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Abstract

Analyzing the structure of a single cell based on its refractive index (RI) distri-
bution is a common and valued approach, because it does not require any arti�-
cial markers. The RI is an inherent structural marker that can be quanti�ed in
three dimensions with optical di�raction tomography (ODT), an inverse scatter-
ing technique. This work reviews the theory of ODT and its implementation with
an emphasis on single-cell analysis, identifying the Rytovapproximation as the
most e�cient descriptor for light propagation. The accuracy of the reconstruction
method is veri�ed with in silico data and imaging artifacts associated with the
inverse scattering approach are addressed. Furthermore, an experimental ODT
setup is presented that consists of a bright-�eld microscope, a phase-imaging cam-
era, and an optical trap combined with a microuidic chip. A novel image analysis
pipeline is proposed that addresses image corrections and frame alignment of the
recorded data prior to the RI reconstruction. In addition, for a rotational axis that
is tilted with respect to the image plane, an improved reconstruction algorithm is
introduced and applied to single, suspended cellsin vitro , achieving sub-cellular
resolution.
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1. Introduction

Developing novel microscopy techniques is a crucial exercise for studying the struc-
ture of individual cells. A large variety of imaging techniques exist that visual-
ize, for instance, intracellular compartments, cytoskeletal proteins, or membranes
within cells. The most common techniques are uorescence-based and thus require
uorescent labels that bind to a speci�c structure of interest. However, in some
cases it is important to image specimens without labels, forinstance because of
limited preparation time, limited access to the sample, or because the label causes
unwanted modi�cations.

This work approaches the topic of marker-free imaging usingoptical di�raction
tomography (ODT), an imaging technique that is compatible with commercial mi-
croscopes. ODT quanti�es the 3D refractive index (RI) of a specimen, yielding
information on both the magnitude of the RI at each point in space and the global
structure of the specimen. This work provides a 3D reconstruction algorithm for
the ODT community and describes how to resolve most obstacles that arise in
ODT for single-cell analysis. The following two sections briey introduce RI imag-
ing and tomographic reconstruction. Chapter 2 addresses the physical concepts of
light propagation through cells, concluding with a comparison between analytical
and approximative descriptions. Chapter 3 examines the tomographic RI recon-
struction of arti�cially generated data in silico in 3D and includes a discussion
of common artifacts in di�raction tomography. The derived theory is appliedin
vitro in chapter 4, showcasing the 3D RI reconstruction of a human myelocytic
leukemia cell (HL60/S4).

1.1 The refractive index { imaging without markers
The RI of a transparent object is an optical property that describes how light is
di�racted as it propagates through the object. E�ects such as refraction and inter-
ference that occur in biological imaging are a result of the inhomogeneous RI that
is introduced by the sample. In biological tissues, the local RI is dependent on
the electron density, which in turn depends on local proteinand/or DNA content.
This implies a connection between the RI and the mass density in biological tis-
sues, which can be quanti�ed by the refraction increment� � 0:2 mL g� 1 [Bar52;
Dav+52]. Thus, the RI of a biological tissue can serve as an inherent structural
property that is de�ned by the local mass density.

For biological imaging, the RI holds quantitative information that can be used
to characterize cells. For instance, the RI can be used to characterize the di�eren-
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tiation state or the cell cycle stage [Pop+08; Cha+12]. In addition, the spatially
resolved RI reveals sub-cellular organelles such as the nucleolus [Cho+07]. Measur-
ing the RI allows for a marker-free and quantitative analysis of single cells and as
a result, there is a lot of interest in the development of 3D RIimaging techniques.

1.2 Tomographic volume reconstruction
A truly 3D volume reconstruction of a specimen is not possible from only one
single image. To obtain a 3D representation, many imaging techniques perform
slicing of the imaging volume (e.g. selective plane illumination microscopy) or scan
the 3D specimen directly (e.g. confocal laser scanning microscopy). Tomographic
imaging takes a di�erent approach. Here, projections of the specimen are recorded
for di�erent rotational positions of the specimen relativeto the imaging system. To
obtain a volume reconstruction in tomographic imaging, a post-processing step is
necessary that connects the projections at di�erent anglesto the actual object. For
instance, in the case of computerized tomography (CT), which is a well established
imaging technique in medical applications, x-rays are usedto record projection
images of biological tissues from di�erent angular directions. From these images,
it is possible to reconstruct the original tissue using the inverse Radon transform.
The Radon transform assumes that the x-rays travel along straight lines through
the sample and that the tissue density is connected to the absorption of x-rays.
There are several algorithms that can solve the inverse problem up to a certain
degree of accuracy. Irrespective of the speci�c algorithm used, the reconstruction
quality always depends on the resolution of the detector andon the number of
angles that are covered during the imaging process.

The tomographic reconstruction with x-rays is fundamentally di�erent from
di�raction tomography, which is applied in this work. ODT uses visible light
(400-700 nm) to image predominantly transparent objects with RI values between
1.333 (water) up to approximately 1.450 (human epidermis).The combination of
object sizes that approach the scale of the imaging wavelength and RI di�erences
that are large inevitably leads to di�raction and the inverse Radon transform be-
comes inaccurate. The solution to the problem is to take intoaccount the wave
nature of light (chapter 2) and to apply a reconstruction algorithm that overcomes
the limitations of the inverse Radon transform (chapter 3).To demonstrate the
algorithm, this work presents an experimental setup that, in combination with a
novel computational image analysis pipeline, enables the 3D RI reconstruction of
single, suspended cells (chapter 4).
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2. Di�raction at cells

The most important prerequisite for a successful reconstruction with di�raction
tomography in biological applications is to understand howlight interacts with
cells. Only with a proper understanding of light scatteringat cells, is it possi-
ble to derive a reliable reconstruction algorithm. This chapter reviews the most
common techniques that are used to simulate light propagation through cell-sized
objects. The chapter especially highlights the Rytov approximation, which is well-
suited to describe the interaction of light with cells even though it describes light
propagation as a simple linear process. The linearization ofthe scattering process
with the Rytov approximation allows the application of e�ci ent inverse scattering
algorithms that are discussed in chapter 3.

2.1 Light and matter
2.1.1 Amplitude and phase
The electric �eld generated by a plane wave of light in free space can be described
by a periodic exponential function

E(r ; t) = E0 ei �( r ;t ) = E0 ei (kr � !t +� 0 ) (2.1)

with amplitude jE0 j, phase �, wave number k = jkj, angular frequency! , and
initial phase � 0. When light passes through an object, there are a variety of
interactions that may take place. Besides inelastic scattering processes on the
atomar and molecular level that result in well-known e�ectssuch as uorescence
or Raman scattering, there are two fundamental e�ects resulting from material
properties that inuence light propagation altogether: attenuation and phase re-
tardation. The quantity that describes these material properties is the RI n, a
complex-valued number1.

The imaginary part of the RI Im (n) determines the attenuation of the amplitude
jE0 j. In a material with imaginary RI greater than zero, the transmission of light
decreases exponentially with the propagation distance. Itis important to note
that the structures observed in bright �eld images are a result of interference and

1The RI takes the form of a complex-valued tensor in birefringent materials such as calcite.
In biological tissues, collagen is known to form birefringent structures in the extracellular space
that can be visualized using polarized light microscopy [Wol+86]. The methods described in this
work do not consider birefringence of collagen which is abundant in the extracellular matrix of
e.g. skin or bone tissue.
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Figure 2.1, Quantitativ phase imaging of single cells. a) The schematic drawing
of the cross-section along the optical axis illustrates the phase delay�� of light passing
through a cell (wavefronts drawn as red lines). The phase delay is caused by the RI of the
cell n(r ), which is larger than that of the surrounding medium nm . The images in (b)
and (c) show phase and intensity images of a representative human myelocytic leukemia
cell (HL60/S4). The images were recorded with the setup described in section 4.1.

must not be attributed solely to attenuation. In fact, many cells are too thin to
absorb light and thus, light attenuation is not examined in this work.

The real part of a material's RIRe(n) dictates the speed of light,c = c0=Re(n)
with Re(n) > 1, which is lower than the speed of light in vacuumc0. Consider
two light beams that pass through a dielectric medium with anRI of nm and that
have an identical wave numberkm = knm. If one of the beams passed through
the center of a cell with a diameterdcell and a homogeneous RI ofncell, it would
become phase-shifted relative to the other beam propagating in the surrounding
medium by

�� = dcell(kcell � km) = dcellk(ncell � nm):

with kcell = kncell. In quantitative phase imaging (�gure 2.1), this fact is used to
measure the phase delay introduced by the cell relative to the surrounding medium.

2.1.2 Phase and optical thickness
The measurement of the phase change of light that has passed through an object
is always a measurement of the object's optical thickness. The optical thickness is
the integral of the RI along the path of light through the object. In practice, this
integral poses a problem for the determination of the 3D structure of cells, because
it is not possible to obtain the spatial RI distribution or the shape of the cell from
a single 2D image of its optical thickness. To uncouple the RIcomposition of a cell
from its shape, there are two approaches. One approach makesassumptions on
either the shape (e.g. sphericity) or the RI distribution ofthe cell (e.g. uniformity).

4 CHAPTER 2. DIFFRACTION AT CELLS



Consequently, the unknown variable, shape or RI, can then beextracted from
the measured optical thickness. Another approach, which does not require any
structural assumptions, is tomography. With tomography, itis possible to extract
information on both the shape and the RI distribution of the cell. The RI of
each voxel2 is computed separately, eliminating the need for structural models
that describe the optical thickness of a cell. Nevertheless,ODT reconstruction
algorithms rely on approximations of light propagation. These approximations,
which limit the applicability of ODT, are investigated in the following sections.

2.2 Theoretical description
In order to generate ground truth data for testing a di�raction-tomographic recon-
struction algorithm, an accurate description of light propagation is essential. Light
is an electromagnetic wave and its dynamic behavior and interaction with matter
is fully described by the macroscopic Maxwell equations (International System of
Units (SI)):

r � D = � f (2.2a)

r � B = 0 (2.2b)

r � E = �
@B
@t

(2.2c)

r � H = j f +
@D
@t

(2.2d)

with the divergencer� , the curl r� , the time derivative @=@t, the free charge
density � f , and the free current densityj f . The Maxwell equations describe the time
evolution and coupling of the electric �eldE and the magnetic �eldB components.
The displacement �eld D and the magnetizing �eld H are connected toE and B
by the polarization �eld P and the magnetization �eld M , which describe the
response of a material to an external electromagnetic �eld

D = "0E + P (2.3a)

H =
1
� 0

B � M (2.3b)

with the permeability of free space"0 and the permittivity of free space� 0. By
introducing the material properties relative permittivity " r and relative permeabil-
ity � r , the constitutive equations describe the interaction of light and matter with
a simple linear relation

D = "0" rE (2.4a)

H =
1

� 0� r
B: (2.4b)

2A voxel is the 3D equivalend of a 2D pixel.
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The quantity that describes the interaction of a material with light is its RI,
which is de�ned as n(r ) =

p
" r(r )� r(r ). Unfortunately, analytical solutions to

the Maxwell equations are only available for simple geometries. The description of
light propagation through inhomogeneous objects, such as cells, requires numerical
approaches. The following two sections discuss two computational approaches that
are often used to accurately describe light propagation through objects: Mie theory
and the �nite-di�erence time-domain (FDTD) method.

2.2.1 Mie theory
Mie theory can be used in situations where the radial and angular components of
the electromagnetic �eld can be separated. For instance, the description of light
scattering at a cylinder falls into this category. Here, two parameters are used: the
relative size of the cylinder diameter to the wavelengthd=� and the relative RI of
the cylinder to the surrounding mediumn=nm. Because of the cylindrical symme-
try of the problem, angular and radial components of the electromagnetic �eld can
be separated using cylindrical coordinates. The solution then takes the form of an
in�nite series of Bessel functions [Boh+08]. In practice however, this in�nite series
is computed only up to theN th term using a stop criterion that ensures numer-
ical accuracy and stability [Wis80]. Using similar techniques, Mie theory is able
provide exact solutions to light scattering problems involving cylinders, spheres,
and also superpositions of spheroids [Boy+11; Boy+12].

For the purpose of this work, I generated test data for my tomographic recon-
struction algorithms, using software that is based on Mie theory (see ap. B.2).
Figure 2.2 showcases the computation of the electromagnetic�eld with Mie theory

Figure 2.2, Mie theory: scattering at a cylinder. The phase(a) and intensity (b)
images of a two-dimensional computation based on Mie theory illustrate howa plane
wave, traveling from left to right, is scattered by a cylinder th at has a diamter of 20� ,
an RI of 1.360, and that is embedded in a medium with an RI of 1.333. The electric�eld
component was background-corrected by dividing it by the �eld component obtained
from an empty run. The data were generated with the Python library mie�eld (see
ap. B.2).
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for a cylinder that has a diameter of 20 wavelengths3. The focusing e�ect of the
cylinder, which is expected because of its convex shape, is clearly visible in the
intensity image. In the phase image, the gradually increasing delay of the wave
front is visible, as is schematically drawn in �gure 2.1.

The advantage of computing arti�cial data for a centered cylinder with Mie
theory is, besides the availability of an analytical solution, the rotational symmetry
of the problem. Thus, to create a tomographic data set with anarbitrary number
of projections, only one single simulation is required.

2.2.2 Finite-di�erence time-domain method
To be able to test a tomographic reconstruction algorithm for inhomogeneous ob-
jects, a corresponding simulation technique is required. In principle, one could
also use Mie theory to generate test data for more complex geometries, but un-
fortunately, to my knowledge there is no Mie-based softwarepackage that would
allow such computations. However, it is possible to address this problem from a
di�erent angle with the �nite-di�erence time-domain (FDTD) method.

Finite-di�erence methods compute derivatives of a functiong with respect to a
variable t using the di�erence quotient:

@g(t)
@t

�
g(t + � t=2) � g(t � � t=2)

� t
(2.5)

With this approach, divergence, curl, and time-derivative in the Maxwell equations
(eqns. 2.2) can be replaced by �nite di�erences that are thencomputed numeri-
cally [Yee+66; Taf+95]. For this work, I used the software MEEP [Osk+10] to
perform FDTD simulations. MEEP simulations are based on the Leap-Frog it-
eration scheme, proposed by Yee et al. [Yee+66], which computes the vectorial
components of the electric and magnetic �elds on an alternating grid. This al-
ternating computation of magnetic and electric �elds is optimized for the curly
Maxwell equations (2.2c, 2.2d), which each introduce a connection between or-
thogonal components of the electric and the magnetic �eld. In addition, MEEP
o�ers an implementation of perfectly matched layers (PML),which are essential
for emulating \open space". PMLs absorb radiation without reection and when
used as boundary conditions, they have the same e�ect as if simulated electromag-
netic waves leave the simulation volume [Ber94]. An exemplary FDTD simulation
of an arti�cial 2D cell phantom is shown in �gure 2.3.

The FDTD method is a numerical method and thus, it is prone to numerical
errors. Because of the nature of the discrete grid and the approximate description
of derivatives, FDTD simulations exhibit a numerical dispersion that depends
on the frequency and the direction of light propagation. Furthermore, due to
the discretization of the grid, the object must also be discrete, which can lead to
numerical errors known as the staircase e�ect. For the latter problem, MEEP o�ers

3The Maxwell equations are scale-invariant. Therefore, all lengths can be expressed relative
to the vacuum wavelength � . The images shown in �gure 2.2 are valid for any object with the
same relative RI and whose diameter is 20 times the wavelength of the light used.
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Figure 2.3, FDTD simulation: scattering at an asymmetric object. The
phase(a) and intensity (b) images of a two-dimensional �nite-di�erence time-domain
(FDTD) simulation illustrate the scattering of a plane wave at an arti� cial cell phantom,
which is outlined in white in the intensity image: The cell phantom consists of cytoplasm
(ncytoplasm = 1 :365), nucleus (nnucleus = 1 :360), and nucleolus (nnucleolus = 1 :387) and
is embedded in a homogeneous medium (nmedium = 1 :333). These values are identical
to those used in [M•ul+15b]. A close look at the boundaries of the simulation (0:5� )
reveals artifacts generated by the perfectly matched layers (see text). The displayed
�eld is the last frame of a simulation with 15 000 steps using the softwareMEEP. The
line source is positioned 1� away from the left side of the simulation volume and one
vacuum wavelength is sampled with 13 grid cells, which corresponds to a sampling of
9.4 pixels per wavelength fornnucleolus.

subpixel-averaging, which smoothens the boundaries of a given curvilinear interface
[Far+06]. The problem of numerical dispersion can be minimized by choosing
a small sampling distance. The MEEP documentation recommends a sampling
distance of 8 pixels per wavelength in the highest dielectric4. For comparison, the
simulation in �gure 2.3 was performed with a sampling distance of 9.4 pixels per
wavelength in the highest dielectric, the nucleolus. The drawback of the FDTD
method compared to Mie theory is that it is computationally demanding: The size
of the simulation volume is limited by the physically available memory and the
computation time scales with the size as well5. It must be kept in mind that even if
the parameters of an FDTD simulation are chosen carefully, balancing computation
size, time, and accuracy, numerical errors cannot be avoided completely.

