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Abstract

Analyzing the structure of a single cell based on its refraet index (RI) distri-
bution is a common and valued approach, because it does notjuge any arti -
cial markers. The RI is an inherent structural marker that ca be quanti ed in
three dimensions with optical di raction tomography (ODT), an inverse scatter-
ing technique. This work reviews the theory of ODT and its imfgmentation with
an emphasis on single-cell analysis, identifying the Rytoapproximation as the
most e cient descriptor for light propagation. The accurag/ of the reconstruction
method is veri ed with in silico data and imaging artifacts associated with the
inverse scattering approach are addressed. Furthermora) axperimental ODT
setup is presented that consists of a bright- eld microscep a phase-imaging cam-
era, and an optical trap combined with a micro uidic chip. A rovel image analysis
pipeline is proposed that addresses image corrections ananfe alignment of the
recorded data prior to the RI reconstruction. In addition, br a rotational axis that
is tilted with respect to the image plane, an improved recotrsiction algorithm is
introduced and applied to single, suspended ceils vitro, achieving sub-cellular
resolution.
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1. Introduction

Developing novel microscopy techniques is a crucial exeseifor studying the struc-
ture of individual cells. A large variety of imaging techniges exist that visual-
ize, for instance, intracellular compartments, cytoskefal proteins, or membranes
within cells. The most common techniques are uorescencaded and thus require
uorescent labels that bind to a speci ¢ structure of interest. However, in some
cases it is important to image specimens without labels, fanstance because of
limited preparation time, limited access to the sample, ordcause the label causes
unwanted modi cations.

This work approaches the topic of marker-free imaging usirgptical di raction
tomography (ODT), an imaging technique that is compatible vth commercial mi-
croscopes. ODT quanti es the 3D refractive index (RI) of a sgcimen, yielding
information on both the magnitude of the RI at each point in spce and the global
structure of the specimen. This work provides a 3D reconstction algorithm for
the ODT community and describes how to resolve most obstasl¢hat arise in
ODT for single-cell analysis. The following two sections &y introduce RI imag-
ing and tomographic reconstruction. Chapter 2 addresseselphysical concepts of
light propagation through cells, concluding with a compasion between analytical
and approximative descriptions. Chapter 3 examines the tamgraphic RI recon-
struction of arti cially generated data in silico in 3D and includes a discussion
of common artifacts in di raction tomography. The derived theory is appliedin
vitro in chapter 4, showcasing the 3D RI reconstruction of a humanymlocytic
leukemia cell (HL60/S4).

1.1 The refractive index { imaging without markers
The RI of a transparent object is an optical property that desribes how light is
di racted as it propagates through the object. E ects such a refraction and inter-
ference that occur in biological imaging are a result of th@homogeneous RI that
is introduced by the sample. In biological tissues, the loc&I is dependent on
the electron density, which in turn depends on local proteiand/or DNA content.
This implies a connection between the Rl and the mass density biological tis-
sues, which can be quanti ed by the refraction increment 0:2mLg ! [Bar52;
Dav+52]. Thus, the RI of a biological tissue can serve as anharent structural
property that is de ned by the local mass density.

For biological imaging, the RI holds quantitative informaton that can be used
to characterize cells. For instance, the RI can be used to chaterize the di eren-



tiation state or the cell cycle stage [Pop+08; Cha+12]. In adition, the spatially

resolved RI reveals sub-cellular organelles such as the leatus [Cho+07]. Measur-
ing the RI allows for a marker-free and quantitative analysi of single cells and as
a result, there is a lot of interest in the development of 3D Rimaging techniques.

1.2 Tomographic volume reconstruction

A truly 3D volume reconstruction of a specimen is not possiélfrom only one
single image. To obtain a 3D representation, many imaging deniques perform
slicing of the imaging volume (e.g. selective plane illumation microscopy) or scan
the 3D specimen directly (e.g. confocal laser scanning nmascopy). Tomographic
imaging takes a di erent approach. Here, projections of thepgcimen are recorded
for di erent rotational positions of the specimen relativeto the imaging system. To
obtain a volume reconstruction in tomographic imaging, a @t-processing step is
necessary that connects the projections at di erent anglds the actual object. For
instance, in the case of computerized tomography (CT), whids a well established
imaging technique in medical applications, x-rays are usdd record projection
images of biological tissues from di erent angular direains. From these images,
it is possible to reconstruct the original tissue using thenverse Radon transform.
The Radon transform assumes that the x-rays travel along stight lines through
the sample and that the tissue density is connected to the afrption of x-rays.
There are several algorithms that can solve the inverse pieln up to a certain
degree of accuracy. Irrespective of the speci ¢ algorithmsad, the reconstruction
quality always depends on the resolution of the detector andn the number of
angles that are covered during the imaging process.

The tomographic reconstruction with x-rays is fundamentdy dierent from
di raction tomography, which is applied in this work. ODT uses visible light
(400-700 nm) to image predominantly transparent objects i RI values between
1.333 (water) up to approximately 1.450 (human epidermis)The combination of
object sizes that approach the scale of the imaging waveléh@nd RI di erences
that are large inevitably leads to di raction and the inverse Radon transform be-
comes inaccurate. The solution to the problem is to take intaccount the wave
nature of light (chapter 2) and to apply a reconstruction algrithm that overcomes
the limitations of the inverse Radon transform (chapter 3).To demonstrate the
algorithm, this work presents an experimental setup that,n combination with a
novel computational image analysis pipeline, enables th® RI reconstruction of
single, suspended cells (chapter 4).

2 CHAPTER 1. INTRODUCTION



2. Diraction at cells

The most important prerequisite for a successful reconsttion with di raction
tomography in biological applications is to understand howight interacts with
cells. Only with a proper understanding of light scatteringat cells, is it possi-
ble to derive a reliable reconstruction algorithm. This chater reviews the most
common techniques that are used to simulate light propagatn through cell-sized
objects. The chapter especially highlights the Rytov appsxmation, which is well-
suited to describe the interaction of light with cells evenhough it describes light
propagation as a simple linear process. The linearization thfe scattering process
with the Rytov approximation allows the application of e ci ent inverse scattering
algorithms that are discussed in chapter 3.

2.1 Light and matter

2.1.1 Amplitude and phase
The electric eld generated by a plane wave of light in free sige can be described
by a periodic exponential function

E(r;t)= Eqe (") = Egkr 't+ o) (2.1)

with amplitude jEoj, phase , wave numberk = jkj, angular frequency! , and
initial phase . When light passes through an object, there are a variety of
interactions that may take place. Besides inelastic scatiag processes on the
atomar and molecular level that result in well-known e ectssuch as uorescence
or Raman scattering, there are two fundamental e ects restihg from material
properties that in uence light propagation altogether: atenuation and phase re-
tardation. The quantity that describes these material proprties is the RIn, a
complex-valued numbet.

The imaginary part of the Rl Im (n) determines the attenuation of the amplitude
jEoj. In a material with imaginary RI greater than zero, the transnission of light
decreases exponentially with the propagation distance. Is important to note
that the structures observed in bright eld images are a resuof interference and

1The RI takes the form of a complex-valued tensor in birefringent matefals such as calcite.
In biological tissues, collagen is known to form birefringent structues in the extracellular space
that can be visualized using polarized light microscopy [Wol+86]. The me¢hods described in this
work do not consider birefringence of collagen which is abundant in the>dracellular matrix of
e.g. skin or bone tissue.
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Figure 2.1, Quantitativ phase imaging of single cells. a) The schematic drawing

of the cross-section along the optical axis illustrates the phase delay of light passing
through a cell (wavefronts drawn as red lines). The phase delay isazised by the RI of the
cell n(r), which is larger than that of the surrounding medium n,,. The images in(b)
and (c) show phase and intensity images of a representative human myelocygtieukemia
cell (HL60/S4). The images were recorded with the setup described in séon 4.1.

must not be attributed solely to attenuation. In fact, many ells are too thin to
absorb light and thus, light attenuation is not examined in his work.

The real part of a material's RIRe(n) dictates the speed of lightc = c,=Re(n)
with Re(n) > 1, which is lower than the speed of light in vacuunt,. Consider
two light beams that pass through a dielectric medium with arRl of n,, and that
have an identical wave numbek,, = kn,,. If one of the beams passed through
the center of a cell with a diameterd.; and a homogeneous RI afieg, it would
become phase-shifted relative to the other beam propagatginn the surrounding
medium by

dcell(kcell km) = dcellk(ﬂcell nm):

with Keen = kneep. In quantitative phase imaging ( gure 2.1), this fact is usd to
measure the phase delay introduced by the cell relative togtsurrounding medium.

2.1.2 Phase and optical thickness

The measurement of the phase change of light that has passédaugh an object
is always a measurement of the object's optical thicknessh& optical thickness is
the integral of the RI along the path of light through the obje&t. In practice, this
integral poses a problem for the determination of the 3D staiure of cells, because
it is not possible to obtain the spatial RI distribution or the shape of the cell from
a single 2D image of its optical thickness. To uncouple the Rbmposition of a cell
from its shape, there are two approaches. One approach malessumptions on
either the shape (e.g. sphericity) or the RI distribution othe cell (e.g. uniformity).

4 CHAPTER 2. DIFFRACTION AT CELLS



Consequently, the unknown variable, shape or RI, can then bextracted from
the measured optical thickness. Another approach, which deaot require any
structural assumptions, is tomography. With tomography, itis possible to extract
information on both the shape and the RI distribution of the ell. The RI of
each voxel is computed separately, eliminating the need for structutamodels
that describe the optical thickness of a cell. Nevertheles®DT reconstruction
algorithms rely on approximations of light propagation. Tlese approximations,
which limit the applicability of ODT, are investigated in the following sections.

2.2 Theoretical description

In order to generate ground truth data for testing a di raction-tomographic recon-
struction algorithm, an accurate description of light proagation is essential. Light
is an electromagnetic wave and its dynamic behavior and imgction with matter
is fully described by the macroscopic Maxwell equations gernational System of
Units (SI)):

r D= ¢ (2.2a)

r B=0 (2.2b)
_ @

r E= @t (2.2¢)

r H=j;+ %t (2.2d)

with the divergencer , the curl r , the time derivative @=@the free charge
density ¢, and the free current densityj. The Maxwell equations describe the time
evolution and coupling of the electric eldE and the magnetic eldB components.
The displacement eldD and the magnetizing eld H are connected toE and B
by the polarization eld P and the magnetization eld M, which describe the
response of a material to an external electromagnetic eld

D="¢+P (2.3a)
1
H=—B M (2.3b)
0
with the permeability of free space'y and the permittivity of free space o. By
introducing the material properties relative permittivity ", and relative permeabil-
ity |, the constitutive equations describe the interaction of ¢jht and matter with
a simple linear relation

D="y"E (2.4a)

H= 1 g (2.4b)
0Or

2A voxel is the 3D equivalend of a 2D pixel.

2.2. Theoretical description 5



The quantity that describe% the interaction of a material wih light is its R,
which is de ned asn(r) = = "/(r) ((r). Unfortunately, analytical solutions to
the Maxwell equations are only available for simple geomets. The description of
light propagation through inhomogeneous objects, such aslis, requires numerical
approaches. The following two sections discuss two comptitenal approaches that
are often used to accurately describe light propagation thugh objects: Mie theory
and the nite-di erence time-domain (FDTD) method.

2.2.1 Mie theory
Mie theory can be used in situations where the radial and angu components of
the electromagnetic eld can be separated. For instance, ¢hdescription of light
scattering at a cylinder falls into this category. Here, two arameters are used: the
relative size of the cylinder diameter to the wavelengtd= and the relative RI of
the cylinder to the surrounding mediumn=n,,,. Because of the cylindrical symme-
try of the problem, angular and radial components of the eleomagnetic eld can
be separated using cylindrical coordinates. The solutiomén takes the form of an
in nite series of Bessel functions [Boh+08]. In practice heever, this in nite series
is computed only up to theNth term using a stop criterion that ensures numer-
ical accuracy and stability [Wis80]. Using similar techniquge Mie theory is able
provide exact solutions to light scattering problems inveing cylinders, spheres,
and also superpositions of spheroids [Boy+11; Boy+12].

For the purpose of this work, | generated test data for my tongraphic recon-
struction algorithms, using software that is based on Mie #ory (see ap. B.2).
Figure 2.2 showcases the computation of the electromagnettd with Mie theory

Figure 2.2, Mie theory: scattering at a cylinder. The phase(a) and intensity (b)
images of a two-dimensional computation based on Mie theory illustrate howa plane
wave, traveling from left to right, is scattered by a cylinder that has a diamter of 20 ,
an Rl of 1.360, and that is embedded in a medium with an Rl of 1.333. The electriceld
component was background-corrected by dividing it by the eld componet obtained
from an empty run. The data were generated with the Python library mie eld (see
ap. B.2).

6 CHAPTER 2. DIFFRACTION AT CELLS



for a cylinder that has a diameter of 20 wavelengtfis The focusing e ect of the
cylinder, which is expected because of its convex shape, lisacly visible in the
intensity image. In the phase image, the gradually increagy delay of the wave
front is visible, as is schematically drawn in gure 2.1.

The advantage of computing arti cial data for a centered cyhder with Mie
theory is, besides the availability of an analytical solutin, the rotational symmetry
of the problem. Thus, to create a tomographic data set with aarbitrary number
of projections, only one single simulation is required.

2.2.2 Finite-di erence time-domain method
To be able to test a tomographic reconstruction algorithm foinhomogeneous ob-
jects, a corresponding simulation technique is required.n Iprinciple, one could
also use Mie theory to generate test data for more complex geetries, but un-
fortunately, to my knowledge there is no Mie-based softwangackage that would
allow such computations. However, it is possible to addreski$ problem from a
di erent angle with the nite-di erence time-domain (FDTD) method.

Finite-di erence methods compute derivatives of a functiorg with respect to a
variable t using the di erence quotient:

@¢) 9ot+ =) ot =)
@t t

With this approach, divergence, curl, and time-derivativen the Maxwell equations
(egns. 2.2) can be replaced by nite di erences that are theewomputed numeri-
cally [Yee+66; Taf+95]. For this work, | used the software MEEP [Osk+10] to

perform FDTD simulations. MEEP simulations are based on the ¢ap-Frog it-
eration scheme, proposed by Yee et al. [Yee+66], which contgsi the vectorial
components of the electric and magnetic elds on an alternisig grid. This al-

ternating computation of magnetic and electric elds is opmized for the curly
Maxwell equations (2.2c, 2.2d), which each introduce a coaction between or-
thogonal components of the electric and the magnetic eld.nladdition, MEEP

o ers an implementation of perfectly matched layers (PML),which are essential
for emulating \open space". PMLs absorb radiation without e ection and when
used as boundary conditions, they have the same e ect as ifrailated electromag-
netic waves leave the simulation volume [Ber94]. An exempyaFDTD simulation

of an arti cial 2D cell phantom is shown in gure 2.3.

The FDTD method is a numerical method and thus, it is prone to noerical
errors. Because of the nature of the discrete grid and the ajpgimate description
of derivatives, FDTD simulations exhibit a numerical dispesion that depends
on the frequency and the direction of light propagation. Fuihermore, due to
the discretization of the grid, the object must also be disete, which can lead to
numerical errors known as the staircase e ect. For the lattgproblem, MEEP o ers

(2.5)

3The Maxwell equations are scale-invariant. Therefore, all lengths can & expressed relative
to the vacuum wavelength . The images shown in gure 2.2 are valid for any object with the
same relative Rl and whose diameter is 20 times the wavelength of theght used.

