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Abstract 
Membrane proteins are vital for cellular homeostasis. They maintain the 

electrochemical gradients that are essential for signaling and control the fine 

balance of trace elements. In order to fulfill these tasks, they need to undergo 

controlled conformational transitions within the lipid bilayer of a cell membrane. 

It is well-recognized that membrane protein structure and function depends on the 

lipid membrane. However, much less is known about the role of water 

re-partitioning at the protein–lipid interface and particularly within a membrane 

protein during functional transitions. Intra-membrane protein hydration is 

expected to be particularly important for ion transport processes, where the 

hydration shell of a solvated ion needs to be rearranged and partially removed in 

order to bind the ion within the transporter before it is re-solvated upon exiting the 

membrane protein. These processes are spatially and temporally organized in 

metal-transporting ATPases of the PIB-subtype of P-type ATPases. 

Here, the functional role of water entry into the transmembrane region of the 

copper-transporting PIB-type ATPase CopA from Legionella pneumophila 

(LpCopA) has been investigated. The recombinant protein was affinity-purified 

and functionally reconstituted into nanodiscs prepared with the extended 

scaffolding protein MSP1E3D1. Nanodiscs provide a planar native-like lipid 

bilayer in a water-soluble nanoparticle with advantageous optical properties for 

spectroscopy. The small polarity-sensitive fluorophore 6-bromoacetyl-2-

dimethylaminonaphthalene (BADAN) was used as a probe for the molecular 

environment of the conserved copper-binding cysteine-proline-cysteine (CPC) 

motif which is located close to a wide “entry platform” for Cu+ to the 

transmembrane (TM) channel. The systematic study of proteins with mutated 

metal-binding motifs using steady-state and time-resolved fluorescence 

spectroscopy indicates that strong gradients of hydration and protein flexibility 

can exist across the narrow range of the CPC motif. The data suggest that Cu+ 

passes a “hydrophobic gate” at the more cytoplasmic C384 provided by rather 

stable TM helix packing before entering a more flexible and readily hydratable 

site in the interior of LpCopA around C382 where the polarity is strongly 

regulated by protein–lipid interactions. This flexibility could also be partly 
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mediated by rearrangements of an adjacent amphipathic protein stretch that runs 

parallel to the membrane surface as a part of the cytoplasmic entry site. Using 

tryptophan fluorescence, circular dichroism, and Fourier-transform infrared 

absorption spectroscopy of a synthetic peptide derived from this segment, its 

lipid-dependent structural variability could be revealed. Depending on lipid-

mediated helix packing interactions, the CPC motif has the potential to support a 

strong dielectric gradient with about ten units difference in permittivity across the 

CPC distance. This property may be crucial in establishing the directionality of 

ion transport by a non-symmetric re-solvation potential in the ion release channel 

of LpCopA. The experimental elucidation of these molecular details emphasizes 

not only the importance of intra-membrane protein water which has been 

hypothesized particularly for PIB-type ATPases. Moreover it is shown here, that 

the lateral pressure of a cell membrane may provide a force that restores a low 

hydration state from a transiently formed state of high internal water content at the 

distal side of the CPC motif. ATP-driven conformational changes that induce 

intra-membrane protein hydration of a conformational intermediate of the Post-

Albers cycle could thus be set back efficiently by lateral pressure of the cell 

membrane at a later step of the cycle. 
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Zusammenfassung 
Membranproteine sind von zentraler Bedeutung für die Aufrechterhaltung aller 

zellulären Gleichgewichte. Dabei etablieren sie die für Signalprozesse 

grundlegenden elektrochemischen Gradienten und kontrollieren das empfindliche 

Konzentrationsgleichgewicht der Spurenelemente. Dafür verändern sie zyklisch 

ihre Konformation innerhalb der Lipiddoppelschicht der Zellmembran. Es ist 

allgemein bekannt, dass die Struktur und Funktion von Membranproteinen von 

der Lipidmembran beeinflusst wird. Viel weniger ist jedoch über die Rolle der 

Wasserumverteilung an Protein–Lipid Grenzflächen, insbesondere während der 

funktionellen Konformationsänderungen eines Membranproteins, bekannt. Es 

wird angenommen, dass die Proteinhydratation innerhalb des Membranproteins 

besonders wichtig für Ionentransportprozesse ist. Hierbei muss die Hydrathülle 

eines gelösten Ions neu angeordnet und teilweise entfernt werden um das Ion 

innerhalb des Transporters zu binden, bevor das Ion beim Austritt aus dem 

Membranprotein wieder neu solvatisiert wird. Derartige Prozesse sind sowohl 

räumlich als auch zeitlich in den Metalltransportern des PIB-Untertyps der P-Typ 

ATPasen organisiert. 

In dieser Arbeit wurde die funktionelle Rolle des Wassereintritts in die 

Transmembranregion der kupfertransportierenden PIB-Typ ATPase CopA aus 

Legionella pneumophila (LpCopA) untersucht. Das rekombinante Protein wurde 

affinitätsgereinigt und funktional in Nanodiscs rekonstituiert, welche mit dem 

Gerüstprotein MSP1E3D1 hergestellt wurden. Nanodiscs sind wasserlösliche 

Phospholipid-Nanopartikel mit vorteilhaften Eigenschaften für die Spektroskopie, 

in deren planare und native Lipiddoppelschicht Membranproteine eingebettet 

werden können. Das kleine polaritätsempfindliche Fluorophor 6-Bromacetyl-2-

Dimethylaminonaphthalen (BADAN) wurde als Sonde für die molekulare 

Umgebung des konservierten kupferbindenden Cystein-Prolin-Cystein (CPC) 

Motivs verwendet. Dieses befindet sich in der Nähe einer weiten 

„Eintrittsplattform“ für Cu+ zum transmembranen Ionenkanal. Systematische 

Untersuchungen mit Hilfe von stationärer und zeitaufgelöster 

Fluoreszenzspektroskopie an LpCopA-Proteinen mit mutierten Metall-

Bindungsmotiven zeigen, dass innerhalb des kleinen Bereichs um das CPC-Motiv 
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starke Gradienten in Bezug auf Proteinhydratation und -flexibilität bestehen. Die 

Ergebnisse deuten darauf hin, dass Cu+ eine „hydrophobe Pforte“ am Zytoplasma-

nahen C384 passiert, welche durch eine relativ stabile Transmembranhelix-

Packung verursacht wird, bevor es eine flexibleren und leicht hydratisierbaren 

Bereich im Inneren von LpCopA nahe C382 erreicht, wo die Polarität sehr stark 

von Protein–Lipid-Wechselwirkungen reguliert wird. Diese Flexibilität könnte 

teilweise auch durch Umordnung eines benachbarten amphipathischen 

Proteinabschnitts vermittelt werden, der parallel zur Membranoberfläche als Teil 

der „Eintrittsplattform“ zum Cu+-Transportkanal verläuft. Mit Hilfe von 

Tryptophanfluoreszenz-, Zirkulardichroismus- und Fourier-Transformations-

Infrarotspektroskopischen Messungen an einem aus diesem Abschnitt abgeleiteten 

synthetischen Peptid, konnte dessen lipidabhängige strukturelle Variabilität 

gezeigt werden. Abhängig von der lipidvermittelten Transmembranhelixpackung 

kann über den Bereich des CPC-Motivs ein dielektrischer Gradient über etwa 

zehn Einheiten der Dielektrizitätskonstante vermittelt werden. Diese Eigenschaft 

kann entscheidend für die Festlegung der Richtung des Ionentransports durch ein 

nicht-symmetrisches Resolvatationspotential an der Ionenaustrittsstelle von 

LpCopA sein. Die experimentelle Aufklärung dieser molekularen Details weist 

nicht nur auf die funktionale Bedeutung von Wasser innerhalb von 

Membranproteinen hin, welche vor allem für PIB-Typ ATPasen angenommen 

wird. Sie zeigt darüber hinaus, dass der laterale Druck einer Zellmembran eine 

Kraft ausübt, welche in der Lage ist, einen niedrigen Hydratisierungszustand – 

ausgehend von einem vorübergehend gebildeten Zustand mit hohem internen 

Wassergehalt – wieder herzustellen. ATP-getriebene Konformationsänderungen, 

die den Wassereintritt in das Innere des Membranproteins während 

konformationeller Zwischenzustände des Post-Albers-Zyklus induzieren, könnten 

somit durch lateralen Druck der Zellmembran zu einem späteren Zeitpunkt des 

Zyklus effizient zurückgesetzt werden. 
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1. Introduction: complex interactions of protein, lipid, and 

water in membrane protein function 

1.1. Homeostasis is crucial for the cell 
The cell is a structurally definable, autonomous, and self-sustaining system of 

high complexity. In order to maintain this system it needs to delimit itself from 

the environment: it needs a barrier that only lets pass what is needed to sustain it. 

This selectively permeable barrier is the cell membrane [1]. Specialized proteins 

residing in the lipid bilayer mediate the passage of solutes across the cell 

membrane. These proteins regulate the uptake of nutrients and trace elements, the 

processing of signals, the establishment of (electro)chemical gradients, and 

manifold other substantial processes in response to various stimuli [2]. All 

vectorial processes across membranes either create or utilize solute gradients 

which need to be maintained in order to ensure cell survival. Accordingly, 

transmembrane transport can be divided into passive and active transport 

(see Figure 1.1). Passive transport of solutes is mediated primarily by channel 

proteins, which facilitate diffusion along a gradient by opening and closing 

transiently upon a specific signal. Channels play a central role in nerve signaling 

as well as in many other cellular processes [3, 4]. Transport of a solute against its 

concentration gradient can only be realized at the expense of energy [5]. This 

active transport can be either driven by the coupled transport of a second solute 

along its gradient (in symporters or antiporters) or directly by the hydrolysis of 

ATP. The latter process is also known as primary transport and is mediated by the 

membrane protein class of transport ATPases which are ATP-powered pumps. 

This class comprises the large family of ABC-transporters that transports organic 

ions as well as other small molecules, the proton-transporting V- and F-type 

ATPases, and the diverse P-type ATPase family of membrane proteins which 

almost exclusively transports cations. These TM pumps are the most elaborate 

transport systems and realize highly specific transport at a rate of a few up to 

hundreds of molecules per second [1].  
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Membrane proteins comprise 20 to 30% of the encoding genome sequences [7] 

and are the targets of up to 60% of all current drugs [8]. These numbers 

emphasize the importance of understanding the complex working mechanisms of 

membrane proteins. However, this knowledge is lagging significantly behind the 

insights that have been gathered for soluble proteins [9]. This situation is due to 

the experimental challenges encountered when studying membrane proteins 

in vitro. Care must be taken to preserve membrane protein structure and function. 

 

Figure 1.1: Principle of passive and active transport. (A) Schematic representation of an ion 
channel as a membrane-spanning pore. Ions (brown circles) move along their gradient through the 
transiently opened gate. (B) An ion pump translocates the ion against its concentration gradient. 
The ion enters from one side of the membrane through the open gate. Occlusion of the transport 
pathway prevents back diffusion. After opening of the alternate gate, the ion exit to the other side 
of the membrane and re-occlusion allows the ion pump to complete the reaction cycle. The figure 
is adapted from [6]. 

A
ion channel with a single gate

closed gate open gate

B
ion pump with alternating gates and occluded states

one gate open

other gate open
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This usually requires the insertion of membrane proteins into membrane mimetic 

lipidic systems that sustain protein–lipid interactions to allow proper function. 

1.2. Membrane proteins depend on the lipid membrane 
The lipid membrane is a bilayer of amphipathic molecules comprising a 

hydrophilic head directed towards the aqueous compartments and hydrophobic 

tails buried in the center of the membrane. It is constituted by a variety of lipid 

types. Species- as well as tissue-specific compositional differences substantiate 

the complexity of the system [10]. The interactions between a membrane protein 

and the surrounding lipid occur in various ways. Selective binding between a 

membrane protein and a certain lipid in a “co-factor-like” fashion may regulate 

protein function in a very specific way [11]. On the other hand, general physical 

properties of the lipid bilayer such as membrane curvature, hydrophobic 

thickness, or lateral pressure have a significant influence on tuning membrane 

protein structure in terms of changes in helix orientation or conformation, or 

changes in helix–helix interactions [12]. Moreover, the interfacial region between 

membrane and aqueous compartments constitutes a chemically complex 

environment, which offers various possibilities for noncovalent interactions with 

the protein [13]. The membrane–water interface is characterized by a steep 

polarity gradient from highly apolar near the hydrocarbon core to highly polar 

near the aqueous phase. Dipole-dipole interactions, H-bonding, as well as 

electrostatic interactions between the ester carbonyls, head groups and the 

surrounding (confined) water molecules and appropriate amino acid side chains 

can promote structural changes and folding of amphipathic protein segments and 

determine their orientation in the membrane [14, 15]. Thereby, these protein–lipid 

interactions can have a significant influence on tuning conformational changes of 

the membrane protein that again affect the allosteric couplings associated with the 

enzymatic cycle of the protein. 

The fact that a transmembrane ion pump undergoes substantial 

conformational changes during its enzymatic cycle implies that favorable protein–

lipid interactions are transient and need to be broken in certain intermediates of 

the reaction cycle. In other words, a working membrane protein goes through 
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alternating states of mismatch with respect to the hydrophobic constraints of a 

planar lipid bilayer. This is not expected in a micellar environment, where the 

amphipathic detergent molecules can constantly adapt to the membrane protein 

shape changes. This explains also the preferential population of certain protein 

states in a specific lipid composition as seen e.g. in the G-protein coupled receptor 

rhodopsin [16]. Conformational transitions of a membrane protein may also be 

associated with water re-partitioning at the lipid protein interface. It is known that 

protein–lipid interactions couple to hydration [17, 18], yet it is little understood 

how this is related to the functional role of membrane protein hydration. For 

example, the dynamic properties of intra-membrane protein water in 

proteorhodopsin are controlled by lipidic phase transitions [19] and intra-

membrane protein water is taken up and released at specific states of the bovine 

photoreceptor rhodopsin [20]. 

Thus, in vitro studies on membrane protein structure and function in 

detergent micelles tend to reveal those functional processes that are largely 

uncoupled from the sterical constraints of a planar lipid bilayer [21, 22]. Thus, the 

gathered results may not reflect the full set of membrane protein structural 

changes and functions exhibited in the native membrane-embedded situation [23]. 

However, their comparison with equivalent studies in membrane-mimetic systems 

has been instrumental to eventually identify structural requirements provided 

predominantly by intra-protein constraints or by specific protein–lipid interactions 

[24]. As a reference system for membrane protein studies in lipidic phases, 

detergent-solubilized functional states of membrane proteins are thus 

indispensable to prove the involvement of structural constraints of the highly 

structured interface of water, protein, and lipids on membrane protein function. 

Artificial membrane systems to study membrane proteins in vitro. A wide 

variety of lipidic systems is available that mimic the native membrane at various 

levels of complexity. Black lipid membranes, bicelles, or liposomes are just a few 

examples [21]. Over the last years a novel system, the so-called nanodiscs, has 

proven extremely useful for biochemical and biophysical studies. These are nano-

sized phospholipid particles girded by a ring of two amphipathic α-helical 
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membrane scaffolding proteins derived from human apolipoprotein ApoA1 and 

can be considered a "soluble portion" of planar lipid bilayer [25, 26]. 

 

Due to their small size, a significant amount of the lipid population in nanodiscs 

has an “interfacial” character, i.e. they are in contact with either the embedded 

membrane protein or the membrane scaffold protein. This is also reflected in the 

altered phase transition behavior and lateral pressure profile of the lipids in 

nanodiscs and may actually resemble the high protein content and segregated 

character of the native membrane very well [27, 28]. Nanodiscs can be prepared in 

a simple self-assembly process with full control and flexibility in the choice of the 

lipid composition, provide access to the membrane protein from both leaflets of 

the membrane, and are virtually scatter-free due to their small size, rendering 

them also an ideal membrane mimetic system for spectroscopic techniques in 

solution. A central goal of the present study was to accomplish the so far not 

reported insertion of a PIB-type ATPase into nanodiscs. P-type ATPases are 

known to undergo large conformational changes during their enzymatic cycle. 

Moreover, hints on exceptional intra-protein hydration properties of PIB-type 

ATPases begin to emerge, rendering this protein subclass an exciting candidate 

for spectroscopic investigations of protein–lipid and protein–water interactions. 

 

Figure 1.2: Illustration of a nanodisc. In a nanodiscs the lipid bilayer (gray) is encircled by 
membrane scaffolding proteins (MSPs, green). Two amphipathic α-helical membrane scaffolding 
proteins wrap around the hydrophobic edge of the lipid bilayer in an antiparallel fashion. 
Depending on the choice of the membrane scaffolding protein, nanodiscs have a diameter of 10 to 
13 nm. The height is defined by the lipid bilayer thickness and is approximately 5 nm. The figure 
was created using the softwares PyMOL and Blender after extracting the MSP and lipid 
coordinates from PDB 4V6M. 

5 
nm

10–13 nm
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1.3. The P-ATPase transporter family: key players of ion transport 
Among the families of primary ion transporters the P-type ATPase family is the 

most diverse one. Its representatives mediate the transport of a variety of cations, 

which are relevant for central cellular processes: they exchange Na+ and K+ in 

order to maintain the membrane potential, they pump Ca2+ back into the 

sarcoplasmic reticulum during muscle relaxation, they mediate the acidification of 

the stomach via proton export, and not least they regulate the fine balance 

between toxic and physiologically required concentrations of heavy metal trace 

elements like Zn2+ and Cu+ [29]. Due to their central role in the cell they are also 

associated with a range of severe human diseases from neurological conditions 

like Alzheimer´s [30] to metabolic and muscle diseases [31, 32]. P-type ATPases 

are found in all kingdoms of life and carry out an even wider range of tasks like 

acidification of plant vacuoles or the detoxification from heavy metals like Cd2+ 

or Co2+ in bacteria [33, 34]. Thus, P-type ATPases are not only potent drug targets 

[35] but as well targets of antibiotics and fungicides [36]. Finally, their high 

degree of specificity renders them attractive templates for the development of bio-

inspired metal-selective ion transport and separation methods. 

According to their substrate specificity and sequence similarity, P-type 

ATPases are divided into five subclasses: subclass I comprises the untypical 

bacterial K+-transporting PIA-ATPases and the ubiquitous PIB-ATPases which are 

all pumps for soft transition metal ions. The key players of electrogenic transport 

in mammals like the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and the 

Na+/K+-pump are type II P-ATPases. Subclass III represents mainly H+-ATPases 

from plant and fungi. The representatives of subclass IV are the most unusual 

members of the family because they do not transport ions, but flip phospholipids 

between the membrane leaflets in order to maintain an asymmetrical membrane in 

eukaryotes. Subclass V, which is only found in eukaryotes, is the most elusive one 

with unknown substrate specificity. In total, around 500 proteins are classified as 

P-type ATPases up to now according to the UniProt database (www.uniprot.org) 

and only a handful of organisms apparently lacks P-ATPase specific genome 

sequences (http://traplabs.dk/patbase/NoATPases.html). 
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General topological features and enzymatic mechanism of P-type ATPases. 

The conserved core of P-type ATPases comprises three cytoplasmic domains 

which form the so-called head piece and a transmembrane domain [37, 38]. The 

head piece comprises the distal nucleotide-binding domain (N-domain) which 

binds the adenosine ring of ATP thereby enabling the γ-phosphate of ATP for the 

covalent reaction with a conserved aspartate in the DKTG motif of the 

phosphorylation domain (P-domain). This covalent phosphorylation event gave 

the P-type ATPases its name [39]. Moreover, a Mg2+ ion interacting with the 

DKTG and the GDGxND motifs of the P-domain is crucial for the correct 

orientation of the attached λ-phosphate and plays a key role for the energy 

transduction during the reaction cycle [40]. The third cytoplasmic domain, the 

actuator domain (A-domain) is responsible for the dephosphorylation of the 

P-domain. Here, the conserved TGE motif plays an important role. The central 

core of the TM part of P-type ATPases is formed by six helices and harbors the 

binding sites for the transported ion. A conserved proline residue on TM helix M4 

divides this helix into two parts, thereby creating an open space and exposing 

amino acid side chains that are necessary for ion coordination [41]. Additional 

subclass specific TM helices are possible. 

The cyclic transport mechanism of all P-type ATPases follows the 

alternating-access model [42] and is named the “Post–Albers cycle” [43, 44] after 

the scientists who described it for the first time. During this enzymatic cycle, 

P-type ATPases undergo the very large conformational changes. Generally, the 

protein alternates between the E1 and E2 states, characterized by high and low 

substrate affinity, respectively. In Figure 1.3 the general transport cycle is 

illustrated. In the E1 state, ATP is bound to the N-domain while phosphorylation 

is prohibited due to the position of the A-domain. The exported ion(s), enter from 

the cytoplasmic side and bind to the TM binding site constituted by residues on 

the helices M4, M5, and M6. Moreover, the A-domain is triggered to tilt away 

from its prior position thereby allowing the close interaction of the λ-phosphate of 

ATP with the conserved aspartate in the DKTG motif of the P-domain. This leads 

to the occlusion of the transported ions within the TM domain of the ATPase. 

Upon phosphorylation of the aspartate (E1P state), the TM ion channel opens to 
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the extracellular side (E2P state). The ADP bound in the N-domain is exchanged 

for ATP and the A-domain rotates back to the P-domain thereby exerting traction 

on the helices M1, M2, and M3 leading to the release of the ions due to a lowered 

binding affinity. In this step binding of counter ions may take place [45, 46]. The 

channel now closes again. As a result of the A-domain rotation, its TGE loop is 

now close to the phosphorylated aspartate in the P-domain, thereby facilitating the 

hydrolytic dephosphorylation via the nucleophilic attack of a water molecule 

(E2 state) [40]. The relaxation to the E1 state concludes the reaction cycle. 
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Primarily, the knowledge on the mechanistic cycle of P-type ATPases has been 

gathered through structural and functional studies of the PII-ATPases SERCA and 

the Na+/K+-pump [40, 48]. Although the core topology is the same for all P-type 

ATPases and the transport mechanism follows the principle as described above, 

several subclass specific features can be found. This includes additional subclass-

 

Figure 1.3: Schematic representation of the P-type ATPase transport cycle. The nucleotide-
binding- (N), phosphorylation- (P), and actuator- (A) domains are represented in magenta, purple, 
and yellow, respectively. The TM part is shown in light brown. Gray arrows indicate the 
movements of the cytoplasmic domains during the transport of the ion (shown in brown). Only the 
major steps of the transport cycle are shown. In the E1 state, the binding of the exported ion(s) 
leads to the close interaction of the λ-phosphate of ATP in the N-domain with the conserved 
aspartate in the P-domain. This also triggers the occlusion of the transported ions. Upon 
phosphorylation of the aspartate (E1P state), the ion channel opens to the extracellular side 
(E2P state). ADP is exchanged for ATP and the ions are released. The subsequent 
dephosphorylation of the aspartate in the P-domain is facilitated by the A-domain (E2 state). The 
relaxation of the ATPase to the E1 configuration concludes the reaction cycle. See text for further 
details. The scheme is adapted from [47]. 
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specific domains as well as differences in ion transport stoichiometry and unique 

mechanistic features as will be described in the next section. 