4http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial#Fields_in_a_waveguide ,
accessed Jan 22nd 2016.

5A single MEEP simulation with a simulation size of 390 � 260 � 260 voxels and a total
number of 15 000 time steps requires about 12 GB of memory and 4-6 h of computation time on
an Intel Core i7-3820 CPU @ 3:60 GHz.
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2.3 Approximative description
All tomographic reconstruction algorithms are based on assumptions concerning
the forward, light scattering process. For instance, tomographic reconstruction
algorithms in CT are based on the Radon transform [Rad17; Kak+01], which as-
sumes that light travels along straight lines through the imaged object. While
this is a good assumption for imaging human tissue with x-rays, it inaccurately
describes the propagation of visible light through cells. Asthe wavelength ap-
proaches the size of the imaged object, di�raction becomes more relevant and the
description of the scattering process must involve the wavenature of light. The
methods discussed so far, Mie theory and the FDTD method, accurately describe
light propagation with the Maxwell equations (eqns. 2.2), but are not an appropri-
ate starting point for tomographic reconstruction, because they are computation-
ally too expensive. This raises the question, whether thereexist approximative
descriptions of light propagation that yield a good balancebetween accuracy and
computational cost and are thus applicable are applicable to objects such as single
cells.

In certain cases, there are approximations that accuratelydescribe the interac-
tion of light and matter. For instance, if the object is much smaller than the used
wavelength, then the Rayleigh approximation applies, which explains why the sky
is blue. If on the other hand, the object is much larger than the used wavelength,
then geometric optics applies, which accurately describesreection and transmis-
sion at the boundary between two media. Neither of the two approximations is
applicable for light propagation through cells, because the cell size and the imag-
ing wavelength are at most two orders of magnitude apart. As a result, di�raction
takes place and the wave nature of light must be taken into account.

2.3.1 The Helmholtz equation
To simplify the description of light propagation through single cells, the time-
dependent electromagnetic �eld (D (r ; t), H (r ; t)) is commonly replaced by a time-
independent scalar �eld (u(r )), assuming that the observed system is stationary
and that the coupling between the vectorial �eld componentsis negligible.

According to the Maxwell equations (eqns. 2.2), light propagation in a homo-
geneous medium follows the wave equation, which is valid forboth the electric
displacement �eld D and the magnetizing �eld H :

@2

@t2
D (r ; t) �

�
c0

nm

� 2

� r 2 D (r ; t) = 0 (2.6)

Note that the speed of the propagating wavec0=nm is dependent on the (real-
valued) RI of the mediumnm. In a homogeneous medium, the direction in which
the �eld oscillates can be arbitrary and thus, its vectorialnature can be omitted.
The vector �eld D (r ; t) my be replaced by a scalar �eld 	(r ; t):
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� r 2 	( r ; t) = 0 (2.7)

2.3. Approximative description 9



Furthermore, the time dependence of the wave equation can beneglected, because
the scattering problem is stationary. Using separation of variables, the homoge-
neous Helmholtz equation can be derived [CT+92]

�
r 2 + km

2
�

u0(r ) = 0 (2.8)

with the wavenumber km =
2�n m

�
: (2.9)

The homogeneous Helmholtz equation is a second order ordinary di�erential equa-
tion that has plane wave solutions of the form

u0(r ) = a0 exp(ik m s0 � r ) ; (2.10)

where s0 is the normal unit vector and a0 is the amplitude of the plane wave.
Note that the scalar representation of the electromagnetic �eld is only correct
in a homogeneous medium. In an inhomogeneous medium, the three vectorial
�eld components couple at gradients in the RI. However, this coupling, which
amounts to only about 2-10 %6, is commonly disregarded for studying the RI of
cells. This negligence of the coupling between the vectorial �eld components is
an important approximation towards a simpler description of light propagation in
inhomogeneous media.

To describe an inhomogeneous medium with the Helmholtz equation, an inho-
mogeneity f (r ) is introduced that is de�ned by an RI distribution n(r ) di�erent
from that of the surrounding mediumnm,

�
r 2 + km

2
�

u(r ) = � f (r ) u(r ); (2.11)

with f (r ) = km
2

" �
n(r )
nm

� 2

� 1

#

(2.12)

and n(r ) = nm + � n (r ): (2.13)

In the next two sections, equation 2.11, the inhomogeneous Helmholtz equation, is
used as a starting point for deriving both the Born and the Rytov approximation
for light propagation through inhomogeneous objects. The Born approximation
makes the assumption that the scattered �eld is small, whereas the Rytov approx-
imation assumes that the RI within the scattering object hasa small gradient.

2.3.2 The Born approximation
In scattering theory as well as in quantum mechanics, the Born approximation
is a well-known approach to approximate the interaction of awave or particle
with the scattering potential f (r ). The Born approximation requires a Green's

6For a sphere embedded in water (nm = 1 :333) with a diameter of 12� and an RI of 1.339, the
amplitude of the perpendicular �eld components have a maximum at about2 % of the original
amplitude of the polarized light. Increasing the RI of the sphere to 1.360 results in a maximum
at about 10 %. These estimates were made based on data generated by GMM-FIELD (data not
shown) [Rin08].
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function G(r ), a solution to the inhomogeneous problem, which in the caseof the
inhomogeneous Helmholtz equation is [Mor+53]

�
r 2 + km

2
�

G(r � r 0) = � � (r � r 0) (2.14a)

G(r � r 0) =
exp(ik m jr � r 0j)

4� jr � r 0j
: (2.14b)

The scattered waveu(r ) can then be described as a convolution of the product
u(r )f (r ) with the Green's function G(r ). With the assumption that u(r ) is a sum
of an incident plane waveu0(r ) and a scattered componentus(r )

u(r ) = u0(r ) + us(r ); (2.15)

the Lippmann-Schwinger equation can be derived [CT+92]

u(r ) = u0(r ) +
Z

d3r 0G(r � r 0) f (r 0) u(r 0): (2.16)

In the Lippmann-Schwinger equation, the �eldu(r ) does not only appear on the
left side, but also in us(r ), the integral on the right side of equation 2.16. The
approach of the Born approximation is to make an approximation for u(r ). It is
assumed that the plane waveu0(r ) is large compared to the integral on the right
side (\us(r ) � u0(r )"). Therefore, in the �rst 7 Born approximation uB(r ), u(r ) in
the integral is replaced with the incident waveu0(r ).

u(r )
Born
� u0(r )+ uB(r ) (2.17)

�
r 2 + km

2
�
uB(r ) = � f (r ) uB(r ); (2.18)

uB(r ) =
Z

d3r 0G(r � r 0) f (r 0) u0(r 0) (2.19)

What are the conditions of validity for the Born approximation? It is di�cult
to interpret the relation \ us(r ) � u0(r )", becauseu(r ) and u0(r ) are complex
�elds and the \ � "-sign is not de�ned for complex numbers. However, it is known
that cells mostly have a real-valued RI and are thus phase-shifting-only objects.
Therefore, the above relation can be replaced by a comparison to the absolute
phase change that a cell introduces. In a simpli�ed model, this phase change ��
is described by the relative optical thickness �dopt ,

�� =
2�
�

� dopt =
2�
�

dcell(ncell � nm); (2.20)

for a cell with an average RIncell and a diameterdcell. The phase of a complex
number may range from 0 to 2� . Thus, if the scattered �eld us(r ) is to be much

7Higher order Born approximations are possible, which iteratively replaceu(r ) in the integral
with the right side of the equation. These however, are not considered in this work.
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Figure 2.4, Born approximation: scattering at an asymmetric object. The �g-
ure shows the electric �eld computed with the Born approximation for the same phantom
that was used with the �nite-di�erence time-domain method (�g. 2.3) . The color scale
for the phase (a) and intensity (b) images are identical to those used in�gure 2.3. The
strong deviation from the expected result shows that the Born approximation is not
suited to describe light propagation through cells.

smaller than the incident waveu0(r ), then the total phase change introduced by
us(r ) must be much smaller than 2� .

�� � 2� (2.21)

dcell(ncell � nm) = � dopt � � (2.22)

Therefore, for dielectric objects, the Born approximationis only valid if the rela-
tive optical thickness of the sample �dopt is much smaller than the imaging wave-
length � . This is a strong restriction that is certainly not valid forcells, because the
phase retardation introduced by cells often reaches valuesabove� (see �g. 2.1b).
An attempt to simulate a scattering process with the Born approximation is vi-
sualized in �gure 2.4. The Born approximation fails to reproduce the behavior of
the FDTD method observed in �gure 2.3. Therefore, the Born approximation is
not suited to simulate light propagation through cell-likeobjects.

2.3.3 The Rytov approximation

The Born approximation is not suitable for single-cell tomography, because the
optical thickness of cells is too large. The Rytov approximation takes a di�erent
approach, which results in other restrictions and makes it applicable to single cells.
The approach is to transform the scattered waveu(r ) and the incident waveu0(r )
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into exponentials with a complex phase'

u(r ) = exp( ' (r )) (2.23a)

u0(r ) = exp( ' 0(r )) (2.23b)

' (r ) = ' 0(r ) + ' s(r ): (2.23c)

The imaginary part of the complex phase is the physical phaseof the wave �,
whereas the real part of the complex phase is the logarithm ofthe amplitude a.

' (r ) = i �( r ) + ln( a(r )) (2.24a)

' 0(r ) = i � 0(r ) + ln( a0(r )) (2.24b)

To derive the Rytov approximation, these complex phases aresubstituted in the
Helmholtz equation (eqns. 2.8, 2.11). Subsequent derivations, which are described
in detail in appendix A.1, lead to an expression for the complex phase' s(r ) that
is surprisingly similar to the inhomogeneous Helmholtz equation.

(r 2 + km
2)u0(r ) ' s(r )

| {z }
Rytov

� ' R (r )

= � u0(r ) [(r ' s(r ))2 + f (r )]
| {z }

Rytov
� f (r )

(2.25)

The Rytov approximation replaces the complex phase' s(r ) with the Rytov phase
' R(r ), which corresponds to a scattered �eld component of

us(r ) � uR(r ) = u(r ) � u0(r ) = exp( ' R(r ) + ' 0(r )) � exp(' 0(r ))

= u0(r )[exp(' R(r ) � 1)]: (2.26)

The similarity of the inhomogeneous Helmholtz equation in the Born approxima-
tion (eq. 2.18) and equation 2.25 suggests the connection

' R(r )u0(r ) = uB(r ) (2.27)

and, together with equation 2.26, reveals that the Rytov approximation can be
expressed in terms of the Born approximation [Kak+01; Wol69]

uB(r ) = u0(r ) ln
�

uR(r )
u0(r )

+ 1
�

: (2.28)

This simple8 translation from Born to Rytov approximation is an extremely im-
portant relation. It allows to reuse the much simpler description of the Born
approximation, a convolution with the Green's function, for the Rytov approxi-
mation. Thereby, both the simulation of light propagation and the tomographic

8In practice, this transform requires a phase-unwrapping step [Che+98] for the imaginary
part of the complex Rytov phase. However, with the powerful phase-unwrapping algorithms
available today (e.g. [Her+02]), this is not an issue.
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Figure 2.5, Rytov approximation: scattering at an asymmetric object. In
contrast to the Born approximation (�g. 2.4), the Rytov approximation agree s well with
the expected �eld computed using the �nite-di�erence time-d omain method (�g. 2.3).
Thus, the Rytov approximation is suitable to describe light propagation through cells.

reconstruction using the Born approximation can be extended to support the Ry-
tov approximation by adding a single computational step.

What are the conditions of validity for the Rytov approximation? As estimated
in appendix A.1, the Rytov approximation is valid for a characteristic distance
dc > � of the sample below which light propagation can be approximated to follow
a straight line if [M•ul+15d]

jr n(r )j �

p
2nm jn(r ) � nm j

dc
: (2.29)

This criterion of validity is di�erent than that for the Born approximation, be-
cause it does not restrict the absolute optical thickness ofthe sample. Instead, it
restricts the gradient of the RI r n(r ). For the Rytov approximation to be valid,
the gradient of the RI must be small compared to the relative di�erence between
the RIs of the cell and the medium (ncell � nm). The Rytov approximation breaks
down when there are large jumps in the RI. A scattering process with the Rytov
approximation is illustrated in �gure 2.5 for the same cell phantom that was used
for the FDTD method (�g. 2.3) and for the Born approximation (� g. 2.4). A quali-
tative comparison of �gure 2.5 with �gure 2.3 shows that the Rytov approximation
is well-suited for the description of light propagation through cells.

2.4 Conclusion
The data presented in this chapter suggest, that the Rytov approximation is well-
suited to describe light propagation through transparent,cell-sized objects, be-
cause it is valid for a large range of RI values and because it can be described as a
linear process, which makes it much faster compared to the series computation of
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Figure 2.6, Comparison of scattering methods. The plots show the phase of the
�eld, measured one vacuum wavelength (1� ) behind a cylinder that has a radius of 10� ,
a refractive index (RI) of 1.360, and that is embedded in a medium with anRI of 1.333
(see �g. 2.2). A list of the software used to generate these data is given in appendix B.2.
For each computation, one vacuum wavelength was sampled with 13 pixels. The size
of the simulation volume for the Born and Rytov approximation was 30� by 30� . The
�nite-di�erence time-domain (FDTD) simulation was conducted in a simulation volume
of the size 30� laterally by 34� axially and ran for 22 100 time steps. The plotted data
is discussed in the text.

Mie theory or the numerical FDTD method. To compare the discussed light prop-
agation methods, I applied them to the same problem: scattering at a dielectric
cylinder. Figure 2.6 shows a comparison of the scattered phases. Several observa-
tions are important to understand the drawbacks and advantages of the di�erent
methods. First, the FDTD method slightly deviates from the exact solution (Mie
theory) by an o�set close to the center of the optical axis, but correctly reproduces
the shape of the wavefront. Second, the phase pro�le computed from the optical
thickness of the cylinder (Radon transform) approximatelymatches the expected
phase, but breaks down at the boundaries of the cylinder. Third, the Born approx-
imation fails to describe the scattering process. Fourth, the Rytov approximation
yields quite accurate results that match the expected shapeof the wave front.
There are only minor deviations close to the boundary of the cylinder. The Rytov
approximation is faster than the Mie solution or the FDTD method and thus, it is
the candidate of choice for inverse scattering algorithms in di�raction tomography
for cells.
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3. Tomographyin silico

The traditional approach to inverse scattering is to connect the recorded far �eld
intensity to the Fourier transform of the imaged object. This kind of inverse
scattering problem typically employs the Fraunhofer approximation and works
well for 2D apertures [Goo05]. Based on this Fourier transform approach, in 1913
Bragg introduced x-ray di�raction tomography to determine the 3D structure of
crystals [Bra13], which became a common technique to study the structure of
crystallized proteins [AN+11]. However, this di�raction-tomographic approach
with the far �eld is not suited for the investigation of cells, because cells are
unordered structures. The theoretical foundation for di�raction tomography of
cells was laid out by Wolf in 1969 [Wol69]. For di�raction tomography of weakly
scattering semi-transparent objects, he proposed an inverse scattering algorithm
that requires the complex-valued near �eld recordings.

Single-cell di�raction tomography is an imaging technique that obtains a 3D rep-
resentation of the cell from multiple 2D near �eld recordings. Figure 3.1 illustrates
the image acquisition process in di�raction tomography. An incident plane wave
u0(r ) is scattered by a scattering object with an RI distributionn(r ). Because
of the di�erence in the RIs of the objectn(r ) and the surrounding mediumnm,
di�raction occurs and the wave front of the outgoing waveu(r ) is deformed. The
detector records the near �eld of the outgoing wave for multiple rotational po-
sitions of the cell. Altogether, these recorded �elds are commonly referred to
as a sinogram and resemble the initial data for the tomographic reconstruction
process. This chapter introduces di�raction tomography and showcases how the
reconstruction algorithm performs for arti�cially generated sinograms.

surrounding
medium, nm

n(r ) scattering
object

rotation

incident
wave u0(r )

outgoing
wave u(r )

detector

Figure 3.1, Tomographic data acquisition. An incident plane wave u0(r ) is scat-
tered by a transparent object with the refractive index distribu tion n(r ). A detector
collects the scattered waveu(r ). Multi-angular acquisition is facilitated by rotation of
the sample. This �gure was previously published in [M•ul+15d].
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3.1 The inverse problem
Tomographic image reconstruction is an inverse problem: the task is to �nd the
RI distribution n(r ) that leads to the observed projection data recorded at the
detector. In order to achieve a proper reconstruction, a suitable model for the
forward scattering process is required. This section introduces two reconstruction
methods: one method is based on the Radon transform and the other method
is based on the Rytov approximation. As indicated by the previous chapter, the
Rytov approximation yields better results than the Radon transform in di�raction
tomography for single cells.

