used to analyze which nonterminals are participating in the recursive generation of symbols.
It was shown that each non-self-embedding lnCFTG can be broken down in different parts
that induce a regular tree language. The combination of these parts is an alternative
proof for the regularity of the tree language induced by the non-self-embedding lnCFTG
(cf. Theorem 3.5.23). Thus, the position graph is a tool to analyze which nonterminals
contribute to the complexity of the induced tree language and thus gives insight about the
structure of the CFTG. In future work, an approximation of the language induced by an
arbitrary CFTG can be investigated that is obtained by approximating only some (difficult)
parts of the CFTG identified by the position graph.

Approximation

In Chapter 4, the tree languages induced by arbitrary CFTG were approximated by RTGs.
For this, the characterization of the tree language induced by a CFTG in terms of a RTG

111

6 Conclusion and Further Research

with a pushdown storage was restricted. It was shown that this restriction can be chosen
such that it yields a RTG that is a superset approximation (cf. Lemma 4.2.8). Furthermore,
there is a hierarchy of improving approximations depending on the size of the restricted
pushdown (cf. Theorem 4.2.16). Hence, the size of the pushdown adjusts the tradeoff
between the quality of the approximation and the computational complexity.

Future work involves formally investigating more strategies to restrict the pushdown
size, and finding a weighted version of the result. Furthermore, the approximation can
be used to express parts of non-self-embedding lCFTG as explained above. It might also
be interesting whether different pushdown symbols can be used. The choice of pushdown
symbols may possibly respect information obtained from the position graph of a CFTG,
e.g., the calling order or cycles in a SCC.

Training of a Weighted RTG

In Chapter 5, it was shown how weighted context-free tree languages can be approximated
by weighted RTGs. In particular, it was outlined how weights for a given unambiguous
RTG can be approximated such that the induced weighted tree language is close to the
weighted tree language induced by a weighted lnCFTG (cf. Theorem 5.5.6). This can be
seen as part of the training step in machine translation by considering the weighted lnCFTG
as training data.

Further research might address more ways how both given grammars can be obtained.
For instance, the weighted lnCFTG might be hand-crafted by linguists, or automatically
obtained from a set of sample trees. The unambiguous RTG can be approximated from the
unweighted lnCFTG or obtained independently from the same set of sample trees. The
latter approach seems useful if the weights for the lnCFTG are provided by experts, since
the representation of a tree language as a CFTG might be smaller than its representation by
a RTG (cf. Lemma 3.10.2), and thus, CFTGs are more feasible for hand-crafted annotations.

Furthermore, unambiguous RTGs can be investigated. For instance, better transforma-
tions from RTGs into unambiguous RTGs are useful to improve the result presented in this
thesis. Alternatively, it is interesting whether the property of unambiguity used for the
results can be relaxed, e.g., by considering finite degrees of ambiguity.

112

Bibliography

[1] A. V. Aho. Indexed Grammars - An Extension of Context-Free Grammars. Journal
of the ACM 15.4 (1968), 647–671. doi: 10.1145/321479.321488.

[2] A. Arnold and M. Dauchet. Transductions de Forets Reconnaissables Monadiques
Forets Coregulieres. Informatique Théorique et Applications 10.1 (1976), 5–28.

[3] T. P. Baker. Extending Lookahead for LR Parsers. Journal of Computer and System
Sciences 22.2 (1981), 243–259. issn: 0022-0000. doi: 10.1016/0022-0000(81)90030-
1.

[4] M. E. Bermudez and K. M. Schimpf. Practical Arbitrary Lookahead LR Parsing.
Journal of Computer and System Sciences 41.2 (1990), 230–250. doi: 10.1016/0022-
0000(90)90037-L.

[5] S. Bozapalidis. Context-Free Series on Trees. Information and Computation 169.2
(2001), 186–229. doi: 10.1006/inco.2001.2890.

[6] W. S. Brainerd. Tree Generating Regular Systems. Information and Control 14.2
(1969), 217–231. issn: 0019-9958. doi: 10.1016/S0019-9958(69)90065-5.