1.4. The unique features of Cu+-transporting PIB-ATPases 
PIB-type ATPases are found in all kingdoms of life. They are the key players of 

metal ion homeostasis by mediating the selective transport of both transition metal 

trace elements like Zn2+ and Cu+ as well as detoxification from heavy metals like 

Co2+ or Cd2+ [49]. Thus, they are also of interest for selecting or engineering 

microorganisms for applications in bioremediation or bioleaching [50]. Defects in 

the human Cu+-ATPases ATP7A and ATP7B cause the severe hereditary Menkes 

and Wilson’s disease, respectively, and transition metal disparities are also 

associated with gastrointestinal diseases or neurological conditions [51, 52].  

Physiology of copper homeostasis. The central importance of metal homeostasis 

can be, on the one hand, understood by the large number of transition metal 

dependent enzymes, which comprise 30 to 45% of all enzymes known to 

date [49]. For instance, copper is an essential co-factor of most oxidases which are 

involved in mitochondrial respiration, iron metabolism or radical defense [53, 54] 

as well as in electron transfer proteins [55]. On the other hand, free Cu+, which is 

the exclusive redox state of copper in the intracellular milieu, is highly toxic in the 

cell due to its high redox potential. Therefore, Cu+ is always coordinated in the 

cytoplasm by low-molecular weight chelators, like cysteine and glutathione, or 

specialized copper binding proteins, so-called copper chaperones. Nevertheless, in 

order to tightly regulate total cellular Cu+-levels, sophisticated homeostasis 

systems are required. These vary among the kingdoms of life, but PIB-type 

ATPases always play a key role. In eukaryotes, copper uptake into the cell is 

mediated by the homotrimeric CTR1 copper channels [55]. PIB-type ATPases are 

located in the membrane of the trans-Golgi network and transport Cu+ into the 

lumen, where it is then loaded onto Cu+-dependent enzymes or into secretory 

vesicles destined for excretion. Relatively little is known about the mechanism of 

copper uptake into prokaryotic cells. There are indications of ABC transporters 

being involved [56, 57] as well as for PIB-type ATPases themselves, but the 

evidence is still uncertain [58-60]. On the other hand, the Cu+ export mechanism 
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of prokaryotes is relatively well studied. Apart from the gram-negative bacterium 

E. coli that uses the Cus (cation efflux) system, practically all other cells use PIB-

type ATPase for copper export [61]. 

Unique topological and mechanistic features of Cu+-transporting PIB-type 

ATPases. PIB-ATPases exhibit several subclass-specific structural elements: they 

feature two additional N-terminal TM helices, at least one N-terminal cytosolic 

heavy metal binding domain (HMBD) and in some cases C-terminal HMBDs [62, 

63]. In 2011, the knowledge about the structure of PIB-ATPases was considerably 

deepened as the crystal structure of CopA from Legionella pneumophila 

(LpCopA) was solved, which was the first crystal structure of a PIB-ATPase [64]. 

See Figure 1.4 for the topology and structure of LpCopA. Although not resolved 

in the crystal structure due to weak electron density, it is known from studies on 

individually expressed and purified HMBDs, that they possess a ferredoxin-like 

fold [65, 66] and bind heavy metals, either in histidine-rich sequences or 

MxCxxC motifs. To date, the role of the HMBD is still a matter of scientific 

debate and it is emerging that the function(s) might vary among the different 

representatives of the Cu+-ATPases [67-69]. Usually, reduced ATP-hydrolytic 

activity is found as a result of HMBD removal [67, 70]. Moreover, it is assumed 

to play a regulatory role in auto-inhibition of protein activity in the absence of 

Cu+ [71]. Furthermore, it might also be involved in translocation of Cu+ from 

cytoplasmic chelators or chaperones to the TM Cu+-binding sites via the CxxC 

sequence motifs found in the HMBD as well as in chaperones [72]. 

The crystal structure of LpCopA revealed a putative Cu+-transfer 

mechanism to the TM Cu+-channel between either a soluble chaperone or the N-

terminal HMBD itself via the so-called "entry platform". This platform is 

constituted by the class-IB-specific TM helices MA and MB together with M1. 

Strikingly, the helix MB kinks at the cytosol–membrane interface and forms an 

amphipathic helix, which will be denoted in the following as MBb (see also 

Figure 1.4 B and C). Notably, the helix-breaking glycine residues at the 

N-terminus of MBb and the amphipathic nature of MBb are conserved among all 

PIB-type ATPases. The helix MBb presents mostly positively charged residues 

towards the cytoplasm thereby complying with the “positive-inside” rule [73]. 
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Moreover, the positively charged residues could mediate electrostatic interactions 

with the negatively charged surface of the HMBD or soluble copper 

chaperones [74]. 

Generally, amphipathic helices play an important role in positioning a TM 

protein in a proper orientation relative to the lipid bilayer [75]. They are not only a 

hallmark of P-type ATPases [76, 77] but are also a typical motif in other 

transmembrane protein families like GPCRs [78, 79], ion channels, or 

receptors [80]. However, their function may go beyond a sole anchoring of the 

membrane protein. For instance, in LpCopA MBb might act as a flexible 

structural element rather than a static platform and could be involved in 

rearrangements of the adjacent TM helices which bear the copper binding 

residues. Thereby copper coordination geometries and binding affinities could be 

varied throughout the copper transport cycle. 

The Cu+-transport mechanism. Additionally to the specific ion-binding 

geometries that change through conformational changes during the enzymatic 

cycle, the nature of the amino acids involved in ion coordination is fundamental in 

determining ion-specificity. The “hard and soft (Lewis) acids and bases 

concept” [81] rationalizes the amino acid preferences of different types of ions: 

hard, that is non-polarizable, Lewis acids like the alkali or alkaline earth metals 

Na+ or Ca2+ will prefer hard Lewis bases like carboxylates for coordination, while 

soft, that is polarizable, Lewis acids like the transition metal Cu+ will favor thiol 

or thioether functional groups. This explains why the metal binding sites of 

PIB-type ATPases are predominantly constituted of cysteines and methionines as 

well as of the “intermediate” Lewis base histidine [41]. This is seen also in the 

Cu+-transporting PIB-type ATPase LpCopA: the low-affinity copper “entry site” is 

presumably formed by M148 together with E205 and D337 on helices M1, M2, 

and M3, respectively [64, 67], while C382 and C384 on helix M4, and M717 on 

helix M6 constitute the purely sulfur-based high-affinity TM binding site [68, 82]. 

The cysteine-proline-x ion binding motif on helix M4, with x being cysteine, 

serin, or histidine [41, 82, 83] is conserved among Cu+-transporting PIB-type 

ATPases. For the exit pathway of the Cu+-ion, presumably the sulfur-ligands 

M100 and M711 together with E189 play an important role [47]. 
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Additionally to the subclass-specific features in topology and sequence, there is 

accumulating evidence that Cu+-ATPases couple dephosphorylation and ion 

extrusion differently than the prototypical PII-type ATPases. In PII-type ATPases 

the transport channel occludes during the transition from the phosphorylated E2P 

to the dephosphorylated E2.Pi state. This occlusion is stimulated by the release of 

 

Figure 1.4: Topology and structure of the PIB-type ATPase CopA from Legionella 
pneumophila. The color code is as in Figure 1.3. The two additional N-terminal TM helices MA 
and MB and the heavy-metal binding domain (HMBD) are shown in cyan. The CPC copper-
binding motif on helix M4 is shown in red (C382) and blue (C384). (A) Topology model of 
LpCopA. The conserved sequence motifs CxxC (HMBD), TGE (A-domain), DKTG (P-domain), 
and GDGxND (N-domain) are indicated. (B) Tertiary structure of LpCopA. The HMBD was not 
resolved in the crystal structure. Thus, its estimated position is indicated by an open sphere. (C) 
Close-up of the copper-binding CPC motif. The view is rotated by approximately 120° compared 
to B. The figures B and C were created from PDB 3RFU. 
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the exported ions to the luminal side and the binding of proton counter 

ions [84, 85]. However, the comparison of the copper-free structure of the 

dephosphorylation transition state E2.Pi of the Cu+-ATPase LpCopA [64] with the 

structure of the preceding E2P state [47] revealed only little structural differences. 

The copper transport channel appears to stay in a luminally open configuration. 

Moreover, crystal waters could be detected reaching up to the copper-binding 

CPC motif. Remarkable intra-protein hydration was also seen in molecular 

dynamics calculations of the protein. This striking characteristic may play an 

important role in the ion exit mechanism of Cu+-ATPases. As no counter-ion 

transport has so far been evidenced for this subclass, an alternative “pulling force” 

for the exit of the ion is needed [86, 87]. Thus, an internal water or proton 

network, potentially coordinated by the conserved tyrosine/tyrosinate Y688 on 

helix M6 and the conserved carboxylate E189 on helix M2, may mediate the ion 

exit through rehydration of the copper ion [47, 88]. 

However, it is noteworthy pointing out that the findings detailed above have 

been deduced from experiments that were performed in the absence of a lipidic 

phase. The lipid membrane imposes structural constraints leading on the one hand 

to the structure stabilization of the inserted membrane protein. On the other hand, 

the working ATPase has to go through alternating conformational states which 

implies also transient mismatch with respect to hydrophobic constraints of the 

lipid bilayer. In P-type ATPases, which are known to undergo very large 

conformational changes during their enzymatic cycle, this factor is expected to 

particularly carry weight. Moreover, the general lipid–protein interactions and the 

lateral pressure exerted by the lipid membrane define the degree to which water is 

expelled from the membrane-inserted protein and are therewith assumed to have a 

significant influence on intra-protein hydration and therewith on protein 

function [18, 89, 90]. 

1.5. Aim of this work 
Cu+-transporting P-type ATPases play a key role in cellular copper homeostasis. 

The understanding of their structure and function has to a great extent been 

extrapolated from the knowledge about the prototypical P-type ATPases 
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Na+/K+-ATPase and SERCA. However, subclass-specific structural elements as 

well as recent studies indicating unique features of the copper transport 

mechanism motivate the revaluation of this approach. According to 

crystallographic snapshots of the Cu+-ATPase CopA from Legionella 

pneumophila, together with molecular dynamics calculations and biochemical 

studies, the transport mechanism of these ion pumps differs significantly in the 

ion entry as well as the ion release step. Particularly, water accessibility in the 

extracellular release channel appears to be maintained, whereas an occluded state 

is predicted for the prototypical catalytic cycle of SERCA. Likewise, the effect of 

the native lipidic environment on the conformation of the transmembrane pump 

has not been studied but can be considered crucial for the stabilization of 

conformational sub-states. In this context, the role of interactions between an 

amphipathic protein stretch and the lipid membrane at the interfacial copper entry 

site is of special interest. Furthermore, the dependence of intra-protein hydration 

at the intramembranous copper binding site on the structural constraints of a lipid 

membrane has not yet been addressed. Here, it is particularly the lateral pressure 

of the lipid bilayer that is expected to affect transmembrane helix interactions as 

opposed to a more flexible and, therefore, easier hydratable micellar state of the 

protein. A comparison between the two systems using site-specific spectroscopic 

probes could thus reveal the link between local intra-protein hydration and 

structural flexibility. Therefore this doctoral work aimed at 

I. Establishing an in vitro system to study LpCopA in a micellar state and in 

a native membrane environment by reconstituting the purified recombinant 

protein into phospholipid nanodiscs. 

II. Studying intra-protein hydration in the environment of the 

intramembranous CPC copper-binding motif under the influence of a 

lipidic phase using a polarity-sensitive fluorescent probe. 

III. Characterizing the amphipathic helix MBb at the copper entry site with the 

help of a synthetic peptide in order to understand its possible role as a 

membrane surface-attached protein element for the early steps of copper 

uptake.  
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2. Material and methods 

2.1. Materials and instruments 

Chemicals and consumables. All substances were obtained in the highest quality 

available. Table 2.1 lists all chemicals used in this work. 

Table 2.1: List of all used chemical and its suppliers 

supplier chemicals 

Avanti Polar Lipids 
(Alabaster, USA) DMPC, DOPC, POPC, E.coli total lipid extract 

Bio-Rad  
(Munich, Germany) 

Bio-Beads SM-2 
protein assay dye reagent concentrate 

GE  
(Fairfield, USA) 

His SpinTrap, HisTrap HP 1 ml and 5 ml columns, Superdex 200 
10/300 GL column, PD-10 and PD-10 mini desalting columns, track 
etched polycarbonate membranes 

Invitrogen 
(Carlsbad, USA) Novex Sharp Prestained protein size standard 

IBA 
(Göttingen, Germany) Strep-Tactin superflow resin 

Roche  
(Basel, Switzerland) DNaseI 

Carl Roth  
(Karlsruhe, Germany) 

agar-agar, antibiotics (ampicillin, kanamycin, chloramphenicol), 
ß-mercaptoethanol, boric acid, disposable microcuvettes, DDM, 
glycine, HEPES, HCl, IPTG, KCl, KH2PO4, L-glutathione, MgSO4, 
motivase, Rotiphorese® Gel 30 (37.5:1), 
N,N,N',N'-tetramethylethylendiamin, tryptone/peptone, SDS, Tris 
base, yeast extract 

Sartorius  
(Göttingen, Germany) 

Vivaspin15 Turbo centrifugal devices (MWCO 10,000), 0.22 µm 
filters 

Sigma Aldrich  
(Munich, Germany) 

ammonium molybdate, ammonium persulfate asolectin, citric acid, 
Coomassie Blue G-250, L-cysteine, Malachite Green, NaOH, PMSF, 
SIGMAFAST™ Protease Inhibitor Cocktail Tablets (EDTA-free), 
TFE, Whatman filter paper #2 

Stratec  
(Birkenfeld, Germany) Invisorb® Spin Plasmid Mini Two 

VWR International 
(Darmstadt, Germany) 

acetic acid, Bromophenol Blue, chloroform, Coomassie Blue R-250, 
CuSO4, D-desthiobiotin, DTT, EDTA, ethanol, KOH, methanol, 
MgCl2, NaCl, n-pentanol, TCEP 
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Peptides were synthesized and HPLC-purified (free of trifluoroacetate) by 

ThermoFisher (Ulm, Germany) with carboxyl- and amino termini amidated and 

acetylated, respectively. His-tagged TEV-protease was obtained from the protein 

purification facility of the MPI-CBG Dresden, Dr. David Drechsel. All 

oligonucleotides were synthesized by Eurofins (Luxemburg).  

Buffers and media. Table 2.2 lists all buffers and media commonly used in this 

work. All buffers were filtered through 0.22 µm filters before use. 

Table 2.2: List of commonly used media and buffer 

media composition 

Luria-Bertani 
(LB) medium 20 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl 

LB-plates 15 g of agar-agar / liter LB-medium 

SOC medium 
20 g/l tryptone, 5 g/l yeast extract, 0.5 g/l NaCl, 0.186 g/l KCl. Add 10 
mM MgCl2, 10mM MgSO4, and 0.4% w/v glucose sterile after 
autoclaving  

2xYT medium 16 g/l tryptone, 10 g/l yeast extract, 5 g/l NaCl pH 7.0 

antibiotics antibiotics were used in the following concentrations: 
100 μg/ml Ampicillin, 50 μg/ml Kanamycin, 50 μg/ml Chloramphenicol 

buffers  

TNC2 40 mM Tris pH 8.0, 300 mM NaCl 

TNC1 20 mM Tris pH 8.0, 150 mM NaCl 

HKMSG 50 mM HEPES pH 7.4, 200 mM K2SO4, 5 mM MgSO4, 20% w/v glycerol 

HNMS 50 mM HEPES pH 7.4, 200 mM Na2SO4, 5 mM MgSO4 

10x TBE 89 mM Tris base, 89 mM boric acid pH 8.0, 2 mM Na-EDTA 

6x DNA  
loading buffer 

0.25% w/v Bromophenol Blue, 50% w/v glycerol in  
0.5x TBE buffer 
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Table 2.2 continued 

buffers composition 

10x SDS  
running buffer 250 mM Tris-base, 2 M glycine, 1% w/v SDS 

SDS stacking  
gel buffer 0.5 M Tris-Cl pH 6.8, 0.4% w/v SDS 

SDS running  
gel buffer 1.5 M Tris-Cl pH 8.8, 0.4% w/v SDS 

5x SDS-PAGE 
loading buffer 

50% v/v SDS stacking gel buffer (see above), 50% w/v glycerol, 10% w/v 
SDS, 7.7% w/v DTT, and 0.025% w/v Bromophenol Blue 

Coomassie gel 
staining solution 

0.06% w/v Coomassie Blue R250, 0.06% w/v Coomassie Blue G250, 
45.4% v/v methanol, 9.2% v/v acetic acid  

Coomassie gel  
destaining solution 45.4% v/v ethanol, 9.2% v/v acetic acid  

 

Instruments. PH was measured with a pH 211 meter from HANNA instruments 

(Kehl am Rhein, Germany). Weighing was performed on a GENIUS 

microbalance or a AX 2202 balance (both from Sartorius). PCR was performed in 

the Mastercycler Personal from Eppendorf (Wesseling-Berzdorf, Germany). The 

agarose gel electrophoresis chamber was from Peqlab (Erlangen, Germany). Cells 

were cultivated in the SI-300R Lab Companion from Jeio Tech (Seoul, Korea) or 

the Innova 4230 from New Brunswick Scientific (Eppendorf) and handled in the 

Hera Safe sterile workbench from Thermo Fisher. Cell density was measured with 

the Ultrospec 1000 from Pharmacia Biotech (GE). Centrifugations were 

performed in a MiniSpin or a 5804 R centrifuge from Eppendorf or in the 

Evolution RC or WX Ultra 80 from Sorvall (Thermo Fisher). Cells were 

homogenized using an Ultra Turrax T-18 basic from IKA (Staufen, Germany) and 

lysed using a Microfluidizer M-110L from Microfluidics (Newton, USA) or a 

W-250 D Sonifier from Branson (Danbury, USA). Fast performance liquid 

chromatography was performed on an Äkta Avant system from GE. The 

electrophoresis system for SDS-PAGE was the Protean Mini from Bio-Rad. For 

sample incubation and shaking a Thermomixer Comfort from Eppendorf was 

used. Large unilamellar vesicles were extruded with the LiposoFast extruder from 
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Avestin (Ottawa, Canada) supplied with gastight syringes from Hamilton 

(Bonaduz, Switzerland).  

UV-Vis spectroscopic determinations were performed with the 

NanoDrop 2000c from Nanodrop Technologies (Wilmington, USA) or the 

Lambda 35 spectrophotometer from Perkin Elmer (Waltham, USA). Circular 

dichroism (CD) spectra were recorded on a J-815 spectrometer from Jasco 

(Groß-Umstadt, Germany) in 1 mm x 1 cm Suprasil quartz glass cuvettes from 

Hellma (Müllheim, Germany). Static fluorescence spectra were recorded on a 

LS 55 luminescence spectrofluorometer from Perkin Elmer or on a 

Fluorolog 3 FL3-11 from HORIBA JY spectrofluorometer (Unterhaching, 

Germany) in 1 cm x 1 cm reduced volume Suprasil quartz glass cuvettes from 

Hellma. Time-resolved fluorescence spectra were recorded on a IBH 5000 U SPC 

instrument equipped with a IBH NanoLED-11 diode laser (375 nm peak 

wavelength, 90 ps FWHM, 1 MHz repetition rate) and a cooled Hamamatsu 

R3809U-50 microchannel plate photomultiplier (Hamamatsu, Shizuoka, Japan) 

with 30 ps time resolution and time setting between 7 and 14 ps per channel from 

HORIBA JY. Fourier transform infrared-spectroscopy was performed on a 

IFS/66v/S spectrometer from Bruker (Billericam, USA). 

2.2. Molecular biology and protein biochemistry methods for 

LpCopA 

2.2.1. Molecular cloning and expression 

Restriction enzyme cloning. The gene encoding for LpCopA was synthesized by 

GeneArt (Life Technologies, Carlsbad, USA) with optimized codon usage for the 

expression in E.coli and cloned into the standard vector pET28a(+) from 

Novagen. In order to optimize the expression and purification of LpCopA, the 

gene was also subcloned into the vectors pProExHTa, pBR-IBA1, and 

pET51b_mod. This was done using the restriction sites for the EcoRI and XhoI 

restriction enzymes. The restriction enzyme sites were introduced using the 

forward primer 5’-gtcgaattcatgaaacatgatcatcatcagg-3’ and the reverse primer 

5’-ttactcgagttacagggtcacacgtttcagacgcag-3’. The primer properties were analyzed 
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using the free web tool OligoCalc (http://simgene.com/OligoCalc) and met the 

standard quality criteria. For restriction enzyme cloning, the desired DNA 

fragment was amplified with the appropriate primers to introduce the restriction 

enzyme sites using the Phusion® High-Fidelity DNA Polymerase Kit according to 

the manual. The PCR product and a negative control sample from a PCR mixture 

lacking the template was analyzed on a 0.8% agarose gel according to [91]. The 

product band was cut out and DNA was eluted into 50 µl of double-distilled 

water. The vector and the insert were digested freshly with the restriction enzymes 

for 2 h at 37°C, then loaded again on an agarose gel, cut out, and eluted into 

double-distilled water. The fragments were ligated for 15 min at RT. The 

appropriate amount of insert minsert was calculated as follows: 

𝑚insert =  
𝑚vector ·3·𝑙insert 

𝑙vector
  (2.1) 

with the masses m given in ng and the lengths l of the DNA strands given in kB. 

