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Abstract

A constraint is a formula in first-order logic expressing a relation between val-
ues of various domains. In order to solve a constraint, constructing a proposi-
tional encoding is a successfully applied technique that benefits from substantial
progress made in the development of modern SAT solvers. However, proposi-
tional encodings are generally created by developing a problem-specific gener-
ator program or by crafting them manually, which often is a time-consuming
and error-prone process especially for constraints over complex domains. There-
fore, the present thesis introduces the constraint solver CO4 that automatically
generates propositional encodings for constraints over structured finite domains
written in a syntactical subset of the functional programming language Haskell.
This subset of Haskell enables the specification of expressive and concise con-
straints by supporting user-defined algebraic data types, pattern matching, and
polymorphic types, as well as higher-order and recursive functions. The con-
straint solver CO4 transforms a constraint written in this high-level language
into a propositional formula. After an external SAT solver determined a sat-
isfying assignment for the variables in the generated formula, a solution in the
domain of discourse is derived. This approach is even applicable for finite restric-
tions of recursively defined algebraic data types. The present thesis describes
all aspects of CO4 in detail: the language used for specifying constraints, the
solving process and its correctness, as well as exemplary applications of CO4.
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Chapter 1

Introduction

Constraint programming is a declarative programming paradigm where the so-
lution of a problem is specified by a logical formula written in a formal language.
In the context of constraint programming, such a formula is called a constraint
as it constrains the properties of the problem’s solution. While programs written
in imperative languages specify an algorithm for solving a particular problem,
a constraint often does not hint how the problem’s solution can be computed.
Here, the solving algorithm is implemented in a designated program called con-
straint solver.

Separating the specification of a problem’s solution from its computation has
at least two immediate advantages. Firstly, different constraint solvers can be
applied to the same constraint: this is useful as different constraint solvers may
use different techniques for finding a solution. And secondly, the constraint
itself becomes more concise and comprehensible as it is not intermingled with
details about the computation of its solution.

Each constraint solver expects a given constraint to be specified in a particu-
lar formal language: in the following, we refer to this language as constraint
specification language. Similar to programming languages, constraint specifi-
cation languages differ considerably in the level of abstraction they provide for
specifying constraints:

1. A low-level constraint specification language has a restricted syntax and
is designed for specifying constraints over less structured domains. Less
structured domains often allow constraint solvers to apply very runtime-
efficient search strategies in order to find a solution more quickly.

11



12 CHAPTER 1. INTRODUCTION

2. A high-level constraint specification language has a richer syntax providing
features for specifying constraints on a more abstract level. High-level con-
straint specification languages are often useful for specifying constraints
over more structured domains. While this makes corresponding constraint
solvers more easily applicable to complex constraints from different areas,
it complicates the runtime-efficient search for a solution.

The different levels of abstraction that are inherent to popular constraint spec-
ification languages reveal a fundamental trade-off between two requirements:
the implementer of a constraint solver wants the language to be as restricted
as possible in order to design a runtime-efficient search strategy, but the user
wants a rich language that enables the specification of concise constraints on an
abstract level.

Encoding constraints as satisfiability problems in propositional logic (SAT) con-
stitutes a well-known method of constraint programming via a low-level con-
straint specification language that only supports Boolean variables and logical
connectives [67][12]. For a given propositional formula, a SAT solver searches
for a satisfying assignment of Boolean values to the variables in the formula.
Since SAT solvers became powerful enough to handle propositional formulas
with millions of variables and clauses, it is a promising technique to specify
constraints from various areas as SAT problems [16][54].

Despite the popularity of constraint programming via SAT solving, it might
be difficult to give a specification in propositional logic for complex constraints
over structured domains. This is due to the restricted syntax of propositional
formulas and the restricted domain of Boolean values. Therefore, this thesis
introduces the constraint solver CO4 (Complexity Concerned Constraint Com-
piler) whose constraint specification language is a subset of the purely declara-
tive Haskell language [47]. This subset of Haskell includes user-defined algebraic
data types, pattern matching, and recursive functions, as well as higher-order
and polymorphic types. These are common features in the functional program-
ming paradigm and they have proven to be useful concepts when writing concise
and declarative programs. Recently, some of these features which used to be
prevalent only in the functional programming paradigm were introduced even
for imperative languages, e.g., algebraic data types and pattern matching in the
Scala language [62]. For illustration, Listing 1.1 shows an excerpt of a constraint
written in CO4’s constraint specification language.

This thesis aims at resolving the fundamental conflict between the expressive-
ness of high-level languages like CO4’s constraint specification language and the
runtime-efficient search strategies available for low-level languages like SAT.
Thus, the main contributions of this thesis are the following:
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1 data List a = Nil | Cons a (List a)
2 data TRS = TRS (List Nat) (List (Pair Term Term))
3

4 constraint :: TRS -> List Nat -> Bool
5 constraint = \trs prec -> case trs of
6 TRS symbols rules ->
7 and2 (forall rules (\rule -> ordered rule prec))
8 (forall symbols (\sym -> exists prec sym eqNat))
9

10 forall :: List a -> (a -> Bool) -> Bool
11 forall = \xs f -> case xs of
12 Nil -> True
13 Cons y ys -> and2 (f y) (forall ys f)

Listing 1.1: An excerpt from a constraint written in CO4’s constraint specifica-
tion language. The complete constraint can be found in Appendix C.4 and is
explained in detail in Section 7.1.2.

1. We define the syntax and semantics of CO4’s purely declarative
constraint specification language which is a syntactical subset of
the Haskell language featuring user-defined algebraic data types,
pattern matching, and polymorphic types, as well as higher-order
and recursive functions.

2. For a constraint c written in CO4’s specification language, we de-
fine an automatic transformation into a propositional formula f
and prove that a satisfying assignment for f can be decoded to a
solution for c.

3. If the constraint c is satisfiable and its domain of discourse is
finite, we prove that the propositional formula f generated by CO4

is satisfiable as well.

In order to find a solution for a constraint given in CO4’s constraint specification
language, CO4 transforms it into a satisfiability problem in propositional logic.
Then, the generated propositional formula is solved by an external SAT solver
and a solution from the domain of discourse is constructed from a satisfying
assignment of the variables in the formula.

By providing such a transformation for constraints over structured domains like
finite lists and trees, CO4 leverages the power of SAT solvers for problems which
to date have been hard to express as satisfiability problems in propositional logic.
For example, Section 7.1.1 describes the application of CO4 for finding looping
derivations in term rewriting systems. To the author’s best knowledge, this is
the first time that SAT solving has been applied to analyzing non-termination
of term rewriting systems beyond unary signatures.
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Using a subset of Haskell as a purely declarative constraint specification lan-
guage has many benefits compared to other approaches. First of all, Haskell is
a high-level language with many useful features for specifying well-typed and
concise constraints. For example, the mentioned application of CO4 for finding
looping derivations in term rewriting systems has been realized via a constraint
of approx. 150 lines of code. Reusing an established programming language like
Haskell for constraint programming lowers the barriers of applying CO4 to real
world problems because it is not necessary to learn a new constraint specification
language if one is already familiar with Haskell.

Due to the declarative nature of constraint specifications in CO4, constraints can
be extended and combined with minimal overhead. For example, Section 7.1.3
shows how termination analysis by searching for lexicographic path orders can
be easily combined with the semantic labelling of term rewriting systems. This
illustrates the flexibility of CO4 as a constraint solver. Furthermore, in Chap-
ter 8, we give a detailed comparison of CO4 to other constraint solvers with
respect to the features of their corresponding constraint specification languages.

Note that the present approach is merely a prototypical implementation of solv-
ing constraints over structured domains via transformation to satisfiability prob-
lems in propositional logic. Thus, CO4 is not intended to compete against man-
ually generated propositional encodings in terms of runtime performance: by
incorporating deep knowledge about a particular domain when manually craft-
ing a propositional encoding for a given constraint, one can often outperform
CO4’s runtime performance. As generating a propositional encoding by hand
is a time-consuming and error-prone process, CO4’s automatic transformation
offers a lot more flexibility when specifying constraints over complex domains.
This situation is similar to the respective characteristics of programming in a
high-level language like Haskell versus programming in Assembler: while Assem-
bler helps developing fast and memory-efficient programs, a high-level language
supports more abstract concepts that help developing applications on a large
scale. Consequently, this thesis provides a foundation for realizing a competi-
tive constraint solver which combines a high-level, purely declarative constraint
specification language with the power of modern SAT solvers.

The constraint solver CO4 is distributed under the terms of the GNU General
Public License [31] and is available at

http://abau.org/co4

Outline The present thesis is structured as follows. In Chapter 2, we briefly
introduce some scientific background, namely, constraint programming and the
Haskell programming language. Chapter 3 specifies the constraint solver CO4

in detail. Firstly, we give a conceptual overview of the solving process imple-
mented in CO4. Then, we define the syntax and semantics of concrete programs,
which constitute the formal representation that CO4 expects constraints to be
specified in. As the solving process involves the compilation of a given concrete

http://abau.org/co4
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program into an intermediate representation called abstract program, we de-
fine the syntax and semantics for abstract programs as well. We highlight the
relation and differences between concrete and abstract programs, and define a
correctness criterion for the compilation that needs to hold in order for CO4 to
implement a correct solving procedure.

Chapter 4 defines the compilation from concrete to abstract programs and shows
that it satisfies the aforementioned correctness criterion. We give an overview
of the actual implementation of CO4 and how it is applied for solving con-
straints. This chapter concludes with a discussion on design decisions in the
implementation of CO4.

Chapter 5 specifies the compilation of advanced language features like local
abstractions, higher-order functions, and partial functions. The reason these
are discussed separately is because programs that contain these features are
merely transformed to concrete programs as they are specified in Chapter 3.
This transformation is entirely independent from the compilation of concrete to
abstract programs.

Chapter 6 covers several optimization strategies that aim at decreasing the size
of the resulting propositional formula. That is reasonable because often the
SAT solver’s runtime is lower for smaller formulas.

Chapter 7 illustrates the results of applying CO4 to constraints of two differ-
ent areas: termination analysis of term rewriting systems and RNA design in
bioinformatics.

Chapter 8 compares different aspects of CO4 to related tools that also enable
constraints to be specified in a high-level language.

Chapter 9 addresses directions for future work that improve different aspects of
CO4. This concerns the size of the resulting propositional formulas as well as
the expressiveness of CO4’s constraint specification language.
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Chapter 2

Background

This chapter briefly introduces the scientific background of the results given in
the present thesis. In Section 2.1, we give an overview of constraint programming
and relate different approaches to the constraint solver CO4. In Section 2.2,
we illustrate the Haskell programming language because a subset of Haskell
constitutes the constraint specification language of CO4.

2.1 Constraint Programming

The constraint programming paradigm includes a variety of different approaches
for specifying and solving constraints [65]. Each of them has certain benefits
which render it suitable for tackling a particular kind of constraint. In the
following, we briefly introduce some classical approaches and relate them to the
constraint solver CO4.

Finite Domain Constraints Constraints whose variables range over finite do-
mains are an important and well-researched class of constraints [5]. A solution
for a finite domain constraint is a satisfying assignment that maps each variable
to a value of its underlying domain. A classical approach for finding such a so-
lution is to incrementally reduce the set of values that may be assigned to each
variable in the constraint without violating the local consistency of these vari-
ables. Often, this is done by alternately performing constraint propagation and
splitting. In general, constraint propagation alone does not lead to a solution;
therefore, either the domain of a variable or the constraint itself is split in order
to obtain two or more subproblems such that the union of all solutions for these
subproblems is equivalent to the set of solutions for the original constraint. The
Davis–Putnam–Logemann–Loveland algorithm illustrated in Appendix B is an
example for applying constraint propagation and splitting to find a solution
for satisfiability problems in propositional logic [14]. These problems are well-
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18 CHAPTER 2. BACKGROUND

studied instances of finite domain constraints with many practical applications
[16][56], e.g., for termination analysis of term rewriting systems [28].

In the context of solving finite domain constraints, the constraint solver CO4

can be regarded as an initial compilation step where a given finite domain con-
straint written in a subset of Haskell is transformed into a satisfiability problem
in propositional logic. However, CO4 itself does not implement any search
strategies for finding a solution; it merely transforms a given constraint into a
propositional formula and applies the external SAT solver MiniSat [25] to find
a satisfying assignment for the variables in that formula. Other targets than
SAT are imaginable (cf. Section 9.4), but none of them were considered in the
present thesis.

Satisfiability Modulo Theories Satisfiability modulo theories (SMT) is an
alternative approach of constraint programming [53]. SMT constraints are for-
mulas in first-order logic that may contain propositions from a certain theory, as
well as variables that range over the domain of that theory. Exemplary theories
are linear integer arithmetic [48] and bitvector arithmetic [32]. Finding a solu-
tion for an SMT constraint often involves a SAT solver that assigns a Boolean
value to each theory-specific proposition indicating whether this proposition
holds. Then, a theory solver checks whether the chosen assignment is consistent
with the underlying theory. This alternating process of selecting an assignment
and checking it against the theory is done until a consistent assignment is found.
An alternative method for finding a solution is to transform the SMT constraint
as a whole to a satisfiability problem in propositional logic. This approach en-
ables the reuse of existing SAT solvers, but it is not equally feasible for all
theories.

In general, the underlying theories in SMT only allow predicates over flat do-
mains, e.g., bitvectors, whereas CO4 allows the specification of constraints over
structured domains. On the other hand, most SMT solvers support theories on
infinite domains, e.g., integer/real linear arithmetic, while in CO4 the search
space of constraints over infinite domains must be restricted to a finite subset.

Constraint Logic Programming Constraint logic programming is a program-
ming paradigm where logic programs are extended by predicates over certain
domains [42][61], e.g., real numbers. These predicates paired with the ability
of logic programs to specify relations between terms make powerful constraint
programming languages, e.g., the Prolog language [30]. But for reasons con-
cerning runtime performance, constraint specifications in Prolog are not purely
declarative, e.g., they may contain non-declarative entities like the cut-operator
for pruning the search tree. Such entities change the semantics of the constraint
and are bound to the underlying search strategy.

CO4 only deals with pure declarative constraints, i.e., constraints that do not
restrict the search for a solution to a certain search strategy. This separation
of a constraint’s specification from the search for a solution allows that future
CO4 backends can be applied to all existing constraints.
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On the other hand, Prolog’s search strategy can handle constraints on infinite
domains. As CO4 transforms constraints to satisfiability problems in proposi-
tional logic, the domain of each involved variable must be finite.

Chapter 8 compares CO4 to Prolog in more detail.

2.2 The Haskell Language

Haskell is a functional programming language whose design process was initi-
ated in 1987 [43][71]. The Haskell ecosystem induces and benefits from active
research in a lot of different areas, e.g., compiler construction [55], type theory
[24], and high-performance computing [4]. These ongoing efforts are presented
and published on annual conferences such as the International Conference on
Functional Programming and the Haskell Symposium. There is also a growing
number of commercial applications of Haskell, e.g., in finance [46].

The Haskell language follows a distinct set of principles which makes it well-
suited as a constraint specification language, especially in comparison to even
more popular programming languages like Java, C++, or Scala. In the following,
we review its most important features and highlight their importance to CO4.

Algebraic Data Types and Pattern Matching Algebraic data types (ADT)
enable the definition of product and sum types in Haskell. An ADT specifies
the a sum of one or more alternatives, each denoted via a constructor, where
each alternative contains a product of zero or more values: the constructor’s
arguments. Example 2.1 illustrates some simple ADTs.

Example 2.1 Assume the following definition of four ADTs:

1 data Bool = False | True
2 data Maybe a = Nothing | Just a
3 data Pair a b = Pair a b
4 data List a = Nil | Cons a (List a)

The type Bool is an ADT with two constructors False and True where none
of them contains any arguments.

The type Maybe a is polymorphic: it is parameterized by a type variable
a which appears as the single argument of the Just constructor. Thus,
Maybe is occasionally called a type operator [64] as it defines a whole set of
types through instantiation of the type variable a by other types. Note that
Maybe a is useful for specifying the possible absence of a particular value of
type a (cf. Section 5.4).

The type Pair a b is polymorphic as well. Its single constructor (of the
same name Pair) expects one argument for each of the type variables a and
b. Therefore, Pair a b specifies a pair of values in the mathematical sense.
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The type List a specifies an ordered sequence of values by recursively em-
ploying itself as a argument for the Cons constructor. The Nil constructor
acts as the end of the sequence.

Applying the constructor C of a type T to values that correspond to the ar-
gument types of C generates a value of type T . For example, Just False is a
value of the type Maybe Bool from Example 2.1.

Values of ADTs can be deconstructed via case distinctions. A case distinction
is a Haskell expression that performs a pattern match on the value of the case
distinction’s discriminant. Listing 2.2 shows the definition of a Haskell function
that computes the tail of a list using a case distinction.

1 data List a = Nil | Cons a (List a)
2

3 tail :: List a -> List a
4 tail = \list ->
5 case list of
6 Nil -> Nil
7 Cons x xs -> xs

Listing 2.2: The function tail computes the tail of the expression list using
a case distinction.

The expression list in Listing 2.2 is the discriminant of the case distinction
in Lines 5 to 7. The left-hand side of an arrow -> denotes a pattern and the
right-hand side denotes the corresponding branch that is evaluated in case that
the pattern matches on the discriminant.

Case distinctions are very useful for writing programs on data that is structured
via ADTs. In CO4, ADTs and case distinctions play an important role as case
distinctions are the only control flow feature in the subset of Haskell that is
supported by CO4. In the process of transforming a constraint into a satis-
fiability problem in propositional logic, the transformation of ADTs and case
distinctions is a critical aspect and described in detail in Chapter 4.

Static type system In Haskell, the type of each expression is computed and
checked at compilation time. This eliminates runtime type errors for well-typed
programs, and is very useful for writing reliable and safe software.

A static type system is essential for the functioning of CO4 because the trans-
formation of a constraint into a satisfiability problem in propositional logic is
guided by the types of the expressions in a given constraint. However, Haskell’s
type system is very rich and not all the features that it provides are supported
by CO4, e.g., type classes. Section 9.3 briefly discusses how CO4 could benefit
from supporting type classes in the future.
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Non-strict evaluation In Haskell, expressions are evaluated according to a
non-strict evaluation strategy, i.e., the value of an expression is not computed
until it is actually required. This strategy is most apparent for function appli-
cations. Assume an application f(x) of a function f to an argument x: by using
a non-strict evaluation strategy for computing the value of f(x), the argument
x is not evaluated until its value is required for computing the value of f(x) it-
self. This is contrary to programming languages that feature a strict evaluation
strategy. In a strictly evaluated language, the value of x is always computed
first before evaluating f(x) itself.

Non-strict evaluation strategies have benefits for composing computer programs
from non-related entities [44]. Assume a nested function application f(g(x))
where storing the result of g(x) would require more memory than is available.
In order to still compute the value of f(g(x)) using a strict evaluation strategy,
one would have to explicitly interweave the definitions of f and g so that both
functions are evaluated synchronously, i.e., g delivers only as much data as
required for evaluating the next subexpression in f at any one time. Obviously,
this would blur the logical separation of f and g. By using a non-strict evaluation
strategy, the synchronous evaluation of f and g comes implicitly without needing
to rewrite any of these functions.

Despite the usefulness of Haskell’s non-strict evaluation strategy, CO4 follows
a strict evaluation strategy when transforming a constraint into a satisfiability
problem in propositional logic. This is due to the strictness of modern SAT
solvers: before running a SAT solver, in general, the complete formula to solve
must be present. However, we have not experienced that a strict evaluation
strategy would complicate the constraint specification using CO4 for any of the
studied applications (cf. Chapter 7).

While some SAT solvers use an incremental solving procedure (cf. Section 9.1),
its benefits for specifying constraints with a non-strict evaluation strategy have
not been researched in the scope of the present thesis.

Purely declarative Haskell is a purely declarative programming language, i.e.,
there are no implicit side effects. For example, a Haskell function is also a func-
tion in the mathematical sense: it can be evaluated for a given set of arguments,
but it can neither change the value of a variable nor perform any input/out-
put operation, e.g., print to screen, read a file, write to random memory. This
might seem like a huge restriction compared to other programming languages,
but actually has at least two benefits:

• Immutable variables are simply constants and enable certain compiler op-
timizations, e.g., constant propagation.

• Purity enforces all input/output operations to be explicitly specified, e.g.,
via type declarations. Again, this enables certain compiler optimizations,
e.g., parallel evaluation of functions. Furthermore, a declaration concern-
ing the presence of an input/output operation greatly improves the read-
ability of a computer program.
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The purity of Haskell is one of the main reasons for using it as the constraint
specification language for CO4. That is because using a language with implicit
side effects in this context would vastly complicate its formal semantics in the
scope of constraint programming as one would have to keep track of all the
potential side effects when interpreting/compiling a given constraint.



Chapter 3

Specification of CO4

This chapter gives a formal specification for the constraint solver CO4. Sec-
tion 3.1 defines the class of constraints that is handled by CO4 and illustrates
the solving process from a high-level point-of-view. Each of these constraints
is represented by a concrete program. The language of concrete programs is
defined in Section 3.2. When CO4 is applied to a particular concrete program,
it is compiled into an intermediate representation, called abstract program. Sec-
tion 3.3 defines the language of abstract programs. In order to show that the
compilation from concrete to abstract programs is reasonable, Section 3.4 spec-
ifies a correctness criterion.

3.1 Conceptual Overview

This section outlines the concept of the constraint solver CO4 from a high-level
perspective without regarding implementation-specific details. First of all, we
define the type of constraint that CO4 handles.

Definition 3.1 A constraint c : P×U→ B is a parameterized predicate on
a set U where P denotes the set of parameters and B = {False, True}.

Notation In the scope of this thesis, the domain U of a constraint c : P×U→ B
is denoted as domain of discourse, and the domain P is denoted as parameter
domain.

Example 3.2 In the following constraint c : N × N2 → B, the domain of
discourse is the set of pairs of natural numbers and the parameter domain
is the set of natural numbers:

c(p, (a, b)) =
{

True if p = (a · b) ∧ (a > 1) ∧ (b > 1)
False otherwise

23
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Most genuine constraints given in the present thesis are defined over more struc-
tured domains than illustrated in Example 3.2. For example, Section 7.1 de-
scribes an application of CO4 to termination analysis of term rewriting systems,
where the parameter domain is the set of term rewriting systems, and the do-
main of discourse is a subset of the set of (non-)termination proofs.

Some elements from the domain of discourse are solutions for a given constraint
and a parameter.

Definition 3.3 An element u ∈ U denotes a solution for a constraint c :
P×U→ B and a parameter p ∈ P if c(p, u) = True.
Example 3.4 u = (5, 3) is a solution for constraint c and parameter p = 15
in Example 3.2 because c(15, (5, 3)) = True.

From a high-level point-of-view CO4 can be considered as a black box that takes
a constraint c and a parameter p as input (cf. Figure 3.5) where c is represented
by a concrete program (cf. Section 3.2). CO4 either gives a solution u ∈ U so
that c(p, u) = True, or one of the special values Maybe and Unsat.

c : P×U→ B

CO4 u ∈ U∪ {Maybe, Unsat}

p ∈ P

Figure 3.5: CO4 as a black box

As CO4 is an incomplete constraint solver (cf. Section 4.3.1), it gives the value
Maybe if it is unable to find a solution for a constraint and a parameter. Maybe
does not indicate the reason why CO4 fails to produce a solution. On the
other hand, CO4 gives the value Unsat if there is no solution for a constraint
c : P×U → B and a parameter p ∈ P, i.e., there is no u ∈ U such that
c(p, u) = True. The output Unsat makes a more strict proposition than Maybe
by indicating that the constraint is unsatisfiable at all for a particular parameter.

To find a solution, CO4 generates a satisfiability problem in propositional logic.
To do so, the constraint and the parameter are encoded as a formula f ∈ F
where F denotes the set of propositional formulas. A SAT solver is applied to
find a satisfying assignment σ ∈ Bvar(f) for the set var(f) ⊆ V of propositional
variables in f . Note that Appendix B gives an introduction to propositional
logic and outlines the basics of SAT solving.

Figure 3.6 illustrates the process of constructing a propositional formula and
decoding a satisfying assignment to a solution for a given constraint and a
parameter.
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c : P×U→ B

encoder f ∈ F SAT solver σ ∈ Bvar(f) decoder u ∈ U

Unsat

p ∈ P Maybe Unsat

U infinite U finite

CO4

Figure 3.6: Encoding and decoding in CO4

Encoding a constraint and a parameter as a propositional formula is done in
two steps. During compilation time, an abstract program is generated from the
concrete program that specifies the given constraint. This compilation is done
in absence of any parameter. During runtime, evaluating the abstract program
for a given parameter generates a propositional formula.

Because the compilation function in CO4 does not depend on a given parame-
ter value, each generated abstract program can generate different propositional
formulas by passing different parameters during runtime. This avoids time-
consuming recompilations in situations where the same constraint needs to be
solved for multiple parameters. Without having such a parameter-independent
compilation function, the same concrete program would need to be recompiled
for each parameter.

Figure 3.7 illustrates this two-step derivation of propositional formulas.

Maybe

c : P×U→ B compilation

abstract program evaluation f ∈ F

p ∈ P

encoder

compile-time run-time

Figure 3.7: Generating a propositional formula is a two-step process

The essence of the present thesis is a specification of CO4 so that it implements
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a correct solving procedure.
Theorem 3.8 The constraint solver CO4 implements an incomplete and
correct solving procedure, i.e., if CO4 returns a value u ∈ U for a constraint
c : P×U → B represented as a concrete program and a parameter p ∈ P,
then u is a solution for c and p, i.e., c(p, u) = True.
Proof In order to show that Theorem 3.8 holds, we specify the necessary
ingredients of CO4 in the subsequent sections of this thesis. In Lemma 3.82,
we show that the correctness of CO4 depends on the correctness of two of
its components:

1. There is a sound mapping from the values that concrete programs oper-
ate on to the values that abstract programs operate on, and vice-versa.
Such a mapping is denoted as encode/decode-pair in Section 3.4. The
proof of Lemma 4.31 shows that the mapping between both domains as
it is implemented in CO4 meets all requirements of an encode/decode-
pair.

2. The compilation function of CO4 that generates an abstract program
from a given concrete program is correct according to the correctness
criterion given in Definition 3.80. In Section 4.2, we specify the com-
pilation function, and in Lemma 4.59 we show its correctness. ■

Note that Theorem 3.8 states that the solving procedure implemented by CO4

is incomplete, i.e., CO4 might not be able to provide a solution even if there
is one. Example 4.63 illustrates a constraint whose obvious solution is not
found by CO4. But the incompleteness of CO4 only concerns constraints whose
domain of discourse is infinite, i.e., the solving procedure of CO4 is complete
for constraints on finite domains of discourse (cf. Theorem 4.62).

3.2 Language of Concrete Programs

This section defines the language used for specifying constraints. Each word of
this language is called a concrete program. The syntax of concrete programs
is a subset of Haskell’s syntax [47], but their semantics differ from Haskell’s
semantics in the following ways:

1. Concrete programs are evaluated strictly whereas Haskell programs are
evaluated non-strictly.

2. Concrete programs may contain n-ary functions and n-ary constructors for
n ∈ N. That is contrary to Haskell, where functions are curried by default,
i.e., the application of an n-ary function is reduced to n applications of n
unary functions.

3. Concrete programs are first-order, i.e., functions may neither be passed as
arguments nor returned as results.
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4. Functions in concrete programs may only be declared globally, i.e., there
are no local abstractions.

By requiring concrete programs to be first-order, we also forbid partial function
and constructor applications.

Example 3.9 shows an exemplary concrete program.
Example 3.9 Recall the constraint c : N× N2 → B from Example 3.2:

c(p, (a, b)) =
{

True if p = (a · b) ∧ (a > 1) ∧ (b > 1)
False otherwise

The following concrete program is a correct specification of c according to
the syntax and semantics defined in the subsequent sections:

1 data Bool = False | True
2 data Nat = Z | S Nat
3 data Pair a b = Pair a b
4

5 constraint :: Nat -> Pair Nat Nat -> Bool
6 constraint = \p u -> case u of
7 Pair a b -> and2 (greaterOne a)
8 (and2 (greaterOne b)
9 (eq p (times a b)))

10

11 plus :: Nat -> Nat -> Nat
12 plus = \x y -> case x of
13 Z -> y
14 S x’ -> S (plus x’ y)
15

16 times :: Nat -> Nat -> Nat
17 times = \x y -> case x of
18 Z -> Z
19 S x’ -> plus y (times x’ y)
20

21 eq :: Nat -> Nat -> Bool
22 eq = \x y -> case x of
23 Z -> case y of Z -> True
24 S y’ -> False
25 S x’ -> case y of Z -> False
26 S y’ -> eq x’ y’
27

28 greaterOne :: Nat -> Bool
29 greaterOne = \x -> case x of
30 Z -> False
31 S x’ -> case x’ of
32 Z -> False
33 S x’’ -> True
34

35 and2 :: Bool -> Bool -> Bool
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36 and2 = \x y -> case x of
37 False -> False
38 True -> y

In this concrete program, Nat models naturals as Peano numbers such that
the value Z represents zero, and S represents the successor of another natural
number. Because Nat is recursively defined, there are infinite many values
of type Nat, i.e., without further restrictions, constraint specifies a con-
straint on an infinite domain of discourse. In order to solve such a constraint
using CO4, the domain of discourse must be restricted to a finite subset as
explained in Section 4.1.5.

Example 6.16 shows a more efficient concrete program which also specifies
the constraint c, but uses CO4 built-in support for binary encoded natural
numbers (cf. Section 6.3).

The following sections specify concrete concrete programs in detail: Section 3.2.1
introduces the syntax of concrete programs, which is then restricted by the static
semantics defined in Section 3.2.2. Section 3.2.3 defines the dynamic semantics
by specifying an evaluation function for concrete programs.

3.2.1 Syntax

In this section, we define the abstract syntax trees of concrete programs. We do
not consider aspects related to the textual representation of concrete programs
(i.e., the placement of parentheses) because due to the usage of Haskell-related
tools in the present implementation of CO4, namely Template-Haskell (cf. Sec-
tion 4.3.2), the same rules apply as for the textual representation of Haskell
programs.

A concrete program contains identifiers that name different entities. Each iden-
tifier stems from a common set of names.

Definition 3.10 The set Name denotes the set of names.

Because concrete programs are statically typed, entities such as expressions and
functions have at least one type. As in Haskell, types contain identifiers of two
distinct sets: type variables and type constructors.

Definition 3.11 TypeVar ⊆ Name denotes the set of type variables.
Definition 3.12 TypeCon ⊆ Name denotes the signature of type con-
structors, where TypeVar∩TypeCon = ∅.

Because TypeCon denotes a signature, each type constructor c ∈ TypeCon is
associated with an arity arity(c) ∈ N (cf. Definition A.20).
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Notation In the context of types, names starting with a lowercase letter iden-
tify type variables. Names starting with an uppercase letter denote type con-
structors. The only exception is the type constructor ->, which is used for
constructing functional types.

Example 3.13 {a, x} ⊊ TypeVar and {List, Either, ->} ⊊ TypeCon.

Types are built upon TypeVar and TypeCon.
Definition 3.14 The syntax of types TypeSyntax is defined by the fol-
lowing EBNF:

TypeSyntax := TypeVar
| TypeCon TypeSyntax∗ (type application)

Notation The binary type constructor -> is written in infix notation, e.g.,
a -> b, where -> is right-associative and has a lower precedence than all the
other type constructors.

For the code listings given in the present thesis, we assume that the concrete
syntax of types allows subtypes to be parenthesized according to the same rules
that apply for the Haskell language.

Example 3.15 Exemplary types are x, Nat, List Nat, Either a b,
List Nat -> Nat, and Pair (List Nat) Nat.

A concrete program may contain polymorphic expressions and functions, i.e.,
expressions and functions that have more than one type. Polymorphism is
expressed by free variables in types. Type schemes quantify over these free type
variables.

Definition 3.16 The syntax of type schemes SchemeSyntax is defined by
the following EBNF:

SchemeSyntax := TypeSyntax
| "forall" TypeVar+ ":" TypeSyntax

Notation As types in Haskell are implicitly quantified over all occurring type
variables, we omit the explicit quantification in the concrete syntax of concrete
programs as well. Thus, types and type schemes share the same concrete syntax
in CO4.

Example 3.17 A function that concatenates two lists has the type scheme:

1 List a -> List a -> List a

Expressions contain identifiers of two distinct sets: variables and constructors.
Definition 3.18 Var ⊆ Name denotes the set of variables.
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Definition 3.19 Con ⊆ Name denotes the signature of constructors, where
Var∩Con = ∅.

Because Con denotes a signature, each constructor c ∈ Con is associated with
an arity arity(c) ∈ N (cf. Definition A.20). The set of terms over the signature of
constructors that appear in a concrete program forms the set of concrete values
(cf. Definition 3.50).

Notation To differentiate between elements of Var and Con, variables are
identified by names that start with a lowercase character. Names starting with
an uppercase character denote constructors.

Example 3.20 {a, x} ⊊ Var and {True, False} ⊊ Con.

Case distinctions enable conditional evaluation of sub-expressions (branches)
based on the value of a particular expression: the case distinction’s discriminant.
Patterns match on the value of the discriminant in order to determine which
branch to evaluate. A pattern consists of a constructor name and a sequence of
variables.

Definition 3.21 The syntax of patterns PatSyntax is defined by the fol-
lowing EBNF:

PatSyntax := Con Var∗

Example 3.22 Exemplary patterns are Nil and Cons x xs.

For the sake of simplicity, CO4 does not support nested patterns like Cons x
(Cons y Nil), which is contrary to Haskell.

A match consists of a pattern and a branch’s expression, where an expression is
either a variable, a constructor, an application, an abstraction, a case distinc-
tion, or a local binding.

Definition 3.23 The syntax of matches MatchSyntax and the syntax of
expressions ExpSyntax are defined by the following EBNF:

MatchSyntax := PatSyntax "->" ExpSyntax
ExpSyntax :=

Var
| Con
| ExpSyntax ExpSyntax+ (application)
| "\" Var+ "->" ExpSyntax (abstraction)
| "case" ExpSyntax "of" MatchSyntax+ (case distinction)
| "let" (Var "=" ExpSyntax)+ "in" ExpSyntax (local bindings)

As for types, we assume that the concrete syntax of expressions allows subex-
pressions to be parenthesized according to the same rules that apply for the
Haskell language.
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Example 3.24 An exemplary expression is

1 \f x -> case x of Nil -> Nil
2 Cons y ys -> f y

where x is the discriminant of a case distinction with two branches Nil and
f y.

In a concrete program, types are defined by type declarations.
Definition 3.25 A type declaration lists the constructors of a type and is
defined by the following EBNF:

TypeDeclSyntax := "data" TypeCon TypeVar∗ "="
(Con TypeSyntax∗ "|")∗ Con TypeSyntax∗

Example 3.26 Exemplary type declarations are:

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)
3 data Either a b = Left a | Right b

The identifier after the data keyword denotes the name of the type. It is followed
by a possibly empty list of type variables that may occur in the constructor
arguments. Each constructor may have several arguments where the number of
arguments equals the constructor’s arity. Note that it is perfectly legal for a
constructor to have the same name as the corresponding type, which is common
for types that have only one constructor.

Example 3.27 In the following, we declare a type Pair that has a single
constructor of the same name:

1 data Pair a b = Pair a b

While the identifier Pair on the left-hand side of equality sign denotes a
type name, the identifier Pair on the right-hand side denotes a constructor
name.

Besides type declarations, a concrete program contains other declarations where
names are bound to expressions and attributed with type schemes.

Definition 3.28 The syntax of declarations DeclSyntax is defined by the
following EBNF:

DeclSyntax := TypeDeclSyntax
| Var "=" ExpSyntax
| Var "::" SchemeSyntax
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The attribution n :: s of a type scheme s ∈ SchemeSyntax to a name n ∈ Var
is denoted as a type signature for n.

Example 3.29 Exemplary declarations are:

1 plus :: Nat -> Nat -> Nat
2 plus = \x y -> case x of Z -> y
3 S x’ -> S (plus x’ y)

Finally, a concrete program is defined as a non-empty sequence of declarations.
Definition 3.30 The syntax of concrete programs ProgSyntax is defined
by the following EBNF:

ProgSyntax := DeclSyntax+

3.2.2 Static Semantics

This section restricts the previously specified syntax of concrete programs to
the set of statically well-defined concrete programs.

Firstly, we define the static semantics of type declarations. Each type in a
concrete program must be defined by a type declaration.

Definition 3.31 The set of statically well-defined type declarations
TypeDecl is the set of all declarations of the form

data T v1 . . . vm = C1 c11 . . . c1n1

. . .

| Ck ck1 . . . cknk

in TypeDeclSyntax with m ∈ N type variables v1, . . . , vm and k ∈ N>0
constructors C1, . . . , Ck, all of the following properties hold:

1. the arity of T equals the number of type variables, i.e., arity(T ) = m,

2. all constructors are pairwise distinct, i.e.,

∀(i, j) ∈ {1 . . . k}2 : i ̸= j =⇒ Ci ̸= Cj

3. the arity of each constructor equals the number of constructor argu-
ments, i.e.,

∀i ∈ {1 . . . k} : ni = arity(Ci)

4. for all i ∈ {1 . . . k} and j ∈ {1 . . . ni}, the set of all variables appearing
in the constructor argument cij is a subset of {v1, . . . , vm}, and

5. for all i ∈ {1 . . . k} and j ∈ {1 . . . ni}, the type cij may not contain the
type constructor ->.
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Example 3.32 The following declaration for type Either is not included
in TypeDecl as the identifier c is no type variable of Either:

1 data Either a b = Left a | Right c

A type declaration that includes type variables defines a type operator [64].
Type operators may be applied to other types in order to construct new types.

The set of types equals the set of terms over the signature of type constructors.
See Appendix A.2 for a brief introduction to signatures and terms.

Definition 3.33 The set of statically well-defined types Type is defined as
the set of terms over TypeCon:

Type := terms(TypeCon, TypeVar)

Example 3.34 Assume the following type declarations that define a type
Bool and two type operators List and Either:

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)
3 data Either a b = Left a | Right b

Here, List Bool ∈ Type but Either Bool /∈ Type because the type oper-
ator Either has arity two but is only applied to one argument.

Throughout this thesis we often reference the constructors of a type declaration
by their index.

Definition 3.35 The constructor index of a constructor C ∈ Con of a type
T ∈ Type is a positive natural number in N>0 denoting the position of C
in the sequence of constructors in the declaration of T .
Example 3.36 Assume the following type declaration that defines the type
Bool:

1 data Bool = False | True

For the type Bool, the constructor False has index 1, and the constructor
True has index 2.

We introduce the set of fully instantiated types as the subset of Type that do
not contain type variables.

Definition 3.37 The set of fully instantiated types Type0 ⊊ Type is the
set of all types in Type that do not contain type variables:

Type0 := terms(TypeCon,∅)

Example 3.38 List Bool ∈ Type0 but List a /∈ Type0.
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Based on the previously defined set of types, we define the static semantics of
type schemes:

Definition 3.39 The set of statically well-defined type schemes
TypeScheme is the set of all S ∈ SchemeSyntax such that all of the
following properties hold for S:

1. each type that appears in S is included in Type, and

2. if S is of the form forall v1 . . . vn : T for n ∈ N>0 and T ∈ Type,
then all type variables v1, . . . , vn ∈ TypeVar are pairwise distinct
and the set of type variables var(T ) that appears in T is a subset of
{v1, . . . , vn}.

Example 3.40 forall x y : List z is no type scheme as the type variable
z is not bound by the quantifier.

We define the static semantics of patterns.
Definition 3.41 The set of statically well-defined patterns Pat is the set of
all C v1 . . . vn ∈ PatSyntax with C ∈ Con and all variables v1, . . . , vn ∈
Var being pairwise distinct.
Example 3.42 Cons x xs ∈ Pat and Cons x x /∈ Pat.

We define the static semantics of expressions.
Definition 3.43 The set of statically well-defined expressions Exp is the
set of all e ∈ ExpSyntax so that all of the following properties hold for e:

1. e is statically well-typed according to the Hindley–Damas–Milner type
inference [22] so that all type signatures are respected,

2. e does not contain an abstraction as a strict subexpression,

3. if e is an application,

(a) the application is total, i.e., the application of a n-ary function or
constructor requires exactly n arguments for n ∈ N,

(b) no argument’s type may contain the type constructor ->,

4. if e is an abstraction \ v1 . . . vn -> e′ for n ∈ N>0, all variables v1, . . . , vn

∈ Var are pairwise distinct,

5. if e is a case distinction on a discriminant of type T ∈ Type,

(a) for each constructor C ∈ Con in T there is a corresponding pat-
tern C v1 . . . vn with n = arity(C) in the matches of e,

(b) no two patterns in the matches of e may contain the same con-
structor,
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6. if e is a let expression that locally binds an expression e′ ∈ Exp, e′

may only depend on values that have been bound in an enclosing scope,
or in the same let block, but before e′.

Note that property 2 allows abstractions to be included in Exp, but not as
a strict subexpression of another expression.
Example 3.44 For all expressions e1, e2, · · · ∈ Exp and v1, v2, · · · ∈ Var,
the following expressions are not statically well-defined:

• \ v1 -> v1v1 violates property 1 in Def. 3.43
• let v1 = \ v2 -> e1 in e2 violates property 2 in Def. 3.43
• \ v1 v1 -> e1 violates property 4 in Def. 3.43
• data Bool = False | True

case e1 of False -> e2

False -> e3

violates property 5a and 5b in Def. 3.43

• let v1 = v2

v2 = v1

in e1

violates property 6 in Def. 3.43

The only requirement for statically well-defined matches is that each component
must be statically well-defined as well.

Definition 3.45 The set of statically well-defined matches Match is the
set of all matches in MatchSyntax that contain a pattern from Pat and
an expression from Exp.

Similarly, we define the static semantics of declarations in a concrete program.
Definition 3.46 The set of statically well-defined declarations Decl is the
set of all declarations in DeclSyntax that only contain statically well-
defined types, expressions, and patterns.

Finally, we define the set of statically well-defined concrete programs.
Definition 3.47 The set of statically well-defined concrete programs Prog
is the set of all programs c ∈ ProgSyntax such that of the following prop-
erties hold for c:

1. c only contains statically well-defined declarations,

2. c contains exactly one type declaration of the form

1 data Bool = False | True

3. c contains exactly one declaration of the form constraint = e with
e ∈ Exp so that
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(a) e is of type P -> U -> Bool for some types P, U ∈ Type0,

(b) there is exactly one type declaration c for each of the types P and
U ,

4. each variable bound in c is only bound once, i.e., there are no two
expressions that are bound to the same name.

The concrete program in Example 3.9 is statically well-defined.

Often we want to refer to the set of statically well-defined concrete programs
that have a common type for their constraint declaration.

Definition 3.48 For the types P, U ∈ Type0, the set ProgP U denotes the
set of all concrete programs c ∈ Prog that contain a declaration of the form
constraint = e with e ∈ Exp being of type P -> U -> Bool.

3.2.3 Dynamic Semantics

The dynamic semantics of concrete programs is given by an evaluation func-
tion that assigns a constraint (cf. Definition 3.1) to each concrete program. In
contrast to Haskell, concrete programs are evaluated using a strict evaluation
strategy, i.e., before evaluating the result of an application, each argument is
evaluated. Note that we do not deal with problems related to non-termination:
in the following we only give the semantics of terminating concrete programs.

The domain of values that a concrete program operates on equals the set of
terms over the signature Con. See Appendix A.2 for a brief introduction to
signatures and terms.

Definition 3.49 The set Universe is defined as the set of terms over Con:

Universe := terms(Con, {⊥})

⊥ is an exceptional value that denotes a failed computation.

The set of values that a particular concrete program operates on is a subset of
Universe.

Definition 3.50 The function C : Prog → 2Universe maps a concrete pro-
gram c ∈ Prog to its set of concrete values:

C(c) := terms(C, {⊥})

with C ⊆ Con being the set of constructor names that appear in c.

Notation For readability we omit the fact that C is a function on concrete
programs. Because we always consider only a single concrete program c ∈ Prog
at a time, it is safe for us to denote C(c) by C.
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Example 3.51 Consider a concrete program containing the following type
declarations:

1 data Bool = False | True
2 data Maybe a = Nothing | Just a

Then, {False, True, Nothing, Just⊥, Just (Just True)} ⊊ C.

In the following, we want to differentiate between concrete values according to
their type.

Definition 3.52 CT ⊆ C is defined as the set of values in C of type T ∈
Type0 so that:

∀T ∈ Type0 : ⊥ ∈ CT

Example 3.53 Consider a concrete program with the following type decla-
rations:

1 data Bool = False | True
2 data Maybe a = Nothing | Just a

Then,

1. CBool = {False, True,⊥} and

2. CMaybe Bool = {Nothing, Just False, Just True, Just⊥,⊥}

We also want to differentiate types T ∈ Type0 by the cardinality of the set CT .
Definition 3.54 A type T ∈ Type0 is denoted to be infinite if CT is infinite.
Consequently, T is denoted to be finite if CT is finite.
Example 3.55 Consider a concrete program with the following type decla-
rations:

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)

Then, Bool is finite because CBool has a cardinality of three, whereas List Bool
is infinite because CList Bool is infinite.

Now that we have specified concrete values, we define the dynamic semantics of
expressions in a concrete program. In order to specify the dynamic semantics of
case distinctions, we need to determine which branch to evaluate. This is done
by matching the patterns of all branches against the value of the discriminant.
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Definition 3.56 matches : Pat×C → B is defined as a binary predicate
that holds if a pattern p ∈ Pat matches a concrete value v ∈ C:

matches(p, v) :=

⎧⎪⎨⎪⎩
True if p = C p1 . . . pn and v = C v1 . . . vn

where C ∈ Con and n = arity(C)
False otherwise

Example 3.57 matches holds for the following pairs of arguments:

(Just x, Just False) (False, False)

In a case distinction, patterns not only determine which branch to evaluate but
also bind constructor arguments to new variables.

Definition 3.58 bindMatch : Pat×C ↛ C{p1,...,pn} gives a mapping from
the set of variables {p1, . . . , pn} contained in a pattern C p1 . . . pn ∈ Pat to
the concrete values that these variables bind to according to a concrete value
C v1 . . . vn ∈ C with n = arity(C):

bindMatch(C p1 . . . pn, C v1 . . . vn) := {(p1, v1), . . . , (pn, vn)}

For all (p, v) ∈ Pat×C, bindMatch(p, v) is not defined if v = ⊥ or matches(p, v) =
False.

