
Simulation-based optimization of

geometry and motion of a vertical

tubular bag machine

Matthias Frank, Johann Holzweißig

matthias.frank@tu-dresden.de, johann.holzweissig@tu-dresden.de

Faculty of Mechanical Science and Engineering

Institute of Processing Machines and Mobile Machinery

Chair of Processing Machines and Processing Technology

Technical University of Dresden

Germany

Abstract

For food industry processes packaging machines with high throughput are required and one

way to improve the overall machine efficiency is to increase its working speed. However,

testing of prototypes is time and cost expensive. Therefore, simulation is used to evaluate the

process and adapt it. Optimization can help to find better machine designs by using simulations

to evaluate one solution.

This work uses the Discrete Element Method to model a vertical tubular bag machine for

packaging basmati rice. The Covariance Matrix Adaption Evolution Strategy optimizes the

simulation model and results in a significant machine speedup. This work is a guidance to

adapt this method for similar problems.

1 Introduction

Granular materials such as beans, coffee or

rice are widespread in our daily live. Packag-

ing these material is often done with vertical

tubular bag machines. Machine manufactur-

ers strive to design faster and more reliable

machines due to competitive pressure. De-

1



sign improvements are evaluated with experi-

ments in the real world which are often time-

consuming and expensive in the cost of mate-

rials. Simulation can help to reduce test ma-

terial and the number of prototypes because

only good solutions are build. Simulation al-

lows also a look inside the model and visual-

ize the results.

Optimization is an incremental process to

improve prototypes or simulation models. A

common way is to evaluate results of experi-

ments and adapt it to get a better solution. Of-

ten this is done by an experienced engineer.

Also, this process can be very time consum-

ing. By evaluating the experiment’s results

automatically, a mathematical optimizer gen-

erates candidate solutions, evaluates them by

simulation, compares the results and creates

new candidate solutions. This process can be

fully automated, so no or less user interaction

is necessary.

The approach of simulation-based opti-

mization with meta heuristics is here applied

to granular food packaging. This article pro-

vides detailed guidance to optimize granular

processes. It is indented to be easily repro-

ducible even for new users in the field. To this

end, we provide details about modeling, sim-

ulation, and optimization, provide hints, and

point out common pitfalls.

In section 1 we describe the problem and

our model. Section 2 gives an overview about

particle simulation and its model calibration.

Section 3 describes the theory behind our op-

timization technique, our implementation and

the results.

1.1 Problem Description

A vertical tubular bag machine is used for

dosing and packaging granular materials e.g.

food like rice, sugar or coffee. The granulate

is dosed using a cup with a defined volume.

The cup moves below a storage which buffers

Figure 1: Schematic illustration of forming a

plastic tube with a forming shoulder.

[2]

the granular material. Then the cup is filled

and is moved over the dropping hole and the

granular material falls through a hopper and a

tube into a plastic bag.

The plastic bag is made by pulling a plastic

film over a forming shoulder to wrap it around

the tube (figure 1). By vertically sealing the

tube is closed.

Between each portion of granular material

the tube is horizontally sealed and cut to get

separate bags with product inside.

In this work, the granular material is

Golden Sun Basmati rice and one portion

is 1279ml. The aimed machine speed is

100
cycles
minute which corresponds to 600ms per

cycle. For sealing, including a safety margin,

a time slot of 150ms is necessary. So the rice

must flow out at the end of the tube within

450ms. By scaling up the machine speed only

by increasing the cycles, there is a high risk

to violate the time slot for sealing. So it could

happen that a few particles get into the sealed

seam. This will lead to an incompletely closed

bag which promotes pest infestation or spoil

the product.

The aim of this work is to adjust the motion

of the dosing cup and the hopper geometry to

reach the desired machine speed by decreas-

ing the filling time while keeping the safety

2



time slot.

When shorter machine cycles are used, dy-

namic effects like trajectory of granulate must

be taken into account. So the hopper has to

adjusted in such a way to allow the granular

material get thrown through the hopper with

least obstruction as possible.

To solve this problem a DEM simulation

provides a process model for filling rice. The

geometry is designed as a parametric CAD

model. Exporting meshes and loading them

into the simulator works automatically. A

meta-heuristic optimizer iteratively generates

new parameter sets for motion and geometry,

the simulation evaluates these.

1.2 Geometry

The geometry can be designed with an ordi-

nary parametric CAD application. It can be

designed as a surface or a sheet1. For a fully

automated optimization, an application with a

macro API is necessary for exporting meshes

without user interaction.

The choice is FreeCAD2, an ambitious

parametric CAD application in an early stage

of development which bases on Open CAS-

CADE3. Basic design features of such typi-

cal applications are implemented but some are

missing until now like drawing or assemblies.

The main point of using FreeCAD in this

work is its Python API. It can be used di-

rectly as a Python module and, therefore, it

is possible to build or change parts directly

from Python scripts. In this way changing

data constraints in a FreeCAD part and the ex-

port of meshes can be implemented for fully

automated operation.

The dropping hole construction is designed

by defining some basic references. The hop-

1Only the inner surface is described here.
2http://www.freecadweb.org, version 0.14
3http://www.opencascade.org

ri

si

li

wi

sectional plane i

i 0,1,2,3

dosing cup
filled with rice

400

move over hopper

300

500

i 0

i 1

i 2

i 3

100

100

100

Figure 2: Schematic illustration of the geo-

metric degrees of freedom. Mea-

sures in millimeters.

3



per, tube, cup and dropping hole are hori-

zontally referenced by a dashed/dotted middle

line. Each is described by a sectional plane i,

illustrated in figure 2. Every sectional plane is

a rectangle with corners rounded by radius ri.