3.1.1 Reconstruction without considering di�raction
Reconstruction techniques that are based on the Radon transform assume that
light propagates along straight lines through the cell and thus do not take into ac-
count di�raction. Such techniques assume that the measuredphase is only de�ned
by the optical thickness of the cell, which is the integral ofits RI distribution along
a straight line. This section introduces the fundamentals oftomographic imaging,
mediating an understanding that is crucial for understanding the more complex
reconstruction algorithms encountered in di�raction tomography.

The Radon transform describes a forward scattering processthat is equivalent to
projecting a rotating (rotation angle � 0) 2D object onto a detection line. Here, the
word projection means that the value of one point on the detection line is computed
from a line integral through the object [Rad17]. The 3D Radontransform can be

ys

z

y

xyD

xD

(a) 3D sketch

z

t

xD

x

rxz

yD= ys

(b) 2D projection integral

Figure 3.2, 3D Radon transform. a) Working principle of the three-dimensional
(3D) Radon transform of a 3D object with the rotational axis y and the rotational
angle � 0. Light propagation takes place along the axis perpendicular to thexD -yD -
plane. For each slice of the object atys (light blue), a two-dimensional (2D) Radon
transform is performed. b) The 2D Radon transform at ys is computed by rotation of
the object (white) through � 0 (red coordinate system) and integration alongt (green
line) perpendicular to the detector line xD . This �gure was previously published in
[M•ul+15d].
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replaced by multiple 2D Radon transforms of slices from a 3D object. Here, the
3D object has a scattering potentialf (r ) and is rotating about the y-axis. The
rotational position of the object is de�ned by the angle� 0. Then, for each slice
of the sample f (r )jy= ys

at ys, the projection p� 0 (r D ) = p� 0 (xD ; ys) of this slice
onto a detector plane (xD ; ys) is described by the Radon transform operatorR� 0

(�gure 3.2).

p� 0 (xD ; ys) = R� 0 f f (r )jy= ys
g(xD )

=
Z

dt f (x(t); ys; z(t))

=
Z

dt f (xD cos� 0 � t sin� 0, ys, xD sin� 0 + t cos� 0) (3.1)

r 2
xz = x2 + z2 = x2

D + t2 (3.2)

xD = x cos� 0 + z sin� 0 (3.3)

t = � x sin� 0 + z cos� 0 (3.4)

In the discrete case, where the detector is composed of a 2D grid of pixels, the line
integral becomes a volume integral over a volume element of the sizepixel area �
line length.

The inversion of the Radon transform, the computation of theobject f (r ) from
the projectionsp� 0 , is based on the Fourier slice theorem (see appendix A.2)

bF� 0 (kDx ; 0) =
1

p
2�

bP� 0 (kDx ): (3.5)

The Fourier slice theorem states that the Fourier transformbP� 0 of a projectionp� 0 ,
measured at the angle� 0, is equal to the data that are distributed along a rotated
line in the Fourier transform bF of the object f , as shown in �gure 3.3. This theo-
rem is important, because it leads to two reconstruction techniques: interpolation
in Fourier space and backprojection. Interpolation in Fourier space solves the re-
construction problem by interpolating all of the recorded and Fourier-transformed
projections bP in Fourier space on a regular grid and then performing an inverse
Fourier transform to obtain the object f (r ). For large data sets (large number of
projections NA , high resolution) and the corresponding large interpolation grids,
the interpolation becomes very time-consuming and slows down the reconstruction
process. In contrast, the backprojection method is not a�ected by this expensive
interpolation task. The backprojection algorithm performs the reconstruction in
real space, not in Fourier space and each of theNA projections is backprojected
onto the reconstruction volume separately (see appendix A.3).

f (x; z) =
1

p
2�

NAX

j =1

� � 0 D � � j

�
FFT � 1

1D

�
jkDx j � FFT 1D f p� j (xD )g

		
(3.6)
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Figure 3.3, Fourier slice theorem. The theorem states that the Fourier transform bP
of a projection p from an object f is equal to the Fourier transform bF of the object on
a line through the origin that is tilted by the angle � 0.

Here, � � 0 = �=N A is the angular distance between the rotational positions ofthe
projections, � j = j � � � 0 are the angles at which the projections where imaged
(j = 1; 2; : : : ; NA ), D � � j is the rotation operator, and FFT1D and FFT � 1

1D are the
one-dimensional forward and inverse fast Fourier transforms. Equation 3.6 reveals
a recipe for implementing the backprojection algorithm in three steps:

1. Each projection is multiplied with a ramp function jkDx j in Fourier space.
This �ltering step can be done e�ciently with the fast Fourie r transform.

2. The �ltered projection is backprojected (smeared) onto the image volume
according to its acquisition angle� 0.

3. The sum of all backprojections constitutes the reconstructed image.

Figure 3.4 shows the reconstruction of an arti�cial test target, a 2D cell phantom,
with the backprojection algorithm. The sinogram data were generated with the
FDTD method (see section 2.2.2), which is based on the Maxwellequations. As a
result, the reconstruction, which is based on the Radon transform, exhibits blurring
artifacts.

20 CHAPTER 3. TOMOGRAPHY IN SILICO



Figure 3.4, Backprojection of an FDTD sinogram. a) The two-dimensional cell
phantom is identical to that used in �gures 2.3, 2.4, and 2.5. b) The sinogram consists
of 200 projections for a full 360 degree rotation. Each �nite-di�erence time-domain
(FDTD) simulation ran for 15 000 time steps and had a resolution of 13 px/� . c) The
reconstruction with the backprojection algorithm is blurry, which is most easily seen in
the blurred shape of the nucleolus (red dot). The reconstruction wasperformed with
radontea [M•ul13b].

3.1.2 Reconstruction with di�raction

To take into account di�raction and to improve the reconstruction quality, the
Rytov approximation is commonly applied in di�raction tomography of single cells
[Su+13; Kos+15; Kim+13; Sun+09]. As discussed in section 2.3.3, the Rytov
approximation and the Born approximation are linked by a simple computational
step

uB(r ) = u0(r ) ln
�

uR(r )
u0(r )

+ 1
�

: (2.28)

Therefore, the tomographic reconstruction techniques derived using the Born ap-
proximation are also valid for the Rytov approximation.

The scattering process described by the Born approximationin section 2.3.2 is
more complicated than the Radon transform and thus, the reconstruction process
is more elaborate than the backprojection algorithm discussed in the previous
section. Nevertheless, it is possible to derive a relation between the scattered
�eld in the Born approximation uB(r ) and the Fourier transform of the image
object bF (k) that is similar to the Fourier slice theorem (see eq. 3.5). In 2D,
the Fourier di�raction theorem, illustrated in �gure 3.5, states that the Fourier
transform bUB(k) of the scattered �eld uB(r ) is distributed along circular arcs in
Fourier space [Wol69].
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Figure 3.5, Fourier di�raction theorem in 2D. The theorem states that the Fourier
transform bUB of a scattered �eld from an object f in the Born approximation uB is equal
to the Fourier transform bF of the object on a semicircular arc through the origin.

bF (km(s � s0)) = �

r
2
�

ik m

a0
M bUB;� 0 (kDx ) exp(� ik mMl D ) (3.7)

Here, km is the wave number of the light,a0 is the amplitude of the incident
plane wave,s0 is the direction of propagation of the incident plane wave,lD is
the distance between detector and center of rotation, andM is the constrained
z-component of the vectors, which forces the data onto the semi-circular arc with
a radius ofkm. The subscript� 0 denotes the angle of rotation that is de�ned bys0.
A thorough derivation of equation 3.7 is given in appendix A.4. As for the Fourier
slice theorem, a reconstruction algorithm for the Fourier di�raction theorem can
be derived (see ap. A.5), which is called backpropagation algorithm

f (x; z) = �
ik mp

2�

NAX

j =1

� � 0D � � j

(

FFT � 1
1D

�
jkDx j � eik m (M � 1)[z� j � lD ] � FFT 1D

�
uB;� j (xD )

u0(lD )

�� )

: (3.8)

In comparison to the backprojection algorithm (eq. 3.6), the backpropagation al-
gorithm has a �lter with an additional exponential term that is dependent on the
backpropagation distancez� j . Thus, the 1D inverse Fourier transform FFT� 1

1D is
applied to a 2D array, which is computationally more expensive compared to the
backprojection algorithm where this array is 1D only. Equation 3.8 describes the
backpropagation algorithm for the Born approximation. To apply the Rytov ap-
proximation, equation 2.28 is used to substitute theuB;� j (xD ) data. A comparison
between backprojection and backpropagation in 2D is shown in �gure 3.6. The line
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pro�les through the reconstructed cell phantom for backprojection and backprop-
agation seem to indicate a similar reconstruction quality,which was also observed
by Wedberg et al. [Wed+95]. However, the reconstruction withthe backprojec-
tion algorithm is more blurred, indicating that the Rytov approximation describes
the scattering problem better. Furthermore, the Born approximation breaks down
(�gure 3.6d), because the overall phase change is too high. In summary, the data
show that di�raction tomography with the Rytov approximati on yields better im-
age reconstruction than tomography based on the inverse Radon transform.

Figure 3.6, Backprojection versus backpropagation. a) 2D cell phantom
[M•ul+15b]. b) Reconstruction with the backprojection algorithm (inverse Radon trans-
form). c) Backpropagation with the Rytov approximation. d) Line pro�les through the
nucleolus (positions indicated in the other plots). The Born approximation breaks down
and fails to reconstruct the cell phantom quantitatively.
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3.2 Backpropagation in 3D
In 3D, the theoretical description of di�raction tomography is similar to the 2D
case [M•ul+15d]. The Fourier di�raction theorem in 3D states that the Fourier
transform of the detector imagebUB(kDx ; kDy ) is projected onto a semi-spherical
surface as illustrated in �gure 3.7. This result is analogous to the theorem in 2D, in
which the data are distributed on circular arcs (see �g. 3.7). The backpropagation
algorithm in 3D then becomes

f (x; y; z) = �
ik mp

2�

NAX

j =1

� � 0D � � j

(

FFT � 1
2D

�
jkDx j � eik m (M � 1)[z� j � lD ] � FFT 2D

�
uB;� j (xD ; yD )

u0(lD )

�� )

: (3.9)

The only di�erence to equation 3.8 is that the dimensionality of the problem in-
creases by one. Note that the �lter in Fourier spacejkDx j remains one-dimensional.
It is always perpendicular to the rotational axis. A comparison of the backpropa-
gation algorithm with a focus on the dimensionality of the problem is given in ap-
pendix A.5.2. As part of this work, I implemented the backpropagation algorithm
for di�raction tomography with the Rytov approximation (see appendix B.5).

In order to test the implementation, I generated arti�cial scattering data using
FDTD simulations with a 3D cell phantom. The result of such a simulation series
is shown in �gure 3.8. For each of the rotational positions ofthe cell phantom, one
simulation is performed that contributes with one detectorimage to the resulting
sinogram. In the intensity images of the sinogram, the di�raction spot generated
by the nucleolus is clearly visible. Constructive and destructive interference make
it appear black or white depending on its position relative to the image plane. In
the phase images, the nucleolus generates a visible trace ofincreased phase retarda-
tion. The arti�cial sinogram corresponds to aligned raw data from a tomographic
experiment and is the starting point for backpropagation.

rotation
kDx

kDy

s0

Figure 3.7, Fourier di�raction theorem in 3D. The data bUB;� 0 (kD ) (green) are
projected onto a semi-sphere in Fourier space according tokm

2 = k2
Dx + k2

Dy + k2
Dz . The

radius of the sphere iskm . The surface of the sphere is oriented along the direction of
propagation s0 of the incident plane waveu0(r ). This �gure was previously published in
[M•ul+15d].
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Figure 3.8, 3D sinogram from FDTD simulations. a) Cross sections of the cell
phantom at the center. b) Cross section through the nucleolus atz = 2 � . The white
lines indicate the slice positions of the sinograms in e,f,h, and i.c) 3D representation
of the cell phantom. d-f ) Slices through the sinogram: (d) shows one intensity image
of the sinogram and (e,f) each show a slice through the sinogram parallel to the ac-
quisition angle � 0. g-i) Corresponding phase images of the sinogram. The sinogram
was recorded usingNA = 200 equidistant angles. Each �nite-di�erence time-domain
(FDTD) simulation ran for 15 000 time steps with a resolution of 13 px=� . To improve
the reconstruction quality, the entire sinogram was numerically autofocused (discussed
in section 3.3.2).
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Here, in contrast to the actual experiment (see sec. 4), the original RI distribu-
tion is known. To quantify the quality of the reconstruction, I compared the RI
values with the original values of the cell phantom. For the comparison, I used two
di�erent error norms, the root mean square (RMS) error and the total variation
(TV) error [M•ul+15b]:

ERMS =

s P
vol (nph(r ) � nrec(r ))2

P
vol (nph(r ) � 1)2 (3.10)

ETV =

s P
vol

�
TV N D

avg (nph(r ) � nrec(r ))
�

P
vol (nph(r ) � 1)2 (3.11)

where
P

vol is the sum over all pixels/voxels of the reconstruction volume, nph is
the RI of the cell phantom,nrec is the RI of the reconstruction, and TVN D

avg is the
average TV norm inN dimensions (N = 2; 3)

TV 2D
avg(n(r )) =

1
2

�
j@xn(r )j + j@zn(r )j

�
(3.12)

TV 3D
avg(n(r )) =

1
3

�
j@xn(r )j + j@yn(r )j + j@zn(r )j

�
: (3.13)

The RMS error quanti�es how the absolute values of the reconstructed RI devi-
ate from the correct values. In contrast, the TV error quanti�es the di�erence in
the gradient (@x , @y, and @z) of the RI and is thus suited to describe the blur-
ring in the reconstruction that is observed, for instance, with the backprojection
algorithm (see �gure 3.6b). Using these error norms, it is possible to quantita-
tively assess the reconstruction quality of the backprojection algorithm (Radon)
and the backpropagation algorithm (Born, Rytov) in 2D and in3D. The result is
summarized in �gure 3.9. For low RI di�erences between the cell phantom and
the medium, the Born and Rytov approximations achieve the same reconstruction
quality that is better when compared to the Radon transform.It is worth noting
that the Born approximation has a lower TV error than the Radon transform in
all cases, which means that the Born approximation is betterat reconstructing
boundaries. On the other hand, the Radon transform has a lower RMS error than
the Born approximation, which is not surprising given the preceding discussions
(e.g. �gure 3.6). However, in both cases the Rytov approximation has the lowest
TV and RMS errors. In addition, the Rytov approximation is valid for a large
range of RI values, including those commonly observed for cells, which makes it
the preferable choice for ODT.

26 CHAPTER 3. TOMOGRAPHY IN SILICO



Figure 3.9, Applicability of di�raction tomography for single cells. For di�er-
ent refractive indices (RIs) of the cell phantom, the reconstruction quality of the inverse
Radon transform, the Born approximation, and the Rytov approximation are compared.
a) For each simulation (horizontal axis), the RI values of the cell phantom increase from
1.334 to 1.455 (cytoplasm), 1.435 (nucleus), and 1.543 (nucleolus) in a linear fashion.
RI values that are similar to those of cells are highlighted in green [Cho+12]. b) The
root mean square (RMS) error (eq. 3.10) in dependence of the RI values in(a). c) The
total variation (TV) error (eq. 3.11) in dependence of the RI values in (a). d,e,f ) Cross
sections of the 3D RI reconstruction with the Rytov approximation. Th e three simula-
tions are labeled in (c). The RI values displayed in each colorbar range from medium
(lowest) to nucleus, cytoplasm, and nucleolus (highest). The diameter (largest extent
17� ) of the cell phantom and the total number of projections (NA = 200) are unchanged
for all simulations. These data have been previously published in [M•ul+15b].
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3.3 Reconstruction artifacts
In practice, the inversion process of di�raction tomography is a�icted with arti-
facts. This section addresses several issues that are important to consider for the
computational and experimental implementation of di�raction tomography.

3.3.1 Amplitude data
The RI reconstruction presented in the previous section wascomputed using both
amplitude and phase information of the scattered waveuB(r ). The phase infor-
mation, which quanti�es the optical thickness of the sample, is critical for the
reconstruction of the RI. The amplitude information, whichis sometimes not ac-
cessible due to experimental restrictions, does not quantify optical thickness. This
raises the question of how the absence of the amplitude information inuences the
reconstruction quality. Figure 3.10 shows a comparison between a reconstruction
with and without the amplitude information for the 3D cell phantom discussed
above. The absolute RI value of the nucleolus 1:387 is not correctly reproduced if
the amplitude information of the sinogram (�gures 3.8d-f) is set to unity during
reconstruction. Furthermore, it is important to note that the use of incorrect am-
plitude data juB(r )j directly translates to a scaling of the scattering potential f (r ),
which a�ects the reconstructed RIn(r ) through equation 2.12. In practice, it is
thus very important to correctly normalize the amplitude image with background
data. Experimental implementations that do not allow the measurement of the
amplitude data, but only the phase data, lead to error-pronereconstructions in
di�raction tomography.