2.2. Theoretical description 7



Figure 2.3, FDTD simulation: scattering at an asymmetric object. The

phase(a) and intensity (b) images of a two-dimensional nite-di erence time-domain

(FDTD) simulation illustrate the scattering of a plane wave at an arti cial cell phantom,

which is outlined in white in the intensity image: The cell phantom consists of cytoplasm
(Neytoplasm = 1:365), nucleus Qnycieus = 1:360), and nucleolus Qnycleous = 1:387) and
is embedded in a homogeneous mediumfeqium = 1:333). These values are identical
to those used in [Mal+15b]. A close look at the boundaries of the simulaton (0:5 )

reveals artifacts generated by the perfectly matched layers (seeekt). The displayed

eld is the last frame of a simulation with 15000 steps using the softwareMEEP. The

line source is positioned 1 away from the left side of the simulation volume and one
vacuum wavelength is sampled with 13 grid cells, which correspondsota sampling of
9.4 pixels per wavelength fornnycieous-

subpixel-averaging, which smoothens the boundaries of agn curvilinear interface
[Far+06]. The problem of numerical dispersion can be minireéd by choosing
a small sampling distance. The MEEP documentation recommes a sampling
distance of 8 pixels per wavelength in the highest dieleatfi For comparison, the
simulation in gure 2.3 was performed with a sampling distace of 9.4 pixels per
wavelength in the highest dielectric, the nucleolus. The dwback of the FDTD

method compared to Mie theory is that it is computationally @manding: The size
of the simulation volume is limited by the physically availale memory and the
computation time scales with the size as wéll It must be kept in mind that even if

the parameters of an FDTD simulation are chosen carefully, Encing computation

size, time, and accuracy, numerical errors cannot be avodleompletely.

4http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial#Fields_in_a_waveguide ,
accessed Jan 22nd 2016.

SA single MEEP simulation with a simulation size of 390 260 260 voxels and a total
number of 15000 time steps requires about 12 GB of memory and 4-6 h of computati time on
an Intel Core i7-3820 CPU @ 30 GHz.
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2.3 Approximative description

All tomographic reconstruction algorithms are based on assytions concerning
the forward, light scattering process. For instance, tomagphic reconstruction
algorithms in CT are based on the Radon transform [Rad17; KaK1], which as-
sumes that light travels along straight lines through the iraged object. While
this is a good assumption for imaging human tissue with x-ray it inaccurately
describes the propagation of visible light through cells. Athe wavelength ap-
proaches the size of the imaged object, di raction becomesone relevant and the
description of the scattering process must involve the waveature of light. The
methods discussed so far, Mie theory and the FDTD method, acately describe
light propagation with the Maxwell equations (eqns. 2.2), bt are not an appropri-
ate starting point for tomographic reconstruction, becauesthey are computation-
ally too expensive. This raises the question, whether theexist approximative
descriptions of light propagation that yield a good balancbetween accuracy and
computational cost and are thus applicable are applicabl® tobjects such as single
cells.

In certain cases, there are approximations that accuratelyescribe the interac-
tion of light and matter. For instance, if the object is much maller than the used
wavelength, then the Rayleigh approximation applies, whicexplains why the sky
is blue. If on the other hand, the object is much larger than th used wavelength,
then geometric optics applies, which accurately describesection and transmis-
sion at the boundary between two media. Neither of the two appkimations is
applicable for light propagation through cells, because ¢hcell size and the imag-
ing wavelength are at most two orders of magnitude apart. As asult, di raction
takes place and the wave nature of light must be taken into acant.

2.3.1 The Helmholtz equation
To simplify the description of light propagation through sngle cells, the time-
dependent electromagnetic eldD(r;t), H(r;t)) is commonly replaced by a time-
independent scalar eld ((r)), assuming that the observed system is stationary
and that the coupling between the vectorial eld componentss negligible.
According to the Maxwell equations (egns. 2.2), light propagion in a homo-

geneous medium follows the wave equation, which is valid footh the electric
displacement eld D and the magnetizing eldH:

@ . Q ° 2 1Y —

@%D(r,t) ~ r <D(r;t)=0 (2.6)

Note that the speed of the propagating wavey,=n,, is dependent on the (real-
valued) RI of the mediumng,. In a homogeneous medium, the direction in which
the eld oscillates can be arbitrary and thus, its vectorialnature can be omitted.
The vector eld D(r;t) my be replaced by a scalar eld (r;t):

2
@g;(r;t) % r2(rt)=0 2.7)

2.3. Approximative description 9



Furthermore, the time dependence of the wave equation can heglected, because
the scattering problem is stationary. Using separation of veables, the homoge-
neous Helmholtz equation can be derived [CT+92]

r 2+ km? Ug(r)=0 (2.8)

, 2n
with the wavenumber k, = m

: (2.9)

The homogeneous Helmholtz equation is a second order ordindr erential equa-
tion that has plane wave solutions of the form

Uo(r) = apexp(kmSo I); (2.10)

where s is the normal unit vector and a, is the amplitude of the plane wave.
Note that the scalar representation of the electromagnetic eld is only correct
in a homogeneous medium. In an inhomogeneous medium, thedhrvectorial
eld components couple at gradients in the RI. However, thisaupling, which
amounts to only about 2-10%, is commonly disregarded for studying the RI of
cells. This negligence of the coupling between the vectdrigld components is
an important approximation towards a simpler description blight propagation in
inhomogeneous media.

To describe an inhomogeneous medium with the Helmholtz equat, an inho-
mogeneityf (r) is introduced that is de ned by an RI distribution n(r) di erent
from that of the surrounding mediumn,,,

r 2+ kp? u(r)= f(u(r); . " (2.11)
2

with £ (r) = kn? ? 1 (2.12)

andn(r) = np, + ,(r): (2.13)

In the next two sections, equation 2.11, the inhomogeneouglfhholtz equation, is
used as a starting point for deriving both the Born and the Ryav approximation
for light propagation through inhomogeneous objects. Thedn approximation
makes the assumption that the scattered eld is small, wheas the Rytov approx-
imation assumes that the RI within the scattering object has small gradient.

2.3.2 The Born approximation

In scattering theory as well as in quantum mechanics, the Borapproximation

is a well-known approach to approximate the interaction of avave or particle

with the scattering potential f (r). The Born approximation requires a Green's

6For a sphere embedded in watertf,, = 1:333) with a diameter of 12 and an RI of 1.339, the
amplitude of the perpendicular eld components have a maximum at about2 % of the original
amplitude of the polarized light. Increasing the RI of the sphere to 1360 results in a maximum
at about 10%. These estimates were made based on data generated by GMM-HLE (data not
shown) [Rin08].
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function G(r), a solution to the inhomogeneous problem, which in the casé the
inhomogeneous Helmholtz equation is [Mor+53]

r’+kn? Gr %= (r r9 (2.14a)
Grr 9= ex'z('kj”;” rqr(]): (2.14b)

The scattered waveu(r) can then be described as a convolution of the product
u(r)f (r) with the Green's function G(r). With the assumption that u(r) is a sum
of an incident plane waveuy(r) and a scattered components(r)

u(r) = uo(r) + us(r); (2.15)
the Lippmann-Schwinger equation can be derived [CT+92]
z
u(r) = uo(r)+ dr°cG(r r9f(rYu(ry: (2.16)

In the Lippmann-Schwinger equation, the eldu(r) does not only appear on the
left side, but also inug(r), the integral on the right side of equation 2.16. The
approach of the Born approximation is to make an approximatin for u(r). It is
assumed that the plane wavely(r) is large compared to the integral on the right
side (\us(r)  uo(r)"). Therefore, in the rst ’ Born approximation ug(r), u(r) in
the integral is replaced with the incident waveu(r).

u(r) ~" uo(r)+ us(r) 2.17)
r 2+ kn? ug(r) = Zf(r)uB(r); (2.18)
ug(r)= &G rYf (Y ue(r® (2.19)

What are the conditions of validity for the Born approximation? It is di cult
to interpret the relation \ ug(r) uo(r)", becauseu(r) and ug(r) are complex
elds and the \  "-sign is not de ned for complex numbers. However, it is known
that cells mostly have a real-valued Rl and are thus phaseifting-only objects.
Therefore, the above relation can be replaced by a comparsto the absolute
phase change that a cell introduces. In a simpli ed model, th phase change
is described by the relative optical thickness dgp,

2 2
= dopt = —deei(Ncel Nm); (2.20)

for a cell with an average Rin. and a diameterd.,. The phase of a complex
number may range from 0 to 2. Thus, if the scattered eld us(r) is to be much

"Higher order Born approximations are possible, which iteratively rephceu(r) in the integral
with the right side of the equation. These however, are not consideiin this work.
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Figure 2.4, Born approximation: scattering at an asymmetric object. The g-

ure shows the electric eld computed with the Born approximation for the same phantom
that was used with the nite-di erence time-domain method (g. 2.3) . The color scale
for the phase (a) and intensity (b) images are identical to those used ingure 2.3. The

strong deviation from the expected result shows that the Born approxmation is not

suited to describe light propagation through cells.

smaller than the incident waveuy(r), then the total phase change introduced by
us(r) must be much smaller than 2.

2 (2.21)
deel(Neen Nm) = dopt (2.22)

Therefore, for dielectric objects, the Born approximations only valid if the rela-
tive optical thickness of the sample d,p: is much smaller than the imaging wave-
length . This is a strong restriction that is certainly not valid for cells, because the
phase retardation introduced by cells often reaches valuabove (see g. 2.1Db).
An attempt to simulate a scattering process with the Born appximation is vi-
sualized in gure 2.4. The Born approximation fails to reprduce the behavior of
the FDTD method observed in gure 2.3. Therefore, the Born apximation is
not suited to simulate light propagation through cell-likeobjects.

2.3.3 The Rytov approximation

The Born approximation is not suitable for single-cell tomgraphy, because the
optical thickness of cells is too large. The Rytov approxintin takes a di erent
approach, which results in other restrictions and makes ifgolicable to single cells.
The approach is to transform the scattered wava(r) and the incident waveug(r)
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into exponentials with a complex phasé

u(r) = exp(" (r)) (2.23a)
Uo(r) = exp(" o(r)) (2.23b)
(r)="o(r)+ " 4(r): (2.23c)

The imaginary part of the complex phase is the physical phas# the wave |,
whereas the real part of the complex phase is the logarithm tife amplitude a.

"(r)=1(r)+InCa(r)) (2.24a)
to(r) =1 ofr) +In(ao(r)) (2.24b)

To derive the Rytov approximation, these complex phases asebstituted in the
Helmholtz equation (eqgns. 2.8, 2.11). Subsequent derivai® which are described
in detail in appendix A.1, lead to an expression for the comgk phase' (r) that
is surprisingly similar to the inhomogeneous Helmholtz eqtian.

(r 2+ Km?)uo(r) WQ; = uo(r)E(r ' S(r){)22+ f(r); (2.25)

Rytov | Rytov

r() f(r)

The Rytov approximation replaces the complex phasey(r) with the Rytov phase
" r(r), which corresponds to a scattered eld component of

Us(r) ur(r)=u(r) uo(r)

exp(’ r(r)+ " o(r)) exp( o(r))
Uo(r)[exp( r(r) 1)I: (2.26)

The similarity of the inhomogeneous Helmholtz equation in # Born approxima-
tion (eqg. 2.18) and equation 2.25 suggests the connection

" r(Muo(r) = ug(r) (2.27)

and, together with equation 2.26, reveals that the Rytov appximation can be
expressed in terms of the Born approximation [Kak+01; Wolg9

ur(r)
Uo(r)

This simplé® translation from Born to Rytov approximation is an extremey im-
portant relation. It allows to reuse the much simpler desqgpition of the Born
approximation, a convolution with the Green's function, fo the Rytov approxi-
mation. Thereby, both the simulation of light propagation ad the tomographic

ug(r) = uo(r)In +1 (2.28)

8In practice, this transform requires a phase-unwrapping step [Ck+98] for the imaginary
part of the complex Rytov phase. However, with the powerful phase-owrapping algorithms
available today (e.g. [Her+02]), this is not an issue.

2.3. Approximative description 13



Figure 2.5, Rytov approximation: scattering at an asymmetric object. In
contrast to the Born approximation ( g. 2.4), the Rytov approximation agree s well with
the expected eld computed using the nite-di erence time-d omain method (g. 2.3).
Thus, the Rytov approximation is suitable to describe light propagation through cells.

reconstruction using the Born approximation can be extendeto support the Ry-
tov approximation by adding a single computational step.

What are the conditions of validity for the Rytov approximation? As estimated
in appendix A.1, the Rytov approximation is valid for a charateristic distance
d. > of the sample below which light propagation can be approxined to follow
a straight line if [Mul+15d]

2Npjn(r)  Nmj |
dc .

jr n(r)j (2.29)
This criterion of validity is di erent than that for the Born approximation, be-
cause it does not restrict the absolute optical thickness tthie sample. Instead, it
restricts the gradient of the RIr n(r). For the Rytov approximation to be valid,
the gradient of the RI must be small compared to the relativeicerence between
the RIs of the cell and the medium ey Nm). The Rytov approximation breaks
down when there are large jumps in the RI. A scattering proceswith the Rytov
approximation is illustrated in gure 2.5 for the same cell pantom that was used
for the FDTD method ( g. 2.3) and for the Born approximation ( g. 2.4). A quali-
tative comparison of gure 2.5 with gure 2.3 shows that the Ritov approximation
is well-suited for the description of light propagation though cells.

2.4 Conclusion

The data presented in this chapter suggest, that the Rytov ggoximation is well-
suited to describe light propagation through transparentcell-sized objects, be-
cause it is valid for a large range of Rl values and because @ncbe described as a
linear process, which makes it much faster compared to therigs computation of
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Figure 2.6, Comparison of scattering methods. The plots show the phase of the
eld, measured one vacuum wavelength (1) behind a cylinder that has a radius of 10 ,

a refractive index (RI) of 1.360, and that is embedded in a medium with anRI of 1.333
(see g. 2.2). A list of the software used to generate these data is givemiappendix B.2.

For each computation, one vacuum wavelength was sampled with 13 pixels. fe size
of the simulation volume for the Born and Rytov approximation was 30 by 30 . The

nite-di erence time-domain (FDTD) simulation was conducted in a simulation volume

of the size 30 laterally by 34 axially and ran for 22 100 time steps. The plotted data
is discussed in the text.

Mie theory or the numerical FDTD method. To compare the discised light prop-
agation methods, | applied them to the same problem: scatieg at a dielectric
cylinder. Figure 2.6 shows a comparison of the scattered plas Several observa-
tions are important to understand the drawbacks and advanges of the di erent
methods. First, the FDTD method slightly deviates from the exat solution (Mie
theory) by an o set close to the center of the optical axis, bucorrectly reproduces
the shape of the wavefront. Second, the phase pro le compdtérom the optical
thickness of the cylinder (Radon transform) approximatelynatches the expected
phase, but breaks down at the boundaries of the cylinder. Titd, the Born approx-
imation fails to describe the scattering process. Fourthhe Rytov approximation
yields quite accurate results that match the expected shapaf the wave front.
There are only minor deviations close to the boundary of theytnder. The Rytov
approximation is faster than the Mie solution or the FDTD metlod and thus, it is
the candidate of choice for inverse scattering algorithma di raction tomography
for cells.
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3. Tomographyn silico

The traditional approach to inverse scattering is to connéche recorded far eld
intensity to the Fourier transform of the imaged object. Ths kind of inverse
scattering problem typically employs the Fraunhofer appramation and works
well for 2D apertures [Goo05]. Based on this Fourier transfa approach, in 1913
Bragg introduced x-ray di raction tomography to determine the 3D structure of
crystals [Bral3], which became a common technique to studjé& structure of
crystallized proteins [AN+11]. However, this di raction-tomographic approach
with the far eld is not suited for the investigation of cells because cells are
unordered structures. The theoretical foundation for di laction tomography of
cells was laid out by Wolf in 1969 [Wol69]. For di raction tonmography of weakly
scattering semi-transparent objects, he proposed an inger scattering algorithm
that requires the complex-valued near eld recordings.