The length li and width wi defining the size of

the rectangle. The shift dimension si positions

the sectional plane regarding to the middle

line. The dosing cup does not use a shift di-

mension. The tube at the bottom of the sketch

has a fixed s3 0 because shifting the tube will

break connecting dimensions. Consequently

it will not fit in the construction. The drop-

ping hole is cut out of the base plane by sec-

tional plane s0 which is also the upper edge of

the hopper. This geometric model enables the

user to get a large variety of different geome-

tries. With si 0 and l0,1,2 l3, w0,1,2 w3 and

r0,1,2 r3, the hopper adopts the same shape

like the tube.

The hopper is conceived as a sheet metal

part. Therefore only the inner surface is de-

scribed. The FreeCAD feature Loft spans a

surface over the sectional planes s0,1,2,3. In

addition, the manufacturability of the hop-

per has to be considered. Often the opti-

mizer chooses values which lead to geome-

tries which are hard or expensive to produce.

Adding constraints is difficult and could hand-

icap the optimizer by adding spatial limita-

tions in the search space or inconvenient pun-

ishing terms. In the treatment described here,

no limiting contraints of this type were used.

If the optimizer does not result in an accept-

able geometry, manual modification mitigates

the issue.

1.3 Motion

In this work we use a simplified abstract

model of a form-, fill- and sealing machine

for simplicity to study the filling process. But

the methodology is applicable to commonma-

chines which normally use circular dosing cup

Figure 3: Initial Model of the Hopper

motion.

The dosing cup moves 400mm linearly over

the hopper. Assuming a continuous work-

ing machine the easiest way is to move the

cup with a constant velocity v. This would

simplify the optimization problem by reduc-

ing degrees of freedom. In that case the opti-

mizer will adjust the hopper shape to fit the

cup motion. Assuming the usage of servo

drives the adaption of motion is significantly

easier to change than the geometry of machine

parts. The main point of using non-linear mo-

tion is the compact dropping of the rice. For

the desired high machine cycle frequency the

rice has to fall compact through the hopper

and tube into the bag. When the cup arrives

the dropping hole and the intersection of cup

and hole are small only some few grains fall

through the hopper. During the cycle the in-

tersection gets larger and more particles are

dropped. At this point it could happen that too

much rice falls into the hopper so the risk of

bridges increases. The used Golden Sun Bas-

mati rice forms no permanent bridges within

this size of hoppers. But temporal bridges

slow down the particle’s velocity. If this hap-

pens the velocity of the dosing cup must be

reduced to drop fewer rice grains. It would be

beneficial to have at the beginning of the cy-

4



0.0 0.2 0.4 0.6 0.8 1.0

x, normalized time

0.0

0.2

0.4

0.6

0.8

1.0
y,
n
o
rm

a
li
ze
d
d
o
si
n
g
cu
p
p
o
si
ti
o
n

x1

y1

x2

y2

v

-v

Figure 4: Motion degree of freedom. Red

points represent the base points of

the motion function. The black ar-

rows visualize the domain of P1
x1,y1 and P2 x2,y2 .

cle a higher velocity to open the cup fast and

subsequently reduce the cup’s velocity to drop

the rice in a defined rate. Afterwards, the cup

must be accelerated to the starting velocity v

for the next cycle.

The motion is described by a motion trans-

fer function. It describes the normalized po-

sition of the dosing cup over the normalized

time. So the starting point of the motion rep-

resents x 0.0, where x 1.0 marks the end

time point of motion.

In this work the motion transfer function is

modeled with five degrees of freedom, con-

catenated by piecewise polynomials. Section

one and three are third order polynomials, the

mid section is a straight line. Figure 4 shows

one instance of the motion transfer function.

The red basis points P1 and P2 can be shifted

within the domain of black arrows. If y2 y1
the cup moves back.

The periodic velocity v (blue arrow) assures

the jerk-free transition of consecutive cycles.

So a wide range of different functions can be

created.

In principle it is possible to use higher or-

der polynomials instead of third order poly-

nomials to get high order derivatives. But for

simplicity in this work only cubic polynomi-

als are used.

2 Particle Simulation

Bulk materials like rice, coffee beans or pills

play an important role in processing and pack-

aging machines. The demand for faster ma-

chines requires new methods of machine de-

sign and optimization. In contrast to solids

or fluids, there is no generally acknowledged

theory which describes granular matter. Al-

though the physics of granular matter are only

based on mechanical interactions, the physi-

cal description proves very complex due to the

large number of reaction partners.

Due to the development of more powerful

computers, it is possible to model and simu-

late granular matter for understanding the ba-

sic mechanism of granular matter through nu-

merical simulations. There are different meth-

ods for the simulation of particle systems. For

some problems only the whole system behav-

ior is in the scope of interest. These can be

solved with continuum approaches [20].

One example of such a problem is the cal-

culation of the wall tension in tanks or silos

[14]. But the approach loses its validity if sin-

gle particle effects play a major role. In this

case, a particle based method like the discrete

element method (DEM) can be used.

5



2.1 Discrete Element Method

In comparison to continuum-based approaches

the DEM considers the behavior of individ-

ual particles. The trajectory and rotation of

each particle are obtained by using a numeri-

cal time integration scheme. The calculation

of the forces acting at a contact point of two

colliding particles is done by applying suit-

able contact models [5, 23]. The forces are

calculated from the overlap of two colliding

particles with virtual spring and damper ele-

ments (figure 5). Newton’s equation of mo-

tion is solved by numercal time integration.