Figure 3.10, Missing amplitude information distorts the reconstructi on.
a) The cross section shows the reconstruction without the amplitude information in
the sinogram (left) and a reference that was computed using the full complex sinogram
displayed in �gure 3.8 (right). b) The line plot through the nucleolus (black vertical line
on the left) shows that the reconstruction without the amplitude in formation does not
correctly reproduce the cell phantom.
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3.3.2 Numerical focusing
The backpropagation algorithm (eq. 3.8) has the parameterlD , which is the dis-
tance from the center of rotation to the detector plane in a tomographic setup.
In practice, the detector plane is a conjugate image plane tothe plane de�ned by
the focal position of the microscope. Thus, if the focal position of a microscope
coincides with the center of rotation, thenlD = 0. In cases where the focal plane
and the rotational axis do not overlap, previous studies have shown that the re-
construction quality can be improved by numerically autofocusing the recorded
sinogram prior to the reconstruction [Kos+14; Wu+14]. In addition, even if the
correct focal position is known and used in combination withthe Rytov approx-
imation, the reconstruction nevertheless becomes blurry (see �g. 3.11). This can
be understood by noting that the backpropagation algorithmis derived for the
Born approximation and the Rytov approximation is just inserted into the back-
propagation formula. Thus, for the Rytov approximation, a numerical focusing
step exp(� ik m(M � 1)lD ) during backpropagation is di�erent than a numerical
focusing stepprior to backpropagation [Wed+95].

To �nd the focal position for numerical and experimental data, I implemented a
numerical autofocusing algorithm that minimizes the gradient norm of the ampli-
tude image (see ap. B.4). Note that the determination of the focus with the gradi-
ent norm might not be correct and therefore, should be checked for plausibility. In
summary, di�raction tomography in combination with the Ryt ov approximation
should always involve a numerical autofocusing step prior to backpropagation.

Figure 3.11, Numerical refocusing is essential for di�raction tomography.
a) The cross section shows the positive e�ect of numerical focusing prior to backpropa-
gation with the Rytov approximation. b) The line plots (black vertical line on the left)
show that if the focusing distancelD is used in the backpropagation algorithm with the
Rytov approximation, the reconstruction overshoots dramatically and cannot reproduce
RI boundaries correctly.
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3.3.3 Angular resolution
Angular resolution, which de�nes the number of images a sinogram is composed of,
a�ects the reconstruction quality. In a previous publication, we could show that the
RMS and TV errors reach a minimum that depends on the number ofprojections
that are used for a reconstruction [M•ul+15b]. We showed that reconstruction
artifacts that are caused by insu�cient angular resolution can be avoided when
the reconstruction is performed with at least 160 projections for a cell with a
diameter of about 17� . Lower angular resolution introduces noise, as shown in
�gure 3.12.

Figure 3.12, Low angular resolution introduces noise. If the number of projec-
tions used for a reconstruction is low, the reconstruction will exhibit artifacts. a) In the
extreme case of only 36 projections, deformations become visible in the cross section.
b) However, the line plot at the nucleolus shows that the absolute value ofthe RI can
be correctly reconstructed, depending on the region of the reconstruction.

3.3.4 Uneven angular sampling
The backpropagation algorithm shown in equation 3.8 assumes that the acquired
projections are recorded from equidistant angles with an angular spacing of � � 0.
If the angles are sampled unevenly but not considered duringreconstruction, then
artifacts appear. This is a well-known problem in tomographic imaging and can be
resolved by introducing weights that reect the angular coverage of each projection
[Tam+81]

� � 0 7�! � � j =
� j +1 � � j � 1

2
: (3.14)

Figure 3.13 illustrates the quality improvement when using weights in the back-
propagation process. Note that for full-view tomography, the angular coverage
must be at least 180 degrees (half a rotation of the cell). In few-view tomography,
projections from an angular range of more than 180 degrees are missing and thus,
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the reconstruction exhibits more severe artifacts than those shown in �gure 3.13.
Few-view artifacts can be addressed with regularization such as total variation
minimization already proposed for computerized tomography [LaR+08].

Figure 3.13, Angular weighting improves the reconstruction quality. Each
reconstruction was performed using 90 projections. The reconstruction shown on the
right in each image shows the reference reconstruction with even angular sampling. a) If
the sinogram is composed of images that are taken at irregular angular positions, then
the reconstruction may contain serious artifacts (e.g. RI values below that of water).
b) Angular weighting according to equation 3.14 prevents these artifacts.

3.3.5 Directional blurring
Tomographic reconstruction in di�raction tomography with a rotation about a
�xed axis is not able to fully reconstruct a 3D object. The Fourier slice theorem
and the Fourier di�raction theorem in 2D allow to �ll the Four ier space of the
imaged object homogeneously with a 360 degree rotation. However, in 3D this
is not the case if the sample is rotated about only one axis. Ifthe semi-spherical
surface in �gure 3.7 is rotated about thekDy -axis, then frequencies that are located
about the kDy -axis are not available in the reconstruction. This missingapple core
in Fourier space leads to directional blurring along they-axis in the reconstruction
[Ver+09; Kou+09]. The e�ect of this directional blurring is shown in �gure 3.14.
In principle, this problem can be solved by rotating the sample about two di�erent
axes and combining the two complementary reconstructions in Fourier space.

Is it possible to obtain a full 3D coverage without two separate rotations? Tech-
nically, this is possible. The backpropagation algorithm requires a one-dimensional
representation of all rotational positions. One possibility is to rotate the sample
along a spiral from pole to pole. However, it is di�cult to implement such a
sophisticated rotational control for single cells and therefore, it is unlikely to be
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applied in practice. However, investigating the theoretical domain of modi�ed re-
construction algorithms yields new insights. An example that discusses a tilted
axis of rotation is given in the next section. Nevertheless, addressing the problem
of an arbitrarily rotating cell with a more general version of the backpropagation
algorithm is beyond the scope of this theses and may be investigated in future
studies.

Figure 3.14, Rotation about a single axis introduces directional blurring.
a) The chosen color map covers the full range of the reconstruction RI values. b) The
line plots indicated in (a) show a blurring e�ect parallel to the rot ational axis compared to
perpendicular to the rotational axis. The reason for that are missing Fourier coe�cients
along the rotational axis, the so-called missing apple core [Ver+09].

3.3.6 Tilted axis of rotation

In the experimental setup that I will discuss in the next chapter, the imaged cell
does not always rotate about a �xed axis. If the rotational axis is tilted in the image
plane (laterally), then a simple coordinate transform willmake the data compatible
to the described backpropagation algorithm. However, if therotational axis is
tilted perpendicular to the image plane (axially), then a successful reconstruction
is not always guaranteed. For instance, if the rotational axis is axially tilted
by � tilt = 90� with respect to the image plane, then the sinogram consists of
only one image of the cell that rotates in the detector plane and tomographic
reconstruction is impossible. The transition from good data quality (� tilt = 0 � ) to
purely impossible reconstruction (� tilt = 90� ) is continuous. The amount of data
in Fourier space is reduced from a sphere with a missing applecore (see sec. 3.3.5)
to a single semi-spherical surface as� tilt approaches 90� . To allow a reconstruction
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for small tilt angles � tilt , a di�erent backpropagation algorithm is required

f (x; y; z) = �
ik mp

2�

NAX

j =1

� � 0D tilt
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2D

�
jkDx � cos� tilt j � eik m (M � 1)[z� j � lD ] � FFT 2D
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(3.15)

The modi�ed backpropagation algorithm in equation 3.15 canbe derived analo-
gous to the backpropagation algorithm in equation 3.9. The rotational angles for
backpropagation are not anymore distributed on the equatorof the unit sphere.
Instead, the angles are distributed on a circular path of constant latitude � tilt .
These new rotational positions are de�ned by the rotation operator D tilt

� � j
. Fur-

thermore, the �lter in Fourier space now contains an additional factor cos� tilt .
For single-cell tomography, we could show that this modi�edalgorithm noticeably
improves the quality of the reconstruction [M•ul+15c].

Figure 3.15, A tilted axis of rotation requires a modi�ed reconstruction
algorithm. a) The axial tilt of 0 :2 rad (11:5� ) is visualized in the sinogram of the
�nite-di�erence time-domain (FDTD) simulation with a black sine curve (compare to
�gure 3.8f). b) The reconstruction with the algorithm that does not take into account
the tilt correction (eq. 3.9) causes blurring artifacts visible at the nucleolus (left inset).
The algorithm that does take into account the tilted axis of rotation (eq. 3.15) improves
the quality of the reconstruction (right inset).
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4. Single-cell tomography

The objective of optical di�raction tomography (ODT) for single cells is to obtain
a quantitative RI map in 3D with sub-cellular resolution. All ODT techniques
require a combination of quantitative phase-imaging and some means to acquire
phase images from multiple angles. Quantitative phase-imaging techniques orig-
inally evolved from phase contrast microscopy [Zer42a; Zer42b]. Then in 1948,
Gabor introduced holographic imaging [Gab48], which, withthe development of
digital camera sensors, allowed the development of digitalholographic microscopy
(DHM). To acquire phase images from multiple angles, severalexperimental ge-
ometries have been proposed. For instance, the illumination beam in a microscope
with a high numerical aperture objective can be tilted up to� 70� , e�ectively scan-
ning the cell [Cho+07; Isi+11; Sun+09]. A similar approach is synthetic aperture
tomography, which in addition allows to image suspended cells [Lue+08; Sun+14].
Both of these techniques are subject to few-view artifacts,because the angular
coverage, limited by the illumination objective, does typically not exceed 140� .
To address few-view artifacts, these reconstruction techniques require regulariza-
tion methods that infer additional information during the reconstruction process
[Tam+81; LaR+08]. Another approach to this problem is to use multiple imaging
wavelengths. According to the Fourier di�raction theorem (see sec. 3.1.2), multi-
ple illumination wavelengths improve the reconstruction quality, because multiple
semi-spherical surfaces with di�erent radiikm increase the coverage in Fourier
space [Hos+15]. Nevertheless, a full angular coverage can only be achieved when
the detector or the sample is allowed to rotate by at least 180� . For instance, a
full view coverage can be achieved by embedding the cell in a gel and rotating
it relative to the microscope [Cha+06; Kuj+14; Kos+14; Kos+15] or by rotat-
ing the microscope relative to the sample chamber [Lin+14].However, none of
these techniques permit tomographic imaging of suspended cells in a microuidic
environment with a full angular coverage.

In principle, full angular coverage in a microuidic environment is achievable
with optical methods, for instance by all-optical cell rotation [Kre+08; Kre+14],
by holographic tweezers [Hab+15], or by optouidic rotation[Kol+14]. In this
work, the optouidic approach is used, because of its comparatively simple setup.
Quantitative phase images are recorded with a commercial camera [Mou+06] (see
sec. 4.1). The HL60/S4 cells were prepared according to appendix C. The proposed
setup comes with the issue of irregular rotation of the cells, which is addressed
computationally (see sec. 4.2). With the presented approach, the proposed setup
is suitable to quantify the 3D RI of a cell and to describe its intracellular structure.
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4.1 Devices and assembly
The tomographic imaging setup is composed of an inverted microscope (Axiovert
200M, Zeiss, Oberkochen, Germany), a microuidic channel with an optical trap
(sec. 4.1.1), and a quantitative phase-imaging camera (sec. 4.1.2). The used objec-
tive is a Plan-Apochromat (40� /0.95 Corr M27, WD0.25, Zeiss). The arrangement
is outlined in �gure 4.1. In this setup, the image plane and the object plane are
conjugate optical planes. In theory, this results in a distance between rotational
axis and detector plane oflD = 0. In practice, the planes do not always match
and a numerical focusing step is required, as previously discussed in section 3.3.2.

Figure 4.1, Schematic: tomographic imaging setup. The setup is composed of
an inverted microscope, a dual-beam laser trap in a microuidic chip, and a quanti-
tative phase-imaging camera. The left side shows a sketch of the optical beam path
(K•ohler illumination) of a white-light source (Halogen lamp) within th e microscope.
The microuidic chip is connected to a reservoir containing human myelocytic leukemia
cells (HL60/S4). The right side shows a close-up of the microuidic chip. A single cell
is trapped by two counter-propagating laser beams and starts to rotate when ow is
introduced.

4.1.1 Optouidic cell rotator
The optouidic cell rotator combines optical forces to trapand microuidic forces
to rotate single cells. The cells are trapped in a dual-beam laser trap, which is built
using two optical �bers that are located on opposing sides ofa microuidic channel.
Laser light that is coupled into these �bers results in two counter-propagating
laser beams that generate optical forces, moving the cell tothe center of the
channel (see �g. 4.1). The optical trap used in this work is anoptical stretcher
[Guc+05; Lin+07] operated at low laser powers and was built for the mechanical
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Figure 4.2, Optouidic cell rotation. The sketch on the left shows the geometry
of the optouidic cell rotator perpendicular to the imaging axis (comp. � g. 4.1). The
optical trap, indicated in red, is located a distance � z away from the center of the
microuidic channel. Thus, if ow is introduced into the channe l, the drag forcesFdrag

(blue) at the top and at the bottom of the cell (gray) have di�erent magnit udes. The
sum of the drag forces and the trapping forceFtrap results in a displacement � x with
respect to the center of the trap and introduces a torque which causes the cell to rotate
(indicated in green) [Kol+14]. The intensity images on the right side showcase one
revolution of a human myelocytic leukemia cell (HL60/S4) within a time i nterval of two
minutes.

characterization of single cells by Chii Jou Chan and Andrew Ekpenyong (e.g.
[Cha+15]). To rotate cells, ow is introduced into the channel. The optical trap is
located in the lower half of the channel and thus, due to higherow speeds at the
center of the channel, the cell experiences a torque and starts to rotate. Figure 4.2
describes the di�erent forces that act on the cell and shows a360� rotation of an
HL60/S4 cell in the optouidic cell rotator. Chii Jou Chan and I conducted the
presented measurements. The combination of optical trapping and microuidics
for tomographic imaging was �rst presented by Kolb et al., who used a similar
device to perform single-cell uorescence tomography [Kol+14]. The optouidic
cell rotator, in combination with a commercial microscope,facilitates tomographic
imaging of single cells.

Even though optouidic cell rotation is promising for single-cell tomography, it
is inaccurate in two ways. First, the optical trap is not completely stable. The
microuidic ow makes the cell move and rotate slightly in all directions. For
instance, comparing the intensity images in �gure 4.2 before (0 s) and after (122 s)
one revolution reveals a slight tilt. Second, the angle of rotation for each image,
which depends on the ow speed and the frame rate of the camera, is not known
during the measurement. These issues can be addressed with image pre-processing
and image analysis, which are discussed in section 4.2.
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4.1.2 Quantitative phase-imaging camera
To reconstruct the RI of single cells, ODT requires quantitative phase-imaging
techniques. Typically, quantitative phase-imaging is achieved with interference-
based techniques such as DHM, which extract the phase from an interference
pattern generated by an object and a reference beam [Sch+15]. In this work
however, phase images are obtained with a commercially available phase-imaging
camera (SID4Bio, Phasics, Saint Aubin, France). The imagingprinciple of this
camera, quadriwave lateral-shearing interferometry [Mou+06], is similar to that
of a Shack-Hartmann wavefront sensor [Cha05]: a di�raction grating is put di-
rectly in front of a camera, generating a pattern of di�raction spots on the camera
sensor (see inset in �gure 4.3). The lateral position of eachdi�raction spot is
dependent on the tilt of the wavefront that hit the di�ractio n grating at that par-
ticular point. Thus, each di�raction spot contains information on the gradient of
the phase from which the full phase can be computed in a post-processing step.
Such a phase-imaging camera has advantages over DHM: reducedcomplexity, easy
combination with commercially available microscopes, high phase accuracy1 (�
0:07� or 1:22� 10� 3 rad), and no dependence on the light source (e.g. no coherent
light is required). The drawback of this particular camera is the limited frame

Figure 4.3, Quantitative phase-imaging. The left side shows a section of a raw
interferogram of a human myelocytic leukemia cell (HL60/S4), which is recorded with
the SID4Bio camera in the \Camera Acquisition Scheduling" mode. Themagni�cation
of the interferogram shows the di�raction spots from which the phase iscomputed (see
text). The right side shows the processed phase obtained with theproprietary software
SID4Bio. The inset shows the corresponding intensity image, whichis not automatically
background corrected (see text).