[7] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The Mathematics of
Statistical Machine Translation: Parameter Estimation. Computational Linguistics
19.2 (June 1993), 263–311. issn: 0891-2017.

[8] Z. Chi and S. Geman. Estimation of Probabilistic Context-free Grammars. Journal
Computational Linguistics 24.2 (1998), 299–305. issn: 0891-2017.

[9] N. Chomsky. Three Models for the Description of Language. IRE Transactions on
Information Theory 2 (1956), 113–124.

[10] N. Chomsky. A Note on Phrase Structure Grammars. Information and Control 2.4
(1959), 393–395. doi: 10.1016/S0019-9958(59)80017-6.

[11] N. Chomsky. On Certain Formal Properties of Grammars. Information and Control
2.2 (1959), 137–167.

[12] A. Corazza and G. Satta. Probabilistic Context-Free Grammars Estimated from Infi-
nite Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence
29.8 (2007), 1379–1393. doi: 10.1109/TPAMI.2007.1065.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
3rd edition. The MIT Press, 2009. isbn: 0262033844, 9780262033848.

[14] B. Courcelle. An axiomatic definition of context-free rewriting and its application
to NLC graph grammars. Theoretical Computer Science 55.2 (1987), 141–181. issn:
0304-3975. doi: 10.1016/0304-3975(87)90102-2.

[15] W. Damm. The IO- and OI-Hierarchies. Theoretical Computer Science 20.2 (1982),
95–207. doi: 10.1016/0304-3975(82)90009-3.

113

https://doi.org/10.1145/321479.321488
https://doi.org/10.1016/0022-0000(81)90030-1
https://doi.org/10.1016/0022-0000(81)90030-1
https://doi.org/10.1016/0022-0000(90)90037-L
https://doi.org/10.1016/0022-0000(90)90037-L
https://doi.org/10.1006/inco.2001.2890
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1016/S0019-9958(59)80017-6
https://doi.org/10.1109/TPAMI.2007.1065
https://doi.org/10.1016/0304-3975(87)90102-2
https://doi.org/10.1016/0304-3975(82)90009-3

Bibliography

[16] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. 1st. Springer
Publishing Company, Incorporated, 2009. isbn: 3642014917, 9783642014918.

[17] J. Engelfriet. Context-Free Grammars with Storage. Tech. rep. 86-11. Republished
2014. University of Leiden, 1986. url: http://arxiv.org/abs/1408.0683.

[18] J. Engelfriet and E. M. Schmidt. IO and OI. I. Journal of Computer and System
Sciences 15.3 (1977), 328–353. doi: 10.1016/S0022-0000(77)80034-2.

[19] J. Engelfriet and H. Vogler. Pushdown Machines for the Macro Tree Transducer.
Theoretical Computer Science 42 (1986), 251–368. doi: 10.1016/0304-3975(86)
90052-6.

[20] M. Fischer. Grammars with Macro-Like Productions. PhD thesis. Harvard University,
Massachusetts, 1968.

[21] A. Fujiyoshi and T Kasai. Spinal-Formed Context-Free Tree Grammars. The-
ory of Computing Systems 33.1 (2000), 59–83. issn: 1432-4350. doi: 10.1007/
s002249910004.

[22] A. Fujiyoshi. Restrictions on Monadic Context-Free Tree Grammars. In: Proceedings
of Coling 2004. COLING, Aug. 2004, 78–84. doi: 10.3115/1220355.1220367.

[23] A. Fujiyoshi. Linearity and Nondeletion on Monadic Context-Free Tree Grammars.
Information Processing Letters 93.3 (2005), 103–107. doi: 10.1016/j.ipl.2004.10.
008.

[24] K. Gebhardt and J. Osterholzer. A Direct Link Between Tree-Adjoining and Context-
Free Tree Grammars. In: Proceedings of the 12th International Conference on Finite-
State Methods and Natural Language Processing. Ed. by T. Hanneforth and C. Wurm.
2015. url: http://aclweb.org/anthology/W15-4805.