After chilling, 1‒5 μl of the reaction were transformed into 50 μl competent 

Giga(DH5α) cells from Novagen. To this end, the plasmids were incubated 

30 min with the competent cells on ice, heat shocked for 45 sec at 42°C and 

chilled for 2 min on ice. After growing for 1 h in SOC medium the cells were 

plated on LB-plates supplied with the appropriate antibiotics and incubated oN 

at 37°C. Five to six clones were chosen and cultivated in liquid culture in order to 

determine the success of cloning by an analytical digest of freshly prepared 

plasmid DNA. The plasmids from positive clones were transformed into the 

expression strain and the correct DNA sequence was verified by DNA 

sequencing. Competent cells were produced according to [92]. Table 2.3 shows an 

overview of the tags and protease sites introduced by cloning into the respective 

vectors. 
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Table 2.3: Overview of expression vectors for LpCopA 

vector purification tag protease site name of construct 

pProEXHTa 
Life Technologies 
(Carlsbad, USA) 

N-term: 6-His tag N-term: TEV CopA_1N 

pBR-IBA1  
IBA  
(Göttingen, Germany) 

N-term: 6-His tag 
C-term: Strep-tag II 

N-term: TEV 
C-term: EK, 3c CopA_Nhis_Cstrep 

pET28a(+) 
Novagen 

N-term: 6-His tag 
C-term: 6-His tag N-term: thrombin CopA_sg 

pET51b_mod  
created by Ahmed Sayed C-term: 10-His tag C-term: 3c CopA_C10His 

 

Site-directed mutagenesis of the CPC motif. The mutation of selected cysteine 

residues to serine was accomplished with the QuikChange Lightning Multi Site-

Directed Mutagenesis Kit from Agilent according to the manual. The DNA 

sequence was verified by sequencing. The mutagenesis primers (see Table 2.4) 

were designed with the help of the online tool provided by the kit manufacturer 

(http://www.genomics.agilent.com/primerDesignProgram.jsp). 

Table 2.4: Overview of site-directed mutagenesis primers and LpCopA mutants  

substituted 
residues primer template name of construct 

C18S 5'-atagcggtaaaggtcatgcaag 
ccatcatgaacataatagccc-3' CopA_1N 

Mutation of the four 
cytoplasmic cysteines in  
one single PCR gives 
cmCopA 

C42S 5'-aggtccgattgtttataccagc 
ccgatgcatccggaaatt-3' CopA_1N 

C56SC59S 5'-gagcgcaccgggtcatagcccg 
ctgagcggtatggcactg-3' CopA_1N 

C382S 5'-gcagttagcgttctgattattg 
caagcccgtgtgcactgg-3' cmCopA cmC382S 

C384S 5'-tgatattgcatgtccgagcgca 
ctgggtctggcaac-3' cmCopA cmC384S 

C382SC384S 5'-gattattgcaagcccgagcgca 
ctgggtctggcaa-3' cmC382S cfCopA 
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Recombinant expression of LpCopA. Several expression strains (see Table 2.5) 

were tested for their suitability to express LpCopA and its mutants at sufficient 

yield and in a functional form. Moreover, for each strain different expression 

conditions (OD at induction, IPTG concentration, induction time, and cultivation 

temperature) were tested and the results were analysed using SDS-PAGE 

according to [93]. In the following, the general protocol is described and the 

conditions that were selected are mentioned. 

Table 2.5: E. coli expression strains used in this work 

strain features 

BL21(DE3)Gold 
Novagen 

High-level protein expression of non-toxic protein using T7 RNA 
polymerase-based expression systems. 

BL21(DE3)Rosetta 
Novagen 

Designed to enhance the expression of eukaryotic proteins that contain 
codons rarely used in E. coli. Strain supplies tRNAs for the codons 
AUA, AGG, AGA, CUA, CCC, and GGA on a chloramphenicol 
resistant plasmid. 

 
C43(DE3)pLysS 
Lucigen 
(Middleton, USA) 
 

Effective in expressing toxic and membrane proteins from all classes of 
organisms. Contains at least one uncharacterized mutation that prevents 
cell death associated with expression of many toxic recombinant 
proteins. The chloramphenicol resistant pLysS plasmid encodes T7 
phage lysozyme, an inhibitor for T7 polymerase which reduces 
expression from transformed T7 promoter containing plasmids when not 
induced. 

 

All expression cultures were started from frozen glycerol stocks of E.coli cells 

transformed with the expression plasmid. LpCopA was expressed in 

C43(DE3)pLysS cells and cmCopA and the mutants derived from it were 

expressed in BL21(DE3)Rosetta cells. In all cases, first 10 ml of preculture 

inoculated from the glycerol stock were grown oN at 37°C in 2xYT medium 

containing the appropriate antibiotics. The next day, four times 500 ml of 

prewarmed 2xYT medium containing antibiotics were inoculated 1:250 v/v with 

the preculture and cultured at 37°C with 150 rpm shaking in flasks with chicanes 

to an OD of 0.8 for LpCopA and an OD of 1.0 for cmCopA and mutants. Protein 

expression was induced by adding IPTG to 0.1 mM for LpCopA and 0.5 mM for 

cmCopA and the corresponding mutants. Cells were then cultivated at 18°C oN 

and cells were harvested by centrifugation (20 min, 3,000 g, 4°C), washed with 
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2xYT medium and with 2xYT medium containing 50% w/w glycerol, and stored 

at -20°C.  

2.2.2. Cell breakage and solubilization of membranes 

All purification steps were performed at 4°C or in ice. Typically 5 g of frozen 

cells were suspended in 50 ml buffer HKMSG supplied with 12 µg/ml DNase I, 

5 mM β-ME and one protease inhibitor tablet per 100 ml of solution using the 

Ultra Turrax. The cells were disrupted by passing the solution 20 times at 

increasing pressure (6,000‒18,000 psi) through the high pressure homogenizer. 

The total cell lysates were cleared by centrifugation (30 min, 18,000 g). 

Membrane proteins were solubilized from the supernatant by adding solid DDM 

to 0.63% w/v and gently mixing them for 20 to 30 min. Insoluble material was 

separated by centrifugation (40 min, 18,000g). Alternatively, the membranes were 

harvested from the total cell lysates by ultracentrifugation (60 min, 200,000 g) and 

the membrane pellet was resuspended thoroughly in buffer HKMSG including 

5 mM β-ME and 1% DDM w/v, mixed gently for 30 min and insoluble material 

was separated as described above.  

2.2.3. Protein purification 

Different affinity-tagged constructs of LpCopA were tested for affinity 

purification. First, a construct with an N-terminal 6His-tag (termed CopA_1N) 

was tested. Due to the identification of C-terminally truncated protein fragments 

by SDS-PAGE also C-terminally tagged constructs were tested: CopA_C10His 

with a C-terminal 10His-tag or CopA_Nhis_Cstrep with N-terminal 6His-tag and 

C-terminal Strep-tag II. This section describes the corresponding protocols. If not 

stated otherwise, all steps were performed at 4°C or on ice.  

Purification of LpCopA using the Strep-tag II. CopA_Nhis_Cstrep was purified 

using Strep-tag II affinity purification as follows: the solubilized protein was 

applied to the StrepTactin column equilibrated in 100 mM Tris-Cl pH 8.0 

including 0.1% DDM and 5 mM β-ME. The column was washed with 5 CVs of 

equilibration buffer, then with 10 CVs of equilibration buffer including 20 mM 

Na-ATP, and again with 5 CVs of equilibration buffer. The protein was eluted 
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with the equilibration buffer containing 2.5 mM desthiobiotin in fractions of 1 ml. 

The column was regenerated afterwards by washing three times with 5 CVs of the 

equilibration buffer containing 1 mM 2-[4'-hydroxy-benzeneazo]benzoic acid.  

Purification of LpCopA using His-tags. The His-tagged constructs were purified 

as follows: the solubilized protein was brought to 50 mM imidazole and applied to 

a 1 ml HisTrap HP column equilibrated in buffer HKMSG including 

0.25% DDM, 50 mM imidazole, and 5 mM β-ME using the Äkta Avant FPLC 

system. The column was washed with 15 CVs equilibration buffer and 5 CVs 

buffer HKMSG including 0.1% DDM, 50 mM imidazole, and 5 mM β-ME. 

LpCopA was eluted in buffer HKMSG including 0.1% DDM, 500 mM imidazole, 

and 5 mM β-ME in fractions of 1 ml. Usually the first 2 ml were discarded as they 

were of minor purity. Imidazole was removed by exchanging the buffer to 

HKMSG including 0.1% DDM and 5 mM β-ME. The concentration was 

determined spectrophotometrically (see below) using a molar extinction 

coefficient of 65,890 M-1cm-1 and purity was analyzed by SDS-PAGE according 

to [93]. Usually 2–4 mg of protein at a concentration of 18–25 µM were obtained 

per preparation. The protein solutions were frozen in liquid nitrogen and stored 

at -70°C. Optionally the N-terminal 6His-tag was cleaved off using TEV-protease 

1:100 w/w at 25°C for 1.5 h. 

2.3. Recombinant expression and purification of MSPs 

In nanodiscs, the rim of a nano-scaled planar lipid bilayer is encircled by two 

molecules of an amphipathic α-helical membrane scaffolding protein (MSP). 

Here, the expression and purification of these proteins is described. Two versions 

of MSP are commonly used: MSP1D1, giving nanodiscs with 10 nm diameter, 

and the extended MSP1E3D1 containing repeats of helices 4, 5 and 6, giving 

nanodiscs with 12‒13 nm diameter. The preparation of MSP1D1 and MSP1E3D1 

follows essentially the same protocol. The expression plasmids for the MSPs were 

obtained from Addgene (MSP1D1: #20061, MSP1E3D1: #20066). The 

expression constructs feature an N-terminal 7His-tag followed by a TEV-protease 

cleavage site. For expression, BL21(DE3)Gold cells harboring the expression 

plasmid for the respective MSP were grown in 20 ml of 2xYT medium containing 
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kanamycin for 6‒8 h at 37°C. From this pre-culture, fresh 2xYT medium 

containing kanamycin was inoculated 1:500 v/v and cells were grown oN at 37°C 

to an OD600 of approximately 2.5. Protein expression was induced with 0.3 mM 

IPTG. After shaking for 4 h at 28°C, cells were harvested by centrifugation 

(20 min, 3,000 g, 4°C), washed with 2xYT medium and stored at -20°C. 

If not stated otherwise, all purification steps were performed at 4°C or on 

ice. In a typical protein preparation 10 g of cells were suspended at 0.1 g/ml in 

25 mM phosphate buffer (pH 7.4) using the Ultra Turrax. Then Triton X-100 was 

added to 1%, DNase I to 12 µg/ml, and one protease inhibitor tablet per 100 ml of 

solution. Cell lysis was performed by passing the solution 20 times at increasing 

pressure (6,000‒18,000 psi) through the high pressure homogenizer. The lysate 

was cleared by centrifugation (70 min, 15,000 g). The supernatant was brought to 

25 mM imidazole and loaded onto a 5 ml HisTrap HP column equilibrated in 

buffer TNC2 including 25 mM imidazole. The column was washed with 5 CVs of 

buffer TNC2 including 1% Triton X-100, 5 CVs of buffer TNC2 including 

50 mM Na-Cholate and 20 mM imidazole, and 5 CVs of buffer TNC2 including 

50 mM imidazole. The protein was eluted in buffer TNC2 including 400 mM 

imidazole and immediately diluted with buffer TNC1 1:2 to prevent precipitation. 

Then the buffer was exchanged to TNC1 using PD10 columns. The 7His-tag of 

the MSP was cleaved off by incubating the protein solution with his-tagged 

TEV-protease at a ratio of 500:1 w/w for 20 h at RT. The sample was then loaded 

onto two 1 ml HisTrap HP columns connected in series in buffer TNC1 including 

25 mM imidazole and recovered from the flow through and a 10 CVs wash with 

buffer TNC1 including 25 mM imidazole. The flow through and wash was 

concentrated using centrifugal filter devices (MWCO 10,000) and the buffer was 

exchanged to TNC1 on PD10 columns. The concentration of the tag-free MSP 

(denoted by the appendix “(-)”) was determined spectrophotometrically using 

molar extinction coefficients of 18,540 M-1cm-1 for MSP1D1(-) and 

26,930M-1cm-1 for MSP1E3D1(-) and purity was analyzed by SDS-PAGE. 
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2.4. Reconstitution of LpCopA into nanodiscs and SEC 

For the reconstitution of LpCopA into nanodiscs the protein was thawed on ice 

and transferred to buffer HNMS containing 5 mM (0.25% w/v) DDM using 

PD10 columns. Also the MSP was thawed on ice. For the lipid‒detergent 

suspension the lipids were vacuum dried from chloroform for 2 h in a glass vial 

and the lipid film was then resuspended in an aqueous solution of DDM and 

vortexed and sonicated in a water bath for 1 min alternately until a clear solution 

was obtained. In case of asolectin a mixture of 8 mM lipids in 12 mM DDM was 

used. For other lipids 8 mM DDM was used. 

For the assembly of nanodiscs LpCopA, MSP, and the lipid-detergent 

suspension were mixed in molar ratios of asolectin : MSP1D1(-) : LpCopA 60:3:1 

or asolectin : MSP1E3D1(-) : LpCopA 200:5:1. Typically, the LpCopA 

concentration was 3–8 μM in a total volume of 2 ml. After incubating the mixture 

on ice for 1 h, the detergent was removed by adding Bio-Beads equilibrated in 

buffer HNMS at a ratio of 1:1 v/v and incubating overhead-rotating at 4°C for 3 h. 

Then, Bio-Beads and aggregates were removed by centrifugation 

(15 min, 20,000 g). IMAC was used to separate LpCopA-nanodiscs and empty 

nanodiscs. The nanodiscs solution was supplemented with 30 mM imidazole and 

processed with His SpinTrap columns according to the manual with the following 

modifications: the resin was incubated with the mixture for 10 min between 

loading steps and for 2 min between elution steps. In order to remove possible 

aggregates and to assess the quality of the preparation size-exclusion 

chromatography was performed on a Superdex200 10/300 GL column. The 

protein signal was monitored at 280 nm. The formation of nanodiscs with the 

correct mass ratio of LpCopA and MSP was also verified by analysing the 

Coomassie stain density of SDS-PAGEs with ImageJ 

(http://rsb.info.nih.gov/ij/disclaimer.html). The concentration of LpCopA-

MSP1E3D1(-)-nanodiscs was estimated spectrophotometrically using a calculated 

molar extinction coefficient of 95,450 M-1cm-1 for a nanodiscs comprising one 

LpCopA and two MSP1E3D1(-). Moreover, to test the general applicability of the 

protocol and of different lipids and detergents, empty nanodiscs were prepared 
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according to the protocol described above. In this case the final molar ratios of 

MSP to lipid were 1:110 for MSP1E3D1(-) and 1:70 for MSP1D1(-). 

2.5. ATPase activity assay of LpCopA 

In order to assess the functionality of LpCopA reconstituted in nanodiscs its ATP-

hydrolytic activity upon activation with Cu+ was studied. Hydrolyzed organic 

phosphate Pi was determined using the method described by Lanzetta et al. [94]. 

To this end, LpCopA-nanodiscs at a concentration of 0.1 µM were transferred to 

the assay buffer (35 mM Na-HEPES pH 7.4, 10 mM KCl, 2.5 mM MgCl2, 

0.5 mM ß-ME) using PD10 columns and preincubated with different amounts of 

CuSO4 for 5 min at 37°C. The reaction was started by adding Na-ATP to a final 

concentration of 2 mM. 100 µl aliquots were removed at t = 0 and t = 30 min and 

transferred to tubes containing 10 µl of 0.5 M Na-EDTA at pH 8.0 to stop the 

reaction. The released Pi in the samples was determined according to a standard 

curve of known concentrations of Pi and the hydrolytic activity per time and per 

LpCopA was calculated. 

2.6. Site specific-labeling of LpCopA with BADAN 

In order to monitor the intra-membrane protein polarity and hydration the thiol-

reactive solvatochromic fluorescent probe BADAN (6-bromoacetyl-2-

dimethylaminonaphthalene) was attached site-specifically to the cysteines in the 

copper-binding motif of cmCopA. To avoid background signal by unbound 

residual BADAN in the sample the labeling was performed during the purification 

on the IMAC column. The purification was performed as described in sections 

2.2.2 and 2.2.3 with the modifications described below. β-ME was omitted in the 

whole protein preparation. After loading the solubilized protein on the IMAC 

column, the column was washed with 25 CVs of equilibration buffer and then 

flushed with 15 CVs BADAN in equilibration buffer at a flow rate of 0.3 ml/min. 

BADAN was rapidly diluted 1:1000 v/v immediately before use from a 15 mM 

stock in dimethylformamide into equilibration buffer. The column was then 

washed with 70 CVs of equilibration buffer and 20 CVs of buffer HKMSG 

including 0.15% w/v DDM and 50 mM imidazole. The removal of free BADAN 
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was monitored by following the BADAN absorption in the flow-through. The 

protein was eluted with a gradient from 50 to 500 mM imidazole over 12 CVs in 

fractions of 0.5 ml. The buffer was exchanged to HKMSG including 

0.15% w/v DDM using PD10 columns. Label coupling efficiency (CE) and 

protein concentration were determined according to [95] using the equation: 

𝐶𝐸 =
𝜀280(𝐿𝑝CopA)·𝐴382

(𝐴280−(𝐶𝐹280·𝐴382))·𝜀382(𝐿𝑝CopA)
  (2.2) 

with the extinction coefficients ε280 being 65,890 M-1cm-1 and 21,000 M-1cm-1 for 

LpCopA and BADAN, respectively. The correction factor CF280 was determined 

as follows: 

𝐶𝐹280 =
𝐴280 (BADAN)

𝐴382 (BADAN)
 . (2.3) 

2.7. Handling of hydrophobic peptides and preparation of lipid 

vesicles 

The MBb peptide was dissolved in 20 mM Tris-SO4 pH 7.5 and the concentration 

was determined spectrophotometrically using a molar extinction coefficient of 

11,000 M-1cm-1. Large unilamellar vesicles (LUVs) were prepared by dissolving a 

vacuum-dried lipid film of POPC in the appropriate volume of buffer to obtain the 

desired lipid concentration. The suspension was vortexed for about 20 minutes 

and extruded through two track-etched polycarbonate membranes with sharply 

defined pore sizes of 100 nm with the help of an extruder. Extrusion was assumed 

to be successful, when the solution became opaque and the required pressure for 

extrusion significantly decreased. 

2.8. Spectroscopic techniques 

In this section the details of the spectroscopic techniques used throughout this 

work are described. For all spectra, corresponding baseline measurements of 

buffer and/or cuvettes were recorded and subtracted from the spectrum of the 

sample. If not stated otherwise, spectra were recorded at 20°C. 

UV-Vis spectroscopy. UV-Vis spectroscopic measurements were performed 

either using the Nanodrop 2000c or the Lambda 35 spectrophotometer. For DNA 
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and protein concentration determinations, usually the Nanodrop 2000c was used 

due to its minimal sample consumption. The concentration c was calculated 

according to the Lambert-Beer law: 

𝐴𝜆 =  𝜀𝜆 · 𝑐 · 𝑑 (2.4) 

with Aλ being the unitless wavelength-dependent absorption, ελ the wavelength-

dependent molar extinction coefficient in M-1cm-1, and d the path length in cm. In 

the Lambda 35 spectrophotometer, the scan speed was 100 nm/min, the band 

width was 1 nm, and cuvettes with 1 cm path length were used. In the 

Nanodrop 2000c instrument these parameters are adjusted automatically. 

Circular dichroism spectroscopy. Circular dichroism (CD) spectroscopy is a 

powerful technique to determine secondary of biological macromolecules. CD 

refers to the differential absorption of the left- and right-handed polarized 

component of plane polarized light by chiral chromophores. In the far-UV region, 

the spectrum of each secondary structure type (α-helix, β-sheet, turn, etc.) has a 

characteristic shape. Thus, the secondary structure of an unknown sample can be 

determined by deconvoluting its CD spectrum into the known reference spectra of 

the secondary structure types [96]. 

The far-UV CD spectra of LpCopA and MSP were measured in quartz 

cuvettes with 1 mm path-length using the Jasco J-815 CD spectrometer from 

260 to 190 or 197 nm. The scan speed was 100 nm/min, data integration time was 

2 s, band width was 4 nm, and data pitch was 1 nm. Five to ten accumulations 

were averaged for each sample in order to reduce noise. Sensitivity and scanning 

mode were set to standard and continuous, respectively. The raw ellipticity θ was 

converted to mean residue ellipticity (MRE) according to 

𝑀𝑅𝐸 =
𝜃

𝑛𝑎𝑎−1·𝑐𝑀·𝑙·10−5
  (2.5) 

with naa-1 being the number of peptide bonds of the protein, cM the protein 

concentration in µM, and l the path length of the cuvette in cm. The number of 

amino acids is 766 for LpCopA, 256 for MSP1E3D1(-) , and 190 for MSP1D1(-). 

Protein concentration was between 0.1 µM and 1 µM. 
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Fluorescence spectroscopy. Fluorescence spectroscopy detects changes in the 

physical environment as well as dynamic properties of biological macromolecules 

and requires only small sample concentrations [97]. It does not give direct 

structural information, but provides information on the physical environment of a 

specific site within a larger molecule. The data derived from fluorescence 

measurements can give detailed insights into the complexity of protein structure–

function relationships when combined with the structure information gained from 

CD or IR spectroscopy. In this work fluorescence spectroscopy is used to observe 

lipid-interactions of an amphipathic peptide at the water–membrane interphase 

exploiting the intrinsic fluorescence of the amino acid tryptophan and to study 

intra-protein hydration using the site-specifically introduced fluorescent probe 

BADAN. 

Steady-state fluorescence spectroscopy. Fluorescence emission spectra were 

recorded from 410 to 550 nm with excitation at 390 nm to detect BADAN 

fluorescence or from 310 to 550 nm with excitation at 280 nm to detect intrinsic 

tryptophan fluorescence. The band width in both the excitation and detection 

monochromators was set to 10 nm for BADAN and to 5 nm for tryptophan on the 

LS55 instrument. When using the Fluorolog 3 instrument the bandwidths were 

2 nm. The scan speed was 100 nm/min and 850 to 900 V photomultiplier voltage 

was typically chosen. Protein concentration was between 0.1 µM and 1 µM.  

The tryptophan fluorescence spectra were fitted with the help of non-linear least-

square fitting to a log-normal distribution: 

𝐼𝜆 = 𝐼0 +
𝐴

√2𝜋·𝑤·𝜆
· exp (

−𝑙𝑛2(
𝜆

𝜆𝑐
)

2·𝑤2
)  (2.6) 

with Iλ being the wavelength-dependent fluorescence intensity, I0 the offset, λc the 

mean, w the standard deviation, and A the area. 