Example 3.59

1. bindMatch(Just x, Just False) = {(x, False)}

2. bindMatch(False, False) = {}

We specify the evaluation of expressions in a concrete program.
Definition 3.60 concrete-valueExp : Prog×CVar × Exp → C evaluates an
expression e ∈ Exp of a concrete program c ∈ Prog in the context of an
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environment E ∈ CVar such that

concrete-valueExp(c, E, e) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(e) if e ∈ Var and e ∈ dom(E)
e if e ∈ Con

C concrete-valueExp(c, E, e1)
. . .
concrete-valueExp(c, E, en)

if e is a constructor
application C e1 . . . en

concrete-valueExp(c, E′, e′)
with v1 = concrete-valueExp(c, E, a1)

. . .
vn = concrete-valueExp(c, E, an)
E′ = ((E[x1/v1]) . . . )[xn/vn]

if e is an application
f a1 . . . an with
f = \ x1 . . . xn -> e′ being
a declaration in c

concrete-valueExp(c, E′, y)
with v = concrete-valueExp(c, E, x)

E′ = E[bindMatch(p, v)]

if e is a case distinction
case x of . . . p -> y . . .
with v ̸= ⊥ and matches (p, v)
holds for pattern p ∈ Pat

concrete-valueExp(c, En, e′)
with v1 = concrete-valueExp(c, E, a1)

E1 = E[x1/v1]
v2 = concrete-valueExp(c, E1, a2)
E2 = E1[x2/v2]

. . .
vn = concrete-valueExp(c, En−1, an)
En = En−1[xn/vn]

if e is a local binding
let x1 = a1

. . .
xn = an

in e′

⊥ otherwise

Note the following remarks:

1. concrete-valueExp gives ⊥ for abstractions.

2. According to Definition 3.43 there is exactly one pattern p ∈ Pat in a
case distinction that matches the discriminant’s value v ∈ C if v ̸= ⊥.
Therefore, bindMatch(p, v) is always defined.

3. For (x, v) ∈ Var×C, E[x/v] denotes the update of E by the tuple
(x, v) (cf. Definition A.17).

4. For (p, v) ∈ Pat×C, E[bindMatch(p, v)] denotes the update of E by
the assignment resulting from evaluating bindMatch(p, v) (cf. Defini-
tion A.18).
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Finally, we specify the dynamic semantics of concrete programs.
Definition 3.61 For two types P, U ∈ Type0, concrete-value : ProgP U →
(CP × CU → CBool) evaluates a concrete program c ∈ ProgP U such that

concrete-value(c) :=
{((vp, vu), concrete-valueExp(c, {(p, vp), (u, vu)}, e)) | vp ∈ CP ∧ vu ∈ CU}

where e ∈ Exp denotes the expression bound in the constraint declaration
of c:

1 constraint = \p u -> e

Note that the set {(p, vp), (u, vu)} denotes the initial environment used for
evaluating the expression e.

The result of evaluating a concrete program with concrete-value is a constraint
(cf. Definition 3.1) where the domain of discourse, the parameter domain, and
the Boolean values are represented by sets of concrete values.

Example 3.62 Evaluating the concrete program c ∈ ProgNat,Pair Nat Nat
from Example 3.9 gives the following constraint:

concrete-value(c) =
{((vp, vu), R(vp, vu)) | vp ∈ CNat, vu ∈ CPair Nat Nat}

where R(vp, vu) =

concrete-valueExp(c, {(p, vp), (u, vu)}, case u of Pair a b -> ...)

The following values are included in concrete-valueNat,Pair Nat Nat(c):

concrete-valueNat,Pair Nat Nat(c) ⊋⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((Z, Pair Z Z), False),
((S Z, Pair (S Z) (S Z)), False),
((S(S Z), Pair (S(S Z)) (S Z)), False),
((S(S(S(S Z))), Pair (S(S Z)) (S(S Z))), True),
((S(S(S(S Z))), Pair (S(S Z)) (S(S(S Z)))), False)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Definition 3.3 already specified when an element of the domain of discourse is
considered to be a solution for a constraint and a given parameter. Now that we
have fixed the semantics of concrete programs, we lift this definition to specify
the solution for a concrete program.

Definition 3.63 For two types P, U ∈ Type0, a concrete value vu ∈ CU \
{⊥} is a solution for a concrete program c ∈ ProgP U and a parameter
vp ∈ CP if

concrete-value(c)(vp, vu) = True
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Notation Note that the parameter domain P and the domain of discourse U in
Definition 3.1 are written in an upright font whereas the types P, U ∈ Type0 in
this section are written in italics. The rationale of the different notation is the
following: the parameter domain P and the domain of discourse U are distinct
sets which are not restricted in any way, i.e., their elements may have some
arbitrary shape. On the other hand, P and U denote types whose corresponding
sets of values CP and CU represent a particular parameter domain and domain
of discourse, respectively. But as there are domains P and U which cannot be
represented by the values CP and CU for any types P, U ∈ Type0, we opt for a
different notation of unrestricted sets and types, respectively.

3.3 Language of Abstract Programs

The first step in deriving a propositional formula from a concrete program and
a parameter is the generation of an abstract program (cf. Figure 3.7). There
are two essential differences between concrete and abstract programs:

1. abstract programs operate on the domain of abstract values, and

2. abstract programs do not contain case distinctions.

Both differences result from the fact that an abstract program deals with data
that may be undetermined when evaluating the program. For example, only the
type is known for the designated solution of a constraint, but not its value. On
the other hand, the value of the constraint’s parameter is always known when
evaluating an abstract program. In order to handle both cases, a single abstract
value represents a finite set of concrete values. Example 3.64 illustrates both
cases in a simple concrete program.

Example 3.64 The following concrete program c ∈ Prog specifies the con-
junction of two Boolean variables.

1 data Bool = False | True
2

3 constraint :: Bool -> Bool -> Bool
4 constraint = \p u -> and p u
5

6 and :: Bool -> Bool -> Bool
7 and = \p u -> case p of False -> False
8 True -> u

Compiling c to an abstract program cA using the compilation function in-
troduced in Chapter 4 transforms the domain of all values to the domain of
abstract values. An abstract value representing the concrete value u actually
represents both concrete values False and True because the exact value is
not known when evaluating cA. On the other hand, the value of parameter p
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is known when evaluating cA (cf. Figure 3.7), thus, an abstract value repre-
senting p actually represents a single concrete value False or True, but not
both of them.

The reason that an abstract value a may only represent a finite set of concrete
values C ⊆ C is that the cardinality of C determines the number of propositional
variables that are needed to encode a. If |C| = n for n ∈ N, then a can
be encoded in binary using ⌈log2 n⌉ propositional variables. Thus, C must be
finite in order to encode a using a finite number of propositional variables.

The restriction to finite sets implies that there is no abstract value a that rep-
resents all concrete values CT for T ∈ Type0 if CT is infinite. This applies if
T is recursively defined, e.g., type Nat in Example 3.9. In this case, the set of
concrete values that is represented by a needs to be restricted to a finite subset
(cf. Section 4.1.5). This restriction induces that CO4 is an incomplete constraint
solver when dealing with recursively defined data types. Example 4.63 gives a
concrete program whose obvious solution is not found by CO4.

Besides the presence of abstract values, the lack of case distinctions is the second
notable difference of abstract programs. That is because there is no way to
evaluate case distinctions on potentially undetermined discriminants. While
Chapter 4 shows in detail how concrete programs with case distinctions are
compiled into abstract programs without case distinctions, Example 3.65 glances
at the result of this compilation for an exemplary concrete program.

Example 3.65 The following abstract program cA is the result of compiling
the concrete program c from Example 3.64 using the compilation function
introduced in Chapter 4:

1 constraintA = \p u -> and p u
2

3 and = \p u -> let v_d = p
4 in validv_d ( let v_1 = cons(1,2)
5 v_2 = u
6 in mergev_d v_1 v_2 )

The right-hand sides of the let-bindings to v_1 and v_2 represent the com-
piled branches of the case distinction in the definition of and from the
concrete program c. According to the dynamic semantics of abstract pro-
grams (cf. Section 3.3.3), both compiled branches are evaluated and their
values are eventually merged using the built-in function merge. The func-
tion mergev_d v_1 v_2 produces an abstract value that encodes the original
case distinction in terms of propositional variables and logical connectives.

The built-in function cons simulates constructor calls: in this example,
cons(1,2) gives an abstract value that represents the concrete value False.
Note that the subscript (1,2) results from the fact that False is the first
of two constructors of its corresponding type. Section 4.1.3 describes the
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semantics of cons in more detail.

The built-in function valid denotes a validity check for abstract values.
This check is necessary for simulating the semantics of case distinctions on
discriminants that evaluate to ⊥ ∈ C: recall that in this situation, the case
distinction evaluates to ⊥ as well (cf. Definition 3.60). The function valid
mimics this behavior for compiled case distinctions.

Note that the abstract program cA does not contain any type signatures.
That is because abstract programs operate only on abstract values and func-
tions of abstract values. Thus, type signatures are neither required nor al-
lowed in abstract programs as they do not reveal any additional information
about the program.

The following sections in this chapter specify the abstract syntax trees and
semantics of abstract programs. Again, we do not consider aspects related to the
textual representation of abstract programs, e.g., the placement of parentheses.

3.3.1 Syntax

The syntax of abstract programs is more restricted than the syntax of concrete
programs. An expression in an abstract program may either be a variable, a
call to a built-in function (arguments, cons, merge, valid), a function call, an
abstraction or a local binding.

Definition 3.66 The syntax of abstract expressions ExpSyntaxA is defined
by the following EBNF:

ExpSyntaxA :=
Var

| "arguments"N Var (argument access)
| "cons"( N ,N ) Var∗ (constructor call)
| "merge"Var Var+ (merge)
| "valid"Var Var (validity check)
| Var Var+ (application)
| "\" Var+ "->" ExpSyntaxA (abstraction)
| "let" (Var "=" ExpSyntaxA)+

"in" ExpSyntaxA

(local binding)

Note that there are no case distinctions in an abstract program.
Example 3.67 An exemplary abstract expression is

1 let x’ = arguments1 x
2 in
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3 let a_1 = plus x’ y
4 in
5 cons(2,2) a_1

An abstract program consists of a sequence of declarations where each declara-
tion binds an identifier to an abstract expression.

Definition 3.68 The syntax of abstract declarations DeclSyntaxA is de-
fined by the following EBNF:

DeclSyntaxA := Var "=" ExpSyntaxA

Example 3.69 An exemplary abstract declaration is

1 f = \x -> g x x

An abstract program is a non-empty sequence of abstract declarations.
Definition 3.70 The syntax of abstract programs ProgSyntaxA is defined
by the following EBNF:

ProgSyntaxA := DeclSyntax+
A

Example 3.71 shows an exemplary abstract program.
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Example 3.71 The following listing shows an excerpt of the abstract pro-
gram that is the result of compiling the concrete program from Example 3.9
using the compilation specified in Section 4.2.

1 constraintA = \p u ->
2 let v_d = u
3 in
4 validv_d
5 ( let v_1 = let a = arguments1 v_d
6 b = arguments2 v_d
7 in
8 let v_2 = greaterOne a
9 v_3 =

10 let v_4 = greaterOne b
11 v_5 =
12 let v_6 = p
13 v_7 =
14 let v_8 = a
15 v_9 = b
16 in
17 times v_8 v_9
18 in
19 eq v_6 v_7
20 in
21 and2 v_4 v_5
22 in
23 and2 v_2 v_3
24 in
25 mergev_d v_1 )
26

27 plus = \x y ->
28 let v_d = x
29 in
30 validv_d ( let v_1 = y
31 v_2 = let x’ = arguments1 v_d
32 in
33 let a_1 =
34 let v_3 = x’
35 v_4 = y
36 in
37 plus v_3 v_4
38 in
39 cons(2,2) a_1
40 in
41 mergev_d v_1 v_2 )

The complete listing can be found in Appendix C.1.
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3.3.2 Static Semantics

In contrast to concrete programs, which operate on concrete values, abstract
programs operate on abstract values.

Definition 3.72 The set of abstract values A is defined as the least set A
for which the following properties hold:

1. ⊥A ∈ A,

2. ∀(f⃗ , a⃗) ∈ F∗×A∗ : (f⃗ , a⃗) ∈ A.

Recall that F denotes the set of propositional formulas (cf. Definition B.4).

Notation Except for ⊥A, an abstract value (f⃗ , a⃗) ∈ A consists of a sequence of
propositional formulas f⃗ and a sequence of abstract values a⃗. In the following,
we denote each element in f⃗ as flag and each element in a⃗ as argument of an
abstract value.

The flags of an abstract value represent a constructor index (cf. Definition 3.35)
in binary code under an assignment for all contained propositional variables.
The arguments of an abstract value encode the corresponding constructor ar-
guments. In Example 3.73, we show a simple abstract value and map it to
different concrete values. Details about the transformation between abstract
and concrete values are given in Section 4.1.

Example 3.73 Assume the following type declaration in a concrete pro-
gram:

1 data Nat = Z | S Nat

From Definition 3.52 we know that {Z, S Z, S⊥} ⊊ CNat. Furthermore, as-
sume an abstract value a1 ∈ A containing one flag f1 ∈ V and one argument
a2 ∈ A that itself contains a single flag f2 ∈ V:

a1 =
(
(f1), (a2)

)
a2 =

(
(f2), ()

)
The abstract value a1 can be mapped to different concrete values by assigning
different truth values to f1 and f2:

f1 f2 concrete value
False False Z
False True Z
True False S Z
True True S ⊥

Now that we have specified the values that abstract programs operate on, we
define the set of statically well-defined abstract expressions.
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Definition 3.74 The set of statically well-defined abstract expressions ExpA
is the set of all abstract expressions e ∈ ExpSyntaxA such that all of the
following properties hold for e:

1. the type of e, according to Hindley–Damas–Milner type inference [22],
is either A or a n-ary function on A for n ∈ N>0,

2. e may not contain an abstraction as a strict subexpression,

3. each application is total, and

4. the same rules apply for local bindings in abstract programs as for local
bindings in concrete programs (cf. Definition 3.43), i.e., each bound
expression may only depend on previously bound expressions.

We define the set of statically well-defined abstract declarations.
Definition 3.75 The set of statically well-defined abstract declarations
DeclA is the set of all declarations in DeclSyntaxA that bind an abstract
expression from ExpA.

Finally, we define the set of statically well-defined abstract programs.
Definition 3.76 The set of statically well-defined abstract programs ProgA
is the set of all abstract programs cA ∈ ProgSyntaxA such that all of the
following properties hold for cA:

1. cA only contains declarations from DeclA, and

2. cA contains exactly one declaration of the form

1 constraintA = \p u -> e

where e ∈ ExpA.

The abstract program in Example 3.71 is statically well-defined.

3.3.3 Dynamic Semantics

We specify the dynamic semantics of abstract programs by providing an eval-
uation function for abstract programs and abstract expressions. Again, we do
not deal with problems related to non-termination: we only give the semantics
of terminating abstract programs.

Definition 3.77 abstract-valueExp : ProgA×AVar × ExpA → A evaluates
an expression e ∈ ExpA of an abstract program c ∈ ProgA in the context
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of an environment EA ∈ AVar such that

abstract-valueExp(c, EA, e) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EA(e) if e ∈ Var

argumentsi(v)
with v = abstract-valueExp(c, EA, e′)

if e = argumentsi e′

with i ∈ N>0

cons(j,k)(v1, . . . , vn)
with v1 = abstract-valueExp(c, EA, a1)

. . .
vn = abstract-valueExp(c, EA, an)

if e = cons(j,k) a1 . . . an

with j, k ∈ N>0,
j ∈ {1 . . . k}, and n ∈ N

mergeEA(v)(v1, . . . , vn)
with v1 = abstract-valueExp(c, EA, a1)

. . .
vn = abstract-valueExp(c, EA, an)

if e = mergev a1 . . . an

with n ∈ N>0

abstract-valueExp(c, EA, e′) if e = validv e′

with EA(v) ̸= ⊥A

abstract-valueExp(c, E′
A, e′)

with v1 = abstract-valueExp(c, EA, a1)
. . .

vn = abstract-valueExp(c, EA, an)
E′

A = ((EA[x1/v1]) . . . )[xn/vn]

if e is an application
f a1 . . . an with n ∈ N and
f =\ x1 . . . xn -> e′ being
a declaration in c

abstract-valueExp(c, EnA, e′)
with v1 = abstract-valueExp(c, EA, a1)

E1A = EA[x1/v1]
v2 = abstract-valueExp(c, E1A, a2)

E2A = E1A[x2/v2]
. . .

vn = abstract-valueExp(c, En−1A, an)
EnA = En−1A[xn/vn]

if e is a local binding
let x1 = a1

. . .
xn = an

in e′

with n ∈ N>0

⊥A otherwise

Note the following remarks:

1. Because the functions arguments, cons, and merge (Definition 4.4, 4.32,
and 4.41, respectively) depend on how concrete values are encoded as
abstract values, we give their definitions not until we have introduced
the encoding of concrete values in Section 4.1.
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2. The validity check gives ⊥A if the checked variable evaluates to ⊥A.

3. For (x, v) ∈ Var×A, EA[x/v] denotes the update of EA by the tuple
(x, v) (cf. Definition A.17).

Finally, we specify the evaluation of abstract programs.
Definition 3.78 abstract-value : ProgA → (A × A → A) evaluates an ab-
stract program c ∈ ProgA such that

abstract-value(c) :=
{((vp, vu), abstract-valueExp(c, {(p, vp), (u, vu)}, e)) | vp ∈ A ∧ vu ∈ A}

where c contains the following declaration

1 constraintA = \p u -> e

with p, u ∈ Var and e ∈ ExpA. Note that the set {(p, vp), (u, vu)} denotes
the initial environment used for evaluating the expression e.

The result of evaluating an abstract program with abstract-value is a binary
function on abstract values.

3.4 Correctness Criterion for Concrete and
Abstract Programs

This section gives a correctness criterion that specifies if an abstract program
is a correct compilation of a concrete program. A compilation function that
meets this specification is a necessary requirement for proving Theorem 3.8. It
is left to the subsequent chapters to provide an actual implementation of such
a compilation function.

Recall that abstract programs operate on abstract values. Thus, we define
encode/decode-pairs for mapping between concrete and abstract values.

Definition 3.79 An encode/decode-pair is a pair (E,D) where

E :=
(
ET | T ∈ Type0

)
and D :=

(
DT | T ∈ Type0

)
are families of mappings ET : CT → A and DT : BV × A→ CT for all types
T ∈ Type0 such that

1. ET (⊥) = ⊥A,

2. ∀σ ∈ BV : DT (σ,⊥A) = ⊥, and

3. ∀(v, σ) ∈ CT × BV : DT (σ,ET (v)) = v.
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For an encode/decode-pair (E,D) and a type T ∈ Type0, Definition 3.79 re-
quires that the value of DT (σ, a) is independent of any assignment σ ∈ BV if
a ∈ A is the result of ET (v) for a particular concrete value v ∈ CT .

In the following, we specify whether a concrete program has been correctly
compiled into an abstract program with respect to a particular encode/decode-
pair.

Definition 3.80 A compilation function compile : Prog → ProgA is cor-
rect with respect to an encode/decode-pair (E,D) if the following property
holds for each pair (c, cA) ∈ compile with c ∈ ProgP U and P, U ∈ Type0:

∀(p, uA, σ) ∈ CP × A× BV :
DBool(σ, abstract-value(cA)(EP (p), uA)) = concrete-value(c)(p,DU (σ, uA))

For each triple (p, uA, σ) ∈ CP × A × BV of a parameter p, an abstract value
uA, and a propositional assignment σ, Definition 3.80 requires that both ways
of evaluation lead to the same result:

1. Evaluating the abstract program cA ∈ ProgA to abstract-value(cA)
(EP (p), uA) in the first place, and then decoding the result.

2. Decoding uA in the first place, and then evaluating the concrete program
c ∈ ProgP U to concrete-value(c)(p,DU (σ, uA)).

Figure 3.81 illustrates both ways of evaluation in a commutative diagram.

(p, uA, σ) ∈ CP × A× BV i1 ∈ A

i2 ∈ CU b ∈ CBool

abstract-value(cA)(EP (p), uA)

DU (σ, uA) DBool(σ, i1)

concrete-value(c)(p, i2)

Figure 3.81: cA ∈ ProgA is a correct compilation of the concrete program c ∈
ProgP U if both evaluations lead to the same result b ∈ CBool for all (p, uA, σ) ∈
CP × A× BV.

We show the following Lemma:
Lemma 3.82 Let (E,D) be an encode/decode-pair and compile : Prog →
ProgA a compilation function that is correct with respect to (E,D). Then,
the function compile induces a correct solving procedure (cf. Theorem 3.8)
for a constraint specified as a concrete program c ∈ ProgP U with P, U ∈
Type0.
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Proof Let

1. P ∈ Type0 denote a parameter domain with p ∈ CP ,

2. U ∈ Type0 denote a domain of discourse,

3. compile denote a compilation function that is correct with respect to
the encode/decode-pair (E,D),

4. c ∈ ProgP U denote a concrete program, and

5. uA ∈ A denote an abstract value.

Then,

∀σ ∈ BV : DBool(σ, abstract-value(compile(c))(EP (p), uA)) = True

=⇒
concrete-value(c)(p,DU (σ, uA)) = True

This result is directly implied by the definition of a correct compilation
function: we just fixed the parameter p and the abstract value uA. Recall
that Definition 3.80 requires that concrete and abstract evaluation give the
same result, but in different domains. Thus, if abstract evaluation gives
an abstract value that decodes to True under an assignment σ ∈ BV, then
the concrete evaluation gives True as well. As we can compute a solution
DU (σ, uA) ∈ CU from such an assignment, we have a correct solving proce-
dure for constraints that are specified as concrete programs. ■
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Chapter 4

Compilation of Concrete
Programs

According to Figure 3.7, evaluating an abstract program for a given parameter
results in a formula that represents the original constraint in terms of a satisfia-
bility problem in propositional logic. As the constraint is specified as a concrete
program, this chapter gives a compilation function from concrete programs to
abstract programs. This compilation contains two essential parts: changing the
underlying domain from concrete values to abstract values, and transforming
case distinctions. Recall that case distinctions in concrete programs need to be
handled specifically because they are not allowed in abstract programs.

Section 4.1 covers the transformation from concrete to abstract values and im-
plements encoding and decoding functions. Section 4.2 describes the compila-
tion function itself by specifying the compilation of all entities of a concrete
program. In Section 4.2.1 we show that the compilation is correct according
to Definition 3.80. This chapter concludes by illustrating the usage of the con-
straint solver CO4 and addresses some aspects of its present implementation.

4.1 Data Transformation

Compiling a concrete into an abstract program changes the domain of values
that is operated on: while concrete programs operate on concrete values, ab-
stract programs operate on abstract values. Recall that each abstract value in
A other than ⊥A is a tuple (f⃗ , a⃗) containing a sequence of flags f⃗ ∈ F∗ and a
sequence of arguments a⃗ ∈ A∗ (cf. Definition 3.72). Figure 4.1 illustrates an
exemplary abstract value as a tree of flags.

The sequence of flags in an abstract value encodes the index of a constructor

53
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f⃗1

f⃗2

f⃗4

f⃗3

f⃗5 f⃗6a4 a5 a6

a2 a3

a1

a1 = (f⃗1, (a2, a3))

a2 = (f⃗2, (a4))

a3 = (f⃗3, (a5, a6))

a4 = (f⃗4, ())

a5 = (f⃗5, ())

a6 = (f⃗6, ())

f⃗1, f⃗2, f⃗3, f⃗4, f⃗5, f⃗6 ∈ F∗

Figure 4.1: A tree-shaped illustration of the abstract value a1 ∈ A

in binary code. As each flag is a propositional formula that may contain free
variables, an abstract value represents a whole set of concrete values. By con-
sidering an assignment for these free variables, an abstract value can be decoded
to a particular concrete value, depending on which constructor index (cf. Def-
inition 3.35) is encoded by the flags under the given assignment. Section 4.1.1
covers the mapping between flags and constructor indices, i.e., natural numbers.

We define accessor functions to retrieve flags and arguments from a given ab-
stract value.

Definition 4.2 flags : A → F∗ maps an abstract value a ∈ A to the top-
most flags in a and is defined by:

flags(a) :=
{

() if a = ⊥A

f⃗ if a = (f⃗ , a⃗)

| flags(a)| maps an abstract value a ∈ A to the number of its flags.

Notation Even though in general the flags flags(a) of an abstract value a ∈ A
are not the only flags present in a, we will sloppily denote them as the flags of
a in the remainder of this thesis.

Definition 4.3 arguments : A → A∗ maps an abstract value a ∈ A to its
arguments and is defined by:

arguments(a) :=
{

() if a = ⊥A

a⃗ if a = (f⃗ , a⃗)

| arguments(a)| maps an abstract value a ∈ A to the number of its arguments.

We are often interested in a particular argument of an abstract value.
Definition 4.4 For i ∈ N>0, argumentsi : A → A maps an abstract value
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a ∈ A to its i-th argument and is defined by:

argumentsi(a) :=
{

ai if arguments(a) = (a1, . . . , am) and i ≤ m

⊥A otherwise

Often we are interested in the values of the flags of an abstract value under a
certain assignment.

Definition 4.5 evalflags : BV × A \ {⊥A} → B∗ evaluates all m ∈ N flags
(f1, . . . , fm) ∈ Fm of an abstract value a ∈ A \ {⊥A}, i.e., flags(a) =
(f1, . . . , fm), under an assignment σ ∈ BV:

evalflags(σ, a) := (evalB(σ, f1), . . . , evalB(σ, fm))

Note that B denotes the Boolean algebra given in Definition B.2.
Example 4.6 Given two propositional formulas f1 = x1∧¬x2 and f2 = x2∨
x3, the flags of a = ((f1, f2), ()) ∈ A evaluate to evalflags(σ, a) = (True, False)
under assignment σ = {(x1, True), (x2, False), (x3, False)}.

In the following, we want to specify an encode/decode-pair for abstract values.
To do so, we start by giving a mapping between the flags of an abstract value
and the natural numbers.

4.1.1 Encoding and Decoding of Constructor Indices

The flags of an abstract value a ∈ A encode the index of a constructor. As
each flag is a propositional formula, a binary representation is reasonable. For
decoding a to a concrete value c ∈ CT with T having k constructors, we have
to differentiate three cases for the number of flags in a:

1. k > 2| flags(a)|, i.e., there are not enough flags to encode k different indices.
We can safely ignore this case for well-typed programs because Lemma 4.22
and 4.37 show that we always generate abstract values that hold enough
flags to encode all constructors of a given type.

2. k = 2| flags(a)|, i.e., the flags encode exactly k different indices. We use a
standard binary encoding in this case.

3. k < 2| flags(a)|, i.e., the flags can encode more than k different indices. If
the flags of a happen to represent a constructor index greater than k, then
a decoding for a would not be defined when using a naive binary encoding.

In the following, we give a prefix-free encoding for constructor indices that
handles the latter two cases and yet is total.

Definition 4.7 For two elements a⃗, b⃗ ∈ B∗, a⃗ is a prefix of b⃗ if there is a
sequence c⃗ ∈ B∗ so that b⃗ = a⃗ · c⃗, where · denotes the concatenation of
sequences (cf. Appendix A.1).
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A set where no element is a prefix of another element is prefix-free.
Definition 4.8 A set X ⊆ B∗ is prefix-free if for all pairs (⃗a, b⃗) ∈ X2 with
a⃗ ̸= b⃗, a⃗ is no prefix of b⃗.

For each k ∈ N>0, we define a particular prefix-free set of cardinality k.
Definition 4.9 For k ∈ N>0, the set Sk ⊊ B∗ is defined by:

Sk :=
{
{()} if k = 1
{(False) · s | s ∈ S⌈k/2⌉} ∪ {(True) · s | s ∈ S⌊k/2⌋} if k > 1

Example 4.10

S1 = {()}
S2 = {(False), (True)}
S3 = {(False, False), (False, True), (True)}
S4 = {(False, False), (False, True), (True, False), (True, True)}
S5 = {(False, False, False), (False, False, True)

,(False, True), (True, False), (True, True)}

Lemma 4.11 For all k ∈ N>0, Sk is prefix-free and has a cardinality of k.■

For all k ∈ N>0, the set Sk can be used for constructing a binary representation
to encode k different constructor indices. But we also want to handle the case
where an abstract value holds more flags than necessary to encode k different
constructor indices. Thus, we extend each set in Sk by additional elements.

Definition 4.12 For k ∈ N>0, the set Sk... is defined by:

Sk... := {f⃗ · b⃗ | f⃗ ∈ Sk ∧ b⃗ ∈ B∗}

For all k ∈ N>0, the set Sk... equals Sk with each sequence being extended by
additional Boolean values.

Lemma 4.13 For all k ∈ N>0, each element in Sk... has a unique prefix in
Sk.
Proof Assume the contrary: for k ∈ N>0, let p⃗1, p⃗2 ∈ Sk with p⃗1 ̸= p⃗2 be
two prefixes of a⃗ ∈ Sk..., i.e., a⃗ = p⃗1 · s⃗1 and a⃗ = p⃗2 · s⃗2 for two suffixes
s⃗1, s⃗2 ∈ B∗. Without loss of generality, we assume that p⃗1 contains more
elements than p⃗2. Thus, p⃗2 is a prefix of p⃗1, which contradicts Lemma 4.11.
Therefore, Lemma 4.13 holds. ■

For each k ∈ N>0, we differentiate all sequences in Sk... by their prefix in Sk.
Definition 4.14 Two elements a⃗, b⃗ ∈ Sk... are included in the binary rela-
tion ∼k...⊊ Sk...×Sk... if there is a common prefix c⃗ ∈ Sk for k ∈ N>0, so
that
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1. ∃u⃗ ∈ B∗ : a⃗ = c⃗ · u⃗, and

2. ∃v⃗ ∈ B∗ : b⃗ = c⃗ · v⃗.
Example 4.15

1. (False, False, True) ∼3... (False, False, False) with (False, False) being the
common prefix in S3.

2. {(False, False, True), (False, False, False)} ⊊ [(False, False)]3...

Because of Lemma 4.13, it is clear that for all k ∈ N>0, ∼k... is an equivalence
relation. The equivalence relation ∼k... induces k different equivalence classes.
By [⃗a]k... we denote such an equivalence class with respect to ∼k...:

[⃗a]k... := {⃗b | b⃗ ∈ Sk... ∧ a⃗ ∼k... b⃗}

For all k ∈ N>0, we want to specify a mapping from the elements in Sk... into
the natural numbers. To do so, we order the elements in Sk... lexicographically.

Definition 4.16 <B∗⊊ B∗×B∗ denotes the lexicographic order on B∗, where
a⃗ <B∗ b⃗ holds for two elements a⃗, b⃗ ∈ B∗ if

1. a⃗ ̸= b⃗ and a⃗ is a prefix of b⃗, or

2. c⃗ ∈ B∗ is the longest common prefix of a⃗ and b⃗ where

(a) ∃u⃗ ∈ B∗ : a⃗ = c⃗ · (False) · u⃗, and

(b) ∃v⃗ ∈ B∗ : b⃗ = c⃗ · (True) · v⃗

Note that <B∗ is a total order.
Example 4.17

1. (False, False) <B∗ (False, False, True)

2. (False, False) <B∗ (True, False, True)

3. (True, False, False) <B∗ (True, False, True)

For all k ∈ N>0, we define a mapping from Sk... to the natural numbers.
Definition 4.18 For all k ∈ N>0, numerick : Sk... → {1 . . . k} maps a se-
quence s⃗ ∈ Sk... to a natural number i ∈ {1 . . . k} where

1. Sk = {f⃗1, . . . , f⃗i, . . . , f⃗k},

2. f⃗1 <B∗ · · · <B∗ f⃗i <B∗ · · · <B∗ f⃗k, and

3. s⃗ ∈ [f⃗i]k...

Example 4.19 numeric3(False, True, True, True) = 2 because

1. S3 = {(False, False), (False, True), (True)},



58 CHAPTER 4. COMPILATION OF CONCRETE PROGRAMS

2. (False, False) <B∗ (False, True) <B∗ (True), and

3. (False, True, True, True) ∈ [(False, True)]3...

For all k ∈ N>0, we define a mapping from {1 . . . k} to Sk as well.
Definition 4.20 For all k ∈ N>0, numeric−

k : {1 . . . k} → Sk maps a natural
number i ∈ {1 . . . k} to a prefix-free sequence f⃗i ∈ Sk where

1. Sk = {f⃗1, . . . , f⃗i, . . . , f⃗k}, and

2. f⃗1 <B∗ · · · <B∗ f⃗i <B∗ · · · <B∗ f⃗k

Example 4.21 numeric−
3 (1) = (False, False) because

1. S3 = {(False, False), (False, True), (True)}, and

2. (False, False) <B∗ (False, True) <B∗ (True)

Note the following relation between numerick and numeric−
k for k ∈ N>0.

Lemma 4.22

∀k ∈ N>0 : ∀i ∈ {1 . . . k} : numerick(numeric−
k (i)) = i ■

Additionally, Lemma 4.22 guarantees that for all k ∈ N>0, numeric−
k gives a se-

quence that contains enough elements to discriminate k different constructors.

4.1.2 Encoding and Decoding of Abstract Values

Now that we have specified how constructor indices are encoded, we define
mappings between concrete and abstract values. These mappings must take into
account the type of the concrete value, especially the number of constructors,
the number of constructor arguments, and the constructor arguments’ types.
Thus, we introduce functions that give this information for a particular type.

Definition 4.23 constructors : Type0 → Con∗ gives the sequence of con-
structors for a given type T ∈ Type0 in the order of their occurrence in the
declaration of T .

Although constructors(T ) gives the sequence of constructors of type T ∈ Type0,
we occasionally treat that sequence as a set: this is valid as each constructor is
unique within constructors(T ).

Example 4.24 For the following type declaration

1 data Either a b = Left a | Right b

and two types T1, T2 ∈ Type0, we have

1. | constructors(Either T1 T2)| = 2, and
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2. constructors(Either T1 T2) = (Left, Right).

Mapping between an abstract and a concrete value of type T ∈ Type0 not only
depends on the constructors of T but also on its constructor arguments.

Definition 4.25 For all i ∈ N>0, con-argtypei : Con×Type0 ↛ Type0
maps the constructor C ∈ Con of type T ∈ Type0 to the type of its i-th
constructor argument con-argtypei(C, T ) ∈ Type0.

Note that for all (i, C, T ) ∈ N>0×Con×Type, con-argtypei(C, T ) is undefined
if i > arity(C) or C /∈ constructors(T ).

Example 4.26 For the following type declaration

1 data Either a b = Left a | Right b

and two types T1, T2 ∈ Type0, we have

1. con-argtype1(Left, Either T1 T2) = T1 and

2. con-argtype1(Right, Either T1 T2) = T2.

Now that we are able to query important features of types and constructors, we
define mappings between abstract and concrete values. Recall that an abstract
value a ∈ A represents a set of concrete values C ⊆ C. In the following, we
define a decoding from a to one of the concrete values in C. Which value in C
a is decoded to is determined by an assignment for the propositional variables
in the flags of a.

Definition 4.27 decodeT : BV×A→ CT gives a concrete value decodeT (σ, a)
of type T ∈ Type0 for an abstract value a ∈ A and an assignment σ ∈ BV:

decodeT (σ, a) :=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⊥ if a = ⊥A

⊥ if k > 2| flags(a)|

Cj decodeT1(σ, arguments1(a))
. . .
decodeTn

(σ, argumentsn(a))
otherwise

where

1. k = | constructors(T )| denotes the number of constructors of T ,

2. j = numerick(evalflags(σ, a)) denotes the decoded constructor index,

3. constructors(T ) = (C1, . . . , Cj , . . . , Ck),

4. n = arity(Cj) denotes the arity of constructor Cj , and

5. for all i ∈ {1 . . . n}, Ti = con-argtypei(Cj , T ) denotes the type of the
i-th argument of Cj .
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Example 4.28 illustrates how an abstract value a ∈ A is decoded to different
concrete values depending on the assignment of the propositional variables in
the flags of a.

Example 4.28 Consider a concrete program with the following type decla-
rations:

1 data RGB = Red | Green | Blue
2 data Maybe a = Nothing | Just a

Furthermore, assume two abstract values a1 = ((f1), a2) and a2 = ((f2, f3),
()), and an assignment σ ∈ BV for all propositional variables in the formulas
f1, f2, f3 ∈ F. The concrete shape of these formulas is not relevant here; we
are only interested in their values. Let

n1 = numeric2(evalflags(σ, a1))
n2 = numeric3(evalflags(σ, a2))

Then,

decodeMaybe RGB(σ, a1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nothing if n1 = 1
Just Red if n1 = 2 ∧ n2 = 1
Just Green if n1 = 2 ∧ n2 = 2
Just Blue if n1 = 2 ∧ n2 = 3

Next we encode a concrete value c ∈ CT of type T ∈ Type0 as an abstract
value a ∈ A that represents only the value c and no other concrete value. This
is done by using only constant Boolean values in the flags of a.

Definition 4.29 For a concrete value c ∈ CT of type T ∈ Type0, encodeT :
CT → A gives an abstract value such that:

encodeT (c) :={
⊥A if c = ⊥
(numeric−

k (j), (encodeT1(v1), . . . , encodeTn
(vn))) if c = Cj v1 . . . vn

where

1. k = | constructors(T )| denotes the number of constructors of T ,

2. constructors(T ) = (C1, . . . , Cj , . . . , Ck),

3. n = arity(Cj) denotes the arity of constructor Cj , and

4. for all i ∈ {1 . . . n}, Ti = con-argtypei(Cj , T ) denotes the type of the
i-th argument of Cj .
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Example 4.30 Consider a concrete program with the following type decla-
rations:

1 data RGB = Red | Green | Blue
2 data Maybe a = Nothing | Just a

Then,

encodeRGB(Green) = ((False, True), ())
encodeMaybe RGB(Just Green) = ((True), ((False, True), ()))

The following lemma is the concluding result of this section.
Lemma 4.31 The tuple (encode, decode) denotes an encode/decode-pair.
Proof For (encode, decode) to denote an encode/decode-pair, the following
property from Definition 3.79 must hold for all types T ∈ Type0:

∀(v, σ) ∈ CT × BV : decodeT (σ, encodeT (v)) = v

This follows from the definition of decodeT and encodeT and from the follow-
ing relation between numerick and numeric−

k for each k ∈ N>0 (cf. Lemma 4.22):

∀i ∈ {1 . . . k} : numerick(numeric−
k (i)) = i

As the other properties required for encode/decode-pairs are satisfied by
definition of decodeT and encodeT , Lemma 4.31 holds. ■

4.1.3 Mimic Constructor Calls in Abstract Programs

Recall that according to Definition 3.77, an abstract program may call the built-
in function cons whose semantics are given by a function cons. Applying cons
to abstract values mimics a constructor call from the corresponding concrete
program (cf. Example 3.71). Now that we have specified how concrete values
can be encoded as abstract values, we are able to define cons.

Definition 4.32 cons(j,k) : A∗ → A is defined by

cons(j,k)(a1, . . . , an) := (numeric−
k (j), (a1, . . . , an))

for j, k ∈ N>0 and j ∈ {1 . . . k}.

Note how the definition of cons resembles the definition of encode (cf. Defi-
nition 4.29): but whereas encode gives an abstract value for a given concrete
value, cons mimics the actual constructor call by taking all of its arguments as
arguments of the generated abstract value.

Example 4.33 Assume an abstract value a ∈ A. Then, cons(1,2)(a) =
((False), (a)) mimics the call to the first of two constructors where its arity
is assumed to be one.
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4.1.4 Complete Abstract Values

An abstract value generated by encode is decoded to a unique concrete value.
There are many ways to construct abstract values that can be decoded to more
than one concrete value. In the following, we introduce complete abstract values
as values that can be decoded to all concrete values of a particular set of types.

Definition 4.34 An abstract value a ∈ A is complete according to a set of
types T ⊆ Type0 if every type in T is finite, and if for each concrete value
c ∈

⋃
T ∈T CT \ {⊥} there is an assignment of propositional variables such

that a can be decoded to c:

∀T ∈ T : ∀c ∈ CT \ {⊥} : ∃σ ∈ BV : decodeT (σ, a) = c

Complete abstract values play an important role for CO4 because a complete
abstract value that can be decoded to all values of a finite type T ∈ Type0 does
only need to contain finite many propositional variables since CT is finite as
well (cf. Definition 3.54). We specify a function that generates such complete
abstract values.

Definition 4.35 complete : 2Type0 \ ∅ → A gives the following abstract
value for a non-empty set of finite types T ∈ 2Type0 \∅:

complete(T ) := ((f1, . . . , fm), (a1, . . . , an))

where

1. k = max{| constructors(T )| | T ∈ T } denotes the maximum number of
constructors over all types in T ,

2. m = ⌈log2 k⌉ denotes the number of flags needed to encode k construc-
tors,

3. each flag is a fresh propositional variable: ∀i ∈ {1 . . . m} : fi ∈ V,

4. n = max{arity(C) | T ∈ T ∧ C ∈ constructors(T )} denotes the highest
arity in the union of all constructors of all types in T , and

5. for all i ∈ {1 . . . n}, the abstract value ai = complete (Ti) is complete
for the types of all i-th constructor arguments in the union of all con-
structors of all types in T :

Ti = {con-argtypei(C, T ) | T ∈ T
∧ C ∈ constructors(T )
∧ i ≤ arity(C)}

This implementation of complete abstract values overlaps the encoding of con-
structor arguments, i.e., all first (second, third, etc.) arguments of all construc-
tors are encoded by the same complete abstract value. Figure 4.36 illustrates
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1 data A = A1 C
2 | A2 E
3 data B = B1 E D
4 data C = C1
5 | C2 E
6 data D = D1 E E
7 | D2 E E
8 data E = E1
9 | E2

f⃗1

f⃗2

f⃗4

f⃗3

f⃗5 f⃗6a4 a5 a6

a2 a3

a1

Figure 4.36: Visual representation of an abstract value a1 = complete({A, B}) =
(f⃗1, ((f⃗2, (f⃗4, ())), (f⃗3, ((f⃗5, ()), (f⃗6, ()))))) that can be decoded to all values in
CA ∪ CB. Note the overlapping of the following constructor arguments: a2 en-
codes the first argument of A1, A2, and B1; a5 encodes the first argument of D1
and D2; and a6 encodes the second argument of D1 and D2.

this feature for an exemplary abstract value generated by complete. In Sec-
tion 4.3.4, we discuss alternative encodings for complete abstract values.

Note that complete(T ) does not terminate if T ∈ 2Type0 \∅ contains an infinite
type (cf. Definition 3.54).

The following lemma follows immediately from Definition 4.35:
Lemma 4.37 For each set T ⊆ Type0, the abstract value complete(T ) ∈ A
is complete if all types in T are finite. ■

We give an example for decoding an abstract value generated by complete.
Example 4.38 Consider a program with the following type declarations:

1 data Bool = False | True
2 data RGB = Red | Green | Blue
3 data Either a b = Left a | Right b

Furthermore, assume two complete abstract values a1, a2 ∈ A containing the
propositional variables f1, f2, f3 ∈ V as flags:

complete({Either Bool RGB}) = a1 = ((f1), a2)
a2 = complete({Bool, RGB})

= ((f2, f3), ())

Note that a2 encodes the argument of both constructors of Either Bool RGB.
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For a given assignment σ ∈ B{f1,f2,f3}, let

n1 = numeric2(evalflags(σ, a1))
n2 = numeric2(evalflags(σ, a2))
n3 = numeric3(evalflags(σ, a2))

Then,

decodeEither Bool RGB(σ, a1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Left False if n1 = 1 ∧ n2 = 1
Left True if n1 = 1 ∧ n2 = 2
Right Red if n1 = 2 ∧ n3 = 1
Right Green if n1 = 2 ∧ n3 = 2
Right Blue if n1 = 2 ∧ n3 = 3

The overlapped encoding of constructor arguments illustrated in Figure 4.36
is beneficial for reducing the number of variables in the propositional formula
generated by CO4. The savings gained by applying this scheme depend on the
structure of the encoded data type. In Example 4.39, we show how the order of
the constructor arguments affects the resulting complete abstract value.

Example 4.39 Consider the following type declarations:

1 data Bool = False | True
2 data RGB = Red | Green | Blue
3 data Foo = Foo1 Bool RGB | Foo2 RGB Bool
4 data Bar = Bar1 Bool RGB | Bar2 Bool RGB

Note that the order of arguments in the second constructor is the only dif-
ference between both types Foo and Bar. Both values complete({Foo}) and
complete({Bar}) result in a similar shaped abstract value:

complete({Foo}) = (f⃗1, ((f⃗2, ()), (f⃗3, ())))
complete({Bar}) = (g⃗1, ((g⃗2, ()), (g⃗3, ())))

Whereas both vectors f⃗2 and f⃗3 contain two flags each, g⃗2 only contains
one flag but g⃗3 contains two flags. That is because complete exploits the
fact that the types of the first (resp. second) argument in both constructors
Bar1 and Bar2 match, and therefore all flags in g⃗2 and g⃗3 are shared. On
the other hand, each of the vectors f⃗2 and f⃗3 contain one flag that is not
shared because the overlapping arguments have different types. Thus, more
propositional variables are necessary for encoding all values of type Foo in
comparison to encoding the same number of values of type Bar.
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4.1.5 Incomplete Abstract Values

An abstract value that is complete according to a singleton set {T} with T ∈
Type0 represents all values in CT . Complete abstract values can be generated
using the function complete (cf. Definition 4.35). However, if CT is infinite,
complete({T}) is undefined because it does not terminate. This implies that the
function complete cannot be used when dealing with constraints over infinite
domains of discourse. Therefore, we generate an abstract value that represents
only a finite subset of the infinite set CT . How to restrict CT to a finite subset in
a reasonable manner depends on the shape of the type T . We give an example
in which T denotes the set of lists of Booleans.

Example 4.40 Assume the following type declarations:

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)

As List Bool is a recursive type, complete({List Bool}) is not defined.
But we can generate an abstract value abstract-bool-list(n) that represents
lists of Booleans up to a particular length n ∈ N:

abstract-bool-list(n) :=⎧⎪⎨⎪⎩
encodeList Bool(Nil) if n = 0
((f), ( complete({Bool})

, abstract-bool-list(n− 1)))
if n > 0 and f ∈ V is a fresh
propositional variable

abstract-bool-list gives:

a0 = abstract-bool-list(0) = ((False), ())
a1 = abstract-bool-list(1) = ((f1), (((b1), ()), a0)) with f1, b1 ∈ V
a2 = abstract-bool-list(2) = ((f2), (((b2), ()), a1)) with f2, b2 ∈ V

. . .