[25] F. Gécseg and M. Steinby. Tree Automata. Ed. by T. Dunkelberger. See also
arXiv:1509.06233. Akadémiai Kiadó, Budapest, 1984. isbn: 963-05-3170-4.

[26] F. Gécseg and M. Steinby. Tree Languages. In: Handbook of Formal Languages.
Ed. by G. Rozenberg and A. Salomaa. Vol. 3. Springer, 1997, 1–68.

[27] D. Gildea. Optimal Parsing Strategies for Linear Context-Free Rewriting Systems.
In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. Ed. by C. P.
Rosé. Association for Computational Linguistics, 2010, 769–776. isbn: 1-932432-65-5.

[28] E. Grimley-Evans. Approximating Context-Free Grammars with a Finite-State Calcu-
lus. In: Proceedings of the Eighth Conference on European Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics, 1997, 452–
459. doi: 10.3115/979617.979675.

[29] I. Guessarian. Pushdown Tree Automata. Mathematical Systems Theory 16.1 (1983),
237–263. doi: 10.1007/BF01744582.

[30] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, Cambridge, 1979.

[31] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Automata.
Addison-Wesley Longman Publishing Co., Inc., 1969.

114

http://arxiv.org/abs/1408.0683
https://doi.org/10.1016/S0022-0000(77)80034-2
https://doi.org/10.1016/0304-3975(86)90052-6
https://doi.org/10.1016/0304-3975(86)90052-6
https://doi.org/10.1007/s002249910004
https://doi.org/10.1007/s002249910004
https://doi.org/10.3115/1220355.1220367
https://doi.org/10.1016/j.ipl.2004.10.008
https://doi.org/10.1016/j.ipl.2004.10.008
http://aclweb.org/anthology/W15-4805
https://doi.org/10.3115/979617.979675
https://doi.org/10.1007/BF01744582

Bibliography

[32] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. In: Automata, Languages
and Programming: 18th International Colloquium Madrid, Spain, July 8–12, 1991
Proceedings. Ed. by J. L. Albert, B. Monien, and M. R. Artalejo. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, 629–640. isbn: 978-3-540-47516-3. doi: 10.1007/3-
540-54233-7_169.

[33] A. Joshi and Y. Schabes. Tree-Adjoining Grammars. In: Handbook of Formal Lan-
guages. Ed. by G. Rozenberg and A. Salomaa. Vol. 3. Springer, 1997, 69–123.

[34] A. K. Joshi. Tree Adjoining Grammars: How much Context-Sensitivity is Required
to Provide Reasonable Structural Descriptions? In: Natural Language Parsing:
Psychological, Computational, and Theoretical Perspectives. Ed. by D. R. Dowty,
L. Karttunen, and A. M. Zwicky. Cambridge: Cambridge University Press, 1985,
206–250. doi: 10.1017/CBO9780511597855.007.

[35] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree Adjunct Grammars. Journal of
Computer and System Sciences 10.1 (1975), 136–163. doi: 10.1016/S0022-0000(75)
80019-5.

[36] M. Kanazawa. Multidimensional Trees and a Chomsky-Schützenberger-Weir Repre-
sentation Theorem for Simple Context-Free Tree Grammars. Journal of Logic and
Computation (2014). doi: 10.1093/logcom/exu043.

[37] M. Kanazawa. A Generalization of Linear Indexed Grammars Equivalent to Simple
Context-Free Tree Grammars. In: Formal Grammar. Ed. by G. Morrill, R. Muskens,
R. Osswald, and F. Richter. Vol. 8612. Lecture Notes in Computer Science. Springer,
2014, 86–103. doi: 10.1007/978-3-662-44121-3_6.

[38] S. Kepser and J. Rogers. The Equivalence of Tree Adjoining Grammars and Monadic
Linear Context-free Tree Grammars. Journal of Logic, Language and Information
20.3 (2011), 361–384. issn: 0925-8531. doi: 10.1007/s10849-011-9134-0.