Single-cell di raction tomography is an imaging techniquehat obtains a 3D rep-
resentation of the cell from multiple 2D near eld recording. Figure 3.1 illustrates
the image acquisition process in di raction tomography. Anrncident plane wave
uo(r) is scattered by a scattering object with an RI distributionn(r). Because
of the di erence in the RIs of the objectn(r) and the surrounding mediumn,,,
di raction occurs and the wave front of the outgoing waveu(r) is deformed. The
detector records the near eld of the outgoing wave for mulple rotational po-
sitions of the cell. Altogether, these recorded elds are camonly referred to
as a sinogram and resemble the initial data for the tomograpghreconstruction
process. This chapter introduces di raction tomography att showcases how the
reconstruction algorithm performs for arti cially generded sinograms.

Figure 3.1, Tomographic data acquisition. An incident plane wave ug(r) is scat-
tered by a transparent object with the refractive index distribution n(r). A detector
collects the scattered waveu(r). Multi-angular acquisition is facilitated by rotation of
the sample. This gure was previously published in [Mdl+15d].
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3.1 The inverse problem

Tomographic image reconstruction is an inverse problem: ehtask is to nd the
RI distribution n(r) that leads to the observed projection data recorded at the
detector. In order to achieve a proper reconstruction, a dable model for the
forward scattering process is required. This section intduces two reconstruction
methods: one method is based on the Radon transform and thehet method
is based on the Rytov approximation. As indicated by the prewus chapter, the
Rytov approximation yields better results than the Radon tansform in di raction
tomography for single cells.

3.1.1 Reconstruction without considering di raction

Reconstruction techniques that are based on the Radon trdiosm assume that
light propagates along straight lines through the cell andhus do not take into ac-
count di raction. Such techniques assume that the measurgehase is only de ned
by the optical thickness of the cell, which is the integral ats RI distribution along
a straight line. This section introduces the fundamentals dbmographic imaging,
mediating an understanding that is crucial for understanaig the more complex
reconstruction algorithms encountered in di raction toma@raphy.

The Radon transform describes a forward scattering processt is equivalent to
projecting a rotating (rotation angle ) 2D object onto a detection line. Here, the
word projection means that the value of one point on the detection line is corafed
from a line integral through the object [Rad17]. The 3D Radotransform can be

X Yo=Ys
X A

° Ay,
Yb

%

~\% D

- >

z

Ys t
(a) 3D sketch (b) 2D projection integral
Figure 3.2, 3D Radon transform. a) Working principle of the three-dimensional

(3D) Radon transform of a 3D object with the rotational axis y and the rotational
angle (. Light propagation takes place along the axis perpendicular to thexp-yp-
plane. For each slice of the object atys (light blue), a two-dimensional (2D) Radon
transform is performed. b) The 2D Radon transform at ys is computed by rotation of
the object (white) through ¢ (red coordinate system) and integration alongt (green
line) perpendicular to the detector line xp. This gure was previously published in
[Mual+15d].
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replaced by multiple 2D Radon transforms of slices from a 30bgect. Here, the
3D object has a scattering potentiaf (r) and is rotating about the y-axis. The
rotational position of the object is de ned by the angle . Then, for each slice
of the samplef (r)j,-, atys, the projection p ,(rp) = p ,(Xp;Ys) Of this slice
onto a detector plane Kp;Ys) is described by the Radon transform operatoR |

(gure 3.2).

P o(Xp;Ys) = B of F(r)iy=y.9(%o)
dtf (x(t); ys z(t))

Z
= dtf (xpcos o tsin g, Y5, Xp Sin o+ tCOS ) (3.1)
r2, = x>+ z% = x3 + t? (3.2)
Xp = XCOS g+ zSin o (3.3)
t= Xxsin g+ zcos o (3.4)

In the discrete case, where the detector is composed of a 2 gf pixels, the line
integral becomes a volume integral over a volume element biet sizepixel area
line length

The inversion of the Radon transform, the computation of th@bject f (r) from
the projectionsp ,, is based on the Fourier slice theorem (see appendix A.2)

b, (kox; 0) = pi:fbo(km): (3.5)

The Fourier slice theorem states that the Fourier transforn#® , of a projectionp ,,
measured at the angle o, is equal to the data that are distributed along a rotated
line in the Fourier transform © of the objectf, as shown in gure 3.3. This theo-
rem is important, because it leads to two reconstruction téniques: interpolation
in Fourier space and backprojection. Interpolation in Fouer space solves the re-
construction problem by interpolating all of the recorded ad Fourier-transformed
projectionslb in Fourier space on a regular grid and then performing an inkge
Fourier transform to obtain the objectf (r). For large data sets (large number of
projections N, high resolution) and the corresponding large interpolatin grids,
the interpolation becomes very time-consuming and slowswlo the reconstruction
process. In contrast, the backprojection method is not a @ed by this expensive
interpolation task. The backprojection algorithm perforns the reconstruction in
real space, not in Fourier space and each of ti&, projections is backprojected
onto the reconstruction volume separately (see appendix A.3

Xa

1 L
f(x2)= p? oD | FFT 10 jKoxj FFT1ofp ; (Xp)g (3.6)
i=1
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Figure 3.3, Fourier slice theorem. The theorem states that the Fourier transform B
of a projection p from an object f is equal to the Fourier transform P of the object on
a line through the origin that is tilted by the angle .

Here, o= =N, is the angular distance between the rotational positions d¢iie
projections, j = j o are the angles at which the projections where imaged
(J =1;2:::;Na), D is the rotation operator, and FFT;p and FFT,3 are the
one-dimensional forward and inverse fast Fourier transfmis. Equation 3.6 reveals
a recipe for implementing the backprojection algorithm infiree steps:

1. Each projection is multiplied with a ramp function jkpyj in Fourier space.
This ltering step can be done e ciently with the fast Fourier transform.

2. The ltered projection is backprojected (smeared) ontohe image volume
according to its acquisition angle .

3. The sum of all backprojections constitutes the reconstcted image.

Figure 3.4 shows the reconstruction of an arti cial test targt, a 2D cell phantom,
with the backprojection algorithm. The sinogram data were gnerated with the
FDTD method (see section 2.2.2), which is based on the Maxweljuations. As a
result, the reconstruction, which is based on the Radon trafiorm, exhibits blurring
artifacts.
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Figure 3.4, Backprojection of an FDTD sinogram. a) The two-dimensional cell
phantom is identical to that used in gures 2.3, 2.4, and 2.5.b) The sinogram consists
of 200 projections for a full 360 degree rotation. Each nite-di erence time-domain
(FDTD) simulation ran for 15000 time steps and had a resolution of 13 px/ . ¢) The

reconstruction with the backprojection algorithm is blurry, which is most easily seen in
the blurred shape of the nucleolus (red dot). The reconstruction wagperformed with

radontea [Mul13b].

3.1.2 Reconstruction with di raction

To take into account diraction and to improve the reconstruwction quality, the

Rytov approximation is commonly applied in di raction tomography of single cells
[Su+13; Kos+15; Kim+13; Sun+09]. As discussed in section 23 the Rytov

approximation and the Born approximation are linked by a simle computational
step

ur(r)
Uo(r)

ug(r) = ug(r)In +1 (2.28)
Therefore, the tomographic reconstruction techniques deed using the Born ap-
proximation are also valid for the Rytov approximation.

The scattering process described by the Born approximatidn section 2.3.2 is
more complicated than the Radon transform and thus, the reostruction process
is more elaborate than the backprojection algorithm discged in the previous
section. Nevertheless, it is possible to derive a relation taeen the scattered
eld in the Born approximation ug(r) and the Fourier transform of the image
object B(k) that is similar to the Fourier slice theorem (see eq. 3.5). nl 2D,
the Fourier di raction theorem, illustrated in gure 3.5, states that the Fourier
transform @B(k) of the scattered eld ug(r) is distributed along circular arcs in
Fourier space [Wol69].
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Figure 3.5, Fourier di raction theorem in 2D. The theorem states that the Fourier
transform O of a scattered eld from an objectf in the Born approximation ug is equal
to the Fourier transform B of the object on a semicircular arc through the origin.

r_.
Blkn(s  S0)) = E%M@B; (ko) exp( kM p) (3.7)

Here, ki, is the wave number of the light,ay is the amplitude of the incident
plane wave,sq is the direction of propagation of the incident plane wavelp is
the distance between detector and center of rotation, anMl is the constrained
z-component of the vectors, which forces the data onto the semi-circular arc with
a radius ofk,,. The subscript o denotes the angle of rotation that is de ned bys,.
A thorough derivation of equation 3.7 is given in appendix A.4As for the Fourier
slice theorem, a reconstruction algorithm for the Fourier idaction theorem can
be derived (see ap. A.5), which is called bagkopagation algorithm

(
ik, X
f(x;2)= pP= oD |
2
FFT,3 jkoyj €<t Dz, ol FET,, us; , (Xo) (3.8)
Uo(Ip)

In comparison to the backprojection algorithm (eq. 3.6), tB backpropagation al-
gorithm has a lIter with an additional exponential term that is dependent on the
backpropagation distancez ;. Thus, the 1D inverse Fourier transform FFT; is
applied to a 2D array, which is computationally more expengt compared to the
backprojection algorithm where this array is 1D only. Equabn 3.8 describes the
backpropagation algorithm for the Born approximation. To gply the Rytov ap-
proximation, equation 2.28 is used to substitute the; ; (xp) data. A comparison
between backprojection and backpropagation in 2D is showm igure 3.6. The line
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pro les through the reconstructed cell phantom for backprgection and backprop-

agation seem to indicate a similar reconstruction qualityvhich was also observed
by Wedberg et al. [Wed+95]. However, the reconstruction withthe backprojec-

tion algorithm is more blurred, indicating that the Rytov approximation describes
the scattering problem better. Furthermore, the Born appreimation breaks down

(gure 3.6d), because the overall phase change is too higm summary, the data

show that di raction tomography with the Rytov approximati on yields better im-

age reconstruction than tomography based on the inverse Radtransform.

Figure 3.6, Backprojection versus backpropagation. a) 2D cell phantom
[Mul+15b]. b) Reconstruction with the backprojection algorithm (inverse Radon trans-
form). c) Backpropagation with the Rytov approximation. d) Line pro les through the
nucleolus (positions indicated in the other plots). The Born approximation breaks down
and fails to reconstruct the cell phantom quantitatively.
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3.2 Backpropagation in 3D

In 3D, the theoretical description of di raction tomography is similar to the 2D

case [Mul+15d]. The Fourier diraction theorem in 3D states that the Fourier

transform of the detector image@B(ka; Kpy) is projected onto a semi-spherical
surface as illustrated in gure 3.7. This result is analogaito the theorem in 2D, in

which the data are distributed on circular arcs (see g. 3.7)The backpropagation

algorithm in 3D then becomes

(
ik, R*
f(xy;2)= P> oD |
j=1
( ) :
. Ug: . (Xp;
FFT2|§ jkaj elkm(M 1)[2]. ID] FFTZD B; j D YD (39)
Uo(lp)

The only di erence to equation 3.8 is that the dimensionalif of the problem in-
creases by one. Note that the Iter in Fourier spacgkpyj remains one-dimensional.
It is always perpendicular to the rotational axis. A compagon of the backpropa-
gation algorithm with a focus on the dimensionality of the poblem is given in ap-
pendix A.5.2. As part of this work, | implemented the backpropgation algorithm
for di raction tomography with the Rytov approximation (see appendix B.5).

In order to test the implementation, | generated arti cial scattering data using
FDTD simulations with a 3D cell phantom. The result of such a shulation series
is shown in gure 3.8. For each of the rotational positions ahe cell phantom, one
simulation is performed that contributes with one detectoimage to the resulting
sinogram. In the intensity images of the sinogram, the di ration spot generated
by the nucleolus is clearly visible. Constructive and desictive interference make
it appear black or white depending on its position relatived the image plane. In
the phase images, the nucleolus generates a visible tracenofeased phase retarda-
tion. The arti cial sinogram corresponds to aligned raw dad from a tomographic
experiment and is the starting point for backpropagation.

rotation

Figure 3.7, Fourier diraction theorem in 3D. The data @B; o(Kp) (green) are
projected onto a semi-sphere in Fourier space according tim? = k3, + k3, + k3,. The
radius of the sphere isky,. The surface of the sphere is oriented along the direction of
propagation sg of the incident plane waveug(r). This gure was previously published in
[Mual+15d].
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Figure 3.8, 3D sinogram from FDTD simulations. a) Cross sections of the cell
phantom at the center. b) Cross section through the nucleolus atz = 2 . The white
lines indicate the slice positions of the sinograms in e,f,h, and ic) 3D representation
of the cell phantom. d-f) Slices through the sinogram: (d) shows one intensity image
of the sinogram and (e,f) each show a slice through the sinogram parallel tohe ac-
guisition angle . g-i) Corresponding phase images of the sinogram. The sinogram
was recorded usingNa = 200 equidistant angles. Each nite-di erence time-domain
(FDTD) simulation ran for 15000 time steps with a resolution of 13 px= . To improve
the reconstruction quality, the entire sinogram was numerically autobcused (discussed
in section 3.3.2).
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Here, in contrast to the actual experiment (see sec. 4), theigmal RI distribu-
tion is known. To quantify the quality of the reconstruction | compared the RI
values with the original values of the cell phantom. For theamparison, | used two
di erent error norms, the root mean square (RMS) error and th total variation
(TV) error [Mul+15b]:

S =t 5

vl (nph(r) nrec(r))

o (n(n) 1)

v ND

ETV — vol -III;Vavg(nph(r) nzrec(r)) (311)
vol (nph(r) 1)

P
where |, is the sum over all pixels/voxels of the reconstruction volue, nyy, is
the RI of the cell phantom, n. is the RI of the reconstruction, and T\Zjvg is the
average TV norm inN dimensions N = 2;3)

Erms (3.10)

TV 2 (n(r)

avg

5 i@n(n)i+ j@n() (312)

S i@n()i + i@n(n)i + j@n(); - (3.13)

TV 2 (n(r)

The RMS error quanti es how the absolute values of the recotracted RI devi-
ate from the correct values. In contrast, the TV error quantes the di erence in
the gradient (@, @, and @) of the Rl and is thus suited to describe the blur-
ring in the reconstruction that is observed, for instance, ith the backprojection
algorithm (see gure 3.6b). Using these error norms, it is peile to quantita-
tively assess the reconstruction quality of the backprojgon algorithm (Radon)
and the backpropagation algorithm (Born, Rytov) in 2D and in3D. The result is
summarized in gure 3.9. For low RI di erences between the dephantom and
the medium, the Born and Rytov approximations achieve the sae reconstruction
quality that is better when compared to the Radon transform.t is worth noting
that the Born approximation has a lower TV error than the Radm transform in
all cases, which means that the Born approximation is bettesit reconstructing
boundaries. On the other hand, the Radon transform has a lowBMS error than
the Born approximation, which is not surprising given the peceding discussions
(e.g. gure 3.6). However, in both cases the Rytov approximain has the lowest
TV and RMS errors. In addition, the Rytov approximation is vdid for a large
range of RI values, including those commonly observed forllse which makes it
the preferable choice for ODT.
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Figure 3.9, Applicability of di raction tomography for single cells. For di er-
ent refractive indices (RIs) of the cell phantom, the reconstrucion quality of the inverse
Radon transform, the Born approximation, and the Rytov approximation are compared.
a) For each simulation (horizontal axis), the RI values of the cell phantom ircrease from
1.334 to 1.455 (cytoplasm), 1.435 (nucleus), and 1.543 (nucleolus) in a lineaaghion.
RI values that are similar to those of cells are highlighted in green [Cho42]. b) The
root mean square (RMS) error (eq. 3.10) in dependence of the RI values ifa). ¢) The
total variation (TV) error (eq. 3.11) in dependence of the RI values in (a). d,e,f) Cross
sections of the 3D RI reconstruction with the Rytov approximation. Th e three simula-
tions are labeled in (c). The RI values displayed in each colorbar rangerém medium
(lowest) to nucleus, cytoplasm, and nucleolus (highest). The diarater (largest extent
17 ) of the cell phantom and the total number of projections (Nao = 200) are unchanged
for all simulations. These data have been previously published inNl+15b].
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3.3 Reconstruction artifacts

In practice, the inversion process of di raction tomograpy is a icted with arti-
facts. This section addresses several issues that are intpot to consider for the
computational and experimental implementation of di racion tomography.

