Dissertation

Service-oriented Geoprocessing in
Spatial Data Infrastructures

by
Dipl.-Geogr. Matthias Miiller

a dissertation submitted for the degree
Doctor of Natural Sciences

Principal Supervisor: Prof. Dr. rer. nat. Lars Bernard
Associate Supervisors: Prof. Dr. rer. nat. Andreas Wytzisk
Prof. Dipl.-Phys. Dr.-Ing. habil. Dirk Burghardt

Faculty of Environmental Sciences
Technische Universitiat Dresden
Germany

2016

Declaration of Conformity

The conformity of this copy with the original dissertation on the subject
Service-oriented Geoprocessing in Spatial Data Infrastructures

is hereby confirmed.

Dresden, 25 April 2016.

Matthias Miiller: Service-oriented Geoprocessing in Spatial Data Infrastructures

Supervisors:

Prof. Dr. rer. nat. Lars Bernard
Prof. Dr. rer. nat. Andreas Wytzisk
Prof. Dipl.-Phys. Dr.-Ing. habil. Dirk Burghardt

Date of defense: 11 March 2016

Faculty of Environmental Sciences, Technische Universitat Dresden, Germany

Preface

This work is a thesis by publication. The contributing journal articles, short papers,
and manuscripts are listed below.

Journal publications (copies included)

Miiller, Matthias; Bernard, Lars; Brauner, Johannes: Moving Code in Spatial
Data Infrastructures — Web Service Based Deployment of Geoprocessing Algorithms.
In: Transactions in GIS, 14(S1), 2010, pp. 101-118.

Miiller, Matthias; Bernard, Lars; Kadner, Daniel: Moving code — Sharing geo-
processing logic on the Web. In: ISPRS Journal of Photogrammetry and Remote
Sensing, 83, 2013, pp. 193-203.

Miiller, Matthias: Hierarchical Profiling of Geoprocessing Services. In: Computers
and Geosciences, 82, 2015, pp. 68-77.

Official standard (summary included)

Miiller, Matthias (Ed.), Pross, Benjamin (Co-Ed.): OGC WPS 2.0 Interface Stan-
dard. Published by the Open Geospatial Consortium, 2015, OGC document num-
ber 14-065.

Related short papers (not included)

Kadner, Daniel; Miiller, Matthias; Brauner, Johannes; Bernard, Lars: Konzeption
eines Marktplatzes fiir den Austausch von Geoprozessierungsimplementierungen. In:
gis.SCIENCE, 25(3), 2012, pp. 118-124.

Miiller, Matthias; Wiemann, Stefan; Grafe, Bernd: A framework for building
multi-representation layers from OpenStreetMap data. Proceedings of the 15th ICA
Workshop on Generalisation and Multiple Representation, 2012, Istanbul, Turkey.

Miiller, Matthias: Hierarchical process profiles for interoperable geoprocessing
functions. Vandenbroucke, D.; Bucher, B.; Crompvoets, J. (Eds.), Proceedings of the
16th AGILE Conference on Geographic Information Science, 2013, Leuven, Belgium.

Henzen, Christin; Brauner, Johannes; Miiller, Matthias; Henzen, Daniel; Bernard,
Lars: Geoprocessing Appstore. In: Bagao, F.; Santos, M.Y.; Painho, M. (Eds.),
Proceedings of the 18th AGILE Conference on Geographic Information Science,2015,
Lisbon, Portugal.

Contents

1. Introduction 13
1.1. Terminology 14
1.2. Problem Statement, 18
1.3. Service-oriented Geoprocessing 24
1.4. Research Challenges and Contributions 27

2. Moving Code in Spatial Data Infrastructures — Web Service Based
Deployment of Geoprocessing Algorithms 31

3. Moving Code — Sharing Geoprocessing Logic on the Web 51

4. Hierarchical Profiling of Geoprocessing Services 65

5. The WPS 2.0 Interface Standard 77
5.1. Specification Overview 78
5.2. WPS Service Modelo 79
5.3. WPS Process Model and Interfaces 80
5.4. Process Descriptions and Profiles 83

6. Discussion of Results 85
6.1. Responses to the Research Challenges 85
6.2. Conclusions e 91
6.3. Outlook 95

7. Summary 99

A. Annex 101
A.1. Comparison of Interfaces for Buffer Functions 101
A.2. Process Description Examples for WPS. 102
A.3. SensorML Process Interfaces 107

Bibliography 115

Contents

List of Figures

1.1.

1.2
1.3.

5.1.
5.2.
0.3.
5.4.
2.5.
5.6.
2.7.

6.1.
6.2.

Al
A2

An example for data processing in a globally distributed resource net-

WOTK . . . 20
Publish-find-bind with geoprocessing Web services 24
Code on Demand — Publish-find-bind with portable software components 26
Structure of the WPS 2.0 Implementation Specification 78
Artefacts of the WPS service model 80
WPS abstract process model 80
Exemplary process interface for a Reclassify function 81
WPS process model information elements 82
Inheritance hierarchy for multi-level process profiles 83
Generic process information elements 84
Web feeds for component sharing 93
Mutual dependencies between workflow descriptions, lineage records,

and composite geoprocessing functions L. 96
Elements of the SensorML Process specification 108
SensorML Process types overview 110

List of Tables

1.1.

Mobile code paradigms 21

Contents

Listings

Al
A2,

A3.

Generic Profile for a Precision Geodesic Distance Buffer function . . 102
Implementation Profile for a Precision Geodesic Distance Buffer for
GML . . . 103
Process implementation that realises a Precision Geodesic Distance
Buffer for GML and GeoJson 105

Glossary

NET
API
BMVJ

COM/COM+

CORBA
DKRZ
EC
ECMA

EJB
ESRI
FME
GeoJSON
GEOSS
GIS
HTTP
IDL

IETF
INSPIRE
ISO
JAVA
JSON
MathML
Mime type

O&M
0OCCI
0GC
OSGi
OMG
OWS
REST

SDI
SensorML
SOA

A software framework

Application programming interface

Bundesministerium der Justiz und fiir Verbraucherschutz
Component Object Model / Component Services

Common Object Request Broker Architecture

Deutsches Klimarechenzentrum

European Commission

European Computer Manufacturers Association; an international
standards organisation

Enterprise JAVA Beans

Environmental Systems Research Institute

Feature Manipilation Engine; a software product by Safe Software
A data format for simple geographical features, based on JSON
Global Earth Observation System of Systems

Geographic Information System

Hypertext Transfer Protocol

Interface Description Language

Internet Engineering Task Force

Infrastructure for Spatial Information in the European Community
International Organization for Standardization

A programming language

JavaScript Object Notation

Mathematical Markup Language

Multipurpose Internet Mail Extensions type; a widely used internet
media type

Observations and Measurements

Open Cloud Computing Interface

Open Geospatial Consortium

OSGi Alliance (formerly the Open Services Gateway initiative)
Object Management Group

OGC Web Service Common; a standard

Representational State Transfer; an architecture for distributed
computer systems

Spatial Data Infrastructure

Sensor Markup Language

Service-oriented Architecture

11

Contents

SOAP
SOS
SWE
SWG
UML
URI
URL
USGS
W3C
WCS
WEFS
WPS
WSDL
WS*

XML

12

Simple Object Access Protocol
Sensor Observation Service

Sensor Web Enablement
Standards Working Group

Unified Modeling Language
Uniform Resource Identifier
Uniform Resource Locator

United States Geological Survey
World Wide Web Consortium
Web Coverage Service

Web Feature Service

Web Processing Service

Web Service Description Language
A set of specifications that are used in conjunction with WSDL and
SOAP

eXtensible Markup Language

1. Introduction

Geoprocessing functions are vital components in Geographic Information Systems
(GIS; GooDpCHILD 2002; WORBOYS AND DUCKHAM 2004). Examples range from
simple geometric operations, classifications or schema transformations to more de-
manding operations such as interpolation, watershed computation, generalisation or
network analysis. They are either used in a stand-alone fashion for simple anal-
yses or as building blocks for larger workflows (DESMITH et al. 2007; LONGLEY
et al. 2011). Traditionally, geoprocessing functions were delivered by Desktop GIS
software in so-called tool bozes or as an instruction set that could be used for high-
level programming (ALBRECHT 1996). Although a basic set of similar geoprocessing
functions is provided by almost any GIS, there are significant differences in the tool
boxes’ contents and it is hardly surprising that GIS professionals often use multiple
products to accomplish a particular task or re-implement foreign tools in their own
software system.

With the transition from monolithic GIS to distributed, network-based systems
during the last ten to fifteen years, Spatial Data Infrastructures (SDI) have spurred
the idea of geoprocessing Web services that would no longer require a particular
GIS installation but could rather be invoked over a network (MINETER et al. 2003;
NEBERT 2004; FRIIS-CHRISTENSEN et al. 2007). The reuse of such well-defined and
well-tested third-party services provides opportunities to increase productivity as
well as credibility and confidence in the correctness of the produced results (DAvis
AND ANDERSON 2004; MARSHALL et al. 2010). Provided that interoperability issues
can be overcome, geoprocessing Web services may be invoked by arbitrary software
systems and clients. Unfortunately, geoprocessing Web services have not yet deliv-
ered this vision. In fact, there are technological, organisational and security related
obstacles, which will be discussed in this thesis, that impede or prohibit the use of
geoprocessing Web services in many applications.

Geoprocessing Web services, however, have revitalised the debate on distributed
and service-oriented geoprocessing in general and revealed several interoperability
issues with current GIS. By definition, a service is a

“...mechanism to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is exercised consis-
tent with constraints and policies as specified by the service description”

(W3C 2006, 12).

For GIS and geoprocessing, these “capabilities” may refer to any geoprocessing
function that helps to compute new results from existing data, such as geographic

13

1. Introduction

objects, networks, or remote sensing imagery. GIS processionals and analysts make
use of such services in their everyday work but are limited by the available function-
ality of their own software systems. By making an analogy to SDIs, which to date
attempt to leverage ubiquitous access to spatial data, this thesis investigates a broad
range of provisioning approaches for geoprocessing functions. The following sections
review the particular drawbacks of Web services for geoprocessing and consider a
broader range of provisioning approaches for geoprocessing services. Subsequently,
two major research challenges are identified which are addressed by the publications
that contribute to this thesis (chapters 2-5). The findings from theses individual con-
tributions are recapitulated in chapter 6 and reviewed in the context of the stated
research challenges.

1.1. Terminology

In literature, the terms GeoComputation and geoprocessing are often used inter-
changeably. In SDI-related publications there seems to be a bias towards using geo-
processing while environmental modelling papers seem to prefer GeoComputation.'

The body of source material on geoprocessing is diverse and there is no single
common definition. Without doubt, the term’s connotation has been influenced
by the widespread use of ESRI’s ArcGIS software which provides a geoprocessing
toolbox to process and analyse geographic data (ESRI 2015). WADE AND SOMMER
(2006, p. 89) define geoprocessing as the manipulation of spatial data and speak of
geoprocessing operations that transform input data sets into output datasets.

In ISO (2006) the term geoprocessing is used as an umbrella term for the integrated
use of geographic data and covers both data access and processing. It is stated that

“...geodata users can query remote databases and control remote pro-
cessing resources, and also take advantage of other distributed computing
technologies, such as software delivered to the user’s local environment
from a remote environment for temporary use” (ISO 2006, 4).

Geographical data processing in terms of mathematical calculation or data trans-
formation is performed by so-called geographic processing services which are organ-
ised into the four categories spatial, thematic, temporal, and metadata processing.
Transformation services for spatial data are also defined by the directive on Infras-
tructure for Spatial Information in the European Community (INSPIRE; EC 2007,
2010a). These services are either used to convert geospatial data between different
coordinate reference systems (EC 2010b) or perform transformations between data
schemas (HOWARD et al. 2010).

Based on the definition of geoprocessing given by WADE AND SOMMER (2006),
BRAUNER (2015) developed his notion of a geooperator which is

!Statement based on the results of Google’s search engine, so there could be a chance of bias.

14

1.1. Terminology

“...a distinct, well defined and usually implemented piece of software
serving a particular purpose for geospatial analysis or transformation.

If a geooperator is well-defined in the literature but not implemented in
any GIS, it is defined as an abstract geooperator. Geooperators have an
arbitrary number of input and output operands, most of them spatial.
Additional non-spatial parameters can be defined to control the operator,
e.g. a buffer distance” (BRAUNER 2015, p. 20).

The geooperator provides a descriptive framework that formalises empirical knowl-
edge about existing geoprocessing operations (WADE AND SOMMER 2006), i.e. soft-
ware artefacts. An extensible set of perspectives permits the classification of a geo-
operator according to properties such as input and output data types, typical appli-
cations, or their availability in legacy GIS software.

The term GeoComputation, which is closely related to geoprocessing, appeared in
the second half of the 1990s. Its definition is still a subject of discussion and definition
struggles have a long history (COUCLELIS 1998; LONGLEY 1998; GAHEGAN 1999;
OPENSHAW 2000; CHENG et al. 2012; GAHEGAN 2015). Its scope covers quantitative
geographical analysis and modelling and is thus a bit broader than geoprocessing.
One of the most pressing challenges in GeoComputation, which is also relevant for
this thesis, is the provisioning of reliable, well-performing tools and operators for
data analysis. In particular, there is

“...a gap in knowledge between the abstract functioning of these tools
(which is usually well understood in the computer science community)
and their successful deployment to the complex applications and datasets
that are commonplace in geography. It is precisely this gap in knowledge
that GeoComputation aims to address” (GAHEGAN 2015).

This thesis and the related publications use the term geoprocessing which means
the processing of spatial or geo-referenced data that relate to conceptual data models
and encoding formats from geoscience and neighbouring disciplines (cf. chapter 4).

The contributions included with this thesis represent the current state of related
research, academic discussion and insight at the time of writing. The evolution of
ideas has inevitably led to some naming inconsistencies during the discourse. The
following terms and definitions are used in this thesis and in the latest publications.

Geoprocessing function. A function that serves a particular purpose in geograph-
ical analysis or transformation of geographical data which derives a set of output
data from a given set of input data. The inputs and outputs usually relate to data
models and schemas in geospatial applications and neighbouring disciplines.

This definition is largely consistent with the concept of the geooperator (BRAUNER
2015) or geoprocessing operation (WADE AND SOMMER 2006). Furthermore, it treats
such operations very much like functions in mathematics, i.e. relations that provide

15

1. Introduction

a unique mapping p : X — Y from the set of inputs (domain X) to the set of outputs
(co-domain Y).

With regard to modelling and simulation, a geoprocessing function is also consis-
tent with the definition of a function specified system (FSS; ZEIGLER et al. 2000,
p. 116) that is used to create static, stateless and thus time-independent system
models. The previously mentioned bulding block models (cf. DESMITH et al. 2007;
LONGLEY et al. 2011) usually fall into the category of FSS since they are composed
from chained geoprocessing functions.

Software component. The Unified Modelling Language (UML) defines a compo-
nent as a

“...modular unit with well-defined interfaces that is replaceable within
its environment”

where well-defined means that the interface is completely described in syntax and
semantics. UML further distinguishes

“...logical components (e.g. business components, process components)
and physical components (e.g. EJB components, CORBA components,
COM+ and .NET components, WSDL components, etc.), along with
the artifacts that implement them and the nodes on which they are de-
ployed and executed. It is anticipated that profiles based around com-
ponents will be developed for specific component technologies and asso-
ciated hardware and software environments” (OMG 2005, p. 139).

SZYPERSKI AND PFISTER (1997) emphasise on the composition aspect of components
and envision the emergence of component markets where producers and consumers of
software components come together. With this background they define a component
as a

“...unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties” (SZYPER-
SKI AND PFISTER 1997, p. 130).

Depending on their purpose, components may not only incorporate computing in-
structions (or code) but also contain static data required for their operation.

This thesis uses the term software component to refer to physical components
as defined by OMG (2005) which have explicit context dependencies on particular
software and hardware environments.

Computing instructions or Code. A series of commands or expressions that con-
stitute an implementation of a processing function. Computing instructions may be
codified in machine code, byte code, a scripting language, or in a domain specific or
algebraic language (CRNKOVIC et al. 2011).

16

1.1. Terminology

Moving Code paradigm. This paradigm has been discussed as an alternative to
classical client—server processing where large amounts of data are transferred between
geoprocessing Web services (BERNARD et al. 2005; FRIIS-CHRISTENSEN et al. 2007;
BRAUNER et al. 2009). It represents a subset of the code mobility paradigms defined
by CARZANIGA et al. (1997, cf. section 1.2) which involve the migration of computing
code between different locations in a computer network.

This thesis defines the moving-code paradigm as an approach where computing
istructions or code, that represent a particular geoprocessing function, are moved
between different network locations in a computer network. The moving code ap-
proach serves two purposes:

e [t strives to perform geoprocessing tasks more efficiently by moving the com-
puting instructions closer to the other participating resources (data, computing
resources) involved in these tasks.

e [t enables and facilitates the sharing of software components that represent
geoprocessing services which are intended to be shared and reused within SDI.

The development of new approaches for sharing and exchanging software imple-
mentations of geoprocessing functions is a central topic in this thesis. In the older
publications, the terms code package (MULLER et al. 2010) and moving-code package
(MULLER et al. 2013) were used to express a portable and well-defined implementa-
tion of a particular geoprocessing function. The more generic term [portable/ software
component is used in later publications.

Geoprocessing service. An implementation of a well-specified, interoperable, and
reusable geoprocessing function that receives and generates data in a common en-
coding format and can be readily embedded into a workflow (cf. chapter 4). A
geoprocessing service is not necessarily a Web service (although it may be typically
published as a Web service) but refers to any implementation that complies with
the basic principles of service-oriented design (ERL 2007). In particular, a geopro-
cessing service has a well-defined interface which is sufficient for its use. Knowledge
about implementation details is not required. Compared to a [physical| software
component a service definition also abstracts from particular runtime environments
or implementation technologies and uses a generalised interface description language
for cross-platform use.

Geoprocessing Web service. A technology that provides client—server interaction
for performing geoprocessing tasks on the internet (cf. chapter 4). A geoprocessing
Web service is defined independently from a geoprocessing service. Current standards
rather focus on Web based protocols for client—server interaction rather than the
provision and use of well-defined implementations.

Web Processing Service (WPS). An implementation standard for geoprocessing
Web services, published by the Open Geospatial Consortium (OGC; OGC 2007c,

17

1. Introduction

2015a). The WPS standard provides an interface definition language for processes,
whose definition is quite consistent with the notion of geoprocessing functions as
provided in this thesis, and a Web service protocol for client—server geoprocessing.

1.2. Problem Statement

In an ideal networked SDI, a user has ubiquitous access to the available data and
to all available geoprocessing functions. The achievement of both goals still faces
various research challenges (BERNARD et al. 2013), but technologies and solutions
for data access surely have an edge over technologies that enable ubiquitous access to
geoprocessing functions. Evidence is found in various operational infrastructures?,
international standards®, as well as legal regulations which largely promote open
access to data. Various bodies attempt to standardise data exchange formats and
establish interoperable data access services. For instance, national and European
legislation require standards-based access to environmental data (EC 2007; BMVJ
2009).

Some data access services can provide primitive ad-hoc processing capabilities
on tightly coupled data. In the geospatial domain, Web Coverage Services (WCS,
OGC 2012) with extensions for sub-setting, processing etc. (OGC 2015c) or Web
Feature Services (WFS, OGC 2014d) with Filter Encoding support (OGC 2014a) for
geospatial queries are typical examples. Advanced analysis functions are sometimes
provided by Geoportals and Geospatial Web applications. These are usually canned
tools and services that operate on a pre-defined database and provide end users with
interactive analysis functions (HOFER 2015).

Apart from these tightly coupled solutions, the capabilities to share, exchange
and reuse implementations of geoprocessing functions are rather underdeveloped in
current SDI. Web services which offer geoprocessing functions have been around for a
while but they are largely used in research or within institutions and have not gained
much visibility compared to publicly accessible geospatial data and mapping services
(LoPEZ-PELLICER et al. 2012). There are several arguments that could explain this
fact:

1. There are technological boundaries that constrain or prohibit the application
of client—server paradigms for large amounts of data. Network bandwidth is
often limited and reliable connectivity in larger computing workflows may be
hard to ensure. If reliability and fail-safe operation is a decisive criterion, Web
services might better be avoided. If performance matters, the overhead of the
Web service invocation due to the required data encoding and decoding as well
as transfer over the network can be a limiting factor.

2E.g. the Global Earth Observation System of Systems, GEOSS, or the Earth observation pro-
gramme Copernicus of the European Union

3E.g. provided by the International Standardisation Organisation (ISO; http://www.isotc211.org/,
accessed 2015-06-16) or the Open Geospatial Consortium (OGC; http://www.opengeospatial.
org/, accessed 2015-06-16)

18

http://www.opengeospatial.org/
http://www.opengeospatial.org/

1.2. Problem Statement

2. If confidential or sensitive data is to be processed, its transfer over a network
might be problematic. Under such circumstances, the use of Web services for
data processing is inappropriate and alternative means must be found to deliver
the required processing functions to a closed environment.

3. There is a general lack of infrastructure components (catalogues, for instance)
that provide means to discover, search, and retrieve geoprocessing functions (cf.
BRAUNER 2015). This decreases the visibility of existing offerings. Tedious
Web based research with generic search engines is often the only option for
potential users to discover reusable implementations and services.

4. The operation of publicly available processing services is usually much more
costly than the provision of data and mapping services. For the latter category,
effective caching and pre-processing mechanisms exist which decrease the costs
of operation. For data processing Web services, caching and pre-processing is
not applicable and caching rather ineffective. The majority of use cases de-
mands single-time processing of new data where caching of inputs and outputs
is of little help.*

5. Currently, there are hardly any legal obligations for providing geoprocessing
Web services. Access to open data is increasingly mandated or at least encour-
aged by national and super-national regulations but access to data processing
services is usually not demanded.

Considering the general benefits of shared access to geoprocessing functions, al-
ternative approaches for distributed geoprocessing are required that avoid the dis-
advantages of geoprocessing Web services but yet facilitate access to geoprocessing
functions in a distributed infrastructure. The identification of other suitable provi-
sioning approaches and their assessment is a goal of this thesis.

As opposed to traditional workstation environments where hardware resources,
data, and processing functions were available in the same place, these different re-
sources are usually spread across many nodes in a distributed infrastructure. In an
extreme case, a particular analysis workflow might require (cf. Figure 1.1):

e Public and private data from different physical locations,
e Computing code that is only available from a foreign repository, and
e Execution on processing hardware of a public hosting company.

Code mobility is a concept that overcomes the limitations of isolated software
systems and has been studied in detail by CARZANIGA et al. (1997) and CARZANIGA
et al. (2007). Both publications define code mobility as

4This statement applies to loosely coupled, stand-alone data processing services which are pre-
dominantly discussed in this thesis. Some data access services or Web portals provide simple
processing capabilities that operate on the provided data. In this case, optimised data structures
will, of course, reduce the ad-hoc workload.

19

1. Introduction

=S

2 Analyst's
“work desk *
L ks i

Data
provider

/f‘

Computing
Center

Data
provider

Provider of
functionality

Figure 1.1.: An example for data processing in a globally distributed resource
network

“...the capability to reconfigure dynamically, at runtime, the binding
between the software components of the application and their physical
location within a computer network” (CARZANIGA et al. 1997, p. 22).

The authors define four mobile code paradigms which are summarised in Table 1.1.

Code mobility strives to perform computing tasks more efficiently by moving the
executable content (or code) closer to the other resources involved in that task.
Resources involved in the efficiency consideration are the locations of input data,
the target locations for the computing results, and the location of computing power
(DocAN et al. 2011). For any of these paradigms there are examples in the context
of SDI which shall be briefly discussed.

Client—Server. Less data-intensive computing may be accomplished by invoking
common Web services that provide access to data and functionality. ESRI’'s ArcGIS
online platform (and ArcGIS Server instances) provides a so-called geometry service.”
This service contains a growing set of geometry operations that are frequently used
in Web based mash-ups for proximity analyses or the creation of heat maps. The
Web application sends its data to the desired geoprocessing service by using standard
network protocols and receives the result in a well-known encoding, ready for display.
The public use of these services is currently free up to a certain amount of requests.
It is primarily intended for occasional computations on negligible data volumes.

5h‘t:tp ://wuw.arcgis.com/home/item.html?id=2e18b487043641538£02028cc2495c0e, accessed
2015-06-16

20

http://www.arcgis.com/home/item.html?id=2e18b487043641538f02028cc2495c0e

1.2. Problem Statement

Table 1.1.: Mobile code paradigms according to CARZANIGA et al. (1997)

Paradigm Description

Client— The client has neither the resources nor the know-how to perform a

Server particular computing task (thin client). It invokes a remote service
that provides the input data, functionality and hardware resources.
This service performs the computation on the client’s behalf and
delivers the result.

Remote The client owns the functionality /know-how to perform a particular

Evaluation computing task but lacks the required resources (input data and
hardware) for execution. It transfers the required functionality to a
remote service that provides access to the missing resources. The
remote service executes the functionality on the client’s behalf and
delivers the result.

Code on The client owns the resources (input data and hardware) to perform

Demand a particular computing task but lacks the proper know-how. It
requests a copy of the missing functionality from a remote service.
The client applies the functionality in its private environment and
stores the result.

Mobile The client owns functionality and input data but lacks the hardware

Agent resources to perform a particular computing task. It replicates the
required functionality and input data in a remote location that
provides the missing hardware resources. After the functionality is
applied to the data in the remote infrastructure, the results may be
migrated back to the client’s private environment.

Remote Evaluation. The preparation of code and software for remote evaluation
of computing-intensive tasks has been practised for a long time in the geospatial sci-
ences. The task was usually prepared in a local environment with limited resources,
where researchers have gathered the required data and code. Once completed, this
work was manually transferred to a more capable workstation computer or a clus-
ter which would actually run the task. Portable code that can be run on a foreign
machine is an essential prerequisite here.

Another case for remote evaluation can be made in the context of data protection.
Private or personal data stored in research data centres needs to be processed in a
tightly secured or even isolated network with restricted or no connection to public
external networks. Researchers who need to access the data must use dedicated
workstations provided by the research data centres for filtering and processing the
protected data. There is no alternative to moving the processing instructions to a
particular workstation in that secured infrastructure and perform all computations

21

1. Introduction

intra muros. After a final check by privacy experts, the (anonymised) result data
may be cleared for external use and publication.

Processing big volumes or massive amounts of data is another class of use cases
where remote evaluation is beneficial. The Copernicus platform and infrastructure
is expected to host and generate remote sensing data from European space missions
at an unprecedented scale (SOILLE AND MARCHETTI 2014). The new generation of
instruments provide an extended swath, increased spectral and radiometric, and offer
a shorter revisit time (VANHELLEMONT AND RUDDICK 2014). Thus the data volume
of individual scenes easily exceeds the gigabyte threshold, amounting, for instance,
to 2.5 terabytes per day from a single Sentinel 1 satellite (SOILLE AND MARCHETTI
2014). Delivering the data to an analyst’s workstation or invoking the data from a
remote Web service is still an option but it has three disadvantages:

1. The data download is time consuming and uses a lot of bandwidth at both
client and server side,

2. The client needs to provide significant storage to store the input data tem-
porarily, and

3. More capable hardware is required to process the huge satellite scenes which
may overstrain the client’s resources.

Therefore, the European Space Agency evaluated the potential of hosted comput-
ing. This feature of the Copernicus infrastructure provides storage and computing
resources to the users of the data and they may deploy their own algorithms and soft-
ware code in so-called sandboxes (ALMEIDA et al. 2014). Instead of moving around
data, code is moved to the data centre’s infrastructure and the computation is done
close to the data.

A more generic case for this paradigm is made by NIST (2014, p. 6) which speci-
fies a reference architecture for Big Data interoperability. The current draft foresees
generic processing services which are operated by application providers. For a par-
ticular task, these services receive analytic code from users which is then deployed
and executed in a scalable computing environment. In this setting the use of net-
work bandwidth is reduced to the transmission of analytic code and result data. A
bandwidth-intensive transport of input data for the purpose of a single computation
is avoided as far as possible.

Code on Demand. Despite the centralisation of computing power in data centres
or computing clusters, GIS workstations still play an important role and are used
by many specialists in their daily work. In many scenarios it provides the best
balance between flexibility and computing speed. The toolboxes of desktop GIS
contain implementations of many pre-defined geoprocessing functions. In the past,
toolboxes used to provide a fixed set of tools which was only updated during major
software releases. Meanwhile, some software vendors have started to decouple the
toolboxes’ contents from product cycles and provide on-demand toolbox updates.

22

1.2. Problem Statement

Safe Software’s Feature Manipulation Engine (FME) operates the FME store, a
publishing platform for new or very special processing tools (called transformers).
Users of the FME workbench may use this feature to query new functionality on
demand or periodically update their local installation with new tools from a Web
based distribution platform.

The ever evolving set of computing functions developed for the geospatial sciences
can hardly be put into a conclusive set of operations. This functionality is usually
developed across multiple sub-disciplines in environmental and Geoinformation sci-
ences or neighbouring disciplines. Natives from these disciplines are natural experts
in functionality and continue to develop and publish new algorithms and compli-
ant software implementations. Code on demand helps to provide interchangeable
self-contained software components which are produced, maintained, and updated
by domain experts and can be delivered to third-party users (GRANELL et al. 2010,
2014). An early example of a code on demand platform was ESRI’s ArcGIS code
gallery for the model builder where users could publish new useful ArcGIS tools.
Once published, these contributions could be discovered in the portal and down-
loaded by end users for deployment in their local ArcGIS environment.

Code on demand approaches have also been discussed in conjunction with repro-
ducible research. For instance, HILL et al. (2001) report on the design of a code
sharing standard that allows for achieving computational models in digital libraries.
The provision of archived and reviewed computing code may not just increase reuse
but also enhance reproducibility of scientific activity in the context of eScience (GRAY
2009).

Mobile Agent. One of the core settings for the mobile agent paradigm is cloud com-
puting which is increasingly applied in the geospatial sciences. Special consideration
to cloud-enabled processing was given by so-called geospatial cyberinfrastructures
(PIERCE et al. 2010; YANG et al. 2010). The users of such computing environments
have access to a potentially unbounded pool of hardware resources. Data and code
are shared among computing nodes to solve CPU and memory-intensive tasks. Code
mobility is an enabler in this scenario since it allows the dynamic deployment of the
required software components on any node in the cloud infrastructure.

Transactional Web Processing Services (WPS-T) which have been discussed by
SCHAEFFER (2008) are another approach to an implementation of the mobile agent
paradigm. In contrast to the regular client-server interaction with a WPS, where
the client consumes the static offerings of the remote service, WPS-T allows pushing
own code to a WPS server prior to execution. Since the the overall scenario includes
code provision, deployment and execution it qualifies qualifies as mobile agent, while
individual steps are a combination of remote evaluation (the code is sent for inter-
pretation to a remote server) and client-server paradigms (the client invokes the
submitted functionality by calling the updated remote server).

23

1. Introduction

1.3. Service-oriented Geoprocessing

Web services for geoprocessing have been proposed to counter the poor scalability
of monolithic GIS software (FRIIS-CHRISTENSEN et al. 2007; KIEHLE et al. 2007).
The use of geoprocessing Web services follows the publish-find-bind paradigm (cf.
Figure 1.2).

- Functionality
- Service binding

- Service endpoint
Catalogue

&bhsh

n %
Client GP Web
service
bmd

Service Service
consumer provider

find

Figure 1.2.: Publish-find-bind with geoprocessing Web services

This paradigm defines the basic roles and interactions between organisations that
participate in a Service-oriented architecture (SOA, e.g. ALONSO et al. 2004). Service
providers supply functionality and service consumers use it. Catalogue operators run
service catalogues or registries where service providers publish their service offerings
and which are queried by service consumers to find a service that supplies the desired
functionality. This paradigm usually assumes that the same (or similar) functionality
is offered by multiple service providers so that service consumer may pick one of
those services at random or select one by non-functional criteria such as pricing,
availability, or terms of use. Once a service consumer has found a suitable provider
he binds himself to that service, i.e. he calls that service to perform a particular task.

For data acces and mapping services, the service consumer usually wants access
to a particular data set (or subset) or a map within a certain area of interest. For
geoprocessing services, the consumer is interested in computing derived data from
one or more input data sets according to some well-defined geoprocessing function.
WPS or ESRI’s geoprocessing service are two technologies that provide geoprocessing
Web services. If a service consumer has bound himself to such a service, he sends the
input data and awaits the results. Depending on the available bandwidth, the data
volume, the provided computing power, and the computing complexity, the whole
process may take an arbitrary amount of time. If the data volume is small and
the computation simple, client and server communicate synchronously by keeping
an open connection between client and server until the result is delivered. For long

24

1.3. Service-oriented Geoprocessing

running tasks, asynchronous communication is preferred. Here the client submits a
single request to the geoprocessing Web service and performs occasional status polls.
Once the server has indicated a finished computation, the client may query the result
(OGC 2015a).

Studies on geoprocessing Web services have started to appear at the beginning of
the 21st century. One of the major issues evolves around the publish and find activ-
ities. To make the publish-find-bind work, catalogues need to provide the following
information about a service (ALONSO et al. 2004; W3C 2007):

1. The provided functionality, e.g. in terms of a service interface or service con-
tract,

2. The service binding, describing the supported communication protocol, and

3. The service endpoint, which indicates where the service can be accessed.

Service binding and the communication of service endpoints are easy to specify
and well covered by existing specifications. A persisting issue is the description
of the provided functionality which has become apparent with the emergence of
geoprocessing Web services but in fact dates back to early attempts to specify and
harmonise geoprocessing functionality in general (TOMLIN 1990; EGENHOFER AND
FrANZOSA 1991; ALBRECHT 1996). The lack of a common framework to express
geoprocessing functionality might be one reason that impedes the proliferation of
geoprocessing Web services on the internet. If service consumers are generally unable
to specify the required geoprocessing functionality and create appropriate search
queries, an infrastructure with isolated geoprocessing Web service is of limited use.

Another set of issues arises from the strong coupling between geoprocessing func-
tionality and computing resources. Operators of public WPS servers must provide
significant computing resources to their clients. Data services hardly face this issue
since the downloaded data can be reused by the client for a different activity. With
geoprocessing Web services, the reuse of functionality requires another invocation of
the remote Web service. Bandwidth issues that may occur during the processing of
large data sets have already been discussed. In extreme cases, network outages can
lead to broken workflows and degrade the stability of depending workflows.

Portable software components that facilitate remote execution have been proposed
to avoid these issues. In the SDI research this approach has been largely discussed
in relation to data transfer overhead and efficient use of bandwidth. Moving code
concepts have been proposed to avoid the relocation of large amounts of data in Web
based geoprocessing workflows (FRIIS-CHRISTENSEN et al. 2007; BRAUNER et al.
2009). Delivering software components from a remote location to local environments
for temporary use is also foreseen by ISO (2006, p. 4). In data-intensive computations
it was found that moving data between network nodes was cumbersome and had a
significant impact on the whole processing time. In contrast, the transportation
effort of computing logic in terms of coded software or processing instructions is

25

1. Introduction

manageable to negligible, and a lot of overall processing time can be saved by moving
code instead of data (MULLER et al. 2010).

This thesis claims that, in principle, the publish-find-bind paradigm can also be
applied to service-oriented code sharing architectures (KADNER et al. 2012; MULLER
et al. 2013; HENZEN et al. 2015). Instead of providing access to computing facilities
for geoprocessing, in this setting the service providers supply portable machine code
representations of geoprocessing functions which can be run in diverse computing
environments (cf. Figure 1.3). Similarly to the provisioning architecture for geo-

- Functionality
- Component format

- Access endpoint
Catalogue

publish
. Portable
| :>
Client GP component
bind
Component ~ Component
consumer provider

Figure 1.3.: Code on Demand — Publish-find-bind with portable software components

processing Web services, the catalogue operator maintains an inventory of service
providers that deliver geoprocessing software components. Consumers may query
this catalogue to find a software component that matches their task and search crite-
ria. Similarly to geoprocessing Web services, the provided functionality is a decisive
search criterion. Additional aspects of the search query might be the supported run-
time environments or software licenses that apply to the software component. Next
to functionality, the service binding and the service endpoint are important aspects
for Web service invocation. For shared software components these properties are
replaced by the component format to ensure interpretability the consumer and an
access endpoint that delivers a copy of the software component. Once a consumer
has discovered a suitable component, he can download and deploy it in his own
environment. The subsequent invocation and execution is not part of the binding
process. It happens at a lower level and is covered by the specification of the com-
ponent format. Since the consumer is in full control of the execution process, status
monitoring, error handling, and result retrieval is less complex compared to the Web
service invocation. Additional requirements for the consumer arise from the general
deployment overhead and the necessity to supply computing resources for execution.