[39] W. Kuich. Tree Transducers and Formal Tree Series. Acta Cybernetica 14.1 (1999),
135–149.

[40] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics 22.1 (1951), 79–86. doi: 10.1214/aoms/1177729694.

[41] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using
the Inside-Outside algorithm. Computer Speech and Language 4 (1990), 35–56.

[42] P. M. Lewis II and R. E. Stearns. Syntax-Directed Transduction. Journal of the ACM
15.3 (July 1968), 465–488. doi: 10.1145/321466.321477.

[43] A. Maletti and J. Engelfriet. Strong Lexicalization of Tree Adjoining Grammars.
In: Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics. Ed. by H. Li, C.-Y. Lin, M. Osborne, G. G. Lee, and J. C. Park. Association
for Computational Linguistics, 2012, 506–515.

[44] A. Maletti and G. Satta. Parsing Algorithms Based on Tree Automata. In: Proceed-
ings of the 11th International Conference on Parsing Technologies. Association for
Computational Linguistics, 2009, 1–12. url: http://dl.acm.org/citation.cfm?
id=1697236.1697238.

115

https://doi.org/10.1007/3-540-54233-7_169
https://doi.org/10.1007/3-540-54233-7_169
https://doi.org/10.1017/CBO9780511597855.007
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1093/logcom/exu043
https://doi.org/10.1007/978-3-662-44121-3_6
https://doi.org/10.1007/s10849-011-9134-0
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1145/321466.321477
http://dl.acm.org/citation.cfm?id=1697236.1697238
http://dl.acm.org/citation.cfm?id=1697236.1697238

Bibliography

[45] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The Power of Extended Top-
Down Tree Transducers. SIAM Journal on Computing 39.2 (2009), 410–430. doi:
10.1137/070699160.

[46] M. Mohri and M.-J. Nederhof. Regular Approximation of Context-Free Grammars
through Transformation. In: Robustness in Language and Speech Technology. Ed. by
J. Junqua and G. van Noord. Kluwer Academic Publishers, 2000, 251–261.

[47] M.-J. Nederhof. Regular Approximation of CFLs: A Grammatical View. In: Advances
in Probabilistic and Other Parsing Technologies. Ed. by H. Bunt and A. Nijholt. Vol. 16.
Text, Speech and Language Technology. Springer, 2000, 221–241. doi: 10.1007/978-
94-015-9470-7_12.

[48] M.-J. Nederhof. Practical Experiments with Regular Approximation of Context-
free Languages. Computational Linguistics 26.26 (1 2000), 17–44. doi: 10.1162/
089120100561610.

[49] M.-J. Nederhof. A General Technique to Train Language Models on Language Models.
Computational Linguistics 31.2 (2005), 173–186. doi: 10.1162/0891201054223986.

[50] M.-J. Nederhof. Weighted Parsing of Trees. In: Proceedings of the 11th International
Conference on Parsing Technologies. Association for Computational Linguistics, 2009,
13–24. url: http://dl.acm.org/citation.cfm?id=1697236.1697239.

[51] M.-J. Nederhof, M. Teichmann, and H. Vogler. Non-Self-Embedding Linear Context-
Free Tree Grammars Generate Regular Tree Languages. Journal of Automata, Lan-
guages and Combinatorics 21.3 (2016), 203–246.

[52] M.-J. Nederhof and H. Vogler. Synchronous Context-Free Tree Grammars. In: Pro-
ceedings of the 11th International Workshop on Tree Adjoining Grammars and Related
Formalisms. 2012, 55–63.

[53] J. Osterholzer. Pushdown Machines for Weighted Context-Free Tree Translation. In:
Proceedings of 19th International Conference on Implementation and Application of
Automata. Ed. by M. Holzer and M. Kutrib. Vol. 8587. Lecture Notes in Computer
Science. 2014, 290–303.

[54] R. Parchmann and J. Duske. Self-Embedding Indexed Grammars. Theoretical Com-
puter Science 47 (1986), 219–223. doi: 10.1016/0304-3975(86)90147-7.