To reduce the computation time, sphere or

multispheres are often used for modeling the

shape of the real particle geometry. A good in-

troduction in DEM modeling and simulation

is given in [21].

normal force tangetial force

Pi Pj

Figure 5: DEM contact model

2.2 Modeling and Simulation

This section describes how the problem is

modeled and the DEM is implemented.

Scene Construction For simulation the

open source DEM simulator Yade4 is used

in which a variety of constitutive laws are

implemented. The core of Yade is written

in C++. For scene construction it provides

4https://yade-dem.org/

Figure 6: A Golden Sun Basmati rice grain

and its DEM representation.

Python bindings. Yade can be used either in-

teractively with 3D viewer and Python con-

sole or in batch mode.

A model script for Yade is written in

Python. Yade comes with functions for gener-

ating or loading sphere packings, materials or

meshes. For post processing simulation traces

can be exported in VTK5 format or 3D ren-

dering of the scene. In batch mode input files

are specified to create non-interactive simula-

tion runs. User-specific functions can be used

for evaluation.

Rice Modeling The DEM approach can

handle a lot of different particle types, e. g.

spheres, ellipsoids, cylinders, superquadrat-

ics or polyhedrons. Often particles, espe-

cially spheres, can be composed to clumps

with rigid connection or damped springs be-

tween the clump members. The advantage of

spheres, compared with other particle repre-

sentations, is the simplicity of detecting con-

tacts between particles. Assuming two parti-

cles Pi and Pj with their radii ri and r j and

positions xi and x j then equation 1 gives the

distance dsur f ace between the surface of two

particles. If dsur f ace 0 the particles are in

5http://www.vtk.org/

6



high speed camera

bulk cone

fill level

mean fill level

Figure 7: Calibration experiment setup

contact.

dsur f ace xi x j ri r j (1)

The contact detection of other particle shapes

results in more complex equations and leads

to higher computational costs.

Often granular materials do not have a

spherical shape. Idealizing these materials

with spheres can cause unexpected side ef-

fects during simulation. Therefore we clump

spheres together to complex particle shapes.

The size and shape of the spherical clump

members are a compromise between model

accuracy and computational efficiency.

DEM-Model Calibration Yade comes with

a variety of different build-in constitutive laws

including the well-known Cundall-Strack [5]

constitutive law. Choosing one should be

done really carefully to reproduce all relevant

macroscopic effects of the granular material.

For finding appropriate material parameters

we design a small experiment (figure 7) which

(mostly) can be evaluated automatically and

therefore does not require much user interac-

tion. A transparent hopper is filled with 150g

of Golden Sun Basmati rice. The rice flows

out of the hopper and creates below the hop-

Table 1: Material Parameter Steel Hopper and

Rice

Parameter Value Unit

damping d 0.125

gravity g 1 d 9.81 m
s2

Steel Hopper

Young’s modulus E 2e11 Pa

Poisson’s ratio ν 0.33

density ρ 7800
kg

m3

friction µ 25

Rice

Young’s modulus E 1e8 Pa

Poisson’s ratio ν 0.2

density ρ 1592.67
kg

m3

friction µ 43

per a bulk cone. The mean fill level is tracked

over time with an high speed camera.

The experiment is also implemented in a

DEM simulation. During a simulation it is

possible to track also the fill level. Com-

paring the fill level time series from experi-

ment and simulation gives one criterion to de-

cide whether the simulation model is realistic.

Other criteria are the angle of respose of the

bulk cone or the shape of the fill level. But

these criteria can not be tracked reliable so

they have to be evaluated by hand.

To calibrate the model, we must define the

particle shape and material parameter. The

Cundall-Strack [5] constitutive law uses the

Young modulus, Poisson’s ratio and a friction

value per material. A global damping param-

eter handles the restitution.

The particle shape especially the number,

size and position of spheres within a clump

affects the flow behavior of the granular ma-

terial. If a particle is more spherical, it can

better roll than one with a cylindrical shape.

7



The grooves between two spheres can cause

an implicit source of friction. Particles can at-

tach to each other or can get caught on edges.

In [19] the rice grain is modeled with

11 spheres with nearly original measures for

length and width. But 11 spheres with a

diameter between 1mm to 2mm per clump

leads to a huge demand on computational ef-

fort. Therefore we studied clumps with differ-

ent number of spheres per clump. With two

or three spheres per clump the particle is to

spherical. Despite of high friction values the

flow out time in the simulation was signifi-

cantly shorter than in the experiment. There-

fore five spheres per clump is a good compro-

mise between model detail and computational

effort.

Figure 6 shows a comparison of a real rice

grain and the DEM particle.

Clearly evaluated the influence of particle

shape within a DEM simulation of rice in a

ploughshare mixer [4]. He used spherical and

superquadratic particles to model rice grains

and ends up with a significant better model be-

havior with the more realistic superquadradic

particles than the spherical ones.

The material parameter of the hopper are

set according to table 2. Due to the small par-

ticle velocity along the hopper walls friction

is the crucial material parameter.

In [19] some material parameter for rice

are given with E 2e8Pa, ν 0.2 and ρ

1574
kg

m3
. These values are used as a starting

value for calibration.

The experiment video captured with the

high speed camera (figure 7) is processed with

MATLAB® Image Processing Toolbox™. So

it is possible to extract the hopper mean fill

level over time. This experiment was repeated

five times and the time series averaged (see

green plot figure 8).

The calibration of the DEM material pa-

rameters can be formulated as an minimiza-

Table 2: Material Parameter of the transparent

hopper.