3.3.1 Amplitude data

The RI reconstruction presented in the previous section wa®mputed using both
amplitude and phase information of the scattered wavag(r). The phase infor-
mation, which quanti es the optical thickness of the sampleis critical for the
reconstruction of the RI. The amplitude information, whichis sometimes not ac-
cessible due to experimental restrictions, does not quatiytioptical thickness. This
raises the question of how the absence of the amplitude infieaition in uences the
reconstruction quality. Figure 3.10 shows a comparison bet@n a reconstruction
with and without the amplitude information for the 3D cell phantom discussed
above. The absolute RI value of the nucleolus387 is not correctly reproduced if
the amplitude information of the sinogram ( gures 3.8d-f) $ set to unity during
reconstruction. Furthermore, it is important to note that the use of incorrect am-
plitude data jug(r)j directly translates to a scaling of the scattering potentilf (r),
which a ects the reconstructed RIn(r) through equation 2.12. In practice, it is
thus very important to correctly normalize the amplitude image with background
data. Experimental implementations that do not allow the masurement of the
amplitude data, but only the phase data, lead to error-proneeconstructions in
di raction tomography.

Figure 3.10, Missing amplitude information distorts the reconstructi on.
a) The cross section shows the reconstruction without the amplitude nformation in
the sinogram (left) and a reference that was computed using the full amplex sinogram
displayed in gure 3.8 (right). b) The line plot through the nucleolus (black vertical line
on the left) shows that the reconstruction without the amplitude in formation does not
correctly reproduce the cell phantom.
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3.3.2 Numerical focusing

The backpropagation algorithm (eq. 3.8) has the parametdp, which is the dis-
tance from the center of rotation to the detector plane in a tmographic setup.
In practice, the detector plane is a conjugate image plane tbe plane de ned by
the focal position of the microscope. Thus, if the focal pd&n of a microscope
coincides with the center of rotation, thenlp = 0. In cases where the focal plane
and the rotational axis do not overlap, previous studies havshown that the re-
construction quality can be improved by numerically autofousing the recorded
sinogram prior to the reconstruction [Kos+14; Wu+14]. In adlition, even if the
correct focal position is known and used in combination witlthe Rytov approx-
imation, the reconstruction nevertheless becomes blurrgde g. 3.11). This can
be understood by noting that the backpropagation algorithms derived for the
Born approximation and the Rytov approximation is just inseted into the back-
propagation formula. Thus, for the Rytov approximation, a mmerical focusing
step exp( ikm(M  1)Ip) during backpropagation is di erent than a numerical
focusing stepprior to backpropagation [Wed+95].

To nd the focal position for numerical and experimental daa, | implemented a
numerical autofocusing algorithm that minimizes the gradint norm of the ampli-
tude image (see ap. B.4). Note that the determination of the tmus with the gradi-
ent norm might not be correct and therefore, should be cheakéor plausibility. In
summary, diraction tomography in combination with the Rytov approximation
should always involve a numerical autofocusing step priootbackpropagation.

Figure 3.11, Numerical refocusing is essential for diraction tomography.

a) The cross section shows the positive e ect of nhumerical focusingrjor to backpropa-
gation with the Rytov approximation. b) The line plots (black vertical line on the left)

show that if the focusing distancelp is used in the backpropagation algorithm with the
Rytov approximation, the reconstruction overshoots dramatically and cannot reproduce
RI boundaries correctly.

3.3. Reconstruction artifacts 29



3.3.3 Angular resolution

Angular resolution, which de nes the number of images a sincgm is composed of,
a ects the reconstruction quality. In a previous publicaton, we could show that the
RMS and TV errors reach a minimum that depends on the number g@irojections
that are used for a reconstruction [Mul+15b]. We showed thareconstruction
artifacts that are caused by insu cient angular resolutioncan be avoided when
the reconstruction is performed with at least 160 projectits for a cell with a
diameter of about 17. Lower angular resolution introduces noise, as shown in
gure 3.12.

Figure 3.12, Low angular resolution introduces noise. If the number of projec-

tions used for a reconstruction is low, the reconstruction will exlibit artifacts. a) In the

extreme case of only 36 projections, deformations become visible in ¢hcross section.
b) However, the line plot at the nucleolus shows that the absolute value ofhe RI can

be correctly reconstructed, depending on the region of the reconatiction.

3.3.4 Uneven angular sampling

The backpropagation algorithm shown in equation 3.8 assusi¢hat the acquired
projections are recorded from equidistant angles with an guolar spacing of .
If the angles are sampled unevenly but not considered durimgconstruction, then
artifacts appear. This is a well-known problem in tomograph imaging and can be
resolved by introducing weights that re ect the angular cograge of each projection
[Tam+81]

07! =11 (3.14)

Figure 3.13 illustrates the quality improvement when using gights in the back-
propagation process. Note that for full-view tomography, tb angular coverage
must be at least 180 degrees (half a rotation of the cell). le-view tomography,
projections from an angular range of more than 180 degree® amissing and thus,
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the reconstruction exhibits more severe artifacts than thee shown in gure 3.13.
Few-view artifacts can be addressed with regularization sl as total variation
minimization already proposed for computerized tomograghLaR+08].

Figure 3.13, Angular weighting improves the reconstruction quality. Each
reconstruction was performed using 90 projections. The reconstrdon shown on the
right in each image shows the reference reconstruction with even an¢ar sampling. a) If
the sinogram is composed of images that are taken at irregular angular positionshen
the reconstruction may contain serious artifacts (e.g. RI values belw that of water).
b) Angular weighting according to equation 3.14 prevents these artifacts.

3.3.5 Directional blurring

Tomographic reconstruction in di raction tomography with a rotation about a
xed axis is not able to fully reconstruct a 3D object. The Fouier slice theorem
and the Fourier diraction theorem in 2D allow to Il the Four ier space of the
imaged object homogeneously with a 360 degree rotation. Hawe in 3D this
is not the case if the sample is rotated about only one axis. tie semi-spherical
surface in gure 3.7 is rotated about thekpy -axis, then frequencies that are located
about the kpy -axis are not available in the reconstruction. This missingpple core
in Fourier space leads to directional blurring along thg-axis in the reconstruction
[Ver+09; Kou+09]. The e ect of this directional blurring is shown in gure 3.14.
In principle, this problem can be solved by rotating the samp about two di erent
axes and combining the two complementary reconstructions Fourier space.

Is it possible to obtain a full 3D coverage without two sepata rotations? Tech-
nically, this is possible. The backpropagation algorithmequires a one-dimensional
representation of all rotational positions. One possibtli is to rotate the sample
along a spiral from pole to pole. However, it is dicult to implement such a
sophisticated rotational control for single cells and thefore, it is unlikely to be
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applied in practice. However, investigating the theoretidadomain of modi ed re-
construction algorithms yields new insights. An example thadiscusses a tilted
axis of rotation is given in the next section. Neverthelessddressing the problem
of an arbitrarily rotating cell with a more general version bthe backpropagation
algorithm is beyond the scope of this theses and may be invgstted in future
studies.

Figure 3.14, Rotation about a single axis introduces directional blurring.

a) The chosen color map covers the full range of the reconstruction Rl value b) The
line plots indicated in (a) show a blurring e ect parallel to the rot ational axis compared to
perpendicular to the rotational axis. The reason for that are missing Fourer coe cients
along the rotational axis, the so-called missing apple core [Ver+09].

3.3.6 Tilted axis of rotation

In the experimental setup that | will discuss in the next chater, the imaged cell
does not always rotate about a xed axis. If the rotational ais is tilted in the image
plane (laterally), then a simple coordinate transform wilmake the data compatible
to the described backpropagation algorithm. However, if theotational axis is
tilted perpendicular to the image plane (axially), then a sacessful reconstruction
is not always guaranteed. For instance, if the rotational ag is axially tilted
by & = 90 with respect to the image plane, then the sinogram consists o
only one image of the cell that rotates in the detector planenal tomographic
reconstruction is impossible. The transition from good datquality ( 4 =0 ) to
purely impossible reconstruction (;; = 90 ) is continuous. The amount of data
in Fourier space is reduced from a sphere with a missing applere (see sec. 3.3.5)
to a single semi-spherical surface ag; approaches 9Q To allow a reconstruction
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for small tilt angles 4 , a di erent backpropagation algorithm is required

ik, X* . (
f(x;y;2) = p? ODnltj
Ug; ; (Xp;
FFT,0 jkou cos gij en Bl o] ppr,, U8 (X0io)
Uo(Ip)
(3.15)

The modi ed backpropagation algorithm in equation 3.15 carbe derived analo-
gous to the backpropagation algorithm in equation 3.9. Theotational angles for
backpropagation are not anymore distributed on the equatoof the unit sphere.
Instead, the angles are distributed on a circular path of catant latitude .y .
These new rotational positions are de ned by the rotation ogrator DtIIt . Fur-
thermore, the Iter in Fourier space now contains an additioal factor cos tilt -
For single-cell tomography, we could show that this modi edlgorithm noticeably
improves the quality of the reconstruction [Mal+15c].

Figure 3.15, A tilted axis of rotation requires a modied reconstruction
algorithm. a) The axial tilt of 0:2rad (115 ) is visualized in the sinogram of the
nite-di erence time-domain (FDTD) simulation with a black sine curve (compare to
gure 3.8f). b) The reconstruction with the algorithm that does not take into account
the tilt correction (eq. 3.9) causes blurring artifacts visible at the nucleolus (left inset).
The algorithm that does take into account the tilted axis of rotation (eq. 3.15) improves
the quality of the reconstruction (right inset).
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4. Single-cell tomography

The objective of optical di raction tomography (ODT) for single cells is to obtain
a quantitative Rl map in 3D with sub-cellular resolution. All ODT techniques
require a combination of quantitative phase-imaging and ste means to acquire
phase images from multiple angles. Quantitative phase-imgmg techniques orig-
inally evolved from phase contrast microscopy [Zer42a; Z&b]. Then in 1948,
Gabor introduced holographic imaging [Gab48], which, witlthe development of
digital camera sensors, allowed the development of digitablographic microscopy
(DHM). To acquire phase images from multiple angles, severakperimental ge-
ometries have been proposed. For instance, the illuminatidoeam in a microscope
with a high numerical aperture objective can be tilted up to 70, e ectively scan-
ning the cell [Cho+07; Isi+11; Sun+09]. A similar approachs synthetic aperture
tomography, which in addition allows to image suspended t&[Lue+08; Sun+14].
Both of these techniques are subject to few-view artifactfiecause the angular
coverage, limited by the illumination objective, does tymally not exceed 14Q
To address few-view artifacts, these reconstruction teclyues require regulariza-
tion methods that infer additional information during the reconstruction process
[Tam+81; LaR+08]. Another approach to this problem is to use naltiple imaging
wavelengths. According to the Fourier di raction theorem (ge sec. 3.1.2), multi-
ple illumination wavelengths improve the reconstruction gality, because multiple
semi-spherical surfaces with di erent radiik,, increase the coverage in Fourier
space [Hos+15]. Nevertheless, a full angular coverage canyomé achieved when
the detector or the sample is allowed to rotate by at least 180 For instance, a
full view coverage can be achieved by embedding the cell in a gel andatiotg
it relative to the microscope [Cha+06; Kuj+14; Kos+14; Kos+l5] or by rotat-
ing the microscope relative to the sample chamber [Lin+14]However, none of
these techniques permit tomographic imaging of suspendeells in a micro uidic
environment with a full angular coverage.

In principle, full angular coverage in a micro uidic enviramment is achievable
with optical methods, for instance by all-optical cell rotéion [Kre+08; Kre+14],
by holographic tweezers [Hab+15], or by opto uidic rotation[Kol+14]. In this
work, the opto uidic approach is used, because of its compatively simple setup.
Quantitative phase images are recorded with a commercialmara [Mou+06] (see
sec. 4.1). The HL60/S4 cells were prepared according to appenC. The proposed
setup comes with the issue of irregular rotation of the cellsvhich is addressed
computationally (see sec. 4.2). With the presented approacthe proposed setup
is suitable to quantify the 3D RI of a cell and to describe itsitracellular structure.
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4.1 Devices and assembly

The tomographic imaging setup is composed of an inverted nascope (Axiovert
200M, Zeiss, Oberkochen, Germany), a micro uidic channelith an optical trap
(sec. 4.1.1), and a quantitative phase-imaging camera (sdcl.2). The used objec-
tive is a Plan-Apochromat (40 /0.95 Corr M27, WDO.25, Zeiss). The arrangement
is outlined in gure 4.1. In this setup, the image plane and th object plane are
conjugate optical planes. In theory, this results in a distace between rotational
axis and detector plane olp = 0. In practice, the planes do not always match
and a numerical focusing step is required, as previously dissed in section 3.3.2.

Figure 4.1, Schematic: tomographic imaging setup. The setup is composed of
an inverted microscope, a dual-beam laser trap in a micro uidic chip,and a quanti-
tative phase-imaging camera. The left side shows a sketch of the optat beam path
(Kehler illumination) of a white-light source (Halogen lamp) within th e microscope.
The micro uidic chip is connected to a reservoir containing human nyelocytic leukemia
cells (HL60/S4). The right side shows a close-up of the micro uidic chip A single cell
is trapped by two counter-propagating laser beams and starts to rotate whe ow is
introduced.

4.1.1 Opto uidic cell rotator

The opto uidic cell rotator combines optical forces to trapand micro uidic forces
to rotate single cells. The cells are trapped in a dual-bearader trap, which is built
using two optical bers that are located on opposing sides afmicro uidic channel.
Laser light that is coupled into these bers results in two conter-propagating
laser beams that generate optical forces, moving the cell tbe center of the
channel (see g. 4.1). The optical trap used in this work is amptical stretcher
[Guc+05; Lin+07] operated at low laser powers and was builiof the mechanical
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Figure 4.2, Opto uidic cell rotation. The sketch on the left shows the geometry
of the opto uidic cell rotator perpendicular to the imaging axis (comp. ¢. 4.1). The
optical trap, indicated in red, is located a distance z away from the center of the
micro uidic channel. Thus, if ow is introduced into the channe |, the drag forcesFgag
(blue) at the top and at the bottom of the cell (gray) have di erent magnit udes. The
sum of the drag forces and the trapping forceFy,p results in a displacement x with
respect to the center of the trap and introduces a torque which causs the cell to rotate
(indicated in green) [Kol+14]. The intensity images on the right side showcase one
revolution of a human myelocytic leukemia cell (HL60/S4) within a time interval of two
minutes.

characterization of single cells by Chii Jou Chan and Andrew Flenyong (e.g.
[Cha+15]). To rotate cells, ow is introduced into the chanrel. The optical trap is
located in the lower half of the channel and thus, due to higheow speeds at the
center of the channel, the cell experiences a torque and s$tato rotate. Figure 4.2
describes the di erent forces that act on the cell and shows 360 rotation of an
HL60/S4 cell in the opto uidic cell rotator. Chii Jou Chan and | conducted the
presented measurements. The combination of optical trapm and micro uidics
for tomographic imaging was rst presented by Kolb et al., wh used a similar
device to perform single-cell uorescence tomography [Kl4]. The opto uidic
cell rotator, in combination with a commercial microscopdacilitates tomographic
imaging of single cells.