For completeness ubiquitous availability shall be mentioned as a third “provisioning
approach”. In contrast to the other two provisioning options, it is assumed that

26

1.4. Research Challenges and Contributions

a sufficiently large set of harmonised and well-defined geoprocessing functions are
provided by any relevant system participating in a distributed SDI. In this scenario,
providers and consumers of geoprocessing functions are no longer distinct entities.
Computations can be performed in any network location and the decision about
the place of computation becomes merely a matter of security constraints, quality of
service, and hardware resources allocation. Since many GIS products provide a basic
set of processing tools, a functional overlap between the different toolboxes is often
silently assumed (ALBRECHT 1996), but occasional studies revealed minor or major
differences in the tools’ names, interfaces, and behaviours (LUTZ et al. 2003; FISHER
2006). A brief survey of Buffer functions in current GIS and spatial databases shows
that harmonised functionality and interfaces are the exception rather than the rule
(cf. annex A.1). BRAUNER (2015) has recently examined a broad range of GIS tools
and came to a similar conclusion. Due to the diversity of implementations, a user
who wants to apply a particular function to his own data or reproduce a colleague’s
workflow is required to install and maintain a corresponding software configuration on
his computer. Obviously, this practice hardly scales with an increasing number of GIS
products, spatial databases, and programming libraries for spatial data processing.
Furthermore, it does not take into account ‘new” software components that were
developed on top of existing libraries to perform specialised analyses or represent
computational models.

The OGC has made an attempt to standardise some basic analysis functions for
spatial geometry (OGC 1999; ISO 2004), but this effort was not extended beyond a
basic set of Overlay (EGENHOFER AND FRANK 1992), Buffer and Conver Hull op-
erations.® For the majority of geoprocessing functions ubiquitous availability paired
with coherent behaviour is an unrealistic expectation. With current standardisation
efforts it is only met for tiny subset of geoprocessing functions.

1.4. Research Challenges and Contributions

The discussion of provisioning approaches for service-oriented geoprocessing has re-
vealed two major research challenges which are now broken down into a set of detailed
issues.

(1) Portable software components for geoprocessing

Web service interfaces and communication protocols, such as those described in the
WPS standard, have been established for geoprocessing Web services. Portable soft-
ware components and interoperable code on demand architectures for geoprocessing
have yet to be developed. The publish-find-bind model shown in Figure 1.3 sug-
gests that service-orientated architectures might serve as a starting point for sharing

5The specifications list seven distinct operations: Distance, Intersection, Difference, Union, Sym-
Difference, Buffer, and ConvexHull

27

1. Introduction

computing components. This hypothesis is broken down into the following research
questions:

e How is code mobility achievable in SDI?

e What would be a suitable component model for exchanging the software rep-
resentations of geoprocessing functions in an interoperable manner?

e How would a possible code sharing architecture look like and which actors and
services participate in a code-sharing environment?

Contributions. The moving code paradigm, which discusses the ability to move im-
plementations of geoprocessing functions between computing nodes in an SDI, has
been investigated in MULLER et al. (2010, reprinted in chapter 2) and MULLER et al.
(2013, reprinted in chapter 3). The first publication evaluates general patterns for
service-oriented geoprocessing and provides initial work towards portable software
components for geoprocessing. The second publication continues and extends this
work. It contains a comprehensive discussion of the requirements for portable com-
ponents and develops a code sharing architecture that can be used to offer, consume,
and exchange implementations of geoprocessing functions over the internet.

In parallel the idea of an Appstore for geoprocessing software was discussed in
related publications (KADNER et al. 2012; HENZEN et al. 2015). It is scoped as a
community platform for sharing and disseminating portable software components for
geoprocessing and supplies a processing sandbox for testing and demonstration.

(2) Interoperable interface descriptions for geoprocessing services

A common approach for describing and cataloguing geoprocessing functionality and
services is required in any provisioning approach. It is also one of the fundamental
challenges posed in the debate on GeoComputation (cf. section 1.1). Despite the
various research efforts that have addressed this issue (e.g. LuTz 2007; YUE et al.
2007; ZAHARIA et al. 2008; FITZNER et al. 2011; MAUE et al. 2012; FARNAGHI AND
MANSOURIAN 2013), a conclusive solution has yet to be found.

In order to support basic search and retrieval tasks, a feasible approach is required
to describe, document, and catalogue geoprocessing services. This approach should
be built on top of existing standards for geoprocessing services, enable human users to
fully understand the functioning of a geoprocessing service, and permit machines to
unambiguously identify a particular geoprocessing function or agree that two services
provide the same geoprocessing function. From these requirements the following
research questions can be derived:

e How can functional descriptions be implemented in conjunction with existing
standards for geoprocessing services?

e What are meaningful granularities at which geoprocessing services can be de-
scribed and compared?

28

1.4. Research Challenges and Contributions

e How can SDI catalogues be enhanced to support the search and retrieval of
geoprocessing functions and services?

Contributions. The possibility to use WPS process descriptions as a common in-
terface description language for arbitrary software artefacts implementing a geopro-
cessing function has been suggested in MULLER et al. (2010, reprinted in chapter 2)
and subsequent publications on the moving code concept. Finally, in the WPS 2.0
standard (OGC 2015a, summarised in chapter 5), the process description model was
separated from the Web service model for exactly this purpose.

An approach for the description of geoprocessing services at multiple granularities
has been proposed in MULLER (2013) and MULLER (2015, reprinted in chapter 4).
These papers identify recurring levels of detail at which meaningful descriptions can
be obtained, covering both syntax and behaviour of geoprocessing services. The
framework is applicable to geoprocessing Web services, portable components, or can
be used to harmonise documentations of existing GIS toolboxes at an abstract level.
This work had significant influence on the WPS 2.0 specification (OGC 2015a, sum-
marised in chapter 5) which benefits from this approach and provides the respective
encodings and conformance classes.

29

2. Moving Code in Spatial Data
Infrastructures — Web Service Based
Deployment of Geoprocessing
Algorithms

Miiller, Matthias; Bernard, Lars; Brauner, Johannes: Moving Code in Spatial
Data Infrastructures — Web Service Based Deployment of Geoprocessing Algorithms.
In: Transactions in GIS, 14(S1), 2010. pp. 101-118.

Abstract. This article proposes a concept for offering complex geoprocessing func-
tionality in service-based Spatial Data Infrastructures (SDI). Today, geoprocessing
in SDI is typically realized in a data driven manner. Applying the suggested mov-
ing code approach in a case study in the field of Spatial Decision Support proves
its applicability. The proposed solution is analyzed and assessed in terms of gained
efficiency, performance behavior and support for distributed development of geo-
processing functionality. In data and computation intensive SDI applications the
deployment of moving code proves to be beneficial.

31

Transactions in GIS, 2010, 14(S1): 101118

Research Article

Moving Code in Spatial Data
Infrastructures — Web Service Based
Deployment of Geoprocessing Algorithms

Matthias Miiller Lars Bernard
Geoinformation Systems Geoinformation Systems
Department of Geosciences Department of Geosciences
Technische Universitat Dresden Technische Universitdt Dresden

Johannes Brauner
Geoinformation Systems
Department of Geosciences
Technische Universitat Dresden

Abstract

This article proposes a concept for offering complex geoprocessing functionality in
service-based Spatial Data Infrastructures (SDI). Today, geoprocessing in SDI is
typically realized in a data driven manner. Applying the suggested “moving code”
approach in a case study in the field of Spatial Decision Support proves its applica-
bility. The proposed solution is analyzed and assessed in terms of gained efficiency,
performance behavior and support for distributed development of geoprocessing
functionality. In data and computation intensive SDI applications the deployment of
moving code proves to be beneficial.

1 Introduction

Geospatial algorithms are a fundamental means to extract information from spatial data.
Geographic Information Systems (GIS) provide the user with at least a basic set of atomic
operators to analyze spatial and spatio-temporal phenomena. Many GIS also offer
modeling environments or APIs (Application Programming Interface) to chain and
combine these atomic operators to realize complex algorithms. Besides, algebraic lan-
guages, defining atomic functions and supporting the specification of complex algorithms

Address for correspondence: Matthias Miiller, Technische Universitit Dresden, Department of
Geosciences, Geoinformation Systems, 01062 Dresden, Germany. E-mail: matthias_mueller@tu-

dresden.de

© 2010 Blackwell Publishing Ltd
doi: 10.1111/j.1467-9671.2010.01205.x

102 M Miiller, L Bernard and J Brauner

on an abstract level, have been developed. Prominent examples are the works of Tomlin
(1990) and Egenhofer (1994).

The development of Web-based Spatial Data Infrastructures (SDI) has gained enor-
mous momentum during the last decade. Service-oriented architectures (SOA) as the
conceptual basis for SDI provide the means to exchange data and functionality across
systems borders, allowing a better integration of geoinformation technology into differ-
ent domains (Friis-Christensen et al. 2007). However, existing SDIs are rather data
centric, thus offering schemas and services that mostly aim to facilitate geodata access
and sharing. Processing-centric infrastructures would have to support interaction pat-
terns for sharing and accessing geoprocessing functionality. Necessary components, such
as geoprocessing services, are still subject to research (Craglia et al. 2008).

As most complex geoprocessing algorithms are tightly coupled to a concrete geopro-
cessing platform and runtime environment, a number of challenges arise: Offering
geoprocessing functionality in a Web Service environment requires costly adaptations or
even reimplementations. It is also difficult to move geoprocessing algorithms among
different processing service instances. Currently, whenever spatial data is processed in an
SDI, the data is rather moved to the processing instance than vice versa. Considering
scenarios where large amounts of data need to be processed, it might be advantageous
not to transfer the data to the processing instance but to move the algorithmic code to a
processing instance that resides closer to the data, thus saving a substantial amount of
bandwidth and data transportation time.

This “moving code” paradigm is expected to outrank existing solutions focusing on
the orchestration of Web Services in terms of execution performance (Brauner et al.
2009, Friis-Christensen et al. 2007) and lifecycle management, but has not yet been
explored in depth. This article presents a service architecture and proposes related
interaction patterns that enable the application and assessment of the “moving code”
paradigm in existing SDIs.

The reminder of the article discusses state-of-the-art to realize interoperable geopro-
cessing (next section) followed by the presentation of an architecture to enable moving
code for geoprocessing algorithms in a Web-based SDI. The presentation of a prototypi-
cal implementation using state-of-the-art geospatial Web Services and a final discussion
complete the article.

2 Sharing Geoprocessing Algorithms in Spatial Data Infrastructures —
State-of-the-Art

Considering conceptual approaches to deal with geoprocessing in a SOA based SDI, two
basic strategies can be discriminated:

1. In data-driven approaches, geodata is sequentially shipped between a number of
service instances, each offering a certain set of geoprocessing operators taking
geodata as an input and creating an intermediate result. Consequently, the
sequence of geoprocessing operators has to be organized in such a way that the
last invoked geoprocessing service provides the desired analysis results. Service
chaining techniques, such as Web Service orchestration or choreography, are
applied to compose static service based operators and thus realize complex geopro-
cessing algorithms.

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI 103

Data Coupling

tightly coupled loosely coupled
|nstar.1t 2a) 2b)
. execution
Execution
Scheme permanent
deployment 20) 2d)

Figure 1 Discrimination of “moving code” approaches

2. In code-driven approaches, a coded algorithm is shipped from a client to a specific
service instance (“moving code”). This instance is supposed to interpret and run the
coded algorithm and to offer its execution results through a Web Service interface.
For “moving code” it is assumed that a specific algebra or higher level geoprocessing
language is available. This language provides a well-defined set of atomic geopro-
cessing operators allowing the coding of the desired algorithm.

“Moving code” solutions can be further divided by their relation to existing data sets and
the execution scheme (Figure 1):

2a. The sent algorithm is tightly coupled to some data sets and instantly executed by an
invoked service. The required input data has to be shipped with the code or must
be known to the invoked service.

2b. The sent algorithm is executed instantly and independently from the location of
data. The required input data is retrieved through standardized service interfaces.

2c. The sent algorithm is tightly coupled to some data sets and deployed on a service
prior to execution. The required input data has to be shipped with the code or must
be known to that service.

2d. The sent algorithm is deployed on a service prior to execution, independently from
the location of data. The algorithm is repeatedly executable via a service interface
that allows the provision of input data.

Each of these strategies requires different workflows to produce a certain result
(Figure 2). Execution performance and flexibility are determined by the data transpor-
tation time (tr) and the time required by the individual geoprocessing operators (top) or
Web Service invocations (ts). If the result is to be immediately consumed by a client, the
final delivery time (tr 4aw) adds to the execution’s duration.

Nowadays SDI implementations mostly focus on a data-driven approach by using
OpenGIS Web Services (OWS) to enable spatial data discovery, access and portrayal.
Geoprocessing capabilities can be offered using the very generic Web Processing Service
Interface (WPS, OGC 2007b). An in-depth analysis of its potential in distributed pro-
cessing is offered by Kiehle et al. (2007) and Friis-Christensen et al. (2007). A WPS
instance offers a set of processes which are controlled by assigning valid input and output
parameters. While the syntax for specifying data formats and IO parameters is machine
readable, the semantics — what the process actually does with these data — has to be
provided in a human-readable way or by extending the interface with semantic annota-
tions (Zaharia et al. 2008). Existing implementations of this standard either offer atomic
operators, originating from specific IS libraries like Sextante (52°North 2010) and

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

104 M Miiller, L Bernard and J Brauner

1) — data-driven processing

tT deliv

Execute Request

Processing

Workflow Enactment
Result

/ Intermediate Intermediate Intermediate /
/ Data Data Data /

A4

tr1 tra tr. trm
Sy S, S S
ts1 | ts2 tsn
Spatial Data Store Spatial Processing Spatial Data Store Spatial Processing
Engine Engine

2a) — 'Moving code' with instant execution and tight data coupling

Interpretable Algorithm

I I

top1 tor2 top... topn

tT deliv .
Execute Request Processing

Result

A4

try..trm

Coded
Algorithm

Spatial Data Store

2d) — 'Moving code' with permanent deployment and loose data coupling

Execute Request

Deployed Process

[or P{ o P o [o |

tor1 tor2 tor.. topn

tT deliv

Deploy Request

Deployment
Service

Processing
Result

v
4

A

A A A

Coded ts1 ts.. tsm
Algorithm |

l[El l[j_jl l[j_:j

Spatial Data Store Spatial Data Store ~ Spatial Data Store

Figure 2 Example workflows of service based geoprocessing

GRASS (PyWPS 2010), or make use of a WPS framework to provide a dedicated and
purpose specific set of complex algorithms (e.g. SANY 2009).

2.1 Workflow Enactment for Geoprocessing Services

Friis-Christensen et al. (2007) show an SDI approach that facilitates a rapid development
of spatial risk-management applications. They also examine existing OGC implementa-
tion specifications and compare transparent, opaque and translucent chaining
approaches according to ISO (2005). The presented architecture contains one single
statistics service that implements the OGC WPS specification and offers a single process

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI 105

to calculate areal statistics in a pan-European forest fire use case. The authors discuss
different design approaches to facilitate the development process for new or changing
user requirements to increase the flexibility of their approach. Complex processes are
split into elementary (atomic) operations. Service chaining techniques are applied to
flexibly reassemble the atomic operations. Transparent chaining, although being the most
flexible chaining scheme, is considered to have a poor overall performance due to
frequent client server interactions and repeated exchange of data. Consequently, it is
suggested to apply translucent chaining, allowing the user to define a chain of operations
on a processing service instance and pass this chain within a single execute request to the
service instance. A conceptual and syntactical adoption of the WPS specification is
suggested to allow for translucent chaining.

In a conceptually similar way, Kiehle et al. (2007) present a Web Service based
architecture to implement complex geoprocessing models and workflows using
Web Service orchestration (WSO). The required geoprocessing functionality is offered
by a single processing service instance in terms of elementary map algebra operators.
Complex functionality is offered by workflow enactment services, invoking the
processing service multiple times. The proposed architecture enhances the OWS stack
with a Web Service orchestration framework; composite processes are specified by
languages for business process management like BPEL (Business Process Execution
Language). A typical geoprocessing workflow invokes geodata services, geoprocessing
services and geodata portrayal services to generate and present a desired piece of
information. Once created, a geoprocessing workflow is persisted in a process reposi-
tory and executed through an orchestration engine. As the presented approach is
similar to a transparent chaining approach, it scales poorly with the number of pro-
cessing service invocations. To reduce the cumulated data transportation time, it is
suggested to cache geodata locally at the processing service instance (Scholten et al.
2006).

Schaeffer (2008) conceptualizes a transactional Web Processing Service (WPS-T) as
a workflow enactment service. Adapting the WPS specification, operations for a work-
flow deployment are introduced. The approach is generic and enables the deployment of
executable code on the service. A WPS ProcessDescription document serves as a rigorous
interface description for the deployed code. The WPS-T falls into Category 2c¢) or 2d) of
the aforementioned classification (see Figure 1). A proof of concept implementation is
based on BPEL and shows similar benefits and shortcomings as the approach presented
by Kiehle et al. (2007).

The Web Coverage Processing Service (WCPS) Language Interface standard (OGC
2009) defines a set of algebraic operations for raster data processing to be offered by a
Web Service. As this language is standardized, it provides the means to exchange
geoprocessing algorithms across platforms and thus falls into the category of algorithm-
driven approaches. The standard is adopted by the Web Coverage Service (WCS, OGC
2008) specification and allows the processing of locally stored spatial data sets on a WCS
instance. Due to the tight coupling of processing engine and data, no additional data
transfer over the network is required which is beneficial for execution performance.
Similar to the thematic and spatial filtering (Filter Encoding Specification, OGC 2005)
that is applicable to select a desired vector data set offered via a Web Feature Service
(WEFS, OGC 2006), WCPS realizes a “moving code” approach with instant execution
and tight data coupling on a WCS (Category 2a) in the aforementioned schema (see
Figure 1).

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

106 M Midiller, L Bernard and J Brauner

2.2 Grid Approaches to Increase Performance

Grid computing has been proposed by several authors to handle computation intensive
geoprocessing tasks or large amounts of data in distributed service-based SDIs (Baranski
2008, Hobona et al. 2007, A. Padberg and C. Kiehle, unpublished). According to Foster
et al. (2001) a Grid environment provides a means to securely share storage and compu-
tation resources among the participating nodes. Grid infrastructures and SDIs are different
and partly incompatible concepts (Hobona et al. 2007). For Grid-enabled geoprocessing
services, the common architectural approach is to set up a geoprocessing service instance
as a facade to the Grid infrastructure and pass the processing task either directly to a Grid
middleware or a third-party service providing access to that middleware. Execution and
computation are conducted by the Grid middleware that distributes the task over the
Grid’s processing nodes. When the execution is finished, the result is returned back to the
user through the facade. By sharing algorithmic code and data internally among the
individual processing nodes, Grid computation qualifies as a “moving code” approach.
Here, code and data distribution are limited to the extent of the Grid infrastructure.

A general partitioning scheme for geospatial data and the development of parallel-
ized algorithms to gain a maximum advantage from the Grid infrastructure is still an
issue (Baranski 2008). Another drawback of current implementations is the necessity to
ship large data sets to each processing node at runtime. Finally, considering the invoca-
tion of existing geoprocessing systems, a “Gridification” is difficult to achieve due to
possible incompatibilities between the Grid middleware and the specific geoprocessing
system that needs to run on each node. Hence, this article focuses on encoding and
deploying the algorithm in an interoperable manner and less on running the deployment
services in a Grid or other parallelized computing infrastructure.

3 An Architecture for Ad-Hoc Algorithm Deployment

The proposed architecture adopts different functional domains from the ORCHESTRA
Service Network (OGC 2007a), following a best practice example for an open, service-
oriented software architecture for multi-risk management. The ORCHESTRA functional
domains are defined as follows (OGC 2007a):

e The user domain comprises the client-side applications and user interfaces.

® The mediation and processing domain provides services and functionality to mediate
the service calls from the user domain to appropriate services from the integration
domain (e.g. workflow enactment services).

e The integration domain represents single Web Service instances wrapping the func-
tionality provided by source system domain (e.g. a WPS encapsulating a GIS
backend).

e The source system domain encompasses legacy backend functionality (e.g. GRASS or
ArcGIS) and data sources (e.g. a geo-database).

To preserve flexibility, a general scenario for “moving code” with permanent deployment
(DMC) will be considered, including the possible use of tightly and loosely coupled data
as well as hybrid cases (Figure 3).

The three possible approaches to integrate geoprocessing functionality in an
ORCHESTRA service network are captured in Figure 4. The source system domain

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Execute Request

Moving Code in SDI

107

Deployed Process

tr deliv

Deploy Request . | Deployment L | OoP, H OP, H oP H OoP, | Processing
Service d Result
? top1 tor2 top.. topn
A A A
ts1 ts.. tsm

Coded | S |
Algorithm
Spatial Data Store
Spatial Data Store

Figure 3 A hybrid DMC scenario

IEj:II

Spatial Data Store

Spatial Data Store

User Domain

Client f 3
Applications

Client ’
Applications

Mediation and

Geoprocessing
Service

)

Processing

Domain
Workflow -
Enactment);Izo?gprm

Service gistry

Integration

Domain

Geoprocessing

Services

Geoprocessing
Service

Deployment Geoprocessing
Service Service

Features

Source System
Domain
Geoprocessing GP System
Systems
OP,
OP,

Coverages

Data Stores

a) Atomic Operators

GP Backend

b) Complex Operator

1
Container
GP Backend

Data

c) Tightly Coupled Operators and Data

Figure 4 An abstract architecture for DMC according to the functional domains of the

ORCHESTRA Service Network (OGC 2007a)

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

108 M Miiller, L Bernard and J Brauner

holds different geoprocessing systems. Geoprocessing operators offered there can be of
three different types: Atomic operators (Figure 4a) are the smallest accessible geopro-
cessing functionality in a geoprocessing system, such as intersect or shrink. Complex
operators (Figure 4b) are coarse-grained and defined through the combined functionality
of the participating atomic operators. Additionally, in Figure 4¢ a container is introduced
to allow the use of tightly coupled data.

Geoprocessing services offer either atomic or complex operators and provide direct
access to geoprocessing systems in the source system domain. If a geoprocessing service
is connected with a deployment service through an opaque link, it also allows the
deployment of custom algorithms and their subsequent execution through the underlying
geoprocessing system.

The act of workflow creation and execution (ISO 20035) is supported from within the
mediation and processing domain. Here, services from the lower domains can be regis-
tered, searched and chained to workflows. These workflows can be made persistent and
executed on a workflow enactment service. In order to support DMC, an algorithm
registry is introduced in this domain to store and exchange predefined geoprocessing
algorithms.

The user domain contains client applications that provide user interfaces to access
any service in the lower domains directly or to control, to instantiate and to manipulate
services in the mediation and processing domain. Infrastructures supporting DMC need
also to provide the appropriate editors in the user domain to create and publish complex
operators.

A DMC deployment procedure is illustrated in Figure 5. After the initial assembly, a
geoprocessing algorithm is uploaded to the algorithm registry to allow Web-based access.
Prior to the first execution, the code and data package is sent to a deployment service
instance. On reception, the algorithm is analyzed and compiled into executable code that
can be interpreted by an available geoprocessing backend at the service instance. If
additional tightly coupled data items are included in the package, these can be parsed to
a local data store which suits the present geoprocessing backends. Once deployed, the
algorithm is made visible on a geoprocessing service in the integration domain as a new
process and can be executed from a superseding domain. The new process remains
accessible until the algorithm is un-deployed.

The architecture also enables algorithm management and maintenance. Depending
on the chosen registry, algorithms can be updated and versioned making any revision

User Domain Mediation and Integration Domain User Domain /
Processing Domain Mediation and

Processing Domain
f Input Data ;

A 4

Processing

Execution Result

Assembly Registry Upload Deployment

A 4

Code / Data Code / Data
Package Package

Figure 5 Code deployment and execution in a DMC scenario

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI 109

User Domain Mediation and Integration Domain
Processing Domain

Developer Client Operator Client ‘ Algorithm Registry Deployment Service Data Service Geoprocessing Service

T T T T ; T
: | : ! | :
T I I I | I
> update Algorithm ! ; | !
I I I I
upload Algorithm ! ! i !

L >t !
| | ! |
ok | ! i
T | i |
r 4 +] +
! a) Active Update) | | 1 |
| deploy Algorithm | | : |
| | | | |
| |
| request Algorithm i |
return Algorithm | i

|
I
enact Algorithm }

> update Capabilities
ok

> start Update Schedule |

I

I

|

|

I

I

I

I

|

|

I

}

ok }

i

1

i

b) Passive Update !
I
|
|
I
I

harvest Registry

T

T
1
|
|
1
|
|
|
|
|
|
|
|
|

| |
|
|
|
!
|
|
|
|
|
|
|
|
|
|

T

request new Algorithm

return Algorithm

> update Capabilities
e
I
I
I

S —

i
execute Process

!
I
|
|
|
1
|
|
|
|
T
|
|
|
|
I
|
+
|
|
|
1
|
|
|
L
|

return Inventory
|
]
|
|
T
|
|
T
1
|
|
|
|
|
|
|
|

J.
|
1
|
|
I
]
1
]

request Input Data

}
|
| return Input Data
|
|
|
|
|
|
|
J

> run Algorithm

return Result
I
I
|

|
|
|
|
|
|
|
|
|
|
)
|
|
1
|
|
|
|
|
|
|
|
|
1
|
|
|
|
1
|
T
|
|

Figure 6 Algorithm update and re-deployment

transparent to other users and also to the deploying geoprocessing services. Depending
on a specific setup, it may be required that updates are either forced by a supervising
expert (active update) or drawn automatically by the involved geoprocessing services
according to a defined schedule (passive update).

An active update (Figure 6a) is conducted by the developer client and similar to a
deployment procedure. By issuing a deploy request to a deployment service, the current
revision of an algorithm is fetched from the registry and uploaded to the geoprocessing
service. Any previous version of that algorithm on the geoprocessing service instance
will be overwritten. Such an active update requires an additional security layer at the
Web Service level that prevents unauthorized users from writing to the deployment
service.

A passive update is either triggered by a scheduler or an event (e.g. an execute
request; to make sure that the latest available version is used). If the updates are
scheduled (Figure 6b), the geoprocessing service can be synchronized with the whole

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

110 M Midiller, L Bernard and J Brauner

registry and update each provided process. In cases where large data sets are shipped with
the algorithm, this data does not need to be retrieved at run time.

4 A Prototypical Implementation

The proposed architecture and service interactions have been implemented and tested in
the SOKNOS project (Service-Oriented Architectures Supporting Networks of Public
Security; SOKNOS 2010). It aims to establish a service platform as a technical basis for
collaboration and decision support in emergency management. It is required to operate
a Web Service environment that is capable of providing information in (near) real-time,
offering failsafe and secure services, providing effortless maintenance and evolution of
the decision support tools as well as the means for logging the decision processes for later
analysis.

Parts of the presented work are also used in OGC’s most recent Open Web Services
testbed (OWS-7) to prototype geoprocessing services for feature fusion. These testbeds are
part of the OGC Interoperability Program, serving standards development and testing.

4.1 Infrastructure

The hybrid DMC scenario has been prototyped in an SDI using OpenGIS Web Services
(Figure 7). This infrastructure offers numerous data access and portrayal services. For
service-based geoprocessing it contains several WPS instances and an algorithm registry,
allowing a straight-forward realization of hybrid DMC. Algorithms are produced and
published by a developer client in a defined GIS environment. This developer client also
uploads the combined code and data packages into an algorithm registry.

ows Operlator Clients Developér Clients

(HTTP 0

=
Algorithm
Storage

° Algorithm Registries WPS Instances

Algorithm Code / Data
Descriptions Packages

Figure 7 Prototypical implementation architecture

Data Services

Local Workspaces

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI' 111

The operator clients in the SOKNOS system can communicate with OpenGIS Web
Services in a generic way and have access to both data and processing services to retrieve
the desired data and the processing results. Additionally, the WPS instances have their
own local process description repositories that can be aligned with the remote registries’
contents.

The prototypical algorithm registry is realized by a version management software
(SVN — Apache Subversion) with an HTTP interface for public download access. Such a
versioned registry allows concurrent development and operational deployment: Each
operational WPS may deploy only those algorithms that have been tested thoroughly and
are proven to produce reliable and valid results. A versioned algorithm registry also helps
to perform forensics of previous decision situations by the possibility to reload the
previously used code and data packages.

The prototype was implemented in a coupled WPS/ArcGIS Server environment
(Miiller et al. 2010). For the server part, the Open Source WPS framework from
52°North has been adapted and extended with connectors to support third party geopro-
cessing systems and remote algorithm registries. This work was also contributed to the
52°North WPS community that hosts a publicly available demo server (52°North 2010).

4.2 Mapping from Geoprocessing Algorithms to Service Interfaces

Exchanging geoprocessing algorithms between different processing systems requires an
established and commonly accepted modeling language or algebra. As today’s algorithms
for geoprocessing are usually tightly coupled to the characteristics of specific geopro-
cessing systems (Alarcon et al. 2007), there is no universal modeling algebra that can be
used to exchange geoprocessing code.

Lacking a generic, well-defined and standardized way to encode the concrete geopro-
cessing algorithms, different GIS platform dependent coding languages (here ArcTool-
box, Python and GRASS scripts) have been used for the prototypical implementation.
Consequently, it is necessary to describe the required runtime environment to such an
extent that it is possible to decide whether a piece of geoprocessing code can be executed
on a target platform or not. From a GIS perspective, geoprocessing systems like ArcGIS,
GRASS, FME or IDRISI have standard APIs that support a set of programming or
scripting languages as well as convenient proprietary formats like ArcToolbox or an FME
Workbench. From a programming or scripting language perspective, an implemented
algorithm can require multiple libraries like GDAL, NumPy or R and multiple geopro-
cessing systems. Given these assumptions, geoprocessing code can be encoded for a cross
platform exchange. Knowing the required runtime environment the receiver can decide
whether s/he can deploy and execute that code or not.

Depending on the data types supported by the Web Service, the required processing
backend and the chosen API, a mapping is not always possible. As the process interface
on a Web Service provides the facade for the desired functionality, the algorithm devel-
oper is responsible to ensure an unambiguous mapping between the backend and the
Web Service interface.

4.3 Workspace Encoding for Hybrid DMC

In practice, the cross-platform exchange of custom geoprocessing tools is mostly accom-
plished using the workspace concept. Workspaces may contain a basic file structure that

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

112 M Midiller, L Bernard and J Brauner

is required to operate the geoprocessing tool and possibly includes one or more data sets
thus paralleling the combined code and data package proposed in Section 3. The
compiled algorithm, data items and the required working directory layout are assembled
into a file structure that can be used across platforms if a suitable runtime environment
is provided. In ISO 19118 (ISO 2006) a syntactical pattern for data interchange is
described. This pattern can be adapted to interchange workspaces and executable code
among two systems by creating an appropriate interchange schema for geoprocessing
workspaces. The description of the required processing platform can be accomplished by
using unique identifiers for the required software components. A universal means to
communicate the structure of a workspace is the use of Uniform Resource Locators
(URL; IETF 2005).

The interchange schema for hybrid DMC is defined in accordance with the WPS
interface specification. It uses a common WPS ProcessDescription document to describe
the desired process interface and is augmented with a referenced XSLT document. Thus,
the ProcessDescription document can be interpreted in two different ways: As a plain
ProcessDescription document providing a valid WPS process interface description, or as
an AlgorithmDescription containing necessary information for successful algorithm
deployment and parameter mapping (Figure 8).

A WPS instance pulling its code from a central registry is shown in Figure 9. The
process description is loaded from a local or remote repository and parsed for an XSLT
reference. After applying a style sheet transformation, an algorithm description is

~

J wps::DeploymentProfile L

~
- ~

«uses» _ - ~o «uses»
[~ +references |
wps::ProcessDescription XSL Transformation AlgorithmDescriptionSchema
+algorithmWorkspaceLocation[1]
: 1 1 +algorithmExecutableLocation[0..1]
I 1 +generates +algorithmExecutableTypeURN[1]
«traces» +processingSystemURN[1..*]
! +algorithmParameter{1..*]
| |
| 1 |
| |
| |
| AlgorithmDescription |
i |
GPAlgorithm 1 1 [+algorithmWorkspaceLocation «bind> !
+executionParameter[1..] +algor?thmExecutabIeLocation ________________)
. +algorithmExecutableTypeURN
+execute() +describes |4 processingSystemURN
+algorithmParameter
* +require +require i
«uses»
|
|
|
has I
Container I
identifies |
1 ComponentURN
GPBackend W
* has

Figure 8 Deployment classes for platform specific geoprocessing algorithms

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI 113

WPS instance ProcessDescriptionRepositor AlgorithmRegistry

i

|

== I
request ProcessDescription :

1

>

|
|
|
extract XSLT Reference !
|
|
|
|

> generate AlgorithmDescription
|

i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

! !
check Deployment Feasibility |
| |

|

request Workspace
1

»
return Workspace U
|
|
|
|
|
|
|
|
|
|
|
|

|
i
|
> register Algorithm !
|
|
I
I
|
I

Figure 9 Sequence diagram for a pull-deployment

obtained and evaluated for deployment feasibility. The intended runtime environment is
captured with Component URNs that indicate the required geoprocessing libraries or
systems as well as the format of the executable algorithm.

If the WPS instance can provide an appropriate runtime environment for the
described algorithm, the workspace is loaded and stored locally for execution. With the
concept of a transactional WPS, the algorithm can also be pushed to the service assuming
a proper advertisement of the supported runtime environment in the service capabilities.
In this case, the sequence is not initiated by pulling a description from a registry, but a
deployProcess operation that passes the augmented ProcessDescription document
directly to the desired WPS instance.

4.4 Use Case
Two service-based decision support tools have been developed for the SOKNOS system:

1. An assessment algorithm that helps decision makers in assessing the threat imposed
by escaping gaseous contaminants on the local population.

2. A delineation algorithm that roughly extracts flooded areas from flooding simula-
tions and was used for visual analysis and resource planning.

The assessment algorithm was realized as a Python script with a reduced set of input
parameters:

® a coverage from a simulation service, indicating the expected immission in the
endangered area,

e a threshold value, indicating the hazardous contaminant concentration,

® a threshold value, indicating a possibly lethal contaminant concentration.

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

114 M Midiller, L Bernard and J Brauner

High resolution data about population distribution was stored with the Python code in
an appropriate workspace to save bandwidth and keep the processing interface simple.
On execution, the users obtain an output that was generated by a multi-criteria evalu-
ation model, aggregating the population distribution and the variable immission levels
provided at runtime.

The delineation algorithm was developed with the ArcGIS Model Builder and stored
in ArcToolbox. It contains a chain of morphological, classification and generalization
operators, performing the creation of flooding polygons and the merging or elimination
of areas below a pre-defined size. To provide a simple interface one single synthetic
parameter is used to control the vectorization process. As no constant geodata sets are
required for the algorithm, it was deployed as a workspace that only contains the specific
ArcToolbox.

During Web Service operation up-to-date workspace content was ensured by a
scheduled synchronization at the participating WPS instances with the algorithm registry.
If the use of the most recent version had to be guaranteed, it was optionally possible to
check prior to each execution, whether an updated workspace and thus an updated
algorithm is available at the registry.

4.5 Findings in Lifecycle Management and Operation

The architecture supports rapid prototyping in a distributed development process: Algo-
rithm assembly in a Desktop GIS offers early results for discussion with the targeted
users. Gradual adjustments to the algorithm as well as a recreation from scratch can be
accomplished in the source system domain. Once a consolidated tool is created, the local
workspace can be uploaded to the algorithm registry and is instantly available as a Web
Service.