Transparent Hopper

Parameter Value Unit

Young’s modulus E 3e9 Pa

Poisson’s ratio ν 0.41

density ρ 1190
kg

m3

friction µ 20

Figure 8: Mean fill height over time im simu-

lation and experiment.

tion problem. The objective function is the

summed squared point-wise differences of the

mean fill level over time. The objective func-

tion has its minimum if both plots are equal.

Hence, the experiments and simulations have

the same fill level at every time step and the

hoppers are empty at the same time point.

In theory the objective function converges to

zero but in practice always remains a finite

value due to discrepancies of the model and

the experiment.

The degrees of freedom of the optimization

are friction, Young’s modulus (only order of

magnitude), Poisson’s ratio of the rice parti-

cles, friction of the hopper and global damp-

ing. The optimization is implemented with

8



Figure 9: Rice flows out of a hopper, compar-

ison between simulation and exper-

iment

the SciPy6 box-bounded L-BFGS implemen-

tation. For evaluating one parameter set one

simulation has to be performed. This took

about 10 hours on an Intel® Core™ i7-3770.

The result of the optimization is shown in

figure 8. The green plot shows the mean fill

level of the experiment, the blue plot shows

the fill level of the simulation. As expected

the plots are not equal, but quite similar.

Bridging, the bulk cone angle of repose

and the shape of fill level surface can not be

tracked and evaluated reliably with comput-

ers. Therefore, the effects are compared man-

ually. Figure 9 shows two frames of the com-

parison video of the optimization result.

At this point the main part of the calibration

is done. As the final step the DEM model has

to be calibrated at the desired machine.

The hopper and the following tube are

made from stainless steel, the hopper is sand-

6http://docs.scipy.org/doc/scipy-0.13.

0/reference/generated/scipy.optimize.

fmin_l_bfgs_b.html

blasted. At the end the model has to be cal-

ibrated for the steel parts. But the intrans-

parency of steel disturbs the usage of cameras.

Therefore, also a transparent hopper and tube

are used. The machine runs with 90
cycles
min and

doses 1kg rice per cycle. A high speed video

of the hopper section is captured and manu-

ally compared with the simulation. The video

analysis with MATLAB® of this setup is dif-

ficult because there are no easily extractable

characteristics. Some points which are com-

pared are shape of rice falling through the

hopper, the points in time when the first re-

spectively last rice grain passes the hopper.

This experiment is used to fine tune the

material parameters obtained from the opti-

mization and validate these in a realistic sce-

nario. Young’s modulus and Poisson’s ratio

were correctly determined by the optimiza-

tion. But friction and damping of all mate-

rials are sensitive to changes in scenario and

particle speed. Therefore, a couple of combi-

nations are tried out.

One simulation run with 1kg rice takes

round about 30h on four cores7. The hopper

opening in the machine is significant larger so

scaling the particles to reduce the computa-

tional effort is a good choice.

In [3] the rice particle of figure 6 is scaled

by a factor of 1.5 without significant lost of

accuracy. The particle scaling reduces the

time per simulation run to 12h. Figure 10

shows the comparison of simulation and ex-

periment with the final material parameters

from table 2.

7The granular material is less dense while falling

down so the Verlet algorithm can work more effec-

tive.

9



2.3 Numeric Noise

This section explain floating point issues by

using DEM which influences the selection

of optimizers but is not essential for un-

derstanding the main point of this work.

Figure 10: Rice flows out of the dosing cup through the hopper. Comparison between simula-

tion and experiment

DEM simulation is a numeric method to solve

differential equations. Typically, computers

use floating point numbers to represent real

numbers. But floating point data types are

finite. A typical 64 bit double variable has

approximately 16 decimal fractional digits8.

Hence, numbers with more fractional digits

are rounded. This leads to some difficulties.

The main problem with respect to DEM is the

invalidity of associativity and distributivity.

This means these properties are valid for intu-

itive usage. The terms (5.0 + 3.0) + 2.0

and 5.0 + (3.0 + 2.0) result still in 10.0

Therefore associativity seems to be valid. But

the small Python example in listing 1 shows a

case where associativity does not hold.

Listing 1: error-prone terms for addition

1 a=(1./19.+ 1./24.) +1./17.

2 b= 1./19.+(1./24. +1./17.)

8double, with 53 bit mantissa, 53 log10 2 16

Pythons standard floating point type is

double. So the results are:

a 0.15312177502579977

b 0.1531217750257998

and the corresponding difference is:

a b 2.7755575615628914e-17

The error is some orders of magnitude

smaller than the result’s accuracy a user would

expect. So within this example the error does

not matter.

The error becomes critical if many opera-

tions are subsequently executed and the error

is accumulated. If a sequence of operations is

executed in the same order the error is always

the same and maybe undetected because every

time the algorithms results in the same value.

Often numeric programs are parallelizable.

According to associativity, it does not matter

which order of summation is used to calculate

10



the result. Thus, some threads can calculate

partial result and finally reduce them to a fi-

nal result9. The examples tell us associativity

does not hold every time but the used algo-

rithms uses this fact to speed up performance.

So if a numerical algorithm is executed, the

result is error-prone, hopefully in a small or-

der of magnitude. If the algorithm is executed

single-threaded, the error is always the same.

But with multi-threaded execution the opera-

tion system schedules the threads in quasi ran-

dom order. Because of this execution order of

the floating point operations, the result is dif-

ferent between some executions. Hence, the

algorithm becomes non-deterministic.