1Here, phase accuracy is de�ned as the standard deviation of a background-corrected blank
phase image.
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rate (� 8 fps). The resolution of the camera is 1600� 1200 pixels, which translates
to an e�ective resolution of 400� 300 pixels, because an area of 4� 4 pixels is
required to determine the displacement of each di�raction spot that was gener-
ated by the grating. This results in a relatively large e�ective physical pixel size
of 29:6µm. To address these issues, the manufacturer recently brought forward a
phase-imaging camera with a higher frame rate (� 100 fps) and a higher e�ective
resolution (853� 720 px)2. Note that DHM also su�ers from a reduced e�ective
resolution, because of a low-pass �ltering step in Fourier space that is necessary
to separate the object wave from the central band. In summary, the SID4Bio is
a convenient tool that is suitable for the quantitative phase-imaging of biological
cells [Bon+09; Akn+15].

The sinogram acquisition process using the SID4Bio phase-imaging camera is
divided into three steps. First, the raw images are recorded using the \Camera
Acquisition Scheduling" functionality of the proprietary software SID4Bio (version
2.2.0.45) that is shipped with the camera. Second, in a post processing step, the
raw data images are converted to phase and intensity data with the same software.
This post-processing step is computationally demanding and therefore cannot be
done live during imaging. To obtain accurate phase data, thesoftware allows to
perform a background correction with a reference image recorded prior to the ac-
tual image acquisition. However, the intensity data are notbackground corrected
with that reference image. Therefore, in a third step, an additional background
image must be recorded prior to and/or after acquiring the raw sinogram data.
This step is crucial, because the background-corrected intensity information is im-
portant for di�raction tomography (see sec. 3.3.1). The image analysis, including
the background correction, of the obtained phase and intensity data are discussed
in the next section.

2personal communication with Arnaud Rehel, Phasics S.A., France
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4.2 Image pre-processing
The phase and intensity images from the SID4Bio camera require several pre-
processing steps before the actual RI reconstruction with the backpropagation
algorithm. The data need to be background-corrected and focused, the lateral
position of the cell in each image must be determined, and therotational angle of
the cell in each frame must be identi�ed. I addressed these issues with self-written
Python scripts that are summarized in appendix B.

4.2.1 Local �eld corrections
In an initial step, the region of interest that contains the cell must be found
(see ap. B.3). To retrieve the complex scattered �eld of the cell, several correc-
tion steps need to be performed. The most important step is the background
correction of phase and intensity data. The background-correction of the phase
data �( r D ) have three contributions. The reference phase data �ref

BG (r D ), a linear
ramp correction � ramp

BG (r D ) to correct for a tilt of the incident wave [Sch+15], and
a histogram-based background correction �hist

BG . The histogram-based correction
uses the mode3 of the phase data that are outside of the region occupied by the cell
to force the average background phase to be approximately centered about � = 0.
The intensity data I (r D ) are background-corrected by normalizing to the reference
intensity data I ref

BG (r D ). The amplitude data are then obtained by computing the
square root of the intensity data. In summary, the complex scattered waveus(r D )
is obtained using

us(r D ) =

s
I (r D )

I ref
BG (r D )

� ei [�( r D )� � ref
BG (r D )� � ramp

BG (r D )� � hist
BG ]: (4.1)

In some cases, the focal plane during imaging does not coincide with the rota-
tional axis. As previously discussed in section 3.3.2, the backpropagation algorithm
will be inaccurate unless a numerical focusing step (see ap.B.4) is performed prior
to the reconstruction. All individual �elds of a sinogram arefocused to the same
distance by �rst determining the optimal focusing positionfor each �eld and then
focusing the entire sinogram to the average of the optimal focus positions. A sum-
mary of the �eld corrections for exemplary data of an HL60/S4 cell is shown in
�gure 4.4. The �eld corrections remove image artifacts, which is the basis for the
image analysis steps that are discussed in the following sections.

3the most common histogram value
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Figure 4.4, Background correction and autofocusing. The top row illustrates the
image processing steps for the phase data. The phase data recorded withthe SID4Bio
camera are already background-corrected with the reference data. In addition, a linear
background phase ramp (bg-ramp) and the average background phase are subtracted
(see text). The background phase is the mode (red line in the insethistogram plot) of
the phase data in the region that do not contain the cell. The linear ramp correction and
the histogram correction have no visible impact on the phase image. Thisis an indicator
for a good background correction with the reference phase data. The autofocusing step
(focus distance 9:45µm) generates a phase image with a sharper cell boundary. Note
that the seemingly reduced size of the cell can be explained by thissharpening e�ect.
The intensity data are background corrected by dividing by a backgoundimage. The
background-corrected data appear smoother. The numerically autofocused intensity
data lose the black-and-white halo around the cell.
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4.2.2 Translational image alignment
The optouidic cell rotator has a design aw: small perturbations in the ow
pro�le, caused for instance by an asymmetric cell, result inuncontrolled movements
of the cell. Therefore, the trapped cell exhibits uncontrolled lateral motion and
may rotate arbitrarily during image acquisition. The lateral translational motion
can be addressed with image analysis, as discussed in this section. The rotational
degrees of freedom are discussed in the next section.

My approach to correct for the lateral movement of the cell involves �tting
a circle to the background-corrected, but not numerically autofocused intensity
images. These images exhibit a white halo around the cell which is well-suited
for the Canny edge detection algorithm [Can86]. To determine the center of the
cell, I applied a circle �t to the detected edge, as shown in �gure 4.5b. The
cell center of each intensity image in the sinogram is thus determined with sub-
pixel accuracy and the sinogram can be aligned to the cell center using spline
interpolation. As shown in �gure 4.5c, the resulting alignedsinogram exhibits
less noise along the angular direction than the original data. The sinogram image
alignment with this �tting-and-interpolation method is essential for the following
step, the determination of the rotational axis.

Figure 4.5, Translational sinogram alignment. a) The sinogram of a human mye-
locytic leukemia cell (HL60/S4) consists of 100 frames that cover an angular range of
almost two revolutions (680� ). The cell has a region of high refractive index which, due
to destructive interference, generates a black di�raction spot in the image plane at the
detector. The spot does not change between black and white, because the data are not
numerically focused to the center of the rotational axis. The cut at the center of the
sinogram shows the black di�raction spot as it passes thex=0 -plane of the intensity
sinogram. b) The center of the cell (red cross) is determined by �tting a circle (red) to
the contour (blue) of the white halo in the intensity image. This procedure is performed
for every image of the sinogram.c) All sinogram images are aligned with respect to the
center of the cell using spline interpolation of the order three. The zoomed inset shows
a smoother boundary of the cell across the sinogram when compared to (a).
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4.2.3 Determination of the rotational axis
In addition to the translational movement of the cell in the optouidic cell rotator,
the trapped cell does not always rotate about a stable axis. This phenomenon
seems to be a aw by design4 and is di�cult to address. However, it is possible
to record a full rotation of the cell about an axis that is nearly stable, but is
slightly tilted with respect to the image plane. As discussed in section 3.3.6, I have
derived and implemented a modi�ed version of the backpropagation algorithm that
addresses such an axial tilt. Thus, the challenge here is thedetermination of the
rotational axis and the rotational position for each sinogram image.

The determination of the rotational positions from the complex-valued sinogram
is no trivial task. Due to the RI of the cell, the intensity images exhibit black and
white di�raction patterns that, for a horizontal rotationa l axis, move up and/or
down at various speeds depending on the 3D structure of the cell. In addition,
this indeterminacy is made more complicated by the fact thatthe rotational axis
may be tilted as mentioned above. Kolb et al. [Kol+14] determined the rotational
angles by analyzing sections of the sinogram from uorescence images. However,
due to the tilted axis of rotation in the optouidic cell rota tor, this approach cannot
be applied here. I approached this problem by tracking a di�raction spot in the
sinogram images. Figure 4.6 shows the numerically autofocused images of a cell
with a di�raction spot that is generated by a high-refractive-index feature inside
the cell. I wrote the Python script determine rotation pt.py (see ap. B.5),
which detects the strongest signal, black or white, in the intensity images and

Figure 4.6, Determination of the rotational axis. The aligned and numerically
refocused intensity images of an human myelocytic leukemia cell (HL60/S4) are used to
determine the rotational position by tracking a di�raction spot. a) The di�raction spot
is black when it is located in a region of the cell that points away from the observer.
b) After passing the focal plane, the di�raction spot becomes white and moves in the
opposite direction. c) An ellipse �t (green) to the the tracked positions (black crosses)
allows to determine the rotational axis (green) of the cell. To rotational positions that
are used in the backpropagation algorithm are marked as blue circles.

4Such instabilities also appear in the supplementary videojbio 201300196smmovie02.mp4
in [Kol+14].
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�ts an ellipse to the obtained points. To ensure consistencywith the model of a
rotating sphere, the �t is designed in such a way that the ellipse is the projection
of a circle that is located on the surface of the unit sphere onto a plane. The vector
from the origin to the center of the ellipse determines the direction of the laterally
projected rotational axis. The minor axis of the ellipse determines the axial tilt
of the rotational axis. The axial tilt direction is determined by the shade of the
di�raction spot. A bright spot indicates that the feature is located on the side
of the cell facing the observer. A dark spot indicates that the feature is located
in the far side of the cell. In �gure 4.6, the dark spots are on the right and the
bright spots are on the left part of the ellipse. Therefore, the cell is rotating
about an axis whose right end sticks out of the paper plane. The drawbacks of
this approach are that the rotational axis is not entirely stable, that the tracked
position of the di�raction spot is imprecise, and that the spot is impossible to
track when it is located on the perimeter of the cell image. Therefore, the tracked
positions are projected onto the �tted ellipse and sinogramimages that did not
allow tracking are assigned to evenly distributed angular positions. The resulting
�nal rotational position of each sinogram image is projected onto a 3D circle on
the unit sphere, as indicated by the blue circles in �gure 4.6. The position of the
rotational axis and the points on the unit sphere are important parameters for
the backpropagation algorithm (eq 3.15). I tested and veri�ed the entire pipeline
from phase acquisition to RI reconstruction with a tilted axis of rotation with in
silico (FDTD) sinograms. The application of the pipeline to experimental data
are shown in the next sections.
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4.3 Tomographic reconstruction
4.3.1 Reconstruction of a human myelocytic leukemia cell
The pre-processing steps discussed in the previous sections produce all the data
required for the backpropagation step described by equation 3.15. The sinogram
data of an HL60/S4 cell are background-corrected (eq. 4.1), numerically focused
(lD = 0), and centered (see �g. 4.7a). The rotational position ofeach sinogram
image � j as well as the axial tilt angle of the rotational axis� tilt are obtained
by tracking a di�raction spot in the intensity images of the rotating cell. The
wavelength used in the algorithm is set to� = 550 nm, which is approximately
the average wavelength of the used halogen lamp. The resolution of the setup is
0:263µm/px. To apply the Rytov approximation, the recorded sinogram data are
interpreted asuR which is transformed touB using equation 2.28. The resulting
reconstruction with the backpropagation algorithm is shown in �gure 4.7b,c. To
visualize the sub-cellular structure of the cell, �gure 4.7c shows iso-surfaces at
di�erent RI values. I manually de�ned a boundary of the cell at an RI value
of 1.349, which is approximately the mean of the cytoplasm and the surrounding
medium, as shown in �gure 4.8. The volume de�ned by this iso-surface is 1200µm3

(1:2 pL), which corresponds to an e�ective radius (assuming sphericity) of about
6:60µm. The resulting average RI of the cell computes to 1.359. Witha refraction
increment of � � 0:2 mL g� 1 [Bar52; Dav+52], these values imply a dry mass of
about 140 pg.

The 3D visualization of the HL60/S4 cell clearly shows a smallregion of high
RI (red) that is responsible for the observed di�raction spot in the image plane.
The region appears as a black and a white di�raction spot in the intensity sino-
gram in �gure 4.7a and as a region of high phase retardation inthe corresponding
phase sinogram. The RI of this small region is above 1.38, which is shown in the
quantitative line plots in �gure 4.8. Furthermore, the iso-surfaces shown in the
cross-sectional image of �gure 4.7c uncover regions within the cell that appear to
have a lower RI than the average of the cell (black arrow).
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Figure 4.7, Refractive index reconstruction of an HL60/S4 cell. a) The cuts
through the center of the phase and intensity sinograms show that thereis a tilted axis
of roation, highlighted by a dashed sine curve that follows the di�raction spot (see also
�g. 3.15). b) Cross-sectional images of the reconstructed human myelocytic leukemia
cell (HL60/S4). c) The visualization in 3D shows the refractive index (RI) iso-surfaces
at 1.339 (violet), 1.357 (yellow), 1.363 (orange), and 1.380 (red). The orange iso-surface
is not shown in the right plot. In the cross-section of the right plot th ere are yellow
iso-surfaces visible at the inside of the cell, indicating that thecell contains regions with
low RI (black arrow). The red and blue dashed lines indicate the position of the line
plots shown in �gure 4.8.
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4.3.2 Accuracy and resolution
It is not possible to verify the quantitative RI reconstruction, because there is no
ground truth data of the imaged HL60/S4 cell. However, it is possible to quantify
the e�ect of the imaging noise and to compare the obtained average RI values to
the result of other techniques.

With the radius obtained from the 3D reconstruction, I performed a 2D phase
analysis following Sch•urmann et al. [Sch+15] for all 56 sinogram images and found
an average RI and a standard deviation of 1:366� 0:001. The di�erence to the
average RI of the 3D reconstruction may have multiple causes. First, the 2D
phase analysis does not take into account di�raction and assumes that the cell is a
homogeneous sphere. In addition, I have observed in Mie simulations that 2D phase
analysis over-estimates the average RI by about 0.002 to 0.005 (data not shown).
However, the 3D reconstruction clearly shows that the cell isnot homogeneous and
thus, the computation of the average RI from a weighted 2D phase image is prone
to error. The 2D approach does not describe the scattering ata cell as accurate as
the backpropagation algorithm does. Second, even though the pre-processing steps
give information about the tilted axis of rotation, the exact rotational positions are
not known and therefore, the 3D reconstruction may become blurry. This blurring
leads to a washed-out boundary between the medium and the cell, arti�cially
lowering the 3D RI. Therefore, due to the unknown magnitudesof the di�erent
contributions to deviations from the real value, it remainselusive which average

Figure 4.8, Line plots through the reconstruction of an HL60/S4 cell. The
position of the line plots through the reconstructed human myelocytic leukemia cell
(HL60/S4) are indicated as dashed lines with the same colors in �gure 4.7. The red line
plot goes through the maximum of the refractive index (RI). The blue line plot follows
the z-axis through the center of the reconstrucion. The axial extent of the cell, which
is determined by the isosurface with a manually selected RI value of1.349, is indicated
by the blue dashed line (cell diameter). The RI of the surroundingmedium (PBS) is
nm = 1 :335.
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RI value best represents that of the imaged cell.
The phase accuracy of the phase-imaging camera of 0:07� (see sec. 4.1.2) can be

translated to a noise in the RI reconstruction by generatingempty sinograms that
exhibit the same noise level and backpropagating them. The standard deviation
of the resulting noise in the RI is less than 5� 10� 4, which is well below the noise
introduced by the low angular sampling. Thus, the phase accuracy of the used
camera has no measurable e�ect on the RI reconstruction.

The resolution of the presented setup could be improved by increasing the mag-
ni�cation of the setup and by moving to shorter illumination wavelengths. Fur-
thermore, for white-light illumination, I had to assume an average wavelength of
� = 550 nm for the backpropagation algorithm. To improve accuracy, the spec-
trum could be reduced to a narrow band, allowing a better approximation of the
used wavelength. However, the largest contribution to the reconstruction error is
probably the inaccurate determination of the rotational position of the cell and
the subsequent backpropagation along directions that do not reect the acquisition
direction. To address this problem, an approach more robustthan the proposed
tracking algorithm is required.
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5. Conclusion and outlook

This thesis addressed the refractive index (RI) measurements of single cells in
suspension with optical di�raction tomography (ODT). On the theoretical side, I
approached the problem by deriving the theory of ODT, implementing the corre-
sponding reconstruction algorithm, and testing the algorithm using ground truth
data that I generated using the �nite-di�erence time-domain (FDTD) method.
In an experimental part, I could demonstrate ODT with an optouidic setup, as
previously described by Kolb et al. [Kol+14]. Myin silico studies con�rmed that,
with surprising accuracy, the Rytov approximation is well-suited for imaging bi-
ological cells [Sla+84; Kak+01; M•ul+15b] and thereby, I found strong evidence
against the notion that the Rytov approximation is equivalent to the inverse Radon
transform as proposed by Wedberg et al. [Wed+95]. Furthermore, my work con-
tributes to the advancement of ODT by introducing a novel method to deduce
the rotational motion of a cell from the recorded image data and by providing the
necessary software to perform the subsequent tomographic reconstruction.