[55] F. C. N. Pereira and R. N. Wright. Finite-state Approximation of Phrase Structure
Grammars. In: Proceedings of the 29th Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational Linguistics, 1991, 246–255. doi:
10.3115/981344.981376.

[56] G. K. Pullum and G. Gazdar. Natural Languages and Context-Free Languages.
Linguistics and Philosophy 4.4 (1982), 471–504.

[57] W. C. Rounds. Complexity of Recognition in Intermediate Level languages. In: IEEE
Conference Record of 14th Annual Symposium on Switching and Automata Theory.
1973, 145–158. doi: 10.1109/SWAT.1973.5.

[58] W. C. Rounds. Tree-Oriented Proofs of Some Theorems on Context-free and Indexed
Languages. In: Proceedings of the Second Annual ACM Symposium on Theory of
Computing. 1970, 109–116. doi: 10.1145/800161.805156.

116

https://doi.org/10.1137/070699160
https://doi.org/10.1007/978-94-015-9470-7_12
https://doi.org/10.1007/978-94-015-9470-7_12
https://doi.org/10.1162/089120100561610
https://doi.org/10.1162/089120100561610
https://doi.org/10.1162/0891201054223986
http://dl.acm.org/citation.cfm?id=1697236.1697239
https://doi.org/10.1016/0304-3975(86)90147-7
https://doi.org/10.3115/981344.981376
https://doi.org/10.1109/SWAT.1973.5
https://doi.org/10.1145/800161.805156

Bibliography

[59] W. C. Rounds. Mappings and Grammars on Trees. Mathematical Systems Theory 4.3
(1970), 257–287. doi: 10.1007/BF01695769.

[60] D. Scott. Some Definitional Suggestions for Automata Theory. Journal of Computer
and System Sciences 1.2 (1967), 187–212. doi: 10.1016/S0022-0000(67)80014-X.

[61] H. Seidl. On the Finite Degree of Ambiguity of Finite Tree Automata. Acta Informatica
26.6 (1989), 527–542. doi: 10.1007/BF00263578.

[62] H. Seki and Y. Kato. On the Generative Power of Multiple Context-Free Grammars
and Macro Grammars. IEICE Transactions on Information and Systems E91.D.2
(2008), 209–221. doi: 10.1093/ietisy/e91-d.2.209.

[63] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On Multiple Context-Free Grammars.
Theoretical Computer Science 88.2 (1991), 191–229. issn: 0304-3975. doi: 10.1016/
0304-3975(91)90374-B.

[64] S. Shieber. Evidence Against the Context-Freeness of Natural Language. Linguistics
and Philosophy 8 (1985), 333–343.

[65] H. Stamer. Restarting Tree Automata. Formal Properties and Possible Variations.
kassel university press GmbH, 2008. isbn: 9783899586350.

[66] M. Teichmann. Regular Approximation of Weighted Linear Nondeleting Context-Free
Tree Languages. In: Proceedings of the 21st International Conference on Implemen-
tation and Application of Automata. Ed. by Y.-S. Han and K. Salomaa. Vol. 9705.
Lecture Notes in Computer Science. Springer, 2016, 273–284. doi: 10.1007/978-3-
319-40946-7_23.

[67] J. W. Thatcher and J. B. Wright. Generalized Finite Automata Theory with an
Application to a Decision Problem of Second-Order Logic. Mathematical Systems
Theory 2.1 (1968), 57–81. doi: 10.1007/BF01691346.

[68] K. Vijay-Shankar and A. K. Joshi. Some Computational Properties of Tree Adjoining
Grammars. In: Proceedings of the 23rd Annual Meeting on Association for Com-
putational Linguistics. Association for Computational Linguistics, 1985, 82–93. doi:
10.3115/981210.981221.

[69] K. Vijay-Shanker, D. Weir, and A. Joshi. Characterizing Structural Descriptions
Produced by Various Grammatical Formalisms. In: Proceedings of the 25th Annual
Meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, 1987, 104–111.