For all n ∈ N, abstract-bool-list(n) generates an abstract value that represents
all lists in CList Bool whose length is less or equal n (where the length is
defined as the number of involved Cons constructors).

Functions similar to abstract-bool-list can be constructed for other recursively
defined types, e.g., in Example 6.10 we generate incomplete abstract values that
represent bounded natural numbers.

4.1.6 Merging Abstract Values

Now that we have introduced abstract values as a representation for sets of
concrete values, we specify a merge operation for abstract values. As we have
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described in the introduction of Section 3.3, a call to the built-in function merge
gives an abstract value that simulates the result of a case distinction in terms
of propositional variables and logical connectives.

Recall that according to Definition 3.77, the dynamic semantics of a call to
merge are given by a function merge which we have not yet specified.

Definition 4.41 mergevd
: A∗ → A merges k ∈ N>0 abstract values

(v1, . . . , vk) ∈ Ak according to the value vd ∈ A and is defined by:

mergevd
(v1, . . . , vk) =

{
⊥A if vd = ⊥A

r otherwise

so that r ∈ A is specified by

∀(σ, i) ∈ BV × {1 . . . k} :
(numerick(evalflags(σ, vd)) = i) =⇒ (decodeT (σ, r) = decodeT (σ, vi))

with T ∈ Type0 being the type of the case distinction in the concrete pro-
gram.

Definition 4.41 of merge does not induce any concrete implementation but spec-
ifies its result in relation to its arguments: for vd, v1, . . . , vk ∈ A, k ∈ N>0,
and σ ∈ BV, the decoding of the abstract value mergevd

(v1, . . . , vk) equals the
decoding of vi for i ∈ {1 . . . k} if the flags of vd index the i-th constructor un-
der the assignment σ. Note that Definition 4.41 does not specify the result of
mergevd

(v1, . . . , vk) if the flags of the abstract value vd do not evaluate to a value
in {1 . . . k}. The reason is that such a situation does not occur if the original
concrete program is well-typed.

Example 4.42 illustrates a simple merge of two abstract values.
Example 4.42 Assume the following abstract values vd, v1, v2 ∈ A that
only contain a single flag each:

vd = ((fd), ()) with fd ∈ F
v1 = ((f1), ()) with f1 ∈ F
v2 = ((f2), ()) with f2 ∈ F

Each of these values represents concrete values of type Bool where:

1 data Bool = False | True

In order to satisfy the property stated in Definition 4.41, it is sufficient for
the value of mergevd

(v1, v2) to contain only a single flag because this merge
needs to differentiate between two values v1 and v2 only. Thus,

mergevd
(v1, v2) = r = ((fr), ()) with fr ∈ F
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For the resulting value r and its single flag fr, the following must hold for
all assignments σ ∈ BV:

(numeric2(evalflags(σ, vd)) = 1 =⇒ decodeBool(σ, r) = decodeBool(σ, v1))
∧ (numeric2(evalflags(σ, vd)) = 2 =⇒ decodeBool(σ, r) = decodeBool(σ, v2))

which equals:

(evalB(σ, fd) = False =⇒ evalB(σ, fr) = evalB(σ, f1)
∧ (evalB(σ, fd) = True =⇒ evalB(σ, fr) = evalB(σ, f2)

Furthermore, assume that f1 = True and f2 = False. In this case we have:

(evalB(σ, fd) = False =⇒ evalB(σ, fr) = True)
∧ (evalB(σ, fd) = True =⇒ evalB(σ, fr) = False)

For example, this property holds if fr ⇔ ¬fd.

Now, we inspect a special case of merge. The following lemma states that
mergevd

(v1, . . . , vk) projects onto one of its k ∈ N>0 arguments v1, . . . , vk ∈ A
if the flags flags(vd) of vd index a constant constructor index, regardless of any
assignment for the propositional variables in flags(vd).

Lemma 4.43 If there is an abstract value vd ∈ A and a number n ∈ {1 . . . k}
for some k ∈ N>0 so that

∀σ ∈ BV : numerick(evalflags(σ, vd)) = n

then
∀(v1, . . . , vk) ∈ Ak : mergevd

(v1, . . . , vk) = vn ■

Lemma 4.43 immediately follows from the Definition 4.41 of merge. The conse-
quences of Lemma 4.43 are that in some situations, compiled case distinctions
can be evaluated without generating new subformulas. This is not always pos-
sible as the flags in the abstract value vd in general do not index a constant
constructor. In Section 9.2, we illustrate the difference between both types of
case distinctions and discuss their importance for estimating the complexity of
constraints specified by concrete programs.

4.2 Program Transformation

This section specifies a compilation function from concrete to abstract programs
that is correct according to Definition 3.80. The essential part of this compila-
tion concerns case distinctions. Recall that, in contrast to concrete programs,
there are no case distinctions in abstract programs. Thus, case distinctions are
handled in a special way by the compilation function.
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Notation In the following, we define the result of a compilation by specifying
the abstract counterpart a for some entity of the concrete program where a is
given using the syntax of abstract programs. Enclosing a particular term f(x)
in brackets Jf(x)K in a denotes that not f(x) appears in a but the result of
evaluating f(x).

Firstly, we define the compilation of expressions compileExp : Exp→ ExpA. For
some expressions, the compilation to their abstract counterparts is trivial, e.g.,
variables are just copied to the abstract program as they appear in the concrete
program.

Definition 4.44 The compilation of variables is defined by:

∀v ∈ Var : compileExp(v) := v

Local bindings are compiled by compiling all subexpressions but their structure
remains.

Definition 4.45 The compilation of local bindings is defined by:

∀(v, e1, e2) ∈ Var×Exp×Exp :
compileExp(let v = e1 in e2) := let v = JcompileExp(e1)K

in JcompileExp(e2)K

Similarly to local bindings, an abstraction is compiled by compiling the subex-
pression of the abstraction. Again, the program structure remains.

Definition 4.46 The compilation of abstractions is defined by:

∀(v, e) ∈ Var×Exp :
compileExp(\ v -> e) := \ v -> JcompileExp(e)K

Compiling function applications slightly changes the program’s structure: each
argument is bound to a fresh name inside a block of local bindings. This change
just accounts for the syntax of function applications in abstract programs (cf.
Definition 3.66) where each argument of an application must have been bound
to a name.

Definition 4.47 The compilation of function applications is defined by

∀(f, n) ∈ Var×N>0 : ∀(e1, . . . , en) ∈ Expn :
compileExp(f e1 . . . en) := let v1 = JcompileExp(e1)K

. . .

vn = JcompileExp(en)K
in f v1 . . . vn

where v1, . . . , vn ∈ Var are fresh variable names.



4.2. PROGRAM TRANSFORMATION 69

The compilation of a constructor application resembles the compilation of func-
tion applications, but an abstract value a ∈ A is explicitly generated so that a’s
flags index the called constructor.

Definition 4.48 The compilation of a constructor application C e1 . . . en is
defined by

compileExp(C e1 . . . en) := let v1 = JcompileExp(e1)K
. . .

vn = JcompileExp(en)K
in

cons(j,k) v1 . . . vn

where

1. C ∈ Con is the j-th constructor of a type T ∈ Type,

2. k = | constructors(T )| denotes the number of constructors of T ,

3. n = arity(C) denotes the arity of the constructor C,

4. e1, . . . , en ∈ Exp are n constructor arguments, and

5. v1, . . . , vn ∈ Var denote fresh variable names.

The compilation of case distinctions is more complex. Note that according
to Definition 3.60, the value of evaluating a case distinction is determined by
evaluating the one branch whose pattern matches the discriminant. That is in
general not doable in the domain of abstract values because the flags of the
discriminant’s abstract value d ∈ A may contain propositional variables. Thus,
there is no way to determine which pattern matches on d. Therefore, all branches
are evaluated in an abstract case distinction and the final result is obtained by
merging the branches’ abstract values.

Definition 4.49 The compilation of a case distinction e ∈ Exp

e = case d of C1 a11 . . . a1n1 -> e1

. . .

Ck ak1 . . . aknk
-> ek

is defined by

compileExp(e) := let vd = JcompileExp(d)K
in validvd

( let v1 = Jcompile-branchvd
(e1)K

. . .

vk = Jcompile-branchvd
(ek)K

in

mergevd
v1 . . . vk )

where
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1. the value of discriminant d is of type T ∈ Type,

2. k = | constructors(T )| denotes the number of constructors of T ,

3. for all i ∈ {1 . . . k}, ni = arity(Ci) denotes the arity of constructor Ci,

4. vd, v1, . . . , vk ∈ Var are fresh variable names, and

5. for all i ∈ {1 . . . k}, compile-branchvd
: Exp → ExpA compiles a single

branch ei ∈ Exp of a case distinction:

compile-branchvd
(ei) := let ai1 = arguments1 vd

. . .

aini
= argumentsni

vd

in

JcompileExp(ei)K

(if ni = 0, then compile-branchvd
(ei) reduces to JcompileExp(ei)K)

Note that the compilation of a case distinction contains a validity check validvd

on the value vd of the evaluated discriminant compileExp(d) (cf. the dynamic
semantics of valid in Definition 3.77). This check is necessary for simulating
the dynamic semantics of case distinctions on undefined discriminants, i.e., when
d evaluates to ⊥ in a concrete program. According to Definition 3.60, the case
distinction as a whole evaluates to ⊥ in this situation.

For each branch ei with i ∈ {1 . . . k}, compile-branchvd
retrieves the ni construc-

tor arguments from the discriminant’s abstract value vd and binds them to the
same names as in the concrete program. After evaluating each branch, all the
results v1, . . . , vk are merged into a single abstract value by calling merge (cf.
Section 4.1.6).

We illustrate the compilation of case distinctions in Example 4.50.
Example 4.50 Consider the following declarations:

1 data Bool = False | True
2 not = \x -> case x of False -> True
3 True -> False

The corresponding abstract declaration is

1 not = \x -> let v_d = x
2 in
3 validv_d ( let v_1 = cons(2,2)
4 v_2 = cons(1,2)
5 in
6 mergev_d v_1 v_2 )



4.2. PROGRAM TRANSFORMATION 71

In this case, v_d (resp. v_1 and v_2) consists of a single flag fd (resp. f1
and f2) because it represents a Boolean value. For the result r ∈ A of
the corresponding merge it is sufficient to contain a single flag fr ∈ F as
well because it needs to differentiate between two values only. According to
Example 4.42, fr = ¬fd is a valid result because (f1) = numeric−

2 (2) = (True)
and (f2) = numeric−

2 (1) = (False). The equality fr = ¬fd shows how the
negation of a value of type Bool is represented in terms of propositional
formulas.

Finally, we specify compileExp by the union of all cases that we have covered so
far.

Definition 4.51 compileExp : Exp → ExpA compiles an expression of a
concrete program to an expression of an abstract program, so that compileExp
complies with the Definitions 4.44, 4.45, 4.46, 4.47, 4.48, and 4.49.

Now that we have specified the compilation of expressions, we apply compileExp
in order to compile declarations and concrete programs.

Each declaration in a concrete program that binds an expression to a name is
compiled to a declaration in the abstract program. Type declarations and type
signatures are removed. That is because abstract programs operate on abstract
values that are implicitly defined for each abstract program.

Definition 4.52 compileDecl : Decl ↛ DeclA transforms a declaration
d ∈ Decl that binds an expression e ∈ Exp to a name v ∈ Var:

compileDecl(d) :={
constraintA = JcompileExp(e)K if d = constraint = e

v = JcompileExp(e)K if d = v = e

Note that for most cases the compileDecl keeps bound names, e.g., if expression
e ∈ Exp is bound to name v ∈ Var in the concrete program, then compileExp(e)
is bound to v in the abstract program. The single exception concerns the name
constraint, which is changed to constraintA in order to differentiate between
both functions.

The compilation of concrete programs is reduced to the compilation of declara-
tions that bind expressions to names.

Definition 4.53 The compilation function compile : Prog→ ProgA com-
piles all n ∈ N>0 declarations d1, . . . , dn ∈ Decl in a concrete program
c ∈ Prog that bind expressions to names, i.e., all declarations of the form
n = e for some pair (n, e) ∈ Var×Exp:

compile(c) := JcompileDecl(d1)K
. . .

JcompileDecl(dn)K
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Example 4.54 The listing in Appendix C.1 shows the result of compiling
the concrete program from Example 3.9 using the function compile.

4.2.1 Correctness of Compilation

In this section we show that the compilation function given in Definition 4.53
is correct. First of all, we define a correctness criterion for compiling concrete
expressions, which is a variant of the correctness criterion for compiling concrete
programs given in Definition 3.80.

Definition 4.55 The compilation function compileExp : Exp → ExpA is
correct with respect to the encode/decode-pair (E,D) if the following property
holds for each program c ∈ Prog and each expression e ∈ Exp in c:

∀(EA, σ) ∈ AVar × BV :
DT (σ, abstract-valueExp(cA, EA, eA)) = concrete-valueExp(c,DEnv(σ, EA), e)

where

1. cA = compile(c) denotes a correct compilation of c,

2. eA = compileExp(e) denotes a correct compilation of e,

3. T ∈ Type0 denotes the type of expression e, and

4. DEnv : BV×AVar → CVar decodes an abstract environment EA ∈ AVar

to a concrete environment under an assignment σ ∈ BV:

DEnv(σ, EA) := {(v,DTa
(σ, a)) | (v, a) ∈ EA}

where Ta ∈ Type0 denotes the type of a in the concrete expression
e (recall that concrete and abstract programs share the same set of
variable names Var).

Note how Definition 4.55 resembles the correctness criterion for concrete and
abstract programs (cf. Definition 3.80): we just added environments because
concrete and abstract expressions are evaluated in the context of an environment
(cf. Sections 3.2.3 and 3.3.3).

As we have seen in the previous section, the compilation of most expressions does
neither change the program structure nor its semantics, thus, the correctness
criterion is satisfied. In Example 4.56, we illustrate this for the compilation of
constructor applications.

Example 4.56 The compilation function compileExp introduced in Defini-
tion 4.51 compiles a constructor application C e1 . . . en of type T ∈ Type0
in a concrete program c ∈ Prog by generating the following abstract ex-
pression (cf. Definition 4.48) in an abstract program cA ∈ ProgA
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1 let v1 = e1A
2 ...
3 vn = enA
4 in
5 cons(j,k) v1 . . . vn

where

1. constructor C ∈ Con is the j-th of type T ,

2. k = | constructors(T )| denotes the number of constructors of type T ,

3. n = arity(C) denotes the arity of constructor C,

4. for all i ∈ {1 . . . n}, eiA ∈ ExpA denotes a correct compilation of ei ∈
Exp, and

5. for all i ∈ {1 . . . n}, Ti ∈ Type denotes the type of ei.

In order to show that the compilation of constructor applications is cor-
rect with respect to the encode/decode-pair (encode, decode), we inspect the
value that cons(j,k) v1 . . . vn evaluates to. Therefore, we firstly evaluate all n
compiled constructor arguments to the values a1, . . . , an ∈ A in the context
of a fixed environment EA ∈ AVar:

∀i ∈ {1 . . . n} : ai = abstract-valueExp(cA, EA, eiA)

By E′
A ∈ AVar we denote an updated environment with

E′
A = EA[{(v1, a1), . . . , (vn, an)}]

According to Definition 3.77, cons(j,k) v1 . . . vn evaluates to the abstract
value cons(j,k)(a1, . . . , an) whose semantics are given by Definition 4.32. Thus,
for the present constructor application, the left-hand side of the equality in
Definition 4.55 gives:

∀σ ∈ BV : decodeT (σ, abstract-valueExp(cA, E′
A, cons(j,k) v1 . . . vn))

= decodeT (σ, cons(j,k)(a1, . . . , an))
= C decodeT1(σ, a1) . . . decodeTn

(σ, an)

For the right-hand side of the equality in Definition 4.55, we have

∀σ ∈ BV : concrete-valueExp(c, decodeEnv(σ, E′
A), C e1 . . . en)

= C concrete-valueExp(c, decodeEnv(σ, E′
A), e1)

. . .

concrete-valueExp(c, decodeEnv(σ, E′
A), en)

As the following holds by induction over the constructor arguments ei for
i ∈ {1 . . . n}

∀σ ∈ BV : decodeTi
(σ, ai) = concrete-valueExp(c, decodeEnv(σ, E′

A), ei)
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we have shown that constructor applications are compiled correctly according
to Definition 4.55.

There are similar proofs for variables, function applications and local bindings.
The only exception concerns the compilation of case distinctions. Before we
prove their correctness, we show that expressions that have been compiled us-
ing the compilation function given in Definition 4.51 correctly deal with failed
computations. This is merely a special case of the correctness criterion specified
in Definition 4.55, but it is worthwhile to be proven separately as it simplifies
the correctness proof for compiled case distinctions.

Lemma 4.57 The compilation function compileExp given in Definition 4.51
is correct with respect to failed computations, i.e., for a concrete expression
e ∈ Exp of type T ∈ Type0 in a concrete program c ∈ Prog and an
abstract expression eA ∈ ProgA in an abstract program cA ∈ ProgA with
(e, eA) ∈ compileExp, the following equivalence holds:

∀(EA, σ) ∈ AVar × BV : decodeT (σ, abstract-valueExp(cA, EA, eA)) = ⊥
⇔ concrete-valueExp(c, decodeEnv(σ, EA), e) = ⊥

Proof We show both directions of the equivalence in Lemma 4.57 for a fixed
environment EA ∈ AVar and a fixed assignment σ ∈ BV.

1. "⇐": According to the dynamic semantics of concrete expressions (cf.
Definition 3.60), there are two reasons for e to evaluate directly to ⊥, i.e.,
without evaluating any subexpressions: e is either an abstraction or a vari-
able that is bound to ⊥ in decodeEnv(σ, EA). The former reason can be
omitted for statically well-typed programs. For the latter case, the following
holds:

concrete-valueExp(c, decodeEnv(σ, EA), e) = decodeEnv(σ, EA)(e)
= decodeT (σ, EA(e))
= decodeT (σ,⊥A)
= ⊥

In this case, the abstract expression eA denotes the same variable (cf. Defini-
tion 4.44) but in the context of the abstract program cA. Thus, Lemma 4.57
holds because of the following equality:

decodeT (σ, abstract-valueExp(cA, EA, eA)) = decodeT (σ, EA(eA))
= decodeT (σ,⊥A)
= ⊥

All other ways of evaluating the concrete expression e to ⊥ involve the eval-
uation of subexpressions. The correctness of Lemma 4.57 for these cases can
be proven by induction over the involved subexpressions.
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2. "⇒": According to the dynamic semantics of abstract expressions (cf.
Definition 3.77) that have been compiled by compileExp, there are three rea-
sons for eA to evaluate to ⊥A:

1. In the first case, eA is a variable bound to ⊥A in EA, i.e., (eA,⊥A) ∈ EA.
Then, Lemma 4.57 holds because of

decodeT (σ, abstract-valueExp(cA, EA, eA)) = decodeT (σ, EA(eA))
= decodeT (σ,⊥A)
= ⊥

and

concrete-valueExp(c, decodeEnv(σ, EA), e) = decodeEnv(σ, EA)(e)
= decodeT (σ, EA(e))
= decodeT (σ,⊥A)
= ⊥

2. In the remaining two cases, eA denotes a compiled case distinction (cf.
Definition 4.49):

eA = let vd = dA

in validvd
( let v1 = let a11 = arguments1 vd

. . .

in e1A

. . .

vk = let ak1 = arguments1 vd

. . .

in ekA

in

mergevd
v1 . . . vk )

This abstract expression has been compiled from the following original
case distinction e:

e = case d of C1 a11 . . . -> e1

. . .

Ck ak1 . . . -> ek

We assume the discriminant d being of type Td ∈ Type0 with k =
| constructors(Td)|.

Now, there are two reasons why eA might evaluate to ⊥A:
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(a) Because of the semantics of validvd
(cf. Definition 3.77), eA eval-

uates to ⊥A if dA evaluates to ⊥A, which gives the left-hand side
of the equivalence in Lemma 4.57:

abstract-valueExp(cA, EA, dA) = ⊥A

=⇒ abstract-valueExp(cA, EA, eA) = ⊥A

=⇒ decodeT (σ, abstract-valueExp(cA, EA, eA)) = ⊥

By induction over d and dA, we have

decodeTd
(σ, abstract-valueExp(cA, EA, dA)) = ⊥
⇔ concrete-valueExp(c, decodeEnv(σ, EA), d) = ⊥

which implies the right-hand side of the equivalence in Lemma 4.57
due to the dynamic semantics of case distinctions (cf. Defini-
tion 3.60):

abstract-valueExp(cA, EA, dA) = ⊥A

=⇒ decodeTd
(σ, abstract-valueExp(cA, EA, dA)) = ⊥

=⇒ concrete-valueExp(c, decodeEnv(σ, EA), d) = ⊥
=⇒ concrete-valueExp(c, decodeEnv(σ, EA), e) = ⊥

Thus, Lemma 4.57 holds if the compilation dA of the concrete
discriminant d evaluates to ⊥A.

(b) Because of the semantics of mergevd
(cf. Definition 4.41), eA eval-

uates to ⊥A if all compiled branches eiA evaluate to ⊥A for i ∈
{1 . . . k}. This gives the left-hand side of the equivalence in
Lemma 4.57:(
∀i ∈ {1 . . . k} : abstract-valueExp(cA, EA, eiA) = ⊥A

)
=⇒ abstract-valueExp(cA, EA, eA) = ⊥A

=⇒ decodeT (σ, abstract-valueExp(cA, EA, eA)) = ⊥

By induction over ei and eiA for all i ∈ {1 . . . k}, we have

decodeT (σ, abstract-valueExp(cA, EA, eiA)) = ⊥
⇔ concrete-valueExp(c, decodeEnv(σ, EA), ei) = ⊥

which implies that each branch in the original case distinction e
evaluates to ⊥ in the present case. Then, e evaluates to ⊥ as well:⎛⎜⎝∀i ∈ {1 . . . k} : abstract-valueExp(cA, EA, eiA) = ⊥A

=⇒ decodeT (σ, abstract-valueExp(cA, EA, eiA)) = ⊥
=⇒ concrete-valueExp(c, decodeEnv(σ, EA), ei) = ⊥

⎞⎟⎠
=⇒ concrete-valueExp(c, decodeEnv(σ, EA), e) = ⊥
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Thus, Lemma 4.57 holds if the compilation eiA of the concrete
branch ei evaluates to ⊥A for all i ∈ {1 . . . k}. ■

Now that we have proven the correctness of the compilation with respect to
failed computations, we show the correctness of compiled case distinctions.

Lemma 4.58 For the compilation of case distinctions (cf. Definition 4.49),
the compilation function compileExp introduced in Definition 4.51 is correct
according to the correctness criterion given in Definition 4.55 with respect
to the encode/decode-pair (encode, decode).
Proof Assume a case distinction e ∈ Exp of type T ∈ Type0 in a concrete
program c ∈ Prog

e = case d of C1 a11 . . . a1n1 -> e1

. . .

Ck ak1 . . . aknk
-> ek

where the concrete discriminant d ∈ Exp is of type Td ∈ Type0 with k =
| constructors(Td)| and constructors(Td) = (C1, . . . , Ck). For all i ∈ {1 . . . k},
ni = arity(Ci) denotes the arity of constructor Ci.

According to Definition 4.49, the compiled case distinction e ∈ ExpA has the
following shape:

eA = let vd = dA

in validvd
( let v1 = let a11 = arguments1 vd

. . .

a1n1 = argumentsn1
vd

in e1A

. . .

vk = let ak1 = arguments1 vd

. . .

aknk
= argumentsnk

vd

in ekA

in

mergevd
v1 . . . vk )

Furthermore, we assume all of the following:

1. The abstract expression dA ∈ ExpA is a correct compilation of d.

2. The abstract expression eiA ∈ ExpA is a correct compilation of the
branch ei for i ∈ {1 . . . k}.

3. For a fixed environment EA ∈ AVar, eA evaluates to an abstract value
other than ⊥A, i.e., abstract-valueExp(cA, EA, eA) ̸= ⊥A. The opposing
case is handled in Lemma 4.57.
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In order to show that the compilation of the case distinction eA is correct
with respect to a fixed environment EA ∈ AVar, an assignment σ ∈ BV, and
the encode/decode-pair (encode, decode), we inspect the values that both
expressions e and eA evaluate to according to the value of their respective
discriminant.

The value of the compiled expression eA equals the value of mergevd
v1 . . . vk.

According to Definition 4.41, mergevd
v1 . . . vk decodes to the same value as

eiA does if the decoded flags of the abstract value of dA represent the natural
number i ∈ {1 . . . k}:

numerick(evalflags(σ, abstract-valueExp(cA, EA, dA))) = i

=⇒
decodeT (σ, abstract-valueExp(cA, EA, eA))

= decodeT (σ, abstract-valueExp(cA, EA[EiA], eiA))

Note that ei is evaluated under the environment decodeEnv(σ, EA[EiA]) that
contains the bounded constructor arguments:

EiA =
⋃

j∈{1...ni}

(aij , argumentsj(abstract-valueExp(cA, EA, dA)))

The value of the original case distinction e equals the value of the i-th branch
ei if the value of the discriminant d matches on the i-th constructor Ci ∈ Con
of type Td for i ∈ {1 . . . k} (cf. Definition 3.60):

matches(Ci ak1 . . . aknk
, concrete-valueExp(c, decodeEnv(σ, EA), d))

=⇒
concrete-valueExp(c, decodeEnv(σ, EA), e)

= concrete-valueExp(c, decodeEnv(σ, EA[EiA]), ei)

As

numerick(evalflags(σ, abstract-valueExp(cA, EA, dA))) = i

⇔
matches(Ci ai1 . . . aini , concrete-valueExp(c, decodeEnv(σ, EA), d))

and

decodeT (σ, abstract-valueExp(cA, EA, eiA))
= concrete-valueExp(c, decodeEnv(σ, EA), ei)

holds for all i ∈ {1 . . . k} by induction over d, dA, ei, and eiA, the compilation
eA of the case distinction e is correct according to Definition 4.55 with respect
to the encode/decode-pair (encode, decode). ■
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Now that we have proven the correctness of the compilation of concrete expres-
sions, we show that this is sufficient for correctly compiling concrete programs.

Lemma 4.59 For two types P, U ∈ Type0 and the set ProgP U of con-
crete programs, the compilation function compile given in Definition 4.53 is
correct according to Definition 3.80 with respect to the encode/decode pair
(encode, decode).
Proof Lemma 4.59 immediately follows from the correctness of the compila-
tion function compileExp for concrete expressions. That is because all entities
other than concrete expressions are either removed during the compilation of
concrete programs (e.g., type declarations) or maintain their structure and
dynamic semantics (e.g., declarations that bind values to identifiers). ■

4.3 Solving Constraints with CO4

In this section, we address the present implementation of the constraint solver
CO4. We start by illustrating how the concepts we introduced in the previous
sections act together in order to constitute CO4’s central solving algorithm (cf.
Figure 4.60). In order to find a solution for a constraint specified by a concrete
program c ∈ ProgP U for P, U ∈ Type0 and a parameter p ∈ CP , the algorithm
expects three inputs: c, p, and an abstract value uA ∈ A. In case that the domain
of discourse U is finite, uA may be equal to complete({U}); otherwise, it is an
incomplete abstract value (cf. Section 4.1.5).

The algorithm may have three different outcomes:

1. Unsat if there is no solution and U is finite,

2. Maybe if there is no solution and U infinite, or

3. a solution u ∈ CU such that concrete-value(c)(p, u) = True.

The algorithm itself works as follows: at first, the concrete program c is compiled
to an abstract program and the parameter p is encoded as an abstract value.
Secondly, a propositional formula f ∈ F is derived by evaluating the abstract
program, which then is feed into an external SAT solver. The application of an
external SAT solver is a crucial point in CO4’s solving algorithm: due to the
correctness of the compilation function compile, finding a satisfying assignment
σ ∈ Bvar(f) for the propositional variables var(f) in formula f implies that there
is a solution u = decodeU (σ, uA) for the concrete program c and the parameter
p such that concrete-value(c)(p, u) = True. In order to highlight where the spec-
ified concepts are incorporated in the generation of the propositional formula f ,
Figure 4.61 depicts an instance of Figure 3.7 from Section 3.1.
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Input
1. Concrete program c ∈ ProgP U for P, U ∈ Type0
2. Abstract value uA ∈ A
3. Concrete value p ∈ CP representing a parameter

Output
1. Either Unsat, Maybe, or a solution u ∈ U so that

concrete-value(c)(p, u) = True

Algorithm
1. Generate an abstract program cA ∈ ProgA with cA = compile(c)
2. Encode the parameter p to pA = encodeP (p)
3. Compute rA = abstract-value(cA)(pA, uA)
4. Let f ∈ F denote the first and only flag of the abstract value rA, i.e.,

flags(rA) = (f)
5. Apply an external SAT solver to find a satisfying assignment σ ∈

Bvar(f) for formula f where var(f) denotes the set of propositional
variables in f :
• σ exists: return the solution u = decodeU (σ, uA) and terminate
• σ does not exist:

– U is finite: return Unsat and terminate
– U is infinite: return Maybe and terminate

Figure 4.60: The solving algorithm implemented in CO4.

4.3.1 Concerning the Completeness of CO4

In this section, we show that CO4’s solving procedure is complete for constraints
on finite domains of discourse. To illustrate CO4’s incompleteness for constraints
on infinite domains of discourse, we also give an example of a constraint with
an obvious solution that is not found by CO4.

Theorem 4.62 The constraint solver CO4 implements a complete solving
procedure for constraints on finite domains of discourse, i.e., if a constraint
c : P×U → B specified as a concrete program has a solution u ∈ U for
a parameter p ∈ P and a finite domain of discourse U, then CO4 finds a
solution.
Proof For two types P, U ∈ Type0, assume a concrete program c ∈ ProgP U

where P represents the parameter domain, and U represents the domain
of discourse. If U is finite, then there is a complete abstract value uA =
complete({U}) that represents all values CU \ {⊥}, i.e., uA can be decoded
to all values in CU \ {⊥}:

∀u ∈ CU \ {⊥} : ∃σ ∈ BV : decodeU (σ, uA) = u
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c ∈ ProgP U Maybe

compile :
Prog→ ProgA

cA ∈ ProgA
abstract-value :

ProgA → (A× A→ A) rA ∈ A

pA = encodeP (p) ∈ A

uA ∈ A

encoder

with flags(rA) = (f)

compile-time run-time

Figure 4.61: Generating a propositional formula f ∈ F using the concepts that
have been introduced in the Chapters 3 and 4.

Because CO4’s compilation function compile : Prog → ProgA is correct
(cf. Lemma 4.59) with respect to the encode/decode-pair (encode, decode),
the following equality holds for all parameters p ∈ CP , values u ∈ CU , and
variable assignments σ ∈ BV:

∀(p, u, σ) ∈ CP × CU × BV : concrete-value(c)(p, u)
= decodeBool(σ, abstract-value(cA)(encodeP (p), encodeU (u)))

Thus, if there is a solution u ∈ CU for the concrete program c and a particular
parameter p ∈ CP , then there also is an assignment σ ∈ BV so that

decodeBool(σ, abstract-value(cA)(encodeP (p), uA)) = True

and the complete abstract value uA can always be decoded to u:

decodeU (σ, uA) = u

As the SAT solver applied in the algorithm depicted in Figure 4.60 is com-
plete as well, such an assignment is always found if there is a solution. Thus,
the solving procedure implemented in CO4 is complete for constraints rep-
resented by concrete programs on finite domains of discourse. ■

If the domain of discourse U is infinite (cf. Definition 3.54), CO4’s solving pro-
cedure is incomplete. In Example 4.63, we give a constraint that has an obvious
solution that is not found by CO4.

Example 4.63 Assume the following concrete program c ∈ Prog encoding
a constraint that is satisfied for the single element of the domain of discourse
Nat that equals the given parameter:
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1 data Bool = False | True
2 data Nat = Z | S Nat
3

4 constraint = \p u -> equals p u
5

6 equals = \p u -> case p of
7 Z -> case u of Z -> True
8 S y -> False
9 S x -> case u of Z -> False

10 S y -> equals x y

Because Nat is infinite, we need to construct an incomplete abstract value
(cf. Section 4.1.5) that represents a finite subset of CNat. As Nat encodes the
natural numbers, it is reasonable to restrict the designated solution’s range
to the first n ∈ N natural numbers. Thus, abstract-nat(n) gives an abstract
value that encodes the natural numbers less or equal to n:

abstract-nat(n) :=⎧⎪⎨⎪⎩
encodeNat(Z) if n = 0
((f), (abstract-nat(n− 1))) if n > 0 and f ∈ V is a fresh

propositional variable

Now, applying the algorithm from Figure 4.60 to a parameter p = S Z and an
abstract value uA = abstract-nat(0) always gives the result Maybe because:

∀σ ∈ BV : concrete-value(c)(S Z, decodeNat(σ, uA))
= concrete-value(c)(S Z, Z)
= concrete-valueExp(c, {(p, S Z), (u, Z))}, equals p u)
= concrete-valueExp(c, {(p, S Z), (u, Z))}, False)
= False

That is because uA represents only the value Z which is not equal to p. There-
fore, CO4 does not find the obvious solution S Z. To resolve this problem, the
range of values represented by the designated solution uA must be increased,
e.g., by setting uA to abstract-nat(1).

4.3.2 Usage of CO4

CO4 is implemented as a library written in Haskell. It consists of approxi-
mately 5500 lines of Haskell code and contains two essential parts: a compila-
tion pipeline for generating abstract programs on compile-time, and a library
for producing propositional formulas during run-time.

As concrete and abstract programs are syntactic subsets of Haskell, compile-time
generation of abstract programs is done using the Template-Haskell [68] library.
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Template-Haskell provides access to the abstract syntax tree of Haskell code,
which can be programmatically transformed and extended. When compiling a
Haskell module H containing a concrete program c ∈ Prog, the following steps
are performed:

1. Template-Haskell provides CO4 with the abstract syntax tree of c.

2. The compilation pipeline in CO4 produces an abstract syntax tree for the
resulting abstract program compile(c).

3. Template-Haskell writes the abstract syntax tree of compile(c) back to H.

4. H is compiled by the Glasgow Haskell Compiler.

This approach conveniently embeds the generation of abstract programs into the
compilation of Haskell programs. In order to realize the semantics of abstract
programs, they are implemented as monadic Haskell programs in the present
implementation of CO4. Thus, their actual syntax differs from what is specified
in Section 3.3.1.

In Example 4.64, we illustrate how a solution for an exemplary concrete program
is searched for using the present implementation of CO4.

Example 4.64 The following Haskell module H applies CO4 to find the
solution of a trivial constraint that is represented by the concrete program
c ∈ Prog, which is written between Template-Haskell’s quotation marks
[d| . . . |].

1 {-# LANGUAGE TemplateHaskell #-}
2 {-# LANGUAGE MultiParamTypeClasses #-}
3 {-# LANGUAGE FlexibleInstances #-}
4 module Main where
5

6 import Prelude hiding (Bool(..))
7 import qualified Data.Maybe as M
8 import Language.Haskell.TH (runIO)
9 import System.Environment (getArgs)

10 import qualified Satchmo.Core.SAT.Minisat
11 import qualified Satchmo.Core.Decode
12 import CO4
13

14 $( [d| data Bool = False | True deriving Read
15 data Color = Red | Green | Blue
16 deriving Show
17 data Monochrome = Black | White deriving Show
18 data Pixel = Colored Color
19 | Background Monochrome
20 deriving Show
21
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22 constraint :: Bool -> Pixel -> Bool
23 constraint p u = case p of
24 False -> case u of Background _ -> True
25 _ -> False
26 True -> isBlue u
27

28 isBlue :: Pixel -> Bool
29 isBlue u = case u of
30 Background _ -> False
31 Colored c -> case c of
32 Blue -> True
33 _ -> False
34

35 |] >>= compile []
36 )
37

38 main :: IO ()
39 main = do
40 [ p ] <- getArgs
41 result <- solveAndTestP (read p) complete
42 encConstraint constraint
43 putStrLn (show result)

The abstract syntax tree of c is passed to CO4’s compile function that
generates the abstract syntax tree of the resulting abstract program. The
resulting syntax tree is written back to H using Template-Haskell’s splice
operator $( . . . ).

To find a solution for c, the function solveAndTestP is called in the main
function of H. We pass four arguments to solveAndTestP:

1. a parameter p ∈ CBool that is read from the command line when main
is invoked,

2. an abstract value complete that denotes a complete abstract value (cf.
Definition 4.34) for all values in the domain of discourse Pixel,

3. the top-level declaration encConstraint of the abstract program, and

4. the top-level declaration constraint of the concrete program.

Compiling H gives an executable program H.exe. Running H.exe with
a given parameter evaluates the abstract program compile(c), generates a
propositional formula f ∈ F and calls the SAT solver MiniSat to find a satis-
fying assignment for the variables var(f) in f . If there is such an assignment,
CO4 constructs a solution from the domain Pixel. For running H.exe with
True as the command line argument, CO4 prints the following output:
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Start producing CNF
Number of shared values: 0
Allocator: #variables: 3, #clauses: 0
Toplevel: #variables: 0, #clauses: 1
CNF finished
#variables: 5, #clauses: 7, #literals: 17,

clause density: 1.4
#variables (Minisat): 5, #clauses (Minisat): 6,

clause density: 1.2
#clauses of length 1: 1
#clauses of length 2: 2
#clauses of length 3: 4

Starting solver
Solver finished in 0.0 seconds (result: True)
Starting decoder
Decoder finished
Test: True
Just (Colored Blue)

The last line shows the actual solution Colored Blue. The next-to-last line
gives the result of evaluating constraint True (Colored Blue). Recall
that this test must always succeed, otherwise the compilation was not correct.
The remaining output shows profiling information that is described in more
detail in Section 6.1.

4.3.3 Implementation Details

In the present implementation of CO4, the compilation from concrete to abstract
programs happens as specified in Section 4.2, but the representation of propo-
sitional formulas differs from the specification in Definition B.4: propositional
formulas are stored not as trees but as as directed acyclic graphs (DAG) where
each vertex either represents a variable or a connective of several subformulas
(cf. Figure 4.65). This representation allows subformulas to be shared, which is
reasonable as propositional formulas may become huge for more complex con-
straints. This is essential as performance would be poor in terms of memory
consumption if they were actually stored in a tree-shaped representation. The
original tree-shape can always be reconstructed by unravelling the nodes of the
DAG.

In the present implementation of CO4, the DAG representation of a propo-
sitional formula is managed by an intermediate library called Satchmo-core.
During the runtime of CO4, Satchmo-core transparently transforms subformu-
las into their conjunctive normal form (CNF, cf. Definition B.10) using Tseitin’s
transformation (cf. Definition B.13). Such a transformation is necessary as most
SAT solvers expect propositional formulas to be in CNF.
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∧

∨

¬

x1

x2

∨

x3

v1

v2

v3

v4

v5

v6

v7

Figure 4.65: Representation of (¬x1∨x2)∧((¬x1∨x2)∨x3) ∈ F with x1, x2, x3 ∈
V as a DAG with vertex set {v1 . . . v7}. Note the sharing of the subformula
¬x1 ∨ x2, which is represented by vertex v2.

For each subformula f ∈ F, Tseitin’s transformation generates a fresh propo-
sitional variable v ∈ V such that v ⇔ f . Each vertex containing a logical
connective in the DAG in Figure 4.65 corresponds to such a variable v. Thus,
each vertex is a representative for the respective subformula f . As the variable
v is semantically equivalent to the subformula f , it is sufficient to store the
propositional variables generated by Tseitin’s transformation in the flags of an
abstract value a ∈ A. This way, f is automatically shared during the following
operations on the value a (cf. the dynamic semantics of abstract expressions in
Definition 3.77):

1. The value a is bound to a new name or parameter inside a local binding
or a function application.

2. One of the arguments of a is extracted via argumentsi(a) for i ∈ N>0 (cf.
Definition 4.4).

3. A new abstract value a′ ∈ A is constructed with a being one of its argu-
ments such that a′ = cons(j,k)(. . . , a, . . . ) for j, k ∈ N>0 and j < k (cf.
Definition 4.32).

4. A new abstract value a′ ∈ A is constructed by merging a such that a′ =
merged(. . . , a, . . . ) with d ∈ A being an abstract value whose flags do not
contain any propositional variables, i.e., Lemma 4.43 holds.

Beyond these operations, running CO4 without further optimizations might gen-
erate identical subformulas which are not getting shared. Therefore, Section 6.2
introduces an optimization technique called memoization which enables sharing
of subformulas even for merging operations that are not covered by Lemma 4.43.

Besides managing the DAG representation of a propositional formula, using an
intermediate library like Satchmo-core has another benefit: it hides the details
of communicating with a particular SAT solver like MiniSat behind a consistent
programming interface. This way, CO4 itself becomes solver-agnostic and can
be used with any solver supported by Satchmo-Core.
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4.3.4 Alternative Encodings for Abstract Values

Abstract values generated by complete have two special properties: they are
tree-shaped and their encoded constructor arguments may share flags (cf. Defi-
nition 4.35). Alternative encodings may omit one or both of these properties.

Flat Encoding Storing all flags of an abstract value as a flat sequence resem-
bles the binary serialization of structured data. While managing a sequence is
simpler than managing a tree, the access to the flags of a particular argument is
more cumbersome because the size of the other arguments has to be taken into
account. Figure 4.66 illustrates the encoding of a simple value by a sequence of
its flags.

(f1, f2)

(f3, f4, f5) (f6, f7)

a1

a2 a3 f1 f2 f3 f4 f5 f6 f7

a1 a2 a3

Figure 4.66: Flags may be organized in a tree or sequence, but accessing ar-
guments in a sequence requires knowledge about the global layout, e.g., for
accessing a3 one needs to know the size of the other values a1 and a2.

The computational overhead required for accessing arguments and merging val-
ues are the reasons this encoding is not applied in CO4.

Non-overlapping Encoding Another way of encoding abstract values using
a tree of flags is to omit any overlappings. Then, each constructor index is
represented by a distinct sequence of flags. Figure 4.67 illustrates this encoding
of simple abstract value in comparison to the specification of complete abstract
values given in Definition 4.35.

1 data Bool = False
2 | True
3 data Either a b = Left a
4 | Right b

f1

f2

f3

f4 f5

a1 a2

Figure 4.67: Two tree-shaped encodings for all values of type
Either Bool Bool. Note that a1 is encoded according to Definition 4.35, i.e.,
f2 encodes the argument of Left and Right, while a2 uses distinctive flags for
encoding the argument of Left and Right.

A non-overlapping encoding seems more intuitive in the first place. It also
simplifies the merging of abstract values that is necessary for transforming case
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distinctions. However, the main drawback is that this approach uses more
flags than the overlapping one. Thus, a non-overlapping encoding immediately
increases the size of the generated formulas, which is not acceptable for non-
trivial constraints.



Chapter 5

Compilation of Advanced
Language Features

In Chapter 4, we have specified the compilation of concrete programs that con-
form to the syntax and semantics defined in Chapter 3. These concrete programs
are subject to certain restrictions: they must be first-order, total, and may not
feature local abstractions. In this chapter, we lift these restrictions by intro-
ducing the compilation of local abstractions, a restricted form of higher-order
functions, and partial functions. These features increase the expressiveness of
concrete programs so that constraints can be specified in a more concise way.

Firstly, this chapter introduces extended concrete programs, i.e., concrete pro-
grams that feature the aforementioned concepts. Then, we give an overview of
the compilation of extended concrete programs to abstract programs. This com-
pilation is merely a reduction to concrete programs as they have been introduced
in Chapter 3, i.e., the compilation function itself does not change.

This chapter also gives simple examples that illustrate the usefulness of the
advanced language features present in extended concrete programs. Chapter 7
shows more comprehensive use-cases that use these features.

5.1 Extended Concrete Programs

This section introduces extended concrete programs as superset of concrete pro-
grams. We define three kinds of extended concrete programs Prog1, Prog2,
and Prog3 where

1. each kind denotes a particular feature set, and

2. Prog ⊊ Prog1 ⊊ Prog2 ⊊ Prog3.

89
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The compilation process for extended concrete programs (cf. Figure 5.1) firstly
reduces a given concrete program in Prog3 to a concrete program in Prog.
Then, the resulting concrete program is compiled to an abstract program in
ProgA by applying the function compile. The compilation process as it has
been specified in Chapter 4 is not changed.

lift
Prog3 → Prog2

instantiate
Prog2 → Prog1

undef-values
Prog1 → Prog

compile
Prog→ ProgA

c ∈ Prog3 cA ∈ ProgA

lift local
abstractions

instantiate higher-
order functions

transform partial
functions compilation

extended compilation

Figure 5.1: Compilation of extended concrete programs Prog3 to abstract pro-
grams ProgA.

In the following, we define all three kinds of extended concrete programs in the
reverse order of their compilation.

Extended Concrete Programs of Kind 1 Extended concrete programs of
kind 1 denote a superset of concrete programs that includes partial functions.
We will use the distinct identifier undefined to specify partial functions. Ex-
ample 5.2 illustrates a simple function that is undefined for certain arguments.

Example 5.2 f defines a function that is undefined for argument T3:

1 data Bool = False | True
2 data T = T1 Bool | T2 | T3
3

4 f :: T -> Bool
5 f = \t -> case t of T1 b -> b
6 T2 -> True
7 T3 -> undefined

We give a specification for extended concrete programs of kind 1.
Definition 5.3 The set of extended concrete programs of kind 1 Prog1 ⊋
Prog is a superset of concrete programs Prog so that each program in
Prog1 may contain a free identifier undefined ∈ Var, i.e., undefined may
not be bound to any value.

The dynamic semantics of extended concrete programs of kind 1 equal the dy-
namic semantics of concrete programs. The special identifier undefined always
evaluates to ⊥ ∈ C because it may not be bound according to Definition 5.3.



5.1. EXTENDED CONCRETE PROGRAMS 91

Section 5.4 illustrates how extended concrete programs of kind 1 are reduced to
concrete programs.

Extended Concrete Programs of Kind 2 Extended concrete programs
of kind 2 extend Prog1 in order to feature restricted support for higher-order
functions. In the context of CO4, higher-order functions are functions that
expect at least one of their arguments to be a function. Higher-order functions
are useful because they provide a powerful way of composing simple functions
into more complex ones. Example 5.4 illustrates a simple higher-order function.