Regarding to DEM simulation, the floating

point issue is problematic because DEM is

an iterative algorithm. Hence, every iteration

step is executed with the noisy data of its pre-

decessor. With increasing iteration number,

the error grows step-by-step. This leads to

small displacements of the particles over time.

Often there are no macroscopic effects notice-

able. If a simulation run is evaluated manu-

ally, small inaccuracies are not conspicuous.

Some instabilities within the simulation are

often fixed by reducing the time step. But this

do not solve the problem in general. Smaller

time steps increase the stability of the algo-

rithm, but also increases accumulated round-

ing errors. More details about floating point

arithmetics can be found in [9, 7].

Optimization with DEM-Models The

problem occurs if a multi-threaded DEM sim-

ulation is used to derive an objective function

for optimization. Through the high number

of steps10 the error can be noticeable. In this

work, the error is nearly half a order of mag-

nitude of the objective function. It depends

9Adding up large series of floats is also problematic

because of cancellation. See [24, 16]
10105 to 106 per simulation run

on CPU architecture, time step size and num-

ber of particles. A pair of error-prone objec-

tive functions values are in some situations

not clearly decidable whether it is a good or

bad one. Assuming a minimization problem

the bad objective value, biased with a nega-

tive error can exceed the good one with a pos-

itive error. So an optimizer would choose the

bad one for generating the next iteration. A

Quasi-Newton optimizer would have serious

difficulties to determine correct gradients. If

the noise has a similar order of magnitude like

the objective, the step size for determining the

gradient has to be large. Otherwise the gradi-

ent is noisy and misleads the optimizer. How-

ever, large step sizes increase the risk of step

over an extrema.

This problem is minor if the (metaheuristic)

optimizer explores the search space. If the in-

dividuals are distributed over the whole search

space, a big difference in objective values can

be assumed. In this phase the differences in

objective values are greater than uncertainty

of error-prone evaluations. So the optimizer

can decide which are good and bad individu-

als.

In the phase of exploitation, typically the

differences of objective values are smaller. So

it is harder to decide between the individuals.

There are some strategies to handle the uncer-

tainty. The simplest approach is to run repli-

cations for every individual and average the

resulting objective values. This would burn a

large additional amount of computing power

but leads to more reliable result.

In [8] an approach is given to adapt the cal-

culation accuracy during optimization11. For

numerical algorithms this means changing the

floating point data type, e. g. from single,

double to long double. So the precision

of calculation is increased and the uncertainty

shifted to a smaller significance level. Using

11This article is related to Discrete Event Simulation.

11



more and smaller particles does not help at

this point. This would increase the model de-

tail but not the numerical stability. Therefore

the data types must be changed and recom-

piled within the simulator. So this approach

causes additional code maintenance. The data

types of Yade can be changed via a macro dur-

ing compilation.

In [12] an adaptive method is given to

reevaluate individuals of a population rank-

wise. Individuals are sorted by their objec-

tive value and reevaluated. The method as-

sumes the uncertainty is too large if their rank

changes at this point. It is also possible to

reevaluate only the better individuals of a pop-

ulation because only these are relevant to gen-

erate the offspring.

Another approach is to let the uncertainty

unconsidered. In phase of exploration it is

not so important because the decision is of-

ten correct [8]. Also, the expected number of

details of the optimization must also be de-

fined. If we expect (nearly) perfect solutions

uncertainty handling is unavoidable. But if

good candidate solutions are sufficient, then

uncertainty handling is not necessary because

exploitation or manual fine-tuning is done by

the user.

3 Optimization

The optimizer is the central part to find good

candidate solutions of the formulated prob-

lem. There is a huge amount of different

optimization strategies. They can be divided

in local and global ones. Local ones, e.g.

greedy algorithms or L-BFGS using gradients

to choose the search direction with the best

benefit. Strategies of this class typically con-

verges really fast to extrema, but often it is a

local one. To find global extrema the algo-

rithm must be restarted several times at differ-

ent points in the search space. But there is no

guarantee to find it. Objective functions based

on simulations typically do not have known

derivatives. Hence, their gradients must be

approximated which can negatively influence

the performance or the quality of the results.

Is the objective noisy determining a gradient

can be difficult or expensive (see section 2.3).

The other class are global optimization

strategies. Widely used algorithms are sim-

ulated annealing, particle swarm optimization

or some variants of genetic algorithms or evo-

lution strategies. Often this class of algo-

rithms is robust to multitude of local extrema,

uncertainty or strange constraints. The main

disadvantage of this algorithm class is there is

no proof about convergence or correctness.

All of these optimizers have one point in

common: they do not guarantee to find the

global extrema.

The problem described in this work is de-

fined in a box-bounded continuous domain.

With 13 degrees of freedom there is no reli-

able assertion about presence or amount of lo-

cal extrema. For this reason, the problem has

to be treated as black-box with noisy objective

values.

3.1 Constraints and Penalty

Terms

Constraints are search space restriction of the

optimization problem. They can be distin-

guished into result requirements and restric-

tions to candidate solutions. They must be

distinguished from the bounds of search space

which only limits the problem to a more fea-

sible problem size. If solutions were found at

the search space limits, the bounds were de-

fined adverse.

Restrictions Hard constraints are condi-

tions to candidate solutions which must never

be violated. Especially for using a real ex-

12



periment instead of a simulation the test sta-

tion could break down. So the optimizer must

not enter these forbidden regions of search

spaces.

Requirements Soft constraints are re-

quirements to the final result, e.g. the dosing

cup should be empty after filling the bag. But

if the cup is not empty no model or test bed

breaks, it is only a non optimal candidate so-

lution.