Even though opto uidic cell rotation is promising for singe-cell tomography;, it
is inaccurate in two ways. First, the optical trap is not compttely stable. The
micro uidic ow makes the cell move and rotate slightly in al directions. For
instance, comparing the intensity images in gure 4.2 befer(0 s) and after (122 s)
one revolution reveals a slight tilt. Second, the angle of tation for each image,
which depends on the ow speed and the frame rate of the cameia not known
during the measurement. These issues can be addressed withge pre-processing
and image analysis, which are discussed in section 4.2.
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4.1.2 Quantitative phase-imaging camera

To reconstruct the RI of single cells, ODT requires quantitive phase-imaging
techniques. Typically, quantitative phase-imaging is achved with interference-
based techniques such as DHM, which extract the phase from amterference
pattern generated by an object and a reference beam [Sch+15In this work
however, phase images are obtained with a commercially aghile phase-imaging
camera (SID4Bio, Phasics, Saint Aubin, France). The imagingrinciple of this
camera, quadriwave lateral-shearing interferometry [MatD6], is similar to that
of a Shack-Hartmann wavefront sensor [Cha05]: a di ractionrgting is put di-
rectly in front of a camera, generating a pattern of di racton spots on the camera
sensor (see inset in gure 4.3). The lateral position of eadti raction spot is
dependent on the tilt of the wavefront that hit the di ractio n grating at that par-
ticular point. Thus, each di raction spot contains information on the gradient of
the phase from which the full phase can be computed in a postegessing step.
Such a phase-imaging camera has advantages over DHM: reducechplexity, easy
combination with commercially available microscopes, higphase accuracy (
0:07 or 1:22 10 3rad), and no dependence on the light source (e.g. no coherent
light is required). The drawback of this particular cameras the limited frame

Figure 4.3, Quantitative phase-imaging. The left side shows a section of a raw
interferogram of a human myelocytic leukemia cell (HL60/S4), which is reorded with
the SID4Bio camera in the \Camera Acquisition Scheduling” mode. Themagni cation
of the interferogram shows the di raction spots from which the phase iscomputed (see
text). The right side shows the processed phase obtained with th@roprietary software
SID4Bio. The inset shows the corresponding intensity image, whiclis not automatically
background corrected (see text).

1Here, phase accuracy is de ned as the standard deviation of a background-aacted blank
phase image.
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rate ( 8fps). The resolution of the camera is 16001200 pixels, which translates
to an e ective resolution of 400 300 pixels, because an area of 44 pixels is
required to determine the displacement of each diractionpot that was gener-
ated by the grating. This results in a relatively large e ecive physical pixel size
of 296um. To address these issues, the manufacturer recently bréigorward a
phase-imaging camera with a higher frame rate (100 fps) and a higher e ective
resolution (853 720 pxf. Note that DHM also su ers from a reduced e ective
resolution, because of a low-pass lItering step in Fourielpace that is necessary
to separate the object wave from the central band. In summaryhe SID4Bio is
a convenient tool that is suitable for the quantitative phas-imaging of biological
cells [Bon+09; Akn+15].

The sinogram acquisition process using the SID4Bio phaseaging camera is
divided into three steps. First, the raw images are recordedsing the \Camera
Acquisition Scheduling” functionality of the proprietary oftware SID4Bio (version
2.2.0.45) that is shipped with the camera. Second, in a postqeessing step, the
raw data images are converted to phase and intensity data withe same software.
This post-processing step is computationally demanding drtherefore cannot be
done live during imaging. To obtain accurate phase data, theoftware allows to
perform a background correction with a reference image reded prior to the ac-
tual image acquisition. However, the intensity data are nobackground corrected
with that reference image. Therefore, in a third step, an adtional background
image must be recorded prior to and/or after acquiring the ma sinogram data.
This step is crucial, because the background-corrected émtsity information is im-
portant for di raction tomography (see sec. 3.3.1). The imge analysis, including
the background correction, of the obtained phase and inteibsdata are discussed
in the next section.

2personal communication with Arnaud Rehel, Phasics S.A., France
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4.2 Image pre-processing

The phase and intensity images from the SID4Bio camera reqeiseveral pre-
processing steps before the actual RI reconstruction witthé backpropagation
algorithm. The data need to be background-corrected and fosed, the lateral
position of the cell in each image must be determined, and thmetational angle of
the cell in each frame must be identi ed. | addressed thesesises with self-written
Python scripts that are summarized in appendix B.

4.2.1 Local eld corrections

In an initial step, the region of interest that contains the ell must be found
(see ap. B.3). To retrieve the complex scattered eld of theell, several correc-
tion steps need to be performed. The most important step is ¢hbackground
correction of phase and intensity data. The background-carction of the phase
data ( rp) have three contributions. The reference phase datat (rp), a linear
ramp correction ga" (rp) to correct for a tilt of the incident wave [Sch+15], and
a histogram-based background correctioni&'. The histogram-based correction
uses the mod&of the phase data that are outside of the region occupied byslcell
to force the average background phase to be approximatelyntered about = 0.
The intensity data | (rp) are background-corrected by normalizing to the reference
intensity data 1 & (rp). The amplitude data are then obtained by computing the
square root of the intensity data. In summary, the complex sttered waveus(rp)
is obtained using

S

| (I’ D ) i ref ramp hist
Us(rp) = m gl(ro) o) &" o) B (4.1)

In some cases, the focal plane during imaging does not codleciwith the rota-
tional axis. As previously discussed in section 3.3.2, thedkgpropagation algorithm
will be inaccurate unless a numerical focusing step (see &4) is performed prior
to the reconstruction. All individual elds of a sinogram arefocused to the same
distance by rst determining the optimal focusing positionfor each eld and then
focusing the entire sinogram to the average of the optimaldas positions. A sum-
mary of the eld corrections for exemplary data of an HL60/S4 e€ll is shown in
gure 4.4. The eld corrections remove image artifacts, wiuh is the basis for the
image analysis steps that are discussed in the following segs.

3the most common histogram value
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Figure 4.4, Background correction and autofocusing. The top row illustrates the
image processing steps for the phase data. The phase data recorded withe SID4Bio
camera are already background-corrected with the reference data. In adiibn, a linear
background phase ramp (bg-ramp) and the average background phase are subtract
(see text). The background phase is the mode (red line in the insehistogram plot) of
the phase data in the region that do not contain the cell. The linear ramp @rrection and
the histogram correction have no visible impact on the phase image. Thig an indicator
for a good background correction with the reference phase data. The autofusing step
(focus distance 945um) generates a phase image with a sharper cell boundary. Note
that the seemingly reduced size of the cell can be explained by thisharpening e ect.
The intensity data are background corrected by dividing by a backgoundimage. The
background-corrected data appear smoother. The numerically autofocwe intensity
data lose the black-and-white halo around the cell.
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4.2.2 Translational image alignment

The opto uidic cell rotator has a design aw: small perturbaions in the ow
pro le, caused for instance by an asymmetric cell, result iancontrolled movements
of the cell. Therefore, the trapped cell exhibits uncontrééd lateral motion and
may rotate arbitrarily during image acquisition. The laterl translational motion
can be addressed with image analysis, as discussed in thigtisa. The rotational
degrees of freedom are discussed in the next section.

My approach to correct for the lateral movement of the cell wolves tting
a circle to the background-corrected, but not numerically @tofocused intensity
images. These images exhibit a white halo around the cell whiis well-suited
for the Canny edge detection algorithm [Can86]. To determanthe center of the
cell, 1 applied a circle t to the detected edge, as shown in gre 4.5b. The
cell center of each intensity image in the sinogram is thus emined with sub-
pixel accuracy and the sinogram can be aligned to the cell ¢enusing spline
interpolation. As shown in gure 4.5c, the resulting alignedsinogram exhibits
less noise along the angular direction than the original dat The sinogram image
alignment with this tting-and-interpolation method is essential for the following
step, the determination of the rotational axis.

Figure 4.5, Translational sinogram alignment. a) The sinogram of a human mye-
locytic leukemia cell (HL60/S4) consists of 100 frames that cover an angular rage of
almost two revolutions (680 ). The cell has a region of high refractive index which, due
to destructive interference, generates a black di raction spot inthe image plane at the
detector. The spot does not change between black and white, becausedtdata are not
numerically focused to the center of the rotational axis. The cut at the center of the
sinogram shows the black diraction spot as it passes thex=0-plane of the intensity
sinogram. b) The center of the cell (red cross) is determined by tting a circle (red) to
the contour (blue) of the white halo in the intensity image. This procedure is performed
for every image of the sinogram.c) All sinogram images are aligned with respect to the
center of the cell using spline interpolation of the order three. The zoomed inset shows
a smoother boundary of the cell across the sinogram when compared to (a).
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4.2.3 Determination of the rotational axis

In addition to the translational movement of the cell in the @to uidic cell rotator,
the trapped cell does not always rotate about a stable axis. his phenomenon
seems to be a aw by desighand is di cult to address. However, it is possible
to record a full rotation of the cell about an axis that is nedy stable, but is
slightly tilted with respect to the image plane. As discusseahisection 3.3.6, | have
derived and implemented a modi ed version of the backpropagjon algorithm that
addresses such an axial tilt. Thus, the challenge here is tdetermination of the
rotational axis and the rotational position for each sinogtm image.

The determination of the rotational positions from the comfex-valued sinogram
is no trivial task. Due to the RI of the cell, the intensity images exhibit black and
white di raction patterns that, for a horizontal rotationa | axis, move up and/or
down at various speeds depending on the 3D structure of thellceln addition,
this indeterminacy is made more complicated by the fact thathe rotational axis
may be tilted as mentioned above. Kolb et al. [Kol+14] deterined the rotational
angles by analyzing sections of the sinogram from uores@nimages. However,
due to the tilted axis of rotation in the opto uidic cell rotator, this approach cannot
be applied here. | approached this problem by tracking a diaction spot in the
sinogram images. Figure 4.6 shows the numerically autofoedsimages of a cell
with a di raction spot that is generated by a high-refractive-index feature inside
the cell. | wrote the Python script determine _rotation _pt.py (see ap. B.5),
which detects the strongest signal, black or white, in the tensity images and

Figure 4.6, Determination of the rotational axis. The aligned and numerically
refocused intensity images of an human myelocytic leukemia celHL60/S4) are used to
determine the rotational position by tracking a di raction spot. a) The di raction spot
is black when it is located in a region of the cell that points away from te observer.
b) After passing the focal plane, the diraction spot becomes white and mees in the
opposite direction. ¢) An ellipse t (green) to the the tracked positions (black crosses)
allows to determine the rotational axis (green) of the cell. To rotational positions that
are used in the backpropagation algorithm are marked as blue circles.

4Such instabilities also appear in the supplementary videgbio 201300196 smmovie02.mp4
in [Kol+14].
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ts an ellipse to the obtained points. To ensure consistencyith the model of a
rotating sphere, the tis designed in such a way that the elfise is the projection
of a circle that is located on the surface of the unit sphere tina plane. The vector
from the origin to the center of the ellipse determines the diction of the laterally

projected rotational axis. The minor axis of the ellipse dermines the axial tilt

of the rotational axis. The axial tilt direction is determined by the shade of the
di raction spot. A bright spot indicates that the feature is located on the side
of the cell facing the observer. A dark spot indicates that #h feature is located
in the far side of the cell. In gure 4.6, the dark spots are onhte right and the

bright spots are on the left part of the ellipse. Therefore,hie cell is rotating

about an axis whose right end sticks out of the paper plane. €hdrawbacks of
this approach are that the rotational axis is not entirely sable, that the tracked

position of the diraction spot is imprecise, and that the spt is impossible to
track when it is located on the perimeter of the cell image. Térefore, the tracked
positions are projected onto the tted ellipse and sinogranimages that did not
allow tracking are assigned to evenly distributed angulargsitions. The resulting
nal rotational position of each sinogram image is projecté onto a 3D circle on
the unit sphere, as indicated by the blue circles in gure 4.6The position of the
rotational axis and the points on the unit sphere are importat parameters for
the backpropagation algorithm (eq 3.15). | tested and vered the entire pipeline
from phase acquisition to RI reconstruction with a tilted axs of rotation with in

silico (FDTD) sinograms. The application of the pipeline to experirental data

are shown in the next sections.
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4.3 Tomographic reconstruction

4.3.1 Reconstruction of a human myelocytic leukemia cell

The pre-processing steps discussed in the previous sedi@noduce all the data
required for the backpropagation step described by equatidB.15. The sinogram
data of an HL60/S4 cell are background-corrected (eq. 4.1)umerically focused
(Io = 0), and centered (see g. 4.7a). The rotational position okach sinogram
image ; as well as the axial tilt angle of the rotational axis ;: are obtained
by tracking a diraction spot in the intensity images of the rotating cell. The
wavelength used in the algorithm is set to = 550 nm, which is approximately
the average wavelength of the used halogen lamp. The resadut of the setup is
0:263um/px. To apply the Rytov approximation, the recorded sinogam data are
interpreted asugr which is transformed toug using equation 2.28. The resulting
reconstruction with the backpropagation algorithm is show in gure 4.7b,c. To
visualize the sub-cellular structure of the cell, gure 4@ shows iso-surfaces at
di erent RI values. | manually de ned a boundary of the cell @ an RI value
of 1.349, which is approximately the mean of the cytoplasm drthe surrounding
medium, as shown in gure 4.8. The volume de ned by this isousface is 120(um?3
(1:2pL), which corresponds to an e ective radius (assuming sphcity) of about
6:60um. The resulting average RI of the cell computes to 1.359. With refraction
increment of 0:2mLg ! [Bar52; Dav+52], these values imply a dry mass of
about 140 pg.

The 3D visualization of the HL60/S4 cell clearly shows a smategion of high
RI (red) that is responsible for the observed di raction spbin the image plane.
The region appears as a black and a white di raction spot in th intensity sino-
gram in gure 4.7a and as a region of high phase retardation the corresponding
phase sinogram. The RI of this small region is above 1.38, whiis shown in the
quantitative line plots in gure 4.8. Furthermore, the isosurfaces shown in the
cross-sectional image of gure 4.7c uncover regions withihé cell that appear to
have a lower RI than the average of the cell (black arrow).
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Figure 4.7, Refractive index reconstruction of an HL60/S4 cell. a) The cuts

through the center of the phase and intensity sinograms show that theres a tilted axis

of roation, highlighted by a dashed sine curve that follows the di raction spot (see also
g. 3.15). b) Cross-sectional images of the reconstructed human myelocytic leuk@a

cell (HL60/S4). c) The visualization in 3D shows the refractive index (RI) iso-surfaces

at 1.339 (violet), 1.357 (yellow), 1.363 (orange), and 1.380 (red). The orange iso-dace

is not shown in the right plot. In the cross-section of the right plot there are yellow
iso-surfaces visible at the inside of the cell, indicating that thecell contains regions with
low RI (black arrow). The red and blue dashed lines indicate the pogion of the line

plots shown in gure 4.8.
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4.3.2 Accuracy and resolution

It is not possible to verify the quantitative RI reconstrucion, because there is no
ground truth data of the imaged HL60/S4 cell. However, it is pasble to quantify
the e ect of the imaging noise and to compare the obtained arege RI values to
the result of other techniques.