Having an early prototype is common practice in software development and a
prerequisite to evolve the functionality in an iterative, yet timely manner (Figure 10). For
both impact assessment and flooding area delineation, the applied methods had to be
reworked and evolved to better suit the end-users’ needs. Applying DMC, algorithmic
changes become a matter of code replacement without touching the upper domains in the
architecture (Section 3). To further decrease processing time, it is also possible to switch
the processing backend later on or add more constant, thus cacheable, data sets to the
workspace.

As Emergency Management requires failsafe and close to real-time data processing,
redundant infrastructures are frequently found in this domain. Assuming a redundant
WPS setup with the required algorithm available, Weiser and Zipf (2007) use a BPEL
process for “secure Web Service Allocation” that retrieves a set of available WPS from a
catalogue and checks a candidate service instance prior to execution for availability. With
the ability to distribute algorithms among a set of processing services, it becomes possible
to quickly deploy a redundant algorithm setup and thus ensure a desired degree of
redundancy.

With the client’s ability to select the WPS instance for deployment, it is possible to
choose the service that is expected to provide the best performance. Data transportation
time and available processing power are the primary determinants for the overall execu-
tion performance. Thus the considered WPS instance should be close to the required data
sources in terms of available bandwidth and network topology and simultaneously offer

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI 115

Algorithm
Description

Executable
Algorithm
Package

Prototyping Refactoring

Registry Upload

Deployment on
WPS Instance

Figure 10 Lifecycle management

sufficient processing power to quickly compute the result. Dedicated performance tests
are subject to future investigations.

5 Conclusions and Outlook

This article has demonstrated the feasibility and the benefits of “moving code”
approaches in SDI. The applied paradigm was proven to improve performance in Web
Service based geoprocessing tasks. The presented and implemented DMC approach also
helps to reduce development efforts for new geoprocessing functionality, facilitates
lifecycle management of geoprocessing algorithms and reduces the maintenance costs of
geoprocessing services.

The prototypical implementation shows that there is almost no performance loss
compared to a workstation GIS as data transportation and communication overheads are
minimized. A pure service chaining approach has to retrieve all the involved data sets
from remote resources at runtime, making it hard to reach close to real-time computation
results. Using hybrid DMC with adequate deployment strategies to transmit a work-
space, the involved constant data items are retrieved only once and most probably not at
runtime.

For the SOKNOS use cases, “moving code” approaches with permanent deployment
were proven useful in lifecycle management. During the development phase, new algo-
rithms were created within a day. Assessing the deployment procedure, the refinement of
WPS process interfaces was identified as the most expensive task in the development
process. Once a stable interface was agreed upon, later updates of the algorithms were
completely transparent to the WPS clients. An obvious means to create stable interfaces
for common geoprocessing tasks is the development and implementation of WPS profiles

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

116 M Miiller, L Bernard and J Brauner

OGC (2007b): Complementary to an AlgorithmDescription stating the required runtime
environment, WPS Profiles can be used to describe system-independent functionality and
processing interfaces.

For general “moving code” scenarios it was found that all performance consider-
ations clearly depend on the given modus operandi. In the case of one-time assembly and
execution when no caching is possible, the performance gain compared to a data-driven
approach will diminish. Thus, the SDI setup and its designated use cases favor either a
data-driven or a “moving code” approach.

“Moving code” approaches are considered beneficial if:

e Algorithms are frequently changed and evolved

e Identical algorithms have to be deployed at or shared among several service instances

e A substantial amount of data can be shipped with the algorithm and stored prior to
execution

e Some tightly coupled data sets can be used to increase performance (caching impact)

e Algorithms have to be placed at a processing service that resides “close” to the data
(bandwidth impact)

Data-driven approaches have been proven beneficial in the following scenarios:

® One-time assembly and execution of workflows

e Real-time response for complex service chains is not required

® The required atomic operators are available at operational processing services
e The required simple operators are available at the data service level

The approach presented here lacks a rigid and well defined formalization mechanism
to allow an interoperable encoding and deployment of the transported geoprocessing
algorithm. Progressing in the design of such well defined geoprocessing algebras is one
of the future research challenges (Brauner et al. 2009). Valuable input and starting
points to this research are: Map Algebra (Tomlin 1990), Multidimensional Map
Algebra (Mennis 2010), OpenGIS Filter Encoding (OGC 2005), WCPS Language
(OGC 2009), the Spatial Extension to SQL (Egenhofer 1994), existing Geoprocessing
libraries and scripting languages as well as approaches towards model sharing in
Spatial Decision Support Systems (El-Gayar and Tandekar 2007, Power and Ramesh
2007).

The described approaches combined with the potentialities of a Grid infrastructure
mark a further challenge for future investigations. The Grid middleware and the under-
lying computing resources can be considered as an additional source system that has to
be integrated. A processing service interface and an appropriate deployment service
provide access to the Grid environment. Alternatively, it is also possible to create a service
based Grid infrastructure, where each node holds a processing service. “Moving code”
could be deployed on these individual services thus forming a large service array for
parallel processing.

Acknowledgements

Parts of the research presented here has been conducted in the frame of the project
SoKNOS (project number 01ISO7009) funded by the German Federal Ministry of
Education and Research to foster the development of service oriented architectures for

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

Moving Code in SDI 117

risk management. Additional thanks go to the anonymous reviewers who helped to
improve this paper. We would also like to thank Stephan Mis for helping to prepare the
final article.

References

52°North 2010 The 52°North WPS Framework. WWW document, http://52north.org/wps

Alarcon V], O’Hara C G, Viger R, Shrestha B, and Mali P 2007 Using an interoperable geopro-
cessing system for hydrological simulation. In Proceedings of the International Conference on
Computational Methods in Science and Engineering (ICCMSE 2007), Corfu, Greece: 1136—
40

Baranski B 2008 Grid computing enabled web processing service. In Pebesma E, Bishr M, and
Bartoschek T (eds) GI-Days 2008: Proceedings of the Sixth Geographic Information Days.
Miinster, Institut fur Geoinformatik: IfGlprints No 32: 243-56

Brauner], Foerster T, Schaeffer B, and Baranski B 2009 Towards a research agenda for geopro-
cessing services. In Proceedings of the Twelfth Annual AGILE Conference, Hanover, Germany

Craglia M, Goodchild M F, Annoni A, Camara G, Gould M, Kuhn W, Mark D, Masser I, Maguire
D, Liang S, and Parsons E 2008 Next-generation Digital Earth: A position paper from the
Vespucci Initiative for the Advancement of Geographic Information Science. International
Journal of Spatial Data Infrastructures Research 3: 146—67

Egenhofer M 1994 Spatial SQL: A query and presentation language. IEEE Transactions on
Knowledge and Data Engineering 6: 86-95

El-Gayar O and Tandekar K 2007 An XML-based schema definition for model sharing and re-use
in a distributed environment. Decision Support Systems 43: 791-808

Foster I, Kesselman C, and Tuecke S 2001 The anatomy of the Grid: Enabling scalable virtual
organizations. International Journal of Supercomputer Applications 15: 200-22

Friis-Christensen A, Lutz M, Ostlinder N, and Bernard L 2007 Designing service architectures for
distributed geoprocessing: Challenges and future directions. Transactions in GIS 11: 799-818

Hobona G, Faribairn D, and James P 2007 Workflow enactment of Grid-enabled geospatial Web
services. In Proceedings of the Sixth UK e-Science All Hands Meeting, Nottingham, United
Kingdom

IETF 2005 Uniform Resource Identifier (URI): Generic syntax. WWW document, http:/
tools.ietf.org/html/rfc3986/rfc3986.htm

ISO 2005 ISO 19119:2005 geographic information services. International Standard, ISO TC 211

ISO 2006 ISO 19118:2006 geographic information — encoding. International Standard, ISO TC
211

Kiehle C, Greve K, and Heier C 2007 Requirements for next generation spatial data infrastructures:
Standardized Web-based geoprocessing and Web service orchestration. Transactions in GIS
11: 819-34

Mennis J 2010 Multidimensional map algebra: Design and implementation of a spatio-temporal
GIS processing language. Transactions in GIS 14: 1-21

Miiller M, Bernard L, and Vogel R 2010 Multi-criteria evaluation for emergency management in
Spatial Data Infrastructures. In Zlatanova S, Konecny M, and Bandrova T (eds) Cartography
and Geoinformatics for Disaster Management: Developments and Trends. Berlin, Springer:
273-86

OGC 2005 OpenGIS Filter Encoding Implementation Specification 1.1.0. Wayland, MA, OGC
Document No 04-095

OGC 2006 OpenGIS Web Feature Service (WES) Implementation Specification, Corrigendum,
1.0.0. Wayland, MA, OGC Document No 06-027

OGC 2007a Reference Model for the ORCHESTRA Architecture (RM-OA) V2 (Rev 2.1).
Wayland, MA, OGC Document No 07-097

OGC 2007b OpenGIS Web Processing Service, Version 1.0.0. Wayland, MA, OGC Document No
05-007r7

OGC 2008 Web Coverage Service Implementation Standard. Wayland, MA, OGC Document No
07-067r5

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

118 M Miiller, L Bernard and J Brauner

OGC 2009 Web Coverage Processing Service Language Interface Standard. Wayland, MA, OGC
Document No 08-068r2

Power D J and Ramesh S 2007 Model-driven decision support systems: Concepts and research
directions. Decision Support Systems 43: 1044-61

PyWPS 2010 The Python web processing servicee. WWW document, http://pywps.wald.
intevation.org/

SANY 2009 SANY: An Open Service Architecture for Sensor Networks. Vienna, SANY Consortium

Schaeffer B 2008 Towards a transactional WPS (WPS-T). In Pebesma E, Bishr M, and Bartoschek
T (eds) GI-Days 2008: Proceedings of the Sixth Geographic Information Days. Munster,
Institut fiir Geoinformatik: IfGlprints No 32: 91-116

Scholten M, Klamma R, and Kiehle C 2006 Performance evaluation of spatial data infrastructures
for geoprocessing. IEEE Internet Computing 10(5): 34-41

SoKNOS 2010 SoKNOS: Service-orientierte ArchiteKturen zur Unterstiitzung von Netzwerken im
Rahmen Oeffentlicher Sicherheit (Service-Oriented ArchiteCtures Supporting Networks of
Public Security). WWW document, http://www.soknos.de/

Tomlin D 1990 Geographic Information Systems and Cartographic Modelling. Englewood Cliffs,
NJ, Prentice-Hall

Weiser A and Zipf A 2007 Web service orchestration of OGC web services for disaster manage-
ment. In Li J, Zlatanova S, and Fabbri A (eds) Geomatics Solutions for Disaster Management.
Berlin, Springer Lecture Notes in Geoinformation and Cartography: 239-54

Zaharia R, Vasiliu L, Hoffman J, and Klien E 2008 Semantic execution meets geospatial Web
services: A pilot application. Transactions in GIS 12: 59-73

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(S1)

3. Moving Code — Sharing
Geoprocessing Logic on the Web

Miiller, Matthias; Bernard, Lars; Kadner, Daniel: Moving code — Sharing geo-
processing logic on the Web. In: ISPRS Journal of Photogrammetry and Remote
Sensing, 83, 2013, pp. 193-203.

Abstract. Efficient data processing is a long-standing challenge in remote sens-
ing. Effective and efficient algorithms are required for product generation in ground
processing systems, event-based or on-demand analysis, environmental monitoring,
and data mining. Furthermore, the increasing number of survey missions and the
exponentially growing data volume in recent years have created demand for bet-
ter software reuse as well as an efficient use of scalable processing infrastructures.
Solutions that address both demands simultaneously have begun to slowly appear,
but they seldom consider the possibility to coordinate development and maintenance
efforts across different institutions, community projects, and software vendors.

This paper presents a new approach to share, reuse, and possibly standardise
geoprocessing logic in the field of remote sensing. Drawing from the principles of
service-oriented design and distributed processing, this paper introduces moving-
code packages as self-describing software components that contain algorithmic code
and machine-readable descriptions of the provided functionality, platform, and in-
frastructure, as well as basic information about exploitation rights. Furthermore,
the paper presents a lean publishing mechanism by which to distribute these pack-
ages on the Web and to integrate them in different processing environments ranging
from monolithic workstations to elastic computational environments or “clouds”. The
paper concludes with an outlook toward community repositories for reusable geopro-
cessing logic and their possible impact on data-driven science in general.

ol

ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203

Contents lists available at SciVerse ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Moving code - Sharing geoprocessing logic on the Web

@ CrossMark

Matthias Miller *, Lars Bernard, Daniel Kadner

Technische Universitdt Dresden, Geoinformation Systems, 01062 Dresden, Germany

ARTICLE INFO ABSTRACT

Article history:
Available online 29 March 2013

Efficient data processing is a long-standing challenge in remote sensing. Effective and efficient algorithms
are required for product generation in ground processing systems, event-based or on-demand analysis,
environmental monitoring, and data mining. Furthermore, the increasing number of survey missions
and the exponentially growing data volume in recent years have created demand for better software
reuse as well as an efficient use of scalable processing infrastructures. Solutions that address both
demands simultaneously have begun to slowly appear, but they seldom consider the possibility to coor-
dinate development and maintenance efforts across different institutions, community projects, and soft-
ware vendors.

This paper presents a new approach to share, reuse, and possibly standardise geoprocessing logic in the
field of remote sensing. Drawing from the principles of service-oriented design and distributed process-
ing, this paper introduces moving-code packages as self-describing software components that contain
algorithmic code and machine-readable descriptions of the provided functionality, platform, and infra-
structure, as well as basic information about exploitation rights. Furthermore, the paper presents a lean
publishing mechanism by which to distribute these packages on the Web and to integrate them in differ-
ent processing environments ranging from monolithic workstations to elastic computational environ-
ments or “clouds”. The paper concludes with an outlook toward community repositories for reusable
geoprocessing logic and their possible impact on data-driven science in general.
© 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

Keywords:

Geoprocessing

Software reuse
Interoperability

Spatial data Infrastructures
Standards

B.V. All rights reserved.

1. Introduction

When the use of computers in remote sensing gained momen-
tum in the late 1960s, an immediate need for computational meth-
ods for the timely handling, analysis, and dissemination of data
became apparent (Simonett, 1969). Although the technology has
evolved significantly since this time period, the effective and effi-
cient processing of data originating from various sensors or data
sources is still a topic in recent publications (e.g., Deqiang et al.,
2012; Happ et al,, 2010; Plaza, 2006).

The evolution of internet and Web technologies beginning in
the late 1990s has also heavily influenced the methods of re-
mote-sensing data management and distribution. Today, several
Web portals provide access to remote-sensing data catalogues
and data stores. These portals allow for the easy discovery and ac-
cess (i.e., download) of remote-sensing data. Prominent examples
are the remote-sensing portals of NASA (NASA, 2012) and ESA
(ESA, 2012), as well as the Portal on the European Land Cover Data
Corine (Eionet, 2012).

Global and regional initiatives, such as Digital Earth (Craglia
et al., 2012), GEOSS (GEO, 2012) and GMES (GMES, 2012), have

* Corresponding author. Tel.: +49 351 463 31953; fax: +49 351 463 35879.
E-mail address: Matthias_Mueller@tu-dresden.de (M. Miiller).

been established not only to exploit and encourage the develop-
ment of remote-sensing applications but also to realise and im-
prove global infrastructures, allowing for an easy and efficient
exchange and utilisation of remote-sensing data and the derived
information products. Additional concepts for infrastructures in
eScience or so-called cyberinfrastructures have arisen and are
envisioned as “... a combination of data, resources, network proto-
cols, computing platforms, and computing services that brings
people, information, and computational tools together to perform
science or other data-rich applications in this information-driven
world” (Yang et al.,, 2010). With spatial or geo-referenced data
being one of the driving information resources, geospatial cyberin-
frastructures are framed around the characteristics of geospatial
data (including Earth observation data and sensors), geospatial
data processing, geo-visualisation, and spatial decision support.
In their conceptual framework, Yang et al. (2010) identify distrib-
uted geographic information processing and high-performance
computing as key technologies necessary to achieve a geospatial
cyberinfrastructure. In parallel, it is suggested to have these capa-
bilities available in a service-oriented manner to facilitate rapid
application development. Gray (2009) demands more efficient,
easy to use data analysis tools for eScience in general, and Craglia
et al. (2012) articulate a similar demand for the future Digital
Earth.

0924-2716/$ - see front matter © 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.isprsjprs.2013.02.011

194 M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203

Industry and de-jure standards, most prominently from the
Open Geospatial Consortium (OGC), the International Organization
for Standardisation (ISO), or the Institute of Electrical and Electron-
ics Engineers (IEEE), allow for harmonised data formats and inter-
operable discovery, viewing, and download services on the Web.
Standards such as the interface specifications for Web Coverage
Services and Sensor Observation Services are rooted in remote-
sensing applications and are widely used today. However, current
developments mainly focus on data exchange in distributed envi-
ronments and only a few authors have considered the possibility
to exchange geoprocessing logic in Web-based environments
(Friis-Christensen et al., 2007; Miiller et al., 2010; Kiehle et al.,
2007). There are three main facets associated with these develop-
ments. First, there is a focus on reusing computational algorithms
not only to avoid duplicate implementations but also to allow peer
reviews of algorithms and, in the long term, gain efficiency and
better quality algorithms. Second, as the quantity and size of re-
mote-sensing datasets challenge computing power and internet
bandwidths even with today’s technology, mechanisms are re-
quired that consider moving the computational code closer to
the data rather than moving excessive amounts of data to a pro-
cessing service. Third, elastic computing environments, such as
grid and cloud computing, call for techniques to enable the easy
distribution of geoprocessing logic in scalable environments. These
developments face two main issues: first, there is a lack of a well-
established common understanding of the functional granularity
necessary to support recurring geo-computational tasks, and, sec-
ond, there is a lack of mechanisms that support the exchange of
processing functionality across different distributed computational
platforms (Gray, 2009; Yang and Liu, 2012).

This paper proposes a lightweight framework that contracts
geoprocessing logic in the following four dimensions. (1) A func-
tional description provides a formalisation of the input and output
data with respect to structure and content and a comprehensible
description of the procedure used to derive the outputs from the
inputs. (2) A platform description states the dependencies on other
software that needs to be available for deploying and executing the
computing logic. Such information enables the determination of a
proper software platform for deployment or probing the compati-
bility of existing configurations. (3) An infrastructure description
states the hardware requirements needed to execute the algorith-
mic code reliably. (4) The exploitation rights associated with the
computing logic constitute the fourth dimension.

The paper proceeds with a review of existing approaches to the
processing of large data and their application in the remote-sens-
ing domain, with a special focus on code reuse and code sharing
approaches to better deal with big data. The next section presents
a novel approach for packaging and sharing reusable code based
on the requirements of service-oriented software design and cloud
computing service models. To prove the feasibility of the ap-
proach, the concept is then applied to a data-intensive anomaly
detection workflow in a distributed geodata infrastructure and is
realised using open standards wherever possible. The paper con-
cludes with an outlook on community repositories for reusable
algorithmic code and some thoughts regarding a code-sharing
standard.

2. Approaches to big data processing

Data processing challenges in remote sensing are manifold.
Datasets are becoming larger with each generation of sensors
due to their increased radiometric, spectral, and geometric resolu-
tion. At the same time, the number of datasets is growing rapidly
with each new space or airborne observation platform (Pallickara
et al,, 2011). These problems are not unique to remote sensing

but are characteristic of all data-driven research and analysis activ-
ities (Clery and Voss, 2005; Gray, 2009; Yang et al., 2010). The
problem is approached in two different ways. Data partitioning
and parallelisation efforts attempt to take advantage of multi-core
systems and computer clusters by splitting computations across a
large number of processors. Additionally, software reuse efforts are
an approach to deal with the large variety of observation data and
analysis tasks by providing pluggable, reusable building blocks as a
foundation for new processing workflows. When grid and cloud
computing infrastructures began to appear, it became clear that
the concept of pluggable, loosely coupled atomic processes could
also be used to accomplish parallel processing workflows in these
new scalable computing environments.

The following sections summarise existing approaches to ad-
dress scalability issues and efforts to increase software reuse in
the remote-sensing domain.

2.1. Parallel data processing

Partitioning techniques are the most obvious approach to mass
data handling. They are essential to process very large datasets
that would not fit into a computer’s memory. Incremental algo-
rithms are designed to be used with sequential data subsets or
continuous data streams, and there is a large body of knowledge
in this domain of computer science (e.g., Knuth, 1997). These algo-
rithms are frequently used for computing basic statistical param-
eters of large satellite images, time series data, or large
multipoint samplings.

Most parallelisation techniques to reduce computational costs
rely on partitioned datasets. Numerous publications have pre-
sented innovative approaches for the parallel processing of re-
mote-sensing data. A general discussion on data partitioning
approaches and parallel processing techniques for hyperspectral
images is presented by Plaza (2006). Happ et al. (2010) and Korting
et al. (2011) focus on the shortcomings of existing image segmen-
tation algorithms. These authors use partitioning approaches along
with a parallel re-implementation of established algorithms to re-
duce the computational costs on a multi-core system. A software
framework for parallel image classification, including pre- and
post-processing steps, is presented by Bernabé et al. (2012).
Teutsch et al. (2011) present a partitioning and parallelisation ap-
proach for clustering point cloud data that may originate from
laser scanning devices. Some of these processing tasks can be con-
sidered “embarrassingly parallel” and thus require very little data
partitioning and re-assembly effort (Raicu et al, 2008). However, as
partitions and parallel threads are increasing in number, saturation
effects may be observed (Mufioz-Mari et al., 2009) due to commu-
nication and coordination efforts. In some cases, the peak perfor-
mance is limited by the underlying storage system because the
data cannot be transferred quickly enough to the computer’s
memory.

For completeness, it should also be noted that there are addi-
tional approaches that take advantage of dedicated hardware. An
interesting idea is the use of graphics hardware and specialised
algorithms for computationally intensive processing tasks (Xiao-
shu and Hong, 2010; Christophe et al., 2011). Instead of explicit
parallel programming, the graphics processors internally execute
single instructions on multiple data (SIMD). This hardware archi-
tecture is ideal for processing array-like data structures in cases
where identical operations must be performed on each of the
elements.

2.2. Software reuse in data processing workflows

Software reuse is an approach that helps deal with large num-
bers of similar datasets. Remote-sensing data are created by the

M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203 195

various instruments that sense similar physical parameters, but
these instruments provide different geometric, spectral, and radio-
metric resolutions, or they simply have different data formats
when delivered by a data centre. The naive approach is the devel-
opment of stove-piped analysis and monitoring software that can
address the subtleties of the data. Approaching the problem in such
a singular manner gradually leads to an unmanageable amount of
software with essentially similar functionality. Moreover, due to
the sheer number of new datasets, big data can hardly be dealt
with by per-task implementations of analysis functions. Software
reuse strategies aim to use existing functionality for future tasks;
therefore, frequently used procedures in data processing work-
flows have inherent potential for reuse. NASA has started an inter-
nal working group to foster software reuse across their present and
foreseen Earth observing missions (Marshall et al., 2011; Matt-
mann et al., 2010). In Europe, ESA is undertaking efforts to auto-
mate user-driven data access, preprocessing, and analysis by
establishing a community toolbox of best-practice analysis func-
tions (Meijer et al., 2009).

The reuse of functionality and the ability to invoke it into new
workflows is one of the core assets of service-oriented design,
where “service” can be defined as a software component that
encapsulates functionality behind a standardised interface. Ser-
vices hide implementation details from their clients and can thus
be accessed without knowledge about the internal workings using
standard protocols (Erl, 2007; Foster, 2005). Functional abstraction
ensures discoverability, i.e., a potential client may inquire about a
service catalogue to retrieve a service instance that performs the
requested function. To increase the potential for reuse, services
mostly rely on established conventions and media formats for data
exchange. Georeferenced Tagged Image File Format (GeoTiff), Hier-
archical Data Format (HDF)(), Network Common Data Form (Net-
CDF), Gridded Binary (GRIB), and Geography Markup Language
(GML) are some examples of well-known and even standardised
formats of spatial data.

Web services for data access have become relatively common-
place. Operational service-oriented architectures (SOAs) that in-
clude data processing services are less common. Eberle and
Strobl (2012) present a processing-centric SOA to generate re-
mote-sensing products. They are encapsulating NASA software
for the Moderate-resolution Imaging Spectroradiometer (MODIS)
raw data processing and heat detection functions within a Web
Processing Service (WPS; OGC, 2007).

Anselin (2012) discusses a service-oriented workbench for spa-
tial statistics that provides the required analysis functions as Web
services. He finds that encapsulating existing functionality into
loosely coupled data processing services is technically feasible
but not trivial from an application perspective. Therefore, careful
choices about the appropriate granularity for atomic functions
must be made to ensure their reusability and composability into
meaningful workflows.

Several authors (Anselin, 2012; Brauner et al., 2009; Friis-Chris-
tensen et al., 2007) discuss issues with large datasets in Web ser-
vice-based data processing. Invoking functionality from a remote
Web service is convenient, but shipping large amounts of data be-
tween distant data services, processing services, and clients can
become prohibitively expensive in terms of transmission time.
Additional applications may only require a subset or an aggrega-
tion of the considered datasets but do not require sending of the
complete full-resolution data. Approaches to move the algorithmic
code to the data rather than the other way around have been dis-
cussed by Miiller et al. (2010).

Functionality alone is not the only reason for software reuse.
Achieving stability, robustness, and correctness for a software
component requires significant development efforts. Once avail-
able, it is desirable to reuse this software in different application

contexts. However, the stove-piped development and unnecessar-
ily tight coupling of components to proprietary data formats or
processing platforms are major obstacles for code and component
interchange.

2.3. Scalable infrastructures for data-driven analyses

Both grid computing and cloud computing share the same goal
of delivering computational and data storage facilities to users and
outsourcing the operation of these resources to third parties
(Foster et al., 2008). A common purpose of clouds and grids is large
distributed data storage and parallel computing.

In a grid, resources are shared among members of virtual organ-
isations that often participate in a joint project. Historically, grids
have been viewed as an effort to make consolidated use of expen-
sive computational infrastructure. In remote sensing, grid infra-
structures have been applied for recurrent data processing tasks
(e.g., Gasster et al., 2008; Hu et al., 2005). Based on the idea of ser-
vice-oriented science, Foster (2005) developed an outsourcing
strategy to allow the distribution of discipline-specific content
(i.e., data, software and processes) that is developed and provided
by scientists. The provision of lower level, general-purpose infra-
structures, such as domain-independent software and hardware,
may be handed over to specialist providers. For remote sensing,
Aloisio et al. (2004) implemented such a system in a shared grid
infrastructure for high-performance computing.

In contrast to grids, cloud computing providers lend their re-
sources to consumers in an ad hoc manner. Cloud computing is a
model for on-demand access to “... a shared pool of computing re-
sources [...] that can be rapidly provisioned and released with
minimal management effort” (Mell and Grance, 2011). An essential
feature of cloud computing is the elasticity of the provided re-
sources that scale rapidly with a changing demand. Ideally, a con-
sumer may request arbitrary computational resources from a
virtually unlimited resource pool at any given time. Due to the dy-
namic up and down scaling mechanism, consumers only pay for
the resources when they actually use them. The cloud computing
model is comprised of three service models (Mell and Grance,
2011):;

Software as a Service (SaaS) allows a consumer to use the pro-
vider’s application in a cloud infrastructure. The user is completely
unaware of the underlying physical hardware resources and is un-
able to reconfigure the provided software. Depending on the par-
ticular software delivered, cloud consumers access SaaS through
Web browsers, Web services, or full-fledged remote desktop
sessions.

Platform as a Service (PaaS) allows consumers to deploy their
own applications and software in a pre-defined environment using
pre-defined programming languages, libraries, and APIs supported
by the PaaS provider. Consumers still do not have control over
physical hardware resources but do have full control over the de-
ployed software.

Infrastructure as a Service (IaaS) provides consumers with
physical resources for processing, storage, and networking. Con-
sumers may deploy and run arbitrary software in an laaS environ-
ment, including operating systems and low-level applications.

Applications of cloud services naturally resemble grid comput-
ing applications. Assessments of cloud computing for eScience in
general (Ramakrishnan et al., 2010) and remote sensing in partic-
ular (Dong et al., 2011) yield encouraging results in terms of com-
puting performance and scalability. Considering the flexibility and
portability of runtime environments, which is an essential founda-
tion for the intended code sharing, cloud computing outperforms
grid computing (Ramakrishnan et al., 2010).

Yang et al, 2011 propose a classification of information
technology challenges in geosciences which can be met by cloud

196 M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203

computing. These challenges are data intensity, computing inten-
sity, concurrent access intensity and spatiotemporal intensity.
The data intensity challenge is related to the organisation and effi-
cient distribution of large, multi-dimensional, and globally distrib-
uted data. Here, cloud computing usually supports large and
distributed databases in the backend of data management services
(Blower, 2010; Cary et al.,, 2010). Computing intensity refers to
computationally expensive geoprocessing tasks, which frequently
occur in data mining or geospatial simulation. Elastic cloud envi-
ronments provide processing nodes in large numbers and support
parallelisation through frameworks such as MapReduce (Dean and
Ghemawat, 2008; Degiang et al., 2012). Since an efficient schedul-
ing mechanism requires control of hardware resources and the
software stack the PaaS and laaS service models are considered
to support computing intensive scenarios (Yang et al., 2011). Con-
current access intensity and spatiotemporal intensity refer to the
occurrence of peak demands for geodata or geoprocessing tasks.
Duty cycles and peak loads for computing resources may occur
randomly or follow certain geographic and temporal patterns since
users live in different places and time zones. Due to the immanent
elasticity of cloud environments, resources can be dynamically
provided and released in response to the current demand. Cloud
computing has been applied in the backend of data access services
and processing services to guarantee minimal response times
(Kussul et al., 2012; Schaffer et al., 2010).

3. An interchange model for reusable geoprocessing logic

The previous review demonstrates that code sharing concepts
are complementary to data sharing and thus may help deal with
big data by moving algorithmic code closer to the data rather than
the other way around. Code-sharing concepts can also be em-
ployed for the distribution of data across a large array of processing
nodes, thus supporting some parallelisation scenarios. The state-
of-the-art on big data processing also shows that there is a persis-
tent demand for better interoperability and a standards-based ex-
change of code to support cloud computing.

Sharing and reusing code at a larger scale may yield community
repositories of frequently used data processing functions. Many of
the current data infrastructures resemble specialised “‘work-
benches” that deliver analysis capabilities through Web services,
Web applications, and possibly specialised middleware. Going
even further by not only delivering the pre-configured workbench
to the user but also giving him or her the ability to comfortably
assemble, configure, and extend his or her own workbenches
would be the next logical step. Among other tasks, this step would
involve the development of loosely coupled processing services
that can be deployed and invoked in a variety of software environ-
ments. The following sections present an integrated concept for the
sharing and deployment of reusable data processing functions.

3.1. A four-dimensional descriptive model for sharing algorithmic code

The research and development activities associated with ser-
vice-oriented spatial data processing have led to standardised
service interface descriptions of processing services in a distributed
environment. The primary subject of the resulting service descrip-
tions is the provided functionality, while the properties of the
underlying implementation remain unconsidered. Sharing algo-
rithmic code among different processing nodes, which is the key
to achieving elasticity in cloud computing, necessitates a more
holistic description for service-oriented software components with
a particular consideration of the required runtime environment,
i.e,, required software platforms and computing hardware.

Fig. 1 presents an abstract model for describing exchangeable
geoprocessing logic along four dimensions. The contracted func-
tionality (1) is a machine-readable description of the provided
functionality. It describes the interface of the implemented algo-
rithmic code in a standardised manner and may contain additional
information concerning the algorithms applied. In cloud comput-
ing, a functional description can be placed on the same level as
the SaaS service model. The contracted platform (2) characterises
the runtime environments in terms of basic software platforms.
This dimension corresponds to the PaaS service model in cloud
computing. Coarse-grained software dependencies (e.g., particular
sets of installed libraries and interpreters) of the code that is to be
shared are specified by this dimension. The contracted infrastruc-
ture (3) refers to particular hardware resources that are required
at runtime for a reliable execution and corresponds to the laaS ser-
vice model. The code to be shared could be resource demanding
and is intended to be run on a high-memory, multi-core server,
or it could be resource-efficient, allowing execution on low-mem-
ory, single-core computers. Resource-efficient code is especially
interesting in concurrent runtime environments, where the same
function is executed simultaneously for parallelisation. Resource-
efficient implementations are found in the backend of application
servers but may also offer cost-efficient data processing in small
cloud computing instances. The legal contract (4) refers to the
exploitation rights associated with the shared algorithmic code.
It covers all legal aspects, from usage rights to liabilities. Producers
may grant free use of their software for non-commercial purposes
but demand a license fee for commercial applications.

Such a unified description model allows software developers to
specify exactly what function the components perform and in
which environments they can be run. Software inventories build-
ing on the proposed descriptive model will be able to deliver reus-
able software components that meet given criteria concerning
exploitation rights, hardware requirements, platform dependen-
cies, and functionality. Users may query those inventories to search
for existing functionality that suits their needs and fits into their
existing infrastructure. Another possible scenario would be an
inquiry for cloud services that provide sufficient capabilities to
run a particular component.

3.2. Conceptual architecture

The conceptual architecture in Fig. 2 presents an overview of
the components required for the service-oriented exchange of geo-
processing logic in a distributed data infrastructure. The main
building blocks are code management services, data management
services, and workflow and processing facilities that finally execute
the computing logic on the data. The architecture supports typical
publish-find-bind scenarios; for example, download services for
geoprocessing logic are registered with independent discovery ser-
vices (publish). Consumers of geoprocessing logic may query the

Contracted Contracted
Functionality Platform
Contracted Legal
Infrastructure Contract

Fig. 1. Dimensions used to describe algorithmic code: (1) contracted functionality,
(2) platform, (3) infrastructure and (4) license or legal contract associated with a
particular implementation of an abstract functionality.

M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203 197

Cloud Processing Facilities

Desktop GIS

Geoprocessing Services

Application Layer

Download
Services

Discovery
Services

Code Management Services

Description

Metadata Repository

Platform
Registry

Platform
and Code Definitions

Process
Registry

Data Management
Ser\llices

-

Datasets

Process
Definitions

Fig. 2. Conceptual architecture for a distributed code-sharing and geoprocessing environment.

catalogue to find geoprocessing logic that suits their needs (find).
Harmonised identifiers and definitions of functionality and pro-
cessing platforms are stored in common registries. After a suitable
implementation has been found, the consumer’s computing site
(located in the application layer) can be connected to a particular
provider’s download service (bind). Depending on the specific
requirements, this binding may be permanent (e.g., to receive
automatic updates) or temporary (e.g., for one-time executions).
A platform registry may also be used to establish a well-known
set of platform definitions. PaaS providers may use such a registry
to provide frequently used pre-configured processing platforms to
their customers.

Possible processing facilities range from stand-alone applica-
tions in desktop GIS, via geoprocessing services where clients in-
voke remote services to perform data analysis tasks, to cloud
environments offering computational power and bandwidth to
process large datasets.

3.3. A packaging scheme for reusable geoprocessing logic

Similarly to data exchange among different systems (ISO, 2005),
the redistribution of geoprocessing logic requires a common pack-
aging and exchange format. The approach presented in this chapter
is based on the work of Miiller et al. (2010), who introduced mov-
ing-code packages as structured zip files that contain a description
of the provided geoprocessing logic and the platform requirements,
as well as the specific implementation. In this paper, that approach
is extended and modularised to support the description of PaaS,
[aaS, and licenses, as well as the ability to use arbitrary standards
for the functional description. The moving-code concept uses a
workspace to store the algorithmic code and possible tightly cou-
pled datasets. Workspace concepts are known to many GIS and
other data processing software programs, thus making moving-
code packages a versatile approach that covers a broad range of
applications. In addressing the four dimensions shown in Fig. 1,
the class diagram in Fig. 3 presents a conceptual model for mov-
ing-code packages.