Example 5.4 The following function mapMaybe takes another function that
is applied to the constructor argument of Just:

1 data Maybe a = Nothing | Just a
2

3 mapMaybe :: (a -> b) -> Maybe a -> Maybe b
4 mapMaybe = \f m -> case m of
5 Nothing -> Nothing
6 Just a -> Just (f a)

We give a specification for extended concrete programs of kind 2.
Definition 5.5 The set of extended concrete programs of kind 2 Prog2 ⊋
Prog1 is a superset of extended concrete programs of kind 1 Prog1 so that
each program in Prog2 may contain higher-order functions, i.e., Property 3b
of Definition 3.43 does not apply to the programs in Prog2.

Section 5.3 illustrates how extended concrete programs of kind 2 are reduced to
extended concrete programs of kind 1.

Extended Concrete Programs of Kind 3 Extended concrete programs of
kind 3 may contain local abstractions. Local abstractions allow functions to be
defined in the context of another expression and provide several benefits. First
of all, they avoid cluttering up the top-level namespace by allowing functions
to be defined where they are actually needed. Doing so obeys the Separation-
of-Concerns paradigm because related functions are encapsulated in a shared
scope that is hidden from other parts of the program. The second advantage
of local abstractions are their ability to access values that were bound in an
outer scope. This reduces the number of arguments that need to be passed to
the abstraction. Example 5.6 illustrates a concrete program that features two
locally defined functions.

Example 5.6 The following function f binds two local abstractions not and
g:
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1 data Bool = False | True
2 constraint = \x y ->
3 let not = \a -> case a of False -> True
4 True -> False
5 g = \a -> case x of False -> not a
6 True -> a
7 in
8 g y

Note that g captures the variable x of its enclosing scope.

We give a specification for extended concrete programs of kind 3.
Definition 5.7 The set of extended concrete programs of kind 3 Prog3 ⊋
Prog2 is a superset of extended concrete programs of kind 2 Prog2 so that
each program in Prog3 may contain local abstractions, i.e., Property 2 of
Definition 3.43 does not apply to the programs in Prog3.

Section 5.2 illustrates how extended concrete programs of kind 3 are reduced to
extended concrete programs of kind 2.

Notation In this section, we denoted extended concrete programs of kind 1, 2,
and 3 by Prog1, Prog2, and Prog3, respectively. Similarly, we will denote
certain entities of these extended concrete programs with the corresponding sub-
script. For example, Expi denotes the set of expressions for extended concrete
programs of kind i where i ∈ {1, 2, 3}. Entities that are equal in all kinds of
extended concrete programs are not annotated by a subscript, e.g., the set of
variables Var.

5.2 Local Abstractions

This section defines a transformation lift : Prog3 → Prog2 from extended
concrete programs of kind 3 to extended concrete programs of kind 2. As lo-
cal abstractions are the distinctive feature of programs in Prog3, we give a
definition for local abstractions.

Definition 5.8 An abstraction e ∈ Exp3 is denoted as local in an extended
concrete program c ∈ Prog3 if e occurs in c and there is no declaration
v = e in c for some name v ∈ Var.

The transformation lift lifts local abstractions to declarations [45]. Local ab-
stractions may capture values from the context in which they are defined. These
values must be passed explicitly as additional arguments to the lifted abstraction
if they are not bound in another declaration in the same concrete program.
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Definition 5.9 free : Exp3 → 2Var gives all variables that appear free in an
expression e ∈ Exp3 and is defined by:

∀n ∈ N>0 : free(e) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e} \ {undefined} if e ∈ Var
{ } if e ∈ Con
free(e′) ∪

⋃
1≤i≤n free(ei) if e = e′ e1 . . . en

free(e′) \ {v1, . . . , vn} if e = \ v1 . . . vn -> e′

free(e′) ∪
⋃

1≤i≤n freeMatch(pi, ei) if e = case e′ of p1 -> e1
. . .
pn -> en(

free(e′) ∪
⋃

1≤i≤n free(ei)
)
\ {v1, . . . , vn} if e = let v1 = e1

. . .
vn = en

in e′

where

∀n ∈ N : freeMatch(C v1 . . . vn, e) := free(e) \ {v1, . . . , vn}

Example 5.10

1. free(\x y -> f (g x) (h y)) = {f, g, h}

2. free(case x of C y -> f x y z) = {x, f, z}

3. free(let x = f y in g x) = {f, y, g}

For a local abstraction e ∈ Exp3 in an extended concrete program c ∈ Prog3,
each variable in free(e) that is not bound by some declaration of c must be
explicitly passed as a argument to the lifted version of e. Thus, the set of names
that are bound by c needs to be determined in the first place.

Definition 5.11 global : Prog3 → 2Var computes the set of names that are
bound by declarations in a given extended concrete program c ∈ Prog3 and
is defined by:

global(c) := {n | n = e is a declaration in c}

Now we can specify how a local abstraction is lifted to a declaration.
Definition 5.12 For n ∈ N>0, liftExp : Prog3×Exp3 ↛ Decl3 transforms
a local abstraction \ v1 . . . vn -> e′ ∈ Exp3 in an extended concrete program
c ∈ Prog3 to a declaration and is defined by:

liftExp(c, \ v1 . . . vn -> e′) = v = \ v1 . . . vn u1 . . . um -> e′

where
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1. v denotes the name e′ is locally bound to (if e′ was not locally bound
to a name, then v denotes a fresh name), and

2. {u1, . . . , um} = free(\ v1 . . . vn -> e′) \ global(c)

After we have lifted an abstraction e ∈ Exp3 of an extended concrete program
c ∈ Prog3 to a declaration, we need to consider that liftExp(c, e) expects more
arguments than e if e contains free variables that are not bound by any decla-
ration in c. In this case, we pass the values of these free variables to each call
of liftExp(e, c). Example 5.13 illustrates the lifting of a simple abstraction and
shows the consequences for calls to this abstraction.

Example 5.13 Assume an extended concrete program c ∈ Prog3 that con-
tains the following expression e ∈ Exp3:

e = let f = \x y -> g x y z

in f a b

Note that free(\x y -> . . . ) = {g, z}. Assuming that g ∈ global(c) and
z /∈ global(c), lifting the local abstraction gives:

liftExp(c, \x y -> . . . ) = f = \x y z -> g x y z

Because the lifted version of f expects an additional argument, we need to
adjust every call to f in e accordingly.

By repeatedly applying liftExp we are able to lift all local abstractions to decla-
rations.

Definition 5.14 lift : Prog3 → Prog2 lifts each local abstraction in an
extended concrete program c ∈ Prog3 by applying the following algorithm:

1 lift(c) =
2 if (c contains local abstraction e ∈ Exp3) then
3 if (e is bound to name f ∈ Var in a let expression) then
4 c← remove binding of f
5 c← add arguments free(e) \ global(c) to each application of f in c
6 c← add declaration liftExp(c, e) to c
7 return lift(c)
8 else
9 c← replace e by fresh name f ∈ Var in c

10 c← add arguments free(e) \ global(c) to the application of f in c
11 c← add declaration liftExp(c, e) to c
12 return lift(c)
13 else
14 return c

Note that the algorithm illustrated in Definition 5.14 does not account for some
corner cases:
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1. If a binding is removed from a let expression let . . . in e with a single
binding, then the let expression must be replaced by e (cf. Example 5.13).

2. The order in which local abstractions are lifted affects the number of addi-
tional arguments that are added by liftExp: to avoid introducing unneces-
sary arguments, local abstractions should be lifted in a top-down fashion,
i.e., from outer scopes to inner scopes.

Example 5.15 shows how the result of lift depends on the order in which local
abstractions are lifted.

Example 5.15 Assume the following declaration of foo that defines two
local abstractions f and g:

1 foo = \x ->
2 let f = \y -> ...
3 in
4 let g = \z -> ... f z ...
5 in
6 ...

Lifting g in the first place introduces a new parameter for the free variable
f. Thus, the final result of lifting g and f is:

1 foo = \x -> ...
2 f = \y -> ...
3 g = \z f -> ... f z ...

Lifting f before g avoids the introduction of a new parameter for variable f
because when g is lifted, f is already bound in a declaration.

Example 5.16 illustrates the lifting of all local abstractions in an extended con-
crete program of kind 3.

Example 5.16 For the following extended concrete program c ∈ Prog3

1 data Bool = False | True
2 constraint = \x y ->
3 let not = \a -> case a of False -> True
4 True -> False
5 g = \a -> case x of False -> not a
6 True -> a
7 in
8 g y

lift(c) gives the following program:
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1 data Bool = False | True
2 constraint = \x y -> g y x
3

4 not = \a -> case a of False -> True
5 True -> False
6

7 g = \a x -> case x of False -> not a
8 True -> a

5.3 Higher-Order Functions

This section defines a transformation instantiate : Prog2 → Prog1 from ex-
tended concrete programs of kind 2 to extended concrete programs of kind 1.
This transformation instantiates higher-order functions to first-order functions
[59]. At first, we give a definition for a higher-order function in the context of
extended concrete programs of kind 2.

Definition 5.17 For all n ∈ N>0, an abstraction \ v1 . . . vn -> e ∈ Exp2
specifies a higher-order function if the type Ti of vi for i ∈ {1 . . . n} is a
functional value, i.e.,

∃i ∈ {1 . . . n} : rootsym(Ti) = ->

The variable vi denotes a higher-order parameter, and an expression that is
bound to vi denotes a higher-order argument.

In the following, we assume that each higher-order function f has exactly one
higher-order parameter v ∈ Var where v is the first parameter of f . This
simplification is merely done for readability and can be trivially extended to
more complex higher-order functions.

For each application of a higher-order function, a corresponding first-order in-
stance is generated by substituting each higher-order parameter with the name
that the higher-order argument is bound to. There are two reasons why we
can safely assume that each higher-order argument has already been bound to
a name:

1. When instantiating higher-order functions, all local abstractions already
have been lifted to declarations. Thus, each local abstraction that poten-
tially denotes a higher-order argument was replaced by the name of the
declaration that was introduced by lift (cf. Definition 5.14).

2. Partially applied functions are not covered by the static semantics of con-
crete programs (cf. Section 3.2.2), i.e., a higher-order argument may not
be a partially applied function.
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Because of these reasons, all we have to do is to introduce a new instance for
each application of a higher-order function where the higher-order parameter is
replaced by the name that the higher-order argument is bound to.

Definition 5.18 For all n ∈ N, instantiateDecl : Decl2×Var → Decl2
instantiates a higher-order function bound in an extended declaration

f = \ v1 v2 . . . vn -> e ∈ Decl2

by a higher-order argument bound to variable h ∈ Var:

instantiateDecl(f = \ v1 v2 . . . vn -> e, h) :=
f ′ = \ v2 . . . vn -> e′

where

1. v1 ∈ Var denotes the single higher-order parameter of f ,

2. f ′ ∈ Var denotes a fresh name for the instantiated declaration, and

3. e′ ∈ Exp2 equals e, but with all occurrences of v1 replaced by h.

Note that instantiateDecl merely performs a variable substitution.

An extended concrete program in Prog1 that features no higher-order functions
can now be obtained by repeatedly applying instantiateDecl for all applications
of higher-order functions.

Definition 5.19 instantiate : Prog2 → Prog1 applies instantiateDecl to
each application of a higher-order function in an extended concrete program
c ∈ Prog2 and is defined by:

1 instantiate(c) =
2 if (c contains application f e1 e2 . . . en ∈ Exp2 where
3 1. e1 ∈ Exp2 is a higher-order argument, and
4 2. f ∈ Var is bound by declaration d in c)
5 then
6 d′ ← instantiateDecl(d, e1)
7 c← replace application f e1 e2 . . . en by f ′ e2 . . . en in c
8 where f ′ ∈ Var denotes the name of declaration d′

9 c← add declaration d′ to c
10 return instantiate(c)
11 else
12 c← delete all declarations of higher-order functions in c
13 return c

The algorithm illustrated in Definition 5.19 does not terminate for recursively
defined higher-order functions. This issue can be resolved by memoization: if a
declaration d ∈ Decl needs to be instantiated by some higher-order argument
h ∈ Var, a new declaration d′ is only generated if d has not been already
instantiated by h.
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We give an example for instantiating higher-order functions using instantiate.
Example 5.20 The function mapMaybe is applied to a higher-order argu-
ment not:

1 data Maybe a = Nothing | Just a
2 data Bool = False | True
3

4 constraint = \p u -> ... mapMaybe not u ...
5

6 mapMaybe = \f m -> case m of Nothing -> Nothing
7 Just a -> Just (f a)
8

9 not = \a -> case a of False -> True
10 True -> False

The algorithm illustrated in Definition 5.19 introduces a new instance for
mapMaybe and gives the following extended concrete program of kind 1.

1 data Maybe a = Nothing | Just a
2 data Bool = False | True
3

4 constraint = \p u -> ... mapMaybe_1 u ...
5

6 mapMaybe_1 = \m -> case m of Nothing -> Nothing
7 Just a -> Just (not a)
8

9 not = \a -> case a of False -> True
10 True -> False

Restrictions The algorithm illustrated in Definition 5.19 only enables the
usage of higher-order functions in some restricted cases. For example, it does
not handle

1. functions that return a function as resulting value, nor

2. higher-order constructor arguments.

There are more sophisticated algorithms that enable the usage of higher-order
functions even in these cases [59]. But as CO4 is not able to encode functions
as abstract values, these algorithms are not applied here.
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5.4 Partial Functions

Concrete programs as they have been specified in Section 3.2 only consist of
total functions, i.e., functions that are defined for all elements of their respective
domain. In order to work around the lack of partial functions, one may introduce
a data type that consists of an additional constructor that explicitly denotes an
undefined value. In Example 5.21, we show an application of this work-around.

Example 5.21 In the following concrete program, the type Optional a
contains a constructor Undefined that models the non-existence of a value.
For example, the partial function f returns Undefined if it is applied to an
argument for which f is not defined.

1 data Optional a = Undefined | Defined a
2 data Bool = False | True
3 data T = T1 Bool | T2 | T3
4

5 f :: T -> Optional Bool
6 f = \t -> case t of T1 b -> Defined b
7 T2 -> Defined True
8 T3 -> Undefined
9

10 g :: Bool -> Bool
11 g = \b -> case b of False -> True
12 True -> False
13

14 constraint = ...

Using a type like Optional is perfectly fine for modeling partial functions,
but it comes with a drawback: it complicates the composition of functions.
For example, the result of f cannot be directly passed to g because f results
in a value of type Optional Bool whereas g expects a value of type Bool.

We can fix this issue by wrapping all values in a concrete program by
Optional and adding an additional case distinction on Optional before each
case distinction in the original program:

1 data Optional a = Undefined | Defined a
2 data Bool = False | True
3 data T = T1 (Optional Bool) | T2 | T3
4

5 f :: Optional T -> Optional Bool
6 f = \ot -> case ot of Undefined -> Undefined
7 Defined t -> case t of
8 T1 b -> b
9 T2 -> Defined True

10 T3 -> Undefined
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11

12 g :: Optional Bool -> Optional Bool
13 g = \ob -> case ob of Undefined -> Undefined
14 Defined b -> case b of
15 False -> Defined True
16 True -> Defined False
17

18 constraint = ...

Now the result of f can be directly passed to g.

The idea of modeling exceptions using a special type like Optional is well-known
[69]. But it comes with an obvious flaw: because we now deal with potentially
undefined values, the code is much more verbose and tedious to write. Thus,
extended concrete programs of kind 1 feature a distinct identifier undefined to
denote partial functions. Example 5.22 illustrates this for the concrete program
from Example 5.21.

Example 5.22 The following concrete program shows the concrete program
from Example 5.21 specified as extended concrete program of kind 1:

1 data Bool = False | True
2 data T = T1 Bool | T2 | T3
3

4 f :: T -> Bool
5 f = \t -> case t of T1 b -> b
6 T2 -> True
7 T3 -> undefined
8

9 g :: Bool -> Bool
10 g = \b -> case b of False -> True
11 True -> False
12

13 constraint = ...

Evaluating undefined in an extended concrete program of kind 1 results in
the value ⊥. That is because undefined may not be bound to a value (cf.
Definition 5.3), therefore, concrete-valueExp gives ⊥ when evaluating undefined
(cf. Definition 3.60).

In the following, we specify a reduction of extended concrete programs of kind 1
to concrete programs Prog. To do so, we incorporate the main ideas of the
work-around in Example 5.21. Function undef-valuesExp : Exp1 → Exp maps
concrete expressions of kind 1 to concrete expressions on possibly undefined
values Optional so that

1. each call to undefined is replaced by a constructor call to Undefined,
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2. each call to a constructor is wrapped by an application of the constructor
Defined, and

3. each case distinction is wrapped by a case distinction on Optional.
Definition 5.23 undef-valuesExp : Exp1 → Exp maps a concrete expression
e ∈ Exp1 of kind 1 to a concrete expression in Exp and is defined by:

undef-valuesExp(e) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Undefined if e ∈ Var and e = undefined
e if e ∈ Var and e ̸= undefined
Defined e if e ∈ Con

Defined (C Jundef-valuesExp(e1)K
. . .
Jundef-valuesExp(en)K)

if e is an application C e1 . . . en

with C ∈ Con and n ∈ N

f Jundef-valuesExp(a1)K
. . .
Jundef-valuesExp(an)K

if e is an application f a1 . . . an

with f ∈ Var and n ∈ N>0

case d of
Undefined -> Undefined
Defined d′ -> case d′ of

p1 -> Jundef-valuesExp(e1)K
. . .
pn -> Jundef-valuesExp(en)K

if e is a case distinction
case d of p1 -> e1

. . .
pn -> en

with n ∈ N>0, and d′ ∈ Var
denotes a fresh name

let x1 = Jundef-valuesExp(a1)K
. . .

xn = Jundef-valuesExp(an)K
in Jundef-valuesExp(e′)K

if e is a local binding
let x1 = a1

. . .
xn = an

in e′

with n ∈ N>0

Transforming expressions with the function undef-valuesExp changes their type.
Thus, types that appear explicitly in a concrete program, e.g., in type declara-
tions and type signatures, need to be transformed accordingly.

Definition 5.24 undef-valuesType : Type → Type prepends every type
constructor in a given type T ∈ Type with the type constructor Optional
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and is defined by:

undef-valuesType(T ) :=⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T if T ∈ TypeVar
Jundef-valuesType(T1)K -> Jundef-valuesType(T2)K if T = T1 -> T2

Optional (C Jundef-valuesType(T1)K
. . .
Jundef-valuesType(Tn)K)

if T = C T1 . . . Tn

with C ∈ TypeCon
and n ∈ N

In order to transform type schemes as well, we introduce undef-valuesTypeScheme
as a lifted form of undef-valuesType.

Definition 5.25 undef-valuesTypeScheme : TypeScheme → TypeScheme
transforms the type in type scheme S ∈ TypeScheme using undef-valuesType
and is defined by:

undef-valuesTypeScheme(S) :={
Jundef-valuesType(S)K if S ∈ Type
∀ v1 . . . vn : Jundef-valuesType(T )K if S = ∀ v1 . . . vn : T for n ∈ N>0

After applying undef-valuesExp, undef-valuesType, and undef-valuesTypeScheme to
all expressions, types, and type schemes, respectively, the resulting program
is technically no concrete program according to Definition 3.47. That is be-
cause the introduction of possibly undefined values changes the type of function
constraint from P -> U -> Bool for some types P, U ∈ Type0 to

Jundef-valuesType(P )K -> Jundef-valuesType(U)K -> Optional Bool

As Definition 3.47 requires constraint to return a value of type Bool, we
need to fix constraint after applying undef-valuesExp, undef-valuesType, and
undef-valuesTypeScheme. This fix merely consists of an additional case distinction
that ensures that the fixed version of constraint gives the Boolean value False
if the unfixed version of constraint evaluates to Undefined.

Definition 5.26 fix-constraint : Prog1 → Prog rewrites declaration

constraint = \ p u -> e

in an extended concrete program of kind 1 to

constraint = \ p u -> case e of

Undefined -> False

Defined b -> b

where b ∈ Var denotes a fresh variable and expression e does not contain
partial functions, i.e., e ∈ Exp.
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Finally, we can specify an algorithm that transforms an extended concrete pro-
gram of kind 1 to a concrete program.

Definition 5.27 undef-values : Prog1 → Prog transforms an extended
concrete program c ∈ Prog1 to a concrete program in Prog and is defined
by:

1 undef-values(c) =
2 add type data Optional a = Undefined | Defined a to c
3 forall type signatures v :: s ∈ Decl1 in c
4 replace s by undef-valuesTypeScheme(s)
5 forall expressions e ∈ Exp1 in c
6 replace e by undef-valuesExp(e)
7 forall type declarations d ∈ TypeDecl in c
8 forall constructor argument types T ∈ Type in d
9 replace T by undef-valuesType(T )

10 return fix-constraint(c)

We give an example of applying undef-values to an extended concrete program
of kind 1.

Example 5.28 Assume the following concrete program c ∈ Prog1:

1 data Bool = False | True
2 data Unit = Unit
3 data T = T1 Bool | T2 | T3
4

5 constraint :: Unit -> T -> Bool
6 constraint = \p u -> f u
7

8 f :: T -> Bool
9 f = \u -> case u of T1 b -> b

10 T2 -> True
11 T3 -> undefined

undef-values(c) gives the following total program which explicitly deals with
Optional values:

1 data Optional a = Undefined | Defined a
2 data Bool = False | True
3 data Unit = Unit
4 data T = T1 (Optional Bool) | T2 | T3
5

6 constraint :: Optional Unit -> Optional T -> Bool
7 constraint = \p u -> case (f u) of
8 Undefined -> False
9 Defined b -> b

10
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11 f :: Optional T -> Optional Bool
12 f = \u -> case u of Undefined -> Undefined
13 Defined u’ -> case u’ of
14 T1 b -> b
15 T2 -> Defined True
16 T3 -> Undefined

For concrete programs c ∈ Prog that do not contain partial functions, we want
the semantics of c to be identical to undef-values(c).

Lemma 5.29 For two types P, U ∈ Type0, the following equality holds for
all concrete programs c ∈ ProgP U without partial functions:

∀(p, u) ∈ CP × CU : p ̸= ⊥ ∧ u ̸= ⊥ =⇒ concrete-value(c)(p, u)
= concrete-value(undef-values(c))(undef-valuesC(p), undef-valuesC(u))

where undef-valuesC : C → C maps a concrete value v ∈ C to a possibly
undefined value:

undef-valuesC(v) :=⎧⎪⎪⎨⎪⎪⎩
Undefined if v = ⊥
Defined (C undef-valuesC(v1)

. . .
undef-valuesC(vn))

if v = C v1 . . . vn

with C ∈ Con and n ∈ N

Proof In order to prove Lemma 5.29 for a particular concrete program c ∈
Prog, we show that the dynamic semantics of each expression e ∈ Exp does
not change:

∀E ∈ CVar : undef-valuesC(concrete-valueExp(c, E, e)) =
concrete-valueExp(undef-values(c), E′, undef-valuesExp(e))

(5.30)

where
E′ = {(n, undef-valuesC(v)) | (n, v) ∈ E}

Informally, if the expression e in the program c evaluates to the value v ∈ C in
context of an environment E ∈ CVar, then the expression undef-valuesExp(e)
in the program undef-values(c) evaluates to the value undef-valuesC(v) in
context of the environment E′. We show this by induction over concrete
expressions:

1. If e ∈ Var, then e ̸= undefined. The left-hand side of (5.30) gives

undef-valuesC(concrete-valueExp(c, E, e)) = undef-valuesC(E(e))

which equals its right-hand side

concrete-valueExp(undef-values(c), E′, undef-valuesExp(e))
= concrete-valueExp(undef-values(c), E′, e)
= E′(e)
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by definition of E′.

2. If e ∈ Con, then the left-hand side of (5.30) gives

undef-valuesC(concrete-valueExp(c, E, e)) = undef-valuesC(e)
= Defined e

which equals its right-hand side

concrete-valueExp(undef-values(c), E′, undef-valuesExp(e))
= concrete-valueExp(undef-values(c), E′, Defined e)
= Defined e

3. If e is an application C e1 . . . en with C ∈ Con, then the left-hand side
of (5.30) gives

undef-valuesC(concrete-valueExp(c, E, e))
= undef-valuesC(C concrete-valueExp(c, E, e1)

. . .

concrete-valueExp(c, E, en))
= Defined (C undef-valuesC(concrete-valueExp(c, E, e1))

. . .

undef-valuesC(concrete-valueExp(c, E, en)))

which equals its right-hand side

concrete-valueExp(undef-values(c), E′, undef-valuesExp(e))
= concrete-valueExp ( undef-values(c), E′

, Defined (C undef-valuesExp(e1)
. . .

undef-valuesExp(en)))
= Defined (C concrete-valueExp ( undef-values(c), E′

, undef-valuesExp(e1))
. . .

concrete-valueExp ( undef-values(c), E′

, undef-valuesExp(en)))

by induction on the constructor arguments e1, . . . , en.

4. If e is a case distinction case d of . . . p -> e′ . . . , then we assume that
vd = concrete-valueExp(c, E, d) denotes the value of the discriminant
d ∈ Exp. Note that vd ̸= ⊥ because c contains no partial functions,
p ̸= ⊥, and u ̸= ⊥. We furthermore assume that the pattern p ∈ Pat
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matches the value vd, i.e., matches (p, vd) holds. According to the
dynamic semantics of case distinctions (cf. Definition 3.60), the left-
hand side of (5.30) evaluates to:

undef-valuesC(concrete-valueExp(c, E, e))
= undef-valuesC(concrete-valueExp(c, E[bindMatch(p, vd)], e′))

Note that E[bindMatch(p, vd)] denotes the update of E by the assign-
ment resulting from evaluating bindMatch(p, vd) (cf. Definition A.18).

In the transformed program undef-values(c), the discriminant
undef-valuesExp(d) evaluates to

v′
d = concrete-valueExp(undef-values(c), E′, undef-valuesExp(d))

where undef-valuesC(vd) = v′
d holds by induction over d. Note that

rootsym(v′
d) = Defined because vd ̸= ⊥. Thus, the right-hand side of

(5.30) gives

concrete-valueExp(undef-values(c), E′, undef-valuesExp(e))
= concrete-valueExp(undef-values(c) , E′[bindMatch(Defined p, v′

d)]
, undef-valuesExp(e′))

which equals its left-hand side by induction over e′.

5. As undef-valuesExp does not change the structure of function appli-
cations and local bindings, Lemma 5.29 holds by induction over the
involved subexpressions. ■

Note that Lemma 5.29 excludes the cases where p = ⊥ or u = ⊥ when evaluating
the concrete program c. The reason is that concrete-value(c)(p, u) may give ⊥
in these situations while

concrete-value(undef-values(c))(undef-valuesC(p), undef-valuesC(u))

never evaluates to ⊥.



Chapter 6

Optimization of Abstract
Programs

Recall that evaluating an abstract program which has been compiled from a
concrete program c ∈ Prog gives an abstract value containing a single propo-
sitional formula f ∈ F. A solution for c can be decoded from a satisfying
assignment for f . As described in Section 4.3, an external SAT solver is applied
in order to find such an assignment.

For most non-trivial concrete programs, the runtime of the SAT solver deter-
mines the runtime of CO4 as a whole. Therefore, it is crucial to minimize the
solver’s runtime. From the perspective of CO4, we do not have any insight in
the design and the inner workings of the applied SAT solver, thus we cannot
perform any specific optimizations to reduce its runtime.

Nonetheless, this chapter illustrates general techniques which might reduce the
solver’s runtime without giving any proof that they actually work for a given
SAT solver. These techniques are motivated by the idea that a solver’s runtime
depends especially on the size of the formula to be solved, where the definition
of the size of a formula is vague as well. Thus, we aim to reduce the size
of the formulas that are generated by evaluating an abstract program. Firstly,
Section 6.1 gives an overview of the profiling capabilities of CO4, which are useful
for gathering statistics about the generated propositional formula. Using these
statistics we can evaluate the benefits of the optimization strategies introduced
in the subsequent sections.

Section 6.2 illustrates the memoization of function applications. Memoization
is an optimization strategy that stores the results of function applications in
order to reuse them if a function is repeatedly applied to the same arguments.
Furthermore, Section 6.3 shows a more efficient encoding of natural numbers in
abstract programs. This optimization is reasonable because natural numbers are
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often included in the domain of discourse or the parameter domain of real-world
constraints. Therefore, it is important to provide a more efficient encoding than
the unary encoding illustrated in Example 3.9. We conclude this chapter by a
brief overview of further optimizations.

6.1 Profiling in CO4

CO4 offers basic profiling features that are useful for inspecting not only the size
of the generated propositional formula but also how each section of the concrete
program contributes to the formula. Firstly, we give definitions for the different
size outputs provided by CO4.

Definition 6.1 The number of variables of a propositional formula f ∈
F equals | var(tseitin(f))| where tseitin : F → CNF maps a propositional
formula to an equisatisfiable conjunctive normal form (cf. Definition B.13).

Note that the number of variables | var(tseitin(f))| equals the number of vertices
in the directed acyclic graph (DAG) that represents a propositional formula
f ∈ F in the present implementation of CO4 (cf. Section 4.3.3). That is because
tseitin generates a fresh propositional variable for each subformula of f that is
no variable. Figure 6.2 shows an example of this relation between the number of
vertices in the DAG representation and the number of variables in conjunctive
normal form.

∨

∧

¬

x1

x2

x3

v1

v2

v3

v4

v5

v6

tseitin(f) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
{v1}

, {v2, x3,¬v1}, {¬v2, v1}, {¬x3, v1}
, {¬v3,¬x2, v2}, {v3,¬v2}, {x2,¬v2}
, {v3, x1}, {¬v3,¬x1}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where

var(tseitin(f)) = {v1, v2, v3, x1, x2, x3}

Figure 6.2: DAG representation of f = (¬x1 ∧ x2) ∨ x3 and its conjunctive
normal form tseitin(f). Note that the number of vertices in the DAG equals the
number of variables in tseitin(f).

Besides the number of variables, CO4 also gives the number of clauses and the
number of literals for a propositional formula.

Definition 6.3 The number of clauses of a propositional formula f ∈ F
equals the number of clauses in tseitin(f) (cf. Definition B.9) and the num-
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ber of literals of f equals the sum of literal occurrences over all clauses in
tseitin(f).
Example 6.4 The number of clauses for the formula (¬x1 ∧ x2) ∨ x3 in
Figure 6.2 is 9 and the number of literals is 19.

Additionally, CO4 gives the clause density of a propositional formula.
Definition 6.5 The clause density of a propositional formula f ∈ F denotes
the ratio of clauses to variables.

For a given propositional formula f ∈ F, the clause density of f is often consid-
ered to be an indicator for the hardness of finding a satisfying assignment for f
or proving f to be unsatisfiable [58].

The number of variables, clauses, and literals of a propositional formula only
give a narrow overview of the characteristics of a particular constraint. CO4

also provides more fine-grained profiling information for function applications
and case distinctions.

Recall that in general, evaluating compiled case distinctions in an abstract pro-
gram generates new subformulas because of the merge operation on all evaluated
branches (cf. Definition 4.49). In order to inspect the amount that each case
distinction contributes to the final formula, CO4 tracks each evaluation of a
compiled case distinction. There are two important numbers for each compiled
case distinction: the number of total evaluations and the number of constant
evaluations. The number of constant evaluations is especially useful to know as
it denotes how often a particular compiled case distinction could be evaluated
without generating new subformulas (cf. Lemma 4.43). Knowing these numbers
is useful for inspecting which case distinction causes the most merge operations.

In Example 6.6, we illustrate CO4’s profiling features for a trivial concrete pro-
gram. Appendix C.5 shows the actual profiling log of CO4 for the more complex
Example 7.11.

Example 6.6 Assume a constraint c : B× B→ B where

c(p, u) =
{

False if p = False
¬u if p = True

c is specified by the following concrete program:

1 data Bool = False | True
2

3 constraint = \p u -> case p of
4 False -> False
5 True -> case u of False -> True
6 True -> False
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p = False p = True

#variables 0 2
#clauses 0 3
#literals 0 5
clause density - 1.5
#total evaluations of dp 1 1
#constant evaluations of dp 1 1
#total evaluations of du 0 1
#constant evaluations of du 0 0

Table 6.7: Profiling information for solving constraint c.

There are two case distinctions which we denote by dp and du: dp matches
on p, du matches on u if p = True. Table 6.7 shows the profiling information
given by CO4 for both values of parameter p.

For p = False, CO4 generates a propositional formula without any variables
because there is no non-constant evaluation of a case distinction. This for-
mula evaluates to False, therefore, constraint c is unsatisfiable for parameter
False.

For p = True, CO4 generates a propositional formula ¬fu where fu ∈ V
denotes the single flag in the abstract value that represents value u (cf.
Example 4.42). The values in Table 6.7 correspond to Definition 6.1 because:

tseitin(¬fu) =
{
{v}, {fu, v}, {¬fu,¬v}

}
where v = fresh(¬fu) denotes a fresh propositional variable (cf. Defini-
tion B.13).

6.2 Memoization of Function Applications

Memoization refers to a general optimization technique where sub-results of
an algorithm are stored so that they only need to be computed once and may
be reused on future occasions [57]. Memoization is often applied in order to
improve the runtime and/or space complexity of an algorithm. In the scope of
this thesis, we aim to reduce the size of the generated propositional formula,
which often leads to shorter solver runtimes. Thus, this chapter shows how
memoization can be applied to the evaluation of abstract programs.

Memoization can be applied in various ways to the evaluation of abstract pro-
grams. As illustrated in the previous section, evaluating compiled case dis-
tinctions on non-constant discriminants is expensive because it leads to new
propositional variables and clauses in the generated formula. Thus, compiled
case distinctions are obvious candidates for memoization. As the value of a case
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distinction not only depends on the value of its discriminant but also on the
value of all free variables that appear in the case distinction, all these free vari-
ables have to be taken into account when implementing memoization on case
distinctions. Memoization of function applications is a simpler choice because
the value of a function application in an abstract program only depends on the
value of its arguments and on the definition of the applied function.

Example 6.8 motivates why memoizing function applications is reasonable.
Example 6.8 Assume the following constraint c : N× N→ B

c(p, u) =
{

True if p = fib(u)
False otherwise

with fib : N → N being a mapping from naturals to Fibonacci numbers so
that fib(n) gives the n-th Fibonacci number for n ∈ N:

fib(n) :=

⎧⎪⎨⎪⎩
0 if n = 0
1 if n = 1
fib(n− 2) + fib(n− 1) otherwise

The following concrete program specifies constraint c and contains a straight-
forward implementation of fib.

1 data Nat = Z | S Nat
2

3 constraint p n = eq p (fib n)
4

5 fib = \x -> case x of
6 Z -> Z
7 S x’ -> case x’ of
8 Z -> S Z
9 S x’’ -> let f1 = fib x’

10 f2 = fib x’’
11 in
12 add f1 f2
13

14 eq = \x y -> case x of
15 Z -> case y of Z -> True
16 S y’ -> False
17 S x’ -> case y of Z -> False
18 S y’ -> eq x’ y’
19

20 add = \x y -> case x of
21 Z -> y
22 S x’ -> S (add x’ y)
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This implementation leads to identical evaluations of fib for certain argu-
ments, e.g., when evaluating fib (S(S(S(S Z)))):

fib (S(S(S(S Z))))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fib (S(S(S Z)))

⎧⎪⎨⎪⎩fib (S(S Z))

{
fib (S Z)
fib Z

fib (S Z)

fib (S(S Z))

{
fib (S Z)
fib Z

fib (S(S Z)), fib (S Z), and fib Z are evaluated multiple times. Storing the
results of these applications would allow them to be shared among subsequent
applications of fib to identical arguments.

Example 6.8 illustrates that memoizing function applications in concrete pro-
grams saves evaluating applications that already have been evaluated before.
In the following, we apply memoization of function applications to the evalua-
tion of abstract programs by introducing a global cache that stores the results
of function applications. This is a straightforward extension of the abstract
evaluation as it has been introduced in Section 3.3.3.

Definition 6.9 The result r ∈ A of evaluating a function application
f a1 . . . an in an abstract program c ∈ ProgA in the context of an environ-
ment EA ∈ AVar and a cache γ : Var×A∗ ↛ A is defined by the following
inference rules:

(f, (a1, . . . , an)) ∈ dom(γ)
r = γ(f, (a1, . . . , an))

(f, (a1, . . . , an)) /∈ dom(γ)
r = abstract-valueExp(c, EA, f a1 . . . an) γ(f, (a1, . . . , an)) = r

Evaluation of other abstract expressions remains unchanged. Evaluation of ab-
stract programs starts with an empty cache, i.e., γ = ∅, but remains unchanged
otherwise.

We show how memoization decreases the size of the generated propositional
formula for the concrete program in Example 6.8.

Example 6.10 In the concrete program of Example 6.8, the domain of dis-
course Nat is specified using a recursive type, thus, we cannot compute a
complete abstract value for the solution. Instead we define an incomplete
abstract value abstract-nat(n) that represents the natural numbers less or
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without memoization with memoization

# variables 29 24
# clauses 72 60
# literals 182 154
clause density 2.48 2.5
# cache hits 0 2

Table 6.11: Profiling information for finding a solution for the concrete program
in Example 6.8.

equal n ∈ N:

abstract-nat(n) :=⎧⎪⎨⎪⎩
encodeNat(Z) if n = 0
((f), (abstract-nat(n− 1))) if n > 0 and f ∈ V is a fresh

propositional variable

See Section 4.1.5 for more information on incomplete abstract values.

Table 6.11 shows some profiling information for finding a solution for the
concrete program in Example 6.8 with CO4. In this example, we fix param-
eter p ∈ CNat to p = S(S(S Z)). For the designated solution u, we use an
abstract value abstract-nat(4).

When solving Example 6.8 without memoization, CO4 generates a propo-
sitional formula in conjunctive normal form with 29 variables, 72 clauses,
and a total of 182 literals. Solving with memoization reduces the size of
the generated formula to a total of 154 literals. For such small formulas, it
rarely makes any difference in terms of SAT solver runtimes, but this changes
dramatically for more complex constraints.

Note the two cache hits while solving with memoization: these hits indicate
that two function applications could be evaluated by querying the cache
because they have already been evaluated before.

Section 7.1.2 illustrates a more complex use-case that benefits from memoiza-
tion.

6.3 Built-In Natural Numbers

Example 3.9 and Example 6.8 use natural numbers in the domain of discourse.
So far, we modeled natural numbers as Peano numbers, which essentially re-
sults in a unary encoding because an incomplete abstract value representing the
natural numbers less or equal n ∈ N contains a total of n flags (cf. function



114 CHAPTER 6. OPTIMIZATION OF ABSTRACT PROGRAMS

abstract-nat : N → A in Example 6.10). A unary encoding of natural numbers
is easy to implement and may even lead to better solver runtimes for certain
constraints in comparison to a binary encoding [17]. On the other hand, a bi-
nary encoding is superior in terms of space complexity, which often results in
better solver runtimes for other constraints. Because a binary encoding is more
complex to implement, CO4 provides a built-in type Nat that represents binary
encoded natural numbers, as well as functions that operate on values of type
Nat (cf. Table 6.12).

Name Type Semantics

eqNat Nat -> Nat -> Bool Equality check
gtNat Nat -> Nat -> Bool Greater-than check
plusNat Nat -> Nat -> Nat Addition
timesNat Nat -> Nat -> Nat Multiplication

Table 6.12: Some predefined functions on natural numbers in CO4.

Binary encoded natural numbers integrate seamlessly into the compilation pipeline
because they are compiled to abstract values just as ordinary concrete values.

Definition 6.13 encodeNat : N → A maps a natural number n ∈ N to an
abstract value containing w = ⌈log2(n)⌉ flags that represent n in binary:

encodeNat(n) := (numeric−
2w (n + 1), ())

Note that we have abused the function numeric− to generate a sequence
of w flags that represent the natural number n (cf. Definition 4.20). Note
furthermore that numeric−

2w is defined only for the values in {1 . . . 2w}, which
is why we need to add one when converting n into its binary representation.

For n ∈ N, decoding the abstract value encodeNat(n) ∈ A simply reduces to
converting its flags back to a natural number in decimal.

Definition 6.14 decodeNat : BV × A → N decodes an abstract value a ∈ A
to a natural number in decimal with respect to an assignment σ ∈ BV:

decodeN(σ, a) := numerick(evalflags(σ, a))

where k = 2| flags(a)|.

CO4 provides built-in arithmetic functions for natural numbers encoded in bi-
nary (cf. Table 6.12). These functions directly operate on the flags of their
operands and for that reason they are directly implemented in the solver. In
the following, we give an example that illustrates the addition of two abstract
values that each represent a binary encoded natural number.

Example 6.15 +A : A × A → A gives an abstract value u +A v that rep-
resents the sum of two binary encoded naturals u, v ∈ A where m ∈ N>0
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denotes the number of flags in u and v, i.e., | flags(u)| = | flags(v)| = m. +A
is defined by:

((u1, . . . , um), ()) +A ((v1, . . . , vm), ()) := ((r1, . . . , rm), ())

where

(rm, cm) = half-add(um, vm)
(rm−1, cm−1) = full-add(um−1, vm−1, cm)

. . .

(r1, c1) = full-add(u1, v1, c2)

full-add(ui, vi, ci) = (r′
2, c′

1 ∨ c′
2) with (r′

1, c′
1) = half-add(ui, vi)

(r′
2, c′

2) = half-add(r′
1, ci)

half-add(ui, vi) = (ui ⊕ vi, ui ∧ vi)

+A is implemented using a series of full adders where each full adder consists
of two half adders. There are semantically equivalent implementations for
+A that use fewer logical connectives [50] but are more complex. Note that
+A ignores the final carry flag c1, i.e., overflows are not detected. In the
present implementation of CO4, built-in functions on natural numbers are
partial (cf. Section 5.4) so that an overflow induces an exceptional value.

In Example 6.16, we show a specification of the constraint from Example 3.9
using CO4’s built-in natural numbers.

Example 6.16 Recall the constraint c : N× N2 → B from Example 3.9:

c(p, (a, b)) =
{

True if p = (a · b) ∧ (a > 1) ∧ (b > 1)
False otherwise

The following concrete program applies CO4’s built-in natural numbers and
is a correct specification of c.

1 data Bool = False | True
2 data Pair a b = Pair a b
3

4 constraint :: Nat -> Pair Nat Nat -> Bool
5 constraint = \p u -> case u of
6 Pair a b -> and2 (gtNat a)
7 (and2 (gtNat b)
8 (eqNat p (timesNat a b)))
9

10 and2 :: Bool -> Bool -> Bool
11 and2 = \x y -> case x of
12 False -> False
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13 True -> y

We give an example that compares the unary encoding of naturals to an explicit
binary encoding and to CO4’s built-in binary encoding.

Example 6.17 Assume the following constraint c : N× N2 → B:

c(p, (a, b)) =
{

True if p = a + b

False otherwise

Firstly, we specify c by representing natural numbers using a unary encoding:

1 data Bool = False | True
2 data Nat = Z | S Nat
3 data Pair a b = Pair a b
4

5 constraint :: Nat -> Pair Nat Nat -> Bool
6 constraint = \p u -> case u of
7 Pair a b -> let ab = plus a b
8 in
9 eq p ab

10

11 plus :: Nat -> Nat -> Nat
12 plus = \x y -> case x of Z -> y
13 S x’ -> S (plus x’ y)
14

15 eq :: Nat -> Nat -> Bool
16 eq = \x y -> case x of
17 Z -> case y of Z -> True
18 S y’ -> False
19 S x’ -> case y of Z -> False
20 S y’ -> eq x’ y’

The following listing shows an excerpt of a concrete program that specifies c
using an explicit binary encoding where each natural number is represented
by a list of Booleans. Note that the head of the list denotes the most signif-
icant bit. The complete listing can be found in Appendix C.2.

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)
3 data Pair a b = Pair a b
4

5 constraint :: List Bool -> Pair (List Bool) (List Bool)
6 -> Bool
7 constraint = \p u -> case u of
8 Pair x y -> case add x y of
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9 Pair sum carry -> and (eqNat sum p) (not carry)
10

11 add :: List Bool -> List Bool -> Pair (List Bool) Bool
12 add = \x y ->
13 let add’ pair accu = case pair of
14 Pair u v -> case accu of
15 Pair bits carry -> case fullAdder u v carry of
16 Pair sum carry’ -> Pair (Cons sum bits) carry’
17 in
18 foldr add’ (Pair Nil False) (zip x y)
19

20 fullAdder :: Bool -> Bool -> Bool -> Pair Bool Bool
21 fullAdder = \x y carry -> case halfAdder x y of
22 Pair sum1 carry1 -> case halfAdder sum1 carry of
23 Pair sum2 carry2 -> Pair sum2 (or carry1 carry2)
24

25 halfAdder :: Bool -> Bool -> Pair Bool Bool
26 halfAdder = \x y -> Pair (xor x y) (and x y)

The following concrete program specifies c and encodes natural numbers
using CO4’s built-in binary encoding.

1 data Bool = False | True
2 data Pair a b = Pair a b
3

4 constraint :: Nat -> Pair Nat Nat -> Bool
5 constraint = \p u -> case u of
6 Pair a b -> eqNat p (plusNat a b)

Table 6.18 shows some profiling information for finding solutions for all three
concrete programs with CO4 and MiniSat (version 2.2) on a 3.2 GHz CPU.
For all three programs, we fixed the parameter p so that it represents the
natural number 1002 using the respective encoding. For the parameter u ∈ N,
we generated an incomplete abstract value that represents a pair of naturals
(a, b) ∈ N× N with a < 1024 and b < 1024 (cf. Section 4.1.5).

Even for a trivial example like this, binary encoding of natural numbers has a
significant impact on the size of the generated propositional formula and the
runtime of the SAT solver. The differences between both binary encodings
are less significant. While CO4’s built-in encoding uses fewer variables and
clauses, the clause density is higher. This could indicate that the resulting
satisfiability problem for the explicit encoding is under-constrained, so that
it might be solved more easily by SAT solvers [58]. But that is speculative
and highly depends on the implementation of the solver and the respective
constraint. As for this simple example, there is no difference in solver runtime
for both binary encodings.
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explicit CO4’s
unary encoding binary encoding binary encoding

# variables 1050603 111 43
# clauses 4193219 222 150
# literals 12576601 521 510
clause density 3.99 2.0 3.43
solver runtime 11 s 0.1 s 0.1 s

Table 6.18: Profiling information for finding a solution for constraint c using
three different concrete programs.

6.4 Further Optimizations

The optimizations introduced in the previous sections are reasonable because
they decrease the size of the generated propositional formula. There are several
more optimization strategies. In the following, we briefly introduce two of them.

Merging Abstract Values Recall that case distinctions in a concrete pro-
gram are compiled to an abstract expression where all branches are evaluated
and eventually merged into a single resulting abstract value. As it has been
shown in Section 6.1 and 6.2, evaluating compiled case distinctions is, in gen-
eral, an expensive operation. To reduce their costs, we give an optimization for
compiled case distinctions whose branches do not contain an equal number of
flags.