With the radius obtained from the 3D reconstruction, | perfomed a 2D phase
analysis following Scharmann et al. [Sch+15] for all 56 sogram images and found
an average RI and a standard deviation of:2366 0:001. The di erence to the
average RI of the 3D reconstruction may have multiple causesFirst, the 2D
phase analysis does not take into account di raction and agsies that the cell is a
homogeneous sphere. In addition, | have observed in Mie siations that 2D phase
analysis over-estimates the average RI by about 0.002 to 03(data not shown).
However, the 3D reconstruction clearly shows that the cell ot homogeneous and
thus, the computation of the average RI from a weighted 2D plsa image is prone
to error. The 2D approach does not describe the scattering atcell as accurate as
the backpropagation algorithm does. Second, even thoughetbre-processing steps
give information about the tilted axis of rotation, the exat rotational positions are
not known and therefore, the 3D reconstruction may becomeusty. This blurring
leads to a washed-out boundary between the medium and the Icearti cially
lowering the 3D RI. Therefore, due to the unknown magnitudesf the di erent
contributions to deviations from the real value, it remainselusive which average

Figure 4.8, Line plots through the reconstruction of an HL60/S4 cell. The
position of the line plots through the reconstructed human myelocytc leukemia cell
(HL60/S4) are indicated as dashed lines with the same colors in gure 4.7. The mline
plot goes through the maximum of the refractive index (RI). The blue line plot follows
the z-axis through the center of the reconstrucion. The axial extent of the ell, which
is determined by the isosurface with a manually selected RI value 01.349, is indicated
by the blue dashed line (cell diameter). The RI of the surroundingmedium (PBS) is
Nm = 1:335.
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RI value best represents that of the imaged cell.

The phase accuracy of the phase-imaging camera dD (see sec. 4.1.2) can be
translated to a noise in the RI reconstruction by generatingmpty sinograms that
exhibit the same noise level and backpropagating them. Théasdard deviation
of the resulting noise in the Rl is less than 5 10 4, which is well below the noise
introduced by the low angular sampling. Thus, the phase acracy of the used
camera has no measurable e ect on the RI reconstruction.

The resolution of the presented setup could be improved bydreasing the mag-
ni cation of the setup and by moving to shorter illumination wavelengths. Fur-
thermore, for white-light illumination, | had to assume an aerage wavelength of

= 550 nm for the backpropagation algorithm. To improve acclacy, the spec-
trum could be reduced to a narrow band, allowing a better appximation of the
used wavelength. However, the largest contribution to the censtruction error is
probably the inaccurate determination of the rotational psition of the cell and
the subsequent backpropagation along directions that do nie ect the acquisition
direction. To address this problem, an approach more robughan the proposed
tracking algorithm is required.
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5. Conclusion and outlook

This thesis addressed the refractive index (RI) measurentsenof single cells in
suspension with optical di raction tomography (ODT). On the theoretical side, |
approached the problem by deriving the theory of ODT, implemnting the corre-
sponding reconstruction algorithm, and testing the algatfim using ground truth
data that | generated using the nite-di erence time-doman (FDTD) method.
In an experimental part, | could demonstrate ODT with an optauidic setup, as
previously described by Kolb et al. [Kol+14]. Myin silico studies con rmed that,
with surprising accuracy, the Rytov approximation is wellsuited for imaging bi-
ological cells [Sla+84; Kak+01; Mul+15b] and thereby, | faind strong evidence
against the notion that the Rytov approximation is equivalat to the inverse Radon
transform as proposed by Wedberg et al. [Wed+95]. Furthermme, my work con-
tributes to the advancement of ODT by introducing a novel médtod to deduce
the rotational motion of a cell from the recorded image dataral by providing the
necessary software to perform the subsequent tomographéconstruction.

My achievements are of general interest to the ODT communityFor instance,
prior to my work, an implementation of the 3D backpropagatia algorithm was
not publicly available. Furthermore, the additional information on data analysis
given in my thesis complements the ground work of Kak and Slap [Kak+01],
makes ODT readily-available and simple to use, and places @Dnto perspective
for single-cell imaging. As a result, my thesis contributesybgreatly reducing
expenditures for data analysis in upcoming ODT application

My work presents a technique that could potentially extend he toolbox of
marker-free methods for cancer diagnosis. For instance,his been shown that
the mechanical characterization of human breast epitheligells allows to tell the
di erence between normal and cancerous cells [Guc+05]. Tipdysical properties
(structure, refractive index, dry mass) that can be measudewith the presented
ODT setup might yield useful complementary data to improve ecuracy or to
determine new signatures for other cell types.

There are, nevertheless, also limitations to the presenteegchnique. In the
present work, | was not able to achieve identi cation of celbrganelles, because
the necessary ground truth data, the positions of cell orgafies, were not available.
However, expanding the presented setup with uorescence igiag will allow to
colocalize organelles, such as the nucleus, and enablertlehiaracterization using
RI, volume, or dry mass. With increasing knowledge, these Rigsatures could
then eventually be used to identify sub-cellular organekewithout the necessity
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of complementary uorescence imaging. A current limitatio of the presented
setup is the low spatial resolution. By increasing the mageation, enhancing

the resolution of the detector, or switching to shorter, naow-banded illumination
wavelengths, the reconstruction quality can be greatly immpved. However, the
largest limitation of the opto uidic setup in its current state is the inaccurate
determination of the rotational position of the trapped cdl Further research may
be advisable to improve tracking of the cell across the sin@gn. One solution
could involve an intermediate regularization step using # forward process with
the Rytov approximation. In this approach, each sinogram mjection is compared
to a corresponding projection that is computed from the 3D w®nstruction. |

believe that an iterative search algorithm could then nd the exact angular position
for each projection, e ectively improving the reconstrudbn quality step-by-step.
However, this kind of approach would be computationally denmaling and might
only be feasible with the application of graphical processy units (GPUs). To

quantify the accuracy of the proposed setup and to strengthethe validity of

the backpropagation algorithm, future studies could exame the reconstruction
of physical cell phantoms, for instance conglomerates ofatrsparent beads with
known RI values.

Opto uidic rotation in combination with ODT has a high potential for single-cell
analysis in micro uidic devices, because the experimentsétup is robust and easy
to use. The marker-free nature of ODT makes it complementanp other imaging
methods and provides quantitative, structural data for thediscrimination and
identi cation of single cells. To exploit the full potential of the proposed technique,
several issues still need to be addressed. My work has isetht described, and
resolved some but not all of these issues, providing insighto and extending the
foundation of ODT for single cells.
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A. Derivations

We have published the derivations presented in this appendin a similar form
[Mal+15d]. That publication and the text presented in this appendix are both
based on the same draft which was written by me.

A.1 The Rytov approximation

The Rytov approximation is well-known in the eld of diraction tomography
[Wol69; Sla85; Kak+01]. The simple translation between Barand Rytov ap-
proximation shown here is commonly used to simplify data ahgsis in di raction
tomography.

The equations 2.23 given in section 2.3.3 were

u(r) = exp(* (r))
Uo(r) = exp(" o(r))
C(r)= " o(r) 7 s(r)

with the complex Rytov phase de ned in equations 2.24

u(r) = uo(r) + us(r)
us(r) = exp(* o(r)) [exp(" s(r)) 1l

Using these relations, the inhomogeneous Helmholtz equatibecomes

(r 2+ kn?)u(r) = f(r)u(r) (A.1)
(r 2+ km?)exp( ()= f(r)exp( (r): (A.2)

We can now computer 2exp( (r))

r2exp( () =r [exp( (1) r ' ()] (A.3)
r 2exp( (r)=exp(’ (r)) r? (N+(r'()° (A.4)

to obtain a di erential equation for ' (r).

exp( () r2 (n+(r' (M)°+km? = f(r)exp( (1) (A.5)
F2m+(r (0))+ k2= f(r) (A.6)
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Equation A.6 is a non-linear di erential equation for the conplex phase' (r). In
the same manner, a di erential equation for ¢(r) can be derived

r 2 o(r)+(r ' o(r))*+ kn® = 0: (A.7)
The next step is to insert equation 2.23 and to nd a di erental equation for' 4(r).

r2o(r) + " s(N]+ (If [ o(r){*z‘ ' s(r)])}2 +kn? = f(r) (A.8)
(1 o)2421 " o) 1 (1 " 5(1)?

The terms marked with a line compute to zero (eq. A.7) and the eqtion above
becomes

P2 g(r)+2r " o(r) r o)+ (r " ()= f(r): (A.9)
It is possible to simplify this expression by considering:
U)o = 7 Py (N2 [ Y T e T () (AL0)

km2uo(r) uo(r)r ' o(r)

#
(r 2+ km?)Uo(r)" s(r) =2Uo(r)r " o(r) r ' s(r) + uo(r)r  &(r): (A.11)

If we multiply equation A.9 by ug(r) then we can substitute with equation A.11
to obtain

(r 2+ Km?)uo(r) ITQ? = uo(r)‘(r ' S(r){)22+ f(r);: (2.25)

Rytov | Rytov

r(r) f(r)

Thus, the Rytov approximation assumes that the gradient ofhie Rytov phase
r ' r(r) is small compared to the scattering potentiaf (r). We can now make use
of the Green's functionG(r) again (eqns. 2.14) and arrive at the formula for the
Rytov phase' r(r) [Kak+01]:

Z

uo(r)' r(r) = &r°G(r rYf (Y ue(rd (A.12)

|:\)d:"’roG(r rOf (r9 ue(r9
Uo(r)

"r(r)= (A.13)

By comparing this expression to the Born approximation (eq2.19), we nd that
we can compute the Rytov approximationug(r) from the Born approximation
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ug(r) and vice versa.

ug(r)

"r(r) = o) (A.14)
URr(r) = up(r) exp lljz((rr)) (A.15)
Ue(r) = ug(r)in 220 +1 = (1)’ (1) (A16)

u(r) ™" ue(r) + us(r)

u(r) " uo(r) + ur(r)

This simple translation between Born and Rytov approximatn allows the appli-
cation of the Rytov approximation in tomographic algorithns derived for the Born
approximation, a fact that is exploited in di raction tomography.

Validity of the Rytov approximation

This section attempts to make a statement regarding the vality of the Rytov
approximation in terms of a given RI distribution. The abovederivations used a
constraint for the scattered Rytov phasée 4(r).

(r's«r)? f(

#
2
T 2 # 1 (A.17)
' 2
n(r)? nm? (rk#ﬂ (A.18)

From this inequality, we want to derive a condition that conrects the RI with its
gradient. We insert the de nitions of the wave vectork,, and the RI distribution
n(r) (eq. 2.9, 2.13) to retrieve a condition for the variation iRl ,(r)

2

n(r)? nm? % + Np? (A.19)
n(r)? npy? r'?f(r) 2 (A.20)
' 2
{2} +20m (1) ' ;(r) : (A.21)

0
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Because the local variation ,(r) is small, we may negleét ,(r)2. The resulting
constraint for the phase gradient is [Kak+01]

. . p -~ 7 N+
jr " s(r)j 2nmj n(r)j,

5 (A.22)

which can be interpreted as

jd' s(r)j 2Ny n(r)j jdrj.

5 (A.23)

For any position r inside a sample, equation A.23 reads: the sample induces a
phase change over a period of 2radians. This number must be smaller than
the variation in Rl ,(r) along the corresponding optical path scaled by the used
wavelength . Thus, compared to the Born approximation, where the overgbhase
change must be smaller than 2 the Rytov approximation is also valid for thicker
samples, as long as the phase change per path length remamsals[Sla+84].

It is desirable to translate the constraints on the change dhe complex Rytov
phase' s(r) to constraints on the RI n(r). To achieve that, we assume that the
changes in the Rytov phase are equivalent to phase delays daodhe real RI

Mg Conj (A.24)

The phase delay ( r) at alocationr is de ned by the optical path that the light
has traveled before. We approximate the light path by a strght line along the
z-axis and express the phase change in terms of optical pathedence

z

(2 n 1 12 a(x:y; 29dz® (A.25)

The left side of equation A.22 thus becomes

o . Z,
Ir_{m ZS(r)J 1 dz° h(x;y; 29 : (A.26)
1
The right side is valid as long as the light path follows appromately a straight
line, which is true within homogeneous objects of a size lagthan the wavelength
. To simplify the expression, we only integrate over charaetistic length scale
d. > below which the light path can be approximated by a straightihe (e.g
within the smallest homogeneous compartment in a cell). Wdange the limits of
the integral accordingly, allowing us to move the gradientiside the integral.
. ' . Z dC
I 23(”1 L Tar .o (A.27)
0

1This can be shown by solving the quadratic equation A.21 for ,(r) and Taylor-expanding
for small r ' ¢(r) to the second order.
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The integral over thez-component ofr ,(r) computes to zero. The integral over
the other two componentsr , ,(r) can be approximated with its average along
(hi;) multiplied by the characteristic length d..

jrts(r)j 1. -

LA Liginr o ()i (.29)
Note that the quantity \axially averaged lateral gradient” along z is only de ned
over the distanced.. However, because in tomographic imaging cells are imaged
from multiple directions, this relation must also hold truewhen replacingr » by

r . In addition, we assume that the average gradient of the RI v&tion is similar
in magnitude tor ,(r). We then obtain

jr " s(r)j dejr n(r)j.
> :

A comparison with equation A.22 yields a criterion of validityfor the Rytov ap-
proximation expressed in terms of the RI

(A.29)

P : :
2nmin(r)  Npj.
dC ’

jr n(r)j d. > (2.29)
where we substitutedn(r) = n, + ,(r). Thus, the Rytov approximation is valid
when the gradient in the RI is much smaller than the local RI vaation. For large
objects, the Rytov approximation eventually breaks down.

A.2 The Fourier slice theorem

The Fourier slice theorem is the central theorem in computzed tomography,
where x-rays can be assumed to travel along straight lines.h& theorem makes
a connection between the Fourier transform of each recordedojection and the
Fourier transform of the sample volume. This connection indurier space has led
to the development of the backprojection algorithm, which rakes use of the fast
Fourier transform to reconstruct tomographic images e ciatly (see appendix A.3).

To derive the Fourier slice theorem, consider the projectioof a 2D objectf (r)
onto a detector line. The object is rotated with respect to & center atr = 0
through an angle ,. For an arbitrary angle o, the projection p ,(xp) at the
detector line is the integral off (r) along lines that are tilted by o

Z
P o(xp) = dtf (x(t);z(t)): (A.30)
The Fourier transform of this one-dimensional data at the dector line is

Z
B (ko) = Po= o P 4(x0)XP(koxXo): (A.31)
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Next, we de ne the 2D Fourier transformFb(k) of the 2D imagef (r):
ZZ
Ib(kx;kz) = Zi dxdz f (x;z) exp( i(kgX + k,2)) (A.32)

In order to draw a connection betweerib(kx; k,) and b »(Kpx), the coordinates of
the object f (r) must be rotated through the angle o. The coordinate transform
from (x; z) to the detector line (Xp and the and the integration parametett yields

Y4
Ibo(kDX;kt): Zi dxpdtf ,(xp;t)exp( i(kpxXxp + K;t)) (A.33)
f ,(Xp;t) = f(Xpcos o tsin o, XpSin o+ tcos o) (A.34)
e o(Kox; ki) = F(kpx cos o kisin o, kpx Sin o+ k; cos o) (A.35)

For the casek; = 0, which implies slicing the Fourier transformFb(k) at the angle
0, We arrive at the Fourier slice theorem [Bra56; Mer76; Bro+a]

B, (koxi0) = P (ko) (35)

This formula, the Fourier slice theorem, states that the Fouer transform of a
projection o) imaged at an angle ¢ lies on a straight line that slices through the
center of the Fourier transform of the objectb at the same angle o (see gure 3.3).