The schema has been designed for extensibility, allowing differ-
ent functional representations of the provided logic. For the func-
tional contract, the WPS standard is used as a basic means to

communicate a declarative specification of the geoprocessing logic.
However, other widely adopted standards, such as the Web Service
Definition Language (WSDL; W3C, 2007), may also be used for this
purpose.

The contracted platform is formalised as a list of unique identi-
fiers of runtime components that have to be provided by a deploy-
ment platform. The contracted platform describes high-level
dependencies, such as third-party libraries and software packages
that must be available on the target platform. Individual runtime
components are represented by unique identifiers, which are reg-
istered and further described at the platform registry in Fig. 2. Run-
time components are self-aggregating objects; namely, a coarse-
grained runtime component may aggregate other, more finely
grained runtime components. For example, different versions of
the well-known library GDAL are aggregated by a variety of other
software programs, such as GRASS and ArcGIS.

Describing the contracted infrastructure requires a compromise
between detail and manageability. Detailed information on hard-
ware properties is often desirable in high-performance computing,
but it introduces a significant overhead for general-purpose appli-
cations. In favour of manageability, the contracted infrastructure is
described in line with the Open Cloud Computing Interface (OCCI,
OGF, 2011a) specification, an emerging standard in cloud comput-
ing that will be supported by numerous cloud infrastructure pro-
viders. This standard also allows for the description of
computation infrastructure at a more general and manageable le-
vel (OGF, 2011b) and focuses mainly on computing architecture,
processing power, and memory consumption. An additional advan-
tage of using OCCI lies in the direct comparability of hardware
capabilities and requirements, allowing an instant decision to be
made on deployment feasibility. Users may also decide to select
resource-efficient implementations if multiple moving-code pack-
ages offer the same functionality.

An interoperable approach to the exchange and communication
of exploitation rights is the Creative Commons license (Abelson
et al., 2008). The standardised modular licensing scheme is appli-
cable to licensing requirements of open-source software and is
the preferred mechanism to describe the exploitation rights for
moving-code packages. In catalogues or inventories, this scheme
allows users to query desired licensing requirements as search

198 M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203

ContractedFunctionality

ProcessDescription
(inherits from WPS specification)

implements
I

Workspace

+ workspaceRoot [1]

+ executableLocation [1]

+ containerType [1]

+ executionParameters [1..*]

| |
liable to -
1

ExploitationRights

+ CreativeCommonsLicense [0...1]
+ TraditionalLicenseDocument [0..1]

p ContractedInfrastructure
lies —
complies (inherits from OCCI specation)

| (inherits from other standard) |

ContractedPlatform

+ runtimeComponent [1..*]

Fig. 3. Structural view of a moving-code package.

criteria for reusable code. As not all implementations use Creative
Common license types, practical considerations demand a way to
express commercial licenses and other types of open source li-
censes that are neither modular nor standardised. In this case,
the legal text is supplied by a URL reference where the license doc-
ument can be obtained.

The workspace description holds information about the work-
space structure, the location of the executable code (e.g. a particu-
lar file), and instructions for the parameter mapping between the
executable code and the service-oriented description. Workspaces
contain the algorithmic code that realises the functional contract
and must comply with the contracted platforms and the contracted
types of infrastructure.

3.4. Machine-readable feeds for software discovery and download

Existing ISO metadata standards are suitable for the description
of geospatial data and services. Today, ISO 19115 (ISO, 2009) forms
the basis of the metadata models of most geodata catalogues. How-
ever, the description of processing functionality in standardised
catalogues is still an issue. The ISO 19115 standard only allows
processing operations to be described as supplementary informa-
tion in the lineage statement of a particular dataset. Cataloguing
generic and independent processing operations is not foreseen.
Lacking a standardised concept for a processing inventory, a hybrid
approach was chosen that uses the Atom Syndication Format (IETF,
2005a) for the discovery and download of geoprocessing function-
ality in the code management services (compare with Fig. 2). It is a
lean, extensible XML-based format for platform-independent
information exchange, and its usage ranges from exchanging sim-
ple text news to sharing multimedia content or complex data.
News readers as well as other aggregator software may subscribe
to Atom feeds and obtain new or updated content by a pull mech-
anism. The format’s capabilities to exchange information in multiple
representations, being human- as well as machine-readable, and the
provision of a simple versioning mechanism make it a suitable ex-
change vehicle for moving-code packages. Atom feeds delivering
geoprocessing functionality are called geoprocessing feeds in this
paper. The human-readable part of the feed’s content allows users
to study the provided functionality and pick those packages that suit
their needs. The machine-readable part of the same feed can be in-
voked by any of the application environments in Fig. 2. Additionally,
after subscription, these machines may occasionally synchronise
with the geoprocessing feed to obtain an updated algorithmic code.

Geoprocessing feeds are also a convenient instrument with
which to distribute moving-code packages in a dedicated, private
network that consists of multiple processing nodes. Similarly to

newsfeeds, a customised or private geoprocessing feed may con-
tain unions or filtered subsets of external feeds. Selection criteria
may relate to any of the four dimensions discussed in Section 3.1.
Hosting the moving-code packages in-house also increases resil-
ience to external server outages and speeds up the internal compo-
nent distribution process.

4. Proof-of-concept: An anomaly detection application

In this section, a real-world example will be presented that uses
moving-code packages and processing feeds to describe and ex-
change reusable functionality in a remote-sensing analysis. The re-
lated proof-of-concept implementation has been realised within
the framework of the OGC Web Services Phase 8 testbed (OWS-8,
0GC, 2012).

Anomaly detection in time series data is a common task in data
mining and monitoring applications. The term “anomaly” may re-
late to the shape, size, and duration of spatial phenomena or their
intensity within a certain region (McKenna and Gutierrez, 2011).
The following example presents a procedure for detecting intensity
anomalies in vegetation indices. The calculation procedure was
originally developed by Samanta et al. (2011) to assess the sensi-
tivity of Amazon rainforests to dry-season droughts. The available
MATLAB process was analysed and decomposed into reusable
pieces of geoprocessing logic for subsequent implementation as
reusable moving-code packages (Fig. 4).

Inputs to the process chain are the MODIS MOD13A2 and
MOD12Q1 products. The MOD13A2 product contains the pre-com-
puted Enhanced Vegetation Index (EVI), an index that is related to
photosynthetic activity and greening, and some quality informa-
tion that can be used as a measure of reliability for the EVI value.
The MOD12Q1 contains a forest mask that is used to sift out all
non-forest pixels. Both inputs are so-called MODIS granules, which
are spatio-temporal tiles containing data for a particular spatial
and temporal extent. These granules are somewhat specific to
the orbital parameters of NASA’s Terra satellite and must first be
aggregated to monthly values to perform any further computa-
tions. A preprocessing step involves all necessary steps that are
particularly related to the HDF-EOS data format and metadata as
well as the product-specific processing steps.

The subsequent processing steps are local operations on raster
data or more formally discrete surface coverages with quadrilateral
grid geometry (compare with ISO, 2007), which can be handled
within Tomlin’s map algebra operators (Tomlin, 1990). From
the monthly EVI values, the quarterly data for the summer season
are obtained through a local mean function. Based on these
annual quarterly data, a z-score function computes the pixel-wise

M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203 199

Monthly EVI
pre-processing

MODIS
MOD13A2
granules

EVI
coverages
(monthly)

MODIS Masking,
MOD12Q1 quality filtering,
granules EVI extraction,

temporal aggregation

Local mean

EVI EVI Single EVI
coverages anomaly anomaly
(quarterly) coverages coverage

Local z-score Mosaic

Fig. 4. Processing workflow for the anomaly calculation procedure (adapted from Samanta et al., 2011).

difference between the current year’s EVI and the corresponding
values from a reference period in standard deviations. Values be-
low —1¢ are considered as “browning”, indicating areas with sig-
nificantly less photosynthetic activity than that in the reference
period and that are, therefore, potentially suffering from drought
effects (Samanta et al., 2011). The final process step is a common
mosaicking operation that assembles the individual tiles, each cor-
responding to the geographic extent of the respective input gran-
ules to a larger raster covering the entire Amazon region in
South America.

This use case is a good example of an embarrassingly parallel
problem: most functions are independently performed on a large
number of individual granules and can thus be easily processed
in parallel. From the many possible decompositions of the original
procedure, the particular decomposition in Fig. 4 yields quite gen-
eric functions that have a high potential for reuse and allow for a
high degree of parallelisation.

The local mean is a generic operation from Tomlin’s Map Alge-
bra and a general-purpose function in many workflows. The
z-score process is similarly versatile for anomaly detections; spe-
cifically, the applied standardisation procedure is a common sub-
task in spatial multi-criteria evaluation workflows; a preprocessing
step in visual analysis; or, as in this case, a statistical transforma-
tion for anomaly detection. The last sub-process for mosaicking
is a frequently applied stitching operation. Many data producers
provide tiled data because they are easier to handle and index than
very large datasets. Consequently, when a larger geographic area is
to be covered with spatially partitioned data, it must be reassem-
bled with a mosaicking operation. The first step in the chain is very
specific to the input data format (HDF-EOS) and the supplied meta-
data in the MODIS granules. It is therefore advantageous to per-
form granule-dependent masking, quality filtering and temporal
aggregation in a single step that delivers the refined data in a more
common format.

The suggested workflow exploits the tiled structure of the origi-
nal data and allows a high degree of parallelisation in the first steps
of the workflow. For a typical run, 336 pairs of MOD13A2 granules
with an overall size of 13.4 Gigabytes have to be processed. This
initial number is gradually reduced to a single anomaly coverage
of 16 Megabytes in the last step. The frequency and duration of
each sub-process are shown in Fig. 5. For a sequential execution,
the overall duration amounts to approximately 26 min. In contrast,
for a parallel execution, the theoretical minimum duration is no
more than 16 s, a decrease of two orders of magnitude. In the latter
case, the calculation procedure will become I/O bound, which
means that obtaining access to a physical storage device will be-
come the main bottleneck. Clusters or cloud infrastructures with
distributed, shared storage are the only technical means to counter
the expected I/O bandwidth issues. By using moving-code packages
for the sub-process implementations, the components can be de-
ployed in arbitrary infrastructures, including a local workstation

or desktop computer, a geoprocessing server, or a high-perfor-
mance cloud with a large number of processing nodes. The capabil-
ities of the infrastructure dictate the optimal workflow and the
appropriate degree of parallelisation.

All steps were re-implemented in GDAL/Python using Numpy
array operations for speed and tiling mechanisms for a low mem-
ory footprint. The performance data were obtained on a Core2Duo
processor (single core use) at a 2.4-GHz clock speed. Due to the use
of open-source software instead of the original MATLAB scripts and
the suitability for execution, even in older or poorly performing
systems, the sub-processes are potentially valuable for a broad
range of users. At the same time, the low memory footprint and
the robust and parallel design suggest a deployment behind Web
service facades or in cloud environments where the individual exe-
cutions can be split among a large number of processing nodes.

Experiences with geoprocessing feeds and the atom protocol for
publishing, downloading, and announcing updates of computing
logic are generally good. Despite the lack of a full-fledged manage-
ment infrastructure for code-sharing, process feeds were found a
convenient way to deliver basic functional descriptions as well as
machine-readable moving-code packages to the users. A package
description example of one of the sub-processes can be found in
the appendix. To further assess scalability, this first prototype
needs to be instantiated for different scenarios and in different
cloud computing environments. In this way, potential scaling lim-
its could be explored and indicators could be derived to better rate
cloud computing platforms for data-intensive processing.

5. Conclusion and outlook

Making progress in the design of well-defined descriptions of
geoprocessing logic is one of the remaining research challenges
in geoinformation science and will contribute to making the pro-
posed concept a powerful tool for seamless and comprehensive
documentation in geospatial data handling. The four-dimensional
contract for geoprocessing logic aids in the sharing of existing
implementations with many users and removes obstacles that
keep people from reusing each other’s codes. However, the lack
of common standards for catalogues of processing functions is an
obstacle for interoperability. A unified approach to aligning the
requirements for free or structured search interfaces, in-depth
functional documentation, and comparability of the provided func-
tionality is needed to further enhance the approach proposed in
this paper.

Considering the various opportunities associated with mobile
and reusable code, it may be useful to standardise the packaging
format further. Fig. 6 shows how the different parts of the package
description relate to existing standards. For infrastructure and
functionality, a fully standardised description is possible. Cur-
rently, platforms cannot be described in a fully structured manner

200 M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203

Number of Executions [n]

400

350 336

300 A

250 A

200 A

150 +

112
100 A

50 +

T6
0 A . —_—

1

Monthly EVI Local Mean Local z-Score Mosaic

Time per Execution [s]

7.0

6.0

3.0 A
2.0 A
1.0 +
0.0 T T T

Monthly EVI

Local Mean Local z-Score Mosaic

Fig. 5. Performance and data reduction data associated with the Amazon drought calculation workflow (Fig. 4).

and must, therefore, be identified by unique resource identifiers
(i.e., Uniform Resource Locators, URLs; IETF, 2005b). Exploitation
rights can be specified by using machine-readable licenses such
as Creative Commons. Standardising the workspace structure and
description is probably the most difficult task. Workspace concepts
are widely used in practice and there is no dispute about their ver-
satility and usefulness. However, there is no real standard or single
best practice regarding how a portable workspace should be de-
signed. Moving-code packages make only very generic assump-
tions about the workspace, e.g., that it must contain an
executable script or binary file in a well-known format. Based on
that format, the parameter mapping between the functional
description and the algorithmic code is defined. Similarly to map-
ping conventions between JAVA methods and WSDL interfaces,
these mappings are a further subject for standardisation.
Considering the efforts by individual institutions to foster soft-
ware reuse, sharing software in a larger ecosystem seems to be the
next logical step. Software that works well is a valuable resource,
and its maintenance requires resources; therefore, splitting these
efforts among community members is reasonable. Communities

Workspace

—— complies

ZIP packaging

File structure

Executable

code

Parameter

mappings —— liable to

1
implements

v

Functionality / Interface

WPS process WSDL
description

—— complies ——>>

that are already discussing best-practice toolboxes for data analy-
sis (e.g., Meijer et al., 2009) may benefit from the presented code
sharing approach. With the ability to investigate catalogues for
existing processing functions, users and software developers can
save time and effort by assessing existing functions for their pur-
poses and make well-informed make-or-buy decisions.

In addition, code sharing could be used in conjunction with
workflow sharing concepts. Internet platforms such as myExperi-
ment already promote the exchange of scientific workflows to
facilitate the assessment and reproducibility of data-intensive re-
search (De Roure et al., 2009; Missier et al., 2010). As in any other
workflow system, task-specific functionality is obtained by orches-
trating reusable atomic components, many of which are Web ser-
vices. Coupling a workflow management system with a code
sharing infrastructure would provide a flexible extension mecha-
nism that allows users to take advantage of new basic functions
and their execution in high-performance environments.

Two problems associated with the act of code sharing could not
be solved within the framework presented in this paper: trust and
security. Moving-code packages per se cannot guarantee that an

(A
Platform
>
Platform
IR definition
. J
4 A
Infrastructure
OCCI OCCI
compute storage
| J
(A

Exploitation Rights

>
Creative Free text
Commons license
(. J
N stncorc
_ Common practice

Non-standard

Fig. 6. A standards-based view of the code-packaging scheme.

M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203 201

implementation complies with the functional contract, behaves
well in other environments, or does not contain harmful code.
Building trust and enforcing implementation quality as well as
security require a good review system or a community platform.
Checking for malicious code requires at least the invocation of a
virus and malware scanner in the publication process, and more

sophisticated approaches may involve test runs in a sandbox envi-
ronment. The community building process may very well take
place on a Web platform such as the Apple iTunes App Store or
the Android Market. Providers of geoprocessing logic can publish
their algorithms in such a marketplace, and all other users will
be able to utilise them. An integrated review process allows all par-

<2?xml version="1.0" encoding="UTF-8"?2>

<!-- shortened package description example -->
<mc:packageDescription ...>
<!-- Functional description based on the WPS 1.0 standard -->

<mc:contractedFunctionality>
<mc:wpsProcessDescription wps:processVersion="1">
<ows:Identifier>org.somenamespace.algorithms.raster. zscore</ows:Identifier>
<ows:Title>Cell wise z-score algorithm</ows:Title>
<ows:Abstract>Computes a z-score cell by cell</ows:Abstract>
<DataInputs>
<Input minOccurs="1" maxOccurs="1000">
<ows:Identifier>sample</ows:Identifier>
<ows:Title>Sample Data</ows:Title>
<ows:Abstract>Collection of single band rasters to compute sigma and mean from.</ows:Abstract>
<!-- data format specification -->

Contracted Functionality

</Input>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>rawscore</ows:Identifier>
<ows:Title>Raw Score</ows:Title>
<ows:Abstract>A single band raster with raw values that shall be transformed to a z-score.</ows:Abstract>
... <!-- data format specification -->
</Input>
</Datalnputs>
<ProcessOutputs>
<Output>
<ows:Identifier>zscore</ows:Identifier>
<ows:Title>Z-score</ows:Title>
<ows:Abstract>A single band raster with the z-score values computed from the raw score.</ows:Abstract>
. <!-- data format specification -->
</Output>
</ProcessOutputs>
</mc:wpsProcessDescription>
</mc:contractedFunctionality>

<!-- First valid platform -->

<mc:contractedPlatform>
<mc:requiredRuntimeComponent>http://someregistry.org/ python-2.5</mc:requiredRuntimeComponent> COrnraCted Plaﬁorw
<mc:requiredRuntimeComponent>http://someregistry.org/ gdal-1.8</mc:requiredRuntimeComponent>
<mc:requiredRuntimeComponent>http://someregistry.org/ gdal-1.8-python-2.5</mc:requiredRuntimeComponent>

</mc:contractedPlatform>

<!-- Other valid platforms, i.e. other compatible gdal and python versions -->
<mc:contractedPlatform>

</mc:contractedPlatform>

</-- Required computing resources -->
<mc:contractedInfrastructure>
<l-- Code runs in a single core environment --> Contracted Infrastructure
<mc:occi.compute.cores>1</mc:occi.compute.cores>
<I-- Consumes no more than 200 MB of system memory -->
<mc:occi.compute.memory>0.2</mc:occi.compute.memory>
<!-- Temporary storage space is not a critical factor for a reliable execution -->
<!-- Processor speed is not a critical factor for a reliable execution -->
<!-- Computing architecture is not a critical factor since python scripts are generally

considered platform independent.-->
</mc:contractedInfrastructure>

<!-- License associated wih this implementation -->
<mc:exploitationRights>
<mc:creativeCommonsLicense>
<mc:cc.license>http://creativecommons.org/licenses/by-sa/3.0/ </mc:cc.license>
<mc:dct.title>z-Score algorithm implementation for raster data</mc:dct.title>
<mc:cc.attributionName>Author Name</mc:cc.attributionName>
<mc:cc.attributionURL>http://somesite.org</mc:cc.attributionURL>
</mc:creativeCommonsLicense>
</mc:exploitationRights>

Legal Contract

<!-- Description of the workspace structure —->
<mc:workspace>
<!-- Workspace root and location of the executable -->

<mc:workspaceRoot>. /ztransform</mc:workspaceRoot> Workspace
<mc:executableLocation>./ztransform.py</mc:executableLocation>
<I-- Type of executable —->
<mc:containerType>http://someregistry.org/ pythonscript-2.5</mc:containerType>
<mc:executionParameters>
<!-- Mapping instructions for the first input -->
<mc:parameter>
<mc:prefixString/>
<mc:suffixString/>
<mc:separatorString/>
<mc:positionID>3</mc:positionID>
<mc:functionalInputID>sample</mc:functionalInputID>
<mc:functionalOutputID/>
</mc:parameter>
<mc:parameter>
... <!-- Other parameter mappings -->
</mc:parameter>
</mc:executionParameters>
</mc:workspace>

</mc:packageDescription>

202 M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203

ticipants to comment on and rate the published algorithms. Such a
review process can be extended toward quality guarantees in
terms of correctness and robust execution. For the scientific com-
munity, the visibility and potential reuse of their software may
lead to new output metrics in scientific research. Publishing soft-
ware along with a written paper is already supported by some pub-
lishing companies. Lowering the barrier for reuse and ad hoc
execution is a next step. Additional impact metrics for geoprocess-
ing logic produced by science projects may help to tackle a persist-
ing issue in data-driven science, namely the availability of
versatile, peer-reviewed tools for data curation and analysis.

Acknowledgments

The research leading to these results has received funding from
the German Federal Ministry of Education and Research under
grant agreement n° 01LL0901C and the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement n° 244100.

Appendix A

This appendix consists of a descriptive example of a moving
code package containing an implementation of the z-score process
presented in the paper. It consists of the following parts: con-
tracted functionality, platform and infrastructure description,
exploitation rights, and workspace description.

Contracted functionality follows the OpenGIS WPS standard. In
this standard, the functionality is identified by some type of pro-
cess signature that defines inputs and outputs and provides simple
descriptions about the implemented algorithm. The given z-score
process requires two inputs: a raw score and a sample set (both
are raster data). The sample set is used to calculate the values for
o and p; the raw score is then converted to a z-score which is re-
turned by the service. Additionally, this interface description may
point to a process profile that provides additional metadata about
the algorithm, i.e., through hypertext documents. However, further
research is required to fully capture the process semantics.

The contracted platform lists a set of platform components that
must be available on the target platform to reliably execute the
contained code. In the z-score example, it is demanded that the
platform must have a Python 2.5 runtime environment and a GDAL
1.8 standard library installed. There must also be a Python to GDAL
connector in place. Each of the runtime components is specified by
a resolvable URL that can be used to unambiguously identify each
software component. The URL links to a hypertext document that
provides the required description and definition of each compo-
nent. There may be multiple contracted platforms, each containing
a confirmed combination of runtime components. The code con-
tained in the package is expected to run in any of these contracted
platforms.

The contracted infrastructure is a subset of the elements de-
fined in the OCCI specification. The OCCI elements are used to char-
acterise the resource consumption of the code. Running the
example z-score code requires one processor core and guarantees
memory consumption below or equal to 200 Megabytes during
execution (achieved by adaptive tiling mechanism in the imple-
mentation). The example does not require a certain computing
architecture, clock speed, or extra amount of temporary disc space
for reliable execution.

The example package comes with a Creative Commons share-
alike license, which is stated in the exploitation rights section. This
particular license permits free use of the code as well as the ability
to alter or enhance it as long as it is re-published under the same
type of license. This type of licence is frequently found in associa-

tion with open-source software to ensure that enhancements are
transferred back into the open source community.

The workspace description contains information about the type
and location of the executable code in the package. In the z-score
process example, the executable is a plain python script that can
be called in a command line fashion. Additionally, the workspace
description provides a syntax mapping between the WPS interface
and the command line.

References

Abelson, H., Adida, B., Linksvayer, M., Yergler, N., 2008. ccREL: The creative
commons rights expression language. http://wiki.creativecommons.org/
images/d/d6/Ccrel-1.0.pdf (accessed 12.11.12).

Aloisio, G., Cafaro, M., Epicoco, 1., Quarta, G.C., 2004. A problem solving environment
for remote sensing data processing. In: Proceedings of the International
Conference on Information Technology: Coding Computing (ITCC), Lecce, Italy,
5-7 April, vol. 2, 2004, pp. 56-61.

Anselin, L., 2012. From Space Stat to CyberGIS. International Regional Science
Review 35 (2), 131-157.

Bernabé, S., Plaza, A., Reddy Marpu, P., Atli Benediktsson, J., 2012. A new parallel
tool for classification of remotely sensed imagery. Computers & Geosciences 46,
208-218.

Blower, J.D., 2010. GIS in the cloud: implementing a web map service on Google App
Engine. In: Proceedings of the 1st International Conference and Exhibition on
Computing for Geospatial Research & Application (COM.Geo), Bethesda, MD,
USA, 21-23 June, 2010, pp. 34:1-4.

Brauner, J., Foerster, T., Schaeffer, B., Baranski, B., 2009. Towards a Research Agenda
for Geoprocessing Services. In: Proceedings of the 12th AGILE Conference,
Hannover, Germany, 2-5 June, pp. 124:1-12.

Cary, A, Yesha, Y., Adjouadi, M. ,Rishe, N., 2010. Leveraging Cloud Computing in
Geodatabase Management. In: Proceedings of the IEEE International Conference
on Granular Computing (GrC) 2010, San Jose, CA, USA, pp. 73-78.

Christophe, E., Michel,]J., Inglada, J., 2011. Remote sensing processing: from
multicore to GPU. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 4 (3), 643-652.

Clery, D., Voss, D., 2005. All for one and one for all. Science 308 (5723), 809.

Craglia, M., de Bie, K., Jackson, D., Pesaresi, M., Remetey-Fiilopp, G., Wang, C.,
Annoni, A., Bian, L., Campbell, F., Ehlers, M., van Genderen, J., Goodchild, M., Guo,
H., Lewis, A., Simpson, R., Skidmore, A., Woodgate, P., 2012. Digital Earth 2020:
towards the vision for the next decade. International Journal of Digital Earth 5
(1), 4-21.

De Roure, D., Goble, C., Stevens, R., 2009. The design and realisation of the Virtual
research environment for social sharing of workflows. Future Generation
Computer Systems 25 (5), 561-567.

Dean,]., Ghemawat, S., 2008. MapReduce: simplified data processing on large
clusters. Communications of the ACM 51 (1), 107-113.

Degiang, G., Keping, D., Yonghua, Q., Yuzhen, Z, Linli, L, 2012. Remote sensing
algorithm platform in Windows Azure. In: Proceedings of the 20th International
Conference on Geoinformatics (GEOINFORMATICS), Hong Kong, China,
(doi:10.1109/Geoinformatics.2012.6270351).

Dong, |., Xue, Y., Chen, Z, Xu, H., Li, Y.CI, 2011. Analysis of remote sensing
quantitative inversion in cloud computing. In: Proceedings of the IEEE
Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada,
pp. 4348-4351.

Eberle,]J., Strobl, C., 2012. Web-based geoprocessing and workflow creation for
generating and providing remote sensing products. Geomatica 66 (1), 13-26.

Eionet, 2012. Corine Land Cover 2006. http://sia.eionet.europa.eu/CLC2006.
(accessed 12.11.12).

Erl, T., 2007. SOA Principles of Service Design. Prentice Hall PTR Upper Saddle River,
NJ, USA, pp. 573.

ESA, 2012. Earthnet 2012. http://earth.esa.int. (accessed 12.11.12).

Foster, 1., 2005. Service-oriented science. Science 308 (5723), 814-817.

Foster, L., Yong, Z., Raicu, L, Ly, S., 2008. Cloud Computing and Grid Computing 360-
Degree Compared. Grid Computing Environments Workshop, 2008 (GCE ‘08),
(doi:10.1109/GCE.2008.4738445).

Friis-Christensen, A., Ostlander, N., Lutz, M., Bernard, L., 2007. Designing service
architectures for distributed geoprocessing: challenges and future directions.
Transactions in GIS 11 (6), 799-818.

Gasster, S.D., Lee, C.A., Palko,].W., 2008. Remote sensing Grids: architecture and
implementation. In: Plaza, A., Chang, C. (Eds.), High Performance Computing in
Remote Sensing. Chapman & Hall, Boca Raton, FL, USA, pp. 203-236.

GEO, 2012. The global earth observation system of systems, http://
www.earthobservations.org/geoss.shtml. (accessed 12.11.12).

GMES, 2012. GMES.info, http://[www.gmes.info/. (accessed 12.11.12).

Gray, J., 2009. eScience: a transformed scientific method. In: AJ.G. Hey, S. Tansley,
K.M. Tolle (Eds.), The fourth paradigm: data-intensive scientific discovery.
Microsoft Research, Redmond, WA, pp. xvii-xxxi.

Happ, P.N. Ferreira, RS. Bentes, C., Costa, G.A.O.P., Feitosa, R.Q., 2010.
Multiresolution Segmentation: a Parallel Approach for High Resolution Image
Segmentation in Multicore Architectures. In: E.A. Addink, F.M.B. Van Coillie
(Eds.), The International Archives of the Photogrammetry, Remote Sensing and

M. Miiller et al./ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 193-203 203

Spatial Information Sciences, vol. XXXVIII-4/C7. http://www.isprs.org/
proceedings/xxxviii/4-c7/pdf/Happ_143.pdf (accessed 12.11.12).

Hu, Y., Xue, Y., Tang,], Zhong, S., Cai, G.C., 2005. Data-Parallel Method for
Georeferencing of MODIS Level 1b Data Using Grid Computing. In: Sunderam,
V.S., Albada, G.D., Sloot, P.M.A., Dongarra, J. (Eds.), Computational Science - ICCS
2005. Springer, Berlin, pp. 883-886.

IETF, 2005a. The Atom Syndication Format. http://www.ietf.org/rfc/rfc4287.
(accessed 12.11.12).

IETF, 2005b. Uniform Resource Identifier (URI): Generic Syntax. http://tools.ietf.org/
html/rfc3986. (accessed 12.11.12).

I1SO, 2005. Geographic information - Encoding. International standard, ISO 19118.

1SO, 2007. Geographic information — Schema for coverage geometry and functions.
International standard, I1SO 191123.

ISO, 2009. Geographic information - metadata - part 2: extensions for imagery and
gridded data. International standard ISO 19115-2, 2009.

Kiehle, C., Greve, K., Heier, C., 2007. Requirements for Next Generation Spatial Data
Infrastructures - Standardized Web Based Geoprocessing and Web Service
Orchestration. Transactions in GIS 11 (6), 819-834.

Knuth, D., 1997. Art of computer programming, volume 2: seminumerical
algorithms (3rd Edition). Addison-Wesley Professional, Reading, MA, USA, pp.
784.

Korting, T.S., Castejon, E.F., Fonseca, LM.G., 2011. Divide and Segment - An
alternative for parallel segmentation. In: Proceedings XII Brazilian Symposium
on Geoinformatics (GEOINFO), Campos do Jordao, Brazil, 27-29 November, pp.
97-104.

Kussul, N., Mandl, D., Moe, K., Mund,]., Post,]., Shelestov, A., Skakun, S., Szarzynski,
J., Van Langenhove, G., Handy, M., 2012. Interoperable infrastructure for flood
monitoring: sensorweb, grid and cloud. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 5 (6), 1740-1745.

Marshall,]J., Downs, RR., Mattmann, C.A., 2011. Software reuse methods to
improve technological infrastructure for e-Science. In: Proceedings of the IEEE
International Conference on Information Reuse and Integration (IRI), Las Vegas,
NV, USA, 3-5 August, pp. 528-532.

Mattmann, C.A., Downs, R.R., Marshall,]J., Most, N.F., Samadi, S., 2010. Reuse of
software assets for the NASA Earth science decadal survey missions. In:
Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS),
Honoluly, HI, USA, 25-30 July, pp. 1687-1690.

McKenna, S.A., Gutierrez, K., 2011. Spatial-Temporal Event Detection in Climate
Parameter Imagery. Sandia National Laboratories, Department of Commerce.
Springfield, VA, USA, pp. 42.

Meijer, Y., Fehr, T., Koopman, R.M., Pellegrini, A., Busswell, G., Williams, 1., De
Maziére, M., Niemeijer, S., van Deelen, R., 2009. GECA: ESA’s Next Generation
Validation Data Centre. In: Proceedings of the Fringe 2009 Workshop, Frascati,
Italy, 30 Novenber - 4 December. http://earth.eo.esa.int/workshops/fringe09/
YaskaMeijer.pdf (accessed 12.11.12).

Mell, P., Grance, T. 2011. The NIST Definition of Cloud Computing,
Recommendations of the National Institute of Standards and Technology.
National Institute of Standards and Technology, Gaithersburg, MD, USA, 7p.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed
12.11.12).

Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, 1., Williams, A.,
Oinn, T. Goble, C., 2010. Taverna, reloaded. In: Scientific and Statistical
Database Management: 22nd international conference on Scientific and
statistical database management (SSDBM), Springer, Berlin, pp. 471-481.

Miiller, M., Bernard, L. and Brauner,], 2010. Moving code in spatial data
infrastructures — web service based deployment of geoprocessing algorithms.
Transactions in GIS, vol. 14(S1), pp. 101-118.

Muifioz-Mari, J., Plaza, AJ. Gualtieri, J.A., Camps-Valls, G. 2009. Parallel
Implementations of SVM for Earth Observation. In: Xhafa, F. (Ed.), Parallel
Programming and Applications in Grid, P2P and Networking systems. I0OS Press,
Amsterdam, Netherlands, pp. 292-312.

NASA, 2012. data.NASA, http://data.nasa.gov/. (accessed 12.11.12).

0GC, 2007. OpenGIS Web Processing Service, Version 1.0.0. Wayland, MA, USA, OGC
document 05-007r7. http://portal.opengeospatial.org/files/?artifact_id=24151
(accessed 12.11.12).

0GC, 2012. OGC Web Services, Phase 8, http://www.opengeospatial.org/projects/
initiatives/ows-8 (accessed 12.11.12).

OGF, 2011a. Open Cloud Computing Interface Specification. http://occi-wg.org/
about/specification/ (accessed 12.11.12).

OGF, 2011b. Open Cloud Computing Interface Specification - Infrastructure. OGF
document GFD-P-R.184. http://www.ogf.org/documents/GFD.184.pdf (accessed
12.11.12).

Pallickara, S.L., Malensek, M., Pallickara, S., 2011. On the Processing of Extreme Scale
Datasets in the Geosciences. In: Furht, B., Escalante, A. (Eds.), Handbook of Data
Intensive Computing. Springer, New York, pp. 521-537.

Plaza, AJ. 2006. Heterogeneous Parallel Computing in Remote Sensing
Applications: Current Trends and Future Perspectives. IEEE International
Conference on Cluster Computing, Barcelona, Spain, 25-28 September. (doi:/
10.1109/CLUSTR.2006.311903).

Raicu, 1., Zhang, Z., Wilde, M., Foster, 1., Beckman, P., Iskra, K., Clifford, B., 2008.
Toward loosely coupled programming on petascale systems. In: Proceedings of
the ACM/IEEE conference on Supercomputing 2008 (SC'08), Austin, TX, USA, 15—
21 November, pp. 22:1-12.

Ramakrishnan, L., Jackson, K.R., Canon, S., Cholia, S., Shalf, J., 2010. Defining future
platform requirements for e-Science clouds. In: Proceedings of the 1st ACM
symposium on Cloud computing (SoCC), 10-11 June, Indianapolis, IN, USA, pp.
101-106.

Samanta, A., Ganguly, S., Myneni, R.B., 2011. MODIS Enhanced Vegetation Index
data do not show greening of Amazon forests during the 2005 drought. New
Phytologist 189 (1), 11-15.

Schiffer, B., Baranski, B., Foerster, T., 2010. Towards Spatial Data Infrastructures in
the Clouds. In: Painho, M., Santos, M.Y., Pundt, H. (Eds.), Geospatial Thinking.
Springer, Berlin, pp. 399-418.

Simonett, D.S., 1969. Editor’s preface. Remote Sensing of Environment, 1(1):v.

Teutsch, C., Trostmann, E., Berndt, D., 2011. A parallel point cloud clustering
algorithm for subset segmentation and outlier detection. In: Proceedings of SPIE
Volume 8085 Videometrics, Range Imaging, and Applications XI, Munich,
Germany, 23 May, (doi:10.1117/12.888654).

Tomlin, D., 1990. Geographic Information Systems and Cartographic Modeling.
Prentice-Hall, Englewood Cliffs, NY, USA, pp. 249.

W3C, 2007. Web Services Description Language (WSDL) Version 2.0. W3C
Recommendation. http://www.w3.org/TR/wsdl20/(accessed 12.11.12).

Xiaoshu, S., Hong, Z., 2010. High Performance Remote Sensing Image Processing
Using CUDA. In: Proceedings of the 3rd International Symposium on Electronic
Commerce and Security (ISECS) 2010, Wuhan, China, 29-31 July, pp. 121-125.

Yang, H., Liu, X., 2012. Software Reuse in the Emerging Cloud Computing Era. IGI
Global, Hershey, PA, USA, pp. 270.