Time-resolved fluorescence spectroscopy. Time-resolved fluorescence 

spectroscopy was measured in collaboration with the group of Prof. Martin Hof of 

the Academy of Sciences of the Czech Republic, Prague. For a short introduction 

to the method see the corresponding section in 4.1. Emission decays were 

recorded at a series of wavelengths spanning the steady state emission spectrum in 
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5 nm steps with excitation at 375 nm. A cutoff filter at 399 nm was used in order 

to exclude scattered light. Bandwidths for both the excitation and emission 

monochromators were set to 32 nm. In order to eliminate anisotropy effects the 

spectra were recorded under the magic angle of 54.7°. Signal intensity was kept 

below 2% of the light source repetition rate (20,000 counts/sec). The raw data 

were fitted to multiexponentials using the iterative reconvolution procedure 

provided with the FluoFit software from PicoQuant. The time-resolved emission 

spectra (TRES) S(λ,t) were obtained by the spectral reconstruction method as 

described in [98] and according to: 

𝑆(𝜆, 𝑡) =  
𝐷(𝜆,𝑡)·𝑆0(𝜆)

∫ 𝐷(𝜆,𝑡)
∞

0 d𝑡
  (2.7) 

with D(λ,t) being the fluorescence decays and S0 the steady state emission spectra. 

The time zero spectrum was estimated according to [99]. The emission 

maxima ν(t) were obtained from the log-normal fitted TRES according to [100]. 

The correlation function C(t) was calculated from ν(t) of the TRES at time t 

according to: 

𝐶(𝑡) =  
𝜈(𝑡)−𝜈(∞)

𝜈(0)−𝜈(∞)
 (2.8) 

In order to characterize the time scale of the solvent response, an integral 

relaxation time was calculated as follows: 

𝜏𝑟 ≡ ∫ 𝐶
∞

0
(𝑡)d𝑡 (2.9) 

Fourier-transform infrared spectroscopy. Fourier-transform infrared spectra 

were recorded on an IFS/66v/S spectrometer in attenuated total reflection (ATR) 

mode on a diamond 9-reflections ATR unit. Approximately 11 µmole of the MBb 

peptide were dried carefully on the ATR crystal using a gentle stream of nitrogen. 

POPC liposomes were added at a molar ratio of 1:20 peptide to lipid with the 

same peptide concentration. Transmission spectra were recorded and processed 

using the OPUS software from Bruker. 
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3. Establishing an in vitro system to study LpCopA in a 

membrane-mimetic environment 

3.1. Introduction and overview  

In 2011, CopA from Legionella pneumophila was the first heavy-metal 

transporting P-type ATPase for which a high resolution crystal structure became 

available [64]. This opened up the unique possibility to relate dynamic solution-

state spectroscopic measurements in controllable lipidic environments to the static 

structural snapshots from crystallography. 

Molecular biophysical, e.g. spectroscopic studies of a membrane protein 

require sufficient quantities of the protein in a pure and functional form and 

reconstituted in a native-like lipid environment. The recombinant production of 

LpCopA (see Figure 3.1 for the amino acid sequence of the protein) comprises the 

following steps: the screening for a suitable recombinant production host, the 

selection of a purification tag, the detergent-mediated solubilization of the protein 

from the lipid membrane, the affinity purification, and the quality control of the 

protein in terms of homogeneity, structure, and function. Moreover, the structure 

and function of a membrane protein depends critically on the lipid environment. 

Thus, it is necessary to reconstitute the membrane protein of interest into an 

artificial membrane system that suits the requirements of the biophysical methods. 

Throughout this work, nanodiscs were used as a membrane mimetic system. They 

can be considered as a “soluble portion” of lipid bilayer in which a planar nano-

scaled disc of lipid bilayer is encircled by a ring of two amphipathic membrane 

scaffolding proteins (MSPs). They can be prepared in a simple self-assembly 

process, provide a well-defined lipid environment, and are virtually scatter-free 

due to their small size, rendering them the ideal membrane mimetic system for 

solution spectroscopic techniques. 
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Figure 3.1: Amino acid sequence of LpCopA. The cytosolic head piece of LpCopA comprises 
the actuator (A), the phosphorylation (P), and the nucleotide-binding (N) domain, shown in 
yellow, purple, and magenta, respectively. The N-terminal heavy metal binding domain (HMBD, 
shown in cyan) is specific for the PIB-subtype of P-ATPases, as well as the first two TM helices 
MA and MB (shown in dark cyan). The core TM helices are shown in light brown. The CPC 
copper binding motif on TM helix M4 is marked in red (C382) and blue (C384). The assignment 
of the domains is according to PDB 3RFU. 

MKHDHHQGHT HSGKGHACHH EHNSPKTQQA SSKMEGPIVY TCPMHPEIRQ 50

SAPGHCPLCG MALEPETVTV SEVVSPEYLD MRRRFWIALM LTIPVVILEM 100

GGHGLKHFIS GNGSSWIQLL LATPVVLWGG WPFFKRGWQS LKTGQLNMFT 150

LIAMGIGVAW IYSMVAVLWP GVFPHAFRSQ EGVVAVYFEA AAVITTLVLL 200

GQVLELKARE QTGSAIRALL KLVPESAHRI KEDGSEEEVS LDNVAVGDLL 250

RVRPGEKIPV DGEVQEGRSF VDESMVTGEP IPVAKEASAK VIGATINQTG 300

SFVMKALHVG SDTMLARIVQ MVSDAQRSRA PIQRLADTVS GWFVPAVILV 350

AVLSFIVWAL LGPQPALSYG LIAAVSVLII ACPCALGLAT PMSIMVGVGK 400

GAQSGVLIKN AEALERMEKV NTLVVDKTGT LTEGHPKLTR IVTDDFVEDN 450

ALALAAALEH QSEHPLANAI VHAAKEKGLS LGSVEAFEAP TGKGVVGQVD 500

GHHVAIGNAR LMQEHGGDNA PLFEKADELR GKGASVMFMA VDGKTVALLV 550

VEDPIKSSTP ETILELQQSG IEIVMLTGDS KRTAEAVAGT LGIKKVVAEI 600

MPEDKSRIVS ELKDKGLIVA MAGDGVNDAP ALAKADIGIA MGTGTDVAIE 650

SAGVTLLHGD LRGIAKARRL SESTMSNIRQ NLFFAFIYNV LGVPLAAGVL 700

YPLTGLLLSP MIAAAAMALS SVSVIINALR LKRVTL 736
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3.2. Results 

3.2.1. Recombinant production of LpCopA 

Cloning of LpCopA into the expression vectors. In order to test the expression 

vectors pProExHTa, pBR-IBA1, and pET51b_mod for overexpression and 

purification of LpCopA, the gene was amplified from the pET28a(+) vector using 

the Phusion® High-Fidelity DNA Polymerase Kit and restriction sites for EcoRI 

and XhoI were introduced via the PCR primers (see section 2.2.1). Clearly, the 

PCR yielded the insert containing the LpCopA gene as a single product (see 

Figure 3.2 A). PCR product and vector were digested with the restriction 

enzymes, ligated, and transformed into Giga cells. The successful insertion of the 

LpCopA gene into the vector was verified by an analytic digest. Thereby, positive 

clones containing the insert could be unequivocally distinguished from negative 

clones (Figure 3.2 B). The agarose gel electrophoreses of the cloning of LpCopA 

into pProExHTa are shown exemplarily. Cloning into the other vectors proceeded 

correspondingly with similar results. 

 

 

Figure 3.2: Agarose gel electrophoreses of the restriction enzyme cloning of LpCopA into 
pProEXHTa. M: DNA size standard. (A) PCR product: The PCR product containing the LpCopA 
gene (2229 bp). PCR digested: The PCR product was digested with EcoRI and XhoI and cut out 
from the gel (2217 bp). (B) Analytical digest of the LpCopA gene cloned into pProEXHTa vector 
(copA_1N) with EcoRI and XhoI. The empty vector has 4686 bp. nI: negative clone without 
insert. I: positive clone with insert (2217 bp). 

A B
PCR 

productM nI IMbp

700

2000

4000

1500

700

2000

4000

1500

PCR
digested bp



CHAPTER 3  

36 
 

Recombinant expression of LpCopA. Recombinant expression of prokaryotic 

proteins is usually performed in specially adapted strains of the Gram-negative 

intestinal bacterium Escherichia coli. However, the synthesis of membrane 

proteins can be a difficult task for the host due to toxicity effects. Membrane 

protein overexpression often results in improperly folded and non-functional 

proteins and at worst in the formation of inclusion bodies. Therefore, it is 

important to carefully select a suitable expression vector and expression strain for 

the target membrane protein and to optimize the cell growth 

conditions [101, 102].  

The C43(DE3)pLysS strain was chosen for the expression of CopA_1N, as 

it gave the most promising results in preceding tests with various expression 

strains. In these tests, only CopA_1N, the pProExHTa-derived expression 

construct was used, because this vector had been used successfully for the 

purification of heavy metal transporters before [60]. The C43(DE3)pLysS strain is 

derived from the common BL21(DE3) strain, but is superior in expressing toxic 

and membrane proteins, as it features at least one uncharacterized mutation that 

prevents cell death associated with expression of toxic recombinant proteins. 

(Moreover, basal expression of T7 polymerase is suppressed as the cells harbour a 

plasmid expressing T7 phage lysozyme, a natural inhibitor of T7 polymerase. 

However, it has to be noted that pProExHTa does not feature a T7 promotor, and 

thus transcription is not T7 polymerase-dependent.) SDS-PAGE analysis of the 

protein expression shows that LpCopA is strongly and completely expressed in 

C43(DE3)pLysS (see Figure 3.3). Furthermore, suitable growth and expression 

conditions were screened systematically. The aim was to decelerate the protein 

synthesis rate in order to reduce the stress exerted on the expression host, and 

consequently, to allow for the complete translation and correct folding of 

LpCopA. Therefore, protein synthesis was induced at a relatively high 

OD (approximately 0.8), using the minimal IPTG concentration found to induce 

maximal protein expression (0.1 mM). Moreover, the cells were cultivated 

at 18°C. Taken together, LpCopA could be expressed robustly in C43(DE3)pLysS 

at a low protein synthesis rate. 
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Cell breakage and solubilization of LpCopA. Unlike soluble proteins, integral 

membrane proteins cannot be readily purified from the aqueous cytoplasm after 

lysis of the expression host cells, but need to be solubilized from the host cell 

membrane using a suitable detergent. This process is often the most critical step in 

membrane protein purification, as too harsh detergent exposure may lead to the 

partial unfolding or degradation of the membrane protein and/or its inactivation. 

Therefore, it is crucial to choose the detergent and the solubilization carefully to 

balance between effective solubilization of the target protein and maintaining its 

integrity [103]. This section describes the results obtained for the mechanical lysis 

of the E. coli host cells and the tested solubilization protocols. 

It is critical to prevent heating and frothing of the cell suspension during the 

cell lysis, as this may lead to protein denaturation and degradation. For the 

purification of LpCopA this was achieved by cooling the suspension between the 

lysis cycles in the high pressure homogenizer on ice and supplying the solution 

with protease inhibitors. After removal of the cell debris by centrifugation, the cell 

 

Figure 3.3: SDS-PAGE of LpCopA overexpression in C43(DE3)pLysS. M: protein size 
standard. All cell extracts were loaded on the SDS-PAGE at a concentration of 1 mg/ml. 
(A) LpCopA overexpressed from the pProExHTa derived expression construct CopA_1N. 
U: uninduced sample. I: protein expression was induced in the sample with 1 mM IPTG. No 
expression is observed in the uninduced sample, while strong expression is found for LpCopA 
after induction. (B) Expression of LpCopA from the pET28a(+) derived expression construct 
CopA_sg. I1: induced with 0.5 mM IPTG for 3 h, I2: induced with 0.5 mM IPTG oN, I3: induced 
with 1 mM IPTG for 3 h, I4: induced with 1 mM IPTG oN. In none of the samples, overexpression 
at the expected range of 80 kD could be detected.  
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membrane fragments are usually collected from the cleared cell lysate by 

ultracentrifugation in order to separate the membrane fraction from cytoplasmic 

contaminations. However, this step is time-consuming and often leads to the loss 

of material. 

Hence, it was tested if LpCopA can also be solubilized directly from the 

cleared cell lysate without a quality bias. In the “classical” protocol, the 

membrane pellet was suspended after ultracentrifugation in the initial volume of 

buffer supplied with 1% DDM. In the direct solubilization protocol, DDM was 

directly added to the cleared cell lysate. In both cases solubilization was allowed 

to proceed for approximately 30 min before insoluble material was pelleted by 

centrifugation. In Figure 3.4 it can be seen that there was no obvious difference in 

purity after the IMAC (see section 2.2.3) between the two protocols. Thus, 

LpCopA was routinely purified directly from the cleared cell lysate which 

shortened the purification protocol by half a day. 

 

3.2.2. Purification of LpCopA with C-terminal affinity tags 

Another crucial factor for the success of a recombinant protein preparation is the 

selection of an appropriate expression vector that provides the target protein with 

an affinity tag that is suited to purify the protein in a functional form. Thus, the 

decision on the suitability of an expression construct can only be made after 

assessing the quality of the protein in terms of purity, homogeneity, structure, and 

 

Figure 3.4: SDS-PAGE of purified LpCopA solubilized with directly or from the cell 
membranes. M: protein size standard. D: LpCopA was directly solubilized from the cleared cell 
lysate. P: cell membranes were harvested and LpCopA was purified from the solubilized 
membrane pellet. No obvious difference in purity is observed. The samples were loaded on the 
SDS-PAGE at a concentration of 1 mg/ml. 
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function. This section describes the attempts taken towards this aim. As 

mentioned in the preceding paragraph, pProExHTa was tested first. However, the 

appearance of contaminating bands at 70 and 50 kD on the SDS-PAGE (see 

Figure 3.6) that were assumed to be C-terminally truncated protein fragments, 

motivated me to test also vectors that provide C-terminal affinity tags, namely 

pET28a(+), pBR-IBA1, and pET51b_mod (see Table 2.3 for details of the 

vectors.) For the pET28a(+)-based expression construct CopA_sg no expression 

could be detected by SDS-PAGE (see Figure 3.3 B), even at high 

IPTG concentrations. For the expression constructs CopA_Nhis_Cstrep and 

CopA_C10His, based on the pBR-IBA1 and the pET51b_mod vector, 

respectively, successful expression at levels similar to CopA_1N was achieved 

using the protocol described above. 

Purification and quality control of the C-terminally Strep-tagged construct. 

CopA_Nhis_Cstrep was purified after solubilization from the cleared cell lysate 

using the C-terminal Strep-tag II on a StrepTactin column. CopA_Nhis_Cstrep 

could be eluted at a relatively high purity, as can be determined from the 

SDS-PAGE (see Figure 3.5 A). However, a contaminating protein band at 

approximately 70 kD was observed. Since the purification tag was C-terminal, 

truncation or degradation could not account for this contamination. It is assumed 

that the band arose from DnaK, which is a member of the 70 kD heat shock 

protein family. DnaK is often found as a contaminant in recombinant protein 

production in connection with folding stress [104]. Since the chaperone action of 

DnaK and the interaction with the target protein is ATP-dependent, a washing step 

with ATP during the chromatographic purification can often help to unbind the 

DnaK from the protein [105]. In Figure 3.5 A it can be clearly seen that washing 

with ATP virtually abolishes the DnaK contamination. However, the protein yield 

per preparation was comparatively low with the CopA_Nhis_Cstrep construct. 

This, together with the indication of folding stress as judged by the contamination 

with DnaK, motivated testing the suitability of the CopA_C10His construct. 

Purification and quality control of the C-terminally His-tagged construct. 

C-terminally His-tagged LpCopA could be eluted at high purity from the Ni-NTA 

HiTrap column (see Figure 3.5 B). Moreover, the protein yields were satisfactory. 
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Next the homogeneity of the prepared protein was studied by size exclusion 

chromatography. Unfortunately, a substantial fraction of the protein eluted at the 

exclusion volume of the Superdex200 10/300 GL column as aggregates as can be 

seen Figure 3.5 C. Thus, it may be concluded that a C-terminal tag might 

generally not be well suited for purifying LpCopA in a functional form. This is 

conceivable, as the C-terminus of LpCopA is located closely to the membrane 

interface at the end of a tightly folded TM helix, while the N-terminus is located 

in the flexible, cytoplasmic HMBD. Thus, an N-terminal tag would assumingly 

interfere less with protein folding and structure. Therefore, I focused on 

optimizing the purification conditions for the initially tested CopA_1N construct 

as will be described in the next section. 

3.2.3. Purification of LpCopA with N-terminal His-tag 

The N-terminally His-tagged CopA_1N is based on the pProExHTa vector. In this 

vector, the expression of LpCopA is under the control of the relatively weak 

Trc-promotor. This promotor is a hybrid of the trp- and lacUV5-promotor that 

 

Figure 3.5: Purification of LpCopA using C-terminal tags. (A) and (B) SDS-PAGEs. 
M: protein size standard. (A) LpCopA purification using a C-terminal Strep-tag II from the 
CopA_Nhis_Cstrep construct. E0: C-terminally Strep-tagged LpCopA eluted from the StrepActin 
column without a prior ATP washing step. WATP: washing step with 5 CVs of 20 mM ATP. EATP: 
LpCopA eluted from the StrepActin column after the ATP washing step. The contaminations can 
be clearly reduced by the ATP washing step. (B) LpCopA purification using a C-terminal 10His-
tag from the CopA_C10His construct. E: C-terminally His-tagged LpCopA eluted from the 
HisTrap HP column. (C) Size exclusion chromatography of C-terminally His-tagged LpCopA. The 
homogeneity of purified C10His-LpCopA was analyzed on a Superdex200 10/300 GL column. A 
significant fraction of the protein elutes as aggregates at the column exclusion volume at ~8 ml. 
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allows for a gentle overexpression of the target gene [106, 107]. As mentioned 

above, the standard affinity purification of the CopA_1N construct usually 

resulted in the co-purification of putatively C-terminally truncated fragments of 

LpCopA. A major fragment with a size of 70 kD was identified. 

Analytical cleavage of N-terminally His-tagged CopA.  In order to verify that 

the observed contaminants are indeed degradation products of LpCopA, an 

analytical cleavage of the N-terminal His-tag using TEV-protease was performed. 

In Figure 3.6 it can be seen that the protein bands corresponding to full-length 

protein and the bands corresponding to the contamination shifted by the same 

amount on the SDS-PAGE after cleavage. This substantiates the assumption that 

the observed contaminants are LpCopA fragments. Thus, it was necessary to 

optimize the purification protocol of CopA_1N in order to minimize the 

degradation of LpCopA during the preparation. 

 

Generally, continuous cooling, quick purification, and the choice of a buffer, that 

optimally stabilizes the protein, helps to minimize degradation. These measures 

were also applied in the purification of CopA_1N. Since a lengthy membrane-

harvesting step was omitted and the protein was directly solubilized from the 

cleared cell lysate as described above it was possible to perform the whole protein 

preparation in one day. A buffer with high sulfate content was chosen to stabilize 

 

Figure 3.6: SDS-PAGE of analytical cleavage of the N-terminal His-tag of CopA_1N. 
M: protein size standard. UD: purified undigested CopA_1N. Dice: CopA_1N incubated 1:100 w/w 
with TEV-protease on ice for 3 h. The His-tag was partially cleaved. DRT: CopA_1N was 
incubated 1:100 w/w with TEV-protease at RT for 1.5 h. The His-tag was completely cleaved. 
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the protein in the E2-Pi state [108]. Since the crystal structure of LpCopA was also 

obtained in this state of the enzymatic cycle, it was assumed that the protein 

would be in a preferentially stable sub-conformation in this state. Moreover, it 

was observed that the first elution fractions were usually less pure than the late 

elution fractions (see Figure 3.7). By separately pooling the early and late 

fractions it was possible to obtain 3–7 mg of approximately 90% pure protein per 

liter of culture medium. 

 

Size exclusion chromatography of N-terminally His-tagged CopA. Possible 

aggregation of CopA_1N was studied by size exclusion chromatography (SEC, 

see Figure 3.8 A . Only a minor fraction of aggregates eluting at the exclusion 

volume of 8 ml was observed. The major protein peak was found at 

approximately 12.2 ml. As the size of the protein-detergent micelle is not known 

in the first place and has not been determined within the scope of this work, it was 

not possible to unambiguously assess if CopA_1N was monomeric. However, a 

first approximation can be made by adding up the molecular weight of CopA_1N 

(82 kD) and the weight of the DDM micelle (72 kD according to [109]) to 

154 kD. According to the calibration of the Superdex200 10/300 GL column 

using soluble globular protein size standards, this would refer to an elution 

 

Figure 3.7: SDS-PAGE of the purification of N-terminally His-tagged LpCopA. M: protein 
size standard. W50: 10 column volume washing step with 50 mM imidazole . W140: two column 
volume washing step with 140 mM imidazole. E0 to E5: elution fractions at 400 mM imidazole. 
Each fraction is 1 ml (equals 1 CV). E0 represents the dead volume of the tubing. According to 
pixel intensity analysis of the Coomassie stain using ImageJ, the purity of fractions E1 and E5 is 
73% and 95%, respectively. 
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volume of approximately 12.8 ml. Thus, given the described unknowns 

parameters, the non-globular shape, and the loose packing of CopA_1N as 

described in the next section, the observed elution volume of 12.2 ml is well in 

line with the assumption of monomeric CopA_1N. 

Secondary structure determination of N-terminally His-tagged CopA. Next, it 

was studied if the secondary structure of CopA_1N corresponds to the crystal 

structure of LpCopA. To this end, the secondary structure of LpCopA was 

extracted from the PDB files of the crystal structure using the DSSP method 

(http://2struc.cryst.bbk.ac.uk). In the crystal structure of LpCopA (PDB 3RFU9) 

the HMBD was not resolved and, thus, the corresponding coordinates are missing. 

Therefore the data were complemented with the coordinates of the third HMBD of 

ATP7A (PDB 2GA7). Using this approach, secondary structure values for 

LpCopA of 49% α-helix, 14% β-sheet, and 37% others were extracted. 