My achievements are of general interest to the ODT community. For instance,
prior to my work, an implementation of the 3D backpropagation algorithm was
not publicly available. Furthermore, the additional information on data analysis
given in my thesis complements the ground work of Kak and Slaney [Kak+01],
makes ODT readily-available and simple to use, and places ODT into perspective
for single-cell imaging. As a result, my thesis contributes by greatly reducing
expenditures for data analysis in upcoming ODT applications.

My work presents a technique that could potentially extend the toolbox of
marker-free methods for cancer diagnosis. For instance, ithas been shown that
the mechanical characterization of human breast epithelial cells allows to tell the
di�erence between normal and cancerous cells [Guc+05]. Thephysical properties
(structure, refractive index, dry mass) that can be measured with the presented
ODT setup might yield useful complementary data to improve accuracy or to
determine new signatures for other cell types.

There are, nevertheless, also limitations to the presentedtechnique. In the
present work, I was not able to achieve identi�cation of cellorganelles, because
the necessary ground truth data, the positions of cell organelles, were not available.
However, expanding the presented setup with uorescence imaging will allow to
colocalize organelles, such as the nucleus, and enable their characterization using
RI, volume, or dry mass. With increasing knowledge, these RI signatures could
then eventually be used to identify sub-cellular organelles without the necessity
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of complementary uorescence imaging. A current limitation of the presented
setup is the low spatial resolution. By increasing the magni�cation, enhancing
the resolution of the detector, or switching to shorter, narrow-banded illumination
wavelengths, the reconstruction quality can be greatly improved. However, the
largest limitation of the optouidic setup in its current state is the inaccurate
determination of the rotational position of the trapped cell. Further research may
be advisable to improve tracking of the cell across the sinogram. One solution
could involve an intermediate regularization step using the forward process with
the Rytov approximation. In this approach, each sinogram projection is compared
to a corresponding projection that is computed from the 3D reconstruction. I
believe that an iterative search algorithm could then �nd the exact angular position
for each projection, e�ectively improving the reconstruction quality step-by-step.
However, this kind of approach would be computationally demanding and might
only be feasible with the application of graphical processing units (GPUs). To
quantify the accuracy of the proposed setup and to strengthen the validity of
the backpropagation algorithm, future studies could examine the reconstruction
of physical cell phantoms, for instance conglomerates of transparent beads with
known RI values.

Optouidic rotation in combination with ODT has a high potential for single-cell
analysis in microuidic devices, because the experimentalsetup is robust and easy
to use. The marker-free nature of ODT makes it complementaryto other imaging
methods and provides quantitative, structural data for thediscrimination and
identi�cation of single cells. To exploit the full potential of the proposed technique,
several issues still need to be addressed. My work has isolated, described, and
resolved some but not all of these issues, providing insightinto and extending the
foundation of ODT for single cells.
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A. Derivations

We have published the derivations presented in this appendix in a similar form
[M•ul+15d]. That publication and the text presented in this appendix are both
based on the same draft which was written by me.

A.1 The Rytov approximation
The Rytov approximation is well-known in the �eld of di�ract ion tomography
[Wol69; Sla85; Kak+01]. The simple translation between Born and Rytov ap-
proximation shown here is commonly used to simplify data analysis in di�raction
tomography.

The equations 2.23 given in section 2.3.3 were

u(r ) = exp( ' (r ))

u0(r ) = exp( ' 0(r ))

' (r ) = ' 0(r ) + ' s(r )

with the complex Rytov phase de�ned in equations 2.24

u(r ) = u0(r ) + us(r )

us(r ) = exp( ' 0(r )) [exp(' s(r )) � 1]:

Using these relations, the inhomogeneous Helmholtz equationbecomes

(r 2 + km
2)u(r ) = � f (r )u(r ) (A.1)

(r 2 + km
2) exp(' (r )) = � f (r ) exp(' (r )) : (A.2)

We can now computer 2 exp(' (r ))

r 2 exp(' (r )) = r [exp(' (r )) � r ' (r )] (A.3)

r 2 exp(' (r )) = exp( ' (r ))
�
r 2' (r ) + ( r ' (r ))2�

(A.4)

to obtain a di�erential equation for ' (r ).

exp(' (r ))
�
r 2' (r ) + ( r ' (r ))2 + km

2
�

= � f (r ) exp(' (r )) (A.5)

r 2' (r ) + ( r ' (r ))2 + km
2 = � f (r ) (A.6)
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Equation A.6 is a non-linear di�erential equation for the complex phase' (r ). In
the same manner, a di�erential equation for' 0(r ) can be derived

r 2' 0(r ) + ( r ' 0(r ))2 + km
2 = 0: (A.7)

The next step is to insert equation 2.23 and to �nd a di�erential equation for' s(r ).

r 2[' 0(r ) + ' s(r )] + ( r [' 0(r ) + ' s(r )])2

| {z }
(r ' 0 (r )) 2+2 r ' 0 (r )�r ' s(r )+( r ' s(r )) 2

+ km
2 = � f (r ) (A.8)

The terms marked with a line compute to zero (eq. A.7) and the equation above
becomes

r 2' s(r ) + 2 r ' s(r ) � r ' 0(r ) + ( r ' s(r ))2 = � f (r ): (A.9)

It is possible to simplify this expression by considering:

r 2u0(r )' s(r ) = r 2u0(r )
| {z }
� km 2u0 (r )

�' s(r ) + 2 r u0(r )
| {z }

u0 (r )r ' 0 (r )

�r ' s(r ) + u0(r )r 2' s(r ) (A.10)

#

(r 2 + km
2)u0(r )' s(r ) = 2 u0(r )r ' 0(r ) � r ' s(r ) + u0(r )r 2' s(r ): (A.11)

If we multiply equation A.9 by u0(r ) then we can substitute with equation A.11
to obtain

(r 2 + km
2)u0(r ) ' s(r )

| {z }
Rytov

� ' R (r )

= � u0(r ) [(r ' s(r ))2 + f (r )]
| {z }

Rytov
� f (r )

: (2.25)

Thus, the Rytov approximation assumes that the gradient of the Rytov phase
r ' R(r ) is small compared to the scattering potentialf (r ). We can now make use
of the Green's functionG(r ) again (eqns. 2.14) and arrive at the formula for the
Rytov phase' R(r ) [Kak+01]:

u0(r )' R(r ) =
Z

d3r 0G(r � r 0) f (r 0) u0(r 0) (A.12)

' R(r ) =

R
d3r 0G(r � r 0) f (r 0) u0(r 0)

u0(r )
(A.13)

By comparing this expression to the Born approximation (eq.2.19), we �nd that
we can compute the Rytov approximationuR(r ) from the Born approximation
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uB(r ) and vice versa.

' R(r ) =
uB(r )
u0(r )

(A.14)

uR(r ) = u0(r )
�
exp

�
uB(r )
u0(r )

�
� 1

�
(A.15)

uB(r ) = u0(r ) ln
�

uR(r )
u0(r )

+ 1
�

= u0(r )' R(r ) (A.16)

u(r )
Born
� u0(r ) + uB(r )

u(r )
Rytov
� u0(r ) + uR(r )

This simple translation between Born and Rytov approximation allows the appli-
cation of the Rytov approximation in tomographic algorithms derived for the Born
approximation, a fact that is exploited in di�raction tomography.

Validity of the Rytov approximation

This section attempts to make a statement regarding the validity of the Rytov
approximation in terms of a given RI distribution. The abovederivations used a
constraint for the scattered Rytov phase' s(r ).

(r ' s(r ))2 � f (r )

eq. 2.12
� km

2

" �
n(r )
nm

� 2

� 1

#

(A.17)

n(r )2 � nm
2

�
(r ' s(r ))2

km
2

+ 1
�

(A.18)

From this inequality, we want to derive a condition that connects the RI with its
gradient. We insert the de�nitions of the wave vectorkm and the RI distribution
n(r ) (eq. 2.9, 2.13) to retrieve a condition for the variation inRI � n (r )

n(r )2 � nm
2

�
r ' s(r )�

2�n m

� 2

+ nm
2 (A.19)

n(r )2 � nm
2 �

�
r ' s(r )�

2�

� 2

(A.20)

� n (r )2

| {z }
� 0

+2nm � n (r ) �
�

r ' s(r )�
2�

� 2

: (A.21)
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Because the local variation� n (r ) is small, we may neglect1 � n (r )2. The resulting
constraint for the phase gradient is [Kak+01]

jr ' s(r )j
2�

�

p
2nm j� n (r )j

�
; (A.22)

which can be interpreted as

jd' s(r )j
2�

�

p
2nm j� n (r )j � j dr j

�
: (A.23)

For any position r inside a sample, equation A.23 reads: the sample induces a
phase change over a period of 2� radians. This number must be smaller than
the variation in RI � n (r ) along the corresponding optical path scaled by the used
wavelength� . Thus, compared to the Born approximation, where the overall phase
change must be smaller than 2� , the Rytov approximation is also valid for thicker
samples, as long as the phase change per path length remains small [Sla+84].

It is desirable to translate the constraints on the change ofthe complex Rytov
phase' s(r ) to constraints on the RI n(r ). To achieve that, we assume that the
changes in the Rytov phase are equivalent to phase delays dueto the real RI

j' s(r )j � j ��( r )j: (A.24)

The phase delay ��( r ) at a location r is de�ned by the optical path that the light
has traveled before. We approximate the light path by a straight line along the
z-axis and express the phase change in terms of optical path di�erence

��( r )
2�

�
1
�

Z z

�1
� n (x; y; z0)dz0: (A.25)

The left side of equation A.22 thus becomes

jr ' s(r )j
2�

�
1
�

�
�
�
�r

Z z

�1
dz0� n (x; y; z0)

�
�
�
� : (A.26)

The right side is valid as long as the light path follows approximately a straight
line, which is true within homogeneous objects of a size larger than the wavelength
� . To simplify the expression, we only integrate over characteristic length scale
dc > � below which the light path can be approximated by a straight line (e.g
within the smallest homogeneous compartment in a cell). We change the limits of
the integral accordingly, allowing us to move the gradient inside the integral.

jr ' s(r )j
2�

�
1
�

�
�
�
�

Z dc

0
dzr � n (r )

�
�
�
� (A.27)

1This can be shown by solving the quadratic equation A.21 for� n (r ) and Taylor-expanding
for small r ' s(r ) to the second order.
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The integral over thez-component ofr � n (r ) computes to zero. The integral over
the other two componentsr ? � n (r ) can be approximated with its average alongz
(h�iz) multiplied by the characteristic length dc.

jr ' s(r )j
2�

�
1
�

jdchr ? � n (r )i zj (A.28)

Note that the quantity \axially averaged lateral gradient" along z is only de�ned
over the distancedc. However, because in tomographic imaging cells are imaged
from multiple directions, this relation must also hold truewhen replacingr ? by
r . In addition, we assume that the average gradient of the RI variation is similar
in magnitude to r � n (r ). We then obtain

jr ' s(r )j
2�

�
dc jr � n (r )j

�
: (A.29)

A comparison with equation A.22 yields a criterion of validityfor the Rytov ap-
proximation expressed in terms of the RI

jr n(r )j �

p
2nm jn(r ) � nm j

dc
; dc > � (2.29)

where we substitutedn(r ) = nm + � n (r ). Thus, the Rytov approximation is valid
when the gradient in the RI is much smaller than the local RI variation. For large
objects, the Rytov approximation eventually breaks down.

A.2 The Fourier slice theorem

The Fourier slice theorem is the central theorem in computerized tomography,
where x-rays can be assumed to travel along straight lines. The theorem makes
a connection between the Fourier transform of each recordedprojection and the
Fourier transform of the sample volume. This connection in Fourier space has led
to the development of the backprojection algorithm, which makes use of the fast
Fourier transform to reconstruct tomographic images e�ciently (see appendix A.3).

To derive the Fourier slice theorem, consider the projection of a 2D objectf (r )
onto a detector line. The object is rotated with respect to its center at r = 0
through an angle � 0. For an arbitrary angle � 0, the projection p� 0 (xD ) at the
detector line is the integral off (r ) along lines that are tilted by � 0

p� 0 (xD ) =
Z

dt f (x(t); z(t)) : (A.30)

The Fourier transform of this one-dimensional data at the detector line is

bP� 0 (kDx ) =
1

p
2�

Z
dxD p� 0 (xD ) exp(� ik Dx xD ): (A.31)
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Next, we de�ne the 2D Fourier transform bF (k) of the 2D imagef (r ):

bF (kx; kz) =
1

2�

ZZ
dxdz f (x; z) exp(� i (kxx + kzz)) (A.32)

In order to draw a connection betweenbF (kx; kz) and bP� 0 (kDx ), the coordinates of
the object f (r ) must be rotated through the angle� 0. The coordinate transform
from (x; z) to the detector line (xD and the and the integration parametert yields

bF� 0 (kDx ; kt ) =
1

2�

ZZ
dxDdt f � 0 (xD ; t) exp(� i (kDx xD + kt t)) (A.33)

f � 0 (xD ; t) = f (xD cos� 0 � t sin� 0, xD sin� 0 + t cos� 0) (A.34)
bF� 0 (kDx ; kt ) = F (kDx cos� 0 � kt sin� 0, kDx sin� 0 + kt cos� 0) (A.35)

For the casekt = 0, which implies slicing the Fourier transform bF (k) at the angle
� 0, we arrive at the Fourier slice theorem [Bra56; Mer76; Bro+76]

bF� 0 (kDx ; 0) =
1

p
2�

bP� 0 (kDx ) (3.5)

This formula, the Fourier slice theorem, states that the Fourier transform of a
projection bP imaged at an angle� 0 lies on a straight line that slices through the
center of the Fourier transform of the objectbF at the same angle� 0 (see �gure 3.3).

A.3 The backprojection algorithm
The backprojection algorithm is a tomographic reconstruction method that is
based on the Fourier slice theorem (appendix A.2). Its implementation takes ad-
vantage of the fast Fourier transform, which makes it a highly e�cient technique.

To derive the backprojection algorithm, we start by expressing the object func-
tion in terms of its Fourier transform bF (k).

f (x; z) =
1

2�

ZZ
dkxdkz

bF (kx; kz) exp(i (kxx + kzz)) (A.36)

We then perform a coordinate transform from (kx; kz) to (kDx ; � 0). It can be easily
shown that the Jacobain of this coordinate transform computes to

�
�
�
�det

�
d(kx; kz)

d(kDx ; � 0)

� �
�
�
� = jkDx j (A.37)

kx = kDx cos� 0 � kt sin� 0 (A.38)

kz = kDx sin� 0 + kt cos� 0 (A.39)

kt = 0 (A.40)

Therefore, using equations 3.5 to A.40, we obtain directionsfor computing the
object function f (x; z) from the Fourier-transformed projectionsbP� 0 (kDx ) [Bra56;
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Mer76; Bro+76; Cro+70; Ram+71]:

f (x; z) =
1

2�

Z
dkDx

Z �

0
d� 0 jkDx j

bP� 0 (kDx )
p

2�
exp[ik Dx (x cos� 0 + z sin� 0)] (A.41)

Here, the integral over� 0 runs from 0 to � . The integrals of kx, kz, and kDx are
computed over the entirek-space, i.e. over the interval (�1 ; + 1 ). The term
jkDx j is a ramp �lter in Fourier space2. Note that because of our chosen coordinate

system, at the angle� 0 = 0, kDx coincides with thekx axis (xD
� 0=0
= x).

We do not need to numerically integrate equation A.41. Instead, we identify
another Fourier transform for the reciprocal vectorkD that allows us to apply the
fast Fourier transform. The data in real space atr = ( x; z) are computed from
integrals over kDx and � 0. We can introduce a coordinate transformD � � 0 that
rotatesr through the angle� � 0 along they-axis, such thatx � 0 = x cos� 0+ z sin� 0.
In the following, equation we identify a one-dimensional inverse Fourier transform

f (x; z) =
1

2�

Z �

0
d� 0 D � � 0

( Z
dkDx jkDx j

bP� 0 (kDx )
p

2�
exp[ik Dx x � 0 ]

| {z }
FFT � 1

1D f jkDx j bP� 0 (kDx )g

)

(A.42)

We have e�ectively replaced the integral overkDx by a one-dimensional inverse
fast Fourier transform (FFT� 1

1D) and a rotation in real space (D � � 0 ). To obtain a
discrete description of the problem, we replace the remaining integral over � 0 by
a discrete sum overNA equidistant projections.

f (x; z) =
1

2�
D � � j

n
FFT � 1

1D

n
jkDx j bP� j (kDx )

oo
(3.6)

with the discrete angular distance �� 0 = �=N A and the discrete angles� j = j �� � 0

(j = 1; 2; : : : ; NA ). A numerical method that implements equation 3.6 is much
faster than the direct computation of equation A.41, becauseit can make use of
the fast Fourier transform. Figure A.1 depicts the process from image acquisition
to image reconstruction with the backprojection algorithm.