117

https://doi.org/10.1007/BF01695769
https://doi.org/10.1016/S0022-0000(67)80014-X
https://doi.org/10.1007/BF00263578
https://doi.org/10.1093/ietisy/e91-d.2.209
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1007/978-3-319-40946-7_23
https://doi.org/10.1007/978-3-319-40946-7_23
https://doi.org/10.1007/BF01691346
https://doi.org/10.3115/981210.981221

Index

Σ-yield, 69

bottom-recursive SCC, 37
boxing, 53

CFT(S), 80
CFTG, 16

with storage, 80
complete derivation, 16
consistent, 95
context, 13
context-free string grammar, 11
context-free tree grammar, 16
context-free tree language, 17
coregular CFTG, 76

deleting CFTG, 17
depth-limited pushdown, 84
derivation relation

of a CFTG, 16
of a MAC, 69

dynamic position, 39

extended CFTG, 79

finite storage type, 80
fragment of a CFTG, 18

generating edge, 32
graph, 12

indexed grammar, 65

Kleene star, 21
Kullback-Leibler divergence, 104

left-hand side, 16
leftmost outermost derivation, 17
lexicographic ordering, 13

linear CFTG, 17

MAC, 69
macro grammar, 69

nested term, 68
nondeleting CFTG, 17
nonterminal form, 19

outermost position, 13
outside-in derivation, 17

partial derivation, 94
path language, 15
position graph, 31
position in a tree, 13
position pair graph, 29
producing RTG, 19
productive, 21
proper, 95
pushdown alphabet of a lnCFTG, 81
pushdown approximation, 84
pushdown characterization, 82
pushdown storage, 81

ranked alphabet, 12
reachable, 21
REG, 12
regular string grammar, 12
regular tree grammar, 18
regular tree language, 18
relative age, 34
reordering, 19
right-hand side, 16
RT(S), 80
RTG, 18

with storage, 80
rules of a SCC, 32

119

Index

SCC, 12
self-embedding, 26
size of a CFTG, 74
storage type, 79
strongly connected component, 12
strongly monadic lnCFTG, 22
subtree, 13
support, 95

top-recursive rank, 38
top-recursive SCC, 37
tree, 12
tree concatenation, 13
tree language, 13, 17
tree representation

of a CFG, 22
of a string, 15

tree shaped derivation, 93
tree substitution, 14

unambiguous lnCFTG, 94
unboxing, 59
unique in argument positions, 34
useful, 21
useless, 21

variable dominating fragment
of a lnCFTG, 53
of a tree, 52

variable dominating position, 13

weakly-self-embedding
CFTG, 67
indexed grammars, 65

weight, 94
weighted lnCFTG, 94
weighted RTG, 95
weighted tree language, 94
wlnCFTG, 94
wRTG, 95

yield, 15

120

Naming Scheme

Symbol Explanation
a, b Unranked symbols
α, β, γ, δ, σ, κ Ranked symbols
A, B, (C, D) Nonterminals (C, D only in Chapter 3)
A0, B0 Initial nonterminal
B Set of boxed symbols (only Section 3.5)
cin Initial configuration of a storage type
C No subscript: Set of configurations of a storage type

CP : Finite set of predicates
CF : Finite set of functions

C∆(U) Context over ∆ where each symbol of U occurs exactly once
d Derivation
d Placeholder (dynamic position)
D Set of derivations
∆ Ranked alphabet
ε Empty word
E Edges of a graph (V,E)
f Function
g Label for a generating edge
γ Chapter 4: Pushdown symbol

Otherwise: ranked terminal
G Context-free tree grammar
GS Chapter 4: Context-free tree grammar using storage S
G(GS) Chapter 4: CFTG associated with GS

Γ, ΓGu Chapter 4: Pushdown alphabet, Pushdown alphabet of G
H Regular tree grammar
i, j, k, ℓ, m, n, q Natural number
jB Dynamic argument position of B (only Chapter 3)
K Chapter 3: Finite set (of nonterminals)