In Definition 4.41, we specified the function mergevd
: A∗ → A that merges

k ∈ N>0 abstract values v1, . . . , vk ∈ A into a single value mergevd
(v1, . . . , vk) =

r ∈ A with vd ∈ A \ {⊥A} denoting the abstract value of the case distinction’s
discriminant so that the following holds for all assignments σ ∈ BV:

∀i ∈ {1 . . . k} :
(numerick(evalflags(σ, vd)) = i) =⇒ (decodeT (σ, r) = decodeT (σ, vi))

For the original case distinction of type T ∈ Type0, the merged values v1, . . . , vk

represent the abstract values of all k evaluated branches.

For readability, we only consider case distinctions with two branches (k = 2)
where the abstract value vd of the discriminant contains a single flag, i.e.,
flags(vd) = (fd) with fd ∈ F. In this scenario, the result r of the merge must
satisfy the following property for all assignments σ ∈ BV (cf. Example 4.42):

(evalB(σ, fd) = False =⇒ decodeT (σ, r) = decodeT (σ, v1))
∧ (evalB(σ, fd) = True =⇒ decodeT (σ, r) = decodeT (σ, v2))
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Furthermore, we assume that v1 and v2 are abstract values with the following
properties:

1. flags(v1) = (f11, . . . , f1m) and flags(v2) = (f21, . . . , f2n) with m, n ∈ N>0
and m ̸= n, and

2. | arguments(v1)| = | arguments(v2)| = 0

Informally, v1 and v2 both have no arguments and a different number of flags.

It might seem counter-intuitive that two abstract values that represent concrete
values of the same type T can contain a different number of flags; here m and n
with m ̸= n. But such a situation can occur because of the overlapping encoding
of constructor arguments (cf. Section 4.1.4). Merging those values must result
in an abstract value that contains max(m, n) flags in order to represent both
branches of the case distinction.

Merging both values v1 = ((f11, . . . , f1m), ()) and v2 = ((f21, . . . , f2n), ()) into
the value mergevd

(v1, v2) = ((r1, . . . , rmax(m,n)), ()) using the discriminant’s ab-
stract value vd = ((fd), ()) can be implemented as follows:

∀i ∈ {1 . . . max(m, n)} :

ri ⇔

⎧⎪⎨⎪⎩
(¬fd =⇒ f1i) ∧ (fd =⇒ f2i) if i ≤ m and i ≤ n

(¬fd =⇒ f1i) ∧ (fd =⇒ False) if i ≤ m and i > n

(¬fd =⇒ False) ∧ (fd =⇒ f2i) if i > m and i ≤ n

In this implementation, the abstract value that contains fewer flags is hypothet-
ically expanded by additional flags of value False. While that is a reasonable
approach, it generates unnecessary clauses in the resulting propositional formula
whenever i > n or i > m. The following variant is equally correct but leads to
fewer clauses in the resulting formula:

∀i ∈ {1 . . . max(m, n)} :

ri ⇔

⎧⎪⎨⎪⎩
(¬fd =⇒ f1i) ∧ (fd =⇒ f2i) if i ≤ m and i ≤ n

f1i if i ≤ m and i > n

f2i if i > m and i ≤ n

In this variant, clauses are only generated for the resulting flags ri with i ≤
min(m, n). All residual flags are simply copied from flags(v1) and flags(v2). That
is reasonable because when decoding an abstract value to a concrete value with
k ∈ N>0 constructors, only the first ⌈log2(k)⌉ flags are used (cf. Definition 4.18).
All additional flags are ignored.

This example shows that it is beneficial to exploit patterns of flags when merging
abstract values.
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Primitive Operations on Booleans Often we want to use Booleans in the
domain of discourse of a constraint. Thus, we implement functions on Booleans
as well. When compiling these functions, we can exploit the fact that CO4

compiles concrete programs to satisfiability problems in propositional logic. In
the following, we give an example of a specially optimized compilation for a
function that implements the conjunction of two Boolean values.

1 data Bool = False | True
2

3 and2 :: Bool -> Bool -> Bool
4 and2 = \x y -> case x of False -> False
5 True -> y

The compilation of and2, as it has been introduced in Section 4.2, results in an
abstract declaration that contains a merge of two values: the abstract counter-
part of the constant False and the abstract value that represents the concrete
value y. In the following, vx ∈ A and vy ∈ A denote the abstract values
that respectively represent the concrete values x and y with flags(vx) = (fx)
and flags(vy) = (fy) (note that we assume vx ̸= ⊥A and vy ̸= ⊥A). The
merge mergevx

(encodeBool(False), vy) = r = ((r1), ()) that results from compil-
ing the function and2 is specified according to Definition 4.41 for all assignments
σ ∈ BV:

(numerick(evalflags(σ, vx)) = 1 =⇒ decodeBool(σ, r) = False)
∧ (numerick(evalflags(σ, vx)) = 2 =⇒ decodeBool(σ, r) = decodeBool(σ, vy)))

We give a naive implementation of this merge for the resulting flag r1:

r1 ⇔ (¬fx =⇒ False) ∧ (fx =⇒ fy)

While this implementation is correct according to the definition of merge, it
generates unnecessary clauses in the final propositional formula after perform-
ing Tseitin’s transformation (cf. Definition B.13). A better implementation can
be obtained by applying the implication elimination rule (modus ponens) be-
forehand, which gives:

r1 ⇔ (¬fx =⇒ False) ∧ (fx =⇒ fy)
⇔ fx ∧ (fx =⇒ fy)
⇔ fx ∧ fy

This implementation generates fewer clauses in the final propositional formula
after performing Tseitin’s transformation because there is only a single conjunc-
tion of two propositional formulas.

In order to efficiently compile conjunctions of lists of Booleans, this scheme can
be generalized so that more than two values are handled. There are equivalent
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optimizations for merges that result from compiling other functions on Boolean
values, e.g., disjunctions.
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Chapter 7

Applications

In this chapter, we illustrate two use-cases where the CO4 constraint solver is
applied to constraint satisfaction problems from two different domains. These
examples emphasize different strengths of CO4.

In Section 7.1, CO4 is applied to different problems related to termination anal-
ysis of term rewriting systems. In Section 7.1.1, we inspect looping derivations,
which prove a rewriting system to be non-terminating. As looping derivations
are non-flat structures, this example shows how CO4 handles constraints over
complex and highly structured domains. Section 7.1.2 illustrates a use-case
where the termination of a given term rewriting system is shown by finding a
compatible lexicographic path order over the terms of that system. This use-
case illustrates how the textbook definition of a proof strategy can be directly
translated into a concrete program. In order to search termination proofs for
term rewriting systems that do not admit a lexicographic path order, we extend
this proof strategy in Section 7.1.3 by applying the semantic labelling transfor-
mation on term rewriting systems.

Finally, Section 7.2 shows an application of CO4 for the RNA design problem
in bioinformatics. As the RNA design problem is the inverse of the RNA sec-
ondary structure prediction problem, we show how CO4 can be applied to tackle
both problems simply by swapping the parameter domain and the domain of
discourse.

7.1 Termination Analysis of Term Rewriting
Systems

Term rewriting constitutes a Turing-complete computation model and has strong
relations to many programming paradigms, e.g., functional programming [33].

123
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A term rewriting system is a simple but powerful formalism for representing
computations on structured data. Note that Appendix A.3 gives a brief intro-
duction to term rewriting.

Proving either termination or non-termination of term rewriting systems is an
area of active research with applications for termination analysis of computer
programs [37][75][29]. Constraint-based analyses are a well-known approach
where the task of finding the parameter of a termination proof is considered as
a constraint satisfaction problem [33], i.e., for a given term rewriting system and
a parameterized proof strategy, one is looking for a parameter that induces an
actual proof of termination for the given rewriting system. In this section, we il-
lustrate that CO4 allows concise and high-level specifications for the parameters
of different proof strategies [8].

Firstly, we define when a term rewriting system is considered to be terminating.
Definition 7.1 A term rewriting system (Σ, X, R) is terminating if there
are no infinite rewrite chains t1 →R t2 →R t3 →R . . . of the rewrite relation
→R.

Consequently, a term rewriting system does not terminate if there is an infinite
rewrite chain.

7.1.1 Looping Derivations in Term Rewriting Systems

The existence of a looping derivation induces an infinite rewrite chain; thus, it
proves a term rewriting system to be non-terminating. In this section, we use
CO4 for finding looping derivations in term rewriting systems. Finding looping
derivations in string rewriting systems by manually constructing a satisfiability
problem in propositional logic is a well-known method [76].

Definition 7.2 A term rewriting system (Σ, X, R) is looping if there are a
term t ∈ terms(Σ, X) and a looping derivation

t→R t1 →R · · · →R tn[σ̂(t)]p

of the rewrite relation →R so that after n ∈ N>0 rewrite steps, the term
tn[σ̂(t)]p ∈ terms(Σ, X) contains the term σ̂(t) ∈ terms(Σ, X) at position
p ∈ Postn

for some substitution σ̂ : terms(Σ, X)→ terms(Σ, X).
Example 7.3 The term rewriting system ({f, g, 0, 1}, {x, y}, R) [72] with

R =

⎧⎪⎨⎪⎩
f(0, 1, x) → f(x, x, x),

g(x, y) → x,

g(x, y) → y

⎫⎪⎬⎪⎭
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induces a looping derivation t→R t1 →R t2 →R t3 with

t = f(g(y, 0), g(1, 0), g(1, 0))
t1 = f(g(y, 0), 1, g(1, 0))
t2 = f(0, 1, g(1, 0))
t3 = f(g(1, 0), g(1, 0), g(1, 0))

where t3|() = t3 = σ̂(t) and σ = {(y, 1)}.

In Listing 7.4, we give an excerpt of a concrete program c ∈ Prog that im-
plements a specification for looping derivations. The parameter domain of c is
the set of term rewriting systems, where each system is represented by a list
of rules. Each rule is a pair of terms, where the first (resp. second) component
denote the rule’s left-hand (resp. right-hand) side. Note that we do not fix a
certain signature. Instead, we denote variable and function symbols by natu-
ral numbers Nat in order to allow this concrete program to be applied to term
rewriting systems with different signatures (cf. Section 6.3 for CO4’s built-in
implementation Nat of natural numbers). But for indexing subterms, the con-
crete program c does also utilize unary encoded natural numbers (cf. Line 7).
This is reasonable because the recursive definition of Unary makes it easy to
write functions that operate on an indexed element of some recursive structure,
e.g., the function replace at Line 105 in Appendix C.3.

The domain of discourse of c is the set of looping derivations over a set of terms
terms(Σ, X). According to Definition 7.2, each loop of length n ∈ N>0 contains
three components (cf. the type LoopingDerivation in Listing 7.4):

1. a list of n intermediate terms t1, . . . , tn ∈ terms(Σ, X),

2. a position p ∈ Postn (represented as list of unary numbers), and

3. a substitution σ̂ : terms(Σ, X)→ terms(Σ, X) (represented as list of pairs
of Nat and Term).

Each of the intermediate terms is represented by a derivation step (cf. Step in
c) where each step consists of

1. an input term,

2. the rule that is applied in this step,

3. a position (represented as list of unary numbers),

4. a substitution (represented as list of pairs of Nat and Term), and

5. a resulting term.

The concrete program c checks if a looping derivation is compatible with the
given term rewriting system.

In the following example, we apply CO4 to find a solution for the term rewriting
system in Example 7.3 using the aforementioned concrete program.
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1 data Pair a b = Pair a b
2 data List a = Nil | Cons a (List a)
3

4 data Term = Var Nat
5 | Node Nat (List Term)
6

7 data Unary = Z | S Unary
8

9 data Step = Step Term
10 (Pair Term Term)
11 (List Unary)
12 (List (Pair Nat Term))
13 Term
14

15 data LoopingDerivation = LoopingDerivation
16 (List Step)
17 (List Unary)
18 (List (Pair Nat Term))
19

20 constraint :: List (Pair Term Term) -> LoopingDerivation
21 -> Bool
22 constraint = \trs deriv ->
23 isCompatibleLoopingDerivation trs deriv
24

25 isCompatibleLoopingDerivation :: List (Pair Term Term)
26 -> LoopingDerivation
27 -> Bool
28 isCompatibleLoopingDerivation = \trs loopDeriv ->
29 case loopDeriv of
30 LoopingDerivation deriv lastPos lastSub ->
31 case deriv of
32 Nil -> False
33 Cons step steps -> case step of
34 Step t0 rule pos sub t1 ->
35 let last = deriveTerm trs t0 deriv
36 subterm = getSubterm lastPos last
37 t0’ = applySubstitution lastSub t0
38 in
39 eqTerm t0’ subterm

Listing 7.4: An excerpt of a concrete program c ∈ Prog that implements a
specification for looping derivations. The complete program can be found in
Appendix C.3.
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Example 7.5 For the term rewriting system in Example 7.3, CO4 finds
the mentioned looping derivation by generating a propositional formula with
78165 variables, 243090 clauses, and 661534 literals. This formula is solved
by MiniSat (version 2.2) in 0.5 seconds on a 3.2 GHz CPU. As the domain of
discourse is infinite, it has been restricted to three derivation steps on terms
with a maximum depth of three and at most three subterms.

Evaluation

As we have stated in the introduction, achieving competitive runtimes for CO4

in comparison to domain-specific solvers is beyond the scope of the present the-
sis. However, we want to evaluate the runtime-performance of CO4 with respect
to the search for looping derivations, which represent a highly structured domain
of discourse. Therefore, we compare the propositional encoding generated by
CO4 with the term-unfolding strategy unfold [63] implemented in the Tyrolean
Termination Tool 2 version 1.16 (TTT2) [41][52]. The TTT2 software is a termi-
nation analyzer for term rewriting systems and it provides a flexible strategy
language for configuring the proof strategy used for proving termination.

Furthermore, we want to evaluate the impact of the memoization optimization
presented in Section 6.2 on the size of the propositional encoding generated by
CO4. In order to limit this size with regard to a timeout of 60 seconds for
finding a looping derivation in a term rewriting system, we restrict the domain
of discourse to derivations containing up to three steps where each step may
involve terms with a maximum depth of three and at most three subterms.
For TTT2, we run with its default configuration, i.e., neither the length of the
derivation nor the size of the involved terms are restricted.

We evaluate against the 1463 term rewriting systems in the TRS_Standard cate-
gory of the Termination Problems Data Base version 8.0.7 [1]; a standard set of
benchmarks used in the annual Termination Competition [38]. With a timeout
of 60 seconds for each of the 1463 term rewriting systems, TTT2 finds a loop in
160 systems, whereas CO4 finds a loop in 127 systems. There are 101 systems
for which both tools find a loop. Note that the system from Example 7.3 is
among the 26 systems for which CO4 finds a loop within the given timeout, but
TTT2’s unfold strategy does not. In Table 7.6, we compare the solver runtimes
with respect to the common 101 systems on a 3.2 GHz CPU.

The times given in Table 7.6 reveal that, on average, CO4 runs around one or-
der of magnitude slower than TTT2. While this shows that there is still work to
be done in order to provide a constraint solver that can compete with modern
domain-specific solvers, it is still a promising result for a prototypical imple-
mentation of a general-purpose constraint solver that has no domain-specific
optimizations available.

Note that the propositional encoding generated by CO4 does not benefit much
from memoization when searching for looping derivations. Note furthermore
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Solving time [s]
Tool total avg max

TTT2 11.93 0.1 0.18
CO4 143.69 1.39 5.41
CO4 (no memoization) 143.87 1.42 5.45
CO4 (only SAT solver) 47.04 0.47 2.51

Table 7.6: Total, average and maximum solver runtimes for finding looping
derivations in 101 term rewriting systems of the Termination Problems Data
Base.

that most of CO4’s runtime is spent on generating the propositional formula.
This result indicates that future work should not only consider optimizing the
generated propositional formulas but also the runtime-performance of CO4’s
implementation itself, e.g., it might be of interest how the garbage collection
procedure of Haskell’s runtime-system affects the runtime of CO4. The accu-
mulated solver runtimes shown in Figure 7.7 illustrate the gap between CO4’s
total runtime and the runtime of the external SAT solver MiniSat.

7.1.2 Lexicographic Path Orders

In this section, we aim to prove termination of a term rewriting system by
finding a lexicographic path order [6]. A lexicographic path order is a relation
on terms that is induced by a strict order of the symbols of a signature.

Definition 7.8 The lexicographic path order >lpo ⊆ terms(Σ, X)2 induced
by a strict partial order >prec ⊆ Σ2 is a binary relation on terms s, t ∈
terms(Σ, X) over a variable set X so that s >lpo t holds if:

1. t ∈ var(s) and s ̸= t, or

2. s = f(s1, . . . , sm) and t = g(t1, . . . , tn), and

(a) si ≥lpo t for some i ∈ {1 . . . m}, or

(b) f >prec g and s >lpo tj for all j ∈ {1 . . . n}, or

(c) f = g, s >lpo tj for all j ∈ {1 . . . n}, and there is an index
i ∈ {1 . . . m}, so that s1 = t1, . . . , si−1 = ti−1 and si >lpo ti.

Note that ≥lpo denotes the reflexive closure of >lpo. In the following, we name
the strict partial order >prec ⊆ Σ2 a precedence over the symbols in Σ.

The lexicographic path order induced by a precedence on function symbols may
prove termination of term rewriting systems.
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Figure 7.7: Accumulated solver runtimes for finding looping derivations in 101
term rewriting systems of the Termination Problems Data Base. Note that the
order in which the systems were solved corresponds to the lexicographic order
of their file names in the Termination Problems Data Base. For readability, the
graph does not show the runtimes for CO4 without memoization as the search
for looping derivations does not benefit from this optimization.

Theorem 7.9 A term rewriting system (Σ, X, R) is terminating if there
is a precedence >prec ⊆ Σ2 inducing a lexicographic path order >lpo ⊆
terms(Σ, X)2 such that l >lpo r for all (l→ r) ∈ R [6]. ■

Finding a LPO-inducing partial order >prec ⊆ Σ2 by specifying its properties
as a satisfiability problem in propositional logic is a well-known approach for
proving a term rewriting system to be terminating [18] [19].

In Listing 7.10, we give an excerpt of a concrete program that specifies a con-
straint on precedences so that the induced lexicographic path order is compatible
with a given rewriting system. Note that the function lpo in Listing 7.10 is al-
most a direct translation of the textbook definition of lexicographic path orders
(cf. Definition 7.8). The parameter domain is the set of term rewriting systems,
where each system is represented by a list of function symbols and a list of rules.
Each rule is a pair of terms, where the first (resp. second) component denotes
the rule’s left-hand (resp. right-hand) side. As described in Section 7.1.1, we
represent function and variable symbols by natural numbers.

The domain of discourse for a term rewriting system (Σ, X, R) is the set of
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precedences over |Σ| different function symbols. The variable prec represents
the underlying strict partial order using a list of |Σ| function symbols sorted
in descending order of their respective precedence. Note that prec actually
represents a total order, and therefore slightly diverges from Definition 7.8.
This is not a problem as Definition 7.8 equally holds if >prec is total.

The function lpo recursively traverses its arguments s and t using case dis-
tinctions in Line 22, 23, 24, and 29. However, in the corresponding abstract
program, the compiled case distinctions can be evaluated without generating
new subformulas (cf. Lemma 4.43). That is because all traversed terms stem
from the term rewriting system that is the parameter of the concrete program,
i.e., all terms are known when evaluating the abstract program. On the other
hand, functions that depend on the unknown precedence contribute to the re-
sulting propositional formula. That especially applies to the function ord, which
computes the relation between two function symbols by looking up their prece-
dences in the list prec.

In Example 7.11, we show the termination of an exemplary term rewriting sys-
tem.

Example 7.11 Assume a term rewriting system (Σ, X, R) that specifies the
Ackermann function:

Σ = {a, s, n} with arity(a) = 2
arity(s) = 1
arity(n) = 0

X = {x, y}

R =

⎧⎪⎨⎪⎩
a(n, y) → s(y),

a(s(x), n) → a(x, s(n)),
a(s(x), s(y)) → a(x, a(s(x), y))

⎫⎪⎬⎪⎭
CO4 finds the precedence a >prec n >prec s by generating a propositional
formula with 172 variables, 417 clauses, and 989 literals.

CO4’s profiling output given in Appendix C.5 actually confirms that the
compiled counterparts of the case distinctions in Line 22, 23, 24, and 29 do
not contribute to the final propositional formula.

Note that the present implementation of lexicographic path orders heavily
benefits from memoization of function applications (cf. Section 6.2). With
memoization, function ord needs to be evaluated at most once for each pair
of function symbols. Without memoization, CO4 finds the aforementioned
precedence by generating a propositional formula with 531 variables, 1420
clauses, and 3433 literals.
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1 data Bool = False | True
2 data Pair a b = Pair a b
3 data List a = Nil | Cons a (List a)
4

5 data Term = Var Nat | Node Nat (List Term)
6

7 data Order = Gr | Eq | NGe
8

9 data TRS = TRS (List Nat) (List (Pair Term Term))
10

11 constraint :: TRS -> List Nat -> Bool
12 constraint = \trs prec -> case trs of
13 TRS symbols rules ->
14 and2 (forall rules (\rule -> ordered rule prec))
15 (forall symbols (\sym -> exists prec sym eqNat))
16

17 ordered :: Pair Term Term -> List Nat -> Bool
18 ordered = \rule prec -> case rule of
19 Pair lhs rhs -> eqOrder (lpo prec lhs rhs) Gr
20

21 lpo :: List Nat -> Term -> Term -> Order
22 lpo = \prec s t -> case t of
23 Var x -> case eqTerm s t of
24 False -> case varOccurs x s of
25 False -> NGe
26 True -> Gr
27 True -> Eq
28

29 Node g ts -> case s of
30 Var v -> NGe
31 Node f ss ->
32 case forall ss (\si -> eqOrder (lpo prec si t) NGe) of
33 False -> Gr
34 True -> case ord prec f g of
35 Gr ->
36 case forall ts (\ti -> eqOrder (lpo prec s ti) Gr) of
37 False -> NGe
38 True -> Gr
39 Eq ->
40 case forall ts (\ti -> eqOrder (lpo prec s ti) Gr) of
41 False -> NGe
42 True -> lex (\xs ys -> lpo prec xs ys) ss ts
43 NGe -> NGe
44

45 ord :: List Nat -> Nat -> Nat -> Order
46 ord = \prec a b -> ...

Listing 7.10: An excerpt of a concrete program that specifies a constraint on
precedences so that the induced lexicographic path order is compatible with a
given rewriting system. The complete listing can be found in Appendix C.4.
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Evaluation

Similar to the search for looping derivations that we have illustrated in the pre-
vious section, we want to evaluate the size of the propositional encoding and the
overall runtime-performance of CO4 with respect to the search for compatible
lexicographic path orders.

Therefore, we compare both aspects to the size of the manually derived proposi-
tional encoding implemented in the lpo processor of the Tyrolean Termination
Tool 2 version 1.16 (TTT2) [41][52] and the overall runtime-performance of TTT2,
respectively. Furthermore, we want to evaluate the impact of the memoization
optimization presented in Section 6.2 on the size of the propositional encoding
generated by CO4.

Both tools find a compatible lexicographic path order for 144 of 1463 term
rewriting systems from the TRS_Standard category of the Termination Problems
Data Base version 8.0.7 [1]. Table 7.12 shows the runtimes and sizes of the
generated propositional formulas for both tools.

Solving time [s] #variables #clauses
Tool total avg max avg max avg max

TTT2 16.27 0.1 0.15 96 755 139 1104
CO4 4.14 0.02 0.21 581 6724 1654 21096
CO4 (no memoiz.) 20.2 0.14 2.09 3987 52186 13174 182400

Table 7.12: Total, average and maximum runtimes for TTT2 and CO4, as well
as formula sizes for finding compatible lexicographic path orders in 144 term
rewriting systems of the Termination Problems Data Base.

Table 7.12 shows that the propositional formulas generated by CO4 are about
one order of magnitude larger than the propositional encoding provided by TTT2
with respect to the number of variables and clauses. That is not surprising
as domain-specific tools like TTT2 may incorporate deep knowledge about their
respective domains into the generation of propositional encodings. However,
CO4’s runtime is, on average, slightly lower than TTT2’s runtime, which might
result from a more sophisticated preprocessing done by TTT2, which eventually
results in the generation of smaller propositional encodings.

The numbers in Table 7.12 confirm that the search for a compatible lexico-
graphic path order benefits from memoization (cf. Example 7.11), i.e., when
disabling memoization, CO4’s runtime performance degrades and it generates
larger propositional formulas. Figure 7.13 illustrates the benefits of memoization
for the accumulated solver runtimes over all 144 term rewriting systems.
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Figure 7.13: Accumulated solver runtimes for finding compatible lexicographic
path orders in 144 term rewriting systems of the Termination Problems Data
Base. Note that the order in which the systems were solved corresponds to the
lexicographic order of their file names in the Termination Problems Data Base.

Overall, these results are quite promising: they not only show the benefits of
optimizations like memoization, but also indicate that for certain applications,
CO4’s runtime is already competitive compared to domain-specific tools. How-
ever, the differences in the sizes of the generated propositional encodings show
that there is much room for improvement. While this potential should be eval-
uated in future work, a general-purpose approach like CO4 will always lack
domain-specific knowledge needed for generating an optimal propositional en-
coding. This situation is similar to the respective characteristics of programming
in a high-level language like Haskell versus programming in Assembler: while
Assembler helps developing fast and memory-efficient programs, a high-level
language supports more abstract concepts that help developing applications on
a large scale.

7.1.3 Semantic Labelling

The term rewriting system in Example 7.11 contains only three function sym-
bols; thus, there are only few semantically different precedences. The problem of
finding a compatible lexicographic path order becomes harder for more complex
rewriting systems. In this section, we introduce semantic labelling [77], a trans-
formation of term rewriting systems that deliberately increases the signature
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and the number of rules of a given rewriting system. While such a transfor-
mation seems counterintuitive in the first place, it is often necessary in order
to apply proof strategies like lexicographic path orders. Example 7.14 shows a
term rewriting system that admits no compatible lexicographic path order.

Example 7.14 Assume the following term rewriting system (Σ, X, R) [77]:

Σ = {+, ∗, f, g, a} with arity(+) = 2
arity(∗) = 2
arity(f) = 1
arity(g) = 2
arity(a) = 0

X = {x, y, z}

R =

⎧⎪⎨⎪⎩
(x ∗ y) ∗ z → x ∗ (y ∗ z),
(x + y) ∗ z → (x ∗ z) + (y ∗ z),

x ∗ (y + f(z)) → g(x, z) ∗ (y + a)

⎫⎪⎬⎪⎭
For readability we have written the symbols + and ∗ in infix notation.

There is no compatible lexicographic path order for this system.

In order to prove termination of the term rewriting system in Example 7.14, we
specify semantic labelling as a transformation of term rewriting systems. The
signature of a labelled term rewriting system has more symbols than the original
rewriting system. In the end, this will allow us to apply proof strategies like the
lexicographic path order to the labelled system, which is not possible for the
original rewriting system.

Definition 7.15 The signature of labelled function symbols Σ is defined by

Σ = {sl | s ∈ Σ ∧ l ∈ Ls}

where Ls denotes a non-empty set of labels for the symbol s ∈ Σ.

Next, we need to label the rules of the given term rewriting system. To do so,
we fix a Σ-algebra (cf. Definition A.26) that we require to be a model for the
given rewriting system.

Definition 7.16 A Σ-algebra M = (M, [.]) is a model for a term rewriting
system (Σ, X, R) with a variable set X if:

∀σ ∈MX : ∀(l→ r) ∈ R : evalM(σ, l) = evalM(σ, r)

Example 7.17 The following algebra (M, [.]) is a model for the term rewrit-
ing system in Example 7.14:

M = {1, 2} [+](x, y) = y

[∗](x, y) = 1 [f ](x) = 2
[g](x, y) = 2 [a] = 1
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For every symbol s ∈ Σ, we choose an n-ary mapping πs : Mn → Ls with
n = arity(s). The mapping πs determines the label for the symbol s according
to the values of its arguments as interpreted in the model M = (M, [.]). Based
on these mappings we define a labelling function for terms.

Definition 7.18 The labelling function lab : terms(Σ, X)×MX →
terms(Σ, X) gives the labelled term for a term t ∈ terms(Σ, X) and a mapping
σ : X →M from the variable set X to the carrier set M of a model M:

lab(t, σ) :=⎧⎪⎨⎪⎩
t if t ∈ X

fπf (evalM(σ,t1),...,evalM(σ,tn))(lab(t1, σ), . . . , lab(tn, σ)) if t = f(t1, . . . , tn)
for n ∈ N

Using the labelling function, we can compute a labelled term rewriting system
by applying lab to all rules of a given rewriting system.

Definition 7.19 The set of rules R ⊆ terms(Σ, X)2 of the labelled term
rewriting system (Σ, X, R) for a given term rewriting system (Σ, X, R) and
a model M with carrier set M is defined by:

R =
{

lab(σ, l)→ lab(σ, r) | (l→ r) ∈ R ∧ σ ∈MX
}

Example 7.20 For the rewriting system (Σ, X, R) in Example 7.14 and the
model M in Example 7.17 we fix the following:

Σ = {+1, ∗1, ∗2, f1, g1, a1}
π∗(x, y) = y

π+(x, y) = πf (x) = πg(x, y) = πa = 1

Then, the set of rules R of the labelled term rewriting system is:

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x ∗1 y) ∗1 z → x ∗1 (y ∗1 z),
(x ∗1 y) ∗2 z → x ∗1 (y ∗2 z),
(x ∗2 y) ∗1 z → x ∗1 (y ∗1 z),
(x ∗2 y) ∗2 z → x ∗1 (y ∗2 z),
(x +1 y) ∗1 z → (x ∗1 z) +1 (y ∗1 z),
(x +1 y) ∗2 z → (x ∗2 z) +1 (y ∗2 z),

x ∗2 (y +1 f1(z)) → g1(x, z) ∗1 (y +1 a)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Due to Theorem 7.21, we can prove termination of a given term rewriting system
by proving termination of the labelled term rewriting system.
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Theorem 7.21 [77] A term rewriting system (Σ, X, R) is terminating if the
labelled term rewriting system (Σ, X, R) is terminating for

1. a model M = (M, [.]),

2. a non-empty set of labels Ls for each symbol s ∈ Σ, and

3. a mapping πs : Mn → Ls with n = arity(s) for each symbol s ∈ Σ. ■

Example 7.22 For the labelled term rewriting system in Example 7.20,
CO4 finds a precedence >prec with

∗2 >prec ∗1 >prec g1 >prec f1 >prec a1 >prec +1

that induces a compatible lexicographic path order. CO4 generates a propo-
sitional formula with 328 variables, 1133 clauses, and 3117 literals.

Note that the precedence in Example 7.22 for the labelled system from Exam-
ple 7.22 was found using the exact same concrete program as it was used in
Example 7.11 without semantic labelling. This is possible because we did not
fix a particular signature in the concrete program.

In Figure 7.23, we informally specify an algorithm that combines the search
for a compatible lexicographic path order with semantic labelling in order to
prove termination of unlabelled term rewriting systems. This approach has been
published as SAT Compilation for Termination Proofs via Semantic Labelling
and Unlabelling at the Workshop on Termination in 2014 [10].

1. Specify a model M with a carrier set M over the signature Σ.
2. For each symbol s ∈ Σ, pick an appropriate mapping πs : Mn → Ls so

that n = arity(s) and Ls denotes a non-empty set of labels for s.
3. Construct a labelled term rewriting system over Σ.
4. Specify a precedence over the symbols in Σ that induces a lexicographic

path order for the labelled term rewriting system.

Figure 7.23: Algorithm for combining the search for a compatible lexicographic
path order with semantic labelling in CO4.

In Listing 7.24, we give an excerpt of a concrete program implementing a speci-
fication of a precedence which induces a lexicographic path order over a labelled
term rewriting system.

Evaluation

Using the algorithm given in Figure 7.23 leads to a single SAT solver run for find-
ing a model as well as a precedence. This extends previous approaches [9] that
only work on string rewriting systems. This algorithm has been implemented as
a module in the Matchbox termination prover [74] for participating in the Ter-
mination Competition 2014. We could produce the first certified proof for the
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1 constraint :: Triple (TRS Symbol)
2 (List (Labelled Symbol))
3 (List Sigma)
4 -> Pair (Precedence (Labelled Symbol))
5 (Interpretation Symbol)
6 -> Bool
7 constraint = \p u ->
8 let eqSymbol = eqNat
9 eqLabelledSymbol = eqLabelled eqNat

10 in
11 case p of Triple trs lsymbols assigns ->
12 case u of Pair prec interp ->
13 case trs of Pair symbols rules ->
14 let lrules = labelledRules eqNat interp
15 assigns rules
16 ltrs = Pair lsymbols lrules
17 in
18 and2 (lpoConstraint eqLabelledSymbol ltrs prec)
19 (isModel eqNat interp assigns trs)
20

21 labelledRules :: (a -> a -> Bool) -> Interpretation a
22 -> List Sigma -> List (Rule a)
23 -> List (Rule (Labelled a))
24 labelledRules = \eq interp assigns rules ->
25 concat’ (map’ (\rule -> case rule of
26 Pair lhs rhs -> map’
27 (\sigma -> Pair (labelledTerm eq interp sigma lhs)
28 (labelledTerm eq interp sigma rhs)
29 ) assigns) rules)
30

31 isModel :: (a -> a -> Bool) -> Interpretation a
32 -> List Sigma -> TRS a -> Bool
33 isModel = \eq interp assigns trs -> case trs of
34 Pair symbols rules ->
35 forall assigns (\sigma ->
36 forall rules (\(Pair lhs rhs) ->
37 eqNat (eval eq interp sigma lhs)
38 (eval eq interp sigma rhs)))

Listing 7.24: An excerpt of a concrete program implementing a specification
of a precedence which induces a lexicographic path order over a labelled term
rewriting system. The complete program can be found in Appendix C.6.
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TRS_Standard/AProVE_04/JFP_Ex31.xml system of the Termination Problems
Data Base.

In the following example, we use the algorithm from Figure 7.23 to prove ter-
mination of the term rewriting system from Example 7.14.

Example 7.25 For the unlabelled term rewriting system in Example 7.14,
CO4 finds the model from Example 7.17 and a precedence for the symbols
in the labelled system by generating a propositional formula with 18286
variables and 53808 clauses, which is solved by MiniSat (version 2.2) in 0.11 s
on a 3.2 GHz CPU. Note that we have fixed πs to equal the identity function
for all symbols s ∈ Σ. Furthermore, we restricted the model’s carrier set to
contain exactly two elements.

Using the same setup as described in Example 7.25 and a timeout of 300 seconds,
CO4 is able to prove termination using the algorithm given in Figure 7.23 for
210 term rewriting systems from the TRS_Standard category of the Termination
Problems Data Base version 8.0.7 [1], which contains 1463 systems in total.

When restricting the model’s carrier set to contain exactly one element, the
algorithm in Figure 7.23 reduces to the search for a compatible lexicographic
path order as it has been introduced in Section 7.1.2. Unsurprisingly, in this
case, CO4 finds a path order for the exact same term rewriting systems as with
the concrete program given in Listing 7.10.

7.2 RNA Design

In this section, we illustrate an application of the constraint solver CO4 for
design problems of ribonucleic acids (RNA). The results of this application have
been published as RNA Design by Program Inversion via SAT Solving at the
Workshop on Constraint-Based-Methods for Bioinformatics in 2013 [11].

RNA molecules play an important role for many biological processes. They are
uniquely represented by chains of organic bases.

Definition 7.26 The primary structure S1 ∈ {A, C, G, U}n of an RNA
molecule of length n ∈ N>0 is a tuple of length n over the four bases denoted
as A, C, G, and U .

While these linear molecules fold into tertiary structures, i.e., three-dimensional
shapes, many aspects of RNA structures are commonly studied at the level of
RNA’s secondary structure, i.e., the sequence of pairs of bases.

Definition 7.27 The secondary structure S2 ⊆ {1 . . . n}2 of an RNA molecule
with the primary structure S1 = (p1, . . . , pn) of length n ∈ N>0 is a set of
pairs of indices so that all of the following properties hold:
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1. each pair indexes a canonical base pair :

∀(i, j) ∈ S2 : (pi, pj) ∈ {(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)}

2. no two pairs (i, j), (u, v) ∈ S2 are crossing:(
{i . . . j} ⊆ {u . . . v}

)
∨
(
{i . . . j} ⊇ {u . . . v}

)
The folding of an RNA’s primary structure S1 into a secondary structure S2 is
associated with a certain amount of free energy engy(S1,S2) ∈ Z∪{∞} whose ex-
act value depends on the underlying energy model. As biological systems strive
to minimize the amount of free energy, S1 is more likely to fold into a secondary
structure S2 that minimizes engy(S1,S2). Consequently, if engy(S1,S2) = ∞,
S1 will not fold into the structure S2 under any circumstances.

Definition 7.28 For a given primary structure S1, the RNA secondary
structure prediction problem asks for a secondary structure S2 so that the
amount of free energy engy(S1,S2) is minimized:

engy(S1,S2) = min{engy(S1,S ′
2) | S ′

2 ∈ secondary structures}

The RNA secondary structure prediction problem is an elementary problem
of bioinformatics [2]. Assuming non-crossing structures, this problem can be
solved efficiently using dynamic programming [36].

A similarly fundamental problem is known as RNA design, which asks for a
primary structure of an RNA that folds optimally into a given secondary struc-
ture. The RNA secondary structure design problem is most naturally phrased
as the exact inverse of the structure prediction problem.

Definition 7.29 For a given secondary structure S2, the RNA design prob-
lem asks for a primary structure S1 so that S2 is the solution of the structure
prediction problem for S1.

To simplify our implementation of the RNA design problem, we change the
objective function of the RNA secondary structure prediction: instead of min-
imizing the free energy, we aim to maximize the bound energy. This change is
reasonable because a biological system binding a maximum amount of energy
equally minimizes the amount of free energy that is inherent to that system.

Our energy model is rather simple: for each canonical base pair in a secondary
structure, we assign an energy value representing the amount of energy bound
by that pair. Non-canonical base pairs are excluded by fixing their bound energy
to −∞; this simulates an infinite amount of free energy.

Definition 7.30 engybase : {A, C, G, U}2 → N ∪ {−∞} assigns an energy
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value to a pair (x, y) ∈ {A, C, G, U}2 of bases and is defined by:

engybase(x, y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (x, y) = (G, U) ∨ (x, y) = (U, G)
2 if (x, y) = (A, U) ∨ (x, y) = (U, A)
3 if (x, y) = (C, G) ∨ (x, y) = (G, C)
−∞ otherwise

The energy values N∪{−∞} form a semiring, i.e., a set with associated addition
and multiplication functions:

• Adding two energy values is done by taking the maximum of both values
with −∞ being the identity element.

• The product of two energy values is the (classic) sum of both values where
−∞ is the absorbing element.

In our energy model, the total energy bound by folding a primary structure
into a secondary structure equals the semiring-product of the energy values
engybase(pi, pj) for each base pair (pi, pj) ∈ {A, C, G, U}2 in the given structure.

Definition 7.31 engy(S1,S2) ∈ N ∪ {−∞} computes the energy bound by
folding the primary structure S1 = (p1, . . . , pn) of length n ∈ N>0 into the
secondary structure S2 ⊆ {1 . . . n}2 and is defined by:

engy(S1,S2) :=
∏

(i,j)∈S2

engybase(pi, pj)

Listing 7.32 shows an excerpt of a straightforward implementation for engybase
in a concrete program. Note that the type Nat denotes CO4’s built-in encoding
for natural numbers (cf. Section 6.3).

1 data Base = A | C | G | U
2 data Energy = MinusInfinity | Finite Nat
3

4 energyBase :: Base -> Base -> Energy
5 energyBase = \b1 b2 -> case b1 of
6 A -> case b2 of
7 A -> MinusInfinity
8 C -> MinusInfinity
9 G -> MinusInfinity

10 U -> Finite (nat 2)
11 ...

Listing 7.32: An excerpt of an exemplary implementation of engybase.
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Listing 7.33 illustrates how the implementation for the sum and product in the
energy-semiring uses the built-in functions maxNat and plusNat for computing
the maximum and sum of two natural numbers.

1 plusE :: Energy -> Energy -> Energy
2 plusE = \e f -> case e of
3 Finite x -> case f of
4 Finite y -> Finite (maxNat x y)
5 MinusInfinity -> e
6 MinusInfinity -> f
7

8 timesE :: Energy -> Energy -> Energy
9 timesE = \e f -> case e of

10 Finite x -> case f of
11 Finite y -> Finite (plusNat x y)
12 MinusInfinity -> f
13 MinusInfinity -> e

Listing 7.33: The implementation of the sum and product in the energy-
semiring.

As the secondary structure is required to be non-crossing, we represent it as a
well-formed list of parentheses in the concrete program where a Blank charac-
ter indexes a base that is not part of any base pair. The energy engy(S1,S2)
bound by a given primary structure S1 that is folded into a given secondary
structure S2 is computed using a stack automaton in the function parse shown
in Listing 7.34.

In order to specify the RNA design problem as a concrete program, we exploit its
relation to RNA secondary structure prediction (cf. Definition 7.28), i.e., instead
of directly tackling the design problem, we are going to solve the structure
prediction problem for an unknown primary structure S1 = (p1, . . . , pn) with
n ∈ N>0. For a given secondary structure S2, we apply the Algebraic Dynamic
Programming (ADP) framework [36] for computing the maximal amount of
bound energy. To do so, we specify a matrix E over energy values with dimension
(n+1)×(n+1). Note that E and the matrices mentioned below are indexed in a
zero-based manner, i.e., their indices range from (0, 0) to (n, n). E(i,j) contains
the maximally bound energy for the sequence (pi+1, . . . , pj−1, pj) of S1 where
i, j ∈ {0 . . . n}. In general, E has the following form:

E =

⎡⎢⎢⎢⎢⎣
−∞ 0 E(0,2) E(0,3) E(0,4) . . . E(0,n)
−∞ −∞ 0 E(1,2) E(1,3) . . . E(1,n)
−∞ −∞ −∞ 0 E(2,3) . . . E(2,n)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−∞ −∞ −∞ −∞ −∞ −∞ −∞

⎤⎥⎥⎥⎥⎦
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1 data Paren = Open | Close | Blank
2

3 boundEnergy :: List Base -> List Paren -> Energy
4 boundEnergy = \p s -> parse Nil p s
5

6 parse :: List Base -> List Base -> List Paren -> Energy
7 parse = \stack p s -> case s of
8 Nil -> case stack of
9 Nil -> Finite (nat 0)

10 Cons z zs -> MinusInfinity
11 Cons y ys -> case p of
12 Nil -> MinusInfinity
13 Cons x xs ->
14 let stack’ = case y of
15 Blank -> stack
16 Open -> Cons x stack
17 Close -> tail stack
18 here = case y of
19 Blank -> Finite (nat 0)
20 Open -> Finite (nat 0)
21 Close -> energyBase (head stack) x
22 in
23 timesE here (parse stack’ xs ys)

Listing 7.34: The computation of the energy bound by a primary structure p
that is folded into a secondary structure s is computed using a stack automaton.
Note that the functions head and tail give the first element and the trailing
elements of the stack, respectively. Furthermore, the function parse does not
check whether the list of parentheses is actually well-formed: it evaluates to ⊥ if
it is not, which effectively renders the constraint unsatisfiable (cf. Section 5.4).

According to the ADP framework, E is the pointwise least solution of the fol-
lowing equation:

E = I + E · E +
∑

x,y∈{A,C,G,U}

engybase(x, y) · Ix · Iy ·G3 (7.35)

Note the following:

1. + and · denote the matrix addition and multiplication over the energy
semiring.

2. For x ∈ {A, C, G, U}, Ix denotes a (n + 1)× (n + 1) matrix where

∀(i, j) ∈ {0 . . . n}2 : Ix(i,j) =
{

0 if i + 1 = j and x = pj

−∞ otherwise
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For example, if S1 = (U, C, C, A), then

IC =

⎡⎢⎢⎢⎢⎣
−∞ −∞ −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞

⎤⎥⎥⎥⎥⎦
Ix is used for selecting all bases x present in the primary structure S1.

3. I is defined as:
I =

∑
x∈{A,C,G,U}

Ix

For example, if S1 contains 4 bases, then

I =

⎡⎢⎢⎢⎢⎣
−∞ 0 −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ 0
−∞ −∞ −∞ −∞ −∞

⎤⎥⎥⎥⎥⎦
4. For l ∈ N>0, Gl denotes a (n + 1)× (n + 1) matrix where

∀(i, j) ∈ {0 . . . n}2 : Gl(i,j) =
{

E(i,j) if i + l ≤ j

−∞ otherwise

Gl enforces that at least l bases of the primary structure S1 are folded
along its secondary structure (minimal hairpin length). For example, if
S1 contains 4 bases and l = 3, then

G3 =

⎡⎢⎢⎢⎢⎣
−∞ −∞ −∞ E(0,3) E(0,4)
−∞ −∞ −∞ −∞ E(1,4)
−∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞

⎤⎥⎥⎥⎥⎦
We rewrite Equation (7.35) to

E = I + E · E + C ⊙G′
3 (7.36)

which requires fewer operations. Note the following:

1. A⊙B denotes the pointwise multiplication of two (n+1)×(n+1) matrices
A and B over the energy semiring:

∀(i, j) ∈ {0 . . . n}2 : (A⊙B)(i,j) = A(i,j) ·B(i,j)
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2. C denotes a (n + 1) × (n + 1) matrix that contains the energy values
according to engybase for all valid pairings of the bases in S1:

∀(i, j) ∈ {0 . . . n}2 : C(i,j) =
{

engybase(pi+1, pj) if i + 1 < j

−∞ otherwise

For example, if S1 contains 4 bases, then

C =

⎡⎢⎢⎢⎢⎣
−∞ −∞ engybase(p1, p2) engybase(p1, p3) engybase(p1, p4)
−∞ −∞ −∞ engybase(p2, p3) engybase(p2, p4)
−∞ −∞ −∞ −∞ engybase(p3, p4)
−∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞

⎤⎥⎥⎥⎥⎦
3. For l ∈ N>0, G′

l denotes a (n + 1)× (n + 1) matrix that is an index-shifted
version of Gl:

∀(i, j) ∈ {0 . . . n}2 : G′
l(i,j) =

{
Gl(i+1,j−1) if i < n and j > 0
−∞ otherwise

For example, if S1 contains 4 bases, then

G′
l =

⎡⎢⎢⎢⎢⎣
−∞ Gl(1,0) Gl(1,1) Gl(1,2) Gl(1,3)
−∞ Gl(2,0) Gl(2,1) Gl(2,2) Gl(2,3)
−∞ Gl(3,0) Gl(3,1) Gl(3,2) Gl(3,3)
−∞ Gl(4,0) Gl(4,1) Gl(4,2) Gl(4,3)
−∞ −∞ −∞ −∞ −∞

⎤⎥⎥⎥⎥⎦
Now that we have seen how to compute the energy matrix, we give the con-
straint cdesign for solving the aforementioned instance of the RNA design problem
through RNA secondary structure prediction.

cdesign(S2, (S1, E)) :=

⎧⎪⎨⎪⎩
True if E is the pointwise least solution of

Equation (7.36) and engy(S1,S2) = E(0,n)

False otherwise

Note that cdesign expects the primary structure S1 containing n ∈ N>0 bases.
Listing 7.37 shows an excerpt of a concrete program that implements cdesign.