Besides the backprojection algorithm, there exist other reconstruction tech-
niques for computerized tomography that are all based on theRadon transform.
Iterative techniques such as SART (simultaneous algebraic reconstruction tech-
nique) are able to improve the reconstructed image quality but require a larger
computational e�ort.

2This ramp �lter is what gave the �ltered backprojection algorithm its name
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(a) original image,
500� 500 pixels

(b) sinogram,
500 projections

(c) reconstruction
from 30 projections

(d) reconstruction
from 100 projections

Figure A.1, Qualitative description of the backprojection algorithm. a) The
original two-dimensional image contains ellipses with di�erent gray-scale levels.b) The
sinogram shows 500 projection of image (a) from 0� to 180� . For the computation of the
sinogram, only the circular region of the original image (red) was used.c) Reconstruc-
tion using 30 equisdistant projections. d) Reconstruction with 100 projections. The
data were generated with radontea [M•ul13b]. This �gure was previously published in
[M•ul+15d].

A.4 The Fourier di�raction theorem in 2D
To derive the Fourier di�raction theorem, we start with the inhomogeneous wave
equation previously discussed in section 2.3.1.

�
r 2 + km

2
�

u(r ) = � � (r � r 0) (A.43)

In the 2D case, the Green's function is the zero-order Hankel function of the �rst
kind.

G(r � r 0) =
exp(ik m jr � r 0j)

4� jr � r 0j
(A.44)

=
i
4

H (1)
0 (km jr � r 0j) (A.45)

H (1)
0 (km jr � r 0j) =

1
�

Z
dkx

1
kz

expf i [kx(x � x0) + kz(z � z0)]g (A.46)

kz =
p

km
2 � k2

x (A.47)

Equation A.47 is a restriction for the wave vectork = ( kx; kz) in Fourier space.
Its magnitude is de�ned by the wave numberkm. To simplify the notation, we
introduce the unit vector s that describes the direction of propagation of a plane
wave k = kms. Accordingly, we introduce the following substitutions:

kx = kmp ; kz = kmM (A.48)

M =
p

1 � p2 ; M0 =
q

1 � p2
0 (A.49)

s = ( p; M ) ; s0 = ( p0; M0) (A.50)
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The unit vector s0 describes the propagation direction of the incident plane wave
u0(r ) and points at the z-direction when � 0 = 0.

u0(r ) = a0 exp(ik ms0r ) (A.51)

s0 = ( � sin� 0; cos� 0) (A.52)

With these substitutions, the Green's function becomes

G(r � r 0) =
i

4�

Z
dp

1
M

expf ik m [p(x � x0) + M (z � z0)]g : (A.53)

The �rst Born approximation in 2D then reads (see section 2.3.2)

uB(r ) =
ZZ

d2r 0G(r � r 0)f (r 0)u0(r 0): (A.54)

Our goal is to invert this equation and obtainf (r ) from the measured �elduB(r ).
To achieve that, we search for a way to rewrite the double integral as a Fourier
transform. In this notation, the Fourier transform bF (k) of a function f (r ) is
de�ned as

bF (k) =
1

2�

ZZ
d2r f (r ) exp(� ikr ) (A.55)

f (r ) =
1

2�

ZZ
d2k bF (k) exp(ikr ): (A.56)

In the derivations that follow, we will also make use of the identity of the Dirac
delta distribution

� (p � a) =
1

2�

Z
dx exp(i (p � a)x): (A.57)

Our �rst step is to insert equation A.53 into equation A.54:

uB(r ) =
i

4�

ZZ
d2r 0

Z
dp

1
M

exp[ik mp(x � x0) + ik mM (z � z0)] �

f (r 0)a0 exp(ik m(p0x0+ M 0z0)) (A.58)

We can replace the integral overr 0 with the Fourier transform of f (r 0), but have
to take into account the argument with the shifted coordinates (s � s0)

bF (km(s � s0)) =
1

2�

ZZ
d2r 0f (r 0) exp(� ik m(s � s0)r 0): (A.59)

Thus, the equation for the Born approximation simpli�es to

uB(r ) =
ia0

4�

Z
dp

2�
M

bF (km(s � s0)) exp(ik msr): (A.60)

A.4. The Fourier di�raction theorem in 2D 59



The �eld uB(r ) describes the the �eld of the scattered wave in the Born approx-
imation at any point r . However, we are interested in the �eld at the detector
line r D . Therefore, we substituter ! r D = ( xD ; lD ), where lD is the distance of
the detector plane from the center of rotation. Furthermore, we now explicitly
point out the � 0-dependence in the subscriptuB(r D ) ! uB;� 0 (r D ), which denotes
the angular position of the detector and the direction of theincoming plane wave
with respect to the samples0.

uB;� 0 (r D ) =
ia0

2

Z
dp

1
M

bF (km(s � s0)) exp(ik msrD ) (A.61)

The next step is to perform a one-dimensional Fourier transform ofuB(r D ) alongxD

bUB;� 0 (kDx ) =
ia0

2
p

2�

Z
dxD

Z
dp

1
M

bF (km(s � s0)) �

exp(ik m(pxD+ Ml D )) exp(� ik Dx xD ); (A.62)

where we identify the delta distribution

� (kmp � kDx ) =
1

2�

Z
dxD exp(i (kmp � kDx )xD ) (A.63)

� (kmp � kDx ) =
1

jkm j
� (p � kDx =km) (A.64)

which simpli�es out expression to

bUB;� 0 (kDx ) =
ia02�

2
p

2�

Z
dp

1
M

bF (km(s � s0)) exp(ik mMl D )� (kmp � kDx ): (A.65)

Finally, we use the delta distribution to solve the integral over dp and arrive at
the Fourier di�raction theorem.

bUB;� 0 (kDx ) =
ia0

km

r
�
2

1
M

bF (km(s � s0)) exp(ik mMl D ) (A.66)

Solving for the Fourier transformed objectbF yields

bF (km(s � s0)) = �

r
2
�

ik m

a0
M bUB;� 0 (kDx ) exp(� ik mMl D ) : (3.7)

The restriction in equation A.49 forces the one-dimensionalFourier transform of
the scattered wavebUB;� 0 (kDx ) to be placed on circular arcs in Fourier space.

kms = ( kDx cos� 0� kmM sin� 0, kDx sin� 0 + kmM cos� 0) (A.67)

kmM =
q

km
2 � k2

Dx (A.68)
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The argumentkm(s� s0) shifts the circular arcs in Fourier space such thatbUB;� 0 (0)
is centered at bF (0; 0) (see �gure 3.5).

A.4.1 Comparison to the Fourier slice theorem
We can write equation 3.7 in the same manner as equation 3.5, with the subscript
� 0 denoting the rotation of the objectf (r ). Hence, we can easily compare the 2D
Fourier di�raction theorem with the Fourier slice theorem from appendix A.2:

bF� 0 (kx; kz) = A rel �

r
1

2�
bP� 0 (kDx )

Fourier slice theorem
(eq. 3.5)

Fourier di�raction theorem
(eq. 3.7)

Sinogram
bP� 0 (kDx )

Fourier transform
of projections bP� 0 (kDx )

Fourier transform of complex
scattered wavebUB;� 0 (kDx )

Factor
A rel

A rel = 1 A rel = �
2ik mM

a0
exp(� ik mMl D )

Coordinates
(kx; kz)
sliced at � 0

kx = kDx

kz = kt = 0

(straight line)

kx = kDx

kz =
q

km
2 � k2

Dx � km

(semicircular arc)

Table A.1, The Fourier slice theorem and the Fourier di�raction theorem .
Both theorems connect the measured data to the Fourier transform of theobject. The
di�erences are the complex factorA rel and the distribution of measured data in Fourier
space.
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A.4.2 Comparison to the Fourier di�raction theorem in 3D
In 3D, the Fourier di�raction theorem can be derived analogous to the 2D case.
The main di�erence in the derivation is the Green's function, which in 3D becomes
[Alf66].

G(r � r 0) =
ik m

8� 2

ZZ
dpdq

1
M

expf ik m [p(x � x0) + q(y � y0) + M (z � z0)]g (A.69)

The Fourier di�raction theorem in 3D, which is derived in detail in [M•ul+15d],
is identical to the theorem in 2D. Table A.2 shows the only di�erences between
them, which are a result of the di�erent dimensions.

bF (k) = A rel �

r
1

2�
bUB;� 0 (kD )

2D 3D

Sinogram
bUB;� 0 (kD )

1D Fourier transform
of complex scattered

wave bUB;� 0 (kDx )

2D Fourier transform
of complex scattered wave

bUB;� 0 (kDx ; kDy )

Factor
A rel

A rel = �
2ik mM

a0
exp(� ik mMl D )

M =
1

km

q
km

2 � k2
Dx M =

1
km

q
km

2 � k2
Dx � k2

Dy

Coordinates
k at � 0 = 0

k = ( kx; kz)

kx = kDx

kz =
q

km
2 � k2

Dx � km

(semicircular arc)

k = ( kx; ky ; kz)

kx = kDx ; ky = kDy

kz =
q

km
2 � k2

Dx � k2
Dy � km

(semispherical surface)

Table A.2, The Fourier di�raction theorem in 2D and in 3D. The Fourier
di�raction theorem in 3D has the same form as the 2D version. The only di�erences
come from the di�erent number of dimensions. Note that this notation imp lies a rotation
about the y-axis and that the 2D version has coordinates (x; z). For a comparison to
the Fourier slice theorem, see table A.1.
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A.5 The backpropagation algorithm in 2D

The backpropagation algorithm solves the inverse problem for the Born or the
Rytov approximation for di�raction tomography. Its deriva tion follows closely that
of the backprojection algorithm discussed in appendix A.3. We again perform a
coordinate transform from (kx; kz) to (kDx ; � 0) and start by computing the inverse
2D Fourier transform of equation 3.7.

bF (km(s � s0)) = �

r
2
�

ik m

a0
M bUB;� 0 (kDx ) exp(� ik mMl D ) (3.7)

f (r ) = �

r
2
�

ik m

2a0�

ZZ
dkxdkz M bUB;� 0 (kDx )�

exp(� ik mMl D ) exp(ik m(s � s0)r ) (A.70)

(kx; kz) = km(s � s0) (A.71)

As described in table A.1, the input data are distributed alongcircular arcs in
Fourier space. The orientation of these arcs is de�ned by theacquisition angle� 0

with the rotation matrix D � 0 .

D � 0 =
�

cos� 0 � sin� 0

sin� 0 cos� 0

�
(A.72)

k = D � 0 k0 (A.73)

Here,k denotes the non-rotated Fourier space, whereask0 denotes the positions of
acquisition at a certain angle� 0. We have de�ned the angle� 0 such that, k0

x = kDx

and thereforek0
z =

p
km

2 � k2
Dx � km. The coordinate transform from (kx; kz) to

(kDx ; � 0) is fully described by

kx = kDx cos� 0 �
� q

km
2 � k2

Dx � km

�
sin� 0 (A.74)

kz = kDx sin� 0 +
� q

km
2 � k2

Dx � km

�
cos� 0: (A.75)

To perform the change of variables in the integral above fromdkxdkz to dkDx d� 0,
we compute the Jacobian matrixJ and its determinant.

J =
@kx@kz

@kDx @�0
(A.76)

=

0

B
@

cos� 0 + kDxp
km 2 � k2

Dx

sin� 0 � kDx sin� 0 �
hp

km
2 � k2

Dx � km

i
cos� 0

sin� 0 � kDxp
km 2 � k2

Dx

cos� 0 kDx cos� 0 �
hp

km
2 � k2

Dx � km

i
sin� 0

1

C
A

(A.77)
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The determinant of the JacobianJ computes to

det(J ) = kDx �

 

kDx �
kmkDxp

km
2 � k2

Dx

!

=
kmkDxp

km
2 � k2

Dx

: (A.78)

With the coordinate transform applied to equation A.70, we obtain the backprop-
agation formula

f (r ) = �

r
2
�

ik m

2a0�

Z
dkDx

1
2

Z 2�

0
d� 0

�
�
�
�
�

kmkDxp
km

2 � k2
Dx

�
�
�
�
�
M bUB;� 0 (kDx )�

exp(� ik mMl D ) exp(ik m(s� s0)r ) (A.79)

Note that the integration over � 0 goes from 0 to 2� , which results in a double-
coverage of the Fourier space. To correct for that, we introduce the additional
factor 1

2 . Furthermore, we express (s � s0) in terms of a lateral (t ? ) and an axial
(s0) component (eq. A.74 and A.75).

km(s � s0) = kDx t ? + km(M � 1) s0 (A.80)

s0 = ( p0; M0) = ( � sin� 0; cos� 0) (A.81)

t ? = ( � M 0; p0) = (cos � 0; sin� 0) (A.82)

By assuming that (kmM )2 = km
2 � k2

Dx

!
> 0, we can rewrite the backpropagation

formula as

f (r ) = �
ik m

a0(2� )3=2

Z
dkDx

Z 2�

0
d� 0 jkDx j bUB;� 0 (kDx ) exp(� ik mMl D )�

exp[i (kDx t ? + km(M � 1) s0)r ]: (A.83)

To derive the backpropagation algorithm from the above equation, we can apply
the same principles used in appendix A.3. We begin by introducing the rotation
D � � 0 through � � 0 about the y-axis that transforms r to r � 0 .

r � 0 = ( x � 0 ; z� 0 )

x � 0 = x cos� 0 + z sin� 0

z� 0 = � x sin� 0 + z cos� 0

t ? � r = x � 0

s0 � r = z� 0

f (r ) = �
ik m

a0(2� )3=2

Z 2�

0
d� 0 D � � 0

(

Z
dkDx jkDx j bUB;� 0 (kDx ) exp(� ik mMl D ) exp[i (kDx x � 0 + km(M � 1)z� 0 )]

)

(A.84)
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Because of the factorkm(M � 1) z� 0 in the integral, we cannot proceed exactly as
we did for the backprojection algorithm. Here, the inverse Fourier transform is
applied for all coordinatesz� 0 before the rotation is performed.

f (r ) = �
ik m

2� � a0

Z 2�

0
d� 0 D � � 0

(

FFT � 1
1D

n
jkDx j bUB;� 0 (kDx ) exp(� ik mMl D ) exp[ik m(M � 1)z� 0 ]

o
)

(A.85)

The discretization of the integral over � 0 can be performed according to ap-
pendix A.3.

f (r ) = �
ik m

2� � a0

NAX

j =1

� � 0 D � � j

(

FFT � 1
1D

n
jkDx j bUB;� j (kDx ) exp(� ik mMl D ) exp

�
ik m(M � 1)z� j

� o
)

(A.86)

with the discrete angular distance �� 0 = 2�=N A and the discrete angles� j = j � � � 0

(j = 1; 2; : : : ; NA ). In practice, the measured �eld at the detector is background
corrected, which implies dividing by the incident plane wave at the detectoru0(lD ).
This last step simpli�es the backpropagation formula to

u0(lD ) = a0 exp(ik m lD ) (A.87)

f (r ) = �
ik m

2�

NAX

j =1

� � 0 D � � j

(

FFT � 1
1D

(

jkDx j
bUB;� j (kDx )

u0(lD )
exp

�
ik m(M � 1)(z� j � lD )

�
) )

: (3.8)

The incident plane waveu0(lD ) is independent of the lateral detector coordinates
r D and can be interpreted as the normalization ofuB;� j (xD ) prior to its Fourier
transform to bUB;� j (kDx ).