Hard constraints can limit the performance

or success of the optimizer. If the optimizer

searches in region of search space which bor-

der to a hard constraint then the optimizer

have to do one large step12, which requires the

possibility of adapting the step size, to negoti-

ate the forbidden region. If this is not possible

the optimizer converges prematurely.

By using soft constraints these specific re-

gions are only undesired. So the optimizer

can visit these regions but gets only badly

evaluated individuals. So it is possible to go

through a region of search space with soft

constraints with smaller steps and reach on

the other side a maybe better region [6]. Soft

constraints are modelled with penalty terms.

In doing so, penalty points are added to an

objective value to cover undesired system be-

haviour.

3.2 Objective Function

In section 1.1 a description of the problem

was given. In this section the aim of this work

is formulated into an objective function.

The aim is to speed up the filling time, i. e.

the time which the rice needs to pass the end

of the filling tube. So the naive approach is to

measure the time between the first and the last

12Some smaller step is forbidden because they would

violate the hard constraint.

particle. Because of numeric noise (see sec-

tion 2.3) it is inconvenient to model the whole

system behaviour dependent on only two par-

ticles. Numeric noise slightly changes the par-

ticle position or velocity on every iteration. In

the end the particle positions respectively ve-

locities are error-prone in an order of magni-

tude which makes the objective value useless

for optimization.

Therefore, a more robust approach is used

here. If a particle passes the end of the

filling tube, a time stamp is inserted in the

list listOfTimestamps. At the end of the

simulation the standard deviation is calcu-

lated (equation (4)) over listOfTimestamps.

When the rice needs a long time to fall down,

the many different time stamps appear in the

list. Hence, the standard deviation is large. If

the rice falls down compactly, there are less

different time stamps and the standard devi-

ation is small. So the objective value is not

dependent only on two but on all particles.

lc 0.05 leftParticlesInCup() (2)

lh 0.5 leftParticlesInHopper() (3)

g std(listOfTimestamps[0:-20]) (4)

f g lc lh (5)

In some rare cases one particle sticks on

edges of the hopper. If this happens to the last

one, the objective value is significantly en-

larged in spite of ”good” model behavior. So

the last 20 particles are excluded from apply-

ing the objective function see equation (4)).

According to section 3.1 only soft con-

straints are used. Equation (2) counts the

number of particles which remain in the cup at

the end of a simulation run. The dosing cup is

not empty so the volume in the bag is smaller

than desired.

Equation (3) counts the number of parti-

cles which are in the hopper at the simula-

tion end point. Especially in the early explo-

13



ration phase, when the optimizer tests some

crazy geometries, some particles remain in the

hopper because the particles are too slow or

stopped or time is over. These particles are

not measured at the filling tube end. There-

fore, equation (4) does not depend on these

particles. Equation (4) is also not affected by

equation (2) because these particles left the

cup. The factors in equation (2) and (3) are

weighting factors to scale the impact of the

terms.

The final objective function is given in

equation (5). The g term models the desired

fast bag filling. This term is minimized in

the exploitation phase. The penalty terms lc
and lh exclude some undesired system behav-

ior or strange hopper geometries. During the

exploration phase these penalty terms should

approach to zero.

3.3 Choosing an Optimizer

No Free Lunch Theorem The No Free

Lunch theorem (NFL) for optimization13

states in simple words there is no universal

perfect optimization strategy which is good

for all classes of optimization problems [25].

So if one algorithm outperforms another in

some classes of problems, the other way

round this algorithm is badly suited for some

other problem classes. This means algorithms

to solve the Traveling Salesman Problem very

fast and with really good results may not be

convenient for this work. A good introduction

for understanding NFL is given in [13].

Covariance Matrix Adaption Evolution

Strategy In this work there is a global op-

timizer needed for a box bounded continu-

ous domain with a small number of degrees

of freedom with noisy objective values. The

13The name is derived from the idiom ”There ain’t no

such thing as a free lunch.” [22].

Opimization Simulation

starting point

analyse simulation output

generate new

candidate solutions
simulations can be
processed in parallel

Figure 11: Simulation-based Optimization

difficulty with Quasi-Newton optimizers with

noisy objectives was explained and discussed

in section 2.3. Therefore, this class of algo-

rithms is excluded.

There is a lot of literature about global

optimizers. A good introduction in meta-

heuristics is given in [18].

Here the Covariance Matrix Adaption Evo-

lution Strategy (CMA-ES) by Hansen [11] is

used. CMA-ES is a derandomized evolution

strategy which approximates the covariance

matrix of the objective function. It is well

suited for ill-conditioned, non-seperable, mul-

timodal, non-convex or noisy functions. It is

easy to use because only one strategy param-

eter, the initial step size sigma0, has to be ad-

justed by the user. The main point to select

CMA-ES is performance. Hansen [10] shows

that CMA-ES is often significantly better than

other algorithms in that field. There are some

variants for CMA-ES with some restarting

capabilities [1], multi objective functionality

[15] or surrogate model support [17].

14



3.4 Implementation

3.4.1 Parallelization

The CMA-ES uses the concept of population.

Good parent individuals are selected and the

(hopefully better) offspring are added to the

population. Typically, there are no dependen-

cies between the individuals. Also, the order

of evaluation is irrelevant. So the population

concept opens the door for distributed simula-

tion14 by using desktop grids or clusters (see

figure 11). For an efficient job scheduling it is

favorable to set the population size to a small

multiple of available processors to avoid idle

time caused by non-optimal scheduling.