Evaluation

In Example 7.38, we show an exemplary primary structure found by CO4 for a
given secondary structure using the concrete program in Appendix C.7.
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1 constraint :: List Paren
2 -> Pair (List Base) (List (List Energy))
3 -> Bool
4 constraint = \secondary u -> case u of
5 Pair primary e ->
6 let c1 = geEnergy (boundEnergy primary secondary)
7 (upright e)
8 c2 = matrixAll eqEnergy e
9 (energyM primary e)

10 c3 = matrixAll eqEnergy e
11 (gap (S Z) MinusInfinity e)
12 in
13 and2 c1 (and2 c2 c3)
14

15 energyM :: List Base -> List (List Energy)
16 -> List (List Energy)
17 energyM = \p m ->
18 let mInfty = MinusInfinity
19 in sum
20 (Cons (item mInfty (Finite (nat 0)) p)
21 (Cons (product (Cons m (Cons m Nil)))
22 (Cons (pointwise timesE
23 (costM MinusInfinity p)
24 (matrixShift mInfty (gap (S (S (S Z)))
25 mInfty m)))
26 Nil)))

Listing 7.37: An excerpt of the implementation of cdesign. The complete listing
can be found in Appendix C.7.

Example 7.38 Assume the secondary structure

S2 =
{

(1, 30), (2, 29), (3, 28), (4, 27), (5, 26),
(9, 24), (10, 23), (11, 22), (12, 21), (13, 20)

}
that corresponds to the following list of parentheses:

(((((_ _ _(((((_ _ _ _ _ _)))))_)))))

For n = 30, CO4 finds the primary structure

S1 =
(

U, U, U, G, A, G, G, G, G, G, A, U, G, G, G,

U, G, G, G, U, A, U, U, U, G, U, C, G, G, G

)
by generating a propositional formula with 227151 variables, 1157736 clauses,
and 3677312 literals, which is solved by MiniSat (version 2.2) in 43 s on a
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3.2 GHz CPU. The bound energy is engy(S1,S2) = 15. The complete energy
matrix can be found in Appendix C.8.

Using CO4 actually allows us to exploit the inverse relation of RNA secondary
structure prediction and RNA design simply by switching the primary and sec-
ondary structure in the constraint cdesign.

cprediction(S1, (S2, E)) := cdesign(S2, (S1, E))

Example 7.39 shows a solution of the secondary structure prediction problem
by implementing cprediction using the almost identical concrete program that im-
plements cdesign.

Example 7.39 Assume the primary structure S1 found in Example 7.38.
CO4 finds a secondary structure

S2 =
{

(2, 30), (3, 29), (4, 26), (5, 23), (11, 12),
(14, 22), (16, 18), (20, 21), (24, 25), (27, 28)

}

by generating a propositional formula with 202287 variables, 1056154 clauses,
and 3376251 literals, which is solved by MiniSat (version 2.2) in 0.1 s on a
3.2 GHz CPU. The found secondary structure corresponds to the following
list of parentheses:

_((((_ _ _ _ _( )_(_(_)_( )))( ))( )))

Unsurprisingly, the bound energy engy(S1,S2) equals 15 again, although a
different secondary structure is found than in Example 7.38.

Note that we do not evaluate the present approach to domain-specific tools from
the area of bioinformatics as they apply more complex energy models that we
do not support in this proof of concept.
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Related Work

In this section, we compare CO4 to the following techniques and tools used
for constraint solving: Ersatz, MiniZinc, Prolog, and Answer Set Programming
(ASP). To a certain degree, each of them provides a way of specifying constraints
in a high-level constraint specification language. Thus, our comparison is based
on the features inherent to the constraint specification languages of these solvers.
Note that we do not compare runtime-performances. Table 8.1 gives an overview
of all surveyed solvers with respect to a selected set of language features.

In Section 8.1, we describe the considered set of features and motivate their
relevance and benefits for a constraint specification language. In Section 8.2,
each solver is briefly introduced in order to highlight their respective advantages
and differences to CO4. For comparing the constraint specification languages of
the surveyed constraint solvers, we specify two easy constraints in each language:

1. The specification of the constraint

c(p, (a, b)) =
{

True if p = (a · b) ∧ (a > 1) ∧ (b > 1)
False otherwise

has been introduced in Example 6.16 and serves as introductory example
that does not incorporate any structured data, and therefore is no typical
use-case for the CO4 constraint solver. We use it here nonetheless as it is
concise and comprehensible.

2. Listing 8.2 shows the CO4 specification of the second constraint, which is
equally trivial but incorporates a structured domain of discourse Pixel
and parameter domain Bool, where

CBool = {False, True}

CPixel =
{

Foreground Red, Foreground Green, Foreground Blue,

Background Black, Background White

}

147
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CO4     P  P P P P
Ersatz P P P  P  P P P P  
MiniZinc  P P  
Prolog    - - - -  
ASP # -  - - - - #

Table 8.1: Comparison of CO4 with other constraint solvers with respect to
the features of their constraint specification languages. For each feature, the
symbols have the following meaning:  denotes full feature support, P denotes
full feature support but only for the parameter domain, and # denotes partial
feature support. Whereas a missing symbol denotes a lack of support for the
particular feature, the symbol - indicates that a feature is missing for conceptual
reasons.

8.1 Surveyed Language Features

In this section, we briefly describe the features of the constraint specification
languages considered in the comparison of CO4 with other constraint solvers.
Although some of them have already been introduced in this thesis, we will
restate them here for the sake of completeness.

Structured types A constraint specification language that supports structured
types allows specifying constraints that incorporate structured and hierarchical
data like lists and trees. If those types are even supported for the domain of
discourse, then the corresponding solver can solve constraints on structured data
as well. Without such support for structured domains of discourse, any non-flat
data is required to be manually flattened, which is not only error-prone but also
introduces complexity to the constraint specification.

Pattern matching Pattern matching is very useful for inspecting the shape
of data and for the conditional evaluation of expressions (cf. Section 2.2). This
is especially helpful when matching on structured data as inspecting such data
without the help of pattern matching would require manual traversals, which are
tedious to write and error-prone (especially without a static type system). Thus,
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1 data Bool = False | True
2 data Color = Red | Green | Blue
3 data Monochrome = Black | White
4 data Pixel = Foreground Color
5 | Background Monochrome
6

7 constraint :: Bool -> Pixel -> Bool
8 constraint p u = case p of
9 False -> case u of Background b -> True

10 Foreground f -> False
11 True -> isBlue u
12

13 isBlue :: Pixel -> Bool
14 isBlue u = case u of
15 Background b -> False
16 Foreground f -> case f of
17 Red -> False
18 Green -> False
19 Blue -> True

Listing 8.2: The CO4 specification of the second constraint used for comparing
the surveyed constraint specification languages. For the parameter p = False,
the concrete values Background Black and Background White are solutions.
For the parameter p = True, the concrete value Foreground Blue is the only
solution.

pattern matching supports specifications of constraints on structured domains
of discourse.

Automatic support for user-defined types Each of the surveyed constraint
specification languages supports a set of built-in data types. Additionally, users
often want to define problem-specific types for a particular constraint. If user-
defined types are supported, then the built-in types can be composed and com-
bined in order to define new types. If there is no support for user-defined types,
then each value in a constraint must be represented using the built-in types. De-
pending on the structure of the value, this may become tedious and introduce
type-errors.

Purely declarative A constraint specification language that is purely declar-
ative does not contain entities that entail implicit side-effects. For example,
constraints written in a declarative language do not impose any strategy for
finding a solution. Therefore, purely declarative languages often have more in-
tuitive semantics. On the other hand, some constraint specification languages
which are almost purely declarative still contain a few non-declarative entities
in order to speed up the solving process. As this is often the only way of using
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these languages for non-trivial constraints, we do not consider these languages
as purely declarative in the present comparison.

Infinite domains A language that allows to specify constraints over infinite
domains does not impose any size restrictions on the domain of discourse. This
is useful for specifying constraints over recursively defined domains such as lists
and trees. For constraint specification languages that do not feature infinite
domains of discourse, the domain of discourse must either be finite by design or
restricted to a finite subset.

Static type system For a constraint specification language that is governed
by a static type system, the type of the value that each expression evaluates to
can be derived statically, i.e., before running the actual program or solving the
constraint. For each constraint written in a statically typed specification lan-
guage, the type system guarantees that there will not be any type errors during
runtime. This is a very strong assumption that cannot be made for dynami-
cally typed languages. Thus, a static type system supports the development
of complex software by eliminating a large number of potential runtime errors.
The type inference of most functional programming languages stems from the
Hindley–Damas–Milner algorithm [22].

Polymorphic types A constraint specification language that is governed by a
type system supporting polymorphic types allows a single entity in a constraint
to have multiple types. There are different kinds of polymorphism, e.g., para-
metric polymorphism and ad-hoc polymorphism, with each of them providing
different benefits [64]. Parametric polymorphism allows a single entity to be
generically typed while having the same operational semantics for all type in-
stances, e.g., a function that operates in the same way on data of different types
(cf. function mapMaybe in Example 5.4). On the other hand, ad-hoc polymor-
phism associates a single entity to different operational semantics for different
types, e.g., function overloading is a popular form of ad-hoc polymorphism.
In general, polymorphic types support the expression of abstract concepts by
hiding unnecessary details.

Partial functions A constraint specification language that supports partial
functions allows functions to be undefined for certain arguments. Not requiring
totality for each function is often necessary when specifying non-trivial con-
straints in a concise manner. A lack of support for partial functions can be
worked around by introducing a distinct value that indicates a missing function
value, but this solution has drawbacks on its own (cf. Section 5.4).

Higher-order functions In a constraint specification language that supports
higher-order functions, a function may be passed as an argument to another
function, or may be returned as the result of a function. Higher-order functions
are a powerful tool that increases the modularity and composability of con-
straints (cf. Example 5.4). Thus, many modern programming languages (e.g.,
Haskell) support higher-order functions. In a language lacking higher-order
functions, each argument must be a non-functional value.
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Local abstractions In a constraint specification language supporting local ab-
stractions, abstractions may appear not only at the top-level of a specification,
but may also be nested with other expressions (cf. Example 5.6). This is use-
ful for expressing a tight coupling of several interconnected constraint entities.
Without local abstractions, each abstraction must be defined on the top-level
of a specification.

Module system A constraint specification language providing a module sys-
tem allows constraints being composed of multiple modules. Bundling inter-
connected entities in modules supports the Separation-of-Concerns paradigm of
modern software engineering. In a language lacking a module system, the whole
constraint must be defined in a single file, which clearly becomes confusing for
more complex constraints.

8.2 Surveyed Constraint Solvers

In this section, we briefly introduce the constraint solvers that have been listed
in Table 8.1.

8.2.1 Ersatz

Ersatz [51] is a Haskell library for specifying constraints using an embedded
domain specific language. Similar to CO4, constraints written in Ersatz are
solved by transformation to propositional formulas.

Example 8.3 shows a simple constraint written in Ersatz.
Example 8.3 We give a Haskell program that implements the constraint
from Example 3.9 using the Ersatz library.

1 import Prelude hiding ((&&))
2 import Ersatz
3 import Ersatz.Bits
4 import Control.Monad
5

6 constraint :: Bits -> (Bits, Bits) -> Bit
7 constraint p (u1, u2) = (u1 /== 1) && (u2 /== 1)
8 && (u1 * u2 === p)
9

10 main :: IO ()
11 main = do
12 (Satisfied, Just solution) <- solveWith minisat $ do
13 let p = encode 143
14 u1 <- liftM Bits (replicateM 5 exists)
15 u2 <- liftM Bits (replicateM 5 exists)
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16 assert (constraint p (u1,u2))
17 return (p,u1,u2)
18

19 putStrLn $ show solution

Note that Ersatz uses non-standard comparison operators, e.g., /==, and
logical connectives.

Unlike concrete programs for CO4, constraints written using Ersatz are not
compiled into an intermediate representation. Instead, they are immediately
compiled by the Haskell compiler. This has several advantages. Most impor-
tantly, Ersatz enables users to use a larger subset of Haskell than the present
implementation of CO4 does. As Ersatz constraints are standard, purely declar-
ative Haskell code, they not only share Haskell’s syntax but its semantics as well.
This is beneficial as it enables even advanced features of the Haskell language for
constraint programming, e.g., type classes. Furthermore, it is straightforward
for users to apply Ersatz if they are familiar with Haskell.

Language Features

We discuss Ersatz’ language features with respect to Table 8.1.

Structured types In Ersatz, the domain of discourse may only be a Boolean,
a list of Booleans of some fixed length, or a natural number. Thus, structured
types are only supported for the parameter domain.

Pattern matching Due to the lack of support for structured domains of dis-
course, pattern matching is not supported for the domain of discourse. Note
that pattern matching is supported for all values not included in the domain of
discourse.

Automatic support for user-defined types Ersatz does not support user-
defined types. Thus, structured data must be flattened manually and repre-
sented using the natively supported types (cf. Example 8.4).

Example 8.4 As Ersatz does not support values of user-defined algebraic
data types, we have to simulate them by explicitly encoding their construc-
tor indices using natural numbers (cf. Definition 3.35). The following Ersatz
constraint specifies the CO4 constraint given in Listing 8.2. In order to rep-
resent the unknown value from the original domain of discourse Pixel, we
introduce three variables pixel, color, and monochrome with each encod-
ing a constructor index in binary. The values of these variables are to be
determined by a SAT solver.

1 import Prelude hiding ((&&))
2 import Ersatz
3 import Ersatz.Bits



8.2. SURVEYED CONSTRAINT SOLVERS 153

4 import Control.Monad
5

6 foreground = encode 0 :: Bits
7 background = encode 1 :: Bits
8

9 red = encode 0 :: Bits; black = encode 0 :: Bits
10 green = encode 1 :: Bits; white = encode 1 :: Bits
11 blue = encode 2 :: Bits
12

13 constraint :: Bool -> (Bits, Bits, Bits) -> Bit
14 constraint p (pixel, color, monochrome) =
15 if p then isBlue (pixel, color)
16 else pixel === background
17

18 isBlue :: (Bits, Bits) -> Bit
19 isBlue (pixel, color) =
20 ((pixel === background) ==> false) &&
21 ((pixel === foreground) ==> color === blue)
22

23 main :: IO ()
24 main = do
25 (Satisfied, Just solution) <- solveWith minisat $ do
26 let p = True
27 pixel <- liftM Bits (replicateM 1 exists)
28 color <- liftM Bits (replicateM 2 exists)
29 monochrome <- liftM Bits (replicateM 1 exists)
30 assert (constraint p (pixel, color, monochrome))
31 return (pixel, color, monochrome)
32

33 putStrLn $ show solution

As Ersatz constraints neither support case distinctions nor if-then-else
expressions on values of the domain of discourse, the original case distinction
in the function isBlue has been replaced by an expression that simulates
the semantics of CO4’s built-in function merge (cf. Definition 4.41).

Purely declarative As Ersatz provides a domain specific language embedded
in Haskell, it inherits Haskell’s purity with respect to implicit side-effects. For
the same reason, Ersatz supports all the powerful features of Haskell’s static
type system (including advanced concepts like type classes), polymorphic
types, partial functions, higher-order functions, and local abstractions
as long as they do not appear in the domain of discourse. Consequently, Haskell’s
module system is supported as well.

Infinite domains As Ersatz constraints are transformed into satisfiability prob-
lems in propositional logic, infinite domains of discourse are not supported. Note
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that the parameter domain may be infinite.

8.2.2 MiniZinc

MiniZinc 2.0 [60] is an interpreted constraint specification language that was
designed in order to establish a standard language for constraint solvers. Ex-
ample 8.5 gives a simple constraint specified in MiniZinc.

Example 8.5 We give an implementation of the constraint from Exam-
ple 3.9 in the MiniZinc language:

1 par int: p;
2 var int: a;
3 var int: b;
4

5 constraint ((a*b) == p) /\ (a > 1) /\ (b > 1);
6

7 solve satisfy;

Note that MiniZinc differentiates between variables (keyword var) and pa-
rameters (keyword par). Whereas variables are to be determined by the
solver, the value of each parameter is fixed by the user. This concept resem-
bles the differentiation between the domain of discourse and the parameter
domain in CO4.

A MiniZinc constraint is a predicate on an arbitrary set of variables. In general,
the specification of the MiniZinc language does not enforce any particular solving
procedure for finding satisfying assignments for the involved variables, but non-
declarative and solver-specific annotations may be added to the constraint in
order to influence the solving procedure. Before solving a constraint written
in MiniZinc, the constraint is transformed to an intermediate representation
called FlatZinc, which is then solved by an external solver. Example 8.6 shows
an exemplary FlatZinc constraint.

Example 8.6 The following listing shows the constraint from Example 8.5
after transforming it to its FlatZinc representation with the parameter p
being fixed to the value 102:

1 var int: a:: output_var;
2 var int: b:: output_var;
3 var int: X_INTRODUCED_0 ::var_is_introduced ::
4 is_defined_var;
5

6 constraint int_eq(X_INTRODUCED_0,102);
7 constraint int_le(2,a);
8 constraint int_le(2,b);
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9 constraint int_times(a,b,X_INTRODUCED_0)::
10 defines_var(X_INTRODUCED_0);
11

12 solve satisfy;

Note that parameters in MiniZinc constraints always need to be fixed when
transforming the constraint to FlatZinc. This is contrary to CO4, where the
compilation of concrete to abstract programs is independent of the parame-
ter’s value.

Similar to MiniZinc, CO4 provides a similar decoupling of a constraint’s spec-
ification from the search for its solution. But whereas CO4 only aims at SAT
solvers, any solver that supports FlatZinc can be used when solving constraints
specified in MiniZinc, irrespective of its solving strategy. And because of FlatZ-
inc being much more expressive than SAT, there may exist a number of viable
search strategies for solving a given constraint. It is a great advantage of MiniZ-
inc that all these different strategies can be applied without additional efforts.
For this very reason, Section 9.4 briefly discusses the possible benefits of a
FlatZinc backend for CO4.

Language Features

We discuss MiniZinc’s language features with respect to Table 8.1.

Structured types MiniZinc does not support structured types.

Pattern matching MiniZinc does not support pattern matching.

Automatic support for user-defined types MiniZinc does not support user-
defined types. Thus, structured data must be flattened manually and repre-
sented using the natively supported types (cf. Example 8.7).

Example 8.7 The following MiniZinc constraint specifies the CO4 con-
straint given in Listing 8.2. Similar to Example 8.4, we have to simulate
values of user-defined algebraic data types by explicitly encoding their con-
structor indices using natural numbers (cf. Definition 3.35) because MiniZinc
does not support such values natively. In order to represent the unknown
value from the original domain of discourse Pixel, we introduce three integer
variables pixel, color, and monochrome with each encoding a constructor
index. The values of these variables are to be determined by the constraint
solver. A solution for the following constraint is an assignment for these
three variables such that the predicate constraint holds.

1 par bool: p = true;
2 var 0..1: pixel;
3 var 0..2: color;
4 var 0..1: monochrome;
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5

6 par int: red = 0; par int: black = 0;
7 par int: green = 1; par int: white = 1;
8 par int: blue = 2;
9

10 par int: foreground = 0;
11 par int: background = 1;
12

13 constraint if p
14 then isBlue
15 else ( pixel == background )
16 endif;
17

18 var bool: isBlue = if pixel == background
19 then false
20 else ( color == blue )
21 endif;
22 solve satisfy;

Note how the original case distinctions have been replaced by if-then-else
expressions and integer comparisons.

Purely declarative MiniZinc allows constraints to contain non-declarative an-
notations for controlling the solving process of particular solver backends. Thus,
MiniZinc does not provide a purely declarative constraint specification language.

Infinite domains MiniZinc neither supports infinite domains of discourse nor
infinite parameter domains.

Static type system MiniZinc provides a static type system supporting the fol-
lowing types: primitive types like Booleans, integer numbers, and real numbers,
as well as compound types like sets and arrays, where compound types may
not be nested. Additionally, a compound type similar to the type Optional
from Example 5.21 for modeling the non-existence of a primitive value has been
added in MiniZinc 2.0.

Polymorphic types MiniZinc supports ad-hoc polymorphism for functions
and predicates, i.e., both may be overloaded with different parameter types.
However, parametric polymorphism is not supported.

Partial functions MiniZinc allows functions and predicates to be defined par-
tially.

Higher-order functions MiniZinc does not support higher-order functions.

Local abstractions While MiniZinc allows local declarations of variables, it
does not support local abstractions.

Module system MiniZinc allows constraint specifications to include other files.
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This is helpful for accessing libraries and splitting constraints into separate
modules.

8.2.3 Prolog

Prolog is a general-purpose programming language for logic programming [30].
In Prolog, constraints are specified via rules and facts in first order logic which
are expressed as Horn clauses over terms containing variables, numbers, and
atoms. The solving process for a constraint is initiated by providing a query,
which itself is a conjunction of terms containing possibly free variables. A
solution for the given query either consists of the answer Yes together with
an assignment for the free variables in the query, or the answer No in case
that no solution could be found. An answer Yes indicates that the query,
with all variables replaced by the values of the returned assignment, is a logical
consequence of the constraint. An answer No indicates that no assignment
for the variables in the query could be found so that the instantiated query
is a logical consequence of the present constraint. Example 8.8 gives a simple
constraint specified in Prolog.

Example 8.8 The following Prolog constraint specifies the CO4 constraint
given in Listing 8.2.

1 is_blue(foreground(blue)).
2

3 constraint(true,U) :- is_blue(U).
4 constraint(false,background(black)).
5 constraint(false,background(white)).

For the query constraint(true,U), the solution U = foreground(blue) is
inferred. For the query constraint(false,U), both solutions

U = background(black) and
U = background(white)

are inferred.

Checking if a query is a logical consequence of a given constraint is a semi-
decidable problem because validity and unsatisfiability in first-order logic is
semi-decidable as well [66]. Thus, the unsatisfiability of the query clauses in
conjunction with the given constraint implies that the query is a logical conse-
quence of that constraint. In Prolog, the proof of unsatisfiability is directed by
a process called SLD resolution as resolving an empty clause for a first-order
formula proves that the formula is unsatisfiable. The SLD resolution as imple-
mented in popular Prolog interpreters dictates a deterministic search strategy:
the search space is traversed in a depth-first manner by resolving query clauses
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from left to right with constraint clauses in the order of their appearance in the
constraint.

Note that in general, Prolog does not allow the specification of finite domain
constraints. However, the CLPFD library, which is available in most modern
Prolog systems, enables the specification of constraints over integer domains (cf.
Example 8.9).

Example 8.9 In the following, we specify the constraint from Example 3.9
in Prolog:

1 :- use_module(library(clpfd)).
2

3 constraint(P,(A,B)) :- A #> 1, B #> 1, P #= A * B.

The operators #> and #= are provided by the CLPFD library and specify
arithmetic constraints over integers. For the query

constraint(20,(A,B)), labeling([ff],[A,B]).

the solution A = 2, B = 10 is computed. Note that the final labeling pred-
icate is required for resolving residual goals and picking an actual solution
from the finite domains of the given variables A and B.

Language Features

We discuss Prolog’s language features with respect to Table 8.1.

Structured types Prolog features terms (cf. Appendix A.2) for representing
structured data.

Pattern matching The SLD resolving algorithm implemented in Prolog’s
search strategy relies on term unification [66] which subsumes pattern matching.
Note that each solution in Example 8.8 assigns a value to the free variable U
in the respective query. This value is computed by unifying terms of the query
with terms in the Horn clauses from the constraint. Term unification is more
powerful than pattern matching as the latter allows free variables to appear
only in the pattern to match, but not in the discriminant. When unifying two
terms, free variables are allowed to appear in both terms.

Automatic support for user-defined types Prolog does not support user-
defined types.

Purely declarative Prolog is not a purely declarative constraint specification
language for at least two reasons:

1. Constraints written in Prolog may contain constructs that affect the search
for a solution, e.g., the cut operator. When specifying non-trivial con-
straints, these constructs are often mandatory in order to achieve compet-
itive solver runtimes.



8.2. SURVEYED CONSTRAINT SOLVERS 159

2. As SLD resolution resolves constraint clauses in the order of their appear-
ance in the constraint, the search for a solution can easily be trapped in
a left-recursion. For example, the following constraints

1 descend(X,Y) :- child(X,Y).
2 descend(X,Y) :- child(X,Z), descend(Z,Y).

and

1 descend(X,Y) :- child(X,Y).
2 descend(X,Y) :- descend(Z,Y), child(X,Z).

and

1 descend(X,Y) :- descend(Z,Y), child(X,Z).
2 descend(X,Y) :- child(X,Y).

all have different runtime behaviors. The first one works as expected
together with a set of child facts. The second one finds all solutions
by enumerating the set of child facts, and then loops due to the left-
recursion in the second rule. The third constraints loops immediately
without finding any solution due to the left-recursion in the first rule.

Infinite domains Prolog supports infinite domains through lists and trees.

Static type system Prolog does not provide a static type system.

Polymorphic types Due to the lack of a static type system, there are no
polymorphic types in Prolog.

Partial functions As constraint specifications in Prolog only consist of rules
and facts, there are no functions definitions. Consequently, the concept of partial
functions cannot be applied to Prolog.

Higher-order functions For the same reason, the concept of higher-order
functions cannot be applied to Prolog.

Local abstractions For the same reason, the concept of local abstractions
cannot be applied to Prolog.

Module system Prolog allows constraint specifications to include other files.
This is helpful for accessing libraries and splitting constraints into separate
modules.

8.2.4 Answer Set Programming

Answer set programming (ASP) is a declarative constraint specification paradigm
for logic programming [27]. Similar to Prolog, constraints are specified via rules
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and facts over terms containing variables, numbers, and atoms. Solutions for
grounded, i.e., variable-free, ASP constraints are expressed in terms of answer
sets [35]. An answer set of an ASP constraint is a minimal Herbrand model
for that constraint, i.e., a set of ground terms such that no proper subset of an
answer set is a Herbrand model itself. Consequently, the search for a solution of
an ASP constraint is reduced to the search for one or more answer sets, which
is an NP-complete problem. Searching for answer sets has certain advantages
to the resolution-based approach provided by Prolog [21]:

• ASP constraints are purely declarative, i.e., the order of rules and clauses
contained in an ASP constraint does not affect the search for answer sets.

• The search for answer sets always terminates. This is contrary to the SLD
resolution in Prolog, which might get caught in left-recursions.

• The answer set semantics are more intuitive than Prolog is with respect
to constraints that feature logical negations. In order to handle negations,
Prolog extends SLD resolution to SLDNF resolution that supports nega-
tion as failure by providing a not predicate such that not(a) holds for a
term a if the truth of a cannot be inferred via SLDNF resolution. But
this approach fails in certain situations, e.g., when dealing with mutually
recursive negations. However, grounded ASP constraints featuring mutu-
ally recursive negations usually have several stable models which can be
found by an ASP solver.

As answer sets provide semantics for logic programs, ASP constraints resemble
constraints in Prolog. Example 8.10 illustrates this for a simple constraint.
However, genuine ASP constraints usually contain advanced constructs, e.g.,
disjunctive rules (i.e., rules with disjunctions in their heads), which are not
featured by Prolog.

Example 8.10 The following ASP constraint specifies the CO4 constraint
given in Listing 8.2 and is identical to the Prolog constraint given in Exam-
ple 8.8.

1 is_blue(foreground(blue)).
2

3 constraint(true,U) :- is_blue(U).
4 constraint(false,background(black)).
5 constraint(false,background(white)).

As this constraint contains no negations, it has exactly one stable model⎧⎪⎪⎪⎨⎪⎪⎪⎩
is_blue(foreground(blue)),

constraint(true,foreground(blue)),

constraint(false,background(black)),

constraint(false,background(white))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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The solutions of interest for the predicate constraint are included in the
found stable model.

Most ASP solvers require the ASP constraint to be grounded. Grounding is
a semantics-preserving operation that generates a variable-free ASP constraint
and is often performed via an external grounding tool like Lparse [70] or Gringo
[34]. As grounding may increase the size of the ASP constraint dramatically,
domain-restricting predicates are often required in order to mitigate the increase
in size (cf. Example 8.11). Furthermore, an ASP constraint, in general, cannot
be specified over an infinite domain of discourse as this would lead to infinite
many rules during grounding the original constraint [15]. This problem is similar
to specifying a CO4 constraint over an infinite domain while still being required
to generate a finite propositional formula: as described in Section 4.1.5, we
generate an incomplete abstract value in this case, which basically restricts
the infinite domain of discourse to a finite subset. For ASP, there are efforts
to support constraints on infinite domains for certain situations, e.g., through
finitary programs [13].

Example 8.11 In the following, we specify the constraint from Example 3.9
as an ASP constraint:

1 p_domain(0..255).
2 a_domain(2..255).
3 b_domain(2..255).
4

5 #hide p_domain(X).
6 #hide a_domain(X).
7 #hide b_domain(X).
8

9 constraint(P,A,B) :- p_domain(P), a_domain(A),
10 b_domain(B), P == A * B.

The predicates p_domain, a_domain, and b_domain are domain predicates
which restrict the domain of the variables P, A and B, respectively. The #hide
declarations instruct the ASP solver to hide all terms matching the specified
predicates when printing the found answer sets. Therefore, an ASP solver
would output the following answer sets for the above constraint:{

constraint(4,2,2), constraint(6,3,2), constraint(8,4,2),

constraint(10,5,2), constraint(12,6,2), . . .

}

Language Features

As different grounding tools support different extensions for classic logic pro-
grams, we only consider the language that is supported by Lparse [70] in the
following overview (cf. Table 8.1).
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Structured types ASP constraints may contain terms (cf. Appendix A.2) for
representing structured data. However, in general, ASP constraints may not
feature recursively defined domains as this would lead to infinite many instances
during grounding.

Pattern matching ASP constraints do not require pattern matching, because
due to grounding, ASP solvers operate on variable-free constraints.

Automatic support for user-defined types ASP constraints do not support
user-defined types.

Purely declarative ASP constraints are specified in a purely declarative lan-
guage.

Infinite domains Due to the grounding procedure, ASP constraints may only
be specified over finite domains.

Static type system ASP does not provide a static type system.

Polymorphic types Due to the lack of a static type system, there are no
polymorphic types in an ASP constraint.

Partial functions As ASP constraints only consist of rules and facts, there are
no function definitions. Consequently, the concept of partial functions cannot
be applied to ASP.

Although grounding tools like Lparse can be dynamically linked against shared
libraries written in C or C++ in order to support user-defined functions, we
deliberately ignore such capabilities in this overview as they are not part of the
actual constraint specification language.

Higher-order functions For the same reason, the concept of higher-order
functions cannot be applied to ASP.

Local abstractions For the same reason, the concept of local abstractions
cannot be applied to ASP.

Module system ASP does not support a module system, but grounding tools
like Lparse offer grounding of several constraints into a single resulting con-
straint. This is helpful for splitting constraints into separate files.



Chapter 9

Directions for Future Work

This section addresses several features that are missing in the present imple-
mentation of CO4. Section 9.1 describes an alternative evaluation strategy for
abstract programs that incrementally queries the backend SAT solver. This
strategy might generate smaller propositional formulas, which could lead to
shorter solver runtimes.

Section 9.2 illustrates a static complexity analysis of concrete programs in order
to predict the expected size of the resulting propositional formula. Such a com-
plexity analysis is useful for evaluating how much each part of a given concrete
program contributes to the resulting propositional formula.

Section 9.3 covers advanced language features that are not supported in the
present implementation of CO4, e.g., type-classes known from the Haskell lan-
guage. Adding support for these features in the compilation from concrete to
abstract programs would allow the user to specify even more expressive and
concise constraints.

Finally, Section 9.4 illustrates how CO4 could benefit from supporting other
solver backends than SAT solvers.

9.1 Incremental Solving

According to Section 4.3, finding a solution for a concrete program c ∈ Prog
and a given parameter essentially consists of four steps:

1. compiling c to an abstract program cA ∈ ProgA,

2. evaluating cA to an abstract value a ∈ A,

3. using a SAT solver to solve the propositional formula f ∈ F represented
by the single flag in a, and

163
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4. decoding the final solution from a satisfying assignment for f .

This section briefly introduces a technique for mitigating the separation of Step 2
from Step 3 where the SAT solver will already be queried when evaluating
the abstract program cA. This is especially useful when evaluating compiled
branches of case distinctions. We believe that incorporating the SAT solver into
the process of evaluating cA leads to smaller formulas that can be solved faster.

Recall that for evaluating a compiled case distinction, all compiled branches are
evaluated and their respective results are eventually merged (cf. Definition 4.49).
Evaluating all branches is necessary because, in general, the abstract value
vd ∈ A of the case distinction’s discriminant may represent more than one
concrete value. In case vd is representing a single concrete value, only the
corresponding branch needs to be evaluated (cf. Lemma 4.43).

But there are situations where vd represents more than one concrete value, and
yet not all branches of the compiled case distinction need to be evaluated. Exam-
ple 9.1 illustrates the general pattern where such an optimization is applicable:
when evaluating the compiled branch of a case distinction, the discriminant can
be assumed to have a fixed value, thus, any nested case distinction on that
discriminant can be simplified.

Example 9.1 Consider the following (hypothetical) declarations where
d, f, g, h ∈ Exp denote arbitrary sub-expressions.

1 data T = A | B
2

3 e = case d of
4 A -> f
5 B -> case d of
6 A -> g
7 B -> h

Note that the value of e does not depend on the value of g at all because it
will not be evaluated for any value of discriminant d. Consequently, e can
be rewritten to e’ without changing its dynamic semantics:

1 data T = A | B
2

3 e’ = case d of
4 A -> f
5 B -> h

For this reason, it is not necessary to evaluate the corresponding branch in
the compilation of e. Depending on the complexity of g, not evaluating the
compilation of g may save variables and clauses in the resulting propositional
formula.
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We believe that these kind of situations frequently occur when evaluating ab-
stract programs, albeit in more complex contexts than illustrated in Exam-
ple 9.1.

The trivial case distinction depicted in Example 9.1 could actually be rewritten
in a preprocessing step similar to dead code elimination techniques found in
optimizing compilers [3]. Such a preprocessing step is not feasible for more
complex situations. Thus, we propose a strategy of evaluating abstract programs
where the value of a case distinction’s discriminant is used for determining
whether a particular compiled branch needs to be evaluated.

One thinkable approach is to apply the incremental solving feature found in SAT
solvers like MiniSat. Incremental solving allows assumptions to be propagated
to the solver which are only valid for a certain number of solver invocations
[26]. The solver can then be queried for the satisfiability status of the generated
propositional formula under the propagated set of assumptions. Such a query is
often constrained by resource restrictions, e.g., a fixed number of propagation
steps or a timeout, in order to prevent a complete solver run. Because of these
resource restrictions, the solver might not be able to give a definite answer.

In Example 9.2, we illustrate how incremental solving can be applied for evalu-
ating compiled case distinctions.

Example 9.2 We give the compilation of the original formulation of the
case distinction in Example 9.1 according to Definition 4.49:

let vd1 = JcompileExp(d)K
in valid vd1 (

let v1 = Jcompile-branchvd1
(f)K

v2 = let vd2 = JcompileExp(d)K
in valid vd2 ( let v3 = Jcompile-branchvd2

(g)K
v4 = Jcompile-branchvd2

(h)K
in

mergevd2
(v3, v4) )

in

mergevd1
(v1, v2)

)

When evaluating the right-hand side of v2, we want to temporarily fix the
value of vd1 to encodeT(B) because the value of v2 corresponds to the branch
where discriminant d matches value B in the concrete expression. Such a
fixing induces an assignment σv2 = {(x1, b1), . . . , (xn, bn)} of Boolean values
b1, . . . , bn ∈ B to the n ∈ N propositional variables x1, . . . , xn ∈ V in the flags
of vd1. The assignment σv2 denotes the set of assumptions for evaluating v2.
We use the SAT solver for checking whether the propositional formula f ∈ F,
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which has been generated so far, is still satisfiable under the assumptions
denoted by σv2 . We only evaluate v2 if the solver does not give Unsat.

Let us assume that f is not unsatisfiable under σv2 . Eventually we want
to evaluate the right-hand side of v3. This time we fix the value of vd2 to
encodeT(A) because the value of v3 corresponds to the branch where discrim-
inant d matches value A in the original case distinction. Again, this induces
an assignment σv3 of Boolean values to the propositional variables in the
flags of vd2. Now we query the satisfiability of f under σv2 and σv3 . As vd1
equals vd2, both sets of assumptions cannot hold simultaneously. Thus, the
query yields Unsat and we do not need to evaluate the right-hand side of
v3.

Again, we believe that this optimized evaluation of compiled case distinctions
is beneficial, especially for constraints over highly-structured domains, as these
constraints often contain many nested case distinctions.

9.2 Static Complexity Analysis

In this section, we briefly illustrate an approach for a static complexity analysis
on concrete programs. By developing such an analysis, we hope to be able to
estimate the complexity of the propositional formula that is generated by CO4

for a given concrete program.

For the following overview, we do not define a particular complexity measure.
Thinkable measures include the number of variables or clauses in the final propo-
sitional formula.

Deriving the complexity of a concrete program essentially requires an analysis
of the structure of compiled case distinctions in the corresponding abstract
program. That is because case distinctions are the single control-flow feature in
concrete programs. In the following, we briefly address the importance of case
distinctions and their discriminants for complexity analysis.

In general, case distinctions in a concrete program are compiled in such a way
that all branches are evaluated and the resulting abstract values are eventu-
ally merged (cf. Section 4.2). The flags of the resulting abstract value contain
propositional formulas that represent the result of the original case distinction
in terms of propositional variables and logical connectives (cf. Example 4.42).
Thus, the merge operation is the single source that increases the complexity of
the final propositional formula.

Because of Lemma 4.43, evaluating compiled case distinctions on discriminants
that represent only a single concrete value can be simplified to the evaluation
of a single branch, i.e., no merge operation is necessary. This also reduces the
complexity of the resulting propositional formula to the complexity induced by
that single branch. In general, this simplification is not possible for compiled
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case distinctions whose discriminants represent more than one concrete value.
Thus, the complexity of the propositional formula that is passed to the SAT
solver significantly depends on the kind of discriminants occurring in an abstract
program.

Example 9.3 illustrates both kinds of case distinctions.
Example 9.3 In the following concrete program c1 ∈ Prog, the case dis-
tinction on discriminant u has two branches f, g ∈ Exp:

1 data U = U1 | U2
2

3 constraint = \p u -> case u of
4 U1 -> f
5 U2 -> g

Compare c1 to the following concrete program c2 ∈ Prog that contains the
same case distinction, but with parameter p being its discriminant:

1 data P = P1 | P2
2

3 constraint = \p u -> case p of
4 P1 -> f
5 P2 -> g

Both corresponding abstract programs cA1 , cA2 ∈ ProgA are almost identi-
cal. cA1 is

1 constraintA = \p u ->
2 let v_d = u
3 in
4 validv_d ( let v_1 = Jcompile-branchv_d(f)K
5 v_2 = Jcompile-branchv_d(g)K
6 in
7 mergev_d v_1 v_2 )

and cA2 is

1 constraintA = \p u ->
2 let v_d = p
3 in
4 validv_d ( let v_1 = Jcompile-branchv_d(f)K
5 v_2 = Jcompile-branchv_d(g)K
6 in
7 mergev_d v_1 v_2 )
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The main difference between cA1 and cA2 concerns their dynamic semantics.
When evaluating cA2 , Lemma 4.43 applies because v_d = p and the abstract
value p represents only a single concrete value (cf. Section 4.3). On the other
hand, Lemma 4.43 does not apply for cA1 because u may represent more than
one concrete value.

The challenge of analyzing the complexity of a concrete program is the compile-
time identification of case distinctions whose compilations will be affected by
Lemma 4.43. Being able to differentiate these case distinctions from case dis-
tinctions on discriminants that represent more than one concrete value allows
an estimate for the complexity introduced by the merge operation. Note that
CO4 already provides profiling information about both kinds of case distinctions
(cf. Section 6.1).

9.3 Compilation of More Advanced Language
Features

The language of concrete programs illustrated in Section 3.2 is a syntactic subset
of the Haskell language. In order to make this language even more expressive,
it would be beneficial to incorporate more language features of Haskell. In the
following, we discuss type classes [39] as an especially useful feature that CO4

is lacking.

Type classes are a realization of ad-hoc polymorphism. In contrast to para-
metric polymorphism, where a single implementation operates in the context of
different types, ad-hoc polymorphism allows to write different implementations
for a single interface so that the correct implementation for a particular type is
chosen based on a distinct set of rules.

In its present implementation, CO4 only supports functions that are either
monomorphic or parametrically polymorphic (cf. Example 9.4).

Example 9.4 The function tail is polymorphic in regard to the type of
the elements in the list xs: it operates in the exact same way for all lists.

1 data List a = Nil | Cons a (List a)
2

3 tail :: List a -> List a
4 tail = \xs -> case xs of
5 Nil -> Nil
6 Cons y ys -> ys

Haskell provides ad-hoc polymorphism through type classes. Example 9.5 shows
Haskell code where a type class is used for defining the structural equality of
data.
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Example 9.5 In the following Haskell code, we declare a type class Eq that
consists of a function eq. Here, eq defines a common signature for all func-
tions that compare two values of the same type. It is followed by a class
instance declaration where eq is implemented for a user-defined type Nat.

1 data Bool = False | True
2 data Nat = Z | S Nat
3

4 class Eq a where
5 eq :: a -> a -> Bool
6

7 instance Eq Nat where
8 eq x y = case x of
9 Z -> case y of

10 Z -> True
11 S v -> False
12 S u -> case y of
13 Z -> False
14 S v -> eq u v

Values of type Nat can now be compared using the function eq.

Type classes can be hierarchic, i.e., a type class may have parent classes. This
allows the construction of type hierarchies where each type implements a certain
set of classes.

An interesting feature related to type classes is the automatic derivation of
class instances for user-defined types. This is very useful for type classes whose
instances all have a similar structure. For example, most instances for the
Eq class in Example 9.5 are inductions over all constructor arguments of a
given type. Therefore, they are very tedious to write, but rather easy to be
automatically derived by the compiler.

Both features, type classes and an automatic derivation of class instances, would
tremendously increase the expressiveness of the language of concrete programs,
and the benefit that is provided by CO4 as a general purpose constraint solver.

9.4 Additional Solver Backends

In the following, we discuss ideas related to CO4’s solver backend. So far,
evaluating an abstract program in CO4 eventually generates a propositional
formula that is passed to an external SAT solver. The present implementation
of CO4 provides a backend only for the MiniSat solver. It would be interesting to
inspect how other SAT solvers perform when solving formulas that are generated
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by CO4. Thus, it would be reasonable to extend CO4’s solver interface Satchmo-
core (cf. Section 4.3.3) in order to support additional SAT solvers.

While supporting other SAT solvers is an obvious extension to CO4’s solver
backend, more fundamental expansions are thinkable. One of them concerns
alternative representations of propositional formulas like and-inverter graphs,
binary decision diagrams, and pseudo-Boolean constraints. As there are tools
for finding solutions for formulas given in either representation, a comparison be-
tween all these representations would be interesting. Such a comparison should
cover the runtimes needed for finding solutions for a set of benchmark problems,
as well as the space complexity of each representation.

Furthermore, abstract evaluation could be changed so that a first-order formula
over a certain theory is generated instead of a propositional formula. Promising
theories for such a CO4-modulo-theory approach are the theory of fixed-size
bitvectors and the theory of linear integer arithmetic. For example, generating
a first-order formula over the theory of linear integer arithmetic may prove useful
for specifying constraints over infinite domains of discourse without needing to
restrict the search space to a finite subset. For the theories included in the
SMT-LIB standard [7], there are several tools and solvers available for solving
constraints encoded in such a way.

Due to the declarative semantics of constraints in the answer set programming
(ASP) paradigm (cf. Section 8.2.4), generating an ASP constraint during the
abstract evaluation is an equally interesting approach. However, recursively
defined types as lists and trees, which are quite common in non-trivial CO4

constraints, must be treated specifically as the domains that appear in an ASP
constraint may, in general, not be defined recursively because this would lead
to infinite many instances during the grounding procedure.

In order to make use of solvers that support constraints specified using the
FlatZinc language, a CO4 backend is thinkable that emits either MiniZinc or
FlatZinc constraints (cf. Section 8.2.2). Both are medium-level constraint rep-
resentations that are suitable targets for compiling concrete programs into. Due
to their support for primitive types, a corresponding CO4 backend would allow
the user to specify constraints that feature highly structured data, as well as
primitive values like integer and real numbers.
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Conclusion

In the present thesis, we introduced the constraint solver CO4 that enables a sub-
set of Haskell to be used as a constraint specification language. We specified the
essential steps of the solving process: a parameterized constraint implemented
as a concrete program is firstly compiled into an intermediate representation
called abstract program. Evaluating the abstract program for a given parame-
ter gives a propositional formula that is solved by an external SAT solver. In
case there is a satisfying assignment for this formula, a solution in the domain
of discourse is constructed.

As it has been shown, this approach for solving constraints over structured
domains is feasible and has advantages over other strategies, e.g., reuse of the
established programming language Haskell for specifying concise and expressive
constraints. By specifying constraints that originate from different domains (cf.
Chapter 7), we demonstrated that CO4 is a general-purpose constraint solver
which makes the power of modern SAT solvers available for constraints that are
hard to specify in other languages.

Because of these benefits, it is suggested to invest in the continuation of the
development of CO4. Further work is necessary in order to implement a com-
petitive tool. While there are few tools that provide an equally expressive way
of specifying constraints, manually crafted propositional encodings often out-
perform the encodings generated by CO4 in terms of solver runtimes. Thus,
further work should favor developments that aim at reducing these runtimes
either by improving CO4’s propositional encodings or even by switching to an-
other backend (cf. Section 9.4). As the latter option is far more invasive, the
former one should be preferred.
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Appendix A

Notations

A.1 Basic Notations

In this section, we introduce basic notations for common concepts used through-
out this thesis.