Deconvolution of the circular dichroism spectrum of CopA_1N in 

DDM-micelles (see Figure 3.8 B) using the CDSSTR method 

(http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) estimates the secondary 

structure as 46% α-helix, 13% β-sheet, and 41% others, which is in very good 

agreement with the crystal structure. Thus, it could be concluded that CopA_1N 

was correctly folded. 

Taken together, purifying LpCopA with an N-terminal His-tag resulted in 

satisfying yields of homogeneous, correctly folded protein. Protein degradation 

could be kept within acceptable limits by quick purification. Thus, the 

N-terminally His-tagged construct CopA_1N was used throughout this work. In 

the following CopA_1N will only be denoted as LpCopA. 
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3.2.4. Reconstitution of LpCopA into nanodiscs 

The aim of this thesis was to study the influence of the lipid bilayer on intra-

protein hydration of LpCopA. Thus, a central aspect of this work was to 

reconstitute the functional protein into an artificial membrane system that mimics 

the cell membrane to the best extent possible and at the same time fulfills the 

experimental requirements. A relatively new membrane mimetic system that has 

proven its merits over the last years are the so-called nanodiscs [26, 110-113]. In 

nanodiscs, a small portion of planar bilayer is encircled by a homodimer of 

amphipathic α-helical membrane scaffolding proteins (MSPs) which are derived 

from the human apolipoprotein ApoA1. Thereby the hydrophobic hydrocarbon 

region of the lipids is shielded against the aqueous environment. In this way, very 

stable, soluble, and scatter-free particles with a diameter of 10 to 13 nm are 

created, which incorporate the target membrane protein as a single molecule with 

accessibility from both leaflets of the membrane. Nanodiscs can be produced 

using a well-controllable self-assembly process that can furthermore be adapted to 

meet the requirements of the membrane protein. In this section the recombinant 

 

Figure 3.8: Quality controls for N-terminally His-tagged LpCopA. (A) Size exclusion 
chromatography of purified CopA_1N on a Superdex200 10/300 GL column. Only one major 
protein peak at approximately 12.2 ml was observed. (B) Circular dichroism spectrum of 
CopA_1N measured in 0.15% DDM. Using the CDSSTR method the secondary structure fractions 
were estimated to be 46% α-helix, 13% β-sheet, and 41% others. 
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expression and purification of the MSPs and the development of the reconstitution 

protocol of LpCopA into nanodiscs is described. 

Purification of membrane scaffolding proteins. Two variants of MSPs are 

commonly used for the reconstitution of membrane proteins into nanodiscs. Both 

feature repeated amphipathic α-helices that are broken by prolin residues. Two 

molecules of the “standard” MSP1D1 with 10 consecutive α-helices form 

nanodiscs with approximately 10 nm diameter by aligning in an antiparallel 

fashion around the lipid patch. In the extended MSP1E3D1, the stretch 

comprising the helices 4, 5, and 6 is repeated which results in the formation of 

slightly bigger nanodiscs with approximately 13 nm diameter. See Table 3.1 for 

an overview of the protein sequences. Both MSPs were tested in this work and 

produced using the same protocol. The proteins were recombinantly expressed in 

E. coli and purified using a single step immobilized metal affinity (IMAC) 

purification. 

Table 3.1: Overview of the sequence and characteristic of the MSPs 

protein modular scheme MW (kD) diameter of nanodisc (nm) 

Apo AI GLOB-H1-H2-H3-H4-H5-H6-
H7-H8-H9-H10 28 variable 

MSP1D1 His-Tev-H0.5 -H2-H3-H4-H5-
H6-H7-H8-H9-H10 25 10 nm 

MSP1E3D1 His-Tev-H0.5-H2-H3-H4-H5-H6-
H4-H5-H6-H7-H8-H9-H10 33 13 nm 

 

As the MSPs naturally interact with the host lipid membrane, it was necessary to 

remove bound lipids by extensive washes with different detergents while the 

protein was bound to the Ni-NTA resin. By this means, a pure and reproducible 

preparation of MSP was obtained. To allow for the separation 6His-LpCopA-

nanodiscs and empty nanodiscs after reconstitution, the N-terminal 7His-tag was 

removed from the MSP. This was achieved by incubating the purified protein with 

His-tagged TEV-protease. The tag-free MSP, called MSP(-) was subsequently 

collected by reverse IMAC. Figure 3.9 A and B show that the MSPs can be 

purified to high purity and that the His-tag can be removed completely via 

enzymatic cleavage. Using the optimized expression and purification protocol, up 
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to 40 mg of MSP1D1(-) or MSP1E3D1(-) per 2 liter of bacterial liquid culture 

were obtained. 

Preparation of empty nanodiscs. First, empty nanodiscs were prepared. This 

served as a proof of principle of the applicability of the method and allowed 

optimizing the lipid-MSP ratios. Moreover, different lipids and lipid mixtures as 

well as detergents were tested and the time and rate of detergent removal was 

optimized. The most homogeneous preparations were obtained with a molar lipid-

MSP ratio of 1:70 for MSP1D1(-) and of 1:110 for MSP1E3D1(-). In case of the 

natural soy bean lipid extract asolectin a mean molecular weight of 750 g/mol was 

assumed. Larger ratios led to the formation of lipid aggregates as judged by the 

accumulation of precipitates after centrifugation of the nanodisc preparation. The 

most common detergent used in the preparation of nanodiscs is sodium cholate. 

This bile acid salt is known to readily dissolve lipid bilayers and to be easily 

removable due to its high CMC of 9 to 14 mM. However, sodium cholate is also 

known to have a denaturing effect on proteins [21]. Therefore, it was preferable to 

substitute cholate by a milder detergent, ideally by DDM, as this was used in the 

purification of LpCopA anyway. Because of its long hydrocarbon tail, DDM is a 

mild detergent with very low CMC (0.17 mM) and does usually not denature 

membrane proteins. However, it is much slower at solubilizing lipid vesicles, 

which is a prerequisite for nanodisc preparation. Thus, the solubilization of lipid 

films by DDM was tested. Pure model lipids like POPC or DMPC were readily 

solubilized by resuspending the dried lipid film to 8 mM lipid concentration in 

8 mM DDM at a temperature above the lipid phase transition temperature. Only in 

case of the natural soy bean lipid extract asolectin it was necessary to increase the 

DDM concentration to 12 mM and to sonicate and vortex the lipid-detergent 

suspension alternately up to 10 times. 

Nanodiscs were then formed from the lipid-detergent suspension by 

removing the detergent with Bio-Beads SM-2. These are nonpolar polystyrene 

beads with a large surface area that selectively adsorb detergents from aqueous 

solution. For the formation of homogeneous nanodisc particles, it is important to 

remove the detergent completely and at a rate that allows for the partitioning and 

equilibration of the components between the solubilized micellar state and the 
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protein-bounded bilayer state. This rate can be controlled by the amount of added 

Bio-Beads and the incubation time. The most homogeneous particles were 

obtained at a Bio-Bead–DDM ratio of approximately 170:1 w/w and 3 h 

incubation time. Figure 3.9 C shows the size exclusion chromatograms of 

nanodiscs prepared from MSP1D1 and from MSP1E3D1 using DMPC. 

MSP1D1(-)-nanodiscs elute at a retention volume of 13.0 ml corresponding to a 

molecular weight of 144 kD according to globular protein molecular weight 

standards. This agrees very well with the calculated molecular weight of 128 kD 

of a nanodiscs consisting of 140 molecules of DMPC with MW = 0.678 kD and 

two molecules MSP1D1(-) with MW = 22 kD. MSP1E3D1(-)-nanodiscs elute at a 

retention volume of 12.2 ml corresponding to a molecular weight of 220 kD, 

which is also well in line with the calculated value of 236 kD, comprising 

260 DMPC molecules and two MSP1E3D1(-) molecules with MW = 30 kD. 

Similar results were also obtained for POPC, DOPG, POPC:DOPG 3:1, E. coli 

total lipid extract, and asolectin. 

 

Secondary structure and stability of MSP. The correct folding of the MSPs was 

analyzed by CD spectroscopy. Figure 3.10 shows exemplarily the CD spectra of 

 

Figure 3.9: MSP purification and formation of empty nanodiscs.(A) and (B) SDS-PAGEs of 
purified MSP before (+) and after (-) cleavage of the 7His-tag with TEV-protease. M: protein size 
standard. (A) Purified MSP1D1. (B) Purified MSP1E3D1. Here additionally partial (p-) cleavage 
of the 7His-tag is shown. (C) Size exclusion chromatography of empty DMPC-nanodiscs. 
MSP1D1-nanodiscs (black line) elute at retention volume of 13.0 ml from the Superdex200 
10/300 GL column, corresponding to a MW of 144 kD. MSP1E3D1-nanodiscs (gray line) elute at 
retention volume of 12.2 ml corresponding to a MW of 220 kD. 
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MSP1D1(-) in aqueous phosphate buffer and in POPC-nanodiscs. The protein is 

clearly α-helical in both cases, with a slightly increased helicity for the 

reconstituted MSP. In order to test the stability of the nanodiscs, the thermal 

unfolding of MSP1D1(-) was analyzed by monitoring the ellipticity θ at 222 nm, 

which is commonly used as a measure for the helicity [114, 115]. Remarkably, the 

protein structure is much more stable in the nanodiscs: While pure MSP1D1(-) 

exhibits a moderately sigmoidal unfolding curve characteristic of a cooperative 

two-state unfolding event with a unfolding temperature Tm of 

approximately 55°C, the unfolding of MSP1D1(-) in the nanodiscs is 

characterized by a featureless shallow decrease in ellipticity with no clear turning 

point (see Figure 3.10 insert). This shows the high stability of the protein-lipid 

nanodiscs.  

In summary, it was possible to prepare highly homogeneous nanodiscs with 

either MSP1D1(-) or the extended MSP1E3D1(-) using exclusively DDM and a 

variety of lipids and lipid mixtures. 

 

 

Figure 3.10: Circular dichroism spectrum of MSP1D1(-). The circular dichroism spectrum of 
MSP1D1(-) was measured in phosphate buffer (solid line) and POPC nanodiscs (dashed line). In 
both cases MSP1D1(-) is purely α-helical. Insert: Thermal unfolding of MSP1D1(-) in phosphate 
buffer (filled diamonds) and in POPC nanodiscs (open diamonds) monitored via the ellipticity at 
222 nm. In the nanodiscs the thermal stability of MSP1D1(-) is significantly increased.  
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Reconstitution of LpCopA into nanodiscs. Initially it was attempted to 

reconstitute LpCopA using the “standard” MSP1D1 as a scaffolding protein. 

However, these experiments were not successful since they led to the formation of 

LpCopA aggregates and empty nanodiscs as judged from the size exclusion 

chromatogram. This shows several overlapping peaks of high molecular weight 

species between 8 and 13 ml retention volume and a prominent peak at 14 ml (see 

Figure 3.11). No significant peak was observed at the expected retention volume 

around 12.5 ml, which would correspond to a molecular weight of around 190 kD. 

Also changing the ratio of LpCopA, MSP1D1(-), and lipid did not improve the 

homogeneity of the preparation. This observation was somewhat puzzling, as 

other membrane proteins bearing seven or eight TM helices had been successfully 

reconstituted into MSP1D1-nanodiscs before [111, 116]. Moreover, the 

hydrodynamic radius of the native LpCopA homologue from the thermophilic 

Archaeoglobus fulgidus was determined to be 6 nm using quasi elastic light 

scattering [117]. Furthermore, the longest cross section of the TM stalk as 

extracted from the crystal structure is only 4.5 nm. Thus, also the reconstitution of 

LpCopA into MSP1D1-nanodiscs was expected to be feasible. However, the fact 

that it was not possible to reconstitute LpCopA into the smaller nanodiscs could 

indicate that the protein is not as tightly packed as other membrane proteins in the 

flexible environment of the detergent micelle. 

 

Figure 3.11: Size exclusion chromatogram of LpCopA reconstitution into MSP1D1(-)-
nanodiscs. The approach to reconstitute LpCopA into nanodiscs encircled by MSP1D1(-) resulted 
in an inhomogeneous elution from the Superdex200 10/300 GL column. Several overlapping peaks 
of high molecular weight species between 8 and 13 ml retention volume and a prominent peak at 
14 ml are observed. 
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Due to the results described above, the extended scaffolding protein 

MSP1E3D1(-) was tested for the reconstitution of LpCopA. MSP1E3D1(-) is used 

in excess in the preparation to ensure complete reconstitution of LpCopA. Thus, a 

mixture of LpCopA-nanodiscs and empty nanodiscs is obtained, which can be 

separated by IMAC via the His-tag of LpCopA (see Figure 3.12 A). The eluate 

contains the LpCopA-nanodiscs while empty nanodiscs are expected in the flow 

through and wash fractions. In order to analyze the homogeneity, size-exclusion 

chromatography was performed. As can be seen in Figure 3.12 B LpCopA-

MSP1E3D1(-)-nanodiscs eluted at a retention volume of 11.8 ml from the 

Superdex200 10/300 GL column, corresponding to the expected weight of 

approximately 250 kD of a nanodisc composed of one LpCopA, two 

MSP1E3D1(-), and 140 phospholipid molecules. Only a minor aggregate fraction 

eluting at the exclusion volume of the column was obtained. The size exclusion 

chromatography of the flow through of the IMAC contains one fraction eluting 

at 8 ml which contains presumably aggregated LpCopA and a second fraction 

at 13.5 ml containing presumably empty nanodiscs with a low 

lipid : MSP1E3D1(-)-ratio. The mass fractions of MSP1E3D1(-) and LpCopA in 

the LpCopA-nanodiscs before as well as after the size exclusion chromatography 

are approximately 1:1 as estimated from the pixel intensity analysis of the 

Coomassie stain using the software ImageJ (http://imagej.nih.gov/ij/). This also 

corresponds to one LpCopA per nanodisc. 

The finding that it was only possible to reconstitute LpCopA into the larger 

MSP1E3D1(-) particles substantiates the hypothesis that the flexible TM domain 

of detergent-solubilized LpCopA requires probably more lateral area as provided 

in the MSP1E3D1-nanodisc with its 13 nm diameter. Taken together, a very 

homogeneous preparation of LpCopA-nanodisc using the extended MSP1E3D1 

scaffolding protein could be obtained. 
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3.2.5. ATPase activity of LpCopA 

Finally, it was tested whether the nanodisc-reconstituted LpCopA was functional. 

To this end, the ATP-hydrolytic activity of LpCopA in nanodiscs upon stimulation 

by Cu+ was tested. The freshly prepared LpCopA-nanodiscs were transferred to 

the assay buffer. Thereby, the sulfate, which had stabilized the protein in the 

E2.Pi state throughout the purification and reconstitution was substituted by 

chloride. After a pre-incubation with Cu+, ATP was added and the reaction was 

allowed to proceed for 30 min at 37°C. The amount of released inorganic 

phosphate Pi was determined using the well-established colorimetric Lanzetta 

assay [94] and compared with a standard curve prepared with KH2PO4. The 

ATP-hydrolytic activity was activated 3-fold in the presence of 50 µM Cu+. A 

higher Cu+-concentration of 100 µM inhibited activity again (see Figure 3.13). 

 

Figure 3.12: Reconstitution of LpCopA into MSP1E3D1(-)-nanodiscs. (A) SDS-PAGE of the 
IMAC. M: protein size standard. mix: mixture of LpCopA and MSP1E3D1 before reconstitution. 
After detergent removal, the mixture was subject to IMAC in order to separate empty and 
LpCopA-nanodiscs. FT: flow through of IMAC containing mostly empty nanodiscs. E: eluate of 
IMAC containing mostly LpCopA-nanodiscs. (B) Flow through and eluate of the IMAC were 
analyzed on a Superdex200 10/300 GL size exclusion column. The flow through (gray line) of the 
IMAC showed two major peaks in the size exclusion chromatogram: the peak at the exclusion 
volume of 8 ml corresponds putatively to aggregated CopA and the peak at 13.5 ml corresponds to 
lipid-poor nanodiscs. The eluate of the IMAC showed one major peak at 11.8 ml corresponding to 
CopA-nanodiscs (C-NDs, see also in inserted SDS-PAGE) and a minor aggregated fraction 
at 8 ml (agg, see insert). 
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It has to be noted, that a relatively high unspecific activity was found in the 

absence of added copper. ATP self-hydrolysis was ruled out as a possible cause 

by running appropriate controls. Possibly, the “basal” activity of LpCopA in the 

nominal absence of copper results from the contamination of the asolectin lipids 

with small amounts of copper. An estimation of the copper content using 

inductively-coupled-plasma mass spectrometry revealed a copper contamination 

of the asolectin of approximately 1.3% w/w. This would result in approximately 

0.2 µM copper in the final LpCopA-nanodisc sample. Although this value is much 

smaller than the 50 µM copper found to maximally activate LpCopA, it is still 

conceivable, that this small amount of copper might contribute to the ATP 

hydrolysis in the absence of added copper. The affinity of LpCopA for Cu+ is 

known to be in the femtomolar range [82]. Thus, very low concentrations of 

copper could already stimulate the ATPase. Moreover, it has to be noted, that the 

amount of available Cu+ is likely to differ substantially from the amount of added 

Cu+, as the copper ion is readily complexed by buffer substances [118] . The 

observed maximal activity of 15 nmole Pi / mg of protein / min is well in the 

range of published values of PIB-ATPase activity [64, 68, 119]. Taken together, it 

could be shown that LpCopA could be reconstituted into MSP1E3D1(-)-nanodiscs 

in a functional form. 

 

Figure 3.13: ATP hydrolytic activity of LpCopA reconstituted into nanodiscs. Activation of 
LpCopA reconstituted into MSP1E3D1(-)-nanodiscs by addition of different amounts of Cu+. The 
maximal activity was 15 nmole Pi / mg of protein / min. LpCopA and ATP concentrations were 
0.1 µM and 2 mM, respectively. ATP hydrolysis was measured for 30 min at 37°C. 
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3.3. Summary and discussion 

LpCopA from Legionella pneumophila was the first copper-transporting PIB-type 

ATPase for which a high resolution crystal structure became available [64]. This 

provided the unique opportunity to relate the three-dimensional static 

crystallographic structures to site-specific information of the functional protein in 

the context of a lipid bilayer in order to achieve a deeper insight into the ion 

transport mechanism of this protein. This chapter described the establishment of 

an in vitro system allowing the biophysical study of the LpCopA transport 

mechanism, which will be the focus of the following chapter. LpCopA was 

recombinant expressed in E. coli and affinity-purified using an N-terminal 6His-

tag after solubilization with DDM directly from the cleared cell lysate. Size 

exclusion chromatography prove that the protein was obtained in a homogeneous 

and monomeric form and the correct folding was confirmed by CD spectroscopic 

analysis. In order to study the influence of the lipid membrane, LpCopA had to be 

reconstituted in an artificial bilayer system. Nanodiscs were chosen, as they can 

be easily assembled and provide a planar bilayer of controllable composition. 

Moreover, they are virtually scatter-free which qualifies them especially for optic 

spectroscopies, as will be shown in the next chapter. LpCopA was successfully 

reconstituted into nanodiscs prepared with the extended membrane scaffolding 

protein MSP1E3D1 and showed a Cu+-stimulated ATPase activity. To my 

knowledge the reconstitution of LpCopA into nanodiscs described here constitutes 

the first successful nanodisc-reconstitution of a PIB-type ATPase reported so far. 

An illustration of LpCopA embedded into a nanodisc is shown in Figure 3.14. A 

robust and reproducible in vitro system was established that allows the detailed 

investigation of the ion transport mechanism and the role of the lipid membrane 

for the structure and function of the protein. 
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Figure 3.14: Illustration of LpCopA embedded into a nanodisc. LpCopA is embedded in to the 
lipid membrane (gray). Membrane scaffolding proteins (MSP, green) stabilize the hydrophobic rim 
of the lipid bilayer. The figure was created with the softwares PyMOL and Blender using 
PDB 4V6M for the MSP and lipid coordinates, and PDB 3RFU for the LpCopA coordinates. 
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4. Spectroscopic determination of polarity gradients in the 

transport channel of LpCopA 

4.1. Introduction and overview 

The functional reconstitution of LpCopA into the controllable lipid environment 

of the nanodiscs set the basis for studying the involvement of the highly structured 

interface of water, protein, and lipids on the structure and function of the protein. 

The focus of this work was to investigate the hydration in the environment of the 

copper-binding motif CPC on TM helix M4. So far, crystallographic and 

computational studies suggest an unexpected open configuration of the copper 

exit channel in the E2.Pi state of the enzymatic cycle [47], which would 

distinguish LpCopA from other P-type ATPases, where this state is characterized 

by the luminal occlusion of the transport channel. Crystal waters as well as 

molecular dynamic (MD) calculations suggest a remarkable hydration of the 

channel with water reaching up to the cysteine C382 in the copper-binding site. 

This might play a role in the coordination of H-bond networks that are important 

for the exit of copper to the extracellular side. Here, experiments were designed to 

study polarity and water mobility in the environment of the main copper-binding 

motif in both a dynamic detergent-solubilized state and in the presence of a lipid 

bilayer. Therefore, these studies complement and expand the insights gathered 

from the crystal structures which are only static snapshots of the protein 

conformation obtained in the absence of a lipid bilayer. To this end, the polarity-

sensitive fluorescent probe BADAN was introduced site-specifically into 

LpCopA. Figure 4.1 shows a possible configuration of BADAN bound to the 

cysteines of the copper-binding site of LpCopA. 
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Fluorescence properties of BADAN. The fluorescent probe used in this study is 

the thiol-reactive naphthalene derivative BADAN (6-bromoacetyl-2-

dimethylaminonaphthalene). With its small size, which is in the range of an amino 

acid side chain, and its short linker it allows monitoring local molecular details. 