Table 3: CPU-times during optimization

No. of

Particles

Generations Population

size

CPU-time per individual

(standard deviation σ )

CPU-time per

generation

4600 1 - 196 16 344.4s (128.1 ˆ 36.3%) 1.53h

4600 197 - 274 24 241.8s (12.5 ˆ 5.2%) 1.61h

6700 275 - 305 24 712.3s (47.6 ˆ 6.7%) 4.75h

18380
306 - 315

24 7365.3s (375.2 ˆ 5.1%) 49.10h
316 - 328 15

76 82 88 94 100 106 112 118 124

Generation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y 1
,
y 2

y1 y2 objective

0.0

0.2

0.4

0.6

0.8

1.0

O
b
je
ct
iv
e

Figure 12: y1 and y2 values of each best individual of iteration 76 to 127

One simulation run can use parallel simula-

tion16. Yade uses OpenMP for parallelization

14Different processors work on different simulation

runs.
15Filling time as objective used
16Different processors work on one simulation run.

but its speed up is not linear.

3.5 Running the Optimization

Simulation-based optimization has a high de-

mand on computation, often some thousand

15



CPU hours. A fast optimization algorithm

is mandatory to reduce computational effort.

The idea is to simplify the model to get coarse

informations about the model with less effort.

In the exploration phase, the diversity of ob-

jective values is high. Although the individ-

uals are not exactly evaluated their compara-

bility is hopefully still preserved. So the opti-

mizer during exploration phase can run many

iteration with significantly reduced computa-

tional effort. With decreasing diversity of ob-

jective values within one population the accu-

racy must be increased to preserve compara-

bility between individuals (see [8]).

In this work, this approach is implemented

by scaling the particle number, as a conse-

quence also particle size. The main char-

acteristics with less particles are still given

but exact metrics like filling times can not be

determined accurately with a coarse model.

Switching between accuracy levels is still an

open question. In [8] is the switching done de-

pending on the slope of the objective function.

In the present case it is done manually.

The optimization was executed on an

Ubuntu 14.04 LTS machine with Intel®

Core™ i7-3770 and 8GB main memory. Ta-

ble 3 show the used number of particles dur-

ing optimization. At the beginning of the op-

timization the execution times and their stan-

dard deviation are huge. In this period the ge-

ometry and motion are inefficient so particles

need a long time to pass the hopper. Later,

when the optimizer finds better candidate so-

lutions, the execution time is much shorter.

The model exits prematurely because all par-

ticles have passed the hopper. The simulation

domain of the model is empty, and therefore,

it stops.

This optimization (generation 1 to 315)

consumed 1063.7 CPUhours17. Without par-

ticle size scaling the estimated CPU-time

171 CPUhour ˆ 1 hour on 1 core

(1) (2)

(3) (4)

Figure 13: Some examples of geometries oc-

curring during optimization.

would be 315 49.1h 15467h.

Generation 1 to 315 is executed with the

objective function (5). But there is no proof

that this function will result in good candidate

solutions. Some good individuals are found,

but maybe some better ones could be found

by using another objective function. There-

fore, from generation 316 filling time is used

as anobjective function.

Figure 15 shows the overall progress of the

optimization. For each generation the best ob-

jective value is given. The dashed vertical

lines mark restarts of the optimizer. Note, the

number of particles can only be changed at a

restart. Some slightly different objective val-

ues occur which can negatively influence the

learned Covariance Matrix of the CMA-ES.

Although disadvantageous learned informa-

tions can be corrected, this process may take

longer than restart and relearn. This can also

have a positive side effect for exploration be-

cause unvisited regions may be found. Further

information is given in [1].

The optimizer tries various kinds of hopper

shape. Due to the fact that a black box opti-

mizer does not know the problem, it can not

skip curious candidate solution which a hu-

16



0.0 0.2 0.4 0.6 0.8 1.0

x, normalized time

0.0

0.2

0.4

0.6

0.8

1.0

y,
n
o
rm

a
li
ze
d
d
o
si
n
g
cu
p
p
o
si
ti
o
n

x1,y1 x2,y2

Figure 14: Motion transfer function of the

best solution found

man designer might do. Some examples are

given in figure 13.

Trapped in a local Minimum As men-

tioned in section 1.3 the optimizer visit a re-

gion of search space where yield y1 y2. So

the dosing cup will move backwards. This

situation could be avoided by using a penalty

term. But falsely determining such a term can

mislead the optimization into a wrong direc-

tion.

From iteration 102 (figure 12) the optimizer

is trapped in a local minimum with non op-

timal motion. The minimal found objective

value was 0.10009484673 so far. From iter-

ation 102 to iteration 127, 98.7% of individ-

uals have a y1 greater than y2. The remain-

ing individuals were not able to escape from

the local minimum. So the optimization was

stopped manually and restarted from the point

with minimal fitness so far. The values of y1
and y2 are exchanged

18 here.

18A genetic algorithm can do this by recombination.

1 100 200 300

Generation

10 2

10 1

100

101

102

103

O
b
je
ct
iv
e,
lo
g
sc
al
e

150 180 210 240 270 300

Generation

0.06

0.08

0.10

0.12

0.14

0.16

0.18

O
b
je
ct
iv
e

Figure 15: Progress of optimization. Vertical

dashed lines and also color change

represents optimizer restarts.

CMA-ES has some build-in heuristic con-

vergence criteria to detect premature conver-

gence. This is useful for a fully automated

run. But these criteria often needs some

more iterations to detect premature conver-

gence than an expert user.