Sets

In the present thesis, we assume familiarity with the basics of set theory. We
use the common symbols for functions and relations on sets: ∩ (intersection),
∪ (union), \ (difference), ∈ (element-of), ⊆ (subset), ⊊ (strict subset), ⊇ (su-
perset), and ⊋ (strict superset).

Additionally, we give the following notation for power sets.
Definition A.1 2A denotes the set of all subsets (power set) of set A and
is defined by:

2A := {A′ | A′ ⊆ A}

We define some essential sets.
Definition A.2 N denotes the set of natural numbers including 0.
Definition A.3 N>i denotes the set of natural numbers greater than i ∈ N.
Definition A.4 Z denotes the set of integer numbers.
Definition A.5 B denotes the set of Boolean values and is defined by:

B := {False, True}
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Tuples

A tuple is an ordered collection of elements. In the present thesis, we use the
terms tuple and sequence synonymously.

Definition A.6 A1× · · · ×An denotes the Cartesian product of A1, . . . , An

for n ∈ N>0 and is defined by:

A1 × · · · ×An := {(a1, . . . , an) | a1 ∈ A1 ∧ . . . ∧ an ∈ An}

We also deal with empty tuples.
Definition A.7 () denotes the empty tuple.

We define the length of a tuple as the number of elements it contains.
Definition A.8 n ∈ N denotes the length of a tuple (a1, . . . , an) ∈ A1 ×
· · · ×An.

For readability, we introduce the following shortcut for denoting sequences of
some fixed length over a particular set.

Definition A.9 An denotes the set of n-tuples over A for n ∈ N and is
defined by:

An :=

⎧⎨⎩{()} if n = 0
A× · · · ×A  

n-times

otherwise

Occasionally, we do not want to fix the length of sequences, but deal with
sequences of arbitrary length.

Definition A.10 A∗ denotes the set of all tuples over A and is defined by:

A∗ :=
⋃
i∈N

Ai

Sometimes we need to concatenate two tuples
Definition A.11 (x1, . . . , xm)·(y1, . . . , yn) denotes the concatenation of two
tuples for m, n ∈ N and is defined by:

(x1, . . . , xm) · (y1, . . . , yn) := (x1, . . . , xm, y1, . . . , yn)

Relations and Functions

We define relations as sets of tuples.
Definition A.12 Any subset of A1 × · · · × An denotes an n-ary relation
between the sets A1, . . . , An for n ∈ N>1.
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A partial function is a binary relation that maps elements from one set to
another.

Definition A.13 The relation f ⊆ A × B is a partial function from set A
to set B if:

∀((a1, b1), (a2, b2)) ∈ f : a1 = a2 =⇒ b1 = b2

Notation By f : A ↛ B we denote a partial function f from set A to B.

Functions have a particular domain.
Definition A.14 The domain dom(f) ⊆ A of a function f from set A to
set B is defined by:

dom(f) := {a | (a, b) ∈ f}

Instead of being partial, functions can be total.
Definition A.15 The function f ⊆ A×B is a total function from set A to
set B if dom(f) = A.

Notation By f : A→ B we denote a total function f from set A to B.

Functions can be applied to arguments.
Definition A.16 f(a) ∈ B denotes the application of a total or partial
function f (from set A to set B) to an argument a ∈ A and is defined by:

f(a) = b⇔ (a, b) ∈ f

Note that the application of a partial function f : A ↛ B to argument a ∈ A is
only defined if a ∈ dom(f).

Notation When applying a function f : A1 × · · · × An → B to a n-tuple
(a1, . . . , an) ∈ A1 × · · · × An for n ∈ N>1, we only type a single pair of paren-
theses, e.g., f(a1, . . . , an) instead of f

(
(a1, . . . , an)

)
.

For a given function, we sometimes want to update one of its tuples, or add a
new tuple. We define a common notation for both operations.

Definition A.17 f [c/d] denotes the update of a total or partial function f
from set A to set B by a tuple (c, d) ∈ A×B such that:

∀a ∈ A : f [c/d](a) =
{

d if a = c

b if a ̸= c ∧ (a, b) ∈ f

We generalize Definition A.17 so that we can update a function using another
function.
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Definition A.18 f [g] denotes the update of a total or partial function f
from set A to set B by a total or partial function g from the same set A to
set B:

f [{(a1, b1), . . . , (an, bn)}] = ((f [a1/b1]) . . . )[an/bn]

Sometimes we want to refer to the set of all total functions that map from one
particular set to another set.

Definition A.19 BA denotes the set of all total functions f : A→ B.

A.2 Terms and Algebras

In the following, we introduce terms and algebras [6] as underlying concepts of
term rewriting systems (cf. Section 7.1) and propositional logic (Appendix B).

A signature captures a set of symbols and their arity.
Definition A.20 A signature Σ is a set of symbols where each symbol in Σ
is associated with a value arity : Σ→ N that denotes its arity. For all n ∈ N,
Σn denotes the greatest subset of Σ so that all symbols in Σn have arity n:

Σn := {f | f ∈ Σ ∧ arity(f) = n}

The set of terms is constructed using a signature and a set of variables.
Definition A.21 Given a signature Σ and a variable set X so that Σ∩X =
∅, the set of Σ-terms over X, denoted as terms(Σ, X), equals the least set
T for which the following properties hold:

1. X ⊆ T , i.e., each variable is a Σ-term, and

2. the application of an n-ary function symbol to n Σ-terms is a Σ-term
as well:

∀n ∈ N : ∀(f, (t1, . . . , tn)) ∈ Σn × T n : f(t1, . . . , tn) ∈ T

The variable set of a Σ-term t ∈ terms(Σ, X) is a subset of X.
Definition A.22 The variable set var : terms(Σ, X) → 2X of a Σ-term
t ∈ terms(Σ, X) is defined by:

var(t) :=
{
{t} if t ∈ X⋃n

i=1 var(ti) if t = f(t1, . . . , tn) for some n ∈ N

We define the root symbol of a Σ-term.
Definition A.23 The root symbol rootsym : terms(Σ, X) ↛ Σ of a non-
variable Σ-term t ∈ terms(Σ, X) is defined by:

∀n ∈ N : rootsym(f(t1, . . . , tn)) := f
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Sometimes we are interested in the set of subterms of a Σ-term.
Definition A.24 subterms : terms(Σ, X)→ 2terms(Σ,X) gives the set of sub-
terms of a Σ-term t ∈ terms(Σ, X) and is defined by:

subterms(t) :=

⎧⎪⎨⎪⎩
{t} if t ∈ X

{t} ∪
⋃

i∈{1...n} subterms(ti) if t = f(t1, . . . , tn)
for some n ∈ N

The depth of a term denotes the number of nestings.
Definition A.25 depth : terms(Σ, X) → N gives the depth of a Σ-term
t ∈ terms(Σ, X) and is defined by:

depth(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ∈ X

0 if t = f()
1 + max{depth(t1), . . . , depth(tn)} if t = f(t1, . . . , tn)

for some n ∈ N>0

In order to provide some semantics for Σ-terms, we introduce Σ-algebras.
Definition A.26 For a given signature Σ, a Σ-algebra A = (A, [.]) consists
of

1. a carrier set (or domain) A and

2. a mapping for each n-ary function symbol f ∈ Σn to its n-ary inter-
pretation [f ] : An → A

Using a Σ-algebra A and an assignment of variables, we can evaluate Σ-terms
to values of the carrier set of A.

Definition A.27 For a given Σ-algebra A = (A, [.]) over a signature Σ
and a variable set X, evalA : AX × terms(Σ, X) → A evaluates a Σ-term
t ∈ terms(Σ, X) to a value in A under an assignment σ ∈ AX :

evalA(σ, t) :=⎧⎪⎨⎪⎩
σ(t) if t ∈ X

[f ](evalA(σ, t1), . . . , evalA(σ, tn)) if f ∈ Σn and t = f(t1, . . . , tn)
for some n ∈ N

A.3 Term Rewriting

Term rewriting is a computational model where subterms are substituted ac-
cording to a system of rules [6]. Subterms are identified by a position.
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Definition A.28 Pos denotes the set of positions and is defined by:

Pos := N∗
>0

Each position in Pos is a sequence of positive natural numbers denoting the
path from the root symbol of a term down to a particular subterm.

A Σ-term with a finite set of subterms has a finite set of positions.
Definition A.29 Post ⊊ Pos denotes the set of positions of term t ∈
terms(Σ, X) and equals the least set P so that

1. () ∈ P and

2. {(i) · p | p ∈ Posti} ⊆ P if t = f(t1, . . . , tn) for all n ∈ N>0 and
i ∈ {1 . . . n}.

Note that · denotes the concatenation of tuples (cf. Definition A.11).
Example A.30 For term t = f(g(x), y) and t ∈ terms({f, g}, {x, y}), the
set of positions Post is {(), (1), (1, 1), (2)}.

Given a position in a term, we compute the subterm at that position.
Definition A.31 t|p denotes the subterm of t ∈ terms(Σ, X) at position
p ∈ Post and is defined by:

t|p :=
{

t if p = ()
ti|q if t = f(t1, . . . , tn) and p = (i) · q with i ≤ n

Note that t|p is defined only for positions p ∈ Post of term t ∈ terms(Σ, X).
Example A.32 For term t = f(g(x), y) with t ∈ terms({f, g}, {x, y}), the
following propositions hold:

1. t|() = f(g(x), y)

2. t|(1) = g(x)

3. t|(1,1) = x

4. t|(2) = y

In the following, we replace subterms at certain positions by other terms.
Definition A.33 t[t′]p denotes the term t ∈ terms(Σ, X) after replacing
subterm t|p at position p ∈ Post with term t′ ∈ terms(Σ, X) and is defined
by

t[t′]p :=
{

t′ if p = ()
ti[t′]q if t = f(t1, . . . , tn) and p = (i) · q with i ≤ n
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Example A.34 For the two terms t = f(g(x), y) and t′ = f(x, y) with
t, t′ ∈ terms({f, g}, {x, y}), the following holds:

t[t′](1,1) = f(g(f(x, x)), y)

In term rewriting, variables are substituted by terms in order to generate new
terms.

Definition A.35 A substitution σ̂ : terms(Σ, X)→ terms(Σ, X) induced by
a mapping σ ∈ terms(Σ, X)X for a term t ∈ terms(Σ, X) is defined by:

σ̂(t) =
{

σ(t) if t ∈ X

f(σ̂(t1), . . . , σ̂(tn)) if t = f(t1, . . . , tn)

Example A.36 For term t = f(g(x), y) with t ∈ terms({f, g}, {x, y}) and a
mapping σ = {(x, x), (y, g(x))}, the following holds:

σ̂(t) = f(g(x), g(x))

Finally, we define term rewriting systems using the previously introduced con-
cepts.

Definition A.37 A term rewriting system is a triple (Σ, X, R) containing
a signature Σ, a set of variables X, and a set of rules R ⊆ terms(Σ, X)2 so
that:

∀(l, r) ∈ R : l /∈ X ∧ var(l) ⊇ var(r)

Notation By l → r we denote the rule (l, r) ∈ R of a term rewriting system
(Σ, X, R).

A term rewriting system induces a rewrite relation.
Definition A.38 The rewrite relation →R ⊆ terms(Σ, X)2 induced by a
term rewriting system (Σ, X, R) is defined by:

∀t ∈ terms(Σ, X) : ∃(l→ r) ∈ R : ∃p ∈ Post : ∃σ ∈ terms(Σ, X)var(l) :
t|p = σ̂(l) =⇒ t→R t[σ̂(r)]p

Example A.39 For a term rewriting system ({f, g}, {x, y}, R) with R =
{g(y)→ f(y, y)}, f(g(x), y)→R f(f(x, x), y) because the single rule in R is
applicable to subterm g(x) at position 1 under mapping {(y, x)}.
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Appendix B

Propositional Logic

Propositional logic studies formulas built from propositions and logical connec-
tives [66].

Definition B.1 gives the signature over which propositional formulas are defined.
Definition B.1 The signature of Boolean formulas ΣB is defined by:

ΣB = {False, True,¬,∨,∧}

with

1. arity(False) = arity(True) = 0

2. arity(¬) = 1

3. arity(∨) = arity(∧) = 2

The Boolean algebra given in Definition B.2 is the underlying concept of propo-
sitional logic.

Definition B.2 B = (B, [.]) denotes a Boolean algebra with B = {False, True}
and:

[False] = {False} [True] = {True} [¬] = {(False, True),
(True, False)}

[∨] = {((False, False), False),
((False, True), True),
((True, False), True),
((True, True), True)}

[∧] = {((False, False), False),
((False, True), False),
((True, False), False),
((True, True), True)}

Note that False and True denote symbols in ΣB as well as the elements of B.

181



182 APPENDIX B. PROPOSITIONAL LOGIC

Propositional formulas may contain propositional variables, i.e., variables over
the domain B.

Definition B.3 The set V denotes the set of propositional variables.

Terms over the signature ΣB and the set of variables V form the set of propo-
sitional formulas.

Definition B.4 The set of propositional formulas F is defined by:

F := terms(ΣB, V)

We specify the semantical equivalence of propositional formulas.
Definition B.5 Two propositional formulas f, g ∈ F are semantically equiv-
alent if they evaluate to the same value under all assignments that assign all
variables of f and g:

f ≡ g ⇔
(
∀σ ∈ Bvar(f)∪var(g) : evalB(σ, f) = evalB(σ, g)

)
We define additional logical connectives by semantical equivalence:

• Implication =⇒ : ∀(f, g) ∈ F2 : f =⇒ g ≡ ¬f ∨ g

• Equivalence ⇔: ∀(f, g) ∈ F2 : f ⇔ g ≡ (f =⇒ g) ∧ (g =⇒ f)

• Exclusive disjunction ⊕: ∀(f, g) ∈ F2 : f ⊕ g ≡ (f ∧ ¬g) ∨ (¬f ∧ g)

B.1 SAT solver

In order to reason about the size and complexity of the propositional formulas
generated during the compilation proposed in Chapter 4, we glance on some
basic concepts of SAT solvers.

Firstly, we define the set of satisfiable formulas.
Definition B.6 The set of satisfiable formulas SAT ⊊ F contains all for-
mulas that have an assignment under which the formula evaluates to True:

SAT := {f | f ∈ F ∧ ∃σ ∈ Bvar(f) : evalB(σ, f) = True}
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An assignment under which a formula evaluates to True is called a satisfying
assignment. A function that gives such a satisfying assignment for a formula in
SAT is called SAT solver.

Definition B.7 A SAT solver is a partial function solve : F ↛ BV that
gives a satisfying assignment for all satisfiable formulas, i.e.,

∀f ∈ SAT : f ∈ dom(solve) ∧ evalB(solve(f), f) = True

and is undefined for all non-satisfiable formulas:

∀f /∈ SAT : f /∈ dom(solve)

Checking the satisfiability of propositional formulas is an NP-complete prob-
lem [20], thus, it is a challenging task to implement a SAT solver with a low
runtime and space complexity.

Most SAT solvers deal with propositional formulas in conjunctive normal form
(CNF). A formula in CNF consists of conjunctions of clauses where each clause
is a disjunction of literals.

Definition B.8 The set of literals Literal ⊊ F equals the least set L for
which the following properties hold:

1. ∀v ∈ V : v ∈ L, i.e., every variable is a literal with positive parity, and

2. ∀v ∈ V : ¬v ∈ L, i.e., every variable’s negation is a literal with negative
parity.

We define the set of clauses.
Definition B.9 The set of clauses Clause is defined by:

Clause := {(l1 ∨ l2 ∨ · · · ∨ ln) | n ∈ N ∧ (l1, . . . , ln) ∈ Literaln}

A formula in CNF consists of conjunctions of clauses.
Definition B.10 The set of propositional formulas in conjunctive normal
form CNF ⊊ F is defined by:

CNF := {(c1 ∧ c2 ∧ · · · ∧ cn) | n ∈ N ∧ (c1, . . . , cn) ∈ Clausen}

A formula in CNF may contain an empty clause, i.e., a clause without any
literal. Such a formula is always unsatisfiable.

Notation For brevity, formulas in CNF are often noted as subsets of 2Literal ,
e.g. {{x1, x2}, {¬x3, x4}} instead of (x1 ∨ x2) ∧ (¬x3 ∨ x4).

Theorem B.11 For every formula in F there is a semantically equivalent
formula in CNF [66]. ■
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Naively transforming a formula into a semantically equivalent formula in CNF
often results in a exponential blow-up of the formula’s size, which may lead to
longer runtimes of the SAT solver.

Tseitin [73] introduced a linear-time method of transforming a formula f to a
equisatisfiable formula g in CNF.

Definition B.12 Two formulas f, g ∈ F are equisatisfiable if there is a sat-
isfying assignment for f whenever there is a satisfying assignment for g and
vice versa:

∃σ1 ∈ Bvar(f) : evalB(σ1, f) = True
⇔

∃σ2 ∈ Bvar(g) : evalB(σ2, g) = True

We give a specification for Tseitin’s transformation.
Definition B.13 tseitin : F→ CNF maps a formula f ∈ F to a formula in
CNF and is defined by:

tseitin(f) := {{fresh(f)}} ∪
⋃

g∈subterms(f)

sub-tseitin(g)

where

1. fresh : F→ V gives a variable for each subformula of f :

fresh(f) :=
{

f if f is a variable, i.e., f ∈ V
vf otherwise return a fresh variable vf ∈ V

2. sub-tseitin : F → CNF maps a subformula of f to its counterpart in
CNF and is defined by:

sub-tseitin(f) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{} if f is a variable, i.e., f ∈ V
{{fresh(g), fresh(f)} if f = ¬g

, {¬fresh(g),¬fresh(f)}
}
{ {fresh(g1), fresh(g2),¬fresh(f)}
, {¬fresh(g1), fresh(f)} if f = g1 ∨ g2

, {¬fresh(g2), fresh(f)}
}
{ {¬fresh(g1),¬fresh(g2), fresh(f)}
, {fresh(g1),¬fresh(f)} if f = g1 ∧ g2

, {fresh(g2),¬fresh(f)}
}
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Figure 6.2 shows an example of mapping a propositional formula to its conjunc-
tive normal form.

Theorem B.14 For all formulas f ∈ F, f and tseitin(f) are equisatisfiable
[73]. ■

Besides the equisatisfiability given in Theorem B.14, Tseitin’s transformation
has another important feature:

Theorem B.15 For each formula f ∈ F, a satisfying assignment for tseitin(f)
is also a satisfying assignment for f :

∀(f, f ′) ∈ tseitin : ∀σ ∈ Bvar(f ′) :
evalB(σ, f ′) = True =⇒ evalB(σ, f) = True ■

Thus, finding a satisfying assignment for a formula f ∈ F can be reduced to
finding a satisfying assignment for tseitin(f). This is useful because there are
powerful methods for finding satisfying assignments for formulas in CNF, e.g.,
the Davis–Putnam–Logemann–Loveland (DPLL) algorithm [23]. The DPLL
algorithm is a well-known method to check if a formula in CNF is included in
SAT. It is recursively defined so that a variable is assigned to a truth value in
each recursion.

Definition B.16 f⟨v/b⟩ ∈ CNF denotes a propositional formula after ap-
plying the following transformations for a value b ∈ B and a formula f ∈
CNF that contains a variable v ∈ V:

1. If b = True, remove every clause in f that contains the literal v.

2. If b = True, remove every literal ¬v.

3. If b = False, remove every clause in f that contains the literal ¬v.

4. If b = False, remove every literal v.

Note that f⟨v/b⟩ may contain empty clauses.
Example B.17

{{x1, x2}, {¬x1, x3}}⟨x1/ False⟩ = {{x2}}
{{x1, x2}, {¬x3}}⟨x3/ True⟩ = {{x1, x2},∅}

We generalize Definition B.16 to compute a formula under a partial assignment
of variables.

Definition B.18 f⟨σ⟩ ∈ CNF assigns the value b to the variable v in a
formula f ∈ CNF for all n ∈ N>0 tuples (v, b) ∈ V×B of a partial assignment
σ : V ↛ B:

f⟨{(v1, b1), . . . , (vn, bn)}⟩ = ((f⟨v1/b1⟩) . . . )⟨vn/bn⟩
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While solving a formula f , the DPLL algorithm continuously updates an as-
signment σ ∈ BX for a subset X ⊆ var(f) of all variables var(f) in f . There
are two ways of assigning a value to a variable: explicitly fixing an assignment
(decision) or inferring a new assignment from former decisions. An assignment
can be inferred for each variable that appears in a unit clause, i.e., a clause that
contains only a single literal. The process of assigning a value to each literal of
all unit clauses in f is called unit-propagation.

Definition B.19 unit-propagation : CNF → BX gives an assignment σ ∈
BX for a subset of variables X ⊆ var(f) in a formula f ∈ CNF:

1 unit-propagation(f) :=
2 σ ← ∅
3 while (f⟨σ⟩ contains unit-clause c)
4 if (c = {v}) then // c contains positive literal
5 σ ← σ[v/ True]
6 else if (c = {¬v}) then // c contains negative literal
7 σ ← σ[v/ False]
8 return σ

Note that σ[v/b] for a tuple (v, b) ∈ var(f) × B denotes the update of σ by
(v, b) (cf. Definition A.17).

After applying unit-propagation, there are no more assignments that can be
inferred. Thus, an assignment must explicitly be fixed in case there are any
unassigned variables.

Definition B.20 The function decision-variable : CNF → V×B gives a
pair (v, a) ∈ V×B for a formula in CNF where v denotes the next decision
variable in the DPLL algorithm and a is the value that is assigned to v.

decision-variable is left undefined here. Realizing a viable implementation for
decision-variable so that a solver performs optimally for most definitions of op-
timal is far from trivial and a crucial design decision when developing SAT
solvers.

Using the previously defined concepts, we introduce the DPLL algorithm.
Definition B.21 DPLL : BX × CNF → BY ∪ {Unsat} is a recursively
defined algorithm that takes a formula f ∈ CNF and a partial assignment
σ ∈ BX with X ⊆ var(f) and gives a satisfying assignment σ ∈ BY with
Y = var(f) in case that f is satisfiable under σ:

1 DPLL(σ, f) :=
2 σ ← σ[unit-propagation(f)]
3 f ← f⟨σ⟩
4 if (f contains empty clause) then return Unsat
5 else if (f contains no clauses) then return σ
6 else
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7 (v, a)← decision-variable(f)
8 r ← DPLL(σ[v/a], f)
9 if (r ̸= Unsat) then return r

10 else
11 return DPLL(σ[v/¬a], f)

Note that σ[unit-propagation(f)] denotes the update of σ by the assignment
resulting from evaluating unit-propagation(f) (cf. Definition A.18).

Note that DPLL returns Unsat if the given formula is not satisfiable under the
given assignment.

DPLL backtracks using the stack of recursive function calls: whenever there is a
conflict, i.e., a partial variable assignment for which DPLL returns Unsat, the
last decision variable’s value is negated. If the conflict remains, the next-to-last
decision variable’s value is negated, and so on. Thus, backtracking is done in
the reversed order as decision variables are chosen. This can be computationally
expensive when the conflict results from a decision variable that was chosen very
early in the process.

Conflict-driven clause learning (CDCL) [49] improves the DPLL algorithm by
learning clauses at run-time and allowing back-jumps to previous decision vari-
ables other than the last one. Whenever a conflict occurs under a partial variable
assignment, CDCL inspects the conflict clause of that assignment.

Definition B.22 A clause c ∈ 2Literal is a conflict clause under an assign-
ment σ ∈ BX with X ⊆ V if {c}⟨σ⟩ = {∅}.
Example B.23 c = {x1,¬x2, x3} is a conflict clause under the assignment
σ1 = {(x1, False), (x2, True), (x3, False)}. Note that c is no conflict clause
under σ2 = {(x1, True)} because {c}⟨σ2⟩ = ∅ and ∅ ̸= {∅}.

In order to analyze a conflict, we introduce a special notation that is explicit
about the order and the reason of partial variable assignments.

Definition B.24 The set of ordered variable assignments OVAn of length
n ∈ N>0 equals the greatest set O ⊊ ({Decide, Propagate}×V×B)n for which
each vector ((d1, x1, b1), . . . , (dn, xn, bn)) ∈ O satisfies:

∀(i, j) ∈ {1 . . . n}2 : i ̸= j =⇒ xi ̸= xj

For n ∈ N>0 and i ∈ {1 . . . n}, an ordered variable assignment specifies a se-
quence of assignments (di, xi, bi) of Boolean values bi ∈ B to propositional vari-
ables xi ∈ V where di ∈ {Decide, Propagate} denotes if xi is a decision variable
(di = Decide) or if it was assigned by unit-propagation (di = Propagate).

When a conflict occurs, the conflict clause is analyzed by searching for a reason
clause that led the CDCL algorithm to infer an empty clause.
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Definition B.25 A clause d = {. . . ,¬xn} ∈ 2Literal is a reason clause for
a conflict clause c = {. . . , xn} ∈ 2Literal under an ordered variable assign-
ment ((d1, x1, b1), . . . , (Propagate, xn, bn)) ∈ OVAn of length n ∈ N>0 if d is
satisfied under assignment {(x1, b1), . . . , (xn, bn)}:

{d}
⟨{

(x1, b1), . . . , (xn, bn)
}⟩

= ∅

Note that there is always a reason clause if the most recently assigned variable
has been assigned by unit-propagation.

Example B.26 Assume c = {x1,¬x2, x3} being a conflict clause under the
ordered variable assignment:(

(Propagate, x1, False), (Propagate, x2, True), (Propagate, x3, False)
)

where x3 has been most recently assigned by unit-propagation. Then, d =
{x1,¬x3} is a reason clause because:

{d}
⟨{

(x1, False), (x2, True), (x3, False)
}⟩

= ∅

Computing a reason clause d ∈ 2Literal is not helpful if the satisfaction of d is
caused by unit-propagation. Thus, we must repeatedly compute reason clauses
until the most recently assigned literal in the current reason clause is a decision
variable. To do so, CDCL updates a reason clause using the resolution inference
rule.

Definition B.27 The function ⊗r : 2Literal × 2Literal → 2Literal imple-
ments the resolution inference rule for two clauses

{x1, . . . , r, . . . , xm}, {y1, . . . ,¬r, . . . , yn} ∈ 2Literal

according to literal r ∈ Literal and is defined by:

{x1, . . . , r, . . . , xm} ⊗r {y1, . . . ,¬r, . . . , yn} = {x1, . . . , xm, y1, . . . , yn}

The result of the resolution inference rule is called the resolvent.
Theorem B.28 For all formulas f ∈ CNF and two clauses c1,2 ∈ f that
share a complementary literal r, f ≡ f ∪ {c1 ⊗r c2} [66]. ■

Note that a conflict clause c ∈ 2Literal and its reason clause d ∈ 2Literal always
share a complementary literal r ∈ Literal. The resolvent c ⊗r d denotes an
updated conflict clause that does not contain the unit-propagated literal r. That
is useful because r itself does not contribute to the initial conflict c as it is the
result of unit-propagation.

By using the resolution inference rule repeatedly on reason clauses, we obtain a
final reason for a conflict.
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Definition B.29 reason-unsat : OVAn×CNF×2Literal → 2Literal gives
the reason clause for a conflict clause c ∈ 2Literal in a formula f ∈ CNF
under an ordered variable assignment o ∈ OVAn with n ∈ N>0:

1 reason-unsat(((d1, x1, b1), . . . , (dn, xn, bn)), f, c) :=
2 if (f contains a reason clause d for c with a complementary literal r)
3 then
4 return reason-unsat(((d1, x1, b1), . . . , (dn−1, xn−1, bn−1)), f, c⊗r d)
5 else
6 return c

Example B.30 Assume a formula

f = {k1, k2, k3} where k1 = {x1, x4}
k2 = {x3,¬x4,¬x5}
k3 = {¬x2,¬x3,¬x4}

and the following ordered variable assignment:(
(Decide, x5, True), (Decide, x2, True), (Decide, x1, False),

(Propagate, x4, True), (Propagate, x3, True)

)

After unit-propagation of x3, k3 becomes a conflict clause c0. The reason for
the conflict is computed by:

c0 = {¬x2,¬x3,¬x4} with reason clause k2

c1 = c0 ⊗x3 k2 = {¬x2,¬x4,¬x5} with reason clause k1

c2 = c1 ⊗x4 k1 = {x1,¬x2,¬x5}

The clause c2 is the final reason because it has no reason clause.

The reason clause of a conflict serves two purposes:

1. It is added as new clause to the formula because it will prevent the algo-
rithm to end up in the same conflict again.

2. The algorithm may back-jump to the assignment of a previous decision
variable by omitting decision variables that do not contribute to the con-
flict.

If c = {x1, . . . , xi, . . . , xj , . . . , xn} ∈ 2Literal is a final reason clause for a formula
f ∈ CNF and an ordered variable assignment where xi is the last decision
variable and xj is the next-to-last decision variable, then CDCL jumps back
to the assignment of the decision variable xj [53]. If c only contains a single
decision variable, it restarts the search with an empty assignment. If c does not
contain any decision variable at all, f is unsatisfiable.
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Example B.31 Assume a formula

f = {k1, k2, k3, k4, k5} where k1 = {x1, x4}
k2 = {x1,¬x3,¬x6}
k3 = {x1, x6, x9}
k4 = {x2, x8}
k5 = {¬x3,¬x5, x7}
k6 = {¬x5, x6,¬x7}

and the following ordered variable assignment:⎛⎜⎝ (Decide, x1, False), (Propagate, x4, True), (Decide, x3, True),
(Propagate, x6, False), (Propagate, x9, True), (Decide, x2, False),
(Propagate, x8, True), (Decide, x5, True), (Propagate, x7, True)

⎞⎟⎠
After assigning x7, k6 becomes a conflict clause c0. The reason for the conflict
is computed by:

c0 = {¬x5, x6,¬x7}
c1 = c0 ⊗x7 k5 = {¬x3,¬x5, x6}

In c1, x5 is the last decision variable, and x3 is the next-to-last decision
variable. Thus, a back-jump to the assignment of x3 is performed. Note
that the decision variable x2 is skipped as its consequences are completely
independent of the conflict clause c0. This example highlights the difference
to the DPLL algorithm: it would re-assign x2 prior to x3 and therefore end
up in the same conflict again.

After back-jumping to x3, c1 is added to f as learned clause.

f ← f ∪ {¬x3,¬x5, x6}

This leads to the following ordered variable assignment:(
(Decide, x1, False), (Propagate, x4, True), (Decide, x3, True),

(Propagate, x6, False), (Propagate, x9, True), (Propagate, x5, False), . . .

)
Note that the learned clause c1 leads to the propagation of (x5, False): the
conflict in k6 is avoided.

We illustrate a conflict-driven, clause learning SAT solver in pseudo-code.
Definition B.32 CDCL : CNF → OVAn ∪{Unsat} is an iterative algo-
rithm that returns Unsat for a formula f ∈ F if f is not satisfiable,
otherwise, it gives an ordered variable assignment o ∈ OVAn of length
n = | var(f)|:
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1 CDCL(f) :=
2 o← ( )
3 while (f contains unassigned variables)
4 o← o · ((Propagate, v, a) | (v, a) ∈ unit-propagation(f))
5 if (f⟨o⟩ contains no clauses) then return o
6 else if (f⟨o⟩ contains empty clause) then
7 c← get conflict clause for f and o
8 d← reason-unsat(o, f, c)
9 if (d contains no decision variable)

10 return Unsat
11 else
12 f ← f ∪ {d}
13 jump back to next−to−last decision variable in d
14 else
15 (v, a)← decision-variable(f)
16 o← o · (Decide, v, a)
17 return o

Note the following remarks:

1. In Line 4, each assignment returned by unit-propagation is added to the
ordered variable assignment o together with the Propagate tag.

2. In Line 5 and 6, the ordered variable assignment o is used for assigning
variables in f . Although this is contrary to Definition B.18, we allow it
nonetheless because o can be trivially transformed to a mapping from
variables to Boolean values.

3. In Line 16, both the decision variable v and the value a returned by
decision-variable are added to the ordered variable assignment o to-
gether with the Decide tag.

B.1.1 Preprocessing

In order to implement a runtime-efficient SAT solver it is beneficial to perform
preprocessing steps on the input formula. Exploiting pure literals is one way of
simplifying a propositional formula. A literal is denoted as pure if it appears
only with a single parity in a formula.

Lemma B.33 A formula f ∈ CNF where a literal x ∈ Literal only occurs
positive (resp. negative) is equisatisfiable to f⟨x/ True⟩ (resp. f⟨x/ False⟩).■

Due to Lemma B.33, a SAT solver may solve f⟨x/ True⟩ (resp. f⟨x/ False⟩)
instead of the original formula f ∈ CNF if x ∈ Literal is a pure literal. This
is beneficial as literal x does neither appear in f⟨x/ True⟩ nor f⟨x/ False⟩, i.e.,
the formula might become easier to solve for the SAT solver.

Another simplification considers clauses which are subsumed by other clauses.
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Lemma B.34 A formula f ∈ CNF that contains two clauses c1, c2 ∈
2Literal with c1 ⊆ c2 is equisatisfiable to f \ {c2}. ■

Recent SAT solvers use several more preprocessing steps to further simplify the
input formula [40].



Appendix C

Supplemental Material

This chapter provides supplemental material for examples that have been shown
only in extracts.

C.1 Exemplary Abstract Program

To complement Example 3.71, we give the complete abstract program that
results from compiling the concrete program in Example 3.9.

1 constraintA = \p u ->
2 let v_d = u
3 in
4 validv_d

5 ( let v_1 = let a = arguments1 v_d
6 b = arguments2 v_d
7 in
8 let v_2 = greaterOne a
9 v_3 =

10 let v_4 = greaterOne b
11 v_5 =
12 let v_6 = p
13 v_7 =
14 let v_8 = a
15 v_9 = b
16 in
17 times v_8 v_9
18 in
19 eq v_6 v_7
20 in
21 and2 v_4 v_5
22 in

193
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23 and2 v_2 v_3
24 in
25 mergev_d v_1 )
26

27 plus = \x y ->
28 let v_d = x
29 in
30 validv_d ( let v_1 = y
31 v_2 = let x’ = arguments1 v_d
32 in
33 let a_1 =
34 let v_3 = x’
35 v_4 = y
36 in
37 plus v_3 v_4
38 in
39 cons(2,2) a_1
40 in
41 mergev_d v_1 v_2 )
42

43 times = \x y ->
44 let v_d = x
45 in
46 validv_d ( let v_1 = cons(1,2)

47 v_2 = let x’ = arguments1 v_d
48 in
49 let v_3 = y
50 v_4 =
51 let v_5 = x’
52 v_6 = y
53 in
54 times v_5 v_6
55 in
56 plus v_3 v_4
57 in
58 mergev_d v_1 v_2 )
59

60 eq = \x y ->
61 let v_dx = x
62 in
63 validv_dx

64 ( let v_1 = let v_dy = y
65 in
66 validv_dy

67 ( let v_11 = cons(2,2)

68 v_12 = let y’ = arguments1 v_dy
69 in
70 cons(1,2)

71 in
72 mergev_dy v_11 v_12 )
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73

74 v_2 = let x’ = arguments1 v_dx
75 in
76 let v_dy = y
77 in
78 validv_dy

79 ( let v_21 = cons(1,2)

80 v_22 = let y’ = arguments1 v_dy
81 in
82 let v_23 = x’
83 v_24 = y’
84 in
85 eq v_23 v_24
86 in
87 mergev_dy v_21 v_22 )
88 in
89 mergev_dx v_1 v_2 )
90

91 greaterOne = \x ->
92 let v_dx = x
93 in
94 validv_dx

95 ( let v_1 = cons(1,2)

96 v_2 = let x’ = arguments1 v_dx
97 in
98 let v_dx’ = x’
99 in

100 validv_dx’

101 ( let v_21 = cons(1,2)

102 v_22 = let x’’ = arguments1 v_dx’
103 in
104 cons(2,2)

105 in
106 mergev_dx’ v_21 v_22 )
107 in
108 mergev_dx v_1 v_2 )
109

110 and2 = \x y ->
111 let v_dx = x
112 in
113 validv_dx

114 ( let v_1 = cons(1,2)

115 v_2 = y
116 in
117 mergev_dx v_1 v_2 )
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C.2 Explicit Binary Encoding of Natural Num-
bers

To complement Example 6.17, we give a complete concrete program that im-
plements binary encoded natural numbers.

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)
3 data Pair a b = Pair a b
4

5 constraint :: List Bool -> Pair (List Bool) (List Bool) -> Bool
6 constraint = \p u -> case u of
7 Pair x y -> case add x y of
8 Pair sum carry -> and (eqNat sum p) (not carry)
9

10 add :: List Bool -> List Bool -> Pair (List Bool) Bool
11 add = \x y ->
12 let add’ pair accu = case pair of
13 Pair u v -> case accu of
14 Pair bits carry -> case fullAdder u v carry of
15 Pair sum carry’ -> Pair (Cons sum bits) carry’
16 in
17 foldr add’ (Pair Nil False) (zip x y)
18

19 fullAdder :: Bool -> Bool -> Bool -> Pair Bool Bool
20 fullAdder = \x y carry -> case halfAdder x y of
21 Pair sum1 carry1 -> case halfAdder sum1 carry of
22 Pair sum2 carry2 -> Pair sum2 (or carry1 carry2)
23

24 halfAdder :: Bool -> Bool -> Pair Bool Bool
25 halfAdder = \x y -> Pair (xor x y) (and x y)
26

27 eqNat :: List Bool -> List Bool -> Bool
28 eqNat = \x y -> case x of
29 Nil -> case y of Nil -> True
30 Cons v vs -> False
31

32 Cons u us -> case y of Nil -> False
33 Cons v vs -> and (eq u v)
34 (eqNat us vs)
35

36 foldr :: (a -> b -> b) -> b -> List a -> b
37 foldr = \f accu xs -> case xs of
38 Nil -> accu
39 Cons y ys -> f y (foldr f accu ys)
40

41 zip :: List a -> List b -> List (Pair a b)
42 zip = \x y -> case x of
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43 Nil -> Nil
44 Cons u us -> case y of
45 Nil -> Nil
46 Cons v vs -> Cons (Pair u v) (zip us vs)
47

48 and :: Bool -> Bool -> Bool
49 and = \x y -> case x of False -> False
50 True -> y
51

52 or :: Bool -> Bool -> Bool
53 or = \x y -> case x of False -> y
54 True -> True
55

56 xor :: Bool -> Bool -> Bool
57 xor = \x y -> not (eq x y)
58

59 eq :: Bool -> Bool -> Bool
60 eq = \x y -> case x of False -> not y
61 True -> y
62

63 not :: Bool -> Bool
64 not = \x -> case x of False -> True
65 True -> False

C.3 Specification of Looping Derivations

To complement Listing 7.4, we give a complete concrete program that specifies
looping derivations that are compatible with a given term rewriting system.

1 data Pair a b = Pair a b
2 data List a = Nil | Cons a (List a)
3

4 data Term = Var Nat
5 | Node Nat (List Term)
6

7 data Unary = Z | S Unary
8

9 data Step = Step Term
10 (Pair Term Term)
11 (List Unary)
12 (List (Pair Nat Term))
13 Term
14

15 data LoopingDerivation = LoopingDerivation (List Step)
16 (List Unary)
17 (List (Pair Nat Term))
18
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19 constraint :: List (Pair Term Term) -> LoopingDerivation -> Bool
20 constraint = \trs deriv -> isCompatibleLoopingDerivation
21 trs deriv
22

23 isCompatibleLoopingDerivation :: List (Pair Term Term)
24 -> LoopingDerivation
25 -> Bool
26 isCompatibleLoopingDerivation = \trs loopDeriv ->
27 case loopDeriv of
28 LoopingDerivation deriv lastPos lastSub ->
29 case deriv of
30 Nil -> False
31 Cons step steps -> case step of
32 Step t0 rule pos sub t1 ->
33 let last = deriveTerm trs t0 deriv
34 subterm = getSubterm lastPos last
35 t0’ = applySubstitution lastSub t0
36 in
37 eqTerm t0’ subterm
38

39 deriveTerm :: List (Pair Term Term)
40 -> Term
41 -> (List Step)
42 -> Term
43 deriveTerm = \trs term deriv -> case deriv of
44 Nil -> term
45 Cons step steps -> case isValidStep trs step of
46 False -> undefined
47 True -> case step of
48 Step t0 rule pos sub t1 -> case eqTerm term t0 of
49 False -> undefined
50 True -> deriveTerm trs t1 steps
51

52 isValidStep :: List (Pair Term Term) -> Step -> Bool
53 isValidStep = \trs step -> case step of
54 Step t0 rule pos sub t1 ->
55 and2 (isValidRule trs rule)
56 (case rule of
57 Pair lhs rhs ->
58 let subT0 = getSubterm pos t0
59 lhs’ = applySubstitution sub lhs
60 rhs’ = applySubstitution sub rhs
61 result = putSubterm t0 pos rhs’
62 in
63 and2 (eqTerm subT0 lhs’)
64 (eqTerm result t1)
65 )
66

67 isValidRule :: List (Pair Term Term) -> Pair Term Term -> Bool
68 isValidRule = \trs rule -> elem eqRule rule trs
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69

70 getSubterm :: (List Unary) -> Term -> Term
71 getSubterm = \pos term -> case pos of
72 Nil -> term
73 Cons p pos’ -> case term of
74 Var v -> undefined
75 Node f ts -> getSubterm pos’ (at p ts)
76

77 putSubterm :: Term -> (List Unary) -> Term -> Term
78 putSubterm = \term pos term’ -> case pos of
79 Nil -> term’
80 Cons p pos’ -> case term of
81 Var v -> undefined
82 Node f ts ->
83 Node f (replace p ts (putSubterm (at p ts) pos’ term’))
84

85 applySubstitution :: List (Pair Nat Term) -> Term -> Term
86 applySubstitution = \subs term -> case term of
87 Var v -> applySubstitutionToVar subs v
88 Node f ts -> Node f (map (\t -> applySubstitution subs t) ts)
89

90 applySubstitutionToVar :: List (Pair Nat Term) -> Nat -> Term
91 applySubstitutionToVar = \sub v -> case sub of
92 Nil -> Var v
93 Cons s ss -> case s of
94 Pair name term -> case eqNat v name of
95 False -> applySubstitutionToVar ss v
96 True -> term
97

98 at :: Unary -> List a -> a
99 at = \u xs -> case xs of

100 Nil -> undefined
101 Cons y ys -> case u of
102 Z -> y
103 S u’ -> at u’ ys
104

105 replace :: Unary -> List a -> a -> List a
106 replace = \u xs x -> case xs of
107 Nil -> undefined
108 Cons y ys -> case u of
109 Z -> Cons x ys
110 S u’ -> Cons y (replace u’ ys x)
111

112 eqRule :: Pair Term Term -> Pair Term Term -> Bool
113 eqRule = \x y -> case x of
114 Pair xLhs xRhs -> case y of
115 Pair yLhs yRhs -> and2 (eqTerm xLhs yLhs) (eqTerm xRhs yRhs)
116

117 elem :: (a -> a -> Bool) -> a -> List a -> Bool
118 elem = \eq x xs -> case xs of
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119 Nil -> False
120 Cons y ys -> or2 (eq x y) (elem eq x ys)
121

122 eqTerm :: Term -> Term -> Bool
123 eqTerm = \x y -> case x of
124 Var xV -> case y of
125 Var yV -> eqNat xV yV
126 Node g ts -> False
127 Node f ss -> case y of
128 Var yV -> False
129 Node g ts -> and2 (eqNat f g) (eqList eqTerm ss ts)
130

131 eqList :: (a -> a -> Bool) -> List a -> List a -> Bool
132 eqList = \eq xs ys -> case xs of
133 Nil -> case ys of
134 Nil -> True
135 Cons y ys’ -> False
136 Cons x xs’ -> case ys of
137 Nil -> False
138 Cons y ys’ -> and2 (eq x y) (eqList eq xs’ ys’)
139

140 or2 :: Bool -> Bool -> Bool
141 or2 = \x y -> case x of
142 True -> True
143 False -> y
144

145 and2 :: Bool -> Bool -> Bool
146 and2 = \x y -> case x of
147 False -> False
148 True -> y
149

150 map :: (a -> b) -> List a -> List b
151 map = \f xs -> case xs of
152 Nil -> Nil
153 Cons y ys -> Cons (f y) (map f ys)

C.4 Specification of LPO-inducing Precedences

To complement Listing 7.10, we give a complete concrete program that specifies
precedences that induce lexicographic path orders that are compatible with a
given term rewriting system.