Its fluorescence is sensitive to the polarity and solvent mobility in its immediate 

environment. Therefore, it is an excellent probe to study water distribution and 

dynamics in proteins [120]. Generally, BADAN exhibits a so called “dual 

fluorescence” [121] with two excited states: the locally excited (or Franck 

Condon) state and the internal charge transfer (ICT) state. The information on 

solvent polarity and mobility in the environment of the probe manifests mainly in 

the energy reduction of the more polar ICT state due to solvent relaxation (SR) as 

explained below. The locally excited state does not contribute due to the fast 

charge transfer process. Upon excitation the dipole moment of BADAN increases 

approximately threefold [122]. Therefore, solvent molecules reorient in order to 

minimize the total energy of the electronically excited chromophore and its 

solvation envelope. Since SR lowers the energy of the excited state, the relaxation 

process causes a continuous red-shift of the BADAN emission during the lifetime 

of the excited state. In other words, the longer the time between excitation and 

 

Figure 4.1: BADAN bound to the CPC motif of LpCopA. The figure shows BADAN (light 
green) linked to C382 (red) and C384 (blue) of the copper-binding motif of LpCopA. The 
orientation of BADAN is purely hypothetical and was adjusted manually respecting steric 
constraints. Also other orientations of BADAN are feasible. No software-based energy 
minimization of the BADAN orientation was attempted.  
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photon emission the lower is its energy, since it originates from a more relaxed 

state. Clearly, the extent of SR depends on the amount and mobility of the water 

in the fluorophore´s environment, rendering it a measure of the polarity in the 

vicinity of the chromophore. However, it has to be noted, that also internal label 

dynamics, namely the rotation or wobbling of the propanoyl moiety with respect 

to the aromatic ring can lead to spectral shifts (see also Figure 4.4). As proposed 

by Koehorst el al. [120], the ICT species of BADAN can be further distinguished 

according to their hydrogen bonding mode as illustrated in the energy level 

scheme in Figure 4.2: in the ground state BADAN can be in a non-hydrogen-

bonded ICT state, or hydrogen-bonded ICT state (HICT). The hydrogen bond can 

furthermore be immobile (i) or mobile (m) resulting in a HICTi and a HICTm 

state, respectively. The difference in the energy state between HICTi and HICTm 

can be attributed to solvent relaxation of water molecules as well as internal label 

dynamics. Due to the short excitation lifetime of BADAN of 5 ns [123] this 

energy difference is also reflected in the emission spectra. Consequently, 

information on solvent mobility can also be withdrawn from steady-state 

fluorescence spectra. However, a more detailed and unambiguous determination 

of solvent mobility can only be attained using time-resolved measurements. 

 

 

Figure 4.2 Energy level scheme of BADAN. The heterogeneity of the ground state results from 
differences in hydrogen-bonding capacity of BADAN in polar and apolar environments that 
subsequently will affect the various excited states. The three discriminated states denote the 
internal charge transfer state (ICT), the ICT state with an immobile hydrogen bond (HICT i), and 
the ICT state with a mobile hydrogen bond (HICTm). Information about solvent relaxation 
processes in the environment of the fluorescent probe can be obtained from the shift of HICTm. 
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Principle of time-resolved fluorescence spectroscopy. Steady-state fluorescence 

spectra only contain time-averaged information on solvent relaxation. Hence, they 

can be understood as a weighed superposition of all relaxation states occurring 

during the lifetime of the fluorophore. Using time-resolved fluorescence 

spectroscopy, the evolution of the time-resolved spectra starting from the initial 

Franck-Condon state to the final completely relaxed state can be followed. 

Technically, this is usually accomplished using time-correlated single photon 

counting (TCSPC) [124]. The time-resolved emission spectra (TRES) are 

reconstructed from the obtained fluorescence decays at distinct wavenumbers. The 

information on the polarity (and also mobility) of the environment of the 

fluorophore is found in the time-dependent Stokes shift (TDSS), i.e. the shift of 

the emission maximum between the initial and the fully relaxed state. The 

kinetics, i.e. the time constants or relaxation times of the fluorescence decay, 

contain information on the solvent mobility in the environment of the probe. Thus, 

the results gained by time-resolved fluorescence spectroscopy provide quantitative 

information on the hydration and mobility of a specific site of the protein and 

monitor differences in the probe’s microenvironment. 

This chapter describes first the mutants designed to create site-specific 

polarity reporters in LpCopA, the labeling strategy, and the quality controls of the 

dye–protein system. The second part of this chapter presents the results and the 

analysis of the polarity-sensitive fluorescence spectroscopy of BADAN in 

LpCopA, obtained using steady-state as well as time-resolved fluorescence 

spectroscopy. Time-resolved fluorescence spectroscopy was performed in 

collaboration with the group of Prof. Martin Hof of the Academy of Sciences of 

the Czech Republic in Prague. 

4.2. Results 

4.2.1. Preparation of site-specifically labeled LpCopA 

Cloning of LpCopA mutants for site-specific labeling. Besides the two 

cysteines in the copper-binding motif, CopA from Legionella pneumophila 

contains four cysteine residues in the two conserved copper-binding motifs in the 
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cytoplasmic heavy metal binding domain (HMBD). Thus, it was necessary to 

remove these residues in order to obtain information exclusively on the TM 

cysteines. It is expected that the elimination of the cysteines in the HMBD affects 

the functionality of LpCopA, as observed for LpCopA homologues [67, 125-127]. 

However, cysteine was substituted here by the sterically conserved and chemically 

related amino acid serine. Therefore, the overall structure and conformational 

flexibility of the protein was expected to be largely unaffected. The mutant 

lacking the cytoplasmic cysteines was denoted cmCopA, standing for “cysteine 

minus”. It was created from the LpCopA gene in the CopA_1N construct using 

PCR-based site-directed mutagenesis. Based on cmCopA, cmC382S and 

cmC384S were created. By this means, site-specific positioning of the polarity 

probe BADAN was allowed. Moreover, the completely cysteine-free (“cf”) 

mutant cfCopA was created in order to evaluate unspecific labeling effects. Table 

2.2 sums up the protein mutants and indicates the position of the BADAN label. 

Table 4.1: LpCopA mutants and the corresponding BADAN-label positions 

protein name mutations reactive 
cysteines 

name of 
labeled protein 

LpCopA none 6 / 

cmCopA C18S/C42S/C56S/C59S CPC BADAN-cmCopA 

cmC382S C18S/C42S/C56S/C59S/C382S C384 BADAN@C384 

cmC384S C18S/C42S/C56S/C59S/C384S C382 BADAN@C382 

cfCopA C18S/C42S/C56S/C59S/C382S/C384S none BADAN-cfCopA 

 

Recombinant production of LpCopA mutants.  For the recombinant expression 

of cmCopA, cmC382S, cmC384S, and cfCopA one needs to deviate from the 

original expression protocol for LpCopA because expression of cmCopA was very 

weak in the C43(DE3)pLysS strain. Therefore, other strains were tested and 

robust and complete expression of cmCopA could be achieved in 

BL21(DE3)Rosetta (see Figure 4.3). Moreover, it was necessary to decelerate the 

cultivation and protein expression by inducing at the high OD of 1.0 and using an 

IPTG concentration of 0.5 mM. In the purification of the LpCopA mutants β-ME 
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had to be omitted in order to avoid outcompeting of cysteine in the conjugation 

with the thiol reactive BADAN. 

 

Labeling of LpCopA with BADAN. The polarity-sensitive fluorescent probe 

BADAN selectively reacts with the thiol moiety of the cysteine residues of the 

protein (see Figure 4.4). 

 

Usually proteins are dye-labeled in a simple batch approach, where the protein is 

mixed with an excess of dye and incubated for a certain time in order to allow for 

the reaction to complete. Then, non-reacted dye is removed by dialysis or buffer 

exchange. However, experiments performed in our lab showed that when using 

this approach a significant amount of non-reacted BADAN remained in the 

sample which was not readily removable. One reason for this observation could be 

 

Figure 4.3: SDS-PAGE of cmCopA overexpression. M: protein size standard. All cell extracts 
were loaded on the SDS-PAGE at a concentration of 1 mg/ml. U: uninduced sample. I: protein 
expression was induced with 1 mM IPTG. Weak expression was found in the C43(DE3)pLys 
strain while robust and complete expression was found in the BL21(DE3)Rosetta strain. 

 

Figure 4.4: Conjugation scheme of BADAN with thiol groups. The highly reactive α-bromide 
of BADAN forms a stable covalent thioether bond with the protein via a nucleophilic attack by the 
sulfur of the cysteine residue. 
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the association of the hydrophobic BADAN with the detergent molecules in the 

protein-detergent micelle. In order to overcome this problem, a more efficient way 

of replacing the detergent was needed. Generally, detergents and buffers can be 

effectively exchanged while the protein is bound to an affinity resin. For instance, 

excess Coumarin dye could be successfully removed from a purified haloalkane 

dehalogenase by an additional IMAC after batch labeling [128]. Here, the process 

was further condensed by labeling the protein with BADAN on the IMAC column 

already during the purification (after contaminating proteins had been washed out 

using low millimolar imidazole concentrations). Monitoring of the BADAN 

absorption during the chromatographic run allowed following the labeling process 

online, as shown in Figure 4.5 exemplarily for cmC382S. For the other mutants 

very similar results were obtained. 
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Figure 4.5: Labeling of cmC382S labeling with BADAN on the column. (A) SDS-PAGE of 
purification and on column labeling of cmC382S. M: protein size standard. W, E1, E2, E3, and E4 
correspond to the IMAC fractions marked in the chromatograms in (B) and (C). (B) BADAN 
labeling and washing step on the HisTrap HP column. Protein and BADAN absorption was 
monitored at 280 nm (black line) and 390 nm (red line), respectively. The BADAN absorption 
shows a prominent peak after approximately 10 CVs of washing and returns back completely to 
the initial level, indicating that free BADAN has been removed completely. The small peak at 
280 nm arises either from minor amounts of washed out protein or from the contribution of the 
additional BADAN-absorption peak at 290 nm. (C) Elution step of BADAN-labeled cmC382S 
from the HisTrap HP column. Color code is as in (B). The peaks of protein and BADAN 
absorption coincide, confirming the specific labeling of cmC382S. 
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Labeling efficiency and background determination. The label coupling 

efficiency (CE) was determined from the absorption spectra of labeled protein 

according to [95] and as described in section 2.6. The label CE is ~0.6 for all 

cmCopA mutants bearing one or two cysteines (cmC382S, cmC384S, and 

cmCopA). This suggests that even when two cysteines are available, preferentially 

only one is labeled. It can be concluded that BADAN preferentially reacts with 

C384 from the cytoplasmic side thereby obstructing sterically the access to the 

more membrane-inserted C382. This explains why cmCopA shows a label CE 

similar to the single cysteine mutants. Moreover, its fluorescence spectra resemble 

the spectra of BADAN@C384, as detailed in the next section. The label CE of 

cfCopA is ~0.2. The absorption spectra of BADAN-cmCopA and 

BADAN-cfCopA in detergent are shown in Figure 4.6 A. This implies that even 

after the extensive washing procedure a fraction of BADAN stays associated with 

the protein. This fraction probably results from unspecific binding to amines. 

Hence, up to 30% of the BADAN fluorescence may originate from a non-specific 

environment. This was taken into consideration for the data analysis by 

subtracting the 30% scaled spectrum of BADAN-cfCopA in detergent or 

nanodiscs (see Figure 4.6 B) from the sample spectrum. The comparison of Figure 

4.6 C and D shows that this correction only led to a small shift of the spectral 

shape and did not devaluate the spectral interpretation. However, it should be 

noted that it is legitimate to assume that the background in the cysteine-bearing 

protein mutants is considerably lower than 30%, as unspecific binding is strongly 

suppressed when thiol groups as the preferential reactive groups are available. 
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Reconstitution of BADAN-labeled LpCopA mutants into nanodiscs. The 

BADAN-labeled LpCopA variants were reconstituted into nanodiscs prepared 

with asolectin essentially as described in section 3.2.4. In contrast to LpCopA-

nanodiscs, the preparation of cmCopA-nanodiscs contained a significant 

aggregate fraction. Since cmCopA was shown to be monomeric prior to the 

labeling procedure (not shown), partial aggregation is likely to have proceeded 

during the labeling. However, only monomeric protein can reconstitute into the 

nanodiscs. Therefore, the reconstitution and the ensuing size separation of the 

particles using SEC can be used as a selection process for monomeric and 

 

Figure 4.6: BADAN labeling efficiency and quality controls. (A) Absorption spectra of 
BADAN. The absorption spectra of a BADAN-β-ME adduct at 15 µM (dashed black line), and of 
BADAN-cmCopA (gray line) and BADAN-cmCopA (cyan line) in 0.15% DDM at 3 µM are 
shown. The label CE was determined to be 0.6 and 0.2 for BADAN-cmCopA and 
BADAN-cfCopA, respectively, according to [95]. (B) to (D) Normalized static fluorescence 
spectra of BADAN-labeled LpCopA mutants upon excitation at 390 nm. Solid and dashed lines 
represent spectra obtained from protein in 0.15% DDM and reconstituted into asolectin-nanodiscs, 
respectively. Vertical lines indicate the position of maximum emission. The standard deviation is 
obtained from a minimum of three independent batches of experiments. (B) Spectra of BADAN-
cfCopA. (C) Spectra of BADAN@C382. (D) Spectra of BADAN@C382 corrected for 
background fluorescence due to unspecific labeling of non-cysteine residues. To this end, the 
corresponding spectrum of BADAN-cfCopA (B) scaled to 30% intensity was subtracted from the 
raw data to account for the maximally possible influence of the unspecific signal. 
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properly folded membrane protein. BADAN-cmCopA-nanodiscs were obtained 

from the peak at 11.8 ml, which overlapped in BADAN absorption and protein 

absorption, as can be seen in Figure 4.7. 

 

Secondary structure of BADAN-cmCopA in nanodiscs. The correct folding of 

BADAN-cmCopA was also assessed by determining the secondary structure 

using circular dichroism (CD) spectroscopy. Figure 4.8 compares the CD spectra 

of BADAN-cmCopA in nanodiscs with the spectrum calculated from the weighed 

spectra of empty MSP1E3D1(-)-nanodiscs and BADAN-cmCopA in 0.15% DDM 

according to the protein mass fraction of LpCopA and MSP1E3D1(-). A 

LpCopA-nanodisc contains one LpCopA with a MW of 81,960 g/mol and two 

MSP1E3D1(-) with a MW of 29,982 g/mol each. This yields a mass fraction of 

0.57 and 0.43, respectively. The correlation between the measured and the 

calculated spectrum further confirms that one LpCopA is reconstituted per 

nanodisc particle and that the secondary structure is not altered. Taken together, 

these results show that LpCopA can be selectively labeled with the cysteine-

reactive polarity-probe BADAN without affecting the protein integrity and that 

the protein can still be successfully reconstituted into nanodiscs. 

 

Figure 4.7: Size-exclusion chromatography of BADAN-cmCopA reconstitution into 
nanodiscs. Protein absorption was monitored at 280 nm (black line) and absorption of BADAN 
was monitored at 390 nm (red line). The absorption at 390 nm is scaled 1:10 for a better 
comparison. BADAN-cmCopA-nanodiscs were obtained from the peak at 11.8 ml. The peak at 
8 ml contained aggregates of BADAN-cmCopA. 
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4.2.2. Polarity and water mobility in the transport channel 

The covalently bound polarity-monitor BADAN was site-specifically introduced 

into the copper-binding site of LpCopA mutants. This section describes the study 

of micropolarity and solvent mobility around specific positions in the copper-

binding motif using steady-state and time-resolved fluorescence spectroscopy and 

explains the implications of the results for the copper transport mechanism. 

Steady-state spectroscopy of BADAN-labeled LpCopA variants in micelles. 

First, BADAN-labeled LpCopA mutants were studied in the flexible micellar 

state. These experiments address the question whether the TM helix packing 

interactions are sufficient to stabilize the hydrophobic core of the ATPase in the 

absence of additional protein–lipid interactions. Remarkably, pronounced 

differences between the spectral shapes of the steady-state spectra for different 

labeling positions are observed. The emission maximum of BADAN@C382 is 

485.3 (±1.2) nm while emission is blue shifted to 471.5 (±2.1) nm in 

 

Figure 4.8: Circular dichroism spectra of LpCopA. Measured spectrum of BADAN-cmCopA in 
nanodiscs (solid black line) and the same spectrum calculated from the spectrum of BADAN-
cmCopA in 0.15% DDM and the spectrum of empty MSP1E3D1(-)-nanodiscs as described in the 
result section (dashed line). Insert: Reference spectra of BADAN-cmCopAC in 0.15%DDM 
(orange) and of empty MSP1E3D1(-)-nanodiscs (green). 
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BADAN@C384. BADAN-cmCopA exhibits an emission maximum at 

468.3 (±1.9) nm which is very similar to BADAN@C384 (see Figure 4.9). This 

indicates that C384 is preferentially labeled in the presence of C382 such that the 

removal of C382 has little influence on the labeling behavior, provided that C384 

is present. This finding agrees well with the observation that the label CE of 

cmCopA is in the same range as for cmC382S and cmC384S as detailed in the 

preceding section. The more membrane-inserted C382 could be labeled with 

BADAN in the cmC384S mutant, where no obstruction of the labeling 

accessibility from the cytosolic side by BADAN at C384 can occur. Strikingly, in 

DDM-micelles the more cytosolic cysteine C384 resides in a less polar 

environment than the membrane-buried C382 according to the steady-state 

spectra. 

 

Time-resolved spectroscopy of BADAN-labeled LpCopA mutants in micelles. 

Steady-state spectra of BADAN do not contain direct information the kinetics of 

solvent relaxation. Rather, they represent a superposition of the time-resolved 

emission spectra (TRES) and can therefore only give time-averaged information 

on the polarity of the fluorophore’s environment. In order to obtain the Stokes 

shift dynamics, time-resolved emission intensities were measured at different 

 

Figure 4.9: Normalized steady-state fluorescence spectra of BADAN-labeled LpCopA 
mutants in DDM-micelles. The spectra were recorded in 0.15% DDM and background-corrected 
as described above and in Figure 4.6. Vertical lines indicate the position of maximum emission 
upon excitation at 390 nm. The standard deviation is obtained from a minimum of three 
independent batches of experiments. BADAN@C382 with λmax = 485.3 (±1.2) nm, 
BADAN@C384 with λmax = 471.5 (±2.1) nm, and BADAN-cmCopA with λmax = 468.3 (±1.9) nm 
are represented by red, blue, and gray lines respectively.  
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wavelengths. Figure 4.10 shows the time evolution of TRES peak maxima of 

BADAN@C382 and BADAN@C384. As expected, the energy of the emitted 

photons (shown as maximum wavenumber νmax) decreases over time. Clearly, the 

total Stokes shift, that is the difference in maximum wavenumber between t = 0 

and t = ∞, is much larger for BADAN@C382 than for BADAN@C384 

(4,250 cm-1 and 3,650 cm-1, respectively), which confirms the higher polarity in 

the environment of the buried C382 seen already in the static emission spectra. 

Additionally, the relaxation time τr can be calculated from the kinetics of the 

decay. The relaxation times τr, which directly reflect the microviscosity, i.e. the 

mobility of the dye environment, are in the ns-range for both probe positions, 

implying that the water is “structured” and no bulk water is observed. The 

relaxation time τr = 1.84 ns of BADAN@C384 is longer than the τr = 1.23 ns 

measured for BADAN@C382. This implies that the environment of BADAN 

attached to the buried C382 residue is not only more hydrated but that the water is 

also more mobile than in the environment of C384. 

 

Taken together, it can be concluded from the steady-state and time-resolved 

fluorescence spectroscopy of BADAN-labeled LpCopA mutants that a 

pronounced hydration gradient within a small distance is realized in the 

environment of the CPC copper-binding motif of the protein. According to the 

 

Figure 4.10: Time evolution of TRES peak maxima of BADAN-labeled LpCopA mutants in 
DDM-micelles. The spectra were recorded in 0.15% DDM and are not background-corrected. 
Samples were excited at 375 nm. Total Stokes shifts of 4,250 cm-1 and 3,650 cm-1 were determined 
for BADAN@C382 (red diamonds) and BADAN@C384 (blue diamonds), respectively. The 
relaxation times τr of BADAN@C382 and BADAN@C384 are 1.23 ns and 1.84 ns, respectively. 
This implies that the environment of BADAN@C382 is more polar and also more mobile than that 
of BADAN@C384. 
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crystal structure, the S–S distance of the residues C382 and C384 is only 9 Å. 

However, the actual probe distance may be larger due to label and linker size and 

uncertainties in label orientation. In the flexible detergent solubilized state, the 

microenvironment of the more cytoplasmic C384 is less polar and contains less 

mobile water than the environment of the more buried C382. This unexpected 

result supports MD calculations on LpCopA in the E2.Pi state by Andersson et 

al. [47] that suggest that water molecules penetrate the transport channel up to 

C382, presumably via the proposed copper exit pathway to the extracellular side. 

However, the MD calculations were carried out in a model lipid environment, 

whereas here the high degree of hydration is observed in the more flexible 

micellar state. Obviously, however, C382 is the intrinsically favored hydration 

site over C384 when sufficient structural flexibility of the TM domains is 

provided in a micellar state. It can be expected that LpCopA is preferentially 

stabilized in the E2.Pi-state since all spectra were recorded at high sulfate 

concentration which was reported to act as a phosphate analogue in P-type 

ATPases by binding to the phosphate binding site in the P-domain and thereby 

stabilizing the protein in an E2.Pi-like conformation [108, 129]. Accordingly, the 

observation that the hydration in the TM channel increases towards the 

extracellular side is in line with the open exit pathway proposed for 

LpCopA [47, 68], although fluctuations into other states may also be possible as 

the detergent provides little structural constraints. 

4.2.3. Influence of the lipid bilayer on protein hydration. 

Protein–lipid interactions are well known to be crucial for structural and 

functional tuning of a membrane protein. Therefore, the influence of a lipid 

bilayer on helical packing and intra-protein hydration at the copper-binding site 

was studied for LpCopA reconstituted into asolectin-nanodiscs.  

Steady-state spectroscopy of BADAN-labeled LpCopA mutants in nanodiscs. 

Figure 4.11 shows that the emission maximum for BADAN@C382 shifts 

significantly by approximately 21 nm to 461.4 (±5.0) nm upon insertion into the 

nanodiscs, whereas the emission maximum of BADAN@C384 experiences a 

small shift by approximately 6 nm to 465.6 (±1.8) nm. The shift upon membrane 
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insertion for BADAN-cmCopA by approximately 6 nm to 464.8 (±2.2) nm is 

again very similar to the shift observed for BADAN@C384. Thus, the polarity in 

the environment of the more cytoplasmic C384 is only weakly influenced by the 

lipid environment, while hydration of the more membrane-buried C382 is much 

more variable. This indicates that the hydration of C382 is not determined by TM 

helix packing interactions, but strongly controlled by protein–lipid interactions. 