A.3 The backprojection algorithm
The backprojection algorithm is a tomographic reconstruadn method that is
based on the Fourier slice theorem (appendix A.2). Its impleamtation takes ad-
vantage of the fast Fourier transform, which makes it a higlle cient technique.
To derive the backprojection algorithm, we start by expressg the object func-
tion in terms of its Fourier transform Ib(k).
zZZ

f(x;2) = zi dkedk, B(Ky: ky) exp(i(kex + k;2)) (A.36)

We then perform a coordinate transform fromKy; k;) to (Kpx; o). It can be easily
shown that the Jacobain of this coordinate transform compugeto

d(kx; kz)

det dkoe: o) = jKpx] (A.37)
Ky = kpx €0S o k¢ sin g (A.38)
K, = Kpy Sin o+ k{ cOS ¢ (A.39)
ki =0 (A.40)

Therefore, using equations 3.5 to A.40, we obtain directiorfer computing the
object function f (x; z) from the Fourier-transformed projectionst ,(Kpx) [Bra56;
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Mer76; Bro+76; Cro+70; Ram+71]:

Z Z

f(2)= o dko d ojkoxjgé(g_ﬂexpnkm(xcos o+ Zsin o] (A41)

0

Here, the integral over o runs from O to . The integrals ofky, k,, and kpx are
computed over the entirek-space, i.e. over the interval ¢ ;+1 ). The term
jKoxj is a ramp lter in Fourier space’. Note that because of our chosen coordinate
system, at the angle o = 0, kpx coincides with thek, axis (Xp 0 X).

We do not need to numerically integrate equation A.41. Insteh we identify
another Fourier transform for the reciprocal vectokp that allows us to apply the
fast Fourier transform. The data in real space at = (x;z) are computed from
integrals overkpx, and . We can introduce a coordinate transfornD | that
rotatesr through the angle ( along they-axis, such thatx , = xcos ¢+zsin .

In the following, equation we identify a one-dimensional wrerse Fourier transform

£ ‘z P (K )
fi2)= 5 doD , dhocikod B2 explkox ] (A42)
| }

FFT .o f ikox i (kox)Q

We have e ectively replaced the integral ovelkp, by a one-dimensional inverse
fast Fourier transform (FFT,3) and a rotation in real space D ,). To obtain a
discrete description of the problem, we replace the remany integral over o by
a discrete sum ovelN, equidistant projections.

n n (o]0}

1 L
f(xz)= 5D FFT .3 jkoxi @ (kox) (3.6)

J
with the discrete angular distance (= =N 5 and the discrete angles; = | 0
() =1;2;:::;Na). A numerical method that implements equation 3.6 is much
faster than the direct computation of equation A.41, becausé can make use of
the fast Fourier transform. Figure A.1 depicts the process fro image acquisition
to image reconstruction with the backprojection algorithm

Besides the backprojection algorithm, there exist other oenstruction tech-
niques for computerized tomography that are all based on theadon transform.
Iterative techniques such as SART (simultaneous algebrai@gonstruction tech-
nique) are able to improve the reconstructed image qualityub require a larger
computational e ort.

2This ramp lter is what gave the lItered backprojection algorithm its name
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(a) original image, (b) sinogram, (c) reconstruction (d) reconstruction
500 500 pixels 500 projections from 30 projections  from 100 projections

Figure A.1, Qualitative description of the backprojection algorithm. a) The
original two-dimensional image contains ellipses with di erent gray-sale levels.b) The
sinogram shows 500 projection of image (a) from Oto 180 . For the computation of the
sinogram, only the circular region of the original image (red) was usedc) Reconstruc-
tion using 30 equisdistant projections. d) Reconstruction with 100 projections. The
data were generated with radontea [M4l13b]. This gure was previously published in
[Mual+15d].

A.4 The Fourier diraction theorem in 2D
To derive the Fourier di raction theorem, we start with the inhomogeneous wave
equation previously discussed in section 2.3.1.

r2+kn? u(r)=(r r9 (A.43)

In the 2D case, the Green's function is the zero-order Hankelrfction of the rst
kind.

(9 = explkmijr r9)

G(r = 4 19 (A.44)
- l‘xHé”(kmjr r9) (A.45)
1Z 1
HE (mir 19 = = dkqoexptiadx )+ k(z 2919 (A.46)
k, = P km?2 k2 (A.47)

Equation A.47 is a restriction for the wave vectok = (ky;k;) in Fourier space.
Its magnitude is de ned by the wave numberk,. To simplify the notation, we
introduce the unit vector s that describes the direction of propagation of a plane
wavek = kpys. Accordingly, we introduce the following substitutions:

kg = Kmp k, = kM (A.48)

q
M=p1 P Mo= 1 P (A.49)
s=(p; M); So = (Po; Mo) (A.50)
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The unit vector s, describes the propagation direction of the incident planeave
uo(r) and points at the z-direction when 4 =0.

Uo(r) = agexp(kmSor) (A.51)
So=( sin q; cos o) (A.52)
With these substitutions, the Green's function becomes
. Z
G(r r9= 4'— dpMi expfikm [p(X X9+ M(z 29]g: (A.53)
The rst Born approximation in 2D then reads (see section 2.3)
27
ug(r)=  drG(r r9f (r9ue(r9: (A.54)

Our goal is to invert this equation and obtainf (r) from the measured eldug(r).
To achieve that, we search for a way to rewrite the double intgal as a Fourier
transform. In this notation, the Fourier transform Ib(k) of a function f (r) is
de ned as
zZ

d’rf (r)exp( ikr) (A.55)
zZZ

o2k B(k) exp(ikr): (A.56)

P(k) =
f(r)=

In the derivations that follow, we will also make use of the iehtity of the Dirac
delta distribution
z

(p &= Zi dx exp(i(p a)x): (A.57)

Our rst step is to insert equation A.53 into equation A.54:
i zZZ z 1
d?r® dpm expikmp(x X9+ ikmM(z Z9]

ug(r) = 4
f (rYap exp(ik m(Pox™*Moz9))  (A.58)

We can replace the integral over® with the Fourier transform of f (r9, but have
to take into account the argument with the shifted coordinags 6 )
zZZ

Pkn(s so)) = Zi d’r% (r9exp( ikm(s so)r9: (A.59)
Thus, the equation for the Born approximation simpli es to
iao

ug(r) = Y dpzmlb(km(s So)) exp(ik msr): (A.60)
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The eld ug(r) describes the the eld of the scattered wave in the Born appxk-
imation at any point r. However, we are interested in the eld at the detector
line rp. Therefore, we substituter ! rp = (Xp;lp), wherelp is the distance of
the detector plane from the center of rotation. Furthermorgwe now explicitly
point out the -dependence in the subscripig(rp) ! Us. ,(rp), which denotes
the angular position of the detector and the direction of thencoming plane wave
with respect to the samples,.
iao 1 Ib .

Ug: ,(rp) = - dpm (km(s  so))exp(iky,Srp) (A.61)

The next step is to perform a one-dimensional Fourier transfm of ug (rp ) alongxp
ia z z 1
Bs; (ko) = P dxo  dpP(kn(s o))

exp(ikm(pxp+MlIp))exp( ikpxXp); (A.62)

where we identify the delta distribution
Z

1
(kmp ka)=2— dxp exp(i(kmp Kpx)Xp) (A.63)

(Knp kDX)=%(p Kox=kn) (A64)

JKm

which simpli es out expression to
iap2 z 1
Bo; o(ko) = B5= dpyrPlkn(s o)) explikmMI) (kmp  kox):  (A.65)

Finally, we use the delta distribution to solve the integral ver dp and arrive at
the Fourier di raction theorem.
r

B, (ko) = 12 5irPlkn(s s)explikaMI)  (AG6)

Solving for the Fourier transformed objecilb yields

r T~ .
B(kn(s So)) = E%M Bs. , (kox) exp( ikmMlp): (3.7)

The restriction in equation A.49 forces the one-dimension&bourier transform of
the scattered Wave@B; »,(Kpx) to be placed on circular arcs in Fourier space.

KmsS = (Kpx COS ¢ kmM sinqo, Kpx Sin o + knM cos o) (A.67)

KaM = Kkn?2 k2, (A.68)
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The argumentk,(s Sp) shifts the circular arcs in Fourier space such thalDB; ,(0)
is centered atlb(o; 0) (see gure 3.5).

A.4.1 Comparison to the Fourier slice theorem
We can write equation 3.7 in the same manner as equation 3.5twthe subscript

o denoting the rotation of the objectf (r). Hence, we can easily compare the 2D
Fourier di raction theorem with the Fourier slice theorem fom appendix A.2:

r__
1
P (keik) = A 5B (ko)
Fourier slice theorem Fourier di raction theorem
(eq. 3.5) (eq. 3.7)
Sinogram Fourier transform Fourier transform of complex
) o (Kpx) of projectionslb o (Kpx) scattered WavelQB; o (Kpx)
Factor 2ik nM .
A A =1 A = m eXp( IkliD)
rel
Coordinates Kx = Kox & 5
(kx; kz) kz = kt =0 k k 2 k%x km
sliced at : ;
° (straight line) (semicircular arc)

Table A.1, The Fourier slice theorem and the Fourier diraction theorem

Both theorems connect the measured data to the Fourier transform of theobject. The
di erences are the complex factorA and the distribution of measured data in Fourier
space.
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A.4.2 Comparison to the Fourier diraction theorem in 3D

In 3D, the Fourier diraction theorem can be derived analogos to the 2D case.
The main di erence in the derivation is the Green's functionwhich in 3D becomes
[AIf66].

G(rr r9= g2 dpda“% expfikm[pP(X X9+ aly Y3+ M(z 299 (A.69)

The Fourier diraction theorem in 3D, which is derived in detil in [Mal+15d],
is identical to the theorem in 2D. Table A.2 shows the only di eences between
them, which are a result of the di erent dimensions.

r
1
= 5 ;0
Pk) = Aw 5 Be: o(ko)
2D 3D
. 1D Fourier transform 2D Fourier transform
Sinogram
b (ko) of complex scattered of complex scattered wave
Bi 0dTD wave Bg; , (kpx) Bs: ,(Kox; koy)
Factor 2ik M .
A Al = T exp( ikmMlp)
1 q 2 1 q 2 2
M = E km2 kDX M = E km2 kDX kDy
k = (ky; Kz) K = (kg Ky kz)
Coordinates | Kx = léIDX Ky = EDx? ky = Koy
Kat 0=0 | = k2 K& kn | ko= kn2 K& K3, Kn
(semicircular arc) (semispherical surface)
Table A.2, The Fourier diraction theorem in 2D and in 3D. The Fourier

di raction theorem in 3D has the same form as the 2D version. The only di erences
come from the di erent number of dimensions. Note that this notation implies a rotation
about the y-axis and that the 2D version has coordinates X;z). For a comparison to
the Fourier slice theorem, see table A.1.
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A.5 The backpropagation algorithm in 2D

The backpropagation algorithm solves the inverse problenorf the Born or the
Rytov approximation for di raction tomography. Its derivation follows closely that
of the backprojection algorithm discussed in appendix A.3. ¥/again perform a
coordinate transform from K; k;) to (kpx; o) and start by computing the inverse
2D Fourier transform of equation 3.7.

r e
2iKm

Plkn(s so))=  =—"MBg, ,(kox)exp( kmMlp) (3.7)
" 22
£(r) = _2Iaom dkedk, M Bg. (ko)
exp( ikmMIp)exp(ikm(s so)r) (A.70)
(kx; kz) =km(s  so) (A.71)

As described in table A.1, the input data are distributed alongcircular arcs in
Fourier space. The orientation of these arcs is de ned by thecquisition angle o
with the rotation matrix D .

COS o sin
0 sSin g COS g

k=D k° (A.73)

(A.72)

Here, k denotes the non-rotated Fourier space, where&8denotes the positions of
acquisition at a cer@in angle o. We have de ned the angle , such that, k9 = kpy
and thereforek? = = kg2 k,%x kKn. The coordinate transform from ky; k,) to
(kpx; o) is fully described by

ke = Kpy COS o km2 k3, km Sin o (A.74)
k, = kpy Sin o+ km? k3, km cOS o (A.75)

To perform the change of variables in the integral above fromik,dk, to dkpyd o,
we compute the Jacobian matrixJ and its determinant.

j= QKoK (A.76)
@k@o h . 1
o i
%cos o+ pﬁﬁwsin o kpxsin o ] knZ k3, ky cos O&
sin o %cos o Kkpy COS P km?2 k&, km sin g
(A.77)
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The determinant of the JacobianJ computes to
!

k k X k k X
det(J) = kDX kDX p% = % (A78)
Km?  Kgy km?  Kgy

With the coordinate transform applied to equation A.70, we oldin the backprop-
agation formula

r z z,

—_ EIkm 1 kmka
f(r)= ~Sa dkox 5 O d o BT—I@DX M Bg. , (kox)

exp( ikmMlp)exp(ikm(s so)r) (A.79)

Note that the integration over  goes from 0 to 2, which results in a double-
coverage of the Fourier space. To correct for that, we intragte the additional
factor % Furthermore, we expressy $p) in terms of a lateral (t») and an axial
(so) component (eq. A.74 and A.75).

Km(s so) = kpxts> + kn(M  1)so (A.80)
So = (Po; Mo) =(sin o; cos o) (A.81)
to =( Mo; po) = (cos o; sin o) (A.82)

By assuming that knM)? = kn? k3, > 0, we can rewrite the backpropagation
formula as
z  z,

ik o .
T dkox  d o jkoxi Bs; 4 (Kox) exp( ikmMIp)

= ap(2 )32 0

expli(kox t> + kn(M  1)so)r]:  (A.83)

To derive the backpropagation algorithm from the above eqiian, we can apply
the same principles used in appendix A.3. We begin by introdung the rotation
D , through ( about the y-axis that transformsr to r .

Fo=(X42,)

. ts r=X,
X , = XCOS o+ zsin o
. S r=z,
Z,= XSIn g+ ZcCOoSs ¢
. zZ, (
f(r): Ik—m doD
(2 )¥2 °
z )

dkox jKoxj Bs; o (kox) €xp( ikmMIp)expli(koxx , + kn(M 1)z )]

(A.84)
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Because of the factok,(M 1)z , in the integral, we cannot proceed exactly as
we did for the backprojection algorithm. Here, the inverse Rkoier transform is

applied for all coordinatesz , before the rotation is performed.

oz (

ik 2 d D

2 a o ° °
n

f(r)=
o)

FFT .2 jkox) Bs: o(kox) exp( ikmMIp)explikn(M 1)z ] (A.85)

The discretization of the integral over o can be performed according to ap-
pendix A.3.

(
ik R
f(r)= 7 5 oD |
j=1 )
n o]
FFTlg jKpx] @B; i (kpx) exp( ikpyMIp)exp ikm(M 1)z . (A.86)
with the discrete angular distance =2 =N  and the discrete angles; = j 0

(j =1;2;:::;Na). In practice, the measured eld at the detector is backgrood
corrected, which implies dividing by the incident plane was at the detectorug(lp).
This last step simpli es the backpropagation formula to

Uo(Ip) = @ exp(ikmlp) ( (A.87)
ik, XA
fn= 3 oD
(' )
lgB; j(kDX)

FFT .5 ikox exp ikm(M 1)z, Ip) : (3.8)

Uo(lp)

The incident plane waveuy(lp) is independent of the lateral detector coordinates
ro and can be interpreted as the normalization ofis; ,(Xp) prior to its Fourier
transform to lQB; J.(kDX).