Chapter 5: lnCFTG obtained by intersection
L Language
L() Induced language of a grammar
log, ln Binary Logarithm; natural logarithm
µ Chapter 4: meaning function
M String grammar (e.g. REG, CFG, or MAC)
MP Set of nonterminals in the SCC P (only Chapter 3)
N Set of nonterminals (ranked or unranked)
N, N+ The set of natural numbers 0, 1, 2, . . .; with subscript +: excluding 0

121

Index

Symbol (cont.) Explanation (cont.)
p Chapter 3: Path in a graph

Chapter 5: Weighted tree language
pH , pG, . . . Weight assignment, weighted tree language
φ Function
π Permutation
P SCC of a graph
P0, Pi, Pn Finite set of nonterminals (only Chapter 3)
PH Set of proper weight assignments for RTG H (only Chapter 5)
P() Powerset
pos() The set of positions (of a tree)
r Rule of a grammar
rk∆() Rank function
R Set of rules
R Real numbers; with subscript ≥0: positive real numbers
s, t String over any alphabet

Section 3.8: Nested term
S Storage Type
T Set of Terms
T∆(U) Trees using ranked alphabet ∆ and nullary symbols from the set U
u Chapter 2: Element of a set U

Section 3.8: Nested term
U A finite set
Σ Unranked alphabet
v String over any alphabet
V Vertices of a graph (V,E)
w Position (in a tree)
W Set of positions
x, z Variable (z especially for contexts)
x Sequence of variables
ξ, ζ Tree
X Set of all variables xi; with subscript k: only containing k variables
∅ Empty set
[k] Set of the numbers 1, . . . , k

122

Acknowledgments

My sincerest thanks are dedicated to my supervisor Heiko Vogler for his continued support,
guidance, criticism, encouragement, time spent discussing my ideas, and for putting his
trust into me! I wish to thank Mark-Jan Nederhof and Heiko Vogler as my coauthors for
the result about non-self-embedding CFTG. The results in this level of detail would not
have been achieved without their ideas, stamina, and fruitful discussions.

A special thanks goes to my colleagues and friends who supported me with valuable
input, commented on my preliminary results, and supported me in various different ways.

I want to thank the research training group QuantLA (DFG Graduiertenkolleg 1763) for
the possibility to exchange ideas with many researchers worldwide and for the financial
support during the time I spent researching. I also like to thank the Graduate Academy of
Technische Universität Dresden for financing the final months of writing this thesis.

	Introduction
	Tradeoff between Expressiveness and Computational Complexity
	Characterization in a Less Expressive Formalism
	Approximation
	Training
	The Structure of this Thesis

	Preliminaries
	Foundations
	Context-Free Tree Grammars and Regular Tree Grammars

	Non-Self-Embedding CFTGs
	Characterization of Self-Embedding CFTGs
	Movement of Values in Argument Positions
	Position Graph
	Uniqueness in Argument Positions

	Proving Regularity of Non-Self-Embedding lnCFTGs
	Transforming a Top-Recursive SCC into Bottom-Recursive SCCs
	Transforming a Top-Recursion-Free lnCFTG into a RTG
	Main Theorem

	Relationship to the String Case
	Alternative Proof of Regularity
	Construct a Family of RTGs
	Combine the Family of RTGs

	Non-Self-Embedding deleting lCFTGs
	Non-Weakly-Self-Embedding CFTGs
	Non-Self-Embedding MACs
	Overview
	Remarks on Non-Self-Embedding lnCFTGs

	Approximation of Arbitrary CFTGs
	Context-Free Tree Grammars with Storage
	Approximation of a CFTG by a RTG

	Training of Regular Tree Grammars
	Tree-Shaped Derivations
	Weighted lnCFTGs and Weighted RTGs
	Expected Frequencies
	Intersection of a (w)lnCFTG and a (w)RTG
	Training of the Optimal Weight Assignment
	Remarks

	Conclusion and Further Research