The lateral pressure exerted by the lipidic phase in the nanodisc is considered to 

match that in native plasma membranes [130, 131] and is probably the salient 

factor that lowers the hydration of the protein interior. 
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Quantitative analysis of the steady state emission spectra. Additionally to the 

plain comparison of the shifts of the fluorescence emission maxima of the steady-

state spectra, a more thorough quantitative analysis of the spectral shapes was 

performed. Due to the heterogeneity of the ground state of BADAN which 

consequently affects also the excited states as described in section 4.1, the 

fluorescence of protein-bound BADAN does not exhibit a simple line shape. 

Rather, the spectra represent a superposition of multiple Gaussian bands. Koehorst 

 

Figure 4.11: Normalized steady-state fluorescence spectra of BADAN-labeled LpCopA 
mutants in DDM-micelles and nanodiscs. Spectra of LpCopA mutants in 0.15% DDM (solid 
lines) and in asolectin-nanodiscs (dashed lines) are shown. The color code is as in Figure 4.9. 
Background-correction was performed as described above and in Figure 4.6. Vertical lines indicate 
the position of maximum emission upon excitation at 390 nm. The standard deviation is obtained 
from a minimum of three independent batches of experiments. (A) The λmax of BADAN@C382 is 
485.3 (±1.2) nm in detergent and shifts to 461.4 (±5.0) nm in nanodiscs. (B) The λmax of 
BADAN@C384 is 471.5 (±2.1) nm in detergent and 465.6 (±1.8) nm in nanodiscs. (C)The λmax of 
BADAN-cmCopA is 468.3 (±1.9) nm in detergent and 464.8 (±2.2) nm on nanodiscs. 
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et al. [120] proposed the decomposition of the spectra into three components 

according to the energy scheme of BADAN presented in Figure 4.2. The energy 

of the ICT and the HICTi species can be fixed, as solvent relaxation does not play 

a role for these states and thus the energy, i.e. the wavelength of maximum 

emission, does not change. The energy of the initial excited state of the HICTm 

species, on the contrary, can be lowered by solvent relaxation in the environment 

of the fluorophore if the reorientation of the water dipoles is much faster than the 

depopulation of the excited state. Additionally to solvent relaxation, internal label 

dynamics may contribute to the energy reduction of the HICTm. The excited state 

energy, i.e. the maximum wavenumber (or indirectly the maximum wavelength) 

of the HICTm species, can serve as a measure for the solvent mobility of the 

fluorophore´s environment. The Gaussian decompositions into the components 

representing the ICT, HICTi, and HICTm species of BADAN are shown in Figure 

4.12 for BADAN@C382 and BADAN@C384 in micelles and nanodiscs, 

respectively. An overview of the obtained parameters can be found in Table 4.2. 

 

 

 

Figure 4.12: Decompostion of the steady-state fluorescence spectra according to the energy 
level scheme of BADAN. The color code is as in Figure 4.9 and according to the energy scheme 
in Figure 4.1. The ICT, HICTi, and HICTm contributions are represented by dotted, dotted-dashed, 
and dashed black lines, respectively. (A) Decomposition of the spectra of BADAN@C384 in 
micelles (upper panel) and in nanodiscs (lower panel). (B) Decomposition of the spectra of 
BADAN@C382 in micelles (upper panel) and in nanodiscs (lower panel). An overview of the 
determined parameters can be found in Table 4.2. 
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Reconstitution of BADAN@C382 into nanodiscs caused a blue shift of λm from 

493 to 486 nm. On the energy-proportional wavenumber scale, the excited state of 

BADAN linked to C382 is thus by 289 cm-1 (equivalent to ~37 meV 

or ~3.6  kJ/mol) higher in nanodiscs than in the micellar system. The population 

of the spectral fraction fm decreases by 0.26 while fi increases by 0.20. Thus, also 

the population of the ICT species is slightly increased. Hence, the lipid bilayer 

reduced the extent to which dipolar relaxation processes in the vicinity of the 

fluorophore lowered the energy of the excited state of BADAN. On the contrary, 

BADAN@C384 showed a much weaker dependence of λm on the insertion into 

nanodiscs. The λm shift from 488 nm to 486 nm corresponds to a relative energy 

difference of only 92 cm-1. The different spectral response of the two sites to lipid 

insertion is due to a lower hydration around position 384 in the micellar state of 

the protein as compared to position 382, whereas both sites sample almost 

identical dielectric properties in the ND-inserted state. Comparing the obtained 

parameters with a reference data set acquired for the α-helical membrane-

embedded M13 major coat protein by Koehorst et al. [120, 132] reveals that the 

values of fm and νm of BADAN@C382 in nanodiscs are typical for the glycerol-

backbone region, while they are typical for a water exposed protein region when 

the protein is solubilized in a detergent micelle. However it has to be noted that in 

the LpCopA structure BADAN is not in contact with a lipidic phase but rather 

sandwiched between the TM helices. Therefore, label dynamics are expected to be 

more restricted than in the single TM helix reference protein. 

Generally, the decomposition of the spectra according to the spectral 

fractions of BADAN is consistent with the qualitative analysis of the spectra and 

indicates that the polarity in the environment of the membrane-buried C382 is 

strongly dependent on the lipidic phase, while the C384 environment exhibits a 

relatively stable hydration. In terms of possible functional transitions, the data 

show that C382 could be a flexible intra-protein hydration site that could be well 

regulated through altered helix arrangements under the influence of the 

ATP-hydrolytic cycle. In contrast, the structure around C384 appears to form a 

more stable “hydrophobic gate” which is largely defined by inter-helical contacts 

with little additional influence by altered helix packing. 
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Table 4.2: Parameters for the decomposition of the steady-state fluorescence spectra 
according to the energy level scheme of BADAN 

  BADAN@C384  BADAN@C382 

  micelle nanodisc micelle nanodisc 

fi 0.24 0.28 0.13 0.33 

fm 0.71 0.66 0.82 0.56 

νm (cm-1) 20,489 20,579 20,292 20,581 

λm (nm) 488.1 485.9 492.8 485.9 

 

Time-resolved spectroscopy of BADAN-labeled LpCopA mutants in 

nanodiscs. Figure 4.13 shows the fluorescence decays of BADAN@C384 and 

BADAN@C382 reconstituted into asolectin-nanodiscs compared to the respective 

spectra in DDM-micelles. With 3,600 cm-1, the total Stokes shift for 

BADAN@C384 in nanodiscs is only slightly smaller than the value in detergent 

(3,650 cm-1), whereas the total Stokes shift for BADAN@C382 decreases 

considerably to 3,200 cm-1 in the nanodiscs as compared to 4,250 cm-1 in the 

detergent micelle. This reflects the drop in polarity that was also seen in the static 

spectra. For BADAN@C382 the relaxation time τr increases slightly from 1.23 to 

1.34 ns upon membrane insertion, reflecting a slightly reduced solvent mobility in 

the environment of the probe. Surprisingly, in the case of BADAN@C384 the 

relaxation time τr decreases from 1.84 to 1.30 ns which would imply that the 

solvent mobility in the environment of BADAN@C384 increases upon membrane 

insertion. The reason for this observation is not clear and does also not correspond 

with the results obtained from the quantitative analysis of the steady-state spectra. 

However, all determined relaxation times comply with the assumption of 

“structured” water in the environment of the BADAN probe and exclude the 

presence of bulk water. 
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In summary, it was found that the microenvironment of the more cytoplasmic 

C384 is less influenced by the membrane insertion while the microenvironment of 

the buried C382 changes dramatically upon membrane insertion. The degree to 

which the polarity around the two cysteine residues depends on lipid-induced 

helical packing does not correlate in an intuitive manner with the topology of the 

two residues: C384 resides at the interface of the aqueous and the membrane 

phase, where a more variable hydration would be expected, while one would 

expected a more stable hydrophobic environment for the more membrane-

embedded C382, regardless of the lipidic environment. However, steady-state as 

well as time-resolved fluorescence using the environment-sensitive probe 

BADAN show that upon lipid-reconstitution the hydration in the environment of 

C382 drops significantly to a similar value as for the environment of C384 in the 

lipid bilayer. According to the time-resolved fluorescence data, the degree of 

water mobility is comparable at both sites. This is also consistent with the finding 

that the mobile fractions of BADAN at C382 and C384 in nanodiscs have the 

same excited state energy. 

 

Figure 4.13: Time evolution of TRES peak maxima of BADAN-labeled LpCopA mutants in 
DDM-micelles and nanodiscs. The spectra were recorded in 0.15% DDM (filled diamonds) and 
in asolectin-nanodiscs (open diamonds) and are not background-corrected. Samples were excited 
at 375 nm. The total Stokes shift of BADAN@C384 (blue) in nanodiscs is 3,600 cm-1 and is only 
slightly smaller than the corresponding value in micelles (3,600 cm-1). The total Stokes shift of 
BADAN@C382 (red) in nanodiscs is 3,200 cm-1 and is thus considerably smaller than the 
corresponding value in micelles (4,250 cm-1). 
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4.2.4. Estimation of the heterogeneous dielectric constant around the 

CPC motif  

The shifts of steady-state and time-resolved fluorescence spectra provide 

information on relative changes of the micropolarity and solvent mobility in the 

environment of the BADAN probe. These values were related to the local 

dielectric constant within the protein. To this end, reference spectra of a BADAN-

β-mercaptoethanol (β-ME) adduct in solvents of known permittivity were 

recorded. Unlike the BADAN-protein spectra, these spectra exhibit a single 

Gaussian shape because the spectral contributions of ICT and HICTi are 

negligible in the mobile isotropic solvent environment. Figure 4.14 shows the 

close to linear dependence of the wavenumber νmax at the emission maximum on 

the relative permittivity ε. In water (ε = 80.1) BADAN-β-ME exhibits a νmax 

of approximately18,000 cm-1. This represents the state of both maximal polarity 

and maximal solvent dipole mobility. In the protein context, this corresponds to 

BADAN bound to a fully bulk-water exposed and fully flexible amino acid. 

However, the maximum wavenumbers νm of the HICTm species of BADAN-

labeled LpCopA variants are found in the region between 20,300 cm-1 and 

20,580 cm-1, which would correspond to dielectric constants between 15 and 5 in 

a fully mobile solvent (see Figure 4.14). However, given the stronger sterical 

restriction of BADAN within the multi-helical protein structure as compared to 

the solvent model, the dielectric estimates provide only lower limits of  for the 

protein-interior. In the context of a phospholipid bilayer these values would 

typically correspond to the glycerol backbone region and low phosphate 

region [133]. On the other hand, typical values of relative permittivity in the 

interior of a protein range between 3 and 6, while significantly higher values of up 

to 20 are reported for the protein-water interface of soluble proteins where easier 

polarizable amino acid side chains reside [134-136]. First of all, the consistency 

between the published and the experimentally determined scales demonstrates the 

general applicability of this approach. According to the linear dependence of νmax 

and ε, the permittivity ε in the environment of BADAN@C382 is >15 in the 

flexible detergent environment, while the corresponding value for 

BADAN@C384 is only >8. For both BADAN positions, the value shifts down 
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to >5 upon reconstitution of the protein into nanodiscs. These results imply that 

the dielectric constant around the CPC is still higher than in a typical protein 

interior when LpCopA is buried in the lipid membrane and that no significant 

difference is found between the environment of C382 and C384. However, 

differences between the BADAN positions are seen for the flexible micellar 

environment. Here BADAN samples a considerably higher dielectric constant in 

the environment of the buried C382 than in the environment of the more 

cytoplasmic BADAN@C384. 

 

4.3. Summary and discussion 

Studying hydration and water mobility in the TM copper channel of the PIB-type 

copper-transporting ATPase CopA from Legionella pneumophila allows new 

insights into the mechanism of copper transport through the protein. This is of 

particular interest, because intra-protein hydration will affect the fate of the 

hydration shell of the copper ion which needs to be rearranged during transport. 

 

Figure 4.14: Correlation between maximum wavenumber of BADAN emission and relative 
permittivity. The emission maxima νmax of a BADAN-β-mercaptoethanol adduct in reference 
solvents were determined and correlated to their relative permittivity ε. This reference line was 
used to estimate the dielectric constant corresponding to the maximum wavenumber νm of the 
HICTm species of BADAN bound site-specifically to LpCopA mutants in detergent-micelles and 
nanodiscs. 
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Since this is a fundamental requirement of any ion transport process through 

hydrophobic barriers, the obtained data are of general importance for the 

understanding of ion transport mechanisms. Here, intra-protein hydration was 

studied in a flexible micellar state of the protein and compared with its more rigid 

membrane-embedded state using the polarity-sensitive fluorescent probe 

BADAN. Information on hydration and water mobility was obtained applying 

steady-state as well as time-resolved fluorescence techniques. To my knowledge 

these studies are the first example of applying time resolved-fluorescence to 

investigate water dynamics in the active site of a membrane protein. Previous 

work on the soluble haloacid dehalogenase [128] or isolated cytoplasmic domains 

of the SERCA [137] already showed impressively the potential of the method. 

Moreover, steady-state spectroscopic studies using polarity-sensitive dyes have so 

far mostly focused on monitoring sites located at the TM protein surface and 

therefore monitored direct protein–lipid interactions rather than lipid-dependent 

intra-protein hydration. 

Here, a novel labeling method together with thorough quality controls 

allowed the site-specific study of the environment of the conserved copper-

binding residues C382 and C384 in the TM helix M4 of LpCopA. Notably, it was 

shown that the environment of the main copper-binding motif CPC in the 

transmembrane channel of LpCopA is characterized by strong hydration gradients 

within very small distances and that the presence of a lipidic phase affects the 

environment of the more membrane-buried C382 significantly. Generally, the 

relaxation times deduced from the time-resolved fluorescence data characterize 

the water as “structured” at both positions and exclude the presence of bulk water. 

A careful analysis of the crystal structure of LpCopA (PDB 3RFU) with respect to 

the properties of the amino acids in the environment of C382 and C384 in a radius 

of ~5 Å reveals that the increased hydration in the environment of C382 does not 

coincide with a “higher density” of polar residues. Rather, C384 is located closer 

to polar residues. Thus, the observed high and variable hydration around C382 can 

probably be directly attributed to the penetration of water from the luminal side of 

the channel. Figure 4.15 shows a synopsis of all relevant parameters determined in 

this chapter. 
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In the micellar state, the value of νm differs by 197 cm-1 (equivalent to ~25 meV 

or ~2.4 kJmol-1) between the BADAN positions at C384 and C382. The higher 

water mobility (lower νm) around C382 correlates also with a higher fraction fm. 

The concerted change of both variables indicates that a higher amount of inter-

helical water near C382 causes a softening of intra-membrane protein structure, 

thereby allowing also more efficient solvent relaxation. The values of νm 

correspond to approximate relative permittivities  of >9 and >15 for 

BADAN@C384 and BADAN@C382, respectively. Thus, the dielectric 

environment of these residues is significantly more polar than the hydrophobic 

 

Figure 4.15: Correlation between the polarity and water mobility in the environment of the 
copper-binding CPC motif of LpCopA. The environment of BADAN@C382 in micelles is 
characterized by a large fraction of water fm = 0.82 with high mobility, reflected by the position of 
νm = 20,292 cm-1. The associated lower boundary of the dielectric constant is ε ≈ 15. Upon 
reconstitution into nanodiscs a substantial drop in fm to 0.56 and an increase of νm to 20,581 cm-1 
(corresponding to ε>5) was observed. The environment of BADAN@C384 in micelles is 
characterized by moderate polarity (fm = 0.71) and water mobility (νm = 20,489 cm-1, ε>8) 
Membrane insertion led to only a small decrease in in polarity (fm = 0.66) and solvent mobility 
(νm = 20,580 cm-1, ε>5). The shaded areas represent the typical parameter ranges found in the 
membrane core (average νm > 20,500 cm-1) and the membrane surface region (average 
νm < 20,500 cm-1) of a bilayer as determined in [132].. Distinct hydration gradients characterize the 
environment of the CPC motif. Hydration and water mobility at the more membrane-buried 
residue C382 are strongly affected by the presence of a lipidic phase. 
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interior of membrane proteins. The results demonstrate that helical packing 

interactions are sufficient to shield C384 from more extensive hydration despite 

its exposed location, whereas C382 resides in an intra-membrane protein 

hydration site. 

Upon membrane reconstitution, the amount (fm) and the mobility (νm) of 

water decrease significantly for both label positions. This implies that the 

structural constraints exerted by the lipid bilayer lead both to the exclusion as well 

as to the immobilization of water in the environment. However, the effect is much 

more pronounced for BADAN@C382. Here, the lipid reconstitution induces an 

energy difference of 298 cm-1 (~37 meV or ~ 3.6 kJ/mol) with respect to the 

micellar state. In the lipid bilayer, the CPC motif senses a rather uniform dielectric 

environment of ε>5 due to the reduced polarity around C382. Interestingly, the 

intra-membrane protein dielectric properties around C384 and C382 of the protein 

in nanodiscs very much coincide with those of the surrounding bilayer at the 

membrane surface and sub-head group region, respectively. The homogenous 

dielectric environment becomes strongly inhomogeneous by intra-membrane 

protein hydration at C382 upon reduced lateral pressure.  

Taken together, these results illustrate the assumed significant role of intra-

protein hydration for the transport mechanism of PIB-type ATPases. Remarkable 

intra protein hydration has been seen in crystallographic snapshots and MD 

calculations of LpCopA before. Moreover, a comparatively hydrated TM domain 

of the LpCopA homologue from the thermophilic archaeon Archaeoglobus 

fulgidus could also explain its potential to be reversibly unfolded [117]. Notably, a 

more static and comparatively low hydration was found around the more 

cytoplasmic residue C384. This cysteine residue is less conserved and can be 

substituted by serine or histidine within the subclass of PIB-type 

ATPases [41, 138]. In contrast, the more-membrane-buried cysteine of the metal-

binding motif (C382 in LpCopA), which was found to feature a highly variable 

environment in terms of hydration is stronger conserved. This notion coincides 

well with the finding by Renthal [139] that buried water sites are conserved across 

families of proteins and play an important role not only in structural stabilization 

but also correlate with protein function.  
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In the context of the fragmentary knowledge on the Cu+-transport mechanism of 

LpCopA, the obtained results could fill some evident gaps. The more exposed 

C384 is assumed to play a role in initial copper coordination together with M148 

[47]. The low hydration in its environment suggests that it is the site where the 

hydration shell of the Cu+-ion is partially stripped off to enable its binding to the 

protein. Moreover, this site could serve as a “hydrophobic gate” preventing the 

back-diffusion of the Cu+-ion to the cytoplasm. The variable hydration in the 

environment of the more membrane-buried C382 which is involved in high-

affinity copper coordination together with M717 indicates that this site might play 

an important role for the re-solvation of the Cu+-ion in order to prime it for 

extrusion to the luminal side of the membrane. This variability indicates also the 

conformational flexibility of this region of the protein. The conserved site may 

thus constitute a default “switch” as part of the ATP-driven enzymatic reaction 

cycle. This implies that the balance between forces exerted by the lipid membrane 

like lateral pressure and hydrophobic match on the one hand and those exerted by 

the cytosolic head piece on the TM helices on the other hand, plays a crucial role 

in determining the water accessibility and mobility in this protein region. The data 

suggest that in the resting state, the TM domain of the ATPase is in a compact 

state matching the dielectric properties of the surrounding membrane. Intra-

membrane protein hydration near C382 would then occur transiently during the 

Post-Albers cycle due to forces exerted by the catalytic head piece and possibly 

initiate the extracellular ion release. In this picture, lateral pressure would act as 

the restoring force that dehydrates the copper binding motif and re-establishes the 

dielectric match with the planar bilayer. 

Changes in internal hydration in different states of a membrane protein have 

been previously shown for the light activated state of rhodopsin [140-142], where 

increased hydration was specifically attributed to the metarhodopsin-I-

intermediate as determined by NMR. Moreover, the functional role of water 

dynamics has been studied using MD calculations e.g. for the Na+-channel 

Gramicidin A [143] or for the proton pump AHA2 [144]. On the other hand, it is 

well recognized that the lipid environment can strongly influence the population 

of conformational states and therewith protein activity, e.g. for rhodopsin [16] or 



CHAPTER 4  

82 
 

the prototypical P-type ATPase SERCA. In fact, SERCA is activated by a specific 

hydrophobic mismatch between its TM region and the surrounding lipid 

membrane [40, 145]. This can be understood when taking into consideration that 

conformational changes during function lead to the shift of membrane domains, 

such that the hydrophobic thickness of the membrane protein changes and, 

consequently, also the hydrophobic match. Thus, the state of ideal hydrophobic 

adaption between lipid bilayer and protein TM region can only be transient during 

a functional cycle. Instead, states of hydrophobic mismatch pose energetically 

unfavorable barriers that are important for reaction kinetics. In this case, altered 

protein–lipid interactions reduce the energy barrier to reach the different protein 

conformations. It is expected that these interactions between the protein and the 

lipid membrane are especially important for membrane proteins that undergo large 

conformational changes during their enzymatic cycle, such as P-type ATPases. In 

contrast, in comparatively rigid and tightly packed TM proteins like dark-state 

bovine rhodopsin the packing and structure is largely independent of the lipidic 

environment, as judged from the unaltered absorption of the 11-cis-Retinal 

chromophore [79]. Similarly, it is conceivable that solvation forces exerted by the 

high water potential which constantly counteracts on the stabilizing protein–

protein and protein–lipid interactions ultimately contributes to enabling the 

conformational changes required for protein function. In case of LpCopA this 

possibility appears to be particularly important for transporting the initially 

hydrated copper ion through the membrane channel. The controlled but transient 

coordination of the copper ion by the protein needs to be achieved by partial 

stripping of the hydration shell. Thus, the discovered high variability of hydration 

around the buried C382 may be functionally important during re-solvation of the 

copper ion [47, 68, 146]. 