As previously discussed, the Rytov approximation is betternian the Born ap-
proximation for dielectric objects with the size of a coupl®f wavelengths. Fig-
ure A.2 illustrates this extreme di erence for the backpropgation of a dielectric
cylinder.
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Figure A.2, Line prole of a backpropagated cylinder. The refractive index
(RI) of the medium is n,, = 1:333 and the local variation inside the cylinder is ,(r) =
n(r) ngn = 0:006. The radius of the cylinder is 30 (vacuum wavelength ). The
scattered wave is computed at an optical distance okp = 100 from the center of the
cylinder and sampled at = 2 over 512 pixels. The Rl map is reconstructed on a grid of
512 512 pixels. This gure was previously published in [Mal+15d].
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A.5.1 Comparison to backprojection

When comparing this equation with the backprojection algothm from equa-
tion 3.6, we can see one major di erence besides the diereriter: for back-
propagation, the inverse Fourier transform must be calculed separately for every
distancez ;. In practice, one rst needs to calculate the one-dimensiai signal

Bs. i (kox) exp( ikyMIp) and then expand the signal by one dimension through
the application of the second lIter expik,(M 1)z, . The inverse Fourier trans-
form is then computed along the axis with constant ; and the resulting 2D data
are rotated by ; and added to the reconstruction plane. The name \ ltered bakc-
propagation” comes from an interpretation of thez , -exponential, which looks like
a propagation inz |, -direction. Thus, the main di erence to the backprojectional-
gorithm is the dependency on the distance to the detectds and the propagation
direction so. Table A.3 shows the di erences in detail.

Z Z
A 2 . L
060 = Gy dor  d o expBre) ikoxi P o (kox) (A88)
0
backprojection backpropagation
(eq. A.41) (eq. A.83)
. Fourier transform Fourier transform
Sinogram o
b (Ko ) of projections of complex scattered wave
° B (kox) Bs; , (kox)
Factor Arel = 3 A= iKm
Arel (double coverage) rel =
Exponent Brel = ka(t?r). Brel = kmMID-"' Koxtor + Km(M 1)sor
B t» =(cos o;sSin o) | t, =(cos o; Sin o)
So=( sin o; COS o)

Table A.3, Backprojection and backpropagation. The backpropagation formula
is of the same structure as the backprojection formula. However, depelencies onlp

and sg illustrate the complexity that results from the rst Born approxim ation (See also
table A.1). Note that the backprojection formula has a factor of % due to the integration

limits of o (double coverage).
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A.5.2 Comparison to backpropagation in 3D

Table A.4 illustrates the di erences between the backpropagion algorithm in 2D
and in 3D. As for the Fourier diraction theorem (tab. A.2), the di erences in
the backpropagation formula are only due to the dimensiong} of the problem
[Mul+15d].

ik z Z 2
fN= 5.~ dKko doexp(Be)ikox Bg; o(ko)
ado 0
2D \ 3D
. 1D Fourier transform 2D Fourier transform
Sinogram
b (ko) of complex scattered wave of complex scattered wave
B olTP Bs; (ko) Bs; , (kox; koy)
Integral z 1 z z 1 22
dKD dKD = p? dex dKD = 2— dex dey
Exponent
B Bret = kmMlp + Kpytor + k(M 1)sor
1 a 2 1 g 2 2
f = (x:2) r=(xy;z)
Vectors I So =( sin o; 0; cos o)
F St So=( sin g; cos ) K
t, = (COS o SiN o) to = COS o, —2: sin o
ka
Table A.4, Backpropagation in 2D and in 3D. As noted in table A.2, the Fourier

di raction theorems in 2D and 3D are similar. The only di erences originat e from the
di erent number of dimensions.
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B. Evaluation software

B.1 General
| performed all data analysis in this work using Python 2.7.@&nd the following
scienti c libraries:

numpy 1.10.1 fttp://numpy.org )

PYFFTW 0.9.2 (based on the FFTW library [Fri+98])

scipy 0.13.3 fttp://scipy.org )

scikit-image 0.11.3 [Wal+14]

trackpy 0.2.4 [All+14]

unwrap 0.1.1 [Her+02] (recently moved to scikit-image)
B.2 Near- eld scattering

For the computation of scattered elds from theoretical célphantoms, | made use
of several software packages:

| Software | Version | Approach | Use cases | Developers |
bornscat 0.1.0 Born/Rytov 2D phan- | b \rler [Mul]
approximation | tom
GMM- . . .
FIELD 2009-07-13 | Mie theory sphere M. Ringler [Rin08]
A. Oskooi, S. G.
MEEP 1.2.1 FDTD method Zﬁaﬁtc?ras Johnson, and others
P [Osk+10]
P. Muller, H. Swarez
mie eld 0.0.1 Mie theory cylinder [Mul+15a]; transl.
from [Zhul1]
Table B.1, Scattering software. The table lists the software libraries for near eld

scattering and indicates what | used them for. Mie theory was only usedor spheres
or cylinders. The other approaches were used for inhomogeneous objects wasll. A
resourceful compendium of light scattering code is provided by Thmas Wriedt at http:
/lwww.scattport.org/index.php/light-scattering-software
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B.3 Phase imaging

In the course of this work, | wrote software for the analysisfa@uantitative phase

data, including phase-retrieval in digital holographic mimscopy, background-cor-
rection of phase and amplitude data, and refractive index &sation of spherical

cells. The software described here has not been publishedlas available upon
request.

] Software \ Version

Description |

Python library for phase-retrieval,
background-correction, refractive index
dhmlib 0.2.1 | computation using a sphere model, and more;
partly inspired by a LabView script by
Scharman et al. [Sch+15].

batch script that converts raw data (DHM,
SID4BIO) to quantitative phase images;
rawZ2field.py 0.3.2 | detects and crops cell ROI and stores
complex elds for further analysis; based on
dhmlib

batch script that computes the average RI
for the cells detected withraw2field.py ;
equivalent to the technique described in
[Sch+15]; based on dhmlib

field2ri.py 0.3.2

Table B.2, Phase-imaging software. abbreviations: DHM: digital holographic mi-
croscopy, RI: refractive index, ROI: region of interest, SID4BIO: quantitative phase
imaging camera described in section 4.1.2; The listed software is avallle upon request.

B.4 Numerical focusing

The backpropagation algorithm with the Rytov approximatian requires data that
are focused onto the rotational axis of the cell. If the expinental data are
defocused, it will have to be refocused using a numerical @sing algorithm. |
implemented a numerical focusing algorithm that is based aie propagation of
the angular spectrum. To propagate a complex eldig(X;y) by a distance z, the
Fourier transform of the eld is multiplied by the factor exp(ik,M z) [Sal+91;
Goo05]

Us(Xp;Yp,Zo+ 2)=FFT 2 €M 2 FFT,5fus(Xp;Yp;20)g (B.1)
1 g ——
M=o 1 kG K, (B.2)

where FFT,p is the 2D Fourier transform of the detector image Xp;Yyp) and
(kox; kpy) are the corresponding coordinates in Fourier space.

For experimental data, the exact focal position is usually at known. To nd
the correct focal position, automatic focusing algorithms&re commonly applied.
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| Software | Version | Description |

Python library for numerical focusing;
supports optical transfer functions based on
nrefocus 0.1.4 | the Helmholtz equation and the Fresnel
approximation; includes metrics and a
minimizer for autofocusing [Msl13a]

Table B.3, Autofocusing software.

Figure B.1, Numerical autofocusing. a) The measured complex eld of an human
myelocytic leukemia cell (HL60/S4) is defocused.b) By minimizing the average gradient
of the intensity image, numerical autofocusing determines the optinal focus at an axial
position of 6:35um. ¢) The refocused phase image is less blurry and the intensity image
does not exhibit the strong halo visible in (a).

These algorithms minimize a prede ned image metric to nd tle optimal focus.
In this work, | used the average gradient of the intensity imge [Lan+08; Wu+14].
Experience shows that this metric is ideal for dielectric gbcts such as cells, be-
cause they become hardly visible in the intensity image. The&orking principle
of the autofocusing step is illustrated in gure B.1. The iniial intensity image
exhibits a strong halo, indicating that it is defocused. Afte nding the minimum

in the average gradient with the automatic focusing algoritm, the halo in the
intensity image is much weaker. In addition, the phase imadecomes less blurry.
Numerical autofocusing is a critical component in optical diaction tomography,
but it requires the phaseand intensity images of the cell.

B.5 Tomographic reconstruction

I have implemented the tomographic reconstruction algotiims used in this work,
backprojection and backpropagation, in two separate pacgas shown in table B.4.
Many tomographic reconstruction algorithms exist that arebased on the inverse
Radon transform. However, reconstruction algorithms for 3@i raction tomogra-
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phy were publicly unavailable prior to my work. To allow a corparison between
these two tomographic reconstruction algorithms, | impleented the backprojec-
tion and backpropagation algorithm in an identical way. Thenecessary function-

| Software | Version | Description |

Python library that provides image
reconstruction algorithms forOptical
Diraction Tomography with aBorn and

ODTbrain 0.1.4 Rytov A pproximation-basedInversion to
compute the refractive index () in 2D and
in 3D [Mal+15Db]

Python collection of algorithms to compute
the inverse Radon transform; In this work,
radontea 0.1.8

only the backprojection algorithm is used
[Mal13Db]

Table B.4, Tomographic reconstruction software.

alities to convert data in the form of a sinogram of complexalued elds to phase
data for backprojection or to complex phase data for backppagation with the
Rytov approximation are available in the ODTbrain library.

In addition to the ODTbrain library, | wrote Python scripts t o automatically
align the images of a sinogram, determine the rotational pitien of the cell in
each sinogram image, and backpropagate the entire data setiwthe Rytov ap-
proximation. These Python scripts are listed in table B.5.

| Software | Version | Description |
batch script that performs translational
field _align.py 0.3.2 | image alignment; uses output of

raw2field.py (tab. B.2)
batch script that determines the rotational
determine _ position of a rotating cell by tracking a

: 0.3.2 . . : . . _
rotation _pt.py di raction spot in the intensity image; uses
output of field _align.py
batch script for backpropagation with the
Rytov approximation (based on ODTbrain,
tab. B.4); uses output offield _align.py

and determine _rotation _pt.py

backpropagate.py 0.3.2

Table B.5, Preprocessing software for di raction tomography. The listed soft-
ware is available upon request.
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C. Sample preparation

The human myelocytic leukemia cells (HL60/S4) were culturednder standard
conditions at 37 C, 5% CG, in Roswell Park Memorial Institute (RPMI) medium
(Gibco, Thermo Fisher Scienti ¢, Waltham, MA, USA). The cell cuture medium
was supplemented with 10 % fetal bovine serum (FBS) and 1 % peiflin-streptomycin
(Gibco). Prior to the measurement, the cells were centrifegl at 1159, (go, Stan-
dard gravity) for 5min at 23 C and resuspended in phosphate bu ered saline
(PBS). The cells were imaged at room temperature (22 C).
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Acronyms

2D
3D

CT

DHM
DNA

FBS
FDTD

GPU

HL60/S4

OoDT

PBS

RI
RMS

RPMI

SART
SD

TV

two dimensions, two-dimensionalad;.
three dimensions, three-dimensionahd,.

computerized tomography

digital holographic microscopy
desoxyribonucleic acid

fetal bovine serum

nite-di erence time-domain; FDTD method: numerical
computation of light propagation based on the Maxwell
equations

graphical processing unit

human myelocytic leukemia cell line

optical di raction tomography

phosphate bu ered saline (bu er solution)

refractive index

root-mean-square metric; the RMS error quanti es
tomographic reconstruction quality, see equation 3.10

Roswell Park Memoarial Institute (cell culture medium)

simultaneous algebraic reconstruction technique
standard deviation

total variation metric; the TV error quanti es
tomographic reconstruction quality, see equation 3.11
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Notation

Vector
Vectors are printed as bold symbols. To simplify the comparison betwen 2D and 3D
backpropagation algorithms, 2D vectors are de ned in thex-z-plane, e.g.

r=(x;z) (2D)
r=(xyy;z): (3D)
Fourier transform

The unitary angular frequency form of the Fourier transform is used. The Fourier
transform B(k) of a function f (r) and its inverse are de ned in N dimensions as

77

P(k) = > 1Nq dVrf (r)exp( ikr) (Fourier transform)
2)=,,

f(r)= 2 )= dVk B(k) exp(ikr): (inverse Fourier transform)

Delta distribution
The Dirac delta distribution is de ned by the following identit vy:
Z

(0 @)=, dxexpi(p ax)

Nabla operator
The Nabla operator is de ned in 2D and in 3D following the above de nition of vectors.

@@ _, _

"= i@ S (@@ (2D)
_ e ee _,_

"= Sieve: = (@@ (3D)

The Nabla operator is used to de ne derivatives such as gradient (scalar @duct), di-
vergence (dot product), and curl (cross product), for instance:

r f(r) (gradient of the scattering potential f (r))
r B(r;t) (divergence of the magnetic eld B(r;t))
rE(r;t) (curl of the electric eld E(r;t))
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Symbols

B(r;t)

(¢

D(rit)
)

dopt
E(r;t)
n(r)
"0
"r(r)

f(r)

B(k)
FFTnD

G(r)

amplitude of a plane waveug(r)
refraction increment

magnetic eld

speed of light in vacuum
speed of light in a dielectric mediumc = =,

diameter of an object

characteristic distance for the validity criterion of the
Rytov approximation

rotation operator that rotates by j about the y-axis
rotation operator that rotates by j about a tilted axis
electric displacement eld

delta distribution

relative optical thickness of an object compared to the
surrounding medium

electric eld

local variation of the refractive index, n(r)= n(r) np
permittivity of free space

relative permittivity of a material, describes how electric
charges in uence electromagnetic elds

scattering potential/object function; the inhomogeneity
in the Helmholtz gguation de ned by the refractive
index, f (r) = km? ("(N=n)% 1

Fourier transform of f (r)

Fast Fourier transform operator in N dimensions. The
inverse operator is depicted as FF L

Green's function of the Helmholtz equation
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HEP (%)
H(r;t)
1(r)

ji(r;t)

kp

Km

86

zero order Hankel function of the rst kind with
argument x
magnetizing eld

intensity of an optical wave
free current density

coordinate vector in Fourier space

wave vector of an electromagnetic wave with the wave
number k = jkj = 2n=

Fourier coordinates corresponding to the spatial detector
coordinatesrp

wave number in a medium with refractive index np,,

km = 2N m=

distance between rotational center and detector plane
vacuum wavelength of the light that is used for image
acquisition

z-component of the unit vector s

magnetization eld

permeability of free space

relative permeability of a material, describes how
magnetic dipoles in uence electromagnetic elds

refractive index distribution of a sample,
n(r)=nm@+ n(r))

refractive index of a medium

number of images/projections in a sinogram

angular frequency of an electromagnetic wave

x-component of the unit vector s

projection of an object onto a line (2D) or plane (3D)
de ned by rp at a rotational angle ¢

Fourier transform of p ,(rp)

polarization eld

acquisition angle of a projection in a sinogram
complex phase of a scattered wavey(r) = exp(' (r))
complex phase of a plane waveug(r) = exp(' o(r))
scattering component of a complex phase

t(r)=o(r)+ " s(r)



tr
tilt

u(r)

uo(r)

us(r)
ug(r)
UB; o(rD)

ur(r)

Bs (k)

Rytov approximation of ' (r)
phase of an optical wave
scalar eld for the description of wave propagation

y-component of the unit vector s

Radon transform operator along angle o

detector coordinates for tomography,rp = xp in 2D and
D = (xD;yD) in 3D with zp = Ip

free charge density

normal unit vector of an arbitrary plane wave,
2D:s=(p;M), p°+ M?2=1
3D:s=(p;q;M), p°+ g+ M?2=1

normal unit vector of an incident plane wave,
2D: s = (Po;Mo), pd+ MZ =1

3D: S0 = (Po; G; Mo), P§+ B+ MG =1

time

variable of integration for the Radon transform

unit vector perpendicular to sy

tilt angle of the rotational axis of a sample with respect
to the image plane

scattered wave,u(r) = up(r)+ ug(r)

plane wave, solution to the homogeneous Helmholtz
equation

scattering component of a scattered waveu(r)

Born approximation of ug(r)

Born approximation ug(r) at the detector plane rp for a
rotational position ¢ of the sample

Rytov approximation of ug(r)

Fourier transform of ug(r)

0s. ,(kp) Fourier transform of ug. ,(rp)
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