Yang, C. Raskin, R, Goodchild, M. Gahegan, M. 2010. Geospatial
cyberinfrastructure: past, present and future. Geospatial Cyberinfrastructure
34 (4), 264-277.

Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., Bambacus, M., Fay,
D., 2011. Spatial cloud computing: how can the geospatial sciences use and
help shape cloud computing? International Journal of Digital Earth 4 (4), 305-
329.

4. Hierarchical Profiling of
Geoprocessing Services

Miiller, Matthias: Hierarchical Profiling of Geoprocessing Services. Computers
and Geosciences, 82, 2015, pp. 68-77.

Abstract. Analysis workflows in geoinformation systems and geodata infrastruc-
tures are built from reusable geoprocessing services. Ideally, these services are well-
defined implementations which can be readily understood by clients in order to find
and invoke the right service for a particular task. Despite technological advances to-
wards service-oriented architectures, implementation uncertainty is still an issue and
most geoprocessing services lack solid and meaningful descriptions of the provided
functionality.

This paper reviews previous work in the field of service-oriented geoprocessing and
discusses their contributions towards interoperable and well-defined processing ser-
vices. Based on these findings, a framework is proposed that captures both semantic
and syntactic properties of geoprocessing functions at different levels of granularity.
Each of the levels is associated with a set of descriptive artifacts that refine the def-
initions of coarser levels, ultimately leading to well-defined implementations. The
utility of the framework is illustrated for task-oriented search and workflow verifica-
tion. Finally the paper discusses possible limitations of the presented approach and
provides suggestions for future work.

65

Computers & Geosciences 82 (2015) 68-77

journal homepage: www.elsevier.com/locate/cageo

Contents lists available at ScienceDirect

GEOSCIENCES

Computers & Geosciences

Hierarchical profiling of geoprocessing services ®<:mssMark

Matthias Miller *

Technische Universitdt Dresden, Geoinformation Systems, 01062 Dresden, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 29 January 2015
Received in revised form

21 April 2015

Accepted 27 May 2015
Available online 29 May 2015

Keywords:
Geoprocessing services
Interoperability
Profiling

Subtyping

Analysis workflows in geoinformation systems and geodata infrastructures are built from reusable
geoprocessing services. Ideally, these services are well-defined implementations which can be readily
understood by clients in order to find and invoke the right service for a particular task. Despite tech-
nological advances towards service-oriented architectures, implementation uncertainty is still an issue
and most geoprocessing services lack solid and meaningful descriptions of the provided functionality.
This paper reviews previous work in the field of service-oriented geoprocessing and discusses their
contributions towards interoperable and well-defined processing services. Based on these findings, a
framework is proposed that captures both semantic and syntactic properties of geoprocessing functions
at different levels of granularity. Each of the levels is associated with a set of descriptive artifacts that
refine the definitions of coarser levels, ultimately leading to well-defined implementations. The utility of
the framework is illustrated for task-oriented search and workflow verification. Finally the paper dis-

cusses possible limitations of the presented approach and provides suggestions for future work.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Reuse, comparability, and task-oriented discovery of geopro-
cessing services and functions are persisting topics in geoinfor-
mation science and application (Anselin, 2012; Lutz et al., 2003;
Miiller et al., 2013; Yuan and Albrecht, 1995). Instead of having
well-defined implementations at hand, users still face a range of
software products and libraries that maintain their own set of
tools with system-specific documentation and interfaces. Web
services for geoprocessing such as the Web Processing Service
(WPS; OGC, 2007) or vendor-driven services (e.g. ESRI's ArcGIS
Server REST API) have been introduced to overcome these in-
compatibilities. They eliminate the need to install a range of GIS
products and geospatial libraries at the client’s computer in order
to access a particular geoprocessing tool. However, occasional
surveys reveal little progress towards well-defined and inter-
operable functionality. To understand what a particular geopro-
cessing Web service actually does to their data, clients must obtain
background knowledge about the service’s backend systems and
libraries (Granell et al., 2010). This contradicts a fundamental as-
sumption in service-oriented design. The source system that runs
a service is expected to be hidden from the client. In this sense,
Web services have hardly improved semantic interoperability for
geoprocessing applications but made existing deficits more

*Fax: +49 351 463 35879.
E-mail address: Matthias_Mueller@tu-dresden.de

http://dx.doi.org/10.1016/j.cageo.2015.05.017
0098-3004/© 2015 Elsevier Ltd. All rights reserved.

obvious. In general, the interoperability of geoprocessing services
is still limited to the technical level (Friis-Christensen et al., 2007),
i.e. the communication protocol, network infrastructure and data
encoding.

Geoprocessing services in general lack the ability to express
and compare the semantics of the provided functions and algo-
rithms. At best, implementations of geoprocessing functions are
provided with comprehensive interface documentation, algo-
rithmic specifications, detailed behavioral description, supported
data exchange formats and permitted data volumes. At worst none
of this information is present. For apparently identical im-
plementations of common algorithms occasional case studies re-
port slightly and sometimes seriously diverging behavior (Fisher,
2006; Lutz et al, 2003). A stricter focus on well-defined im-
plementations and semantically enhanced interfaces, which can
reliably distinguish identical from differing implementations,
would help to avoid such implementation uncertainty.

The following section reviews current international standards
and scientific publications on meaningful descriptions for geo-
processing functions and services. Subsequently, four levels of
granularity are identified at which meaningful descriptions for
geoprocessing functions can be obtained. These levels are ar-
ranged in a hierarchical framework with clear inheritance struc-
tures. Each level in the framework is associated with a set of de-
scriptive artifacts that characterize geoprocessing services with
increasing detail. A profiling process compiles these artifacts in a
strictly additive manner. The process finally delivers well-defined

M. Miiller / Computers & Geosciences 82 (2015) 68-77 69

implementations that are consistent with declarations and beha-
vior specifications imposed by superior levels. The described fra-
mework is shown to be useful for search and retrieval tasks, ser-
vice cataloging, service comparison, and service invocation. Fur-
ther examples describe possible applications in provenance
tracking and workflow verification.

2. Related work

Meaningful descriptions for geoprocessing functions have been
approached from different directions, including interface stan-
dards for Web services, metadata standards, ontologies, mathe-
matical formalizations, and free-text descriptions. For subsequent
discussions, some important terms need to be established. Geo-
processing refers to the processing of spatial or geo-referenced
data which relate to conceptual data models and encoding formats
from geoscience and neighboring disciplines. In reference to pre-
vious works on the topic (Albrecht, 1996; Fitzner et al., 2011; Lutz
et al., 2003) a geoprocessing function is defined as a stateless
function that transforms a given set of input data into a set of
output data. The data types of these inputs and outputs usually
relate data models and schemas in geospatial applications and
neighboring disciplines. With regard to the basic principles of
service orientation (Erl et al., 2008; Kuhn, 2005) a geoprocessing
service is defined as an implementation of a well-specified, inter-
operable, and reusable geoprocessing function that receives and
generates data in a common encoding format and can be readily
embedded into a workflow. A broad range of geographic analysis
tasks may be solved by assembling arbitrarily complex workflows
from a finite pool of geoprocessing services (de Jesus et al., 2012;
Longley et al., 2011). In contrast, geoprocessing Web services are a
technology that provides client-server interaction for performing
geoprocessing tasks on the Internet.

2.1. Normative definitions of geospatial operations

A straight-forward path towards well-defined geoprocessing
services is a standardization process which declares clear con-
formance criteria for compliant implementations. In geoinfor-
matics this approach has been chosen in the Simple Features for
SQL Specification (OGC, 1999) and its ISO counterpart (ISO, 2004).
Both standards are grounded in the work of Egenhofer and others
(e.g. Egenhofer and Herring, 1992) and describe seven so-called
“methods for spatial analysis”, like Buffer, ConvexHull or geome-
trical and topological overlay operations. Compliant implementa-
tions of these specifications can be found in various data base
products, such as Postgres/PostGIS, Oracle Spatial or Microsoft SQL
Server. While the original Simple Features specification had tar-
geted data base implementations, the standardized operations also
appear in geospatial libraries, such as the Java Topology Suite (JTS)
and the Geometry Engine Open Source (GEOS), or as query pre-
dicates in geospatial data services (ISO, 2010). This is an ideal si-
tuation from user’s perspective: No matter which implementation
is chosen, the adherence to a common standard guarantees con-
sistent behavior across all software systems. Although normative
definitions automatically lead to well-defined implementations
they have only been applied to a tiny number of geoprocessing
functions.

2.2. Profiling of Web processing services

The widely used WPS standard (OGC, 2007) describes a service
interface and communication protocol for processing data in a
Web service environment. The specification is quite generic and
WPS clients and servers provide and invoke a broad range of

geoprocessing functions on the Web. Geoprocessing functions in
WPS are specified by so-called process descriptions which roughly
resemble method signatures in programming languages. Process
descriptions cover syntactic properties of a function’s arguments
(inputs and outputs), the supported data schemas, and encoding
formats. Simple human-readable free-text elements for titles and
abstracts may be used to supply basic semantic descriptions about
the provided functionality.

In order to support typical publish-find-bind scenarios, pro-
cess profiles have been proposed as a means to contract and
possibly standardize the content of WPS servers. Profiles and
compliant services might be cataloged in public Web based re-
positories and potential clients would simply browse these re-
positories to find processing services that implement the desired
functionality. Since the WPS 1.0 standard is quite generic about the
profiling process, different interpretations have evolved over time.
These can be roughly divided into three categories.

Process-level application profiles have been proposed as inter-
face blueprints for process implementations (e.g. Lanig and Zipf,
2010; Ostldnder, 2008). In essence, this kind of profile contracts
the process definition, process inputs and outputs and their con-
crete data encodings formats. A globally unique identifier such as a
Uniform Resource Name (URN) or Uniform Resource Locator (URL)
serves as a common reference for particular profile. In this regard,
each process-level application profile exists in complete isolation.

Based on the insight that many implementations from a family
of similar algorithms share common properties, structured profiles
introduce an inheritance mechanism between individual profiles.
Commonalities between similar functions, such as identical input
and output parameters or common data formats are collected in
base classes that can be extended to obtain more specific profiles
(Nash, 2008). In contrast to process-level application profiles,
structured profiles recognize syntactic and semantic similarities
between geoprocessing functions.

The third category regards profiles as compilations of processing
functions. For instance, Walenciak and Zipf (2010) and Miiller et al.
(2010) propose grouping specialized processing functions into
thematic or domain-specific collections. These compilations share
some aspects with thematic GIS toolboxes, e.g. for hydrology,
terrain analysis, or spatial multi-criteria evaluation. If a WPS server
declares support for a certain thematic collection of geoprocessing
functions it is turned into a domain-specific computing service.
Compared to structured profiles, compilations of processing
functions are less driven by structural similarity at an algorithmic
or syntactic level. They rather recognize similarities between
geoprocessing functions from the perspective of a particular ap-
plication domain. While the creation of thematic collections is
extremely useful for specialized functions that clearly belong to a
single domain, the approach provides little help for structuring
and comparing more general functions which are used across
multiple domains.

2.3. Geospatial catalogs and metadata

The ISO 19115-1 metadata standard (ISO, 2014) is the current
baseline for cataloging geospatial data. Its extension ISO 19115-2
(ISO, 2009) provides additional lineage elements that describe the
provenance of a particular data set, including the processing steps
that have been applied to the original data. Although this lineage
structure generally improves transparency for data-intensive re-
search (Bernard et al., 2013), its Process Step element is a bad
substitute for interface descriptions of geoprocessing services. A
Process Step may provide documentation about a particular soft-
ware package - or link to a documentation resource for the ap-
plied algorithm - but does not model input and output elements
like, for instance, WPS. Hence the 1SO19115 standard series is of

70 M. Miiller / Computers & Geosciences 82 (2015) 68-77

little use for cataloging geoprocessing services.

Based on an early draft of ISO 19115, Hill et al. (2001) attempted
to develop a content standard for computational models, e.g. in
the form of executable software packages or computer code. Next
to written publications and archived data, these models should be
archived by digital libraries where they can be found, downloaded,
and hence reused. In contrast to ISO 19115-2 the proposed content
standard is more interface-oriented and characterizes syntactic
and semantic properties of computational models top-down at
different levels of abstraction, i.e. conceptual, symbolic, algo-
rithmic, and coding representations. It is noteworthy that this
work anticipated some characteristics of WPS process descriptions
which appeared several years later. The metadata schema is aware
of input and output elements, including the ability to specify the
type and format of input and output data.

2.4. Formal descriptions and behavioral semantics

Semantic interoperability problems in GIS and geographic Web
services have been a topic of extensive study in the literature
(Albrecht, 1996; Bishr, 1997; Kuhn, 2005; Lutz et al., 2003; Schei-
der et al.,, 2009; Yue et al., 2007). Two basic directions of in-
vestigation can be distinguished here: (1) Semantic descriptions of
geoprocessing functions, and (2) semantic mappings that associate
real-world processes and phenomena with these functions. For
this paper approaches in the first category are of foremost interest.

An early attempt to formalize GIS operations for environmental
modelling has been made by Albrecht (1996). His work defines the
interfaces of twenty basic geoprocessing functions in the func-
tional programming language Haskell. This early work focused on
syntactic properties of geoprocessing functions, i.e. function sig-
natures. Albrecht did not consider implementation uncertainty but
rather assumed sufficient documentation in existing literature
which could be derived from the functions’ names and their
arguments.

Implementation uncertainty in conjunction with geoinforma-
tion Web services has been investigated by Lutz et al. (2003). The
authors provide a list of heterogeneities that hinder the exchange
and use of geoprocessing services in spatial data infrastructures.
Cognitive heterogeneity arises from the use of homonyms for pro-
cessing functions or data items. For instance, topological relations
between spatial objects are defined in different taxonomies
(Clementini et al., 1993; Cohn et al.,, 1997; Egenhofer and Herring,
1992) and at different levels of granularity (Grigni et al., 1995),
resulting in various system specific implementations that provide
seemingly identical functions but produce slightly different re-
sults. The authors provide empirical examples for the topological
operators “meet” and “touch” which behave differently in the in-
vestigated systems. Naming heterogeneity is introduced as the dual
of cognitive heterogeneity and refers to a situation where identical
items (processing functions or their arguments) share the same
semantics and behavior but are named differently. Subsequent
work by Probst and Lutz (2004) acknowledges type heterogeneity
as a third interoperability issue. It could be paraphrased as cog-
nitive heterogeneity for geographic data models and refers to the
use of different conceptual data models for the same entities. A
typical example is the object versus field debate (Couclelis, 1992;
Kuhn, 2012; Liu et al., 2008) that contrasts the two opposing
modelling approaches for geographic phenomena. At a technical
level, type heterogeneity may also occur due to the multitude of
data encodings spatial data and data schemas (e.g. in XML or
GML). Formal specifications of geoprocessing functions have been
suggested to resolve issues that arise from the use of hetero-
geneous concepts, names, and data types.

Function subtyping and Hoare Logic (HL; Hoare, 1969) have
been applied by Lutz (2007) to describe input and output types as

well as the behavior of a processing function. HL is a rigorous
approach for verifying the correctness of imperative computer
programs at the source code level. It assumes that the operation
under test can be fully specified and verified in a formal system by
providing explicit assertions, pre-conditions, and post-conditions.
Lutz provides a proof-of-concept for a set of simple distance cal-
culation functions in different types of coordinate systems. To
assess the suitability of the approach for geoprocessing functions
of higher complexity he suggests further investigations. However,
progress on in-depth formalization of ordinary geoprocessing
functions has not happened since then. Some early work by Clarke
(1979) has shown general limitations of HL, suggesting that this is
not feasible or at least most impracticable to provide and maintain
complex formal representations for larger programs with complex
control structures.

Fitzner et al. (2011) suggest declarative descriptions for geo-
processing functions to allow for automated workflow composi-
tion. Logic programming is applied to the problem in order to
support comparison and matchmaking tasks for different geo-
processing functions. An example illustrates the matchmaking
process for some common overlay operations. In contrast to Lutz's
approach, Fitzner does not attempt to specify the general me-
chanics or the behavior of a particular processing function but
rather assumes it is already documented in a “geospatial operation
ontology” - which is still an open task. However, the provided
examples illustrate the advantages of well-defined geoprocessing
services for workflow composition and verification.

3. A profiling approach for geoprocessing services

The possible meanings of the term profiling in conjunction with
geoprocessing services have already been discussed in the context
of WPS. A more robust definition is provided by the Unified
Modelling Language standard (UML; OMG, 2005), which describes
“profiling” as a specialization mechanism for refining the seman-
tics of a superior reference metamodel. The resulting profile is
usually more constraining than the referenced metamodel but
consistent with its semantics. Profiles that stem from the same
metamodel are aligned to some degree and are substitutable at the
metamodel’s level of granularity. This approach has strong simi-
larities to the Liskov substitution principle, i.e. that “... objects of a
subtype should behave the same as those of the supertype as far as
anyone or any program using the supertype can tell” (Liskov and
Wing, 1994, p. 1811).

This kind of additive inheritance can also be used for the de-
finition of geoprocessing services. Besides allowing representa-
tions of functionality at different levels of abstraction, a profiling
process could also help to align future implementations of geo-
processing services. This section shows how geoprocessing func-
tions can be profiled in a subtyping fashion by gradually refining
their semantics. Four recurring levels of granularity are identified
which can be arranged in a hierarchical fashion to obtain inter-
operable geoprocessing services that are no longer tied to the
mechanics of a particular legacy system.

3.1. Concepts

Well-known geoprocessing functions stem from well-known
concepts (Hill et al., 2001). Normative specifications such as OGC
(1999) implicitly use concepts when they define the generic be-
havior of an operation. Formal specifications reference concepts to
define the semantics of an operation and its arguments (Kuhn,
2005). Familiar examples of commonly used functions are geo-
metric intersection and overlay operators, all kinds of buffering
functions, map algebra operations (Tomlin, 1990), convolution

M. Miiller / Computers & Geosciences 82 (2015) 68-77 71

<<Concept>>
Buffer

+ identifier: URI

7

<<Concept>>
DistanceBuffer

<<Concept>>
MinkowskiBuffer

+ identifier: URI + identifier: URI

Fig. 1. Concept taxonomy for Buffers.

filters, Viewshed and watershed computations, slope operators,
distance transformations, and many others.

Concepts are documentation resources with unique identity.
They may describe the functionality performed by a particular
process or GIS tool or describe the result of a modelling or com-
puting activity, e.g. a “three kilometer Buffer around New York
City”. Buffer definitions, for instance, may be grounded in different
concepts (Fig. 1). The Distance Buffer is probably the most com-
mon notion of a Buffer which represents all points whose distance
from a given geometric object is less than or equal to a given
distance (de Smith et al,, 2015; ISO, 2004). An alternative sub-
concept for Buffer uses Minkowski Sums in conjunction with a
reference shape instead of a distance-based definition (Zhang
et al.,, 2010).

Another exemplary taxonomy is shown in Fig. 2, which classi-
fies different Viewshed concepts by their outputs. The classifica-
tion has been adopted from Floriani and Magillo (2003) who give
an overview of Viewshed algorithms that operate on regular
square grids and triangulated irregular networks (TINs).

A more complex taxonomy is required for some generalization
functions. Optimal simplification algorithms for polygonal paths
have been extensively studied in literature and are frequently
applied in geospatial applications. A polygonal path is defined as a
totally ordered set of vertices P=(p,, p,,....p,) and a set of path
segments S = (S;= PP, Sy =DPyP3s - Sp_1=D,_sP,)- A simpler
version P of P is obtained by removing some of the vertices v. This
results in a reduced number of path segments
S'=(1 =Py $2=D9P'3 o S =D P With2 <k <n -1

Two broad classes of optimal simplification algorithms can be
distinguished (Bose et al., 2006; Imai and Iri, 1988). min#(e) al-
gorithms minimize the number of vertices according to some error
criterion €, such as displacement, total difference of the path
length, or area transfers between the left and right sides of the
path. mine(#) algorithms minimize an error criterion € for a given

<<Concept>>

Viewshed

+ identifier: URI

maximum number of vertices k.

Fig. 3 shows a taxonomy of path simplification algorithms
where the class of min#(¢e) algorithms is further subdivided ac-
cording to different error criteria. A similar distinction can be
made for the branch of mine(#) algorithms (Bose et al., 2006;
Gudmundsson et al., 2007). All simplification concepts remove
unnecessary detail or noise from the original data. However, each
concept applies a different set of optimization criteria. A user may
take advantage of this taxonomy to get an overview of the dif-
ferent algorithms and decide about the correct or suitable sim-
plification strategy for a particular task. Furthermore, a user has
certainty about a software component that implements a parti-
cular sub-concept.

3.2. Generic profiles for functions and algorithms

While most authors agree that concepts precede more fine-
grained definitions of processing functions, they pursue different
approaches for refined specifications. Hill et al. (2001) propose
that symbolic (i.e. mathematical or logical) representations pre-
cede algorithmic representations of computing models which are
then turned into programmatic implementations. This is a typical
approach in modeling and simulation domains, where every sub-
component of a simulation model can be expressed as a set of
differential equations (Zeigler et al., 2000), but it might not fit the
typical situation in GIS and environmental modelling. Many useful
functions such as generalization operations, data fusion algo-
rithms, visibility and watershed calculations are defined in an al-
gorithmic fashion, i.e. by procedural specifications, pseudo code, or
simply by stating pre- and post-conditions in written text. In other
cases algorithmic and symbolic representations may be mixed, i.e.
by embedding mathematical equations into pseudo code state-
ments. For instance, the path simplification algorithms discussed
in Section 3.1 are specified in free-text which provides a detailed
description of the simplification procedure, states pre- and post-
conditions and include explanatory images, mathematical state-
ments, and pseudo code. This kind of documentation is typical for
most geoprocessing functions and largely comprehensible for
humans. Fully formalized approaches that provide abstract func-
tion interfaces with explicit typing and formal behavioral specifi-
cation have been shown to work for the simplest geospatial op-
erations in controlled environments.

Based on these findings generic profiles are scoped as semi-
formal and encoding-independent specifications, which contract
the most basic properties of a function’s interface and document
the expectable behavior. While concepts are output-centric, i.e.
describe what is produced by a particular geoprocessing service,
generic profiles detail how the outputs are derived from the inputs.
They extend concepts with (1) abstract signatures, that provide
compulsory names and cardinalities of inputs and outputs to avoid

<<Concept>>

Overlay
Viewshed

<<Concept>>
Boolean
Viewshed

<<Concept>>

Counting
Viewshed

<<Concept>>
Union
Viewshed

<<Concept>>
Intersection
Viewshed

+ identifier: URI

+ identifier: URI

+ identifier: URI

+ identifier: URI

+ identifier: URI

Fig. 2. Concept taxonomy for Viewsheds.
Source: Floriani and Magillo (2003).

72

M. Miiller / Computers & Geosciences 82 (2015) 68-77

<<Concept>>

PolvgonalPath
Simplification (PPS

+ identifier: URI

7

<<Concept>>

+ identifier: URI

b

<<Concept>>

+ identifier: URI

T

<<Concept>>

<<Concept>>

<<Concept>>

. EEEL;

+ identifier: URI + identifier: URI

+ identifier: URI

<<Concept>>

min# (sum-area €) pps’

<<Concept>>

min# (diff-area €) PPS®

<<Concept>>

min# (max-area g) pps’

+ identifier: URI

+ identifier: URI + identifier: URI

Fig. 3. Concepts taxonomy for polygonal path simplification. The listed concepts and compliant algorithms are discussed by 'Imai and Iri (1988); 2Gudmundsson et al.

(2007); *Bose et al. (2006).

naming ambiguities at the implementation level. Similar to nor-
mative definitions for geoprocessing functions they provide (2) a
rigorous description of the expectable behavior, the meaning of
function arguments, and pre-and post-conditions for execution —
but not necessarily in a fully formalized way.

The generic Buffer interfaces in Fig. 4 show two distinct realiza-
tions of a Distance Buffer concept. Euclidean Buffers are provided by
most GIS and intended for use with projected length-preserving
coordinate reference systems (CRS). Geodesic Buffers recently ap-
peared in GIS and spatial databases using geodesic distance com-
putation on an ellipsoid, i.e. the shortest point-to-point distance on

an ellipsoid’s surface. The latter Buffer concept is frequently used in
conjunction with geographic CRSes and global data sets, in which
case the use of a Euclidean Buffer is rather meaningless. While both
Buffer profiles refer to the same concept and have identical sig-
natures (except for their names), they behave quite differently. The
Euclidean Buffer uses linear interpolation and performs distance
calculations in the spatial reference system of the geometric object.
The Geodesic Buffer uses geodesic interpolation and performs dis-
tance calculations on the spatial reference system’s ellipsoid.
Computational precision is another important aspect that may
be covered in a generic profile. The Euclidean Distance Buffer is

<<Concept>>

DistanceBuffer

+ identifier: URI

i

EuclideanDistance
Buffer

Precision
EuclideanDistance
Buffer

+ identifier: URI

Input
+ geometry [1]
+ distance [1]

Qutput

+ distanceBuffer

Y

Behaviour
documentation

+ identifier: URI

Input
+geometry [1]

+ distance [1]

+ tolerance [0..1]

Output

+ distanceBuffer

¥

Behaviour
documentation

GeodesicDistance
Buffer

Precision
GeodesicDistance
Buffer

+ identifier: URI
+ identifier: URI

Input
+ geometry [1]
+ distance [1]

Input
+geometry [1]

+ distance [1]

+ tolerance [0..1]

Output

+ distanceBuffer

Y

Behaviour
documentation

Output
+ distanceBuffer

¢

Behaviour
documentation

Fig. 4. Generic profiles for Buffer functions.

M. Miiller / Computers & Geosciences 82 (2015) 68-77 73

Polygonal
Approximation

Perfect

Buffer
Input

Geometry Tolerance

Fig. 5. Polygonal Buffer approximation.

similar to the Buffer operation defined in OGC (1999). Although
the interface seems quite complete at first glance, the geometric
precision of the result is virtually undefined. The precision aware
Buffer functions make precision explicit by providing an additional
tolerance parameter that controls the geometric precision of the
result. Imprecision in Buffer computation may have two causes.
First, it is be caused by approximate distance calculations. Second,
imprecision may be introduced by the geometry model since most
Buffer implementations do not support circular arcs but approx-
imate curved segments by piecewise linear functions (Fig. 5). Both
cases can be covered by an additional tolerance parameter that
guarantees an approximation error lower or equal to the specified
tolerance. Use cases that require negligible precision may stick to
the general Distance Buffer variants while more demanding ap-
plications would invoke a service that implements a Buffer func-
tion with precision guarantees.

For other types of functions, precision uncertainty may be an
inherent property of the algorithm and cannot be controlled by a
tolerance parameter. Simplification algorithms for polygonal paths
(Section 3.1) are computationally demanding. Next to exact algo-

rithms, heuristics have been developed which run faster by orders
of magnitude but only approximate the exact solution. Heuristics
still comply with the overall optimization strategy imposed from
the conceptual level, but behave differently from their exact
counterparts. In such cases, exact and heuristic variants must be
expressed in distinct generic profiles.

3.3. Implementation profiles

Generic profiles have been introduced to resolve conceptual
and naming heterogeneity for geoprocessing functions. Software
implementations of generic interfaces must comply with their
syntax and behavioral contract. Due to their abstract nature,
generic interfaces cannot be immediately used for execution. The
typing of interface elements is purely conceptual and lacks the
specification of a technical data exchange format. Without such a
format, a potential client would not know how to send or receive
data to/from a concrete geoprocessing service.

Implementation profiles extend generic profiles with non-func-
tional properties. They inherit the behavioral and syntactic proper-
ties from concepts and generic interfaces. In addition they supply
encoding formats that encode the conceptual data types in common
data exchange formats such as XML/GML, JSON/GeoJSON, NetCDF,
GeoTiff, or other well-known data exchange formats.

In Fig. 6 the generic interface of the Simple Buffer is extended
by to implementation profiles, one for GeoJson and one for GML.
The distance value has to be encoded with Double precision.

Due to limited computing resources implementation profiles
may further apply reasonable size restrictions to input datasets.
For instance, the generic interface of a Mosaic function, which
merges an arbitrary number of raster tiles into a single raster, may
theoretically accept an unlimited number of input tiles of any data
volume. Implementations will certainly restrict this generic Mo-
saic function by limiting the number of tiles and their permitted
maximum size to a manageable amount.

EuclideanDistanceBuffer

+ identifier: URI

Input

+ geometry [1]
+ distance [1]

Output

+ distanceBuffer

1

EuclideanDistanceBuffer
(Geolson)

+ identifier: URI

Input
+ geometry [1]: {Geolson}

+ distance [1]: {Double}

Output
+ distanceBuffer: {Geolson}

EuclideanDistanceBuffer
(GML)

+ identifier: URI

Input
+ geometry [1]: {GML}
+ distance [1]: {Double}

Output
+ distanceBuffer: {GML}

Fig. 6. Implementation profiles for the Euclidean Distance Buffer.

74 M. Miiller / Computers & Geosciences 82 (2015) 68-77

The process description schema of WPS, in terms of an inter-
face blueprint (Section 2.2), is a possible encoding of an im-
plementation profile. A function’s interface is not expressed in a
high-level fashion but already specifies concrete data formats and
non-functional aspects, such as applicable data formats and data
size limitations.

3.4. Service implementations

The development of software components that comply with
the implementation profiles follows service-oriented paradigms or
contract-driven service design (Erl et al., 2008; Meyer, 1992; Szy-
perski et al., 2002). In brief, implementations are allowed to ex-
tend an existing contract, i.e. the interface and behavior of an
implementation profile, but shall not to violate it.

A straight forward implementation simply realizes a given im-
plementation profile. However it might be desirable to provide an
extended implementation for several reasons. The most obvious case
is the support for multiple data exchange formats (Fig. 7A).

Another extension case is shown in Fig. 7(B) which provides an
additional optional parameter for cap styles referring to similar
buffer arguments in JTS and ArcGIS. Cap styles are occasionally
used in conjunction with line buffering, allowing fine-grained
control of the Buffer’s shape at the start and end vertices. The
addition of the optional parameter is fully backwards compatible.
If unused or ignored by the client, it does not alter the original
contract of the Euclidean Buffer for GeoJson implementation pro-
file. If a client is aware of the optional parameter, he may use it to
trigger an alternate behavior of Buffer implementation (B). Im-
plementers would consider this kind of extension if they wish to
provide enhanced capabilities, which go beyond the profiled be-
havior, to some clients but still need to maximize compatibility
with the original contract.

3.5. Process catalogs and lineage records

Current implementations of geospatial data infrastructures have
a strong focus on mapping and data access. Catalog interfaces and
metadata schemas have been designed to support data and map
retrieval. Inventories or catalogs for processing services are still rare
and uncommon since search and retrieval tasks demand meaningful

Concepts é; i <>\g~o

oOOo
00 -0

Generic Profiles

Implementation O O

Profiles O O O O O O

O O

O oo

Fig. 8. Inheritance graph for profiles and software components.

Software
Components

descriptions of geoprocessing functions which are not yet in place.

The proposed profiling approach defines four granularity levels
at which a processing function may be described. The distinction
of input and output ports for data exchange provide compatibility
with generic models for workflows, components, Web services, in
particular with the process semantics of WPS (OGC, 2007). These
profiles may be used to support the search for software compo-
nents that implement a particular concept or profile (Fig. 8). Here,
a user would start searching (or browsing) for the required func-
tionality at the conceptual level and then follow subsequent links
to refined generic profiles to finally obtain a compliant software
implementation. Similarly, a given software component (i.e. a li-
brary component or online processing service) can be assessed in
terms of provided functionality at different levels of abstraction,
i.e. the compliance with a required generic profile or concept, in
order to assess its applicability for a particular task.

EuclideanDistanceBuffer
(Geolson)

EuclideanDistanceBuffer
(GML)

EuclideanDistanceBuffer
(Geolson)

+ identifier: URI

+ identifier: URI

+ identifier: URI

+ geometry [1]: {Geolson}
+ distance [1]: {Double}

+ geometry [1]: {GML}
+ distance [1]: {Double}

+ geometry [1]: {Geolson}
+ distance [1]: {Double}

Output
+ distanceBuffer: {GeoJson}

Output
+ distanceBuffer: {GML}

Qutput
+ distanceBuffer: {Geolson}

)

i

Buffer Implementation (A)

+ identifier: URI

Input

+ geometry [1]: {GeoJson, GML}
+ distance [1]: {Double}

Qutput
+ distanceBuffer: {GeoJson, GML}

1

Buffer Implementation (B)

+ identifier: URI

lnput
+ geometry [1]: {Geolson}
+ distance [1]: {Double}

+cap[0..1]: {String(ROUND | BUTT | SQUARE)}

Qutput
+ distanceBuffer: {GeoJson}

Fig. 7. Buffer implementations with (A) support for multiple data exchange formats and (B) an optional parameter for cap styles.

M. Miiller / Computers & Geosciences 82 (2015) 68-77 75

Workflow (A) T

Distance
Buffer

Global Coastal
Baselines

L Euclidean Distance

Euclidean Distance
Buffer (GML)

—t

Global Coastal
Baselines

Tolerance

12-mile zones

I —— |

1

Distance
Buffer

Precision Geodesic
Distance Buffer

12-mile zones

Precision Geodesic
Distance Buffer
(GML)

—t

Workflow (B)

Fig. 9. Excerpt workflows and provenance graphs for territorial waters computation.

In addition, the profiling approach supports the creation of
provenance records. Current metadata schemas such as ISO 19115-
2 are cumbersome to use and still do not provide sufficient detail
about the processing workflow (Henzen et al., 2013). With profile
references embedded in provenance records, the whole workflow
becomes transparent, right down to the behavior of the invoked
processing functions. Fig. 9 shows an excerpt from two workflows
that compute the territorial waters from global costal baselines. To
assess the correctness of the result, detailed information about the
employed proximity calculation is desirable. The result of work-
flow (A) has to be treated with caution and is probably wrong
since the invoked buffering operation employs a Euclidean Buffer
on a global dataset and in this case the result is probably highly
inaccurate. The result of Workflow (B) can certainly be trusted
since the invoked Buffer function is capable of performing geo-
desic computations and provides precision guarantees through a
tolerance parameter. For absolute certainty, the values of distance
and tolerance might be checked.

As hinted in Fig. 9, coarser representations of the workflow
might be generated from the graph for general overviews, e.g. at
the level of concepts. Assuming that fine-grained provenance has
been recorded, a deep inspection may be performed by portraying
lower levels possibly down to the particular implementation. Even
if at some point in the future the invoked software implementa-
tion no longer exists, the workflow is still reproducible and ver-
ifiable based on the contracts provided by the profile definitions.

4. Conclusion and future work

This paper has presented a semi-formal approach for profiling
interoperable geoprocessing services. In contrast to fully formalized
specifications, the correctness of derived implementations cannot be
automatically checked. A major advantage of the proposed approach
is its applicability for higher-level algorithms and functions which

cannot be expressed with formal logic. The reviewed literature
provides sufficient evidence that this is the case for all but the
simplest spatial operations.

The presented examples use existing taxonomies for geopro-
cessing functions and geo-spatial operators. Representations and
interpretations of concepts and profiles are subject to scientific
discourse and may evolve over time. There is nothing wrong with
this fact; it is merely a consequence of GIS evolution and a better
understanding of GIS components (Kuhn, 2005). Steady develop-
ment of algorithms and methodology may lead to improved
taxonomies for concepts or generic profiles. The examples pro-
vided in this paper are derived from current state-of-the-art in GIS
research and application to illustrate the purpose and capabilities
of the framework. There is no definite set of criteria that could
indicate whether a contract, expressed by a concept or generic
profile, is sufficient, conclusive, and comprehensive.

This issue is not unique to the geospatial domain and has been
discussed at a broader scope for service-oriented software design
in general. Szyperski et al. (2002) have drawn an analogy between
semiformal contracts in software component design and real-
world law texts which are regularly debated in courts. Both are
subject to evolution and existing contracts and taxonomies might
be rephrased, refined or even reconsidered. To organize this de-
velopment process in a service-driven environment, Erl et al.
(2008) have suggested versioned contracts, where subsequent
revisions provide refined versions of the original contract. All
elements in the profiling hierarchy are scoped as identifiable re-
sources and would thus support this kind of versioning.