In summary, it can be proposed that the environment of C384 serves as a 

“hydrophobic gate” preventing the re-diffusion of the copper ion to the 

intracellular side while variable polarity around C382 could contribute to directing 

the copper ion towards the extracellular exit site of the channel during the 

E2 steps of the enzymatic cycle. The results agree with the observation of water 

accessibility of the CPC motif as deduced from the crystal structure and the 
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MD calculations in the E2.Pi transition state. However, the data presented in this 

chapter demonstrate that the hydration of the exit channel is under the strong 

control of the lipidic phase which may thus act as a restoring force for structural 

changes induced by ATP-hydrolysis. Thus, the unexpected “open” E2.Pi transition 

state seen in the crystals could partly be a consequence of the high flexibility of 

this part of the protein structure in the absence of the sterical constraints of a lipid 

bilayer. Regarding the importance of a transiently formed large dielectric gradient 

across the CPC motif, it is plausible that this gradient is crucial for the 

directionality of ion transport. The restriction of peptide bond rotation by the 

conserved proline residue that separates the two studied cysteine residues 

probably gives structural support for the formation of adjacent domains of 

different flexibility and dielectric property.  
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5. Studying lipid interactions of the amphipathic helix MBb at 

the copper entry platform of LpCopA 

5.1. Introduction and Overview 

The crystal structure of LpCopA revealed that the entry site to the copper transport 

channel forms a wide entry platform (see also Figure 1.4). The class-IB-specific 

TM helices MA and MB constitute part of this platform and the helix MB kinks at 

the cytosolic membrane interface to form the amphipathic helix MBb. This entry 

platform is assumed to serve as a docking site for the HMBD or soluble copper 

chaperones due to electrostatic interactions and to be involved in initial low-

affinity copper coordination [74]. From a biophysical point of view it is 

remarkable that the amphipathic helix MBb resides at the presumed interface 

between the aqueous cytoplasm and the lipid bilayer and is therewith exposed to 

environments with drastically different dielectric properties. This would render 

the amphipathic character, i.e. the positioning of polar and hydrophobic side 

chains at opposite sides of the helical structure, important in regulating the protein 

tertiary structure at the water–membrane interface. Besides positioning the entry 

platform at the border between cytoplasm and membrane it could also serve as a 

flexible structural element and adopt different conformations with respect to the 

lipid membrane during the enzymatic cycle, which had been shown for an 

equivalent helix in other P-type ATPases [77]. In this way, it could mediate 

conformational changes associated with copper transport. Thus, it was interesting 

to characterize the environment-dependent structural changes of the amphipathic 

helix MBb as such in order to explore the “conformational space” that can be 

occupied by this prominent structure element of PIB-type ATPases.  

In a simplistic approach, a synthetic model peptide of helix MBb with the 

sequence GWPFFKRGWQSLK was studied. Structural changes induced by the 

helicity-promoting solvent trifluoroethanol (TFE) or lipid vesicles were monitored 

using CD spectroscopy as well as Fourier-transform infrared (FT-IR) 

spectroscopy and the changes in the polarity of the environment upon lipid 

interaction were monitored by intrinsic tryptophan fluorescence. The 
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spectroscopic data presented in this chapter were collected in the course of a 

bachelor thesis (Lennart Gaus, TU Dresden, 2014) that I co-supervised as a part of 

my doctoral work. 

5.2. Results 

5.2.1. Interaction of the MBb peptide with the helicity-promoting solvent 

TFE 

2,2,2-Trifluoroethanol (TFE) is an isotropic solvent with a relative permittivity of 

approximately 27 [147], resembling in this respect the lipid head group 

region [148]. In TM peptide research it is often used as a crude membrane-

mimetic system. As suggested by molecular dynamic simulations, TFE induces 

secondary structure by accumulating around the peptide and thus limiting water 

access to the peptide backbone [149]. Thereby, external hydrogen bond donors 

and acceptors are reduced so that intramolecular hydrogen bonds and 

consequently secondary structure formation is favored. Thus, it was obvious to 

study the impact of TFE on the amphipathic peptide MBb. 

Tryptophan fluorescence of MBb at varying TFE concentrations. The 

intensity-normalized emission spectra of tryptophan at varying TFE contents are 

shown in Figure 5.1 A. Clearly, TFE induces a blue shift of the emission 

maximum. In pure aqueous buffer λmax is 359 nm. In almost pure TFE (97.5% v/v) 

λmax is shifted to 351 nm. This observation is not surprising and represents the 

isotropic change in the dielectricity of the tryptophan environment. Furthermore, 

it can be assumed that a similar shift of tryptophan emission occurs upon 

interaction of MBb with a hydrophobic lipid bilayer. 

Secondary structure of MBb at varying TFE concentrations. The changes in 

the secondary structure of MBb at different TFE concentrations were studied by 

CD spectroscopy (see Figure 5.1 B). TFE induces a significant change of the 

shape of the CD spectrum. In aqueous buffer, the MBb shows a characteristic 

random coil spectrum featuring an intense minimum at 199 nm and a weak 

maximum at 223 nm [150]. Upon increasing the TFE concentration to 89%, the 

signal minimum shifts to 206 nm and the signal maximum at 223 nm disappears. 
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Instead, a maximum at 193 nm develops. As no satisfying fit for secondary 

structure fractions of MBb using standard methods (CDSSTR, SELCON, etc.) 

was obtained, the spectra were compared qualitatively to reference spectra that are 

specifically appropriate for short polypeptides [150]. While MBb adopts a clear 

random coil conformation in aqueous buffer, TFE addition induces structural 

changes towards a helical structure. However, the most prominent feature of an 

α-helical structure, the signal minimum at 222 nm [114] does not evolve. Thus, 

even at the highest TFE concentration, MBb seems to be partly in a random coil 

structure. This implies that on the one hand, structure induction by reduction of 

external hydrogen bonds by TFE is not sufficient to force MBb into the helical 

conformation which it adopts in the context of the full length protein according to 

the crystal structure. On the other hand, this indicates that MBb is not α-helical 

per se but can rather adopt different structures according to its environment. This 

suggests that MBb may act as a variable protein element that adopts different 

conformations in the enzymatic cycle of LpCopA. 
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5.2.2. Interaction of the MBb peptide with lipid vesicles 

TFE is a poor mimic of the lipid membrane as it provides only an isotropic 

environment. However, the lipid membrane is clearly anisotropic and 

characterized by pronounced changes in dielectricity along the membrane normal, 

with values from 80 for the bulk water phase to 0 for the center of the membrane. 

Thus, an amphipathic polypeptide which is located at the membrane–water 

interface experiences a high degree of anisotropy. In amphipathic polypeptides 

hydrophobic residues and hydrophilic residues are usually distributed alternately 

 

Figure 5.1: Interaction of the peptide MBb with TFE. (A) Steady-state fluorescence spectra 
(log-normal fits) of MBb in Tris-SO4 buffer without TFE (black) and with 25 (gray), 75 (teal) and 
97.5% TFE (magenta) The peptide concentration was 10 µM (B) CD spectra of MBb in Tris-SO4 
buffer without TFE and with 10 (blue), 25 (gray), 75 (teal) , and 89% TFE (magenta). The peptide 
concentration was 50 µM. Insert: Reference spectra of model peptides representing the three main 
secondary structures alpha helix (red), beta sheet (green) and random coil (black). The reference 
spectra are taken from [150]. 
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over the sequence. Hydrophobic residues point towards the lipids and the 

hydrophilic charged or polar residues are directed towards the aqueous phase. 

When the appropriate sequence is given, an α-helical structure allows satisfying 

the internal and external hydrogen bonds to the best possible extent and is 

therewith energetically most favorable. Thus, the interaction of MBb with large 

unilamellar vesicles (LUVs) of POPC was also studied in order to model the 

native environment of the MBb sequence at the water–membrane interface in the 

full length LpCopA. 

Tryptophan fluorescence of MBb upon interaction with POPC liposomes. As 

can be seen in the intensity normalized fluorescence emission spectra, liposome 

addition results in a blue shift of the emission maximum indicating that the 

peptide MBb binds to the liposomes (Figure 5.2 A). The emission maximum shifts 

by 9 nm to 350 nm at the highest lipid concentration of 1700 µM. No saturation of 

λmax is observed, indicating that not all peptide is bound to the liposomes. Thus, 

assuming a two-state model of interaction, the spectrum at a certain lipid 

concentration represents two peptide species: a liposome-bound species (denoted 

as “bound peptide”) and a species in aqueous buffer. Hence, the total spectrum 

can be understood as a superposition of the particular spectra of these peptide 

species. However, the spectrum for fully bound peptide could not be obtained 

experimentally and thus fully-bound MBb was mimicked by dissolving MBb in 

the very apolar solvent mixture of methanol : chloroform 20:80 v/v, which has a 

calculated dielectric constant of 10.4. Then, spectra representing fractions of 

bound peptide from 0 to 1 in steps of 0.1 were calculated from the spectrum in 

aqueous buffer (representing free peptide, fp) and in the methanol : chloroform 

mixture (representing bound peptide, bp) according to 

𝐼(λ) = 𝐼bp(λ)  · 𝑓bp + 𝐼fp(λ)  · (1 − 𝑓bp) (5.1) 

with I(λ) being the wavelength dependent intensity of the calculated spectrum and 

Ibp(λ) and Ifp(λ) the corresponding intensities for bound and free peptide, 

respectively and fbp the fraction of bound peptide. The obtained calibration curve 

is shown in Figure 5.2 B. 
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Determination of a Langmuir adsorption isotherm. With the help of the 

described calibration it is possible extract a Langmuir adsorption isotherm from 

the experimental spectra. The concentration of free peptide cfp is related to the 

dissociation constant K according to 

𝑐fp = 𝐾 ·
𝐿

1−𝐿
 (5.2) 

with L being the fractional saturation of lipid binding sites. The total peptide 

concentration cp is constant so that 

 

Figure 5.2: Interaction of MBb with POPC-liposomes monitored by tryptophan fluorescence. 
(A) Steady-state fluorescence spectra (log-normal fits) of MBb in Tris-SO4 buffer. The peptide 
concentration was 5 µM. Lipid concentrations were 0 (black), 400 (gray), 700 (teal), 1000 
(purple), and 1700 µM (magenta). Insert: Correlation between the maximum emission λmax and the 
concentration of lipid clipid. (B) Calibration curve relating λmax with the fraction f of bound peptide. 
The reference spectra for free and completely bound peptide MBb, were recorded in aqueous 
buffer and in methanol : chloroform 20:80 v/v, respectively. The spectra at intermediate fraction of 
bound peptide were calculated from linear combinations of the two extreme spectra (see insert). 
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𝑐fp = 𝑐p −  𝑐bp (5.3) 

On the other hand, the concentration of bound peptide cbp is also related to lipid 

concentration clipid by 

𝑐bp = 𝐿 ∙ 𝑐lipid (5.4) 

so that one can rewrite 

𝑐lipid =
1

𝐿
∙ (𝑐p − 𝐾 ∙

𝐿

1−𝐿
) . (5.5) 

With the help of the calibration curve described in the last section, the emission 

maxima λmax of the spectra were related to the fraction of bound peptide fbp, which 

equals cbp/cp. Thus, the Langmuir adsorption isotherm can be obtained from 

plotting fbp against the lipid concentration clipid (see Figure 5.3) and fitting the 

dissociation constant K as a free parameter. The obtained large dissociation 

constant of K = 2.9 mM indicates a low affinity between peptide and lipid. 

Clearly, the low affinity does not result from the occupation of the liposome 

surface. Rather it is conceivable, that the low affinity is caused by electrostatic 

repulsion between free and bound peptide caused by positively charged residues. 

A more thorough analysis would be possible by applying the Gouy-Chapman 

theory, but was not undertaken within the scope of this work. Importantly, also 

these results on the interaction of MBb with a lipid membrane indicate that this 

stretch of LpCopA might be flexible and not stationary bound to the lipid 

membrane. 

 

Figure 5.3: Langmuir adsorption isotherm of the peptide MBb to lipid vesicles. The fraction 
of lipid-bound peptide fbp versus lipid concentration clipid is plotted. The dissociation constant 
derived from the adsorption isotherm fit is K = 2.9 mM. 
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Structure formation of MBb upon POPC interaction. The experiments 

described above were based on tryptophan emission only and confirm the 

fundamental property of the amphipathic MBb sequence to associate with the lipid 

surface through partial insertion of hydrophobic side chains (here tryptophan) into 

the lipid phase. However, it cannot be concluded from these experiments whether 

the presumed α-helical structure forms during this process. Therefore, it was also 

investigated if the interaction of MBb with lipids induces structure formation. 

Figure 5.4 A shows the CD spectra of MBb upon titration with POPC liposomes. 

No significant changes in secondary structure were observed. However, this is not 

surprising when considering the seven times lower lipid to peptide ratio in the CD 

data as compared to the fluorescence data that was a consequence of the higher 

peptide concentration. Unfortunately, high noise due to light scattering from the 

POPC vesicles hampered spectra acquisition at higher lipid concentrations. Using 

the Langmuir adsorption isotherm (see Figure 5.3) the maximal fraction of bound 

peptide fbp was estimated to be only about 10% at the highest lipid  to peptide ratio 

measured. As an approach to explore structure formation of MBb under 

conditions that would favor the interaction of the peptide with lipid, the system 

was studied in a hydrated rather than suspended state. To this end, the 

FT-IR spectra were recorded, which allow direct observation of secondary 

structure-sensitive vibrations of the peptide backbone. Figure 5.4 B shows the 

transmission spectra of MBb in the absence and in the presence of POPC. For 

pure MBb, the amide I band, representing the C=O stretching mode of the peptide 

bonds, shows a maximum at 1,652 cm-1. This frequency is typical for a partly 

random coiled and partly α-helical structure. When mixed with lipid, the amide I 

band shifts to 1,656 cm-1 which is indicative of the formation of α-helical 

structure. Thus, it can be expected that helical structure formation of MBb is 

favored in the context of the full length LpCopA protein, where the sequence 

element is structurally restrained to interact with the lipid membrane through its 

localization between the adjacent TM helices M1 and the N-terminal part of MB. 
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5.3. Summary and Discussion 

The entry platform to the copper transport channel of LpCopA is lined by the 

amphipathic helix MBb which resides at the membrane–water interface and 

adjoins the TM helices M1 and MB. Due to its amphipathic nature, this part of 

LpCopA may be important for the correct positioning of LpCopA in the 

membrane. Moreover, it could serve as a flexible structural element and mediate 

conformational changes associated with the copper transport cycle. The results, 

gathered by a combination of CD, FT-IR and intrinsic tryptophan fluorescence 

spectroscopy, revealed that the synthetic peptide of MBb has no strong intrinsic 

 

Figure 5.4: Structure formation of MBb upon lipid interaction. (A) CD spectra of MBb in 
Tris-SO4 buffer. The peptide concentration was 35 µM. The lipid concentration was 0 (black), 250 
(gray), 600 (teal), 1000 (purple), and 1500 µM (magenta). (B) FT-IR absorption spectrum of MBb 
in the absence and in the presence of POPC liposomes. 11 µmole MBb in Tris-SO4 buffer (black) 
and in POPC (magenta) were used. Pure MBb has an amide I vibration with a maximum at 
1,652 cm-1, which is typical for a partly random coil and partly α-helical structure. In the presence 
of lipid the amide I band shifts to 1,656 cm-1 which indicates the development of α-helical 
structure. The band at 1,736 cm-1 corresponds to the C=O stretching band of the phospholipid 
glycerol moiety. 
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helicity when it is dissolved in an aqueous phase. In the low dielectric solvent 

TFE – where internal hydrogen bonds are favored – structure is formed. However, 

no complete α-helical fold is attained, as shown by CD spectroscopy. In contrast, 

FT-IR spectroscopy shows that MBb has an α-helical structure when it is brought 

into contact with a lipid layer under dehydrated conditions, i.e. when 

re-partitioning into the aqueous phase is prevented. However, a Langmuir 

adsorption isotherm derived from the intrinsic tryptophan fluorescence spectra of 

MBb in the presence of lipid vesicles revealed that MBb has only a low affinity to 

the neutral lipid POPC. 

Taken together these results indicate that the α-helical structure seen in the 

crystal structure is not necessarily an intrinsic property of MBb. Instead, the MBb 

sequence is to some extent anchored to the membrane surface through the 

adjacent TM helices, and thereby stabilized in its helical structure by forced lipid 

interactions [64]. In this way the hydrophobic and hydrophilic amino acid side 

chains orient in an energetically favorable way between the membrane end the 

aqueous environment, respectively [151]. Consequently, this work can confirm 

the α-helical structure in the context of LpCopA but shows that the amino acid 

sequence itself does not strictly encode for this type of secondary structure, even 

though the peptide shows the typical sequence features of an amphipathic 

helix [13]. Thus, dielectric and geometric factors inherent to the water–lipid phase 

boundary could be crucial factors in regulating structural transitions during the 

highly dynamic ion transport process through LpCopA. For example it could be 

involved in rearrangements of helix M1 and therewith of M148 that probably 

participates in initial copper coordination. For translocation of the ion to the 

copper binding site CPC on helix M4, helix M1 and helix M4 need to slide along 

each other to the extracellular and intracellular side, respectively [47, 68]. Such a 

movement of helix M1 could be facilitated by a change in the membrane 

orientation and/or structure of the adjacent amphipathic helix MBb. 
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6. Conclusions and perspectives 
The Cu+-transporting PIB-type ATPase LpCopA is a prominent member of the 

diverse ion pump family of P-type ATPases. This ubiquitous transmembrane 

protein and its homologues are vital for regulating copper levels in humans, 

bacteria, and plants. The ion transport mechanism of this transmembrane pump 

has unique features in terms of the ion entry and exit steps and its study holds 

great potential to gain a deeper understanding of the role of protein–lipid 

interactions and the role of water dynamics for membrane protein function. 

In this work, the role of intra-protein hydration during the transport cycle 

was studied in a dynamic solution state of the protein and the influence of the 

lipid environment was addressed. To this end, the functional recombinant protein 

was purified in a detergent-solubilized state and reconstituted into MSP1E3D1- 

nanodiscs, which was the first reported successful reconstitution of a PIB-ATPase 

into this versatile nano-scaled planar lipid bilayer system. Site-specific 

fluorescence spectroscopic studies using the small polarity-sensitive dye BADAN 

allowed probing polarity and water mobility in a radius of approximately 5 Å 

around the residues of the central copper-binding motif CPC on TM helix M4. It 

is assumed that copper is initially coordinated by C384 together with M148 and 

other low-affinity residues, while conformational changes lead to its high-affinity 

binding at C384, C382, and M717 on helix M6. Further TM helix rearrangements 

are necessary for the extrusion of the ion to the extracellular side and water 

networks in the TM channel could play an important role for this step. In this 

work it could be shown that the environment of the copper binding site is 

characterized by strong polarity gradients and that the lipid environment plays a 

crucial role in determining intra-protein hydration around the buried and 

conserved residue C382. Quantitative analysis of the fluorescence spectra showed 

that the constraints imposed by the lipid bilayer lead both to the exclusion as well 

as to the immobilization of water at this intramembranous site, while the 

hydration is little altered around C384. It can be proposed that the environment of 

C384 serves as a “hydrophobic gate” where the hydration shell of the Cu+-ion is 

partially stripped off to enable its binding to the protein and its back-diffusion to 

the cytoplasm is prevented. The relatively narrow and rigid character of the entry 
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channel as expected for a “hydrophobic gate” is also supported by the fact that 

BADAN labeling at the more cytoplasmic C384 led to the steric hindrance of 

further labeling at C382 as observed for cmCopA bearing the native CPC motif. 

The remarkable hydration in the environment of C382 points to its role for the re-

solvation of the Cu+-ion in order to prime it for extrusion to the luminal side of the 

membrane. However, the dependence of the hydration properties on the 

constraints of a lipidic environment indicates the flexibility of this site. This 

flexibility could also be partly mediated by rearrangements of the adjacent 

amphipathic helix MBb which in this work was found to exhibit lipid-dependent 

structural variability. MBb is located at the cytoplasmic entry platform to the 

copper channel adjacent to helix M1, which is neighboring the CPC motif-bearing 

helix M4. Thus, the environment of C382 might constitute a default “switch” as 

part of the ATP-driven enzymatic reaction cycle. Figure 6.1 shows a schematic 

representation of the proposed model. 

 

Figure 6.1: Schematic model of the proposed role of C382 and C384 for the ion transport 
mechanism of LpCopA. (A) Overview of the LpCopA structure with highlighted TM domain. (B) 
Model of lipid-mediated hydration changes in the TM domain of LpCopA. The fractions fm of 
mobile water are indicated by the size of the halo around the residues. The density of the green 
pattern symbolizes the dielectricity in the environment of the probed sites. The environment of 
C384 has a moderate polarity that is largely unaffected by the lipid environment. Thus, it may act 
as a “hydrophobic gate” during the initial copper coordination, facilitating the stripping of the ion 
hydration shell. The environment of membrane-buried residue C382 is characterized by a high 
fraction of mobile water in the flexible detergent micelle (left hand side), while membrane 
reconstitution leads to the exclusion and immobilization of water (right hand side). Thus, this site 
may act as a flexible conformational “switch” facilitating the ion extrusion. The model suggests a 
functional role of the lateral pressure as a restoring force that dehydrates the C382 environment 
during the catalytic cycle when the ion is released to the extracellular opening. 

“hydrophobic gate” around C384 facilitates Cu+ entry

flexible “switch” around C382 supports Cu+ exit

A B
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The functional reconstitution of LpCopA into the native lipid environment of the 

nanodiscs established a platform that will be of great use in the future. One 

exciting perspective is to “change the point of view” and study the environment of 

the protein-bound ion with the help of advanced element-specific X-ray 

spectroscopic techniques at X-ray free-electron lasers (X-FELs). Here, nanodiscs 

constitute a perfectly suited system to deliver the membrane protein in a native 

lipid environment to the intense pulsed X-ray beam and could enable the 

collection of  single particle diffraction patterns before sample destruction. 

Preliminary experiments could already show that diffraction patterns of intact 

nanodiscs can be recorded in an X-FEL beam (CXI beamline at LCLS in 

cooperation with Anton Barthy, unpublished data). In this context, mutation of the 

ion-binding protein residues could dissect the roles of the “protein scaffold” and 

the ligands involved in ion coordination [152]. This knowledge could be 

fundamental in the process of engineering transmembrane ion pumps with altered 

ion specificity. For example, it is conceivable that the flexible and hydrated 

interior of the LpCopA TM channel could be a suitable environment for actinides 

and lanthanides due to their large hydration shell, once the thiol-base ligands are 

substituted by carboxylates. Creating such an engineered transporter would be a 

milestone of biotechnological research. 

Altogether, the results gathered throughout this work stress the paramount 

importance of the lipid bilayer for membrane protein function and especially 

address the question how dynamic intra-protein hydration is interlinked with the 

conformational flexibility of the membrane protein during function. Such 

questions cannot be addressed through the study of “frozen” crystal states. Thus, 

spectroscopic research on dynamic membrane proteins with the option of 

particularly studying the role of the native bilayer environment is a powerful way 

to follow vital structural transitions that will ultimately contribute to decipher the 

riddles of protein structure–function relationships. 
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