As previously discussed, the Rytov approximation is better than the Born ap-
proximation for dielectric objects with the size of a coupleof wavelengths. Fig-
ure A.2 illustrates this extreme di�erence for the backpropagation of a dielectric
cylinder.
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Figure A.2, Line pro�le of a backpropagated cylinder. The refractive index
(RI) of the medium is nm = 1 :333 and the local variation inside the cylinder is� n (r ) =
n(r ) � nm = 0 :006. The radius of the cylinder is 30� (vacuum wavelength � ). The

scattered wave is computed at an optical distance ofzD = 100� from the center of the
cylinder and sampled at �= 2 over 512 pixels. The RI map is reconstructed on a grid of
512� 512 pixels. This �gure was previously published in [M•ul+15d].
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A.5.1 Comparison to backprojection
When comparing this equation with the backprojection algorithm from equa-
tion 3.6, we can see one major di�erence besides the di�erent�lter: for back-
propagation, the inverse Fourier transform must be calculated separately for every
distance z� j . In practice, one �rst needs to calculate the one-dimensional signal
bUB;� j (kDx ) exp(� ik mMl D ) and then expand the signal by one dimension through
the application of the second �lter exp

�
ik m(M � 1) z� j

�
. The inverse Fourier trans-

form is then computed along the axis with constantz� j and the resulting 2D data
are rotated by � j and added to the reconstruction plane. The name \�ltered back-
propagation" comes from an interpretation of thez� j -exponential, which looks like
a propagation inz� j -direction. Thus, the main di�erence to the backprojectional-
gorithm is the dependency on the distance to the detectorlD and the propagation
direction s0. Table A.3 shows the di�erences in detail.

f (x; y) =
A rel

(2� )3=2

Z
dkDx

Z 2�

0
d� 0 exp(iB rel) jkDx j bP� 0 (kDx ) (A.88)

backprojection
(eq. A.41)

backpropagation
(eq. A.83)

Sinogram
bP� 0 (kDx )

Fourier transform
of projections

bP� 0 (kDx )

Fourier transform
of complex scattered wave

bUB;� 0 (kDx )

Factor
A rel

A rel = 1
2

(double coverage)
A rel = �

ik m

a0

Exponent
B rel

B rel = kDx (t ? r )

t ? = (cos � 0; sin� 0)

B rel = � kmMl D + kDx t ? r + km(M � 1)s0r

t ? = (cos � 0; sin� 0)

s0 = ( � sin� 0; cos� 0)

Table A.3, Backprojection and backpropagation. The backpropagation formula
is of the same structure as the backprojection formula. However, dependencies onlD
and s0 illustrate the complexity that results from the �rst Born approxim ation (See also
table A.1). Note that the backprojection formula has a factor of 1

2 due to the integration
limits of � 0 (double coverage).
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A.5.2 Comparison to backpropagation in 3D
Table A.4 illustrates the di�erences between the backpropagation algorithm in 2D
and in 3D. As for the Fourier di�raction theorem (tab. A.2), the di�erences in
the backpropagation formula are only due to the dimensionality of the problem
[M•ul+15d].

f (r ) = �
ik m

2�a 0

� Z
dK D

� Z 2�

0
d� 0 exp(iB rel) jkDx j bUB;� 0 (kD )

2D 3D

Sinogram
bUB;� 0 (kD )

1D Fourier transform
of complex scattered wave

bUB;� 0 (kDx )

2D Fourier transform
of complex scattered wave

bUB;� 0 (kDx ; kDy )

Integral
dK D

� Z
dK D

�
=

1
p

2�

Z
dkDx

� Z
dK D

�
=

1
2�

ZZ
dkDx dkDy

Exponent
B rel

B rel = � kmMl D + kDx t ? r + km(M � 1)s0r

M =
1

km

q
km

2 � k2
Dx M =

1
km

q
km

2 � k2
Dx � k2

Dy

Vectors
r , s0, t ?

r = ( x; z)

s0 = ( � sin� 0; cos� 0)

t ? = (cos � 0; sin� 0)

r = ( x; y; z)

s0 = ( � sin� 0; 0; cos� 0)

t ? =
�

cos� 0;
kDy

kDx
; sin� 0

�

Table A.4, Backpropagation in 2D and in 3D. As noted in table A.2, the Fourier
di�raction theorems in 2D and 3D are similar. The only di�erences originat e from the
di�erent number of dimensions.
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B. Evaluation software

B.1 General
I performed all data analysis in this work using Python 2.7.6and the following
scienti�c libraries:

� numpy 1.10.1 (http://numpy.org )

� PyFFTW 0.9.2 (based on the FFTW library [Fri+98])

� scipy 0.13.3 (http://scipy.org )

� scikit-image 0.11.3 [Wal+14]

� trackpy 0.2.4 [All+14]

� unwrap 0.1.1 [Her+02] (recently moved to scikit-image)

B.2 Near-�eld scattering
For the computation of scattered �elds from theoretical cell phantoms, I made use
of several software packages:

Software Version Approach Use cases Developers

bornscat 0.1.0
Born/Rytov
approximation

2D phan-
tom

P. M•uller [M•ul]

GMM-
FIELD

2009-07-13 Mie theory sphere M. Ringler [Rin08]

MEEP 1.2.1 FDTD method
2D & 3D
phantoms

A. Oskooi, S. G.
Johnson, and others
[Osk+10]

mie�eld 0.0.1 Mie theory cylinder
P. M•uller, H. Su�arez
[M•ul+15a]; transl.
from [Zhu11]

Table B.1, Scattering software. The table lists the software libraries for near �eld
scattering and indicates what I used them for. Mie theory was only usedfor spheres
or cylinders. The other approaches were used for inhomogeneous objects aswell. A
resourceful compendium of light scattering code is provided by Thomas Wriedt at http:
//www.scattport.org/index.php/light-scattering-software .
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B.3 Phase imaging
In the course of this work, I wrote software for the analysis of quantitative phase
data, including phase-retrieval in digital holographic microscopy, background-cor-
rection of phase and amplitude data, and refractive index estimation of spherical
cells. The software described here has not been published and is available upon
request.

Software Version Description

dhmlib 0.2.1

Python library for phase-retrieval,
background-correction, refractive index
computation using a sphere model, and more;
partly inspired by a LabView script by
Sch•urman et al. [Sch+15].

raw2field.py 0.3.2

batch script that converts raw data (DHM,
SID4BIO) to quantitative phase images;
detects and crops cell ROI and stores
complex �elds for further analysis; based on
dhmlib

field2ri.py 0.3.2

batch script that computes the average RI
for the cells detected withraw2field.py ;
equivalent to the technique described in
[Sch+15]; based on dhmlib

Table B.2, Phase-imaging software. abbreviations: DHM: digital holographic mi-
croscopy, RI: refractive index, ROI: region of interest, SID4BIO: quantitative phase
imaging camera described in section 4.1.2; The listed software is available upon request.

B.4 Numerical focusing
The backpropagation algorithm with the Rytov approximation requires data that
are focused onto the rotational axis of the cell. If the experimental data are
defocused, it will have to be refocused using a numerical focusing algorithm. I
implemented a numerical focusing algorithm that is based onthe propagation of
the angular spectrum. To propagate a complex �elduB(x; y) by a distance � z, the
Fourier transform of the �eld is multiplied by the factor exp(ik mM � z) [Sal+91;
Goo05]

uB(xD ; yD ; z0 + � z) = FFT � 1
2D

�
eik m M � z � FFT 2D f uB(xD ; yD ; z0)g

	
(B.1)

M =
1

km

q
1 � k2

Dx � k2
Dy (B.2)

where FFT2D is the 2D Fourier transform of the detector image (xD ; yD ) and
(kDx ; kDy ) are the corresponding coordinates in Fourier space.

For experimental data, the exact focal position is usually not known. To �nd
the correct focal position, automatic focusing algorithmsare commonly applied.
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Software Version Description

nrefocus 0.1.4

Python library for numerical focusing;
supports optical transfer functions based on
the Helmholtz equation and the Fresnel
approximation; includes metrics and a
minimizer for autofocusing [M•ul13a]

Table B.3, Autofocusing software.

Figure B.1, Numerical autofocusing. a) The measured complex �eld of an human
myelocytic leukemia cell (HL60/S4) is defocused.b) By minimizing the average gradient
of the intensity image, numerical autofocusing determines the optimal focus at an axial
position of 6:35µm. c) The refocused phase image is less blurry and the intensity image
does not exhibit the strong halo visible in (a).

These algorithms minimize a prede�ned image metric to �nd the optimal focus.
In this work, I used the average gradient of the intensity image [Lan+08; Wu+14].
Experience shows that this metric is ideal for dielectric objects such as cells, be-
cause they become hardly visible in the intensity image. Theworking principle
of the autofocusing step is illustrated in �gure B.1. The initial intensity image
exhibits a strong halo, indicating that it is defocused. After �nding the minimum
in the average gradient with the automatic focusing algorithm, the halo in the
intensity image is much weaker. In addition, the phase imagebecomes less blurry.
Numerical autofocusing is a critical component in optical di�raction tomography,
but it requires the phaseand intensity images of the cell.

B.5 Tomographic reconstruction
I have implemented the tomographic reconstruction algorithms used in this work,
backprojection and backpropagation, in two separate packages shown in table B.4.
Many tomographic reconstruction algorithms exist that arebased on the inverse
Radon transform. However, reconstruction algorithms for 3Ddi�raction tomogra-
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phy were publicly unavailable prior to my work. To allow a comparison between
these two tomographic reconstruction algorithms, I implemented the backprojec-
tion and backpropagation algorithm in an identical way. Thenecessary function-

Software Version Description

ODTbrain 0.1.4

Python library that provides image
reconstruction algorithms forOptical
D i�raction T omography with aBorn and
Rytov A pproximation-basedI nversion to
compute the refractive index (n ) in 2D and
in 3D [M•ul+15b]

radontea 0.1.8

Python collection of algorithms to compute
the inverse Radon transform; In this work,
only the backprojection algorithm is used
[M•ul13b]

Table B.4, Tomographic reconstruction software.

alities to convert data in the form of a sinogram of complex-valued �elds to phase
data for backprojection or to complex phase data for backpropagation with the
Rytov approximation are available in the ODTbrain library.

In addition to the ODTbrain library, I wrote Python scripts t o automatically
align the images of a sinogram, determine the rotational position of the cell in
each sinogram image, and backpropagate the entire data set with the Rytov ap-
proximation. These Python scripts are listed in table B.5.

Software Version Description

field align.py 0.3.2
batch script that performs translational
image alignment; uses output of
raw2field.py (tab. B.2)

determine
rotation pt.py

0.3.2

batch script that determines the rotational
position of a rotating cell by tracking a
di�raction spot in the intensity image; uses
output of field align.py

backpropagate.py 0.3.2

batch script for backpropagation with the
Rytov approximation (based on ODTbrain,
tab. B.4); uses output offield align.py
and determine rotation pt.py

Table B.5, Preprocessing software for di�raction tomography. The listed soft-
ware is available upon request.
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C. Sample preparation

The human myelocytic leukemia cells (HL60/S4) were culturedunder standard
conditions at 37� C, 5 % CO2 in Roswell Park Memorial Institute (RPMI) medium
(Gibco, Thermo Fisher Scienti�c, Waltham, MA, USA). The cell culture medium
was supplemented with 10 % fetal bovine serum (FBS) and 1 % penicillin-streptomycin
(Gibco). Prior to the measurement, the cells were centrifuged at 115g0 (g0, stan-
dard gravity) for 5 min at 23 � C and resuspended in phosphate bu�ered saline
(PBS). The cells were imaged at room temperature (� 22� C).
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Acronyms

2D two dimensions, two-dimensionaladj.
3D three dimensions, three-dimensionaladj.

CT computerized tomography

DHM digital holographic microscopy
DNA desoxyribonucleic acid

FBS fetal bovine serum
FDTD �nite-di�erence time-domain; FDTD method: numerical

computation of light propagation based on the Maxwell
equations

GPU graphical processing unit

HL60/S4 human myelocytic leukemia cell line

ODT optical di�raction tomography

PBS phosphate bu�ered saline (bu�er solution)

RI refractive index
RMS root-mean-square metric; the RMS error quanti�es

tomographic reconstruction quality, see equation 3.10
RPMI Roswell Park Memorial Institute (cell culture medium)

SART simultaneous algebraic reconstruction technique
SD standard deviation

TV total variation metric; the TV error quanti�es
tomographic reconstruction quality, see equation 3.11
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Notation

Vector
Vectors are printed as bold symbols. To simplify the comparison between 2D and 3D
backpropagation algorithms, 2D vectors are de�ned in thex-z-plane, e.g.

r = ( x; z) (2D)

r = ( x; y; z): (3D)

Fourier transform
The unitary angular frequency form of the Fourier transform is used. The Fourier
transform bF (k) of a function f (r ) and its inverse are de�ned in N dimensions as

bF (k) =
1

(2� )N =2

ZZ
dNr f (r ) exp(� i kr ) (Fourier transform)

f (r ) =
1

(2� )N =2

ZZ
dNk bF (k) exp(ikr ): (inverse Fourier transform)

Delta distribution
The Dirac delta distribution is de�ned by the following identit y:

� (p � a) =
1

2�

Z
dx exp(i (p � a)x)

Nabla operator
The Nabla operator is de�ned in 2D and in 3D following the above de�nition of vectors.

r =
�

@
@x

;
@
@z

�
= ( @x ; @z) (2D)

r =
�

@
@x

;
@
@y

;
@
@z

�
= ( @x ; @y ; @z) (3D)

The Nabla operator is used to de�ne derivatives such as gradient (scalar product), di-
vergence (dot product), and curl (cross product), for instance:

r� f (r ) (gradient of the scattering potential f (r ))

r� B (r ; t) (divergence of the magnetic �eld B (r ; t))

r� E(r ; t) (curl of the electric �eld E(r ; t))
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Symbols

a0 amplitude of a plane waveu0(r )
� refraction increment

B (r ; t) magnetic �eld

c0 speed of light in vacuum
c speed of light in a dielectric mediumc = c0=nm

d diameter of an object
dc characteristic distance for the validity criterion of the

Rytov approximation
D � � j rotation operator that rotates by � � j about the y-axis
D tilt

� � j
rotation operator that rotates by � � j about a tilted axis

D (r ; t) electric displacement �eld
� (r ) delta distribution
� dopt relative optical thickness of an object compared to the

surrounding medium

E(r ; t) electric �eld
� n (r ) local variation of the refractive index, � n (r ) = n(r ) � nm

"0 permittivity of free space
" r (r ) relative permittivity of a material, describes how electric

charges inuence electromagnetic �elds

f (r ) scattering potential/object function; the inhomogeneity
in the Helmholtz equation de�ned by the refractive
index, f (r ) = km

2
h
(n(r )=nm )2 � 1

i

bF (k) Fourier transform of f (r )
FFT N D Fast Fourier transform operator in N dimensions. The

inverse operator is depicted as FFT� 1
N D

G(r ) Green's function of the Helmholtz equation
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H (1)
0 (x) zero order Hankel function of the �rst kind with

argument x
H (r ; t) magnetizing �eld

I (r ) intensity of an optical wave

j f (r ; t) free current density

k coordinate vector in Fourier space
k wave vector of an electromagnetic wave with the wave

number k = jk j = 2�n =�

kD Fourier coordinates corresponding to the spatial detector
coordinatesr D

km wave number in a medium with refractive index nm ,
km = 2�n m=�

lD distance between rotational center and detector plane
� vacuum wavelength of the light that is used for image

acquisition

M z -component of the unit vector s
M (r ; t) magnetization �eld
� 0 permeability of free space
� r (r ) relative permeability of a material, describes how

magnetic dipoles inuence electromagnetic �elds

n(r ) refractive index distribution of a sample,
n(r ) = nm (1 + � n (r ))

nm refractive index of a medium
NA number of images/projections in a sinogram

! angular frequency of an electromagnetic wave

p x-component of the unit vector s
p� 0 (r D ) projection of an object onto a line (2D) or plane (3D)

de�ned by r D at a rotational angle � 0
bP� 0 (kD ) Fourier transform of p� 0 (r D )
P(r ; t) polarization �eld
� 0 acquisition angle of a projection in a sinogram
' (r ) complex phase of a scattered wave,u(r ) = exp( ' (r ))
' 0(r ) complex phase of a plane wave,u0(r ) = exp( ' 0(r ))
' s(r ) scattering component of a complex phase

' (r ) = ' 0(r ) + ' s(r )
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' R(r ) Rytov approximation of ' s(r )
�( r ) phase of an optical wave
	( r ; t) scalar �eld for the description of wave propagation

q y-component of the unit vector s

R� 0 Radon transform operator along angle� 0

r D detector coordinates for tomography,r D = xD in 2D and
r D = ( xD ; yD ) in 3D with zD = lD

� f (r ; t) free charge density

s normal unit vector of an arbitrary plane wave,
2D: s = ( p; M ), p2 + M 2 = 1
3D: s = ( p; q; M), p2 + q2 + M 2 = 1

s0 normal unit vector of an incident plane wave,
2D: s0 = ( p0; M 0), p2

0 + M 2
0 = 1

3D: s0 = ( p0; q0; M 0), p2
0 + q2

0 + M 2
0 = 1

t time
t variable of integration for the Radon transform
t ? unit vector perpendicular to s0

� tilt tilt angle of the rotational axis of a sample with respect
to the image plane

u(r ) scattered wave,u(r ) = u0(r )+ us(r )
u0(r ) plane wave, solution to the homogeneous Helmholtz

equation
us(r ) scattering component of a scattered waveu(r )
uB (r ) Born approximation of us(r )
uB;� 0 (r D ) Born approximation uB (r ) at the detector plane r D for a

rotational position � 0 of the sample
uR(r ) Rytov approximation of us(r )
bUB (k) Fourier transform of uB (r )
bUB;� 0 (kD ) Fourier transform of uB;� 0 (r D )
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