The descriptions of contracts, generic profiles, implementation
profiles, and finally implementations are scoped as persistent
documentation resources which require a suitable encoding for
both syntax and behavior. As hinted by the figures the signatures
and their elements may be encoded in a well-known modelling or
markup language such as UML or XML. The upcoming revision of
the Web Processing Service specification (OGC, 2015, Sections

76 M. Miiller / Computers & Geosciences 82 (2015) 68-77

7 and 8) will support hierarchical profiling. It provides XML en-
codings for generic and implementation profiles to build function
taxonomies for well-known geoprocessing functions and future
algorithms. Additional metadata elements can be used by service
implementers to express compliance with objects inside these
taxonomies, alleviating the burden of service documentation.

Sematic Web languages, such as RDF, are another option which
is particularly suitable for encoding the semantic links within the
sets of concepts, generic profiles and implementation interfaces
(Fig. 8). In contrast, the specification of behavior requires addi-
tional documentation resources. In both industry standards and
academia classical text-based documentations are primarily used
for this task (Albrecht, 1996; OGC, 1999). Thus human-readable
hypertext media and specification texts are viable documentation
resources (e.g. ESRI, 2015). These resources might also be scoped
as educative material, i.e. be supplied with examples and guidance
to help non-specialists understanding domain-specific concepts
and algorithms. The testing for correctly implemented behavior is
still subject to classical software testing and involves human
judgment and expertise.

The presented profiling approach bears strong analogies with
the development process for data schemas, which are typically
derived from conceptual models and then refined and extended
for different application domains (Toth et al., 2012). A similar in-
heritance mechanism is applied to derive generic profiles, im-
plementation profiles, and finally implementations from their
ancestors. In general, pure extension-based approaches result in
large numbers of subclasses which need to be managed and
maintained. This might indicate a scalability issue of hierarchical
profiling for large numbers of heterogeneous geoprocessing
functions with diverse subtypes. Semi- or unstructured collections
of processing functions, which are generally hard to profile, might
be easier to handle with linked data representations as proposed
by Granell et al. (2013). For geoprocessing functions, there is some
evidence that they can be characterized according to common
aspects, such as the definition of distance metrics and space,
geometric precision, and the spatial or spatio-temporal reference
system types. Future research should investigate these common
aspects to possibly profile geoprocessing functions according to
some globally shared properties.

Acknowledgments

The research leading to these results has received funding from
the German Federal Ministry of Education and Research under
Grant agreement no. 01LLO901C.

References

Albrecht, J., 1996. Universal Analytical GIS Operations [dissertation]. Universitat
Vechta.

Anselin, L., 2012. From SpaceStat to CyberGIS. Int. Reg. Sci. Rev. 35 (2), 131-157.

Bernard, L., Mds, S., Miiller, M., Henzen, C., Brauner,]., 2013. Scientific geodata in-
frastructures: challenges, approaches and directions. Int.]. Digit. Earth 7 (7),
613-633.

Bishr, Y., 1997. Semantic Aspects of Interoperable GIS [dissertation]. Land-
wirtschaftliche Universitdt, Wageningen, Enschede.

Bose, P.,, Cabello, S., Cheong, O., Gudmundsson, J., van Kreveld, M., Speckmann, B.,
2006. Area-preserving approximations of polygonal paths. J. Discrete Algo-
rithm. 4 (4), 554-566.

Clarke Jr., E.M., 1979. Programming language constructs for which it is impossible
to obtain good hoare axiom systems. J. ACM 26 (1), 129-147.

Clementini, E., Felice, P.D., Oosterom, P.v., 1993. A small set of formal topological
relationships suitable for end-user interaction. In: Proceedings of the Third
International Symposium on Advances in Spatial Databases, pp. 277-295.

Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M., 1997. Qualitative spatial re-
presentation and reasoning with the region connection calculus. Geoinforma-
tica 1 (3), 275-316.

Couclelis, H., 1992. People manipulate objects (but cultivate fields): beyond the
raster-vector debate in GIS. In: Frank, A., Campari, I., Formentini, U. (Eds.),
Proceedings of the International Conference GIS-From Space to Territory:
Theories and Methods of Spatio-Temporal Reasoning on Theories and Methods
of Spatio-Temporal Reasoning in Geographic Space, pp. 65-77.

de Jesus, J., Walker, P.,, Grant, M., Groom, S., 2012. WPS orchestration using the
Taverna workbench: The eScience approach. Comput. Geosci. 47, 75-86.

de Smith, MJ., Goodchild, M.F, Longley, P.A., 2015. Geospatial Analysis—A Com-
prehensive Guide to Principles, Techniques and Software Tools, 5th ed.
Winchelsea Press, Winchelsea, UK.

Egenhofer, MJ.,, Herring, J.R., 1992. Categorizing Binary Topological Relations Be-
tween Regions, Lines, and Points in Geographic Databases. Department of
Surveying Engineering, University of Maine.

Erl, T,, Karmarkar, A., Walmsley, P, Haas, H., Yalcinalp, L.U,, Liu, CK,, Orchard, D.,
Tost, A., Pasley, J., 2008. Web Service Contract Design and Versioning for SOA.
Prentice Hall, Upper Saddle River, NJ.

ESRI, 2015. Geoprocessing Tool References. ¢http://desktop.arcgis.com/en/desktop/
latest/tools) (accessed 01.04.15).

Fisher, P., 2006. Algorithm and implementation uncertainty: any advances?. In:
Fisher, P. (Ed.), Classics from IJGIS: Twenty years of the International Journal of
Geographical Information Science and Systems. CRC Press, Boca Raton,
pp. 225-228.

Fitzner, D., Hoffmann,]., Klien, E., 2011. Functional description of geoprocessing
services as conjunctive datalog queries. Geoinformatica 15 (1), 191-221.

Floriani, L.D., Magillo, P., 2003. Algorithms for visibility computation on terrains: a
survey. Environ. Plan. B: Plan. Des. 30 (5), 709-728.

Friis-Christensen, A., Ostldnder, N., Lutz, M., Bernard, L., 2007. Designing service
architectures for distributed geoprocessing: challenges and future directions.
Trans. GIS 11 (6), 799-818.

Granell, C,, Diaz, L., Gould, M., 2010. Service-oriented applications for environ-
mental models: reusable geospatial services. Environ. Model. Softw. 25 (2),
182-198.

Granell, C, Diaz, L., Schade, S., Ostlander, N., Huerta, J., 2013. Enhancing integrated
environmental modelling by designing resource-oriented interfaces. Environ.
Model. Softw. 39, 229-246.

Grigni, M., Papadias, D., Papadimitriou, C., 1995. Topological inference. In: Mellish,
C.S. (Ed.), Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pp. 901-906.

Gudmundsson,], Narasimhan, G., Smid, M., 2007. Distance-preserving approx-
imations of polygonal paths. Comput. Geom. 36 (3), 183-196.

Henzen, C., Mds, S., Bernard, L., 2013. Provenance information in geodata infra-
structures. In: Vandenbroucke, D., Bucher, B., Crompvoets,]. (Eds.), Geographic
Information Science at the Heart of Europe. Springer International Publishing,
pp. 133-151.

Hill, LL., Crosier, S.J., Smith, T.R., Goodchild, M., 2001. A Content Standard for
Computational Models. d-Lib Mag. 7.

Hoare, C.AR., 1969. An axiomatic basis for computer programming. Commun. ACM
12 (10), 576-580.

Imai, H., Iri, M., 1988. Polygonal approximations of a curve-formulations and al-
gorithms. In: Toussaint, G.T. (Ed.), Machine Intelligence and Pattern Recogni-
tion. North-Holland, pp. 71-86.

ISO, 2004. Geographic Information-Simple Feature Access - Part 1: Common ar-
chitecture. ISO 19125-1:2004.

I1SO, 2009. Geographic Information - Metadata - Part 2: Extensions for Imagery and
Gridded Data. ISO 19115-2:2009.

ISO, 2010. Geoinformation - Filter Encoding. ISO 19143:2010.

ISO, 2014. Geographic Information Metadata Part 1: Fundamentals ISO 19115-
1:2004.

Kuhn, W., 2005. Geospatial Semantics: Why, of What, and How?. In: Spaccapietra,
S., Zimanyi, E. (Eds.), Journal on Data Semantics III. Springer, Berlin Heidelberg,
pp. 1-24.

Kuhn, W., 2012. Core concepts of spatial information for transdisciplinary research.
Int.]. Geogr. Inf. Sci. 26 (12), 2267-2276.

Lanig, S., Zipf, A., 2010. Proposal for a Web Processing Services (WPS) application
profile for 3d processing analysis. In: Proceedings of the Second International
Conference on Advanced Geographic Information Systems, Applications, and
Services (GEOPROCESSING '10), Washington, DC, USA, pp. 117-122.

Liskov, B.H., Wing, J.M., 1994. A behavioral notion of subtyping. ACM Trans. Progr.
Lang. Syst. 16 (6), 1811-1841.

Liu, Y., Goodchild, M.F, Guo, Q., Tian, Y., Wu, L., 2008. Towards a general field model
and its order in GIS. Int. J. Geogr. Inf. Sci. 22 (6), 623-643.

Longley, P.A., Goodchild, M.F,, Maguire, D.J., Rhind, D.W., 2011. Geographic In-
formation Systems and Science. Wiley, Hoboken, NJ.

Lutz, M., 2007. Ontology-based descriptions for semantic discovery and composi-
tion of geoprocessing services. Geoinformatica 11 (1), 1-36.

Lutz, M., Riedemann, C., Probst, F., 2003. A classification framework for approaches
to achieving semantic interoperability between GI web services. In: Kuhn, W.,
Worboys, M.E, Timpf, S. (Eds.), Spatial Information Theory. Foundations of
Geographic Information Science. Springer, Berlin Heidelberg, pp. 186-203.

Meyer, B., 1992. Applying “Design by Contract”. Computer 25 (10), 40-51.

Miiller, M., Bernard, L., Kadner, D., 2013. Moving code - sharing geoprocessing logic
on the web. ISPRS]. Photogramm. Remote Sens. 83, 193-203.

Miiller, M., Bernard, L., Vogel, R., 2010. Multi-criteria evaluation for emergency
management in spatial data infrastructures. In: Konecny, M., Zlatanova, S.,
Bandrova, T.L. (Eds.), Geographic Information and Cartography for Risk and
Crisis Management. Springer, Berlin, Heidelberg, pp. 273-286.

M. Miiller / Computers & Geosciences 82 (2015) 68-77 77

Nash, E., 2008. WPS application profiles for generic and specialised processes. In:
Pebesma, E., Bishr, M., Bartoschek, T. (Eds.), Proceedings of the 6th Geographic
Information Days (GI-Days 2008), Miinster.

0GC, 1999. OpenGlIS Simple Feature Specification for SQL, Revision 1.1. OGC Docu-
ment 99-049.

0OGC, 2007. OpenGIS Web Processing Service, Version 1.0.0. OGC Document 05-
007r7.

0OGC, 2015. OGC WPS 2.0 Interface Standard. OGC Document 14-065.

OMG, 2005. Unified Modeling Language: Superstructure. Version 2.0. formal/05-
07-04.

Ostldander, N., 2008. Creating Specific Decision Support Systems in Spatial Data
Infrastructures. An Approach for Conceptualisation, Design and Implementa-
tion [dissertation]. Westfalische Wilhelms-Universitdt Miinster.

Probst, E, Lutz, M., 2004. Giving meaning to GI web service descriptions. In: Pro-
ceedings of the Second International Workshop on Web Services: Modeling,
Architecture and Infrastructure (WSMAI-2004), Porto, Portugal.

Scheider, S., Janowicz, K., Kuhn, W., 2009. Grounding geographic categories in the
meaningful environment. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G.
(Eds.), Spatial Information Theory. Springer, Berlin, Heidelberg, pp. 69-87.

Szyperski, C., Gruntz, D., Murer, S., 2002. Component Software. Beyond Object-
Oriented Programming, second edition. Addison-Wesley, London.

Tomlin, D., 1990. Geographic Information Systems and Cartographic Modelling.

Prentice-Hall, Englewood Cliffs.

Toth, K., Portele, C., lllert, A., Lutz, M., Lima, M.Nd, 2012. A Conceptual Model for
Developing Interoperability Specifications in Spatial Data Infrastructures. Eur-
opean Commission, Joint Research Centre, Institute for Environment and Sus-
tainability, Luxembourg.

Walenciak, G., Zipf, A., 2010. Designing a web processing service application profile
for spatial analysis in business marketing. In: Painho, M., Santos, M.Y., Pundt, H.
(Eds.), Proceedings of the 13th AGILE International Conference on Geographic
Information Science, Guimardes, Portugal.

Yuan, M., Albrecht, J., 1995. Structural analysis of geographic information and GIS
operations from a user’s perspective. In: Frank, A.U., Kuhn, W. (Eds.), Spatial
Information Theory A Theoretical Basis for GIS. Springer, Berlin, Heidelberg,
pp. 107-122.

Yue, P, Di, L., Yang, W., Yu, G., Zhao, P., 2007. Semantics-based automatic compo-
sition of geospatial web service chains. Comput. Geosci. 33 (5), 649-665.

Zeigler, B.P,, Praehofer, H., Kim, T.G., 2000. Theory of Modeling and Simulation,
second edition. Academic Press, San Diego.

Zhang, P,, Zhou, L., Sheng, Y., Hy, Y., 2010. A buffer generation method based on
Minkowski sum. In: Proceedings of the Second International Conference on
Information Science and Engineering (ICISE), Syndey, Australia, pp. 3396-3399.

5. The WPS 2.0 Interface Standard

Miiller, Matthias (Ed.); Pross, Benjamin (Co-Ed.): OGC WPS 2.0 Interface Stan-
dard. Published as an International Standard by the Open Geospatial Consortium,
© OGC 2015, document number 14-065.

Abstract. The OGC Web Processing Service (WPS) interface specification stan-
dardises descriptions for geoprocessing functions and defines a protocol for client—
server geoprocessing (see section 1.1). While the OGC WPS standard was designed
with spatial processing in mind, it can also be used to readily insert non-spatial
processing tasks into a web services environment.

Contributions. The author of this thesis is the editor of the WPS 2.0 specification
text and has essentially developed the information models and corresponding XML
schemas. One particular focus was put on the separation of the WPS process model
from the service model so that WPS process descriptions can be used as an interface
description language for arbitrary geoprocessing functions, no matter if they are used
in a Web service or as a more general component interface, e.g. for cataloguing the
contents of GIS toolbozes or portable moving code packages.

For WPS 2.0, the Standards Working Group (SWG) has requested a clear guidance
profiling WPS processes, which was not properly addressed in the first version of the
standard. After several presentations of the initial work on profiling approaches
(MULLER 2013) and subsequent refinements, the framework on hierarchical profiling
(cf. chapter 4) was approved by the SWG for inclusion in the standard and is now
part of the WPS process model. Corresponding XML schemas and inheritance rules
have been formalised in the standard. Sections in the specification that cover the
profiling mechanism are exclusive contributions of the author. The following sections
are a summary of the standard.

7

5. The WPS 2.0 Interface Standard

5.1. Specification Overview

The WPS 2.0 specification (OGC 2015a) is a major revision of the WPS 1.0 standard
(OGC 2007c). The standard addresses several weaknesses of its predecessor and
was redesigned with improved modularity. Figure 5.1 gives an overview of the new
specification structure.

[1

GET/KVP Binding

Extension
/

Service Model
1

POST/XML
| Binding Extension

Conceptual Model

[1 [1

Process Model
XML Encoding

Process Model

OWS Common

Figure 5.1.: Structure of the WPS 2.0 implementation specification
(shortened)

Since the OGC abstract specifications (OGC 2015a) do not provide a common
reference model or guidance for geoprocessing, the standard introduces a conceptual
model for geoprocessing that is platform independent and can be implemented in
various technologies and encodings. The conceptual model defines the basic prop-
erties of a process and lists basic requirements for service discovery and invocation,
data transmission, and process interfaces.

Subsequent parts such as the service model and the specific process model depend
on information elements defined by OWS Common 2.0 (OGC 2010). The primary
encoding of the service model and process model is the Extensible Markup Language
(XML). The use of the JavaScript Object Notation (JSON; ECMA 2013; IETF
2014) as an alternative encoding along with a resource-oriented service interface,
based on Representational State Transfer (REST), is currently discussed and might
be defined by future WPS implementation standards. The SWG on WPS 2.0 has
discussed several approaches to a RESTful WPS and assumes that the current data
structures can be easily adapted for that technology. It is now up to the OGC and

78

5.2. WPS Service Model

its members to define a common policy on JSON and REST to allow further progress
towards a RESTful encoding for WPS.

In contrast to the previous version, WPS 2.0 separates the service model from the
process model (outlined in section 5.3). The tight coupling between the Web service
interface and the process model in WPS 1.0 prevented the use of process descriptions
as a common IDL for arbitrary geoprocessing services or tools. Experiences from
the work described in chapters 2 and 3, as well as a change request to support
SensorML (OGC 2014c) as an alternative process interface description triggered this
change and had significant impact on the new modular design. Since SensorML and
WPS provide different information models for process descriptions (a comparison is
provided in annex A.3), the WPS 2.0 service model supports both.

Other OGC standards for the Web, which have made the distinction between
content encoding and service interfaces already, have served as a blueprint for this
new design. For instance, the contents offered by a Web Feature Service (WFS; OGC
2014d) server depend on the ISO Feature Model (ISO 2005), and the Geography
Markup Language encoding (GML; ISO 2007). Similarly, the Sensor Observation
Service (SOS) relies on the information models and data encodings provided by
Observations and Measurements (O&M; OGC 2011, 2013).

5.2. WPS Service Model

The service model of WPS2.0 (cf. Figure 5.2) has been revised to provide a clearer
protocol for process execution. Regarding nomenclature, the specification makes a
distinction between a process (e.g. a geoprocessing function that can be reused in
multiple executions) and a job representing an instance of a process with specified
input and output data.

Besides the operations required for the service self-description and the descrip-
tion of the provided content (GetCapabilities and DescribeProcess), WPS provides
an Frecute operation for job instantiation and execution as well as GetStatus and
GetResult operations for asynchronous execution. A Dismiss operation is provided
as an optional extension which may be used by clients to signal the WPS server that
they are no longer interested in a running job or its results and that the associated
resources may be freed. Similarly to a cancel command in desktop GIS, this opera-
tion is useful to stop accidental execution in interactive applications or to terminate
unexpectedly long running executions.

As stated in the overview section, the process model and service model in WPS 2.0
are largely decoupled. As a consequence, process descriptions can be used indepen-
dently from a WPS service, i.e. to describe the interfaces of geoprocessing tools that
reside in a particular GIS toolbox. On the other hand WPS servers can support
other process description schemes if they comply with general requirements laid out
in the conceptual model.

79

5. The WPS 2.0 Interface Standard

GetCapabilities % DescribeProcess H

Web Processing Service ——provides—>> Process
provides runs

control &

. Data
monitor

Job Control Operation

has

Execute w
GetStatus

GetResult

(Dismiss) Status

Figure 5.2.: Artefacts of the WPS service model (Source: OGC 2015a, Figure 1)

5.3. WPS Process Model and Interfaces

The WPS standard’s process description has been designed to support a broad range
of stateless computing functions. For historical reasons WPS uses the term process
instead of function. A process’ interface makes an explicit distinction between inputs
and outputs. A WPS-compliant process has at least one output and zero' or more

inputs (cf. Figure 5.3).

< ©
Process > Input DataType
0..* <
1.*
| oy
%
k>
Output
1.% >—

X R e T

Figure 5.3.: WPS abstract process model (Source: OGC 2015a, Figure 2)

!This permits the description of input-free functions such as random value generators
(http://resources.arcgis.com/en/help/main/10.2/index.html/Create_Random_Raster/
009z000000s6000000/).

80

http://resources.arcgis.com/en/help/main/10.2/index.html/Create_Random_Raster/009z000000s6000000/
http://resources.arcgis.com/en/help/main/10.2/index.html/Create_Random_Raster/009z000000s6000000/

5.3. WPS Process Model and Interfaces

An input can be multi-valued, i.e. receive one or more input datasets for execution.
More complex interfaces with cross dependencies between several inputs or outputs
can be modelled with grouped inputs and outputs?. The functions Weighted Sum
and Reclassify are typical examples from common GIS toolboxes that have nested
arguments and benefit from this feature. Figure 5.4 illustrates how nested inputs
may be applied to express remap tables for single values and value ranges.

1 <<ZInput>>
InputRaster | <<Input>>
StartValue
1 <<Input>> 1
ReclassField] <<Input>>
EndValue
0..% <<Input>>
1O—
MIM& _1. <<|nput>>
<<Process>> | < m—
Reclassify
0% 1 <<ZInput>>
i <<Input>>] OldValue
RemapValue
1 <<LInput>>
o1 <<Input>> NewValue
MissingValues
1 <<Output>>

OutputRaster

Figure 5.4.: Exemplary process interface for a Reclassify function?

In WPS 1.0, case-specific data types with distinct (XML) schemas had to be defined
for geoprocessing functions with nested arguments. As pointed out by FEUERLICHT
(2011), such practice easily leads to a deluge of very specific data types. This can
become a mjor obstacle in service chaining and eventually impedes service composi-
tion.

A UML diagram of the complete WPS process model is shown in Figure 5.5.
Process descriptions, inputs, and outputs inherit basic type definitions from OWS
Common and comprise a machine readable identifier, a human readable title, an
optional abstract, an optional set of keywords?, and zero or more metadata elements.

In contrast to the prior version, WPS 2.0 makes particular use of the metadata
elements to provide additional documentation on the semantics of process interfaces
as well as inputs and outputs. Furthermore, metadata elements are used to indicate
compliance with one or more process profiles (see section 5.4).

2@rouped inputs and outputs were not available in WPS 1.0

3Interface adapted from ArcGIS Reclassify tool (http://desktop.arcgis.com/en/desktop/
latest/tools/spatial-analyst-toolbox/reclassify.htm, accessed 2015-04-01

*Keywords were not available in WPS 1.0

81

http://desktop.arcgis.com/en/desktop/latest/tools/spatial-analyst-toolbox/reclassify.htm
http://desktop.arcgis.com/en/desktop/latest/tools/spatial-analyst-toolbox/reclassify.htm

5. The WPS 2.0 Interface Standard

Basic properties for idcntificationb
and description of processes,

inputs and outputs are inherited
from OWS Common.

. / +identifier[0..1]: ows:Identifier
DescriptionType +metadata[0..*]: ows:Metadata

+title[1]: ows:Title
+abstract[0..1]: ows:Abstract
+keywords[0..1]: ows:Keywords
+identifier[1]: ows:ldentifier
+metadata[0..*]: ows:Metadata

7

0

ows:BasicldentificationType

+title[0..1]: ows:Title
+abstract[0..1]: ows:Abstract
+keywords[0..1]: ows:Keywords

Process Input Output
+ Input[0..*]: Input 0.* | +minOccurs[1]: nonNegativelnteger 0%
+ Output[1..*]: Output +maxOcurs[1]: positivelnteger v
XOR

The Format provides

additional information about

AN

<<abstract>>
DataDescription

the data encoding format (e.g. |——® Format

mime type and data size

limitations)

<<abstract>>
—<

1.% DataDescription

LiteralData BoundingBoxData

The native WPS process
model provides three
general-purpose data types

ComplexData

The WPS data type B
system permits horizontal
and vertical extensions.
9\ Vertical extensions
perserve compatibility
with super types.
Horizontal extension can
easily break compatibility
with generic clients and
shoud therefore be
standardised.

Figure 5.5.: WPS process model information elements (Source: OGC 2015a, Figures
6,7,8,12)

82

5.4. Process Descriptions and Profiles

For data exchange, the WPS standard defines two specific and one generic type:
e Literal Data — a simple scalar or string value with an optional unit,
e Bounding Box Data — a geographic bounding box, and

o Complex Data — for all other data types, described by mime type, encoding
and schema.

While being developed for geospatial applications, the data model is quite generic
and open to use in other domains. With regard to the limited list of available
data types, extensions may define additional data types — either by inheritance from
Complex Data or by extending the abstract Data Description class.

5.4. Process Descriptions and Profiles

Hierarchical profiling of geoprocessing functions is another feature which was intro-
duced by WPS 2.0 and is based on the theoretical background provided by MULLER
(2013) and MULLER (2015, cf. chapter 4). The WPS SWG has adopted the general
approach for WPS 2.0 and a corresponding XML encoding was created. Other op-
tions, such as semantic annotations, are generally possible to add useful metadata
and have been discussed in conjunction with WPS (OGC 2009). Yet, semantic an-
notations have not received significant adoption in the OGC community or the OGC
standards suite.’?

Concept

i

— | —|—1> Generic Profile {<— wps:GenericProcess

1

—— Implementation Profile

[P wps:Process

Process Implementation /

Figure 5.6.: Inheritance hierarchy for multi-level process profiles (Source: OGC
2015a, clauses 7.5 and 8)

WPS 2.0 does not mandate a full profiling hierarchy to reduce the implementation
burden for early adopters of process profiles. It permits to start profiling at any

5The purpose and use of semantic annotations in SensorML is reviewed in annex A.3.

83

5. The WPS 2.0 Interface Standard

given level in the hierarchy and allows “gaps”, such as omitted generic profiles, in the
inheritance graph (cf. Figure 5.6). This allows implementers to document the status
quo of their geoprocessing services and work towards better descriptions and more
complete hierarchies in future iterations.

DescriptionType

+title[1]: ows:Title
+abstract[0..1]: ows:Abstract
+identifier[1]: ows:ldentifier
+metadata[0..*]: ows:Metadata

7
| | |

GenericProcess Genericlnput GenericOutput
+ Input[0..*]: Genericlnput +minOccurs[1]: nonNegativelnteger 0. ﬂE \
+ Output[1..*]: GenericOutput +maxOcurs[1]: positivelnteger

0.*

Figure 5.7.: Generic process information elements (Source: OGC 2015a, Figure 13)

A detailed discussion on profiling and inheritance is provided in chapter 4. The
WPS implementation of process profiling is based on the UML classes Process (cf.
Figure 5.5) and Generic Process (cf. Figure 5.7). A compilation of XML listings that
encode the examples from MULLER (2015) into WPS process profiles is provided in
annex A.2.

84

6. Discussion of Results

Today’s geospatial data infrastructures largely provide data-centric services. Data
access services offer interfaces for data download, view services deliver cartographic
visualisations of this data, and catalogue services add search and retrieval capabilities
to the infrastructure.

In contrast, processing services are not very well integrated in current SDIs. Access
to geoprocessing software is usually limited to experts who still face interoperability
challenges if they wish to reuse 3rd party tools or products. Although Web services
with geoprocessing capabilities have been around for a while now, clients are gen-
erally unable to search and invoke the processing functions that suit their needs.
Open Data initiatives and SDIs have helped to establish a culture for data shar-
ing that encourages reuse of previously collected data and avoids costly surveys for
gathering data which is aleady available. Similarly, a code sharing infrastructure (cf.
chapter 3, Figure 2) may ease access to geoprocessing services and encourage reuse
rather than costly, time consuming, and error prone re-implementation. Geoprocess-
ing Web services, such as WPS, are one technical option to achieve code mobility (see
section 1.2). A major disadvantage of WPS is the tight coupling of computing func-
tionality and computing resources. Developers of new data processing functions are
required to operate a computing service to share their implementations with other
users. In this thesis it is agued that portable computing components could be shared
and exchanged independently from a computing service. This so-called moving code
approach significantly reduces provisioning efforts and allows greater flexibility in the
choice of the deployment site. Provided that both data and computing components
can be transferred to any location in a world-wide network, users are free to perform
geoprocessing on arbitrary — rented or owned — computing infrastructure.

6.1. Responses to the Research Challenges

As with data, the ability to share geoprocessing services can be attributed to two
independent aspects: The ability to document geoprocessing functions, i.e. to de-
scribe, search, discover and compare them as well as the ability to access, enact, or
otherwise invoke their implementations. This dichotomy is reflected by the research
challenges laid out in section 1.4.

Chapter 2 lays the foundation for a moving code architecture that discusses code
sharing approaches as an alternative to the provision of geoprocessing Web services.
In this contribution, the focus is on improving access to software components for
geoprocessing which may represent general purpose functions as well as domain—
specific workflows and models. An abstract architecture is developed that connects

85

6. Discussion of Results

the user domain, where geoprocessing functions are used and applied, with the source
system domain, in which the corresponding implementations are actually deployed.
Furthermore, aspects of life cycle management are discussed in order to supply users
with updated implementations.

This abstract architecture is refined and improved in chapter 3 which identifies a
set of services and target platforms that support moving code approaches, such as
code on demand or remote evaluation (cf. CARZANIGA et al. 2007, and Table 1.1).
The contribution presents an improved component model that allows a better docu-
mentation of runtime requirements for portable software components and also puts
a stronger focus on component interoperability. Next to infrastructure services for
code sharing, registries are proposed to store interface descriptions for geoprocessing
functions of which multiple implementations exist.

Chapter 4 is devoted to improving interoperability of geoprocessing services by the
definition of profiles, which were initially mentioned in WPS 1.0 and were repeatedly
discussed and re-interpreted. Based on these reconsiderations, a hierarchical profiling
approach is suggested which is generally compatible with WPS process descriptions
and permits the description of geoprocessing services at different levels of detail. That
same approach can also be used to harmonise geoprocessing services at different levels
of granularity.

In parallel, this thesis has provided some insights and suggestions that have been
integrated into the WPS 2.0 specification. Important contributions to this interna-
tional standard are summarised in chapter 5.

These results are now coherently reviewed and related to the initial research chal-
lenges.

Challenge no. 1: Portable Software Components for Geoprocessing

Portable software components have been proposed as an alternative to geoprocessing
Web services which may be inappropriate or underperforming in many applications.
Next follows a review of the related research questions (cf. section 1.4).

How is code mobility achievable in SDI?

Code mobility in terms of client—server geoprocessing is well-documented
and practised in various cases. The WPS standard (OGC 2007¢c, 2015a)
provides a communication protocol for this purpose. Code mobility in
terms of remote evaluation or code on demand has received less attention
and was primarily investigated by this thesis.

Chapter 2 describes different subtypes of moving code in relation to data
coupling and execution scheme. Some data services such as WCS with
sub-setting or resampling extensions or WFS with Filter Encoding pro-
vide simple processing capabilities. These operations can be parame-
terised by the client to perform simple processing tasks on the data of-
ferings. Since the client defines the computing instructions as part of

86

6.1. Responses to the Research Challenges

the query to the data service, these solutions qualify as code mobility
in terms of remote evaluation. The processing capabilities of data access
services are very limited and comprise only a tiny set of operations. More
flexibility is offered by domain-specific languages such as WCPS which
provides an SQL-like query language for raster computations.

Another option to achieve code mobility at a higher level of abstraction
is the definition of algebras for geoprocessing. Instead of using generic
programming languages, an algebra could provide a set of atomic spatial
or spatio-temporal operations which can be interpreted and executed by
multiple GIS or processing systems. Approaches in this direction are dis-
cussed by TAKEYAMA (1997), WESSELUNG et al. (1996), PULLAR (2001),
MENNIS et al. (2005), LEDOUX AND GOLD (2006), or CAMARA et al.
(2014), all of them largely building on Tomlin’s Map Algebra (TOMLIN
1990) or similar foundations. A commonly accepted language or algebra
for geoprocessing in general is not yet in sight (BRAUNER 2015).

In reality, the most versatile compilations of geoprocessing functions are
implemented in generic programming languages and typically encoded
and shipped as either scripting code or precompiled byte code. For such
implementations, the least common denominator is a common interface
description language (IDL) to describe the functionality. Added logic or
middleware is required to map between the particular programming in-
terface of the implementation and the IDL representation. A copy of the
IDL representation, however, can be stored in catalogues or inventories as
a stand-alone document to support search and retrieval. A standardised
IDL also represents a common integration layer among varois implemen-
tations. It is confined to the description of geoprocessing functions and
hides details about particular source systems or programming languages.

What would be a suitable component model for exchanging the software representa-
tions of geoprocessing functions in an interoperable manner?

The actual deployment of code on other computers is — not surprisingly
— more demanding than copying bits and bytes. To take an analogy, data
sharing requires, besides harmonised schemas and metadata, well-defined
data encoding formats. Similarly, code exchange requires the agreement
on particular container formats that encode computer instructions. In
addition, code deployment needs to consider runtime requirements such
as hardware and software dependencies that must be accounted for by
a suitable component model. Based on the idea of portable workspaces,
which are commonly used in GIS and geoscientific applications, this thesis
has outlined requirements and provided a prototypical component model
for implementations of geoprocessing functions.

This component model largely builds on existing standards. It uses the
well-known interface description language of the WPS standard to cap-

87

6. Discussion of Results

ture syntactic properties of the contained geoprocessing functions and
relies on OCCI elements that describe the required hardware resources.
Software dependencies and licenses are expressed with resolvable Uniform
Resource Identifiers (URIs). Mappings between programming interfaces
and interoperable WPS process descriptions are created programmati-
cally and follow a generic command line syntax. These descriptive arte-
facts are encoded in an XML document.

The actual content (i.e. code and static data) is stored in structured
workspaces which are widely used in GIS. Both content and descriptive
artefacts are bundled together in a ZIP archive, which is widely used as a
general purpose container by other encoding specifications such as Office
Open XML (ISO 2008) or JAVA applications.

An implementation of this component model, including support libraries,
is available in 52°North’s software repository. It provides an API for
reading and writing portable code packages and contains the required
middleware for automatic deployment and execution. Furthermore, these
libraries were integrated in 52°North’s WPS framework to support rapid
deployment of new functionality on geoprocessing Web services.

What would a possible code sharing architecture look like and which actors and ser-
vices participate in a code-sharing environment?

Implementations of geoprocessing functions can be provided statically
within particular GIS products or dynamically shared and exchanged in
a distributed infrastructure. This thesis has particularly investigated dis-
tributed provisioning approaches that involve the migration of computing
instructions or code in a computer network.

Since the provided code packages may be developed, deployed, and used
by independent parties (cf. Figure 1.1; KADNER et al. 2012; HENZEN
et al. 2015), the following actors must be considered:

e Users which require access to geoprocessing services to perform par-
ticular geoprocessing tasks,

e Developers or providers of functionality who want to publish their
work and deliver new geoprocessing services or updated implemen-
tations,

e Providers of computing environments, i.e. infrastructure and soft-
ware platforms, in which geoprocessing services can be deployed and
executed,

e Users of desktop GIS who want to extend their toolboxes with new
geoprocessing functions from Web based repositories, and

e Operators of geoprocessing Web services that provide general pur-
pose or domain-specific collections of geoprocessing functions.

88

6.1. Responses to the Research Challenges

These actors and their requirements have been translated into a con-
ceptual architecture which is presented in chapter 3, Figure 2. In the
provisioning layer this architecture provides the following services:

e Discovery services that perform as catalogues to search for available
geoprocessing functions,

e Download services that give access to implementations of geopro-
cessing functions,

e Platform registries that associate software components or compila-
tions of software components with uniform identifiers, and

e A registry for process definitions that store commonly defined pro-
files for geoprocessing functions.

The application layer depends on these services. It adresses operators of
geoprocessing Web services, operators of cloud infrastructures, and users
of Desktop GIS which need to search, access, and deploy portable code
packages for geoprocessing.

Challenge no. 2: Interoperable Interface Descriptions for Geoprocessing
Services

The availability of interoperable interface descriptions for geoprocessing services is
vital to search and retrieval tasks as well as for documentation of geoprocessing
services in a distributed SDI. Challenges that relate to the documentation and com-
munication of functionality have been raised in section 1.4. These are now reviewed.

How can functional descriptions be implemented in conjunction with existing stan-
dards for geoprocessing services?

WPS process descriptions have been suggested as a common IDL for
geoprocessing services. These descriptions may be applied to toolboxes
of legacy GIS products, portable software components, or geoprocessing
Web services. Their I/O-oriented structure is an ideal skeleton to define
arguments and results of geoprocessing functions. Findings from this
thesis have led to several improvements of process descriptions in WPS 2.0
(OGC 2015a):

e The separation of WPS process descriptions from the Web service
protocol permits their application to arbitrary implementations.

e The introduction of documentation links next to syntactic elements
in the process description enables improved documentation of func-
tionality, behavioural semantics as well as pre- and post-conditions
for inputs and outputs.