3.6 Evaluation of Results

Table 4 shows the best found objective values

of the optimization. There is only a positive

correlation between the objective function (5)

and filling time. The reason might be that the

17



Table 4: Best solutions found

Found in

generation

objective

function

Filling time

313 0.07592 0.4128s

324 15 0.07442 0.4138s

320 15 0.07619 0.4188s

311 0.07626 0.4218s

311 0.07584 0.4218s

309 0.07500 0.4318s

filling time could influence the particle distri-

bution in the hopper.

To check if the optimizer can find better

solutions by using the filling time as an ob-

jective, the optimizer is restarted at the best

found solution so far. This is done in genera-

tion 316-328 (see table 3), but no better solu-

tions were found.

Table 4 shows that the more robust objec-

tive function (5) also leads to an acceptable

solution. Figure 16 shows the simulation of

the final result. Figure 14 shows the final mo-

tion. In the first phase of motion the cup accel-

erates to open the cup quickly. Then the cup

moves with a constant velocity over the drop-

ping hole to define the particle amount within

the hopper. In the third phase the cup is empty,

so it can be moved away fast.

The solutions of table 4 are quite similar in

geometry and motion. The small differences

are due to numeric noise of the simulation.

Therefore it is not necessary to let the opti-

mizer search for better solution because the

optimizer can not decide between a better so-

lution and only better objective values.

The best found solution has a filling time of

413ms. The aimed filling time from section

1.1 is 450ms. So there is some surplus time to

increase process safety or machine speed.

(1) (2)

(3) (4)

Figure 16: Simulation of best found solution

at different times. Particles are col-

ored by its velocity.

18



References

[1] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with increasing

population size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, vol-

ume 2, pages 1769–1776. IEEE, 2005.

[2] Chair of Processing Machines and Processing Technology. Datenbank

vat. http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_

maschinenwesen/ifvlv/vat/mlumw/index_html?id=2017, awailable only in

German.

[3] Georg Clauß. Entwicklung einer Strategie zur Geometrieoptimierung mittels der

Diskreten-Elemente-Methode. Diploma thesis, TU Dresden, Institut für Verarbeitungs-

maschinen und Mobile Arbeitsmaschinen, 2013.

[4] Paul W Cleary. Particulate mixing in a plough share mixer using DEM with realistic

shaped particles. Powder Technology, 248:103–120, 2013.

[5] Peter A. Cundall and Otto D. L. Strack. A discrete numerical model for granular assem-

blies. Geotechnique, 29(1):47–65, 1979.

[6] Gunter Dueck. Das Sintflutprinzip. Springer, 2004.

[7] Fernández, José-Jesús and Garcı́a, Inmaculada and Garzón, Ester M. Floating point

arithmetic teaching for computational science. Future Generation Computer Systems,

19(8):1321–1334, 2003.

[8] Matthias Frank, Christoph Laroque, and Tobias Uhlig. Reducing computation time in

simulation-based optimization of manufacturing systems. In Proceedings of the 2013

Winter Simulation Conference, pages 2710–2721. IEEE, 2013.

[9] David Goldberg. What every computer scientist should know about floating-point arith-

metic. ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

[10] Nikolaus Hansen. The CMA evolution strategy: a comparing review. In Towards a new

evolutionary computation, pages 75–102. Springer, 2006.

[11] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in

evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[12] Hansen, Nikolaus and Niederberger, André SP and Guzzella, Lino and Koumoutsakos,

Petros. A method for handling uncertainty in evolutionary optimization with an appli-

cation to feedback control of combustion. Evolutionary Computation, 13(1):180–197,

2009.

[13] Yu-Chi Ho and David L Pepyne. Simple explanation of the no free lunch theorem of

optimization. In Proceedings of the 40th IEEE Conference on Decision and Control,

2001, volume 5, pages 4409–4414. IEEE, 2001.

19



[14] J Mark FG Holst, Jin Y Ooi, J Michael Rotter, and Graham H Rong. Numerical modeling

of silo filling. I: continuum analyses. Journal of engineering mechanics, 125(1):94–103,

1999.

[15] Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adaptation for

multi-objective optimization. Evolutionary computation, 15(1):1–28, 2007.

[16] W. Kahan. Pracniques: Further Remarks on Reducing Truncation Errors. Commun.

ACM, 8(1):40–, January 1965.

[17] Ilya Loshchilov, Marc Schoenauer, and Michéle Sebag. Bi-population CMA-ES

agorithms with surrogate models and line searches. In Proceeding of the fifteenth annual

conference companion on Genetic and evolutionary computation conference companion,

pages 1177–1184. ACM, 2013.

[18] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Available for free

at http://cs.gmu.edu/ sean/book/metaheuristics/.

[19] Darius Markauskas and Rimantas Kacianauskas. Investigation of rice grain flow by

multi-sphere particle model with rolling resistance. Granular Matter, 13(2):143–148,

2011.

[20] D Niedziela, S Schmidt, K Steiner, J Zausch, and C Zemerli. Continuum numerical

simulation of multiphase granular suspension flow in the context of applications for the

mechanical processing industry. International Journal of Mineral Processing, 2015.

[21] Thorsten Pöschel and Thomas Schwager. Computational granular dynamics. Springer,

2005.

[22] William Safire. On Language; Words Left Out in the Cold. New York Times, Feb 14.,

1993.

[23] J Shäfer, S Dippel, and DE Wolf. Force schemes in simulations of granular materials.

Journal de physique I, 6(1):5–20, 1996.

[24] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust

geometric predicates. Discrete & Computational Geometry, 18(3):305–363, 1997.

[25] David H Wolpert and William G Macready. No free lunch theorems for optimization.

Evolutionary Computation, 1(1):67–82, 1997.

20