1 data Bool = False | True
2 data Pair a b = Pair a b
3 data List a = Nil | Cons a (List a)
4

5 data Term = Var Nat | Node Nat (List Term)
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6

7 data Order = Gr | Eq | NGe
8

9 data TRS = TRS (List Nat) (List (Pair Term Term))
10

11 constraint :: TRS -> List Nat -> Bool
12 constraint = \trs prec -> case trs of
13 TRS symbols rules ->
14 and2 (forall rules (\rule -> ordered rule prec))
15 (forall symbols (\sym -> exists prec sym eqNat))
16

17 ordered :: Pair Term Term -> List Nat -> Bool
18 ordered = \rule prec -> case rule of
19 Pair lhs rhs -> eqOrder (lpo prec lhs rhs) Gr
20

21 lpo :: List Nat -> Term -> Term -> Order
22 lpo = \prec s t -> case t of
23 Var x -> case eqTerm s t of
24 False -> case varOccurs x s of
25 False -> NGe
26 True -> Gr
27 True -> Eq
28

29 Node g ts -> case s of
30 Var v -> NGe
31 Node f ss ->
32 case forall ss (\si -> eqOrder (lpo prec si t) NGe) of
33 False -> Gr
34 True -> case ord prec f g of
35 Gr ->
36 case forall ts (\ti -> eqOrder (lpo prec s ti) Gr) of
37 False -> NGe
38 True -> Gr
39 Eq ->
40 case forall ts (\ti -> eqOrder (lpo prec s ti) Gr) of
41 False -> NGe
42 True -> lex (\xs ys -> lpo prec xs ys) ss ts
43 NGe -> NGe
44

45 ord :: List Nat -> Nat -> Nat -> Order
46 ord = \prec a b ->
47 let run = \ps -> case ps of
48 Nil -> undefined
49 Cons p ps’ -> case eqNat p a of
50 True -> Gr
51 False -> case eqNat p b of
52 True -> NGe
53 False -> run ps’
54 in
55 case eqNat a b of
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56 True -> Eq
57 False -> run prec
58

59 varOccurs :: Nat -> Term -> Bool
60 varOccurs = \var term -> case term of
61 Var var’ -> eqNat var var’
62 Node f ts -> exists’ ts (\t -> varOccurs var t)
63

64 lex :: (a -> b -> Order) -> List a -> List b -> Order
65 lex = \ord xs ys -> case xs of
66 Nil -> case ys of Nil -> Eq
67 Cons y ys’ -> NGe
68 Cons x xs’ -> case ys of
69 Nil -> Gr
70 Cons y ys’ -> case ord x y of
71 Gr -> Gr
72 Eq -> lex ord xs’ ys’
73 NGe -> NGe
74

75 eqTerm :: Term -> Term -> Bool
76 eqTerm = \x y -> case x of
77 Var u -> case y of
78 Var v -> eqNat u v
79 Node v vs -> False
80

81 Node u us -> case y of
82 Var v -> False
83 Node v vs -> and2 (eqNat u v) (eqList eqTerm us vs)
84

85 eqOrder :: Order -> Order -> Bool
86 eqOrder = \x y -> case x of
87 Gr -> case y of Gr -> True
88 Eq -> False
89 NGe -> False
90 Eq -> case y of Gr -> False
91 Eq -> True
92 NGe -> False
93 NGe -> case y of Gr -> False
94 Eq -> False
95 NGe -> True
96

97 eqList :: (a -> a -> Bool) -> List a -> List a -> Bool
98 eqList = \f xs ys -> case xs of
99 Nil -> case ys of Nil -> True

100 Cons v vs -> False
101 Cons u us -> case ys of Nil -> False
102 Cons v vs -> and2 (f u v)
103 (eqList f us vs)
104

105 forall :: List a -> (a -> Bool) -> Bool
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106 forall = \xs f -> case xs of
107 Nil -> True
108 Cons y ys -> and2 (f y) (forall ys f)
109

110 exists :: List a -> a -> (a -> a -> Bool) -> Bool
111 exists = \xs y f -> exists’ xs (\x -> f x y)
112

113 exists’ :: List a -> (a -> Bool) -> Bool
114 exists’ = \xs f -> case xs of
115 Nil -> False
116 Cons y ys -> or2 (f y) (exists’ ys f)
117

118 and2 :: Bool -> Bool -> Bool
119 and2 = \x y -> case x of
120 False -> False
121 True -> y
122

123 or2 :: Bool -> Bool -> Bool
124 or2 = \x y -> case x of
125 True -> True
126 False -> y

C.5 Profiling Lexicographic Path Orders

We show the complete profiling log of CO4 when constructing a propositional
encoding for the concrete program in Appendix C.4 and the term rewriting
system given in Example 7.11.

1 Start producing CNF
2 Number of shared values: 0
3 Allocator: #variables: 6, #clauses: 0
4 Cache hits: 202 (28%), misses: 498 (71%)
5 Profiling (inner-under):
6 ("constraint", {numCalls = 1, numVariables = 166, numClauses = 415})
7 ("forallHO_2999", {numCalls = 4, numVariables = 152, numClauses = 378})
8 ("ordered", {numCalls = 3, numVariables = 145, numClauses = 359})
9 ("globalLambda_1456", {numCalls = 3, numVariables = 145, numClauses = 359})

10 ("globalLambdaSat_2136", {numCalls = 3, numVariables = 145, numClauses = 359})
11 ("lpo", {numCalls = 41, numVariables = 140, numClauses = 349})
12 ("forallHO_3012", {numCalls = 30, numVariables = 100, numClauses = 250})
13 ("globalLambda_1472", {numCalls = 23, numVariables = 90, numClauses = 226})
14 ("globalLambdaSat_2250", {numCalls = 23, numVariables = 90, numClauses = 226})
15 ("run_39", {numCalls = 20, numVariables = 64, numClauses = 182})
16 ("ord", {numCalls = 8, numVariables = 64, numClauses = 182})
17 ("forallHO_3014", {numCalls = 31, numVariables = 46, numClauses = 107})
18 ("globalLambda_1478", {numCalls = 22, numVariables = 41, numClauses = 97})
19 ("globalLambdaSat_2263", {numCalls = 22, numVariables = 41, numClauses = 97})
20 ("forallHO_3013", {numCalls = 21, numVariables = 35, numClauses = 79})
21 ("and2", {numCalls = 34, numVariables = 32, numClauses = 76})
22 ("globalLambda_1475", {numCalls = 15, numVariables = 30, numClauses = 69})
23 ("globalLambdaSat_2257", {numCalls = 15, numVariables = 30, numClauses = 69})
24 ("eqOrder", {numCalls = 26, numVariables = 26, numClauses = 52})
25 ("forallHO_3000", {numCalls = 4, numVariables = 12, numClauses = 32})
26 ("or2", {numCalls = 14, numVariables = 9, numClauses = 24})
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27 ("globalLambda_1458", {numCalls = 3, numVariables = 9, numClauses = 24})
28 ("globalLambdaSat_2140", {numCalls = 3, numVariables = 9, numClauses = 24})
29 ("existsHO_3007", {numCalls = 3, numVariables = 9, numClauses = 24})
30 ("exists’HO_3010", {numCalls = 12, numVariables = 9, numClauses = 24})
31 ("eqNat", {numCalls = 21, numVariables = 9, numClauses = 27})
32 ("lexHO_3015", {numCalls = 11, numVariables = 2, numClauses = 4})
33 ("varOccurs", {numCalls = 14, numVariables = 0, numClauses = 0})
34 ("lpoSat_2269", {numCalls = 7, numVariables = 0, numClauses = 0})
35 ("globalLambda_1467", {numCalls = 10, numVariables = 0, numClauses = 0})
36 ("globalLambdaSat_2216", {numCalls = 10, numVariables = 0, numClauses = 0})
37 ("globalLambdaSatHO_3008", {numCalls = 9, numVariables = 0, numClauses = 0})
38 ("globalLambdaHO_3009", {numCalls = 9, numVariables = 0, numClauses = 0})
39 ("exists’HO_3006", {numCalls = 13, numVariables = 0, numClauses = 0})
40 ("eqTerm", {numCalls = 11, numVariables = 0, numClauses = 0})
41
42 Profiling (inner):
43 ("run_39", {numCalls = 20, numVariables = 55, numClauses = 155})
44 ("lpo", {numCalls = 41, numVariables = 33, numClauses = 77})
45 ("and2", {numCalls = 34, numVariables = 32, numClauses = 76})
46 ("eqOrder", {numCalls = 26, numVariables = 26, numClauses = 52})
47 ("or2", {numCalls = 14, numVariables = 9, numClauses = 24})
48 ("eqNat", {numCalls = 21, numVariables = 9, numClauses = 27})
49 ("lexHO_3015", {numCalls = 11, numVariables = 2, numClauses = 4})
50 ("varOccurs", {numCalls = 14, numVariables = 0, numClauses = 0})
51 ("ordered", {numCalls = 3, numVariables = 0, numClauses = 0})
52 ("ord", {numCalls = 8, numVariables = 0, numClauses = 0})
53 ("lpoSat_2269", {numCalls = 7, numVariables = 0, numClauses = 0})
54 ("globalLambda_1478", {numCalls = 22, numVariables = 0, numClauses = 0})
55 ("globalLambda_1475", {numCalls = 15, numVariables = 0, numClauses = 0})
56 ("globalLambda_1472", {numCalls = 23, numVariables = 0, numClauses = 0})
57 ("globalLambda_1467", {numCalls = 10, numVariables = 0, numClauses = 0})
58 ("globalLambda_1458", {numCalls = 3, numVariables = 0, numClauses = 0})
59 ("globalLambda_1456", {numCalls = 3, numVariables = 0, numClauses = 0})
60 ("globalLambdaSat_2140", {numCalls = 3, numVariables = 0, numClauses = 0})
61 ("globalLambdaSat_2136", {numCalls = 3, numVariables = 0, numClauses = 0})
62 ("globalLambdaSatHO_3008", {numCalls = 9, numVariables = 0, numClauses = 0})
63 ("globalLambdaHO_3009", {numCalls = 9, numVariables = 0, numClauses = 0})
64 ("forallHO_3014", {numCalls = 31, numVariables = 0, numClauses = 0})
65 ("forallHO_3013", {numCalls = 21, numVariables = 0, numClauses = 0})
66 ("forallHO_3012", {numCalls = 30, numVariables = 0, numClauses = 0})
67 ("forallHO_3000", {numCalls = 4, numVariables = 0, numClauses = 0})
68 ("forallHO_2999", {numCalls = 4, numVariables = 0, numClauses = 0})
69 ("existsHO_3007", {numCalls = 3, numVariables = 0, numClauses = 0})
70 ("exists’HO_3010", {numCalls = 12, numVariables = 0, numClauses = 0})
71 ("exists’HO_3006", {numCalls = 13, numVariables = 0, numClauses = 0})
72 ("eqTerm", {numCalls = 11, numVariables = 0, numClauses = 0})
73 ("constraint", {numCalls = 1, numVariables = 0, numClauses = 0})
74
75 Cases:
76 ((51,20),CaseProfileData {numEvaluations = 15, numKnown = 0, numUnknown = 15})
77 ((49,24),CaseProfileData {numEvaluations = 15, numKnown = 0, numUnknown = 15})
78 ((34,18),CaseProfileData {numEvaluations = 18, numKnown = 7, numUnknown = 11})
79 ((124,11),CaseProfileData {numEvaluations = 14, numKnown = 5, numUnknown = 9})
80 ((119,12),CaseProfileData {numEvaluations = 34, numKnown = 25, numUnknown = 9})
81 ((86,15),CaseProfileData {numEvaluations = 26, numKnown = 21, numUnknown = 5})
82 ((40,18),CaseProfileData {numEvaluations = 18, numKnown = 16, numUnknown = 2})
83 ((70,20),CaseProfileData {numEvaluations = 8, numKnown = 7, numUnknown = 1})
84 ((114,16),CaseProfileData {numEvaluations = 25, numKnown = 25, numUnknown = 0})
85 ((106,15),CaseProfileData {numEvaluations = 90, numKnown = 90, numUnknown = 0})
86 ((93,10),CaseProfileData {numEvaluations = 20, numKnown = 20, numUnknown = 0})
87 ((90,10),CaseProfileData {numEvaluations = 7, numKnown = 7, numUnknown = 0})
88 ((87,10),CaseProfileData {numEvaluations = 9, numKnown = 9, numUnknown = 0})
89 ((81,16),CaseProfileData {numEvaluations = 10, numKnown = 10, numUnknown = 0})
90 ((77,12),CaseProfileData {numEvaluations = 1, numKnown = 1, numUnknown = 0})
91 ((76,14),CaseProfileData {numEvaluations = 11, numKnown = 11, numUnknown = 0})
92 ((68,18),CaseProfileData {numEvaluations = 10, numKnown = 10, numUnknown = 0})
93 ((66,11),CaseProfileData {numEvaluations = 1, numKnown = 1, numUnknown = 0})
94 ((65,17),CaseProfileData {numEvaluations = 11, numKnown = 11, numUnknown = 0})
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95 ((60,22),CaseProfileData {numEvaluations = 14, numKnown = 14, numUnknown = 0})
96 ((55,5),CaseProfileData {numEvaluations = 8, numKnown = 8, numUnknown = 0})
97 ((47,16),CaseProfileData {numEvaluations = 20, numKnown = 20, numUnknown = 0})
98 ((36,18),CaseProfileData {numEvaluations = 11, numKnown = 11, numUnknown = 0})
99 ((32,7),CaseProfileData {numEvaluations = 20, numKnown = 20, numUnknown = 0})

100 ((29,17),CaseProfileData {numEvaluations = 30, numKnown = 30, numUnknown = 0})
101 ((24,14),CaseProfileData {numEvaluations = 10, numKnown = 10, numUnknown = 0})
102 ((23,12),CaseProfileData {numEvaluations = 11, numKnown = 11, numUnknown = 0})
103 ((22,22),CaseProfileData {numEvaluations = 41, numKnown = 41, numUnknown = 0})
104 ((18,27),CaseProfileData {numEvaluations = 3, numKnown = 3, numUnknown = 0})
105 ((12,29),CaseProfileData {numEvaluations = 1, numKnown = 1, numUnknown = 0})
106
107 Toplevel: #variables: 0, #clauses: 2
108 CNF finished
109 #variables: 172, #clauses: 417, #literals: 989, clause density: 2.4244
110 #variables (Minisat): 172, #clauses (Minisat): 415, clause density: 2.4128
111 #clauses of length 1: 2
112 #clauses of length 2: 258
113 #clauses of length 3: 157
114
115 Starting solver
116 Solver finished in 0.0 seconds (result: True)
117 Starting decoder
118 Decoder finished
119 Test: True
120 Just (Cons (nat 2 0) (Cons (nat 2 2) (Cons (nat 2 1) Nil)))

C.6 Specification of LPO-inducing Precedences
with Semantic Labelling

To complement Listing 7.24, we give a complete concrete program that combines
semantic labelling with the specification of precedences that induce lexicographic
path orders that are compatible with a given term rewriting system. Note
that the following listing contains type aliases; a feature of CO4’s constraint
specification language that has not been introduced in the present thesis. A
type alias of the form type T1 = T2 for T1,2 ∈ Type introduces a the type alias
T1 for the type T2 such that both types can be used interchangeably in a concrete
program.

1 data Pair a b = Pair a b
2 data Triple a b c = Triple a b c
3 data List a = Nil | Cons a (List a)
4

5 type Symbol = Nat
6 type Map k v = List (Pair k v)
7 type Function = Map (List Nat) Nat
8 type Interpretation a = Map a Function
9 type Sigma = Map Symbol Nat

10 type Label = List Nat
11 type Labelled a = Pair a Label
12 type Precedence a = List a
13
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14 data Term a = Var Symbol | Node a (List (Term a))
15 type Rule a = Pair (Term a) (Term a)
16 type TRS a = Pair (List a) (List (Rule a))
17

18 data Order = Gr | Eq | NGe
19

20 constraint :: Triple (TRS Symbol)
21 (List (Labelled Symbol))
22 (List Sigma)
23 -> Pair (Precedence (Labelled Symbol))
24 (Interpretation Symbol)
25 -> Bool
26 constraint = \p u ->
27 let eqSymbol = eqNat
28 eqLabelledSymbol = eqLabelled eqNat
29 in
30 case p of Triple trs lsymbols assigns ->
31 case u of Pair prec interp ->
32 case trs of Pair symbols rules ->
33 let lrules = labelledRules eqNat interp assigns rules
34 ltrs = Pair lsymbols lrules
35 in
36 and2 (lpoConstraint eqLabelledSymbol ltrs prec)
37 (isModel eqNat interp assigns trs)
38

39 lpoConstraint :: (a -> a -> Bool) -> TRS a -> Precedence a
40 -> Bool
41 lpoConstraint = \eq trs prec -> case trs of
42 Pair symbols rules ->
43 and2 (forall rules (\rule -> ordered eq rule prec))
44 (forall symbols (\sym -> exists prec sym eq))
45

46 ordered :: (a -> a -> Bool) -> Rule a -> Precedence a -> Bool
47 ordered = \eq rule prec -> case rule of
48 Pair lhs rhs -> eqOrder (lpo eq prec lhs rhs) Gr
49

50 lpo :: (a -> a -> Bool) -> Precedence a -> Term a -> Term a
51 -> Order
52 lpo = \eq prec s t -> case t of
53 Var x -> case eqTerm eq s t of
54 False -> case varOccurs x s of
55 False -> NGe
56 True -> Gr
57 True -> Eq
58

59 Node g ts -> case s of
60 Var _ -> NGe
61 Node f ss ->
62 case forall ss (\si -> eqOrder (lpo eq prec si t) NGe) of
63 False -> Gr



C.6. SPECIFICATION OF LPO-INDUCING PRECEDENCES WITH SEMANTIC LABELLING207

64 True -> case ord eq prec f g of
65 Gr -> case forall ts
66 (\ti -> eqOrder (lpo eq prec s ti) Gr) of
67 False -> NGe
68 True -> Gr
69 Eq -> case forall ts
70 (\ti -> eqOrder (lpo eq prec s ti) Gr) of
71 False -> NGe
72 True -> lex (lpo eq prec) ss ts
73 NGe -> NGe
74

75 ord :: (a -> a -> Bool) -> Precedence a -> a -> a -> Order
76 ord = \eq prec a b ->
77 let run = \ps -> case ps of
78 Nil -> undefined
79 Cons p ps’ -> case eq p a of
80 True -> Gr
81 False -> case eq p b of
82 True -> NGe
83 False -> run ps’
84 in
85 case eq a b of
86 True -> Eq
87 False -> run prec
88

89 varOccurs :: Symbol -> Term a -> Bool
90 varOccurs = \var term -> case term of
91 Var var’ -> eqNat var var’
92 Node _ ts -> exists’ ts (\t -> varOccurs var t)
93

94 lex :: (a -> b -> Order) -> List a -> List b -> Order
95 lex = \ord xs ys -> case xs of
96 Nil -> case ys of Nil -> Eq
97 Cons y ys’ -> NGe
98 Cons x xs’ -> case ys of
99 Nil -> Gr

100 Cons y ys’ -> case ord x y of
101 Gr -> Gr
102 Eq -> lex ord xs’ ys’
103 NGe -> NGe
104

105 labelledRules :: (a -> a -> Bool) -> Interpretation a
106 -> List Sigma -> List (Rule a)
107 -> List (Rule (Labelled a))
108 labelledRules = \eq interp assigns rules ->
109 concat’ (map’ (\rule -> case rule of
110 Pair lhs rhs ->
111 map’ (\sigma -> Pair (labelledTerm eq interp sigma lhs)
112 (labelledTerm eq interp sigma rhs)
113 ) assigns) rules)
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114

115 labelledTerm :: (a -> a -> Bool) -> Interpretation a -> Sigma
116 -> Term a -> Term (Labelled a)
117 labelledTerm = \eq interp sigma t -> case t of
118 Var v -> Var v
119 Node f ts -> let as = map’ (eval eq interp sigma) ts
120 ts’ = map’ (labelledTerm eq interp sigma) ts
121 in
122 Node (Pair f as) ts’
123

124 isModel :: (a -> a -> Bool) -> Interpretation a -> List Sigma
125 -> TRS a -> Bool
126 isModel = \eq interp assigns trs -> case trs of
127 Pair symbols rules ->
128 forall assigns (\sigma ->
129 forall rules (\(Pair lhs rhs) ->
130 eqNat (eval eq interp sigma lhs)
131 (eval eq interp sigma rhs)))
132

133 eval :: (a -> a -> Bool) -> Interpretation a -> Sigma -> Term a
134 -> Nat
135 eval = \eq interp sigma t ->
136 let lookup = \f k map -> case map of
137 Nil -> undefined
138 Cons m ms -> case m of
139 Pair k’ v -> case f k k’ of
140 False -> lookup f k ms
141 True -> v
142 in case t of
143 Var v -> lookup eqNat v sigma
144 Node f ts -> let i = lookup eq f interp
145 as = map’ (\t -> eval eq interp sigma t) ts
146 in
147 lookup (eqList eqNat) as i
148

149 eqTerm :: (a -> a -> Bool) -> Term a -> Term a -> Bool
150 eqTerm = \eq x y -> case x of
151 Var u -> case y of
152 Var v -> eqNat u v
153 Node v vs -> False
154

155 Node u us -> case y of
156 Var v -> False
157 Node v vs -> and2 (eq u v) (eqList (eqTerm eq) us vs)
158

159 eqOrder :: Order -> Order -> Bool
160 eqOrder = \x y -> case x of
161 Gr -> case y of Gr -> True
162 Eq -> False
163 NGe -> False
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164 Eq -> case y of Gr -> False
165 Eq -> True
166 NGe -> False
167 NGe -> case y of Gr -> False
168 Eq -> False
169 NGe -> True
170

171 eqLabelled :: (a -> a -> Bool) -> Labelled a -> Labelled a
172 -> Bool
173 eqLabelled = \eq (Pair a aLabel) (Pair b bLabel) ->
174 and2 (eq a b) (eqList eqNat aLabel bLabel)
175

176 eqList :: (a -> a -> Bool) -> List a -> List a -> Bool
177 eqList = \f xs ys -> case xs of
178 Nil -> case ys of Nil -> True
179 Cons v vs -> False
180 Cons u us ->
181 case ys of Nil -> False
182 Cons v vs -> and2 (f u v) (eqList f us vs)
183

184 forall :: List a -> (a -> Bool) -> Bool
185 forall = \xs f -> case xs of
186 Nil -> True
187 Cons y ys -> and2 (f y) (forall ys f)
188

189 exists :: List a -> a -> (a -> a -> Bool) -> Bool
190 exists = \xs y f -> exists’ xs (\x -> f x y)
191

192 exists’ :: List a -> (a -> Bool) -> Bool
193 exists’ \xs f -> case xs of
194 Nil -> False
195 Cons y ys -> or2 (f y) (exists’ ys f)
196

197 map’ :: (a -> b) -> List a -> List b
198 map’ \f xs -> case xs of
199 Nil -> Nil
200 Cons y ys -> Cons (f y) (map’ f ys)
201

202 concat’ :: List (List a) -> List a
203 concat’ = \xs -> foldr’ append’ Nil xs
204

205 append’ :: List a -> List a -> List a
206 append’ = \a b -> foldr’ Cons b a
207

208 foldr’ :: (a -> b -> b) -> b -> List a -> b
209 foldr’ = \n c xs -> case xs of
210 Nil -> c
211 Cons y ys -> n y (foldr’ n c ys)
212

213 and2 :: Bool -> Bool -> Bool
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214 and2 = \x y -> case x of
215 False -> False
216 True -> y
217

218 or2 :: Bool -> Bool -> Bool
219 or2 = \x y -> case x of
220 True -> True
221 False -> y

C.7 Specification of the RNA Design Problem

To complement Listing 7.37, we give a complete concrete program that specifies
the RNA design problem.

1 data Bool = False | True
2 data List a = Nil | Cons a (List a)
3 data Pair a b = Pair a b
4 data N = Z | S N
5 data Base = A | C | G | U
6 data Paren = Open | Close | Blank
7 data Energy = MinusInfinity | Finite Nat
8

9 constraint :: List Paren
10 -> Pair (List Base) (List (List Energy))
11 -> Bool
12 constraint = \secondary u -> case u of
13 Pair primary e ->
14 let c1 = geEnergy (boundEnergy primary secondary) (upright e)
15 c2 = matrixAll eqEnergy e (energyM primary e)
16 c3 = matrixAll eqEnergy e (gap (S Z) MinusInfinity e)
17 in
18 and2 c1 (and2 c2 c3)
19

20 energyM :: List Base -> List (List Energy) -> List (List Energy)
21 energyM = \p m ->
22 let mInfty = MinusInfinity
23 in sum
24 (Cons (item mInfty zeroE p)
25 (Cons (product (Cons m (Cons m Nil)))
26 (Cons (pointwise timesE
27 (costM MinusInfinity p)
28 (matrixShift mInfty (gap (S (S (S Z))) mInfty m)))
29 Nil)))
30

31 upright :: List (List a) -> a
32 upright = \m -> last (head m)
33
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34 vectorGet :: List a -> N -> b -> (a -> b) -> b
35 vectorGet = \xs i nothing just -> case xs of
36 Nil -> nothing
37 Cons y ys -> case i of
38 Z -> just y
39 S j -> vectorGet ys j nothing just
40

41 matrixGet :: List (List a) -> N -> N -> b -> (a -> b) -> b
42 matrixGet = \m i j nothing just ->
43 vectorGet m i nothing (\row ->
44 vectorGet row j nothing (\x -> just x))
45

46 matrixMap :: (N -> N -> a -> b) -> List (List a) -> List (List b)
47 matrixMap = \f m -> for (zipNats m) (\zippedRow ->
48 case zippedRow of
49 Pair i row -> for (zipNats row) (\zippedElement ->
50 case zippedElement of
51 Pair j x -> f i j x ))
52

53 matrixTimes :: (a -> a -> a) -> (a -> a -> a)
54 -> List (List a) -> List (List a)
55 -> List (List a)
56 matrixTimes = \plus times a b ->
57 let b’ = matrixTranspose b
58 dot row col =
59 let zs = zipWith times row col
60 in
61 foldr plus (head zs) (tail zs)
62 in
63 for a (\row -> for b’ (\col -> dot row col))
64

65 matrixTranspose :: List (List a) -> List (List a)
66 matrixTranspose = \xss -> case xss of
67 Nil -> Nil
68 Cons row rows -> case rows of
69 Nil -> map (\x -> Cons x Nil) row
70 Cons x xs -> zipWith Cons row (matrixTranspose rows)
71

72 pointwise :: (a -> b -> c) -> List (List a)
73 -> List (List b) -> List (List c)
74 pointwise = \f a b -> zipWith (\row1 row2 ->
75 zipWith f row1 row2) a b
76

77 matrixAll :: (a -> b -> Bool) -> List (List a)
78 -> List (List b) -> Bool
79 matrixAll = \f a b -> and (map and (pointwise f a b))
80

81 matrixShift :: a -> List (List a) -> List (List a)
82 matrixShift = \zero m -> matrixMap (\i j x -> case j of
83 Z -> zero
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84 S j’ -> matrixGet m (S i) j’ zero id) m
85

86 sum :: List (List (List Energy)) -> List (List Energy)
87 sum = \ms -> foldr (\x y -> pointwise plusE x y)
88 (head ms) (tail ms)
89

90 product :: List (List (List Energy)) -> List (List Energy)
91 product = \ms -> foldr (\x y -> matrixTimes plusE timesE x y)
92 (head ms) (tail ms)
93

94 costM :: Energy -> List Base -> List (List Energy)
95 costM = \zero p ->
96 let addX = \m -> append m
97 (Cons (map (\x -> zero) (head m)) Nil)
98 dropY = \m -> map (\row -> Cons zero row) m
99 in

100 gap Z zero (dropY (addX
101 (for (zipNats p) (\zip1 -> case zip1 of
102 Pair i x -> for (zipNats p) (\zip2 -> case zip2 of
103 Pair j y -> case ltN i j of
104 False -> zero
105 True -> energyBase x y)))))
106

107 gap :: N -> a -> List (List a) -> List (List a)
108 gap = \delta zero m ->
109 for (zipNats m) (\zippedRow -> case zippedRow of
110 Pair i row -> for (zipNats row) (\zippedElement ->
111 case zippedElement of
112 Pair j x -> case leN (plusN i delta) j of
113 True -> x
114 False -> zero))
115

116 item :: a -> a -> List Base -> List (List a)
117 item = \zero one p ->
118 let p’ = Cons (head p) p
119 in
120 for (zipNats p’) (\zippedRow -> case zippedRow of
121 Pair i row -> for (zipNats p’) (\zippedElement ->
122 case zippedElement of
123 Pair j x -> case eqN (S i) j of
124 False -> zero
125 True -> one))
126

127 plusN :: N -> N -> N
128 plusN = \x y -> case x of
129 Z -> y
130 S x’ -> S (plusN x’ y)
131

132 leN :: N -> N -> Bool
133 leN = \x y -> case x of
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134 Z -> True
135 S x’ -> case y of
136 Z -> False
137 S y’ -> leN x’ y’
138

139 gtN :: N -> N -> Bool
140 gtN = \x y -> not (leN x y)
141

142 ltN :: N -> N -> Bool
143 ltN = \x y -> gtN y x
144

145 eqN = \x y -> case x of
146 Z -> case y of
147 Z -> True
148 S y’ -> False
149 S x’ -> case y of
150 Z -> False
151 S y’ -> eqN x’ y’
152

153 energyBase :: Base -> Base -> Energy
154 energyBase = \b1 b2 -> case b1 of
155 A -> case b2 of { U -> twoE ; _ -> MinusInfinity }
156 C -> case b2 of { G -> threeE; _ -> MinusInfinity }
157 G -> case b2 of { C -> threeE; U -> oneE; _ -> MinusInfinity }
158 U -> case b2 of { A -> twoE ; G -> oneE; _ -> MinusInfinity }
159

160 zeroE = Finite (nat 8 0)
161 oneE = Finite (nat 8 1)
162 twoE = Finite (nat 8 2)
163 threeE = Finite (nat 8 3)
164

165 eqEnergy :: Energy -> Energy -> Bool
166 eqEnergy = \a b -> case a of
167 MinusInfinity -> case b of
168 MinusInfinity -> True
169 Finite g -> False
170 Finite f -> case b of
171 MinusInfinity -> False
172 Finite g -> eqNat f g
173

174 geEnergy :: Energy -> Energy -> Bool
175 geEnergy = \a b -> case b of
176 MinusInfinity -> True
177 Finite b’ -> case a of
178 MinusInfinity -> False
179 Finite a’ -> geNat a’ b’
180

181 plusE :: Energy -> Energy -> Energy
182 plusE = \e f -> case e of
183 Finite x -> case f of



214 APPENDIX C. SUPPLEMENTAL MATERIAL

184 Finite y -> Finite (maxNat x y)
185 MinusInfinity -> e
186 MinusInfinity -> f
187

188 timesE :: Energy -> Energy -> Energy
189 timesE = \e f -> case e of
190 Finite x -> case f of
191 Finite y -> Finite (plusNat x y)
192 MinusInfinity -> f
193 MinusInfinity -> e
194

195 boundEnergy :: List Base -> List Paren -> Energy
196 boundEnergy = \p s -> parse Nil p s
197

198 parse :: List Base -> List Base -> List Paren -> Energy
199 parse = \stack p s -> case s of
200 Nil -> case stack of
201 Nil -> zeroE
202 Cons z zs -> MinusInfinity
203 Cons y ys -> case p of
204 Nil -> MinusInfinity
205 Cons x xs ->
206 let stack’ = case y of
207 Blank -> stack
208 Open -> Cons x stack
209 Close -> tail stack
210 here = case y of
211 Blank -> zeroE
212 Open -> zeroE
213 Close -> energyBase (head stack) x
214 in
215 timesE here (parse stack’ xs ys)
216

217 append :: List a -> List a -> List a
218 append = \xs ys -> foldr Cons ys xs
219

220 zipNats :: List a -> List (Pair N a)
221 zipNats = \xs ->
222 let f = \n xs -> case xs of
223 Nil -> Nil
224 Cons y ys -> Cons (Pair n y) (f (S n) ys)
225 in
226 f Z xs
227

228 zipWith :: (a -> b -> c) -> List a -> List b -> List c
229 zipWith = \f xs ys -> case xs of
230 Nil -> Nil
231 Cons u us -> case ys of
232 Nil -> Nil
233 Cons v vs -> Cons (f u v) (zipWith f us vs)
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234

235 for :: List a -> (a -> b) -> List b
236 for = \xs f -> map f xs
237

238 map :: (a -> b) -> List a -> List b
239 map = \f xs -> case xs of
240 Nil -> Nil
241 Cons y ys -> Cons (f y) (map f ys)
242

243 last :: List a -> a
244 last = \xs -> case xs of
245 Nil -> undefined
246 Cons y ys -> case ys of
247 Nil -> y
248 Cons z zs -> last ys
249

250 head :: List a -> a
251 head = \xs -> case xs of
252 Nil -> undefined
253 Cons y ys -> y
254

255 tail :: List a -> List a
256 tail = \xs -> case xs of
257 Nil -> Nil
258 Cons y ys -> ys
259

260 and :: List Bool -> Bool
261 and = \xs -> foldr and2 True xs
262

263 or :: List Bool -> Bool
264 or = \xs -> foldr or2 False xs
265

266 foldr :: (a -> b -> b) -> b -> List a -> b
267 foldr = \n c xs -> case xs of
268 Nil -> c
269 Cons y ys -> n y (foldr n c ys)
270

271 or2 :: Bool -> Bool -> Bool
272 or2 = \x y -> case x of
273 True -> True
274 False -> y
275

276 and2 :: Bool -> Bool -> Bool
277 and2 = \x y -> case x of
278 False -> False
279 True -> y
280

281 not :: Bool -> Bool
282 not = \x -> case x of
283 False -> True
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284 True -> False
285

286 id :: a -> a
287 id = \x -> x
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C.8 Exemplary Energy Matrix

To complement Example 7.38, we give the complete energy matrix.
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local abstraction, 90

lifting, 92

match
static semantics, 33
syntax, 28

Match, 33
matches, 36
MatchSyntax, 28
memoization, 108
merge, 64, 116

N, 169
N>i, 169
name, 26
Name, 26
natural numbers, 111
numeric, 55
numeric−, 56

ordered variable assignment, 183
OVA, 183

parameter domain, 21
partial function, 97
Pat, 32
PatSyntax, 28
pattern

static semantics, 32
syntax, 28

Pos, 174
Post, 174
position, 174
prefix, 53
prefix-free set, 54
Prog, 33
Prog1, 88
Prog2, 89
Prog3, 90
ProgA, 45
ProgP U , 34
ProgSyntax, 30
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clause, 179
conjunctive normal form, 179
equisatisfiability, 180
equivalency, 178
literal, 179
satisfiable, 178

propositional variable, 178

reason-unsat, 185
resolution, 184
RNA

primary structure, 134
secondary structure, 134
secondary structure design, 135
secondary structure prediction, 135

S, 54
SAT, 178
SAT solver, 179
SchemeSyntax, 27
semantic labelling, 129
signature, 172

Boolean, 177

term rewriting system, 175
labelled, 131
loop, 120
rewrite relation, 175
termination, 120

tseitin, 180
Tseitin’s transformation, 180
type

finite, 35
fully instantiated, 31
infinite, 35
static semantics, 31
syntax, 27

Type, 31
Type0, 31
type constructor, 26
type declaration

static semantics, 30
syntax, 29

type scheme

static semantics, 32
syntax, 27

type variable, 26
TypeCon, 26
TypeDecl, 30
TypeDeclSyntax, 29
TypeScheme, 32
TypeSyntax, 27
TypeVar, 26

undef-values, 101
undef-valuesExp, 99
undef-valuesType, 99
undef-valuesTypeScheme, 100
unit-propagation, 182
universe, 34
Universe, 34

V, 178
Var, 27
variable, 27

Z, 169



Bibliography

[1] Termination Problems Data Base 8.0.7. http://termcomp.uibk.ac.at/
status/downloads/tpdb-8.0.7_by_category.tgz, 2013. [accessed 06.
October 2016].

[2] Rosalia Aguirre-Hernandez. Computational RNA Secondary Structure De-
sign: Empirical Complexity and Improved Methods. PhD thesis, University
of British Columbia, 2007.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[4] Johan Ankner and Josef Svenningsson. An EDSL Approach to High Perfor-
mance Haskell Programming. In SIGPLAN Symposium on Haskell, 2013.

[5] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[6] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[7] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[8] Alexander Bau. SAT Compilation for Constraints over Finite Structured
Domains. In Cross-Fertilization Between CSP and SAT, 2014.

[9] Alexander Bau, Jörg Endrullis, and Johannes Waldmann. SAT Compi-
lation for Termination Proofs via Semantic Labelling. In Workshop on
Termination, 2013.

[10] Alexander Bau, René Thiemann, and Johannes Waldmann. SAT Compi-
lation for Termination Proofs via Semantic Labelling and Unlabelling. In
Workshop on Termination, 2014.

[11] Alexander Bau, Johannes Waldmann, and Sebastian Will. RNA Design
by Program Inversion via SAT Solving. In Workshop on Constraint-Based-
Methods for Bioinformatics, 2013.

221

http://termcomp.uibk.ac.at/status/downloads/tpdb-8.0.7_by_category.tgz
http://termcomp.uibk.ac.at/status/downloads/tpdb-8.0.7_by_category.tgz


222 BIBLIOGRAPHY

[12] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook
of Satisfiability. IOS Press, 2009.

[13] Piero A. Bonatti. Reasoning with Infinite Stable Models. Artificial Intelli-
gence, 2004.

[14] Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional Sat-
isfiability and Constraint Programming: A Comparative Survey. ACM
Computing Surveys, 2006.

[15] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer Set
Programming at a Glance. Communications of the ACM, 2011.

[16] Koen Claessen, Niklas Eén, Mary Sheeran, Niklas Sörensson, Alexey
Voronov, and Knut Akesson. SAT-Solving in Practice, with a Tutorial Ex-
ample from Supervisory Control. Discrete Event Dynamic Systems, 2009.

[17] Michael Codish, Yoav Fekete, Carsten Fuhs, Jürgen Giesl, and Johannes
Waldmann. Exotic Semi-Ring Constraints. In Workshop on Satisfiability
Modulo Theories, 2013.

[18] Michael Codish, Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann.
SAT Solving for Termination Proofs with Recursive Path Orders and De-
pendency Pairs. Journal of Automated Reasoning, 2012.

[19] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving Partial Or-
der Constraints for LPO Termination. Journal on Satisfiability, Boolean
Modeling and Computation, 2008.

[20] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In
Theory of Computing, 1971.

[21] Tom Crick, Martin Brain, Marina De Vos, and John P. Fitch. Generating
Optimal Code Using Answer Set Programming. In Logic Programming and
Nonmonotonic Reasoning, 2009.

[22] Luís Damas and Robin Milner. Principal Type-Schemes for Functional
Programs. In Principles of Programming Languages, 1982.

[23] Martin Davis, George Logemann, and Donald W. Loveland. A Machine
Program for Theorem-Proving. Communications of the ACM, 1962.

[24] Iavor S. Diatchki. Improving Haskell Types With SMT. In SIGPLAN
Symposium on Haskell, 2015.

[25] Niklas Eén and Niklas Sörensson. An Extensible SAT-Solver. In Theory
and Applications of Satisfiability Testing, 2003.

[26] Niklas Eén and Niklas Sörensson. Temporal Induction by Incremental SAT
Solving. Theoretical Computer Science, 2003.



BIBLIOGRAPHY 223

[27] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
Set Programming: A Primer. In Reasoning Web. Semantic Technologies
for Information Systems, 2009.

[28] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix Interpre-
tations for Proving Termination of Term Rewriting. Journal of Automated
Reasoning, 2008.

[29] Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination Analysis of
C Programs Using Compiler Intermediate Languages. In Rewriting Tech-
niques and Applications, 2011.

[30] International Organization for Standardization. Prolog (ISO/IEC 13211-
1:1995), 1995.

[31] Free Software Foundation. GNU General Public License, Version 3.
http://www.gnu.org/licenses/gpl.html, 2007.

[32] Anders Franzén. Efficient Solving of the Satisfiability Modulo Bit-Vectors
Problem and Some Extensions to SMT. PhD thesis, University of Trento,
2010.

[33] Carsten Fuhs. SAT Encodings: From Constraint-Based Termination Anal-
ysis to Circuit Synthesis. PhD thesis, RWTH Aachen University, 2012.

[34] Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Sven Thiele. On the Input Language of ASP Grounder Gringo. In Logic
Programming and Nonmonotonic Reasoning, 2009.

[35] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Logic Programming, 1988.

[36] Robert Giegerich. A Systematic Approach to Dynamic Programming in
Bioinformatics. Bioinformatics, 2000.

[37] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten
Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Proving Termination
of Programs Automatically with AProVE. In Automated Reasoning, 2014.

[38] Jürgen Giesl, Frédéric Mesnard, Albert Rubio, René Thiemann, and Jo-
hannes Waldmann. Termination Competition (termCOMP 2015). In Au-
tomated Deduction - CADE-25, 2015.

[39] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip
Wadler. Type Classes in Haskell. ACM Transactions on Programming
Languages and Systems, 1996.

[40] Marijn Heule, Matti Järvisalo, and Armin Biere. Clause Elimination Proce-
dures for CNF Formulas. In Logic for Programming, Artificial Intelligence,
and Reasoning, 2010.



224 BIBLIOGRAPHY

[41] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination Tool: Tech-
niques and Features. Information and Computation, 2007.

[42] Petra Hofstedt and Armin Wolf. Einführung in die Constraint-
Programmierung - Grundlagen, Methoden, Sprachen, Anwendungen. eXa-
men.press. Springer, 2007.

[43] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler. A
History of Haskell: Being Lazy with Class. In History of Programming
Languages, 2007.

[44] John Hughes. Why Functional Programming Matters. Computer Journal,
1989.

[45] Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive
Equations. In Functional Programming Languages and Computer Architec-
ture, 1985.

[46] Simon L. Peyton Jones. Composing Contracts: An Adventure in Financial
Engineering. In International Symposium of Formal Methods, 2001.

[47] Simon Peyton Jones. Haskell 98 Language and Libraries, The Revised
Report. Cambridge University Press, 2003.

[48] Dejan Jovanovic and Leonardo Mendonça de Moura. Cutting to the Chase -
Solving Linear Integer Arithmetic. Journal of Automated Reasoning, 2013.

[49] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP Look-Back Tech-
niques to Solve Real-World SAT Instances. In Artificial Intelligence and
Innovative Applications of Artificial Intelligence, 1997.

[50] Randy H. Katz. Contemporary Logic Design. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[51] Edward Kmett. Ersatz. https://github.com/ekmett/ersatz, 2010. [ac-
cessed 21. July 2015].

[52] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp.
Tyrolean Termination Tool 2. In Rewriting Techniques and Applications,
2009.

[53] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

[54] Frédéric Lafitte, Jorge Nakahara Jr., and Dirk Van Heule. Applications of
SAT Solvers in Cryptanalysis: Finding Weak Keys and Preimages. Journal
on Satisfiability, 2014.

[55] Hai Liu, Neal Glew, Leaf Petersen, and Todd A. Anderson. The Intel Labs
Haskell Research Compiler. In SIGPLAN Symposium on Haskell, 2013.

[56] Joao Marques-Silva. Practical Applications of Boolean Satisfiability. In
Discrete Event Systems, 2008.

https://github.com/ekmett/ersatz


BIBLIOGRAPHY 225

[57] Donald Michie. “Memo” Functions and Machine Learning. Nature, 1968.

[58] David Mitchell, Bart Selman, and Hector Levesque. Hard and Easy Distri-
butions of SAT Problems. In Artificial Intelligence, 1992.

[59] Neil Mitchell and Colin Runciman. Losing Functions without Gaining Data:
Another Look at Defunctionalisation. In SIGPLAN Symposium on Haskell,
2009.

[60] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. MiniZinc: Towards a Standard CP
Modelling Language. In Principles and Practice of Constraint Program-
ming, 2007.

[61] Antoni Niederliński. A Gentle Guide to Constraint Logic Programming via
ECLiPSe. 2014.

[62] Martin Odersky. The Scala Language Specification Version 2.9. www.
scala-lang.org/docu/files/ScalaReference.pdf, 2014. [accessed 31.
July 2016].

[63] Étienne Payet. Loop Detection in Term Rewriting Using the Eliminating
Unfoldings. Theoretical Computer Science, 2008.

[64] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[65] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
2006.

[66] Uwe Schöning. Logik für Informatiker. Spektrum Akademischer Verlag,
1995.

[67] Uwe Schöning and Jacobo Torán. Das Erfüllbarkeitsproblem SAT - Algo-
rithmen und Analysen. Lehmann, 2012.

[68] Tim Sheard and Simon L. Peyton Jones. Template Meta-Programming for
Haskell. SIGPLAN Notices, 2002.

[69] Michael J. Spivey. A Functional Theory of Exceptions. Science of Computer
Programming, 1990.

[70] Tommi Syrjänen. Lparse 1.0 User’s Manual. http://www.tcs.hut.fi/
Software/smodels/lparse.ps, 2000. [accessed 22. September 2016].

[71] Simon J. Thompson. Haskell - The Craft of Functional Programming, 3rd
Edition. Addison-Wesley, 2011.

[72] Yoshihito Toyama. Counterexamples to Termination for the Direct Sum of
Term Rewriting Systems. Information Processing Letters, 1987.

[73] Grigorii Samuilovich Tseitin. On the Complexity of Derivation in Proposi-
tional Calculus. In Automation of Reasoning. 1983.

www.scala-lang.org/docu/files/ScalaReference.pdf
www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.tcs.hut.fi/Software/smodels/lparse.ps
http://www.tcs.hut.fi/Software/smodels/lparse.ps


226 BIBLIOGRAPHY

[74] Johannes Waldmann. Matchbox: A Tool for Match-Bounded String
Rewriting. In Rewriting Techniques and Applications, 2004.

[75] Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. Nagoya Ter-
mination Tool. In Rewriting and Typed Lambda Calculi, 2014.

[76] Harald Zankl, Christian Sternagel, Dieter Hofbauer, and Aart Middeldorp.
Finding and Certifying Loops. In Current Trends in Theory and Practice
of Computer Science, 2010.

[77] Hans Zantema. Termination of Term Rewriting by Semantic Labelling.
Fundamenta Informaticae, 1995.


	Introduction
	Background
	Constraint Programming
	The Haskell Language

	Specification of CO4
	Conceptual Overview
	Language of Concrete Programs
	Syntax
	Static Semantics
	Dynamic Semantics

	Language of Abstract Programs
	Syntax
	Static Semantics
	Dynamic Semantics

	Correctness Criterion for Concrete and Abstract Programs

	Compilation of Concrete Programs
	Data Transformation
	Encoding and Decoding of Constructor Indices
	Encoding and Decoding of Abstract Values
	Mimic Constructor Calls in Abstract Programs
	Complete Abstract Values
	Incomplete Abstract Values
	Merging Abstract Values

	Program Transformation
	Correctness of Compilation

	Solving Constraints with CO4
	Concerning the Completeness of CO4
	Usage of CO4
	Implementation Details
	Alternative Encodings for Abstract Values


	Compilation of Advanced Language Features
	Extended Concrete Programs
	Local Abstractions
	Higher-Order Functions
	Partial Functions

	Optimization of Abstract Programs
	Profiling in CO4
	Memoization of Function Applications
	Built-In Natural Numbers
	Further Optimizations

	Applications
	Termination Analysis of Term Rewriting Systems
	Looping Derivations in Term Rewriting Systems
	Lexicographic Path Orders
	Semantic Labelling

	RNA Design

	Related Work
	Surveyed Language Features
	Surveyed Constraint Solvers
	Ersatz
	MiniZinc
	Prolog
	Answer Set Programming


	Directions for Future Work
	Incremental Solving
	Static Complexity Analysis
	Compilation of More Advanced Language Features
	Additional Solver Backends

	Conclusion
	Notations
	Basic Notations
	Terms and Algebras
	Term Rewriting

	Propositional Logic
	SAT solver
	Preprocessing


	Supplemental Material
	Exemplary Abstract Program
	Explicit Binary Encoding of Natural Numbers
	Specification of Looping Derivations
	Specification of LPO-inducing Precedences
	Profiling Lexicographic Path Orders
	Specification of LPO-inducing Precedences with Semantic Labelling
	Specification of the RNA Design Problem
	Exemplary Energy Matrix