89

6. Discussion of Results

e Geoprocessing services may be aligned and compared at different
levels of abstraction by the use of hierarchical profiles.

SensorML (OGC 2014c¢) is another OGC standard that provides a pro-
cess model for computational functions. The review of SensorML in an-
nex A.3, however, shows no real benefits over WPS process descriptions.
Moreover, the SensorML process model has some restrictions that compli-
cate and in some cases prevent its application to geoprocessing services.
The notion of aggregate processes is an improvement over WPS’ pro-
cess model and might be adopted to describe composite geoprocessing
functions. This future goal is elaborated in section 6.3.

What are meaningful granularities at which geoprocessing services can be described
and compared?

This question was addressed in chapter 4 which identifies recurring levels
of detail — concept, generic profile, implementation profile, and implemen-
tation — that provide meaningful descriptions of geoprocessing services.
These levels are arranged in a hierarchical fashion and specify behaviour,
semantics, and syntax. The WPS 2.0 standard has largely adopted this
framework to encourage better descriptions of geoprocessing services and
support an alignment of geoprocessing services at different levels of detail.

Descriptive granularity can also be discussed with regard to compositional
granularity, e.g. to define a complex geoprocessing function as a compo-
sition of simpler and more genric functions. The possibility to include
compositional constructs in interface descriptions was not investigated
by this thesis but is briefly discussed as future work in section 6.3.

How can SDI catalogues be enhanced to support the search and retrieval of geopro-
cessing functions and services?

In WPS 2.0, process descriptions have been isolated in a separate con-
formance class. They can be used as an IDL for arbirary geoprocessing
services, i.e. geoprocessing Web services or portable software components.
Since they are encoded as stand-alone XML documents, they are techni-
cally easy to integrate with existing registries and catalogues.

A proper link between catalogue standards and geoprocessing service de-
scriptions, however, has not yet been established. The standards for
search and retrieval of datasets, download services, and visualisation ser-
vices on one hand and geoprocessing services on the other hand are hardly
integrated. For geoprocessing (Web) services, catalogues of the the pro-
vided functionality are still uncommon.

Next to a general consideration of geoprocessing services by the OpenGIS
Catalogue Services standard (OGC 2007a), e.g. by supporting WPS pro-
cess descriptions in the metadata records, a more explicit link with ex-
isting metadata standards, such as ISO 19115, would be a major step

90

6.2. Conclusions

towards better integration. Some early work on ISO 19115 metadata
schemas for geoprocessing functions shows conceptual parallels with WPS
process interfaces (HILL et al. 2001). Since then the ISO standard be-
came largely data-centric and thus less suitable to describe and document
geoprocessing functions.

ISO 19115-2, however, allows the use of unique identifiers for a “processing
package” that has been used to compute derived data. WPS process
descriptions as well as process profiles can be identified with HTTP-
URIs. These URIs may be embedded into existing metadata records and
can replace other (free-text) descriptions of the processing steps. Due
to the very limited capabilities in ISO 19115-2, it is almost impossible
to document the particular workflow, i.e. the topology of the processing
steps, that generated a particular dataset. The mechanism only works
in the most simple cases, i.e. if the participating geoprocessing functions
produce one single output and are chained sequentially.

6.2. Conclusions

The developed code sharing architecture and the component model for portable code
responds to basic requirements encountered in real-world applications. The proposed
component model reflects the fact that canned geoprocessing functions are usually
available in the form of scripts, executable files and coarse-grained library functions
which have a defined signature and can be executed via command line calls.

There are, of course, other component models that might be suitable for shar-
ing implementations of geoprocessing functions. Most of them require a particular
runtime infrastructure and may not be easily to port between different operating
systems. In an early stage, the use of OSGi (a component model and runtime infras-
tructure for the JAVA platform) was tested (SCHUBERT 2011) but then abandoned
since it is hardly supported outside the JAVA world and is thus hard to adapt to
other software platforms and programming languages. Finally, it was decided to
develop a custom component model that satisfies the following properties:

e Independence from a particular programming language,

e Support for the expression of software dependencies,

Support for the expression of hardware requirements,

Support for comprehensive workspaces, including code and data,

Exclusive focus on stateless computing functions,

License documentation, and

Ability to “wrap” existing implementations to avoid re-implementations just
for the purpose of code sharing.

91

6. Discussion of Results

Its main purpose was to transfer requirements into testable and workable tech-
nology for prototyping. It is primarily intended to provide an abstraction layer to
legacy implementations and to document their capabilities and runtime constraints.

The major downside of a custom packaging format is, of course, the lack of tool
support. To mitigate this issue, the component model is divided into manageable
parts which adhere as far as possible to open and widely supported standards (cf.
chapter 4, section 6).

The workspace concept was found to be a suitable unit of shipment for code and
related data. Workspaces may contain the primary programming code, tightly cou-
pled data sets as well as 3rd party libraries that are statically linked to the program
code. The workspace concept is widely applied in GIS and other software such as
the statistics environment R. When ESRI introduced its geoprocessing package with
ArcGIS 10.1 in June 2012, it followed a similar approach to bundle the associated
tools, scripts, and datasets. In the context of data science, CHIRIGATI et al. (2013)
propose a reproducible package which contains similar information on computational
experiments for computational reproducibility.

Due to the generic nature of the workspace contents, general correctness and de-
ployment tests are hardly possible. Additional quality management mechanisms are
required to ensure correctness and portability of the workspaces. Automated tests
supplied with each package or manual reviews from users are two obvious possibili-
ties; further approaches are discussed by KADNER et al. (2012). Despite these first
suggestions, reliable testing remains an open issue and requires future investigation.

For the prototypical implementation of the moving code concept a software library
has been developed that supports creating, reading, writing, and out-of-the-box ex-
ecution of code packages. This library is maintained in the software repository of
52°North GmbH! and also integrated into the company’s WPS framework to allow
dynamic content updates in WPS servers.

Since geoprocessing services are still not well integrated in SDI the proof-of-concept
implementation substituted the discovery services with Web feeds (Figure 6.1). These
Web feeds are offered by the component providers themselves or intermediates to
inform potential consumers about new or updated content. Potentially interested
clients may subscribe to this feed and occasionally receive update notifications. This
feature may also be used to distribute new functionality or updated implementations
among a large number of processing nodes. In contrast to catalogues, Web feeds do
not provide a native search protocol that allows filtering for particular functional and
non-functional properties. Protocol extensions, such as the OpenSearch API (A9
2015), are reuqired to provide search capabilities in conjunction with Web feeds.

In parallel, the creation of a virtual marketplace or Geoprocessing Appstore has
been discussed by KADNER et al. (2012) that acts as a hub for providers and con-
sumers of geoprocessing implementations. The most recent developments are re-
ported by HENZEN et al. (2015). The Appstore supports the creation of portable
packages that contain implementations of new or well-known geoprocessing functions.

"https://github.com/52North/movingcode

92

https://github.com/52North/movingcode

6.2. Conclusions

Component Component Component

Provider Consumer Consumer
D Subscribe) Read /
Notify Deliver

E g o ®© 5 o 4

Figure 6.1.: Web feeds for component sharing (Representation adopted from TANEN-
BAUM AND STEEN 2007)

These packages may be searched in a Web portal and, if the runtime dependencies
are supported, executed in a sandbox environment. Compared to the conceptual ar-
chitecture, the Geoprocessing Appstore consolidates several of the described services
in a single application and is thus less distributed.

Due to the prominent position of the WPS standard in service-oriented geopro-
cessing, process descriptions defined in the WPS standard have been suggested as an
interoperable, platform independent description language for the interfaces of geopro-
cessing functions. While being generally suitable to accomplish this task, the earlier
version 1.0 of the WPS standard was not created in a modular fashion, and process
descriptions were not scoped to be used independently from a WPS server. Besides
functional information, process descriptions in WPS 1.0 included Web service specific
information such as the support for synchronous and asynchronous execution or the
link to alternative WSDL service endpoints. Consequently, the XML encodings for
process descriptions had to be redefined to serve the purpose of stand-alone descrip-
tions. Another deficit in WPS 1.0 was the inability to express the process semantics.
The available free-text elements in the process description were generally insufficient
to capture complex human-readable documentation of processing functions. Fur-
thermore, the role, definition, and scope of WPS profiles, which were intended to
provide extended semantics, proved way too unspecific for implementers.

A new modular information model for process descriptions is given in WPS 2.0
(OGC 2015a). Enhancements on process descriptions and process profiles have been
developed in the course of this thesis (MULLER 2013, 2015) and have shaped the cor-
responding parts of WPS 2.0. The new conceptual model for process descriptions is
specified independently from a Web service protocol and allows interoperable defini-
tion and profiling of arbitrary geoprocessing services. The documentation abilities of
process descriptions have also been extended to include keywords and comprehensive
hypertext documentation.

The moving code component model has served as a means to look holistically at
implementations of geoprocessing functions and to identify the necessary services of
the code sharing architecture. The work on improved documentation elements for
WPS process descriptions and the separation of process descriptions form the WPS
service model improves the ability to store interoperable and meaningful process

93

6. Discussion of Results

definitions in discovery services, registries, and download services for code packages.
These revised description schemas may also be used to document the contents of GIS
toolboxes in a more structured way which, if applied to various GIS products, also
ease the comparison between different software implementations.

With regard to interoperable interface descriptions for geoprocessing functions
this thesis has put an exclusive focus on the discussion of stateless functionality,
i.e. geoprocessing functions as defined in section 1.1. This definition was largely
motivated by a survey of literature which suggested that the strengths of GIS lie
in component composition and management and not in fine-grained simulation and
modelling (LONGLEY et al. 2011). Most GIS practitioners probably use a workflow
approach where models take the form of complex chains of primitive operations. The
Geographic Science and Information Technology Body of Knowledge (DIBIASE et al.
2006) lists a broad range of primitive measures, operations, and methods that are
commonly found in GIS and used for a plethora of analysis workflows.

Of course, the restriction to stateless functionality might be challenged, and some
authors argue that dynamic simulation is an important capability of GIS software
(SCHMITZ et al. 2013). Dynamic and thus stateful components, however, introduce a
lot more complexity due to time-dependent behaviour. This includes the agreement
on a common time base that is used by all dynamic compartments as well as the
management and communication of state between these components (cf. ZEIGLER
et al. 2000). Common GIS software has little support for dynamic modelling. With
an apt use of workflow environments, dynamic behaviour can be mimicked in many
cases, thus avoiding the use of stateful components. Most workflow languages support
a set of generic control structures for iterations, conditional branching etc. that can
be used to create simple forms of feedback (VANDER AALST et al. 2003).

A large part of this thesis has discussed improvements on functional descriptions
for geoprocessing functions. The suggested profiling mechanism defines functional-
ity in a top—down fashion. If properly applied, this approach ensures harmonised
implementations of concepts and generic profiles, and finally leads to exchangeable
geoprocessing services. A downside of this approach is the management overhead
with a growing hierarchical structure.

Another option is to tag existing implementations according to well-defined aspects
or common properties. This approach was used, for instance, by BRAUNER (2015)
who defined an extensible set of aspects that characterise existing implementations.
Similarly, GRANELL et al. (2013) has proposed a linked data approach that captures
properties of implementations through well-defined link relations. The descriptions
of implementations might be easier to create and manage in one of these bottom-
up approaches. Exchangeability, however, may only be guaranteed with regard to
particular properties, i.e. the defined aspects (cf. BRAUNER 2015) or link relations
(cf. GRANELL et al. 2013). The challenge for both approaches is to provide a complete
feature space that fully captures the behaviour of a geoprocessing service, which may
be hard to achieve within a loosely defined tagging system. In contrast, a human-
readable description (or service contract, cf. MEYER 1992; ERL 2007) at sufficient
detail is achievable for any service interface or implementation.

94

6.3. Outlook

6.3. Outlook

For some of the addressed research challenges this thesis delivered only partial
answers and some issues remain. At the same time, some new challenges and re-
search topics could be identified. Hence this section discusses future development
perspectives for service-oriented geoprocessing.

Coexistence of code mobility paradigms

Today, the solutions for distributed geoprocessing are manifold, and several solutions
will probably coexist in the near future. Toolboxes in Desktop GIS are used by
the majority of GIS experts. In parallel, larger institutions such as the United
States Geological Survey (USGS) and Deutsches Klimarechenzentrum (DKRZ) have
centralised some of their geoprocessing resources (i.e. functionality and computing
resources) in Web services.?3 Similarly, ESRI ships lean geoprocessing services for
geometric computations with ArcGIS server or provides public access to these services
through its ArcGIS Online platform. And geospatial cyberinfrastructures (WANG
et al. 2013), that heavily borrow concepts from cloud computing, provide both private
Web services for geoprocessing and portable components that can be invoked by their
users.

A future challenge is the management of these different provisioning options for
geoprocessing services. The moving code concept may be an enabler in many of
these scenarios. It may be used to supply new or updated functionality to public or
private Web services and thus facilitate continuous deployment which is primarily
convenient for developers and service administrators. It also allows the addition of
new and updated geoprocessing functions in local desktop environments, at best with
automated toolbox updates for the most popular Desktop GIS products. This last
scenario has not yet been prototyped and is thus left as future work.

If Web services are used as an integration layer between different computing plat-
forms, a combined use of geoprocessing Web services and moving code can deliver
scalable systems. Mowving code contributes to a granular and portable software stack
from which new service instances can be created on demand, thus allowing for dy-
namic resource allocation that matches current or expected load conditions in a
distributed environment.

Since geoprocessing Web services provide access to self-contained stateless func-
tionality, they can easily support ad-hoc integration. The provision of RESTful
Web service interfaces is usually preferred in such scenarios while WS-* or SOAP
services rather suit complex enterprise application integration scenarios (PAUTASSO
et al. 2008). With the new abstract service model in WPS 2.0 RESTful WPS service
interfaces may be specified in compliance with OGC guidelines.

*http://cida.usgs.gov/gdp, accessed 2015-08-18
Shttps://mouflon.dkrz.de, accessed 2015-08-18

95

http://cida.usgs.gov/gdp
https://mouflon.dkrz.de

6. Discussion of Results

Composite functions, workflows, and lineage

Another field for future research is the better integration of functional descriptions
with metadata standards and workflow languages as well as the development of
a notation for composite (or aggregate) geoprocessing functions. These tasks are
mutually dependent and require coherent actions (Figure6.2).

Workflow
description and
execution

_ Composite
Lineage <:\'> eoprocessin
metadata o ’

functions

Figure 6.2.: Mutual dependencies between workflow descriptions, lineage records,
and composite geoprocessing functions

As stated in section 6.2, catalogue standards do not provide adequate support for
lineage documentation. For optimal transparency, a lineage record should be at a
level of detail that permits a reproduction of the original workflow which generated
the data in the first place. This raises questions about shared foundations: Is it
acceptable to have a set of standards for workflow creation and execution on one
hand and then another set of standards for the documentation of lineage on the
other? In such cases, the use of separate incoherent standards and schemas creates
a risk of loss of information.

A similar overlap appears beween workflow languages and interface descriptions
for geoprocessing functions. As the review of SensorML (cf. annex A.3) shows,
it could be beneficial to express composite functions as a workflow of atomic (or
other composite) geoprocessing functions. A common example is a Buffer function
combined with a Dissolve operation that merges overlapping buffer zones of indi-
vidual features into a single geometry. Since composite geoprocessing functions are
basically no different from workflow fragments, they can be described in existing
workflow languages and notations.

Finally, a distributed inventory of well-defined and well-documented processing
components can have very positive effects on existing data infrastructures. Trans-
parent descriptions of data processing workflows are considered good practice in
science and industry. Metadata standards such as ISO 19115 (ISO 2014, 2009) pro-
vide lineage information that comprises detailed information about the processing
steps that were applied to the data. Currently, the documentation largely consists of
free-text elements that are individually appended to each data record. In the future,
lineage records and workflows might directly link to the definitions of geoprocessing

96

6.3. Outlook

functions thus providing a simpler and more consistent approach to interoperable
service chaining and data documentation.

Integrated approaches for interface descriptions, service discovery, and service
access

Maintaining related interface specifications in registries and catalogues is one pos-
sible approach to assist in search and retrieval tasks. It is largely compatible with
catalogue concepts in a SOA (cf. Figure 1.2) which requires that copies of the
interface descriptions of catalogued services are stored by the catalogue operator
to support clients in searching particular functionality. Interface descriptions are
usually encoded in some standardised format and aggregate syntactic and semantic
information about an implementation or serve as common specifications for multiple
implementations. The suggested profiling approach extends this concept by defining
several levels of granularity and declaring a set of transition rules that coordinate
inheritance between the different levels.

In parallel, resource-oriented approaches have been proposed recently, e.g. by
BRAUNER (2015) and GRANELL et al. (2013), which use flexible linked data struc-
tures instead of static schemas. These approaches treat geoprocessing services, ex-
ecutable environmental models, or geooperators as resources that can be related to
other resources by 7role links. Those other resources might be related processing
services, documentation resources, or terms and definitions from formally specified
ontologies and controlled vocabularies. Resource-oriented linked data approaches
do not necessarily require catalogues; the “meaning” or functionality of a particular
resource is implicitly defined by the links to neighbouring resources.

Profiling and resource linking can be considered complementary. Profiling permits
detailed human-readable descriptions and subtyping. Resource linking is ideal to
document relationships and cross-cutting properties that are hard to isolate in a
hierarchy. Distance metrics (ALBRECHT 1996), geometric precision, abstract data
models (e.g. fields and objects COUCLELIS 1992), or Kuhn’s 10 high-level concepts
of spatial information (KUHN 2012) are some examples. Such recurring properties
should be identified and collected in controlled vocabularies to assist the comparison
and browsing of different geoprocessing services.

Provision of attractive geoprocessing services and best practice
implementations

While the scientific contributions have theoretically shown the benefits of distributed
architectures for geoprocessing, their successful implementation depends on the avail-
ability of valuable functionality, i.e. useful, robust, and interoperable geoprocessing
services. Approaches that lower the technical barrier to sharing geoprocessing ser-
vices were discussed in this thesis. The development of a comprehensive Web based
repository that contains a large set of attractive geoprocessing services is a pending
practical task that is probably required to promote, assess, and evolve the moving

97

6. Discussion of Results

code approach. Starting with one or more domain-specific repositories that comple-
ment existing collections of geoprocessing tools might also be a good starting point.
For instance, MULLER et al. (2012) discuss a possible use case that could create an
added value on top of the the Open Street Map data base by providing dedicated
generalisation and filtering tools. Ongoing efforts of GIS vendors and open source
developer communities to replace static and tightly integrated toolsets in monolithic
GIS with open Web based tool repositories for geoprocessing could also bring about
a paradigm shift.

In the end, SDI do not just comprise services and technology but also include peo-
ple, organisations, and institutions that have an interest in sharing and effectively
using geographic information (BERNARD et al. 2005). This thesis has discussed the
benefits of interoperable, service-oriented geoprocessing and the potential value of
reusable implementations. It will be interesting to see whether community activities
or the initiatives of particular companies can promote the use of interoperable geo-
processing services at larger scale. Institutions may also realise that they have an
interest in advancing these technologies to avoid a data deluge (EcoNoMIST 2010).
Resource-efficient handling of data, computing resources, and analysis software is a
key issue for creating information and added value of the enormous data volumes col-
lected by remote sensing programmes, in-situ sensor networks, mapping companies
and communities, and mobile devices in the emerging internet of things.

98

7. Summary

Many of the ongoing activities towards establishing SDI on a regional, national, and
international level are focused on data sharing and dissemination. Next to data
access and visualisation, data processing is a third important pillar of GIS which can
generate new insights by creating derived data or conducting computational analyses
on original data sets.

Within today’s largely data-centric SDI, two major challenges were identified that
stand in the way of ubiquitous geoprocessing: The ability to use and exchange im-
plementations of geoprocessing functions as freely as geographic data and the ability
to describe, communicate, and catalogue existing functionality on the Web.

The moving code approach was evaluated as an alternative to client—server process-
ing in a distributed SDI. While classical client—server configurations move pieces of
data between remote processing services, data services, and clients over the network,
moving code setups consider the transfer of portable software components to the
location of data or the location of computing resources. This approach is beneficial
in the following cases:

e [t is easier, cheaper, and faster to ship the code instead of sending volumes of
data over the network,

e The network connectivity is too unstable for reliable client—server processing,

e Geoprocessing services need to be versioned and archived to ensure exact re-
producibility,

e Identical geoprocessing services need to be distributed among a large number
of processing nodes (consumers), especially if these implementations receive a
lot of maintenance, i.e. are constantly enhanced and updated,

e The provision of processing functionality, computing resources, and data are to
be treated as separate concerns, i.e. for scheduling processing tasks efficiently in
a distributed computing environment and process the data in arbitrary network
locations, and

e Sustainable, resource-efficient provision and reuse of implementations are a
foremost concern.

Classical client—server processing over the web may not be feasible at all if:

e The data to be processed falls under privacy obligations and is not to be ex-
changed with third parties or to be transported over the web,

99

7. Summary

e A network connection is unavailable or can only be established during short
temporary periods, and

e Data transport times over the network are prohibitively long (e.g. due to large
data volumes).

To exchange implementations of geoprocessing functions at a larger scale, a Web
based code sharing architecture was proposed. Besides the description of function-
ality, which is a general prerequisite for cataloguing mobile code (section 1.3), con-
sumers of portable software components need further information about the required
software environment, the processing hardware, and the terms of use. Furthermore,
this architecture considers a range of deployment targets in a distributed infras-
tructure, such as computing nodes that offer Web services for geoprocessing, cloud
computing environments, or individual workstations.

For improved description and documentation of geoprocessing functions, this the-
sis has contributed to the revised modular information model of WPS2.0 which
facilitates the use of WPS process descriptions as an interface description language
for geoprocessing services. Furthermore, it has provided conceptual foundations for
WPS process profiles and contributed a suitable encoding for WPS 2.0.

Future research is required to coordinate approaches towards a better integration
of (interoperable) process descriptions, workflow descriptions, and lineage metadata.
These aspects have a significant overlap but are treated rather independently in
recent standards. Similarly, consolidated efforts are also required to establish com-
monly accepted cataloguing schemes for geoprocessing services. Further investiga-
tions of an alignment of interface descriptions for geoprocessing functions and linked
data approaches for discovery and documentation are suggested.

100

A. Annex

A.1. Comparison of Interfaces for Buffer Functions

The figure below shows an overview of Buffer interfaces in different Desktop GIS and
spatial databases. It was prepared for a report to the WPS standards working group
at the Technical Committee Meeting in Mumbai, 2013. Some interfaces may have
changed slightly in recent software releases but their diversity is just the same.

POSTGIS STBuffer

+ inputGeometry[1]: Geometry
+ distance[1]: Decimal

+ bufferedGeometry[1]:Geometry Distance computation and

CRS type (Geographic vs.
Euclidean CRS).

Currently PostGIS uses a
spherical approximation for
ellisoidal computations.

POSTGIS STBuffer

interpolation determined by

MSSQL STBuffer

+ inputGeometry[1]: Geometry
+ distance[1]: Decimal
+ bufferedGeometry[1]:Geometry

MSSQL BufferWithTolerance

Computation based on
Euclidean distances and
interpolation.

+ inputGeometry[1]: Geometry

+ inputGeometry[1]: Geometry 1
+ distance[1]: Decimal

+ num_seg_quarter_circle[0..1]: Integer
+ buffer_style_parameters[0..1: String
+ bufferedGeometry[1]:Geometry

ArcGIS Buffer

+ inputGeometry[1]: Geometry

+ distanceOrField[1]: LinearUnit|Field

+ lineSide[0..1]: String{FULL|LEFT|RIGHT|OUTSIDE_ONLY}
+ lineEndType[0..1]: String{ROUND|FLAT}

+ dissolveOption[0..1]: String{NONE|ALL|LIST}

+ dissolveField[0..1]: Field

+ bufferedGeometry[1]: Geometry

hS

Conditional dependencies
between some parameters.

Distance computation and
interpolation determined by
CRS type (Geographic vs.
Euclidean CRS).

GeoMedia Buffer

+ inputGeometry[1]: Geometry

+ distanceOrField[1]: LinearUnit|Field
+ lineEndType[0..1]: {ROUNDI|FLAT}
+ dissolve[0..1]: Boolean

+ bufferedGeometry[1]: Geometry

o

Behaviour determined by AN
parameters and /or CRS type.
Distance computation and
interpolation determined by
CRS type (Geographic vs.
Euclidean CRS).

+ distance[1]: Decimal

+ tolerance[1]: Decimal

+ relative[1]: Boolean

+ bufferedGeometry[1]:Geometry

QGIS FixedDistanceBuffer

+ inputGeometry[1]: Geometry
+ distance[1]: Decimal

+ segments[1]: Integer

+ dissolve[1]: Boolean

+ bufferedGeometry[1]:Geometry

Computation based on B

Euclidean distances and
interpolation.

GRASS v.buffer

+ inputGeometry[1]: Geometry
distance: LinearUnit|Field

+ minordistance: Float

+ maijordistance: Float

+ angle: Float{0..360}

+ bufcolumn: String

+ scale: Float

+ tolerance[0..1]: Decimal

+ type[0..1]: String{point,line,boundary,centroid,area}

+ layer[0.1]: Integer
+ bufferedGeometry[1]: Geometry

(Shortened parameter list.)
Conditional dependencies between
some parameters.
Computation based on Euclidean
distances and interpolation.

101

A. Annex

A.2. Process Description Examples for WPS

Listing A.1: Generic Profile for a Precision Geodesic Distance Buffer function

<wps:GenericProcess xmlns:wps= ... >

<!—— Title, abstract, and unique identifier of the process interface —— >
<ows:Title>Precision Geodesic Distance Buffer< /ows:Title>
<ows:Abstract>
Returns a geometry that represents all points whose distance from this
Geometry is less than or equal to distance. Buffer distance calculations are
performed on the ellipsoid defined by the Geometry’s spatial reference system.
< /ows:Abstract>
<ows:Identifier>http://.../PrecisionGeodesicDistanceBuffer < /ows:Identifier>

<!—— Metadata related to superior process profiles —— >

<!—— Metadata links to superior concepts —— >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/concept"
xlink:href="http://.../Buffer" />

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/concept"
xlink:href="http://.../DistanceBuffer" />

<!—— Metadata links to superior generic profiles —— >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/generic"
xlink:href="http://.../GeodesicDistanceBuffer" />

<!—— Documentation link describing the process behaviour and semantics —— >

<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer.html" />

<!—— Title, abstract, and identifier of the 1st input —— >
<wps:Input>
<ows:Title>Input Geometry< /ows:Title>
<ows:Abstract >Geometry to be buffered</ows:Abstract>
<ows:Identifier >geometry < /ows:Identifier >

<!—— Documentation link for the 1st input. The link points to an anchor
element within process documentation page. —— >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer. html#geometry" />
</wps:Input>

<!—— Title, abstract, and identifier of the 2nd input —— >
<wps:Input>
<ows:Title>Distance< /ows:Title>
<ows:Abstract>Buffering distance< /ows:Abstract>
<ows:Identifier>distance< /ows:Identifier>
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer. html#distance" />
< /wps:Input>

<!—— Title, abstract, and identifier of the 3rd input —— >
<wps:Input>
<ows:Title>Distance Tolerance< /ows:Title>
<ows:Abstract>
Permissible distance tolerance of the buffer. Buffer computation is guaranteed to

102

A.2. Process Description Examples for WPS

be precise with in these error margins.
< /ows:Abstract>
<ows:Identifier>tolerance< /ows:Identifier >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer html#tolerance" />
</wps:Input>

<!—— Title, abstract, and identifier of the (single) output —— >
<wps:Output>
<ows:Title>Buffered Geometry</ows:Title>
<ows:Abstract>
Geometry representing a Geodesic Distance Buffer of the input geometry.
< /ows:Abstract>
<ows:Identifier>distanceBuffer < /ows:Identifier>
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer.html#distance buffer" />
< /wps:Output >

< /wps:GenericProcess>

Listing A.2: Implementation Profile for a Precision Geodesic Distance Buffer for

GML
<wps:Process xmlns:wps= ... >
<!—— Title, abstract, and unique identifier of the process interface —— >

<ows: Title>Precision Geodesic Distance Buffer< /ows:Title>
<ows:Abstract>
Returns a geometry that represents all points whose distance from this
Geometry is less than or equal to distance. Buffer distance calculations are
performed on the ellipsoid defined by the Geometry’s spatial reference system.
< /ows:Abstract>
<ows:Identifier>
http://.../PrecisionGeodesicDistanceBufferGML
< /ows:Identifier>

<!—— Metadata related to superior process profiles —— >

<!—— Metadata links to superior concepts —— >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/concept"
xlink:href="http://.../Buffer" />

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/concept"
xlink:href="http://.../DistanceBuffer" />

<!—— Metadata links to superior generic profiles —— >

<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process—profile/generic"
xlink:href="http://.../GeodesicDistanceBuffer" />

<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process—profile/generic"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer" />

<! Documentation link describing the process behaviour and semantics >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer.html" />

<!—— Title, abstract, and identifier of the 1st input —— >

103

A. Annex

<wps:Input>
<ows:Title>Input Geometry< /ows:Title>
<ows:Abstract>Geometry to be buffered< /ows:Abstract>
<ows:Identifier >geometry < /ows:Identifier >

<!—— Documentation link for the 1st input. The link points to an
anchor element within process documentation page. —— >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer. html#geometry" />
<wps:ComplexData>
<wps:Format mimeType="application/gml+xml" encoding="UTF—8"
schema="http://schemas.opengis.net/gml/3.2.1/gml.xsd# AbstractFeature"
default="true" />
< /wps:ComplexData>
</wps:Input>

<!—— Title, abstract, and identifier of the 2nd input —— >
<wps:Input>
<ows:Title>Distance< /ows:Title>
<ows:Abstract>Buffering distance< /ows:Abstract>
<ows:Identifier>distance< /ows:Identifier>
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer. html#distance" />
<wps:LiteralData>
<wps:Format mimeType="text/plain" default="true"/>
<wps:Format mimeType="text/xml" />
<LiteralDataDomain default="true" >
<ows:Allowed Values>
<ows:Range>
<ows:MinimumValue>—INF < /ows:MinimumValue>
<ows:MaximumValue>INF < /ows:MaximumValue >
< /ows:Range>
< /ows:Allowed Values>
<ows:DataType
ows:reference="http://www.w3.org/2001 /XMLSchema+#double" >Double
< /ows:DataType>
< /LiteralDataDomain>
< /wps:LiteralData>
</wps:Input>

<!—— Title, abstract, and identifier of the 3rd input —— >
<wps:Input>
<ows:Title>Distance Tolerance< /ows:Title>
<ows:Abstract>
Permissible distance tolerance of the buffer. Buffer computation is guaranteed to
be precise with in these error margins.
< /ows:Abstract>
<ows:Identifier>tolerance< /ows:Identifier >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../generic/PrecisionGeodesicDistanceBuffer.html#tolerance" />
<wps:LiteralData>
<wps:Format mimeType="text/plain" default="true" />
<wps:Format mimeType="text/xml" />
<LiteralDataDomain default="true" >
<ows:Allowed Values>
<ows:Range>
<ows:MinimumValue>—INF < /ows:MinimumValue >
<ows:MaximumValue >INF < /ows:MaximumValue>
< /ows:Range>

104

A.2. Process Description Examples for WPS

< /ows:Allowed Values >
<ows:DataType
ows:reference="http://www.w3.org/2001/XMLSchema#double" >Double
< /ows:DataType>
< /LiteralDataDomain >
< /wps:LiteralData>
</wps:Input>

<!—— Title, abstract, and identifier of the (single) output —— >
<wps:Output>
<ows:Title>Buffered Geometry</ows:Title>
<ows:Abstract>
Geometry representing a Geodesic Distance Buffer of the input geometry.
< /ows:Abstract>
<ows:Identifier>distanceBuffer < /ows:Identifier>
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer.html#distance buffer" />
<wps:ComplexData>
<wps:Format mimeType="application/gml+xml" encoding="UTF—-8"
schema="http://schemas.opengis.net/gml/3.2.1/gml.xsd# AbstractFeature"
default="true" />
< /wps:ComplexData>
< /wps:Output>

< /wps:Process>

Listing A.3: Process implementation that realises a Precision Geodesic Distance

Buffer for GML and GeoJson

<wps:Process xmlns:wps= ... >

<!—— Title, abstract, and unique identifier of the process interface —— >

<ows:Title>Precision Geodesic Distance Buffer< /ows:Title>

<ows:Abstract>
Returns a geometry that represents all points whose distance from this
Geometry is less than or equal to distance. Buffer distance calculations are
performed on the ellipsoid defined by the Geometry’s spatial reference system.

< /ows:Abstract>

<ows:Identifier>
http://.../my—implementation—of—a—PrecisionGeodesicDistanceBuffer

< /ows:Identifier>

<!—— Metadata related to superior process profiles —— >

<!—— Metadata links to superior concepts —— >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/concept"
xlink:href="http://.../Buffer" />

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/concept"
xlink:href="http://.../DistanceBuffer" />

<!—— Metadata links to superior generic profiles —— >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/generic"
xlink:href="http://.../GeodesicDistanceBuffer" />

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/generic"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer" />

<ows:Metadata

105

A. Annex

xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/implementation"
xlink:href="http://.../PrecisionGeodesicDistanceBufferGML" / >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process—profile/implementation"
xlink:href="http://.../PrecisionGeodesicDistanceBufferGeoJson" />

<!—— Documentation link describing the process behaviour and semantics —— >

<ows:Metadata
xlink:role="http://www.opengis.net/spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer.html" />

<!—— Title, abstract, and identifier of the 1st input —— >
<wps:Input>
<ows:Title>Input Geometry< /ows:Title>
<ows:Abstract>Geometry to be buffered</ows:Abstract>
<ows:Identifier>geometry< /ows:Identifier>

<! Documentation link for the 1st input. The link points to an
anchor element within process documentation page. —— >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer.html#geometry" />
<wps:ComplexData>
<wps:Format mimeType="application/gml+xml" encoding="UTF—-8"
schema="http://schemas.opengis.net/gml/3.2.1/gml.xsd# AbstractFeature"
default="true" />
<wps:Format mimeType="application/json" encoding="UTF—-8"
schema="http://geojson.org/geojson—spec.html" />
< /wps:ComplexData>
< /wps:Input>

<!—— Title, abstract, and identifier of the 2nd input —— >
<wps:Input>
<ows:Title>Distance< /ows: Title>
<ows:Abstract >Buffering distance</ows:Abstract>
<ows:Identifier>distance< /ows:Identifier>
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer html#distance" />
<wps:LiteralData>
<wps:Format mimeType="text/plain" default="true" />
<wps:Format mimeType="text/xml"/>
<LiteralDataDomain default="true">
<ows:Allowed Values>
<ows:Range>
<ows:MinimumValue>—INF< /ows:MinimumValue >
<ows:MaximumValue >INF < /ows:MaximumValue>
< /ows:Range>
< /ows:Allowed Values>
<ows:DataType
ows:reference="http://www.w3.org/2001 /XMLSchema#double" >Double
< /ows:DataType>
< /LiteralDataDomain>
< /wps:LiteralData>
< /wps:Input>

<! Title, abstract, and identifier of the 3rd input >
<wps:Input>
<ows:Title>Distance Tolerance< /ows:Title>
<ows:Abstract>
Permissible distance tolerance of the buffer. Buffer computation is guaranteed to

106

A.3. SensorML Process Interfaces

be precise with in these error margins.
< /ows:Abstract>
<ows:Identifier>tolerance< /ows:Identifier >
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../generic/PrecisionGeodesicDistanceBuffer.html#tolerance" />
<wps:LiteralData>
<wps:Format mimeType="text/plain" default="true" />
<wps:Format mimeType="text/xml" />
<LiteralDataDomain default="true" >
<ows:Allowed Values>
<ows:Range>
<ows:MinimumValue >—INF < /ows:MinimumValue>
<ows:MaximumValue >INF < /ows:MaximumValue>
< /ows:Range>
< /ows:Allowed Values>
<ows:DataType
ows:reference="http://www.w3.org/2001 /XMLSchema#double">Double
< /ows:DataType>
< /LiteralDataDomain>
< /wps:LiteralData>
</wps:Input>

<!—— Title, abstract, and identifier of the (single) output —— >
<wps:Output>
<ows:Title>Buffered Geometry< /ows:Title>
<ows:Abstract>
Geometry representing a Geodesic Distance Buffer of the input geometry.
< /ows:Abstract>
<ows:Identifier >distanceBuffer< /ows:Identifier>
<ows:Metadata
xlink:role="http://www.opengis.net /spec/wps/2.0/def/process/description/documentation"
xlink:href="http://.../PrecisionGeodesicDistanceBuffer html#distance buffer" />
<wps:ComplexData>
<wps:Format mimeType="application/gml-+xml" encoding="UTF—-8"
schema="http://schemas.opengis.net/gml/3.2.1/gml.xsd# AbstractFeature"
default="true" />
<wps:Format mimeType="application/json" encoding="UTF—-8"
schema="http://geojson.org/geojson—spec.html" />
< /wps:ComplexData>
</wps:Output>

< /wps:Process>

A.3. SensorML Process Interfaces

One of the challenges laid out in section 1.4 is the provision of interoperable inter-
faces for geoprocessing functions. The obtained interface descriptions may then be
applied to any kind of implementation of a geoprocessing function, i.e. a built-in
geoprocessing tool that ships with a particular GIS product, a portable software
component or a geoprocessing Web service. The contributions in chapters 2 and 3
use and evolve WPS process descriptions to model interfaces for geoprocessing ser-
vices. For WPS 2.0 this description model has been revised to be used independently
from a Web service, to provide additional metadata on the process semantics, and
to support hierarchical profiling of processing functions (cf. chapter 5).

107

A. Annex

With the Sensor Model Language (SensorML; OGC 2014c¢) OGC provides another
specifications that models process interfaces. SensorML is part of OGC’s standards
suite for Sensor Web Enablement (SWE; OGC 2015b) and provides a process model
which is focused on the pre- and post-processing stages for sensor measurements.
This section reviews the SensorML process model and assesses its capabilities toward
the WPS process model.

The properties of any SensorML process are summarised by the specification of
an Abstract Process which has three types of arguments: InputList, Outputs and
Parameters (cf. Figure A.1). These arguments are organised in lists and support
the same three data types:

e Abstract Data — an abstract type that comprises basic data types defined in
SWE Common such as Quantity, Count, Category, Boolean, Text etc.,

e Data Interface — provides access to a Data Stream defined by SWE Common
(OGC 2011), and

e Observable Property — a physical observable or otherwise measurable property
which has a value and an ambiguous identifier; usually used to describe a
physical stimulus in a larger sequence of processes as an input for a detector.

) property
AbstractProcess InputList T Input
DataComponentOrQObservable
) property
OutputList T Output
property
ParameterList T Parameter
DataComponentOrObservable
Datalnterface AbstractData ObservableProperty

Figure A.1.: Elements of the SensorML Process specification (simplified)

A Parameter is defined as special kind of input which has the same semantics as
a regular Input but changes less frequently. Multi-valued inputs, which are common
in WPS, are not supported by SensorML.

Based on the definition of an Abstract Process, SensorML defines different subtypes
of processes which are shown in Figure A.2. Simple Processes are typically used
to describe computational processes that are either atomic or require no further
decomposition. Physical Processes and Physical Components represent abstractions
of physical devices or observation equipment), such as observation procedures of

108

A.3. SensorML Process Interfaces

physical phenomena or physical devices that interact with the observation equipment
(e.g. a gimbal for a camera).

Both simple and physical processes share a Process Method element that are used
to provide information aout the methodology by which a process generates outputs
based on inputs and parameter values. In the case of a Simple Process (see next
paragraphs), the Process Method element should contain a description that is precise
enough to allow software developers creating compliant software implementations.
SensorML currently mandates a free text description but envisages that future pro-
files of SensorML use more formal specifications, e.g. in MathML (OGC 2014c, clause
8.2.2). The possible use of semantic annotations to communicate the meaning of pro-
cesses or data items is briefly mentioned but not further elaborated. That said, at
the current state SensorML considers mainly syntactic properties of processes.

Besides atomic process types SensorML provides specifications for composite pro-
cesses. An Aggregate Process represents a collection of interconnected Abstract Pro-
cesses expressed as a component list, including connections between them.! Based
on this structure, a graph can be computed that describes the data flow between all
participating components. Assuming that the contained processes are well-defined,
the graph structure sufficiently describes the data flow and thus provides a transpar-
ent description of the Aggregate Process.

The Physical System is structurally similar to an Aggregate Process but is intended
to describe a real-world system that consists of physical sub-processes. A Physical
System must comply with the following restrictions:

e The participating components must be instances of the Physical Component
and

e The specification of the Physical System shall be a subtype of an Abstract
Physical Process.

As shown in Figure A.2 there are some redundancies in the specification of the
Physical Component and the Simple Process as well as between the Aggregate Pro-
cess and the Physical System. ldeally the common properties should be deferred
to abstract super classes and propagated to the implementing subclasses. Such a
structure would require multiple inheritance, which is easily achievable in UML but
not available in XML (XML does not permit inheritance from multiple base types).
So here the intended encoding language has probably impacted the design of the
conceptual model.

The SensorML process model also supports inheritance and considers processes at
different levels of abstraction (Abstract Process, Configurable Process). Two basic
types of inheritance are considered. Simple inheritance only permits the addition
of descriptive elements or metadata. Inheritance with configuration extends simple
inheritance and allows setting or restricting properties of the supertype such as the

!There is no formal syntax for specifying inputs and outputs in SensorML. Their intended use,
however, is somewhat apparent from the provided examples.

109

A. Annex

<<FeatureType>>
feature:AbstractFeature

+ description: ChraracterString [0..1]
+ descriptionReference: URI [0..1]
+ name: GenericName [0..*]

+ identifier: ScopedName [0..1]

i

< <FeatureType>>
DescribedObject

+ extension: Any [0..%]

+ langugage: CharacterString [0..1]

+ keywords: MD _ Keywords [0..¥]

+ identification: IdentifierList [0..*]

+ classification: ClassifierList [0..*]

+ validTime: TimelnstantOrPeriod [0..*]

+ securityConstraints: MD _ LegalConstraints [0..¥]
+ characteristics: CharacteristicList [0..*]

+ capabilities: CapabilityList [0..*]

typeOf indicates inheritance from a more general AN + contacts: C?"taCtL'St [0“*]_
process + documentation: DocumentList [0..%]
+ history: EventList [0..*]
Simple inheritance may add additional descriptions Q
to a process without altering property values of the
supertype <<FeatureType>>
AbstractProcess

Inheritance with configuration allows setting and
restricting property values of the supertype by: + definition: ScopedName [0..1]
"... (1) specifying values for parameters, (2) further + typeOf: AbstractProcess [0..1]
constraining the allowable values of parameters, (3) \(+ configuration: AbstractSettings [0..1]
selecting an operational mode (which then sets a group + featuresOflnterest: FeatureList[0..1]
of parameter values), or (4) enabling or disabling + inputs: InputList [0..1]
particular options such as particular outputs or + outputs: OutputList [0..1]
components." (SensorML 2.0, clause 7.9) + parameters: ParameterList [0..1]

+ modes: AbstractModes [0..*]

"A process computing a simple

mathematical function such as sine, cosine < <FeatureType>>
or square root is usually modeled as a AbstractPhysicalProcess
SimpleProcess instance. However, even
more complex processes can be modeled
this way if there is no intent to break
down the implementation of the process
into sub-processes."

+ attachedTo: AbstractPhysicalProcess [0..1]
+ localReferenceFrame: SpatialFrame [0..¥]
+ localTimeFrame: TemporalFrame [0..%]

+ position: PositionUnion [0..*]

(SensorML 2.0, clause 7.3.1) + timePosition: Time [0..%]
Z<FeatureType>> <<FeatureType>>
SimpleProcess PhysicalComponent
+ method: ProcessMethod [0..1] + method: ProcessMethod [0..1]
<<FeatureType>> <<FeatureType>>
AggregateProcess PhysicalSystem
+ components: ComponentList [0..1] + components: ComponentList [0..1]
+ connections: ConnectionList [0..1] + connections: ConnectionList [0..1]

Figure A.2.: SensorML Process types overview (Source: OGC 2014c, condensed and
commented)

110

A.3. SensorML Process Interfaces

value ranges of process parameters and outputs (OGC 2014c, clause 7.2.3.3). De-
pendence on a supertype process is indicated by the type Of property of the Abstract
Process.

Next to the shared properties of SensorML processes and WPS processes there are
significant differences. The scope of SensorML’s process model is broader than the
WPS process model. The Simple Process comes closest to the notion of a process
in WPS since both process models shall be used for computational processes. The
main differences between the SensorML Simple Process and the WPS process model
concern the available data models and the meta-structure for the process interface.
All sensor ML process interfaces receive (and deliver) values that comply with the
types defined in the SWE data model. In contrast, WPS processes are open to
arbitrary data formats which are specified by their mime type, encoding, and schema
(cf. section 5.3).

The interface meta-structure for SensorML processes is rather flat. Each input
may receive values from exactly one data source and each output sends result data
to exactly one data sink. Since data items in SensorML support streaming, multiple
values are supplied sequentially to a SensorML process on the same stream. The
number of arguments is defined at design time, i.e. linking multiple streams to the
same input is not possible. To pass multiple input sources to the same port of a
SensorML process, they need to be aggregated first and then passed as a single
stream to the process.

WPS, in contrast, supports multi-valued arguments, so the definite number of
data sources passed to a process can be defined at runtime. For instance, a mosaic
process may receive an arbitrary number of tiled georeferenced input images which
will be merged into a single image by a mosaic function. The inability to use multi-
valued arguments is the greatest obstacle that prevents SensorML’s application in
formalising geoprocessing functions. Nested inputs, which have been introduced
by WPS 2.0 are also not available in SensorML, which might lead to inconvenient
interfaces for some functions (e.g. the Reclassify function in section 5.3). Instead
SensorML uses argument lists of a fixed size that are obviously designed towards
stream processing where the number of input and output streams or items is known
at design time.

The provision of machine readable process specifications is also an issue in Sen-
sorML. It largely specifies the syntactic properties of processes; the challenge of
machine-readable process is deferred to subsequent profiling activities. SensorML
supplies a broad collection of descriptive elements that might hold semantic de-
scriptions. Furthermore it even suggests the use of semantic annotations if these
elements should prove insufficient. The strong overlap in the responsibility of de-
scriptive elements and metadata encodings is likely to create a deluge of metadata
and governance practices without achieving true metadata interoperability.

An interesting feature of SensorML’s process model is the ability to specify Ag-
gregate Processes. The wiring of atomic components has strong similarities with
simple workflows. Besides orchestration and execution such workflows may also be
used to generate process representations for both humans and machines. Providing

111

A. Annex

such structures for more complex processes might be more valuable than traditional
metadata. Since WPS 2.0 does not yet consider aggregate processes an adaptation
of SensorML’s wiring scheme to the WPS process model might prove useful.

Inheritance among processes is available in both WPS2.0 and SensorML. The
inheritance mechanism in SensorML is quite limited and might be somewhat compa-
rable to WPS implementation profiles, which already define specific types for data
exchange. Generic and conceptual levels are not provided. Inheritance in SensorML
shall provide more detailed process specifications at lower levels in the hierarchy.
Since it allows subtypes to restrict value ranges of inputs and parameters, it breaks
with the Liskov substitution principle, i.e. that

“...objects of a subtype should behave the same as those of the supertype
as far as anyone or any program using the supertype can tell” (LISKOV
AND WING 1994, p. 1811).

As a final remark it should be noted that SensorML mandates that all processes
should be GML feature types. At least for purely computational processes this re-
quirement is questionable. The few useful elements that are inherited from GML’s
Abstract Feature (unique identifier, description etc.) could be easily replicated with-
out any reference to GML. Besides the syntactic properties, SensorML processes
also inherit the definition of a feature which is supposed to be an abstraction of real
world phenomena, as declared by ISO (2002, clause4.11) and OGC (2007b, clause
4.1.26). Computational processes (SensorML examples refer to simple mathematical
functions such as Cosine or square root), however, are no abstractions of real world
objects but purely theoretical constructs. The property of a feature may only be
granted to instances and subtypes of Abstract Physical Process since these do refer
to real world entities.

The comparison between WPS and SensorML has revealed a significant overlap
in the fundamental concepts (basically the input/output-centric view on a process
interface and the topology of process chains and workflows) which could be used
to frame a joint metadata model that is applicable to all these technologies. A
harmonisation of the different existing process models has not yet happened. The
abstract process model of WPS already defines some general requirements and covers
a broad range of applications. The process model of SensorML can be considered
compliant with this abstract process model and WPS 2.0 servers can basically be
used to offer SensorML processes. An OGC abstract specification that provides
basic terminology and concepts would fill this gap and could aim at a harmonised
taxonomy for process models.

Both SensorML’s and WPS’s process models assume that processes are (or can be
subdivided into a set of) stateless I/O-specified functions. The consideration of state
could lead to an extended formalisation of processes which is then also applicable to
geographic modelling in general. The work of (ZEIGLER et al. 2000) on modelling and
simulation formalisms may provide a conceptual input towards a more general process
model which may be used for more complex applications where the consideration

112

A.3. SensorML Process Interfaces

stateful processing is inevitable. The Open Modelling Interface Standard (OpenMI
OATC 2010), which has also been adopted as an OGC standard (OGC 2014b),
largely deals with this kind of processes but is yet hardly integrated with OGC
baseline standards. A governing standard that can be profiled towards stateful and
stateless component interfaces may potentially align terminology, technology, and
finally improve interoperability in future standards.

113

Bibliography

A9 (2015). OpenSearch 1.1, Draft 5. Technical specification, A9 and the OpenSearch
community. http://www.opensearch.org/Specifications/0OpenSearch/1.1.

Albrecht, J. (1996). Universal Analytical GIS Operations. Dissertation, Universitét
Vechta.

Almeida, N., Catarino, N., Gutierrez, A., Martinho, F., Rosado, H., Andrade, J.,
Caumont, H., Gongalves, P., and Brito, F. (2014). SENSYF: Processing Frame-
work for Sentinel Data. In Soille, P. and Marchetti, P. G., editors, Proceedings of
the 2014 Conference on Big Data from Space (BiDS’14), pages 275-278.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services - Concepts,
Architectures and Applications. Springer, Berlin Heidelberg, Germany.

Bernard, L., Craglia, M., Gould, M., and Kuhn, W. (2005). Towards an sdi research
agenda. In Fullerton, K., editor, The 11th EC GIS & GIS Workshop - ESDI:
Setting the Framework - Abstracts Handbook, pages 147-151.

Bernard, L., Mis, S., Miiller, M., Henzen, C., and Brauner, J. (2013). Scientific geo-
data infrastructures: challenges, approaches and directions. International Journal
of Digital Earth, 7(7):613-633.

BMVJ (2009). Gesetz iiber den Zugang zu digitalen Geodaten (Geodatenzugangs-
gesetz - GeoZ@G).

Brauner, J. (2015). Formalizations for Geooperators - Geoprocessing in Spatial Data
Infrastructures. Dissertation, Technische Universitdt Dresden.

Brauner, J., Foerster, T., Schaeffer, B., and Baranski, B. (2009). Towards a Research
Agenda for Geoprocessing Services. In Seester, M., Bernard, L., and Paehlke, V.,
editors, Proceedings of the 12th AGILE International Conference on Geographic
Information Science (AGILE 2009), Hannover, Germany.

Camara, G., Egenhofer, M., Ferreira, K., Andrade, P., Queiroz, G., Sanchez, A.,
Jones, J., and Vinhas, L. (2014). Fields as a Generic Data Type for Big Spatial
Data. In Duckham, M., Pebesma, E., Stewart, K., and Frank, A., editors, Geo-
graphic Information Science, volume 8728 of Lecture Notes in Computer Science,
pages 159-172. Springer International Publishing, Switzerland.

115

http://www.opensearch.org/Specifications/OpenSearch/1.1

BIBLIOGRAPHY

Carzaniga, A., Picco, G. P., and Vigna, G. (1997). Designing Distributed Appli-
cations with Mobile Code Paradigms. In Proceedings of the 1997 International
Conference on Software Engineering, pages 22—32.

Carzaniga, A., Picco, G. P., and Vigna, G. (2007). Is Code Still Moving Around?
Looking Back at a Decade of Code Mobility. In Proceedings of the 29th Interna-
tional Conference on Software Engineering — Companion, 2007, pages 9-20.

Cheng, T., Haworth, J., and Manley, E. (2012). Advances in geocomputation (1996
2011). Computers, Environment and Urban Systems, 36(6):481-487.

Chirigati, F., Shasha, D., and Freire, J. (2013). Reprozip: Using provenance to sup-
port computational reproducibility. In Proceedings of the 5th USENIX Workshop
on the Theory and Practice of Provenance, 2013, pages 1:1-1:4.

Couclelis, H. (1992). People manipulate objects (but cultivate fields): beyond the
raster-vector debate in GIS. In Frank, A., Campari, I., and Formentini, U., editors,
International Conference GIS - From Space to Territory: Theories and Methods
of Spatio-Temporal Reasoning on Theories and Methods of Spatio-Temporal Rea-
soning in Geographic Space, pages 65-77.

Couclelis, H. (1998). Geocomputation — a primer. In Longley, P. A., Brooks, S. M.,
McDonnell, R., and MacMillan, B., editors, Geocomputation in Context, pages
17-29. Wiley, Chichester.

Crnkovié¢, 1., Sentilles, S., Vulgarakis, A., and Chaudron, M. R. V. (2011). A Clas-
sification Framework for Software Component Models. [EEE Transactions on
Software Engineering, 37(5):593-615.

Davis, P. K. and Anderson, R. H. (2004). Improving the Composability of DoD
Models and Simulations. Journal of Defense Modeling and Simulation, 1(1):5-17.

de Smith, M. J., Goodchild, M. F., and Longley, P. A. (2007). Geospatial Analy-
sis. A Comprehensive Guide to Principles, Techniques and Software Tools. Second
Edition. Matador, Winchelsea, UK, 2nd edition.

DiBiase, D., DeMers, M., Johnson, A., Kemp, K., Taylor Luck, A., Plewe, B., and
Wentz, E. (2006). Geographic Science and Information Technology Body of Knowl-
edge. University Consortium for Geographic Information Science.

Docan, C., Parashar, M., Cummings, J., and Klasky, S. (2011). Moving the code
to the data - dynamic code deployment using activespaces. In Proceedings of the
26th Parallel Distributed Processing Symposium (IPDPS 2011), pages 758-769.

EC (2007). Directive 2007/2/EC of the European Parliament and of the Council
of 14 March 2007 establishing an Infrastructure for Spatial Information in the
European Community (INSPIRE).

116

BIBLIOGRAPHY

EC (2010a). Commission Regulation (EC) No 976,/2009 of 19 October 2009 imple-
menting Directive 2007/2/EC of the European Parliament and of the Council as
regards the Network Services.

EC (2010b). Draft Technical Guidance for INSPIRE Coordinate Transformation
Services. Version 2.0. INSPIRE Technical Guideline.

ECMA (2013). The JSON Data Interchange Format. Standard, Geneva, Switzerland.
Document number ECMA-404.

Economist (2010). The data deluge. The Ecomonomist — Special report: Managing
information, (8671):13.

Egenhofer, M. and Frank, A. (1992). Object-Oriented Modeling for GIS. Journal of
the Urban and Regional Information Systems Association, 4(2):3-19.

Egenhofer, M. J. and Franzosa, R. D. (1991). Point-set topological spatial relations.
International Journal of Geographical Information Systems, 5(2):161-174.

Erl, T. (2007). SOA — Principles of Service Design. Prentice Hall, Boston, USA.

ESRI (2015). What is geoprocessing? http://resources.arcgis.com/en/help/
main/10.1/index.html#//002s00000001000000. Accessed: 2015-04-01.

Farnaghi, M. and Mansourian, A. (2013). Disaster planning using automated com-
position of semantic OGC web services: A case study in sheltering. Computers,
Environment and Urban Systems, 41:204-218.

Feuerlicht, G. (2011). Simple metric for assessing quality of service design. In Max-
imilien, E. M., Rossi, G., Yuan, S.-T., Ludwig, H., and Fantinato, M., editors,
Service-Oriented Computing, Lecture Notes in Computer Science, pages 133-143.
Springer, Berlin Heidelberg, Germany.

Fisher, P. (2006). Algorithm and implementation uncertainty: Any advances? In
Fisher, P., editor, Classics from IJGIS: Twenty years of the International Journal
of Geographical Information Science and Systems, pages 225-228. CRC Press, Boca
Raton, FL, USA.

Fitzner, D., Hoffmann, J., and Klien, E. (2011). Functional description of geopro-
cessing services as conjunctive datalog queries. Geoinformatica, 15(1):191-221.
Geoinformatica.

Friis-Christensen, A., Ostlander, N., Lutz, M., and Bernard, L. (2007). Designing
service architectures for distributed geoprocessing: Challenges and future direc-
tions. Transactions in GIS, 11(6):799-818.

Gahegan, M. (1999). Guest editorial: What is geocomputation? Transactions in
GIS, 3(3):203-206.

117

http://resources.arcgis.com/en/help/main/10.1/index.html#//002s00000001000000
http://resources.arcgis.com/en/help/main/10.1/index.html#//002s00000001000000

BIBLIOGRAPHY

Gahegan, M. (2015). What is GeoComputation? A history and outline. http:
//www.geocomputation.org/what.html. Accessed: 2015-04-02.

Goodchild, M. F. (2002). Spatial analysis and modeling. In Bossler, J., Jensen, J.,
McMaster, R., and Rizos, C., editors, Manual of Geospatial Science and Technol-
ogy, pages 482-499. Taylor and Francis, London, UK.

Granell, C., Diaz, L., and Gould, M. (2010). Service-oriented applications for en-
vironmental models: Reusable geospatial services. FEnvironmental Modelling &
Software, 25(2):182-198.

Granell, C., Diaz, L., Schade, S., Ostlander, N., and Huerta, J. (2013). Enhanc-
ing integrated environmental modelling by designing resource-oriented interfaces.
Environmental Modelling & Software, 39:229-246.

Granell, C., Diaz, L., Tamayo, A., and Huerta, J. (2014). Assessment of OGC web
processing services for REST principles. International Journal of Data Mining,
Modelling and Management, 6(4):391-412.

Gray, J. (2009). escience: a transformed scientific method. In Hey, A. J. G., Tans-
ley, S., and Tolle, K. M., editors, The fourth paradigm: data-intensive scientific
discovery, pages xvii—xxxi. Microsoft Research, Redmond, WA.

Henzen, C., Brauner, J., Miiller, M., Henzen, D., and Bernard, L. (2015). Geopro-
cessing appstore. In Bacao, F., Santos, M. Y., and Painho, M., editors, Proceedings
of the 18th AGILE International Conference on Geographic Information Science
(AGILE 2015), Lisbon, Portugal.

Hill, L. L., Crosier, S. J., Smith, T. R., and Goodchild, M. (2001). A content standard
for computational models. D-Lib Magazine, 7(6).

Hofer, B. (2015). Uses of online geoprocessing technology in analyses and case stud-
ies: a systematic analysis of literature. International Journal of Digital Earth,
8(11):901-917.

Howard, M., Payne, S., and Sund, R. (2010). Technical Guidance for the INSPIRE
Schema Transformation Network Service. Version 3.0. INSPIRE Technical Guide-
line.

IETF (2014). The JavaScript Object Notation (JSON) Data Interchange Format.
Standard. RFC 7159.

ISO (2002). Geographic information — Reference model. International Standard ISO
19101:2002.

ISO (2004). Geographic information - Simple feature access — Part 1: Common
architecture. International Standard ISO 19125-1:2004.

118

http://www.geocomputation.org/what.html
http://www.geocomputation.org/what.html

BIBLIOGRAPHY

ISO (2005). Geographic information — Rules for application schema. International
Standard ISO 19109:2005.

ISO (2006). Geographic information — Services. International Standard ISO
19119:2006.

ISO (2007). Geoinformation — Geography Markup Language (GML). International
Standard ISO 19136:2007.

ISO (2008). Information technology — Office Open XML formats. International
Standard ISO/TEC 29500.

ISO (2009). Geographic information — Metadata — Part 2: Extensions for imagery
and gridded data. International Standard ISO 19115-2:2009.

ISO (2014). Geographic information Metadata Part 1: Fundamentals. International
Standard ISO 19115-1:2004.

Kadner, D., Miller, M., Brauner, J., and Bernard, L. (2012). Konzeption
eines marktplatzes fiir den austausch von geoprozessierungsimplementierungen.

gis.SCIENCE, 25(3):118-124.

Kiehle, C., Greve, K., and Heier, C. (2007). Requirements for next generation spa-
tial data infrastructures-standardized web based geoprocessing and web service
orchestration. Transactions in GIS, 11(6):819-834.

Kuhn, W. (2012). Core concepts of spatial information for transdisciplinary research.
International Journal of Geographical Information Science, 26(12):2267-2276.

Ledoux, H. and Gold, C. (2006). A Voronoi-Based Map Algebra. In Riedl, A.,
Kainz, W., and Elmes, G., editors, Progress in Spatial Data Handling, pages 117—
131. Springer, Berlin Heidelberg, Germany.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811-1841.

Longley, P. A. (1998). Foundations. In Longley, P. A., Brooks, S. M., McDonnell, R..,
and BillMacMillan, editors, Geocomputation - A Primer, pages 3—15. Chichester,
Wiley.

Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2011). Geo-
graphic Information Systems and Science. Wiley, Hoboken, NJ, USA.

Lopez-Pellicer, F. J., Renteria-Agualimpia, W., Béjar, R., Muro-Medrano, P. R.,
and Zarazaga-Soria, F. J. (2012). Availability of the OGC geoprocessing standard:
March 2011 reality check. Computers € Geosciences, 47:13-19.

Lutz, M. (2007). Ontology-Based Descriptions for Semantic Discovery and Compo-
sition of Geoprocessing Services. Geoinformatica, 11(1):1-36. Geoinformatica.

119

BIBLIOGRAPHY

Lutz, M., Riedemann, C., and Probst, F. (2003). A classification framework for ap-
proaches to achieving semantic interoperability between gi web services. In Kuhn,
W., Worboys, M. F., and Timpf, S., editors, Spatial Information Theory. Foun-
dations of Geographic Information Science, Lecture Notes in Computer Science,
pages 186—203. Springer, Berlin Heidelberg, Germany.

Marshall, J., Downs, R., and Samadi, S. (2010). Relevance of software reuse in

building advanced scientific data processing systems. Farth Science Informatics,
3(1):95-100.

Maué, P.; Michels, H., and Roth, M. (2012). Injecting semantic annotations into
geospatial web service descriptions. Semantic Web, 3(4):385-395.

Mennis, J., Viger, R., and Tomlin, C. D. (2005). Cubic Map Algebra Functions
for Spatio-Temporal Analysis. Cartography and Geographic Information Science,
32(1):17-32.

Meyer, B. (1992). Applying "Design by Contract". Computer, 25(10):40-51.

Mineter, M. J., Jarvis, C. H., and Dowers, S. (2003). From stand-alone programs
towards grid-aware services and components: a case study in agricultural modelling
with interpolated climate data. Environmental Modelling & Software, 18(4):379—
391.

Miiller, M. (2013). Hierarchical process profiles for interoperable geoprocessing func-
tions. In Vandenbroucke, D., Boucher, B., and Crompvoets, J., editors, Proceedings
of the 16th AGILE International Conference on Geographic Information Science
(AGILE 2013), Leuven, Belgium.

Miiller, M. (2015). Hierarchical profiling of geoprocessing services. Computers and
Geosciences, 82:68-77.

Miiller, M., Bernard, L., and Brauner, J. (2010). Moving code in spatial data infras-
tructures - web service based deployment of geoprocessing algorithms. Transac-
tions in GIS, 14(S1):101-118.

Miiller, M., Bernard, L., and Kadner, D. (2013). Moving code — sharing geoprocessing
logic on the web. ISPRS Journal of Photogrammetry and Remote Sensing, 83:193—
203.

Miiller, M., Wiemann, S., and Grafe, B. (2012). A framework for building multi-
representation layers from openstreetmap data. In Proceedings of the 15th ICA
Workshop on Generalisation and Multiple Representation, Istanbul, Turkey.

Nebert, D. D. (2004). Developing Spatial Data Infrastructures: The SDI Cookbook.

NIST (2014). Draft NIST Big Data Interoperability Framework: Volume 6, Reference
Architecture. National Institure of Standards and Technology, US Department of
Commerce.

120

BIBLIOGRAPHY

OATC (2010). OpenMI Document Series: OpenMI Standard 2 Specification for the
OpenMI (Version 2.0). Standard. The OpenMI Association Technical Committee
(OATC).

OGC (1999). OpenGIS Simple Feature Specification for SQL, Revision 1.1. OGC
Standard. OGC document 99-049.

OGC (2007a). OpenGIS Catalogue Services Specification. OGC Standard. OGC
document 07-006r1.

OGC (2007b). OpenGIS Geography Markup Language (GML) Encoding Standard.
OGC Standard. OGC document 07-036.

OGC (2007c). OpenGIS Web Processing Service, Version 1.0.0. OGC Standard.
OGC document 05-007r7.

OGC (2009). Semantic annotations in OGC standards. OGC Discussion Paper.
OGC document 08-167r1.

OGC (2010). OGC Web Services Common Standard. OGC Standard. OGC docu-
ment 06-121r9.

OGC (2011). OGC SWE Common Data Model Encoding Standard. OGC Standard.
OGC document 08-094r1.

OGC (2012). OGC WCS 2.0 Interface Standard — Core: Corrigendum. OGC Stan-
dard. OGC document 09-110r4.

OGC (2013). OGC Abstract Specification Geographic information — Observations
and measurements. OGC Standard. OGC document 10-004r3.

OGC (2014a). Filter Encoding 2.0 Encoding Standard — With Corrigendum. OGC
Standard. OGC document 09-026r2.

OGC (2014b). OGC Open Modelling Interface Standard. OGC document 11-014r3.

OGC (2014c). OGC SensorML: Model and XML Encoding Standard. OGC Stan-
dard. OGC document 12-000.

OGC (2014d). OGC Web Feature Service 2.0 Interface Standard — With Corrigen-
dum. OGC Standard. OGC document 09-025r2.

OGC (2015a). OGC WPS 2.0 Interface Standard. OGC Standard. OGC document
14-065.

OGC (2015b). Sensor Web Enablement (SWE). Web page. Accessed 2015-04-09.
OGC (2015c). Web Coverage Service. OGC Standard. Accessed 2015-04-09.

OMG (2005). Unified Modeling Language: Superstructure. Version 2.0.

121

BIBLIOGRAPHY

Openshaw, S. (2000). Geocomputation. In Openshaw, S. and Abrahart, R. J.,
editors, GeoComputation, pages 1-31. Taylor and Francis, London, UK.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008). Restful Web Services vs.
"Big" Web Services: Making the Right Architectural Decision. In Proceedings of
the 17th International Conference on World Wide Web (WWW °08), pages 805—
814. ACM.

Pierce, M. E., Fox, G. C., Ma, Y., and Wang, J. (2010). Cloud computing and spatial
cyberinfrastructure. Report, Indiana University.

Pullar, D. (2001). MapScript: A Map Algebra Programming Language Incorporating
Neighborhood Analysis. Geolnformatica, 5(2):145-163.

Schaeffer, B. (2008). Towards a transactional web processing service (wps-t). In
Pebesma, E., Bishr, M., and Bartoschek, T, editors, Sizth Geographic Information
Days (GI-Days 2008), volume 32. IfGIPrints.

Schmitz, O., Karssenberg, D., de Jong, K., de Kok, J.-L., and de Jong, S. M. (2013).
Map algebra and model algebra for integrated model building. FEnvironmental
Modelling & Software, 48:113-128.

Schubert, C. (2011). Bereitstellung dynamischer Web Processing Services zur Ver-
arbeitung von Geodaten mit OSGi.

Soille, P. and Marchetti, P. G. (2014). Preface. In Proceedings of the 2014 Conference
on Big Data from Space (BiDS’14) in Frascati, Italy. Publications Office of the
FEuropean Union, Luxembourg.

Szyperski, C. and Pfister, C. (1997). Component-oriented programming: Wcop’96
workshop report. In Miithlh&duser, M., editor, Special Issues in Object-Oriented Pro-
gramming - Workshop Reader of the lOth European Conference on Object-Oriented
Programming, pages 127-130. Dpunkt Verlag.

Takeyama, M. (1997). Building spatial models within GIS through Geo-Algebra.
Transactions in GIS, 2(3):245-256.

Tanenbaum, A. S. and Steen, M. v. (2007). Distributed Systems - Principles and
Paradigms (Second Edition). Pearson Prentice Hall, Upper Saddle River, NJ,
USA.

Tomlin, D. (1990). Geographic Information Systems and Cartographic Modelling.
Prentice-Hall, Englewood Cliffs.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., and Barros, A. (2003). Work-
flow patterns. Distributed and Parallel Databases, 14(1):5-51.

122

BIBLIOGRAPHY

Vanhellemont, Q. and Ruddick, K. (2014). Landsat-8 as a precursor to Sentinel-2:
Observations of human impacts in coastal waters. In Proceedings of the Sentinel
2 for Science Workshop, Frascati, Italy.

W3C (2006). Reference Model for Service Oriented Architecture 1.0. W3C Standard.

W3C (2007). Web Services Description Language (WSDL) Version 2.0. W3C Stan-
dard.

Wade, T. and Sommer, S. (2006). A to Z GIS: An Illustrated Dictionary of Geographic
Information Systems. ESRI Press, Redlands, CA, USA.

Wang, S., Anselin, L., Bhaduri, B., Crosby, C., Goodchild, M. F., Liu, Y., and
Nyerges, T. L. (2013). CyberGIS Software: A Synthetic Review and Inte-
gration Roadmap. International Journal of Geographical Information Science,
27(11):2122-2145.

Wesselung, C. G., Karssenberg, D.-J., Burrough, P. A., and Van Deursen, W. P. A.
(1996). Integrating dynamic environmental models in GIS: The development of a
dynamic modelling language. Transactions in GIS, 1(1):40-48.

Worboys, M. and Duckham, M. (2004). GIS: A Computing Perspective. Second
Edition. CRC Press, Boca Raton, FL, USA.

Yang, C., Raskin, R., Goodchild, M., and Gahegan, M. (2010). Geospatial cyberin-
frastructure: Past, present and future. Geospatial Cyberinfrastructure, 34(4):264—
277. Computers, Environment and Urban Systems.

Yue, P., Di, L., Yang, W., Yu, G., and Zhao, P. (2007). Semantics-based auto-
matic composition of geospatial web service chains. Computers and Geosciences,

33(5):649-665.

Zaharia, R., Vasiliu, L., Hoffman, J., and Klien, E. (2008). Semantic execution meets
geospatial web services: A pilot application. Transactions in GIS, 12:59-73.

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of Modeling and Simu-
lation, Second Edition. Academic Press, San Diego, CA, USA.

123

	Introduction
	Terminology
	Problem Statement
	Service-oriented Geoprocessing
	Research Challenges and Contributions

	Moving Code in Spatial Data Infrastructures – Web Service Based Deployment of Geoprocessing Algorithms
	Moving Code – Sharing Geoprocessing Logic on the Web
	Hierarchical Profiling of Geoprocessing Services
	The WPS 2.0 Interface Standard
	Specification Overview
	WPS Service Model
	WPS Process Model and Interfaces
	Process Descriptions and Profiles

	Discussion of Results
	Responses to the Research Challenges
	Conclusions
	Outlook

	Summary
	Annex
	Comparison of Interfaces for Buffer Functions
	Process Description Examples for WPS
	SensorML Process Interfaces

	Bibliography

